
•	Use semantic markup to create lean, standards-compliant web pages 	
with structural integrity.

•	Work with CSS to create beautiful page layouts, typography, 	
and navigation.

•	Balance contemporary design with future-proof web standards.

•	Learn how to fix common browser bugs, ensuring your pages work 	
as intended for all users.

•	Use the reference guides to remind yourself about XHTML elements 	
and attributes, CSS properties and values, browsers, and more.

C
SS a

n
d H

TM
L	

W
eb D

esig

n

this print for reference only—size & color not accurate spine = 1.042" 552 page count

Grannell

US $34.99
Mac/PC/Linux compatible

www.friendsofed.com

ISBN-13: 978-1-59059-907-5
ISBN-10: 1-59059-907-1

9 781590 599075

53499

A modern, modular approach
to standards-compliant web design.

The
Essential
Guide to

Craig Grannell
Foreword by Jon Hicks, Hicksdesign

The Essential Guide to CSS and HTML Web Design

The Essential Guide to CSS and HTML Web Design is a special book—it tells you all you
need to know to design websites that are standards-compliant, usable, and look great,

but it doesn’t overwhelm you with waffle, theory, or obscure details.

It’s designed to be invaluable to you, whatever knowledge of web design you already have,
with a mix of practical, real-world tutorials and reference material—beginners will quickly
pick up the basics, while experienced designers and developers will return to the book
again and again to recap on techniques and learn new things. This book will become a
close friend, earning a permanent place on your desk.

Each chapter covers a specific aspect of creating web pages. The book begins with an
introduction to the broad area of web design, before diving into HTML and CSS, reusing
code, and other best practices. Subsequent chapters focus on all the most important
areas of a successful website: typography, images, navigation, tables, page layouts with
CSS, forms, and feedback (including ready-made scripts for you to use). The penultimate
chapter explores browser quirks and bugs, detailing how to get around them. The book is
completely up-to-date, covering the newest standards in the latest browsers.

The book’s final chapter provides three case studies of popular web archetypes for you to
dissect and learn from: an online gallery, a storefront, and a corporate home page. Due
to the modular nature of the book and its many exercises, you can mix and match code
examples to create myriad designs of your own. And while you’re doing so, you can refer
to the detailed reference appendixes. These cover CSS, XHTML, color, entities, browsers,
and more, so any details you need to look up are always close at hand.

	 Create cutting-edge, good-looking,
efficient web pages.

	 Work with standards-compliant
technologies.

	 Combine exercises to fashion
countless web page designs.

Also Available
SHELVING CATEGORY
1.	Web Design

The Essential Guide to CSS
and HTML Web Design

Craig Grannell

9071FM.qxd 10/17/07 5:11 PM Page i

The Essential Guide to CSS and
HTML Web Design

Copyright © 2007 by Craig Grannell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-907-5

ISBN-10 (pbk): 1-59059-907-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,

or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,

or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits

Lead Editors
Chris Mills,
Tom Welsh

Technical Reviewer
David Anderson

Editorial Board
Steve Anglin, Ewan Buckingham,
Gary Cornell, Jonathan Gennick,
Jason Gilmore, Jonathan Hassell,

Matthew Moodie, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft,

Matt Wade, Tom Welsh

Project Manager
Kylie Johnston

Copy Editor
Damon Larson

Assistant Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Dina Quan

Artist
April Milne

Proofreader
Nancy Sixsmith

Indexer
Julie Grady

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

9071FM.qxd 10/17/07 5:11 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.friendsofed.com

CONTENTS AT A GLANCE

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments. xix

Foreword . xxi

Introduction. xxiii

Chapter 1: An Introduction to Web Design . 1

Chapter 2: Web Page Essentials . 29

Chapter 3: Working with Type . 61

Chapter 4: Working with Images . 119

Chapter 5: Using Links and Creating Navigation. 147

Chapter 6: Tables: How Nature (and the W3C) Intended 233

Chapter 7: Page Layouts with CSS . 257

Chapter 8: Getting User Feedback . 313

Chapter 9: Dealing with Browser Quirks . 347

Chapter 10: Putting Everything Together . 371

Appendix A: XHTML Reference . 399

Appendix B: Web Color Reference . 447

Appendix C: Entities Reference . 451

Appendix D: CSS Reference . 471

Appendix E: Browser Guide . 497

Appendix F: Software Guide . 503

Index . 509

iii

9071FM.qxd 10/17/07 5:11 PM Page iii

9071FM.qxd 10/17/07 5:11 PM Page iv

CONTENTS

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Foreword. xxi

Introduction . xxiii

Chapter 1: An Introduction to Web Design . 1

A brief history of the Internet . 2
Why create a website? . 3
Audience requirements . 4
Web design overview . 5

Why WYSIWYG tools aren’t used in this book . 6
Introducing HTML and XHTML . 6

Introducing the concept of HTML tags and elements 7
Nesting tags . 7
Web standards and XHTML . 8
Semantic markup . 9

Introducing CSS . 10
Separating content from design . 10
The rules of CSS . 11
Types of CSS selectors . 12

Class selectors . 12
ID selectors . 13
Grouped selectors . 13
Contextual selectors . 14

Adding styles to a web page . 15
The cascade . 16
The CSS box model explained . 17

Creating boilerplates . 18
Creating, styling, and restyling a web page . 20

v

9071FM.qxd 10/17/07 5:11 PM Page v

Working with website content . 24
Information architecture and site maps . 24
Basic web page structure and layout . 25
Limitations of web design . 27

Chapter 2: Web Page Essentials . 29

Starting with the essentials . 30
Document defaults . 30

DOCTYPE declarations explained . 32
XHTML Strict . 32
XHTML Transitional . 33
XHTML Frameset . 33
HTML DOCTYPEs . 33

Partial DTDs . 34
What about the XML declaration? . 34

The head section . 35
Page titles . 35
meta tags and search engines . 37

Keywords and descriptions . 37
revisit-after, robots, and author . 38

Attaching external documents . 38
Attaching external CSS files: The link method . 38
Attaching CSS files: The @import method . 39
Attaching favicons and JavaScript . 41
Checking paths . 42

The body section . 42
Content margins and padding in CSS . 42
Zeroing margins and padding on all elements . 43
Working with CSS shorthand for boxes . 43
Setting a default font and font color . 44

Web page backgrounds . 45
Web page backgrounds in CSS. 46

background-color. 46
background-image . 46
background-repeat . 46
background-attachment . 47
background-position . 48
CSS shorthand for web backgrounds . 48

Web page background ideas . 49
Adding a background pattern . 50
Drop shadows . 51
A drop shadow that terminates with the content 51
Gradients . 54
Watermarks . 55

Closing your document . 57
Naming your files . 57
Commenting your work . 58
Web page essentials checklist . 59

CONTENTS

vi

9071FM.qxd 10/17/07 5:11 PM Page vi

Chapter 3: Working with Type . 61

An introduction to typography . 62
Styling text the old-fashioned way (or, why we hate font tags) 64
A new beginning: Semantic markup . 65

Paragraphs and headings . 66
Logical and physical styles . 66

Styles for emphasis (bold and italic) . 67
Deprecated and nonstandard physical styles . 67
The big and small elements . 67
Teletype, subscript, and superscript . 67
Logical styles for programming-oriented content 68
Block quotes, quote citations, and definitions . 68
Acronyms and abbreviations . 68
Elements for inserted and deleted text . 69

The importance of well-formed markup . 70
The importance of end tags . 70

Styling text using CSS . 71
Defining font colors . 71
Defining fonts . 72

Web-safe fonts . 73
Sans-serif fonts for the Web . 73
Serif fonts for the Web . 74
Fonts for headings and monospace type . 75
Mac vs. Windows: Anti-aliasing . 76

Using images for text . 77
Image-replacement techniques . 78

Defining font size and line height . 79
Setting text in pixels . 80
Setting text using keywords and percentages . 80
Setting text using percentages and ems . 81
Setting line height . 82

Defining font-style, font-weight, and font-variant . 83
CSS shorthand for font properties . 84
Controlling text element margins . 85
Using text-indent for print-like paragraphs . 85
Setting letter-spacing and word-spacing . 86
Controlling case with text-transform . 87
Creating alternatives with classes and spans . 87
Styling semantic markup . 89

Styling semantic markup: A basic example with proportional line heights 90
Styling semantic markup: A modern example with sans-serif fonts 92
Styling semantic markup: A traditional example with serif fonts and
a baseline grid . 95

Creating drop caps and pull quotes using CSS . 98
Creating a drop cap using a CSS pseudo-element 98
Creating a drop cap with span elements and CSS 100
Creating pull quotes in CSS. 102
Using classes and CSS overrides to create an alternate pull quote 105
Adding reference citations . 106

CONTENTS

vii

9071FM.qxd 10/17/07 5:11 PM Page vii

Working with lists . 106
Unordered lists. 107
Ordered lists . 107
Definition lists . 107
Nesting lists . 108
Styling lists with CSS . 108

list-style-image property . 109
Dealing with font-size inheritance . 109
list-style-position property . 110
list-style-type property . 110
List style shorthand . 111

List margins and padding . 111
Inline lists for navigation . 112
Thinking creatively with lists . 112

Creating better-looking lists . 112
Displaying blocks of code online . 115

Chapter 4: Working with Images. 119

Introduction . 120
Color theory . 120

Color wheels . 121
Additive and subtractive color systems . 121
Creating a color scheme using a color wheel . 121
Working with hex . 123
Web-safe colors . 124

Choosing formats for images . 125
JPEG . 125
GIF. 126

GIF89: The transparent GIF . 128
PNG . 129
Other image formats . 129

Common web image gaffes . 130
Using graphics for body copy. 130
Not working from original images . 130
Overwriting original documents . 130
Busy backgrounds . 131
Lack of contrast . 131
Using the wrong image format . 131
Resizing in HTML. 132
Not balancing quality and file size . 132
Text overlays and splitting images . 133
Stealing images and designs . 133

Working with images in XHTML. 134
Using alt text for accessibility benefits. 134
Descriptive alt text for link-based images . 134
Null alt attributes for interface images . 135
Using alt and title text for tooltips . 135

CONTENTS

viii

9071FM.qxd 10/17/07 5:11 PM Page viii

Using CSS when working with images . 136
Applying CSS borders to images . 136
Using CSS to wrap text around images . 138
Displaying random images . 139

Creating a JavaScript-based image randomizer . 140
Creating a PHP-based image randomizer . 142

Chapter 5: Using Links and Creating Navigation 147

Introduction to web navigation . 148
Navigation types . 148

Inline navigation . 149
Site navigation . 149
Search-based navigation . 150

Creating and styling web page links . 150
Absolute links . 151
Relative links . 151
Root-relative links . 152
Internal page links . 153
Backward compatibility with fragment identifiers . 153
Top-of-page links . 154
Link states . 155
Defining link states with CSS . 156
Correctly ordering link states . 156
The difference between a and a:link . 157
Editing link styles using CSS . 157

The :focus pseudo-class. 159
Multiple link states: The cascade . 160

Styling multiple link states . 160
Enhanced link accessibility and usability. 162

The title attribute . 163
Using accesskey and tabindex . 163
Skip navigation links . 164
Creating a skip navigation link . 165
Styling a skip navigation link . 166
Enhancing skip navigation with a background image 168

Link targeting. 169
Links and images . 170

Adding pop-ups to images . 171
Adding a pop-up to an image . 171

Image maps . 175
Faking images maps using CSS . 177

Using CSS to create a fake image map with rollovers 178
Enhancing links with JavaScript . 183

Creating a pop-up window . 183
Creating an online gallery . 185

Switching images using JavaScript . 185
Adding captions to your image gallery . 187
Automated gallery scripts . 188

CONTENTS

ix

9071FM.qxd 10/17/07 5:11 PM Page ix

Collapsible page content . 190
Setting up a collapsible div . 190
Enhancing accessibility for collapsible content . 191
Modularizing the collapsible content script. 192
How to find targets for collapsible content scripts 194

Creating navigation bars . 195
Using lists for navigation bars . 195

Using HTML lists and CSS to create a button-like vertical navigation bar 196
Creating a vertical navigation bar with collapsible sections 200

Working with inline lists . 202
Creating breadcrumb navigation. 202
Creating a simple horizontal navigation bar . 204
Creating a CSS-only tab bar that automates the active page 207

Graphical navigation with rollover effects . 211
Using CSS backgrounds to create a navigation bar 211
Using a grid image for multiple link styles and colors 214
Creating graphical tabs that expand with resized text 217
Creating a two-tier navigation menu . 220
Creating a drop-down menu . 224
Creating a multicolumn drop-down menu . 226

The dos and don’ts of web navigation . 230

Chapter 6: Tables: How Nature (and the W3C) Intended 233

The great table debate. 234
How tables work . 235

Adding a border . 235
Cell spacing and cell padding. 235
Spanning rows and cells. 236
Setting dimensions and alignment . 237

Vertical alignment of table cell content. 238
Creating accessible tables . 239

Captions and summaries . 239
Using table headers . 240
Row groups. 240
Scope and headers . 241
Building a table . 242

Building the table . 243
Styling a table. 247

Adding borders to tables . 247
Styling the playlist table . 248

Adding separator stripes . 250
Applying separator stripes . 251
Adding separator stripes with PHP. 253

Tables for layout . 253

CONTENTS

x

9071FM.qxd 10/17/07 5:11 PM Page x

Chapter 7: Page Layouts with CSS . 257

Layout for the Web . 258
Grids and boxes . 258
Working with columns . 259
Fixed vs. liquid design . 260
Layout technology: Tables vs. CSS . 260
Logical element placement . 261

Workflow for CSS layouts . 261
Anatomy of a layout: Tables vs. CSS . 262
Creating a page structure . 262
Box formatting . 263

CSS layouts: A single box . 264
Creating a fixed-width wrapper . 264
Adding padding, margins, and backgrounds to a layout. 265
Creating a maximum-width layout . 268
Using absolute positioning to center a box onscreen 269

Nesting boxes: Boxouts . 272
The float property . 273

Creating a boxout . 274
Advanced layouts with multiple boxes and columns . 278

Working with two structural divs . 278
Manipulating two structural divs for fixed-width layouts 278
Manipulating two structural divs for liquid layouts 285

Placing columns within wrappers and clearing floated content 288
Placing columns within a wrapper . 288
Clearing floated content . 290

Working with sidebars and multiple boxouts . 293
Creating a sidebar with faux-column backgrounds 294
Boxouts revisited: Creating multiple boxouts within a sidebar 296

Creating flanking sidebars. 298
Creating flanking sidebars . 299

Automating layout variations . 304
Using body class values and CSS to automate page layouts 304

Scrollable content areas . 306
Working with frames . 307
Working with internal frames (iframes) . 309
Scrollable content areas with CSS . 310

Chapter 8: Getting User Feedback . 313

Introducing user feedback. 314
Using mailto: URLs . 314
Scrambling addresses . 315

Working with forms . 315
Creating a form . 316
Adding controls . 316
Improving form accessibility . 318

The label, fieldset, and legend elements . 318
Adding tabindex attributes . 319

CONTENTS

xi

9071FM.qxd 10/17/07 5:11 PM Page xi

CSS styling and layout for forms . 320
Adding styles to forms . 320
Advanced form layout with CSS . 323

Sending feedback . 326
Configuring nms FormMail . 326

Multiple recipients . 328
Script server permissions . 328
Sending form data using PHP . 329
Using e-mail to send form data . 333

A layout for contact pages . 333
Using microformats to enhance contact information. 336

Using microformats to enhance contact details 337
Online microformat contacts resources . 341

Contact details structure redux . 342

Chapter 9: Dealing with Browser Quirks . 347

The final test . 348
Weeding out common errors . 348
A browser test suite . 351

Installing multiple versions of browsers . 353
Dealing with Internet Explorer bugs . 354

Outdated methods for hacking CSS documents . 355
Conditional comments . 356
Dealing with rounding errors . 358
Alt text overriding title text . 359
Common fixes for Internet Explorer 5.x . 359

Box model fixes (5.x) . 359
Centering layouts . 360
The text-transform bug . 360
Font-size inheritance in tables . 360

Common fixes for Internet Explorer 6 and 5 . 361
Fixing min-width and max-width. 361
Double-float margin bug . 361
Expanding boxes . 362
The 3-pixel text jog . 362
Whitespace bugs in styled lists . 363
Problems with iframes . 363
Ignoring the abbr element . 364
PNG replacement . 364
Problems with CSS hover menus (drop-downs) 365

Fixing hasLayout problems (the peekaboo bug) . 365
Targeting other browsers . 367

CONTENTS

xii

9071FM.qxd 10/17/07 5:11 PM Page xii

Chapter 10: Putting Everything Together . 371

Putting the pieces together . 372
Managing style sheets . 372
Creating a portfolio layout . 373

About the design and required images . 374
Putting the gallery together. 374
Styling the gallery . 375
Hacking for Internet Explorer. 378

Creating an online storefront . 378
About the design and required images . 379
Putting the storefront together . 380
Styling the storefront . 381
Fonts and fixes for the storefront layout . 384

Creating a business website . 387
About the design and required images . 387
Putting the business site together . 388
Styling the business website . 389

Working with style sheets for print . 392

Appendix A: XHTML Reference. 399

Standard attributes. 400
Core attributes . 400
Keyboard attributes . 400
Language attributes . 401

Event attributes. 401
Core events. 401
Form element events . 402
Window events. 403

XHTML elements and attributes . 403

Appendix B: Web Color Reference . 447

Color values. 448
Web-safe colors . 448

Color names . 449

Appendix C: Entities Reference . 451

Characters used in XHTML . 452
Punctuation characters and symbols . 452

Quotation marks . 452
Spacing and nonprinting characters . 453
Punctuation characters . 454
Symbols . 454

Characters for European languages. 455
Currency signs . 460

CONTENTS

xiii

9071FM.qxd 10/17/07 5:11 PM Page xiii

Mathematical, technical, and Greek characters . 460
Common mathematical characters. 460
Advanced mathematical and technical characters . 461
Greek characters . 463

Arrows, lozenge, and card suits . 466
Converting the nonstandard Microsoft set . 466

Appendix D: CSS Reference . 471

The CSS box model . 472
Common CSS values . 473
CSS properties and values . 474
Basic selectors . 489
Pseudo-classes . 491
Pseudo-elements . 491
CSS boilerplates and management . 492

Modular style sheets. 494

Appendix E: Browser Guide . 497

Firefox . 498
Internet Explorer . 498
Opera . 499
Safari . 500
Other browsers . 500

Appendix F: Software Guide . 503

Web design software. 504
Graphic design software . 505
The author’s toolbox. 506

Index . 509

CONTENTS

xiv

9071FM.qxd 10/17/07 5:11 PM Page xiv

ABOUT THE AUTHOR

Craig Grannell is a well-known web designer and writer
who’s been flying the flag for web standards for a number
of years. Originally trained in the fine arts, the mid-1990s
saw Craig become immersed in the world of digital media,
his creative projects encompassing everything from video
and installation-based audio work, to strange live perform-
ances—sometimes with the aid of a computer, televisions,
videos, and a PA system, and sometimes with a small bag
of water above his head. His creative, playful art, which
usually contained a dark, satirical edge, struck a chord with
those who saw it, leading to successful appearances at a
number of leading European media arts festivals.

Craig soon realized he’d actually have to make a proper living, however. Luckily, the Web
caught his attention, initially as a means to promote his art via an online portfolio, but then
as a creative medium in itself, and he’s been working with it ever since. It was during this time
that he founded Snub Communications (www.snubcommunications.com), a design and writ-
ing agency whose clients have since included the likes of Rebellion Developments (publish-
ers of 2000 AD), IDG UK (publishers of Macworld, PC Advisor, Digital Arts, and other
magazines), and Swim Records.

Along with writing the book you’re holding right now, Craig has authored Web Designer’s
Reference (friends of ED, 2005) and various books on Dreamweaver, including Foundation
Web Design with Dreamweaver 8 (friends of ED, 2006). Elsewhere, he’s written numerous
articles for Computer Arts, MacFormat, .net/Practical Web Design, 4Talent, MacUser, the
dearly departed Cre@te Online, and many other publications besides.

When not designing websites, Craig can usually be found hard at work in his quest for global
superstardom by way of his eclectic audio project, the delights of which you can sample at
www.projectnoise.co.uk.

xv

9071FM.qxd 10/17/07 5:11 PM Page xv

http://www.snubcommunications.com
http://www.projectnoise.co.uk

9071FM.qxd 10/17/07 5:11 PM Page xvi

ABOUT THE TECHNICAL REVIEWER

David Anderson is a biochemistry graduate from North West
England who first noticed the value of the Internet in the early
1990s while using it as a research tool to aid his academic studies.
He created his first website shortly after graduating in 1997, and
began to establish himself as a freelance developer while also
working in a variety of roles for several major UK companies until
eventually founding his own business, S2R Creations, in 2003.

David discovered the web standards movement early in his
career, and quickly adapted his working practices to utilize the

power and versatility of CSS and semantic HTML. Clients benefiting from his skills have
included New Directions Recruitment and Rex Judd Ltd. He has been sharing his knowledge
with members of various web development forums for over five years, has written for
Practical Web Design magazine, and has established his reputation as an authority on web
standards as a result.

When he isn’t developing websites, he can be found taking photos of anything that will stay
still long enough, as well as a few things that won’t. He shares his photos on Flickr, at
www.flickr.com/photos/ap4a, and also writes on his blog at www.ap4a.co.uk.

xvii

9071FM.qxd 10/17/07 5:11 PM Page xvii

http://www.flickr.com/photos/ap4a
http://www.ap4a.co.uk

9071FM.qxd 10/17/07 5:11 PM Page xviii

ACKNOWLEDGMENTS

Writing a book is a long process, involving many hours of effort. To see the final product is
exhilarating and extremely satisfying, but it couldn’t have happened without those who’ve
supported me along the way. In particular, I’d like to thank David Anderson, whose excellent
editing, reviewing, ideas, and suggestions were indispensable in the revision of the text.
Special thanks also to Chris Mills for getting the ball rolling, to Tom Welsh for picking up the
baton, and to Kylie Johnston for keeping everything ticking over. Thanks also to the other
members of the friends of ED team for their hard work in getting this publication into the
world.

I’m also extremely fortunate to have had the support of several other great designers. I par-
ticularly owe a debt of gratitude to Sarah Gay (www.stuffbysarah.net) for her highly useful,
selfless contributions, and to my former partner in crime David Powers, who once again
stepped in to assist with a couple of elements in the book. Thanks also to Jon Hicks, Matthew
Pennell, and Lokesh Dhakar for granting permission to include elements of their work, and to
the many designers whose work has been an inspiration over the years.

And, finally, thanks to Kay for once again being there for me and putting up with me while I
wrote this book.

xix

9071FM.qxd 10/17/07 5:11 PM Page xix

http://www.stuffbysarah.net

9071FM.qxd 10/17/07 5:11 PM Page xx

FOREWORD

Designing for the Web is a wonderful thing. The ability to publish something and have it
appear immediately and globally is an empowering feeling. I’ll never forget the first rush I felt
when, as a print designer, I could simply “upload” some files and have them be immediately
visible, rather than waiting in trepidation for the boxes to return from the printer. Back then
the Web was simpler, there were fewer materials and tools, and “styling” was something you
hacked together using bizarre hacks and workarounds to achieve even the simplest of tasks.
The browser landscape was equally testing.

Now we’re in a much better position. We have a wonderful thing called CSS that allows us to
style pages with concise style rules and leave the HTML to describe the content, not the pres-
entation. Content can be repurposed for different media.

But anyone keen to learn web design (from scratch, or to improve their existing skills) has a
bewildering job on their hands. The publishing market is saturated with good books on web
design, HTML, and CSS. Yet if you were asked for a single book that encompasses all three,
and that someone could understand without assuming any prior “Internet knowledge,” what
would you recommend? Still trying to think of one?

A regular contributor to .net/Practical Web Design magazine, Craig Grannell has written The
Essential Guide to CSS and HTML Web Design for this purpose. Whether you need a reference
for unmemorable code like HTML entities, or need to know what on earth HTML entities are,
it’s all here. Laid out in an understandable and non-patronizing manner, every aspect of cre-
ating a site is covered.

There are still many challenges to face when designing sites, but the sheer fun of it is better
than ever. With this guide in your hands, more so!

Jon Hicks
Hicksdesign

xxi

9071FM.qxd 10/17/07 5:11 PM Page xxi

9071FM.qxd 10/17/07 5:11 PM Page xxii

INTRODUCTION

The Web is an ever-changing, evolving entity, and it’s easy for a designer to get left behind.
As both a designer and writer, I see a lot of books on web design, and although many are well
written, few are truly integrated, modular resources that any designer can find useful in his
or her day-to-day work. Most web design books concentrate on a single technology (or,
commonly, a piece of software), leaving the designer to figure out how to put the pieces
together.

This book is different

The Essential Guide to CSS and HTML Web Design provides a modern, integrated approach
to web design. Each of the chapters looks at a specific aspect of creating a web page, such as
type, working with images, creating navigation, and creating layout blocks. In each case, rel-
evant technologies are explored in context and at the appropriate times, just as in real-world
projects—for example, markup is explored along with associated CSS and JavaScript, rather
than each technology being placed in separate chapters, and visual design ideas are dis-
cussed so you can get a feel for how code affects page layouts. Dozens of practical examples
are provided, which you can use to further your understanding of each subject. This highly
modular and integrated approach means that you can dip in and out of the book as you
need to, crafting along the way a number of web page elements that you can use on count-
less sites in the future.

Because the entire skills gamut is covered—from foundation to advanced—this book is ideal
for beginners and long-time professionals alike. If you’re making your first move into stan-
dards-based web design, the “ground floor” is covered, rather than an assumption being
made regarding your knowledge. However, contemporary ideas, techniques, and thinking are
explored throughout, ensuring that the book is just as essential for the experienced designer
wanting to work on CSS layouts, or the graphic designer who wants to discover how to cre-
ate cutting-edge websites.

This book’s advocacy of web standards, usability, and accessibility with a strong eye toward
visual design makes it of use to technologists and designers alike, enabling everyone to build
better websites. An entire chapter is devoted to browser issues, which should help ensure
your sites look great, regardless of the end user’s setup. And for those moments when a

xxiii

9071FM.qxd 10/17/07 5:11 PM Page xxiii

4e39d27715ea33bfeed83c26800166a2

particular tag or property value slips your mind, this book provides a comprehensive refer-
ence guide that includes important and relevant XHTML elements and attributes, XHTML
entities, web colors, and CSS 2.1 properties and values.

Remember that you can visit the friends of ED support forums at www.friendsofed.com/
forums to discuss aspects of this book, or just to chat with like-minded designers and devel-
opers. You can also download files associated with this book from www.friendsofed.com—
just find the book in the friends of ED catalog located on the homepage, and then follow its
link to access downloads and other associated resources.

Layout conventions
To keep this book as clear and easy to follow as possible, the following conventions are used
throughout:

Important words or concepts are normally highlighted on the first appearance in bold
type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

To make it easier to work through the exercises, each one has an introductory box
that lists where you can find any required files and the completed files within the
downloadable file archive. A short overview of what you’ll learn is also included.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an
arrow like this: ➥.

This is a very, very long section of code that should be written all on
➥ the same line without a break.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxiv

9071FM.qxd 10/17/07 5:11 PM Page xxiv

http://www.friendsofed.com
http://www.friendsofed.com%E2%80%94

9071FM.qxd 10/17/07 5:11 PM Page xxv

9071CH01.qxd 10/18/07 2:34 PM Page xxvi

1 AN INTRODUCTION TO
WEB DESIGN

9071CH01.qxd 10/18/07 2:34 PM Page 1

In this chapter:

Introducing the Internet and web design

Working with web standards

Working with XHTML

Understanding and creating CSS rules

Creating web page boilerplates

Organizing web page content

A brief history of the Internet
Even in the wildest dreams of science fiction and fantasy writers, few envisioned anything
that offers the level of potential that the Internet now provides for sharing information on
a worldwide basis. For both businesses and individuals, the Internet is now the medium of
choice, largely because it enables you to present your wares to the entire world on a 24/7
basis. But the technology’s origins were more ominous than and very different from the
ever-growing, sprawling free-for-all that exists today.

In the 1960s, the American military was experimenting with methods by which the US
authorities might be able to communicate in the aftermath of a nuclear attack. The sug-
gested solution was to replace point-to-point communication networks with one that was
more akin to a net. This meant information could find its way from place to place even if
certain sections of the network were destroyed. Despite the project eventually being
shelved by the Pentagon, the concept itself lived on, eventually influencing a network that
connected several American universities.

During the following decade, this fledgling network went international and began opening
itself up to the general public. The term Internet was coined in the 1980s, which also her-
alded the invention of Transmission Control Protocol/Internet Protocol (TCP/IP), the net-
working software that makes possible communication between computers running on
different systems. During the 1980s, Tim Berners-Lee was also busy working on HTML, his
effort to weld hypertext to a markup language in an attempt to make communication of
research between himself and his colleagues simpler.

Despite the technology’s healthy level of expansion, the general public remained largely
unaware of the Internet until well into the 1990s. By this time, HTML had evolved from a
fairly loose set of rules—browsers having to make assumptions regarding coder intent and
rendering output—to a somewhat stricter set of specifications and recommendations.
This, along with a combination of inexpensive hardware, the advent of highly usable web
browsers such as Mosaic (see the following image), and improved communications tech-
nology, saw an explosion of growth that continues to this day.

Initially, only the largest brands dipped their toes into these new waters, but soon thou-
sands of companies were on the Web, enabling customers all over the globe to access
information, and later to shop online. Home users soon got in on the act, once it became
clear that the basics of web design weren’t rocket science, and that, in a sense, everyone

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

2

9071CH01.qxd 10/18/07 2:34 PM Page 2

could do it—all you needed was a text editor, an FTP client, and some web space.
Designers soon got in on the act, increasingly catered for by new elements within HTML;
Cascading Style Sheets (CSS), which took a while to be adopted by browsers, but eventu-
ally provided a means of creating highly advanced layouts for the Web; and faster web
connections, which made media-rich sites accessible to the general public without forcing
them to wait ages for content to download.

Therefore, unlike most media, the Web is truly a tool for everyone, and in many countries,
the Internet has become ubiquitous. For those working in a related industry, it’s hard to
conceive that as recently as the mid-1990s relatively few people were even aware of the
Internet’s existence!

So, from obscure roots as a concept for military communications, the Internet has evolved
into an essential tool for millions of people, enabling them to communicate with each
other, research and gather information, telecommute, shop, play games, and become
involved in countless other activities on a worldwide basis.

Why create a website?
Before putting pen to paper (and mouse to keyboard), it’s important to think about the
reason behind putting a site online. Millions already exist, so why do you need to create
one yourself? Also, if you’re working for a company, perhaps you already have plenty of
marketing material, so why do you need a website as well?

AN INTRODUCTION TO WEB DESIGN

3

1

9071CH01.qxd 10/18/07 2:34 PM Page 3

I should mention here that I’m certainly not trying to put you off—far from it. Instead, I’m
trying to reinforce the point that planning is key in any web design project, and although
some people swear that “winging it” is the best way to go, most such projects end up gath-
ering virtual dust online. Therefore, before doing anything else, think through why you
should build a website and what you’re trying to achieve.

Companies and individuals alike have practical and commercial reasons for setting up a
website. A website enables you to communicate with like-minded individuals or potential
clients on a worldwide basis. If you’re a creative talent of some kind, you can use a website
to showcase your portfolio, offering online photographs, music tracks for download, or
poetry. If you fancy yourself as a journalist, a blog enables you to get your opinion out
there. If you own or work for a business, creating a website is often the most efficient
means of marketing your company. And even if you just have a hobby, a website can be a
great way of finding others who share your passion—while you may be the only person in
town who likes a particular movie or type of memorabilia, chances are there are thousands
of people worldwide who think the same, and a website can bring you all together. This is
perhaps why the paper fanzine has all but died, only to be reborn online, where develop-
ment costs are negligible and worldwide distribution is a cinch.

In practical terms, a website exists online all day, every day (barring the odd hiccup with
ISPs), which certainly isn’t the case with printed media, which is there one minute and in
the recycle trash the next. Distribution is less expensive than sending out printed mate-
rial—a thousand-page website can be hosted for $10 per month or less, but sending a
thousand-page document to one person (let alone a thousand or several thousand) may
cost more than that. Likewise, development (particularly corrections and updates) is often
significantly cheaper, too. For example, if you want to rework a print brochure, you have
to redesign it and then reprint it. Reworking a section of a website often means swapping
out a few files, which is efficient and affordable. So, for large companies and individuals
alike, the ability to have relevant information online in a form that can often be updated
in mere minutes, thereby keeping all interested parties up to date, is hard to resist!

Audience requirements
This book centers on the design and technology aspects of web design, but close attention
must always be paid to your potential audience. It’s no good forcing design ideas that
result in inappropriate visuals, unusable navigation to all but the most technically minded
of people, and huge download times on your site’s unsuspecting visitors.

Prior to creating a site, you must ascertain what your audience wants and expects in terms
of content, design, and how the site will work (by way of talking to the relevant people,
and also, if your budget allows, by using surveys and focus groups). You don’t have to take
all of your audience’s ideas into account (after all, many will be contradictory), but be
mindful of common themes and ensure they’re not ignored.

Technical considerations must be researched. If you’re targeting designers, you can be
fairly sure that a large proportion of the audience will be using monitors set to a high res-
olution and millions of colors, and you can design accordingly. If your site is aimed at busi-
ness users, be mindful that much of your potential audience will likely be using laptops (or

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

4

9071CH01.qxd 10/18/07 2:34 PM Page 4

older computers, for staff at the lower end of the ladder), with screen resolutions of
1024✕768 or lower.

Determining the web browsers your audience members use is another important consid-
eration. Although use of web standards (used throughout this book) is more likely to
result in a highly compatible site, browser quirks still cause unforeseen problems; there-
fore, always check to see what browsers are popular with a site’s visitors, and ensure you
test in as many as you can. Sometimes you won’t have access to such statistics, or you may
just be after a “sanity check” regarding what’s generally popular. A couple of useful places
to research global web browser statistics are www.w3schools.com/browsers/browsers_
stats.asp and www.upsdell.com/BrowserNews/. Note, though, that any statistics you see
online are effectively guesswork and are not a definitive representation of the Web as a
whole; still, they do provide a useful, sizeable sample that’s often indicative of current
browser trends.

Although you might be used to checking browser usage, and then, based on the results,
designing for specific browsers, we’ll be adhering closely to web standards throughout this
book. When doing this, an “author once, work anywhere” approach is feasible, as long as
you’re aware of various browser quirks (many of which are explored in Chapter 9). Of
course, you should still always ensure you test sites in as many browsers as possible, just to
make sure everything works as intended.

Web design overview
Web design has evolved rapidly over the years. Initially, browsers were basic, and early ver-
sions of HTML were fairly limited in what they enabled designers to do. Therefore, many
older sites on the Web are plain in appearance. Additionally, the Web was originally largely
a technical repository, hence the boring layouts of many sites in the mid 1990s—after all,
statistics, documentation, and papers rarely need to be jazzed up, and the audience didn’t
demand such things anyway.

As with any medium finding its feet, things soon changed, especially once the general pub-
lic flocked to the Web. It was no longer enough for websites to be text-based information
repositories. Users craved—demanded, even—color! Images! Excitement! Animation!
Interaction! Even video and audio managed to get a foothold as compression techniques
improved and connection speeds increased.

The danger of eye candy became all too apparent as the turn of the century approached:
every site, it seemed, had a Flash intro, and the phrase “skip intro” became so common
that it eventually spawned a parody website.

These days, site design has tended toward being more restrained, as designers have
become more comfortable with using specific types of technologies for relevant and
appropriate purposes. Therefore, you’ll find beautifully designed XHTML- and CSS-based
sites sitting alongside highly animated Flash efforts.

Of late, special emphasis is being placed on usability and accessibility, and, in the majority
of cases, designers have cottoned to the fact that content must take precedence. However,

AN INTRODUCTION TO WEB DESIGN

5

1

9071CH01.qxd 10/18/07 2:34 PM Page 5

http://www.w3schools.com/browsers/browsers_
http://www.upsdell.com/BrowserNews

just because web standards, usability, and accessibility are key, that doesn’t mean design
should be thrown out the window. As we’ll see in later chapters, web standards do not
have to come at the expense of good design—far from it. In fact, a strong understanding
of web standards helps to improve websites, making it easier for you to create cutting-
edge layouts that work across platforms and are easy to update. It also provides you with
a method of catering for obsolete devices.

Why WYSIWYG tools aren’t used in this book

With lots of software available and this book being design-oriented, you might wonder
why I’m not using WYSIWYG web design tools. This isn’t because I shun such tools—it’s
more that in order to best learn how to do something, you need to start from scratch, with
the foundations. Many web design applications make it tempting to “hide” the underlying
code from you, and most users end up relying on the graphical interface. This is fine until
something goes wrong and you don’t know how to fix it.

Removing software from the equation also means we concentrate on the underlying tech-
nology that drives web pages, without the distraction of working out which button does
what. It also ensures that the book will be relevant to you, regardless of what software you
use or your current skill level. Therefore, I suggest you install a quality text editor to work
through the exercises, or set your web design application to use its code view. Once you’re
familiar with the concepts outlined in this book, you can apply them to your work, what-
ever your chosen application for web design. This level of flexibility is important, because
you never know when you might have to switch applications—something that’s relatively
painless if you know how to design for the Web and understand technologies like CSS
and HTML.

Introducing HTML and XHTML
The foundation of the majority of web pages is HyperText Markup Language, commonly
known by its initials, HTML. A curious facet of the language is that it’s easy to pick up the
basics—anyone who’s computer literate should be able to piece together a basic page
after learning some tags—but it has enough flexibility and scope to keep designers inter-
ested and experimenting, especially when HTML is combined with Cascading Style Sheets
(CSS), which we’ll discuss later in this chapter. This section presents an overview of HTML
tags and elements, and how HTML and XHTML relate to web standards.

If you’re relatively new to web design, you may be wondering about the best platform
and software for creating websites. Ultimately, it matters little which platform you
choose, as long as you have access to the most popular browsers for testing purposes
(a list that I’d now include Apple’s Safari in, alongside Internet Explorer, Firefox, and
Opera). Regarding software, there’s an overview in Appendix E (“Browsers Guide”), but
this isn’t an exhaustive guide, so do your own research and find software to your liking.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

6

9071CH01.qxd 10/18/07 2:34 PM Page 6

Introducing the concept of HTML tags and elements

HTML documents are text files that contain tags, which are used to mark up HTML ele-
ments. These documents are usually saved with the .html file extension, although some
prefer .htm, which is a holdover from DOS file name limitations, which restricted you to
eight characters for the file name and three for the extension.

The aforementioned tags are what web browsers use to display pages, and assuming the
browser is well behaved (most modern ones are), the display should conform to standards
as laid out by the World Wide Web Consortium (W3C), the organization that develops
guidelines and specifications for many web technologies.

HTML tags are surrounded by angle brackets—for instance, <p> is a paragraph start tag. It’s
good practice to close tags once the element content or intended display effect con-
cludes, and this is done with an end tag. End tags are identical to the opening start tags,
but with an added forward slash: /. A complete HTML element looks like this:

<p>Here is a paragraph.</p>

This element consists of the following:

Start tag: <p>

Content: Here is a paragraph.

End tag: </p>

Nesting tags

There are many occasions when tags must be placed inside each other; this process is
called nesting. One reason for nesting is to apply basic styles to text-based elements.
Earlier, you saw the code for a paragraph element. We can now make the text bold by sur-
rounding the element content with a strong element:

<p>Here is a paragraph.</p>

HTML doesn’t have a hard-and-fast rule regarding the case of tags, unlike XHTML,
which we’ll shortly be talking about and which will be used throughout the book. If
you look at the source code of HTML pages on the Web, you may see lowercase tags,
uppercase tags or, in the case of pages put together over a period of time, a mixture
of the two. That said, it’s still good practice with any markup language to be consis-
tent, regardless of whether the rules are more flexible.

The W3C website is found at www.w3.org. The site offers numerous useful tools,
including validation services against which you can check your web pages.

AN INTRODUCTION TO WEB DESIGN

7

1

9071CH01.qxd 10/18/07 2:34 PM Page 7

http://www.w3.org

Note that the strong tags are nested within the paragraph tags (<p></p>), not the other
way around. That’s because the paragraph is the parent element to which formatting is
being applied. The paragraph could be made bold and italic by adding another element,
emphasis (), as follows:

<p>Here is a paragraph.</p>

In this case, the strong and em tags could be in the opposite order, as they’re at the same
level in the hierarchy. However, you must always close nested tags in the reverse order to
that in which they’re opened, as shown in the previous code block, otherwise some
browsers may not display your work as intended. For instance, the following should be
avoided:

<p>Here is a paragraph.</p>

As previously mentioned, it’s good practice to close tags in HTML—even though it’s not a
requirement for all elements, being sloppy in this area can lead to errors. Take a look at
the following:

<p>Here is a paragraph.</p>

Here, the emphasis element isn’t closed, meaning subsequent text-based content on the
page is likely to be displayed in italics—so take care to close all your tags.

Web standards and XHTML

As mentioned earlier, we’ll be working with Extensible HyperText Markup Language
(XHTML) rules in this book, rather than HTML. The differences between HTML and XHTML
are few, but important, and largely came about because of the inconsistent way that
browsers displayed HTML. XHTML is stricter than HTML and has additional rules; oddly,
this actually makes it easier to learn, because you don’t have to worry about things like
which case to use for tags and whether they require closing. You have hard-and-fast rules
in each case. XHTML-specific rules are as follows.

All tags and attribute names must be in lowercase and must always be closed. Therefore,
the following is incorrect:

<P>This is a paragraph.
<P>This is another paragraph.

You might be used to using the bold element to make text bold, but it is a physical
element that only amends the look of text rather than also conveying semantic mean-
ing. Logical elements, such as strong, convey meaning and add styling to text and are
therefore preferred. These will be covered in Chapter 3.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

8

9071CH01.qxd 10/18/07 2:34 PM Page 8

The preceding lines should be written like this:

<p>This is a paragraph.</p>
<p>This is another paragraph.</p>

Unlike HTML, all XHTML elements require an end tag, including empty elements (such as
br, img, and hr). The HTML for a carriage return is br. In XHTML, this must be written

</br> or, more usually, in a combination form that looks like this:
. The trailing
slash is placed at the end of the start tag, with a space prior to it (now typical practice, this
was initially done to ensure compatibility with aging browsers that would otherwise ignore
the tag entirely if the space wasn’t present).

Tags often have attributes that modify them in some way. For instance, two attributes for
the table cell tag td are nowrap (to stop content wrapping) and colspan (which states how
many columns this cell should span). In XHTML, attributes must be quoted and always
have a value. If necessary, the attribute name itself is repeated for the value. Therefore, the
following is incorrect:

<td colspan=2 nowrap>

Instead, in XHTML, we write this:

<td colspan="2" nowrap="nowrap">

Evolution is another aspect that we have to deal with. Just as the survival of the fittest
removes some species from nature, so too are tags (and attributes) unceremoniously
dumped from the W3C specifications. Such tags and attributes are referred to as
deprecated, meaning they are marked for removal from the standard and may not be sup-
ported in future browsers. In cases when deprecated tags are used in this book, this will be
highlighted (and likewise in the reference section); in most cases, these tags can be
avoided.

Semantic markup

In the previous few subsections, you may have noticed specific elements being used for
specific things. This is referred to as semantic markup and is a very important aspect of
modern web design. Plenty of (X)HTML elements exist, and each one has a clearly defined
purpose (although some have more than one use). Because of the flexibility of markup
languages, it’s often possible to “wrongly” use elements, bashing your page into shape by
using elements for design tasks they’re not strictly suited for and certainly weren’t origi-
nally designed for.

During the course of this book, we’ll talk about semantics a fair amount. Ultimately, good
semantic design enables you to simplify your markup and also provides the greatest scope
for being able to style it with CSS (see the following section). By thinking a little before you
code and defining your content with the correct markup, you’ll end up with cleaner code
and make it much easier for yourself in the long run when it comes to adding presentation
to your content.

AN INTRODUCTION TO WEB DESIGN

9

1

9071CH01.qxd 10/18/07 2:34 PM Page 9

Introducing CSS
CSS is the W3C standard for defining the visual presentation for web pages. HTML was
designed as a structural markup language, but the demands of users and designers
encouraged browser manufacturers to support and develop presentation-oriented tags.
These tags “polluted” HTML, pushing the language toward one of decorative style rather
than logical structure. Its increasing complexity made life hard for web designers, and
source code began to balloon for even basic presentation-oriented tasks. Along with
creating needlessly large HTML files, things like font tags created web pages that weren’t
consistent across browsers and platforms, and styles had to be applied to individual
elements—a time-consuming process.

The concept behind CSS was simple, yet revolutionary: remove the presentation and sepa-
rate design from content. Let HTML (and later XHTML) deal with structure, and use a
separate CSS document for the application of visual presentation.

The idea caught on, albeit slowly. The initial problem was browser support. At first, most
browsers supported only a small amount of the CSS standard—and badly at that. But
Internet Explorer 5 for Mac made great strides with regard to CSS support, and it was soon
joined by other browsers fighting for the crown of standards king. These days, every up-to-
date browser supports the majority of commonly used CSS properties and values, and
more besides.

Another problem has been educating designers and encouraging them to switch from old
to new methods. Benefits constantly need to be outlined and proven, and the new
methods taught. Most designers these days style text with CSS, but many still don’t use CSS
for entire web page layouts, despite the inherent advantages in doing so. This, of course, is
one of the reasons for this book: to show you, the designer, how CSS can be beneficial to
you—saving you (and your clients) time and money—and to provide examples for various
areas of web page design and development that you can use in your sites.

In this section we’ll look at separating content from design, CSS rules, CSS selectors and
how to use them, and how to add styles to a web page.

Separating content from design

Do you ever do any of the following?

Use tables for website layout

Use invisible GIFs to “push” elements around your web page

Hack Photoshop documents to bits and stitch them back together in a web page to
create navigation elements and more

Get frustrated when any combination of the previous leads to unwieldy web pages
that are a pain to edit

If so, the idea of separating content from design should appeal to you. On one hand, you
have your HTML documents, which house content marked up in a logical and semantic
manner. On the other hand, you have your CSS documents, giving you site-wide control of

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

10

9071CH01.qxd 10/18/07 2:34 PM Page 10

the presentation of your web page elements from a single source. Instead of messing
around with stretching transparent GIFs, and combining and splitting table cells, you can
edit CSS rules to amend the look of your site, which is great for not only those times when
things just need subtle tweaking, but also when you decide everything needs a visual over-
haul. After all, if presentation is taken care of externally, you can often just replace the CSS
to provide your site with a totally new design.

Designers (and clients paying for their time) aren’t the only ones to benefit from CSS.
Visitors will, too, in terms of faster download times, but also with regard to accessibility.
For instance, people with poor vision often use screen readers to surf the Web. If a site’s
layout is composed of complex nested tables, it might visually make sense; however, the
underlying structure may not be logical. View the source of a document and look at the
order of the content. A screen reader reads from the top to the bottom of the code and
doesn’t care what the page looks like in a visual web browser. Therefore, if the code com-
promises the logical order of the content (as complex tables often do), the site is
compromised for all those using screen readers.

Accessibility is now very important in the field of web design. Legislation is regularly
passed to strongly encourage designers to make sites accessible for web users with dis-
abilities. It’s likely that this trend will continue, encompassing just about everything except
personal web pages. (However, even personal websites shouldn’t be inaccessible.)

The rules of CSS

Style sheets consist of a number of rules that define how various web page elements
should be displayed. Although sometimes bewildering to newcomers, CSS rules are simple
to break down. Each rule consists of a selector and a declaration. The selector begins a CSS
rule and specifies which part of the HTML document the rule will be applied to. The dec-
laration consists of a number of property/value pairs that set specific properties and
determine how the relevant element will look. In the following example, p is the selector
and everything thereafter is the declaration:

p {
color: blue;

}

As you probably know, p is the HTML tag for a paragraph. Therefore, if we attach this rule
to a web page (see the section “Adding styles to a web page” later on in this chapter for
how to do so), the declaration will be applied to any HTML marked up as a paragraph,
thereby setting the color of said paragraphs to blue.

CSS property names are not case sensitive, but it’s good to be consistent in web
design—it’s highly recommended to always use lowercase. Note, though, that
XML is case sensitive, so when using CSS with XHTML documents served with
the proper XHTML MIME type, everything must be consistent. Also, the W3
specifications recommend that CSS style sheets for XHTML should use lower-
case element and attribute names.

AN INTRODUCTION TO WEB DESIGN

11

1

9071CH01.qxd 10/18/07 2:34 PM Page 11

When you write CSS rules, you place the declaration within curly brackets {}. Properties
and values are separated by a colon (:), and property/value pairs are terminated by a semi-
colon (;). Technically, you don’t have to include the final semicolon in a CSS rule, but most
designers consider it good practice to do so. This makes sense—you may add
property/value pairs to a rule at a later date, and if the semicolon is already there, you
don’t have to remember to add it.

If we want to amend our paragraph declaration and define paragraphs as bold, we can do
so like this:

p {
color: blue;
font-weight:bold;

}

Types of CSS selectors

In the previous example, the most basic style of selector was used: an element selector.
This defines the visual appearance of the relevant HTML tag. In the sections that follow,
we’ll examine some other regularly used (and well-supported) CSS selectors: class, ID,
grouped, and contextual.

Class selectors
In some cases, you may wish to modify an element or a group of elements. For instance,
you may wish for your general website text to be blue, as in the examples so far, but some
portions of it to be red. The simplest way of doing this is by using a class selector.

In CSS, a class selector’s name is prefixed by a period (.), like this:

.warningText {
color: red;

}

This style is applied to HTML elements in any web page the style sheet is attached to using
the class attribute, as follows:

<h2 class="warningText">This heading is red.</h2>
<p class="warningText">This text is red.</p>
<p>This is a paragraph, and this text is
➥ red.</p>

You don’t have to lay out CSS rules as done in this section; rather, you can add rules
as one long string. However, the formatting shown here is more readable in print.
Note that in the files available for download, the formatting is changed slightly again:
the property/value pairs and closing curly bracket are both tabbed inward, enabling
rapid vertical scanning of a CSS document’s selectors.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

12

9071CH01.qxd 10/18/07 2:34 PM Page 12

If you want a make a class specific to a certain element, place the relevant HTML tag
before the period in the CSS rule:

p.warningText {
color: red;

}

If you used this CSS rule with the HTML elements shown previously, the paragraph’s text
would remain red, but not the heading or span, due to the warningText class now being
exclusively tied to the paragraph selector only.

Usefully, it’s possible to style an element by using multiple class values. This is done by
listing multiple values in the class attribute, separated by spaces:

<p class="warningText hugeText">

The previous example’s content would be styled as per the rules .warningText and
.hugeText.

ID selectors
ID selectors can be used only once on each web page. In HTML, you apply a unique iden-
tifier to an HTML element with the id attribute:

<p id="footer">© 200X The Company. All rights reserved.</p>

To style this element in CSS, precede the ID name with a hash mark (#):

p#footer {
padding: 20px;

}

In this case, the footer div would have 20 pixels of padding on all sides.

Essentially, then, classes can be used multiple times on a web page, but IDs cannot.
Typically, IDs are used to define one-off page elements, such as structural divisions,
whereas classes are used to define the style for multiple items.

Grouped selectors
Should you wish to set a property value for a number of different selectors, you can use
grouped selectors, which take the form of a comma-separated list:

h1, h2, h3, h4, h5, h6 {
color: green;

}

In the preceding example, all the website’s headings have been set to be green. Note that
you’re not restricted to a single rule for each element—you can use grouped selectors for
common definitions and separate ones for specific property values, as follows:

AN INTRODUCTION TO WEB DESIGN

13

1

9071CH01.qxd 10/18/07 2:34 PM Page 13

h1, h2, h3, h4, h5, h6 {
color: green;

}

h1 {
font-size: 1.5em;

}

h2 {
font-size: 1.2em;

}

Contextual selectors
This selector type is handy when working with advanced CSS. As the name suggests,
contextual selectors define property values for HTML elements depending on context.
Take, for instance, the following example:

<p>I am a paragraph.</p>
<p>So am I.</p>
<div id="navigation">
<p>I am a paragraph within the navigation div.</p>
<p>Another paragraph within the navigation div.</p>

</div>

You can style the page’s paragraphs as a whole and then define some specific values for
those within the navigation div by using a standard element selector for the former and a
contextual selector for the latter:

p {
color: black;

}

#navigation p {
color: blue;
font-weight: bold;

}

As shown, syntax for contextual selectors (#navigation p) is simple—you just separate the
individual selectors with some whitespace. The two rules shown previously have the fol-
lowing result:

If you define a property value twice, browsers render your web element depending on
each rule’s position in the cascade. See the section “The cascade” later in the chapter
for more information.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

14

9071CH01.qxd 10/18/07 2:34 PM Page 14

The p rule colors the web page’s paragraphs black.

The #navigation p rule overrides the p rule for paragraphs within the navigation
div, coloring them blue and making them bold.

By working with contextual selectors, it’s possible to get very specific with regard to styling
things on your website; we’ll be using these selectors regularly.

Adding styles to a web page

The most common (and useful) method of applying CSS rules to a web page is by using
external style sheets. CSS rules are defined in a text document, which is saved with the file
suffix .css. This document is attached to an HTML document in one of two ways, both of
which require the addition of HTML elements to the head section.

The first method of attaching a CSS file is to use a link tag:

<link rel="stylesheet" href="mystylesheet.css" type="text/css"
➥ media="screen" />

Alternatively, import the style sheet into the style element:

<style type="text/css" media="screen">
/* <![CDATA[*/
@import url(mystylesheet.css);
/*]]> */
</style>

The second of these methods was initially used to “hide” CSS rules from noncompliant
browsers, thereby at least giving users of such devices access to the website’s content, if
not its design. In some browsers (notably Internet Explorer), however, this can cause a
“flash” of unstyled content before the page is loaded. This flash doesn’t occur when a link
element is also present. In the full site designs in Chapter 10, you’ll note that both meth-
ods are used—@import for importing the main style sheet for screen and link for linking
to a print style sheet.

Remember that we’re working with XHTML in this book, hence the trailing slash on
the link tag, a tag that has no content.

There are other types of selectors used for specific tasks. These will be covered as rel-
evant later in the book.

AN INTRODUCTION TO WEB DESIGN

15

1

9071CH01.qxd 10/18/07 2:34 PM Page 15

The style tag can also be used to embed CSS directly into the head section of a specific
HTML document, like this:

<head>
<style type="text/css">
/* <![CDATA[*/
p {
color: black;

}

#navigation p {
color: blue;
font-weight: bold;

}
/*]]> */
</style>
</head>

You’ll find that many visual web design tools create CSS in this manner, but adding rules to
a style element is only worth doing if you have a one-page website, or if you want to
affect tags on a specific page, overriding those in an attached style sheet (see the next sec-
tion for more information). There’s certainly no point in adding styles like this to every
page, because updating them would then require every page to be updated, rather than
just an external style sheet.

The third method of applying CSS is to do so as an inline style, directly in an element’s
HTML tag:

<p style="color: blue;">This paragraph will be displayed in blue.</p>

As you can see, this method involves using the style attribute, and it’s only of use in very
specific, one-off situations. There’s no point in using inline styles for all styling on your
website—to do so would give few benefits over the likes of archaic font tags. Inline styles
also happen to be deprecated in XHTML 1.1, so they’re eventually destined for the chop.

The cascade

It’s possible to define the rule for a given element multiple times: you can do so in the
same style sheet, and several style sheets can be attached to an HTML document. On top
of that, you may be using embedded style sheets and inline styles. The cascade is a way of
dealing with conflicts, and its simple rule is this:

In the following example, the second font-size setting for paragraphs takes precedence
because it’s closest to paragraphs in the HTML:

The value closest to the element in question is the one that is applied.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

16

9071CH01.qxd 10/18/07 2:34 PM Page 16

p {
font-size: 1.1em;

}

p {
font-size: 1.2em;

}

Subsequently, paragraphs on pages the preceding rule is attached to are rendered at
1.2em. If a similar rule were placed as an embedded style sheet below the imported/linked
style sheet, that rule would take precedence, and if one were applied as an inline style
(directly in the relevant element), then that would take precedence over all others.

CSS uses the concept of inheritance. A document’s HTML elements form a strict hierarchy,
beginning with html, and then branching into head and body, each of which has numerous
descendant elements (such as title and meta for head, and p and img for body). When a
style is applied to an element, its descendants—those elements nested within it—often
take on CSS property values, unless a more specific style has been applied. However, not
all CSS style properties are inherited. See the CSS reference section of this book for more
details.

The CSS box model explained

The box model is something every designer working with CSS needs a full understanding
of, in order to know how elements interact with each other and also how various proper-
ties affect an element. Essentially, each element in CSS is surrounded by a box whose
dimensions are automated depending on the content. By using width and height proper-
ties in CSS, these dimensions can be defined in a specific manner.

You can set padding to surround the content and add a border and margins to the box. A
background image and background color can also be defined. Any background image or
color is visible behind the content and padding, but not the margin. The effective space an
element takes up is the sum of the box dimensions (which effectively define the available
dimensions for the box’s contents), padding, border, and margins. Therefore, a 500-pixel-
wide box with 20 pixels of padding at each side and a 5-pixel border will actually take up
550 pixels of horizontal space (5 + 20 + 500 + 20 + 5).

Note that in some cases, margins between two elements “collapse,”
leading to only the larger margin value being used.

Note that it’s possible to import or link multiple style sheets in a web page’s head sec-
tion. The cascade principle still applies; in other words, any rules in a second attached
style sheet override those in the one preceding it.

AN INTRODUCTION TO WEB DESIGN

17

1

9071CH01.qxd 10/18/07 2:34 PM Page 17

© Jon Hicks (www.hicksdesign.co.uk)

Creating boilerplates
Every web page looks different, just as every book or magazine is different from every
other one. However, under the hood there are often many similarities between sites, and
if you author several, you’ll soon note that you’re doing the same things again and
again. With that in mind, it makes sense to create some web page boilerplates—starting
points for all of your projects. In the download files, available from the Downloads
section of the friends of ED website (www.friendsofed.com), there are two boilerplates
folders: basic-boilerplates and advanced-boilerplates. In basic-boilerplates, the
XHTML-basic.html web page is a blank XHTML Strict document, and in advanced-
boilerplates, XHTML-extended.html adds some handy divs that provide a basic page
structure that’s common in many web pages, along with some additions to the head sec-
tion. (The former is used as a quick starting point for many of the tutorials in this book.
The latter is perhaps a better starting point for a full website project.) The CSS-with-
ToC.css document in advanced-boilerplates uses CSS comments to create sections in
the document to house related CSS rules. This is handy when you consider that a CSS doc-
ument may eventually have dozens of rules in it—this makes it easier for you to be able to
find them quickly.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

18

9071CH01.qxd 10/18/07 2:34 PM Page 18

http://www.hicksdesign.co.uk
http://www.friendsofed.com

CSS comments look like this: /* this is a comment */, and can be single-line or multiple-
line. In the advanced CSS boilerplate, a multiline comment is used for an introduction and
table of contents:

/*

STYLE SHEET FOR [WEB SITE]
Created by [AUTHOR NAME]
[URL OF AUTHOR]

ToC

1. defaults
2. structure
3. links and navigation
4. fonts
5. images

Notes

*/

Each section of the document is then headed by a lengthy comment that makes it obvious
when a section has begun:

/* --------- 1. defaults --------- */

* {
margin: 0;
padding: 0;
}

body {
}

As you can see, property/value pairs and the closing curly bracket are indented by two
tabs in the document (represented by two spaces on this page), which makes it easier to
scan vertically through numerous selectors. (Note that for the bulk of this book, the rules
aren’t formatted in this way, because indenting only the property/value pairs differentiates
them more clearly in print; however, the download files all have CSS rules indented as per
the recommendations within this section.) Comments can also be used for subheadings,
which I tend to indent by one tab:

/* float-clearing rules */
.separator {
clear: both;
}

Although the bulk of the style sheet’s rules are empty, just having a boilerplate to work
from saves plenty of time in the long run, ensuring you don’t have to key in the same

AN INTRODUCTION TO WEB DESIGN

19

1

9071CH01.qxd 10/18/07 2:34 PM Page 19

defaults time and time again. Use the one from the download files as the basis for your
own, but if you regularly use other elements on a page (such as pull quotes), be sure to
add those, too—after all, it’s quicker to amend a few existing rules to restyle them than it
is to key them in from scratch.

To show you the power of CSS, we’re going to work through a brief exercise using the boil-
erplates mentioned earlier. Don’t worry about understanding everything just yet, because
all of the various properties and values shown will be explained later in the book.

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder.

What you’ll learn How to create, style, and restyle a web page.

Completed files creating-and-styling-a-web-page.html, creating-and-
styling-a-web-page.css, creating-and-styling-a-web-page-
2.html, and creating-and-styling-a-web-page-2.css, in the
chapter 1 folder.

1. Copy XHTML-basic.html and CSS-default.css to your hard drive and rename
them creating-and-styling-a-web-page.html and creating-and-styling-a-
web-page.css.

2. Attach the style sheet. Type Creating and styling a web page in the title ele-
ment to give the page a title, and then amend the @import value so that the style
sheet is imported:

<style type="text/css" media="screen">
/* <![CDATA[*/
@import url(creating-and-styling-a-web-page.css);
/*]]> */
</style>

3. Add some content. Within the wrapper div, add some basic page content, as
shown in the following code block. Note how the heading, paragraph, and quote
are marked up using a heading element (<h1></h1>), paragraph element (<p></p>),
and block quote element (<blockquote></blockquote>), rather than using styled
paragraphs for all of the text-based content. This is semantic markup, as discussed
briefly earlier in the chapter.

Creating, styling, and restyling a web page

Along the same lines as boilerplates, you can save time by creating a snippets folder
on your hard drive. Use it to store snippets of code—HTML elements, CSS rules, and
so on—that you can reuse on various websites. Many applications have this function-
ality built in, so make use of it if your preferred application does.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

20

9071CH01.qxd 10/18/07 2:34 PM Page 20

<div id="wrapper">
<h1>A heading</h1>
<p>A paragraph of text, which is very exciting—something
➥ that will live on through the generations.</p>
<blockquote>
<p>“A quote about something, to make
➥ people go "hmmmm" in a thoughtful manner.”</p>

</blockquote>
<p>Another paragraph, with equally exciting text; in fact, it’s
➥ so exciting, we're not sure it’s legal to print.</p>

</div>

4. Edit some CSS. Save and close the web page and then open the CSS document.
Amend the body rule within the defaults section of the CSS. This ensures the text
on the page is colored black and that the page’s background color is white. The
padding value ensures the page content doesn’t hug the browser window edges.

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
color: #000000;
background: #ffffff;
padding: 20px;

}

5. Style the wrapper. Add the following property values to the #wrapper rule to define
a fixed width for it and then center it (via the margin property’s auto value).

#wrapper {
font-size: 1.2em;
line-height: 1.5em;
margin: 0 auto;
width: 500px;

}

6. Style the text. Add the h1 rule as shown, thereby styling the level-one heading:

h1 {
font: 1.5em/1.8em Arial, sans-serif;
text-transform: uppercase;

}

7. Add the blockquote and blockquote p rules as shown. The former adds margins to
the sides of the block quote, thereby making the text stand out more, while the lat-
ter (a contextual selector) styles paragraphs within block quotes only, making them
italic and larger than standard paragraphs. Once you’ve done this, save your files
and preview the web page in a web browser; it should look like the following
image. (Don’t close the browser at this point.)

The items with ampersands and semicolons, such as — and ”, are HTML
entities—see Appendix C (“Entities Reference”) for more details.

AN INTRODUCTION TO WEB DESIGN

21

1

9071CH01.qxd 10/18/07 2:34 PM Page 21

blockquote {
margin: 0 100px;

}
blockquote p {
font-style: italic;
font-size: 1.2em;

}

8. Duplicate creating-and-styling-a-web-page.css and rename it creating-and-
styling-a-web-page-2.css. Open creating-and-styling-a-web-page.html, and
amend the @import value, linking to the newly created CSS document:

@import url(creating-and-styling-a-web-page-2.css);

9. Open creating-and-styling-a-web-page-2.css and switch the values of color
and background in the first body rule.

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
color: #ffffff;
background: #000000;
padding: 20px;
}

10. Replace the text-transform property/value pair from the h1 rule with color:
#bbbbbb;. For the blockquote rule, make the following amendments, which add a
border to the left and right edges, and some horizontal padding around the block
quote’s contents.

blockquote {
margin: 0 100px;
border-left: 3px solid #888888;
border-right: 3px solid #888888;
padding: 0 20px;

}

11. Finally, amend the blockquote p rule as shown:

blockquote p {
font-weight: bold;
font-size: 1.0em;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

22

9071CH01.qxd 10/18/07 2:34 PM Page 22

Refresh the web page in the browser, and you should see it immediately change, looking
like that shown in the following image. Effectively, nothing in the web page was changed
(you could have overwritten the rules in creating-and-styling-a-web-page.css rather
than creating a duplicate style sheet)—instead, the web page’s design was updated purely
by using CSS. (Note that in the download files, there are two sets of documents for this
exercise—one with the design as per step 7, and the other as per step 11, the latter of
which has the -2 suffix added to the HTML and CSS document file names.)

Although this was a very basic example, the same principle works with all CSS-based
design. Create a layout in CSS and chances are that when you come to redesign it, you may
not have to change much—or any—of the underlying code. A great example of this idea
taken to extremes is css Zen Garden (www.csszengarden.com), whose single web page is
radically restyled via dozens of submitted CSS documents.

AN INTRODUCTION TO WEB DESIGN

23

1

9071CH01.qxd 10/18/07 2:34 PM Page 23

http://www.csszengarden.com
http://www.csszengarden.com

Working with website content
Before we explore how to create the various aspects of a web page, we’re going to briefly
discuss working with website content and what you need to consider prior to creating your
site. Technology and design aren’t the only factors that affect the success of a website. The
human element must also be considered. Most of the time, people use the Web to get
information of some sort, whether for research purposes or entertainment. Typically,
people want to be able to access this information quickly; therefore, a site must be struc-
tured in a logical manner. It’s imperative that a visitor doesn’t spend a great deal of time
looking for information that should be easy to find. Remember, there are millions of sites
out there, and if yours isn’t up to scratch, it’s easy for someone to go elsewhere.

In this section, we’ll look specifically at information architecture and site maps, page lay-
out, design limitations, and usability.

Information architecture and site maps

Before you begin designing a website, you need to collate and logically organize the infor-
mation it’s going to contain. A site map usually forms the basis of a site’s navigation, and
you should aim to have the most important links immediately visible. What these links
actually are depends on the nature of your website, but it’s safe to say that prominent
links to contact details are a common requirement across all sites. A corporate website
may also need prominent links to products, services, and a press area. The resulting site
map for a corporate site might resemble the following illustration.

Here, the boxed links serve as the primary navigation and are effectively sections of the
website. Underneath each boxed link is a list of subcategories or pages housed within that
section. With this structure, it’s easy for a newcomer to the site to work out where
information is located. When working on site maps, try talking to people who might be
interested in the site to get their reaction to your organization of the content. When work-

There are exceptions to the general rule of a website having a structured and logical
design—notably sites that are experimental in nature or the equivalent of online art,
thereby requiring exploration. In these cases, it may actually be detrimental to present
a straightforward and totally logical site, but these cases are strictly a minority.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

24

9071CH01.qxd 10/18/07 2:34 PM Page 24

ing for a client, ensure that they sign off on the site map, and that you get feedback on the
site map from people at all levels in the company and, if possible, from the company’s
customers. In all cases, seek the opinions of both the technically minded and relative com-
puter novices, because each may have different ideas about how information should be
structured. After all, most web designers are technically minded (or at least well versed in
using a computer), and they often forget that most people don’t use the Web as regularly
as they do. In other words, what seems obvious to you might not be to the general public.

For larger sites, or those with many categories, site maps can be complex. You may have to
create several versions before your site map is acceptable. Always avoid burying content
too deep. If you end up with a structure in which a visitor has to click several times to
access information, it may be worth reworking your site’s structure.

Basic web page structure and layout

Once you’ve sorted out the site map, avoid firing up your graphics package. It’s a good
idea to sketch out page layout ideas on paper before working on your PC or Mac. Not only
is this quicker than using graphics software, but it also allows you to compare many ideas
side by side. At this stage, you shouldn’t be too precious about the design—work quickly
and try to get down as many ideas as possible. From there, you can then refine your ideas,
combine the most successful elements of each, and then begin working on the computer.

Although the Web has no hard-and-fast conventions, themes run throughout successful
websites, many of which are evident in the following image of a version of my Snub
Communications homepage.

AN INTRODUCTION TO WEB DESIGN

25

1

9071CH01.qxd 10/18/07 2:34 PM Page 25

A website’s navigation should be immediately accessible—you should never have to scroll
to get to it. It’s also a good idea to have a masthead area that displays the organization’s
corporate brand (or, if it’s a personal site, whatever logo/identity you wish to be remem-
bered by, even if it’s only a URL).

The homepage should include an introduction of some sort that briefly explains what the
site is about, and it should have some pull-ins to other areas of the site. These pull-ins
could be in the form of news items that link to recent product launches, completed proj-
ects, and so on.

Most websites require a method for people to contact the site owner, and at least one
clear link to a contact page is essential.

Avoid constantly changing the design throughout the site. In print, this sometimes works
well and provides variation within a book or magazine. Online, people expect certain
things to be in certain places. Constantly changing the position of your navigation, the
links themselves, and even the general design and color scheme often creates the impres-
sion of an unprofessional site and makes it harder to use.

Ultimately, however your site ends up, and whatever your design, you need to ensure your
creation is as usable as possible. A good checklist—even if the points may seem entirely
obvious—is as follows:

Is the site easy to navigate?

Is it easy for users to locate content on each page?

Is it easy for users to find what they need on the site?

Are download times kept to a minimum?

Is the site suitable and relevant for its target audience?

Does the site use familiar conventions?

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

26

9071CH01.qxd 10/18/07 2:34 PM Page 26

If you can answer yes to all these things, then you should be on the right track!

Limitations of web design

Depending on your viewpoint, the inherent limitations of the Web are either a challenge
or a frustration. Print designers often feel the latter, and consider themselves hampered by
the Web when compared to the relative freedom of print design. Resolution is low, and
you can’t place whopping great images everywhere, because if you did download speeds
would slow to a crawl and all your visitors would go elsewhere.

Columns take on a different role online compared to in print, as they’re primarily used to
display several areas of content with the same level of prominence. You don’t use columns
online to display continuous copy, unless you use just one column. If you use several
columns, the visitor has to constantly scroll up and down to read everything.

There are other limitations when it comes to rendering text online. There are few web
standard fonts (detailed in Chapter 3); serifs, which work well on paper, don’t work so well
online; and reading text onscreen is already harder than reading print, so complex page
backgrounds should be avoided.

And then there are issues like not knowing what an end user’s setup is, and therefore
having to consider monitor resolution and color settings, what browser is being used, and
even the various potential setups of web browsers. Do you go for a liquid design, which
stretches with the browser window, or a fixed design, which is flanked by blank space at
larger monitor resolutions?

Don’t worry, this isn’t a pop quiz. These are questions that will be answered in this book,
but I mention them now to get you thinking and realizing that planning is key with regard
to web design. Because this is largely a book about concepts, ideas, and techniques, we
won’t return to talk about planning very much, hence drumming it in at this early stage.

Also, don’t get disheartened by the previous limitations spiel. The Web is a truly magnifi-
cent medium, and for every downside there’s something amazing to counter it. So what if
the resolution’s low? Nowhere else can you so effortlessly combine photography, video,
sound, and text. Sure, it’s all well and good to read a magazine, but the Web enables inter-
action, and navigation can be nonlinear, enabling you to link words within specific pieces
to other articles on your website or elsewhere on the Internet. Don’t get me wrong: the
Web is a great thing. If it weren’t, I wouldn’t be interested in it, wouldn’t be designing for
it, and wouldn’t be writing this book.

Regarding conventions, it’s important not to go overboard. For example, some web
gurus are adamant that default link colors should always be used. I think that’s sweet
and quaint, but somewhat archaic. As long as links are easy to differentiate from other
text and styled consistently throughout the site, that’s what matters.

AN INTRODUCTION TO WEB DESIGN

27

1

9071CH01.qxd 10/18/07 2:34 PM Page 27

9071CH02.qxd 8/22/07 5:05 PM Page 28

2 WEB PAGE ESSENTIALS

9071CH02.qxd 8/22/07 5:05 PM Page 29

In this chapter:

Creating XHTML documents

Understanding document type definitions

Using meta tags

Attaching external documents

Working with the body section

Using CSS for web page backgrounds

Commenting your work

Starting with the essentials
You might wonder what’s meant by this chapter’s title: web page essentials. This chapter
will run through everything you need to do with a web page prior to working on the lay-
out and content, including creating the initial documents, attaching external documents to
HTML files, and dealing with the head section of the web page. Little of this is a thrill with
regard to visual design, which is why many designers ignore the topics we’ll cover, or stick
their fingers in their ears, hum loudly, and wish it would all go away (and then probably get
rather odd looks from nearby colleagues). However, as the chapter’s title states, everything
we’ll be talking about is essential for any quality web page, even if you don’t see exciting
things happening visually.

This chapter also explores web page backgrounds, which, although they should be used
sparingly and with caution, often come in handy. It’s worth bearing in mind that some
aspects discussed here will crop up later in the book. For example, CSS techniques used to
attach backgrounds to a web page can be used to attach a background to any web page
element (be that a div, table, heading, or paragraph). But before we get into any CSS
shenanigans, we’ll put our CSS cheerleading team on hold and look at how to properly
construct an XHTML document.

Document defaults
As mentioned in Chapter 1, we’ll be working with XHTML markup in this book rather than
HTML. Although XHTML markup differs slightly from HTML, the file suffix for XHTML web
pages remains .html (or .htm if you swear by old-fashioned 8.3 DOS naming techniques).

Although XHTML’s stricter rules make it easier to work with than HTML, you need to be
aware of the differences in the basic document structure. In HTML, many designers are
used to starting out with something like the following code:

<html>
<head>
<title></title>

</head>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

30

9071CH02.qxd 8/22/07 5:05 PM Page 30

<body>
</body>

</html>

But in XHTML, a basic, blank document awaiting content may well look like this (although
there are variations):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;
➥ charset=utf-8" />
<title></title>

</head>
<body>
</body>

</html>

Although this is similar to the minimal HTML document, there are important differences.
The most obvious is found at the beginning of the document: a DOCTYPE declaration that
states what document type definition (DTD) you are following (and no, I’m not shouting—
DOCTYPE is spelled in all caps according to the W3C).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The DTD indicates to a web browser what markup you’re using, thereby enabling the
browser to accurately display the document in question (or at least as accurately as it
can—as shown in Chapter 9, browsers have various quirks, even when you’re using 100%
validated markup).

Next is the html start tag, which contains both a namespace and a language declaration.
The first of those is intended to reduce the ambiguity of defined elements within the web
page. (In XML, elements can mean different things, depending on what technology is being
used.) The language declaration indicates the (default) language used for the document’s
contents. This can assist various devices, for example enabling a screen reader in correctly
pronouncing words on a page, rather than assuming what the language is. (Also, internal
content can have language declarations applied to override the default, for example when
embedding some French within an English page.) The xml:lang attribute is a reserved
attribute of XML, while the lang attribute is a fallback, used for browsers that lack XML
support. Should the values of the two attributes differ, xml:lang outranks lang.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang ="en" lang="en">

You’ll also notice that a meta tag appears in the head section of the document:

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

To pass validation tests, you must declare your content type, which can be done using this
meta element. Here, the defined character set is UTF-8 (Unicode), the recommended

WEB PAGE ESSENTIALS

31

2

9071CH02.qxd 8/22/07 5:05 PM Page 31

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

default encoding, and one that supports many languages and characters (so many charac-
ters needn’t be converted to HTML entities).

There are other sets in use, too, for the likes of Hebrew, Nordic, and Eastern European lan-
guages, and if you’re using them, the charset value would be changed accordingly.
Although www.iana.org/assignments/character-sets provides a thorough character set
listing, and www.czyborra.com/charsets/iso8859.html contains useful character set dia-
grams, it’s tricky to wade through it all, so listed here are some common values and their
associated languages:

ISO-8859-1 (Latin1): Western European and American, including Afrikaans, Albanian,
Basque, Catalan, Danish, Dutch, English, Faeroese, Finnish, French, Galician, German,
Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish, and Swedish.

ISO-8859-2 (Latin2): Central and Eastern European, including Croatian, Czech,
Hungarian, Polish, Romanian, Serbian, Slovak, and Slovene.

ISO-8859-3 (Latin3): Southern European, including Esperanto, Galician, Maltese,
and Turkish. (See also ISO-8859-9.)

ISO-8859-4 (Latin4): Northern European, including Estonian, Greenlandic, Lappish,
Latvian, and Lithuanian. (See also ISO-8859-6.)

ISO-8859-5: Cyrillic, including Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
and Ukrainian.

ISO-8859-6: Arabic.

ISO-8859-7: Modern Greek.

ISO-8859-8: Hebrew.

ISO-8859-9 (Latin5): European. Replaces Icelandic-specific characters with Turkish
ones.

ISO-8859-10 (Latin6): Nordic, including Icelandic, Inuit, and Lappish.

For an overview of the ISO-8859 standard, see http://en.wikipedia.org/wiki/ISO_8859.

DOCTYPE declarations explained

XHTML 1.0 offers you three choices of DOCTYPE declaration: XHTML Strict, XHTML
Transitional, and XHTML Frameset. In the initial example, the DOCTYPE declaration is the
first thing in the web page. This is always how it should be—you should never have any
content or HTML elements prior to the DOCTYPE declaration. (An exception is the XML dec-
laration; see the section “What about the XML Declaration?” later in this chapter.)

XHTML Strict
For code purists, this is the DTD that does not allow the use of presentational markup or
deprecated elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

32

9071CH02.qxd 8/22/07 5:05 PM Page 32

http://www.iana.org/assignments/character-sets
http://www.czyborra.com/charsets/iso8859.html
http://en.wikipedia.org/wiki/ISO_8859
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

It forces a stricter way of working, but tends to ensure greater browser compatibility when
you play by its rules, and so it’s used throughout this book.

XHTML Transitional
In common usage, this friendly DTD enables you to get away with using deprecated ele-
ments, and is useful for those rare occasions where you’d otherwise be banging your head
against a brick wall, trying to work out how to get around using one of those few still-use-
ful old tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Note that even if you end up solely using strict markup, the transitional DTD still ensures
browsers generally render elements correctly.

XHTML Frameset
Frames are a relic, and are rarely used online. However, for backward compatibility and for
those designers who still use them, there is a frameset-specific DTD (individual pages
within a frameset require one of the aforementioned DTDs):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

HTML DOCTYPEs
If you wish to work with HTML markup rather than XHTML, your documents still need a
DOCTYPE to pass validation. The three DOCTYPEs for HTML 4.01 more or less match those
for HTML: Strict, Transitional, and Frameset.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

Note that in Gecko browsers, XHTML Transitional and Frameset are rendered in
“almost standards” mode. The main difference between this and standards mode is in
the formatting of tables, which is designed to largely match that of Internet Explorer,
making sliced-images-in-tables layouts less likely to fall apart.

WEB PAGE ESSENTIALS

33

2

9071CH02.qxd 8/22/07 5:05 PM Page 33

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/frameset.dtd
http://www.w3.org/TR/html4/loose.dtd

Partial DTDs

Always include full DTDs. Some older web design packages and online resources provide
incomplete or outdated ones that can switch browsers into “quirks” mode, displaying your
site as though it were written with browser-specific, old-fashioned markup and CSS, and
rendering the page accordingly (as opposed to complying strictly with web standards. The
argument for quirks mode was largely down to backward-compatibility. For example, it
enabled Internet Explorer 6 to display CSS layouts with the box model used by Internet
Explorer 5. This type of fix is today considered archaic—see Chapter 9 for modern
methods of backward compatibility, including conditional comments. For more on quirks
mode, read Wikipedia’s article at http://en.wikipedia.org/wiki/Quirks_mode.

For the record, an example of an incomplete DTD looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"/DTD/xhtml1-transitional.dtd">

In this case, the URI (web address) is relative. Unless you have the DTD in the relevant
place on your own website, the browser will display the page this DTD is included on in
quirks mode. (And, quite frankly, if you do have the DTD on your website instead of using
the one on the W3C’s site, you are very odd indeed.) The same thing happens if you leave
out DTDs entirely. Therefore, always include a DTD and always ensure it’s complete.

What about the XML declaration?

As stated earlier, there is an exception to the DTD being the first thing on a web page. The
one thing that can precede it is an XML declaration (often referred to as the XML prolog).
This unassuming piece of markup looks like this (assuming you’re using Unicode
encoding):

<?xml version="1.0" encoding="utf-8"?>

The tag tells the browser which version of XML is being used and that the character encod-
ing is UTF-8.

Some web design applications add this tag by default when creating new XHTML docu-
ments, and the W3C recommends using it to declare the character encoding used within
your document. However, I don’t, because versions of Internet Explorer before version 7
take one look at the XML declaration, recoil in horror, and then spit out your site in a way
rather different from how you intended (the playfully-referred-to quirks mode discussed
earlier).

For an overview of character sets, see the following URLs: www.w3.org/
International/O-charset.html, www.w3.org/International/O-charset-lang.html,
and www.w3.org/International/O-charset-list.html.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

34

9071CH02.qxd 8/22/07 5:05 PM Page 34

http://en.wikipedia.org/wiki/Quirks_mode
http://www.w3.org
http://www.w3.org/International/O-charset-lang.html
http://www.w3.org/International/O-charset-list.html

Of course, Internet Explorer 6’s share of the market is in decline, but it’s likely to take at
least a couple of years from Internet Explorer 7’s release for its predecessor to become
extinct. Therefore, because the XML declaration has the potential to cause havoc with a
fair chunk of your likely audience, it’s cause for concern. However, as mentioned earlier,
there’s an alternative, compliant, totally safe option that you can use instead:

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

Using the preceding meta tag works fine, it does the same job as one of the main roles of
the XML declaration (stating the page’s character encoding), and no browsers choke on it.
The net result is that everyone goes home happy, and we can finally start talking about the
next part of a web page.

The head section
The head section of a web page contains information about the document, the majority of
which is invisible to the end user. Essentially, it acts as a container for the tags outlined in
this section (which should generally be added in the same order that we run through
them).

Page titles

Many designers are so keen to get pages online that they forget to provide a title for each
page. Titles are added using the title element, as follows:

<title>IMAGES FROM ICELAND - photography by Craig Grannell</title>

The title is usually shown at the top of the browser window (and sometimes within the
active tab, if you’re using a browser that has a tabbed interface); the results of the previ-
ous code block are shown in the following image.

By default, web design packages usually do one of the following things with regard to the
title element:

Add no content.

Set the title element’s content as “Untitled Document.”

Set the title element’s content as the application’s name.

Although the content-type meta tag can be placed anywhere in the head of a web
page, it’s worth noting that some browsers don’t get the right encoding unless this tag
is the first element within the head section.

WEB PAGE ESSENTIALS

35

2

9071CH02.qxd 8/22/07 5:05 PM Page 35

The first of these results in no title being displayed for the web page and is invalid XHTML,
while the second means your page joins the legions online that have no title. The third
option is just as bad: using your web page to advertise the application you used to create
it. Therefore, add a title to every web page you create—in fact, make it one of the first
things you do, so you don’t forget.

With regard to the content of your web page titles, bear in mind that this is often the most
prominent thing returned in search engine results pages. Keep titles clear, concise, and
utterly to the point. Use too many words and the title will be clipped; use too few (or try
to get arty with characters) and you may end up with something that stumps search
engines and potential visitors, too.

Generally speaking, for the homepage at least, it’s good to include the name of the site or
organization, followed by an indication of the site’s reason for existence (and author or
location, if relevant). For instance, as shown in the following image, the Snub
Communications title includes the organization’s name, the primary services it offers, and
its author.

Some designers use the same title throughout their site. This is a bad idea—web page titles
are used as visual indicators by visitors trawling bookmarks or their browser’s history. This
is why I generally tend to use titles as a breadcrumb navigation of sorts, showing where a
page sits within the website’s hierarchy, like this:

<title>Company name - Services - Service name</title>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

36

9071CH02.qxd 8/22/07 5:05 PM Page 36

meta tags and search engines

The Web was once awash with tips for tweaking meta tags. This was because although
these tags are primarily there to provide information about the document, they were ini-
tially what most search engines used to categorize web pages and return results. It didn’t
take long for the shortfalls in the system to become apparent and for designers to abuse
them, and so many meta tags are today considered redundant.

Generally, search engines now trawl the content of the web page (including the contents
of the title element), trying to match a user’s search with the most important content on
the page. This is why strong use of semantic markup is essential—by correctly utilizing
headings, paragraphs, and other structural elements for text, and by avoiding overuse of
images for text content, modern search engines get a better handle on your content and
can therefore—in theory—return more accurate results to users.

Tagging and other forms of metadata are also becoming an increasingly popular search
engine aid, for both internal search engines—those within the site itself—and for the
search engines that return results from the whole of the Internet. Both are a means of
adding information to a website to aid users. Visual tags may show a number of keywords
associated with a blog posting, for example, enabling a user to see if something interests
them by the size of the word; search engines will latch onto the keywords and the content
of the piece itself. Metadata enables you to “embed” information in the page, aiding all
manner of devices, and potentially creating networks and links to like information. A form
of metadata—microformats—is explored in Chapter 8.

Despite this, it’s still worth being mindful of meta tags when creating web pages, for those
search engines that still make use of them—just be aware that they’re not nearly as impor-
tant as they once were (with the possible exception of description).

Keywords and descriptions
Unless you’re totally new to web design, it’s likely you’ll be aware of the keywords and
description meta tags:

<meta name="keywords" content="keywords, separated, by, commas" />
<meta name="description" content="A short description about the Web
➥ site" />

The first of these tags, keywords, should contain a list of words that users might type into
a search engine to find your site. Because of abuse (websites including thousands of words
in the meta tag content, in order to try and create a catchall in search engine results
pages), such lists are rarely used these days. Instead, search engines tend to look at the
entire content of a page to determine its relevance to someone’s search. If you choose to
include this element in your web page, 30 or fewer words and short phrases are sufficient.

Because meta tags are empty tags, they must be closed using a space
and trailing slash, as explained in Chapter 1.

WEB PAGE ESSENTIALS

37

2

9071CH02.qxd 8/22/07 5:05 PM Page 37

The contents of the description’s content attribute are returned by some search engines
in a results page along with the web page’s title. As with the title, keep things succinct,
otherwise the description will be cropped. Most search engines display a maximum of
200 characters, so 25 well-chosen words are just about all you can afford.

revisit-after, robots, and author
Other meta tags also use name and content attributes. These tags assist search engines. In
the following example, the first tag provides an indication of how often they should return
(useful for regularly updated sites), and the second tag states whether the page should be
indexed or not.

<meta name="Revisit-After" content="30 Days" />
<meta name="robots" content="all,index" />

The content attribute of the robots meta tag can instead include the values noindex and
none, in order to block indexing, and follow or nofollow, depending on whether you want
search engine robots to follow links from the current page or not.

The author meta tag is of less use to search engines, and typically includes the page
author’s name and home URL. Designers sometimes use it as a means to declare the
author’s name and details, but it has little use beyond that.

<meta name="author" content="Craig Grannell for
➥ www.snubcommunications.com." />

Attaching external documents

A web page—as in the (X)HTML document—is primarily designed to contain content that
is structured in markup. Presentation should be dealt with via external CSS documents,
and behavior via external scripting documents. Although it is possible to work with the
likes of JavaScript and CSS within an HTML document, this goes against the modular
nature of good web design. It’s far easier to create, edit, and maintain a site if you work
with separate files for each technology. (The exception is if your “site” is only a single page,
therefore making it sensible to include everything in a single document.)

As already mentioned, XHTML documents are text files that are saved with the suffix .html
(or .htm). CSS and JavaScript files are also text documents, and their file suffixes are .css
and .js, respectively. When you start a project, having already set the relevant DOCTYPE
and added meta tags, it’s a good idea to create blank CSS and JavaScript files and to attach
them to your web page, so you can then work on any element as you wish.

Attaching external CSS files: The link method
In the previous chapter, you were shown how to attach CSS to a web page (see the section
“Adding styles to a web page” in Chapter 1), and we’ll briefly recap the process here. There
are two methods of attaching an external CSS file: the link method and the @import
method.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

38

9071CH02.qxd 8/22/07 5:05 PM Page 38

http://www.snubcommunications.com

The link tag specifies a relationship between the linked document and the document it’s
being linked to. In the context of attaching a CSS file, it looks something like this:

<link rel="StyleSheet" href="stylesheet.css" type="text/css"
➥ media="all" />

The attributes used are the following:

rel: Defines the relation from the parent document to the target

href: The location of the target file

type: The MIME type of the target document

media: The target medium of the target document

The title attribute is also occasionally used with the link element, either to provide
additional information or to be used as a “hook” for the likes of a style sheet switcher (see
www.alistapart.com/stories/alternate/ for more information). Any style sheet lacking
a title attribute (and a rel value of stylesheet) is persistent—always affecting a docu-
ment. These are by far the most common types of style sheets. A preferred style sheet also
takes a title along with the rel attribute and only one such style sheet can be used at a
time—typically the first, with subsequent ones ignored. On pages that offer alternate style
sheets (typically via a style switcher), the persistent styles are always used, and the first
preferred is the additional default; the preferred styles, however, can be swapped out by
selecting an alternative style sheet. (Note that in Firefox, you should avoid adding a title
attribute to any style sheet for print, because otherwise the content may not print.)

In the previous example, the media attribute is set to all, specifying that this style sheet is
intended for all devices. But it’s feasible to attach multiple style sheets to a web page, and
set the media attribute of each one to a different type. For instance, in the following exam-
ple, two CSS files are attached, one for screen and the other for printed output:

<link rel="stylesheet" href="stylesheet.css" type="text/css"
➥ media="screen" />
<link rel="stylesheet" href="printcss.css" type="text/css"
➥ media="print" />

There are other media types, including aural, braille, projection, and tv, but few are
supported well. However, in Chapter 10, we’ll look at style sheets for print, which is one of
the alternatives to screen that is supported reasonably well in mainstream browsers.

Attaching CSS files: The @import method
A problem with the link method is that obsolete browsers see the style sheet but don’t
understand it. This can result in garbled layouts—and often in unusable websites for those
unfortunate enough to have to deal with such arcane web browsers. The solution is to
hide the CSS from such browsers by using a command that they don’t understand and so
will ignore. This is often referred to as the @import method.

WEB PAGE ESSENTIALS

39

2

9071CH02.qxd 8/22/07 5:05 PM Page 39

http://www.alistapart.com/stories/alternate

As shown in the following example, the style element is used to do this:

<style type="text/css" media="all">
/* <![CDATA[*/
@import url(stylesheet.css);
/*]]> */
</style>

The following image shows the result in obsolete browsers, such as Netscape 4. The CSS is
hidden, so just the content is displayed.

However, compliant browsers see the CSS and render the site as shown in the following
image.

The CSS specifications permit the use of the style sheet location as a
quoted string instead of enclosing it in url(). The method shown here
is more commonly supported, though.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

40

9071CH02.qxd 8/22/07 5:05 PM Page 40

This method isn’t perfect. Some browsers think they can deal with CSS but can’t, meaning
they understand @import, import the CSS, and then screw up the display anyway. Also,
some versions of Internet Explorer in some cases offer a flash of unstyled content,
although a workaround there is to have a link or script element in the web page’s head
section (which will be likely, since sites should carry a print style sheet in addition to the
one for screen, or work with JavaScript). In any case, if you have to cater for obsolete and
alternative devices, using @import is probably the best bet, ensuring your site is accessible
to (almost) all.

Attaching favicons and JavaScript
Favicons are those little icons you often see in your browser’s address bar. They are
attached using the link method discussed earlier, although you only need to include three
attributes: rel, href, and type. The type value can change, depending on the file type of
your favicon. For example, image/png is fine if you’ve used a PNG.

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon"/>

These days, favicons are almost ubiquitous, and they provide users with an additional
visual clue to a site’s identity. Although not particularly useful on their own, they can be
handy when trawling through a large bookmarks list—you can look for the icon rather
than the text. However, don’t rely on them instead of a good web page title—they should
merely be an additional tool in your arsenal.

WEB PAGE ESSENTIALS

41

2

9071CH02.qxd 8/22/07 5:05 PM Page 41

Attaching a JavaScript file to a web page is similarly painless. You do so via the script ele-
ment, as follows:

<script type="text/javascript" src="javascriptfile.js"></script>

Checking paths
When working with external files, ensure paths between files are complete and don’t
become broken as files are moved around, otherwise your web page may lose track of the
CSS and JavaScript, affecting its display and functionality. If you’re using document-relative
links (i.e., links relative to the current document), remember to amend paths accordingly.

The body section
The body element is used to define the body of a web page, and it contains the docu-
ment’s content. No document content should ever be placed outside of the body element.
Sorry for the italic type, but this is something I see on a regular basis, so I wanted to nip
that one in the bud.

Although the body element has a number of possible attributes that can be included in its
start tag, mostly for defining link state color and backgrounds, these should be avoided.
This is because such things should be dealt with using CSS, which enables you to define
values on a site-wide basis, rather than having to do so for each individual page. The body
element attributes include the likes of alink, link, and vlink for defining link colors; text
for defining the default text color; and background and bgcolor for defining a background
pattern and color. There are also a number of proprietary attributes that were intended to
set padding around web page content, which aren’t worth mentioning further. In this next
section, we’ll look at the contemporary way of setting content margins and padding,
default font and color, and web page backgrounds.

Content margins and padding in CSS

Page margins and padding are easy to define using CSS. By setting these values once in an
external file, you can update settings site-wide by uploading an amended style sheet rather
than every single page on your site that has an amended body tag.

If you’re not sure how to work with the different types of links—absolute, relative,
and root-relative—read the guide in Chapter 5, at the beginning of the “Creating and
styling web page links” section.

You may have seen the language attribute used within script start tags, but this is
deprecated and won’t validate if you’re using XHTML Strict.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

42

9071CH02.qxd 8/22/07 5:05 PM Page 42

Furthermore, in terms of page weight, CSS is more efficient. If using old methods, to cater
for all browsers, you set the following body attributes:

<body marginwidth="0" marginheight="0" topmargin="0" leftmargin="0"
➥ bottommargin="0" rightmargin="0">

The equivalent in CSS is the following:

body {
margin: 0;
padding: 0;

}

The reason both margin and padding are set to 0 is because some browsers define a
default padding value. Therefore, even if you set all body margins to 0, there would still be
a gap around your page content. Setting both the margin and padding to 0 in the body rule
ensures that all browsers display your content with no gaps around it.

Zeroing margins and padding on all elements

Although the previous block of code is clean and efficient, it isn’t something I use in my
websites. The reason for this is that browsers place default (and sometimes varying)
margins around various elements other than the page’s body, too. Therefore, my CSS
boilerplates always include the following:

* {
margin: 0;
padding: 0;

}

The selector, *, is the universal selector, and the declaration therefore applies to all ele-
ments on the web page. In other words, add this rule to your CSS, and all default margins
and padding for all elements are removed, enabling you to start from scratch in all
browsers and define explicit values for those elements that need them.

Working with CSS shorthand for boxes

Both of the previous two code examples use CSS shorthand, and this is something that is
useful to get to grips with, in order to create the most efficient and easy-to-update CSS.
The previous example showed how to set all margins and padding values to 0, and this was
done in shorthand instead of writing out every single value. How CSS shorthand works for
boxes is like this:

If a CSS setting is 0, there’s no need to state a unit such as px or em.

WEB PAGE ESSENTIALS

43

2

9071CH02.qxd 8/22/07 5:05 PM Page 43

A single value (margin: 10px;): This is applied to all edges.

Two values (margin: 10px 20px;): The first setting (10px) is applied to the top and
bottom edges. The second setting (20px) is applied to both the left and right edges
(20px each, not in total).

Three values (margin: 10px 20px 30px;): The first setting (10px) is applied to the
top edge. The second setting (20px) is applied to both the left and right edges. The
third setting (30px) is applied to the bottom edge.

Four settings (margin: 10px 20px 30px 40px;): Settings are applied clockwise
from the top (i.e., top: 10px; right: 20px; bottom: 30px; left: 40px).

Shorthand’s benefits become obvious when comparing CSS shorthand with the equivalent
properties and values written out in full. For instance, the following shorthand

#box {
margin: 0;
padding: 0 100px;

}

looks like this when written out in full:

#box {
margin-top: 0;
margin-right: 0;
margin-bottom: 0;
margin-left: 0;
padding-top: 0;
padding-right: 100px;
padding-bottom: 0;
padding-left: 100px;

}

Whether or not you use shorthand is up to you. Some designers swear by it and others
because of it. Some web design applications have options to “force” shorthand or avoid it
entirely. I reckon it’s a good thing: CSS documents are usually more logical and shorter
because of shorthand. But if you don’t agree, feel free to keep on defining margins and
padding as relevant for every edge of every element.

Setting a default font and font color

As mentioned earlier, the body start tag was historically used to house attributes for deal-
ing with default text and background colors, link colors, and background images. In CSS,
link styles are dealt with separately (see Chapter 5). We’ll look at how to apply back-
grounds later in this chapter.

At this point, it’s worth noting that, when working with CSS, the body selector is often used
to set a default font family and color for the website. We’ll discuss working with text in
more depth in the next chapter, but for now, check out the following CSS:

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

44

9071CH02.qxd 8/22/07 5:05 PM Page 44

body {
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #000000;
background-color: #ffffff;

}

This is straightforward. The font-family property sets a default font (in this case,
Verdana) and fallback fonts in case the first choice isn’t available on the user’s system. The
list must end with a generic family, such as sans-serif or serif, depending on your other
choices. The fonts are separated by commas in the list, and if you’re using multiple-word
fonts, they must be quoted ("Courier New", not Courier New).

The color property’s value defines the default color of text throughout the site. In the
preceding example, its value is #000000, which is the hexadecimal (hex) value for black
(when defining colors in CSS, it’s most common to use hex values, although you can use
comma-separated RGB values if you wish). It’s also advisable where possible to add a back-
ground color for accessibility; in this case, the background color is #ffffff—hex for
white.

Web page backgrounds
Web page backgrounds used to be commonplace, but they became unpopular once
designers figured out that visitors to web pages didn’t want their eyes wrenched out by
gaudy tiled background patterns. With text being as hard to read onscreen as it is, it’s
adding insult to injury to inflict some nasty paisley mosaic background (or worse) on the
poor reader, too.

But, as affordable monitors continue to increase in size and resolution, designers face a
conundrum. If they’re creating a liquid design that stretches to fit the browser window,
text can become unreadable, because the eye finds it hard to scan text in wide columns.
And if they’re creating a fixed-width design, large areas of the screen often end up blank.
It’s for the latter design style that backgrounds can be useful, both in drawing the eye to
the content and providing some visual interest outside of the content area.

Like most things related to design, the use and style of backgrounds is subjective, but
some rules are worth bearing in mind. The most obvious is that a background should not
distract from your content. If you’re using background images, keep them simple, and
when you’re using color, ensure that the contrast and saturation with the page’s back-
ground color is fairly low, but the contrast with the text content over the background is
very high. Also, unless you’re using a subtle watermark, it’s generally bad form to put com-
plex images underneath text (a soft gradient or simple geometric shape can sometimes be
OK, however)—the low resolution of the Web means it’s harder to read text than the

Although it’s possible to set a default size (and other property values) for
text in the body declaration, we’ll leave that for now, and instead explore
how best to do so in the following chapter.

WEB PAGE ESSENTIALS

45

2

9071CH02.qxd 8/22/07 5:05 PM Page 45

print-based equivalent, and you don’t want to make this even tougher! Also, because back-
grounds are typically ancillary content, they should not significantly increase the loading
time of the page.

Web page backgrounds in CSS

Backgrounds are added to web page elements using a number of properties, as described
in the sections that follow.

background-color
This property sets the background color of the element. In the following example, the
page’s body background color has been set to #ffffff (which is hex for white):

body {
background-color: #ffffff;

}

background-image
This property sets a background image for the relevant element:

body {
background-image: url(background_image.jpg);

}

By using this CSS, you end up with a tiled background, as shown in the following image.

background-repeat
The properties explored so far mimic the range offered by deprecated HTML attributes,
but CSS provides you with control over the background’s tiling and positioning. The
background-repeat property can take four values, the default of which is repeat, creating
the tiled background just shown.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

46

9071CH02.qxd 8/22/07 5:05 PM Page 46

If background-repeat is set to no-repeat, the image is shown just once, as in the follow-
ing illustration.

If this property is set to repeat-x, the image tiles horizontally only.

And if the property is set to repeat-y, the image tiles vertically only.

background-attachment
This property has two possible values: scroll and fixed. The default is scroll, in which
the background works as normal, scrolling with the rest of the page. If you set the value to
fixed, the background image remains stationary while the remainder of the page scrolls.

WEB PAGE ESSENTIALS

47

2

9071CH02.qxd 8/22/07 5:05 PM Page 47

background-position
This property’s values set the origin of the background by using two values that relate to
the horizontal and vertical position. The default background-position value is 0 0 (the
top left of the web page).

Along with keywords (center, left, and right for horizontal positioning; center, top, and
bottom for vertical positioning), you can use percentages and pixel values. It’s possible to
use a combination of percentages and pixel sizes, but you cannot mix keywords with
either. Therefore, it’s recommended that designers stick with using percentages and pixel
values—after all, keyword positioning can be emulated with numbers anyway (left top
being the same as 0 0, for instance). When setting values, they should always be defined in
the order horizontal-vertical.

When using keywords, it’s also recommended to use the order horizontal-vertical, because
both percentage- and pixel-based background positioning use this order, and it’s simpler
to remember a single rule. In the following example, the background would be positioned
on the left of the web page and positioned in the vertical center of the content:

body {
background-image: url(background_image.gif);
background-repeat: no-repeat;
background-position: left center;

}

Again, when using percentages or pixel values, the first value relates to the horizontal posi-
tion and the second to the vertical. So, to create the equivalent of the keyword example,
you’d use the following CSS:

body {
background-image: url(background_image.gif);
background-repeat: no-repeat;
background-position: 0 50%;

}

Note, however, when using background-position with the body element, that browsers
disagree slightly on where the background should be positioned vertically if the page
content isn’t taller than the viewing area. Internet Explorer and Safari assume the body is
the full view area height when there’s no content, thereby setting an image with a
background-position value of 50% 50% directly in the center of the viewing area. Firefox
and Opera instead assume the body has an effective height of 0, thereby placing the back-
ground vertically at the top of the view area (in fact, you only see the bottom half). For
consistency across browsers in this case, you can define both background-position and
background-attachment (as fixed), although this means the background will not scroll
with the page content.

CSS shorthand for web backgrounds
As when defining margins and padding, you can use shorthand for web background values,
bundling them into a single background property, although it’s worth stating that the
shorthand value overrides any previous settings in a CSS file for individual background

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

48

9071CH02.qxd 8/22/07 5:05 PM Page 48

properties. (For instance, if you use individual settings to define the background image,
and then subsequently use the shorthand for setting the color, the background image will
most likely not appear.)

When using shorthand, you can set the values in any order. Here’s an example:

body {
background: #ffffff url(background_image.gif) no-repeat fixed 50%
➥ 10px;

}

Generally speaking, it’s best to use shorthand over separate background properties—it’s
quicker to type and easier to manage. You also don’t have to explicitly define every one of
the values; if you don’t, the values revert to their defaults. Therefore, the following is
acceptable:

body {
background: #ffffff url(background_image.gif) no-repeat;

}

Because the background-attachment value hasn’t been specified, this background would
scroll with the page, and because the background-position value hasn’t been defined, the
background would be positioned at 0%, 0%—the top left of the browser window.

Web page background ideas

Before finishing up this section on web page backgrounds, we’ll run through some exam-
ples that show the CSS and the result, along with the background image used. The files
within the basic-boilerplates folder can be used as starting points for web pages and
CSS documents. The images used in each case are in the chapter 2 folder of the download
files, and these should be placed in the same folder as the HTML and CSS document,
unless you amend path values accordingly.

Rename the files as appropriate for each example, ensuring you import the relevant CSS
file via the HTML document’s @import line.

For the HTML document, add several paragraphs within the existing div element that has
an id value of wrapper, as in the following code block (which, for space reasons, shows
only a single truncated paragraph—add more than this!):

<div id="wrapper">
<p>...</p>

</div>

In CSS, there are also some common elements to add to the boilerplate. For the #wrapper
rule, add some padding to ensure the content within doesn’t hug the box’s edges, and a
background rule to color the box’s background white. Also, the width value defines the
width of the box’s content, while the margin settings center the box horizontally. (The
method will be discussed further in other chapters, but by setting 0 auto as the margin
values, vertical margins are removed and horizontal margins are set to auto, which center
the box horizontally in the browser window.)

WEB PAGE ESSENTIALS

49

2

9071CH02.qxd 8/22/07 5:05 PM Page 49

#wrapper {
padding: 18px;
background: #ffffff;
width: 500px;
margin: 0 auto;

}

Note that in the download files, in order to keep things modular there are two #wrapper
rules in the CSS, and that’s what’s assumed in the previous code block. However, if you
prefer, add the property/value pairs from the previous code block to the style sheet’s
existing #wrapper rule. The same is true for many of the rules, such as the body rules in the
following subsections.

Adding a background pattern
The following CSS can be used to add a patterned, tiled background to your web page:

body {
background: #ffffff url(background-tile.gif);

}

The following screenshot shows a page with a diagonal cross pattern, although you could
alternatively use diagonal stripes, horizontal stripes, squares, or other simple shapes.

Files at this point, ready for the following examples, are available in the chapter 2
folder of the download files (at www.friendsofed.com/downloads.html), named
backgrounds-default.html and backgrounds-default.css.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

50

9071CH02.qxd 8/22/07 5:05 PM Page 50

http://www.friendsofed.com/downloads.html

Drop shadows
The following image shows a page with a content area and drop shadow.

This effect was achieved by creating the depicted background image and tiling it vertically.
In the body rule, the position was set to 50% 0 in order to position the background cen-
trally on the horizontal axis. The background color of the web page is the same as the solid
background on the image itself, and so the image and color seamlessly blend.

body {
background: #878787 url(background-drop-shadow.gif) 50% 0 repeat-y;

}

Regarding the white area of the image, this is 536 pixels wide. This is because the wrapper
div’s width was earlier set to 500 pixels, and its padding value was set to 18 pixels. As you
will remember from the box model information from the previous chapter, padding is
added to the dimensions of a box, and so the overall width taken up by the wrapper div
is 536 pixels (18 + 500 + 18 = 536).

A drop shadow that terminates with the content
In the previous example, the white background of the content area is part of the image.
Therefore, if you remove most of the paragraphs in that example, the background stays as
it is, tiling vertically to the height of the viewing area. Using a different method, you can
instead have the background terminate with the content.

Note that if you remove many of the paragraphs from the web page, the white back-
ground color ends with the content, since in CSS a container’s size by default only
stretches to that of its content.

WEB PAGE ESSENTIALS

51

2

9071CH02.qxd 8/22/07 5:05 PM Page 51

Some additional markup is needed, due to this method requiring two background images:
one for the wrapper div (because, as per the white background in the “Adding a back-
ground pattern” section, you want the content area’s background to stop when the con-
tent runs out) and one for a shadow for the bottom edge of the wrapper div (otherwise
the shadows at the side will just stop dead, resulting in something like what’s shown in the
following image).

In terms of markup, add an empty div, as shown in the following code block:

? accumsa'n eu, blandit sed, blandit a, eros.</p>
<div class="contentFooter"><!-- x --></div>

</div>
</body>
</html>

In CSS, for the drop shadows flanking the content area to stop where the content does,
they need to be assigned to the wrapper div, not the web page’s body. Therefore, you
need to amend the body rule, removing the link to a background, but retaining the color
setting:

body {
background: #878787;

}

The #wrapper rule needs updating in two ways. First, the new background image needs to
be applied to the div—hence the new background property/value pair. However, because
the drop shadows are now shown within the wrapper div, it needs to take up more hori-
zontal space. Since the dimensions of the div’s content don’t need changing, this is
achieved by increasing the horizontal padding value. Also, because padding at the foot of
the div is no longer required (the contentFooter div effectively takes care of padding at
the bottom of the content area), the bottom padding value needs to be set to 0. These
padding values are done in shorthand, as per the method outlined in the “Working with
CSS shorthand for boxes” section earlier in this chapter.

#wrapper {
padding: 18px 36px 0;
background: url(background-drop-shadow-2.gif) 50% 0 repeat-y;
width: 500px;
margin: 0 auto;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

52

9071CH02.qxd 8/22/07 5:05 PM Page 52

Finally, the contentFooter div needs styling. Its height is defined on the basis of the
height of the background image (which is a slice of the Photoshop document shown in the
following image). The background is applied to the div in the same way as in previous
examples.

One major change, however, is the use of negative margins. The contentFooter div is
nested within the wrapper, which has 36 pixels of horizontal padding. This means that the
contentFooter div background doesn’t reach the edges of the wrapper div by default,
leaving whitespace on its left and right sides. By using margins equal to the negative value
of this padding, the div can be “stretched” into place.

.contentFooter {
height: 20px;
background: url(background-drop-shadow-2-footer.gif) 50% 0;
margin: 0 -36px;

}

As you can see, the horizontal value for margin is -36px, the negative of the horizontal
padding value assigned to #wrapper. The addition of all these new rules results in the fol-
lowing image (which also shows the Photoshop image and exported GIF that makes up the
background).

An alternate method for getting this effect would be to place the contentFooter div out-
side of the wrapper and then use the same method of aligning it:

.contentFooter {
width: 500px;
height: 20px;
background: url(background-drop-shadow-2-footer.gif) 50% 0;

WEB PAGE ESSENTIALS

53

2

9071CH02.qxd 8/22/07 5:05 PM Page 53

padding: 0 36px;
margin: 0 auto;

}

In order to ensure the background of the wrapper joins up with the shadow on the
contentFooter div, a single pixel of bottom padding needs to be applied to the #wrapper
rule:

#wrapper {
padding: 18px 36px 1px;
background: url(background-drop-shadow-2.gif) 50% 0 repeat-y;
width: 500px;
margin: 0 auto;

}

Gradients
Tiled gradient images can be used to add depth and visual interest, without sapping
resources (the example’s image is under 2 KB in size). The depicted example is based on
the page from the “Drop shadows” section. The changes are an amendment to the back-
ground pair in the #wrapper rule, tiling the gradient image horizontally on the wrapper’s
background, and new padding settings, so the text doesn’t appear over the gradient.

#wrapper {
padding: 36px 18px 18px;
background: #ffffff url(background-gradient.gif) repeat-x;
width: 500px;
margin: 0 auto;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

54

9071CH02.qxd 8/22/07 5:05 PM Page 54

Watermarks
Although it’s common for sites to be centered in the browser window, many designers
choose left-aligned sites that cling to the left edge of the browser window. Both design
styles are perfectly valid, but in an era of rapidly increasing monitor resolutions, you can
end up with a lot of dead space to the side of a fixed-width left-aligned design. And while
some of you might be saying, “Well, create flexible-width designs, then!” some designs
aren’t suited to that, and text-heavy sites tend to work better with fairly narrow text
columns, since most users find it hard to read very wide blocks of text.

All of this brings us to the final example in this chapter, which shows how to create water-
marks for a web page. In the following screenshot, the wrapper div is to the left, with a
background image to the right of this area.

To achieve this effect, the margin property/value pair in the #wrapper rule has been
removed, and the following rule has been added:

body {
background: #878787 url(background-watermark-large.gif) no-repeat
➥ 536px 0;

}

As mentioned earlier in the chapter, this assumes you’re adding a second body rule.
You can, however, just add the background property/value pair to the existing body
rule in the style sheet.

WEB PAGE ESSENTIALS

55

2

9071CH02.qxd 8/22/07 5:05 PM Page 55

The image used is a transparent GIF, so the background color setting was made a medium-
gray (#878787). The reasoning behind using a transparent GIF is explained in Chapter 4,
but it relates to web browsers sometimes interpreting colors differently from graphics
packages. Therefore, it’s often easier to make the flat background color of a graphic trans-
parent and then use the web page background color in place of it.

The repeat setting is set to no-repeat, because we don’t want the image to tile. Finally,
the background’s position is set to 536px 0. The 0 setting means it hugs the top of the
browser window, while the 536px setting means the image is placed at 536 pixels from the
left. This is because the content area was earlier defined as 500 pixels wide with 18 pixels
of padding, and 18 + 500 + 18 = 536.

As mentioned earlier, backgrounds can be added to any web page element. For instance,
you can add a watermark to the wrapper div by using the following CSS:

#wrapper {
padding: 18px;
background: #ffffff url(background-watermark.gif) no-repeat 20px
➥ 20px;
width: 500px;

}

This adds the background-watermark.gif image to the background of the content div,
and positions it 20 pixels from the top and 20 pixels from the left. Again, no-repeat is
used to stop the image from tiling.

In either case for the watermark backgrounds, the images scroll with the page content.
However, watermarks can also work well as fixed backgrounds—this can be achieved by
adding the fixed value to the background property in the body and #wrapper rules.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

56

9071CH02.qxd 8/22/07 5:05 PM Page 56

Closing your document
Back at the start of this chapter, we examined basic HTML and XHTML documents.
Regardless of the technology used, the end of the document should look like this:

</body>
</html>

There are no variations or alternatives. A body end tag terminates the document’s content,
and an html end tag terminates the document itself. No web page content should come
after the body end tag, and no HTML content should come after the html end tag (white-
space is fine, and it’s common practice with server-side technologies to put functions after
the html end tag—just don’t put any HTML there).

Also, you must only ever have one body and one head in an HTML document, as well as a
single html start tag and a single html end tag.

This is important stuff to bear in mind, and even if you think it’s obvious, there are millions
of pages out there—particularly those that utilize server-side includes and server-side
languages—that include multiple body tags and head tags, have content outside the body
tag, and have HTML outside the html tag.

Don’t do this in your own work.

Naming your files
Each designer has their own way of thinking when it comes to naming files and documents.
Personally, I like to keep document names succinct, but obvious enough that I can find
them rapidly via a trawl of my hard drive. Certain conventions, however, are key: all file
names should avoid illegal characters (such as spaces), and it’s good to be consistent
throughout your site. I find that naming files in lowercase and replacing spaces with
hyphens—like-this-for-example.html—works well.

Web designers have historically used underscores in place of spaces, but that
causes problems with some search engines, some of which run-in keywords,
effectively considering the words within the file name as one string. This
doesn’t happen with hyphens.

Completed examples of all of the web pages in this section are in the
chapter 2 folder in the download files.

WEB PAGE ESSENTIALS

57

2

9071CH02.qxd 8/22/07 5:05 PM Page 57

Commenting your work
The rules for HTML, CSS, and JavaScript comments are simple, but the actual characters
used are different in each case.

HTML comments begin with <!-- and end with -->, and can run over multiple lines, as
follows:

<!-- this is a comment in HTML -->
<!--
Multiple-line
HTML
comment
-->

In XHTML, double hyphens should not occur within the comment itself. Therefore, the fol-
lowing is not valid XHTML:

<!-- This is invalid -- as is the comment below -->
<!--->

The multiple-hyphen comment is commonly used by designers who favor hand-coding to
separate large chunks of code within a document. When working in XHTML, you can
replace the hyphens with a different character:

<!--oooooooooooooooooooooooooooooooooooooo-->
<!--================================-->

CSS comments were covered in the “Creating boilerplates” section of Chapter 1, but we’ll
briefly look through them again; they’re opened with /* and closed with */ and, like HTML
comments, can run over multiple lines, as shown here:

/* This is a comment in CSS */
/*
Multiple-line
CSS
comment
*/

Multiple-line comments in JavaScript are the same as in CSS, but single-line comments are
placed after double forward slashes:

// This is a single-line JavaScript comment.

Don’t use comments incorrectly. CSS comments in an HTML document won’t be problem-
atic from a rendering standpoint—but they will be displayed. HTML comments in CSS can
actually cause a CSS file to fail entirely.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

58

9071CH02.qxd 8/22/07 5:05 PM Page 58

Web page essentials checklist
Congratulations—you made it to the end of this chapter! I’m aware that some of this one
was about as much fun as trying to work out complex quadratic equations in your head,
but as mentioned at the start, you need to know this stuff. Imagine designing a site and it
suddenly not working the way you thought it would. It looks fine in your web design pack-
age and also in some web browsers, but it starts falling apart in others. Just removing an
XML declaration might be enough to fix the site.

If you take the elements of this chapter and form them into a simple checklist, you won’t
have to risk displaying those wonderful “Untitled Documents” to the entire world (or inad-
vertently advertising the package you used to create the page). To make your life easier,
you can refer to this checklist:

1. Ensure the relevant DOCTYPE declaration and namespace is in place.

2. Remove the XML declaration if it’s lurking.

3. Add a title tag and some content within it.

4. Add a meta tag to define your character set.

5. If required, add keywords and description meta tags.

6. Attach a CSS file (or files).

7. Attach a JavaScript file (or files).

8. If your web editor adds superfluous body attributes, delete them.

9. Ensure there are no characters prior to the DOCTYPE declaration or after the html
end tag.

10. Ensure no web page content appears outside the body element.

Along with enabling you to comment your work, comments can be used to disable
sections of code when testing web pages.

WEB PAGE ESSENTIALS

59

2

9071CH02.qxd 8/22/07 5:05 PM Page 59

9071CH03.qxd 9/13/07 4:39 PM Page 60

3 WORKING WITH TYPE

9071CH03.qxd 9/13/07 4:39 PM Page 61

In this chapter:

Working with semantic markup

Defining font colors, families, and other styles

Understanding web-safe fonts

Creating drop caps and pull quotes

Rapidly editing styled text

Working to a grid

Creating and styling lists

An introduction to typography
Words are important—not just what they say, but how they look. To quote Ellen Lupton,
from her book Thinking with Type, “Typography is what language looks like.” Language has
always been symbolic, although the origins of such symbols (of certain letterforms relating
to, for example, animals) has largely been lost in written English; instead, we now have
rather more abstract symbols designed for repetition on the page or screen.

However, from the early calligraphy that was created by hand, through the movable type
(invented in Germany by Johannes Gutenberg during the 15th century) that enabled mass-
production printing via molded letterform casts, to the most advanced desktop-publishing
software available today, the ultimate aim of type has been one of record and information
provision. In other words, type itself is important from a design standpoint because it
needs to record whatever information is being written about, and that information needs
to be easily retrievable by anyone who wants to understand it.

Like all aspects of design, typography has massively evolved over the years, particularly
over the past couple of decades, where computers have enabled designers to more rapidly
experiment with lettering. Despite this, many conventions formed much earlier still have a
part to play:

Myriad fonts exist, and each one has a different look, and therefore a different
“feel;” you need to choose the most appropriate one for your purpose. (This is fur-
ther complicated by there being only a certain number of web-safe fonts, as you’ll
see later.)

Headings, strap-lines/stand-firsts (the introductory line that introduces a piece of
text, commonly used in editorial articles), and crossheads (short subheadings that
break up areas of body copy) should stand out, and the prominence of each piece
of text should be related to its level of importance (in other words, a crosshead
shouldn’t be more prominent than a main heading).

Footnotes often use text smaller than the main body copy text to signify their
lesser significance to the main text, but nonetheless provide useful supplementary
information.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

62

9071CH03.qxd 9/13/07 4:39 PM Page 62

Decorative elements can be used to draw the reader’s attention to
specific parts of the text. Drop caps and initials—large initial let-
ters, flamboyant in classical typography, but typically more
restrained in modern work (see right)—enable a reader to rapidly
navigate to the beginning of a piece of text. Pull quotes—quotes
from the main body of the text, displayed in large lettering outside
of context—are often used in magazine articles to draw a reader’s
attention to a particular article, highlighting particularly interesting
quotes or information.

Spacing is just as important as content. Kerning—the spacing between letter
pairs—can be increased to add prominence to a heading. Leading—the amount of
added vertical spacing between lines of text—can also be adjusted. Increasing lead-
ing from its default can make text more legible. In books, a baseline grid is often
employed, ensuring that text always appears in the same place on each page. This
means that the text on the opposite side of the paper doesn’t appear in the gaps
between the lines on the page you’re reading. Baseline grids often make for
extremely pleasing vertical rhythm, and are regularly used in print publications;
they’re infrequently used online, but can nonetheless be of use, making a page of
text easier to read and navigate.

Columns can be used to make a page easier to read. This is common in newspapers
and magazines; online, the low resolution of monitors, and the (current) lack of
being able to auto-flow columns of text makes de facto text columns impractical,
but the reasoning behind columns is still handy to bear in mind. Generally, it’s con-
sidered easier to read text that has fairly narrow columns (although not too
narrow—if there are too few characters, reading and comprehension slow down)—
text that, for example, spans the entire width of a 23-inch monitor rapidly becomes
tiring to read. There are no hard-and-fast rules when it comes to line length,
although some go by the “alphabet-and-a-half” rule (39 characters per line), some
advocate the “points-times-two” rule (double the point size and use the number
for the number of characters), and others recommend a dozen or so words, or
about 60 characters.

A few highly useful online resources for web typography can be found at the following
locations:

The Elements of Typographic Style Applied to the Web: www.webtypography.net/

Five Simple Steps to Better Typography: www.markboulton.co.uk/articles/detail/
five_simple_steps_to_better_typography/

Five Simple Steps to Designing Grid Systems: www.markboulton.co.uk/articles/
detail/five_simple_steps_to_designing_grid_systems/

When it comes to web design, some conventions are used, and others are ignored. In fact,
while web designers take the utmost care to get layouts right, scant few give the same
thought to text, merely choosing a font and arbitrarily setting other values, if they set
them at all. Once, this could be excused, but CSS has enabled web type to come a long
way, and although the same degree of control as print-based type isn’t possible, you can
do a lot more than just choose your preferred font for headings and body copy.

WORKING WITH TYPE

63

3

9071CH03.qxd 9/13/07 4:39 PM Page 63

http://www.webtypography.net
http://www.markboulton.co.uk/articles/detail
http://www.markboulton.co.uk/articles

In this chapter, we’ll take a look at the various components available when working on
web-based type (including elements and CSS properties), and provide some exercises, the
results from which you can use for the basis of your own sites’ type. As a final note in this
introduction, it’s also worth mentioning spelling and grammar. Both of these are clearly
way outside of the scope of this book, but they’re things designers tend to overlook. A site
with a lot of grammatical and spelling errors, especially in larger text (such as headings and
pull quotes) looks unprofessional. If in doubt when working on sites, consult (or get your
client to consult) a copywriter.

Styling text the old-fashioned way (or, why we
hate font tags)

Styling text online used to be all about font tags. When Netscape introduced the font ele-
ment—complete with size and color attributes—web designers wept tears of joy. When
Microsoft announced it would go further, adding a face attribute (enabling you to specify
the font family), web designers were giddy with anticipation. But things didn’t go accord-
ing to plan. Page sizes bloated as designers created pages filled with fonts of myriad sizes
and colors. Web users looked on aghast, wondering whether giant, orange body copy was
really the way to go, and whether it was worth waiting twice as long for such abominations
to download.

More important, it became apparent that font tags caused problems, including the fol-
lowing:

Inconsistent display across browsers and platforms

The requirement for font tags to be applied to individual elements

Difficulty ensuring fonts were consistent site-wide, because of having to style indi-
vidual elements

HTML geared toward presentation rather than logical structure

Large HTML documents due to all the extra elements

In addition, working with font tags is a time-consuming, boring process, and yet some
(although, thankfully, increasingly few) web designers remain blissfully ignorant of such
problems. In my opinion, if font tags weren’t HTML elements, I’d suggest they be taken
out back and shot. Today, there is no reason whatsoever to stick with them. Text can be
rapidly styled site-wide with CSS and, as we’ll see later in this chapter, CSS provides you
with a greater degree of control than font tags ever did. More crucially, font tags encour-
age badly formed documents, with designers relying on inline elements to style things like
headings, when there are perfectly good HTML elements better suited to that purpose.

There are a couple of books worth digging out for more information on typography
and language. A decent primer on type design is Helen Lupton’s Thinking with Type.
For an entertaining (if not entirely accurate) history of the English language, read Bill
Bryson’s The Mother Tongue.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

64

9071CH03.qxd 9/13/07 4:39 PM Page 64

HTML should be reserved for content and structure, and CSS for design. Web pages should
be composed of appropriate elements for each piece of content. This method of working,
called semantic markup, is what we’re going to discuss next.

A new beginning: Semantic markup
Essentially, “semantic markup” means “using the appropriate tag at the relevant time,” and
well-formed semantic markup is an essential aspect of any website. The following is an
example of the wrong way of doing things—relying on font tags to create a heading and
double line breaks (

) for separating paragraphs:

Article heading

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed aliquet
➥ elementum erat. Integer diam mi, venenatis non, cursus a,
➥ hendrerit at, mi.

Quisque faucibus lorem eget sapien. In urna sem, vehicula ut, mattis
➥ et, venenatis at, velit. Ut sodales lacus sed eros.

The likelihood of this displaying consistently across browsers and platforms is low. More
important, the tags used don’t relate to the content. Therefore, if the styling is removed,
there’s no indication regarding what role each element plays within the document struc-
ture and hierarchy—for instance, there would be no visual clues as to the importance of
the heading. Also, the use of double line breaks (

) instead of paragraph tags
means the “paragraphs” cannot be styled in CSS, because there’s nothing to inform the
web browser what the content actually is.

Instead, the example should be marked up like this:

<h1>Article heading</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed
➥ aliquet elementum erat. Integer diam mi, venenatis non, cursus
➥ a, hendrerit at, mi.</p>
<p>Quisque faucibus lorem eget sapien. In urna sem, vehicula ut,
➥ mattis et, venenatis at, velit. Ut sodales lacus sed eros.</p>

Here, the heading is marked up with the relevant tags, and paragraph elements are used
instead of double line breaks. This means the page’s structural integrity is ensured, and the
markup is logical and semantic. If attached CSS styles are removed, the default formatting
still makes obvious to the end user the importance of the headings, and will visually dis-
play them as such.

In this section, we’ll look at how to mark up paragraphs and headings, explore logical and
physical styles, and discuss the importance of well-formed semantic markup.

WORKING WITH TYPE

65

3

9071CH03.qxd 9/13/07 4:39 PM Page 65

Paragraphs and headings

With words making up the bulk of online content, the paragraph and heading HTML ele-
ments are of paramount importance. HTML provides six levels of headings, from h1 to h6,
with h1 being the top-level heading. The adjacent image shows how these headings, along
with a paragraph, typically appear by default in a browser.

<h1>Level one heading</h1>
<h2>Level two heading</h2>
<h3>Level three heading</h3>
<h4>Level four heading</h4>
<h5>Level five heading</h5>
<h6>Level six heading</h6>
<p>Default paragraph size</p>

By default, browsers put margins around para-
graphs and headings. This can vary from browser to
browser, but it can be controlled by CSS. Therefore,
there’s no excuse for using double line breaks to
avoid default paragraph margins affecting web
page layouts.

Despite the typical default sizes, level-five and level-six headings are not intended as “tiny
text,” but as a way to enable you to structure your document, which is essential, as
headings help with assistive technology, enabling the visually disabled to efficiently surf
the Web.

In terms of general usage, it’s generally recommended to stick to just one h1 element per
document, used for the page’s primary heading. The next level down—and the first level
in a sidebar—would be h2, and then h3, and so on. Take care not to use too many heading
levels, though—unless you’re working on complex legal documents, you really shouldn’t
be getting past level four. If you are, look at restructuring your document.

Logical and physical styles

Once text is in place, it’s common to add inline styles, which can be achieved by way of
logical and physical styles. Many designers are confused by the difference between the
two, especially because equivalents (such as the logical strong and physical b) tend to be
displayed the same in browsers. The difference is that logical styles describe what the con-
tent is, whereas physical styles merely define what the content looks like. This subtle dif-
ference is more apparent when you take into account things like screen readers.

In the markup I like to emphasize things, a screen reader emphasizes the
text surrounded by the em tags. However, replace the em tags with i tags and the screen
reader won’t emphasize the word, although in a visual web browser the two pieces of
markup will almost certainly look identical.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

66

9071CH03.qxd 9/13/07 4:39 PM Page 66

Styles for emphasis (bold and italic)
Physical styles enable you to make text bold and <i>italic</i>, and these are
the most commonly used inline physical styles. However, logical styles are becoming much
more widespread (the majority of web design applications, such as Dreamweaver,
now default to logical styles rather than physical ones). Typically, strong
emphasis emboldens text in a visual web browser and emphasis itali-
cizes text.

Deprecated and nonstandard physical styles
Many physical elements are considered obsolete, including the infamous blink (a
Netscape “innovation” used to flash text on and off, amusingly still supported in Firefox).
Some physical styles are deprecated: u (underline) and s (strikethrough; also strike) have
CSS equivalents using the text-decoration property (text-decoration: underline and
text-decoration: line-through, respectively).

The big and small elements
The big and small elements are used to increase and decrease the size of inline text (even
text defined in pixels in CSS). An example of the use of small might be in marking up text
that is semantically small print. An example of big might be to denote that a drop cap is a
big character, or for when adding asterisks to required form fields.

<input type="text" name="realname" size="30" /> <big>*</big>

Note, however, that the change in size depends on individual web browsers, so it’s often
better to use span elements with a specific class relating to a font size defined in CSS (see
the section “Creating alternatives with classes and spans” later in the chapter), or ensure
that you define specific values in CSS for small and big elements when used in context.

Teletype, subscript, and superscript
This leaves three useful physical styles. The first, tt, renders text in a monospace font (à la
teletype text). The others, sub and sup, render text as subscript and superscript text,
respectively. These are useful for scientific documents, although there is a drawback: char-
acters are displayed at the same size, defined by the browser. You can get around this by
using a CSS tag selector and defining a new font size for each element. The following code
shows how to do this, and the accompanying screenshot shows a default sup element (at
the top of the image) and a CSS-styled sup element (at the bottom) in use.

sup {
font-size: 70%;
}

WORKING WITH TYPE

67

3

9071CH03.qxd 9/13/07 4:39 PM Page 67

Logical styles for programming-oriented content
Several logical styles do similar jobs, are programming-oriented, and are usually displayed
in a monospace font:

<code>Denotes a code sample.</code>
<kbd>Indicates text entered by the user.</kbd>
<samp>Indicates a programming sample.</samp>

The var element also relates to programming, signifying a variable. However, it is usually
displayed in italics.

Block quotes, quote citations, and definitions
The blockquote element is used to define a lengthy quotation and must be set within a
block-level element. Its cite attribute can be used to define the online location of quoted
material, although the cite element is perhaps more useful for this, enabling you to place
a visible citation (a reference to another document, such as an article) online; this is usu-
ally displayed in italics. See the “Creating drop caps and pull quotes using CSS” section for
more on using this element.

For shorter quotes that are inline, the q element can be used. This is also supposed to add
language-specific quotes before and after the content between the element’s tags. These
quotes vary by browser—Firefox adds “smart” quotes, Safari and Opera add “straight”
quotes, and Internet Explorer doesn’t display anything at all. The article “Long Live the Q
Tag,” by Stacey Cordoni (available at A List Apart; www.alistapart.com/articles/qtag),
offers a few workarounds, although none are ideal (one advises using JavaScript; another
uses CSS to hide the quotes in compliant browsers, and then says to add the quotes man-
ually, outside of the element’s tags. However, another alternative is to merely ensure that
the quoted content is differentiated from surrounding text, which can be done by setting
font-style in CSS to italic for the q element.

Finally, to indicate the defining instance of a term, you use the dfn element. This is used to
draw attention to the first use of such a term and is also typically displayed in italics.

Acronyms and abbreviations
Two logical styles assist with accessibility, enabling you to provide users with full forms of
abbreviations and acronyms by way of the title attribute:

<abbr title="Cascading Style Sheets">CSS</abbr>
<acronym title="North Atlantic Treaty Organization">NATO</acronym>

This has two uses. For one, it allows users with disabilities (using screen readers) to access
the full form of the words in question. But anyone using a visual web browser can access

Note that some web design applications—notably, early versions of Dreamweaver—
used the blockquote element to indent blocks of text, and this bad habit is still used
by some designers. Don’t do this—if you want to indent some text, use CSS.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

68

9071CH03.qxd 9/13/07 4:39 PM Page 68

http://www.alistapart.com/articles/qtag

the information, too, because title attribute contents are usually displayed as a tooltip
when you hover your mouse over elements they’re used on.

To further draw attention to an abbreviation or acronym, style the tag in
CSS (using a tag selector), thereby making all such tags consistent across
an entire website. The following code is an example of this, the results of
which are shown in the example to the right (including the tooltip trig-
gered by hovering over the abbr element, which has a title attribute).

abbr {
border-bottom: 1px dotted #000000;
background-color: yellow;

}

Elements for inserted and deleted text
The del and ins elements are used, respectively, to indicate deleted text and inserted text,
typically in a manner akin to the tracking features of word processing packages, although
they do not include the tracking functionality. The del element usually appears in strike-
through format, whereas ins usually appears underlined. Both accept cite and datetime
attributes. The former enables you to define a URL that explains why text was inserted or
deleted; the latter enables you to define the time and date that the text was amended—
see the <ins> and entries in Appendix A (XHTML Reference) for accepted formats.

Note that these elements cannot be nested inside each other, for obvious reasons.
Following is an example of their use:

<p>I deleted this and then <ins>inserted this</ins>.</p>

The default style of the ins element can prove problematic online. Because links are
underlined by default, users may attempt to click text marked up as inserted text and
wonder why nothing happens. It’s a good idea to amend the tag’s visual appearance by
changing the underline color. This can be done by removing the default underline and
replacing it with a bottom border, like so:

ins {
text-decoration: none;
border-bottom: 1px solid red;

}

You can provide an additional aid to users by setting cursor to help in
CSS for abbr elements. This changes the cursor to a question mark
while hovering over the element.

WORKING WITH TYPE

69

3

9071CH03.qxd 9/13/07 4:39 PM Page 69

The bottom border resembles an underline, although it appears lower than the default
underline, which further differentiates inserted text from hypertext links.

The importance of well-formed markup

Many logical styles are rarely used online, because they look no different from text
marked up using the likes of the i element. However, as mentioned earlier, physical
appearance alone misses the point of HTML. Always using the most appropriate relevant
element means that you can later individually style each element in CSS, overriding the
default appearance if you wish. If the likes of citations, defining instances, and variables
are all marked up with i instead of cite, dfn, and var, there’s no way of distinguishing
each type of content and no way of manipulating their appearance on an individual basis.
Well-formed markup involves more than ensuring visual flexibility, though. Use of the cite
tag, for instance, enables you to manipulate the Document Object Model (DOM) to
extract a bibliography or list of quotations from a page or even a full website. The ability
to style logical tags like this with CSS is likely to be of increasing rather than diminishing
importance.

The importance of end tags
While we’re on the subject of well-formed markup, we’ll revisit the importance of end
tags. As mentioned earlier, XHTML demands that all tags be closed. Most browsers let you
get away with ignoring some end tags, though, such as on paragraphs. Some designers may
still have bad habits from working with HTML, for which many end tags are optional. Omit
many others at your peril. For instance, overlook a heading element end tag and a browser
considers subsequent content to be part of the heading and displays it accordingly. As
shown in the following image, two paragraphs are displayed as a heading because the ear-
lier heading element lacks an end tag.

A similar problem occurs when you accidentally omit end tags when using logical and
physical elements. For instance, forget to close an emphasis element and the remainder of
the web page may be displayed in italics.

Some designers when hand-coding create both start and end tags at the same time,
and then populate the element with content, ensuring end tags are not forgotten.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

70

9071CH03.qxd 9/13/07 4:39 PM Page 70

Styling text using CSS
HTML is intended as a structural markup language, but the Web’s increasing popularity
meant it got “polluted” with tags designed for presentation. This made HTML more com-
plex than it needed to be, and such tags soon became a headache for web designers try-
ing to style page elements, such as text. In the bad ol’ days (the end of the 1990s), you’d
often see source code like this:

 This markup is
➥ <small>really </small>bad, but it was sort of
➥ the norm in the 1990s.

WYSIWYG tools would insert new tags to override previous ones, adding to the page
weight and making it tough to ensure visual consistency site-wide. By and large, CSS erad-
icates these problems and enables far more control over text, as you’ll see in the following
sections.

This is a boon for graphic designers who used to loathe HTML’s lack of typographical con-
trol. However, the level of freedom evident in print design still isn’t quite so on the Web.
Restrictions imposed by browsers and the screen must be taken into account, such as it
being harder to read type onscreen than in print. This is largely related to resolution. Even
magazines with fairly low-quality print tend to be printed at around 200 dpi or more—
more than twice the resolution of a typical monitor. This means that very small text
(favored by many designers, who think such small text looks neat) becomes tricky to read
onscreen, because there aren’t enough pixels to create a coherent image.

I’ll note restrictions such as this at appropriate times during this section on styling text with
CSS, thereby providing advice on striking a balance between the visual appearance and
practicality of web-based text.

Defining font colors

In CSS, the color property value defines the foreground color of the relevant CSS ele-
ment, which for text sets its color. This can be set using hex, keywords, or RGB. The fol-
lowing examples show each method in turn, and all have the same result: setting
paragraphs to black.

p {
color: #000000;

}
p {
color: black;

}
p {
color: rgb(0,0,0);

}

WORKING WITH TYPE

71

3

9071CH03.qxd 9/13/07 4:39 PM Page 71

Declaring colors using RGB is rare in web design—hex is most popular, especially because
CSS supports so few keywords (see the section “Working with hex” in Chapter 4).

Remember to test your choices on both Windows and Mac, because there are differences
in the default color space for each platform. In general terms, the Mac default display set-
tings are brighter (or Windows is darker, depending on your outlook on life); if you use
subtle dark tones on the Mac, or very light tones on Windows, the result might be tricky to
view on the other platform. This should cause few problems with text, but some designers
insist on rendering text with very little contrast to the background color, and this ends up
being even harder to read on a different platform from the one on which it was created.

Defining fonts

The font-family property enables you to specify a list of font face values, starting with
your preferred first choice, continuing with alternates (in case your choice isn’t installed
on the user’s machine), and terminating in a generic font family, which causes the browser
to substitute a similar font (think of it as a last resort).

selector {
font-family: preferred, alterate 1, alterate 2, generic;

}

The most common generic font family names are serif and sans-serif, although when
you’re using monospace fonts (such as Courier New), you should end your list with
monospace.

Multiple-word font family names must be quoted (such as "Trebuchet MS" and "Times
New Roman"). You can use single or double quotes—just be consistent. Single-word font
family names should never be quoted. Examples of font-family in use are as follows:

h1 {
font-family: Arial, Helvetica, sans-serif;

}
p {
font-family: Georgia, "Times New Roman", Times, serif;

}
pre {
font-family: Courier, "Courier New", Monaco, monospace;

}

The main tip to keep in mind for color with regard to web-based text is simple: always
provide plenty of contrast so that your text remains readable.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

72

9071CH03.qxd 9/13/07 4:39 PM Page 72

Web-safe fonts
Print designers have a world of fonts at their disposal, but the same isn’t true online.
Rather than being limited by installed fonts, you’re restricted by common fonts across var-
ious platforms. If end users don’t have the same fonts installed as you, they won’t see your
design like you do, rendering your choices pointless.

Over the next few pages, I’ll provide an overview of different available fonts for the
Web, but there are some handy online references that you should also bookmark. A page
comparing fonts common to the Mac and Windows is available at www.ampsoft.
net/webdesign-l/WindowsMacFonts.html, and www.codestyle.org/css/font-family/
sampler-Monospace.shtml details available monospace fonts for various systems.

Sans-serif fonts for the Web
Arial is a common font choice, largely because of its dominance on Windows. Its poor
design makes it unreadable at small sizes and a poor choice for body copy, although it can
be of use for headings. Mac users should be wary of choosing Helvetica—it’s an excellent
font, but it’s not generally shipped with Windows. Although you can specify fallback fonts
in CSS, again, there’s little point in making your first choice something that the majority of
people won’t see.

Better choices for body copy are Verdana or Trebuchet MS. The former is typically a good
choice, because its spacious nature makes it readable at any size. Its bubbly design renders
it less useful for headings, though. Trebuchet MS is perhaps less readable, but it has plenty
of character, and is sometimes an interesting alternative, simply because it isn’t used all
that much online.

In recent times, Lucida variants have become popular, due to Apple using it not only as the
default font in Mac OS X, but also on its website. Despite Lucida Grande not being avail-
able for Windows, Lucida Sans Unicode is common and similar enough to be used as a first
fallback. Usefully, Lucida is common on UNIX systems, meaning that sites using Lucida vari-
ants can look fairly similar text-wise across all three major operating systems. Another
pairing—albeit one that’s less common—is Tahoma and Geneva, so use those with care,
providing more generic fallbacks.

Despite its lack of penetration on Windows, Helvetica is often used as a fallback sans-
serif font, due to its prevalence on Linux.

pre is the element for preformatted text, used to display monospace text in an iden-
tical fashion to how it’s formatted in the original HTML document. It’s commonly used
for online FAQs, film scripts, and the like.

WORKING WITH TYPE

73

3

9071CH03.qxd 9/13/07 4:39 PM Page 73

http://www.ampsoft
http://www.codestyle.org/css/font-family

See the following images for a comparison of several sans-serif fonts on Mac (left) and
Windows (right).

Serif fonts for the Web
Although popular in print, serif fonts fare less well online. If using serifs, ensure you ren-
der them large enough so that they don’t break down into an illegible mess. Georgia is
perhaps the best available web-safe serif, especially when used at sizes equivalent to
12 pixels and above, and it can be more suitable than a sans-serif if you’re working with
traditional subject matter, or if you’re attempting to emulate print articles (such as in the
following screenshot of the online column Revert to Saved; www.reverttosaved.com).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

74

9071CH03.qxd 9/13/07 4:39 PM Page 74

http://www.reverttosaved.com

The other commonly available serif font, Times New Roman (Times being a rough equiva-
lent on Linux systems), is inferior to Georgia, but worth using as a fallback. Like Arial, its
popularity is the result of its prevalence as a system font.

Elsewhere, Palatino is fairly common—installed by default on Windows (as Palatino
Linotype), and available on Mac systems that have Classic or iWork installed. Mac owners
with Office will also have the virtually identical Book Antiqua. That said, if using these
fonts, you’ll still need to fall back to safer serifs, as mentioned earlier.

See the following illustration for a comparison of serif fonts on Mac (left) and Windows
(right).

Fonts for headings and monospace type
The remaining “safe” fonts are typically display fonts (for headings) or monospace fonts
for when each character needs to be the same width—for example, when adding code
examples to a web page.

Arial Black and Impact are reasonable choices for headings, although they must be han-
dled with care. The bold version of Impact looks terrible (and isn’t displayed at all in some
browsers), and some browsers by default render headings in bold, so this must be over-
ridden in CSS. Often, large versions of fonts mentioned in the previous two sections are
superior.

Courier New is more useful and a good choice when you need a monospace font. Note
that falling back to Courier for Linux is recommended. The pairing of Lucida Console
(Windows) and Lucida Sans Typewriter or Monaco (Mac) may also be suitable for mono-
space work, if you’re looking for a less “computery” feel.

Few other fonts are worth a mention, barring perhaps Comic Sans MS, which is inexplica-
bly popular with novice web designers. To give the font its due, it is readable, but its quirky
and unprofessional nature makes it unsuitable for most purposes (even comic artists
eschew it in favor of personalized fonts).

WORKING WITH TYPE

75

3

9071CH03.qxd 9/13/07 4:39 PM Page 75

The following image shows several of the fonts mentioned in this section, again with Mac
versions on the left and Windows versions on the right.

Mac vs. Windows: Anti-aliasing
When choosing fonts, it’s worth noting that how they look differs on Mac and Windows. By
default, Macs anti-alias onscreen text, which affects spacing—in fact, various anti-aliasing
algorithms can make text look slightly different in each browser. On Windows, aliased text
has historically made for jagged edges, but Internet Explorer 7 smoothes type via the font-
smoothing technology ClearType, introduced in Windows XP (disabled by default in XP, but
enabled in Vista system-wide).

For body copy, font-smoothing (or not) isn’t a major problem—although some prefer
aliased text and some prefer anti-aliased, both are fine, as long as the font size is large
enough. However, when it comes to rendering large text—such as for headings—aliased
text is significantly less visually pleasing.

While Windows Vista arrived with six great new “C” fonts (the serifs Cambria and
Constantia; the sans-serifs Calibri, Candara, and Corbel; and the monospace Consolas),
they’re not—at the time of writing—being made freely available, so if you choose to
use them, ensure that you fall back to relevant alternatives. The new Microsoft fonts
are not used or mentioned again in this book.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

76

9071CH03.qxd 9/13/07 4:39 PM Page 76

Although arguments rage regarding which is the best method of displaying fonts onscreen,
this is a moot point for web designers, because you don’t control the end user’s setup and
therefore must be aware of each possibility.

Using images for text

Limitations imposed by web-safe fonts lead some designers to seek out alternative meth-
ods of creating online type. It’s common to use graphics (mostly GIFs, but sometimes
Flash, due to its vector-based, scalable nature) for text. If you have to follow a corporate
design style under pain of death, the ability to use graphics can be a lifesaver—after all,
most browsers happily render images, and they can be marked up within heading ele-
ments, so you can control things like margins via CSS and also retain the structural
integrity of your document.

However, graphical text has its share of problems:

Some browsers do not enable you to resize graphical text in a browser.

Because the Web is low-resolution, when a page is printed out, graphical text looks
pixilated and of poor quality.

Although GIF-based text tends to be small in terms of file size, it’s still larger than
HTML-based text.

People using alternate browsers, such as screen readers, cannot “see” graphical text
(although you can use the alt attribute to compensate).

Graphical text cannot be copied and pasted.

Graphical text cannot be read by search engines.

Graphical text is a pain to update. To change a word, you must rework the original
image, export and upload it, and, if the image size has changed, you must edit the
appropriate HTML documents and upload those, too.

In my opinion, graphics should be used as a last resort. A company’s style can be made
apparent by the use of a corporate logo and other imagery rather than by the use of a
font. Also, never, ever render body copy as an image. There are many sites out there with
body copy rendered as images, and quite frankly, every one of them makes me want to
scream. Such sites are often full of typos (perhaps because amending them requires the
entire graphic to be reworked, re-exported, and uploaded again), cannot be printed at
quality, and cannot be copied to a text editor. Some suggest this means the site’s text is
“secure.” But this goes against one of the fundamental benefits of the Web: that people
can share information, and that it can be easily copied and sent on to others. Sure, this
presents copyright implications, but everything online is subject to copyright anyway. Also,
plenty of sites commit the cardinal sin of rendering things like contact details as a

Aliased text is a simplified version of the original font, reduced to a black-and-white
bitmap. Anti-aliased text attempts to emulate the soft curves of the original font by
introducing gray or colored pixels at the edges.

WORKING WITH TYPE

77

3

9071CH03.qxd 9/13/07 4:39 PM Page 77

graphic—I’m sure their customers very much appreciate having to type such things out by
hand rather than just being able to copy them into their digital address books.

Image-replacement techniques
If you need a greater degree of typographical control over a portion of text, such as the
site’s main heading, there is an option that enables you to include an image and also
enable the text to remain in place, which is useful for users surfing the Web with screen
readers. This is generally known as image replacement. Note that the technique should be
used with care and sparingly—even from a basic practical standpoint, it doesn’t make a
great deal of sense to set all of your headings as images, simply because it takes time to
create and export each one.

Of the techniques available for replacing images, the most common is to assign the rele-
vant piece of text (usually a heading) a class value in HTML, and also add a dummy span
element before its content:

<h1 class="aFancyHeading">A fancy heading</h1>

In an image editor, an image-based version of the heading is created and saved, and its
dimensions measured. Example files for this are a-fancy-heading.gif, image-replacement.
css, and image-replacement.html, located in the chapter 3 folder. In the CSS file, you’ll
see rules created to define the dimensions of the heading (.aFancyHeading) and span
(.aFancyHeading span). The heading’s position value is set to relative, and the span ele-
ment is then positioned in an absolute fashion, which ensures that it sits over the text-
based heading’s content. The width and height values ensure that the span (and therefore
its background image) expands to fill its container. (Note that when used in conjunction
with links, it’s useful to also set display: block within the CSS rule so that the entire area
becomes clickable and the cursor becomes a pointer—this is because some versions of
Internet Explorer use the arrow pointer instead of the usual finger pointer. Alternatively,
set cursor to pointer in CSS.) The overflow: hidden property/value pair ensures text
doesn’t peek out from behind the image—an issue that sometimes occurs in Internet
Explorer or when text is resized. To deal with zoomed text in IE 7, it may also be necessary
to set a pixel font-size value for the heading that’s smaller than the height of the image.

The following image shows a page using this technique with and without CSS.

Setting overflow to hidden can be an issue when this technique is used in conjunction
with linked replaced elements, such as linked mastheads and logos. When tabbing
through links, replaced elements that have an overflow setting of hidden will become
displaced on receiving the focus, revealing the underlying text as well as the image
overlaying it. Caution needs to be used here.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

78

9071CH03.qxd 9/13/07 4:39 PM Page 78

Some methods focus on hiding the text by setting display to none in CSS, but that can
cause problems for screen readers, so avoid doing this. Others use text-indent to shift
the text off of the page, although using absolute positioning with negative top and left
coordinates is better—this prevents vertical space being taken up by the offset text, which
is quite often noticeable, especially if margins haven’t been controlled.

Defining font size and line height

In theory, defining font sizes should be easy enough. You use the font-size property, and
then you can set the value to an absolute size, a relative size, a length, or a percentage. For
instance, you might set the following:

h1 {
font-size: 20px;

}
p {
font-size: 12px;

}

Scalable Inman Flash Replacement (sIFR) is an alternative to replacing text with GIF
images. Instead, is uses a combination of CSS, Flash, and JavaScript to switch out a
block of text. Note that although this provides a great deal of typographic flexibility, it
should still be used sparingly—pages where too much text is switched out using sIFR
tend to be extremely sluggish. See sIFR Beauty (www.alvit.de/sifrbeauty/
sifr-resources.php) for resources and Mike Davidson’s site (www.mikeindustries.
com/sifr/) for further information.

WORKING WITH TYPE

79

3

9071CH03.qxd 9/13/07 4:39 PM Page 79

http://www.alvit.de/sifrbeauty/sifr-resources.php
http://www.alvit.de/sifrbeauty/sifr-resources.php
http://www.mikeindustries.com/sifr
http://www.mikeindustries.com/sifr

Alternatively, you might go for something like this:

h1 {
font-size: 150%;

}
p {
font-size: 90%;

}

Each method of sizing fonts has its advantages and disadvantages, which we’ll briefly
explore in this section of the book.

Setting text in pixels
Many designers specify font sizes in pixels, largely because pixels are the only measure-
ment that allows you to be relatively certain that your text will look pretty much identical
across various browsers and platforms (in the same way that sizing page sections in pixels
enables you to keep output consistent). Unfortunately, unlike every other major browser
on the market, Internet Explorer for Windows cannot resize pixel-based text, which cre-
ates an accessibility problem (although a user can choose to ignore font sizes via the little-
known accessibility controls). Internet Explorer’s Text Size menu only allows resizing of text
sized using legacy methods, keywords, or relative units other than pixels. (Note that
Internet Explorer 7 can zoom the entire page, but not the text alone.)

Therefore, if you decide to size text in pixels, ensure that your text is very readable. Test it
on various people and listen to feedback. If complaints come your way regarding the fact
that someone “had trouble reading the words,” or rooted around for a microscope before
giving up and playing solitaire, you need to increase your pixel size settings. The resulting
page might not look quite as “designery,” but at least people will be able to read it.

Setting text using keywords and percentages
A combination of keywords and percentages became fairly popular for a while on the
Web. Available keyword values are xx-small, x-small, small, medium, large, x-large, and
xx-large. A keyword is used to set the base value, using a body selector in CSS, and per-
centages are then used to set sizes for specific elements, such as headings, paragraphs, and
lists. Here’s an example:

body {
font-size: small;

}
p {
font-size: 93%;

}

Keyword values don’t compound, and most modern browsers set a lower limit, even
on xx-small, so text tends never to enter the realm of the illegible.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

80

9071CH03.qxd 9/13/07 4:39 PM Page 80

Although Internet Explorer for Windows can resize text set with keywords (as can all other
browsers), this method has several disadvantages. The most problematic from a design
perspective is that percentage values aren’t particularly consistent across browsers and
platforms. Scaling tends to “jump” at fairly arbitrary percentage sizes, so while 93% may
look the same in all browsers (using default font-size settings, at least), 94% may look like
100% in one and 93% in another. Also, it’s often tricky to equate percentages with the pixel
(or point) sizes typically used in mock-ups.

Also, browsers have historically dealt with keywords badly. Early versions of Netscape 4
ignored keywords entirely, and later releases followed the original specification to the
letter, which was updated accordingly when it was discovered that anything smaller than
medium looked like an ink-footed ant had taken a stroll across your monitor. Not to be out-
done, Internet Explorer 4 and 5 welded CSS keywords to Netscape font size tags, result-
ing in the browser displaying everything at the next size down. (You can use conditional
comments to set a different font-size value for Internet Explorer 5—see Chapter 9 for
more on this method.)

In more modern versions of Internet Explorer, fonts that are set to Small in the View ➤ Text
Size menu can make keyword-set CSS text hard to read, but users can increase the text
size by using a more sensible setting. Also, it’s worth noting that this is up to user choice,
and having a tiny minority of users screwing up their own settings and potentially ending
up with unreadable text is better than the vast majority not being able to resize the text
because its size is defined in pixels. Still, there’s a better method for achieving this, as we
shall see.

Setting text using percentages and ems
As mentioned, the problem with sizing text in pixels is that the text is not resizable in
Internet Explorer. The main problem with using keywords and percentages is that the text
size isn’t consistent across platforms or that easy to define—at least in terms of hitting a
specific target size. This third method—and the one I typically use for websites I design—
enables you to create font sizes that are targeted at a pixel size, but are also resizable in
Internet Explorer, since the measurements are relative units.

The system works by first setting a base font size of 62.5% using a body selector:

body {
font-size: 62.5%;

}

Since most browsers have a default font size of 16 pixels, the previous rule then sets the
default size to 62.5% of that value—in other words, 10 pixels. From here, ems can be used
to define font sizes of specific elements, using values that are one-tenth of the target pixel
size:

h1 {
font-size: 2.0em; /* will be the equivalent of 20px */

}
p {
font-size: 1.2em; /* will be the equivalent of 12px */

}

WORKING WITH TYPE

81

3

9071CH03.qxd 9/13/07 4:39 PM Page 81

The system isn’t perfect—relative values defined in ems can be inherited, so if a list item is
within another list item, the size of the nested item(s) may increase or decrease, depend-
ing on the value assigned to the parent. However, override rules can easily get around this
problem (see “Dealing with font-size inheritance” in the “Working with lists” section later
in the chapter), and the method generally leads to more satisfactory results from a design,
control, and user point of view than either of the other two methods mentioned. It is
worth noting, however, that this method is somewhat reliant on the user—if someone has
changed the default font size in their browser, your design may not look as intended on
their browser, since the value defined for body may be 62.5% of something other than
16 pixels. Still, few people muck around with their browser settings, and the general con-
sensus in the industry is that the 62.5% method is the one to go for.

There is one other thing to bear in mind, though: Internet Explorer (again). Although the
majority of browser-specific issues are left until Chapter 9 of this book, we’ll make an
exception now. Internet Explorer has problems with text-zooming when the font size is set
below 100%, so an additional rule is required:

html {
font-size: 100%;

}

This doesn’t adversely affect other browsers, so you’ll find this rule in the boilerplate doc-
uments from the download files, even thought it should technically be in the conditional
comments documents.

Setting line height
Graphic designers will be familiar with leading, and the CSS line-height property enables
you to set this. Generally speaking, it’s a good idea to be fairly generous with leading for
web pages, because text is harder to read onscreen than in print; by placing larger gaps
between each line, the eye can more easily scan through large blocks of text.

When setting line-height, you have various options, and can use a number, length, or
percentage:

h1 {
font-size: 14px;
line-height: 20px;

}
h2 {
font-size: 1.3em;
line-height: 1.6em;

}

If using this method, ensure that the font-size setting of all text-oriented elements
you use on the site is adjusted, otherwise you’ll end up with some illegible text set at
62.5% of the default font size. Also ensure you test your work at a range of text sizes
in various browsers, to ensure things still look OK if the text is zoomed in or out.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

82

9071CH03.qxd 9/13/07 4:39 PM Page 82

p {
font-size: 1.1em;
line-height: 1.5;

}

The difference between the font-size and line-height measurements is the leading
value. Half the value is applied above the text and half below. Should you use a number
alone, rather than a length or percentage, that value is multiplied by the font-size setting
to define the line height. For example, if font-size is set to 10px and line-height is set
to 1.5, the line-height value becomes 15px.

Many web designers who have no graphic design experience ignore the line-height
property, but, as mentioned earlier, it’s essential for improving the legibility of a web page.
In the following screenshots, the left images shows the default spacing and the right one
shows increased line height, resulting in increased legibility.

Defining font-style, font-weight, and font-variant

These three properties are straightforward. The first, font-style, enables you to set italic
or oblique text. The former is often a defined face within the font itself, whereas the latter
is usually computed. Typically, web browsers treat both the same, and only the italic
value is in general use (except for the occasional use of normal—the default value—in
order to override something set elsewhere).

An element’s font-style is set like this:

h2 {
font-style: italic;

}

The font-weight property is intended to make a font heavier or lighter, and despite the
various available values, only bold and normal are in general use. This is detailed in full in
the font-weight entry of Appendix D (CSS Reference).

WORKING WITH TYPE

83

3

9071CH03.qxd 9/13/07 4:39 PM Page 83

.introParagraph {
font-weight: bold;

}

The font-variant property has two available values: normal (the default) and small-caps.
Small caps are often used to de-emphasize uppercase letters in abbreviations and
acronyms, and are similar in size to a typeface’s lowercase characters. This property only
affects lowercase letters, and display of small caps varies across browsers and platforms—
for example, older versions of Internet Explorer simply render such text entirely in normal
caps (i.e., in standard uppercase letters).

CSS shorthand for font properties

The CSS properties discussed so far can be written in shorthand, enabling you to cut down
on space and manage your CSS font settings with greater ease. Like some other shorthand
properties, some rules apply:

Some browsers are more forgiving than others regarding required and optional
values, but you should always specify the font-size and font-family values, in
that order.

Omitted values revert to default settings.

The font-style, font-weight, and font-variant values, if included, should be
placed at the start of the rule (in any order), prior to the font-size value.

The font-size and line-height values can be combined using the syntax
font-size/line-height (e.g., 12px/16px for 12px font-size and 16px
line-height).

A complete font declaration in shorthand could therefore look like this:

p {
font: italic small-caps bold 100%/1.3em Arial, Helvetica,
➥ sans-serif;

}

The equivalent in longhand is the following:

p {
font-style: italic;
font-variant: small-caps;
font-weight: bold;
font-size: 100%;
line-height: 1.3em;
font-family: Arial, Helvetica, sans-serif;

}

As you can see, this is rather weightier!

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

84

9071CH03.qxd 9/13/07 4:39 PM Page 84

An invalid font declaration is shown in the following code block. Here, the font-weight
value (bold) is incorrectly placed after the font-family value, and the font-size value is
missing.

p.invalid {
font: Arial, Helvetica, sans-serif bold;

}

Controlling text element margins

By default, browsers place margins around block-level text-based elements (such as head-
ings and paragraphs), which can be overridden by CSS. However, many designers get con-
fused when dealing with margins, so a good rule of thumb is to first remove all element
margins via the universal selector (see the “Zeroing margins and padding on all elements”
section in Chapter 2 for more information).

* {
margin: 0;
padding: 0;

}

Once you’ve done this, you should primarily control spacing between text elements via the
bottom margins:

h1, h2 {
margin-bottom: 10px;

}
p {
margin-bottom: 1em;

}

In the previous example, the margins below headings are small, enabling the eye to rapidly
travel from the heading to the related body copy. The margin at the bottom of each para-
graph is one character high.

Should you decide, after applying styles, that more room is required between paragraphs
and subsequent headings, apply a top margin to the relevant level (or levels) of heading,
but be aware that vertical margins collapse.

Later in the chapter, a few exercises will show how margins (along with various other set-
tings) can affect the way a page looks and feels. Certainly, margin definitions shouldn’t be
throwaway—like in music, where the gaps are almost as important as the notes, the white-
space in typography is almost as important as the content.

Using text-indent for print-like paragraphs

Because of people’s familiarity with non-indented paragraphs on the Web, the W3C rec-
ommends staying away from indented ones. However, there are times when designers
yearn for a more print-based design, as in the following image.

WORKING WITH TYPE

85

3

9071CH03.qxd 9/13/07 4:39 PM Page 85

For this effect, two things not previously discussed in this book are required: the text-
indent CSS property and an adjacent sibling selector. This type of selector uses the syntax
A+B, where B is the subject of the selector. For paragraph indentation, the CSS rule would
look something like the following code block:

p+p {
text-indent: 1.5em;

}

In plain English, this is saying, “If a paragraph follows another paragraph, indent the text by
1.5 ems”. Therefore, paragraphs preceded by a different element, such as a heading, won’t
be indented, as is traditional in print.

Setting letter-spacing and word-spacing

The letter-spacing and word-spacing properties work in the same way, taking length
values or a default of normal. For letter-spacing, the value increases whitespace between
characters, and for word-spacing, the defined value increases whitespace between words.
Negative values are permitted, which cause characters or words to bunch together (or
kern, if you’re a graphic designer). A certain amount of experimentation is recommended
if you decide to use these properties. Because the Web’s resolution is low, subtle kerning
changes are hard to achieve online, and the results often end up looking clunky. Also,
spacing varies from platform to platform. One occasion when letter-spacing is worth
experimenting with, however, is when styling headings for web pages: a small increase in
the letter-spacing value can help further distinguish headings from body copy.

Examples of these properties in use are shown in the following code block:

Note that prior to version 7, Internet Explorer didn’t support adjacent sibling selec-
tors, and so this effect won’t work in version 6 or below of Microsoft’s browser. A
workaround would be to use a style sheet linked via a conditional comment to indent
all paragraphs for Internet Explorer 6 and below. See the “Dealing with Internet
Explorer bugs” section in Chapter 9 for more on conditional comments.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

86

9071CH03.qxd 9/13/07 4:39 PM Page 86

h1 {
letter-spacing: 3px;

}
h2 {
word-spacing: 2px;

}

Controlling case with text-transform

The text-transform property enables you to change the case of letters within an element.
Available values are capitalize, uppercase, lowercase, and none (the default). The
uppercase and lowercase values force the text of the applied element into the relevant
case regardless of the original content (e.g., enabling you to override the case of the orig-
inal content for ensuring that headings are consistent site-wide), whereas capitalize sets
the first letter of each word in uppercase.

In the following example, the first heading is styled as uppercase, the second as
lowercase, and the third as capitalize. Note that I wouldn’t recommend such a mix of
styles in a website—these rules are just examples of the properties in use.

Here’s the HTML:

<h1>A heading</h1>
<h2>Another heading</h2>
<h3>A third heading</h3>

Here’s the CSS:

h1 {
text-transform: uppercase;

}
h2 {
text-transform: lowercase;

}
h3 {
text-transform: capitalize;

}

Creating alternatives with classes and spans

It’s common in web design to define alternatives to the rules set for tag selectors (h1, h2,
p, etc.). This tends to happen most often in one of two situations. The first is when creat-
ing alternate styles for a portion of a web page (as in print, it’s often beneficial to use
different text for sidebars and boxouts—standalone boxes on a magazine page, either
housing supplementary information to the main article, or an entirely independent piece
that needs to be visually distinct from other content on the page—and sidebars to ensure
that each area of content is easy to distinguish from another). In this situation, it’s sensible
to define a default rule for each element using an element selector, and then create an

WORKING WITH TYPE

87

3

9071CH03.qxd 9/13/07 4:39 PM Page 87

override for the portion of the page that requires different text by using a contextual
selector.

For example, imagine a typical web page that has a sidebar that’s marked up as a div with
an id value of sidebar. You might use a different paragraph font in the sidebar, to differ-
entiate the text, like so:

p {
font: 1.2em/1.5 Verdana, Arial, sans-serif;
margin-bottom: 1em;

}
#sidebar p {
font: 1.2em/1.5 Arial, sans-serif;

}

The other occasion where alternatives are required is when creating one-off styles to over-
ride an existing style. In such cases, you can define a class in the CSS and then use a class
attribute to apply it to an element. Should you only want a portion of some text to take on
the style, you can surround the selection with a span element and apply the class to that
instead.

For example, if you wanted to create some “warning” text, you could use the following
CSS:

.warningText {
color: #ff0000;
font-size: 120%;

}

This can then be applied as follows:

<p class="warningText">This paragraph takes on the styles defined in
➥ the warningText class</p>
<p>Only this portion of this
➥ paragraph takes on the warningText class styles.</p>

Avoid overusing span elements, though. Text works best when it’s consistent across the
page.

Note that the preceding CSS style has a capital letter halfway through it—this case is
known as lowerCamelCase, and is a method of writing multiple-word style names,
because underscores and spaces must be avoided in CSS. Take care if you do this,
because styles are case sensitive. If you set a class attribute value to warningtext
instead of warningText, many browsers fail to display the style, reverting to the
default style for the relevant element.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

88

9071CH03.qxd 9/13/07 4:39 PM Page 88

Styling semantic markup

The exercises in this section will combine the elements discussed so far in this chapter,
showing how to use the knowledge gained to style some semantic markup. Three different
examples are on offer, showing how rapidly you can create great-looking text when work-
ing with CSS, and also how you can easily restyle a page of text without touching the
markup. The markup that you’ll use is as per that in the next code block; and the default
web page, without any CSS applied, is shown to its right.

<div id="wrapper">
<h1>Article heading</h1>
<p>Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Sed
➥ aliquet elementum erat. Integer
➥ diam mi, venenatis non, cursus
➥ a, hendrerit at, mi. Morbi risus
➥ mi, tincidunt ornare, tempus
➥ ut, eleifend nec, risus.</p>
<p>Quisque faucibus lorem eget sapien.
➥ In urna sem, vehicula ut,
➥ mattis et, venenatis at, velit.
➥ Ut sodales lacus sed eros.
➥ Pellentesque tristique senectus et
➥ netus et malesuada fames
➥ ac turpis egestas.</p>
<h2>Curabitur sit amet risus</h2>
<p>Lorem ipsum dolor sit amet,
➥ consectetuer adipiscing elit. Sed
➥ aliquet elementum erat. Integer
➥ diam mi, venenatis non, cursus
➥ a, hendrerit at, mi. Morbi risus mi, tincidunt ornare, tempus
➥ ut, eleifend nec, risus.</p>
<p>Quisque faucibus lorem eget sapien. In urna sem, vehicula ut,
➥ mattis et, venenatis at, velit. Ut sodales lacus sed eros.
➥ Pellentesque tristique senectus et netus et malesuada fames
➥ ac turpis egestas.</p>
<h3>Praesent rutrum</h3>
<p>Nam scelerisque dignissim quam. Ut bibendum enim in orci. Vivamus
➥ ligula nunc, dictum a, tincidunt in, dignissim ac, odio.</p>
<h3>Habitant morbid</h3>
<p>Nam scelerisque dignissim quam. Ut bibendum enim in orci. Vivamus
➥ ligula nunc, dictum a, tincidunt in, dignissim ac, odio.</p>

</div>

The code block is simple. The text has three levels of headings, with paragraphs between
them. Everything’s enclosed in a div element, which will be styled to restrict the width of
its content. This makes it simpler to see how the leading—defined via line-height—is
working out. If you were surfing at full-screen on a large monitor, the paragraphs might
only be shown on a single line.

WORKING WITH TYPE

89

3

9071CH03.qxd 9/13/07 4:39 PM Page 89

The default CSS document for these exercises has some rules common to all three exam-
ples. These are shown in the following code block:

* {
margin: 0;
padding: 0;

}

html {
font-size: 100%;

}

body {
padding: 20px;
font-size: 62.5%;

}

#wrapper {
margin: 0 auto;
width: 400px;

}

The first rule, *, removes margins and padding from all elements, as discussed previously.
The html and body rules set the default size of the text on the web page to 62.5%, as
explained in the “Setting text using percentages and ems” section earlier in this chapter.
Finally, the #wrapper rule defines a width for the wrapper div, and therefore for its content.

Required files styling-semantic-text-starting-point.html and styling-
semantic-text-starting-point.css from the chapter 3 folder.

What you’ll learn How to style headings and paragraphs using sans-serif fonts
(Verdana for body copy and Arial for headings) and proportional,
unitless line-height settings.

Completed files styling-semantic-text-1.html and styling-semantic-text-1.
css from the chapter 3 folder.

1. Define the font defaults. Using a body selector, define a default font for the
web page, along with a default line-height value. As this is a basic example,
Verdana is used as the primary font, falling back to Arial and Helvetica. The unitless
line-height value means that elements will have proportional line heights based
on their font-size values, unless otherwise stated.

body {
font-family: Verdana, Arial, Helvetica, sans-serif;
line-height: 1.5;

}

Styling semantic markup: A basic example with proportional line heights

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

90

9071CH03.qxd 9/13/07 4:39 PM Page 90

2. Define common settings for headings. In this example, the top two levels of head-
ings will have the same font-family value. Therefore, it makes sense to use a
grouped selector to define this property:

h1, h2 {
font-family: Arial, Helvetica, sans-serif;

}

3. Define specific values for headings. How you style headings will depend on their
purpose. For these exercises, h1 is the page heading, h2 is a subheading, and h3 is a
crosshead to introduce a section of copy. With that in mind, the crosshead needs to
be of similar size to the paragraphs, the main heading needs to be most prominent,
and the subheading needs to be somewhere in between. Therefore, in the CSS, the
h1 element has a font-size value of 2.5em, the h3 has a much smaller 1.2em, and
the h2 has an in-between 2em.

h1 {
font-size: 2.5em;

}
h2 {
font-size: 2em;

}
h3 {
font-size: 1.2em;

}

4. Style the paragraphs, using the following rule. Whereas the space around headings
is taken care of with the line-height setting defined in the body selector, that
doesn’t work for paragraphs, which must have distinct space between them.
Therefore, along with a font-size property/value pair, a margin-bottom value sets
the space between each paragraph to slightly more than the height of one character.

p {
font-size: 1.1em;
margin-bottom: 1.1em;

}

5. Refine the element spacing. At this point, the spacing is still a little suspect—the
crossheads don’t stand out enough. Therefore, add a margin-top value to the h3
rule; this provides a little extra space between paragraphs and level-three headings.
(As mentioned earlier, vertical margins collapse, so the space between a paragraph
with a bottom margin of 1.1em and a level-three heading with a top margin of
1.65em is 1.65em, not the sum of the two margins, which would be 2.75em.)

In the CSS, you’ll end up with two body selectors if you follow this to the letter—one
for dealing with padding and setting the default font size to 62.5%, and the other for
defining the default font-family value for the page, along with the line-height. This
enables these exercises to remain modular; in a real site, although it’s acceptable to
use selectors more than once, you should ensure property values and rules are
correctly housed in the relevant section of your boilerplates—see Chapter 10 and
Appendix D (CSS Reference) for more information on CSS management.

WORKING WITH TYPE

91

3

9071CH03.qxd 9/13/07 4:39 PM Page 91

h3 {
font-size: 1.2em;
margin-top: 1.65em;

}

h3, p {
margin-left: 1em;

}

The following image shows what your completed page should look like.

Required files styling-semantic-text-starting-point.html and styling-
semantic-text-starting-point.css from the chapter 3 folder.

What you’ll learn How to create a contemporary-looking page of text using Lucida
fonts, as per the text on Apple’s website.

Completed files styling-semantic-text-2.html and styling-semantic-text-2.
css from the chapter 3 folder.

Styling semantic markup: A modern example with sans-serif fonts

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

92

9071CH03.qxd 9/13/07 4:39 PM Page 92

1. Set the font defaults. As in the previous exercise, use a body rule to define the
default font for the page, the first couple of choices of which are Lucida variants
that are installed on Mac OS and Windows. Other fonts are provided for legacy or
alternate systems.

body {
font-family: "Lucida Grande", "Lucida Sans Unicode", Lucida, Arial,
➥ Helvetica, sans-serif;
line-height: 1.5;

}

2. Style the main heading. An h1 rule is used to style the main heading. The restrictive
value for line-height makes the leading value the height of one character of the
heading, meaning there’s no space underneath it. This means you can define an
explicit padding-bottom value can be defined, followed by a border-bottom (here,
1 pixel, solid, and very light gray), followed by a margin-bottom value. The
padding-bottom and margin-bottom values are the same, creating a very tight,
clean feel for the heading. Elsewhere, the color setting knocks it back slightly so
that it doesn’t overpower the other content, and the font-weight value removes
the default bold setting that browsers apply to headings. This helps the block of
text appear light and clean.

h1 {
font-size: 1.8em;
line-height: 1em;
padding-bottom: 7px;
border-bottom: 1px solid #cccccc;
margin-bottom: 7px;
color: #666666;
font-weight: normal;

}

3. Style the other headings. For the next two heading levels, font-size values are
assigned. In keeping with the modern style, the crossheads are the same size as the
paragraph text (styled in the next step)—just displayed in bold; the subheading (h2)
is slightly larger, making it a little more prominent. Again, the headings are colored
to make them blend in a little more, and not distract from the paragraph text.

h2, h3 {
color: #333333;

}
h2 {
font-size: 1.3em;

}
h3 {

When removing the default bold style from headings, check them across
platforms—on some Windows systems, non-bold headings can look a bit
spindly, depending on the settings.

WORKING WITH TYPE

93

3

9071CH03.qxd 9/13/07 4:39 PM Page 93

font-size: 1.2em;
margin-top: 1.65em;

}

4. Style the paragraphs. The font-size setting is larger than that used on many web-
sites (which typically tend toward 11 pixels, which would require a 1.1em value in
this example), but this ensures clarity, and again, enhances the clean nature of the
design.

p {
font-size: 1.2em;
margin-bottom: 1.2em;

}

The final rule—an adjacent sibling selector—styles the paragraph following the
main heading, making the intro paragraph bold. It’s colored a dark gray, rather than
black, which would be overpowering and wreck the balance of the page.

h1+p {
font-weight: bold;
color: #222222;

}

The following image shows what your completed page should look like.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

94

9071CH03.qxd 9/13/07 4:39 PM Page 94

Required files styling-semantic-text-starting-point.html, styling-
semantic-text-starting-point.css, and styling-semantic-
text-baseline.gif from the chapter 3 folder.

What you’ll learn How to create a page of traditional-looking text as per a printed
book. The text adheres strictly to a baseline grid, maintaining the
page’s vertical rhythm. This requires some extra calculations when
it comes to defining line-height values.

Completed files styling-semantic-text-3.html and styling-semantic-text-3.
css from the chapter 3 folder.

1. Define a default font for the page. Using a body rule, a default font is chosen for
the web page. This design primarily uses the Georgia font—a serif—to enhance the
traditional feel.

body {
font-family: Georgia, "Times New Roman", Times, serif;

}

At this point, it’s also important to decide on a target line-height value for the
page. For this example, it’s going to be 18px.

2. Style the main heading. Here’s where things get a little tricky. For these examples,
we’re working with relative units. As mentioned earlier in the chapter, the 62.5%
method means that you can define font sizes by setting the font-size value to a
setting in ems that’s one-tenth of the target size in pixels. So, in the following code
block, the h1 rule’s font-size value of 1.8em means it’s effectively displayed at
18 pixels (assuming the user hasn’t messed around with their browser’s default set-
tings, again as mentioned earlier).

For the line-height value to hit the target of 18 pixels, it must therefore
be 18 pixels or a multiple of it. However, when using ems, this value is relative to
the font-size value. One em is equal to the height of one character, and since
the font-size has been set to 1.8em (which is equivalent to 18 pixels), we set
line-height to 1em. This makes the line-height of the h1 element the equivalent
of 18 pixels.

Similar thinking is used to define the value for margin-bottom—this needs to be
18 pixels to keep the vertical rhythm going, so the value is set to 1em.

h1 {
font-size: 1.8em;
line-height: 1em;
margin-bottom: 1em;

}

Styling semantic markup: A traditional example with serif fonts and a baseline grid

WORKING WITH TYPE

95

3

9071CH03.qxd 9/13/07 4:39 PM Page 95

3. Style the subheading. For the subheading, the font-size value is set to 1.4em. To
keep the line-height vertical rhythm going, you need to find the value that will
multiply with the font-size setting to create 1.8 (since 1.8em is the equivalent of
18 pixels). You can get this by dividing 1.8 by the font-size value, which results in
a line-height value of 1.2857142em. To keep the rhythm going, this setting can
then be used for both the margin-top and margin-bottom values.

h2 {
font-size: 1.4em;
line-height: 1.2857142em;
margin-top: 1.2857142em;
margin-bottom: 1.2857142em;

}

However, what this serves to do is isolate the heading on its own line, rather than
making it obviously lead to the subsequent paragraph. Two solutions exist for deal-
ing with this. The first is simply to remove the bottom margin; the second is to
create asymmetrical margins, making the top margin larger than the bottom one.
To keep the entire space the element takes up strictly within the grid and not inter-
rupt the vertical rhythm too much, it’s sensible to take half the margin-bottom
value and add it to the margin-top value.

h2 {
font-size: 1.4em;
line-height: 1.2857142em;
margin-top: 1.9285713em;
margin-bottom: 0.6428571em;

}

4. Style the crossheads and paragraphs. For this example, the crossheads and para-
graphs are identical, save for the default styling on the headings that renders them
in bold. The font-size value is 1.2em. Again, 1.8 is divided by the font-size figure
to arrive at the line-height and margin values, both of which are set to 1.5em.
Note that the h3 rule has no margin-bottom value, meaning that each level-three
heading hugs the subsequent paragraph.

h3 {
font-size: 1.2em;
line-height: 1.5em;
margin-top: 1.5em;

}
p {
font-size: 1.2em;
line-height: 1.5em;
margin-bottom: 1.5em;

}

At this point, your page should look like the following image.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

96

9071CH03.qxd 9/13/07 4:39 PM Page 96

5. Add a (temporary) grid. When working on text that adheres to a baseline grid, it
can help to create a tiled background image that you can use to check whether
your measurements are accurate. The 18-pixel-high image file, styling-semantic-
text-baseline.gif, has a single-pixel line at the bottom of the image. When
applied to the wrapper div’s background via the #wrapper rule (see the following
code), a ruled background is shown. Although intended as a temporary design aid,
you could retain the grid permanently, because it can help readers to rapidly skim
text. However, the aid only works when a browser is using default settings—when
the text is enlarged, the background image stays as it is, resulting in the grid of the
image and the grid of the text being out of sync.

#wrapper {
margin: 0 auto;
width: 400px;
background: url(styling-semantic-text-baseline.gif);

}

The following image shows how this image works behind the text styled in this
exercise—as you can see, the vertical rhythm is maintained right down the page.

WORKING WITH TYPE

97

3

9071CH03.qxd 9/13/07 4:39 PM Page 97

Creating drop caps and pull quotes using CSS

The previous exercise showed how something aimed primarily at the world of print
design—a baseline grid—can actually work well online, and this section will continue that
theme, showing how to use CSS to create drop caps and pull quotes. Drop caps—large let-
ters typically used at the start of a printed article—are rare online, although they can be a
useful way of drawing the eye to the beginning of the body copy. Pull quotes are more
common, and while part of their use in print—taking a choice quote and making it stand
out on the page to draw in the reader—is less effective online, pull quotes are still handy
for highlighting a piece of text (such as a quote or idea) or for providing client quotes on
a company website.

Required files styling-semantic-text-2.html and styling-semantic-text-2.
css from the chapter 3 folder.

What you’ll learn How to create a drop cap for a website, and how to use the CSS
float property. Any element can be floated left or right in CSS,
and this causes subsequent content to wrap around it.

Completed files drop-cap.html and drop-cap.css from the chapter 3 folder.

Creating a drop cap using a CSS pseudo-element

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

98

9071CH03.qxd 9/13/07 4:39 PM Page 98

1. Create a new rule that targets the relevant character. For this, you can use a
pseudo-element, first-letter, and the adjacent sibling selector created earlier in
the “Styling semantic markup” section. See Appendix D (“CSS Reference”) for more
on pseudo-elements.

h1+p:first-letter {

}

In plain English, this rule is saying, “Apply this rule to the first letter of the para-
graph that follows the level-one heading.”

2. Float the character and increase its size. Add a float: left property/value pair to
float the first character in the paragraph to the left, which makes subsequent con-
tent wrap around it. Then set a large font-size value to increase the size of the
character compared to the surrounding text.

h1+p:first-letter {
float: left;
font-size: 3em;

}

3. Finally, tweak the positioning. Define a line-height value and margin-top value to
vertically position the character; you may need to experiment some when working
on your own designs outside of this exercise, since the values required are some-
what dependent on the font-size setting. The margin-right setting provides
some spacing between the drop cap and the subsequent text.

h1+p:first-letter {
float: left;
font-size: 3em;
line-height: 1.0em;
margin-top: -3px;
margin-right: 0.15em;

}

Although this technique is the most straightforward one for working with drop
caps, the results aren’t entirely satisfactory. Due to the way different browsers deal
with the first-letter pseudo-element, display isn’t particularly consistent across
browsers and platforms—see the following two images, which show the results in
Firefox and Safari. Therefore, if you want to use drop caps with more precision, it’s
best to fall back on a more old-fashioned but tried-and-tested method: the span
element.

Note that you can use the first-line pseudo-element to target the first
line of some text—for example, to make it bold, which is a commonly used
design element in magazines.

WORKING WITH TYPE

99

3

9071CH03.qxd 9/13/07 4:39 PM Page 99

Required files styling-semantic-text-2.html and styling-semantic-text-2.
css from the chapter 3 folder.

What you’ll learn How to create a drop cap for a website, using span elements to aid
positioning.

Completed files drop-cap-with-spans.html and drop-cap-with-spans.css from
the chapter 3 folder. The variant with colored backgrounds uses
the files drop-cap-with-spans-b.html and drop-cap-with-spans-
b.css.

1. Add the span elements. Wrap a span element around the first character of the
paragraph and give it a class value of dropCap. Wrap another span element
around the initial character, without any class attribute. The additional span
makes it easier to fine-tune the positioning of the drop cap.

<p>Lorem ipsum dolor […]

2. Size the drop cap. Using a contextual selector, define a font-size setting of 4.8em
for the content of the span element within the dropCap span. This is the height of
three lines of text, from the top of a character in the first line to the bottom of a
character in the third.

.dropCap span {
font-size: 4.8em;
line-height: 1em;

}

3. Float the drop cap. In order for subsequent text to flow around the drop cap, it has
to be floated. This is done via the float: left property/value pair. The display:
block pair sets the dropCap span as a block-level element, enabling you to set edge
dimensions for it. By defining a height value that’s slightly smaller than the
font-size setting, subsequent text won’t sit underneath the drop cap once it’s cor-
rectly positioned.

.dropCap {
float: left;
height: 4.7em;

}

Creating a drop cap with span elements and CSS

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

100

9071CH03.qxd 9/13/07 4:39 PM Page 100

4. Tweak positioning of the drop cap. Use top and left margins (positive and negative)
to move the drop cap into position, so that it correctly lines up with the other text
on the page. The margin-right setting ensures that text to the right of the drop
cap doesn’t hug it.

.dropCap {
float: left;
height: 4.7em;
margin-top: -0.2em;
margin-left: -0.4em;
margin-right: 0.5em;

}

The following image shows what your page should look like so far.

5. Review the code and add a colored background. This method also isn’t without its
problems—the span elements have no semantic value and are therefore “bloated
code”; and the values set in steps 2 and 3 require some experimentation for each
different font and paragraph setting you use them with. However, it usually doesn’t
take long to get everything working, and once you have a design, it’s easy enough
to tweak. For example, amend the rules as follows to change the drop cap to one
with a colored background:

.dropCap {
float: left;
height: 3.9em;
margin-top: -0.2em;
margin-left: -0.4em;
margin-right: 0.5em;
border: 1px solid #aaaaaa;
background: #dddddd;
color: #ffffff;
padding: 0.2em 0.6em;

}

.dropCap span {
font-size: 4.0em;
line-height: 1em;

}

WORKING WITH TYPE

101

3

9071CH03.qxd 9/13/07 4:39 PM Page 101

Required files styling-semantic-text-2.html, styling-semantic-text-2.css,
quote-open.gif, and quote-close.gif from the chapter 3 folder.

What you’ll learn How to create a magazine-style pull quote, which can draw the
user’s attention to a quote or highlight a portion of an article.

Completed files pull-quote.html and pull-quote.css from the chapter 3 folder.

1. Add the HTML. The required markup for a basic pull quote is simple, centering
around the blockquote element and nesting a paragraph within. Add the following
to the web page, above the code <h2>Curabitur sit amet risus</h2>:

<blockquote>
<p>This is the pull quote. It's really very exciting, so read it now!
➥ Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>

</blockquote>

2. Style the blockquote element. Create a blockquote rule and use the background
property to add the open quote image as its background. Set vertical margins that
are larger than the margins between the paragraphs (to ensure that the pull quote
stands out from the surrounding text) and the horizontal margins (to ensure that
the pull quote doesn’t span the entire column width, which also helps it visually
stand out).

blockquote {
background: url(quote-open.gif) 0 0 no-repeat;
margin: 2.4em 2em;

}

3. Style the pull quote paragraph text. Using the contextual selector blockquote p,
style the paragraph text within the blockquote element. Making the text bold and
larger than the surrounding copy helps it stand out—but to ensure it doesn’t
become too distracting, knock back its color a little.

Creating pull quotes in CSS

Note that the image-replacement techniques described earlier in the chap-
ter offer another means of adding a drop cap of a more graphical nature,
should such a thing be required.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

102

9071CH03.qxd 9/13/07 4:39 PM Page 102

blockquote p {
color: #555555;
font-size: 1.3em;
font-weight: bold;
text-align: justify;

}

4. Use the background property to add the closing quote mark, which is added to the
paragraph, since you can only add one background image to an element in CSS.
The background’s position is set to 100% 90%—far right and almost at the bottom.
Setting it at the absolute bottom would align the closing quote with the bottom of
the leading under the last line of the paragraph text; setting the vertical position
value to 90%, however, lines up the closing quote with the bottom of the text itself.

blockquote p {
color: #555555;
font-size: 1.3em;
font-weight: bold;
text-align: justify;
background: url(quote-close.gif) 100% 90% no-repeat;

}

5. Tweak the positioning. If you test the page now, you’ll see the paragraph content
appearing over the top of the background images. To avoid this, padding needs to
be applied to the quote mark to force its content inward, but still leave the back-
ground images in place. Since the quote images are both 23 pixels wide, a horizon-
tal padding value of 33px provides room for the images and adds an additional 10
pixels so that the content of the paragraph doesn’t abut the quote marks. Finally,
the default margin-bottom value for paragraphs is overridden (via a 0 value), since
it’s redundant here.

blockquote p {
color: #555555;
font-size: 1.3em;
font-weight: bold;
text-align: justify;
background: url(quote-close.gif) 100% 90% no-repeat;
padding: 0 33px;
margin-bottom: 0;

}

The following image shows your pull quote page so far.

WORKING WITH TYPE

103

3

9071CH03.qxd 9/13/07 4:39 PM Page 103

6. Next, credit the quotation. To add a credit to the quote, add another paragraph,
with a nested cite element, inside which is the relevant content.

<blockquote>
<p>This is the pull quote. It's really very exciting, so read it now!
➥ Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>
<p><cite>Fred Bloggs</cite></p>

</blockquote>

7. In CSS, add the following rule:

cite {
background: none;
display: block;
text-align: right;
font-size: 1.1em;
font-weight: normal;
font-style: italic;

}

8. Some of the property values in cite are there to override the settings from block-
quote p, and to ensure that the second paragraph’s text is clearly distinguishable
from the quote itself. However, at this point, both paragraphs within the block-
quote element have the closing-quote background, so a final rule is required.

blockquote>p+p {
background: none;

}

This fairly complex rule uses both a child selector (>) and an adjacent selector (+),
and styles the paragraph that comes immediately after the paragraph that’s a child
element of the blockquote (which is the paragraph with the cite element). The
rule overrides the background value defined in step 5 for paragraphs within the
block quote). Note that this assumes the quote itself will only be a single para-
graph. If you have multi-paragraph quotes, you’ll need to apply a class to the final
paragraph and set the quote-close.gif image as a background on that, rather
than on blockquote p.

Note that the advanced selector shown isn’t understood by versions of Internet
Explorer prior to 7. The best workaround for that browser is to use conditional com-
ments (see Chapter 9) to remove the quote graphic backgrounds.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

104

9071CH03.qxd 9/13/07 4:39 PM Page 104

Required files pull-quote.html and pull-quote.css from the chapter 3 folder.

What you’ll learn How to use CSS classes to create alternatives to the default pull
quote. In this example, you’ll create a narrow pull quote that floats
to the right of the body copy.

Completed files pull-quote-2.html and pull-quote-2.css from the chapter 3
folder.

1. Amend the HTML. First, add a class to the blockquote element so that it can be
targeted in CSS:

<blockquote class="floatRight">

2. Position the blockquote. Create a new CSS rule that targets the blockquote from
the previous step by using the selector blockquote.floatRight. Set float and
width values to float the pull quote and define its width.

blockquote.floatRight {
float: right;
width: 150px;

}

3. Remove the quote mark background image by setting background to none. Add the
two border property/value pairs shown to visually separate the pull quote from its
surroundings, drawing the eye to its content.

blockquote.floatRight {
float: right;
width: 150px;
background: none;
border-top: 5px solid #dddddd;
border-bottom: 5px solid #dddddd;

}

4. Add padding and margins. First, add vertical padding to ensure that the pull quote’s
contents don’t hug the borders added in the previous step. Next, define margin
values, overriding those set for the default blockquote from the previous exercise.
Because this alternate pull quote is floated right, there’s no need for top and right
margins, hence them being set to 0; the bottom and left margin values are left
intact.

blockquote.floatRight {
float: right;
width: 150px;
background: none;
border-top: 5px solid #dddddd;
border-bottom: 5px solid #dddddd;
padding: 10px 0;

Using classes and CSS overrides to create an alternate pull quote

WORKING WITH TYPE

105

3

9071CH03.qxd 9/13/07 4:39 PM Page 105

margin: 0 0 2em 2.4em;
}

5. Override the paragraph styles. The background and padding settings for the default
blockquote style are no longer needed, so they’re set to none and 0, respectively.
Finally, text-align is set to center, which is appropriate for a narrow pull quote
such as this.

blockquote.floatRight p {
text-align: center;
background: none;
padding: 0;

}

Adding reference citations
The blockquote element can have a cite attribute, and the content from this attribute
can be displayed by using the following CSS rule. Note, however, that at the time of writ-
ing, this doesn’t work in Internet Explorer.

blockquote[cite]:after {
display : block;
margin : 0 0 5px;
padding : 0 0 2px 0;
font-weight : bold;
font-size : 90%;
content : "[source: "" " attr(cite)"]";

}

Working with lists
This chapter concludes with the last of the major type elements: the list. We’ll first look at
the different types of lists—unordered, ordered, and definition—and also see how to nest
them. Then we’ll move on to cover how to style lists in CSS, list margins and padding, and
inline lists.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

106

9071CH03.qxd 9/13/07 4:39 PM Page 106

Unordered lists

The unordered list, commonly referred to as a bullet point list, is the most frequently seen
type of list online. The list is composed of an unordered list element () and any
number of list items within, each of which looks like this (prior to content being added):
. An example of an unordered list follows, and the resulting browser display is
shown to the right. As you can see, browsers typically render a single-level unordered list
with solid black bullet points.

List item one
List item two
List item 'n'

Ordered lists

On occasion, list items must be stated in order, whereupon an ordered list is used. It works
in the same way as an unordered list, the only difference being the containing element,
which is .

List item one
List item two
List item 'n'

Definition lists

A definition list isn’t a straightforward list of items. Instead, it’s a list of terms and explana-
tions. This type of list isn’t common online, but it has its uses. The list itself is enclosed in
the definition list element (<dl></dl>), and within the element are placed terms and def-
initions, marked up with <dt></dt> and <dd></dd>, respectively. Generally speaking,
browsers display the definition with an indented left-hand margin, as in the following
example.

Web browsers automatically insert the item numbers when you use ordered lists. The
only way of controlling numbering directly is via the start attribute, whose value dic-
tates the first number of the ordered list. Note, though, that this attribute is depre-
cated—use it and your web page will not validate as XHTML Strict.

Unlike HTML, XHTML lists require end tags on all list elements. In
HTML, the end tag was optional.

WORKING WITH TYPE

107

3

9071CH03.qxd 9/13/07 4:39 PM Page 107

<dl>
<dt>Cat</dt>
<dd>Four-legged, hairy animal, with an
➥ inflated sense of self-importance</dd>
<dt>Dog</dt>
<dd>Four-legged, hairy animal, often with
➥ an inferiority complex</dd>

</dl>

Nesting lists

Lists can be nested, but designers often do so incorrectly, screwing up their layouts and
rendering web pages invalid. The most common mistake is placing the nested list outside
any list items, as shown in the following incorrect example:

List item one

Nested list item one
Nested list item two

List item two
List item 'n'

Nested lists must be placed inside a list item, after the relevant item that leads into the
nested list. Here’s an example:

List item one

Nested list item one
Nested list item two

List item two
List item 'n'

Always ensure that the list element that contains the nested list is closed with an end tag.
Not doing so is another common mistake, and although it’s not likely to cause as many
problems as the incorrect positioning of the list, it can still affect your layout.

Styling lists with CSS

Lists can be styled with CSS, making it easy to amend item spacing or create custom bullet
points. I tend to think bullet points work well for lists. They’re simple and—pardon the
pun—to the point. However, I know plenty of people would rather have something more
visually interesting, which is where the list-style-image property comes in.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

108

9071CH03.qxd 9/13/07 4:39 PM Page 108

list-style-image property
The list-style-image property replaces the standard bullet or number from an
unordered or ordered list with whatever image you choose. If you set the following in your
CSS, the resulting list will look like that shown to the right. (Note that this is the nested list
created earlier in this chapter.)

ul {
list-style-image: url(bullet.gif);

}

Contextual selectors were first mentioned in Chapter 1
(see the section “Types of CSS selectors”). These enable
you to style things in context, and this is appropriate when working with lists. You can style
list items with one type of bullet and nested list items with another. The original rule stays
in place but is joined by a second rule:

ul {
list-style-image: url(bullet.gif);

}
ul ul {
list-style-image: url(bullet-level-two.gif);

}

This second rule’s selector is ul ul, which means that the declaration is applied only to
unordered lists within an unordered list (i.e., nested lists). The upshot is that the top-level
list items remain with the original custom bullet, but the nested list items now have a dif-
ferent bullet graphic.

With this CSS, each subsequent level would have the nested list bullet point, but it’s feasi-
ble to change the bullet graphic for each successive level, by using increasingly complex
contextual selectors.

Dealing with font-size inheritance
Most of the font-size definitions in this chapter (and indeed, in this book) use relative
units. The problem with using ems, however, is that they compound. For example, if you
have a typical nested list like the one just shown, and you define the following CSS, the
first level of the list will have text sized at 1.5em; but the second-level list is a list within a
list, so its font-size value will be compounded (1.5 ✕ 1.5 = 2.25em).

When using custom bullet images, be wary of making them too large. Some browsers
clip the bullet image, and some place the list contents at the foot of the image. In all
cases, the results look terrible.

WORKING WITH TYPE

109

3

9071CH03.qxd 9/13/07 4:39 PM Page 109

html {
font-size: 100%;

}
body {
font-size: 62.5%;
font-family: Verdana, Arial,
➥ Helvetica, sans-serif;

}
li {
font-size: 1.5em;

}

The simple workaround for this is to use a contextual selector—li li—to set an explicit
font-size value for list items within list items, as shown in the following rule.

li li {
font-size: 1em;

}

With this, all nested lists take on the same font-size value as the parent list, which in this
case is 1.5em.

list-style-position property
This property has two values: inside and outside. The latter is how list items are usually
displayed: the bullet is placed in the list margin, and the left margin of the text is always
indented. However, if you use inside, bullets are placed where the first text character
would usually go, meaning that the text will wrap underneath the bullet.

list-style-type property
The list-style-type property is used to amend the bullets in an unordered or ordered
list, enabling you to change the default bullets to something else (other than a custom
image). In an unordered list, this defaults to disc (a black bullet), but other values are
available, such as circle (a hollow disc bullet), square (a square bullet), and none, which
results in no bullet points. For ordered lists, this defaults to decimal (resulting in a num-
bered list), but a number of other values are available, including lower-roman (i, ii, iii, etc.)
and upper-alpha (A, B, C, etc.) A full list of supported values is in Appendix D (CSS
Reference).

Generally speaking, the values noted are the best supported, along with the upper and
lower versions of roman and alpha for ordered lists. If a browser doesn’t understand the
numbering system used for an ordered list, it usually defaults to decimal. The W3C rec-
ommends using decimal whenever possible, because it makes web pages easier to navi-
gate. I agree—things like alpha and roman are too esoteric for general use, plus there’s
nothing in the CSS specifications to tell a browser what to do in an alphabetic system after
z is reached (although most browsers are consistent in going on to aa, ab, ac, etc.).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

110

9071CH03.qxd 9/13/07 4:39 PM Page 110

List style shorthand
As elsewhere in CSS, there is a shorthand property for list styles, and this is the aptly
named list-style property. An example of its use is shown in the following piece of CSS:

ul {
list-style-type: square;
list-style-position: inside;
list-style-image: url(bullet.gif);

}

which can be rewritten as follows:

ul {
list-style: square inside url(bullet.gif);

}

List margins and padding

Browsers don’t seem to be able to agree on how much padding and margin to place
around lists by default, and also how margin and padding settings affect lists in general.
This can be frustrating when developing websites that rely on lists and pixel-perfect ele-
ment placement. By creating a list and using CSS to apply a background color to the list
and a different color to list items, and then removing the page’s padding and margins, you
can observe how each browser creates lists and indents the bullet points and content.

In Gecko browsers (e.g., Mozilla Firefox), Opera, and Safari, the list background color is
displayed behind the bullet points, which suggests that those browsers place bullet points
within the list’s left-hand padding (because backgrounds extend into an element’s
padding). Internet Explorer shows no background color there, suggesting it places bullet
points within the list’s left-hand margin.

This is confirmed if you set the margin property to 0 for a ul selector in CSS. The list is
unaffected in all browsers but Internet Explorer, in which the bullets abut the left edge of
the web browser window. Conversely, setting padding to 0 makes the same thing happen
in Gecko browsers, Safari, and Opera.

To get all browsers on a level playing field, you must remove margins and padding, which,
as mentioned previously in this book, is done in CSS by way of the universal selector:

* {
margin: 0;
padding: 0;
}

With this in place, all browsers render lists in the same way, and you can set specific values
as appropriate. For example, bring back the bullet points (which may be at least partially
hidden if margins and padding are both zeroed) by setting either the margin-left or
padding-left value to 1.5em (i.e., set margin: 0 0 0 1.5em or padding: 0 0 0 1.5em).
The difference is that if you set padding-left, any background applied to the list will

WORKING WITH TYPE

111

3

9071CH03.qxd 9/13/07 4:39 PM Page 111

appear behind the bullet points, but if you set margin-left, it won’t. Note that 1.5em is a
big enough value to enable the bullet points to display (in fact, lower values are usually
sufficient, too—although take care not to set values too low, or the bullets will be
clipped); setting a higher value places more space to the left of the bullet points.

Inline lists for navigation

Although most people think of lists as being vertically aligned, you can also display list
items inline. This is particularly useful when creating navigation bars, as you’ll see in
Chapter 5. To set a list to display inline, you simply add display: inline; to the li
selector. Adding list-style-type: none; to the ul selector ensures that the list sits
snug to the left of its container (omitting this tends to indent the list items). Adding a
margin-right value to li also ensures that the list items don’t sit right next to each other.
Here’s an example:

ul {
list-style-type: none;

}
li {
display: inline;
margin-right: 10px;

}

Thinking creatively with lists

The final part of this chapter looks at creating lists with a little panache. Although most
lists are perfectly suited to straightforward bullet points, sometimes some added CSS and
imagery can go a long way.

Required files The HTML and CSS documents from the basic-boilerplates
folder as a starting point, along with the images better-list-
hollow-square.gif, better-list-shadow.gif, better-list-
square.gif, and better-list-star.gif from the chapter 3
folder.

What you’ll learn How to style a three-level list to look great, using background
images and overrides.

Completed files better-looking-lists.html and better-looking-lists.css
from the chapter 3 folder.

Creating better-looking lists

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

112

9071CH03.qxd 9/13/07 4:39 PM Page 112

1. Create the list. Within the HTML document’s wrapper div, add the following code:

List - 1.1

List - 2.1
List - 2.2

List - 3.1
List - 3.2
List - 3.3

List - 2.3

2. Amend the body rule. Add some padding to the body element so that page content
doesn’t hug the browser window edges during testing:

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;

}

3. Style the list elements. This kind of heavily styled list typically requires you to
define specific property values at one level and then override them if they’re not
required for subsequent levels. This is done by adding the three rules in the fol-
lowing code block. For this example, the top level of the list (styled via ul) has a
star background image that doesn’t repeat (the 1px vertical value is used to nudge
the image into place so it looks better positioned), and the list-style-type value
of none removes the default bullet points of all lists on the page.

For the second level of lists (the first level of nesting), styled via ul ul, a horizon-
tally tiling background image is added, giving the impression that the top-level list
is casting a soft shadow. The border-left setting creates a soft boundary to the
nested list’s left, thereby enclosing the content. The padding value ensures that
there’s space around nested lists.

For the third level of lists (the second level of nesting—that is, a nested list within
a nested list), styled via ul ul ul, no specific styles are required, but to deal with
inherited styles from ul ul, background is set to none and border-left is set to 0.
If this weren’t done, third-level lists would also have the shadow background and
dotted left-hand border.

ul {
list-style-type: none;
background: url(better-list-star.gif) 0 1px no-repeat;

}
ul ul {
background: url(better-list-shadow.gif) repeat-x;
border-left: 1px dotted #aaaaaa;

WORKING WITH TYPE

113

3

9071CH03.qxd 9/13/07 4:39 PM Page 113

padding: 10px;
}
ul ul ul {
background: none;
border-left: 0;

}

4. Style the list item elements. For the top-level list items, the li rule styles them in
uppercase, adds some padding (to ensure the items don’t sit over the background
image applied in ul), and makes the text bold and gray. For the nested list items,
the li li rule overrides the text-transform property, returning the text to sen-
tence case, and adds a square gray bullet as a background image. The font-weight
value is an override, and the color setting is darker than for the parent list’s list
items so that the non-bold text of the nested list items stand out. Finally, for the
third-level list items, styled using the selector li li li, a background override pro-
vides a unique bullet point image (a hollow square).

li {
text-transform: uppercase;
padding-left: 20px;
font-weight: bold;
color: #666666;

}
li li {
text-transform: none;
background: url(better-list-square.gif) 0 2px no-repeat;
font-weight: normal;
color: #333333;

}
li li li {
background: url(better-list-hollow-square.gif) 0 2px no-repeat;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

114

9071CH03.qxd 9/13/07 4:39 PM Page 114

Required files The HTML and CSS documents from the basic-boilerplates
folder as a starting point.

What you’ll learn How to style a list for displaying code online (complete with
exercise headings and line numbers).

Completed files display-code-online.html and display-code-online.css from
the chapter 3 folder.

1. Create the list. Code blocks require terminology and descriptions, meaning that a
definition list can be used to mark them up. For this example, the code block from
the preceding “List style shorthand” section will be used. Within the wrapper div,
create a definition list and give it a class value of codeList. For the term, add a
description of the code, and for the definition, add an ordered list, with each line
of code within its own list item. Each line of code should also be nested within a
code element.

<dl class="codeList">
<dt>Writing out list styles in full</dt>
<dd>

<code>ul {</code>
<code>list-style-type: square;</code>
<code>list-style-position: inside;</code>
<code>list-style-image: url(bullet.gif);</code>
<code>}</code>

</dd>

</dl>

2. Amend the body and #wrapper CSS rules, adding some padding to the former (so
the content doesn’t hug the browser window edges during testing) and a short-
hand font definition to the latter (in place of existing content).

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;

}
#wrapper {
font: 1.2em/1.5em 'Lucida Grande', 'Lucida Sans Unicode', Lucida,
➥ Arial, Helvetica, sans-serif;

}

Displaying blocks of code online

When creating lists such as this, don’t overcomplicate things, and try to avoid going to
many levels of nesting, or combining ordered and unordered lists; otherwise, the
selectors required for overrides become extremely complicated.

WORKING WITH TYPE

115

3

9071CH03.qxd 9/13/07 4:39 PM Page 115

3. Style the list. Add the following rule, which adds a solid border around the defini-
tion list that has a codeList class value:

.codeList {
border: 1px solid #aaaaaa;

}

4. Style the definition term element. Add the following rule, which styles the dt ele-
ment. The rule colors the background of dt elements within any element with a
class value of codeList, and also adds some padding so the content of the dt
elements doesn’t hug their borders. The font-weight value of bold ensures the
content stands out, while the border-bottom value will be used as a device
throughout the other rules, separating components of the design with a fairly thin
white line.

.codeList dt {
background: #dddddd;
padding: 7px;
font-weight: bold;
border-bottom: 2px solid #ffffff;

}

5. Style the list items within the ordered list by adding the following rule. The
margin-left value places the bullets within the definition list, rather than outside
of it.

.codeList li {
background: #ffffff;
margin-left: 2.5em;

}

6. Finally, style the code elements. The background value is slightly lighter than that
used for the dt element, ensuring that each element is distinct. By setting display
to block, the code elements stretch to fill their container (meaning that the back-
ground color also does this). The borders ensure that each line of code is visibly
distinct, and the border-right setting essentially provides a border all the way
around the code lines, seeing as the border-bottom setting in .codeList dt
defines one at the top of the first line of code. The font is set to a monospace font,
and the padding values place some space around the code, making it easier to
read.

Note that in Internet Explorer, the bullets typically display further to the left than in
other browsers. This behavior can be dealt with by overriding the margin-left value
of .codeList li in an IE-specific style sheet attached using a conditional comment—
see Chapter 9 for more on this technique.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

116

9071CH03.qxd 9/13/07 4:39 PM Page 116

.codeList code {
background: #eaeaea;
display: block;
border-bottom: 2px solid #ffffff;
border-right: 2px solid #ffffff;
font : 1.2em "Courier New", Courier, monospace;
padding: 2px 10px;

}

That just about wraps things up for online type. After all that text, it’s time to change track.
In Chapter 4, you’ll look at working with images on the Web, and in Chapter 5, you’ll com-
bine what you’ve learned so far and add anchors into the mix to create web navigation.

WORKING WITH TYPE

117

3

9071CH03.qxd 9/13/07 4:39 PM Page 117

9071CH04.qxd 9/12/07 2:01 PM Page 118

4 WORKING WITH IMAGES

9071CH04.qxd 9/12/07 2:01 PM Page 119

In this chapter:

Understanding color theory

Choosing the best image format

Avoiding common mistakes

Working with images in XHTML

Using alt text to improve accessibility

Using CSS when working with images

Displaying a random image from a selection

Introduction
Although text makes up the bulk of the Web’s content, it’s inevitable that you’ll end up
working with images at some point—that is, unless you favor terribly basic websites akin to
those last seen in 1995. Images are rife online, comprising the bulk of interfaces, the navi-
gation of millions of sites, and a considerable amount of actual content, too. As the Web
continues to barge its way into every facet of life, this trend can only continue; visitors to
sites now expect a certain amount of visual interest, just as readers of a magazine expect
illustrations or photographs.

Like anything else, use and misuse of images can make or break a website—so, like else-
where in this book, this chapter covers more than the essentials of working with HTML and
CSS. Along with providing an overview of color theory, I’ve compiled a brief list of com-
mon mistakes that people make when working with images for the Web—after all, even
the most dedicated web designers pick up bad habits without realizing it. Finally, at the
end of the chapter, I’ll introduce your first piece of JavaScript, providing you with a handy
cut-out-and-keep script to randomize images on a web page.

Color theory
Color plays a massively important role in any field of design, and web design is no excep-
tion. Therefore, it seems appropriate to include in this chapter a brief primer on color the-
ory and working with colors on the Web.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

120

9071CH04.qxd 9/12/07 2:01 PM Page 120

Color wheels

Circular color diagrams—commonly referred to as color wheels—were invented by
Newton and remain a common starting point for creative types wanting to understand the
relationship between colors and also for creating color schemes. On any standard color
wheel, the three primary colors are each placed one-third of the way around the wheel,
with secondary colors equally spaced between them—secondary colors being a mix of two
primary colors. Between secondary and primary colors are tertiary colors, the result of
mixing primary and secondary colors. Some color wheels blend the colors together,
creating a continuous shift from one color to another, while others have rather more
defined blocks of color; however, in all cases, the positioning is the same.

Additive and subtractive color systems

Onscreen colors use what’s referred to as an additive system, which is the color system
used by light—where black is the absence of color, and colored light is added together to
create color mixes. The additive primaries are red, green, and blue (hence the commonly
heard RGB when referring to definition of screen colors). Mix equal amounts of red, green,
and blue light and you end up with white; mix secondaries from the primaries and you end
up with magenta, yellow, and cyan.

In print, a subtractive system is used, similar to that used in the natural world. This works
by absorbing colors before they reach the eye—if an object reflects all light it appears
white, and if it absorbs all light, it appears black. Inks for print are transparent, acting as fil-
ters to enable light to pass through, reflect off the print base (such as paper), and produce
unabsorbed light. Typically, the print process uses cyan, magenta, and yellow as primaries,
along with a key color—black—since equal combination of three print inks tends to pro-
duce a muddy color rather than the black that it should produce in theory.

Although the technology within computers works via an additive system to display colors,
digital-based designers still tend to work with subtractive palettes when working on
designs (using red, yellow, and blue primaries), because that results in natural color com-
binations and palettes.

Creating a color scheme using a color wheel

Even if you have a great eye for color and can instinctively create great schemes for web-
sites, it pays to have a color wheel handy. These days, you don’t have to rely on reproduc-
tions in books or hastily created painted paper wheels. There are now digital color wheels
that enable you to experiment with schemes, including Color Consultant Pro for the
Mac (www.code-line.com/software/colorconsultantpro.html), shown in the following
screenshot, and Color Wheel Pro (www.color-wheel-pro.com) and ColorImpact
(www.tigercolor.com/Default.htm), both for Windows.

WORKING WITH IMAGES

121

4

9071CH04.qxd 9/12/07 2:01 PM Page 121

http://www.code-line.com/software/colorconsultantpro.html
http://www.color-wheel-pro.com
http://www.tigercolor.com/Default.htm

When working on color schemes and creating a palette for a website, there are various
schemes available for you. The simplest is a monochromatic scheme, which involves varia-
tions in the saturation (effectively the intensity or strength) of a single hue. Such schemes
can be soothing—notably when based on green or blue—but also have a tendency to be
bland, unless used with striking design and black and white. A slightly richer scheme can
be created by using colors adjacent on the color wheel—this is referred to as an analogous
scheme, and is also typically considered harmonious and pleasing to the eye.

For more impact, a complementary scheme can be used, which uses colors on opposite
sides of the color wheel (such as red/green, orange/blue, and yellow/purple); this scheme
is often seen in art, such as a pointillist using orange dots in areas of blue to add depth.
Complementary schemes work well due to a subconscious desire for visual harmony—an
equal mix of complementary colors results in a neutral gray. Such effects are apparent in
human color vision: if you look at a solid plane of color, you’ll see its complementary color
when you close your eyes.

A problem with a straight complementary scheme is that overuse of its colors can result in
garish, tense design. A subtler but still attention-grabbing scheme can be created by using
a color and the hues adjacent to the complementary color. This kind of scheme (which
happens to be the one shown in the previous screenshot) is referred to as split-
complementary.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

122

9071CH04.qxd 9/12/07 2:01 PM Page 122

Another scheme that offers impact—and one often favored by artists—is the triadic
scheme, which essentially works with primary colors or shifted primaries—that is, colors
equally spaced around the color wheel. The scheme provides plenty of visual contrast and,
when used with care, can result in a balanced, harmonious result.

How colors “feel” also plays a part in how someone reacts to them—for example, people
often talk of “warm” and “cool” colors. Traditionally, cooler colors are said to be passive,
blending into backgrounds, while warmer colors are cheerier and welcoming. However,
complexity is added by color intensity—a strong blue will appear more prominent than a
pale orange. A color’s temperature is also relative, largely defined by what is placed
around it. On its own, green is cool, yet it becomes warm when surrounded by blues and
purples.

Against black and white, a color’s appearance can also vary. Against white, yellow appears
warm, but against black, yellow has an aggressive brilliance. However, blue appears dark
on white, but luminescent on black.

The human condition also adds a further wrench in the works. Many colors have cultural
significance, whether from language (cowardly yellow) or advertising and branding. One
person may consider a color one thing (green equals fresh), and another may have differ-
ent ideas entirely (green equals moldy). There’s also the problem of color blindness, which
affects a significant (although primarily male) portion of the population, meaning you
should never rely entirely on color to get a message across. Ultimately, stick to the follow-
ing rules, and you’ll likely have some luck when working on color schemes:

Work with a color wheel, and be mindful of how different schemes work.

Use tints and shades of a hue, but generally avoid entirely monochromatic
schemes—inject an adjacent color for added interest.

Create contrast by adding a complementary color.

Keep saturation levels and value levels the same throughout the scheme (a color’s
value increases the closer it is to white).

Keep things simple—using too many colors results in garish schemes.

Don’t rely on color to get a message across—if in doubt about the effects of color
blindness, test your design with a color blindness simulator application such as
Color Oracle (http://colororacle.cartography.ch/).

Go with your gut reaction—feelings play an important part when creating color
schemes. What feels right is often a good starting point.

Working with hex

The CSS specifications support just 17 color names: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow. All other col-
ors must be written in another format, such as RGB numbers or percentages—
rgb(255.0.0) or rgb(100%,0%,0%)—or hexadecimal format, which tends to be most
popular in online design. Note that to keep things consistent, it actually makes sense to
write all colors—even the 17 with supported names—in hex. Colors written in hex

WORKING WITH IMAGES

123

4

9071CH04.qxd 9/12/07 2:01 PM Page 123

http://colororacle.cartography.ch

comprise a hash sign followed by six digits. The six digits are comprised of pairs, repre-
senting the red, green, and blue color values, respectively:

#XXxxxx: Red color value

#xxXXxx: Green color value

#xxxxXX: Blue color value

Because the hexadecimal system is used, the digits can range in value from 0 to f, with 0
being the lowest value (nothing) and f being the highest. Therefore, if we set the first two
digits to full (ff) and the others to 0, we get #ff0000, which is the hex color value for red.
Likewise, #00ff00 is green and #0000ff is blue.

Of course, there are plenty of potential combinations—16.7 million of them, in fact.
Luckily, any half-decent graphics application will do the calculations for you, so you won’t
have to work out for yourself that black is #000000 and white is #ffffff—just use an
application’s color picker/eyedropper tool, and it should provide you with the relevant hex
value.

Web-safe colors

Modern PCs and Macs come with some reasonable graphics clout, but this wasn’t always
the case. In fact, many computers still in common use cannot display millions of colors.
Back in the 1990s, palette restrictions were even more ferocious, with many computers
limited to a paltry 256 colors (8-bit). Microsoft and Apple couldn’t agree on which colors
to use, hence the creation of the web-safe palette, which comprises just 216 colors that
are supposed to work accurately on both platforms without dithering. (For more informa-
tion about dithering, see the “GIF” section later in this chapter.) Applications such as
Photoshop have built-in web-safe palettes, and variations on the palette can be seen at
www.visibone.com.

Colors in the web-safe palette are made up of combinations of RGB in 20% increments,
and as you might expect, the palette is limited. Also discouraging, in the article “Death of
the Websafe Color Palette?” on Webmonkey (www.webmonkey.com/00/37/index2a.html;
posted September 6, 2000), David Lehn and Hadley Stern reported that all but 22 of these
colors were incorrectly shifted in some way when tested on a variety of platforms and
color displays—in other words, only 22 of the web-safe colors are actually totally
web-safe.

While the rise of PDAs means that the web-safe palette may make a comeback in special-
ist circles (although PDAs and even cell phones are increasingly powerful when it comes to
graphics), most designers these days ignore it. The majority of people using the Web have
displays capable of millions of colors, and almost everyone else can view at least

When a hex value is made up of three pairs, the values can be abbreviated. For exam-
ple, the value #ffaa77 can be written #fa7. Some designers swear by this abbreviated
form. I tend to use the full six-figure hex value because it keeps things consistent.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

124

9071CH04.qxd 9/12/07 2:01 PM Page 124

http://www.visibone.com
http://www.webmonkey.com/00/37/index2a.html

thousands of colors. Unless you’re designing for a very specific audience with known
restricted hardware, stick with sRGB (the default color space of the Web—see
www.w3.org/Graphics/Color/sRGB) and design in millions of colors. And consider yourself
lucky that it’s not 1995.

Choosing formats for images
In order to present images online in the best possible way, it’s essential to choose the best
file format when exporting and saving them. Although the save dialogs in most graphics
editors present a bewildering list of possible formats, the Web typically uses just two: JPEG
and GIF (along with the GIF89, or transparent GIF, variant), although a third, PNG, is finally
gaining popularity, largely due to Internet Explorer 7 finally offering full support for it.

JPEG

The JPEG (Joint Photographic Experts Group) format is used primarily for images that
require smooth color transitions and continuous tones, such as photographs. JPEG sup-
ports millions of colors, and relatively little image detail is lost—at least when compression
settings aren’t too high. This is because the format uses lossy compression, which removes
information that the eye doesn’t need. As the compression level increases, this informa-
tion loss becomes increasingly obvious, as shown in the following images. As you can see
from the image on the right, which is much more compressed than the one on the left,
nasty artifacts become increasingly dominant as the compression level increases. At
extreme levels of compression, an image will appear to be composed of linked blocks (see
the following two images, the originals of which are in the chapter 4 folder as tree.jpg
and tree-compressed.jpg).

WORKING WITH IMAGES

125

4

9071CH04.qxd 9/12/07 2:01 PM Page 125

http://www.w3.org/Graphics/Color/sRGB

Although it’s tricky to define a cutoff point, it’s safe to say that for photographic work
where it’s important to retain quality and detail, 50 to 60% compression (40 to 50% quality)
is the highest you should go for. Higher compression is sometimes OK in specific circum-
stances, such as for very small image thumbnails, but even then, it’s best not to go over
70% compression.

If the download time for an image is unacceptably high, you could always try reducing the
dimensions rather than the quality—a small, detailed image usually looks better than a
large, heavily compressed image. Also, bear in mind that common elements—that is,
images that appear on every page of a website, perhaps as part of the interface—will be
cached and therefore only need to be downloaded once. Because of this, you can get away
with less compression and higher file sizes.

Some applications have the option to save progressive JPEGs. Typically, this format results
in larger file sizes, but it’s useful because it enables your image to download in multiple
passes. This means that a low-resolution version will display rapidly and gradually progress
to the quality you saved it at, allowing viewers to get a look at a simplified version of the
image without having to wait for it to load completely.

GIF

GIF (Graphics Interchange Format) is in many ways the polar opposite of JPEG—it’s loss-
less, meaning that there’s no color degradation when images are compressed. However,
the format is restricted to a maximum of 256 colors, thereby rendering it ineffective for
color photographic images. Using GIF for such images tends to produce banding, in which
colors are reduced to the nearest equivalent. A fairly extreme example of this is shown in
the following illustration.

Be aware that applications have different means of referring to compression levels.
Some, such as Adobe applications, use a quality scale, in which 100 is uncompressed
and 0 is completely compressed. Others, such as Paint Shop Pro, use compression val-
ues, in which higher numbers indicate increased compression. Always be sure you
know which scale you’re using.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

126

9071CH04.qxd 9/12/07 2:01 PM Page 126

GIF is useful for displaying images with large areas of flat color, such as logos, line art, and
type. As I mentioned in the previous chapter, you should generally avoid using graphics for
text on your web pages, but if you do, GIF is the best choice of format.

Although GIF is restricted to 256 colors, it’s worth noting that you don’t have to use the
same 256 colors every time. Most graphics applications provide a number of palette
options, such as perceptual, selective, and Web. The first of those, perceptual, tends to pri-
oritize colors that the human eye is most sensitive to, thereby providing the best color
integrity. Selective works in a similar fashion, but balances its color choices with web-safe
colors, thereby creating results more likely to be safe across platforms. Web refers to the
216-color web-safe palette discussed earlier. Additionally, you often have the option to
lock colors, which forces your graphics application to use only the colors within the
palette you choose.

Images can also be dithered, which prevents continuous tones from becoming bands of
color. Dithering simulates continuous tones, using the available (restricted) palette. Most
graphics editors allow for three different types of dithering: diffusion, pattern, and noise—
all of which have markedly different effects on an image. Diffusion applies a random pat-
tern across adjacent pixels, whereas pattern applies a half-tone pattern rather like that
seen in low-quality print publications. Noise works rather like diffusion, but without dif-
fusing the pattern across adjacent pixels. Following are four examples of the effects of
dithering on an image that began life as a smooth gradient. The first image (1) has no
dither, and the gradient has been turned into a series of solid, vertical stripes. The second
image (2) shows the effects of diffusion dithering; the third (3), pattern; and the fourth (4),
noise.

WORKING WITH IMAGES

127

4

9071CH04.qxd 9/12/07 2:01 PM Page 127

1 2 3 4

GIF89: The transparent GIF
The GIF89 file format is identical to GIF, with one important exception: you can remove
colors, which provides a very basic means of transparency and enables the background to
show through. Because this is not alpha transparency (a type of transparency that enables
a smooth transition from solid to transparent, allowing for many levels of opacity), it does-
n’t work in the way many graphic designers expect. You cannot, for instance, fade an
image’s background from color to transparent and expect the web page’s background to
show through—instead, GIF89’s transparency is akin to cutting a hole with a pair of scis-
sors: the background shows through the removed colors only. This is fine when the “hole”
has flat horizontal or vertical edges. But if you try this with irregular shapes—such as in the
following image of the cloud with drop shadow—you’ll end up with ragged edges. In the
example, the idea was to have the cloud casting a shadow onto the gray background.
However, because GIFs can’t deal with alpha transparency, we instead end up with an
unwanted white outline. (One way around this is to export the image with the same back-
ground color as that of the web page, but this is only possible if the web page’s
background is a plain, flat color.)

Because of these restrictions, GIF89s are not used all that much these days. They do cling
on in one area of web design, though: as spacers for stretching table cells, in order to lay
out a page. However, in these enlightened times, that type of technique should be
avoided, since you can lay out precisely spaced pages much more easily using CSS.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

128

9071CH04.qxd 9/12/07 2:01 PM Page 128

PNG

For years, PNG (pronounced ping, and short for Portable Network Graphics) lurked in the
wilderness as a capable yet unloved and unused format for web design. Designed primarily
as a replacement for GIF, the format has plenty to offer, including a far more flexible
palette than GIF and true alpha transparency. Some have mooted PNG as a JPEG replace-
ment, too, but this isn’t recommended—PNGs tend to be much larger than JPEGs for pho-
tographic images. For imagery with sharp lines, areas of flat color, or where alpha
transparency is required, it is, however, a good choice.

The reason PNG is still less common than GIF or JPEG primarily has to do with Internet
Explorer. Prior to version 7, Microsoft’s browser didn’t offer support for PNG alpha trans-
parency, instead replacing transparent areas with white or gray. Although a proprietary
workaround exists (see Chapter 9’s “Dealing with Internet Explorer bugs” section), it isn’t
intuitive, and it requires extra code. With post–version 6 releases of Internet Explorer
finally supporting alpha transparency (and Internet Explorer’s share of the market decreas-
ing somewhat, primarily due to competition from Firefox), it’s worth looking into PNG
when creating layouts.

The three adjacent images highlight the benefit of
PNG over GIF, as shown in a web browser. The first
illustration shows two PNGs on a white background.
The second illustration shows this background replaced
by a grid. Note how the button’s drop shadow is par-
tially see-through, while the circle’s center is revealed
as being partially transparent, increasing in opacity
toward its edge. The third illustration shows the clos-
est equivalent when using GIFs—the drop shadow is
surrounded by an ugly cutout, and the circle’s central
area loses its transparency. Upon closer inspection,
the circle is also surrounded by a jagged edge, and the
colors are far less smooth than those of the PNG.

Other image formats

You may have worked on pages in the past and added the odd BMP or TIFF file, or seen
another site do the same. These are not standard formats for the Web, though, and while
they may work fine in some cases, they require additional software in order to render in
some browsers (in many cases, they won’t render at all, or they’ll render inconsistently
across browsers). Furthermore, JPEG, GIF, and PNG are well-suited to web design because

For more information about this format,
check out the PNG website at www.libpng.
org/pub/png.

WORKING WITH IMAGES

129

4

9071CH04.qxd 9/12/07 2:01 PM Page 129

http://www.libpng

they enable you to present a lot of visual information in a fairly small file. Presenting the
same in a TIFF or BMP won’t massively increase the image’s quality (when taking into
account the low resolution of the Web), but it will almost certainly increase download
times. Therefore, quite simply, don’t use any formats other than JPEG, GIF, or PNG for your
web images (and if you decide to use PNG transparency, be sure that your target audience
will be able to see the images).

Common web image gaffes
The same mistakes tend to crop up again and again when designers start working with
images. In order to avoid making them, read on to find out about some common ones
(and how to avoid them).

Using graphics for body copy

Some sites out there use graphics for body copy on web pages, in order to get more typo-
graphical control than CSS allows. However, using graphics for body copy causes text to
print poorly—much worse than HTML-based text. Additionally, it means the text can’t be
read by search engines, can’t be copied and pasted, and can’t be enlarged, unless you’re
using a browser (or operating system) that can zoom—and even then it will be pixilated. If
graphical text needs to be updated, it means reworking the original image (which could
include messing with line wraps, if words need to be added or removed), re-exporting it,
and reuploading it.

As mentioned in the “Image-replacement techniques” section of Chapter 3, the argument
is a little less clear-cut for headings (although I recommend using styled HTML-based text
for those, too), but for body copy, you should always avoid using images.

Not working from original images

If it turns out an image on a website is too large or needs editing in some way, the original
should be sourced to make any changes if the online version has been in any way com-
pressed. This is because continually saving a compressed image reduces its quality each
time. Also, under no circumstances should you increase the dimensions of a compressed
JPEG. Doing so leads to abysmal results every time.

Overwriting original documents

The previous problem gets worse if you’ve deleted your originals. Therefore, be sure that
you never overwrite the original files you’re using. If resampling JPEGs from a digital cam-
era for the Web, work with copies so you don’t accidentally overwrite your only copy of
that great photo you’ve taken with a much smaller, heavily compressed version. More
important, if you’re using an application that enables layers, save copies of the layered
documents prior to flattening them for export—otherwise you’ll regret it when having to
make that all-important change and having to start from scratch.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

130

9071CH04.qxd 9/12/07 2:01 PM Page 130

Busy backgrounds

When used well, backgrounds can improve a website, adding visual interest and atmos-
phere—see the following image, showing the top of a version of the Snub
Communications homepage. However, if backgrounds are too busy, in terms of compli-
cated artwork and color, they’ll distract from the page’s content. If placed under text, they
may even make your site’s text-based content impossible to read. With that in mind, keep
any backgrounds behind content subtle—near-transparent single-color watermarks tend
to work best.

For backgrounds outside of the content area (as per the “Watermarks” section in Chapter 2),
you must take care, too. Find a balance in your design and ensure that the background
doesn’t distract from the content, which is the most important aspect of the site.

Lack of contrast

It’s common to see websites that don’t provide enough contrast between text content and
the background—for example, (very) light gray text on a white background, or pale text
on an only slightly darker background. Sometimes this lack of contrast finds its way into
other elements of the site, such as imagery comprising interface elements. This isn’t always
a major problem—in some cases, designs look stylish if a subtle scheme is used with care.
You should, however, ensure that usability isn’t affected—it’s all very well to have a subtle
color scheme, but not if it stops visitors from being able to easily find things like naviga-
tion elements, or from being able to read the text.

Using the wrong image format

Exporting photographs as GIFs, using BMPs or TIFFs online, rendering soft and blotchy line
art and text as a result of using the JPEG format—these are all things to avoid in the world
of creating images for websites. See the section “Choosing formats for images” earlier in
this chapter for an in-depth discussion of formats.

WORKING WITH IMAGES

131

4

9071CH04.qxd 9/12/07 2:01 PM Page 131

Resizing in HTML

When designers work in WYSIWYG editing tools, relying on a drag-and-drop interface, it’s
sometimes tempting to resize all elements in this manner (and this can sometimes also be
done by accident), thereby compromising the underlying code of a web page. Where
images are concerned, this has a detrimental effect, because the pixel dimensions of the
image no longer tally with its width and height values. In some cases, this may lead to dis-
torted imagery (as shown in the rather extreme example that follows); it may also lead to
visually small images that have ridiculously large files sizes by comparison. In most cases,
distortion of detail will still occur, even when proportion is maintained.

Not balancing quality and file size

Bandwidth can be a problem in image-heavy sites—both in terms of the host getting ham-
mered when visitor numbers increase, and in terms of the visitors—many of whom may be
stuck with slower connections than you—having to download the images. Therefore, you
should always be sure that your images are highly optimized, in order to save on hosting
costs and ensure that your website’s visitors don’t have to suffer massive downloads. (In
fact, they probably won’t—they’ll more than likely go elsewhere.)

But this doesn’t mean that you should compress every image on your website into a slushy
mess (and I’ve seen plenty of sites where the creator has exported JPEGs at what looks like
90% compression—“just in case”).

Err on the side of caution, but remember: common interface elements are cached, so you
can afford to save them at a slightly higher quality. Any image that someone requests
(such as via a thumbnail on a portfolio site) is something they want to see, so these too
can be saved at a higher quality because the person is likely to wait. Also, there is no such
thing as an optimum size for web images. If you’ve read in the past that no web image
should ever be larger than 50 KB, it’s hogwash. The size of your images depends entirely
on context, the type of site you’re creating, and the audience you’re creating it for.

There are exceptions to this rule, however, although they are rare. For instance, if you
work with pixel art saved as a GIF, you can proportionately enlarge an image, making
it large on the screen. Despite the image being large, the file size will be tiny.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

132

9071CH04.qxd 9/12/07 2:01 PM Page 132

Text overlays and splitting images

Some designers use various means to stop people from stealing images from their site and
reusing them. The most common are including a copyright statement on the image itself,
splitting the image into a number of separate images to make it harder to download, and
adding an invisible transparent GIF overlay.

The main problem with copyright statements is that they are often poorly realized (see the
following example), ruining the image with a garish text overlay. Ultimately, while anyone
can download images from your website to their hard drive, you need to remember that if
someone uses your images, they’re infringing your copyright, and you can deal with them
accordingly (and, if they link directly to images on your server, try changing the affected
images to something text-based, like “The scumbag whose site you’re visiting stole images
from me”).

As for splitting images into several separate files or placing invisible GIFs over images to try
to stop people from downloading them, don’t do this—there are simple workarounds in
either case, and you just end up making things harder for yourself when updating your
site. Sometimes you even risk compromising the structural integrity of your site when
using such methods.

Stealing images and designs

Too many people appear to think that the Internet is a free-for-all, outside of the usual
copyright restrictions, but this isn’t the case: copyright exists on the Web just like every-
where else. Unless you have permission to reuse an image you’ve found online, you
shouldn’t do so. If discovered, you may get the digital equivalent of a slap on the wrist, but
you could also be sued for copyright infringement.

WORKING WITH IMAGES

133

4

9071CH04.qxd 9/12/07 2:01 PM Page 133

Although it’s all right to be influenced by someone else’s design, you should also ensure
you don’t simply rip off a creation found on the Web—otherwise you could end up in legal
trouble, or the subject of ridicule as a feature on Tim Murtaugh’s Pirated Sites forum (see
www.pirated-sites.com/vanilla/).

Working with images in XHTML
The img element is used to add images to a web page. It’s an empty tag, so it takes the
combined start and end tag form with a trailing slash, as outlined in Chapter 1. The follow-
ing code block shows an example of an image element, complete with relevant attributes:

<img src="sunset.jpg" height="200" width="400" alt="Sunset in
➥ Reykjavík" />

Perhaps surprisingly, the height and width attributes are actually optional, although I rec-
ommend including them because they assist the browser in determining the size of the
image before it downloads (thereby speeding up the process of laying out the page). The
only two image element attributes required in XHTML are src and alt. The first, src, is the
path to the image file to be displayed; and the second, alt, provides some alternative text
for when the image is not displayed.

Using alt text for accessibility benefits

Alternate text—usually referred to as “alt text,” after its attribute—is often ignored or
used poorly by designers, but it’s essential for improving the accessibility of web pages.
Visitors using screen readers rely on the alt attribute’s value to determine what an image
shows. Therefore, always include a succinct description of the image’s content and avoid
using the image’s file name, because that’s often of little help. Ignoring the alt attribute
not only renders your page invalid according to the W3C recommendations, but it also
means that screen readers (and browsers that cannot display images) end up with some-
thing like this for output: [IMAGE][IMAGE][IMAGE]—not very helpful, to say the least.

Descriptive alt text for link-based images

Images often take on dual roles, being used for navigation purposes as well as additional
visual impact. In such cases, the fact that the image is a navigation aid is likely to be of

Note that this chapter’s section on images largely concerns itself with inline images—
the addition of images to the content of a web page. For an overview of using images
as backgrounds, see the “Web page backgrounds” section of Chapter 2; for an
overview of working with images within web navigation and with links in general, see
much of Chapter 5.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

134

9071CH04.qxd 9/12/07 2:01 PM Page 134

http://www.pirated-sites.com/vanilla
http://www.pirated-sites.com/vanilla

more significance than its visual appearance. For instance, many companies use logos as
links to a homepage—in such cases, some designers would suggest using “Company X
homepage” for the alt text, as it’s more useful than “Company X.”

Alternatively, stick with using the alt attribute for describing the image, and add a title
attribute to the link, using that to describe the target. Depending on user settings, the
link’s title attribute will be read out in the absence of any link text.

Null alt attributes for interface images

In some cases, images have no meaning at all (e.g., if they’re a part of an interface), and
there is some debate regarding the best course of action with regard to such images’ alt
values. Definitely never type something like spacer or interface element, otherwise
screen readers and text browsers will drive their users crazy relaying these values back to
them. Instead, it’s recommended that you use a null alt attribute, which takes the form
alt="".

Null alt attributes are unfortunately not interpreted correctly by all screen readers; some,
upon discovering a null alt attribute, go on to read the image’s src value. A common
workaround is to use empty alt attributes, which just have blank space for the value
(alt=" "). However, the null alt attribute has valid semantics, so it should be used despite
some screen readers not being able to deal with it correctly.

Alternatively, try reworking your design so that images without meaning are applied as
background images to div elements, rather than placed inline.

Using alt and title text for tooltips

Although the W3C specifically states that alt
text shouldn’t be visible if the image can
been seen, Internet Explorer ignores this, dis-
playing alt text as a tooltip when the mouse
cursor hovers over an image, as shown in the
adjacent example.

Internet Explorer users are most likely accus-
tomed to this by now, and, indeed, you may
have used alt text to create tooltips in your
own work. If so, it’s time to stop. This behavior is not recommended by the W3C and it’s
also not common across all browsers and platforms.

If you don’t have access to screen-reading software for testing alt text and various
other accessibility aspects of a website, either install the text-based browser Lynx, or
run Opera in User mode, which can emulate a text browser.

WORKING WITH IMAGES

135

4

9071CH04.qxd 9/12/07 2:01 PM Page 135

If an image requires a tooltip, most browsers display the value of a title attribute as one.
In spite of this, if the text you’re intending for a pop-up is important, you should instead
place it within the standard text of your web page, rather than hiding it where most users
won’t see it. This is especially important when you consider that Firefox crops the values
after around 80 characters, unlike some browsers, which happily show multiline tooltips.

Using CSS when working with images
In the following section, we’re going to look at relevant CSS for web page images. You’ll
see how best to apply borders to images and wrap text around them, as well as define
spacing between images and other page elements.

Applying CSS borders to images

You may have noticed earlier that I didn’t mention the border attribute when working
through the img element. This is because the border attribute is deprecated; adding bor-
ders to images is best achieved and controlled by using CSS. (Also, because of the flexibil-
ity of CSS, this means that if you only want a simple surrounding border composed of flat
color, you no longer have to add borders directly to your image files.) Should you want to
add a border to every image on your website, you could do so with the following CSS:

img {
border: 1px solid #000000;

}

In this case, a 1-pixel solid border, colored black (#000000 in hex), would surround every
image on the site. Using contextual selectors, this can be further refined. For instance,
should you only want the images within a content area (marked up as a div with an id
value of content) to be displayed with a border, you could write the following CSS:

div#content img {
border: 1px solid #000000;

}

Another alternative for extended descriptions for images is the longdesc attrib-
ute. It’s not fully supported, but Firefox, SeaMonkey, and Netscape display the
attribute’s contents as a description field when you view image properties. It’s
also fully supported in the JAWS screen reader, thereby warranting its use
should your image descriptions be lengthy.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

136

9071CH04.qxd 9/12/07 2:01 PM Page 136

Alternatively, you could set borders to be on by default, and override them in specific
areas of the website via a rule using grouped contextual selectors:

img {
border: 1px solid #000000;

}

#masthead img, #footer img, #sidebar img {
border: 0;

}

Finally, you could override a global border setting by creating a noBorder class and then
assigning it to relevant images. In CSS, you’d write the following:

.noBorder {
border: 0;

}

And in HTML, you’d add the noBorder class to any image that you didn’t want to have a
border:

<img class="noBorder" src="sunset.jpg" height="200" width="400"
➥ alt="A photo of a sunset" />

Clearly, this could be reversed (turning off borders by default and overriding this with, say,
an addBorder style that could be used to add borders to specific images). Obviously, you
should go for whichever system provides you with the greatest flexibility when it comes to
rapidly updating styles across the site and keeping things consistent when any changes
occur. Generally, the contextual method is superior for achieving this.

Although it’s most common to apply borders using the shorthand shown earlier, it’s possi-
ble to define borders on a per-side basis, as demonstrated in the “Using classes and CSS
overrides to create an alternate pull quote” exercise in Chapter 3. If you wanted to style a
specific image to resemble a Polaroid photograph, you could set equal borders on the top,
left, and right, and a larger one on the bottom. In HTML, you would add a class attribute
to the relevant image:

<img class="photo" src="sunset.jpg" height="300" width="300"
➥ alt="Sunset photo" />

In CSS, you would write the following:

.photo {
border-width: 8px 8px 20px;
border-style: solid;
border-color: #ffffff;

}

WORKING WITH IMAGES

137

4

9071CH04.qxd 9/12/07 2:01 PM Page 137

The results of this are shown in the image to the
right. (Obviously, the white border only shows if
you have a contrasting background—you wouldn’t
see a white border on a white background!)

Should you want to, you can also reduce the dec-
laration’s size by amalgamating the border-style
and border-color definitions:

.photo {
border: solid #ffffff;
border-width : 8px 8px 20px;

}

There are other border-style values that can be used with images, as well. Examples
include dashed and dotted—see the border-style entry in Appendix D (CSS Reference)
for a full list. However, overdone decoration can distract from the image, so always ensure
that your borders don’t overpower your imagery.

Using CSS to wrap text around images

You can use the float and margin properties to enable body copy to wrap around an
image. The method is similar to the pull quote example in the previous chapter, so we
won’t dwell too much on this. Suffice to say that images can be floated left or right, and
margins can be set around edges facing body copy in order to provide some whitespace.
For example, expanding on the previous example, you could add the following rules to
ensure that the surrounding body copy doesn’t hug the image:

.photo {
border-width: 8px 8px 20px 8px;
border-style: solid;
border-color: #ffffff;
float: right;
margin-left: 20px;
margin-bottom: 20px;

}

Note that when you’ve used a contextual selector with an id value to style a bunch of
elements in context, overriding this often requires the contextual selector to again be
included in the override rule. In other words, a class value of .override would not
necessarily override values set in #box img, even if applied to an image in the box div.
In such cases, you’d need to add the id to the selector: #box .override.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

138

9071CH04.qxd 9/12/07 2:01 PM Page 138

This results in the following effect shown in the following image.

See using-css-to-wrap-around-images.html, using-css-to-wrap-around-images.css,
and sunset.jpg in the chapter 4 folder for a working example of this page.

Displaying random images

This final section of the chapter looks at creating a simple system for displaying a random
image from a selection. This has several potential uses, such as randomizing banners on a
commercial website, or giving the impression that a site is updated more often than it is by
showing visitors some new content each time they arrive. Also, for portfolios, it’s useful to
present a random piece of work from a selection.

Prior to starting work, you need to prepare your images. Unless you’re prepared for sub-
sequent layout elements to shift upon each visit to the page, aim to export all your images
with equal dimensions. Should this not be an option, try to keep the same height setting.
Note, however, that you can use different file formats for the various images. It’s good
housekeeping to keep these images in their own folder, too; for this exercise, the images
are placed within assets/random-images.

WORKING WITH IMAGES

139

4

9071CH04.qxd 9/12/07 2:01 PM Page 139

Required files The image-randomizer-starting-point folder from the chapter
4 folder.

What you’ll learn How to create an image randomizer using JavaScript.

Completed files The image-randomizer-javascript folder in the chapter 4 folder.

1. Edit the HTML. Open randomizer.html. In the body of the web page, add the fol-
lowing img element. The src value is for the default image, and this is what’s shown
if JavaScript is unavailable. The id value is important—this is a hook for both the
JavaScript function written in steps 4 through 6 and a CSS rule to add a border to
the image.

<img src="assets/random-images/road.jpg" id="randomImage"
➥ name="randomImage" height="300" width="300" />

Next, add an onload attribute to the body start tag, as shown in the following code
block. Note that the value of this attribute will be the name of the JavaScript
function.

<body onload="randomImage()">

2. In randomizer.js, create arrays for image file names and alt attribute values. For
the former, only the image file names are needed—not the path to them (that will
be added later). Note that the order of the items in the arrays must match—in
other words, the text in the first item of the chosenAltCopy array should be for the
first image in the chosenImage array.

var chosenImage=new Array();
chosenImage[0]="stream.jpg";
chosenImage[1]="river.jpg";
chosenImage[2]="road.jpg";

var chosenAltCopy=new Array();
chosenAltCopy[0]="A stream in Iceland";
chosenAltCopy[1]="A river in Skaftafell, Iceland";
chosenAltCopy[2]="A near-deserted road in Iceland";

3. Create a random value. The following JavaScript provides a random value:

var getRan=Math.floor(Math.random()*chosenImage.length);

4. Create a function. Add the following text to start writing the JavaScript function,
which was earlier dubbed randomImage (see step 1’s onload value). If you’re not
familiar with JavaScript, then note that content from subsequent steps must be
inserted into the space between the curly brackets.

function randomImage()
{
}

Creating a JavaScript-based image randomizer

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

140

9071CH04.qxd 9/12/07 2:01 PM Page 140

5. Add JavaScript to set the image. By manipulating the Document Object Model
(DOM), we can assign values to an element via its id value. Here, the line states to
set the src attribute value of the element with the id value randomImage (i.e., the
image added in step 1) to the stated path value plus a random item from the
chosenImage array (as defined via getRan, a variable created in step 3).

document.getElementById('randomImage').setAttribute
➥('src','assets/random-images/'+chosenImage[getRan]);

6. Add JavaScript to set the alt text. Setting the alt text works in a similar way to step
5, but the line is slightly simpler, due to the lack of a path value for the alt text:

document.getElementById('randomImage').setAttribute
➥('alt',chosenAltCopy[getRan]);

7. Style the image. In CSS, add the following two rules. The first removes borders by
default from images that are links. The second defines a border for the image
added in step 1, which has an id value of randomImage.

a img {
border: 0;

}
#randomImage {
border: solid 1px #000000;

}

Upon testing the completed files in a browser, each refresh should show a random image
from the selection, as shown in the following screenshot. (Note that in this image, the
padding value for body was set to 20px 0 0 20px, to avoid the random image hugging the
top left of the browser window.)

WORKING WITH IMAGES

141

4

9071CH04.qxd 9/12/07 2:01 PM Page 141

There are a couple of things to note regarding the script. To add further images/alt text,
copy the previous items in each array, increment the number in square brackets by one
and then amend the values—for example:

var chosenImage=new Array();
chosenImage[0]="stream.jpg";
chosenImage[1]="river.jpg";
chosenImage[2]="road.jpg";
chosenImage[3]="harbor.jpg";

var chosenAltCopy=new Array();
chosenAltCopy[0]="A stream in Iceland";
chosenAltCopy[1]="A river in Skaftafell, Iceland";
chosenAltCopy[2]="A near-deserted road in Iceland";
chosenAltCopy[3]="The harbor in Reykjavík ";

You’ll also note that in this example, the height and widths of the images is identical.
However, these can also be changed by editing the script. For example, to set a separate
height for each image, you’d first add the following array:

var chosenHeight=new Array();
chosenHeight[0]="200";
chosenHeight[1]="500";
chosenHeight[2]="400";

And you’d next add the following line to the function:

document.getElementById('randomImage').setAttribute
➥('height',chosenHeight[getRan]);

Remember, however, the advice earlier about the page reflowing if the image dimensions
vary—if you have images of differing sizes, your design will need to take this into account.

Required files The image-randomizer-starting-point folder from the chapter
4 folder.

What you’ll learn How to create an image randomizer using PHP.

Completed files The image-randomizer-php folder in the chapter 4 folder.

If you have access to web space that enables you to work with PHP, it’s simple to create an
equivalent to the JavaScript exercise using PHP. The main benefit is that users who disable
JavaScript will still see a random image, rather than just the default. Note that you need
some method of running PHP files to work on this exercise, such as a local install of
Apache. Note also that prior to working through the steps, you should remove the HTML
document’s script element, and you should also amend the title element’s value,
changing it to something more appropriate.

Creating a PHP-based image randomizer

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

142

9071CH04.qxd 9/12/07 2:01 PM Page 142

1. Define the CSS rules. In CSS, define a border style, as per step 7 of the previous
exercise, but also edit the existing paragraph rule with a font property/value pair,
because in this example, you’re going to add a caption based on the alt text value.

a img {
border: 0;

}
#randomImage {
border: solid 1px #000000;

}
p {
font: 1.2em/1.5em Verdana, sans-serif;
margin-bottom: 1.5em;

}

2. Set up the PHP tag. Change the file name of randomizer.html to randomizer.php
to make it a PHP document. Then, place the following on the page, in the location
where you want the randomized image to go. Subsequent code should be placed
within the PHP tags.

<?php
?>

3. Define the array. One array can be used to hold the information for the file names
and alt text. In each case, the alt text should follow its associated image.

$picarray = array("stream" => "A photo of a stream", "river" => "A
➥ photo of a river", "road" => "A photo of a road");
$randomkey = array_rand($picarray);

4. Print information to the web page. Add the following lines to write the img and p
elements to the web page, using a random item set from the array for the relevant
attributes. Note that the paragraph content is as per the alt text. Aside from the
caption, the resulting web page looks identical to the JavaScript example.

echo '<img src="assets/random-images/'.$randomkey.'.jpg"
➥ alt="'.$picarray[$randomkey].'" width="300" height="300"
➥ class="addBorder" />';

echo '<p>'.$picarray[$randomkey].'</p>';

5. Use an include. This is an extra step of sorts. If you want to make your PHP more
modular, you can copy everything within the PHP tags to an external document,
save it (e.g., as random-image.php) and then cut it into the web page as an include:

<?php
@include($_SERVER['DOCUMENT_ROOT'] . "/random-image.php");
?>

For more on working with PHP, see PHP Solutions: Dynamic Web
Design Made Easy, by David Powers.

WORKING WITH IMAGES

143

4

9071CH04.qxd 9/12/07 2:01 PM Page 143

Hopefully you’ve found this chapter of interest and now feel you have a good grounding
in working with images on the Web. It’s amazing to think how devoid of visual interest the
Web used to be in contrast to today, now that images are essential to the vast majority of
sites. As I’ve mentioned before, the importance of images on the Web lies not only in con-
tent, but in interface elements as well, such as navigation—a topic we’re covering in the
next chapter.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

144

9071CH04.qxd 9/12/07 2:01 PM Page 144

9071CH04.qxd 9/12/07 2:01 PM Page 145

9071CH05.qxd 10/4/07 1:06 PM Page 146

5 USING LINKS AND CREATING
NAVIGATION

9071CH05.qxd 10/4/07 1:06 PM Page 147

In this chapter:

Introducing web navigation

Creating links

Controlling CSS link states

Mastering the cascade

Looking at links and accessibility

Examining a JavaScript alternative to pop-ups

Creating navigation bars

Working with CSS-based rollovers

Introduction to web navigation
The primary concern of most websites is the provision of information. The ability to enable
nonlinear navigation via the use of links is one of the main things that sets the Web apart
from other media. But without organized, coherent, and usable navigation, even a site with
the most amazing content will fail.

During this chapter, we’ll work through how to create various types of navigation. Instead
of relying on large numbers of graphics and clunky JavaScript, we’ll create rollovers that
are composed of nothing more than simple HTML lists and a little CSS. And rather than
using pop-up windows to display large graphics when a thumbnail image is clicked, we’ll
cover how to do everything on a single page.

Navigation types
There are essentially three types of navigation online:

Inline navigation: General links within web page content areas

Site navigation: The primary navigation area of a website, commonly referred to as
a navigation bar

Search-based navigation: A search box that enables you to search a site via terms
you input yourself

Although I’ve separated navigation into these three distinct categories, lines blur, and not
every site includes all the different types of navigation. Also, various designers call each
navigation type something different, and there’s no official name in each case, so in the
following sections, I’ll expand a little on each type.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

148

9071CH05.qxd 10/4/07 1:06 PM Page 148

Inline navigation

Inline navigation used to be the primary way of navigating the Web, which, many moons
ago, largely consisted of technical documentation. Oddly, inline navigation—links within a
web page’s body copy—is less popular than it once was. Perhaps this is due to the increas-
ing popularity of visually oriented web design tools, leading designers to concentrate more
on visuals than usability. Maybe it’s because designers have collectively forgotten that links
can be made anywhere and not just in navigation bars. In any case, links—inline links in
particular—are the main thing that differentiates the Web from other media, making it
unique. For instance, you can make specific words within a document link directly to
related content. A great example of this is Wikipedia (www.wikipedia.org), the free ency-
clopedia.

Site navigation

Wikipedia showcases navigation types other than inline. To the left, underneath the logo,
is a navigation bar that is present on every page of the site, allowing users to quickly access
each section. This kind of thing is essential for most websites—long gone are the days
when users often expected to have to keep returning to a homepage to navigate to new
content.

As Wikipedia proves, just because you have a global navigation bar, that doesn’t mean you
should skimp on inline navigation. In recent times, I’ve seen a rash of sites that say things
like, “Thank you for visiting our website. If you have any questions, you can contact us by

USING LINKS AND CREATING NAVIGATION

149

5

9071CH05.qxd 10/4/07 1:06 PM Page 149

http://www.wikipedia.org

clicking the contact details link on our navigation bar.” Quite frankly, this is bizarre. A bet-
ter solution is to say, “Thank you for visiting our website. If you have any questions, please
contact us,” and to turn “contact us” into a link to the contact details page. This might
seem like common sense, but not every web designer thinks in this way.

Search-based navigation

Wikipedia has a search box within its navigation sidebar. It’s said there are two types of
web users: those who eschew search boxes and those who head straight for them. The
thing is, search boxes are not always needed, despite the claims of middle managers the
world over. Indeed, most sites get by with well-structured and coherent navigation.

However, sites sometimes grow very large (typically those that are heavy on information
and that have hundreds or thousands of pages, such as technical repositories, review
archives, or large online stores, such as Amazon and eBay). In such cases, it’s often not fea-
sible to use standard navigation elements to access information. Attempting to do so leads
to users getting lost trying to navigate a huge navigation tree.

Unlike other types of navigation, search boxes aren’t entirely straightforward to set up,
requiring server-side scripting for their functionality. However, a quick trawl through
a search engine provides many options, including Google Custom Search Engine
(www.google.com/coop/cse/) and Yahoo Search Builder (http://builder.search.yahoo.
com/m/promo).

Creating and styling web page links
With the exception of search boxes, which are forms based on and driven by server-side
scripting, online navigation relies on anchor elements. In its simplest form, an anchor ele-
ment looks like this:

A link to the friends of ED
➥ website

The href attribute value is the URL of the destination document, which is often another
web page, but can in fact be any file type (MP3, PDF, JPEG, and so on). If the browser can
display the document type (either directly or via a plug-in), it does so; otherwise, it down-
loads the file (or brings up some kind of download prompt).

By placing a trailing slash in this type of URL, you make only one call to the server
instead of two. Also, some incorrectly configured Apache servers generate a “File not
found” error if the trailing slash is omitted.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

150

9071CH05.qxd 10/4/07 1:06 PM Page 150

http://www.google.com/coop/cse
http://builder.search.yahoo.com/m/promo
http://builder.search.yahoo.com/m/promo
http://www.friendsofed.com

There are three ways of linking to a file: absolute links, relative links, and root-relative
links. We’ll cover these in the sections that follow, and you’ll see how to create internal
page links, style link states in CSS, and work with links and images. We’ll also discuss
enhanced link accessibility and usability, and link targeting.

Absolute links

The preceding example shows an absolute link, sometimes called a full URL, which is typi-
cally used when linking to external files (i.e., those on other websites). This type of link
provides the entire path to a destination file, including the file transfer protocol, domain
name, any directory names, and the file name itself. A longer example is

Instar lyrics

In this case, the file transfer protocol is http://, the domain is wireviews.com, the direc-
tory is lyrics, and the file name is instar.html.

If you’re linking to a website’s homepage, you can usually leave off the file name, as in the
earlier link to the friends of ED site, and the server will automatically pick up the default
document—assuming one exists—which can be index.html, default.htm, index.php,
index.asp, or some other name, depending on the server type. However, adding a trailing
slash after the domain is beneficial (such as http://www.wireviews.com/). If no default
document exists, you’ll be returned a directory listing or an error message, depending on
whether the server’s permissions settings enable users to browse directories.

Relative links

A relative link is one that locates a file in relation to the current document. Taking the
Wireviews example, if you were on the instar.html page, located inside the lyrics direc-
tory, and you wanted to link back to the homepage via a relative link, you would use the
following code:

Wireviews homepage

Depending on how the target site’s web server has been set up, you may or may not
have to include www prior to the domain name when creating this kind of link. Usually
it’s best to include it, to be on the safe side. An exception is if you’re linking to a sub-
domain, such as http://browsers.evolt.org.

Never omit end tags when working with links. Omitting is not only
shoddy and invalid XHTML, but most browsers then turn all subsequent con-
tent on the page into a link.

USING LINKS AND CREATING NAVIGATION

151

5

9071CH05.qxd 10/4/07 1:06 PM Page 151

http://www.wireviews.com/lyrics/instar.html
http://browsers.evolt.org
http://www.wireviews.com
http://www.wireviews.com/lyrics/instar.html
http://www.wireviews.com

The index.html file name is preceded by ../, which tells the web browser to move up one
directory prior to looking for index.html. Moving in the other direction is done in the
same way as with absolute links: by preceding the file name with the path. Therefore, to
get from the homepage back to the instar.html page, you would write the following:

Instar lyrics

In some cases, you need to combine both methods. For instance, this website has HTML
documents in both the lyrics and reviews folders. To get from the instar.html lyrics
page to a review, you have to go up one level, and then down into the relevant directory
to locate the file:

Alloy review

Root-relative links

Root-relative links work in a similar way to absolute links, but from the root of the website.
These links begin with a forward slash, which tells the browser to start the path to the file
from the root of the current website. Therefore, regardless of how many directories deep
you are in the Wireviews website, a root-relative link to the homepage always looks
like this:

Homepage

And a link to the instar.html page within the lyrics directory always looks like this:

Instar lyrics

This type of link therefore ensures you point to the relevant document without your
having to type an absolute link or mess around with relative links, and is, in my opinion,
the safest type of link to use for linking to documents elsewhere on a website. Should a
page be moved from one directory to one higher or lower in the hierarchy, none of the
links (including links to style sheets and script documents) would require changing.
Relative links, on the other hand, would require changing; and although absolute links
wouldn’t require changing, they take up more space and are less modular from a testing
standpoint; if you’re testing a site, you don’t want to be restricted to the domain in
question—you may wish to host the site locally or on a temporary domain online so that
clients can access the work-in-progress creation.

All paths in href attributes must contain forward slashes only. Some software—
notably older releases from Microsoft—creates and permits backward slashes (e.g.,
lyrics\wire\154.html), but this is nonstandard and does not work in non-Microsoft
web browsers.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

152

9071CH05.qxd 10/4/07 1:06 PM Page 152

Internal page links

Along with linking to other documents, it’s possible to link to another point in the same
web page. This is handy for things like a FAQ (frequently asked questions) list, enabling the
visitor to jump directly to an answer and then back to the list of questions; or for top-of-
page links, enabling a user single-click access to return to the likely location of a page’s
masthead and navigation, if they’ve scrolled to the bottom of a long document.

When linking to other elements on a web page, you start by providing an id value for any
element you want to be able to jump to. To link to that, you use a standard anchor ele-
ment (<a>) with an href value equal to that of your defined id value, preceded by a hash
symbol (#).

For a list of questions, you can have something like this:

<ul id="questions">
Question one
Question two
Question three

Later on in the document, the first two answers might look like this:

<p id="answer1">The answer to question 1!</p>
<p>Back to questions</p>
<p id="answer2">The answer to question 2!</p>
<p>Back to questions</p>

As you can see, each link’s href value is prefixed by a hash sign. When the link is clicked,
the web page jumps to the element with the relevant id value. Therefore, clicking the
Question one link, which has an href value of #answer1, jumps to the paragraph with the
id value of answer1. Clicking the Back to questions link, which has an id value of
#questions, jumps back to the list, because the unordered list element has an id of
questions.

Backward compatibility with fragment identifiers

In older websites, you may see a slightly different system for accessing content within a
web page, and this largely involves obsolete browsers such as Netscape 4 not understand-
ing how to deal with links that solely use the id attribute. Instead, you’ll see a fragment
identifier, which is an anchor tag with a name attribute, but no href attribute. For instance,
a fragment identifier for the first answer is as follows:

<p>Answer 1!</p>

It’s worth bearing in mind that the page only jumps directly to the linked element if
there’s enough room underneath it. If the target element is at the bottom of the web
page, you’ll see it plus a browser window height of content above.

USING LINKS AND CREATING NAVIGATION

153

5

9071CH05.qxd 10/4/07 1:06 PM Page 153

The reason for the doubling up, here—using both the name and id attributes, is because
the former is on borrowed time in web specifications, and it should therefore only be used
for backward compatibility.

Top-of-page links

Internal page links are sometimes used to create a top-of-page/back-to-top link. This is
particularly handy for websites that have lengthy pages—when a user has scrolled to the
bottom of the page, they can click the link to return to the top of the document, which
usually houses the navigation. The problem here is that the most common internal linking
method—targeting a link at #top—fails in many browsers, including Firefox and Opera.

Back to top

You’ve likely seen the previous sort of link countless times, but unless you’re using Internet
Explorer or Safari, it’s as dead as a dodo. There are various workarounds, though, one of
which is to include a fragment identifier at the top of the document. At the foot of the
web page is the Back to top link shown previously, and the fragment identifier is placed
at the top of the web page:

This technique isn’t without its problems, though. Some browsers ignore empty elements
such as this (some web designers therefore populate the element with a single space); it’s
tricky to get the element right at the top of the page and not to interfere with subsequent
content; and, if you’re working with XHTML Strict, it’s not valid to have an inline element
on its own, outside of a block element, such as p or div.

Two potential solutions are on offer. The simplest is to link the top-of-page link to your
containing div—the one within which your web page’s content is housed. For sites I
create—as you’ll see in Chapter 7—I typically house all content within a div that has an id
value of wrapper. This enables me to easily control the width of the layout, among other
things. In the context of this section of this chapter, the wrapper div also provides some-
thing for a top-of-page link to jump to. Clicking the link in the following code block would
enable a user to jump to the top of the wrapper div, at (or very near to) the top of the
web page.

Top of page

Note that since standalone inline elements aren’t valid in XHTML Strict, the preceding
would either be housed within a paragraph or a footer div, depending on the site.

Another solution is to nest a fragment identifier within a div and then style the div to sit
at the top left of the web page. The HTML for this is the following:

<div id="topOfPageAnchor">

</div>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

154

9071CH05.qxd 10/4/07 1:06 PM Page 154

In CSS, you would then add the following:

div#topOfPageAnchor {
position: absolute;
top: 0;
left: 0;
height: 0;

}

Setting the div’s height to 0 means it takes up no space and is therefore not displayed; set-
ting its positioning to absolute means it’s outside the normal flow of the document, so it
doesn’t affect subsequent page content. You can test this by setting the background color
of a following element to something vivid—it should sit tight to the edge of the browser
window edges.

Link states

By default, links are displayed underlined and in blue when viewed in a web browser.
However, links have five states, and their visual appearance varies depending on the cur-
rent state of the link. The states are as follows:

link: The link’s standard state, before any action has taken place

visited: The link’s state after having been clicked

hover: The link’s state while the mouse cursor is over it

focus: The link’s state while focused

active: The link’s state while being clicked

The visited and active states also have a default appearance. The former is displayed in
purple and the latter in red. Both are underlined.

If every site adhered to this default scheme, it would be easier to find where you’ve been
and where you haven’t on the Web. However, most designers prefer to dictate their own
color schemes rather than having blue and purple links peppering their designs. In my
view, this is fine. Despite what some usability gurus claim, most web users these days prob-
ably don’t even know what the default link colors are, and so hardly miss them.

In HTML, you may have seen custom link colors being set for the link, active, and
visited states via the link, alink, and vlink attributes of the body element. These attrib-
utes are deprecated, though, and should be avoided. This is a good thing, because you
need to define them in the body element of every page of your site, which is a tiresome
process—even more so if they later need changing; as you might have guessed, it’s easier
to define link states in CSS.

USING LINKS AND CREATING NAVIGATION

155

5

9071CH05.qxd 10/4/07 1:06 PM Page 155

Defining link states with CSS

CSS has advantages over the obsolete HTML method of defining link states. You gain con-
trol over the hover and focus states and can do far more than just edit the state colors—
although that’s what we’re going to do first.

Anchors can be styled by using a tag selector:

a {
color: #3366cc;

}

In this example, all anchors on the page—including links—are turned to a medium blue.
However, individual states can be defined by using pseudo-class selectors (so called
because they have the same effect as applying a class, even though no class is applied to
the element):

a:link {
color: #3366cc;

}
a:visited {
color: #666699;

}
a:hover {
color: #0066ff;

}
a:focus {
background-color: #ffff00;

}
a:active {
color: #cc00ff;

}

Correctly ordering link states

The various states have been defined in a specific order in the previous example: link,
visited, hover, focus, active. This is because certain states override others, and those
“closest” to the link on the web page take precedence.

There is debate regarding which order the various states should be in, so I can only pro-
vide my reasoning for this particular example. It makes sense for the link to be a certain
color when you hover over it, and then a different color on the active state (when
clicked), to confirm the click action. However, if you put the hover and active states in
the other order (active, hover), you may not see the active one when the link is clicked.
This is because you’re still hovering over the link when you click it.

The focus state is probably primarily use keyboard users, and so they won’t typically see
hover anyway. However, for mouse users, it makes logical sense to place focus after hover,
because it’s a more direct action—in other words, the link is selected, ready for activation

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

156

9071CH05.qxd 10/4/07 1:06 PM Page 156

during the focus state; but if you ordered the states focus, hover, a link the cursor is
hovering over would not change appearance when focused, which from a user standpoint
is unhelpful.

However, there is a counter argument that recommends putting focus before hover, so
that when an already focused link (or potentially any other focused element for non-IE
browsers) is hovered over, it will change from the focused state to indicate that it is now
being hovered over. Ultimately, this is a chicken-and-egg scenario—do you want a hovered
link to change from hover to focus to active? The focus will get lost somewhere in there
until the link is depressed (and the active state removed), by which time the link will be
in the process of being followed.

In the end, the decision should perhaps rest with how you’re styling states and what infor-
mation you want to present to the user, and often the focus state is a duplication of hover
anyway, for the benefit of keyboard users. And on some occasions, it doesn’t matter too
much where it’s put, if the styling method is much different from that for other states—
for example, when a border is applied to focus, but a change of color or removal of
underlines is used for the other states. However, if you decide on LVFHA or some other
order, you’ll have to make your own way of remembering the state order!

The difference between a and a:link

Many designers don’t realize the difference between the selectors a and a:link in CSS.
Essentially, the a selector styles all anchors, but a:link styles only those that are clickable
links (i.e., those that include an href attribute) that have not yet been visited. This means
that, should you have a site with a number of fragment identifiers, you can use the a:link
selector to style clickable links only, avoiding styling fragment identifiers, too. (This pre-
vents the problem of fragment identifiers taking on underlines, and also prevents the
potential problem of user-defined style sheets overriding the a rule.) However, if you
define a:link instead of a, you then must define the visited, hover, and active states,
otherwise they will be displayed in their default appearances. This is particularly important
when it comes to visited, because that state is mutually exclusive to link, and doesn’t
take on any of its styling. Therefore, if you set font-weight to bold via a:link alone, vis-
ited links will not appear bold (although the hover and active states will for unvisited
links—upon the links being visited, they will become hover and active states for visited
links and will be displayed accordingly).

Editing link styles using CSS

Along with changing link colors, CSS enables you to style links just like any other piece of
text. You can define specific fonts; edit padding, margins, and borders; change the font

A simple way of remembering the basic state order (the five states minus focus) is to
think of the words love, hate: link, visited, hover, active. If focus is included and
my order is used, there’s the slightly awkward (but equally memorable) love her for
always/love him for always: link, visited, hover, focus, active.

USING LINKS AND CREATING NAVIGATION

157

5

9071CH05.qxd 10/4/07 1:06 PM Page 157

weight and style; and also amend the standard link underline, removing it entirely if you
wish (by setting the text-decoration property to none).

a:link {
color: #3366cc;
font-weight: bold;
text-decoration: none;

}

Removing the standard underline is somewhat controversial, even in these enlightened
times, and causes endless (and rather tedious) arguments among web designers. My view
is that it can be OK to do so, but with some caveats.

If you remove the standard underline, ensure your links stand out from the surrounding
copy in some other way. Having your links in the same style and color as other words and
not underlined is a very bad idea. The only exception is if you don’t want users to easily
find the links and click them (perhaps for a children’s game or educational site).

A common device used by web designers is to recolor links, in order to distinguish them
from body copy. However, this may not be enough (depending on the chosen colors),
because a significant proportion of the population has some form of color blindness. A
commonly quoted figure for color blindness in Western countries is 8%, with the largest
affected group being white males (the worldwide figure is lower, at approximately 4%).
Therefore, a change of color (to something fairly obvious) and a change of font weight to
bold often does the trick.

Whatever your choice, be consistent—don’t have links change style on different pages of
the site. Also, it’s useful to reinforce the fact that links are links by bringing back the
underline on the hover state. An example of this is shown to the right (see editing-link-
styles-using-css.html and editing-link-styles-using-css.html in the chapter 5
folder of the completed files).

Links are bold and orange, making them stand out from surrounding text. On the hover
state, the link darkens to red and the standard underline returns. The second of those
things is achieved by setting text-decoration to underline in the a:hover declaration.
Note that even when presented in grayscale, such as in this book, these two states can be
distinguished from surrounding text.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

158

9071CH05.qxd 10/4/07 1:06 PM Page 158

You can also combine pseudo-classes. For example, if you add the rules shown following
to a style sheet (these are from the editing-link-styles-using-css documents), you’d
have links going gray when visited, but turning red on the hover state (along with showing
the underline). Note that because the link and visited states are exclusive, the bold
value for font-weight is assigned using the grouped selector. It could also be applied to
individual rules, but this is neater.

a:link, a:visited {
font-weight: bold;

}
a:link {
color: #f26522;
text-decoration: none;

}
a:visited {
color: #8a8a8a;

}
a:hover {
color: #f22222;
text-decoration: underline;

}
a:active {
color: #000000;
text-decoration: underline;

}

If you decided that you wanted visited links to retain their visited color on the hover
state, you could add the following rule:

a:visited:hover {
color: #8a8a8a;

}

The :focus pseudo-class
Rarely used due to a lack of browser support, the :focus pseudo-class is worth being
mindful of. It enables you to define the link state of a focused link. Focusing usually occurs
when tabbing to a link, and so the :focus pseudo-class can be a handy usability aid. At the
time of writing, it works in Firefox and Safari, but is ignored in Opera and Internet
Explorer, although Microsoft’s browser does at least surround any focused links with a
dotted line. (Note that Firefox and Safari also surround focused links with a dotted line
and aqua border, respectively.)

The following example, used in editing-link-styles-using-css.css, turns the back-
ground of focused links yellow in compliant browsers:

a:focus {
background: yellow;

}

USING LINKS AND CREATING NAVIGATION

159

5

9071CH05.qxd 10/4/07 1:06 PM Page 159

Multiple link states: The cascade

A common problem web designers come up against is multiple link styles within a docu-
ment. While you should be consistent when it comes to styling site links, there are specific
exceptions, one of which is site navigation. Web users are quite happy with navigation bar
links differing from standard inline links. Elsewhere, links may differ slightly in web page
footers, where links are often displayed in a smaller font than that used for other web
page copy; also, if a background color makes the standard link color hard to distinguish, it
might be useful to change it (although in such situations it would perhaps be best to
amend either the background or your default link colors).

A widespread error is applying a class to every link for which you want a style other than
the default—you end up with loads of inline junk that can’t be easily amended at a later
date. Instead, with the careful use of divs (with unique ids) on the web page and contex-
tual selectors in CSS, you can rapidly style links for each section of a web page.

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder as a starting point.

What you’ll learn How to use the cascade to set styles for links housed in specific
areas of a web page.

Completed files multiple-links-the-cascade.html and multiple-links-the-
cascade.css from the chapter 5 folder.

1. Add the basic page content structure shown following, placing it within the existing
wrapper div of the boilerplate. This has three divs, which have id values of
navigation, content, and footer, respectively. The first houses an unordered list
that forms the basis of a navigation bar. The second is the content area, which has
an inline link within a paragraph. The third is the footer, which is sometimes used
to repeat the navigation bar links, albeit in a simplified manner.

<div id="navigation">

Homepage
Products
Contact details

</div>
<div id="content">
<p>Hello there. Our new product is a fantastic
➥ banjo!</p>

</div>
<div id="footer">

Styling multiple link states

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

160

9071CH05.qxd 10/4/07 1:06 PM Page 160

Homepage |
➥Products | Contact
➥ details

</div>

2. Add some padding to the existing body rule in the CSS to add some spacing around
the page content:

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 30px;

}

3. Add some rules to define the main states for links on the web page. The following
rules color links orange, change them to red on the hover state, make them gray
on the visited state, and make them black on the active state.

a:link {
color: #f26522;

}
a:visited {
color: #8a8a8a;

}
a:hover {
color: #f22222;

}
a:active {
color: #000000;

}

Note that the code block could be simplified, such as by dispensing with the naviga-
tion div and instead applying the relevant id value directly to the unordered list.
However, this exercise aims to show how to create links in context, using a simplified
web page layout that has specific areas for certain content types. See Chapters 7 and
10 for more on layout.

USING LINKS AND CREATING NAVIGATION

161

5

9071CH05.qxd 10/4/07 1:06 PM Page 161

4. Next, style the navigation links. Contextual selectors are used to style the links
within the navigation div.

#navigation a, #navigation a:visited {
text-decoration: none;
font-weight: bold;
color: #666666;
text-transform: uppercase;

}
#navigation a:hover {
text-decoration: underline;

}

The first rule removes the underline from all links within the navigation div, ren-
ders them in bold and uppercase, and colors them a medium gray. The second rule
brings back the underline on the hover state.

5. Style the footer links. Add another contextual selector to style the footer links,
making them smaller than links elsewhere on the page:

#footer a:link, #footer a:visited {
font-size: 0.8em;

}

And there we have it: three different link styles on the same page, without messing around
with classes.

Enhanced link accessibility and usability

We’ve already touched on accessibility and usability concerns during this chapter, so we’ll
now briefly run through a few attributes that can be used with anchors (and some with
area elements—see the “Image Maps” section later in the chapter) to enhance your web
page links.

You’ll note that the visited state is the same as the standard state in the previous
code block. While I don’t recommend doing this for links in a page’s general content
area, or for pages that have a lot of navigation links, I feel it’s acceptable for sites that
have a small number of navigation links, where it’s not likely a visitor will need notifi-
cation regarding which pages or sections have been accessed.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

162

9071CH05.qxd 10/4/07 1:06 PM Page 162

The title attribute
Regular users of Internet Explorer for
Windows may be familiar with its habit of
popping up alt text as a tooltip. This has
encouraged web designers to wrongly fill alt
text with explanatory copy for those links that
require an explanation, rather than using the
alt text for a succinct overview of the image’s
content. Should you require a pop-up, add a
title attribute to your surrounding a ele-
ment to explain what will happen when the
link is clicked. The majority of web browsers
display its value when the link is hovered over
for a couple of seconds (see right), although
some older browsers, such as Netscape 4,
don’t provide this functionality.

➥<img src="image.jpg" alt="This is some text that explains what
➥ the image is" width="400" height="300" />

There are a few things to be mindful of when using title attributes. The first is that
behavior varies slightly between browsers, and the positioning and style of the tooltip can-
not be controlled. Internet Explorer exhibits some particularly quirky behavior. In addition
to displaying alt text as a tooltip, alt text defined within an img element will override (and
therefore be displayed instead of) title text for a surrounding a element. However, if the
title and alt attributes are both placed within the img element, the title attribute wins
out. Therefore, some technically unnecessary duplication of content is required to ensure
compliance from Internet Explorer. Also, Microsoft’s browser does not display title text
when you mouse over area elements within image maps.

Using accesskey and tabindex
I’ve bundled the accesskey and tabindex attributes because they have similar functions—
that is, enabling keyboard access to various areas of the web page. Most browsers enable
you to use the Tab key to cycle through links, although if you end up on a web page with
dozens of links, this can be a soul-destroying experience. (And before you say “So what?”
you should be aware that many web users cannot use a mouse. You don’t have to be
severely disabled or elderly to be in such a position either—something as common as
repetitive strain injury affects plenty of people’s ability to use a mouse.)

The accesskey attribute can be added to anchor and area elements. It assigns an access
key to the link, whose value must be a single character. In tandem with your platform’s

Firefox tends to crop tooltips after 80 characters or so. Therefore, keep your title
text fairly succinct. If you need a much longer piece of text, implement the technique
described in the “Adding pop-ups to images” section later in this chapter.

USING LINKS AND CREATING NAVIGATION

163

5

9071CH05.qxd 10/4/07 1:06 PM Page 163

assigned modifier key (Alt for Windows and Ctrl for Mac), you press the key to highlight or
activate the link, depending on how the browser you’re using works.

Home page

An ongoing problem with access keys is that the shortcuts used to activate them are
mostly claimed by various technologies, leaving scant few characters. In fact, research con-
ducted by WATS.ca (www.wats.ca/show.php?contentid=32) concluded that just three
characters were available that didn’t clash with anything at all: /, \ and]. This, combined
with a total lack of standard access key assignments/bindings, has led to many accessibility
gurus conceding defeat, admitting that while there’s a definite need for the technology, it’s
just not there yet.

The tabindex attribute has proved more successful. This is used to define the attribute’s
value as anything from 0 (which excludes the element from the tabbing order, which can
be useful) to 32767, thereby setting its place in the tab order, although if you have 32,767
tabbable elements on your web page, you really do need to go back and reread the earlier
advice on information architecture (see Chapter 1). Note that tab orders needn’t be con-
secutive, so it’s wise to use tabindex in steps of ten, so you can later insert extra ones
without renumbering everything.

Not all browsers enable tabbing to links, and others require that you amend some prefer-
ences to activate this function, and so tabindex ultimately only really comes in handy
when working with forms, as you’ll see in Chapter 8. When used for too many other ele-
ments, you also run the risk of tabindex values hijacking the mouse cursor, meaning that
instead of the Tab key moving the user from the first form field to the second, it might end
up highlighting something totally different, elsewhere on the page. What’s logical to some
people—in terms of tab order—may not be to others, so always ensure you test your web-
sites thoroughly, responding to feedback.

Skip navigation links
Designers who work with CSS layouts tend to focus on information structure, rather than
blindly putting together layouts in a visual editor. This is good from an accessibility stand-
point, because you can ensure information is ordered in a logical manner by checking its
location in the code. However, when considering alternate browsers, it’s clear that some of
the information on the page will be potentially redundant. For example, while a user surf-
ing with a standard browser can ignore the masthead and navigation in a split second, rap-
idly focusing on the information they want to look at, someone using a screen reader will
have to sit through the navigation links being read out each time, which can prove
extremely tedious if there are quite a few links.

Various solutions exist to help deal with this problem, and although you can use CSS to
reorder the page information (most commonly by placing the code for the masthead at
the end of the HTML document and then using absolute positioning to display it at the top
when the page is viewed in a browser), it’s more common to use what’s typically referred
to as skip navigation.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

164

9071CH05.qxd 10/4/07 1:06 PM Page 164

http://www.wats.ca/show.php?contentid=32

Required files skip-navigation-starting-point.html and skip-navigation-
starting-point.css from the chapter 5 folder as a starting
point.

What you’ll learn How to create some basic skip navigation.

Completed files skip-navigation-completed.html and skip-navigation-
completed.css from the chapter 5 folder.

1. Examine the web page. Successful skip navigation relies in part on semantic and
logical document structure. Open skip-navigation-starting-point.html and
you’ll see it’s a basic web page, with all of the page’s content—title, navigation, and
main content—contained within a wrapper div; next is a masthead div, containing
a heading and a few links. Under the masthead div is a content div, which, suitably
enough, houses the page’s main content. The beginning of the content is immedi-
ately visible, even on monitors with low resolutions, but for users of screen readers,
the site’s name and navigation links will be read out every single time a page is
accessed—a tedious process for the user.

2. Immediately after the body element start tag, add a div with an id value of
skipLink, which is a hook to later style the div and its link using CSS. The href
value for the anchor is set to #content. As you will remember from earlier in the
chapter, this will make the page jump to the element with an id value of content
when the link is clicked (i.e., the content div in this example’s case).

<div id="skipLink">
Skip to content

</div>

Creating a skip navigation link

USING LINKS AND CREATING NAVIGATION

165

5

9071CH05.qxd 10/4/07 1:06 PM Page 165

3. Test the web page. Already, the benefits of this are apparent. You can use Opera’s
User mode or CSS ➤ Disable Styles ➤ All Styles in the Firefox Web Developer tool-
bar to temporarily remove the CSS and emulate a text browser (roughly equating
to the content available to screen readers)—see the following left-hand image.
Click the skip to content link and the page will jump to the web page’s content—see
the right-hand image. Even with three links, this proves useful, but if the site has a
couple of dozen links, this improves usability for screen reader users no end.

Required files skip-navigation-completed.html and skip-navigation-
completed.css from the chapter 5 folder as a starting point.

What you’ll learn How to style skip navigation.

Completed files skip-navigation-styled.html and skip-navigation-styled.css
from the chapter 5 folder.

When skip navigation is styled, it’s common to set the containing div (in this case, the
skipLink one) to display: none, thereby making it invisible. This is all well and good in
theory, but some screen readers render CSS, meaning that your cunning skip navigation
won’t be accessible. Therefore, this exercise will show how to hide the skip navigation
within the existing page design. (Note that, depending on your site and target audience,
you may wish to leave the skip navigation visible to aid users whose sight is fine, but who
have difficulty with motor tasks. That said, the exercise still shows how to style skip navi-
gation in general, and should therefore prove useful regardless.)

Styling a skip navigation link

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

166

9071CH05.qxd 10/4/07 1:06 PM Page 166

1. Style the skipLink div. Remove the skipLink div from the document flow
(thereby meaning it won’t affect the positioning of any other element) by setting
position to absolute in a CSS rule targeting the element (see the following code
snippet); Chapter 7 has more information on positioning div elements. The top
and right values define the div’s position in relation to its parent element (which
in this case is body—effectively the entire browser window view area). The settings
place the div inside the masthead.

#skipLink {
position: absolute;
top: 30px;
right: 30px;
}

2. Make the link invisible—via the use of contextual selectors you can set the link’s
color to blend with that of the web page element it’s positioned over. You can also
use the :hover and :focus pseudo-classes mentioned earlier in this chapter to
make the link visible on the hover and focus states.

#skipLink a:link, #skipLink a:visited {
color: #cecece;

}
#skipLink a:hover, #skipLink a:focus {
color: #000000;

}

USING LINKS AND CREATING NAVIGATION

167

5

9071CH05.qxd 10/4/07 1:06 PM Page 167

Required files skip-navigation-completed.html, skip-navigation-
completed.css, and skip-navigation-down-arrow.gif from the
chapter 5 folder.

What you’ll learn How to create skip navigation that sits centrally at the top of the
web page and is invisible, but that displays a rollover effect during
the hover and focus states.

Completed files skip-navigation-background-image.html, skip-navigation-
background-image.css, and skip-navigation-down-arrow.gif
(unchanged during the tutorial) from the chapter 5 folder.

1. Position the skipNav div. Add the following link to remove the skipNav div from
the document flow and position it at the top of the web page. The width and
text-align property values stretch the div to the full width of the browser win-
dow and center the text horizontally, respectively.

#skipLink {
position: absolute;
top: 0;
left: 0;
width: 100%;
text-align: center;

}

2. Style the skip navigation link. Add the following rule to style the link within the
skipLink div. By setting display to block, the active area of the link stretches to
fill its container, thereby effectively making the entire containing div clickable. The
padding-bottom setting is important, because this provides space at the bottom of
the div for displaying the background image used for the hover state, added in the
next step. The color value is black (#000000) at this point, which ensures that the
text fits happily within the space available above the page content. (This may
change for users with non-default settings, but for the default and first zoom set-
ting, it’ll be fine.)

#skipLink a:link, #skipLink a:visited {
display: block;
color: #000000;
font: 1.0em Arial, Helvetica, sans-serif;
padding-top: 5px;
padding-bottom: 20px;

}

Enhancing skip navigation with a background image

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

168

9071CH05.qxd 10/4/07 1:06 PM Page 168

3. Recolor the skip navigation link. Change the color property so that the link blends
into the background.

#skipLink a:link, #skipLink a:visited {
display: block;
color: #fefefe;
font: 1.0em Arial, Helvetica, sans-serif;
padding-top: 5px;
padding-bottom: 20px;

}

4. Define the hover and focus states. Add the following rule to set the style for the
hover and focus states. This essentially makes the text visible (via the color set-
ting) and defines a background image—a wide GIF89 image with a downward-
facing arrow at its center now appears when the user places their mouse cursor
over the top of the web page.

#skipLink a:hover, #skipLink a:focus {
color: #000000;
background: url(skip-navigation-down-arrow.gif) 50% 100% no-repeat;

}

Link targeting

Although a fairly common practice online, link targeting—using the target attribute on a
and area elements (see the following code for an example), typically to open a link in
a new window—is not without its problems and should be avoided.

Open in a new window

While some argue that this practice is beneficial, enabling users to look at external content
and return to your site, what it actually does is take control of the browser away from
users. After all, if someone actually wants to open content in a new window, they can do
so using keyboard commands and/or contextual menus. More important, opening docu-
ments in new windows breaks the history path. For many, this might not be a huge issue,
but for those navigating the Web via a screen reader, pop-ups are a menace. New content
opens up, is deemed to not be of interest, and the back function is invoked. But this is a
new window, with its own blank history. Gnashing of teeth ensues. There’s also the prob-
lem that you can’t guarantee what will happen when this attribute is used anyway—many
users configure browsers to suppress new windows, either forcing them to open in a new
tab or over the top of the current page.

There’s also the issue that target is deprecated. Although it remains valid when working
with XHTML Transitional (and XHTML Frameset), it’s not when using XHTML Strict.

USING LINKS AND CREATING NAVIGATION

169

5

9071CH05.qxd 10/4/07 1:06 PM Page 169

There is, however, a JavaScript alternative for those very rare occasions where you need to
use a link to open a new window (this is explored on Bruce Lawson’s website, at www.
brucelawson.co.uk/2005/opening-links-in-new-windows-in-xhtml-strict-2/); essen-
tially, you attach the script to your web pages and then add rel="external" to the a start
tag for external links. Complying with the W3C’s Web Content Accessibility Guidelines
(WCAG), the script also warns when new windows are about to be opened. Ultimately,
though, you should avoid new windows whenever possible. For occasions when you want
to provide a temporary new window (such as for a terms-and-conditions box during a
checkout process), use a JavaScript pop-up, or place the terms inline by using a scrollable
content area (see Chapter 7 for more on those).

Links and images
Although links are primarily text-based, it’s possible to wrap anchor tags around an image,
thereby turning it into a link:

<img src="linked-image.gif" width="40"
➥ height="40" />

Some browsers border linked images with whatever link colors have been stated in CSS (or
the default colors, if no custom ones have been defined), which looks nasty and can dis-
place other layout elements. Historically, designers have gotten around this by setting the
border attribute within an img element to 0, but this has been deprecated. Therefore, it’s
best to use a CSS contextual selector to define images within links as having no border.

a img {
border: 0;

}

Clearly, this can be overridden for specific links. Alternatively, you could set an “invisible”
border (one that matches the site’s background color) on one or more sides, and then set
its color to that of your standard hover color when the user hovers over the image. This
would then provide visual feedback to the user, confirming that the image is a link.

a img {
border: 0;
border-bottom: 1px solid #ffffff;

}

a:hover img {
border-bottom: 1px solid #f22222;

}

In any case, you must always have usability and accessibility at the back of your mind when
working with image-based links. With regard to usability, is the image’s function obvious?
Plenty of websites use icons instead of straightforward text-based navigation, resulting in
frustrated users if the function of each image isn’t obvious. People don’t want to learn
what each icon is for, and they’ll soon move on to competing sites. With regard to

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

170

9071CH05.qxd 10/4/07 1:06 PM Page 170

http://www.brucelawson.co.uk/2005/opening-links-in-new-windows-in-xhtml-strict-2
http://www.brucelawson.co.uk/2005/opening-links-in-new-windows-in-xhtml-strict-2

accessibility, remember that not all browsers can zoom images, and so if an image-based
link has text within it, ensure it’s big enough to read easily. Whenever possible, offer a text-
based alternative to image-based links, and never omit alt and title attributes (discussed
earlier in this chapter). The former can describe the image content and the latter can
describe the link target (i.e., what will happen when the link is clicked).

Therefore, the example from earlier becomes the following:

<img title="Visit our shop"
➥ src="linked-image.gif"width="40" height="40"
➥ alt="Shopping trolley" />

Adding pop-ups to images

On occasion, when a user hovers their mouse cursor over an image, you might like to add
a pop-up that’s a little more flamboyant than what a title attribute can provide. Using
CSS, you can add a fully stylable pop-up to an image, when the user moves their cursor
over it. Note, however, that this technique should be used sparingly, and you should never
rely on users accessing this information, unless you make it clear that the pop-up exists—
for example, you could use it for a game, showing the answer to a question when the user
mouses over an image. (However, if something is extremely important for your users to
see immediately, don’t hide it away in a pop-up—display it in plain sight.) The following
walkthrough shows you how to use pop-ups in such a way.

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder as a starting point, along with the two image
files add-a-pop-up-image.jpg and add-a-pop-up-pop-up.jpg
from the chapter 5 folder.

What you’ll learn How to create a totally CSS-based pop-up that can be applied to
an image.

Completed files add-a-pop-up.html and add-a-pop-up.css in the chapter 5
folder, along with the two images, which remain unchanged.

1. Create a container for the pop-up. Add the div shown following to the web page,
within the wrapper; the div will act as a container for the pop-up.

<div id="popupContainer">
</div>

2. Add the main image in the usual fashion, placing it inside the div created in step 1.

<img src="add-a-pop-up-image.jpg" alt="Landscape" width="500"
➥ height="375" />

Adding a pop-up to an image

USING LINKS AND CREATING NAVIGATION

171

5

9071CH05.qxd 10/4/07 1:06 PM Page 171

3. Add a link and pop-up content. Surround the image with a dummy link, and then
add a span element immediately after the image. Within this, place the pop-up
content, which can contain text and even other images. Text can be styled within
inline elements (strong, em, and anchors, for example). In this example, the span
contains an image, which will be floated right, and some text (which is truncated
for space reasons—the completed version in the download files is longer). To
ensure that the floated image is “cleared,” making the span’s background appear
behind it once styled, a clearFix class is added to the span start tag, and an asso-
ciated CSS rule created (in step 10). More on this float-clearing technique, along
with floats and clears in general, is given in Chapter 7.

<img src="add-a-pop-up-to-an-image.jpg" alt="Landscape"
➥ width="500" height="375" /><img
➥ src="add-a-pop-up-pop-up.jpg" alt="Winter shot" width="126"
➥ height="215" />
The text for the pop-up goes here…

4. Set defaults. At this stage, the page content is displayed in a linear fashion—large
image followed by small image followed by text—so some CSS is now needed. In
the CSS document, add some padding to the existing body element, ensuring the
page content doesn’t hug the browser window edges when you’re testing the page.

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;

}

5. Give the images a border. Add the following rule to apply a thin gray border to the
images on the page.

img {
border: 1px solid #666666;

}

6. Define the pop-up area size. Add the following rule to define the size of the pop-
up area (the width setting defines its width and display: block stretches the
active area of the link to the size of its container—the image). The other settings
override link defaults, making the text within the div and anchor black and not
underlined.

#popupContainer a:link, #popupContainer a:visited {
position: relative;
display: block;
width: 500px;
text-decoration: none;
color: #000000;

}

Because you can’t place paragraphs within a span element, you need to stick to a
single block of text, or split paragraphs with double line breaks (

),
despite the iffy semantics of doing that.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

172

9071CH05.qxd 10/4/07 1:06 PM Page 172

7. Make the pop-up invisible. Add the following rule to make the pop-up initially not
display onscreen (i.e., outside of the viewing area of the browser).

#popupContainer a span {
position: absolute;
left: -10000px;
top: -10000px;

}

8. Style the span element. The following rule styles the span element during the
hover state. The display property value of block defines the pop-up as a block-
level element, rather than an inline one, while the position setting of relative
overrides that set in the previous step (as do the left and top values). The width
setting defines a width for the pop-up. The negative margin-top setting pulls the
pop-up upward, so it no longer sits under the main image. The value is the same
as the height of the main image minus the vertical offset required. (If it were set to
the height of the main image, the pop-up would sit flush to the top of the image
during the hover state, which looks cluttered.) The margin-left value provides a
horizontal offset, while the padding value places some padding within the span, so
its contents don’t hug its borders. The other settings style colors and fonts.

#popupContainer a:hover span, #popupContainer a:focus span,
➥ #popupContainer a:active span {

display: block;
position: relative;
left: 0;
top: 0;
width: 360px;
color: #000000;
font: 1.1em/1.5 Arial, Helvetica, sans-serif;
margin-top: -335px;
margin-left: 50px;
padding: 20px;
background-color: #e0e4ef;
border: 1px solid #666666;

}

9. Next, a rule is needed to float the image within the span. The margin settings
ensure that the image doesn’t hug the text-based content.

#popupContainer a:hover span img, #popupContainer a:focus span img,
➥ #popupContainer a:active span img {

border: 1px solid #666666;
float: right;

The selector for step 8’s code block offers three alternate routes for users to access
the pop-up: the hover state (for mouse users), the focus state (for keyboard users),
and the active state (for Internet Explorer keyboard users, since that browser doesn’t
yet support :focus).

USING LINKS AND CREATING NAVIGATION

173

5

9071CH05.qxd 10/4/07 1:06 PM Page 173

margin-left: 15px;
margin-bottom: 5px;

}

10. Apply the clearFix rule. Floated elements are outside the standard document
flow. Therefore, if there’s little text, the image appears to stick out of the span box,
as shown in the following example.

This can be fixed by adding the following rule (this technique is fully explained in
Chapter 7):

.clearFix:after {
content: ".";
display: block;
height: 0;
clear: both;
visibility: hidden;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

174

9071CH05.qxd 10/4/07 1:06 PM Page 174

Image maps

Image maps enable you to define multiple links within a single image; for example, if you
have a weather map, you could use an image map to link to each region’s weather fore-
cast; or if you had a picture of your office, you could use an image map to make each of
the objects clickable, leading to pages explaining more about each of them. Clickable
regions within image maps can be fairly basic—rectangles or circles—or complex polygo-
nal shapes. Note that there are both server-side and client-side versions of image maps—
server-side image maps are now considered obsolete and pose accessibility problems, and
even client-side image maps tend to be avoided by most designers, although use of alt text
can help them become reasonably accessible.

Regardless of the complexity of the image and the defined
regions, the method of creating an image map remains the
same. To the right is the image used in this section to show
how a basic image map is created. It contains three geometric
shapes that will be turned into clickable hot-spots.

The image is added to the web page in the usual way (and
within a block element, since img is an inline element), but
with the addition of a usemap attribute, whose value must be
preceded by a hash sign (#).

Because of a bug in Internet Explorer pre-version 7, you need to add the following
rule to make the pop-up work in Internet Explorer 6 or 5.5: #popupContainer a:hover
{text-indent: 0;}. Ideally, this should be added in a style sheet linked via a condi-
tional comment—see Chapter 9 for more on hacks for old browsers.

USING LINKS AND CREATING NAVIGATION

175

5

9071CH05.qxd 10/4/07 1:06 PM Page 175

<div id="wrapper">
<img src="image-map-image.gif" alt="Shapes" width="398" height="398"
➥ usemap="#shapes" />

</div>

The value of the usemap attribute must correlate with the name and id values of the asso-
ciated map element. Note that the name attribute is required for backward compatibility,
whereas the id attribute is mandatory.

<map id="shapes" name="shapes">
</map>

The map element acts as a container for specifications regarding the map’s active areas,
which are added as area elements.

<map id="shapes" name="shapes">
<area title="Access the squares page." shape="rect"
➥ coords="29,27,173,171" href="square.html" alt="A square" />
<area title="Access the circles page" shape="circle"
➥ coords="295,175,81" href="circle.html" alt="A circle" />
<area title="Access the triangles page" shape="poly"
➥ coords="177,231,269,369,84,369" href="triangle.html"
➥ alt="A triangle" />

</map>

Each of the preceding area elements has a shape attribute that corresponds to the
intended active link area:

rect defines a rectangular area; the coords (coordinates) attribute contains two
pairs that define the top-left and bottom-right corners of the rectangle in terms of
pixel values (which you either take from your original image or guess, should you
have amazing pixel-perfect vision).

circle is used to define a circular area; of the three values within the coords
attribute, the first two define the horizontal and vertical position of the circle’s
center, and the third defines the radius.

poly enables you to define as many coordinate pairs as you wish, which allows you
to define active areas for complex and irregular shapes—in the previous code
block, there are three pairs, each of which defines a corner of the triangle.

Creating image maps is a notoriously tedious process, and it’s one of the few occasions
when I advise using a visual web design tool, if you have one handy, which can be used to
drag out hot-spots. However, take care not to overlap defined regions—this is easy to do,
and it can cause problems with regard to each link’s active area. If you don’t have such a
tool handy, you’ll have to measure out the coordinates in a graphics package.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

176

9071CH05.qxd 10/4/07 1:06 PM Page 176

Faking images maps using CSS

Although there’s no direct equivalent to image maps in CSS, you can fashion a similar
effect by creating block-level anchors (rather like the one in the pop-up example). The
most common way of structuring this “fake” image map is by using an unordered list, plac-
ing links within each list item, and using absolute positioning to set the locations of the
links. Further CSS trickery can be used to make all hot-spots visible when the mouse cur-
sor is placed over the image, and to change the image on the rollover state.

In the following exercise, a picture of three sheep minding their own business is going to
be used for the fake image map. When you mouse over the image, all three hot-spots will
be shown (as a 1-pixel, black border). Placing the cursor over a hot-spot will then turn that
portion of the grayscale image into color (by way of placing a second image as a back-
ground on the hot-spot), along with showing a caption.

As you might imagine, with CSS being based around boxes, the technique tends to
work best with highly regular, box-shaped rollover areas.

Note that some browsers will place a border around the image used for an
image map. This can be removed by using CSS to set the image’s border to 0
(either via applying a class to the image, or via a contextual selector).

USING LINKS AND CREATING NAVIGATION

177

5

9071CH05.qxd 10/4/07 1:06 PM Page 177

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder, along with image files fake-image-map-
color.jpg and fake-image-map-gray.jpg from the chapter 5
folder.

What you’ll learn How to fake an image map using CSS, which will enable two levels
of rollover.

Completed files fake-image-map.html and fake-image-map.css in the chapter 5
folder, along with the image files, which are unchanged.

1. Add the structure for the fake image map. In the body of the HTML document, add
the following code, which structures the content for the fake image map. Note
how the unordered list has a unique class value and how each of the list items has
a class value referring to the hot-spot relating to a specific item on the image.

<ul class="sheepImageMap">
<li class="sheepOne">Sheep one
<li class="sheepTwo">Sheep two
<li class="sheepThree">Sheep three

<p>Hover your mouse cursor over the sheep!</p>

2. Set page defaults. Add some padding to the existing body rule:

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;

}

3. Add the following rule to style the unordered list. The font and text-transform
property values define the font styles for the captions. The background value
defines the grayscale image as the background for the list, and the width and
height values ensure the list’s dimensions are the same as that of the background
image. The position property is set to relative because this enables the list item
positioning to then be set from the top left of the unordered list, rather than from
the top left of the browser window.

.sheepImageMap {
font: 1.0em/1 Arial, Helvetica, sans-serif;
text-transform: uppercase;
background: url(fake-image-map-gray.jpg);
width: 500px;
height: 375px;
position: relative;
margin-bottom: 10px;

}

Using CSS to create a fake image map with rollovers

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

178

9071CH05.qxd 10/4/07 1:06 PM Page 178

4. Style the links. By setting display to block, the links stretch to fit their container
(the list items). The text-indent setting is used to massively offset the indent of
the text within the links, effectively making the text invisible by default, but keep-
ing the element itself visible and clickable. The text-decoration value of none
turns off the default underline for the links.

.sheepImageMap a {
display: block;
text-indent: -100000px;
text-decoration: none;

}

5. Set hot-spot borders. Utilizing the :hover pseudo-class, the following rule makes it
so that when the list is hovered over, the three hot-spots show a 1-pixel border:

.sheepImageMap:hover .sheepOne, .sheepImageMap:hover .sheepTwo,
➥ .sheepImageMap:hover .sheepThree {

border: 1px solid #000000;
}

In some circumstances, offsetting using text-indent can lead to minor layout issues.
This wouldn’t be a problem in the layout being created here; but with more finely
tuned layouts, it could—due to some browsers keeping the space taken up by the ele-
ment’s height available to it, and thus forcing subsequent content to appear below
where it’s meant to be by an equivalent amount. In cases like those, absolute posi-
tioning and offsetting both vertically and horizontally works well.

USING LINKS AND CREATING NAVIGATION

179

5

9071CH05.qxd 10/4/07 1:06 PM Page 179

6. Add the following rule to style the list items, removing the default bullet point (via
the list-style value of none) and defining them to be positioned in an absolute
manner and displayed as block elements.

.sheepImageMap li {
list-style: none;
position: absolute;
display: block;

}

7. Create the first hot-spot. In a graphics package, four values are required for each
hot-spot: its width, its height, and the distance from the top and left corners. These
are then translated, respectively, into the width, height, left, and top values in a
rule applied to the relevant hot-spot:

.sheepOne {
width: 80px;
height: 104px;
left: 60px;
top: 50px;

}

Two more rules complete the effect. The first ensures the relevant anchor has the
correct height (note how the height value is the same as in the previous rule):

.sheepOne a {
height: 104px;

}

The second rule sets the color version of the image to be displayed as a back-
ground on the hover state (as in, when the user mouses over the hot-spot area, the
relevant area is displayed in color). By default, the top left of the image will be
shown, and so negative positioning values are used to pull it into place. Note how
these are the negatives of the values defined for left and top in the .sheepOne
rule, minus 1 further pixel. The reason for the extra pixel is to take into account the
1-pixel border defined in step 5. If the borders weren’t used (although they are
handy, since they show all the hot-spots), the positioning values would just be the
direct negatives of the left and top values from .sheepOne.

.sheepOne a:hover {
background: url(fake-image-map-color.jpg) -61px -51px;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

180

9071CH05.qxd 10/4/07 1:06 PM Page 180

8. Create the other hot-spots. The other two hot-spots are created in the same way as
the first one in step 7. Again, the positioning values in the hover states are negative
values minus 1 of the left and top values in the rules that defined the dimensions
and positions of the hot-spots.

.sheepTwo {
width: 200px;
height: 126px;
left: 141px;
top: 108px;

}
.sheepTwo a {
height: 126px;

}
.sheepTwo a:hover {
background: url(fake-image-map-color.jpg) -142px -109px;

}
.sheepThree {
width: 68px;
height: 38px;
left: 418px;
top: 19px;

}

Note that the a selector is used in this exercise rather than a:link. Because the rules
are strictly based on context—anchors within the defined areas of the fake image
map—this is acceptable, and it saves having to use both :link and :visited selectors.

USING LINKS AND CREATING NAVIGATION

181

5

9071CH05.qxd 10/4/07 1:06 PM Page 181

.sheepThree a {
height: 38px;

}
.sheepThree a:hover {
background: url(fake-image-map-color.jpg) -419px -20px;

}

9. Add styles for the captions. In step 4, the text-indent property was set to a huge
negative value, which made the text effectively disappear. To bring it back on the
hover state, add the following rule to your CSS, which also colors the text in white:

.sheepImageMap a:hover {
text-indent: 0;
color: #ffffff;

}

At this stage, the text still doesn’t stand out enough. Therefore, add the following
rule, which styles the span elements wrapped around the text in each list item, set-
ting a background color and adding some padding around the content:

.sheepImageMap a:hover span {
padding: 2px;
background-color: #000000;

}

This looks fine, but with some further absolute positioning, these captions can be
positioned elsewhere within the hot-spot. By adding the bolded rules shown fol-
lowing, the captions are positioned at the bottom right of the hot-spots, as shown
in the original example screenshot before the start of the exercise.

.sheepImageMap a:hover span {
padding: 2px;
background-color: #000000;
position: absolute;
bottom: 0;
right: 0;

}

Pre-version 7, Internet Explorer didn’t respond to :hover unless it was used on a link.
Because of this, the borders will not appear in that browser, causing a 1-pixel “jog” up
and left when you mouse over a hot-spot. You can get around this by applying the
border to the following rules (via a conditional style sheet): .sheepOne a:hover,
.sheepTwo a:hover, and .sheepThree a:hover.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

182

9071CH05.qxd 10/4/07 1:06 PM Page 182

Enhancing links with JavaScript
In this section, we’re going to use a little JavaScript, showing some methods of providing
enhanced interactivity and functionality to links. Note that in all cases, a non-JavaScript
backup (or fallback) to essential content is required for those who choose to surf the Web
with JavaScript disabled. In all cases, JavaScript can be added either to external JavaScript
files attached to your HTML documents (which is the preferred method; see the section
“Attaching favicons and JavaScript” in Chapter 2) or in a script element within the head
of the HTML page:

<script type="text/javascript">
// <![CDATA[
(script goes here)

//]]>
</script>

Specifically, we’ll look at pop-up windows, swapping images using JavaScript, and toggling
div visibility with JavaScript.

Creating a pop-up window

Pop-up windows are mostly an annoyance, especially when automated and when they
remove browser controls. However, they are occasionally useful, such as for providing a
user with brief access to terms and conditions without interrupting a checkout process.
Some portfolio sites also use pop-up windows to display larger versions of images
(although we’ll later see a better method of creating an online gallery).

Should you require a pop-up window of your very own, the JavaScript is simple:

function newWindow()
{
window.open("location.html");

}

And this HTML calls the script using the onclick attribute:

Open a
➥ new window!

Note how the href attribute still has a value, which caters to users with JavaScript disabled
(loading the document into the current window). The return false part of the onclick
value ensures the href value is ignored for browsers with JavaScript activated (otherwise
both the original and pop-up window would display with the new web page).

Creating a system to open windows with varied URLs requires only slight changes to both
script and HTML. The script changes to this:

function newWindow(webURL)
{
window.open(webURL);

}

USING LINKS AND CREATING NAVIGATION

183

5

9071CH05.qxd 10/4/07 1:06 PM Page 183

The HTML changes to this:

<a href="location-one.html" onclick="newWindow('location-one.html');
➥ return false;">Open location one in a new window!
<a href="location-two.html" onclick="newWindow('location-two.html');
➥ return false;">Open location two in a new window!

Note how the target location is now within the single quotes of the onclick value. This
could be any file name, and the link type can be absolute, relative, or root-relative. To pro-
vide a warning when a pop-up is opened (as recommended by WCAG—Web Content
Accessibility Guidelines), you can add a single line to the JavaScript:

function newWindow(webURL)
{
alert("You are about to open a new window.");
window.open(webURL);

}

It’s also possible to control the settings of a pop-up window. To do so, the script needs to
be amended as follows:

function newWindow(webURL)
{
alert("You are about to open a new window.");
var newWin = window.open(webURL,"new_window",
➥"toolbar,location,directories,
➥status,menubar,scrollbars,resizable,
➥copyhistory,width=300,height=300");
newWin.focus();

}

The values within the set of quotes that begin "toolbar, location... enable you to set
the pop-up window’s dimensions and appearance. There must be no whitespace in the
features list, and it must all be on one line. Most of the items are self-explanatory, but
some that may not be are location, which defines whether the browser’s address bar is
visible, and directories, which defines whether secondary toolbars such as the links bar
are visible. Note that if you specify one or more of these, any you don’t specify will be
turned off—therefore, you must specify all the features you want in the pop-up window.

Now, a word of warning: as alluded to earlier, having control of the web browser wrenched
away from them makes some users want to kick a puppy. Therefore:

Never use JavaScript to pop up windows without the user knowing that it’s going to
happen. (The integrated alert mentioned earlier is one thing, but you should always
also mention next to the relevant link that a pop-up will be created if the link is
clicked.)

Never create a site that automatically pops up a window and removes the window
controls.

Never use a pop-up window unless it’s absolutely necessary.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

184

9071CH05.qxd 10/4/07 1:06 PM Page 184

Some designers might argue about aesthetics and for the clean nature of a browser win-
dow at full-screen, devoid of its controls, but there are no real reasons for using pop-up
windows in this manner other than that; there are, however, counterarguments, such as
taking control from the user, the general annoyance factor, a full-screen window suddenly
covering everything else, and so on. Ultimately, pop-ups and nonrequested new windows
are a very bad thing, so avoid using them.

Creating an online gallery

As mentioned earlier, there’s a better way of creating an online gallery than using pop-up
windows when thumbnails are clicked. Instead, JavaScript can be used to swap out an
image that’s on a web page, replacing it with another, as shown in the following exercise.

Required files gallery-starting-point folder in the chapter 5 folder.

What you’ll learn How to create a basic online gallery that enables you to easily
switch the main image by clicking on thumbnails.

Completed files gallery-completed folder in the chapter 5 folder.

1. Add the script. Create a new text document and save it as gallery.js in the same
folder as the files from the gallery-starting-point folder. Add the following
to it:

function swapPhoto(photoSRC) {
document.images.imgPhoto.src = "assets/" + photoSRC;

}

Be aware of the case-sensitive nature of JavaScript and also the path to the images,
which is set here as assets/.

2. Add the main image. This requires an id attribute that correlates with the one pro-
vided in step 1 (imgPhoto). Leave off the height and/or width attributes if your
images have varied dimensions. If your images have one identical dimension (such
as the same widths), include that, but omit the other. (The img is placed within a
div so that the document conforms to XHTML Strict. This also enables the gallery
width to be defined later in CSS.)

<div id="wrapper">
<img src="assets/image-1.jpg" width="500" height="375" id="imgPhoto"
➥ alt="Main photo" />

</div>

3. Add thumbnails. In each case, the swapPhoto value is the file name of the image to
be loaded. Remember that the path to the images was defined in step 1, so it’s not
needed here. The href value links directly to the full-size image to accommodate
users who have disabled JavaScript.

Switching images using JavaScript

USING LINKS AND CREATING NAVIGATION

185

5

9071CH05.qxd 10/4/07 1:06 PM Page 185

<a href="assets/image-1.jpg" onclick="javascript:swapPhoto
➥('image-1.jpg'); return false;"><img src="assets/image-1-t.jpg"
➥ alt="sheep" width="100" height="75" />
<a href="assets/image-2.jpg" onclick="javascript:swapPhoto
➥('image-2.jpg'); return false;"><img src="assets/image-2-t.jpg"
➥ alt="hillside" width="100" height="75" />

4. Add some CSS. To the gallery.css file, add the following rules, the first of which
sets a width value for the wrapper div, and the second of which removes the
default border from image-based links.

#wrapper {
width: 500px;

}
a img {
border: 0;
}

And that’s all there is to it. The solution is elegant and doesn’t require pop-up win-
dows. Instead, users can see thumbnails on the same page as the main image, mak-
ing navigation through the portfolio that much easier. For those users who don’t
have JavaScript, the values in the href attributes ensure they still get access to the
full-size images, too.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

186

9071CH05.qxd 10/4/07 1:06 PM Page 186

Required files The gallery-completed folder from the chapter 5 folder.

What you’ll learn Without context, some pictures are meaningless, so this exercise
shows how to take the gallery created in the previous exercise and
add a caption to each image.

Completed files The gallery-captions folder in the chapter 5 folder.

1. Edit the script. Add the elements shown in bold to your script (in gallery.js).
These will enable you to target an element on the page with an id value of
caption, loading new text into it when a thumbnail is clicked.

function swapPhoto(photoSRC,theCaption) {
var displayedCaption = document.getElementById("caption");
displayedCaption.firstChild.nodeValue = theCaption;
document.images.imgPhoto.src = "assets/" + photoSRC;

}

2. Add a caption. Under the main image in the gallery.html file, add a paragraph
with an id value of caption, along with the caption text for the default image.

<img src="assets/image-1.jpg" width="500" height="375" id="imgPhoto"
➥ alt="Main photo" />
<p id="caption">Some sheep, grazing.</p>

3. Edit the thumbnails. For each thumbnail, add some caption text, as shown follow-
ing. Ensure that there’s a comma between the two swapPhoto values you now have.

<a href="assets/image-1.jpg" onclick="javascript:swapPhoto
➥('image-1.jpg','Some sheep, grazing.'); return false;"><img
➥ src="assets/image-1-t.jpg" alt="sheep" width="100"
➥ height="75" />

Some characters are invalid for captions, because they terminate the script early. If
you want to add a single quote mark (often used as an apostrophe online, when
“smart” quotes aren’t being used), you must escape the character first, using a back-
slash, like so: \'. If you wish to add a double quote mark, you need to define it as an
HTML entity: ".

Adding captions to your image gallery

USING LINKS AND CREATING NAVIGATION

187

5

9071CH05.qxd 10/4/07 1:06 PM Page 187

Automated gallery scripts
The kind of script mentioned in the previous exercise is great for creating a gallery fine-
tuned to your specific website: you can control the styles and positioning with ease.
However, there are a number of ready-made scripts online, one of the best of which is
Lightbox2 (www.huddletogether.com/projects/lightbox2/), by Lokesh Dhakar. The
script is highly automated, darkening the screen and providing next/previous buttons,
along with the capability to rapidly add captions.

In terms of setup, you attach the various scripts and the CSS file from the download files,
and check the paths to the included images (which can be replaced, if you don’t like the
defaults). You then simply add rel="lightbox" to any link or thumbnail that’s to be used
to activate the lightbox script. The optional title element enables you to add a caption.

<img
➥ src="assets/image-1-t.jpg" alt="thumbnail" width="100"
➥ height="75" />

It’s also possible to add more complex captions, including links, by using character entities
to encode the <, >, and " characters when adding HTML. (See Appendix C—“Entities
Reference”—for more on entities.)

<a href="assets/image-1.jpg" rel="lightbox" title="The caption - <
➥a href="http://www.a-website.com">Link content
➥"><img src="assets/image-1-t.jpg" alt="thumbnail"
➥ width="100" height="75" />

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

188

9071CH05.qxd 10/4/07 1:06 PM Page 188

http://www.huddletogether.com/projects/lightbox2
http://www.a-website.com">

Usefully, groups of images can be defined just by adding square brackets and a group
name, directly after lightbox in the rel value. This automates the inclusion of prev and
next buttons, along with providing an image count (such as “Image 4 of 10”) for the cur-
rent group.

<a href="assets/image-1.jpg" rel="lightbox[groupName]" title="The
➥ caption"><img src="assets/image-1-t.jpg" alt="thumbnail"
➥ width="100" height="75" />
<a href="assets/image-2.jpg" rel="lightbox[groupName]" title="The
➥ second caption"><img src="assets/image-2-t.jpg" alt="thumbnail"
➥ width="100" height="75" />
<a href="assets/image-3.jpg" rel="lightbox[groupName]" title="The
➥ third caption"><img src="assets/image-3-t.jpg" alt="thumbnail"
➥ width="100" height="75" />

The following image shows how the site looks (this example is from Pinkflag.com’s gallery
in the look section). If you’re fine with the look of the gallery (although some of its ele-
ments can be restyled and tweaked in CSS) and its popularity (it’s used on a lot of sites
these days), it can save a bit of time, and it’s also very easy for clients to update
themselves. For a more unique take, you’ll need to get your hands dirty with your
own code.

USING LINKS AND CREATING NAVIGATION

189

5

9071CH05.qxd 10/4/07 1:06 PM Page 189

Note that some may consider the behavior of Lightbox2 at odds with user expectation,
because the browser back button returns you to the previous page you visited, rather than
closing the lightbox. In my opinion, this is logical—after all, Lightbox2 is internal page con-
tent, not a separate page. However, if you’d like to override the default behavior and have
the back button on the browser close the lightbox, instructions are available from
www.cloversignsblog.com/2007/06/fixing-the-back-button-in-lightbox/.

Collapsible page content

The DOM enables you to access and dynamically control various aspects of a web page,
and this allows you to use a nifty little trick to toggle the visibility of divs. This has numer-
ous uses, from providing a method of hiding “spoiler” content unless someone wants to
see it, to various navigation-oriented uses, which will be more fully explored later in the
chapter.

Required files The collapsible-div-starting-point folder from the chapter 5
folder.

What you’ll learn How to create a collapsible div.

Completed files The collapsible-div-completed folder from the chapter 5
folder.

1. Examine the script. Open collapsible-div.js. The code enables you to target any
div with a unique id value. Each time the script is run, it determines whether the
display value of the div is set to block (which makes it visible). If it is, the value is
set to none, thereby making it invisible. If it isn’t set to block (which means it’s set
to none), the script sets the value to block.

function swap(targetId){
if (document.getElementById)
{
target = document.getElementById(targetId);
if (target.style.display == "block")
{
target.style.display = "none";

}
else
{
target.style.display = "block";

}
}

}

Setting up a collapsible div

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

190

9071CH05.qxd 10/4/07 1:06 PM Page 190

http://www.cloversignsblog.com/2007/06/fixing-the-back-button-in-lightbox

2. Add a link. Add the code block shown following—when clicked, the link will toggle
the hidden content. The value within the onclick attribute (hiddenDiv, in this
case) is the id value of the div that this link will toggle.

<p><a href="#" title="Toggle section" onclick="toggleDiv('hiddenDiv');
➥ return false;">Toggle div!</o>

3. Add a div, and give it an id value equal to the onclick value from the previous
step. Within the div, add whatever content you want. The style attribute makes
the div initially hidden.

<p><a href="#" title="Toggle section" onclick="toggleDiv('hiddenDiv');
➥ return false;">Toggle div!</p>
<div id="hiddenDiv" style="display: none;">
<p>Initially hidden content goes here.</p>
</div>

A combination of the previous two exercises can be seen in action in a previous version
of my Images from Iceland website—see www.snubcommunications.com/iceland/
iceland-old.html. This site expands on the div toggler by also toggling the arrow images
when a section is toggled, and it shows what you can do with some straightforward
JavaScript, some decent photographs, and a bit of imagination.

USING LINKS AND CREATING NAVIGATION

191

5

Enhancing accessibility for collapsible content
Although the old version of the Images from Iceland site looks good, it has a problem in
common with the previous exercise: when JavaScript is disabled, the initially hidden con-
tent is inaccessible. The Iceland site was quickly knocked together a number of years back
and has been superseded with a new site, but for any site developed today, there should
be no excuses.

In the previous exercise, the hidden content is set to be hidden by default and the display
property is toggled via the JavaScript function. What therefore needs to be done is to
make the content visible by default and then override this, making it invisible, but only if

9071CH05.qxd 10/4/07 1:06 PM Page 191

http://www.snubcommunications.com/iceland

the user has JavaScript. The first thing to do is remove the style attribute from the fol-
lowing line of code:

<div id="hiddenDiv" style="display: none;">

Next, a style sheet is created (named javascript-overrides.css for this example), with a
rule that targets the relevant div and sets display to none.

#hiddenDiv {
display: none;

}

Finally, amendments are made to the JavaScript file, adding some lines that attach the new
JavaScript document to the web page:

var cssNode = document.createElement('link');
cssNode.setAttribute('rel', 'stylesheet');
cssNode.setAttribute('type', 'text/css');
cssNode.setAttribute('href', 'javascript-overrides.css');
document.getElementsByTagName('head')[0].appendChild(cssNode);

The results of this are the following:

If a user has JavaScript enabled, javascript-overrides.css is loaded, applying the
display value of none to the togglable div.

If a user has JavaScript disabled, javascript-overrides.css is not loaded, mean-
ing the togglable div contents are visible.

See the collapsible-div-accessible folder within the chapter 5 folder for reference
files.

Modularizing the collapsible content script
Although the previous script works perfectly well for a single div, it’s awkward if you want
to use several divs over the course of a page. That’s how the old Images from Iceland site
works, and I had to keep track of id names and values while constructing it. However, it is
possible to make a toggler strip more modular, although this relies on keeping document
structure very strict as far as the collapsible sections go. The files for this section are in the
collapsible-div-modular folder within the chapter 5 folder.

The JavaScript is similar to that in the previous example.

function toggle(toggler) {
if(document.getElementById) {
targetElement = toggler.parentNode.nextSibling;

if(targetElement.className == undefined) {
targetElement = toggler.parentNode.nextSibling.nextSibling;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

192

9071CH05.qxd 10/4/07 1:06 PM Page 192

if (targetElement.style.display == "block") {
targetElement.style.display = "none";

}
else {
targetElement.style.display = "block";

}
}

}

The main change is that instead of targeting a div with a specific id value, the script
targets an element in relation to the one being used as a toggler, by way of the
parentNode/nextSibling JavaScript properties.

If you look at the HTML document, you’ll see that the parent of the anchor element is the
p element. What the next sibling element is depends on the browser—Internet Explorer
just looks for the next element in the document (div), but other browsers count white-
space as the next sibling.

<p><a href="#" title="Toggle section" onclick="toggle(this); return
➥ false;">Toggle div 1!</p>
<div class="expandable">
<p>Initially hidden content (div 1) goes here.</p>

</div>

It would be possible to get around this by stripping whitespace. However, a line in the
JavaScript makes this unnecessary.

if(document.getElementById) {
targetElement = toggler.parentNode.nextSibling;

if(targetElement.className == undefined) {
targetElement = toggler.parentNode.nextSibling.nextSibling;

}

The first line of the previous code block sets the target to the next sibling of the parent
element of the link. In Internet Explorer this works, but other browsers find only white-
space. Therefore, the second line essentially says, “If you find whitespace (undefined),
then set the target to the next sibling on.” It’s a bit of a workaround, but it’s only one line
of JavaScript.

The JavaScript also includes the method used in the preceding “Enhancing accessibility for
collapsible content” section, to make the togglable sections initially invisible in JavaScript-
enabled browsers only. Note that the related CSS is slightly different to that shown in the
previous section—instead of hidden content being in a div with an id value of hiddenDiv,
it’s now in multiple divs, all of which have a class value of expandable. Therefore, the
selector in the CSS rule has been updated accordingly:

.expandable {
display: none;

}

USING LINKS AND CREATING NAVIGATION

193

5

9071CH05.qxd 10/4/07 1:06 PM Page 193

This system enables you to use as many collapsible divs as you like on the page, and you
don’t have to set id values—the toggling is essentially automated. However, as mentioned
earlier, you must ensure that your structure remains the same for each area that can be
toggled, otherwise the script won’t find the correct element to make visible or invisible
when the links are clicked.

How to find targets for collapsible content scripts
If you want to change your document structure when using the script from the previous
section in this chapter, you need to find the parent/sibling path, in Internet Explorer and in
other browsers. If you’ve a good grasp of JavaScript, this should be simple; however, if you
don’t—or you just want to sanity-check your values—it’s simple to find out what an ele-
ment’s parent is, what it’s next sibling is, and various combinations thereof.

First, give your clickable element a unique id value:

<p><a id="linkToggler" href="#" title="Toggle section"
➥ onclick="toggle(this); return false;">Toggle div 1!</p>

Elsewhere within the web page, add the following script:

<script type="text/javascript">
//<![CDATA[
alert(document.getElementById("linkToggler").nodeName);

//]]>
</script>

Before .nodeName, add whatever combination of .parentNode and .nextSibling you
like—here’s an example:

<script type="text/javascript">
//<![CDATA[
alert(document.getElementById("linkToggler").parentNode.

➥nextSibling.nextSibling.nodeName);
//]]>

</script>

When you load the web page in a browser, an alert message will be displayed. This will
detail what the target element is, based on the path defined in the previous code block.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

194

9071CH05.qxd 10/4/07 1:06 PM Page 194

In this section, you’ve seen a bare-bones, unstyled version of how to work with collapsible
content. Later in the chapter, this method will be used to create collapsible sections for a
navigation bar.

Creating navigation bars
The chapter has so far largely concentrated on inline navigation, so we’ll now turn our
attention to navigation bars. Before getting immersed in the technology, you need to
decide what names you’re going to use for your navigation bar’s items. When designing
the basic structure of the site, content should be grouped into categories, and this is often
defined by what the user can do with it. It therefore follows that navigation bar links tend
to be one of the following:

Action-based (buy now, contact us, read our history)

Site audience–based (end users, resellers, employees)

Topic-based (news, services, contact details)

Whenever possible, keep to one of the preceding categories rather than mixing topics and
actions. This sits easier with readers. Navigation links should also be succinct, to the point,
and appropriate to the brand and tone of the website.

In this section, we’ll cover using lists for navigation, styling list-based navigation bars, work-
ing with inline lists, and creating graphical navigation bars with rollover graphics.

Using lists for navigation bars

Think back to what we’ve covered to this point about semantic markup. Of the HTML ele-
ments that exist, which is the most appropriate for a navigation bar? If you said, “a table,”
go to the back of the class. Using tables for navigation bars might be a rapid way of get-
ting them up and running, but it’s not structurally sound. When looked at objectively, nav-
igation bars are essentially a list of links to various pages on the website. It therefore
follows that HTML lists are a logical choice to mark up navigation bars.

USING LINKS AND CREATING NAVIGATION

195

5

9071CH05.qxd 10/4/07 1:06 PM Page 195

When creating the initial pass of the website, just create the list as it is, along with all the
associated pages, and let people play around with the bare-bones site. This enables users
to get a feel for its structure, without getting distracted by content, colors, and design.
However, sooner or later, you’re going to want to make that list look a little fancier.

Much of the remainder of this chapter is concerned with CSS and how it can be used to
style lists. From a plain HTML list, you can rapidly create exciting visual designs—and ones
that are easy to update, both in terms of content and design. After all, adding another nav-
igation link is usually just a matter of adding another list item.

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder.

What you’ll learn How to create a vertically aligned navigation bar, and how to style
it with CSS to create a 3D-like effect for each of the list items.

Completed files The vertical-navigation-bar folder in the chapter 5 folder.

1. Create the list structure. Add the following code block to create the structure of
the navigation bar. By using nested lists, you can provide the navigation bar with a
hierarchical structure (and you can style each level in CSS). In this example, the list
has two levels. (Refer to Chapter 3 for an overview of correctly formatting lists.)
This list is nested within a div with an id value of navigation, which we’ll later take
advantage of by using contextual selectors. (For this example, dummy href values
of # are being used, but in a live site, always check that your links lead somewhere!)

<div id="navigation">

Section one

A link to a page
A link to a page
A link to a page
A link to a page

Section two

A link to a page
A link to a page
A link to a page
A link to a page

Using HTML lists and CSS to create a button-like vertical navigation bar

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

196

9071CH05.qxd 10/4/07 1:06 PM Page 196

Section three

A link to a page
A link to a page
A link to a page
A link to a page

</div>

2. Add some padding to the body element, so page content doesn’t hug the browser
window edges. Also, add the background-color pair shown following:

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;
background-color: #aaaaaa;
}

3. Style the list. Add the following rule to remove the
default bullet points from unordered lists within the nav-
igation div, define a width for the lists, and also set the
default font style.

#navigation ul {
list-style-type: none;
width: 140px;
font: 1.2em/1 Arial, Helvetica, sans-serif;

}

4. Set an override for nested lists. As you can see from the
previous image, the nested links have much larger text.
This is because font sizes in ems are inherited, and there-
fore the font size within the nested lists ends up at
1.2ems multiplied by 1.2ems. By adding the following
rule, the font size of nested lists is reset to 1em, making
nested lists look the same as top-level lists.

#navigation ul ul {
font-size: 1em;

}

5. Style the buttons. Use a contextual selector to style links within the navigation div
(i.e., the links within this list). These styles initially affect the entire list, but you’ll
later override them for level-two links. Therefore, the styles you’re working on now
are intended only for level-one links (which are for sections or categories). This
first set of property/value pairs turns off the default link underline, sets the list
items to uppercase, and defines the font weight as bold.

USING LINKS AND CREATING NAVIGATION

197

5

9071CH05.qxd 10/4/07 1:06 PM Page 197

#navigation a:link, #navigation a:visited {
text-decoration: none;
text-transform: uppercase;
font-weight: bold;

}

6. Set button display and padding. Still within the same rule, set the buttons to
display as block, thereby making the entire container an active link (rather than
just the link text). Add some padding so the links don’t hug the edge of the
container.

#navigation a:link, #navigation a:visited {
text-decoration: none;
text-transform: uppercase;
font-weight: bold;
display: block;
padding: 3px 12px 3px 8px;

}

7. Define colors and borders. Define the button background and foreground colors,
setting the former to gray and the latter to white. Then add borders to create a 3D
effect. Borders can be styled individually. By setting the left and top borders to a
lighter shade than the background, and the right and bottom borders to a darker
shade, a 3D effect is achieved. (Don’t use black and white, because it will make the
result is too harsh.)

#navigation a:link, #navigation a:visited {
text-decoration: none;
text-transform: uppercase;
font-weight: bold;
display: block;
padding: 3px 12px 3px 8px;
background-color: #666666;
color: #ffffff;
border-top: 1px solid #dddddd;
border-right: 1px solid #333333;
border-bottom: 1px solid #333333;
border-left: 1px solid #dddddd;

}

8. Define other link states. The hover state is defined by
just changing the background color, making it slightly
lighter.

#navigation a:hover {
background-color: #777777;

}

The active state enables you to build on the 3D
effect: the padding settings are changed to move the text up and left by 1 pixel, the
background and foreground colors are made slightly darker, and the border colors
are reversed.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

198

9071CH05.qxd 10/4/07 1:06 PM Page 198

#navigation a:active {
padding: 2px 13px 4px 7px;
background-color: #444444;
color: #eeeeee;
border-top: 1px solid #333333;
border-right: 1px solid #dddddd;
border-bottom: 1px solid #dddddd;
border-left: 1px solid #333333;

}

9. Style nested list item links. The selector #navigation li li a enables you to style
links within a list item that are themselves within a list item (which happen to be in
the navigation div). In other words, you can create a declaration for level-two links.
These need to be differentiated from the section links, hence the following rule
setting them to lowercase and normal font weight (instead of bold). The padding
settings indent these links more than the section links, and the background and
foreground colors are different, being very dark gray (almost black) on light gray
rather than white on a darker gray.

#navigation li li a:link, #navigation li li a:visited {
text-decoration: none;
text-transform: lowercase;
font-weight: normal;
padding: 3px 3px 3px 17px;
background-color: #999999;
color: #111111;

}

10. Style nested item hover and active states. This is done in the same way as per the
section links, changing colors as appropriate and again reversing the border colors
on the active state.

#navigation li li a:hover {
background-color: #aaaaaa;

}
#navigation li li a:active {
padding: 2px 4px 4px 16px;
background-color: #888888;
color: #000000;
border-top: 1px solid #333333;
border-right: 1px solid #dddddd;
border-bottom: 1px solid #dddddd;
border-left: 1px solid #333333;

}

The navigation bar is now complete and, as you can see from the following images
(which depict, from left to right, the default, hover, and active states), the but-
tons have a tactile feel to them. Should this not be to your liking, it’s easy to
change the look of the navigation bar because everything’s styled in CSS. To expand
on this design, you could introduce background images for each state, thereby
making the navigation bar even more graphical. However, because you didn’t

USING LINKS AND CREATING NAVIGATION

199

5

9071CH05.qxd 10/4/07 1:06 PM Page 199

simply chop up a GIF, you can easily add and remove items from the navigation bar,
just by amending the list created in step 1. Any added items will be styled auto-
matically by the style sheet rules.

Required files The files from vertical-navigation-bar in the chapter 5 folder.

What you’ll learn How to take the navigation bar created in the previous exercise
and make its sections collapsible.

Completed files vertical-navigation-bar-collapsible in the chapter 5 folder.

1. Set up the JavaScript. Create a new JavaScript document and attach it to the HTML
file via a script element in the head of the document. (In the example files, this
document has been named vertical-navigation-bar.js.) First, add the
JavaScript lines first shown in the “Enhancing accessibility for collapsible content”
section:

var cssNode = document.createElement('link');
cssNode.setAttribute('rel', 'stylesheet');
cssNode.setAttribute('type', 'text/css');
cssNode.setAttribute('href', 'javascript-overrides.css');
document.getElementsByTagName('head')[0].appendChild(cssNode);

Next, add the toggler script shown in the “Modularizing the collapsible content
script” section, but amend the target element as shown:

function toggle(toggler) {
if(document.getElementById) {
targetElement = toggler.nextSibling;

Creating a vertical navigation bar with collapsible sections

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

200

9071CH05.qxd 10/4/07 1:06 PM Page 200

if(targetElement.className == undefined) {
targetElement = toggler.nextSibling.nextSibling;
}

if (targetElement.style.display == "block")
{
targetElement.style.display = "none";
}
else
{
targetElement.style.display = "block";
}
}

}

2. Amend the list. To each top-level navigation link, add the onclick attribute, as
shown following. And to each second-level list that you initially want to be invisible,
add the class attribute shown. For any list you want to be visible, instead add
style="display: block;".

Section one
<ul class="collapsibleList">
A link to a page
A link to a page
A link to a page
A link to a page

3. Add a style sheet. Create and save the style sheet document javascript-
overrides.css, and add the following rule to initially hide any lists with the
collapsibleList class value in JavaScript-enabled browsers.

#navigation ul.collapsibleList {
display: none;

}

The following images show the results (which depict, from left to right, the
default, hover, and active states).

Note that if you wanted to toggle different kinds of elements on your page, the two
scripts shown so far in this chapter would clash. Therefore, you would need to create
two different functions, with different names; for example, you could change all
instances of toggle(toggler) in this exercise to toggleNav(toggler).

USING LINKS AND CREATING NAVIGATION

201

5

9071CH05.qxd 10/4/07 1:06 PM Page 201

Working with inline lists

By default, list items are displayed in a vertical fashion, one under the other. However, this
behavior can be overridden in CSS, enabling you to create inline lists. This is handy for
website navigation, since many navigation bars are horizontally oriented. Some designers
mark up horizontal navigation up by using strings of links separated by vertical bars or
spaces:

A link | A link |
➥ A link

However, a horizontal navigation bar is still a list of links, and so semantically should be
marked up in the same way as the vertical navigation bar in the previous exercise. In this
section, you’ll find out how to work with inline lists, discovering how to create breadcrumb
navigation, CSS-only “tabbed” navigation, and various graphical navigation bars, complete
with rollover effects—all without relying on JavaScript.

Required files XHTML-basic.html and CSS-default.css from the basic-
boilerplates folder, along with double-arrow.gif from
navigation-images within the chapter 5 folder.

What you’ll learn How to create breadcrumb navigation by using a list styled in CSS.
Breadcrumb links show the path you’ve taken to the current
document.

Completed files The breadcrumb-navigation folder in the chapter 5 folder.

Creating breadcrumb navigation

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

202

9071CH05.qxd 10/4/07 1:06 PM Page 202

1. Add the list. In the HTML document, add the following code for the breadcrumbs.
Note that the last item signifies the current page—this is why it’s not a link.

<ul id="breadcrumbs">
Home page
Reviews
Live gigs
London, 2008

2. Add some body padding. Add a padding value to the existing body rule.

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px;

}

3. Style the list by adding the following rule. The font-size setting specifies the font
size for the list items, and the margin-bottom setting adds a margin under the list.

ul#breadcrumbs {
font-size: 1.2em;
margin-bottom: 1em;

}

4. Add the following rule to style the list items. By setting display to inline, list
items are stacked horizontally. The background value sets double-arrow.gif as the
background to each list item (ensure it’s in the same directory as the CSS docu-
ment, or modify the path accordingly); the positioning values ensure the back-
ground is set at 0 horizontally and 50% vertically, thereby vertically centering it at
the left—at least once no-repeat is set, which stops the background tiling. Finally,
the padding value sets padding at the right of each list item to 10px, ensuring items
don’t touch the subsequent background image; the left padding value of 15px
provides room for the background image, ensuring the list item text doesn’t sit on
top of it.

#breadcrumbs li {
display: inline;
background: url(double-arrow.gif) 0 50% no-repeat;
padding: 0 10px 0 15px;

}

Note that when list items are displayed inline, the default bullet points are not dis-
played. This is one reason why the bullets in this example are background images,
although we also wanted something more visually relevant, right-facing arrows show-
ing the path direction.

USING LINKS AND CREATING NAVIGATION

203

5

9071CH05.qxd 10/4/07 1:06 PM Page 203

5. Remove the first bullet. As the trail is leading from the first item, it shouldn’t have
a bullet. This can be dealt with via a simple, standards-compliant rule that removes
the background from only the list item that is the first child of the unordered list
(i.e., the first list item in the list):

ul#breadcrumbs li:first-child {
background: none;

}

Required files The graphical-navigation-starting-point folder from the
chapter 5 folder.

What you’ll learn How to create a good-looking navigation bar, entirely based on
HTML text and styled using CSS.

Completed files The simple-horizontal-navigation-bar folder in the chapter 5
folder.

1. Examine the web page. The web page for this exercise—graphical-navigation.
html—is designed for flexibility when it comes to styling elements on the page,
making it easy to change elements without touching the markup (this page is used
with a few modifications in subsequent exercises, too).

The page’s contents are placed within a wrapper div, within which are the mast-
head and content divs. The latter contains some paragraphs, and the former
includes a navContainer div, which houses a navigation div, which in turn houses
the unordered list shown in the following code block. (This nesting of divs isn’t
required for all sites—often you can get away with a single div around the naviga-
tion list—or, indeed, none at all, applying the id value of navigation to the list
itself; however, having an additional wrapper or two is often useful for more com-
plex layouts.)

The list is an unordered list. The main difference to previous lists is the inclusion of
an id value for each list item. For horizontal lists, especially those that will be highly
styled, this is worth doing, because it enables you to work all manner of CSS trick-
ery later on, which can benefit the web page. (In fact, some of the techniques can
be applied to vertical lists, too.)

<li id="homePageLink">Home page
<li id="servicesPageLink">Services

Creating a simple horizontal navigation bar

Note that prior to Internet Explorer 7, first-child was not implemented cor-
rectly. If you want to create the same effect in Internet Explorer 6 and before,
you must instead apply a class to the first list item and then style it to have no
background using CSS.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

204

9071CH05.qxd 10/4/07 1:06 PM Page 204

<li id="customerSupportPageLink">Customer support
➥
<li id="contactDetailsPageLink">Contact details

2. Edit the body and p rules. This design is going to have a classic feel, so in the CSS
file, edit the body rule to amend the font set, add a light gray background, and
amend the p rule to change the font size.

body {
font: 62.5%/1.5 Georgia, "Times New Roman", Times, serif;
background: #dddddd;
}
p {
font-size: 1.3em;
margin-bottom: 1em;

}

3. Style the structural divs. First, add a rule to style the wrapper div, as shown in the
following code block. This sets a fixed width for the div, centers it horizontally, and
applies borders on all edges except the top one. The background value provides a
white background for the page’s content. (Note that there’s plenty of explanation
about page layout in Chapter 7.) For the content area, add some horizontal
padding by adding the #content rule shown in the following code block.

#wrapper {
width: 700px;
margin: 0 auto;
border-right: 1px solid #898989;
border-bottom: 1px solid #898989;
border-left: 1px solid #898989;
background: #ffffff;

}
#content {
padding: 0 15px;

}

4. Style the navigation container by adding the following rule to style the
navContainer div. In this rule, the font style for the navigation bar’s links is set,
and the text-align value centers the content horizontally. The padding value
applies some padding at the top and bottom of the navContainer div, ensuring
its content doesn’t hug its edges—in design, the space is often as important as the
content, so don’t cram things in.

#navContainer {
font: 1.1em/1 Georgia, "Times New Roman", Times, serif;
background: #d7d7d7;
text-align: center;
padding: 7px 0px;
border-top: 1px solid #898989;
border-bottom: 1px solid #898989;
margin-bottom: 10px;

}

USING LINKS AND CREATING NAVIGATION

205

5

9071CH05.qxd 10/4/07 1:06 PM Page 205

5. Style the list items. Now that the structure’s styled, it’s time to get cracking on the
list. First, add a rule to remove the default bullets from the unordered list within
the navigation div.

#navigation ul {
list-style: none;

}

Next, set the list items to display inline, as with the breadcrumbs. Add some hor-
izontal padding, and also, as shown, add a border to each item’s right-hand edge,
which will act as a visual separator, making each link more distinct.

#navigation li {
display: inline;
padding: 0px 9px;
border-right: 1px solid #aaaaaa;

}

If you test the page at this point, you’ll see that all the links have a right-edge bor-
der—not a terrible crime—but from a design standpoint, the one at the far right
shouldn’t have one (after all, separators are only needed between pairs of links).
Luckily, because of the id values applied to the list items earlier, each one can be
individually styled, which also means an override can be applied to a specific link.
In this case, add the following rule, which removes the border from the list item
with an id value of contactDetailsPageLink:

#navigation #contactDetailsPageLink {
border-right: none;

}

6. The last thing to do is style the links. The following rules set the link text to upper-
case, removing the default underline and coloring them black by default. The links
are then gray on the visited state, have an underline on the hover state, and are
red on the active state.

#navigation a:link, #navigation a:visited {
text-transform: uppercase;
text-decoration: none;

}
#navigation a:link {
color: #000000;

}
#navigation a:visited {

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

206

9071CH05.qxd 10/4/07 1:06 PM Page 206

color: #222222;
}
#navigation a:hover {
text-decoration: underline;

}
#navigation a:active {
color: #ff0000;

}

Required files The graphical-navigation-starting-point folder from the
chapter 5 folder.

What you’ll learn How to create a tab-style navigation bar, using only CSS for styling
(no images).

Completed files The css-only-tab-bar folder in the chapter 5 folder.

1. Edit the body element—in the HTML page, edit the body start tag, adding the class
value shown. Its significance will be explained later.

<body id="homePage">

2. Edit the body rule. In the CSS document, amend the body rule as shown to add a
light gray background:

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
background: #dddddd;

}

Creating a CSS-only tab bar that automates the active page

In this example, the color of the navigation links—which have no underline—is the
same as the body copy. While this would be a very bad idea for inline links, it’s fine for
the navigation links, because they’re obviously distinct from the text elsewhere on the
page, due to the background color and horizontal line that separates the navigation
area from the content area.

USING LINKS AND CREATING NAVIGATION

207

5

9071CH05.qxd 10/4/07 1:06 PM Page 207

3. Style structural divs. Add the following #wrapper rule, which defines a set width for
the page, centers it, and sets the background color to white.

#wrapper {
width: 700px;
margin: 0 auto;
background: #ffffff;

}

Next, style the content div by adding the following rule, which adds a border to all
edges but the top one, and defines internal padding:

#content {
padding: 15px 15px 0;
border-right: 1px solid #898989;
border-bottom: 1px solid #898989;
border-left: 1px solid #898989;

}

These rules work slightly differently from those in the previous exercise. We want
the content borders to start right under the navigation, hence the padding
being applied to the top of the content div, rather than a margin below the
navContainer div.

4. Style the navContainer div. Add the following rule to style the navContainer div.
The font settings define a size and family. Avoid setting a line-height value,
because that makes it much harder to line up the tabs with the borders later. The
padding value applies some padding above the soon-to-be-created tabs, and the
border-bottom value finally surrounds all edges of the content div with a border.
Because the wrapper div has a white background, this currently shows through the
navContainer div, and so a background setting is applied, using the same back-
ground color value as applied to the body element.

#navContainer {
font: 1.1em Arial, Helvetica, sans-serif;
text-align: center;
padding: 20px 0 0;
border-bottom: 1px solid #909090;
background: #dddddd;

}

5. Style the list. Add the following rule to style the list. The bottom padding value
(5px here) adds padding to the bottom of the list, and needs to be equivalent to
the padding value you want to be under the text in each tab.

#navigation ul {
padding: 0 0 5px;

}

Next, style the list items to make them display inline.

#navigation li {
display: inline;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

208

9071CH05.qxd 10/4/07 1:06 PM Page 208

6. Add the following rule to style the links. Most of the property values should be
familiar by now. Note how the border value applies a border to each link; this, in
tandem with the background value, gives all the links the appearance of back-
ground tabs. The padding setting provides space around the link contents (and
note how the vertical padding value is the same as the bottom padding value in
step 5), and the margin-right setting adds some space between each tab.

#navigation a:link, #navigation a:visited {
text-transform: uppercase;
text-decoration: none;
color: #000000;
background: #bbbbbb;
border: 1px solid #898989;
padding: 5px 10px;
position: relative;
margin-right: 5px;

}

As per the previous exercise, the unwanted right-hand value for the rightmost tab
(in this case, the margin-right setting) can be overridden by using a contextual
selector that takes advantage of the id values defined in the HTML document’s
unordered list items.

#navigation #contactDetailsPageLink a:link, #navigation
➥ #contactDetailsPageLink a:visited {

margin-right: 0;
}

7. Style other link states. Add the following two rules to define the other link states.
The first makes the text slightly lighter when a link has been visited. The second
brings back the default underline on the hover state, along with making the link’s
background slightly lighter.

#navigation a:visited {
color: #222222;

}
#navigation a:hover {
text-decoration: underline;
background: #cccccc;

}

USING LINKS AND CREATING NAVIGATION

209

5

9071CH05.qxd 10/4/07 1:06 PM Page 209

8. Create page-specific overrides. Remember back in step 1, when you defined an id
value for the body element? This can now be used to automate the active tab via
the following rule:

#homePage #homePageLink a:link, #homePage #homePageLink a:visited,
➥ #servicesPage #servicesPageLink a:link, #servicesPage
➥ #servicesPageLink a:visited, #customerSupportPage
➥ #customerSupportPageLink a:link, #customerSupportPage
➥ #customerSupportPageLink a:visited, #contactDetailsPage
➥ #contactDetailsPageLink a:link, #contactDetailsPage
➥ #contactDetailsPageLink a:visited {

background: #ffffff;
border-bottom-color: #ffffff;

}

The declaration is simple: a white background is applied and the bottom border
color is changed to white. The grouped selector is more complex, so I’ll start by
explaining the first contextual selector, which is #homePage #homePageLink a:link.
What this means is, “Apply the declaration to the link within an element with an id
of homePageLink that’s in an element with an id of homePage.” In the page you’ve
been working on, the body element has an id of homePage, and the first list element
in the unordered list has an id of homePageLink. Therefore, the link within this list
item is automatically given the style, making it look like the active tab (since the
background blends directly into the content area).

The other selectors in the grouped selector behave in the same way (in each case
for the link and visited styles); so if, for example, you change the id value of the
body start tag in the HTML document to customerSupportPage and then refresh
the web page, you’ll see the third link become the active tab.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

210

9071CH05.qxd 10/4/07 1:06 PM Page 210

Graphical navigation with rollover effects

Working with text and CSS alone is fine, but designers are creative types and tend to like
working with graphics. Many enjoy creating more visually arresting navigation bars, which
make use of imagery and rollovers. Historically, such systems have required a number of
images (three or more per tab) and the use of JavaScript. However, it’s possible to use CSS,
the same unordered list as used for the previous two exercises, and just a single image to
create a graphical navigation bar, as shown in the next exercise.

Required files The graphical-navigation-starting-point folder and css-tab-
rollover-image.gif from the navigation-images folder in the
chapter 5 folder.

What you’ll learn How to create a graphical navigation bar with four different states,
driven by CSS, without using any JavaScript.

Completed files The graphical-navigation-bar folder in the chapter 5 folder.

For this exercise, graphical tabs will be created, using a single GIF image that contains four
variations on the graphic: three are for link states for which styles will be defined (active,
hover, and then link and visited, which share an image); the other is to flag the current
page. By applying this image as a background to links, and then amending its vertical posi-
tioning on each state, only the relevant portion of the image will be shown. This is great
for updating a site (you only need to amend a single image), and also from a bandwidth
standpoint (one image deals with every tab and every state—no need for preloading any-
thing), and it’s easy to implement.

1. Edit the body element. Like in the previous exercise, edit the body start tag, adding
the id value shown.

<body id="homePage">

Using CSS backgrounds to create a navigation bar

USING LINKS AND CREATING NAVIGATION

211

5

9071CH05.qxd 10/4/07 1:06 PM Page 211

2. Style the structural divs. This page’s structure is simple, as are the CSS rules
required to style it. The #wrapper rule sets a fixed width (which is four times the
width of one of the tabs) and centers the design in the browser window. The
#masthead rule adds some padding at the top of the masthead, so the tabs won’t
hug the top of the browser window.

The #navContainer rule has a bottom border (to firmly separate the navigation
from the other page content) and a defined height, which is the height of a tab.
The height setting is useful, because these tabs will be floated, meaning they’re
outside of the standard document flow. By giving the container a fixed height, the
border is shown in the right place; without the height definition, the border would
be displayed at the top of the navContainer div, because as far as browsers are
concerned, floated elements technically don’t take up any height within the stan-
dard document flow.

Finally, the #content rule gives that area a background color and some padding.

#wrapper {
width: 740px;
margin: 0 auto;

}
#masthead {
padding-top: 20px;

}
#navContainer {
height: 30px;
border-bottom: 5px solid #ad3514;

}
#content {
padding: 10px;
background-color: #eeeeee;

}

3. Style list items. Items within the list are styled to float left. The background value
includes the location of the rollover image, with additional settings being
no-repeat (to stop it from tiling), and then 0 and 0, to ensure the relevant portion
of the rollover image is seen by default. The width and height values are the same
as that of the image: 185px and 30px, respectively.

#navigation li {
float: left;
background: url(css-tab-rollover-image.gif) no-repeat 0 0;
width: 185px;
height: 30px;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

212

9071CH05.qxd 10/4/07 1:06 PM Page 212

4. Next, style the links. The text is rendered in white, uppercase, and in Arial, and the
default underlines are removed. Setting display to block makes the entire link
container into an active link, thereby making the navigation bar work in the tradi-
tional manner (rather than just the text being active). Finally, the padding settings
position the text correctly over the background images. The height setting, com-
bined with the padding top setting of 9px, adds up to the height of the container—
30px. Without this, the space underneath the text would not be active.

#navigation a:link, #navigation a:visited {
font: bold 1.1em Arial, Helvetica, sans-serif;
text-transform: uppercase;
color: #ffffff;
text-decoration: none;
display: block;
height: 21px;
padding: 9px 0px 0px 30px;

}

5. Style other link states. For the hover and active states, you define which portion
of the rollover graphic is supposed to be visible. This is done via background posi-
tion values. The first of these remains 0, because you always want to see the image
from its far left. The vertical reading depends on where the relevant portion of the
image appears in the rollover graphic.

If you check css-tab-rollover-image.gif in an image editor, you’ll see the hover
state graphic is 40 pixels from the top and the active state graphic is 80 pixels
from the top. This means the image needs to be vertically moved –40 pixels and
–80 pixels for the hover and active states, respectively. Therefore, the rules for
these states are as follows:

#navigation a:hover {
background: url(css-tab-rollover-image.gif) 0 -40px;

}
#navigation a:active {
background: url(css-tab-rollover-image.gif) 0 -80px;

}

USING LINKS AND CREATING NAVIGATION

213

5

9071CH05.qxd 10/4/07 1:06 PM Page 213

6. Define the active section state. As per step 8 of the previous exercise, the active
state graphic can be set. In this case, this is done by displaying the fourth state in
the rollover image via the following rule:

#homePage #homePageLink a:link, #homePage #homePageLink a:visited,
➥ #servicesPage #servicesPageLink a:link, #servicesPage
➥ #servicesPageLink a:visited, #customerSupportPage
➥ #customerSupportPageLink a:link, #customerSupportPage
➥ #customerSupportPageLink a:visited, #contactDetailsPage
➥ #contactDetailsPageLink a:link, #contactDetailsPage
➥ #contactDetailsPageLink a:visited {

background: url(css-tab-rollover-image.gif) 0 -120px;
}

Again, you can change the id value of the body element to one of the other list
item id values to change the active section link.

Required files The files from the graphical-navigation-bar folder and
css-rollover-grid.gif from the navigation-images folder in
the chapter 5 folder.

What you’ll learn How to amend the previous exercise, in order to create a different
tab for each link—still by using a single image.

Completed files The graphical-navigation-bar-grid folder in the chapter 5
folder.

Using a grid image for multiple link styles and colors

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

214

9071CH05.qxd 10/4/07 1:06 PM Page 214

Taking the previous exercise’s completed files as a starting point, along with
css-rollover-grid.gif, which will be used as the rollover image, you’re now going to
have a different tab for each link. This will be done via more background positioning and
by making use of the list item id values to create rules with contextual selectors specific to
each item. Naturally, the rollover image contains all of the states for the rollover images.

1. Amend the list item style. To apply the new background to the list items, amend
the #navigation li rule:

#navigation li {
float: left;
display: inline;
width: 185px;
height: 30px;
background: url(css-rollover-grid.gif) no-repeat 0 0;

}

2. Amend the navContainer div border. Because the tabs are now multicolored, the
orange border at the bottom of the navContainer div won’t look good, so change
it to dark gray.

#navContainer {
height: 30px;
border-bottom: 5px solid #333333;

}

3. Set specific background positions. Each tab now requires a separate background
position to show the relevant portion of the background image for each tab. Again,
negative margins are used to pull the image into place in each case. (Because the
different colors aren’t obvious in grayscale, the tabs also have unique icons at the
far left.) These rules should be placed after the #navigation a:link, #navigation
a:visited rule.

#navigation #homePageLink {
background-position: 0 0;

}
#navigation #servicesPageLink {
background-position: -185px 0;

}

USING LINKS AND CREATING NAVIGATION

215

5

9071CH05.qxd 10/4/07 1:06 PM Page 215

#navigation #customerSupportPageLink {
background-position: -370px 0;

}
#navigation #contactDetailsPageLink {
background-position: -555px 0;

}

4. Edit the active-page state for each tab. The correct portion of the image needs to
show when a tab is the active page, and this is done by replacing the rule from
step 6 of the previous exercise with the following four rules, which should be
placed after the rules added in the previous step.

#homePage #homePageLink a:link, #homePage #homePageLink a:visited {
background: url(css-rollover-grid.gif) 0 -120px;

}
#servicesPage #servicesPageLink a:link, #servicesPage
➥ #servicesPageLink a:visited {

background: url(css-rollover-grid.gif) -185px -120px;
}
#customerSupportPage #customerSupportPageLink a:link,
➥ #customerSupportPage #customerSupportPageLink a:visited {

background: url(css-rollover-grid.gif) -370px -120px;
}
#contactDetailsPage #contactDetailsPageLink a:link,
➥ #contactDetailsPage #contactDetailsPageLink a:visited {

background: url(css-rollover-grid.gif) -555px -120px;
}

5. Finally, the two rules for the hover and active states need to be replaced by four
rules each—one for each tab. Again, negative margin values are used to display the
relevant portion of the background image for each state for each image. Add these
rules after those from the previous step.

#navigation li#homePageLink a:hover {
background: url(css-rollover-grid.gif) 0 -40px;

}
#navigation li#servicesPageLink a:hover {
background: url(css-rollover-grid.gif) -185px -40px;

}
#navigation li#customerSupportPageLink a:hover {
background: url(css-rollover-grid.gif) -370px -40px;

}
#navigation li#contactDetailsPageLink a:hover {
background: url(css-rollover-grid.gif) -555px -40px;

}

#navigation li#homePageLink a:active {
background: url(css-rollover-grid.gif) 0 -80px;

}
#navigation li#servicesPageLink a:active {
background: url(css-rollover-grid.gif) -185px -80px;

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

216

9071CH05.qxd 10/4/07 1:06 PM Page 216

}
#navigation li#customerSupportPageLink a:active {
background: url(css-rollover-grid.gif) -370px -80px;

}
#navigation li#contactDetailsPageLink a:active {
background: url(css-rollover-grid.gif) -555px -80px;

}

Once again, change the id value of the body element to amend the active section
link.

Required files The files from the graphical-navigation-bar folder, and the
images css-tab-rollover-image-left.gif and css-tab-
rollover-image-right.gif from the navigation-images folder
from the chapter 5 folder.

What you’ll learn How to amend the result from the “Using CSS backgrounds to
create a navigation bar” exercise, enabling the tabs to expand,
resizing with their content.

Completed files graphical-navigation-bar-sliding-doors in the chapter 5
folder.

With both of the graphical tab exercises so far, there is a problem: when the text is resized,
the tabs don’t resize with it.

Creating graphical tabs that expand with resized text

USING LINKS AND CREATING NAVIGATION

217

5

9071CH05.qxd 10/4/07 1:06 PM Page 217

This can be dealt with using a technique typically referred to as “sliding doors.” This
requires two images in place of the original background image tab—one for its left-hand
part and one for the right-hand part, with enough vertical repetition to expand horizon-
tally. With wider links, more of the right-hand image will be displayed.

1. Amend the list. To the list items, apply the css-tab-rollover-image-left.gif
background image, and add a padding-left value that’s the same width as the
image. This provides the left-hand side of each tab. The reason for the padding
value is so that the right-hand side of the tab (applied to the link) doesn’t overlap
the left-hand image.

#navigation li {
float: left;
background: url(css-tab-rollover-image-left.gif) no-repeat 0 0;
padding-left: 30px;
height: 30px;

}

Note that the increase in flexibility in this method is only horizontal. If you need more
flexibility vertically, increase the height of each “state” in the graphical tabs, remove
the height values from both #navigation li and #navigation a:link, #navigation
a:visited, and add a padding-bottom value to the latter of those two rules.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

218

9071CH05.qxd 10/4/07 1:06 PM Page 218

2. Amend the link style. Because the padding at the left of the link is now dealt with
by the previous rule, there’s no need for a padding-left value in #navigation
a:link, #navigation a:visited. However, because the link now stretches with
the content, a padding-right value is required, to stop the tab content in each
case from hugging the edge of the tab. This explains the amended values for the
padding property. For the background property, the image file name is amended,
along with its horizontal position, which is now at the far right (100%).

#navigation a:link, #navigation a:visited {
font: bold 1.1em Arial, Helvetica, sans-serif;
text-transform: uppercase;
color: #ffffff;
text-decoration: none;
display: block;
height: 21px;
padding: 9px 30px 0px 0px;
background: url(css-tab-rollover-image-right.gif) no-repeat 100% 0;

}

3. With this technique, the left-hand portion of the tab is no longer an active link. It’s
therefore usually recommended to keep the left-hand image as narrow as possible.
In this example, the left-hand image is 30 pixels wide, but this was used to show
how to convert a standard graphical navigation bar into one where the tabs can
expand—it’s not recommended for the graphical design of such a system. However,
this means the hover and current page states need amending; otherwise, there’s no
feedback. Therefore, for #navigation a:hover, set text-decoration to underline,
and delete everything else within the rule; and for the large, complex rule at the
end, set color: #fff200; as the sole property/value pair in the declaration.

USING LINKS AND CREATING NAVIGATION

219

5

9071CH05.qxd 10/4/07 1:06 PM Page 219

Required files The files from the graphical-navigation-bar folder and the
images active-section-tab-background.gif and sub-
navigation-background-tile.gif from the navigation-images
folder from the chapter 5 folder.

What you’ll learn How to create a two-tier navigation system, with different
backgrounds and styles for each tier. This is another method for
dealing with navigation text resizing, and it’s also useful for larger
websites, providing a place for subnavigation.

Completed files two-tier-navigation in the chapter 5 folder.

1. Edit the body element. In the HTML page, give the body start tag an id value of
homePage.

<body id="homePage">

2. Add some subnavigation. Open the HTML document and add another list for sub-
navigation, directly after the navigation div.

<div id="subNavigation">

Sub-nav one
Sub-nav two
Sub-nav three
Sub-nav four
Sub-nav five
Sub-nav six
Sub-nav seven

</div>

3. Amend the body rule. In the CSS document, edit the body rule to add a dark gray
background color and some padding at the top of the document.

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
background: #333333;
padding-top: 20px;

}

4. Style the structural divs—add the following three rules to style the three main
structural divs. Adding a light gray bottom border to the masthead makes the tran-
sition between the vibrant navigation to the black-text-on-white-background
content area less harsh.

#wrapper {
width: 750px;
margin: 0 auto;
background-color: #ffffff;

Creating a two-tier navigation menu

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

220

9071CH05.qxd 10/4/07 1:06 PM Page 220

border: 1px solid #555555;
}
#masthead {
border-bottom: 8px solid #cccccc;

}
#content {
background: #ffffff;
padding: 10px;

}

5. Add the following two rules to remove list defaults, center list content, and display
list items inline.

#navContainer ul {
text-align: center;

}
#navContainer li {
display: inline;

}

6. Style the navigation div and its links. Add the following three rules to style the
navigation div and the links within. The padding settings work as per the earlier
exercises in this chapter: again, the vertical padding must be kept constant
between the container and the links, hence the vertical padding being set to 6px in
both cases. Note the hover color—a bright yellow, designed to stand out against
both the black background of the main navigation bar and the orange background
of the subnavigation and highlighted tab.

#navigation {
background: #111111;
padding: 6px 0;

}
#navigation a:link, #navigation a:visited {
font: bold 1.2em Arial, Helvetica, sans-serif;
color: #ffffff;
text-decoration: none;
padding: 6px 10px;

}
#navigation a:hover {
color: #ffd800;

}

USING LINKS AND CREATING NAVIGATION

221

5

9071CH05.qxd 10/4/07 1:06 PM Page 221

7. Style the active page link. Using one of those grouped contextual selectors we
seem to like so much in this chapter, set a rule to style the active page link. In this
case, a background image is tiled horizontally and set to sit at the bottom of the
links. A background color is also defined, which is handy for if the text is zoomed—
if no background color were defined, the image might run out, leaving the naviga-
tion div’s background color to show through instead. This rule, however, ensures
that the background will always have some color, regardless of the font size. The
color setting itself was taken from the top pixel of the background image, so it
blends seamlessly with said image.

#homePage #homePageLink a:link, #homePage #homePageLink a:visited,
➥ #servicesPage #servicesPageLink a:link, #servicesPage
➥ #servicesPageLink a:visited, #customerSupportPage
➥ #customerSupportPageLink a:link, #customerSupportPage
➥ #customerSupportPageLink a:visited, #contactDetailsPage
➥ #contactDetailsPageLink a:link, #contactDetailsPage
➥ #contactDetailsPageLink a:visited {

background: #28b767 url(active-section-tab-background.gif)
➥ 0 100% repeat-x;
border-top: 1px solid #ca8d5c;

}

8. Add the following three rules to style the subnavigation. Here, a background image
is tiled horizontally behind the entire subNavigation div, and it works in a similar
way to the one used in step 7, blending into a background color if the text is
zoomed, dramatically changing the div’s height. The border-bottom setting pro-
vides a darker base to the navigation, which works better than having the light gray
masthead border directly beneath it. The margin-top setting pulls the entire
subNavigation div up two pixels, which stops the layout from splitting at some
levels of text zoom.

#subNavigation {
margin-top: -2px;
background: #b76628 url(sub-navigation-background-tile.gif) 0 100%
➥ repeat-x;

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

222

9071CH05.qxd 10/4/07 1:06 PM Page 222

border-bottom: 1px solid #6b6b6b;
padding: 6px 0;

}
#subNavigation a:link, #subNavigation a:visited
font: bold 1.1em Arial, Helvetica, sans-serif;
color: #ffffff;
text-decoration: none;
padding: 6px 10px;

}
#subNavigation a:hover {
color: #ffd800;

}

As you can see from the following images, this navigation bar deals really well with
increased text sizes—only when the text is absolutely massive does it not work
entirely as expected, although, crucially, it still remains usable.

The subNavigation div in this technique sometimes suffers from the hasLayout
bug in Internet Explorer 6. See Chapter 9 for a method of dealing with hasLayout.

USING LINKS AND CREATING NAVIGATION

223

5

9071CH05.qxd 10/4/07 1:06 PM Page 223

Required files Files from the graphical-navigation-bar folder and drop-down-
menu-background.gif (which is a crop of the list item background
image) from the navigation-images folder in the chapter 5
folder.

What you’ll learn How to work with an existing CSS-based navigation menu and
convert it into a drop-down menu.

Completed files The drop-down-menu folder in the chapter 5 folder.

The next type of navigation we’re going to explore in this chapter is the drop-down menu.
In part popularized by operating systems such as Windows and Mac OS, drop-down
menus are convenient for storing plenty of links in a relatively small space. However, use
them with caution, because the second tier of navigation is initially hidden from view,
unlike in the previous exercise’s system, where it was visible. However, with drop-downs,
all second-tier navigation is available from the menu.

1. Edit the web page. For any link you want to have a drop-down menu spawn from,
nest an unordered list in its parent list item, as per the example in the following
code block.

<li id="servicesPageLink">
Services

Drop-down link one
Drop-down link two
Drop-down link three
Drop-down link four

2. Create the drop-downs. Test your page now, and it will look odd because nested list
items pick up the styles for the standard list items. To start dealing with this, add
position: relative; to the #navigation li rule, which will enable nested
absolute-positioned elements to take their top and left values from their containers

Creating a drop-down menu

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

224

9071CH05.qxd 10/4/07 1:06 PM Page 224

rather than the page as a whole. Then, after the existing rules in the CSS, add the
#navigation li ul rule shown in the following code block. By setting position to
absolute and left to a large negative value, the nested lists (i.e., the drop-down
menus) are placed offscreen by default, but are still accessible to screen readers.
Adding the top border helps visually separate the nested list from its parent but-
ton.

#navigation li ul {
border-top: 1px solid #ad3514;
width: 185px;
position: absolute;
left: -10000px

}

Next, add the following rule to bring the nested lists back when you hover the
cursor over the parent list item. Upon doing so, the list item’s descendant list’s
display value is set to block, and it’s displayed directly underneath the parent
item.

#navigation li:hover ul {
display: block;
left: 0;

}

3. Style nested list items and links. Add the following rule to replace the default
background for list items with one specifically for the drop-down menus. The
border-bottom value visually separates each of the list items.

#navigation li li {
background: url(drop-down-menu-background.gif) repeat-y;
border-bottom: 1px solid #ad3514;

}

Next, add the following rule to style nested list item links, overriding the
text-transform and padding values of top-level list items.

#navigation li li a:link, #navigation li li a:visited {
text-transform: none;
padding-left: 10px;

}

4. The final step is to override the hover and active states. For this example, the
background value for top-level lists is overridden and the background image
removed (meaning the hover state for nested list links has no unique background).
To make the hover state stand out, the links are given a vibrant left border. This
also moves the text inward by the width of the border.

#navigation li li a:hover, #navigation li li a:active {
background: none;
border-left: 5px solid #f7bc1d;

}

USING LINKS AND CREATING NAVIGATION

225

5

9071CH05.qxd 10/4/07 1:06 PM Page 225

These property values are common to both states, apart from the border color
(orange for the hover state and red for the active state, roughly matching the col-
ors applied to the top-level tab icons in the same states, although the orange is
brighter for the drop-downs so that they stand out more); therefore, add the fol-
lowing rule to change only the left border’s color on the active state:

#navigation li li a:active {
border-left-color: #ed1c24;

}

Required files The drop-down-menu folder from the chapter 5 folder.

What you’ll learn How to create a multicolumn drop-down menu, based on the code
from the previous exercise.

Completed files The drop-down-menu-multi-column folder in the chapter 5 folder.

The final example in this chapter is a multicolumn drop-down menu. These are increas-
ingly common, enabling sites to provide a lot of links in a drop-down that simply wouldn’t
fit on the screen if they were listed vertically. For an example of such a drop-down in
action (although one that uses a different method), visit www.2000adonline.com/books/
and hover over the Books List link.

Creating a multicolumn drop-down menu

If you decide to create drop-down menu–based navigation, avoid copying an operat-
ing system’s menu style, because this may confuse visitors using that operating system
and irritate visitors using a rival system. The exception to this rule is if you’re creating
a site that centers around nostalgia for the days where operating systems used to
come on floppy disks. One such site—an amusing Mac OS System 7 look-alike—can
be found at http://myoldmac.net/.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

226

9071CH05.qxd 10/4/07 1:06 PM Page 226

http://myoldmac.net
http://www.2000adonline.com/books
http://myoldmac.net

1. Edit the HTML to remove the existing nested lists. Then, for the multicolumn drop-
down, decide which link you want it to spawn from and place an unordered link in
its parent list item, with a single list item of its own. Within that list item, place the
unordered lists for the columns in the drop-down, one after the other. Note that if
some columns have fewer items, they must still have the same number of list items.
However, list items can be left empty, despite this technically being a presentational
hack. (Note that HTML Tidy might have problems with this and trim the empty list
items. If you use that tool, add a nonbreaking space as the list’s content.)

<li id="servicesPage">
Services

Drop-down link 1.1
Drop-down link 1.2
Drop-down link 1.3
Drop-down link 1.4

Drop-down link 2.1
Drop-down link 2.2

USING LINKS AND CREATING NAVIGATION

227

5

9071CH05.qxd 10/4/07 1:06 PM Page 227

Drop-down link 3.1
Drop-down link 3.2
Drop-down link 3.3

2. Next, edit the nested list. The list that contains the three lists that form the
columns of the drop-down needs styling. Having larger borders on multicolumn
drop-downs is a good idea, because it enables users to focus on the contents more
easily, hence the amended border setting in the following code block. The other
change is to the width setting, which must be a multiple of three (here, it’s set to
465px, meaning that each column will be 155 pixels wide). With multicolumn drop-
downs, it’s best to avoid making each column the same width as a tab, otherwise
the result will look strange.

#navigation li ul {
border: 2px solid #ad3514;
width: 465px;
position: absolute;
left: -10000px

}

3. Now, the list item within the nested list needs amending. For the previous exercise,
the #navigation li li rule dealt with the list items in the drop-down, but here it’s
primarily for the container of the three columns. Therefore, the height and width
settings need to be set to auto to enable the list item to stretch to fit its nested
items. The background image is superfluous, so it’s replaced by a flat color, and the
border-bottom pair is removed—the borders will be moved to list items within
the columns.

#navigation li li {
background: #d27448;
height: auto;
width: auto;

}

4. The link rules should be styled next. Since the links are now one level deeper in the
list, instances of li li in the selectors are changed to li li li. In this example,
this change isn’t technically necessary, but it always pays to keep your selectors as
precise and accurate as possible. For the link and visited states, padding settings
for the top-level links are overridden, as are width and height settings. For the
other states, the border used for the hover and active effects is replaced by a
change in background color. Note that the rule that originally had both the hover
and active states in the selector (#navigation li li a:hover, #navigation li

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

228

9071CH05.qxd 10/4/07 1:06 PM Page 228

li a:active) now only requires the hover state (#navigation li li li a:hover),
because the rules have nothing in common.

#navigation li li li a:link, #navigation li li li a:visited {
text-transform: none;
padding: 10px;
width: 135px;
height: auto;

}
#navigation li li li a:hover {
background: #ad3514;

}
#navigation li li li a:active {
background: #ed1c24;

}

5. Style the column list items. Add a rule to define a width and height for the column
list items, along with a bottom border. The last of those things makes it easier to
scan the rows within the list, while the width and height settings ensure that the
layout isn’t affected if the list items have no links within. (If the width and height
settings were omitted, the list items within the columns would show their bottom
borders only underneath their content’s width—and not at all if they were empty.)
The height setting is defined in ems rather than pixels, because this makes it possi-
ble for the list items to stretch vertically if the web page’s text is resized.

#navigation li li li {
width: 155px;
height: 3em;
border-bottom: 1px solid #ad3514;
}

6. Finally, add a rule to float and define a width for the lists that comprise the con-
tainers for the list items styled in the previous step.

#navigation ul ul ul {
border: 0;
width: 155px;
float: left;
position: relative;

}

USING LINKS AND CREATING NAVIGATION

229

5

9071CH05.qxd 10/4/07 1:06 PM Page 229

The dos and don’ts of web navigation
So, that’s the end of our navigation chapter. Before we move on to working with layout,
here are a few succinct tips regarding designing web navigation.

Do

Use appropriate types of navigation.

Provide alternate means of accessing information.

Ensure links stand out.

Take advantage of link states to provide feedback for users.

Get the link state order right (link, visited, hover, active).

Use styled lists for navigation.

Use CSS and as few images as possible (preferably one) for rollovers.

Don’t

Add search boxes just for the sake of it.

Use deprecated body attributes.

Style navigation links like normal body copy.

Use image maps unless absolutely necessary.

Open new windows from links or use pop-ups.

Use clunky JavaScript for rollovers.

Although the drop-down examples work in currently shipping browsers, neither works
as is in Internet Explorer 6, because that browser doesn’t enable you to do anything
with the hover state unless it’s on a link. To cater for that browser, JavaScript must be
used as a backup.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

230

9071CH05.qxd 10/4/07 1:06 PM Page 230

9071CH05.qxd 10/4/07 1:06 PM Page 231

9071CH06.qxd 10/17/07 12:20 PM Page 232

6 TABLES: HOW NATURE (AND
THE W3C) INTENDED

9071CH06.qxd 10/17/07 12:20 PM Page 233

In this chapter:

Introducing how tables work

Using borders, padding, and spacing

Creating accessible tables

Enhancing tables with CSS

Designing tables for web page layout

The great table debate
Tables were initially intended as a means of displaying tabular data online, enabling web
designers to rapidly mark up things like price lists, statistical comparisons, specification
lists, spreadsheets, charts, forms, and so on (the following example shows a simple table,
taken from www.macuser.co.uk).

It wasn’t long, however, before web designers realized that you could place any web con-
tent within table cells, and this rapidly led to web designers chopping up Photoshop lay-
outs and piecing them back together in table-based web pages, often by using automated
tools. CSS should have put an end to that, but many web designers continue to use tables
for layout because they’re simple to set up—even though they cause problems (see the
“Tables for layout” section later in the chapter).

The strong will of CSS advocates, who typically shout that tables are evil, sometimes leads
designers to believe that tables should be ditched entirely—however, that’s not the case at
all. As mentioned, tables have a specific purpose in HTML, and one that’s still valid.
Therefore, the bulk of this chapter is going to look at tables in the context for which
they’re intended: the formatting of tabular data. Web page layout will be looked at in the
next chapter, which concentrates on CSS layout.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

234

9071CH06.qxd 10/17/07 12:20 PM Page 234

http://www.macuser.co.uk

How tables work
In this section, we’re going to look at how tables are structured, and some of the table
element’s attributes, which enable you to define the table’s dimensions and borders, along
with the spacing, padding, and alignment of its cells.

Tabular data works via a system of rows and columns, and HTML tables work in the same
way. The table element defines the beginning and end of a table. Within the table ele-
ment are table row elements (<tr></tr>), and nested within those are table cell elements
(<td></td>). The actual content is placed inside the td elements. Therefore, a simple table
with two rows containing two cells each is created like this:

<table>
<tr><td>Cell one</td><td>Cell two</td></tr>
<tr><td>Cell three</td><td>Cell four</td></tr>

</table>

Adding a border

You can place a border around table cells by using the border attribute and setting its
value to 1 or greater. The adjacent example shows how this looks in a web browser.

HTML borders for tables have a kind of 3D effect and tend to look clunky and old-
fashioned. If you want to add a border to a table, this is best done in CSS.

Cell spacing and cell padding

In addition to amending the border size, it’s possible to change the amount of padding
within a table’s cells, as well as the spacing between all the cells in a table. This is done with
the cellpadding and cellspacing attributes, respectively. In the rather extreme example
that follows, cellpadding is set to 20, cellspacing to 40, and border to 5, so that each
can be differentiated with ease (see the subsequent screenshot). As you can see,
cellspacing not only affects the spacing between the cells, but also the distance between

Always ensure that you include all end tags when working with tables. If you began
working with HTML in the mid-1990s, you may have learned that it’s OK to omit the
odd end tag from tables or table cells. However, not only does this result in invalid
XHTML, but some browsers won’t render tables accurately (or at all) when end tags
are omitted. Furthermore, there’s evidence to suggest some search engines can’t
properly spider pages that contain broken tables.

TABLES: HOW NATURE (AND THE W3C) INTENDED

235

6

9071CH06.qxd 10/17/07 12:20 PM Page 235

the cells and the table’s edges. (The CSS property border-spacing is intended to do the
same thing as cellspacing, but Internet Explorer to version 7 doesn’t support it.)

<table cellpadding="20" cellspacing="40" border="5">
<tr><td>Cell one</td><td>Cell two</td></tr>
<tr><td>Cell three</td><td>Cell four</td></tr>

</table>

You might be thinking that design-wise, this example sucks, and you’d be right. The chunk-
o-vision 3D border isn’t particularly tasteful. However, you can omit the border attribute
and use CSS to style borders instead—see the “Styling a table” section later on in this
chapter. That section also details how to set padding in CSS, which provides you with site-
wide control over cell padding. CSS also gives you much finer control over the individual
elements in a table—whereas the inline HTML attributes impose a one-style-fits-all
straightjacket.

Spanning rows and cells

It’s sometimes necessary for data to span multiple rows or columns. This is achieved via
the rowspan and colspan attributes, respectively. In the following table, the first row has
three cells. However, in the second row, the first cell spans two rows and the second cell
spans two columns. This means the second row lacks a third cell, and the third row also
only has two cells (whose contents align with the second and third cells of the top row).
See the following screenshot of the table to help make sense of this.

<table border="1" cellpadding="2">
<tr>
<td>A cell</td>
<td>Another cell</td>
<td>Yet another cell!</td>

</tr>
<tr>
<td rowspan="2">A cell that spans two rows</td>
<td colspan="2">A cell that spans two columns</td>

</tr>
<tr>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

236

9071CH06.qxd 10/17/07 12:20 PM Page 236

<td>Another cell</td>
<td>The last cell</td>

</tr>
</table>

Take care when spanning rows or columns with a cell, because it’s easy to add extra cells
accidentally. For instance, in the preceding example, it would be easy to absentmindedly
add a third cell to both the second and third rows—however, doing so appends the extra
cells to the end of the table (see the following example), which looks bad, and—more
important—makes little structural sense. Also, some screen readers have difficulty han-
dling such data, often assigning the wrong headers to various pieces of data (see the
“Creating accessible tables” section later in the chapter for information on table headers).

Setting dimensions and alignment

As you can see from the examples so far, browsers by default set cell sizes to the smallest
possible values that are large enough to accommodate the contents and any cell padding
settings defined. Although this is suitable for the majority of purposes, designers tend to
want more visual control over layouts.

Long-time designers may be well-versed in the practice of using height and width attrib-
utes to control table and cell dimensions, but beware. The width attribute is fine to use on
table start tags (the possible values of which are a number denoting the width in pixels of
the table, and a percentage, which is a percentage of the parent element’s size). However,
the height attribute is nonstandard and fails in the majority of web browsers (in fact, if
using an XHTML DTD, it fails in every currently shipping mainstream browser), which might
come as something of a shock to those people who enjoy centering content in a browser
window by using a table.

In the preceding HTML, the cell elements are indented to make it easier for you to
make them out. This wasn’t done earlier in the chapter. Either method of writing
markup is fine—it’s up to you. Note, however, that if you use images within table cells,
this extra whitespace in the HTML sometimes causes layouts to break, and must there-
fore be deleted.

TABLES: HOW NATURE (AND THE W3C) INTENDED

237

6

9071CH06.qxd 10/17/07 12:20 PM Page 237

As for setting widths and heights within table cells, that’s something that should be
avoided altogether—height and width attributes within table cells are deprecated. You
might argue that this is irrelevant—after all, all major browsers support these attributes.
Although this is true, deprecated attributes are not guaranteed to be supported in the
future. Also, table cells always expand to accommodate the widest or tallest element in a
row or column. As a result of this, defining heights and widths is often a futile attempt to
control the uncontrollable.

Vertical alignment of table cell content
If you set your table’s width to a small value, or if you have a
lot of content in one cell and relatively little in an adjacent
one, something else becomes apparent: web browsers verti-
cally align content in the middle of cells. (Generally, horizon-
tal alignment is, as with other text, to the left.) See the image
on the right for an example.

Historically, designers have used the valign attribute to
override this vertical-centering behavior—the attribute can
be added to a row or cell start tag, and set to top:
valign="top". Other values are middle (the default) and
bottom, the results of which are shown in the adjacent
screenshot.

The problem with valign is that it’s presentational markup and shouldn’t really be used; in
fact, because it’s a deprecated attribute—which means it can’t be used if you’re creating
valid XHTML Strict documents—you should instead work with the CSS alternative, the
vertical-align property, which provides practically identical results.

As an example of vertical-align in use, say you wanted all cells within a table that had a
class value of priceList to be vertically aligned to the top; you could add the following
rule to your CSS:

table.priceList td {
vertical-align: top;

}

This results in the same effect as valign="top", as discussed earlier. Likewise, you can set
the vertical-align property to middle, bottom, and various other values, as outlined
in Appendix D, “CSS Reference.”

Take care when using visual web design applications: many of them add deprecated
elements to tables if you manually drag the cells around. Use your favored applica-
tion’s preferences to turn off this feature, otherwise you’ll end up with obsolete and
redundant markup.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

238

9071CH06.qxd 10/17/07 12:20 PM Page 238

That’s pretty much where many web designers leave tables; however, there are other ele-
ments and attributes that should be used when creating tables, which will be covered in
the following sections.

Creating accessible tables
Many web designers ignore all but the most basic elements when working with tables, and
in doing so they end up with output that causes problems for screen readers. By correctly
and carefully structuring and formatting a table, not only will users of screen readers ben-
efit, but you as a designer will also have far more control over its visual appearance.
Additionally, extendable browsers like Firefox can also enable you to use the table data
in other ways, including outside of the browser. For example, the TableTools plug-in
(https://addons.mozilla.org/en-US/firefox/addon/2637) enables sorting, filtering,
and exporting of tabular data from a web page. A properly formatted table will enhance
this, making the table even more useful. Adding a few extra elements and attributes to
your table is a win-win situation, and it’s surprising to note how few designers bother with
anything other than rows and cells in their tables.

Captions and summaries

Two seldom-used table additions that enable you to provide explanations of a table’s con-
tents are the caption element and the summary attribute. The former is usually placed
directly after the table start tag, and enables you to provide a means of associating the
table’s title with the table itself. Obviously, this also helps users—particularly those with
screen readers. After reading the caption, the screen reader will go on to read the table
headers (see the “Using table headers” section later in this chapter). Without the caption,
the table’s contents might be relatively meaningless.

By default, most browsers center captions horizontally, and some set their contents in bold
type, but these default styles can be overridden with CSS.

The summary attribute, which is invisible in browsers, is used by screen readers to give the
user an overview of the table’s contents prior to accessing the content. The contents of
the summary attribute should be kept succinct, highlighting the most important aspects of
the table contents, letting the user know what to anticipate.

Many suggest that summaries should be included on all tables, but this isn’t necessarily the
case. A summary should be used only when it performs the task for which it’s designed: to
make available a succinct summary of data within a table. Should you be using tables for
layout (which I don’t recommend), there’s little point including summaries within each lay-
out table—after all, someone using a screen reader is hardly going to jump for joy upon
hearing, for the umpteenth time, “This table is used for laying out the web page.”
Summaries should save time, not waste it.

TABLES: HOW NATURE (AND THE W3C) INTENDED

239

6

9071CH06.qxd 10/17/07 12:20 PM Page 239

https://addons.mozilla.org/en-US/firefox/addon/2637

Using table headers

Only a fraction of data tables on the Web make use of table headers, even though the
majority of tables include cell data that would be better placed within headers. The table
header cell element (<th></th>) performs a similar function to the standard table cell, but
is useful with regard to accessibility. Imagine a long data table comprised solely of stan-
dard cells. The first row likely contains the headers, but because they’re not differentiated,
a screen reader might treat them as normal cells, read them once, and then continue read-
ing the remainder of the data. (If it doesn’t do this, it still has to assume which cells are
headers, and it might guess wrong.) When using table headers, the data is usually read in
context (header/data, header/data, and so on), enabling the user to make sense of every-
thing. Things can be sped up slightly by using the abbr attribute—long table headers can
be cut down, reducing what needs to be repeated when a table’s data is being read out.
An example of table header cells and a row of data cells follows:

<th>Country</th><th abbr="Capital">Capital city</th>
<td>France</td><td>Paris</td>

In this case, a screen reader should read the headers and then provide them with the data
of each cell (Country: France, Capital: Paris, etc.). But even with screen-based browsers, the
inclusion of headers proves beneficial for users, because table header cell content by
default is styled differently from data cell content, meaning the two cell types can be
easily differentiated.

Although headers are often at the top of a table, they may also be aligned down the left-
hand side. Therefore, you also need to specify whether the header provides header infor-
mation for the remainder of the row, column, row group, or column group that contains
it. This can be done with the scope attribute, which is added to the table header start tag
and given the relevant value (row, col, rowgroup, or colgroup). It’s also possible to use the
headers attribute in conjunction with id values. See the following “Scope and headers”
section for more information.

Row groups

Row group elements are almost never used, the main reason being a supposed lack
of browser support. The three possible row group elements—<thead></thead>,
<tbody></tbody>, and <tfoot></tfoot>—enable browsers to support the scrolling of the
body area of long tables, with the head and foot of the table remaining fixed.
Furthermore, when tables are printed, the aforementioned elements enable the table
head and foot to be printed on each page.

Although browser support comes up short in some areas, I still recommend using row
groups, because they encourage you as a designer to think about the structure of the
tables you’re creating. Also, although browsers don’t do all they might with the elements,
they still recognize them, which means they can be used as selectors in CSS, enabling you
to set separate styles for the head, body, and foot data.

When using row groups, you can have one or more tbody elements and zero or one thead
and tfoot elements. They should be ordered with the head first, foot second, and

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

240

9071CH06.qxd 10/17/07 12:20 PM Page 240

body/bodies third, thereby enabling the browser to render the foot prior to receiving all
of the data. Note, however, that despite this order in HTML, browsers visually render the
row groups in the order you’d expect: head, body, and foot.

Scope and headers

Although table header cells provide a means of differentiating headers and other data, a
direct means of associating one with the other can be added via the use of various attrib-
utes. For simple data tables, the scope attribute, added to table headers, provides an indi-
cation of which data a heading refers to. For example, in the previous code block, the
table is oriented in columns—the headers are above their associated data. Therefore,
adding a scope attribute to the header cells, with a value of col, clearly defines this rela-
tionship—and this is something that comes in handy for screen readers.

<th scope="col">Country</th><th scope="col">Capital city</th>
<td>France</td><td>Paris</td>

If the alignment of the table were changed, with the headers at the left, the row value
would instead be used.

<th scope="row">Country</th><td>France</td>
<th scope="row">Capital city</th><td>Paris</td>

Note that if a table header contains colspan or rowspan attributes—for example, if a
header, such as food, spanned two columns (thereby having the attribute/value pair
colspan="2") and had underneath two further headings, such as fruit and vegetables—
you could set scope="colgroup" in the table header start tag. The equivalent is true for
headers with a rowspan attribute, whereupon the scope value changes to rowgroup. In
such cases, you also need to use the colgroup/rowgroup elements.

These are positioned between the caption and thead of the table (see the following code,
and see the following section for an overview of the various structural elements of tables
combined).

<colgroup span="2">
<colgroup span="2">
<thead>
<tr>
<th scope="colgroup" colspan="2">Fruit</th>
<th scope="colgroup" colspan="2">Vegetable</th>

</tr>
<tr>
<th scope="col">Citrus</th>
<th scope="col">Berry</th>
<th scope="col">Root</th>
<th scope="col">Legume</th>

</tr>
</thead>

TABLES: HOW NATURE (AND THE W3C) INTENDED

241

6

9071CH06.qxd 10/17/07 12:20 PM Page 241

For more complex tables that have intricate structures, using many colspans or rowspans,
where it wouldn’t be immediately obvious where the relationship lies between a data
cell and a header, you can use id values and the headers element. Each table header cell
should be assigned a unique id value. Each table data cell that refers to one or more head-
ers requires a headers element. The value of the headers element is the id or ids that the
cell data refers to. Even for simpler data tables, this method can work well—see the fol-
lowing code block for how our fruit and vegetables table snippet works with id and
headers.

<thead>
<tr>
<th id="fruit" colspan="2">Fruit</th>
<th id="vegetables" colspan="2">Vegetable</th>

</tr>
<tr>
<th id="citrus">Citrus</th>
<th id="berry" >Berry</th>
<th id="root" >Root</th>
<th id="legume" >Legume</th>

</tr>
</thead>

<tbody>
<tr>
<td headers="fruit citrus">Lemon</td>
<td headers="fruit berry">Blueberry</td>
<td headers="vegetable root">Potato</td>
<td headers="vegetable legume">Pea</td>

</tr>
</tbody>

Note that the code blocks in this section are here to highlight the attributes and elements
being discussed—they should not be seen as examples of complete tables.

Building a table

You’re now going to build a table, taking into account all of the information mentioned so
far. This will be based on an iTunes playlist.

You can instead use the axis attribute to categorize groups of header cells (or data
cells), using code such as <th id="citrus" axis="fruit">. This helps imply the rela-
tionship between groups of headers via the markup, further benefiting screen reader
users. This can be particularly useful when an extra header row defining those cate-
gories hasn’t been used as it is in the previous code block (i.e., if the fruit and veg-
etable headings were omitted).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

242

9071CH06.qxd 10/17/07 12:20 PM Page 242

As you can see from the screenshot, the playlist lends itself well to being converted to an
HTML table. At the top is the table head, which details each column’s data type (song
name, time, etc.). And although there’s no table foot, you can simply add some informa-
tion regarding whose choice of music this is—something of a signature—although the
table foot can also be used to provide a succinct summary of the table’s contents, akin to
the value of the summary attribute discussed earlier.

Required files XHTML-basic.html from the basic-boilerplates folder as a
starting point, along with building-the-table-body.txt from
the chapter 6 folder.

What you’ll learn How to create a table.

Completed files building-the-table.html in the chapter 6 folder.

1. Structure the table element. In order to emulate the structure of the iTunes
playlist, set the table’s width to a percentage value. This means the table will
stretch with the browser window. As explained earlier, you should also use the
summary attribute to succinctly detail what the table’s all about.

<table width="90%" border="1" cellspacing="0"
➥ summary="Music selected by Craig Grannell, with details of song,
➥ playing time, artist, album and play count.">
</table>

Strictly speaking, the border attribute should be omitted. However, prior to adding
CSS rules, it’s a handy way to more prominently show the table’s structure in a
browser. Note also the use of cellspacing—without this, most browsers place gaps
between the table cells of unstyled tables.

Building the table

TABLES: HOW NATURE (AND THE W3C) INTENDED

243

6

9071CH06.qxd 10/17/07 12:20 PM Page 243

2. Add a caption. Immediately after the table start tag, add a caption element to pro-
vide the table with a title.

<caption>A playlist of great music</caption>

3. Add the basic table structure. Use row groups to provide the table with its basic
structure.

<thead>
</thead>
<tfoot>
</tfoot>
<tbody>
</tbody>

4. Using table header cell elements, add the content for the table head (the column
headers) as in the following code block, remembering to include relevant scope
attribute/value pairs:

<thead>
<tr>
<th scope="col">Song Name</th>
<th scope="col">Time</th>
<th scope="col">Artist</th>
<th scope="col">Album</th>
<th scope="col">Play Count</th>

</tr>
</thead>

There’s no need to add any styling—not even strong tags. By default, most
browsers display table header cell content in bold (and centered) to differentiate it
from table data; also, in the following section, you’ll be using CSS to style every-
thing, anyway.

It’s always best to keep your HTML as simple as possible, and do any styling in CSS.
This reduces page load times, and means that you have a greater degree of control. It
also means that people without the ability to view CSS see the browser defaults, which
are sensible and clear.

Remember that row groups must be added in the order outlined in
the previous “Row groups” section.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

244

9071CH06.qxd 10/17/07 12:20 PM Page 244

5. Add table foot content. As mentioned, the footer for this table is to essentially be
a signature, stating who’s at fault for this selection of music. Because this is a single
line of text that could potentially span the entire table width, simply include a
single table cell, set to span five rows (using the colspan attribute).

<tfoot>
<tr><td colspan="5">Music selection by:
➥ www.snubcommunications.com</td></tr>

</tfoot>

6. Add table body content. Finally, add the table’s body content via the usual method,
using table row and table cell elements. This table will have nearly 20 rows, so to
save on trees, only the first two rows are detailed in the following printed code
block—you can add all the others in the same way, or just copy across the content
of building-the-table-body.txt from the download files, to save inputting the
data yourself.

<tbody>
<tr>
<td>In The Art Of Stopping</td>
<td>3:34</td>
<td>Wire</td>
<td>Send</td>
<td>3</td>

</tr>
<tr>
<td>Electron John</td>
<td>3:18</td>
<td>Worm Is Green</td>
<td>Push Play</td>
<td>42</td>

</tr>
</tbody>

The following image shows the table so far.

Take care that your table body content aligns correctly with your table head-
ers. Badly formed tables are one thing, but when the headers and data don’t
correlate, the table is useless.

TABLES: HOW NATURE (AND THE W3C) INTENDED

245

6

9071CH06.qxd 10/17/07 12:20 PM Page 245

http://www.snubcommunications.com</td></tr

This table’s not pretty, but it’s structurally sound, and it includes all the relevant elements
to at least help make it accessible. As you can see, the addition of the caption and table
header cells also makes a difference. If you’re unsure of this, look at the following screen-
shot of the same table, with plain table data cells throughout and no caption.

All the information might be there, but it’s harder to pick out the headers, and users will
have to rely on body copy elsewhere to discover what the data in the table represents.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

246

9071CH06.qxd 10/17/07 12:20 PM Page 246

Styling a table
Flip back over the past few pages and you might notice that the table doesn’t exactly bear
a striking resemblance to the iTunes playlist as yet. But then, we’re only halfway through
building the table. Now it’s time to start styling it using CSS.

Adding borders to tables

As mentioned earlier, it’s a good policy to avoid using the default HTML table border. It
looks ugly and old-fashioned, and it’s a far cry from a clean, flat, 1-pixel border. You might
think it’s a straightforward process to add CSS borders to a table—logically, it makes sense
to simply add a border property/value pair to a grouped selector that takes care of both
the table headers and table data cells.

th, td {
border: 1px solid #c9c9c9;

}

But this doesn’t work. As the screenshot to the right shows, this method
results in the correct single-pixel border around the edge of the table,
but creates double-thick borders everywhere else. This is because the
borders don’t collapse by default, meaning that the right-hand border of
one cell sits next to the left-hand border of an adjacent cell, and so on.

Designers have historically gotten around this by using a rule to define a style for the top
and left borders of the table, and another to define a style for the right and bottom
borders of table cells. However, there’s a perfectly good property that
deals with the double-border syndrome: border-collapse. When this
property, with a value of collapse, is applied to the table element via an
element selector, borders collapse to a single border wherever possible.
The other available border-collapse property value, which reverts
borders back to their “standard” state, is separate.

table {
border-collapse: collapse;

}

With this brief explanation of table borders completed, we’ll now move into exercise
mode and style the table.

TABLES: HOW NATURE (AND THE W3C) INTENDED

247

6

9071CH06.qxd 10/17/07 12:20 PM Page 247

Required files styling-the-playlist-table-starting-point.html, styling-
the-playlist-table-starting-point.css, and table-header-
stripe.gif from the chapter 6 folder.

What you’ll learn How to style a table.

Completed files styling-the-playlist-table.html and styling-the-playlist-
table.css in the chapter 6 folder (along with the GIF image,
which isn’t amended).

1. Set things up. If they still exist, remove the border, cellpadding, and cellspacing
attributes within the table start tag. Add the universal selector rule (*) to remove
margins and padding, as shown a bunch of times already in this book. Also, set the
default font by using the html and body rules, as detailed in Chapter 3 of this book.
Because we’re creating a playlist based on the iTunes interface, it may as well be a
little more Apple-like, hence the use of Lucida variants as the primary fonts. Note
that the padding value in the body rule is there to ensure that the table doesn’t hug
the browser window when you’re previewing the page.

* {
padding: 0;
margin: 0;

}
html {
font-size: 100%;

}
body {
font: 62.5%/1.5 "Lucida Grande", "Lucida Sans Unicode", Arial,
➥ Helvetica, sans-serif;
padding: 20px;

}

2. Style the table borders. As per the “Adding borders to tables” section, style the
table borders.

table {
border-collapse: collapse;

}
th, td {
border: 1px solid #c9c9c9;

}

3. Style the caption. The borders have been dealt with already, so the next step is
to style the caption, which currently lacks impact. The caption is effectively a title,
and titles should stand out. Therefore, place some padding underneath it, set
font-weight to bold, font-size to 1.3em, and text-transform to uppercase.

Styling the playlist table

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

248

9071CH06.qxd 10/17/07 12:20 PM Page 248

Note that, in the following code block, CSS shorthand is used for three values for
setting padding; as you may remember from Chapter 2, the three values set the
top, horizontal (left and right), and bottom values, respectively; meaning the cap-
tion will have 0px padding everywhere except at the bottom, where the padding
will be 5px.

caption {
font-weight: bold;
font-size: 1.3em;
text-transform: uppercase;
padding: 0 0 5px;

}

4. Style the header cells. To make the header cells stand out more, apply the CSS rule
outlined in the following code block. The url value set in the background property
adds a background image to the table headers, which mimics the subtle metallic
image shown in the same portion of the iTunes interface; the 0 50% values vertically
center the graphic; and the repeat-x setting tiles the image horizontally. From a
design standpoint, the default centered table heading text looks iffy, hence the
addition of a text-align property set to left. These settings ensure that the table
header contents stand out from the standard data cell content.

th {
background: url(table-header-stripe.gif) 0 50% repeat-x;
text-align: left;

}

5. Set the font and pad the cells. At the moment, the table cell text hugs the borders,
so it needs some padding; the text is also too small to comfortably read, so its size
needs increasing. This is dealt with by adding font-size and padding pairs to the
th, td rule, as shown:

th, td {
border: 1px solid #c9c9c9;
font-size: 1.1em;
padding: 1px 4px;

}

Note that Internet Explorer exhibits slightly quirky behavior when it comes to styling
caption elements, so be sure to thoroughly test any styles you define for this element.

TABLES: HOW NATURE (AND THE W3C) INTENDED

249

6

9071CH06.qxd 10/17/07 12:20 PM Page 249

6. Style the footer. The footer content needs to be easy to differentiate from the
other data cells; you can achieve this by setting a background color for the entire
row within the tfoot element, and then by making the color of the text have less
contrast. Also, centering the text and making it smaller than text within the other
data cells ensures it doesn’t distract from the main content in the table. Centering
it also provides some balance, because the caption is also centered.

tfoot {
background-color: #dddddd;
color: #555555;

}
tfoot td {
font-size: 1.0em;
text-align: center;

}

Adding separator stripes

One of iTunes’s best visual features (and something seen in usable tables all over the
Internet, but more often in print and in applications) is missing from the completed table:
colored separator stripes, which assist you in rapidly scanning rows of data. Although you

In Chapter 3, we warned against using text with low contrast against a background
graphic. In the case of the table’s footer in this exercise, the contrast is lower than for
other text, but it’s still readable; also, the content is not a huge chunk of body copy—
it’s only a single line of text.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

250

9071CH06.qxd 10/17/07 12:20 PM Page 250

could conceivably add a class (setting a background color) to alternating rows, such a
solution is poor when creating a static site—if you had to add a row in the middle of the
table, you’d need to update every subsequent table row start tag, which is hardly efficient.

David Miller’s article, “Zebra Tables,” on A List Apart (see www.alistapart.com/articles/
zebratables/), offers a far more elegant solution. This was later reworked by Matthew
Pennell (www.thewatchmakerproject.com), whose article “Stripe Your Tables the OO Way”
(www.thewatchmakerproject.com/journal/309/stripe-your-tables-the-oo-way) offers
the lowdown on his technique, including an improved version of his script at www.
thewatchmakerproject.com/zebra.html.

Required files styling-the-playlist-table.html, styling-the-playlist-
table.css, table-header-stripe.gif, and styling-the-
playlist-table-stripes.js from the chapter 6 folder.

What you’ll learn How to add separator stripes to a table.

Completed files styling-the-playlist-table-stripes.html and styling-the-
playlist-table-stripes.css in the chapter 6 folder (along with
the GIF image and JavaScript document, neither of which are
amended).

1. Link to the JavaScript document. Taking things up from the completed table from
the previous exercise (also available in the download files as styling-the-
playlist-table.html and styling-the-playlist-table.css), add a script ele-
ment in the HTML document’s head section to link to the JavaScript file
styling-the-playlist-table.js. Note that the JavaScript document is also avail-
able in the download files.

<script src="styling-the-playlist-table-stripes.js"
➥ type="text/javascript"></script>

2. Give the table a unique id. For the script to do its work, the table start tag must
be given a unique id value. This must match the value given in styling-the-
playlist-table.js in the onload function. Therefore, add the id attribute and
value shown in the following code block:

<table id="playlist1" width="90%" border="0" summary="A playlist of
➥ great music, selected by www.snubcommunications.com.">

In the JavaScript, the relevant code that matches this is already defined, as shown
in the following code block:

window.onload = function() {
zebraTable.stripe('playlist1');

}

Applying separator stripes

TABLES: HOW NATURE (AND THE W3C) INTENDED

251

6

9071CH06.qxd 10/17/07 12:20 PM Page 251

http://www.alistapart.com/articles
http://www.thewatchmakerproject.com
http://www.thewatchmakerproject.com/journal/309/stripe-your-tables-the-oo-way
http://www.thewatchmakerproject.com/zebra.html
http://www.thewatchmakerproject.com/zebra.html
http://www.snubcommunications.com

3. Assign a separator stripe style. The script creates alternating table rows, which are
given a class value of alt. This can then be styled in CSS by using a rule with the
selector tbody tr.alt td:

tbody tr.alt td {
background: #e7edf6;

}

The previous code block styles the background of alternate rows in a light blue.

4. Define a table row hover state. The script also provides a hover state, making it
easy for users to highlight entire table rows by placing the mouse cursor over one
of the row’s cells. This is styled using the rule shown in the following code block.
Note that both background and color settings are defined, which pretty much
reverse the standard colors (white on blue, rather than black on a light color). This
makes the highlighted row stand out more, and is the same device applications
tend to use. Also note that there are two selectors here. The first is for compliant
browsers, which apply :hover rules to more than just anchors. The second is a fall-
back for older versions of Internet Explorer (before version 7), which didn’t do this.

tbody tr:hover td, tbody tr.over td {
background: #5389d7;
color: #ffffff;

}

5. Remove some horizontal borders. With the stripes in place, the top and bottom
borders of table cells in the tbody area are now redundant. Therefore, remove
them by adding the following rule:

tbody td {
border-top: 0;
border-bottom: 0;

}

Your table should now look like the following image.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

252

9071CH06.qxd 10/17/07 12:20 PM Page 252

Adding separator stripes with PHP
If you’re creating a table from data stored in a database, automating separator stripes is a
relatively simple process. After the PHP for retrieving data and the opening table markup
(including headers), you add the following:

$alternate = TRUE;
while ($row = mysql_fetch_object($sqlresult)) :
if($alternate) :
$class = ' class="alt"';
$alternate = FALSE;

else :
$class = "";
$alternate = TRUE;

endif;

echo '<tr'.$class.'>';
echo '<td>' . $row->field1 . '</td>';
echo '<td>' . $row->field2 . '</td>';
echo '</tr>';

endwhile;

This is then followed by the markup to close the table. Note that in this example, the alt
class value is applied to alternate table rows, so the CSS from the previous exercise should
still work fine.

Tables for layout
This section is going to be brief, because you should avoid using tables for layout, or even
components of a layout (excepting tabular data, obviously). There are exceptions—for
instance, some web designers consider tables acceptable for laying out forms. However,
generally speaking, tables are less accessible than CSS, harder to maintain and update,
slow to render in browsers, and don’t print particularly well. More importantly, once you
know how to create CSS-based layouts, you’ll mostly find working with tables for layout
frustrating and clunky.

To add stripes to more tables, just assign each one a unique id value and then
add another line to the window.onload function in the JavaScript document, as
per the instructions in this exercise. For example, if you added a table with an id
value of playlist2, the line of JavaScript to add to the function would be
ZebraTable.stripe('playlist2');.

TABLES: HOW NATURE (AND THE W3C) INTENDED

253

6

9071CH06.qxd 10/17/07 12:20 PM Page 253

A common way of creating tabular layouts is to chop up a Photoshop layout and use
images to stretch table cells to the correct size. (As mentioned earlier, table cells expand
to the dimensions of their content.) Many designers then use a 1-pixel invisible GIF89
(often referred to as a spacer or shim) to force content into position or stretch table cells
to a certain size. Because the 1-pixel GIF is a tiny file that’s cached, it can be used hundreds
of times without impacting download times. However, spacer and table layout usage pretty
much destroys the idea of a semantic Web. Because so much of the layout is defined via
inline HTML, updating it requires amendments to every page on the site (which must also
be uploaded and tested in each case), rather than the simple editing and uploading of an
external CSS file.

It is possible to combine CSS and tables—something that’s usually referred to as a transi-
tional layout, although one might argue that the “transition” from tables to CSS layouts
should now be considered an historic event. Such layouts are usually created to ensure
layout-based backward compatibility with obsolete devices. This direction should only be
taken when the target audience is known to definitely include a significant number of
users of very obsolete browsers, and also when the layout is paramount to the working of
the site (rather than just the content). When working on such a layout, there are a few
golden rules:

Avoid nesting tables whenever possible: Although tables can be nested like any
other HTML element, doing so makes for a web page that is slow to render and
nightmarish to navigate for a screen reader. (Obviously, there are exceptions, such
as if you need to present a table of tabular data within your layout table.)

Structure the information on the page logically: When designers use tables (partic-
ularly those exported from a graphics package), they have a tendency to think
solely about how the page looks rather than its underlying code. However, it’s
important to look at how the information appears in the HTML, because that’s how
a screen reader will see it. The content should still make sense with regard to its
flow and order even if the table is removed entirely. If it doesn’t, you need to
rework your table. (You can use Opera’s User mode to temporarily disable tables to
find out how your information is ordered without them. Chris Pederick’s Web
Developer toolbar for Firefox [www.chrispederick.com/work/web-developer/]
offers similar functionality via Miscellaneous ➤ Linearize Page.) Ensure that content
is immediately available; if it isn’t, provide a link that skips past extraneous content,
such as the masthead and navigation—otherwise, people using screen readers will
be driven bonkers. (See www.w3.org/TR/WAI-WEBCONTENT/ for more on web con-
tent accessibility guidelines.)

Avoid deprecated attributes: For instance, there’s little point in setting the table’s
height to 100% when many web browsers ignore that rule (or need to be in quirks
mode to support it).

Use CSS whenever possible to position elements: To give an example—if you’re
working with a 3-cell table and want the middle cell’s content to begin 100 pixels
from the top of the cell, don’t use a spacer GIF. Instead, provide the cell with a class
or unique ID, and use CSS padding.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

254

9071CH06.qxd 10/17/07 12:20 PM Page 254

http://www.chrispederick.com/work/web-developer
http://www.w3.org/TR/WAI-WEBCONTENT

As I keep hammering home, CSS is the way to go for high-quality, modern web page lay-
outs, and tables should be left for the purpose for which they were designed—formatting
data. The arguments that rumbled on for a few years after the 1990s came to a close—that
browsers didn’t support enough CSS to make CSS layouts possible, and that visual design
tools such as Dreamweaver couldn’t cope with CSS layouts—are now pretty much moot.
Even the previous major release of the worst offender (yes, I’m talking about Internet
Explorer 6) has more than adequate support for the vast majority of CSS layouts, and any-
thing shipping today is more than capable of dealing with CSS.

In my experience, the main reason designers avoid CSS involves their not knowing how to
work with it. Suitably, then, the next chapter deals with this very issue—showing how
to create page layout elements using CSS.

The last two of these rules are primarily concerned with ensuring that if you design for
legacy browsers, you don’t compromise your work for more modern efforts.

TABLES: HOW NATURE (AND THE W3C) INTENDED

255

6

9071CH06.qxd 10/17/07 12:20 PM Page 255

9071CH07.qxd 10/18/07 2:40 PM Page 256

7 PAGE LAYOUTS WITH CSS

9071CH07.qxd 10/18/07 2:40 PM Page 257

In this chapter:

Explaining CSS workflow

Positioning web page elements with CSS

Creating boxouts and sidebars

Creating column-based layouts

Amending layouts, depending on body class settings

Creating scrollable content areas

Layout for the Web
Although recent years have seen various institutions offer web-oriented courses, the fact
remains that many web designers out there are not “qualified,” per se. What I mean by this
is that plenty of them have come from some sort of design or technology background
related to—but not necessarily a part of—the Web. Therefore, we often see print design-
ers moving over to the Web through curiosity or sheer necessity and technologists dipping
their toes into the field of design.

This accounts for the most common issues seen in web layouts: many designers coming
from print try to shoehorn their knowledge into their website designs, despite the Web
being a very different medium from print. Conversely, those with no design knowledge
lack the basic foundations and often omit design staples. Even those of us who’ve worked
with the Web almost from the beginning and who also come from a design or arts back-
ground sometimes forget that the best sites tend to be those that borrow the best ideas
from a range of media, and then tailor the results to the desired output medium.

In this section, we’ll take a brief look at a few layout techniques: grids and boxes, columns,
and fixed vs. liquid design.

Grids and boxes

Like print-oriented design, the basis of web page design tends to be formed from grids
and boxes. Regardless of the underlying layout technology (previously, tables; more
recently, CSS), web pages are formed of rectangular areas that are then populated with
content. However, unlike print design, web design tends to be horizontally and vertically
oriented, with few, if any, curves. This is largely because of the limitations of technology;
although text on a curve is a relatively simple thing to achieve in a desktop publishing
application, doing the same thing on the Web is extremely difficult, unless you’re render-
ing text as a graphic, or using XML (SVG), which isn’t well supported across browsers.
Similarly, although areas of rectangular color can easily be defined in CSS (by creating a
div of certain dimensions and then setting its background color), you currently need to
use graphics to have curved background areas and shapes (although rounded corners on
rectangular boxes can be dynamically added using JavaScript—see Nifty Corners Cube at
www.html.it/articoli/niftycube/).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

258

9071CH07.qxd 10/18/07 2:40 PM Page 258

http://www.html.it/articoli/niftycube

A good rule of thumb for web design is to keep things relatively simple. Plan the layout on
paper prior to going near any design applications, and simplify the structure as much as
possible. A typical web page may end up with as few as three or four structural areas (such
as masthead, navigation, content, and footer areas), which can then be styled to define
their relationship with each other and the page as a whole.

Working with columns

The vast majority of print media makes heavy use of columns. The main reason for this is
that the eye generally finds it easier to read narrow columns of text than paragraphs that
span the width of an entire page. However, when working with print, you have a finite and
predefined area within which to work, and by and large, the “user” can see the entire page
at once. Therefore, relationships between page elements can be created over the entire
page, and the eye can rapidly scan columns of text.

On the Web, things aren’t so easy. Web pages may span more than the screen height,
meaning that only the top portion of the page is initially visible. Should a print page be
translated directly to the Web, you may find that some elements essential for understand-
ing the page’s content are low down the page and not initially visible. Furthermore, if using
columns for text and content, you may end up forcing the user to scroll down and up the
page several times. Finally, it’s almost impossible—due to the variations in output from
various browsers and platforms—to ensure that text columns are the same length anyway.
(CSS should eventually enable designers to more easily deal with these problems, but it
will be some time before such solutions are supported.)

Therefore, web designers tend to eschew columns—but let’s not be too hasty. It’s worth
bearing in mind something mentioned earlier: the eye finds it tricky to read wide columns
of text. Therefore, it’s often good practice to limit the width of body copy on a website to
a comfortable reading width. Also, if you have multiple pieces of content that you want
the user to be able to access at the same time, columns can come in handy. This can be
seen in the following screenshots from the Thalamus Publishing website (www.
thalamus-books.com).

PAGE LAYOUTS WITH CSS

259

7

9071CH07.qxd 10/18/07 2:40 PM Page 259

http://www.thalamus-books.com
http://www.thalamus-books.com

As you can see, the main, central column of the About page provides an overview of the
company. To the left is the site-wide search and an advertisement for one of the com-
pany’s publications; and to the right is a sidebar that provides ancillary information to sup-
port the main text. This provides text columns that are a comfortable, readable width, and
enables faster access to information than if the page content were placed in a linear, ver-
tical fashion.

Fixed vs. liquid design

As already mentioned in this book, the Web is a unique medium in that end users have
numerous different systems for viewing the web page. When designing for print, the
dimensions of each design are fixed, and although television resolutions are varied (PAL,
NTSC, HDTV), those designing for the screen work within a fixed frame—and regardless of
the size of the screen, the picture content is always the same.

In a similar fashion, it’s possible to design fixed-width sites for the Web. The earlier shot of
the Thalamus Books site is an example of this. Fixed-width sites are beneficial in that they
enable you to position elements exactly on a web page. However, because they don’t
expand with the browser window, fixed-width sites restrict you to designing for the lowest
common screen size for your intended audience, meaning that people using larger resolu-
tions see an area of blank space (or a background pattern).

You can get around this limitation by creating a liquid web design—one that stretches with
the web browser window. The benefit of a liquid design is that it’s irrelevant what resolu-
tion the end user’s machine has—the design stretches to fit. The drawback is that you
have to be mindful when designing that web page elements move, depending on each end
user’s monitor resolution and/or browser window size. You therefore cannot place ele-
ments with pixel-perfect precision.

Generally speaking, largely text-based sites tend to work best with liquid layouts, although
you have to take care to ensure the content area is always readable. (I’ve seen numerous
liquid sites where the text spans the entire web page width, which is tricky enough to read
at 800✕600, let alone on larger monitor resolutions.) Sites that are largely image-based in
nature (such as portfolios and many online magazines) tend to work better as fixed web-
sites. For instance, for any site with fixed-width images at the top of text columns (com-
mon for online magazines), the images would not sit snugly within the columns if the
layout were liquid, and could instead end up lost among large areas of whitespace.

Overall, though, there are no hard-and-fast rules and, despite what some designers might
claim, neither fixed nor liquid design is better than the alternative. You should use what-
ever technique is suitable for each project you work on. Later in the chapter, you’ll see var-
ious methods for creating strict, fixed layout skeletons, liquid designs, and combinations of
the two. Some of these will then be turned into full page designs in Chapter 10.

Layout technology: Tables vs. CSS

Unless you’re the sort of person who favors very basic web pages, with most elements sit-
ting underneath each other, you’ll need to employ some kind of layout technology when

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

260

9071CH07.qxd 10/18/07 2:40 PM Page 260

designing your web pages. Historically, web designers tended to use tables for doing this,
combined with invisible GIFs (sometimes called spacers or shims) to stretch table cells to
the required size. In the early 2000s, CSS layouts gained a foothold, and now more and
more designers are moving toward CSS as a means of page layout.

With few exceptions, pretty much everything you can do with a table can be done faster,
better, and with a greater emphasis on accessibility when using CSS. With content and
design separated, it’s much easier to tweak or rework a website, because you’re editing an
external document that controls spacing and positioning, rather than messing around with
complex tables. We discuss one of CSS’s major benefits in this regard, how it encourages
logical element placement, in the next section. Tables should really be reserved for their
original purpose: formatting tabular data.

Logical element placement

Besides the ability to rapidly edit CSS-based layouts, the greatest benefit when using CSS is
the emphasis on accessibility, partly because it encourages the designer to think about the
structure of the document, and therefore logically place the elements within the web page
(first comes the masthead, then the navigation, then the content, etc.). Each element is
then styled to suit.

Using CSS for layout instead of tables is one way of working toward this ideal. The logical
placement of each element in the web page’s structure results in improved document
flow. And if you’re scratching your head, wondering what on earth I’m talking about, let
me explain. A web page should still make sense if you remove all formatting and design
elements. This is how a screen reader sees the page—it simply reads from the top of
the HTML page downward. Because of the way table-based layouts are created, most
designers aren’t concerned with how the document is structured—merely how it looks.
Therefore, although one element may follow another visually onscreen, that may not be
the case when you look at the document’s code. (Also, tables tend to encourage superflu-
ous markup, which can also hamper accessibility.) When working with CSS, the structure of
the web page isn’t compromised.

Workflow for CSS layouts
Many designers use CSS for styling fonts, but few venture further. This section—and,
indeed, much of this chapter—shows how straightforward creating CSS layouts can be, so
long as you carefully plan what you’re going to do. Upon working through the chapter, the
benefits of a CSS-based system will become obvious, including the following: rapidly edit-
ing a website’s entire visual appearance from a single, external file; fine-tuning the place-
ment of elements; and creating flowing, accessible pages.

Before we begin, it is worth mentioning that some browsers have problems with CSS, and
this is often given as a reason to not proceed with CSS-based layouts. Of those browsers
still in widespread use, Internet Explorer 6 (and the increasingly rare 5.x) for Windows
causes the most frustration; however, that browser’s usage is in terminal decline. And
although Safari, Opera, Firefox, and Internet Explorer 7 don’t always see eye to eye, their

PAGE LAYOUTS WITH CSS

261

7

9071CH07.qxd 10/18/07 2:40 PM Page 261

differences are generally slight. For supporting earlier browsers and dealing with bugs,
there are usually simple workarounds anyway (see Chapter 9), leading me to believe that
many naysayers of CSS are negative because they don’t know how to create such layouts.

Anatomy of a layout: Tables vs. CSS

To use a fine art analogy, working with tables is like painting by numbers: you create a
skeleton layout and then fill in the gaps with the content of choice. And, like painting by
numbers, a lot of work is required to change the layout after it’s completed. Working with
CSS is more akin to sculpting with clay: you begin with something simple and then gradu-
ally fashion your layout. Making changes, tweaks, and even additions at a later date is sim-
pler, and the whole process feels more organic.

Long-time web designers may feel intimidated by CSS because they don’t initially have the
skeleton layout of table borders to work with. In some ways, CSS sits at the extremes of
web technologies, being both very graphic and design-like (in its flexibility), but also quite
technical (in how it’s created). Tables tend to sit in the middle of these two extremes.
However, once you get the hang of CSS workflow, it soon becomes second nature. Now,
we’ll look at how to create a web page structure, and we’ll then recap the CSS box model.

Creating a page structure

We’ve covered semantic markup—that is, using HTML elements for the purpose for which
they were created. This theme continues when working with CSS-based layouts. With
tables, cells are used to lay out a design and are merged, split, chopped, and changed until
everything works visually. But when working with CSS, you need to be aware of the struc-
ture of your web page from the start. That way, you can create structural elements with id
values that relate to their purpose, and then style them to suit.

For basic page structure, you mostly work with the div element. This element has been
around for some time, but used to be used for aligning text left, right, or centrally.
However, its real purpose is as a divider element, used to divide a document into block-
level groups or divisions. Therefore, in CSS-based layouts, the div element’s role is pivotal:
a number of divs are added to the web page in logical order, creating the basic structure;
each is provided with a unique id relating to its purpose; and the divs are then styled to
provide spacing, padding, backgrounds, and so on.

Just as tables can be abused, so too can div elements. Some websites seemingly suffer
from “divitis,” in which designers use too many divs, nesting many inside each other
or adding superfluous divs around elements that don’t need them. In all cases, you
should hone down your structure, using as few div elements as possible.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

262

9071CH07.qxd 10/18/07 2:40 PM Page 262

Box formatting

The box model is mentioned elsewhere in this book (see Chapter 2 and again in Appendix
D—CSS Reference), and this is a timely place for a recap, because the box model is some-
thing that confuses some web designers.

In CSS, every element is considered to be within its own box, and you can define the
dimensions of the content and then add padding, a border, and a margin to each edge as
required, as shown in the following image.

© Jon Hicks (www.hicksdesign.co.uk)

This is one of the trickiest things to understand about the CSS box model: padding, bor-
ders, and margins are added to the set dimensions of the content, and so the sum of these
elements is the overall space that they take up. In other words, a 100-pixel-wide element
with 20 pixels of padding will take up an overall width of 140 pixels, not 100 pixels with
20 pixels of padding within.

Note that the top and bottom margins on adjacent elements collapse, meaning that the
overall box dimensions aren’t necessarily fixed, depending on your design. For instance, if
you set the bottom margin to 50px on an element, and you have a top margin of 100px on
the element below it, the effective margin between the two elements will be 100 pixels,
not 150 pixels.

PAGE LAYOUTS WITH CSS

263

7

9071CH07.qxd 10/18/07 2:40 PM Page 263

http://www.hicksdesign.co.uk

CSS layouts: A single box
In the remainder of this chapter, we’ll walk through a number of common CSS layout tech-
niques, which can be combined to form countless layouts. In Chapter 10, these skeleton
layouts will form the basis of various full web page layouts, which will also integrate tech-
niques shown elsewhere in the book (such as navigation bars).

The starting point for any layout is a single box, which this section concentrates on. I typi-
cally refer to these as “wrappers” (and accordingly provide said divs with an id value of
wrapper); and you can think of them as site containers, used to define a width for the site,
or set a fixed-size design in the center of the browser window.

Required files Files from the basic-boilerplates folder as a starting point.

What you’ll learn How to create a fixed-width div.

Completed files create-a-fixed-width-wrapper in the chapter 7 folder.

1. Set things up. Rename the boilerplate documents to create-a-fixed-width-
wrapper.html and create-a-fixed-width-wrapper.css. Link the CSS document
to the web page by amending the url value of the style element.

@import url(create-a-fixed-width-wrapper.css);

2. Add some content. The web page already has a div element with an id of wrapper.
Within it, add a bunch of paragraphs and test the web page. You’ll see that the con-
tent stretches with the browser window and goes right up to its edges—this is a
basic liquid design. If the browser window is very wide, this makes the content all
but unreadable.

Creating a fixed-width wrapper

Internet Explorer 5.x for Windows gets the box model wrong, placing padding and
borders inside the defined dimensions of an element. The bug is explained in full in
Chapter 9, which also offers workarounds to fix layouts that get broken in aging ver-
sions of Microsoft’s browser.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

264

9071CH07.qxd 10/18/07 2:40 PM Page 264

3. Restrict the wrapper’s width. In CSS, add the following rule:

#wrapper {
width: 600px;
margin: 0 auto;

}

The width setting defines a width in pixels for the wrapper div. The margin setting
provides automatic margins to the left and right of the div, which has the effect of
centering the layout in the browser window, as shown in the following screenshot.

Required files Files from add-starting-point in the chapter 7 folder as a
starting point.

What you’ll learn How to add style to a fixed-width div.

Completed files add-completed in the chapter 7 folder.

1. Add a page background. In the add-starting-point folder, there are two images,
both of which are gradients. One is a black gradient, fading toward gray at its bot-
tom edge; this is intended for a page background. Add this by adding the following
rule to the style sheet (after the add your code below comment):

body {
background: #4d4d4d url(page-background.gif) repeat-x;

}

The repeat-x value ensures that the background tiles horizontally only; the color
value #4d4d4d is the color of the bottom pixel of the gradient image, ensuring the
gradient seamlessly blends with the web page background.

Adding padding, margins, and backgrounds to a layout

PAGE LAYOUTS WITH CSS

265

7

9071CH07.qxd 10/18/07 2:40 PM Page 265

2. Add a border to the wrapper. Amend the #wrapper rule to add a border around
the wrapper. Note that the wrapper in this example sits flush with the top edge of
the browser window view area, and so no top border is needed. That’s why the
border-top pair is added, overriding the previous rule for the top border only.

#wrapper {
width: 600px;
margin: 0 auto;
border: 2px solid #777777;
border-top: 0;

}

3. Add a wrapper background. If you test the page now, the background shows
behind all of the page’s content, thereby making it unreadable. Therefore, add the
background pair to the rule, which sets a background color for the wrapper div,
and also sets the second image in the add-starting-point folder (a white-to-light-
gray vertical gradient) to tile horizontally at the bottom of the div:

Note that in some examples in this book, selectors are used multiple times, such as
body here. This is perfectly acceptable, although if you want to merge rules, you can—
just be mindful of the cascade if you do so.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

266

9071CH07.qxd 10/18/07 2:40 PM Page 266

#wrapper {
width: 600px;
margin: 0 auto;
border: 2px solid #777777;
border-top: 0;
background: #ffffff url(wrapper-background.gif) 0 100% repeat-x;

}

4. Add some padding. Test the page now and you’ll see two major layout errors com-
monly seen on the Web. First, the content hugs the edges of the div, which makes
it hard to read and also looks cluttered, despite the div being 600 pixels wide.
Secondly, the text at the bottom of the div is displayed over the gradient—it’s still
readable, but it looks a little messy. By adding padding (more to the bottom edge,
to account for the gradient), these issues are dealt with:

#wrapper {
width: 600px;
margin: 0 auto;
border: 2px solid #777777;
border-top: 0;
background: #ffffff url(wrapper-background.gif) 0 100% repeat-x;
padding: 20px 20px 50px;

}

PAGE LAYOUTS WITH CSS

267

7

9071CH07.qxd 10/18/07 2:40 PM Page 267

Required files Files from add-completed in the chapter 7 folder as a starting
point.

What you’ll learn How to create a div with a maximum width.

Completed files max-width-example in the chapter 7 folder.

1. Amend a rule. Replace the width pair in the #wrapper rule with the max-width pair
shown following. This works much like you’d expect: the design works in a liquid
manner, up until the point at which the content area’s width (this does not include
the padding and borders) is the value defined for max-width, whereupon the lay-
out becomes fixed.

Creating a maximum-width layout

Note that due to the padding and borders added to this div, it now takes up 644 pixels
of horizontal space, due to the 20-pixel horizontal padding values and the 2-pixel bor-
ders. To return the overall width to 600 pixels, subtract the 44 pixels from the width
setting, reducing it to 556px.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

268

9071CH07.qxd 10/18/07 2:40 PM Page 268

#wrapper {
max-width: 800px;
margin: 0 auto;
border: 2px solid #777777;
border-top: 0;
background: #ffffff url(wrapper-background.gif) 0 100% repeat-x;
padding: 20px 20px 50px;

}

2. Amend the body rule. At small browser widths, the design fills the browser window.
If you still want some space around the wrapper, even when the browser window is
narrow, all you need do is amend the body rule, adding some horizontal padding.

body {
background: #4d4d4d url(page-background.gif) repeat-x;
padding: 0 30px;

}

Required files Files from basic-boilerplates in the chapter 7 folder as a
starting point.

What you’ll learn How to center a div within the browser window.

Completed files center-a-box-on-screen in the chapter 7 folder.

The final exercise in this section shows how to center a box within the browser window,
horizontally and vertically. Note that this kind of layout isn’t particularly flexible, because
it needs the containing wrapper to have a fixed width and height. Therefore, take care
when using this device, because if your page has plenty of content, your users may be
forced to scroll a lot.

1. Add a few paragraphs of text to the web page, placing them inside the wrapper div.

2. Add some backgrounds and style the wrapper div.

body {
background: #666666;

}
#wrapper {

Using absolute positioning to center a box onscreen

Note that it’s possible to use the min-width property to set the minimum width of a
div. In all cases when using max-width and min-width, be sure to test the usability of
your design at a wide range of browser window sizes. Also, these properties are not
understood by Internet Explorer 6; see Chapter 9 for workarounds.

PAGE LAYOUTS WITH CSS

269

7

9071CH07.qxd 10/18/07 2:40 PM Page 269

background: #ffffff;
border: 4px solid #000000;
padding: 20px;
width: 400px;
height: 300px;

}

3. Position the div. Set the wrapper div’s position value to absolute, and the top
and left values to 50%. This sets the top-left position of the div to the center of
the browser window.

#wrapper {
background: #ffffff;
border: 4px solid #000000;
padding: 20px;
width: 400px;
height: 300px;
position: absolute;
top: 50%;
left: 50%;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

270

9071CH07.qxd 10/18/07 2:40 PM Page 270

4. Use negative margins. Clearly, the div is not positioned correctly as yet, and
that’s—as mentioned in the previous step—because absolute positioning and the
top and left values specify the position of the top left of the element they’re
applied to. In order to place the div centrally, negative top and left margins are
used to pull it into place, the values of which are half the width or height, depend-
ing on the margin in question. For the margin-left value, you need the negative of
half the horizontal space the div takes up, which is found by adding its width,
horizontal padding, and horizontal margin values (4 + 20 + 400 + 20 + 4 = 444),
dividing by two (222), and making the number negative (–222). Similarly, the
margin-top value is the sum of the vertical dimensions (300px height, two lots of
20px padding and two lots of 4px borders, which comes to 344px) divided by 2 and
made negative.

#wrapper {
background: #ffffff;
border: 4px solid #000000;
padding: 20px;
width: 400px;
height: 300px;
position: absolute;
top: 50%;
left: 50%;
margin-left: -222px;
margin-top: -172px;

}

PAGE LAYOUTS WITH CSS

271

7

9071CH07.qxd 10/18/07 2:40 PM Page 271

Nesting boxes: Boxouts
Boxouts are design elements commonly used in magazines, but they can, in principle, also
be used on the Web. A boxout is a box separate from other page content that is often
used to house images, captions, and other ancillary information. In magazines, these may
be used for supporting text, alternate features, or magazine mastheads (with contributor
information). Online, this enables you to immediately present content that’s complemen-
tary to the main text.

In the following screenshot of the 2000 AD Books website (www.2000adonline.com/
books), a boxout is used to house thumbnails of upcoming books, with a link to a page
with further titles that are coming soon.

Note that if you use this kind of layout and have too much content for your wrapper,
it will spill out of it. See later in the chapter for dealing with this issue by creating
scrollable areas for page content.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

272

9071CH07.qxd 10/18/07 2:40 PM Page 272

http://www.2000adonline.com/books
http://www.2000adonline.com/books

Creating a boxout in CSS is mostly done by floating a div.

The float property

Mastering the float property is key to creating CSS-based web page layouts. It enables
you to float an element to the left or right of other web page content, which then wraps
around it. This enables you to do away with ugly hacks such as fixed-width tables aligned
right to create a boxout.

The benefit of using the float property over older methods is the ability to control a
styled boxout’s appearance site-wide from an external CSS file (and to control the cascade,
in order to amend the appearance of elements within it). Structurally, the page is also
more logical.

PAGE LAYOUTS WITH CSS

273

7

9071CH07.qxd 10/18/07 2:40 PM Page 273

Required files Files from boxout-starting-point in the chapter 7 folder as a
starting point.

What you’ll learn How to create and style a boxout in CSS.

Completed files boxout-complete in the chapter 7 folder.

As mentioned earlier, boxouts can be handy on web pages
for displaying ancillary content simultaneously with the
main text (rather than having supporting text following the
main content). Like any other div, a boxout can also be
styled, which is what this exercise will show how to do.
Steps 1 through 3 show you how to create a basic, plain
boxout, and step 4 onward shows how to style it. The final
boxout will look like that shown in the image to the right:
the corners are rounded; the plain background of the con-
tent area darkens slightly at its base; and the heading is on
a colored background with a gradient (not obvious in a
grayscale book, but if you check out the completed files,
you’ll see it’s orange) and a white stripe beneath it to help
make the boxout’s heading and content distinct.

1. Examine the web page. Open boxout.html and look at the page’s body content.
The content of the web page is within a wrapper div. The bulk of the page content
is a bunch of paragraphs. The boxout comprises a div with a class value of boxout,
and this is placed before the content the boxout is supposed to float right of. (In
other words, by placing the boxout before the other content, the other content
will wrap around it once the boxout is floated.)

2. Style the wrapper and body. The boxout-starting-point folder contains the
images from the “Adding padding, margins, and backgrounds to a layout” exercise
earlier in this chapter, so add the body and #wrapper rules from that exercise to
style the page’s general layout.

body {
background: #4d4d4d url(page-background.gif) repeat-x;

}
#wrapper {
width: 600px;
margin: 0 auto;
border: 2px solid #777777;
border-top: 0;
background: #ffffff url(wrapper-background.gif) 0 100% repeat-x;
padding: 20px 20px 50px;

}

Creating a boxout

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

274

9071CH07.qxd 10/18/07 2:40 PM Page 274

3. Position the boxout. To do so, you need to float it right and assign it a fixed width—
if no width is set, the boxout will span the width of its container, which in this case
would be the width of the wrapper div. Margin values at the bottom and left
ensure that the boxout doesn’t hug content that wraps around it.

.boxout {
float: right;
width: 180px;
margin: 0 0 20px 20px;

}

4. Add a background. As shown earlier, the boxout has
a background, and this is added by applying a back-
ground image to the boxout that blends into a solid
background color. The background pair in the fol-
lowing code block does this—#e1e1e1 is a color
value taken from the top of the image; 0 100% posi-
tions the image at the bottom left of the boxout
div; and no-repeat ensures that it doesn’t tile.
Finally, padding values are added. The background
image is 200 pixels wide, and the assigned width of
the div is 180px. Therefore, horizontal padding of
10px is required. This ensures that the entire image
is shown and that the boxout content doesn’t go
right up to the edge of the background.

.boxout {
float: right;
width: 180px;
margin: 0 0 20px 20px;
background: #e1e1e1 url(boxout-bottom.gif) 0 100% no-repeat;
padding: 0 10px;

}

PAGE LAYOUTS WITH CSS

275

7

9071CH07.qxd 10/18/07 2:40 PM Page 275

5. The boxout header now needs styling, which will
add the second part of the background. A contex-
tual selector is used for this, ensuring that the style
only applies to level-two headings within an ele-
ment with a class value of boxout. The first three
pairs in the rule style the header font (see Chapter 3
for more on styling type); the background pair works as per the one in step 4,
except that the solid background color was taken from the bottom pixel of the
background image. Also, as this image is applied at the top left, no positioning
values are required.

.boxout h2 {
font: bold 1.2em Arial, Helvetica, sans-serif;
text-transform: uppercase;
color: #ffffff;
background: #d7932a url(boxout-top-orange.gif) no-repeat;

}

6. Position the header. If you test the page, you’ll see that the header has a gap at its
left and right. This is because the header is within the boxout div, which has 10 pixels
of padding on its left and right edges. By applying negative margins of the same
value to the header, the horizontal space it takes up is increased to span the entire
width of the boxout. Some padding is then added to ensure that the heading text
doesn’t hug its container’s edges. Next, the bottom-border setting shown following
adds a single-pixel white line under the header.

.boxout h2 {
font: bold 1.2em Arial, Helvetica, sans-serif;
text-transform: uppercase;
color: #ffffff;
background: #d7932a url(boxout-top-orange.gif) no-repeat;
margin: 0 -10px 10px;
padding: 5px 10px;
border-bottom: 1px solid #ffffff;

}

A final rule styles paragraphs within the boxout, differentiating them from other
text.

.boxout p {
font-size: 0.9em;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

276

9071CH07.qxd 10/18/07 2:40 PM Page 276

Note that because of the way the header’s background is styled, using an image that
blends into a solid color, there’s no chance of the background running out, even if the
page’s text is massively zoomed (see the following image). Although the vast majority of
users will never use such settings, it always pays to see how well your sites fare when very
atypical settings are used in the browser. While some problems will be tricky to get
around, others just require a little lateral thinking, as shown here.

PAGE LAYOUTS WITH CSS

277

7

9071CH07.qxd 10/18/07 2:40 PM Page 277

Advanced layouts with multiple boxes and
columns

The layouts so far in this chapter have laid the foundation, showing you how to get to grips
with creating a wrapper for site content and then nesting a div within the wrapper, pro-
viding a little added scope for layout. In this section, you’re going to find out how to fash-
ion the basic building blocks of more complex layouts, working with two and then three or
more structural divs, finding out how they can be styled using CSS. In all cases, try to think
in a modular fashion, because the methods for creating the basic building blocks shown
can be combined in many different ways to create all sorts of layouts.

One of the main reasons for working with two structural divs is to create columns on a
web page. Although columns of the sort found in newspapers and magazines should be
avoided online, columns can be useful when you’re working with various types of content.
For instance, you may offer current news in one column and an introduction to an organ-
ization in another. Using columns makes both sets of information immediately available. If
a linear layout is instead used, you’ll need to decide which information you want the user
to see first and which information will initially be out of sight. The general principle of
columns is about more than written site content, though. For example, you could use one
column to house a vertical navigation bar and another to contain thumbnail images relat-
ing to an article.

Working with two structural divs

In previous exercises, you’ve worked with two divs, but one has been nested within the
other. In the following exercise, you’ll work with two structural divs, seeing how seemingly
small changes to CSS rules can make a major difference to the layout of the web page. This
will highlight the flexibility of web layouts, showing how quickly you can build pages, and
also how easy it is to experiment with designs and make edits and rapid changes should
they be required.

Required files Files from two-divs-starting-point in the chapter 7 folder as a
starting point.

What you’ll learn How to use two structural divs to create various types of fixed-
width layouts, including two-column designs.

Completed files two-divs-fixed-complete in the chapter 7 folder.

Manipulating two structural divs for fixed-width layouts

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

278

9071CH07.qxd 10/18/07 2:40 PM Page 278

1. Examine the code. Open up two-divs.html and you’ll see a simple page layout. A
level-one heading is followed by the first div, with an id value of divOne. This is
then followed by a second div, which has an id value of divTwo. Both divs have a
level-two heading and some paragraphs within. Some initial styles are also in the
style sheet, defining the fonts and placing 20 pixels of padding around the page’s
content (via the padding pair in the body rule) so the page content doesn’t hug the
browser window edge.

2. Add the background colors. When initially working on CSS layouts and hand-
coding, it’s often useful to apply background colors to your main structural divs.
This enables you to more easily see their edges and how they interact. Therefore,
add the following rules to your CSS:

#divOne {
background: #dddddd;

}
#divTwo {
background: #aaaaaa;

}

If you test the web page at this point, you’ll see the divs are positioned in a basic
linear fashion. The gap between the two occurs because the paragraphs have mar-
gins assigned on their bottom edges—therefore, the gap is from the margin of the
top div’s last paragraphs.

PAGE LAYOUTS WITH CSS

279

7

9071CH07.qxd 10/18/07 2:40 PM Page 279

3. Make the divs flush to each other. By adding padding-bottom values equal to the
margin-bottom value for paragraphs, you can make the div backgrounds flush to
subsequent content.

#divOne {
background: #dddddd;
padding-bottom: 1.5em;

}
#divTwo {
background: #aaaaaa;
padding-bottom: 1.5em;

}

Note that for an actual website, you should use id (and class) values relevant and
appropriate to the content within them, as evidenced by wrapper and boxout earlier
in this chapter. The values of divOne and divTwo are used in this exercise to enable
you to easily keep track of each one.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

280

9071CH07.qxd 10/18/07 2:40 PM Page 280

4. Float the divs to make columns. By adding width values and floating both divs in
the same direction, the divs stack horizontally, thereby creating columns.

#divOne {
background: #dddddd;
padding-bottom: 1.5em;
float: left;
width: 350px;

}
#divTwo {
background: #aaaaaa;
padding-bottom: 1.5em;
float: left;
width: 250px;

}

PAGE LAYOUTS WITH CSS

281

7

9071CH07.qxd 10/18/07 2:40 PM Page 281

5. Switch the column order. You can switch the stack direction by amending the float
values, changing left to right. This can be useful for when you want information
to be displayed in a certain order onscreen, but in a different order in code. For
example, your main content might be on the right and a sidebar on the left
onscreen, but screen readers would go through the main content before the
sidebar.

Note that floats start stacking from the edge of their container, which in this case is
20 pixels in from the browser window edge. For more control over the overall
layout, columns can be placed in a wrapper, which will be discussed later in the
chapter.

Note how with CSS layouts, each div only stretches to fill its content. This is in
marked contrast to an equivalent table-based layout, where cells (and therefore
their backgrounds) stretch to the overall height of the table. Later, you’ll find
out how to mimic full-height columns by using a background image (creating
what are known as faux columns).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

282

9071CH07.qxd 10/18/07 2:40 PM Page 282

#divOne {
background: #dddddd;
padding-bottom: 1.5em;
float: right;
width: 350px;

}
#divTwo {
background: #aaaaaa;
padding-bottom: 1.5em;
float: right;
width: 250px;

}

6. Add padding and margins. Switch the right values for float back to left, and
then change the padding-bottom properties to padding, adding values for the top
and horizontal edges. A margin-right setting for #divOne provides a gap between
the two divs.

PAGE LAYOUTS WITH CSS

283

7

9071CH07.qxd 10/18/07 2:40 PM Page 283

#divOne {
background: #dddddd;
padding: 10px 10px 1.5em;
float: left;
width: 350px;
margin-right: 10px;

}
#divTwo {
background: #aaaaaa;
padding: 10px 10px 1.5em;
float: left;
width: 250px;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

284

9071CH07.qxd 10/18/07 2:40 PM Page 284

Required files Files from two-divs-starting-point in the chapter 7 folder as a
starting point.

What you’ll learn How to use two structural divs to create various types of liquid
layouts, including two-column designs.

Completed files two-divs-liquid-complete in the chapter 7 folder.

This exercise looks at working with liquid rather than fixed layouts. Because of the nature
of liquid layouts, there are some very important differences in method that must be taken
into account, as you’ll see.

1. Add backgrounds and padding. As per the previous exercise, add background
colors to the two divs to make it easy to see their boundaries.

#divOne {
background: #dddddd;

}
#divTwo {
background: #aaaaaa;

}

2. Float the divs and set widths. As explained in the previous exercise, setting a width
for the two divs and then floating them both in the same direction enables you to
stack them horizontally, thereby providing columns. Note that in this exercise, we’ll
only be floating divs left, but you can float them right, too. Regarding width
values, you must ensure that their sum doesn’t exceed 100%, because otherwise the
divs will be wider in total than their container and will display in a linear fashion,
one under the other.

#divOne {
background: #dddddd;
float: left;
width: 40%;

}
#divTwo {
background: #aaaaaa;
float: left;
width: 60%;

}

Manipulating two structural divs for liquid layouts

PAGE LAYOUTS WITH CSS

285

7

9071CH07.qxd 10/18/07 2:40 PM Page 285

3. Add a margin. In the previous exercise, a margin was included to separate the two
divs. This can be done here, again by adding a margin-right value to #divOne.
However, you need to ensure the overall width of the width and margin values
doesn’t exceed 100%. In this example, the margin is set to 2%, and 1% is removed
from each of the two width values to cater for this.

#divOne {
background: #dddddd;
float: left;
width: 39%;
margin-right: 2%;

}
#divTwo {
background: #aaaaaa;
float: left;
width: 59%;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

286

9071CH07.qxd 10/18/07 2:40 PM Page 286

4. If you want to add padding to the divs, the method changes depending on the
required value. If you’re adding padding on a percentage basis, you add it in the
same way as the margin in step 3, removing relevant values from the width set-
tings. (For example, if you set the padding to 1% for both divs, this would mean
there would be 1% of padding on each side, so 2% would need to be removed from
each width value to keep the combined width of the two divs under 100%.)

However, if you want to add pixel-based padding values, things become a little
more complex, because there’s no way of specifying something like 39% - 20px for
a width. The most sensible workaround is to use nested divs: add a content div
within each of the two existing divs, and then set padding for those nested divs to
a pixel value. In HTML, you end up with the following:

<div id="divOne">
<div class="columnContent">
[content]

</div>
</div>
<div id="divTwo">
<div class="columnContent">
[content]

</div>
</div>

You then apply a padding value to .columnContent in the CSS.

PAGE LAYOUTS WITH CSS

287

7

9071CH07.qxd 10/18/07 2:40 PM Page 287

Placing columns within wrappers and clearing
floated content

The heading of this section is a bit of a mouthful, but it makes sense at this point to com-
bine the two things it mentions—placing columns within wrappers and clearing floated
content—because once you’ve started working with columns, that’s what you’ll likely next
have to do. Placing columns within a wrapper enables you to position the overall layout
(for example, centering it within the browser window) and restrict its width to a set size in
pixels or a liquid measurement. Clearing floated content is an important concept to
understand, because floated content appears outside of the normal document flow; sub-
sequent content then wraps around floated content. Therefore, float an object left and
subsequent content will stack to its right. Also, backgrounds don’t appear behind floated
content if it isn’t cleared, because browsers consider floated elements to technically take
up no height.

Required files Files from two-divs-starting-point in the chapter 7 folder as a
starting point.

What you’ll learn How to use two structural divs to create a two-column fixed-width
layout, using both pixel- and percentage-based values.

Completed files using-wrappers-to-contain-columns in the chapter 7 folder.

1. Add a wrapper. Open the HTML document and place a div around the web page’s
content, and give the div an id value of wrapper.

<body>
<div id="wrapper">
[web page content]

</div>
</body>

2. Amend the body rule. Because the page will be fixed and centered, there’s no
longer a need for horizontal padding on the body element; therefore, amend the
body rule in the CSS file as follows:

Placing columns within a wrapper

Note that, clearly, liquid layouts can have widths lower than 100%; this example
showed that percentage because it’s the most common width used for liquid layouts
and has the most problems to overcome. Also, rounding errors can cause problems
with liquid layouts when the width values add up to 100%—see the “Dealing with
rounding errors” section in Chapter 9 for more on this.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

288

9071CH07.qxd 10/18/07 2:40 PM Page 288

body {
font: 62.5%/1.5 Verdana, Arial, Helvetica, sans-serif;
padding: 20px 0;

}

3. Add the following rule to center the wrapper, per the “Creating a fixed-width
wrapper” exercise earlier in this chapter:

#wrapper {
width: 700px;
margin: 0 auto;

}

4. Finally, add the following two rules to float the columns, set their widths, and then
place a margin between them (by adding a margin-right setting to the left-hand
column).

#divOne, #divTwo {
float: left;
width: 340px;

}
#divOne {
margin-right: 20px;

}

No matter the size of the browser window, the two-column design sits centrally horizon-
tally.

PAGE LAYOUTS WITH CSS

289

7

9071CH07.qxd 10/18/07 2:40 PM Page 289

Note that the fixed-width values for the two columns can be replaced with percentages:

#divOne, #divTwo {
float: left;
width: 49%;

}
#divOne {
margin-right: 2%;

}

In such cases, the width of each div (and the margin) is a percentage of the parent ele-
ment—the wrapper div—rather than the browser window.

Required files Files from using-wrappers-to-contain-columns in the chapter 7
folder as a starting point.

What you’ll learn How to clear floated content, thereby making a wrapper’s
background display behind the content within it.

Completed files clearing-floated-content in the chapter 7 folder.

1. To highlight issues with content that doesn’t clear floated content, you need to
make some quick changes to the HTML and CSS from the using-wrappers-to-
contain-columns folder. First, add a paragraph of text after the closing tag of the
wrapper div:

</div>
</div>
<p>Subsequent content...</p>

</body>
</html>

Next, add a background color to the #wrapper rule in the CSS, and change the
width and margin-right settings of the #divOne, #divTwo and #divOne rules, as
shown following:

Clearing floated content

When using percentages to size columns, it makes sense to use them also to size the
gutters and margins between them. If you don’t, you’ll have a hard time trying to
match up column widths in percentages and margins in pixels.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

290

9071CH07.qxd 10/18/07 2:40 PM Page 290

#wrapper {
width: 700px;
margin: 0 auto;
background: #bbbbbb;

}
#divOne, #divTwo {
float: left;
width: 300px;

}
#divOne {
margin-right: 20px;

}

Upon previewing the amended page, you’ll see that the subsequent content stacks
to the right of the floated content; also, the background color for the wrapper
doesn’t extend behind the floated content. Both of these issues can be fixed by
clearing the floated content.

Note that Internet Explorer’s behavior is different from other browsers here: the
wrapper isn’t being collapsed, so the background extends fully, and the paragraph of
text added after the wrapper doesn’t flow around the floated divs, presumably
because the wrapper isn’t collapsing.

PAGE LAYOUTS WITH CSS

291

7

9071CH07.qxd 10/18/07 2:40 PM Page 291

2. Clear the floated content. There are two main methods for clearing floated con-
tent, both of which are worth having in your arsenal. The first was initially devel-
oped by Tony Aslett of CSS Creator (http://csscreator.com) and subsequently
expanded by the folks at Position Is Everything (see www.positioniseverything.
net/easyclearing.html for a full overview of the technique). First, add a class
value of clearFix to the container of the floated content (the wrapper div, in this
example), and then add the following rule in CSS:

.clearFix:after {
content: ".";
display: block;
height: 0;
clear: both;
visibility: hidden;

}

The magic of this method is in the CSS rule. By using the :after pseudo-selector,
content is added after the element the class is applied to (in this case, a period is
added after the wrapper div), and said content is set to clear the element, have no
height, and be rendered as invisible. The genius of the method is that you need no
extra markup to clear floats.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

292

9071CH07.qxd 10/18/07 2:40 PM Page 292

http://csscreator.com
http://www.positioniseverything

3. Use an alternate method. The clearFix method is great for when you have content
following a containing wrapper. In some cases, you may not have this, though. For
example, place your subsequent content within the wrapper div, as shown:

</div>
<p>Subsequent content...</p>

</div>
</body>

</html>

The clearFix method won’t work here, because the content is now inside the div
that has the clearFix rule applied to it. Various options are open; the first is to
wrap the floated elements in an internal wrapper and apply the clearFix class to
that. In many cases, this will be fine, but you can end up with a case of divitis,
where many nested divs impair the clean nature of the markup. An alternate
option is to apply clearing directly to the element that follows the last piece of
floated content. In HTML, this would look as follows:

<p class="ClearFloats">

In CSS, this is styled as follows:

.clearFloats {
clear: both;

}

Generally, the clearFix method is considered superior to adding styles to specific
elements, but on occasions when it doesn’t work for your design, it’s good to have
a fallback, so be mindful of both clearing methods when working on your designs.

Working with sidebars and multiple boxouts

In this chapter so far, you’ve seen how to create web page columns and also how to fash-
ion a boxout. In this section, two exercises will expand upon these ideas, showing how to
create two different layouts that make use of sidebars. Sidebars are common in print,
either for dividing up a page, thereby enabling a designer to show a main story and a
smaller story, or for providing an area for ancillary content to the main story, but without
having text wrapping underneath it (like in a boxout). The Pinkflag.com website (the offi-
cial website of the rock band Wire) makes use of sidebars throughout the site. In the fol-
lowing image, a page from the Us section is shown. The main section of the page shows a
photo of a band member, along with a short biography. In the sidebar is a selection of the
subject’s favorite tracks.

PAGE LAYOUTS WITH CSS

293

7

9071CH07.qxd 10/18/07 2:40 PM Page 293

Based on what you’ve seen so far, you might think the best way to create such a layout
would be to create a two-column layout and then add a border to one of the columns.
However, in CSS, borders and backgrounds stop as soon as the content does. Therefore, if
you add a border to the main content area, but the sidebar’s content makes it taller than
the main content area, the separating border stops short. What you therefore need to do
is ensure that the two columns are placed in a wrapper, and then apply a vertically tiling
background to the wrapper, thereby “faking” the column separator. This technique is com-
monly referred to as creating faux columns, and is explained fully in the following exercise.

Required files faux-columns-background.gif from the image folder and all files
from using-wrappers-to-contain-columns (both in the chapter
7 folder) as a starting point.

What you’ll learn How to use two structural divs and a background image to create
faux columns.

Completed files faux-columns in the chapter 7 folder.

Creating a sidebar with faux-column backgrounds

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

294

9071CH07.qxd 10/18/07 2:40 PM Page 294

1. Clear the floated content, using the method outlined in step 2 of the “Clearing
floated content” exercise.

2. Change the id values. When creating a website, you should amend your div id val-
ues to something appropriate for the content within them. Don’t use generic
names such as divOne and divTwo for a completed website. (They’ve been used for
some exercises in this chapter just to make the exercises simpler to work through.)
In both the HTML page and the CSS document, change all instances of divOne to
mainContent and all incidences of divTwo to sidebar. Amend the two level-two
headings in the web page accordingly, too.

3. Change the width settings for the columns, making sidebar narrower than
mainContent.

#mainContent, #sidebar {
float: left;
width: 479px;

}
#mainContent {
margin-right: 41px;

}
#sidebar {
width: 180px;

}

4. Add the background image. Apply the background image (shown
right) to the wrapper div, as shown following. The horizontal position
is the width of the main content div, plus half the margin once 1 pixel
is removed from that value (because the width of the “border” in the
background image is a single pixel). By placing the background image 499 pixels
from the left, it ends up exactly halfway between the content of the two divs.

#wrapper {
width: 700px;
margin: 0 auto;
background: url(faux-columns-background.gif) 499px 0 repeat-y;

}

5. To make it easier to differentiate the two areas of text, change the size of the text
in the sidebar, making it smaller.

#sidebar {
width: 180px;
font-size: 90%;

}

Using a percentage value is a quick way of doing this, with all values being based on
those from the main content area. If you want to set specific values for each of the
text elements within the sidebar, you could do so using contextual selectors
(#sidebar h1, #sidebar p, etc.).

PAGE LAYOUTS WITH CSS

295

7

9071CH07.qxd 10/18/07 2:40 PM Page 295

Required files Files from multiple-boxouts-starting-point in the chapter 7
folder as a starting point.

What you’ll learn How to use faux columns, boxouts, and the cascade to create a
page design with a sidebar that contains multiple boxouts.

Completed files multiple-boxouts-complete in the chapter 7 folder.

1. Examine the code. Open the web page and CSS document from multiple-
boxouts-starting-point, and also open the web page in a browser so you can see
what it looks like. Lots of work has already been done here, but it’s all stuff you
already know. Essentially, this page is a combination of the “Creating a boxout” and
“Creating a sidebar with faux-column backgrounds” exercises from earlier in the
chapter. A few changes have been made, however. The boxout has been duplicated
three times and placed within the sidebar, the float: right pair from .boxout has
been deleted (because the boxouts no longer need to float—they are within a con-
tainer that itself is floated), and some bottom padding has been added (to ensure
there’s a gap below the final paragraph of each boxout).

.boxout {
width: 180px;
padding: 0 10px 1px;
margin: 0 0 20px;
background: #e1e1e1 url(boxout-bottom.gif) 0 100% no-repeat;

}

Boxouts revisited: Creating multiple boxouts within a sidebar

There is an alternate way to create faux columns as well—see step 5 of the “Creating
flanking sidebars” exercise later in the chapter.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

296

9071CH07.qxd 10/18/07 2:40 PM Page 296

Also, the background from the faux columns exercise isn’t there, because the
vertical line the boxouts create is enough to make the column visually distinct—
another separator isn’t necessary.

2. Add class values. While consistent style is good for a website, it’s sometimes neat
to offer multiple styles for an element. This can come in handy for categorization—
for example, each boxout in this design could contain information about a certain
area of the website, and therefore color coding them and providing each with an
icon (for those viewers with color vision difficulties) may help users navigate more
easily. Because you can use multiple class values in CSS, it’s possible to simply add
a second class value to each of the boxout divs and then create an override rule
for each in CSS.

<div class="boxout questionsHeader">
[div content]

</div>
<div class="boxout chatHeader">
[div content]

</div>
<div class="boxout toolsHeader">
[div content]

</div>

3. Add new CSS rules. In the multiple-boxouts-starting-point folder, you’ll find a
bunch of images with the boxout-top- prefix. These are additional tops for the
boxouts, each of which has a different color and icon. By using three contextual
rules, overrides are created, setting a new background color and image for each of
the three heading classes defined in step 2.

.questionsHeader h2 {
background: #d72a49 url(boxout-top-questions.gif) no-repeat;

}
.chatHeader h2 {
background: #2a84d7 url(boxout-top-chat.gif) no-repeat;

}
.toolsHeader h2 {
background: #d72ab0 url(boxout-top-tools.gif) no-repeat;

}

Note that these rules must be placed after the .boxout h2 rule in the CSS, because
the CSS cascade ensures that the rule closest to the element is applied. If these
were placed above the .boxout h2 rule, they would be overridden by it, resulting
in the boxouts all retaining their default appearance.

The following image shows what your page should now look like.

PAGE LAYOUTS WITH CSS

297

7

9071CH07.qxd 10/18/07 2:40 PM Page 297

Creating flanking sidebars

Although some sites can be designed around a two-column model, you’ll frequently need
more. This can be achieved by adding further columns to the pages created in earlier exer-
cises, or by nesting wrappers with two columns. (In other words, the first wrapper can con-
tain a sidebar and a wrapper, which itself contains the main content and another sidebar.)

The only issue with this is that it doesn’t allow for information to be provided in code in an
order different from that shown on the screen. For users of alternate devices, a site with a
sidebar (perhaps for navigation and advertising), followed by the main content, followed
by another sidebar (perhaps for boxouts) would require them to wade through the first
sidebar before accessing the main content. You can get around this by using a “skip to
main content” link (as per the skip navigation link from Chapter 5), but you can also set
the content in the order you want in the code (main content, first sidebar, second sidebar)
and then use CSS to reorder the columns on the screen.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

298

9071CH07.qxd 10/18/07 2:40 PM Page 298

Required files Files from flanking-sidebars-starting-point in the chapter 7
folder as a starting point.

What you’ll learn How to create flanking sidebars for a content area, thereby
enabling you to set content in one order in the code and another
onscreen.

Completed files flanking-sidebars-liquid and flanking-sidebars-fixed in the
chapter 7 folder.

1. Check out the page. Open flanking-sidebars.html in a web browser and in a text
editor. In the code, you have a wrapper that contains a masthead, followed by a
wrapper for the columns, followed by a footer. Within the column wrapper are
three divs: mainContent, leftSidebar, and rightSidebar. Each of these has a con-
tent wrapper (as per step 4 of the “Manipulating two structural divs for liquid lay-
outs” exercise). In CSS, the page defaults and font styles are already set, as are
styles for the masthead and footer. The clearFix method (see the “Clearing floated
content” exercise) has also been used, since the three columns will be positioned
by being floated. Note that for this exercise, the layout will be a liquid one, based
on percentage values for widths and margins.

2. Add the column backgrounds. Add the following two rules, which supply two back-
grounds for the divs. The first is applied to the column wrapper, setting the back-
ground to gray and adding a horizontally tiling drop-shadow image. The second is
applied to the main content div, defining its background as white, and setting its
own background. This will create a seamless shadow effect, but the main content
will be differentiated from the sidebar via a brighter background.

#columnWrapper {
background: #ebebeb url(assets/grey-shadow-top.gif) 0 0 repeat-x;

}
#mainContent {
background: #ffffff url(assets/white-shadow-top.gif) 0 0 repeat-x;

}

3. Set column widths. Amend the #mainContent rule and add rules for the two side-
bars, floating all of the columns left and setting width values. This is a liquid design,
so percentages must be used, and they must add up to 100%.

#mainContent {
background: #ffffff url(assets/white-shadow-top.gif) 0 0 repeat-x;
float: left;
width: 50%;

}
#leftSidebar {
float: left;
width: 30%;

}

Creating flanking sidebars

PAGE LAYOUTS WITH CSS

299

7

9071CH07.qxd 10/18/07 2:40 PM Page 299

#rightSidebar {
float: left;
width: 20%;

}

4. Position the sidebars. At the moment, the columns are in the order specified in the
code. However, via the use of margins, this order can be changed. For the main
content div, set a margin-left value equal to the width of the left sidebar. Next,
set a margin-left value for #leftSidebar that’s the negative value of the sum of
the width and left margin values of the main content area.

#mainContent {
background: #ffffff url(assets/white-shadow-top.gif) 0 0 repeat-x;
float: left;
width: 50%;
margin-left: 30%;

}
#leftSidebar {
float: left;
width: 30%;
margin-left: -80%;

}
#rightSidebar {
float: left;
width: 20%;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

300

9071CH07.qxd 10/18/07 2:40 PM Page 300

5. Fine-tune the design. Add the three rules in the following code block to finish off
the layout and tidy things up.

.columnContentWrapper {
padding: 30px 10px;

}
#mainContent, #leftSidebar, #rightSidebar {
padding-bottom: 32767px !important;
margin-bottom: -32767px !important;

}
#columnWrapper {
overflow: hidden;

}

The first rule merely adds some padding to the column content wrappers. The next
rule applies a large amount of padding to the bottom of each column and a nega-
tive margin of the same size, bringing the document flow back to the point where
the padding begins. The use of overflow: hidden on the column container

Internet Explorer may cause problems with this layout, making the right-hand sidebar
sometimes appear beneath the others when the browser window is resized. This
is caused by a rounding error (see the “Dealing with rounding errors” section in
Chapter 9). Therefore, it’s often useful to amend one of the percentages (and any
related values), dropping them by 0.0001%—for example, change the width value of
#mainContent to 49.9999% and the margin-left value of #leftSidebar to 79.9999%.

PAGE LAYOUTS WITH CSS

301

7

9071CH07.qxd 10/18/07 2:40 PM Page 301

removes the overflow below the longest column’s content. Note that the value
used here is the maximum allowed by Apple’s Safari. You can also use the second
rule in the previous code block to control padding by reducing the margin-bottom
value: the difference between the padding-bottom and margin-bottom values
effectively becomes padding, although in this exercise, padding has been dealt with
via the .columnContentWrapper rule.

For this layout to work in Internet Explorer 6, you need to use a style sheet attached
via a conditional comment (see “Conditional comments” in Chapter 9) to set display
to inline-block for the #columnWrapper rule. Furthermore, that browser suffers
from the double-float margin bug (see the “Double-float margin bug” section in
Chapter 9); deal with this by setting display: inline to #mainContent, or by over-
riding the margin-left value of #mainContent, halving it via a style sheet attached via
a conditional comment. The layout also suffers from a slight cosmetic glitch in
Safari 2, with some space being shown above the footer’s border. To fix this, you can
add the following rule: /**/#wrapper {display: block;}—however, this should
really be added in a Safari-specific style sheet attached using JavaScript (see the
“Targeting other browsers” section in Chapter 9).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

302

9071CH07.qxd 10/18/07 2:40 PM Page 302

6. Make the layout fixed. Amending the layout to a fixed one is simple. Because the
layout will no longer span the window width, a border needs to be placed around
the wrapper (otherwise the drop-shadow cutoffs at the left and right just look
weird). Therefore, add a padding-bottom value of 20px to the body rule, and create
the #wrapper rule shown following:

#wrapper {
width: 700px;
margin: 0 auto;
border: 1px solid #555555;
border-top: 0;

}

Next, update the width and margin-left values for the three rules shown in the
following code, being mindful of the relationships mentioned in step 4 and the fact
that the width values cannot exceed the value set for the wrapper’s width in the
previous step.

#mainContent {
background: #ffffff url(assets/white-shadow-top.gif) 0 0 repeat-x;
float: left;
width: 400px;
margin-left: 175px;

}
#leftSidebar {
float: left;
width: 175px;
margin-left: -575px;

}
#rightSidebar {
float: left;
width: 125px;

}

The following image shows what your page should now look like.

PAGE LAYOUTS WITH CSS

303

7

9071CH07.qxd 10/18/07 2:40 PM Page 303

Automating layout variations

The final exercise in this section shows how to automate page layouts in a similar manner
to automating navigation, as described in Chapter 5 (e.g., in the “Creating a CSS-only tab
bar that automates the active page” exercise). By defining a class value for the body ele-
ment, contextual selectors can be used to amend the layout of a web page. This technique
comes in handy when working on large sites that have many variations throughout, but
some consistent elements. For example, the site’s overall width, masthead, and footer may
remain constant, but the number of columns on the page may change, or they may
change widths.

Required files Files from faux-columns in the chapter 7 folder as a starting
point.

What you’ll learn How to use body class values and contextual selectors to
automate page layouts.

Completed files automate-page-layouts in the chapter 7 folder.

1. Examine the files. The files from the “Creating a sidebar with faux-column back-
grounds” exercise are used as the basis for this one. The web page has two divs,
one for the main content (mainContent) and another for the sidebar (sidebar).
The default setup is for the main content area to take up most of the width and for
the sidebar to be narrow, with smaller text. During the next two steps, contextual
selectors will be designed to create two alternate layouts, one of which will have a
single column and one of which will split the columns evenly.

2. Create single-column rules. The way this method works is to create overrides for
relevant rules. The contextual selectors will begin with a class selector that will be
applied to the page’s body start tag, followed by the rules that require overriding.
For a single column, the wrapper no longer needs a background, the main content
area needs to be as wide as the wrapper (700 pixels), and the sidebar doesn’t need

Using body class values and CSS to automate page layouts

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

304

9071CH07.qxd 10/18/07 2:41 PM Page 304

to be displayed. Also, the default margin-right value for #wrapper needs to be
overridden, otherwise the main content area will end up 700 pixels wide plus 41
pixels of margin.

.singleColumn #wrapper {
background: none;

}
.singleColumn #mainContent {
width: 700px;
margin-right: 0;

}
.singleColumn #sidebar {
display: none;

}

This style can be applied to the web page by setting the body element’s class value
to singleColumn.

<body class="singleColumn">

3. Create an equal-column-split rule. For an equal column split, the column widths
need to be amended to the same value. But because the margin-right setting
defined earlier is 41px, the sidebar has been set to 1 pixel narrower than the main
content area. (An alternate option would have been to set both column widths to
330px and set margin-right in .equalSplitColumns #mainContent to 40px.)
The background-position horizontal value needs changing to reflect the new
column positions. Finally, because both columns command equal prominence, the
font-size setting for the sidebar is set to 100% in .equalSplitColumns #sidebar.

.equalSplitColumns #wrapper {
background-position: 350px 0;

}
.equalSplitColumns #mainContent {

Note that when using designs such as this, be sure to empty the contents of non-
displayed divs—any content left within them is just a waste of bandwidth.

PAGE LAYOUTS WITH CSS

305

7

9071CH07.qxd 10/18/07 2:41 PM Page 305

width: 330px;
}
.equalSplitColumns #sidebar {
width: 329px;
font-size: 100%;

}

This style can be applied to the web page by setting the body element’s class value
to equalSplitColumns.

<body class="equalSplitColumns">

As mentioned, this exercise works in a similar way to some of the navigation ones in
Chapter 5. With a little thought, it should be easy enough to see how this automation
method can assist when creating websites. As long as the site’s structure has been carefully
planned, you can usually get away with a single navigation bar and a single structure, but
have multiple layouts, each one driven by the CSS variations and the body class value.

Scrollable content areas
Scrolling is a matter of fact on the Web. Although designers should be careful not to make
users scroll too much (or in multiple directions—sites that force both horizontal and ver-
tical scrolling tend to be awkward and annoying to use), some scrolling is inevitable with
the vast majority of websites. In the past, some designers created fixed sites that sat in the
middle of the browser window, content restricted by the viewing area. Various techniques
later enabled designers to get around this limitation, creating in-page scrollable content
areas. First came frames, and later came CSS-driven scrolling areas. Both enable you to
create in-page scrollable content, but although such things are explored in the final part of
this chapter, scrollable areas should be used with care—if you need a user to see some-
thing right away, don’t hide it “under the fold,” and remember that if you create a cen-
tered, fixed-view window, test it out using many different screen resolutions to ensure it
looks and works OK for all of your users.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

306

9071CH07.qxd 10/18/07 2:41 PM Page 306

Working with frames

Elsewhere in this book, I mostly refer to web pages that comprise single documents, with
external files adding presentation information (CSS) or functionality (JavaScript or CSS).
Frames are different, requiring an HTML document called a frameset, which acts as a con-
tainer for a number of frames. The frameset has no actual content of its own—it’s just a
container used to order and place the frames. The frames are standard HTML documents.
Therefore, you use a frameset to carve up the available space in a browser window and
display several HTML documents simultaneously, each of which has the ability to scroll
independently.

Today, frames are considered a relic, disrupting the logical structure of your site because
of the way they’re created. Each frame is a separate HTML document, and everything is
stitched together with yet another HTML document—the frameset. This causes problems:
users of alternate devices may find a frame-based site hard to navigate; all users may come
across orphaned pages (pages outside of their framesets); bookmarking saves the frame-
set, not its pages; and design across frames isn’t possible. Also, because of the increase in
usage of design applications with templating features, and of PHP and server-side includes,
the ease-of-development aspect of frames is no longer relevant. Because of these issues,
the rest of this subsection is primarily here for the sake of completeness.

Although a frameset is still an HTML page, it requires a specific frameset DTD, which looks
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The frameset page lacks a body element (although it still requires head and title ele-
ments, along with defining the character set) and instead uses a frameset element, which
sets the attributes for how the frames are positioned. The frameset element houses frame
elements, which define the location and attribute of each frame. Note that this DTD
should only be used for the frameset and not for the individual pages that will be loaded
into the frameset—they should use whatever DTD is relevant to their content.

A basic two-column frameset may use a code block like the following one, the cols attrib-
ute defining the width of each frame (values can be numerals for a pixel value, a percent-
age, or a wildcard *, which sets the dimension to whatever space remains). For each frame
element, the src attribute defines the web page that will be displayed inside the frame.

<frameset cols="150,*">
<frame src="frame-one.html" />
<frame src="frame-two.html" />

</frameset>

PAGE LAYOUTS WITH CSS

307

7

9071CH07.qxd 10/18/07 2:41 PM Page 307

http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

To change the alignment of the frames and split the browser window horizontally, replace
the cols attribute in the frameset element with a rows attribute:

<frameset rows="150,*">

To add more frames in either case, just add more frame elements, but ensure that your
cols or rows values don’t add up to more than 100%.

You can also nest framesets, to create a combination of columns and rows:

<frameset rows="120,*">
<frame src="frame-one.html" />
<frameset cols="150,*">
<frame src="frame-two.html" />
<frame src="frame-three.html" />

</frameset>
</frameset>

The following list describes some of the attributes that can be added to the frame ele-
ment, most of which amend the look of the frames:

frameborder: This attribute defines whether the frame’s border is displayed or
not—via a value of 1 or 0, respectively. Turning off the frame borders prevents
users from resizing frames.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

308

9071CH07.qxd 10/18/07 2:41 PM Page 308

marginheight and marginwidth: These define the margins within the frame and are
best set to 0; page content padding should be defined in CSS.

scrolling: This attribute sets parameters for the use of scroll bars—it can be set to
yes (scroll bars always on), no, or auto (scroll bars appear if required).

noresize: In XHTML, this attribute takes its own name for its value (noresize).
When set, the relevant frame can’t be resized. Beware of using this—if the content
is too big for the frame, users won’t be able to easily access the information.

There are two other attributes of note: longdesc and name. longdesc enables you to set a
URL with a long description of the frame’s contents (for browsers that don’t support
frames). The name attribute enables you to assign a unique name to the frame, which is
used for link-targeting purposes via the target attribute in anchors (the _top value
replaces the frameset with the linked document, while the value myFrame would open a
link in a frame with the name value of myFrame). However, this is not valid within
XHTML Strict, and therefore requires any documents that use it to be reverted to XHTML
Transitional.

For non-frames-compatible devices, use the noframes element (<noframes></noframes>)
to provide accessible content. This is placed inside the outermost frameset element, after
all the frames.

Working with internal frames (iframes)

The only type of frames in general use today are iframes. These enable you to update a
page section without reloading the rest of it. Popular sites using iframes include
Newstoday (www.newstoday.com/) and Pixelsurgeon (www.pixelsurgeon.com/), the latter
of which uses a small inline frame to display its news feed.

In a more general sense, this can be handy for enabling users to update a portion of a
site’s design without touching the rest of the design, and without resorting to a costly con-
tent management system. However, there are superior and more accessible alternatives to
this system, as you’ll see later in the chapter.

An iframe can be placed anywhere within a web page. Its available attributes are outlined
in Appendix A (XHTML Reference), but two worth mentioning here are width and height,
which define the dimensions of the iframe. Set these with caution, because it’s annoying if
an iframe is bigger than the viewable area, or if the content of the iframe is too big for its
defined dimensions. Note that these attributes can be omitted from HTML and instead
defined in CSS (by way of an iframe tag selector or by applying a class to the iframe).

Here’s some example code for an iframe:

<iframe src="internal_news.html" name="news" width="200" height="200"
➥ scrolling="yes" frameborder="0">Your browser doesn't support
➥ iframes. Please click here
➥ to see the iframe's content.</iframe>

Note the succinct content for the iframe, which enables non-frames-compatible devices to
directly access the content of the iframe—compliant devices ignore this.

PAGE LAYOUTS WITH CSS

309

7

9071CH07.qxd 10/18/07 2:41 PM Page 309

http://www.newstoday.com
http://www.pixelsurgeon.com

Scrollable content areas with CSS

Although iframes can be useful for practical reasons, many designers use them for aes-
thetic reasons, in order to provide a lot of information on a single page. For example,
iframes are popular for lists of news items because they enable many hundreds of lines of
text to be contained in a small area. However, if this is your reason for using an iframe,
you’re better off replacing it with a div and using CSS to control the overflow. If you use
this method, the content will remain part of the web page, which is better for accessibility
and site maintenance.

To do this, create a div with a unique class value:

<div class="scrollableContent">
[content...]

</div>

Then style it in CSS—the rule provides the div’s dimensions and determines how the div’s
overflow works:

.scrollableContent {
width: 200px;
height: 200px;
overflow: auto;

}

When overflow is set to auto, scroll bars only appear when the content is too large for the
set dimensions of the div. Other available values are hidden (display no scroll bars),
scroll (permanently display both scroll bars), and visible (render content outside of the
defined box area). Adding some padding, especially at the right-hand side of the scrollable
content box, helps improve the area aesthetically, ensuring that content doesn’t hug the
scroll bar.

.scrollableContent {
width: 200px;
height: 200px;
overflow: auto;
padding: 0 10px 0 0;

}

Note that by also using PHP includes (see PHP Solutions, by David Powers, for more on
those), you can even make scrollable content separate from the main web page, thereby
emulating another aspect of an iframe, but without resorting to using frames at all.

<div class="scrollableContent">
<?php @include $_SERVER['DOCUMENT_ROOT'] .
➥ "/include/document-name.php"; ?>

</div>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

310

9071CH07.qxd 10/18/07 2:41 PM Page 310

In this code block, @ suppresses errors, so if it didn’t work, you’d receive no indication—
removing @ would show any errors. Also, the document root setting sets the include to
take the HTML/document root instead of the server root as the starting point for looking
for the included file (when the file path starts with a /), so be aware of that when defining
paths. An alternative would be to use a relative path, such as include/document-name.
php. This would work without pointing to the server at the document root (so long as the
path was correct).

Another more accessible option than using iframe elements is to use the object element
to embed an external HTML document within a region of the page—when combined with
the scrolling div method shown in this section, it pretty much provides all the benefits of
an iframe with very few of the drawbacks (the content is on the page, unlike with frames
and iframes—their content remains external).

The following code block shows how an object element can be added to the page. Note
the alternate content within the object element, displayed if the browser cannot show the
object. This can be used to directly link to the file in the data attribute.

<object data="a-file.html" type="text/html">
<p>[alternate content]</p>

</object>

Like other elements, the object element can be styled using CSS, although Internet
Explorer adds a border, so you need to overwrite existing border settings using conditional
comments (see Chapter 9 for more on those) to prevent a double border. Also, if the con-
tent is too large for the object dimensions, it will scroll in whatever direction is needed,
unless you explicitly set overflow to hidden; however, this setting doesn’t work in Internet
Explorer and Opera.

PAGE LAYOUTS WITH CSS

311

7

9071CH07.qxd 10/18/07 2:41 PM Page 311

9071CH08.qxd 9/28/07 11:51 AM Page 312

8 GETTING USER FEEDBACK

9071CH08.qxd 9/28/07 11:51 AM Page 313

In this chapter:

Creating forms and adding fields and controls

Styling forms in CSS

Configuring a mailform CGI script

Sending forms using PHP

Creating a layout for a user feedback page

Creating an online business card using microformats

Introducing user feedback
One of the main reasons the Web has revolutionized working life and communications is
its immediacy. Unlike printed media, websites can be continually updated at relatively min-
imal cost and also be available worldwide on a 24/7 basis. However, communication isn’t
one-way, and the Web makes it very easy to enable site users to offer feedback.

Using mailto: URLs

One of the most common methods of providing immediate user feedback is by using
mailto: URLs within anchor tags. Instead of the anchor tag’s value being a file name or
URL, it begins with mailto: and is immediately followed by the recipient e-mail address.

Click to email!

It’s possible to take this technique further. You can define multiple recipients by using a
comma-separated list, and by placing a question mark immediately after the final recipient
address, you can add further parameters, such as a subject and recipients to carbon copy
(cc) and blind carbon copy (bcc). If using more than one parameter, you must separate
them with encoded ampersands (&). Note that spaces within the subject should also
be encoded (as %20).

<a href="mailto:someone@your.domain,someoneelse@your.domain?subject=
➥Contact%20from%20website&cc=bigboss@your.domain">Click
➥ to email!

Although this may sound great, there are several problems with such a system. First, e-mail
addresses online are often harvested by spambots. Second, a mailto: link relies on the
user having a preconfigured e-mail client ready to go—something that people working on
college and library machines most likely won’t have. Third, not all browsers support the
range of options explained earlier.

There should be no spaces in a mailto: value. Therefore, don’t place spaces
before or after colons, commas, or the ? and = symbols.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

314

9071CH08.qxd 9/28/07 11:51 AM Page 314

mailto:someone@your.domain
mailto:someone@your.domain
mailto:someoneelse@your.domain?subject=
mailto:bigboss@your.domain
mailto:someone@your.domain

A way to combat the spambots is presented in the next section. For the second issue (the
mailto: link’s reliance on a preconfigured mail client), I recommend using forms for any
complex website feedback, which we will come to later on in this chapter. For the third
issue (browser support for the more advanced mailto: options), I recommend just keep-
ing things simple. Place your e-mail address online as a mailto: and enable the user to fill
in any other details, such common as the subject line.

Scrambling addresses

In my experience, having an e-mail address online for just a few days is enough to start
receiving regular spam. A workaround is to encrypt e-mail addresses using a bulletproof
concoction of JavaScript. The Enkoder form from Hivelogic is a neat way of going about
this, and produces decent results.

This online form at www.hivelogic.com/enkoder/form enables you to create a mailto:
link that’s composed of complex JavaScript. Although in time, spambots will likely break
this code, as they have with simpler encoders, it’s the best example I’ve seen, and the
results I’ve had with it have been good. Beware, though, that any users with JavaScript dis-
abled won’t see the address, so ensure that you cater to them by including some other
means of contacting the site owner.

Working with forms
In this section, we’ll work through how to create a form and add controls. We’ll also look
at how to improve form accessibility by using the tabindex attribute, and the label,
fieldset, and legend elements.

As suggested earlier in the chapter, the best way of getting user feedback is through an
online form that the user fills in and submits. Fields are configured by the designer,
enabling the site owner to receive specific information. However, don’t go overboard: pro-
vide users with a massive, sprawling online form and they will most likely not bother filling
it in, and will go elsewhere.

Similarly, although you can use JavaScript to make certain form fields required, I’m not a
fan of this technique, because it annoys users. Some sites go overboard on this, “forcing”
users to input a whole bunch of details, some of which may simply not be applicable to the
user. In such cases, users will likely either go elsewhere or insert fake data, which helps
no one.

So, keep things simple and use the fewest fields possible. In the vast majority of cases, you
should be able to simply create name, e-mail address, and phone number fields, and
include a text area that enables users to input their query.

Enkoder is also available as a plug-in for Ruby on Rails.

GETTING USER FEEDBACK

315

8

9071CH08.qxd 9/28/07 11:51 AM Page 315

http://www.hivelogic.com/enkoder/form

Creating a form

Form controls are housed within a form element, whose attributes also determine the
location of the script used to parse it (see the “Sending feedback” section later in the
chapter). Other attributes define the encoding type used and the method by which the
browser sends the form’s data to the server. A typical start tag for a form therefore looks
like this:

<form action="http://www.yourdomain.com/cgi-bin/FormMail.cgi"
➥ method="post">

Adding controls

Some form controls are added using the input element. The type attribute declares what
kind of control the element is going to be. The most common values are text, which pro-
duces a single-line text input field; checkbox and radio, which are used for multiple-
choice options; and submit, which is used for the all-important Submit button.

Other useful elements include select, option, and optgroup, used for creating pop-up
lists, and textarea, which provides a means for the user to offer a multiple-line response
(this is commonly used in online forms for a question area). The basic HTML for a form
may therefore look like the following, producing the page depicted in the following screen
grab.

<form action="http://www.yourdomain.com/cgi-bin/FormMail.cgi"
➥ method="post">

<p>Name

<input type="text" name="realname" size="30" /></p>
<p>Email address

<input type="text" name="email" size="30" /></p>
<p>Telephone

<input type="text" name="phone" size="30" /></p>
<p>Are you a Web designer?

<input type="radio" name="designer" value="yes" />Yes |
➥ <input type="radio" name="designer" value="no" />No</p>
<p>What platform do you favor?

<select name="platform">
<option selected="selected">Windows</option>
<option>Mac</option>
<option>Linux</option>
<option>Other</option>

The preceding form start tag includes attributes that point at a CGI script, but alterna-
tive methods of sending forms exist, including PHP, ASP, and ColdFusion. Check with
your hosting company about the methods available for sending forms, and use the
technology supported by your ISP.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

316

9071CH08.qxd 9/28/07 11:51 AM Page 316

http://www.yourdomain.com/cgi-bin/FormMail.cgi
http://www.yourdomain.com/cgi-bin/FormMail.cgi

</select></p>
<p>Message

<textarea name="message" rows="5" cols="30"></textarea></p>
<p><input type="submit" name="SUBMIT" value="SUBMIT" /></p>

</form>

The bulk of the HTML is pretty straightforward. In each case, the name attribute value
labels the control, meaning that you end up with the likes of Telephone: 555 555 555 in
your form results, rather than just a bunch of answers. For multiple-option controls (check
boxes and radio buttons), this attribute is identical, and an individual value attribute is set
in each start tag.

By default, controls of this type—along with the select list—are set to off (i.e., no values
selected), but you can define a default option. I’ve done this for the select list by setting
selected="selected" on the Windows option. You’d do the same on a radio button
to select it by default, and with a check box you’d set checked="checked".

Some of the attributes define the appearance of controls: the input element’s size attrib-
ute sets a character width for the fields, while the textarea’s rows and cols attributes set
the number of rows and columns, again in terms of characters. It’s also worth noting that
any content within the textarea element is displayed, so if you want it to start totally
blank, you must ensure that there’s nothing—not even whitespace—between the start and
end tags. (Some applications that reformat your code, and some website editors, place
whitespace here, which some browsers subsequently use as the default value/content of
the textarea. This results in the textarea’s content being partially filled with spaces, and
anyone trying to use it may then find their cursor’s initial entry point partway down the
text area, which can be off-putting.)

GETTING USER FEEDBACK

317

8

9071CH08.qxd 9/28/07 11:51 AM Page 317

Long-time web users may have noticed the omission of a Reset button in this example.
This button used to be common online, enabling the user to reset a form to its default
state, removing any content they’ve added. However, I’ve never really seen the point in
having it there, especially seeing as it’s easy to click by mistake, resulting in the user hav-
ing to fill in the form again, hence its absence from the examples in this chapter. However,
if you want to add such a button, you can do so by using the following code:

<input type="reset" name="RESET" value="RESET" />

Improving form accessibility

Although there’s an onscreen visual relationship between form label text and the controls,
they’re not associated in any other way. This sometimes makes forms tricky to use for
those people using screen readers and other assistive devices. Also, by default, the Tab key
cycles through various web page elements in order, rather than jumping to the first form
field (and continuing through the remainder of the form before moving elsewhere). Both
of these issues are dealt with in this section.

The label, fieldset, and legend elements
The label element enables you to define relationships between the text labeling a form
control and the form control itself. In the following example, the Name text is enclosed in a
label element with the for attribute value of realname. This corresponds to the name and
id values of the form field associated with this text.

<p><label for="realname">Name</label>

<input type="text" name="realname" id="realname" size="30" /></p>

Most browsers don’t amend the content’s visual display when it’s nested within a label
element, although you can style the label in CSS. However, most apply an important
accessibility benefit: if you click the label, it gives focus to the corresponding form control
(in other words, it selects the form control related to the label). Note that the id attrib-
ute—absent from the form example earlier in the chapter—is required for this. If it’s
absent, clicking the text within the label element won’t cause the browser to do anything.

The fieldset element enables you to group a set of related form controls to which you
apply a label via the legend element.

<fieldset>
<legend>Personal information</legend>
<p><label for="realname">Name</label>

<input type="text" id="realname" name="realname" size="30" /></p>
<p><label for="email">Email address</label>

<input type="text" id="email" name="email" size="30" /></p>
<p><label for="phone">Telephone</label>

<input type="text" id="phone" name="phone" size="30" /></p>

</fieldset>

A full list of controls is available in Appendix A (XHTML Reference).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

318

9071CH08.qxd 9/28/07 11:51 AM Page 318

As you can see from the previous screenshot, these elements combine to surround the rel-
evant form fields and labels with a border and provide the group with an explanatory title.

Adding tabindex attributes
The tabindex attribute was first mentioned in Chapter 5 (in the “Using accesskey and
tabindex” section). For forms, it’s used to define the page’s element tab order, and its
value can be set as anything from 0 to 32767. Because the tabindex values needn’t be
sequential, it’s advisable to set them in increments of ten, enabling you to insert others
later, without having to rework every value on the page. With that in mind, you could
set tabindex="10" on the realname field, tabindex="20" on the email field, and
tabindex="30" on the phone field (these field names are based on their id/name values
from the previous example). Assuming no other tabindex attributes with lower values are
elsewhere on the page, the realname field becomes the first element highlighted when the
Tab key is pressed, and then the cycle continues (in order) with the email and phone fields.

Note that whenever using tabindex, you run the risk of hijacking the mouse cursor, mean-
ing that instead of the Tab key moving the user from the first form field to the second, it
might end up highlighting something totally different, elsewhere on the page. What’s log-
ical to some people in terms of tab order may not be to others, so always ensure you test
your websites thoroughly, responding to feedback. Generally, it makes sense to use the
value only for form fields, and then with plenty of care.

The reason for starting with 10 rather than 1 is because if you ignore the last digit, the
tabindex values become standard integers, starting with 1. In other words, remove
the final digits from 10, 20, and 30, and you end up with 1, 2, and 3. This makes it eas-
ier to keep track of the tabindex order.

Note that each browser styles forms and controls differently. Therefore, be sure to
test your forms in a wide range of browsers and don’t be too concerned with trying to
make things look exactly the same in each browser.

GETTING USER FEEDBACK

319

8

9071CH08.qxd 9/28/07 11:51 AM Page 319

CSS styling and layout for forms
Earlier, we covered how to lay out a form using paragraphs and line breaks. In this section,
you’ll see how tables and CSS can also be used to produce a more advanced layout.

Adding styles to forms

Form fields can be styled, enabling you to get away from the rather clunky default look
offered by most browsers. Although the default appearance isn’t very attractive, it does
make obvious which elements are fields and which are buttons. Therefore, if you choose
to style forms in CSS, ensure that the elements are still easy to make out.

A simple, elegant style to apply to text input fields and text areas is as follows:

.formField {
border: 1px solid #333333;
background-color: #dddddd;
padding: 2px;

}

In HTML, you need to add the usual class attribute to apply this rule to the relevant ele-
ment(s):

<input class="formField" tabindex="11" type="text" id="realname"
➥ name="realname" size="30" />

This replaces the default 3D border with a solid, dark gray border, and it also sets the
background color as a light gray, thereby drawing attention to the form input fields. Note
that browsers that support :hover and :focus on more than just anchors can have these
states styled with different backgrounds, thereby providing further prompts. For example,
upon focusing a form field, you might change its background color, making it more obvi-
ous that it’s the field in focus.

Because the border in the previous code is defined using a class, it can be applied to mul-
tiple elements. The reason we don’t use a tag selector and apply this style to all input fields
is that radio buttons and check boxes look terrible with rectangular borders around them.
However, applying this style to the select element can work well.

Note that the background color in this example is designed to contrast slightly with the
page’s background color, but still provide plenty of contrast with any text typed into the
form fields; as always, pick your colors carefully when working with form styles.

The default Submit button style can be amended in a similar fashion, and padding can also
be applied to it. This is usually a good idea because it enables the button to stand out and
draws attention to the text within.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

320

9071CH08.qxd 9/28/07 11:51 AM Page 320

Should you desire a more styled Submit button, you can instead use an image:

<input type ="image" src="submit.gif" height="20" width="100"
➥ alt="Submit form" />

Along with the fields and controls, it’s also possible to style the elements added in the pre-
vious section “The label, fieldset, and legend elements.” The fieldset rule applies a
1-pixel dashed line around the elements grouped by the fieldset element, along with
adding some padding and a bottom margin. The legend rule amends the legend element’s
font and the padding around it, and sets the text to uppercase; it also adds a background
color so that the dotted line of the fieldset won’t be shown behind the legend text in
Internet Explorer. Note that not all browsers treat margins on legend elements in the same
way, so if you add a margin value, be sure to thoroughly test your page. The screenshot
that follows also includes the styles included in the default CSS document from the
basic-boilerplates folder.

fieldset {
border: 1px dashed #555555;
padding: 10px;
margin-bottom: 10px;

}
legend {
padding: 0 10px;
font-family: Arial, Helvetica, sans-serif;
color: #000000;
background: #ffffff;
text-transform: uppercase;

}

GETTING USER FEEDBACK

321

8

9071CH08.qxd 9/28/07 11:51 AM Page 321

A final style point worth bearing in mind is that you can define styles for the form itself.
This can be useful for positioning purposes (e.g., controlling the form’s width and its bot-
tom margin); the width setting can prove handy, since the fieldset border stretches to
the entire window width, which looks very odd if the form labels and controls take up only
a small area of the browser window. Reducing the form’s width to specifically defined
dimensions enables you to get around this. Alternatively, you can set a fixed width on the
fieldset itself (or float it, enabling you to display fieldsets side by side.

You can also color the form’s (or fieldset’s) background in addition to or instead of the
input fields, thereby making the entire form prominent. This is a device I’ve used on vari-
ous versions of the Snub Communications website’s contacts page, as shown in the fol-
lowing screenshot.

Regardless of the form styles you end up using, be sure to rigorously test across browsers,
because the display of form elements is not consistent. Some variations are relatively
minor—you’ll find that defining values for font sizes, padding, and borders for input fields
doesn’t always result in fields of the same height, and that text fields and Submit buttons
don’t always align. A more dramatic difference is seen in versions of Safari prior to 3.0,
which ignore many CSS properties for forms, instead using the Mac OS X “Aqua” look and
feel—see the following screenshot for how the Snub Communications form looks in that
browser. Form functionality is not affected by this, but layouts can be.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

322

9071CH08.qxd 9/28/07 11:51 AM Page 322

Advanced form layout with CSS

A common way of laying out forms is to use a table to line up the labels and form controls,
although with the output being non-tabular in nature, this method is not recommended
(CSS should be used for presentation, including positioning elements on a web page)—it’s
provided here to show a (partial) table layout that can be replicated in CSS. For our first
three fields, a table-based form may have something like this:

<fieldset>
<legend>Personal information</legend>
<table class="formTable" cellpadding="0" cellspacing="0" border="0"
➥ summary="A contact details form.">

<tr>
<th scope="row">
<label for="realname">Name</label></th>
<td><input class="formField" type="text" id="realname"

➥ name="realname" size="30" /></td>
</tr>
<tr>
<th scope="row"><label for="email">Email address</label></th>
<td><input class="formField" type="text" id="email" name="email"
➥ size="30" /></td>

</tr>
<tr>
<th scope="row"><label for="phone">Telephone</label></th>
<td><input class="formField" type="text" id="phone" name="phone"
➥ size="30" /></td>

</tr>
</table>

</fieldset>

GETTING USER FEEDBACK

323

8

9071CH08.qxd 9/28/07 11:51 AM Page 323

Because a class value was added to the
table, the contextual selector .formTable
th can be used as the selector for styling the
form labels, defining the text-align prop-
erty, along with other CSS properties such as
font-weight. Applying a padding-right value to these cells also produces a gap to the
right of the label cells. Another contextual selector, .formTable td, can then be used to
style the cells—for example, to add padding at the bottom of each cell. The image to the
right shows these styles applied to the various elements in the previous code block, along
with the styles shown in the “Adding styles to forms” section.

.formTable td {
padding: 0 0 5px 0;

}
.formTable th {
padding-right: 10px;
text-align: right;
font-weight: bold;

}

Although forms are not tabular in nature, using a table to create a form can result in a
pleasing visual appearance, with the labels right-aligned and placed next to their associ-
ated labels. This kind of layout can be replicated using CSS, via a structure built from divs
to replace the table rows. This method retains semantic integrity, via the semantic rela-
tionship created by the label and associated field’s id. Using CSS for form layout also
brings with it the benefit of being able to rapidly restyle and move form components.

<form action="http://www.yourdomain.com/cgi-bin/FormMail.cgi"
➥ method="post">

<fieldset>
<legend>Personal information</legend>
<div class="row clearFix">
<label for="realname">Name</label> <input class="formField"
➥ type="text" id="realname" name="realname" size="30" />

</div>
<div class="row clearFix ">

This isn’t a complete form—it’s just a guide to using this method. This example lacks,
for instance, a Submit button and many of the controls in the example from earlier in
the chapter.

Note that the fieldset and legend elements must surround the table containing the
relevant fields. If using these elements, you may need multiple tables for your form.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

324

9071CH08.qxd 9/28/07 11:51 AM Page 324

http://www.yourdomain.com/cgi-bin/FormMail.cgi

<label for="email">Email address</label> <input class="formField"
➥ type="text" id="email" name="email" size="30" />

</div>
<div class="row clearFix ">
<label for="phone">Telephone</label> <input class="formField"
➥ type="text" id="phone" name="phone" size="30" />

</div>
</fieldset>

</form>

Various styles are then defined in CSS. The form itself has its width restricted, and label
elements are floated left, the text within aligned right, and the font-weight property set
to bold. The width setting is large enough to contain the largest of the text labels.

form {
width: 350px;

}
label {
float: left;
text-align: right;
font-weight: bold;
width: 95px;

}

The form controls—the input elements—are floated right. Because only input elements
within the div rows should be floated (rather than all of the input elements on the page),
the contextual selector .row input is used. (The containing divs have a class value of
row.) The width setting is designed to provide a gap between the labels and input ele-
ments.

.row input{
float: right;
width: 220px;

}

Finally, to make a gap between the rows, a .row class
is added and given a margin-bottom value.

.row {
margin-bottom: 5px;

}

Note the use of the clearing device, the clearFix class value, as outlined in
Chapter 7’s “Placing columns within wrappers and clearing floated content” section.

GETTING USER FEEDBACK

325

8

9071CH08.qxd 9/28/07 11:51 AM Page 325

The method works fine in all browsers except Internet Explorer, which doesn’t apply
margin-bottom correctly. However, the slightly different layout in Internet Explorer can
largely be fixed by adding the following in a style sheet attached via an IE-specific condi-
tional comment:

.row {
clear: both;
margin-top: 5px;

}

Alternatively, add the following:

.clearFix {
display: inline-block;

}

Sending feedback
In this section, you’ll check out how to send form data using a CGI script and PHP. Once
users submit information, it needs to go somewhere and have a method of getting there.
Several techniques are available for parsing forms, but we’re first going to cover using a
server-side CGI script. Essentially, this script collects the information submitted, formats it,
and delivers it to the addresses you configure within the script.

FormMail, available from Matt’s Script Archive (www.scriptarchive.com), is probably the
most common, and a number of web hosts preconfigure this script in their web space
packages. However, FormMail does have flaws, and it hasn’t kept up with current technol-
ogy. A better script is nms FormMail (available from http://nms-cgi.sourceforge.net/
and described next)—it emulates the behavior of FormMail but takes a more modern and
bug-free approach.

Configuring nms FormMail

The thought of editing and configuring scripts gives some designers the willies, but nms
FormMail takes only a couple of minutes to get up and running. First, you need to add
some more input elements to your web page, after the form start tag:

<input type="hidden" name="subject" value="Contact form from
➥ website" />
<input type="hidden" name="redirect"
➥ value="http://www.yourdomain.com/contact-thanks.html" />

Example forms for the sections in this chapter are available in the
chapter 8 folder of the download files.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

326

9071CH08.qxd 9/28/07 11:51 AM Page 326

http://www.scriptarchive.com
http://nms-cgi.sourceforge.net
http://www.yourdomain.com/contact-thanks.html

Obviously, the values in the preceding elements need changing for your site. The subject
value can be whatever you like—just make it obvious, so you or your clients can use an
e-mail package to filter website form responses efficiently.

The redirect value isn’t required, but it’s good to provide positive feedback to users, not
only to confirm that their form has been sent, but also to communicate that their query
will be dealt with as soon as possible. Many “thank you” pages online tend to look a little
barren, with a single paragraph of text. That’s why I tend to make this page a duplicate of
my standard contact page, but with the confirmation paragraph above the form. The script
itself needs only minimal editing. Because CGI scripts tend to break with slight errors, I
highly recommend editing them in a text editor that doesn’t affect document formatting,
such as HTML-Kit for Windows (www.chami.com) or BBEdit for Mac (www.barebones.com).

The first line of the script defines the location of Perl on your web host’s server. Your host-
ing company can provide this, so you can amend the path accordingly.

#!/usr/bin/perl -wT

Elsewhere, you only need to edit some values in the user configuration section. The
$mailprog value defines the location of the sendmail binary on your web host’s server.
You can find this out from your web host’s system admin.

$mailprog = '/usr/lib/sendmail -oi -t';

The $postmaster value is the address that receives bounced messages if e-mails cannot be
delivered. It should be a different address from that of the intended recipient.

$postmaster = 'someone@your.domain';

The @referers value lists IP addresses or domain names that can access this script, thereby
stopping just anyone from using your script and your server resources. For instance, the
Snub Communications mail form has snubcommunications.com and the site’s IP address
for this value (as a space-delimited list). If you use localhost, that enables local testing, if
you have the relevant software set up on your PC.

@referers = qw(dave.org.uk 209.207.222.64 localhost);

The @allow_mail_to value contains the addresses to which form results can be sent, again
as a space-delimited list. If you include just a domain here, then any address on that
domain is valid as a recipient. If you’re using only one address, set the $max_recipients
value to 1 to increase security.

@allow_mail_to = qw(you@your.domain some.one.else@your.domain
➥ localhost);

Note that some browsers display an outline where hidden fields are if input elements
are set to display as block. In such cases, you can apply a class value of hidden to
the relevant fields, with display set to none.

GETTING USER FEEDBACK

327

8

9071CH08.qxd 9/28/07 11:51 AM Page 327

http://www.chami.com
http://www.barebones.com
mailto:someone@your.domain
mailto:you@your.domainsome.one.else@your.domain�localhost
mailto:you@your.domainsome.one.else@your.domain�localhost
http://www.barebones.com

Multiple recipients
You can also use the script to e-mail multiple recipients. To do so, an additional hidden
input element is needed in the HTML:

<input type="hidden" name="recipient" value="emailgroup" />

And in the script itself, two lines are changed. The @allow_mail_to value is removed,
because it’s catered for by the newly amended %recipient_alias. Both are shown here:

@allow_mail_to = ();
%recipient_alias = ('emailgroup =>
➥ 'your-name@your.domain,your-name@somewhere-else.domain');

Should a script be used for multiple groups of recipients, you need a unique value for each
in the HTML and to amend the %recipient_alias value accordingly:

%recipient_alias = ('emailgroup1' => 'your-name@your.domain,your-name@
➥somewhere-else.domain', 'emailgroup2' => 'foo@your.domain');

Script server permissions

Upload the script to your site’s cgi-bin. Once there,
the script’s permissions must be set. Exactly how this is
achieved depends on what FTP client you’re using.
Some enable you to right-click and “get info,” while
others have a permissions or CHMOD command buried
among their menus. Consult your documentation and
find out which your client has. If you can, use the
CHMOD command to set the octal numbers for the
script (thereby altering the file permissions) to 755. If
you have to manually set permissions, do so as per the
screenshot to the right. Check that the script’s file
extension matches that in your form element’s action
attribute (.pl or .cgi—the latter is usually preferred
by servers). Also, you might want to amend your
script’s name (and update the form element’s action
value accordingly), in an attempt to outfox automated
spammers. (This explains the rather odd name of the
script in the adjacent screenshot.)

Not all hosts require you to place CGI scripts in a cgi-bin directory: some prefer a cgi
directory, and some enable you to place such scripts anywhere on the server. If in
doubt, talk to your web host’s support people about the specific requirements for
your account. Also note that not all hosts enable CGI support, and so if you want to
use such a script, check that it’s possible with your host before you spend a load of
time trying to set something up that’s not permitted and won’t run anyway.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

328

9071CH08.qxd 9/28/07 11:51 AM Page 328

mailto:name@your.domain
mailto:name@somewhere-else.domain
mailto:name@your.domain
mailto:foo@your.domain
mailto:foo@your.domain

Sending form data using PHP

If your hosting company offers support for PHP, the most widely used server-side technol-
ogy, there is no need to install a CGI script such as FormMail. Everything can be done with
PHP’s built-in mail() function. As a minimum, the function requires the following three
pieces of information:

The address(es) the mail is being sent to

The subject line

The message itself

An optional fourth argument to mail() permits you to send additional information in the
e-mail headers, such as from, cc, and bcc addresses, and to specify a particular character
encoding (if, for instance, you need to include accented characters or an Asian language
in the e-mail). Unfortunately, spammers frequently exploit this ability to add extra e-mail
headers, so you need to check the form input for suspicious content and stop the
e-mail from being sent if any is found. A script written by my fellow friends of ED author,
David Powers, does this for you automatically. Even if you have no experience working
with PHP, the following instructions should have you up and running quickly:

1. Copy process_mail.inc.php from the download files to the same folder (direc-
tory) as the page containing the form. This is the PHP script that does all the hard
work. You don’t need to make any changes to it.

2. Save the page containing the form with a PHP extension—for instance,
feedback.php. Amend the opening form tag like this:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

3. At the top of the page, insert the following PHP code block above the DOCTYPE.
Although I’ve warned you elsewhere in the book never to place any content above
the DOCTYPE, it’s perfectly safe to do so in this case, because the PHP code doesn’t
produce any HTML output.

<?php
if (array_key_exists('SUBMIT', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from website';

// list expected fields
$expected = array('realname', 'email', 'phone', 'message');
// set required fields
$required = array('realname', 'email', 'message');
$headers = 'From: My website<feedback@example.com>';
$process = 'process_mail.inc.php';
if (file_exists($process) && is_readable($process)) {
include($process);
}

else {
$mailSent = false;

GETTING USER FEEDBACK

329

8

9071CH08.qxd 9/28/07 11:51 AM Page 329

mailto:me@example.com
mailto:feedback@example.com
mailto:me@example.com

mail($to, 'Server problem', "$process cannot be read", $headers);
}

}
?>

4. This script begins by checking whether the PHP $_POST array has been set. This
happens only when a user clicks the form’s Submit button, so this entire block of
code will be ignored when the page first loads. It sets the address to which the
e-mail is to be sent and the subject line. It then checks that all required fields have
been filled in, and sends the form input for processing by process_mail.inc.php.
If the mail processing file can’t be found, the script e-mails an error message
to you.

To adapt this script to your own form, you need to change some of the values, as
explained in upcoming steps.

5. Change SUBMIT in the second line of the script to the same value as the name of the
form’s Submit button.

6. Replace me@example.com with the e-mail address that the feedback is to be sent to.
Make sure the address is in quotes, and that the line ends with a semicolon.

If you want to send the e-mail to multiple addresses, separate them with commas
like this:

$to= 'me@example.com, him@example.com, her@example.com';

7. Replace the content inside the quotes in the following line (Feedback from website)
with whatever you want the subject line to say.

8. Next, list the name attributes of each form element as a comma-separated list
between the parentheses in the following line:

$expected = array('realname', 'email', 'phone', 'message');

This tells the script what form input you’re expecting. This is very important, as it
prevents malicious users from trying to pass unexpected—and possibly danger-
ous—data through your form. Any form field not included in this list will be
ignored, so make sure you update the list whenever you add a new field to a form.

Note that the commas go outside the quotes. You can use single or double quotes.
It doesn’t matter as long as each set of quotes is a matching pair.

9. The next line of code looks very similar:

$required = array('realname', 'email', 'message');

PHP is case sensitive. Make sure that you use the same combination of uppercase and
lowercase in the PHP script as in the name attributes in the form. Also be careful to
copy the script exactly. Missing semicolons, commas, or quotes will cause the script to
fail, and may result in ugly error messages or a blank screen.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

330

9071CH08.qxd 9/28/07 11:51 AM Page 330

mailto:me@example.com
mailto:me@example.com
mailto:him@example.com
mailto:her@example.com
mailto:her@example.com

This is used to check whether all required fields have been filled in. You’ll notice
that I’ve omitted phone from the list, so the script will treat it as optional. The order
of items in the $expected and $required arrays is not important, but it makes
maintenance easier if you use the same order as they appear in the form.

10. The next line looks like this:

$headers = 'From: My website<feedback@example.com>';

This sets the e-mail’s From: header. Change My website <feedback@example.com>
to the name and e-mail address that you want the e-mail to be sent from.

There are many additional headers you can add to an e-mail, such as Cc, or Bcc.
You can also set the encoding to UTF-8 (for messages that require accents or Asian
languages). The following example shows how to add a cc address and UTF-8
encoding:

$headers = "From: My website<feedback@example.com>\r\n";
$headers .= "Cc: copycat@example.com\r\n";
$headers .= "Content-type: text/plain; charset=UTF-8";

There are a couple of important points to note about this code. First, the headers
are enclosed in double quotes. This is because each header must be on a separate
line, and the characters \r\n at the end of the first two lines represent a carriage
return and new line when enclosed in double quotes. You need these two charac-
ters at the end of each header except the last one. Second, there’s a period in front
of the equal sign in the second and third lines. This has the effect of stringing all
the values together so the script treats the headers as a single block.

One nice touch with e-mail headers is to put the user’s e-mail address in the
Reply-to field of the e-mail, so all the user has to do is click Reply in their e-mail
program to send a message back to the right person. Unfortunately, this is fre-
quently used by spammers to inject malicious code into your script. The code in
process_mail.inc.php filters out potential attacks and inserts the sender’s e-mail
address only if it’s safe to do so. Consequently, there is no need to add a Reply-to
header yourself; it’s done automatically by the script.

If you want to use a special encoding, such as UTF-8, for your e-mails, make sure
the web page containing the form uses the same encoding in its meta tag.

You don’t need to use all these headers. Just remove the complete line for any you
don’t want.

11. You don’t need to make any other changes to the code you inserted in step 3.

12. The script in process_mail.inc.php processes the form input and sends the e-mail
if there are no problems. The final stage is to let the user know what happened.

Immediately above the form in the main part of your page, insert the following
code:

<?php
if ($_POST && isset($missing) && !empty($missing)) {
?>
<p class="warning">Not all required fields were filled in.</p>

<?php

GETTING USER FEEDBACK

331

8

9071CH08.qxd 9/28/07 11:51 AM Page 331

mailto:feedback@example.com
mailto:feedback@example.com

}
elseif ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>
<?php
}

elseif ($_POST && $mailSent) {
?>
<p>Your message has been sent. Thank you for your feedback.

</p>
<?php } ?>

This block of code displays an appropriate message depending on the outcome.
Put whatever messages you like in place of the ones shown here, and add the fol-
lowing rule to your style sheet:

.warning {
font-weight: bold;
color: #ff0000;

}

If you’re using a visual HTML editor like Dreamweaver, all three messages will
appear to be displayed at once. However, when you load the page onto your web-
site, the PHP conditional logic hides all the messages, and only the appropriate one
is displayed after the user submits the form.

13. Save the page and upload it to your hosting company, together with process_
mail.inc.php. Test it. In a few moments, you should receive the test message in
your inbox. That’s all there is to it!

If you get error messages or a blank screen, it means you have made a mistake in
the script. Check the commas, quotes, and semicolons carefully. If you get a mes-
sage saying that process_mail.inc.php cannot be read, it probably means that
you have forgotten to upload it, or that it’s not in the same folder as the form.

Although these instructions should be sufficient to help you get a PHP form working
successfully, server-side coding can seem intimidating if you’ve never done it before. If
you would like to learn more about working with PHP and Dreamweaver, see The
Essential Guide to Dreamweaver CS3 with CSS, Ajax, and PHP, by David Powers; or you
can check out PHP Solutions, also by David Powers, for a very approachable non–
Dreamweaver-specific book on PHP.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

332

9071CH08.qxd 9/28/07 11:51 AM Page 332

Using e-mail to send form data

In rare cases, it may not be possible to set up a form to send form data (although even
most free web hosts tend to provide users with some kind of form functionality, even if it’s
a shared script that doesn’t allow a great deal of customization). If you find yourself in this
sticky situation, it’s possible to use a mailto: URL for the form’s action attribute value.
This causes browsers to e-mail the form parameters and values to the specified address.

<form method="post" action="mailto:anemailaddress@somewhere.com"
➥ enctype="text/plain">

This might seem a simpler method than messing around with CGI scripts, but it has major
shortfalls:

Some browsers don’t support mailto: as a form action.

The resulting data may arrive in a barely readable (or unreadable) format, and you
have no control over this.

This method isn’t secure.

The user won’t be redirected and may therefore not realize data has been sent.

That last problem can be worked around by adding a JavaScript alert to the form start tag:

<form method="post" action="mailto:anemailaddress@somewhere.com"
➥ enctype="text/plain" onsubmit="window.alert('This form is being
➥ sent by email. Thank you for contacting us.')">

Of course, this relies on JavaScript being active on the user’s browser—but, then again, this
is a last resort.

A layout for contact pages
Once you’ve completed a form, you need to integrate it into your site in a way that most
benefits the site’s visitors. I’ve always been of the opinion that it’s a good idea to offer
users multiple methods of contact on the same page. This makes it easy for them to con-
tact you, as it requires fewer clicks than the fairly common presentation of a form and link
to other contact details.

Note the enctype attribute in the previous code block. This defines the MIME type
used to encode the form’s content before it’s sent to the server, so it doesn’t become
scrambled. By default, the attribute’s value is application/x-www-form-urlencoded,
which is suitable for most forms; however, multipart/form-data is available for when
the user is able to use a form to upload files.

GETTING USER FEEDBACK

333

8

9071CH08.qxd 9/28/07 11:51 AM Page 333

mailto:anemailaddress@somewhere.com
mailto:anemailaddress@somewhere.com

The following images show a couple of example layouts. The first is from the Thalamus
Publishing website, which has the contact form on the right (with a minimum of fields); to
the left is the other contact information—address, telephone number, fax number, e-mail,
and so on, along with other addresses and details relevant to this organization (such as
sales representatives).

With this company having plenty of contact information, this two-column approach makes
a lot of sense, and the prominence of the form is handy, because many queries can be
dealt with more efficiently via e-mail.

For Snub Communications, my own site, things are simpler—I don’t have a preference as
to how people contact me, so all possibilities have pretty much the same prominence. The
form area is made to stand out slightly more (thereby giving all contact details relatively
equal prominence) by way of its background color.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

334

9071CH08.qxd 9/28/07 11:51 AM Page 334

Again, everything is in one place, rather than spread out over several pages, which makes
sending feedback to and/or getting in contact with the organization convenient for the
end user. The Snub Communications site doesn’t require a map, but if it did, a link to it
would appear on this page, too. The map page itself would likely resemble this one to
some extent, but with the map in place of the form and image—in other words, the page
would still include a telephone number and other contact details; after all, it’s frustrating
to have a map to an organization’s location, get lost, and then discover you don’t have the
organization’s details!

We’re not going to dwell on exactly how to create these layouts, because we’ve already
covered the techniques in the previous chapter—it’s just a question of creating a two-
column layout and cutting in the form (and other details) as appropriate.

GETTING USER FEEDBACK

335

8

9071CH08.qxd 9/28/07 11:51 AM Page 335

Using microformats to enhance contact
information

As shown in the previous section, user feedback may come in the form of a telephone call
or letter, rather than an e-mail, and therefore you should always add other forms of con-
tact details to a website—even if the site is an online store, customers will need other ways
to get in touch (faceless multinational organizations, take note). In the most basic sense,
these can be marked up by using some headings and paragraphs, as follows:

<h1>Contact details</h1>

<h2>Mail</h2>
<p>Company name

00, Street Name

Town or City

County or Region

Postal/ZIP code

Country name</p>

<h2>Telephone/fax</h2>
Tel: +1 (0)0000 555555

Fax: +1 (0)0000 555556

Mobile/cell: +1 (0)7000 555555</p>

Now, there’s nothing at all wrong with the previous block of code: it’s valid, it does the job
perfectly well, and it’s semantically sound, which also means it’s easy enough to style using
CSS. However, by utilizing microformats, the page’s functionality can be enhanced without
compromising the markup.

More about microformats can be found at the microformats website at www.
microformats.org, and in the book Microformats: Empowering Your Markup for Web 2.0,
by John Allsopp, so I won’t dwell on them too much. In short, though, microformats pro-
vide a way of adding commonly used semantics to web pages, working with common tech-
nologies, such as XHTML. For the example, you’re going to see how to take a basic set of
contact details and then use microformats to provide users with a means of efficiently
downloading and storing the information as a vCard—the vCard format being that
commonly used by address books). The semantic information is also of use to any other
application that is microformat-aware—for example, some Firefox plug-ins are able to
auto-detect microformat information on any web page and enable a user to browse and
manipulate it.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

336

9071CH08.qxd 9/28/07 11:51 AM Page 336

http://www.microformats.org
http://www.microformats.org

Required files The files from using-microformats-starting-point in the
chapter 8 folder.

What you’ll learn How to use microformats to enhance a set of contact details.

Completed files using-microformats-completed in the chapter 8 folder.

1. Add a surrounding div. Open using-microformats.
html, and place a div with a class value of vcard
around the contact details content, as shown (trun-
cated) following:

<h1>Contact details</h1>
<div class="vcard">
<h2>Mail</h2>
[...]

Mobile/cell: +1 (0)7000 555555</p>
</div>

2. Structure the address. Marking up the address is fairly
simple, and few changes are required to the general
structure of the code. However, because each individual set of information requires
its own container, and the best way of creating a container for the address is to
place it within a block element of its own, the company name and the address each
need their own paragraphs, rather than a line break separating the two. The orga-
nization’s paragraph is then given a class value of fn org. Here, fn stands for “full
name” and org defines that the name belongs to an organization, rather than a
person.

The address paragraph’s class value is adr, and each line of the address is placed
within a span element. The various class values assigned to the spans denote
which element of the address the content refers to, and those are all straightfor-
ward to understand. However, address books—and therefore microformats—
enable you to distinguish between different types of data. For example, you can
have a work address or a home address. This can be defined by adding the relevant
word (e.g., work) and wrapping it in a span with a class value of type, thereby
defining the type for the parent property. In this case, the address is being defined
as a work address.

For cases when you don’t want this information shown on the web page (which will
likely be most of the time—after all, adding a lowercase “work” in front of the
street name hardly looks great), add a second class value, hidden. Later, CSS will
be used to make content with a hidden value invisible.

<h2>Mail</h2>
<p class="fn org">Company name</p>
<p class="adr">
work
00, Street Name

Using microformats to enhance contact details

GETTING USER FEEDBACK

337

8

9071CH08.qxd 9/28/07 11:51 AM Page 337

Town or City

County or Region

Postal/ZIP code
Country name

</p>

3. Structure the telephone/fax details. Each definition for a telephone number
requires its own container, and so the single paragraph must be split into three, as
shown in the following code block. Each paragraph’s class value should be tel. As
with the address, a span with a class value of type hidden is used to define the
type for each parent property. For tel, there are various options available, includ-
ing work, home, fax, cell, pager, and video. Should duplicate types be required
(such as for a work fax), two type spans are added. As for the contact number
itself, that’s placed in a span element with a class value of value.

<h2>Telephone/fax</h2>
<p class="tel">
Tel: work
+1 (0)0000 555555</p>

<p class="tel">
Fax: fax
work
+1 (0)0000 555556</p>

<p class="tel">
Mobile/cell: cell
+1 (0)7000 555555</p>

4. Style headings and paragraphs. The style sheet,
using-microformats.css, already has some
defined styles, which do the usual removal of
margins and padding and setting of the default
font size. The body rule also adds some padding
to the page content so that it doesn’t hug the
browser window edges. To this, add the following
three rules, which style the headings and para-
graphs. Both headings are rendered in uppercase
Arial, helping them to stand out, aiding visual
navigation of the contact details.

h1 {
font: bold 1.5em/1.2em Arial, Helvetica
➥ sans-serif;
margin-bottom: 1.2em;
text-transform: uppercase;

}

Note that with some address books, only a limited amount of data seems to get
exported—specifics about work and home phone numbers may not. As always, test
your work on a range of platforms and applications.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

338

9071CH08.qxd 9/28/07 11:51 AM Page 338

h2 {
font: bold 1.25em/1.44em Arial, Helvetica sans-serif;
text-transform: uppercase;

}
p {
font-size: 1.2em;
line-height: 1.5em;
margin-bottom: 1.5em;

}

5. Hide hidden elements. As noted in steps 2 and 3, some information requires a type
to be defined for it, but as you can see in the previous image, this is displayed
onscreen like any other content. This is why the hidden value was also applied to
the relevant span elements. By adding the following rule, these spans are made
invisible.

.hidden {
display: none;

}

6. Deal with margin issues. Because the telephone
details are each in an individual paragraph, they
each have a bottom margin, and this makes the lay-
out look awful. The same problem also affects the
company name paragraph. However, because each
paragraph has its own class attribute value, it’s
easy to remove the bottom margins from the rele-
vant paragraphs using the following rule:

.tel, .fn {
margin-bottom: 0;

}

7. Embolden the company name. Balance-wise, the
company name could do with standing out more. This is within a paragraph that
has a class value of org, so making the contents bold is child’s play—just add the
following rule.

.org {
font-weight: bold;

}

8. Finally, style the vcard div via the following rule. This sets a background color,
width, border, and padding, but perhaps the most important property here is
margin-bottom. This is required because the margins from paragraphs with a tel
class were removed in step 6. When you add a bottom margin to the vcard div, the
typical spacing you’d expect after a paragraphs returns.

.vcard {
width: 200px;
background: #eeeeee;
border: 1px solid #cccccc;

GETTING USER FEEDBACK

339

8

9071CH08.qxd 9/28/07 11:51 AM Page 339

padding: 8px;
margin-bottom: 1.5em;

}

Note that further simplification of some elements of the code shown in the exercise is
possible. For example, where you have the Fax line, the type span could be directly
wrapped around the relevant label, and the hidden class removed.

Where before you had the following:

<p class="tel">
Fax: fax
work
+1 (0)0000 555556</p>

you’ll now have this:

<p class="tel">
Fax:
work
+1 (0)0000 555556</p>

The same is also true for the Mobile/cell line.

Note also that this is a relatively new technology, so it’s not without its drawbacks. As men-
tioned earlier, some details are not carried through to some address books. Also, the need
to hide extra data is problematic, since under some circumstances (such as in text read-
ers), it will be displayed, which could lead to confusion. However, with the popularity of
microformats increasing all the time, they’re still worthy of investigation, hence my includ-
ing this example in this book.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

340

9071CH08.qxd 9/28/07 11:51 AM Page 340

Online microformat contacts resources

If you decide to use microformats to enhance your site’s contact details, there are two
websites you need to bookmark. The first is Technorati’s Contacts Feed Service, at
www.technorati.com/contacts. This enables you to input the URL of a page with hCard
information (i.e., the sort of page created in the previous exercise) and get a vCard out of
it, which can be added to your address book.

Usefully, the site’s system enables you to automate the system via the kind of web page
created earlier. If you upload a page like the one created in the previous exercise, and then
add the following code (amending the URL after contacts/), you’ll have a link on the
contacts page that uses the microformat information to create a vCard that users can
download.

<p><a href="http://technorati.com/contacts/http://yourdomain.com/
➥yourcontactpageurl.html">Download vCard. (This process
➥ may take a few seconds.)</p>

A second handy resource is Tantek Çelik’s hCard creator (amusingly titled the hCard-o-
matic), at www.microformats.org/code/hcard/creator. This enables you to automate
much of the process from the previous exercise—you put your values into the field on the
left, and the code is built live in the field at the right of the page.

GETTING USER FEEDBACK

341

8

9071CH08.qxd 9/28/07 11:51 AM Page 341

http://www.technorati.com/contacts
http://www.technorati.com/contacts
http://technorati.com/contacts/yourdomain.com/�yourcontactpageurl.html
http://technorati.com/contacts/yourdomain.com/�yourcontactpageurl.html
http://www.microformats.org/code/hcard/creator

Contact details structure redux
In this chapter, and in the microformats exercise, the address and other contact details
were styled using paragraphs and line breaks. An alternative structure, which perhaps has
greater integrity from a semantic standpoint, is to use a definition list, with further nested
definition lists within. At the top level, the term is Contact details and the definition is
the actual contact details. At the next level, there are two terms, Mail and Telephone/fax,
each with respective definitions. For the latter, the definition has a third definition within,
providing term/definition pairs for the different types of telephone and fax numbers.

<dl>
<dt>Contact details</dt>
<dd>
<dl class="vcard">
<dt>Mail</dt>
<dd>
<address>
Company name

00, Street Name

Town or City

County or Region

Postal/ZIP code

Country name
</address>

</dd>
<dt>Telephone/fax</dt>
<dd>
<dl>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

342

9071CH08.qxd 9/28/07 11:51 AM Page 342

<dt>Tel:</dt>
<dd>+1 (0)0000 555555</dd>
<dt>Fax:</dt>
<dd>+1 (0)0000 555556</dd>
<dt>Mobile/cell:</dt>
<dd>+1 (0)7000 555555</dd>

</dl>
</dd>

</dl>
</dd>

</dl>

For the CSS, use the existing rules from using-microformats.css in the using-
microformats-starting-point folder, and the .vcard rule from the previous exercise.
The following rules can then be used to style the definition list and its contents.

First, the dt rule is used to style the Contact details text (as per the h1 element in the
previous exercise), with the dd dt rule providing override styles for dt elements within a
dd element. This rule is aimed to style the equivalent of the h2 elements from the previous
exercise: the Mail and Telephone/fax text. The dd dd dt rule provides a third level of
override, styling the dt elements within the telephone/fax definition list. Also, because the
dt/dd pairs are displayed in a linear fashion by default, the dd dd dt rule floats the
telephone/fax list dt elements to the left, enabling the dd elements to stack to the right in
each case.

dt {
font: bold 1.5em/1.2em Arial, Helvetica sans-serif;
margin-bottom: 1.2em;
text-transform: uppercase;

}
dd dt {
font: bold 1.2em/1.5em Arial, Helvetica sans-serif;
text-transform: uppercase;
margin-bottom: 0;

}
dd dd dt {
float: left;
padding-right: 5px;
display: block;
text-transform: none;

}

The next two rules deal with formatting and fine-tuning of the text. The address rule adds
the gap between the bottom of the address and the telephone/fax heading, along with
reverting the address element content to normal text (it’s italic by default). The second
rule in the following code block defines a font for the address element content and the
content of the telephone/fax definition list’s term and definition.

GETTING USER FEEDBACK

343

8

9071CH08.qxd 9/28/07 11:51 AM Page 343

address {
padding-bottom: 1.5em;
font-style: normal;

}
address, dd dd dt, dd dd dd {
font: 1.2em/1.5em Verdana, Arial, sans-serif;

}

With these styles added, the contact details look virtually identical to those in the exercise.
At this point, you can add hooks for the vCard as per steps 2 and 3 of the “Using micro-
formats to enhance contact details” exercise. See contact-details-structure-redux.css
and contact-details-structure-redux.html in the chapter 8 folder for the completed
files.

We’ve covered plenty of ground here, so now it’s time to leave the subject of collecting
user feedback and progress to the next chapter, which explores how to test your websites
and deal with common browser bugs.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

344

9071CH08.qxd 9/28/07 11:51 AM Page 344

9071CH08.qxd 9/28/07 11:51 AM Page 345

9071CH09.qxd 9/28/07 11:40 AM Page 346

9 DEALING WITH BROWSER QUIRKS

9071CH09.qxd 9/28/07 11:40 AM Page 347

In this chapter:

Weeding out common web page errors

Creating a browser test suite

Installing multiple versions of Internet Explorer

Catering for unruly web browsers

Common fixes for Internet Explorer bugs

Targeting other browsers with JavaScript

The final test
One time web designers envy designers in other fields is when it comes to testing websites.
Although we’re a long way from the “design a site for each browser” mentality that
afflicted the medium in the late 1990s, we’ve still not reached the holy grail of “author
once, display anywhere.”

The methods outlined in this book take you most of the way there, providing a solid foun-
dation for websites that should need little tweaking to get them working across all web
browsers. However, to say such sites will never need any amendments is naïve in the
extreme. Therefore, unless authoring for an internal corporate environment where every-
one uses exactly the same browser, designers must always ensure they thoroughly test
sites in a range of browsers.

Weeding out common errors
Testing in browsers isn’t everything; in fact, you may find that your site fails to work for no
reason whatsoever, tear your hair out, and then find the problem lurking in your code
somewhere. With that in mind, you should either work with software that has built-in and
current validation tools (many have outdated tools, based on old versions of online equiv-
alents), or bookmark and regularly use the W3C’s suite of online tools: the Markup
Validation Service (http://validator.w3.org/), CSS Validation Service (http://jigsaw.
w3.org/css-validator/), Feed Validation Service (http://validator.w3.org/feed/),
Link Checker (http://validator.w3.org/checklink), and others (www.w3.org/QA/Tools/)
as relevant.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

348

9071CH09.qxd 9/28/07 11:40 AM Page 348

http://validator.w3.org
http://jigsaw.w3.org/css-validator
http://jigsaw.w3.org/css-validator
http://validator.w3.org/feed
http://validator.w3.org/checklink
http://www.w3.org/QA/Tools
http://validator.w3.org/checklink

Other useful online services include WDG Link Valet (www.htmlhelp.com/tools/valet/),
WDG HTML Validator (www.htmlhelp.com/tools/validator/), and Total Validator (www.
totalvalidator.com/). Accessibility-oriented services include HP’s Color Contrast Verification
Tool (www.hp.com/hpinfo/abouthp/accessibility/webaccessibility/color_tool.html);
Etre’s Colour Blindness Simulator (www.etre.com/tools/colourblindsimulator/); and
the Cynthia Says Portal Tester (www.cynthiasays.com/fulloptions.asp), which can
aid you in Section 508 and WAI (Web Accessibility Initiative—see www.w3.org/WAI/)
compliance.

Here are some of the more common errors you might make that are often overlooked:

Spelling errors: Spell a start tag wrong and an element likely won’t appear; spell an
end tag wrong and it may not be closed properly, wrecking the remaining layout. In
CSS, misspelled property or value names can cause rules—and therefore entire lay-
outs—to fail entirely. British English users should also remember to check for and
weed out British spellings—setting colour won’t work in CSS, and yet we see that
extra u in plenty of web pages (which presumably have their authors scratching
their heads, wondering why the colors aren’t being applied properly).

Incorrect use of symbols in CSS: If a CSS rule isn’t working as expected, ensure
you’ve not erred when it comes to the symbols used in the CSS selector. It’s a
simple enough mistake to use # when you really mean . and vice versa.

DEALING WITH BROWSER QUIRKS

349

9

9071CH09.qxd 9/28/07 11:40 AM Page 349

http://www.htmlhelp.com/tools/valet
http://www.htmlhelp.com/tools/validator
http://www.totalvalidator.com
http://www.totalvalidator.com
http://www.hp.com/hpinfo/abouthp/accessibility/webaccessibility/color_tool.html
http://www.etre.com/tools/colourblindsimulator
http://www.cynthiasays.com/fulloptions.asp
http://www.w3.org/WAI
http://www.hp.com/hpinfo/abouthp/accessibility/webaccessibility/color_tool.html
http://www.w3.org/WAI

Lack of consistency: When working in XHTML, all elements and attributes must be
lowercase. In CSS, tag selectors should also be lowercase. However, user-defined id
and class values can be in whatever case the author chooses. Ultimately, decide
on a convention and stick to it—always. If you set a class value to myvalue in CSS
and myValue in HTML, chances are things won’t work. For the record, I prefer
lowerCamelCase, but there’s no reason for choosing a particular case.

Not closing elements, attributes, and rules: An unclosed element in HTML may
cause the remainder of the web page (or part of it) to not display correctly.
Similarly, not closing an HTML attribute makes all of the page’s content until the
next double quote part of the attribute. Not closing a CSS rule may cause part or
all of the style sheet to not work. Note that CSS pairs that aren’t terminated with a
semicolon may cause subsequent rules to partially or wholly fail. A good tip to
avoid accidentally not closing elements or rules is to add the end tag/closing
bracket immediately after adding the start tag/opening bracket. This also helps to
avoid incorrect nesting of elements.

Multiple rule sets: In CSS, ensure that if you use a selector more than once, any
overrides are intentional. It’s a common error for a designer to duplicate a rule set
and have different CSS property values conflicting in different areas of the CSS.

Errors with the head and body elements: As stated earlier in the book, HTML con-
tent should not appear outside of the html element, and body content should not
appear outside of the body element. Common errors with these elements include
placing content between the closing head element tag (</head>) and the body start
tag (<body>), and including multiple html and body elements.

Inaccessible content: Here, we’re talking in a more general sense, rather than about
accessibility for screen reader users. If you create a site with scrollable areas,
ensure users can access the content within, even if browser settings aren’t at their
defaults. Problems mostly occur when overflow is set to hidden. Similarly,
textarea elements that don’t have properly marked-up cols and rows settings
will often be tiny when viewed without CSS (these attributes are functional as well
as presentational). The same is true for text input fields without a defined size
attribute.

Dead links: These can take on many forms, such as a link to another page being
dead, an image not showing up, or external documents not being accessible by the
web page. If a JavaScript function isn’t working for some reason, try checking to see
whether you’ve actually linked it—in some cases, the simpler and most obvious
errors are the ones that slip through the net. Also, if things aren’t working on a live
site, check the paths—you may have accidentally created a direct link to a file on
your local machine, which obviously won’t be accessible to the entire Internet.
Spaces within href values or the original file names can also be accidentally over-
looked.

Whitespace errors: In CSS, do not place whitespace between class/id indicators and
the selector name, or between numerals and units for measurements. However, do
not omit whitespace from between contextual selectors, otherwise you’ll “com-
bine” them into a new, probably unknown, one.

Using multiple units: In CSS, a value can only accept a single unit—the likes of
50%px can cause a rule to partially or wholly fail.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

350

9071CH09.qxd 9/28/07 11:40 AM Page 350

A browser test suite
Appendix E (Browser Guide) details when various browsers were created, their approxi-
mate share of the market, and the major problems they cause. However, it’s important to
note that the market is in continual change—just a quick look at Netscape’s fortunes
should be enough to prove that. Utterly dominant during the period when the Web first
started to become mainstream, its share of the market was decimated by the then-upstart
Internet Explorer, and it’s now all but vanished. The point, of course, is that you cannot
predict how the browser market will change, and although Internet Explorer is sitting
proud today, its share of the market has been hit hard in recent years by Firefox, and this
downward trend for Microsoft’s browser could continue . . . or not. Also, each year sees
new releases of web browsers, with new features and updated—but usually incomplete—
standards support.

All of this is a roundabout way of saying that you need to think hard about browsers when
you’re creating your work. Don’t only test sites in a single browser, and don’t use the most
popular for your starting point if it’s not the most standards-compliant. Instead, use a
browser with a good grasp of web standards for your first line of tests, until you’ve got
your templates working. I personally use the Gecko engine as a starting point—more
specifically, I favor Firefox as an initial choice of browser. Opera is also a decent choice,
and Mac users can probably get away with using Safari for initial tests.

Once the basic structure is up and running, I test in a range of alternate web browsers, typ-
ically in the following order:

1. The other compliant browsers: Typically, I use Firefox as a starting point, although
sometimes I use Safari. Whichever one you choose to start in, it’s a good idea to
test in the other compliant browsers first. Sometimes, one will pick up a coding
error the others don’t, and it’s a good sanity check to ensure everything’s working
well. If you’re lucky, everything will work fine right away in all of these browsers, on
both Mac and Windows.

2. A browser in text mode: What I mean by this is testing the site without CSS, which
is a way of somewhat figuring out if it’s usable on alternate devices. Old hands
might use Lynx for this, but I instead use the Accessibility layout option of Opera’s
User mode (see the following screenshot). The Firefox Web Developer toolbar
(www.chrispederick.com) offers similar options.

3. Internet Explorer 7 for Windows: Although this release of Internet Explorer is a vast
improvement over previous efforts, it’s not as standards-compliant as the other
mainstream browsers. Therefore, tests need to be done to ensure everything’s
working properly, not least because Internet Explorer 7 is the most popular
browser in terms of market share. If things aren’t working right, conditional com-
ments need to be used (see the “Dealing with Internet Explorer bugs” section later
in the chapter).

DEALING WITH BROWSER QUIRKS

351

9

9071CH09.qxd 9/28/07 11:40 AM Page 351

http://www.chrispederick.com

4. Internet Explorer 6 for Windows: Previously the most popular browser, this release
is still in heavy use. Fairly compliant, it nonetheless has a raft of bugs, and complex
CSS layouts will almost certainly need a little tweaking to work properly, again via
the use of conditional comments. Note that because only Windows XP users can
upgrade from Internet Explorer 6 to 7 (7 being the native browser for Windows
Vista), a fair number of users—those with an earlier version of Windows—will likely
use 6 for some time to come.

5. Internet Explorer 5.5 for Windows: How far you go back, in terms of versions of
Internet Explorer, depends on your target market, the client’s budget, and general
expectations. Typically, I test the most recent three major versions of Microsoft’s
browser, due to their heavy usage. Internet Explorer 5.0 can be considered almost
extinct, however. Overall, Internet Explorer 5.5 has more problems than Internet
Explorer 6, although most of them are easy enough to work around. Generally, I
don’t aim to get sites working perfectly in this browser—a few cosmetic oddities
are acceptable, in my opinion, because there’s no point in compromising a totally
compliant site to make it more compatible for an aging browser whose market
share is in rapid decline. Ensuring content is accessible in the browser is essential,
however, and the primary concern when dealing with obsolete browsers.

6. Everything—all over again: When any major changes are made, you need to go back
through your browsers and make sure the changes haven’t screwed anything up.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

352

9071CH09.qxd 9/28/07 11:40 AM Page 352

There are other browsers out there, but the preceding list will deal with the vast majority
of your users. However, always try to find out the potential audience for a website to
ascertain whether you should place more focus on a particular browser. For example, if
authoring a site for a mostly Mac-based audience, it might make sense to use Safari as the
basis for testing, and perhaps even wheel out the long-canceled Internet Explorer 5 for
Mac, just to make sure your site works in it.

At each stage of testing, I recommend that you save HTML and CSS milestones on a very
regular basis. If something fails in a browser, create a copy of your files and work on a fix.
Don’t continually overwrite files, because it’s sometimes useful—and, indeed, necessary—
to go back to previous versions.

Whichever browsers you test in, it’s important to not avoid the “other side.” Windows
users have long seen the Mac as being inconsequential, but at the time of writing Safari
now counts for about 4% of all web users, and the trend for Mac sales (as a percentage of
the market) is upward. Usefully, there’s now a version of Safari for Windows, but even the
Mac and Windows versions of Firefox show slight differences in the way sites are handled
(mostly regarding text). Even worse, many Mac-based designers don’t test on a Windows
PC or in Internet Explorer, which has the bulk of the market. If you’re a Windows user, grab
a cheap Mac that’s capable of running Mac OS X (such as a second-hand iBook or a Mac
mini), and if you’re a Mac user, either grab a cheap Windows PC to test with or run
Windows as a virtual machine (via Parallels Desktop or VMware Fusion) on an Intel Mac or
using Virtual PC if you have a PPC-based machine. (You can also use Boot Camp on an Intel
Mac, but that requires booting back and forth between Windows and Mac OS X, so using
a virtual environment is more efficient unless you have two computers.) Linux users also
have a range of browsers to test on. Firefox is popular on that platform, and Safari is a
rough analog for Konqueror. It is worth noting, however, that the default fonts with Linux
vary considerably from those that you’d expect on a Mac or Windows PC—so you should
always define fallback fonts accordingly, and test in Linux if possible. See Chapter 3 for
more on font stacks.

Installing multiple versions of browsers

One of the big problems when it comes to web design testing is that some browser man-
ufacturers don’t enable you to run multiple versions of their products. The two biggest
culprits here are, unsurprisingly, Microsoft and Apple, who presumably argue that as their
browsers rely on system-level code, they can’t provide standalone testing environments
for older releases. Luckily, enterprising developers have proven this to not be the case.
Online, there are now a number of sites that enable you to install standalone versions of
previous incarnations of Internet Explorer. By far the best is Tredosoft’s effort, which pack-
ages everything up into a no-nonsense installer. This enables you to install standalones for
Internet Explorer versions from 6 way back to 3 (the following image shows an example of
three versions of Internet Explorer running simultaneously). Usefully, conditional com-
ments work fine, too, which wasn’t the case with earlier standalones. Download the
installer from www.tredosoft.com/Multiple_IE. Alternatively, you can manually install the
versions you require from Evolt (http://browsers.evolt.org/) and use the information
at Position Is Everything (www.positioniseverything.net/articles/multiIE.html) to
repair lost functionality.

DEALING WITH BROWSER QUIRKS

353

9

9071CH09.qxd 9/28/07 11:40 AM Page 353

http://www.tredosoft.com/Multiple_IE
http://browsers.evolt.org
http://www.positioniseverything.net/articles/multiIE.html

In a similar vein, Michel Fortin has produced standalone versions of Safari for the Mac,
available from www.michelf.com/projects/multi-safari/. However, because of the
nature of WebKit (the application framework that’s the basis for Safari), there are limita-
tions regarding which versions of the browser can be run on which versions of Mac OS X.
David Hellsing of David’s Kitchen also notes in his “Browser Suite for Developers” article
(www.monc.se/kitchen/91/browser-suite-for-developers) that you can use the WebKit
nightly builds instead of the public downloads, in order to test in multiple versions of
Safari. Links are available from the article.

Elsewhere, things are simpler. For Firefox, different versions can happily live on the same
machine, although they can’t be run simultaneously, unless you start each version with a
different profile—see “Geek to Live: Manage Multiple Firefox Profiles,” by Gina Trapani
(www.lifehacker.com/software/firefox/geek-to-live--manage-multiple-firefox-➥

profiles-231646.php), for how to do this on Windows; and “Running Multiple
Firefox Versions Concurrently,” by Jeroen Coumans (www.jeroencoumans.nl/journal/
multiple-firefox-versions), for how to do this on Mac OS X. Opera is even simpler: you
can install multiple versions and run them without having to do anything special.

Dealing with Internet Explorer bugs
As mentioned elsewhere, Microsoft made a huge leap forward with Internet Explorer 7,
but it’s still not without its problems. Also, because Microsoft’s browser enjoyed such an
immense market share for so long, older versions remain in use for years, sometimes
enjoying a share of the market that manages to eclipse every other browser apart from the

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

354

9071CH09.qxd 9/28/07 11:40 AM Page 354

http://www.michelf.com/projects/multi-safari
http://www.monc.se/kitchen/91/browser-suite-for-developers
http://www.lifehacker.com/software/firefox/geek-to-live--manage-multiple-firefox-�profiles-231646.php
http://www.lifehacker.com/software/firefox/geek-to-live--manage-multiple-firefox-�profiles-231646.php
http://www.jeroencoumans.nl/journal/multiple-firefox-versions
http://www.jeroencoumans.nl/journal/multiple-firefox-versions
http://www.lifehacker.com/software/firefox/geek-to-live--manage-multiple-firefox-�profiles-231646.php
http://www.lifehacker.com/software/firefox/geek-to-live--manage-multiple-firefox-�profiles-231646.php

latest release of Internet Explorer. With this in mind, along with the sad fact that
Microsoft’s browser has been the least compliant one out there for a long time now, this
section is dedicated to exploring how to deal with the most common Internet Explorer
bugs. These are all worth committing to memory, because if you’re working on CSS lay-
outs, these bugs will affect your designs at some point, and yet most of the fixes are
extremely simple.

Outdated methods for hacking CSS documents

Historically, web designers have resorted to exploiting parsing bugs in order to get around
Internet Explorer problems. Perhaps the most famous of these is Tantek Çelik’s box model
hack, designed to get around Internet Explorer 5.x’s inability to correctly deal with the box
model: it places padding and borders within the defined content dimensions of a box,
rather than on the outside. In other words, a box with a width setting of 300px and
padding of 20px should take up a total width of 340 pixels in a compliant browser, but in
IE 5.x, it only takes up 300 pixels. Also, only 260 pixels are available for content, due to the
40-pixel padding being placed inside the defined width of the box.

Tantek’s hack works by exploiting a CSS-parsing bug. In the following code block, padding
is set in the rule, along with a width for Internet Explorer 5.x, which terminates the rule in
the voice-family lines. Compliant browsers continue reading, thereby using the second
width value to override the first. The net result is that all browsers show the box at the
correct width.

.box {
padding: 20px;
width: 340px;
voice-family: "\"}\"";
voice-family: inherit;
width: 300px;

}

A further rule is added by some designers to cater for Opera’s then-inability to read past
the voice-family lines—the “be nice to Opera” hack took advantage of Internet Explorer
5.x not understanding child selectors, and therefore used one to set the correct width in
that browser:

html>body .box {
width: 300px;

}

The box model hack itself was later simplified further, to the simplified box model hack (or
SBMH), which involved using a single backslash in the second pair to get Internet Explorer
5.x to terminate the rule:

.box {
padding: 20px;
width: 340px;
w\idth: 300px;

}

DEALING WITH BROWSER QUIRKS

355

9

9071CH09.qxd 9/28/07 11:40 AM Page 355

In a sense the opposite of the box model hack, the star HTML hack is also often seen, in
order to make only Internet Explorer see a rule:

* html .box {
background: #000000;

}

There are myriad other CSS hacks out there, but they won’t be explored here. Not only do
hacks mess up your otherwise clean and compliant style sheet, but they’re also not future-
proof, as evidenced when the star HTML hack stopped working upon the release of
Internet Explorer 7. Also, hacks often need overrides, as evidenced by the “be nice to
Opera” hack. A far better and more future-proof method is to ditch CSS hacks entirely,
instead making a totally clean style sheet for a website, and using conditional comments to
fix bugs in Internet Explorer.

Conditional comments

Conditional comments are proprietary code that’s only understood by Microsoft browsers
from version 5 onward, but as they’re wrapped up in standard HTML comments, they
don’t affect other browsers, and they are also considered perfectly valid by the W3C’s val-
idation services. What conditional comments enable you to do is target either a specific
release of Internet Explorer or a group of releases by way of expressions. An example of a
conditional comment is shown in the following code block:

<!--[if IE 6]>
[specific instructions for Internet Explorer 6 go here]
<![endif]-->

Anything placed inside this comment will only be shown in Internet Explorer 6—all other
browsers ignore the content. This is most useful for adding IE-specific style sheets to a web
page, within which you can place overrides. For example, rather than using the box model
hack shown earlier in the chapter, you would have a clean style sheet, and then override
specific values in a separate style sheet for Internet Explorer 5.x, attached within a condi-
tional comment.

Generally, problems with Internet Explorer fall into the following camps: rare issues with
Internet Explorer 7, problems that affect versions 6 and below, and problems that specifi-
cally affect version 5.x. With that in mind, I mostly add three IE-specific style sheets to my
web pages, with the newest release at the top. Conditional comments are generally added
after the “default,” or clean, style sheets (which in this case are the main style sheet
added using a style element, and a print style sheet added using a link element).

<style type="text/css" media="screen">
/* <![CDATA[*/
@import url(x.css);
/*]]> */
</style>
<link rel="stylesheet" rev="stylesheet" href="x-print.css"
➥ type="text/css" media="print" />

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

356

9071CH09.qxd 9/28/07 11:40 AM Page 356

<!--[if IE 7]>
<link rel="stylesheet" type="text/css" href="ie-7-hacks.css"
➥ media="screen" />
<![endif]-->
<!--[if lte IE 6]>
<link rel="stylesheet" type="text/css" href="ie-6lte-hacks.css"
➥ media="screen" />
<![endif]-->
<!--[if lt IE 6]>
<link rel="stylesheet" type="text/css" href="ie-5-hacks.css"
➥ media="screen" />
<![endif]-->

Within the comments, lte IE 6 means “less than or equal to Internet Explorer 6,” so any-
thing added to ie-6lte-hacks.css affects Internet Explorer 6 and below; lt IE 6 means
“less than Internet Explorer 6,” so anything added to ie-5-hacks.css affects versions of
Internet Explorer below 6. An alternate way of attaching a style sheet for Internet Explorer
5 would be to use the syntax if IE 5. Since the cascade still affects the rules within style
sheets attached inside conditional comments, it makes sense to fix things for Internet
Explorer 6 and below first, and then work backward to Internet Explorer 5.x to fix the few
remaining things that need sorting out.

Note that the preceding code block also includes a link to a print style sheet—print style
sheets are covered in Chapter 10.

Let’s now examine the example from earlier, which has the following code hack to deal
with the box model issues that affect versions of Internet Explorer below 6:

.box {
padding: 20px;
width: 340px;
voice-family: "\"}\"";
voice-family: inherit;
width: 300px;

}

When using conditional comments, you’d make the rule in the default style sheet clean,
with no hacks:

The advanced boilerplates from the download files (in the advanced-boilerplates
folder) include the preceding code block.

See http://msdn2.microsoft.com/en-us/library/ms537512.aspx for more on con-
ditional comments. The hasLayout site—www.haslayout.net—also offers useful
information on conditional comments.

DEALING WITH BROWSER QUIRKS

357

9

9071CH09.qxd 9/28/07 11:40 AM Page 357

http://msdn2.microsoft.com/en-us/library/ms537512.aspx
http://www.haslayout.net%E2%80%94also

.box {
padding: 20px;
width: 300px;

}

You’d then add a rule to your style sheet that only Internet Explorer versions below 6 can
see (the one within the conditional comment that references lt IE 6 in the large code
block shown earlier).

.box {
width: 340px;

}

Compliant browsers read the rule in the clean style sheet. Internet Explorer versions below
6 then override the width value, thereby displaying the box as intended. Unlike when
using a CSS hack, however, the CSS hasn’t been compromised in any way. The majority of
problems detailed in the “Common fixes for Internet Explorer” sections later in the chap-
ter are to do with CSS, and therefore require conditional comments when they’re being
dealt with.

Dealing with rounding errors

Problem: In liquid layouts with floated elements, rounding errors sometimes cause the
widths of the elements to add up to more than 100%. This causes one of the floated ele-
ments to wrongly stack under the others. This problem is known to affect all versions of
Internet Explorer. For an example, see the following image (from the “Creating flanking
sidebars” exercise in Chapter 7), in which the right-hand sidebar is wrongly sitting under-
neath the left-hand sidebar.

Solution: As explained in the focus point within the “Creating flanking sidebars” exercise,
rounding errors can be dealt with by reducing one of the percentage values of a column
by as little as 0.0001%, although sometimes this reduction needs to be increased.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

358

9071CH09.qxd 9/28/07 11:40 AM Page 358

Alt text overriding title text

Problem: If you have an image with alt text nested inside a link that has a title element,
the title element will be overridden. This is largely due to Internet Explorer wrongly dis-
playing the content of the alt attribute as a tooltip.

Solution: The only way around this problem is to duplicate the title attribute and place a
copy of it within the img element. This is superfluous markup, but it fixes the issue in
Internet Explorer and does not adversely affect other web browsers.

<img
➥ title="Sunset in Reykjavík" src="sunset.jpg" alt="Sunset in
➥ Reykjavík" width="400" height="300" />

Common fixes for Internet Explorer 5.x

A few major problems are known to affect Internet Explorer 5.x specifically, and were fixed
in versions 6 and above. When using any of the fixes from the following Solution sections,
add them to an IE 5–specific style sheet (see the conditional comment earlier that begins
<!--[if lt IE 6]>).

Box model fixes (5.x)
Problem: Internet Explorer 5.x wrongly applies padding and border values within the
defined dimensions of a box (which is what the box model specifies). In the following
example, the overall width taken up by the box should be the sum of its border, padding,
and width values (420px). (Note that when using shorthand, you need to be mindful that
the amount of space they take up is double the value. In other words, if you set padding
to 50px, 50 pixels of padding is applied to both horizontal edges. Therefore, in the follow-
ing code block, the sum to find the overall width of the values in the rule is 300 + 50 + 50
+ 10 + 10.) However, in Internet Explorer 5.x, the box is only 300 pixels wide—the padding
and border are placed inside the defined width, leaving only 180 pixels for content. This
issue tends to affect most CSS-based layouts.

.boxout {
width: 300px;
padding: 50px;
border: 10px solid #000000;

}

Solution: Override the width setting by setting a new value in the style sheet attached via
a conditional comment. The value should take into account the shortcomings listed previ-
ously and therefore needs to equal the value of the relevant dimension (depending on
whether you’re defining a width or a height), along with the relevant padding and border
values.

.boxout {
width: 420px;

}

DEALING WITH BROWSER QUIRKS

359

9

9071CH09.qxd 9/28/07 11:40 AM Page 359

Centering layouts
Problem: The browser doesn’t understand margin: auto, so when, for example, a wrapper
is horizontally centered using the following code block, the resulting layout will be incor-
rectly aligned to the left of the browser window.

#wrapper {
width: 700px;
margin: 0 auto;

}

Solution: A workaround for this problem is to use the text-align property to align every-
thing within the page body centrally. You then set the alignment back to the default of
left in your wrapper (or wrappers, if you’ve used more than one). If you’ve used
other/additional layout elements that have been centered (e.g., if you have separate mast-
head, content, and footer containers, rather than your entire page structure placed within
a single wrapper), those elements will also need the text-align: left override.

body {
text-align: center;

}
#wrapper {
text-align: left;

}

The text-transform bug
Problem: The browser ignores a text-transform value if line-height is defined in the
same rule.

h1 {
font: bold 1.2em/1.4em Arial, Helvetica, sans-serif;
text-transform: uppercase;

}

Solution: Reconfirm the text-transform value in the style sheet linked via a conditional
comment.

h1 {
text-transform: uppercase;

}

Font-size inheritance in tables
Problem: When using relative units, text within table cells may be displayed at the wrong
size (too large).

Solution: Set font-size to 100% in a table rule in a style sheet linked via a conditional
comment.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

360

9071CH09.qxd 9/28/07 11:40 AM Page 360

table {
font-size: 100%;

}

Common fixes for Internet Explorer 6 and 5

Internet Explorer 6 was a step up by Microsoft, away from the disaster (from a standards
point of view) that was Internet Explorer 5.x. That said, it still had plenty of shortcomings
of its own, the vast majority of which were dealt with when Internet Explorer 7 finally
jumped on in. Any fixes from the Solution sections that follow should be added to an IE
6-and-below-specific style sheet (see the conditional comment earlier that begins <!--[if
lte IE 6]>).

Fixing min-width and max-width
Problem: The browser does not understand min-width and max-width, thereby causing
problems with semiliquid layouts that have minimum and maximum widths, rather than
set width values.

#wrapper {
min-width: 700px;
max-width: 1100px;

}

Solution: Use a proprietary IE expression to enable Internet Explorer to emulate the func-
tionality of min-width and max-width. In the code, the expression essentially states that if
the browser window width is less than 702 pixels, set the wrapper width to 700px (these
values—702 pixels and 700px—are numerically different to prevent Internet Explorer 6
from freezing); if it’s more than 1102 pixels, set the wrapper width to 1100px; and other-
wise set it to auto.

#wrapper {
width: expression(document.body.clientWidth < 702? "700px" :
➥ document.body.clientWidth > 1102? "1100px" : "auto");
}

Double-float margin bug
Problem: The browser doubles the value of any margin in the same direction as a float. For
example, in the following code, the right-floated boxout with a margin-right value of
30 pixels would actually be shown in Internet Explorer 6 and below to have a 60-pixel
margin-right value. Note that this problem only occurs for the first float in any float row.

.boxout {
width: 300px;
float: right;
margin-right: 30px;

}

DEALING WITH BROWSER QUIRKS

361

9

9071CH09.qxd 9/28/07 11:40 AM Page 361

Solution: Override the margin-right value, and halve it.

.boxout {
margin-right: 15px;

}

Alternatively, if appropriate, display: inline can be defined in the original CSS rule,
which results in the IE-specific override becoming unnecessary.

Expanding boxes
Problem: An element with a string that’s too wide for it doesn’t break out of its container;
instead, the browser stretches the container to contain it.

Solution: Use the word-wrap property with the break-word value, assigning it to the rele-
vant container.

#sidebar {
word-wrap: break-word;

}

Note that this is a CSS 3 property that’s not particularly well supported, and while it fixes
the layout, it doesn’t emulate the correct standards-compliant approach of the string
breaking out of the box—instead, it breaks the string into a number of separate lines. An
alternative is to set overflow on the container to hidden, thereby hiding the overflow and
returning the layout to normal, at the expense of not being able to see the long string.
Generally, when you come up against this problem, it makes sense to rework your string,
because while the layout won’t be affected in standards-compliant browsers, it will still
look bad.

Internet Explorer 5.x sometimes also expands a box when italics are used for some of the
text, although the problem is somewhat random. Setting overflow to visible for the con-
tainer often fixes the problem. Alternatively, setting the value to hidden crops the unruly
few extra pixels.

The 3-pixel text jog
Problem: Inline content next to a floated ele-
ment is pushed away by 3 pixels. In the
depicted example, the content in the dotted
line has a 3-pixel jog in the text that appears
under the floated element.

Solution: Apply the “Holly hack,” a 1% height
value to the relevant containing element(s).
See three-pixel-jog.html in the chapter 9
folder of the download files. Try removing
height: 1%; from #textWrapper to see how
the page looks without the hack.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

362

9071CH09.qxd 9/28/07 11:40 AM Page 362

Whitespace bugs in styled lists
Problem: The browser wrongly interprets whitespace in the code as actual space in styled
navigation lists, thereby placing space between lists and list items. This affects lists such as
that created in Chapter 5’s “Using HTML lists and CSS to create a button-like vertical navi-
gation bar” exercise.

Solution: There are several solutions to this problem, the most
drastic of which is to remove whitespace from the relevant por-
tions of code (between the list items). You can also leave a space
between the last character of the link text and the closing tag,
assuming this doesn’t compromise your layout in any way.
Otherwise, use one of the following rules:

li {
display: inline;

}
li {
float: left;
width: nnnpx;

}
li a {
display: block;
float: left;
clear: left;
width: nnnpx;

}

Note that in the preceding code, where nnnpx is shown, nnn should
be replaced with a numerical value.

Problems with iframes
Problem: Internet Explorer spawns both horizontal and vertical scroll bars when content is
larger than the declared width or height. This means that if your iframe is 200 pixels high,
but your content is 400 pixels high, you’ll end up with a vertical scroll bar and a horizontal
one, even if your content is narrower than the iframe dimensions. Other browsers don’t
make this mistake, displaying only the relevant scroll bar. Also, styling iframes can cause
problems. Turning off the default border is a good move, because it looks clunky. Adding
a border using CSS should be possible by applying it directly to the iframe (via a class or
iframe tag selector); in practice, however, this partially fails in Internet Explorer versions 6
and below, creating an ugly gap between your scroll bars and iframe borders (which hap-
pens to be the same size as the defined border).

Solution: If you know your iframe content is always going to be too large for the iframe,
set scrolling="yes" in the iframe start tag. Alternatively, add a conditional comment in
the head of the iframe content document, with the following code, experimenting with
the width property until the scroll bar disappears. If you use similar iframes on a number
of pages, you should instead assign a class value to the body element of the relevant pages
and define the html, body rule in an IE 6-and-below-specific style sheet.

DEALING WITH BROWSER QUIRKS

363

9

9071CH09.qxd 9/28/07 11:40 AM Page 363

<!--[if lte IE 6]>
<style type="text/css">
html, body {margin:0; width:180px;}

</style>
<![endif]-->

For border styles, you can work around the problem in one of two ways: you can override
the original border value, setting it to 0 for Internet Explorer 6 and below; or you can nest
the iframe in a div and provide the div with a border instead.

Ignoring the abbr element
Problem: The browser does not recognize the abbr element, completely ignoring it.

Solution: Use JavaScript to fix the behavior (at least for those users who have JavaScript
enabled), as shown in “<ABBR> Support in IE,” by Jason Davis (www.browserland.org/
scripts/abbrhack/). Note that since Internet Explorer 7 does not exhibit this behavior,
the script should be targeted at earlier versions of the browser only, by using conditional
comments.

PNG replacement
Problem: The browser does not display PNG transparency—rather than a background
showing through a semitransparent PNG, the transparency is shown as solid white.

Solution: For backgrounds, use the AlphaImageLoader filter as shown. Here’s the clean CSS:

.boxout {
background: url(an-image.png);

}

And here’s the override CSS for the IE style sheet:

.boxout {
filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
➥(src='an-image.png',sizingMethod='scale');
background: none;

}

For individual images, either put up with old versions of Internet Explorer not displaying
them as intended, or create some additional content for Internet Explorer that can be
swapped out for the PNG image.

Here’s the HTML:

<img src="an-image.png" width="300" height="300" alt="An image"
➥ class="pngImage" />
<img src="shim.gif" width="300" height="300" alt="An image"
➥ class="IEImage" />

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

364

9071CH09.qxd 9/28/07 11:40 AM Page 364

http://www.browserland.org/scripts/abbrhack
http://www.browserland.org/scripts/abbrhack

Here’s the clean CSS:

.IEImage {
display: none;

}

And here’s the override CSS for the IE style sheet:

.pngImage {
display: none;

}
.IEImage {
filter: progid:DXImageTransform.Microsoft.AlphaImageLoader
➥(src='an-image.png',sizingMethod='scale');
background: none;

}

Note that shim.gif should be a transparent GIF with no content.

Problems with CSS hover menus (drop-downs)
Problem: The browser supports :hover only on links, rather than on any element, thereby
making drop-downs like that in Chapter 5’s “Creating a drop-down menu” exercise fail.

Solution: Use some kind of JavaScript fallback system. There are various options for this,
but the simplest is the solution offered by Peter Nederlof at www.xs4all.nl/~peterned/
csshover.html. All you need to do is download either csshover.htc or csshover2.htc,
place it somewhere within your site’s hierarchy, and then link to it through a rule in a style
sheet linked via a conditional comment.

body {
behavior: url(csshover2.htc);
}

Another solution is to use HTML Dog’s Suckerfish Dropdowns (www.htmldog.com/
articles/suckerfish/dropdowns/), which works nicely all the way back to Internet
Explorer 5, and uses perfectly valid CSS.

Fixing hasLayout problems (the peekaboo bug)

Problem: Due to the archaic nature of some aspects of the Internet Explorer rendering
engine, it sometimes serves up some rather odd bugs, and perhaps the most irritating of
these is the so-called peekaboo bug, also known as the disappearing content bug. Fairly

Replacing PNG images manually is a tedious task if you’ve got more than a couple on
your site. If you regularly work with PNG transparency, it’s worth investigating
JavaScript alternatives (such as the one shown at www.bjorkoy.com/past/2007/4/8/
the_easiest_way_to_png/) for automating the method shown in this section.

DEALING WITH BROWSER QUIRKS

365

9

9071CH09.qxd 9/28/07 11:40 AM Page 365

http://www.bjorkoy.com/past/2007/4/8
http://www.xs4all.nl/~peterned
http://www.htmldog.com/articles/suckerfish/dropdowns
http://www.htmldog.com/articles/suckerfish/dropdowns

common (but also fairly random as to whether it occurs), it typically affects layouts that
use floats and clearing divs, and it can cause elements to partially disappear below a given
point, or for content to flicker on and off as a page is scrolled.

The problem occurs due to a proprietary Internet Explorer concept called “layout,” which
refers to how elements render their content and interact with other elements. Some ele-
ments have layout by default, others don’t, and some CSS properties (irreversibly) trigger
it. Any property that gains layout in some way has Microsoft’s proprietary hasLayout prop-
erty set to true. If an element doesn’t have layout, the property is set to false.
Unfortunately, there’s no way to directly set hasLayout for any element, even in an IE-
specific style sheet, and yet hasLayout is the cause of many layout problems in Internet
Explorer.

The hasLayout-trigger.html document within the hasLayout folder from the chapter 9
folder of the download files always exhibits the peekaboo bug. The page’s structure is
extremely simple: a wrapper has within it three divs; the first is floated right and given a
50% width, the second has no style applied, and the third is a clearing div. By default,
when the page is loaded, the second div cannot be seen in Internet Explorer 6 or below
(see the following left-hand image)—only by scrolling, selecting content, or resizing the
window can you make the “missing” content reappear. In a compliant browser, however,
this problem doesn’t occur (see the following right-hand image).

Solution: Should you come across this problem when working on your own sites, the solu-
tion is to give layout to the containing div. The best method for doing this is to set the
proprietary zoom property to 1 in a style sheet linked via a conditional comment.

Note that hasLayout issues still affect Internet Explorer 7, although they are thankfully
rarer than in previous versions of Microsoft’s browser.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

366

9071CH09.qxd 9/28/07 11:40 AM Page 366

Try doing this for the #wrapper rule in the ie6-lte-hacks.css file (see the following code
block), and you’ll see that the hasLayout problem no longer affects the page—the content
that wasn’t initially visible should now be displayed properly.

#wrapper {
zoom: 1;

}

Targeting other browsers
Generally, targeting browsers other than Internet Explorer is unnecessary. All other cur-
rently shipping browsers are pretty well behaved. However, under extreme circumstances,
there are exceptions. For users who still have to deal with Internet Explorer for Mac, you
can create overrides by importing a style sheet via a style element, but omitting url and
leaving no space between @import and the opening bracket:

<style type="text/css" media="screen">
/* <![CDATA[*/
@import("ie-mac-hacks.css");
/*]]> */
</style>

This can be placed in the same style element as the import line for the clean style sheet:

<style type="text/css" media="screen">
/* <![CDATA[*/
@import url(clean.css);
@import("ie-mac-hacks.css");
/*]]> */
</style>

For any other overrides, you need to resort to JavaScript, which isn’t an ideal solution—
after all, there are still plenty of people out there who routinely turn off JavaScript—but
it’s the best we’ve got.

It’s probably worth noting that zoom, like some of the other things mentioned in the
Internet Explorer fixes, will not validate. However, as far as I’m concerned, there’s no
real urgency or reason to make IE-specific style sheets validate. Keep your main style
sheet clean and valid, and then add whatever you need to get things working in
Internet Explorer—although always use as few additions as possible, even when work-
ing with conditional comments. In some cases, however, height: 1% should provide
the same effect, and this is valid CSS.

DEALING WITH BROWSER QUIRKS

367

9

9071CH09.qxd 9/28/07 11:40 AM Page 367

For targeting a specific platform, you can use a script like this, added to an external
JavaScript file:

if (navigator.platform.indexOf('Mac')!= -1) {
var cssNode = document.createElement('link');
cssNode.setAttribute('rel', 'stylesheet');
cssNode.setAttribute('type', 'text/css');
cssNode.setAttribute('href', 'mac-hacks.css');
document.getElementsByTagName('head')[0].appendChild(cssNode);

}

In this case, if the user has a Mac, the style sheet mac-hacks.css will be linked to, but if
the user has a different operating system, it won’t. (Win and Linux are values for other
popular operating systems that you may wish to target.)

To target specific browsers, use the following code block, replacing BrowserName with
Firefox, IE (for Internet Explorer, although conditional comments are a better bet for
dealing with IE issues), Mozilla, Netscape, OmniWeb, Opera, or Safari. Obviously, you also
need to change the file name of the CSS document in the href line, too, from
hacks-file.css to the relevant CSS document for your chosen browser in the first line of
the script.

if (navigator.userAgent.indexOf('BrowserName')!= -1) {
var cssNode = document.createElement('link');
cssNode.setAttribute('rel', 'stylesheet');
cssNode.setAttribute('type', 'text/css');
cssNode.setAttribute('href', 'hacks-file.css');
document.getElementsByTagName('head')[0].appendChild(cssNode);

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

368

9071CH09.qxd 9/28/07 11:40 AM Page 368

9071CH09.qxd 9/28/07 11:40 AM Page 369

9071CH10.qxd 10/4/07 1:25 PM Page 370

10 PUTTING EVERYTHING TOGETHER

9071CH10.qxd 10/4/07 1:25 PM Page 371

In this chapter:

Combining methods to create website designs

Creating a blog layout

Creating a storefront layout

Creating a homepage layout

Creating an online gallery

Working with style sheets for print output

Putting the pieces together
The majority of this book intentionally works in a modular manner. The idea is that you
can work on the various components as you wish and then combine them to form all man-
ner of websites. This chapter shows how this process can work. Three layouts will be
explored, and elements from each one will be heavily based on exercises from elsewhere
in this book. You’ll see the Photoshop mock-up, a breakdown of its structure, and instruc-
tions for how the completed files were put together—mostly using techniques you’ve
already worked with in this book. In all cases, the completed files are available in the
download files (in the chapter 10 folder). Note that these layouts are mock-ups of web-
sites, with a single page designed, not complete websites. However, there’s enough mate-
rial here to use as the basis for your own designs, although you shouldn’t use them as
is—after all, you’re not the only person with a copy of this book!

Managing style sheets
In the download files, there are two sets of boilerplates. The basic-boilerplates folder is
the one used for the exercises throughout the book. The XHTML document contains only
a single wrapper div, while the CSS document has a handful of rules that are designed to
reset margins and padding and define a default font. Projects in this chapter are instead
based on the documents from the advanced-boilerplates folder. This contains a more
complex web page and a style sheet that uses CSS comments to split the document into
sections. The “Creating boilerplates” section in Chapter 2 provided an overview of the rea-
soning behind this technique, and the “CSS boilerplates and management” section in
Appendix D (CSS Reference) does largely the same thing. However, because this section
will examine CSS rules within certain sections of each style sheet, a brief overview is
required here, too.

Note that in the following sections, there are references to exercises elsewhere in the
book, stating that the code was more or less copied and pasted. In all cases, ensure
you check the paths to any linked files—mostly, the book has used a totally flat struc-
ture for files. In this chapter, images are always placed in an assets folder. Therefore,
paths to images need updating accordingly when using portions of exercises from
elsewhere in the book.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

372

9071CH10.qxd 10/4/07 1:25 PM Page 372

Essentially, you can use CSS comments for writing notes within a style sheet—whatever’s
between CSS comments (which begin /* and end */) is ignored by browsers. Comments
can be multiline or single-line, and you can therefore use comments to create sections in
the style sheet for various “groups” of rules. For example, you can use the following to
introduce a group of rules on forms:

/* ---------- forms ---------- */

Taking things further, a multiline comment can be added at the start of the document. This
can include a table of contents, and the various section headers within the style sheet can
be numbered, thereby making navigation and editing even easier. As also explained else-
where, I indent both property/value pairs and the closing quote of the declaration, as
shown in the following code block (with a tab being represented by four spaces):

#sidebar {
float: right;
}

This makes it simpler to scan the left-hand side of the document for selectors. Note that
although the rules within the remainder of this chapter are not formatted in this manner,
the rules within the download file style sheets are.

Creating a portfolio layout
This section will show how I created a layout for an online portfolio, suitable for a designer
or photographer (professional or otherwise) to show off their wares. The Photoshop file
for the document is gallery-layout.psd, in the PSD mock-ups folder within the chapter
10 folder of the download files. The completed web page (along with associated files) is
within the gallery-website folder, within the chapter 10 folder. The following image
shows the Photoshop mock-up of the page.

PUTTING EVERYTHING TOGETHER

373

10

9071CH10.qxd 10/4/07 1:25 PM Page 373

About the design and required images

As you can see from the previous screenshot, this page has a simple structure. The fixed-
width layout has a masthead that contains the name of the portfolio and is bordered on
the bottom, creating a visual separator between the site’s name and its contents. The main
content area is split into two columns. On the right are thumbnail images, and on the left
are the main image, a caption, and basic instructions regarding how to use the page.

From the mock-up, only one image was exported: the site’s heading from the masthead.
Although it would be possible to approximate this in HTML text, the size of the heading
and the nonstandard font used (Helvetica Neue) means it made more sense to export it as
a GIF. Image replacement was used to ensure the heading remains accessible. The other
images—the thumbnails and full-size ones—aren’t in the mock-up, but were fine-tuned,
optimized, and exported separately and placed in the assets folder, along with the head-
ing image. Note that I used a convention for file names: thumbnails share the name of
their full-size parent, but with -t appended.

Putting the gallery together

When putting this page together, techniques were used from the following exercises and
sections in this book:

Creating a fixed-width wrapper (Chapter 7)

Placing columns within a wrapper (Chapter 7)

Manipulating two structural divs for fixed-width layouts (Chapter 7)

Styling semantic markup: A traditional example with serif fonts and a baseline grid
(Chapter 3)

Image-replacement techniques (Chapter 3)

Switching images using JavaScript (Chapter 5)

Adding captions to your image gallery (Chapter 5)

I also took on board various techniques discussed in Chapter 4 regarding working with
images.

Open index.html and examine the code. The head section imports a style sheet, uses a
conditional comment to link to an IE 5–specific style sheet (because once the layout was
done, there were layout issues in Internet Explorer 5.5) and the JavaScript file gallery.js.
The JavaScript document is identical to the one from the “Adding captions to your image
gallery” exercise in Chapter 5.

The page’s basic structure is simple: the page is contained within a wrapper div. Within
that, there is a masthead and a content area, the latter of which has two columns, formed
from div elements with id values of mainImageContainer and thumbnailsContainer. If
the content were removed, this structure would look like that in the following code block:

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

374

9071CH10.qxd 10/4/07 1:25 PM Page 374

<div id="wrapper">
<div id="masthead"></div>
<div id="content">
<div id="mainImageContainer"></div>
<div id="thumbnailsContainer"></div>

</div>
</div>

If you’ve read through Chapter 7, you’ll see that this layout is formed using techniques
shown in the “Creating a fixed-width wrapper,” “Placing columns within a wrapper,” and
“Manipulating two structural divs for fixed-width layouts” exercises.

Within the masthead div is a level-one heading with an empty span element. This is as per
the image-replacement method shown in the “Image-replacement techniques” section of
Chapter 3. The CSS applied to the elements (shown later in this section) effectively places
the span over the text and sets the heading image exported from the mock-up as its back-
ground.

<h1 class="mainHeading">Pictures of Padstow</h1>

In the mainImageContainer div, there’s an image, a caption, and explanatory text. Note
the id value for the image—this is a hook for both the JavaScript and CSS, as explained in
the “Switching images using JavaScript” and “Adding captions to your image gallery” exer-
cises in Chapter 5.

The thumbnailsContainer div contains an unordered list, each item from which contains
a linked thumbnail image, and an example of which is shown in the following code block:

<a href="assets/boat.jpg" onclick="javascript:swapPhoto
➥('boat.jpg','A docked boat, with distant clouds rolling in.');
➥ return false;"><img src="assets/boat-t.jpg" alt="A docked
➥ boat." width="80" height="60" />

Again, the various elements of the code are explained in the aforementioned exercises
from Chapter 5. The only difference here is the use of the list, which is used to provide
structure for the 18 images—as you’ve seen elsewhere in the book, CSS makes it possible
to style lists in any manner of ways.

Styling the gallery

The pictures-of-padstow.css document contains the styles for this layout, and these
styles are arranged into sections, as explained earlier in the chapter. The defaults section
includes two rules. The first is the universal selector (*), used to remove padding and mar-
gins (as per the “Zeroing margins and padding on all elements” section in Chapter 2). The
second is a body rule with a commented-out background pair. If you remove the CSS com-
ments and load the web page into your browser, you’ll see a background grid, as shown in
the following screenshot (the baseline grid’s height is 20 pixels per line). It’s worth leaving

PUTTING EVERYTHING TOGETHER

375

10

9071CH10.qxd 10/4/07 1:25 PM Page 375

the rules in place when working with baseline grids, because if you make changes to your
page later, you can temporarily turn the grid back on to ensure rhythm is being main-
tained. Having a commented-out property/value pair in your CSS makes no noticeable dif-
ference to file download times anyway.

In the structure section of the CSS, the #wrapper rule defines a fixed width for the page’s
wrapper, and the margin property value of 0 auto centers the page in the browser window
(as explained in Chapter 7’s “Creating a fixed-width wrapper” exercise). The #masthead
rule sets some padding at its top (to place some space above the heading), adds a single-
pixel bottom border, and adds a bottom margin, again for spacing reasons. Note that the
values within this rule, taken in combination with the height of the heading (23 pixels)
ensure that the vertical rhythm is maintained. The two other rules in the section style the
two columns, floating them, giving them fixed widths, and adding some space between
them, as per the “Manipulating two structural divs for fixed-width layouts” exercise in
Chapter 7.

In the fonts section of the CSS, the default font size is set using the html and body rules,
as per the “Setting text using percentages and ems” section in Chapter 3. The
h1.mainHeading and h1.mainHeading span rules are the image-replacement technique in
full swing, as per the “Image-replacement techniques” section in Chapter 3. Note the
h1.mainHeading rule’s font-size value, which ensures that the text doesn’t spill out from
behind the image in Internet Explorer when zooming the page. While defining font size in
pixels is generally a bad idea, it’s largely irrelevant here, because the HTML text is only
likely to be seen if the CSS isn’t shown. (For anyone surfing with images off, a portfolio is
kind of useless, and even if they’re determined to press on regardless, the 20px value
ensures that the heading text is likely to be legible for them anyway.)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

376

9071CH10.qxd 10/4/07 1:25 PM Page 376

h1.mainHeading {
position: relative;
width: 342px;
height: 28px;
overflow: hidden;
padding-bottom: 19px;
font-size: 20px;
line-height: 1em;

}
h1.mainHeading span {
position: absolute;
background: #ffffff url(assets/pictures-of-padstow.gif) no-repeat;
width: 100%;
height: 100%;

}

The p rule sizes the paragraph, and the line-height value is determined by dividing the
baseline grid line height (2em, derived from the 20 pixel target—see the “Styling semantic
markup: A traditional example with serif fonts and a baseline grid” exercise in Chapter 3
for the thinking behind this) by the font-size value: 2.0 divided by 1.1 equals 1.81818181
(recurring, but you can stop after a half-dozen or so decimal places in CSS).

p {
font: 1.1em/1.81818181em Verdana, Arial, Helvetica, sans-serif;
color: #898989;

}

The p em rule reduces the font-size value for the emphasized text in the instructions
paragraph, while the #thumbnailsContainer li rule displays the list items within the
thumbnailsContainer div inline, stacking them horizontally.

#thumbnailsContainer li {
display: inline;

}

The final section in the style sheet is for images, and the three rules are as follows: a img,
which removes borders from linked images; #imgPhoto, which defines the margin under
the main image; and #thumbnailsContainer img, which floats the images within the
thumbnailsContainer div, ensuring there’s no space between them.

The completed page is shown in the following image.

PUTTING EVERYTHING TOGETHER

377

10

9071CH10.qxd 10/4/07 1:25 PM Page 377

Hacking for Internet Explorer

As mentioned earlier, there’s also a style sheet for Internet Explorer 5, attached using a
conditional comment. This document, ie-5-hacks.css, has four rules. The body and
#wrapper rules deal with that browser not centering the site (see the “Centering layouts”
section in Chapter 9). The h1.mainHeading rule adds extra padding to the bottom of the
heading to cater for Internet Explorer 5’s poor handling of the box model (again, see
Chapter 9), while the final rule deals with the browser placing margins around the thumb-
nail images. The defined negative horizontal margins (shown in the following code block)
pull the thumbnails back into position.

#thumbnailsContainer img {
margin: 0 -3px;

}

Creating an online storefront
This section will detail how I created a layout for an online storefront, providing the user
with a quick and simple means of accessing a number of product categories by way of a
multicolumn drop-down menu. The Photoshop file for the document is store-front-
layout.psd, in the PSD mock-ups folder within the chapter 10 folder of the download
files. The completed web page (along with associated files) is within the store-website
folder, within the chapter 10 folder. The following image shows the Photoshop mock-up
of the page.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

378

9071CH10.qxd 10/4/07 1:25 PM Page 378

About the design and required images

Prior to working on this design, I decided that it would be a semi-liquid layout, with a max-
imum width of around 1000 pixels and a minimum width slightly larger than the width of
the four tabs (which total 740 pixels). This explains the use of the blue gradient behind the
tabs, providing a transition between the dark orange stripe and the white masthead area
when the site is displayed wider. Without this, the jolt between these two elements would
be too harsh. This also explains the lack of fixed-width elements elsewhere in the design—
images are floated right and recently added items are displayed in a linear fashion. With a
liquid layout, displaying these three containers as columns wouldn’t be entirely straight-
forward (although it could be done by replacing the images with divs that have back-
ground images large enough to cater for changes in column width; however, at narrow
widths, the images would be cropped).

In terms of imagery, the logo was exported, as was a portion of the gradient image (which
was tiled horizontally). Had I been working entirely from scratch on this layout, the tab
states would also have been included in and exported from the mock-up, but I took those
directly from the drop-down exercise from Chapter 5. The inline images in the document
are all just a single gray square saved as temporary-image.gif. Clearly, in an actual site, all
of those images would show items for sale!

PUTTING EVERYTHING TOGETHER

379

10

9071CH10.qxd 10/4/07 1:25 PM Page 379

Putting the storefront together

When working on this layout, I made use of techniques shown in the following exercises:

Creating a maximum-width layout (Chapter 7)

Placing columns within a wrapper (Chapter 7)

Manipulating two structural divs for liquid layouts (Chapter 7)

Creating a sidebar with faux-column backgrounds (Chapter 7)

Creating a boxout (Chapter 7)

Creating breadcrumb navigation (Chapter 5)

Creating a multicolumn drop-down menu (Chapter 5)

Open index.html and examine the code. The head section imports a style sheet, uses con-
ditional comments to link to three IE-specific style sheets (one for Internet Explorer in
general, one for Internet Explorer 6 and below, and one for Internet Explorer versions
below 6), and attaches the JavaScript file store.js. The JavaScript document is not going
to be explored fully. The reason for its inclusion at all is because Internet Explorer prior to
version 7 does not show the drop-down menu if the technique shown earlier in the book
is used. By adding the JavaScript within the linked document, behavior in all generally used
versions of Internet Explorer becomes identical.

The page’s structure is shown in the following code block. The page is contained within a
wrapper div. Within that, there is a masthead that contains a logo div and a navContainer
div (which itself contains a navigation div). After the masthead is a content div that con-
tains two columns, formed from div elements with id values of sidebar and mainContent.

<div id="wrapper">
<div id="masthead">
<div id="logo"></div>
<div id="navContainer">
<div id="navigation"></div>

</div>
</div>
<div id="content">
<div id="sidebar"></div>
<div id="mainContent"></div>

</div>
</div>

In the masthead, prior to the logo div, is an unordered list with an id value of pullNav.
This is used for the pull-navigation at the top right of the design (including the shopping
basket, checkout, account, and helpdesk links).

<ul id="pullNav">
Shopping basket
Checkout
Account
Helpdesk

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

380

9071CH10.qxd 10/4/07 1:25 PM Page 380

The logo div contains a linked image (linked to # in this example, but in a live site, this
would be linked to the website’s home page). The navContainer contents are literally
identical to those in Chapter 5’s “Creating a multicolumn drop-down menu” exercise.

In the content area, the sidebar div contents are straightforward: level-two headings are
twice followed by unordered lists full of links (intended for links to top sellers and items
coming soon), and a third heading is followed by a paragraph of text. In the mainContent
div, a level-one heading is followed by an introductory paragraph and a horizontal rule.
Next are the page’s recently arrived item highlights. These each take the form of a con-
taining div (with an id value of itemContainer), and each of these containers contains
two divs, itemImage (which houses an image) and itemDetails. Each itemDetails div
contains an unordered list for the name, price, stock notification and dispatch details,
along with a paragraph of descriptive text. Two of the list items have class values, which
are used as hooks for CSS styles.

<div class="itemContainer">
<div class="itemImage">
<img src="assets/temporary-image.gif" alt="[temporary
➥ image]" width="100" height="100" />

</div>
<div class="itemDetails">

<li class="itemName">Item name
<li class="itemCost">£X.XX
In stock
Usually dispatched within 24 hours

<p>Lorem ipsum dolor […]</p>

</div>
</div>

After the three-item container blocks is a second horizontal rule, and then the main con-
tent area’s final content: a level-two heading and a paragraph of text. Because the item
containers each have a bottom border style assigned in CSS, the second horizontal rule
results in a double border. Because of its semantic significance, it needs to remain, which
leaves the choice of making it invisible by CSS or making the final item container’s bottom
border invisible, which is what’s been done. (If you look at the class attribute of the third
itemContainer div, it has a second value, lastItemContainer.)

Finally, after the two columns, but inside the content div, is a single footer paragraph con-
taining a copyright statement.

Styling the storefront

The store.css document contains the styles for this layout, arranged into sections, as
noted earlier in the chapter. The defaults section includes two rules. The first is the uni-
versal selector (*), used to remove padding and margins (as per the “Zeroing margins and
padding on all elements” section in Chapter 2). The second is a body rule, which adds some
top and bottom padding to the web page, ensuring that there’s always some whitespace
around the design.

PUTTING EVERYTHING TOGETHER

381

10

9071CH10.qxd 10/4/07 1:26 PM Page 381

In the structure section are a number of rules for styling the page’s structural elements.
The #wrapper rule provides both a maximum and minimum width for the site wrapper,
along with centering the site via the margin value.

#wrapper {
max-width: 1000px;
min-width: 760px;
margin: 0 auto;

}

The #masthead rule adds a large bottom border of 18 pixels to the masthead.

#masthead {
border-bottom: 18px solid #eeeeee;

}

At this point, the reasoning for the #masthead rule won’t be apparent, so I’ll explain. The
design as a whole has 18 pixels of padding around the content area. It also uses faux
columns (as outlined in Chapter 7’s “Creating a sidebar with faux-column backgrounds”
exercise) to apply a vertical separator stripe between the two columns (the sidebar and
the main content area). However, from a design standpoint, it looks much nicer if the col-
umn doesn’t start right from the top of the content area, and there’s instead some space
above it. Because the background is applied to the content div, the background image by
default starts from the top of the content area. To avoid this, one option would be to add
further markup that “covers” a portion of the separator stripe (via a div with a back-
ground color, a fixed height, and a width that spans the entire content div’s width).
However, adding a border to the bottom of the masthead that has the same color as the
content area’s background has the same effect. Sure, this is kind of a hack, but it doesn’t
cause any problems from a structural standpoint, and no semantics are affected. If you do
this sort of thing, however, always remember where the various elements of the visual
design lie in CSS, and use comments to remind yourself, if you need to.

Anyway, onward. The #logo rule is much simpler, adding some padding at the bottom and
left of the div that houses the site logo. The reason for adding padding at the left is
because otherwise the logo would abut the browser window edge at a screen resolution of
800✕600. The #content rule adds some horizontal padding, along with the column-
stripe.gif image as a vertically tiling background image (the aforementioned faux-
column technique). Note the horizontal position of 27%. This is designed to sit roughly
within the margin to the right of the sidebar div—see the following code block for the
width and margin-right values of the sidebar and mainContent divs. Logically, a value of
26% should be set, because that would be the width of the sidebar, plus half of the
margin-right value. However, the padding value of #content messes with that calculation
somewhat, because the two columns don’t span the entire width that the content div
background occupies, since that stretches to the edge of the padding, which is 18 pixels on
each horizontal edge. A setting of 26% therefore results in the vertical stripe appearing too
far to the left; adding 1% results in a more pleasing position for the background.

#content {
padding: 0 18px;
background: #eeeeee url(assets/column-stripe.gif) 27% 0 repeat-y;

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

382

9071CH10.qxd 10/4/07 1:26 PM Page 382

}
#sidebar {
float: left;
width: 24%;
margin-right: 4%;

}
#mainContent {
float: left;
width: 72%;

}

Next, the .itemContainer rule defines a border and margin at the bottom of the
itemContainer divs. This is overridden for the last of the three containers by the
.lastItemContainer rule to avoid a double underline (as explained earlier). The
.itemContainer:after rule is essentially the same as the clearFix rule (see the “Clearing
floated content” exercise in Chapter 7), clearing floated content so that the
itemContainer divs don’t stack incorrectly. The .itemImage rule floats the divs contain-
ing the images right, adding some bottom and left margins so that other content doesn’t
abut them. Finally, the hr rule defines settings for the horizontal rule (although note that
Internet Explorer deals with hr margins differently from other browsers, making them
larger—this will be dealt with via conditional comments).

In the navigation section, the first three rules define colors for default, visited, and
hover/focus link states, while the next three style the pull-navigation. The #pullNav rule
floats the pull-navigation list right and adds some right padding, while #pullNav li sets
the list items within to display inline, adding the vertical-bar.gif image as a background
and some padding. The ul#pullNav li:first-child rule then removes the background
from the first of the list items. The code is shown in the following block, and a full expla-
nation is shown in the “Creating breadcrumb navigation” exercise in Chapter 5.

#pullNav {
float: right;
padding-right: 10px;

}
#pullNav li {
display: inline;
background: url(assets/vertical-bar.gif) 0 55% no-repeat;
padding: 0 3px 0 8px;

}
ul#pullNav li:first-child {
background: none;

}

The remainder of the rules are copied from Chapter 5’s “Creating a multicolumn drop-
down menu” exercise, and the path values to the css-tab-rollover-image.gif have
been amended accordingly to take into account that the image is now being housed in an
assets folder. There are two other changes as well, to cater for the layout the menu is
being used with. First, #navContainer has a horizontally tiling background image (the gra-
dient) applied, and the #navigation ul rule has width and margin values to center the list
horizontally, in the same way the wrapper div was centered earlier.

PUTTING EVERYTHING TOGETHER

383

10

9071CH10.qxd 10/4/07 1:26 PM Page 383

#navContainer {
height: 30px;
border-bottom: 5px solid #ad3514;
background: url(assets/nav-background.gif) repeat-x;

}
#navigation ul {
list-style-type: none;
width: 740px;
margin: 0 auto;

}

Fonts and fixes for the storefront layout

In the fonts section of the CSS, the default font size is set using the html and body rules, as
per the “Setting text using percentages and ems” section in Chapter 3. The h1 rule defines
the lead heading, and I’ve done something that’s not been done elsewhere in the book:
the heading is floated left. This enables subsequent content to wrap around the heading,
and is something I rarely do, but for this design, it made sense for the heading to be more
of an introduction to the introductory paragraph itself, and displaying it inline was the way
to do that. The padding-right value ensures there’s some space before the subsequent
paragraph. The line-height setting was calculated after the values for p and h1+p were
defined, and the final figure was calculated in the same proportional manner as per h1+p
(see later in the section).

h1 {
float: left;
padding-right: 0.3em;
font: bold 1.4em/1.2571428em Arial, Helvetica, sans-serif;

}

The next three rules, h2, #sidebar h2, and p, style the level-two headings, level-two head-
ings in the sidebar, and paragraphs, respectively. There’s nothing of note here, but refer to
Chapter 3 if there’s something you’re not familiar with. Next is the h1+p rule. This increases
the font size of the paragraph that immediately follows the level-one heading, giving it
more prominence. Because the font-size value has been increased, the line-height
value has to be decreased proportionately in order for the text to all line up correctly. The
p and h1+p rules are shown in the following code block.

p {
font: 1.1em/1.6em Verdana, Arial, Helvetica, sans-serif;
margin-bottom: 1.6em;

}
h1+p {
font-size: 1.2em;
line-height: 1.4666666em;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

384

9071CH10.qxd 10/4/07 1:26 PM Page 384

The next rule, #content ul, #pullNav, sets the default font and bottom margin for the
two types of horizontally aligned list (the pull-navigation and the item details lists in the
main content area). The three subsequent rules, #content .itemDetails ul, .itemDetails
li, and .itemDetails li:first-child, style the lists in the itemContainer divs in pretty
much the same way as for the pull-navigation. The main difference is the white back-
ground applied to the list items, which was added during the build stage in order to make
the item details stand out more (see the detail below). This sort of thing happens all the
time when I create sites—mock-ups should always be more a guideline than something to
slavishly and exactly reproduce in the final site. If you can think of an improvement (and
the client is happy with it, if you’re working on a commercial project), then make changes!

The remaining rules in this section are all straightforward. The .itemName, .itemCost rule
emboldens the text in the list items with the class values of itemName and itemCost,
thereby making the name and cost stand out more. And p.footer styles the footer para-
graph. In this rule, clear is set to both so that the footer clears the two floated columns,
and the text is aligned right. However, the footer also serves other purposes of a more
decorative nature. The background is set to white, an 18-pixel top border the same color
as the content background is defined, and negative horizontal margins of 18px are set,
along with padding of 18px. What this does is make the background of the footer white
and span the entire width of the content div, including its padding. The top border deals
with the faux-column separator in the same way as the bottom border on the masthead. A
detail of the resulting footer is shown in the following image.

The last three rules are in the images section. The first, a img, removes borders from
linked images. The next, .itemImage img, adds a border to images within the itemImage
divs, and .itemImage img:hover changes the border color on the hover state, indicating
that the link is clickable (seeing as all of the item images are surrounded by links).

As mentioned earlier, this layout also has three style sheets linked via conditional com-
ments to deal with Internet Explorer issues. The first, ie-hacks.css, has line-height
overrides for h1 and h1+p, which line up the heading and paragraphs properly in
Microsoft’s browser. A rounding problem causes a horizontal scroll bar to appear at nar-
row browser window sizes, so the #mainContent rule’s width value is overridden with a
setting of 71.9%. Finally, the hr rule defines vertical margin values to make the horizontal
rules in Internet Explorer behave in a similar manner to other browsers.

PUTTING EVERYTHING TOGETHER

385

10

9071CH10.qxd 10/4/07 1:26 PM Page 385

The ie-6lte-hacks.css document has some fixes for Internet Explorer 6 and below. The
#wrapper rule deals with Internet Explorer 6 and below not understanding max-width and
min-width, and uses a Microsoft-proprietary expression to compensate for this failing. The
#content rule is a hasLayout hack, which stops the entire layout from jolting when the
tabs are rolled over. The #pullNav li, .itemDetails li rule removes the vertical bars
from the inline lists, since Internet Explorer prior to version 7 doesn’t understand the
:first-child pseudo-class used to set specific values for the initial list item in each inline
list. The next two rules, #dmenu li.over ul and #dmenu li li li, deal with issues relat-
ing to the drop-down menu. The first is a hook for the JavaScript, ensuring that the drop-
down appears as expected in Internet Explorer 6 and below. The second removes the
bottom borders from the list items, since they don’t appear correctly in Internet Explorer
versions below 7. Finally, because Internet Explorer 6 and below don’t allow CSS :hover
rules on anything other than links, a new rule is required to change the borders around
the images on the hover state:

#content a:hover img {
border: 1px solid #ad3514;

}

The ie-5-hacks.css style sheet contains rules for centering components and dealing with
positioning issues.

The completed web page is shown in the following image, with the drop-down active.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

386

9071CH10.qxd 10/4/07 1:26 PM Page 386

Creating a business website
This section will detail how I created the third layout in this chapter, which is suitable for a
business website. This makes use of the two-tier navigation system devised in Chapter 5,
and although the entire design doesn’t adhere strictly to a baseline grid, I decided that it
would be good for the content area to do so, to create a more pleasing rhythm for the
content area of the page. The Photoshop file for the document is sme-layout.psd, in the
PSD mock-ups folder within the chapter 10 folder of the download files. The completed
web page (along with associated files) is within the sme-website folder, within the chapter
10 folder. The following image shows the Photoshop mock-up of the page.

About the design and required images

This design is clean and modern. The site is fixed-width, with a dark background color for
the overall page; a dark gradient from the top draws the attention toward the top of the
page. The masthead contains the company logo, along with a short sentence regarding
what the organization offers. Below that is the navigation, followed by the content area.

PUTTING EVERYTHING TOGETHER

387

10

9071CH10.qxd 10/4/07 1:26 PM Page 387

The content area is simple: an introductory heading and paragraph (with a floated image
to the right) is followed by a client quote. Below that is a large horizontal rule, which is fol-
lowed by two columns.

Image-wise, the masthead background was exported (with the sentence turned off—that
was added in HTML text), as was the background gradient. Other images were sourced
from elsewhere, the temporary image being the same one as in the previous layout
example, and the navigation images being taken directly from the example created for
Chapter 5.

Putting the business site together

When creating this layout, I made use of methods shown in the following exercises/sections:

Creating a fixed-width wrapper (Chapter 7)

Manipulating two structural divs for fixed-width layouts (Chapter 7)

Placing columns within a wrapper (Chapter 7)

Creating a two-tier navigation menu (Chapter 5)

Using CSS to wrap text around images (Chapter 4)

Gradients (Chapter 2, from the “Web page background ideas” section)

Styling semantic markup: A traditional example with serif fonts and a baseline grid
(Chapter 3)

Creating a boxout (Chapter 7)

Creating pull quotes in CSS (Chapter 3)

Open index.html and examine the code. The head section imports a style sheet and uses
conditional comments to link to three IE-specific style sheets (one for Internet Explorer in
general, one for Internet Explorer 6 and below, and one for Internet Explorer versions
below 6). Note that the body element has an id value—this dictates the active tab, as per
the method shown in the “Creating a two-tier navigation menu” exercise in Chapter 5.

The page’s structure is shown in the following code block. The page is contained within a
wrapper div. Within that, there is a masthead that contains a logo div and a navContainer
div (which itself contains a navigation div and a subNavigation div). After the masthead
is a content div. Without content, the skeleton structure looks like that shown in the fol-
lowing code block:

<div id="wrapper">
<div id="masthead">
<div id="logo"></div>
<div id="navContainer">
<div id="navigation"></div>

</div>
</div>
<div id="content"></div>

</div>

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

388

9071CH10.qxd 10/4/07 1:26 PM Page 388

In the logo div is the paragraph about the company, and the contents of the
navContainer div are identical to those from “Creating a two-tier navigation menu” in
Chapter 5.

The content div begins with a level-one heading, immediately followed by an image with
a class value of leadImage. The image is positioned here because it will be floated right,
and you need to place floated content before the content you want it to float left or right
of (see the “Using CSS to wrap text around images” section in Chapter 4). This is followed
by a paragraph of text and then a blockquote element, as per “Creating pull quotes in
CSS” from Chapter 3.

Next, a horizontal rule provides a visual break from the introductory content, followed by
two divs that have class values of columnLeft and columnRight. As you’ve no doubt
guessed, these are the two columns; each contains an image, a level-two heading, and a
paragraph. The final piece of code within the content div is a footer paragraph.

Styling the business website

The sme.css document contains the styles for this layout, arranged into sections, as per
the discussion earlier in this chapter. The defaults section includes two rules. The first is
the universal selector (*), used to remove padding and margins (as per “Zeroing margins
and padding on all elements” in Chapter 2). The second is a body rule, which adds some
vertical padding to the web page, ensuring there’s always some space before and after the
bordered content (having borders directly touch browser window edges makes for a
cluttered and visually unappealing design), and defines the page background—a dark
gray color (#333333) into which is blended the horizontally tiled background image
page-background.gif.

body {
padding: 20px 0;
background: #333333 url(assets/page-background.gif) repeat-x;

}

In the structure section, the #wrapper rule defines a fixed width for the wrapper, horizon-
tally centers it, and defines a one-pixel border around its edges. The #masthead rule defines
the thick, light gray border under the masthead, and #logo sets the masthead-background.
jpg image as a background for the logo div, along with setting the height of the div
(which is the same height as the image) and adding a one-pixel bottom margin (otherwise
the top border of the navigation items doesn’t show).

Next, the #content rule sets 18 pixels of padding around the content area’s contents, and
defines the background color as white (otherwise the dark gray page background would
show through). There’s also a commented-out rule for the baseline grid image, added for
the same reason as in the Pictures from Padstow example (see the first paragraph of the
“Styling the gallery” section, earlier in this chapter). Note that 18 pixels is the target base-
line grid line height for this design.

PUTTING EVERYTHING TOGETHER

389

10

9071CH10.qxd 10/4/07 1:26 PM Page 389

Next, the hr rule styles the horizontal rule, making it light gray and ensuring that it takes
up a couple of “rows” in the grid (0.7em plus 2.9em is 3.6em, which because of the
standard text sizing used throughout this book equates by default to 36px—twice the tar-
get line height of 18px).

hr {
height: 0.7em;
margin-bottom: 2.9em;
background-color: #cccccc;
color: #cccccc;
border: none;

}

The final two rules in the section, .columnLeft, .columnRight (.columnLeft,
.columnRight is a grouped selector, not two separate rules) and .columnLeft, float the
two column divs, set fixed widths for them (equally, since this property is placed in the
grouped selector), and define a margin-right value for the left-hand column so that
there’s space between the two columns.

The next section, links and navigation, is copied wholesale from Chapter 5’s “Creating a
two-tier navigation menu” exercise. There are no changes. Nothing to see here . . . move
along.

Next is the fonts section. This section’s all pretty straightforward, assuming you’ve read
and digested the “Styling semantic markup: A traditional example with serif fonts and a
baseline grid” exercise in Chapter 3. As usual, the html and body rules reset the font size,
as per the “Setting text using percentages and ems” section in Chapter 3. The body rule
also sets the preferred font to a Lucida variant (eventually falling back to Arial and
Helvetica). The h1, h2, and p rules then set font-size, line-height, and margin-bottom
values for their respective elements, line-height values being calculated by dividing 1.8
by the font-size value. (If you’re going “wha?” the “Styling semantic markup: A traditional
example with serif fonts and a baseline grid” exercise in Chapter 3 has all the answers.)

Override rules follow, with specific settings for the masthead paragraph defined via
#masthead p—the color is set to white, and padding is used to position the block of text.

#masthead p {
color: #ffffff;
font-size: 1.2em;
padding: 24px 20px 0 320px;
line-height: 1.3em;

}

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

390

9071CH10.qxd 10/4/07 1:26 PM Page 390

The p.footer rule is used to clear any floated content; the rule also aligns the text right
and adds some top padding to shift it further away from other page content (ensuring the
footer isn’t a distraction). The various blockquote and cite rules are variants on the
method shown in Chapter 3’s “Creating pull quotes in CSS” exercise. Again, somewhat
complex line-height and margin values are used to take into account the baseline grid.

Finally, the images section has four rules. The first, a img, removes borders from linked
images. Next, #content img applies a one-pixel border to images within the content div.
After that, the img.leadImage rule floats the image after the main heading right, adding
some margins at the bottom and left edges to ensure there’s some whitespace between
the image and other content. And then .columnLeft img, .columnRight img sets the
images within the columns to display as block, which removes the default overhang
browsers that otherwise apply to images (as they do to text). The margin-bottom value
ensures subsequent content is aligned with the baseline grid. Note that the height of the
images, as defined in HTML, is 70 pixels. Add two pixels from the borders and you have 72,
a multiple of 18, ensuring that the actual images adhere to the baseline grid, too—at least
when browsers are at their default settings.

.columnLeft img, .columnRight img {
display: block;
margin-bottom: 1.8em;

}

In terms of Internet Explorer fixes, few things are needed for this layout. For ie-
hacks.css, Internet Explorer’s problems dealing with hr margins are dealt with by provid-
ing new margin-top and margin-bottom values. For the ie-lte6-hacks.css document
(which affects Internet Explorer 6 and below), the blockquote, blockquote p rule
removes the pull quote background images. Also, a hasLayout bug causes the background
behind the navigation to show incorrectly. This is fixed by giving layout to the element by
way of a width value.

#navigation {
width: 100%;

}

In ie-5-hacks.css, the two rules center the layout in the browser window.

The completed layout is shown in the following screenshot.

PUTTING EVERYTHING TOGETHER

391

10

9071CH10.qxd 10/4/07 1:26 PM Page 391

Working with style sheets for print
This chapter’s final section briefly looks at using CSS to create a printable version of a web-
site layout. Printing from the Web is still a bit of a hit-and-miss affair, and even using CSS
doesn’t solve every problem, although browser support for print-oriented CSS is improv-
ing. If you omit a print style sheet, though, chances are the output will be significantly
worse. Browsers may have varying opinions on how to present both fixed and liquid lay-
outs, and you may end up with bizarre results. Most likely, however, if you omit a print
style sheet, all of the elements on your web page will just be printed in a linear fashion,
using system defaults for the fonts—not nice.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

392

9071CH10.qxd 10/4/07 1:26 PM Page 392

In the old days (and, frankly, in the not-so-old days, since the practice somehow survives),
designers often worked on so-called printer-friendly sites, run in parallel with the main
site. However, if you’re using CSS layouts, it’s possible to create a style sheet specifically for
print, which you can use to dictate exactly which elements on the page you want to print,
which you want to omit, and how you want to style those that can be printed.

As mentioned earlier in the book, a print style sheet is attached to web pages using the
following HTML:

<link rel="stylesheet" type="text/css"media="print"
➥ href="print-style-sheet.css" />

The media attribute value of print restricts the CSS solely to print, and within the print
style sheet, you define styles specifically for print, such as different fonts and margins. In
the example in the download files, I’ve used a version of the business website, which you
can access via the sme-website-print folder in the chapter 10 folder. The print style
sheet is sme-print.css, and if you compare it to the main style sheet, you’ll see that it’s
much simpler and massively honed down.

The defaults section houses a single body rule, defining padding (to take into account vary-
ing printer margins, 5% is a good horizontal padding to use), the background color (white
is really the only choice you should use, and it’s usually the default, but setting it explicitly
ensures this is the case), the text color (black is best for contrast when printing), and the
font. There’s absolutely no point in trying to ape your onscreen design and typography in
print—instead, use values that enhance the printed version. In the example’s body rule
(shown in the following code block), serif fonts are defined for font-family, because ser-
ifs are easier to read in print. Note that you’re not only restricted to web-safe fonts at this
point either—you can define choices based on fonts that come with the default install of
Windows and Mac OS, hence the choices of Baskerville (Mac) and Palatino Linotype
(Windows), prior to Times New Roman and Times.

body {
padding: 0 5%;
background: #ffffff;
font-family: Baskerville, "Palatino Linotype", "Times New Roman",
➥ "Times", serif;
line-height: 16pt;

}

In the structure section, the #masthead declaration sets display to none. That’s because
this area of the page is of no use for printed output—you simply don’t need website mast-
head and navigation offline. (This is, of course, a generalization, and in rare cases this may
not be applicable; however, in the vast, vast majority of websites I’ve created, the printed
version has not required the masthead and navigation links.) Note that if other areas aren’t
required, just use a grouped selector instead of this rule with a lone selector, as shown in
the following code block (which isn’t in the example CSS):

#element1, #element2, .class1, .class2 {/* these items won't be
➥ printed */

display: none;
}

PUTTING EVERYTHING TOGETHER

393

10

9071CH10.qxd 10/4/07 1:26 PM Page 393

Because pixel values don’t tend to translate to print well, some settings may need to be
redefined. An example in this case is the two-column section of the page. The widths and
margins were initially defined in pixels, but in the print CSS, it makes more sense to define
these values in percentages. (Note that the 9.99% value is there in case of rounding
errors.)

.columnLeft, .columnRight {
float: left;
width: 45%;

}
.columnLeft {
margin-right: 9.99%;

}

In the links and navigation section, only one rule remains. While links are of no real use
offline, it’s still a good idea to make it apparent what text-based content was originally a
link, in order for people to be able to find said links should they want to, or for reasons of
context. Just ensuring the default underline is in place should do, and that can be done via
the following rule:

a:link, a:visited {
text-decoration: underline;

}

For browsers other than Internet Explorer (although JavaScript workarounds exist for IE
compatibility—e.g., see www.grafx.com.au/dik//printLinkURLs.html), you can also pro-
vide the href values alongside any printed links by using the following code:

a:link:after, a:visited:after {
content: " (" attr(href) ") ";
font-size: 90%;

}

In terms of fonts, keeping things simple makes sense. It’s also worth noting that because
you’re working with print, sizes in points are more useful than sizes in pixels. (Note that
in the body rule, the line-height value was 16pt, not 16px or 1.6em.) Therefore, the
font-size values all reflect that. Note in the p.footer rule that floated content still needs
clearing in the print style sheets.

The final section, images, is not changed much. The images within the columns were
deemed superfluous, and so display has been set to none for .columnLeft img,
.columnRight img. Elsewhere, the margins on the floated image have been set to values in
centimeters (cm) and the border value for #content img is in millimeters (mm), since we’re
working in print. (Values in pixels are permitted, but they tend to be less accurate when
working with print style sheets—for example, if elements have a one-pixel border, they
may not all be even when printed.)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

394

9071CH10.qxd 10/4/07 1:26 PM Page 394

http://www.grafx.com.au/dik//printLinkURLs.html

One final thing that’s useful to know is how to create print-only content. In this example,
removing the masthead from the print output has also removed the site’s corporate ID. A
cunning way to bring this back is to create a black-and-white version of the company logo,
and add that as the first item on the web page, within a div that has an id value of
printLogo.

<div id="printLogo">
<img src="assets/we-lay-floors-bw-logo.gif" alt="Web Lay Floors,
➥ Inc. logo" width="267" height="70" />

</div>

Then, in the main style sheet, create a rule that displays this element offscreen when the
page is loaded in a browser window.

#printLogo {
position: absolute;
left: -1000px;

}

The content will then show up in print, but not online. Note, however, that you should be
mindful to not hide weighty images in this manner, otherwise you’ll compromise download
speeds for anyone using your website in a browser, only for making things slightly better
for those printing the site. A small, optimized GIF should be sufficient.

If there’s other content you want to hide in this manner, you can also create a generic
printOnly class to apply to elements you want hidden in the browser, but visible in print.
The following CSS rule applied to your screen style sheet would be sufficient for doing
this:

.printOnly {
display: none;

}

The reason for not using this generic method with the logo is because at the time of writ-
ing, Opera appears to only print images cached from the normal page view—in other
words, if the image isn’t displayed in the standard browser window, Opera won’t print it.
Therefore, if using the generic printOnly class, be aware that any images hidden won’t
print in Opera, but text will.

An example of how the print style sheet looks is shown in the following screenshot.

If you’ve used Internet Explorer expressions for fixing layout issues with IE 6 and
lower (see Chapter 9), these may “leak” into the print version, regardless of
whether you’ve attached the style sheet by using a media attribute of screen. In
such cases, use a conditional comment to attach an IE-specific print CSS that
overrides the expression value or values.

PUTTING EVERYTHING TOGETHER

395

10

9071CH10.qxd 10/4/07 1:26 PM Page 395

Note that you can take things further in terms of layout, but it’s best to keep it simple.
Also, ensure that you use the Print Preview functions of your browser test suite to thor-
oughly test your print style sheet output and ensure that there are no nasty surprises for
visitors to your site. Ultimately, it’s worth the extra hassle—just amending the fonts and
page margins and removing images and page areas that are irrelevant to the printed ver-
sion of the site not only improves your users’ experience, but also makes the site seem
more professional.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

396

9071CH10.qxd 10/4/07 1:26 PM Page 396

9071CH10.qxd 10/4/07 1:26 PM Page 397

9071appA.qxd 10/17/07 5:15 PM Page 398

A XHTML REFERENCE

This section of the reference guide details, in alphabetical order, generally
supported elements and associated attributes. This is not intended as an
exhaustive guide; rather, its aim is to list those elements important and
relevant to current web design. Archaic deprecated elements such as font
and layer are therefore ignored, as well as many attributes once associated
with the body element, but the guide includes still occasionally useful
deprecated and nonstandard elements and attributes such as embed and
target.

9071appA.qxd 10/17/07 5:15 PM Page 399

Standard attributes
Standard attributes are common to many elements. For brevity, they are listed in full here
rather than in the XHTML element table later in the chapter. For each element in the forth-
coming table, I simply state which groups of standard attributes are applicable to the element.

Core attributes

Attribute Description

class=classname Specifies a CSS class to define the element’s visual appearance.

id=name Defines a unique reference ID for the element.

Sets an inline style. Deprecated in XHTML 1.1, so it should be
used sparingly and with caution.

title=string Specifies the element’s title. Often used with links to provide a
tooltip expanding on the link’s purpose or the target’s content.

Keyboard attributes

Attribute Description

accesskey=character Defines a keyboard shortcut to access an element. The short-
cut must be a single character. Most commonly used with
navigation links.

See also Chapter 5, “Using accesskey and tabindex.”

tabindex=number Defines the tab order of an element. Most commonly used
with form input elements. Setting the value to 0 excludes
the element from the tabbing order. The maximum value
allowed is 32767. The tabindex values on a page needn’t be
consecutive (for instance, you could use multiples of 10, to
leave space for later additions).

See also Chapter 5, “Using accesskey and tabindex.”

Not valid in these elements: base, head, html, meta, param, script, style, and title.

style=style
(deprecated)

Note that in the following pages, various styles are used for the attribute names and
values. For the sake of clarity, quote marks have been omitted, but never forget that
XHTML attributes must be quoted. Therefore, where you see the likes of id=name in
this reference section, the final output would be id="name".

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

400

9071appA.qxd 10/17/07 5:15 PM Page 400

Language attributes

Attribute Description

dir=dir Specifies the text rendering direction: left-to-right (ltr, the
default) or right-to-left (rtl).

Specifies the language for the tag’s contents, using two-letter
primary ISO639 codes and optional dialect codes. Included
for backward compatibility with HTML. Used together with
xml:lang (see below) in XHTML 1.0, but deprecated in
XHTML 1.1.

Examples:

lang="en" (English)

lang="en-US" (US English)

ISO639 codes include the following: ar (Arabic), zh
(Chinese), nl (Dutch), fr (French), de (German), el (Greek),
he (Hebrew), it (Italian), ja (Japanese), pt (Portuguese), ru
(Russian), sa (Sanskrit), es (Spanish), and ur (Urdu).

xml:lang=language Replaces lang in XHTML 1.1, but both should be used
together in XHTML 1.0 to ensure backward compatibility with
HTML and older browsers. xml:lang takes precedence over
lang if set to a different value.

Event attributes
As of HTML 4.0, it’s been possible to trigger browser actions by way of HTML events. Again,
these are listed in full here and referred to for the relevant elements of the XHTML ele-
ment table. In XHTML, all event names must be in lowercase (e.g., onclick, not onClick).

Core events

Attribute Description

onclick=script Specifies a script to be run when the user clicks the ele-
ment’s content area

ondblclick=script Specifies a script to be run when the user double-clicks the
element’s content area

continues

Not valid in these elements: base, br, frame, frameset, hr, iframe, param, and script.

lang=language
(deprecated)

XHTML REFERENCE

401

A

9071appA.qxd 10/17/07 5:15 PM Page 401

Attribute Description

onkeydown=script Specifies a script to be run when the user presses a key while
the element’s content area is focused

onkeypress=script Specifies a script to be run when the user presses and
releases a key while the element’s content area is focused

onkeyup=script Specifies a script to be run when the user releases a pressed
key while the element’s content area is focused

onmousedown=script Specifies a script to be run when the user presses down
the mouse button while the cursor is over the element’s
content area

onmousemove=script Specifies a script to be run when the user moves the mouse
cursor in the element’s content area

onmouseout=script Specifies a script to be run when the user moves the mouse
cursor off the element’s content area

onmouseover=script Specifies a script to be run when the user moves the mouse
cursor onto the element’s content area

onmouseup=script Specifies a script to be run when the user releases the mouse
button on the element’s content area

Form element events

These events are generally restricted to form elements, although some other elements
accept some of them.

Attribute Description

onblur=script Specifies a script to be run when the element loses focus

onchange=script Specifies a script to be run when the element changes

onfocus=script Specifies a script to be run when the element is focused

Not valid in these elements: base, bdo, br, frame, frameset, head, html, iframe, meta,
param, script, style, and title.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

402

9071appA.qxd 10/17/07 5:15 PM Page 402

Attribute Description

onreset=script Specifies a script to be run when a form is reset

onselect=script Specifies a script to be run when the element is selected

onsubmit=script Specifies a script to be run when a form is submitted

Window events

These events are valid only in the following elements: body and frameset.

Attribute Description

onload=script Specifies a script to be run when the document loads

onunload=script Specifies a script to be run when the document unloads

XHTML elements and attributes
The following pages list XHTML elements, associated attributes, and descriptions for all.
Unless otherwise stated, assume an element is allowed in pages with XHTML Strict, XHTML
Transitional, or XHTML Frameset DTDs. Do not use elements or attributes with DTDs that
don’t allow them. For instance, the target attribute cannot be used with XHTML Strict—
doing so renders the page invalid.

Some elements are shown with a trailing forward slash. These are empty tags. Instead of
having a start tag, content, and an end tag, these elements have a combined form. This
takes the form of a start tag with an added trailing forward slash. Prior to the slash, a space
is usually added. For instance,
 denotes a line break.

Although onresize is part of DOM2, it’s not recognized by the XHTML specification. If an
onresize event is required, it cannot be applied directly to the body element. Instead,
you must declare it in the document head using window.onresize=functionName.

XHTML REFERENCE

403

A

9071appA.qxd 10/17/07 5:15 PM Page 403

Element Attribute Description Standard attributes

<!-- … --> No attributes

No attributes

<a>

href=URL Defines the link target.

Specifies the relationship
from the current document to
the target document.
Common values include next,
prev, parent, child, index,
toc, and glossary. Also used
within link elements to define
the relationship of linked CSS
documents (e.g., to establish
default and alternative style
sheets).

rel=relationship

Names an anchor. Due to be
replaced by id in future
versions of XHTML. When
defining a fragment
identifier in XHTML 1.0,
id must be used.

name=name
(deprecated)

Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onfocus

Defines an anchor. Can link to
another document by using the
href attribute, or create an
anchor within a document by
using the id or name attributes.
Despite the number of
available attributes, some
aren’t well supported.
Generally, href, name, title,
and target are commonly
used, along with class and id
for use as CSS or scripting
hooks.

See also Chapter 5, “Creating
and styling web page links.”

Specifies a DTD for the
document. This is required
for a valid XHTML document.

See also Chapter 2, “DOCTYPE
declarations explained.”

<!DOCTYPE>
(required)

Defines a comment.

See also Chapter 2,
“Commenting your work.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

404

9071appA.qxd 10/17/07 5:15 PM Page 404

david
Sticky Note
Marked set by david

XHTML REFERENCE

405

Element Attribute Description Standard attributes

<abbr> Core attributes,
language attributes

Core events

continues

Identifies the element
content as an abbreviation.
This can be useful for
nonvisual web browsers.
For example:

<abbr
➥ title="Doctor">Dr.</abbr>

See also Chapter 3, “Acronyms
and abbreviations.”

Specifies the MIME type of
the target. For instance, if
linking to a plain text file,
you might use the following:

<a href="document.txt"
➥ type="text/plain">

type=MIME type

Defines where the target URL
opens. Primarily of use with
frames, stating which frame
a target should open in.
Commonly used in web
pages to open external links
in a new window—a practice
that should be avoided,
because it breaks the
browser history path.
Unavailable in XHTML 1.0, so
cannot be used with XHTML
1.0 Strict documents.
However, target is available
in XHTML 1.1 using the
target module.

target=_blank|
_parent|_self|
_top|[name]
(deprecated)

Specifies the relationship
from the target document
to the current document.
Common values include
next, prev, parent, child,
index, toc, and glossary.

rev=relationship

A

9071appA.qxd 10/17/07 5:15 PM Page 405

Element Attribute Description Standard attributes

<acronym> Core attributes,
language attributes

Core events

<address> Core attributes,
language attributes

Core events

Core attributes,
keyboard attributes,
language attributes

Core events

Defines a list of URLs with
classes to be preloaded.

archive=URL

Alternate text for browsers
that don’t support applets.

alt=string

Defines text alignment
around the element. Possible
values are left, right, top,
middle, and bottom.

align=position

Adds an applet to the web
page. Deprecated in favor of
the object element, but still
required for embedding
some Java applets. This
element cannot be used with
an XHTML Strict DOCTYPE.
Likewise, all of the element’s
attributes are deprecated and
cannot be used with the
XHTML Strict DOCTYPE.

<applet>
(deprecated)

Used to define addresses,
signatures, or document
authors. Typically rendered
in italics, with a line break
above and below (but no
additional space).

See also Chapter 8, “Contact
details structure redux.”

Identifies the element
content as an acronym. This
can be useful for nonvisual
web browsers. For example:

<acronym title="North
➥ Atlantic Treaty
➥ Organization">NATO
</acronym>

See also Chapter 3,
“Acronyms and
abbreviations.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

406

9071appA.qxd 10/17/07 5:15 PM Page 406

Element Attribute Description Standard attributes

Base URL of the applet.

name=name

<area /> Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onfocus

continues

Provides alternate text for
nonvisual browsers. This
attribute is required.

alt=string
(required)

Defines a clickable area
within a client-side image
map. Should be nested within
a map element (see separate
<map> entry).

See also Chapter 5, “Image
maps.”

Pixel width of the applet. This
attribute is required.

width=number
(required)

Sets vertical space around the
applet.

vspace=number

Defines a resource’s name
that contains a serialized
representation of the applet.

object=name

Sets a unique name for this
instance of the applet, which
can be used in scripts.

Sets horizontal space around
the applet.

hspace=number

Pixel height of the applet.
This attribute is required.

height=number
(required)

codebase=URL

Specifies either the name of
the class file that contains the
applet’s compiled applet
subclass or the path to get
the class file, including the
class file itself.

This attribute is required if
the object attribute is
missing, and vice versa. If
both are present, they must
use the same class name.
Note: the value is case-
sensitive.

code=URL
(required)

XHTML REFERENCE

407

A

9071appA.qxd 10/17/07 5:15 PM Page 407

Element Attribute Description Standard attributes

href=URL The link target.

Defines where the target URL
opens. Cannot be used in
XHTML Strict.

target=_blank|
_parent|_self|
_top|[name]
(deprecated)

Defines the shape of the
clickable region.

shape=rect|
circle|poly|
default

Enables you to set the
defined area to have no
action when the user selects
it. nohref is the only possible
value of this attribute.

nohref=nohref

Specifies coordinates for the
clickable image map area.
Values are defined as a
comma-separated list. The
number of values depends on
the shape attribute value:

For rect, four values are
required, defining the
coordinates on the x and y
axes of the top-left and
bottom-right corners.

For circle, three values are
required, with the first two
defining the x and y
coordinates of the hot-spot
center, and the third defining
the circle’s radius.

For poly, each pair of x and y
values defines a point of the
hot-spot’s.

coords=
coordinates list

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

408

9071appA.qxd 10/17/07 5:15 PM Page 408

craiggrannell
Note
Accepted set by craiggrannell

craiggrannell
Note
None set by craiggrannell

craiggrannell
Note
Accepted set by craiggrannell

craiggrannell
Note
Marked set by craiggrannell

craiggrannell
Note
None set by craiggrannell

Element Attribute Description Standard attributes

 Core attributes,
language attributes

Core events

<base />

<bdo> Core attributes,
language attributes

continues

Defines text direction as
left to right (ltr) or right
to left (rtl). This attribute
is required.

dir=ltr|rtl
(required)

Overrides the default text
direction.

Defines where to open page
links. Can be overridden by
inline target attributes.
Cannot be used in XHTML
Strict.

target=_blank|
_parent|_self|
_top|[name]
(deprecated)

Defines the base URL to use.
This attribute is required.

href=URL
(required)

Specifies a base URL for
relative URLs on the web
page.

Renders text as bold.
This element is a physical
style, which defines what
the content looks like
(presentation only), rather
than a logical style, which
defines what the content
is (which is beneficial for
technologies like screen
readers). It’s recommended
to use the logical element
 in place
of (see separate
 entry).

See also Chapter 3, “Styles
for emphasis (bold and
italic).”

XHTML REFERENCE

409

A

9071appA.qxd 10/17/07 5:15 PM Page 409

Element Attribute Description Standard attributes

<big> Core attributes,
language attributes

Core events

Core attributes,
language attributes

Core events

cite=URL

Core attributes,
language attributes

Core events, onload,
onunload

 Inserts a single line break. Core attributes

Defines the document’s body
and contains the document’s
contents. This is a required
element for XHTML web
pages. (In HTML, it is
optional and implied when
absent. However, it’s good
practice to always include
the element.)

<body>
(required)

Defines the online location
of quoted material.

Defines a lengthy quotation.
To validate as XHTML Strict,
enclosed content must be set
within a block-level element
(such as <p></p>).

Although it is common for
web designers to use this
element to indent content,
the W3C strongly
recommends using CSS
for such things.

See also Chapter 3, “Block
quotes, quote citations, and
definitions,” and “Creating
drop caps and pull quotes
using CSS.”

<blockquote>

Increments text size to
the next size larger as
compared to surrounding
text. Because the size
differential is determined
by the browser, precise
text size changes are
better achieved via span
elements and CSS. Some
browsers misinterpret
this tag and render text
as bold.

See also Chapter 3, “The
big and small elements.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

410

9071appA.qxd 10/17/07 5:15 PM Page 410

Element Attribute Description Standard attributes

<button> Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onfocus

name=name Defines the button’s name.

Identifies the button’s type.

<caption> Core attributes,
language attributes

Core events

<cite> Core attributes,
language attributes

Core events

continues

Defines content as a citation.
Usually rendered in italics.

See also Chapter 3, “Block
quotes, quote citations, and
definitions.”

Defines a caption for a table.
Seldom used, but
recommended because it
enables you to associate a
table’s title with its contents.
Omitting the caption may
mean the table’s contents are
meaningless out of context.

See also Chapter 6, “Captions
and summaries.”

Defines the button’s initial
value.

value=string

type=button|reset|
submit

Disables the button. disabled
is the only possible value of
this attribute.

disabled=disabled

Defines a push button
element within a form. Works
similarly to buttons created
with the input element, but
offers greater rendering
scope. This is because all
content becomes the content
of the button, enabling the
creation of buttons with text
and images. For example:

<button type="submit">
Order now! <img
➥ src="go.gif" alt="Go"
/>

XHTML REFERENCE

411

A

9071appA.qxd 10/17/07 5:15 PM Page 411

david
Note
Marked set by david

david
Note
None set by david

david
Note
Accepted set by david

david
Note
None set by david

Element Attribute Description Standard attributes

<code> Core attributes,
language attributes

Core events

<col /> Core attributes,
language attributes

Core events

span=n Defines how many successive
columns are affected by the col
tag. Use only when the surround-
ing colgroup element does not
specify the number of columns.

The following example creates a
colgroup with five columns, with
each of the middle three columns
30 pixels wide:

<colgroup>
<col width="10" />
<col width="30" span="3" />
<col width="50" />

</colgroup>

Defines the horizontal alignment of
table cell content. It’s recommended
that you use the CSS text-align
property instead (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Defines properties for a column or
group of columns within a
colgroup. Attributes defined
within a col element override
those set in the containing
colgroup element. col is an empty
element that contains attributes
only. The following example sets
the column widths of the table’s
first three columns to 10, 30, and
50 pixels, respectively:

<colgroup span="3">
<col width="10"></col>
<col width="30"></col>
<col width="50"></col>

</colgroup>

See also the <colgroup> entry.

Defines content as computer
code sample text. Usually
rendered in a monospace font.

See also Chapter 3, “Logical styles
for programming-oriented
content,” and the “Displaying
blocks of code online” exercise.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

412

9071appA.qxd 10/17/07 5:15 PM Page 412

Element Attribute Description Standard attributes

<colgroup> Core attributes,
language attributes

Core events

span=number

continues

Specifies the vertical
alignment of the table cell
content within the colgroup.
It’s recommended that you
instead use the CSS
vertical-align property
(see its entry in the CSS
reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines how many columns the
colgroup should span. Do not
use if any of the col tags within
the colgroup also use span,
because a colgroup definition
will be ignored in favor of span
attributes defined within the
col elements.

Defines the horizontal
alignment of the table cell
content within the colgroup.
It’s recommended that you
instead use the CSS text-
align property (see its entry
in the CSS reference) to
do this.

align=left|right|
justify|center
(deprecated)

Defines a column group
within a table, enabling you
to define formatting for the
columns within. See the
<col /> entry for examples.

See also Chapter 6, “Scope
and headers.”

Defines the width of the
column. Overrides the width
settings in colgroup.

width=percentage/
number

Specifies the vertical
alignment of table cell
content. It’s recommended
that you instead use the CSS
vertical-align property
(see its entry in the CSS
reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

XHTML REFERENCE

413

A

9071appA.qxd 10/17/07 5:15 PM Page 413

Element Attribute Description Standard attributes

<dd> Core attributes,
language attributes

Core events

 Core attributes,
language attributes

Core events

cite=URL

<dfn> Core attributes,
language attributes

Core events

Defines enclosed content as
the defining instance of a
term. Usually rendered in
italics.

See also Chapter 3, “Block
quotes, quote citations, and
definitions.”

Defines the date and time
that the text was amended.
Various formats are possible,
including YYYY-MM-DD and
YYYY-MM-DDThh:mm:ssTZD
(where TZD is the time zone
designator). See www.w3.org/
TR/1998/NOTE-datetime-
19980827 for more date and
time formatting information.

datetime=date

Defines the URL of a
document that explains why
the text was deleted.

Indicates deleted text. Usually
appears in strikethrough
format.

See also Chapter 3, “Elements
for inserted and deleted
text.”

Defines a definition
description within a definition
list. See the <dl> entry for an
example.

See also Chapter 3,
“Definition lists,” and the
“Displaying blocks of code
online” exercise.

Defines the width of columns
within the colgroup. Can be
overridden by the width
settings of individual col
elements.

width=percentage/
number

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

414

9071appA.qxd 10/17/07 5:15 PM Page 414

http://www.w3.org

Element Attribute Description Standard attributes

<div> Core attributes,
language attributes

Core events

<dl> Core attributes,
language attributes

Core events

<dt> Core attributes,
language attributes

Core events

continues

Defines a definition term
within a definition list. See
the <dl> entry for an
example.

See also Chapter 3,
“Definition lists,” and the
“Displaying blocks of code
online” exercise.

Defines a definition list.
Contains pairs of term and
definition elements, as
follows:

<dl>
<dt>Windows</dt>
<dd>Operating system

➥ made by Microsoft.</dd>
<dt>Mac OS</dt>
<dd>Operating system

➥ made by Apple.</dd>
</dl>

See also Chapter 3,
“Definition lists,” and the
“Displaying blocks of code
online” exercise.

Defines a division within a
web page. Perhaps one of
the most versatile but least
understood elements. Used
in combination with an id or
class, the div tag element
allows sections of a page to
be individually styled and is
the primary XHTML element
used for the basis of CSS-
based web page layouts.

See also Chapter 7,
“Workflow for CSS layouts.”

XHTML REFERENCE

415

A

9071appA.qxd 10/17/07 5:15 PM Page 415

Element Attribute Description Standard attributes

 Core attributes,
language attributes

Core events

Sets a name for the object.

Defines a URL for information
on installing the relevant
plug-in.

pluginspage=URL

name=name

Sets horizontal space around
the object.

hspace=number

Hides the player or media file
when set to yes. Defaults to no.

hidden=yes|no

Defines the height of the
object in pixels.

height=number

Defines the alignment of the
embedded object in relation
to the surrounding text.

align=left|right|
top|bottom

Embeds an object.
Nonstandard and not
supported by any XHTML
DOCTYPE. If this is included in
a web page, the page will not
validate. Poor browser
support for the W3C
preferred alternative, object,
left developers with little
choice other than to use this
nonstandard element when
embedding Flash or other
multimedia into a web page.
Support for object has now
improved, although embed
may still be required in some
circumstances.

<embed>
(nonstandard)

Defines enclosed content as
emphasized. Generally
renders as italics in a browser
and is preferred over the use
of <i></i>. See separate
<i> entry.

See also Chapter 3, “Block
quotes, quote citations, and
definitions.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

416

9071appA.qxd 10/17/07 5:15 PM Page 416

Element Attribute Description Standard attributes

<fieldset> Core attributes,
language attributes

Core events

<form> Core attributes,
language attributes

Core events,
onreset, onsubmit

continues

Specifies a comma-separated
list of character sets for
form data.

accept-
charset=charset
list

Specifies a comma-separated
list of MIME types that the
server processing the form
can handle correctly.

accept=content-
type list

Indicates the start and end
of a form. Cannot be nested
within another form element.
Generally, the method and
action attributes are most
used.

See also Chapter 8, “Working
with forms.”

Defines a keyboard shortcut
to access an element.

accesskey=
character

Creates a group of related
form elements by nesting
them within the fieldset
element. Usually used in
tandem with the legend
element to enhance form
accessibility (see the
<legend> entry for more
information).

See also Chapter 8,
“Improving form
accessibility.”

Defines the width of the
object in pixels.

width=number

Sets vertical space around the
object.

vspace=number

Specifies the MIME type of
the plug-in required to run
the file.

type=MIME type

Provides the location of the
object to be embedded. This
attribute is required.

src=URL
(required)

XHTML REFERENCE

417

A

9071appA.qxd 10/17/07 5:15 PM Page 417

david
Sticky Note
Cancelled set by david

david
Sticky Note
Cancelled set by david

david
Sticky Note
None set by david

david
Sticky Note
None set by david

Element Attribute Description Standard attributes

<frame> Core attributesDefines a frame. This element
and its attributes must only
be used with the XHTML
Frameset DTD, and not with
XHTML Strict or XHTML
Transitional.

See also Chapter 7, “Working
with frames.”

Defines where the target URL
is opened. Cannot be used in
XHTML Strict.

target=_blank|
_parent|_self|
_top|[name]
(deprecated)

Defines the form’s name.
Cannot be used in XHTML
Strict.

name=name
(deprecated)

Specifies the http method
used to submit the form data.
The post value is most
commonly used.

method=get|post

The MIME type used to
encode the form’s content
before it’s sent to the server,
so it doesn’t become
scrambled. Defaults to
application/x-www-form-
urlencoded. Other options
are multipart/form-data,
which can be used when the
user is able to upload files,
and text-plain, which
can be used when using a
mailto: value for the action
instead of a server-side script
to parse the form data.

enctype=encoding

The URL of the form
processing application where
the data is sent once the
form is submitted. This
attribute is required.

action=URL
(required)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

418

9071appA.qxd 10/17/07 5:15 PM Page 418

Element Attribute Description Standard attributes

name=name Defines a name for the frame.
(deprecated)

noresize=noresize

src=URL

continues

Defines the location of the
frame’s default HTML
document.

Specifies whether scroll bars
appear when the frame
contents are too large for the
visible area. The yes value
mean permanent scroll bars
are shown; no means scroll
bars don’t appear, even if the
content is too large for the
frame; and auto means scroll
bars appear when the content
is too large for the frame.

scrolling=auto|
no|yes

Stops the user from resizing
the frame. The only available
value is noresize.

The horizontal space between
the frame edges and its
contents (measured in pixels).

marginwidth=
number

The vertical space between
the frame edges and its
contents (measured in pixels).

marginheight=
number

Defines a URL for a long
description of the frame
contents for non-frames-
compatible browsers.

longdesc=URL

Defines whether frame
borders are present
(frameborder="1") or not
(frameborder="0").

frameborder=0|1

XHTML REFERENCE

419

A

9071appA.qxd 10/17/07 5:15 PM Page 419

Element Attribute Description Standard attributes

<frameset> Core attributes
onload, onunload

Defines the number and sizes
of rows (horizontal frames).
See the preceding entry for
an explanation of how the *
value works.

rows=percentage/
number"*

Defines the number and sizes
of columns (vertical frames).
When setting the value to *,
the frame it’s applied to takes
up all remaining browser
window space for that
dimension. If more than one
value is *, the remaining space
is split between those frames
the * value is assigned to.

cols=percentage/
number"*

Defines a frameset. Must
have either a cols or a rows
attribute. This element and
its attributes must only be
used with the XHTML
Frameset DTD, and not with
XHTML Strict or XHTML
Transitional.

<frameset cols="150,* ">
<frame src=
➥"frame-one.html" />
<frame src=
➥"frame-two.html" />
</frameset>

See also Chapter 7, “Working
with frames.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

420

9071appA.qxd 10/17/07 5:15 PM Page 420

Element Attribute Description Standard attributes

<hn> Core attributes,
language attributes

Core events

Language attributes

profile=URL

<hr /> Inserts a horizontal rule. Core attributes,
language attributes

Core events

continues

The location of a metadata
profile for this document.
Not commonly used.

Defines the header of the
HTML file. Houses
information-based elements,
such as base, link, meta,
script, style, and title.
This is a required element for
XHTML web pages. (It’s
optional for HTML, but
implied when absent.
However, it’s good practice
to always include a head
element in web pages.)

<head>
(required)

Defines enclosed contents as
a heading. Available levels are
1 to 6. Note that although h4
through h6 tend to be
displayed smaller than body
copy by default, they are not
a means to create small text;
rather, they are a way to
enable you to structure your
document. This is essential,
because headings help with
assistive technology, enabling
the visually impaired to
efficiently surf the Web.

See also Chapter 3,
“Paragraphs and headings.”

XHTML REFERENCE

421

A

9071appA.qxd 10/17/07 5:15 PM Page 421

Element Attribute Description Standard attributes

Language attributes

xmlns=namespace

<i> Core attributes,
language attributes

Core events

<iframe> Defines an inline frame.
Content within the element
is displayed only in browsers
that cannot display the
iframe. This element and its
attributes cannot be used in
XHTML Strict.

See also Chapter 7, “Working
with internal frames
(iframes).”

Renders text as italic. This
element is a physical style,
which defines what the
content looks like (presenta-
tion only), rather than a
logical style, which defines
what the content is (which is
beneficial for technologies
like screen readers). It’s
generally preferable to use
the logical element
in place of <i></i>. See the
preceding entry.

See also Chapter 3, “Styles for
emphasis (bold and italic).”

Defines the XML namespace
(e.g., http://www.w3.org/
1999/xhtml).

See also Chapter 2, “Document
defaults.”

Defines the start and end of
the HTML document. This is
a required element for
XHTML web pages. (It’s
optional for HTML, but
implied when absent.
However, it’s good practice
to always include a head
element in web pages.) No
HTML content should be
placed before the html start
tag or after the html end tag.

<html>
(required)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

422

9071appA.qxd 10/17/07 5:15 PM Page 422

http://www.w3.org

Element Attribute Description Standard attributes

frameborder=0|1

Defines the iframe’s height.

longdesc=URL

name=name
(deprecated)

src=URL

Defines the iframe’s width.

continues

width=percentage/
number

Defines the location of the
iframe’s default HTML
document.

Specifies whether scroll bars
appear when the iframe’s
contents are too large for the
visible area. The yes value
means permanent scroll bars
are shown; no means scroll
bars don’t appear, even if the
content is too large for the
frame; and auto means scroll
bars appear when the content
is too large for the frame.

scrolling=auto|
no|yes

Defines a name for the
iframe.

The horizontal space (in
pixels) between the iframe’s
edges and its contents.

marginwidth=
number

The vertical space (in pixels)
between the iframe’s edges
and its contents.

marginheight=
number

Defines a URL for a long
description of the iframe’s
contents for non-frames-
compatible browsers.

height=percentage/
number

Defines whether a frame
border is present
(frameborder="1") or not
(frameborder="0").

XHTML REFERENCE

423

A

9071appA.qxd 10/17/07 5:15 PM Page 423

Element Attribute Description Standard attributes

 Core attributes,
language attributes

Core events

height=number

ismap=URL Defines the image as a server-
side image map. The image
must be contained within an
anchor tag. Server-side image
maps require specialized
setup and are rarely used. Do
not confuse this attribute
with usemap (see the
upcoming usemap entry).

Defines the image’s height in
pixels.

Defines a border. Despite its
common usage, this attribute is
deprecated and cannot be used
in XHTML Strict. Instead, use
CSS to set borders on images.

See also Chapter 4, “Applying
CSS borders to images.”

border=number
(deprecated)

Provides alternate text for
nonvisual browsers. Should
provide an indication of an
image’s content or, if it’s a link,
its function. When an image has
no visual semantic significance,
include it via CSS. If that’s not
possilbe, use alt="". This
attribute is required.

alt=text
(required)

Inserts an image. Both the
src and alt attributes are
required; although many web
designers omit the alt
attribute, it’s essential for
screen readers. The height
and width values are
recommended, too, in order
to assist the browser in
rapidly laying out the page.
The border value, despite
common usage, is deprecated
and should be avoided. Use
CSS to determine whether
images have borders.

See also Chapter 4, “Working
with images in XHTML.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

424

9071appA.qxd 10/17/07 5:15 PM Page 424

Element Attribute Description Standard attributes

longdesc=URL

usemap=URL

width=number

<input /> Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onchange, onfocus,
onselect

accept=list

alt=text

checked=checked

disabled=disabled

maxlength=number

continues

Defines the maximum
number of characters
allowed. Only used with
type="text".

Disables the input element.
The only value for this
attribute is disabled. Cannot
be used with type="hidden".

Sets input element’s default
state to checked. The only
value for this attribute is
checked. Only used with
type="checkbox" and
type="radio".

Provides alternate text for
nonvisual browsers. Only used
with type="image".

A list of MIME types that can
be accepted by this element.
Only used with type="file".

Defines a form input field.

See also Chapter 8, “Adding
controls.”

Defines the image’s width in
pixels.

Defines the image as a client-
side image map.

See also Chapter 5, “Image
maps.”

The URL of the image to be
displayed. This attribute is
required.

src=URL
(required)

Provides the location of a
document containing a long
description of the image.

XHTML REFERENCE

425

A

9071appA.qxd 10/17/07 5:15 PM Page 425

Element Attribute Description Standard attributes

size=number

src=URL

When type="button", type=
"reset", or type="submit", it
defines button text.

When type="checkbox" or
type="radio", it defines the
result of the input element; the
result being sent when the form
is submitted.

When type="hidden",
type="password", or
type="text", it defines the
element’s default value.

When type="image", it defines
the result of the field passed to
the script. Cannot be used with
type="file".

value=string
(required when
type=checkbox and
type=radio)

Defines the input element
type. Defaults to text.

type=button|
checkbox|file|
hidden|image|
password|radio|
reset|submit|text

Defines the URL of the image
to be displayed. Only used
with type="image".

Defines in characters (not
pixels) the width of the input
element. (For pixel-defined
widths, use CSS.)

Cannot be used with
type="hidden".

Indicates the input element
is read-only and cannot be
modified. The only value for
this attribute is readonly.
Only used with type="text"
and type="password".

readonly=readonly

Defines a name for the input
element.

* Required for the following
types: button, checkbox,
file, hidden, image,
password, text, and radio.

name=name
(required*)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

426

9071appA.qxd 10/17/07 5:15 PM Page 426

Element Attribute Description Standard attributes

<ins> Core attributes,
language attributes

Core events

cite=URL

datetime=date

<kbd> Core attributes,
language attributes

Core events

continues

Defines “keyboard” text
(text inputted by the user).
Usually rendered in a
monospace font.

See also Chapter 3, “Logical
styles for programming-
oriented content.”

Defines the date and time
that the text was amended.
Various formats are possible,
including YYYY-MM-DD and
YYYY-MM-DDThh:mm:ssTZD
(where TZD is the time zone
designator). See www.w3.org/
TR/1998/NOTE-datetime-
19980827 for more date and
time formatting information.

Defines the URL of a
document that explains why
the text was inserted.

Defines inserted text. Usually
appears in underline format,
which can be confusing
because links are also under-
lined. It’s therefore
recommended that you use
CSS to change the underline
color.

ins {
text-decoration: none;
border-bottom: 1px solid red;
}

See also Chapter 3, "Elements for
inserted and deleted text."

XHTML REFERENCE

427

A

9071appA.qxd 10/17/07 5:15 PM Page 427

http://www.w3.org

Element Attribute Description Standard attributes

<label> Core attributes,
language attributes

Core events, onblur,
onfocus

for=text

<legend> Core attributes,
language attributes

Core events

 Core attributes,
language attributes

Core events

Defines a list item. Must be
nested within or
elements (see the separate
 and entries).

See also Chapter 3, “Working
with lists.”

Defines a keyboard shortcut
to access an element.

accesskey=
character

Defines a caption for a
fieldset. Must be nested
within a fieldset element.
For example:

<fieldset>
<legend>Caption for this
fieldset</legend>
[form labels/controls]
</fieldset>

See also Chapter 8, “The
label, fieldset, and legend
elements.”

Defines the form element
that the label is for. Value
must be the same as the
associated control element’s
id attribute value.

Defines a keyboard shortcut
to access an element.

accesskey=
character

Assigns a label to a form
control, enabling you to define
relationships between text
labels and form controls. For
example:

<p><label for=
➥ "realname">Name</label>
➥

<input type="text"
➥ name="realname"
➥ id="realname" size="30"
➥ /></p>

See also Chapter 8, “The label,
fieldset, and legend elements.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

428

9071appA.qxd 10/17/07 5:15 PM Page 428

Element Attribute Description Standard attributes

<link /> Core attributes,
language attributes

Core events

charset=charset

href=URL The URL of the target.

continues

Defines the language of the
linked document.

hreflang=
language code

Defines the character set of
the target document.

Defines the relationship
between two linked
documents. Must be placed
in the head section of a
document. Mainly used for
attaching external style sheets
and favicons to a document.
Also, modern blogging systems
use link elements to define
relationships between the
current document and others,
such as XML feeds, next and
previous pages, and archives.
When used fully, link
elements can have
considerable accessibility and
usability benefits; for example,
some modern browsers use
the data to provide extra
navigation toolbars/options.

See also Chapter 2, “Attaching
external CSS files: The link
method,” and “Attaching
favicons and JavaScript.”

Defines the number of the
item in an ordered list. Cannot
be used in XHTML Strict.

value=number
(deprecated)

Specifies the list type for the
list item. (See the and
 entries for possible
values.) Cannot be used in
XHTML Strict.

type=format
(deprecated)

XHTML REFERENCE

429

A

9071appA.qxd 10/17/07 5:15 PM Page 429

Element Attribute Description Standard attributes

rel=relationship

rev=relationship

type=MIME type

<map> Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onfocus

Defines a unique name for
the map. (Superseded by id,
but can be used for backward
compatibility.)

name=name
(deprecated)

Defines a unique name for the
map. This attribute is required.

id=name
(required)

Contains client-side image
map specifications. Contains
one or more area elements
(see preceding <area />
entry).

See also Chapter 5, “Image
maps.”

Specifies the target’s MIME
type, such as text/css or
text/javascript.

Defines where the target URL
opens. Cannot be used in
XHTML Strict.

target=_blank|
_parent|_self|
_top|[name]
(deprecated)

Specifies the relationship from
the target document to the
current document (see the
preceding entry for values).

Specifies the relationship from
the current document to the
target document (alternate,
appendix, bookmark, chapter,
contents, copyright, glossary,
help, index, next, prev,
section, start, stylesheet,
or subsection). More than one
relationship can be combined
in a space-separated list.

Defines the target medium
for the linked document (all,
aural, braille, handheld,
print, projection, screen,
tty, or tv). More than one
medium can be combined in
a comma-delimited list.

media=media
type list

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

430

9071appA.qxd 10/17/07 5:15 PM Page 430

Element Attribute Description Standard attributes

<meta /> Language attributes

continues

Nested within embed elements
and displayed only when the
browser cannot display the
embedded object. Nonstandard
and not supported by any
XHTML DOCTYPE. If this is
included in a web page, the
page will not validate.

<noembed>
(nonstandard)

Specifies the metadata profile
scheme.

scheme=string

Specifies a name for the meta
information. Examples are
author, description,
generator, and keywords.

name=string

Specifies the http equivalent
name for the meta
information. Examples are
content-type, expires,
refresh, and set-cookie.

http-equiv=string

Defines the value of the
meta tag property.

content=string
(required)

Provides meta information
about the document. Must be
placed inside the HTML
page’s head section. Each
meta element requires a
content attribute and also
an http-equiv or a name
attribute. Most commonly
used to define the character
set, and to set keywords and
descriptions for search
engines (increasingly
ineffective, as search engines
now pay more attention to
page content and links than
to meta tags).

See also Chapter 2, “meta
tags and search engines,” and
“What about the XML
declaration?”

XHTML REFERENCE

431

A

9071appA.qxd 10/17/07 5:15 PM Page 431

Element Attribute Description Standard attributes

<noframes> Core attributes,
language attributes

<noscript> Core attributes,
language attributes

<object> Core attributes,
keyboard attributes,
language attributes

Core events

archive=URL

classid=URL

codebase=URL

Defines the object’s MIME type.

data=URL

declare=declare

height=number Defines the object’s height in pixels.

Declares an object but does not
download it until the object is used.
The only value for this attribute is
declare.

Defines the URL of the object’s data.

codetype=MIME
type

Defines the base URL of the object.

Defines the URL of the object.

Sets the object’s border width.
Cannot be used in XHTML Strict.

border=number
(deprecated)

Defines a list of URLs to resources
used by the object.

Defines an embedded object.

See also Chapter 7, "Scrollable
content areas with CSS."

Defines content to be displayed in
browsers that don’t support
scripting. This is considered a
“block-level” element, so it cannot
be nested in an element that
accepts only inline content, such
as a paragraph, heading, or
preformatted text. Can be used
inside a div, form, or list item.

Defines content to be displayed in
non-frames-compatible browsers.
Should be placed inside a frameset
element. Intended for use with
XHTML Frameset DOCTYPE only.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

432

9071appA.qxd 10/17/07 5:15 PM Page 432

Element Attribute Description Standard attributes

name=name

standby=text

type=MIME type

usemap=URL

width=number

 Core attributes,
language attributes

Core events

continues

Specifies the list numbering system
(1=default numerals, A=uppercase
letters, a=lowercase letters,
I=uppercase Roman numerals, and
i=lowercase Roman numerals).
Cannot be used in XHTML Strict.

type=1|A|a|I|I
(deprecated)

Starts the list numbering at the
defined value instead of 1. Cannot
be used in XHTML Strict.

start=number
(deprecated)

Defines the start and end of an
ordered list. Contains one or more
li elements. (see preceding
entry).

See also Chapter 3, “Ordered lists.”

Defines the object’s width in pixels.

Specifies the client-side image map
to use with the object.

Defines the object data’s MIME type.

Defines text to display while the
object is downloading.

Sets a unique name for this instance
of the object, which can be used in
scripts.

XHTML REFERENCE

433

A

9071appA.qxd 10/17/07 5:15 PM Page 433

Element Attribute Description Standard attributes

<optgroup> Core attributes,
language attributes

Core events

disabled=disabled

tabindex=number

<option> Core attributes,
language attributes

Core events

Disables the option. The only value
for this attribute is disabled.

disabled=disabled

Defines an option within a drop-
down list. Nested within a select
element and can be placed within
optgroup elements. (See separate
<select> and <optgroup> entries.)

See also Chapter 8, “Adding
controls.”

Defines the tab order of an
element.

Defines a label for the optgroup.
This attribute is required.

label=string
(required)

Disables the option group. The only
value for this attribute is disabled.

Defines a form option group,
enabling you to group related
options in a select element.
Beware: display output varies
between browsers. Some italicize
optgroup label values to highlight
them, while others highlight them
by inverting the optgroup label
value. Others display them as per
option values.

<select name=">
<optgroup label="fruits">
<option value="Apple">
➥ Apple</option>
<option value="Pear">
➥ Pear</option>
</optgroup>
<optgroup label="vegetables">
<option value="Carrot">
➥ Carrot</option>
<option value="Turnip">
➥ Turnip</option>
</optgroup>
</select>

See also Chapter 8, “Adding
controls.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

434

9071appA.qxd 10/17/07 5:15 PM Page 434

Element Attribute Description Standard attributes

label=string Defines a label for this option.

selected=selected

value=string

<p> Core attributes,
language attributes

Core events

<param>

id=name

name=name

type=MIME type

value=string Defines the element’s value.

<pre> Core attributes,
language attributes

Core events

continues

Defines enclosed contents as
preformatted text, thereby
preserving the formatting from the
HTML document. Usually displayed
in a monospace font. Cannot
contain images, objects, or any
of the following tags: big, small,
sub, and sup.

Specifies the MIME type of the value
as data, ref (the value of a URL
pointing to the data), or object (the
value of an object within the
document).

valuetype=data|
object|ref

Specifies the MIME type for the
element.

Defines a unique name for the
element.

Defines a unique reference ID for
the element.

Supplies parameters for applets and
objects. Must be enclosed within an
applet or object element, and
must come at the start of the
content of the enclosing element.

Defines a paragraph.

See also Chapter 3, “Paragraphs and
headings.”

Defines the value of the option to
be sent when the form is submitted.

Sets the option as the default. The
only value for this attribute is
selected.

XHTML REFERENCE

435

A

9071appA.qxd 10/17/07 5:15 PM Page 435

Element Attribute Description Standard attributes

<q> Core attributes,
language attributes

Core events

See also Chapter 3, “Block quotes,
quote citations, and definitions.”

cite=URL

Core attributes,
language attributes

Core events

<samp> Core attributes,
language attributes

Core events

<script>

charset=charset

defer=defer Indicates the script doesn’t generate
document content. This attribute’s
only value is defer. This allows the
browser to delay parsing the script
until after the page has loaded.
Although this may speed up loading,
it will generate script errors if user
interaction results in a call to a
script that still hasn’t been parsed.
Use with care.

Defines the script’s character set.

Inserts a script into the document.

See also Chapter 2, “Attaching
favicons and JavaScript.”

Defines enclosed content as a
computer code sample. Usually
rendered in a monospace font.

See also Chapter 3, “Logical styles
for programming-oriented content.”

Defines strikethrough text. This
element is deprecated and cannot
be used in XHTML Strict. It’s
recommended to use the
element (see separate entry)
instead.

<s>
(deprecated)

Defines the location of quoted
online material.

Defines enclosed content as a short
quotation. Some browsers
automatically insert quote marks.

Defines the maximum number of
characters per line. This attribute is
deprecated; use CSS to define the
element width instead. Cannot be
used in XHTML Strict.

width=number
(deprecated)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

436

9071appA.qxd 10/17/07 5:15 PM Page 436

Element Attribute Description Standard attributes

src=URL

<select> Core attributes,
keyboard attributes,
language attributes

Core events, onblur,
onchange, onfocus

disabled=disabled

multiple=multiple

name=name

size=number

continues

Sets the element to a pop-up menu
when the value is 1, or a scrolling list
when the value is greater than 1.

Defines a name for the element.

Specifies that multiple items can be
selected. If absent, only single
options can be selected. If included,
the select element displays as a
scrolling list rather than a drop-
down menu. The only value for this
attribute is multiple.

Disables the element. The only value
for this attribute is disabled.

Creates a drop-down menu or
scrolling list (depending on whether
multiple has been set). This
element is a container for option
and optional optgroup elements.
(see separate <option> and
<optgroup> entries).

See also Chapter 8, “Adding
controls.”

Defines the MIME type of the
scripting language, such as
text/javascript or text/vbscript.
This attribute is required.

type=MIME type
(required)

Provides the URL of an external
script.

Specifies the scripting language.
Superseded by the type attribute,
and no longer required. Cannot be
used in XHTML Strict.

language=encoding
(deprecated)

XHTML REFERENCE

437

A

9071appA.qxd 10/17/07 5:15 PM Page 437

Element Attribute Description Standard attributes

<small> Core attributes,
language attributes

Core events

 Core attributes,
language attributes

Core events

Core attributes,
language attributes

Core events

 Core attributes,
language attributes

Core events

<style> Language attributesUsed to embed CSS rules in the head
of a web page or to import CSS files.

<style type="text/css"
➥ media="all">
@import url(stylesheet.css);
.thisPageOnly {
color: #de3de3;
}
</style>

See also Chapter 2, “Attaching CSS
files: The @import method.”

Defines enclosed content as
strongly emphasized. Generally
renders as bold text in browsers
and is preferred over .
(see separate entry).

See also Chapter 3, “Logical and
physical styles.”

Defines strikethrough text. This
element is deprecated and cannot
be used in XHTML Strict. It’s
recommended to use the
element (see separate entry)
instead.

<strike>
(deprecated)

Identifies a span of inline elements for
applying styles to. For example:

<p>Use span elements to create
➥ styled
➥ inline text.</p>

Reduces text size as compared to
the surrounding text. Because the
browser determines the size
differential, precise text size changes
are better achieved via span
elements and CSS.

See also Chapter 3, “The big and
small elements.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

438

9071appA.qxd 10/17/07 5:15 PM Page 438

Element Attribute Description Standard attributes

title=string Specifies the element’s title.

<sub> Core attributes,
language attributes

Core events

<sup> Core attributes,
language attributes

Core events

<table> Core attributes,
language attributes

Core events

border=number

summary=string

<tbody> Core attributes,
language attributes

Core events

continues

Defines the table body.

See also Chapter 6, “Row groups”
and “Building a table.”

Defines the table’s width in pixels or
as a percentage of the available
space within its parent element.

width=percentage|
number

Provides a summary of the table
contents for nonvisual browsers.

Defines the space between
table cells.

cellspacing=
percentage\number

Defines the space between cell
edges and contents.

cellpadding=
percentage|number

Defines the table border width.

Defines the start and end of a table.

See also Chapter 6, “How tables
work.”

Defines contents as superscript text.

See also Chapter 3, “Teletype,
subscript, and superscript.”

Defines contents as subscript text.

See also Chapter 3, “Teletype,
subscript, and superscript.”

Defines the MIME type of the style’s
contents. The only currently viable
value is text/css, although this may
change in the future. The value
text/javascript is also allowed.

type=MIME type
(required)

Defines target media on which this
style can be rendered. Possible
values are all, aural, braille,
handheld, print, projection,
screen, tty, and tv.

media=list
(required)

XHTML REFERENCE

439

A

9071appA.qxd 10/17/07 5:15 PM Page 439

Element Attribute Description Standard attributes

<td> Core attributes,
language attributes

Core events

axis=name

colspan=number

headers=id list A list of cell IDs that provide header
information for this cell, thereby
enabling nonvisual browsers to
associate header information with
the cell. If more than one value is
used, values are space separated.
Example:

<th id="theTitle"
➥ scope="col">The title</th>
<th id="price"
➥ scope="col">Price</th>
<td headers="theTitle">A new
➥ book</td>
<td headers="price">$29.99</td>

Defines how many columns the cell
spans.

See also Chapter 6, “Spanning rows
and cells.”

Provides a name for a related group of
cells. Not commonly used.

(Note: any td cells containing the axis
attribute are/should be treated as
table header cells by the user agent.)

Defines the horizontal alignment of
table cell content. It’s recommended
that you use the CSS text-align
property instead (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Defines a table cell.

See also Chapter 6, “How tables
work” and “Building a table.”

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines the horizontal alignment of
table cell content. It’s recommended
that you use the CSS text-align
property instead (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

440

9071appA.qxd 10/17/07 5:15 PM Page 440

XHTML REFERENCE

441

Element Attribute Description Standard attributes

rowspan=number

<textarea> Core attributes,
language attributes

Core events, onblur,
onchange, onfocus

name=name

continues

Disables the element. The only value
for this attribute is disabled.

disabled=disabled

Specifies the visible width in
characters of the textarea. This
attribute is required.

cols=number
(required)

Defines a text area within a form.
Any element content is displayed as
the textarea’s default value, and
that includes spaces. Therefore, if
you want a blank textarea, avoid
having any spaces between the start
and end tags. Although the cols and
rows attributes are required, you can
override these settings by using CSS.

See also Chapter 8, “Adding
controls.”

Defines the width of a cell in pixels.
This attribute is deprecated—use CSS
to define cell dimensions. Cannot be
used in XHTML Strict.

width=number
(deprecated)

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines how many rows the cell
spans.

See also Chapter 6, “Spanning rows
and cells.”

Disables text wrapping. The only value
for this attribute is nowrap. Cannot be
used in XHTML Strict. Use the CSS
white-space property (see its entry in
the CSS reference) instead.

nowrap=nowrap
(deprecated)

Defines the height of a cell in pixels.
This attribute is deprecated—use CSS
to define cell dimensions. Cannot be
used in XHTML Strict.

height=number
(deprecated)

A

9071appA.qxd 10/17/07 5:15 PM Page 441

Element Attribute Description Standard attributes

readonly=readonly

<tfoot> Core attributes,
language attributes

Core events

<th> Core attributes,
language attributes

Core events

Core attributes,
language attributes

Core events

abbr=string

axis=name Provides a name for a related group
of cells. Not commonly used.

Defines the horizontal alignment of
table cell content. It’s recommended
that you instead use the CSS text-
align property (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Provides an abbreviation of the cell’s
contents. Browsers can then choose
to use this if they are short on space
or to aid accessibility. Not commonly
used, but particularly potentially
useful for screen readers.

Defines a table header cell.

See also Chapter 6, “How tables
work” and “Building a table.”

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines the horizontal alignment of
table cell content. It’s recommended
that you use the CSS text-align
property instead (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Defines a table footer.

See also Chapter 6, “Row groups”
and “Building a table.”

Specifies the visible height
(expressed as a number of rows) of
the textarea. This attribute is
required.

rows=number
(required)

Indicates the textarea is read-only
and cannot be modified. The only
value for this attribute is readonly.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

442

9071appA.qxd 10/17/07 5:15 PM Page 442

Element Attribute Description Standard attributes

colspan=number

headers=id list

rowspan=number

continues

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

States whether the cell provides
header information for the rest
of the row, column, rowgroup, or
colgroup that contains it. (See the
headers description.)

scope=col|
colgroup|row|
rowgroup

Defines how many rows the cell
spans.

See also Chapter 7, “Spanning rows
and cells.”

Disables text wrapping. The only
value for this attribute is nowrap.
Cannot be used in XHTML Strict.
(Use CSS whitespace instead.)

nowrap=nowrap
(deprecated)

Defines the height of a cell in pixels.
This attribute is deprecated—use CSS
to define cell dimensions. Cannot be
used in XHTML Strict.

height=number
(deprecated)

A list of cell IDs that provide header
information for this cell, thereby
enabling nonvisual browsers to
associate header information with
the cell. If more than one value is
used, values are space separated.
Example:

<th id="theTitle"
➥ scope="col">The title</th>
<th id="price"
➥ scope="col">Price</th>
<td headers="theTitle">A new
➥ book</td>
<td headers="price">$29.99</td>

Defines how many columns the cell
spans.

See also Chapter 6, “Spanning rows
and cells.”

XHTML REFERENCE

443

A

9071appA.qxd 10/17/07 5:15 PM Page 443

Element Attribute Description Standard attributes

<thead> Core attributes,
language attributes

Core events

Core attributes,
language attributes

<tr> Core attributes,
language attributes

Core events

<tt> Core attributes,
language attributes

Core events

Renders as teletype (monospaced)
text.

See also Chapter 3, “Teletype,
subscript, and superscript.”

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines the horizontal alignment of
table cell content. It’s recommended
that you instead use the CSS text-
align property (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Defines a table row.

See also Chapter 6, “How tables
work” and “Building a table.”

Defines the title of a document. This
is a required element for web pages.

See also Chapter 2, “Page titles.”

<title>
(required)

Specifies the vertical alignment of
table cell content. It’s recommended
that you instead use the CSS
vertical-align property (see its
entry in the CSS reference) to do this.

valign=top|middle|
bottom|baseline
(deprecated)

Defines the horizontal alignment of
table cell content. It’s recommended
that you use the CSS text-align
property instead (see its entry in the
CSS reference) to do this.

align=left|right|
justify|center
(deprecated)

Defines a table header.

See also Chapter 6, “Row groups”
and “Building a table.”

Defines the width of a cell in pixels.
This attribute is deprecated—use CSS
to define cell dimensions. Cannot be
used in XHTML Strict.

width=number
(deprecated)

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

444

9071appA.qxd 10/17/07 5:15 PM Page 444

Element Attribute Description Standard attributes

 Core attributes,
language attributes

Core events

<var> Core attributes,
language attribute

Core events

Defines contents as a variable name.
Usually rendered in italics.

See also Chapter 3, “Logical styles for
programming-oriented content.”

Defines the start and end of an
unordered list. Contains one or more
li elements (see separate entry).

See also Chapter 3, “Unordered lists.”

XHTML REFERENCE

445

A

9071appA.qxd 10/17/07 5:15 PM Page 445

9071appB.qxd 10/17/07 12:16 PM Page 446

B WEB COLOR REFERENCE

This section of the reference guides provides an overview of how to write
color values for the Web, as well as a full list of supported color names. See
the “Color theory” section in Chapter 4 for a discussion of color theory.

9071appB.qxd 10/17/07 12:16 PM Page 447

Color values
On the Web, colors are displayed by mixing red, green, and blue (RGB) light. Values range
from 0 to 255 and can be written as such (e.g., rgb(5,233,70)), but they are more com-
monly written in hexadecimal. Colors written in hex consist of a hash sign (#) followed by
six digits. The six digits are made up of pairs, representing the red, green, and blue color
values, respectively.

#XXxxxx: Red color value

#xxXXxx: Green color value

#xxxxXX: Blue color value

Hexadecimal notation is a numbering system that has 16, rather than 10, as its base. Digits
range from 0 to f, with 0 to 9 representing the same value as ordinary numbers, and the
letters a to f representing 10 to 15. The letters can be either uppercase or lowercase. If you
set the first two digits to their highest value (ff) and the others to null, you get #ff0000,
which is the hex color value for red. If you write #00ff00, you get green, and if you write
#0000ff, you get blue. If all are set to full, you get white (#ffffff), and if all are null
values, you get black (#000000).

Hexadecimal can also be written in shorthand if the six-digit value is composed of pairs in
which both numbers are the same. For instance, #ff6600 (orange) can be written as #f60,
and #ffffff (white) can be written as #fff. All three pairs must consist of equal numbers.
For instance, you cannot use shorthand for #ffff01. Also, although hexadecimal can be
written in shorthand, many designers choose not to do so, because when all color values
are written in full, it tends to be easier to scan CSS files for specific values.

Web-safe colors

The 216-color web-safe palette uses hex combinations of the following hex value pairs
only: 00, 33, 66, 99, cc, and ff—for example, #cc6699, #33ff66, and #ff0000.

Using these pairs provides you with 216 colors that are said to not dither on Macs and
Windows PCs that have 8-bit monitors (256 colors). Because the vast majority of monitors
sold since 2000 are able to display thousands or millions of colors, this palette is now
rarely used and is generally considered archaic and obsolete.

Color names
Although a significant number of HTML color names are supported by major browsers, the
CSS standard only recognizes the following 17.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

448

9071appB.qxd 10/17/07 12:16 PM Page 448

Color name Color hex value Shorthand hex RGB

Aqua #00ffff #0ff 0,255,255

Black #000000 #000 0,0,0

Blue #0000ff #00f 0,0,255

Fuchsia #ff00ff #f0f 255,0,255

Gray (or Grey) #808080 n/a 128,128,128

Green #008000 n/a 0,128,0

Lime #00ff00 #0f0 0,255,0

Maroon #800000 n/a 128,0,0

Navy #000080 n/a 0,0,128

Olive #808000 n/a 128,128,0

Orange #ffa500 n/a 255,165,0

Purple #800080 n/a 128,0,128

Red #ff0000 #f00 255,0,0

Silver #c0c0c0 n/a 192,192,192

Teal #008080 n/a 0,128,128

White #ffffff #fff 255,255,255

Yellow #ffff00 #ff0 255,255,0

Although each color name in the preceding table begins with a capital letter (for book
style purposes), color names are case insensitive, and lowercase is most commonly used.
However, most designers ignore color names entirely, using hex all the time for
consistency’s sake—a practice that the W3C recommends.

WEB COLOR REFERENCE

449

B

9071appB.qxd 10/17/07 12:16 PM Page 449

9071appC.qxd 10/10/07 2:58 PM Page 450

C ENTITIES REFERENCE

Generally speaking, characters not found in the normal alphanumeric set
must be added to a web page by way of character entities. These take the
form &#n;, with n being a two- to four-digit number. Many entities also have
a name, which tends to be more convenient and memorable; these are also
listed. However, entities are case sensitive, so take care when adding them
to your web pages.

Although most browsers display nonalphanumeric characters when the
relevant encoding is specified, it’s sometimes necessary to use entities to
ensure your page displays as intended across a large range of machines.

Most reference guides tend to list entities in numerical order, but I find
it more useful to browse by grouped items, so I list entities alphabetically
within sections such as “Common punctuation and symbols” and “Characters
for European languages.” (The exception is for Greek characters, which I’ve
listed in the order of the Greek alphabet, rather than in alphabetical order
from an English language perspective.)

9071appC.qxd 10/10/07 2:58 PM Page 451

Characters used in XHTML
The less-than and ampersand characters are used in XHTML markup, and to avoid invalid
and broken pages, these should be added to your web pages as entities. It’s also common
(although not required) to add greater-than and quotation marks as entities.

The ampersand character is commonly used in URL query strings (particularly when work-
ing with server-side languages), and in such cases, the & must be replaced by the entity
name or number (it will still be correctly interpreted by the browser).

Character Description Entity name Entity number

" Quotation mark (straight) " "

& Ampersand & &

< Less-than sign < <

> Greater-than sign > >

Punctuation characters and symbols
Although many web designers tend to get around punctuation character limitations by
using double hyphens (--) in place of em dashes (—), triple periods (. . .) in place of an
ellipsis (...), and straight quotation marks ("") instead of “smart” quotes (“”), XHTML sup-
ports many punctuation characters as character entities. Likewise, plenty of symbols are
supported in XHTML, so you needn’t write (c) when the copyright symbol is available.

This section lists all such characters and is split into four subsections: quotation marks,
spacing and nonprinting characters, punctuation characters, and symbols.

Quotation marks

Character Description Entity name Entity number

‘ Left single ‘ ‘

’ Right single ’ ’

“ Left double “ “

” Right double ” ”

‹ Single left angle ‹ ‹

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

452

9071appC.qxd 10/10/07 2:58 PM Page 452

Character Description Entity name Entity number

› Single right angle › ›

« Double left angle « «

» Double right angle » »

‚ Single low-9 ‚ ‚

„ Double low-9 „ „

Spacing and nonprinting characters

Character Description Entity name Entity number

Em space    

En space    

Nonprinting Left-to-right mark ‎ ‎

Nonbreaking space

Overline ‾ ‾

Nonprinting Right-to-left mark ‏ ‏

Thin space    

Nonprinting Zero-width joiner ‍ ‍

Nonprinting Zero-width nonjoiner ‌ ‌

On Windows, zero-width joiner and zero-width nonjoiner may be displayed by default
as a vertical bar with an x on top and a vertical bar, respectively. To display these as
nonprinting characters, you may need to install the Arabic language pack.

ENTITIES REFERENCE

453

C

9071appC.qxd 10/10/07 2:58 PM Page 453

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

454

Punctuation characters

Character Description Entity name Entity number

| Broken vertical bar ¦ ¦

• Bullet point • •

† Dagger † †

‡ Double dagger ‡ ‡

″ ″ ″

… Ellipsis … …

— Em dash — —

– En dash – –

/ Fraction slash ⁄ ⁄

¡ ¡ ¡

¿ Inverted question mark ¿ ¿

′ Prime, minutes, feet ′ ′

- Soft hyphen ­ ­

Symbols

Character Description Entity name Entity number

ℑ ℑ ℑ

ℜ ℜ ℜ

© Copyright symbol © ©

ª Feminine ordinal ª ª

Blackletter capital R,
real part

Blackletter capital I,
imaginary part

Inverted exclamation
mark

Double prime, seconds,
inches

9071appC.qxd 10/10/07 2:58 PM Page 454

Character Description Entity name Entity number

º Masculine ordinal º º

¬ Not sign ¬ ¬

¶ Paragraph sign ¶ ¶

‰ Per mille symbol ‰ ‰

® ® ®

§ Section sign § §

™ Trademark symbol ™ ™

℘ ℘ ℘

Characters for European languages
For any characters that have accents, circumflexes, or other additions, entities are avail-
able. However, many of these entities have their roots in the days when ASCII was the only
available encoding method. These days, as long as you use the appropriate input method,
and the page is correctly encoded, you may not need to use these entities. They are still
listed here, though, for times when you just want to be on the safe side.

Take care when adding these, because case is important. In most cases, capitalizing the
first letter of the entity name results in an uppercase character, but this isn’t always so
(notably the Icelandic characters “eth” and “thorn,” the uppercase versions of which
require the entire entity name to be in uppercase).

Character Description Entity name Entity number

´ Acute accent (no letter) ´ ´

¸ Cedilla (no letter) ¸ ¸

ˆ ˆ ˆ

_
Macron accent ¯ ¯

continues

Circumflex spacing
modifier

Script capital P,
power set

Registered trademark
symbol

ENTITIES REFERENCE

455

C

9071appC.qxd 10/10/07 2:58 PM Page 455

Character Description Entity name Entity number

· Middle dot · ·

˜ Tilde ˜ ˜

¨ Umlaut ¨ ¨

Á Á Á

á á á

Â Â Â

â â â

À À À

à à à

Å Uppercase A, ring Å Å

å Lowercase a, ring å å

Ã Uppercase A, tilde Ã Ã

ã Lowercase a, tilde ã ã

Ä Uppercase A, umlaut Ä Ä

ä Lowercase a, umlaut ä ä

Æ Uppercase AE ligature Æ Æ

æ Lowercase ae ligature æ æ

Ç Uppercase C, cedilla Ç Ç

ç Lowercase c, cedilla ç ç

É É ÉUppercase E, acute
accent

Lowercase a, grave
accent

Uppercase A, grave
accent

Lowercase a, circumflex
accent

Uppercase a, circumflex
accent

Lowercase a, acute
accent

Uppercase A, acute
accent

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

456

9071appC.qxd 10/10/07 2:58 PM Page 456

Character Description Entity name Entity number

é é é

Ê Ê Ê

ê ê ê

È È È

è è è

Ë Uppercase E, umlaut Ë Ë

ë Lowercase e, umlaut ë ë

Uppercase eth Ð Ð

Lowercase eth ð ð

Í Í Í

í í í

Î Î Î

î î î

Ì Ì Ì

ì ì ì

Ï Uppercase I, umlaut Ï Ï

ï Lowercase i, umlaut ï ï

continues

Lowercase i, grave
accent

Uppercase I, grave
accent

Lowercase i, circumflex
accent

Uppercase I, circumflex
accent

Lowercase i, acute
accent

Uppercase I, acute
accent

Lowercase e, grave
accent

Uppercase E, grave
accent

Lowercase e, circumflex
accent

Uppercase E, circumflex
accent

Lowercase e, acute
accent

ENTITIES REFERENCE

457

C

9071appC.qxd 10/10/07 2:58 PM Page 457

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

458

Character Description Entity name Entity number

Ñ Uppercase N, tilde Ñ Ñ

ñ Lowercase n, tilde ñ ñ

Ó Ó Ó

ó ó ó

Ô Ô Ô

ô ô ô

Ò Ò Ò

ò ò ò

Ø Uppercase O, slash Ø Ø

ø Lowercase o, slash ø ø

Õ Uppercase O, tilde Õ Õ

õ Lowercase o, tilde õ õ

Ö Uppercase O, umlaut Ö Ö

ö Lowercase o, umlaut ö ö

Œ Uppercase OE ligature Œ Œ

œ Lowercase oe ligature œ œ

Uppercase S, caron Š Š

Lowercase s, caron š š

ß Lowercase sz ligature ß ß

Lowercase o, grave
accent

Uppercase O, grave
accent

Lowercase o, circumflex
accent

Uppercase O, circumflex
accent

Lowercase o, acute
accent

Uppercase O, acute
accent

9071appC.qxd 10/10/07 2:58 PM Page 458

ENTITIES REFERENCE

459

Character Description Entity name Entity number

Uppercase thorn Þ Þ

Lowercase thorn þ þ

Ú Ú Ú

ú ú ú

Û Û Û

û û û

Ù Ù Ù

ù ù ù

Ü Uppercase U, umlaut Ü Ü

ü Lowercase u, umlaut ü ü

Ý Ý

ý ý

Ÿ Uppercase Y, umlaut Ÿ Ÿ

ÿ Lowercase y, umlaut ÿ ÿ

Lowercase y, acute
accent

Uppercase Y, acute
accent

Lowercase u, grave
accent

Uppercase U, grave
accent

Lowercase u, circumflex
accent

Uppercase U, circumflex
accent

Lowercase u, acute
accent

Uppercase U, acute
accent

C

9071appC.qxd 10/10/07 2:58 PM Page 459

Currency signs
Although the dollar sign is supported in XHTML, other common currency symbols are not.
However, several can be added by way of entities, as shown in the following table.

Character Description Entity name Entity number

¢ Cent ¢ ¢

General currency sign ¤ ¤

€ Euro € €

£ Pound £ £

¥ Yen ¥ ¥

Mathematical, technical, and
Greek characters

This set of entities combines mathematical and technical symbols and the Greek alphabet
(which is commonly used in scientific work). For ease of use, this section is divided into
three subsections: common mathematical characters (fractions and the most commonly
used mathematical symbols), advanced mathematical and technical characters (characters
of interest to those marking up technical documents or anything other than basic mathe-
matical text), and Greek characters.

Common mathematical characters

Character Description Entity name Entity number

° Degree sign ° °

÷ Division sign ÷ ÷

Fraction—one half ½ ½

Fraction—one quarter ¼ ¼

¾ ¾

> Greater-than sign > >

Fraction—three quarters

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

460

9071appC.qxd 10/10/07 2:58 PM Page 460

Character Description Entity name Entity number

≥ ≥ ≥

< Less-than sign < <

≤ Less-than or equal to sign ≤ ≤

– Minus sign − −

× Multiplication sign × ×

1 Superscript one ¹ ¹

2 Superscript two ² ²

3 Superscript three ³ ³

Advanced mathematical and technical characters

Character Description Entity name Entity number

ℵ ℵ ℵ

≈ ≈ ≈

∠ Angle ∠ ∠

≅ Approximately equal to ≅ ≅

∗ Asterisk operator ∗ ∗

⊕ Circled plus, direct sum ⊕ ⊕

⊗ ⊗ ⊗

] Contains as member ∋ ∋

. Dot operator ⋅ ⋅

continues

Circled times, vector
product

Almost equal to,
asymptotic to

Alef symbol, first
transfinite cardinal

Greater-than or equal
to sign

ENTITIES REFERENCE

461

C

9071appC.qxd 10/10/07 2:58 PM Page 461

Character Description Entity name Entity number

[Element of ∈ ∈

\ ∅ ∅

; For all ∀ ∀

ƒ ƒ ƒ

; Identical to ≡ ≡

∞ Infinity ∞ ∞

∫ Integral ∫ ∫

ù Intersection, cap ∩ ∩

 Left ceiling ⌈ ⌈

 Left floor ⌊ ⌊

∧ Logical and, wedge ∧ ∧

∨ Logical or, vee ∨ ∨

µ Micro sign µ µ

∇ ∇ ∇

∏ ∏

N-ary summation ∑ ∑

Ó Not an element of ∉ ∉

÷ Not a subset of ⊄ ⊄

Þ Not equal to ≠ ≠

∂ Partial differential ∂ ∂

± ± ±Plus-minus sign, plus-or-
minus sign

N-ary product, product
sign

Nabla, backward
difference

Function, florin (Latin
small f with hook)

Empty set, null set,
diameter

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

462

9071appC.qxd 10/10/07 2:58 PM Page 462

Character Description Entity name Entity number

∝ Proportional to ∝ ∝

 Right ceiling ⌉ ⌉

 Right floor ⌋ ⌋

√ Square root, radical sign √ √

, Subset of ⊂ ⊂

Subset of or equal to ⊆ ⊆

. Superset of ⊃ ⊃

$ Superset of or equal to ⊇ ⊇

∃ There exists ∃ ∃

∴ Therefore ∴ ∴

∼ ∼ ∼

ø Union, cup ∪ ∪

⊥ ⊥ ⊥

Greek characters

Character Description Entity name Entity number

Α Uppercase alpha Α Α

α Lowercase alpha α α

Β Uppercase beta Β Β

β Lowercase beta β β

Γ Uppercase gamma Γ Γ

continues

Up tack, orthogonal to,
perpendicular

Tilde operator, varies with,
similar to, approximately

ENTITIES REFERENCE

463

C

9071appC.qxd 10/10/07 2:58 PM Page 463

Character Description Entity name Entity number

γ Lowercase gamma γ γ

∆ Uppercase delta Δ Δ

δ Lowercase delta δ δ

Ε Uppercase epsilon Ε Ε

ε Lowercase epsilon ε ε

Ζ Uppercase zeta Ζ Ζ

ζ Lowercase zeta ζ ζ

Η Uppercase eta Η Η

η Lowercase eta η η

Θ Uppercase theta Θ Θ

θ Lowercase theta θ θ

Ι Uppercase iota Ι Ι

ι Lowercase iota ι ι

Κ Uppercase kappa Κ Κ

κ Lowercase kappa κ κ

Λ Uppercase lambda Λ Λ

λ Lowercase lambda λ λ

Μ Uppercase mu Μ Μ

µ Lowercase mu μ μ

Ν Uppercase nu Ν Ν

ν Lowercase nu ν ν

Ξ Uppercase xi Ξ Ξ

ξ Lowercase xi ξ ξ

Ο Uppercase omicron Ο Ο

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

464

9071appC.qxd 10/10/07 2:58 PM Page 464

Character Description Entity name Entity number

ο Lowercase omicron ο ο

Π Uppercase pi Π Π

π Lowercase pi π π

Ρ Uppercase rho Ρ Ρ

ρ Lowercase rho ρ ρ

ς Lowercase final sigma ς ς

Σ Uppercase sigma Σ Σ

σ Lowercase sigma σ σ

Τ Uppercase tau Τ Τ

τ Lowercase tau τ τ

Υ Uppercase upsilon Υ Υ

υ Lowercase upsilon υ υ

Φ Uppercase phi Φ Φ

φ Lowercase phi φ φ

Χ Uppercase chi Χ Χ

χ Lowercase chi χ χ

Ψ Uppercase psi Ψ Ψ

ψ Lowercase psi ψ ψ

Ω Uppercase omega Ω Ω

ω Lowercase omega ω ω

ϑ Small theta symbol ϑ ϑ

ϒ Greek upsilon with hook ϒ ϒ

ϖ Greek pi symbol ϖ ϖ

ENTITIES REFERENCE

465

C

9071appC.qxd 10/10/07 2:58 PM Page 465

Arrows, lozenge, and card suits

Character Description Entity name Entity number

↵ Carriage return ↵ ↵

↓ Down arrow ↓ ↓

⇓ Down double arrow ⇓ ⇓

← Left arrow ← ←

⇐ Left double arrow ⇐ ⇐

↔ Left-right arrow ↔ ↔

⇔ Left-right double arrow ⇔ ⇔

→ Right arrow → →

⇒ Right double arrow ⇒ ⇒

↑ Up arrow ↑ ↑

⇑ Up double arrow ⇑ ⇑

◊ Lozenge ◊ ◊

♣ Clubs suit ♣ ♣

♦ Diamonds suit ♦ ♦

♥ Hearts suit ♥ ♥

♠ Spades suit ♠ ♠

Converting the nonstandard Microsoft set
The final table in this section lists the nonstandard Microsoft set and modern equivalents.
Some older HTML editors, such as Dreamweaver 4, insert nonstandard entity values into
web pages, causing them to fail validation. Here, we present the outdated nonstandard
value and its corresponding approved alternatives (entity name and entity number, either
of which can be used).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

466

9071appC.qxd 10/10/07 2:58 PM Page 466

Nonstandard Entity Entity
Character Description value name number

‚ Single low-9 quote ‚ ‚ ‚

ƒ ƒ ƒ ƒ

„ Double low-9 quote „ „ „

… Ellipsis … … …

† Dagger † † †

‡ Double dagger ‡ ‡ ‡

ˆ ˆ ˆ ˆ

‰ Per mille symbol ‰ ‰ ‰

Uppercase S, caron Š Š Š

< Less-than sign ‹ < <

Œ Uppercase OE ligature Œ Œ Œ

‘ Left single quote ‘ ‘ ‘

’ Right single quote ’ ’ ’

“ Left double quote “ “ “

” Right double quote ” ” ”

• Bullet point • • •

– En dash – – –

— Em dash — — —

~ Tilde ˜ ˜ ˜

™ Trademark symbol ™ ™ ™

continues

Circumflex spacing
modifier

Lowercase Latin f with
hook (florin)

ENTITIES REFERENCE

467

C

9071appC.qxd 10/10/07 2:58 PM Page 467

Nonstandard Entity Entity
Character Description value name number

Lowercase s, caron š š š

> Greater-than sign › > >

œ Lowercase oe ligature œ œ œ

Ÿ Uppercase Y, umlaut Ÿ Ÿ Ÿ

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

468

9071appC.qxd 10/10/07 2:58 PM Page 468

9071appC.qxd 10/10/07 2:58 PM Page 469

9071appD.qxd 10/18/07 2:42 PM Page 470

D CSS REFERENCE

This section includes a table listing CSS properties and values. In many cases,
properties have specific values, which are listed in full. However, some values
are common across many properties. These are outlined in the “Common CSS
values” section, and in the CSS properties and values table these values are
shown in italics. The end of the section includes information on basic selectors,
pseudo-classes, pseudo-elements, CSS boilerplates, and CSS management.

9071appD.qxd 10/18/07 2:42 PM Page 471

The CSS box model
In CSS, every element is considered to be within its own box, and you can define the
dimensions of the content and then add padding, a border, and a margin to each edge as
required, as shown in the following image.

© Jon Hicks (www.hicksdesign.co.uk)

Padding, borders, and margins are added to the set dimensions of the content, so the sum
of these elements is the overall space that they take up. For example, a 100-pixel-wide ele-
ment with 20 pixels of padding will take up an overall width of 140 pixels, not 100 pixels
with 20 pixels of padding within.

Note that the top and bottom margins on adjacent elements collapse. For example, if you
set the bottom margin to 50px on an element, and set a top margin of 100px on the ele-
ment below, the margin between the two elements will be 100 pixels, not 150 pixels.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

472

9071appD.qxd 10/18/07 2:42 PM Page 472

http://www.hicksdesign.co.uk

Common CSS values
In addition to the values listed in the following table, a property may have a value of
inherit, whereupon it takes the same value as its parent. Some properties are inherited
by default—see the CSS properties and values table for more information.

Value Formats

color Color name. See Appendix B (Color Reference) for information on
available CSS color names.

rgb(n,n,n): Where n is a value from 0 to 255 or a percentage.
#rrggbb: Hexadecimal color format (preferred).

length An optional sign (+ or -), followed by a number and one of the fol-
lowing units (there should be no whitespace between the number and
unit):

%: A percentage.
cm: Centimeters.
em: One em is equal to the font size of the parent or current element
(see following focus point for elaboration).
ex: One ex is, in theory, equal to the font size of the x character of
the current element. Most browsers render ex as half an em.
in: Inches.
mm: Millimeters.
pc: Picas. 1pc = 12pt.
pt: Points. 1pt = 1/72in.
px: Pixels.

For zero values, the unit identifier may be omitted. Generally, px, em,
and % are the best units for screen design, and pt is best for print fonts.

number An optional sign (+ or -) followed by a number.

percentage An optional sign (+ or -) followed by a number, immediately followed
by the percentage symbol.

url The word url immediately followed by parentheses, within which is
placed a URL. The URL can optionally be enclosed in single or double
quotes.

Internet Explorer 5.x for Windows gets the box model wrong, placing padding and
borders inside the defined dimensions of an element. The bug is explained in
Chapter 9, which also offers workarounds to fix layouts that get broken in aging
versions of Microsoft’s browser.

CSS REFERENCE

473

D

9071appD.qxd 10/18/07 2:42 PM Page 473

CSS properties and values
In the tables within this section, default values are listed in bold and shorthand properties
are shaded in gray. A number of tables online list browser compatibility with regard to CSS.
Some good examples of these and related resources can be found at the following URLs:

www.westciv.com/style_master/academy/browser_support/index.html: CSS sup-
port for most browsers

www.webdevout.net/browser-support-css: CSS support for Internet Explorer,
Firefox, and Opera

www.quirksmode.org/css/contents.html: Concentrates on quirks

www.macedition.com/cb/resources/macbrowsercsssupport.html: CSS2 support
in old Mac browsers—note: not updated since 2004

www.macedition.com/cb/resources/abridgedcsssupport.html: CSS2 support chart
for old browsers—note: not updated since 2004

www.css3.info/selectors-test/: Live CSS3 support testing of your browser

http://devedge-temp.mozilla.org/toolbox/sidebars/: Useful sidebar reference
tools for Gecko browser users

Remember that such charts are guides only, are sometimes out of date, and should not be
considered a replacement for thorough testing in a range of web browsers.

To inherit a parent element’s style for a property, use the value inherit. To raise a prop-
erty’s weight in the cascade, use !important. Important declarations override all others.

p {color: red !important;}

Add comments to CSS files as follows:

/*
This is a comment in CSS
*/

/* This is a single-line comment */

When setting element dimensions (width, height, margins, etc.), one em is equal to
the font size of that element. However, when setting font sizes for an element, one em
is equal to the font size of its parent element. In both cases, this is measured relative
to the dimensions of the M character.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

474

9071appD.qxd 10/18/07 2:42 PM Page 474

http://www.westciv.com/style_master/academy/browser_support/index.html:
http://www.webdevout.net/browser-support-css:
http://www.quirksmode.org/css/contents.html:
http://www.macedition.com/cb/resources/macbrowsercsssupport.html:
http://www.macedition.com/cb/resources/abridgedcsssupport.html:
http://www.css3.info/selectors-test/:
http://devedge-temp.mozilla.org/toolbox/sidebars/:

CSS REFERENCE

475

D

Property Values Description Inherited

background No

background-attachment scroll | fixed No

background-color No

background-image none | url No

background-position No

Continued

Defines the initial position of the
background image. Defaults to 0,0. Values
are usually paired: x,y. Combinations of
keyword, length, and percentage are
permitted, although combining keywords
with either length or percentages is buggy
in some browsers. If only one keyword is
provided, the other defaults to center. If
only one length or percentage is given, it
sets the horizontal position, and the
vertical position defaults to 50%.

See also Chapter 2, “background-position.”

length |
percentage | top |
center | bottom |
left | right

Sets an element’s background image.
Example:

background-image:
➥ url(background_image.jpg);

See also Chapter 2, “background-image.”

Defines an element’s background color.
See also Chapter 2, “background-color.”

transparent |
color

Determines whether a background image
is fixed or scrolls with the page.

See also Chapter 2, “background-
attachment.”

Shorthand for defining background
property values in a single declaration.
Values can be any of those from
background-attachment, background-
color, background-image, background-
position, and background-repeat, in any
order. Example:

background: #ffffff
➥ url(background.gif) fixed left
➥ repeat-y;

See also Chapter 2, “Web page
backgrounds in CSS” and “CSS shorthand
for web backgrounds.”

9071appD.qxd 10/18/07 2:42 PM Page 475

Property Values Description Inherited

background-repeat No

border No

border-bottom No

border-bottom-color color | transparent Sets the bottom border color. No

border-bottom-style (See border-style.) Sets the bottom border style. No

border-bottom-width (See border-width.) Sets the bottom border width. No

border-collapse collapse | separate Yes

border-color color | transparent No

border-left No

border-left-color color | transparent Sets the left border color. No

border-left-style (See border-style.) Sets the left border style. No

border-left-width (See border-width.) Sets the left border width. No

Shorthand for defining left border
property values (see border).

Defines the element’s border color.
Defaults to the element’s color.

Defines a table’s border model. In the
separate border model, which is the
default, each table cell has its own distinct
borders, but in the collapsed border
model, adjacent table cells share borders.

See also Chapter 6, “Adding borders to
tables.”

Shorthand for defining bottom border
property values (see border).

Shorthand for defining border property
values in a single declaration. Values can
be any of those from border-width,
border-style, and border-color.
Borders are drawn on top of a box’s
background. Example:

border: 1px solid #000000;

See also Chapter 4, “Applying CSS borders
to images,” and Chapter 6, “Styling a
table.”

Defines how the background image tiles.
See also Chapter 2, “background-repeat.”

repeat |
repeat-x |
repeat-y |
no-repeat

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

476

9071appD.qxd 10/18/07 2:42 PM Page 476

Property Values Description Inherited

border-right No

border-right-color color | transparent Sets the right border color. No

border-right-style (See border-style.) Sets the right border style. No

border-right-width (See border-width.) Sets the right border width. No

border-spacing length length Yes

border-style No

border-top No

border-top-color color | transparent Sets the top border color. No

border-top-style (See border-style.) Sets the top border style. No

border-top-width (See border-width.) Sets the top border width. No

border-width No

Continued

Sets the width of an element’s borders.
Can work as shorthand:

border-width: 1px 2px 3px 4px;

See also Chapter 4, “Applying CSS borders
to images.”

length | medium |
thick | thin

Shorthand for defining top border
property values (see border).

Sets the style of an element’s borders.
Can work as shorthand, with one style per
edge, from the top clockwise. Example:

border-style: solid dashed dotted
➥ groove;

Not all styles are supported in all
browsers. Notably, Internet Explorer 5
and 6 render dotted as dashed when a
border is 1 pixel in width.

dashed | dotted |
double | groove |
inset | none |
outset | ridge |
solid

Defines the distance between borders or
adjacent table cells when using the
separated borders model. (See
border-collapse.) If a single length is
given, it’s used for horizontal and vertical
values; if two lengths are provided, the
first is used for the horizontal spacing
and the second for the vertical spacing.
Negative values are not permitted.

Shorthand for defining right border
property values (see border).

CSS REFERENCE

477

D

9071appD.qxd 10/18/07 2:42 PM Page 477

Property Values Description Inherited

bottom No

caption-side bottom | top Yes

clear No

clip auto | (shape) NoCreates a clipping area for an absolute
positioned element to determine the
visible area. As of CSS 2.1, the only
available shape is rect. Example:
clip: rect(5px, 60px, 15px, 20px);

As per the preceding code block,
dimensions are stated as a comma-
separated list, and percentage lengths are
not permitted. The dimensions are, as per
typical CSS shorthand, in the following
order: top, right, bottom, left. The top and
bottom values specify offsets from the top
border edge of the box. The left and right
measurements specify offsets from the left
border edge of the box in left-to-right text
and from the right border edge of the box
in right-to-left text. The defined region
clips out any aspect of the element that
falls outside the clipping region. The
preceding example creates a window
40 pixels wide and 10 pixels high, through
which the content of the clipped element
is visible. Everything else is hidden. See
also www.w3.org/TR/CSS21/visufx.
html#propdef-clip.

Moves the element down until its margins
are clear of floated elements to its left,
right, or both sides. (See the float entry.)

See also Chapter 7, “Placing columns
within wrappers and clearing floated
content.”

both | left |
none | right

Specifies the position of table caption
elements with relation to the table
element box.

Determines the vertical offset of the
element’s bottom edge from the bottom
edge of its parent element if the parent is
positioned; if not, then offset is
determined from the first positioned
ancestor. Must be used with a position
value of relative, absolute, or fixed.

auto | length |
percentage

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

478

9071appD.qxd 10/18/07 2:42 PM Page 478

http://www.w3.org/TR/CSS21/visufx

Property Values Description Inherited

color color Yes

content No

counter-increment No

counter-reset No

cursor Yes

Continued

Defines the cursor type to be displayed.
Can be a comma-separated list. Cursors
vary by system, so use this property with
care. Also, if using custom cursors via the
url value, include a generic cursor at the
end of the list, in case of compatibility
problems.

Note: Internet Explorer 5.x for Windows
does not recognize pointer, the correct
CSS value for displaying a hand-shaped
cursor. Instead, it uses the nonstandard
value hand, which can be applied using a
style sheet attached via a conditional
comment.

auto | crosshair |
default | help |
pointer | move |
progress | text |
wait | n-resize |
ne-resize |
e-resize |
se-resize |
s-resize |
sw-resize |
nw-resize |
w-resize | url

Defines a new value for the specified
counter whenever the current selector is
encountered.

none |
identifier number

Increments a counter when the current
selector is encountered. The identifier
defines the selector, ID, or class that is to
be incremented; the optional number
defines the increment amount. Used in
conjunction with content. Browser support
for this property is poor.

none |
identifier number

Generates content to attach before or after
a CSS selector, using the :before and
:after pseudo-elements. Example:

#users h2:before {
content: "Username: ";
display: inline;
}

See also Chapter 7, “Placing columns within
wrappers and clearing floated content.”

normal | (string)
| url |
counter(name) |
counter(name,
list-style-type)
| counters(name,
string) |
counters(name,
string, list-
style-type) |
open-quote |
close-quote | no-
open-quote | no-
close-quote |
attr(X)

Sets an element’s foreground color (i.e.,
the color of the text).

CSS REFERENCE

479

D

9071appD.qxd 10/18/07 2:42 PM Page 479

Property Values Description Inherited

direction ltr | rtl Sets the direction of text flow. Yes

ltr: Left to right.
rtl: Right to left.

display No

empty-cells hide | show Yes

float left | none | right No

font YesShorthand for defining font properties in
a single declaration. Values can include
any or all of the following: font-style,
font-variant, font-weight, font-size,
line-height, and font-family.

Any omitted values revert to default
settings, but font-size and font-family
are mandatory.

If font-style, font-weight, and
font-variant values are included, they
should appear at the start of the rule,
prior to the font-size value.

Defines whether an element floats left or
right (allowing other content to wrap
around it) or displays inline (by using the
none value).

See also Chapter 7, “The float property.”

Determines whether empty table cell
borders show when using the separated
borders model. (See border-collapse.)

States how an element is displayed on the
page. The most common values are none,
block, and inline, which all happen to be
well supported.

See several of the exercises in Chapters 5
and 7 for more on this property.

block | inline |
list-item |
none | run-in |
inline-block |
table |
inline-table |
table-caption |
table-cell |
table-column |
table-column-
group | table-
footer-group |
table-header-
group | table-row
| table-row-
group |
table-row

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

480

9071appD.qxd 10/18/07 2:42 PM Page 480

Property Values Description Inherited

font (continued) Yes

font-family Yes

font-size Yes

Continued

Sets the size of a font.

See also Chapter 3, “Defining font size and
line height.”

xx-small |
x-small | small |
medium | large |
x-large | xx-
large | smaller |
larger | length |
percentage

Defines the font family of an element.
Takes the form of a prioritized comma-
separated list, which should terminate in a
generic family name (cursive, fantasy,
monospace, serif, or sans-serif).

Multiple-word font-family names must be
quoted (e.g., "Times New Roman"). Readers
used to American typographical
conventions should take care not to put
commas inside the closing quotes.
Example:

font-family: Georgia, "Times New
➥ Roman", serif;

See also Chapter 3, “Defining fonts.”

(family name) |
(generic family)

When using line-height, you must
combine it with the font-size property
using the syntax font-size/line-height
(e.g., 12px/18px). Examples (using selected
values):

font: bold 12px/16px Verdana,
➥ sans-serif;
font: 85%/1.3em Georgia, serif;

See also Chapter 3, “Styling text using CSS”
and “CSS shorthand for font properties.”
Additional values for the font property are
also available: caption, icon, menu,
message-box, small-caption, status-bar.
These set the font to system fonts, or the
nearest equivalent, and are not available
via font-family. However, these values are
rarely, if ever, used.

CSS REFERENCE

481

D

9071appD.qxd 10/18/07 2:42 PM Page 481

Property Values Description Inherited

font-style Yes

font-variant Yes

font-weight Yes

height Sets the content height of an element. No

left No

letter-spacing length | normal YesAmends kerning (i.e., the space between
characters). Positive and negative values
are permitted. Relative values are
determined once and then inherited.

See also Chapter 3, “Setting letter-spacing
and word-spacing.”

Determines the horizontal offset of the
element’s left edge from the left edge of
its parent element if the parent is
positioned; if not, then offset is
determined from the first positioned
ancestor. Must be used with a position
value of relative, absolute, or fixed.

See also the Chapter 7 exercise, “Using
absolute positioning to center a box
onscreen.”

auto | length |
percentage

auto | length |
percentage

Sets the font weight.

* When using a number, it must be a
multiple of 100 between 100 and 900
inclusive. The value 700 is considered
equivalent to bold, and 400 is synonymous
with normal. In practice, numbers are
supported inconsistently and poorly in
browsers.

See also Chapter 3, “Defining font-style,
font-weight, and font-variant.”

lighter | normal
| bold | bolder |
number*

Sets the font to display in small caps.

See also Chapter 3, “Defining font-style,
font-weight, and font-variant.”

normal |
small-caps

Sets the font’s style.

See also Chapter 3, “Defining font-style,
font-weight, and font-variant.”

italic | normal |
oblique

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

482

9071appD.qxd 10/18/07 2:42 PM Page 482

Property Values Description Inherited

line-height Yes

list-style Yes

list-style-image none | url Defines an image for list bullet points. Yes

list-style-position inside | outside Yes

list-style-type Yes

Continued

Sets the bullet point style. If a browser
doesn’t understand an ordered list value, it
defaults to decimal. Generally, none,
circle, square, decimal, and the alpha
and roman values are best supported. The
W3C recommends using decimal for
ordered lists whenever possible.

none | disc |
circle | square |
decimal |
decimal-leading-
zero | lower-
alpha | upper-
alpha | lower-
greek | lower-
latin | upper-
latin | lower-
roman | upper-
roman | armenian
| georgian

Determines whether the bullet point
appears as the first character of the list
item content (inside) or in default
fashion (outside).

Shorthand for defining list properties in a
single declaration. Values can be those from
list-style-type, list-style-position,
and list-style-image.

See also Chapter 3, “Styling lists with CSS”
and “List style shorthand.”

Controls the element’s leading. When the
line-height value is larger than the
font-size value, the difference (which is
the leading) is halved, and this new value
is applied to the top and bottom of the
element’s inline box.

See also Chapter 3, “Setting line height.”

normal | length |
number |
percentage

CSS REFERENCE

483

D

9071appD.qxd 10/18/07 2:42 PM Page 483

Property Values Description Inherited

margin No

margin-bottom No

margin-left No

margin-right No

margin-top No

max-height NoSets the maximum height of an element.
Does not apply to table elements.

none | length |
percentage

Sets the top margin. Defaults to 0. Note
that browsers usually override the zero
value by applying default margins to most
block elements. Set margins explicitly to 0
to cancel the browser’s default. See
Chapter 2, “Zeroing margins and padding
on all elements.”

auto | length |
percentage

Sets the right margin. Defaults to 0. Note
that browsers usually override the zero
value by applying default margins to most
block elements. Set margins explicitly to 0
to cancel the browser’s default. See
Chapter 2, “Zeroing margins and padding
on all elements.”

auto | length |
percentage

Sets the left margin. Defaults to 0. Note
that browsers usually override the zero
value by applying default margins to most
block elements. Set margins explicitly to 0
to cancel the browser’s default. See
Chapter 2, “Zeroing margins and padding
on all elements.”

auto | length |
percentage

Sets the bottom margin. Defaults to 0.
Note that browsers usually override the
zero value by applying default margins to
most block elements. Set margins explicitly
to 0 to cancel the browser’s default. See
Chapter 2, “Zeroing margins and padding
on all elements.”

auto | length |
percentage

Shorthand for defining margin properties
in a single declaration. Examples:
margin: 0; (sets all margins to 0)
margin: 0 10px 20px 30px; (sets
individual margins for each edge)

See also Chapter 2, “Content margins and
padding in CSS” and “Working with CSS
shorthand for boxes.”

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

484

9071appD.qxd 10/18/07 2:42 PM Page 484

Property Values Description Inherited

max-width No

min-height No

min-width No

orphans number Yes

outline No

outline-color color | invert No

outline-style Sets the style of an outline. No

outline-width Sets the width of an outline. No

Continued

length | medium |
thick | thin

dashed | dotted |
double | groove |
inset | none |
outset | ridge |
solid

Sets the color of an outline. Defaults to
invert, which inverts the color of the
pixels onscreen, ensuring the outline is
visible.

Shorthand for defining outline properties
in a single declaration. Outlines are
rendered outside the border edge and do
not affect document flow. Example:

.highlight {
outline: 1px dotted #ff0000;
}

Not supported by Internet Explorer up to
and including version 7.

Defines the number of lines of a paragraph
that must be left at the bottom of a page
when printing. Defaults to 2. Defined
number must be an integer. Very poorly
supported.

Sets the minimum width of an element.
Does not apply to table elements.

none | length |
percentage

Sets the minimum height of an element.
Does not apply to table elements.

none | length |
percentage

Sets the maximum width of an element.
Does not apply to table elements.

See also the Chapter 7 exercise, “Creating a
maximum-width layout.”

none | length |
percentage

CSS REFERENCE

485

D

9071appD.qxd 10/18/07 2:42 PM Page 485

Property Values Description Inherited

overflow No

padding No

padding-bottom length | percentage Sets the bottom padding of an element. No

padding-left length | percentage Sets the left padding of an element. No

padding-right length | percentage Sets the right padding of an element. No

padding-top length | percentage Sets the top padding of an element. No

page-break-after No

page-break-before No

page-break-inside auto | avoid YesDetermines whether a page break should
appear inside the element when printing.
Poorly supported.

Determines whether a page break should
appear before the element when printing.
Poorly supported.

auto | always |
avoid | left |
right

Determines whether a page break should
appear after the element when printing.
Poorly supported.

auto | always |
avoid | left |
right

Shorthand to define padding properties in
a single declaration. Examples:

padding: 0; (sets padding on all sides to 0)
padding: 0 10px 20px 30px; (sets
individual padding for each edge)

See also Chapter 2, “Content margins and
padding in CSS” and “Working with CSS
shorthand for boxes.”

Determines what happens when content is
too large for the defined dimensions of
the element.

auto: If content is clipped, the browser
displays a scroll bar.
hidden: Content is clipped, and content
outside the element’s box is not visible.
scroll: Content is clipped, but a scroll
bar is made available.
visible: Content is not clipped and may
be rendered outside of the element’s
containing box.

See also Chapter 7, “Scrollable content
areas with CSS.”

auto | hidden |
scroll | visible

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

486

9071appD.qxd 10/18/07 2:42 PM Page 486

Property Values Description Inherited

position No

quotes Yes

right No

table-layout auto | fixed No

Continued

Controls the layout algorithm used to
render tables. Using fixed, table columns
are based on analysis of the first row and
rendered accordingly. This can speed up
processing time, but may lead to columns
that are too narrow for subsequently
downloaded content.

Determines the horizontal offset of the
element’s right edge from the right edge
of its parent element if the parent is
positioned; if not, then offset is
determined from the first positioned
ancestor. Must be used with a position
value of relative, absolute, or fixed.

auto | length |
percentage

Determines the type of quote marks to be
used for embedded quotations. The string
contains paired quoted values, which
determine each level of quote embedding.
The default depends on the user agent
(browser).

none | string
string

Determines the positioning method used
to render the element’s box:

absolute: Element is placed in a specific
location outside of normal document flow,
using the top, right, bottom, and left
properties.
fixed: As per absolute, but the element
remains stationary when the screen scrolls.
Poorly supported by some browsers.
relative: Offset from the static position
by the values set using top, right, bottom,
and left properties.
static: The default. The top, right,
bottom, and left properties do not affect
the element if this value is set. The
element is not removed from the
document’s normal flow.

Various examples of this property in use
are found in Chapters 5 and 7.

absolute | fixed |
relative | static

CSS REFERENCE

487

D

9071appD.qxd 10/18/07 2:42 PM Page 487

Property Values Description Inherited

text-align Yes

text-decoration No

text-indent length | percentage Yes

text-transform Yes

top NoDetermines the vertical offset of the
element’s top edge from the top edge of
its parent element if the parent is
positioned; if not, then offset is determined
from the first positioned ancestor. Must be
used with a position value of relative,
absolute, or fixed.

See also the Chapter 7 exercise, “Using
absolute positioning to center a box
onscreen.”

auto | length |
percentage

Sets the case of an element’s text.

See also Chapter 3, “Controlling case with
text-transform.”

capitalize |
lowercase |
none | uppercase

Sets the horizontal indent of an element’s
first line of text. Defaults to 0.

Adds decoration to text. Values may be
combined in a space-separated list, and
the default depends on the element in
question.

Note that browsers may ignore blink but
still be considered compliant. Examples:

text-decoration: underline;
text decoration: underline
➥ line-through;

See also Chapter 5, “Editing link styles
using CSS.”

blink | line-
through | none |
overline |
underline

Sets the text alignment for an element.

* The default is left in left-to-right
languages and right in right-to-left
languages such as Arabic, Hebrew, and
Urdu. Should be used instead of the HTML
align attribute.

center | justify |
left* | right

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

488

9071appD.qxd 10/18/07 2:42 PM Page 488

Property Values Description Inherited

unicode-bidi No

vertical-align No

visibility Yes

white-space Yes

widows number Yes

Continued

Defines the number of lines of a
paragraph that must be left at the top of a
page when printing. Defaults to 2. Defined
number must be an integer. Very poorly
supported.

Determines how whitespace within an
element is handled. Browser support for
pre-line and pre-wrap is poor.

normal | nowrap |
pre | pre-wrap |
pre-line

Sets the visibility of an element. When
hidden is used, the element box is invisible
but still affects page layout (use display:
none for an element to not affect
document flow). When collapse is used,
results are similar to hidden, except for
spanned table cells, which may appear
clipped.

collapse | hidden |
visible

Determines the vertical alignment of an
element. Applies to inline elements and
those within table cells. Should be used in
place of the HTML valign attribute. If a
percentage value is used, that refers to the
element’s line-height value.

length |
percentage |
baseline |
bottom | middle
| top | sub |
super |
text-bottom |
text-top

Enables overrides for text direction. The
embed value forces text to be displayed
with regard to the associated direction
property. The bidi-override value also
overrides the default Unicode ordering
scheme.

This is a complex subject concerned with
inserting elements of right-to-left text in
blocks of left-to-right text (such as
embedding Arabic or Hebrew in English, or
vice versa). For details about working with
bidirectional text, see www.w3.org/
International/resource-index.
html#bidi.

bidi-override |
embed | normal

CSS REFERENCE

489

D

9071appD.qxd 10/18/07 2:42 PM Page 489

http://www.w3.org

Property Values Description Inherited

width Sets the content width of an element. No

word-spacing length | normal Yes

z-index auto | number NoChanges an element’s position in the stack.
Higher numbers are “closer” and lower
numbers are “further away.” Negative
values are permitted, but will result in
content not being displayed in some
browsers.

Provides space between words in addition
to the default settings.

See also Chapter 3, “Setting letter-spacing
and word-spacing.”

auto | length |
percentage

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

490

Basic selectors
This section outlines the most commonly used selectors, along with their syntax. Note that
selectors for pseudo-classes and pseudo-elements are covered in the following two sec-
tions, rather than being duplicated.

Selector type Syntax Description

Universal * Matches any element. Can be used in context
to attach a rule to all elements within
another element (e.g., #sidebar *).

Type element Matches any element of type element. For
example: h1.

Class .value Matches an element with a class value of
value.

ID #value Matches an element with an id value of
value.

Some selectors are not fully supported in all browsers. Notably, child and adjacent
selectors are not supported by versions of Internet Explorer prior to 7. See www.
webdevout.net/browser-support-css for an overview of basic selector support.

9071appD.qxd 10/18/07 2:42 PM Page 490

http://www.webdevout.net/browser-support-css
http://www.webdevout.net/browser-support-css

Selector type Syntax Description

Descendant element descendant Matches a descendant element that is a
descendant of the element of type element.
For example, div p targets paragraphs that
are descendants of div elements.

Child element>child Matches an element that is a child of another
element. Similar to but more precise than
descendant selectors, rules are applied to
elements that are direct children of the par-
ent only. For example, div p matches all
paragraphs within all divs. div>p only
matches paragraphs that are direct children
of divs, and so would not match a paragraph
within a table within a div.

Adjacent element1+element2 Matches element2, adjacent to element1. For
example, h1+h2 matches any h2 element that
directly follows an h1 element within the web
page, with no other elements in between.

Attribute element[attribute] Matches an element of type element that
has an attribute of type attribute. Further
clarification can be added via the syntax
element[attribute="value"] (targets
element with attribute with value equal to
value), element[attribute~="value"] (tar-
gets element with attribute that has a list of
space-separated values, of which one is equal
to value), element[lang=value] (targets
element with a lang attribute equal to value).

Pseudo-classes
Pseudo-classes initially provided additional styles relating to a selector’s state, but now
also include those that apply styles to conceptual document components.

Note that the word element in the preceding table refers to a general element on the
web page, rather than a de facto HTML element.

CSS REFERENCE

491

D

9071appD.qxd 10/18/07 2:42 PM Page 491

Pseudo-class Description

:active The state when an element is active (e.g., when a link is being
clicked)

:first-child Affects the first descendant of an element

:focus The state when an element is focused to accept keyboard input

:hover The state when the pointer is over an element

:lang Applies to elements with the specified language (defined using
xml:lang)

:link Applies to an unvisited link

:visited Applies to a visited link

Pseudo-elements
Pseudo-elements enable generated content that’s not in the document source and the
styling of conceptual document components.

Pseudo-element Description

:after Used in conjunction with content to generate content after an ele-
ment. For example:

h1:after {content: url(bleep.wav);}

:before Used in conjunction with content to generate content before an
element.

:first-letter Styles the first letter of an element.

:first-line Styles the first rendered line of a “block-level” element.

CSS boilerplates and management
By using CSS comments and a monospace font when editing CSS, it’s possible to create
clear sections within the style sheet and a table of contents, enabling you to more easily
manage rules. A full example is available in the advanced-boilerplates folder of the
download files. An example of a table of contents is shown following:

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

492

9071appD.qxd 10/18/07 2:42 PM Page 492

/*

STYLE SHEET FOR [WEB SITE]
Created by [AUTHOR NAME]
[URL OF AUTHOR]

ToC

1. defaults
2. structure
3. links and navigation
4. fonts
5. images
6. tables
7. forms

Notes

*/

An example of a section of a boilerplate is shown following, with empty rules waiting to be
filled. Here, a single tab is represented by eight spaces. Note how the property/value pairs
and closing curly quotes are indented equally. This makes it easier to scan the far-left side
of the document for selectors.

/* ---------- 4. fonts ---------- */

html {
font-size: 100%;
}

body {
font-size: 62.5%;
}

h1, h2, h3, h4, p, ul {
}

h1 {
}

h2 {
}

h3 {
}

h4 {
}

CSS REFERENCE

493

D

9071appD.qxd 10/18/07 2:42 PM Page 493

p {
}

ul {
}

The use of the CSS comment to introduce the section, with a string of hyphens before and
after the section name, provides a useful visual separator for when directly editing code.
Subsections are best added by indenting them the same amount as the property/value
pairs; rule-specific comments are best placed after the opening curly quote; pair-specific
comments are best placed after the pair. See the following for examples.

Sub-section introduction:

/* --- sidebar headings --- */
#sidebar h2 {

}

#sidebar h3 {
}

Rule-specific comment:

.boxoutProducts {/* used on sales and purchase pages */
}

Pair-specific comment:

body.advert h2 {
font-size: 1.5em;
text-transform: uppercase; /* over-ride for ad pages only */
}

Modular style sheets

From a management perspective, I find it easiest to work with a single style sheet, albeit
one that already has a number of elements prewritten. However, you can also work in a
modular manner, creating a number of small boilerplate documents (e.g., to reset margins
and padding and define font size defaults) and area-specific style sheets (for navigation,
layout, forms, etc.), and then importing them into your CSS via an @import line. As an
example, you could save the clearFix rule (shown following, and used in various exercises
throughout the book, notably in Chapter 7’s “Clearing floated content” exercise) in its own
style sheet as clearfix.css.

Note that the indents in this section are different from those shown elsewhere in this
book. This is intentional, in order to provide a close match to the code in the actual
style sheet, rather than something that works better on the printed page.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

494

9071appD.qxd 10/18/07 2:42 PM Page 494

.clearFix:after {
content: ".";
display: block;
height: 0;
clear: both;
visibility: hidden;

}

This could then be imported into your main style sheet as follows:

@import url(clearfix.css);

You can import as many style sheets as you want, depending on how modular you want to
be, and how you want to organize your CSS. For example, at the time of writing, this
book’s technical editor, David Anderson, imports all of his CSS, using eight @import lines to
do so, and separating out his CSS into categories such as “generic,” “navigation,” and
“forms”. How you decide to work is up to you.

CSS REFERENCE

495

D

9071appD.qxd 10/18/07 2:42 PM Page 495

9071appE.qxd 10/17/07 1:37 PM Page 496

E BROWSER GUIDE

This appendix provides a brief overview of the mainstream browsers in
general use at the time of writing, including a little history about them,
estimated market share, and how standards-compliant they are (along with
whether they pass the Web Standards Project Acid2 Browser Test, at
www.webstandards.org/action/acid2/). Note that new versions of browsers are
regularly released, so this section is intended only as a guide. Details are
accurate as of October 2007.

9071appE.qxd 10/17/07 1:37 PM Page 497

http://www.webstandards.org/action/acid2

Firefox
Full name: Mozilla Firefox.

Initial year of release: 2004 (as 1.0).

OS: Windows, Mac OS X, Linux (unofficial ports to various other systems exist).

Website: www.mozilla.com/firefox/.

Market share estimate: 10–15%.

Trend: Steady growth.

Engine: Gecko.

Compliance: High. Firefox makes an excellent base for development, although as of
2.0, it fails a few advanced elements of the Acid2 Browser Test.

Comments: Initially devised as an unofficial branch of the Mozilla project, Firefox’s
aim was to be a compact, speedy browser, devoid of the feature-creep evident in
its parent. Initially innovative, bringing tabbed browsing and incremental find (find-
as-you-type) functionality to the masses, Firefox’s market share rapidly grew as
standards-aware websites formed an aggressive switch marketing campaign,
designed to tear complacent users away from Internet Explorer. Should you work
with Firefox, I highly recommend you install Chris Pederick’s Web Developer tool-
bar, available from www.chrispederick.com/work/web-developer/.

Internet Explorer
Full name: Windows Internet Explorer.

Initial year of release: 1995.

OS: Microsoft Windows.

Website: www.microsoft.com/ie.

Market share estimate: Around 80%. (This figure is combined, split more or less
evenly between Internet Explorer 7 and Internet Explorer 6, with a low and dimin-
ishing number of users running version 5.x.)

Trend: Slow decline.

Engine: Trident.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

498

9071appE.qxd 10/17/07 1:37 PM Page 498

http://www.mozilla.com/firefox
http://www.chrispederick.com/work/web-developer
http://www.microsoft.com/ie
http://www.chrispederick.com/work/web-developer

Compliance: Reasonable for version 7, although it dramatically fails Acid2. Poor for
version 6 and before, which require fixes for many advanced CSS properties and
values.

Comments: Despite being initially ignored, Microsoft’s Mosaic-derived browser
became embroiled in the infamous browser wars of the late 1990s, regularly adding
new features and capabilities to eclipse rival Netscape Navigator. With the battle
won by 1999, Microsoft’s browser seemingly lapsed into a semicomatose state.
Version 5’s standards support was dire (unlike the Mac version, which was later
canceled), and while version 6 was an improvement, it still lagged behind its rivals,
including the then-new Firefox, resulting in its previously all-dominant market
share (which rose to a high of around 95%) being hit hard for nearly two years. In
late 2006, the final public release of version 7 appeared, with much-improved stan-
dards support (although this aspect remains inferior to that of its rivals) and fea-
tures available in rival browsers (such as tabbed browsing). A Microsoft-produced
developer toolbar is available for version 7 of Internet Explorer; it’s available from
www.microsoft.com/downloads/details.aspx?familyid=
e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en.

Opera
Full name: Opera.

Initial year of release: 1996 (first public release).

OS: Windows, Mac OS X, Mac OS, Linux, BeOS, Solaris, and others.

Website: www.opera.com/.

Market share estimate: Under 2%.

Trend: Stable.

Engine: Presto.

Compliance: Excellent. Passes Acid2, making it an excellent alternative to Firefox
for a development base.

Comments: Starting life as a research project for a Norwegian telecom company,
Opera has grown into a feature-packed, standards-compliant browser. Its innova-
tive features—some of which are of direct benefit to developers—often lead its
rivals, although the browser has been hampered over the years by a cluttered and
superficially complex interface, and the browser for a long time identifying itself as
Internet Explorer. Because of this, market share figures for Opera were—and
indeed possibly still are—artificially low. However, in terms of reach, Opera has
plenty of potential: there are versions of the browser for a massive range of
systems, including for handheld devices. A developer toolbar is available from
www.operawiki.info/WebDevToolbar.

BROWSER GUIDE

499

E

9071appE.qxd 10/17/07 1:37 PM Page 499

http://www.microsoft.com/downloads/details.aspx?familyid=
http://www.opera.com
http://www.operawiki.info/WebDevToolbar

Safari
Full name: Safari.

Initial year of release: 2003.

OS: Mac OS X, Windows.

Website: www.apple.com/safari/.

Market share estimate: About 4%.

Trend: Slow growth.

Engine: KHTML.

Compliance: Excellent, with reservations (see comments). Passes Acid2, making it
suitable for a development base.

Comments: Most likely developed as a reaction to Microsoft axing Internet
Explorer for Mac, Safari rapidly became the primary browser for Mac users. Its
clean interface complements the KHTML engine, which is one of the most compli-
ant in existence. (Indeed, Safari was the first browser to pass Acid2.) Although
initially available to Mac users only, June 2007 saw the first beta of Safari for
Windows, primarily intended as an aid to Windows-based developers creating con-
tent for Apple’s iPhone. Safari has some shortcomings regarding JavaScript support,
and its method of anti-aliasing text is significantly different to other browsers. Prior
to version 3, CSS borders and colors for form fields and buttons were ignored, the
Mac OS Aqua equivalents instead being “forced.”

Other browsers
A number of other web browsers exist, although their market share is so minimal as to be
considered all but insignificant. A possible exception to this is Linux-based Konqueror,
although with its KHTML engine, you should expect similar results to those in Safari.
Elsewhere, some browsers are based on Gecko (such as SeaMonkey/Mozilla and Flock),
some on Trident (such as AOL Explorer/OpenRide), and one on both (Netscape Browser).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

500

9071appE.qxd 10/17/07 1:37 PM Page 500

http://www.apple.com/safari

9071appE.qxd 10/17/07 1:37 PM Page 501

9071appF.qxd 10/17/07 1:39 PM Page 502

F SOFTWARE GUIDE

Opinions on the merit of software tools are usually pretty subjective. This
chapter isn’t supposed to be some kind of definitive guide on web design
software and each application’s pros and cons—instead, it aims to provide
an overview of the most popular solutions on the market, along with insight
into the tools I myself use on a daily basis.

9071appF.qxd 10/17/07 1:39 PM Page 503

Web design software
Adobe Dreamweaver (www.adobe.com/products/dreamweaver/) is the market leader for
web design software on both Windows and Mac platforms. Formerly a Macromedia prod-
uct, the application joined the Adobe stable after Adobe acquired Macromedia in 2005.
Dreamweaver’s position at the top of the pile is no accident: for several versions now, it
has concentrated on standards-compliance and lean code, but has also provided a flexible
interface that enables designers to take either a code-based or a layout-based approach to
web page design and the creation of dynamic websites. Although the CS3 update was
underwhelming, Dreamweaver remains the only WYSIWYG web design tool that I recom-
mend to people with any enthusiasm.

Adobe GoLive (www.adobe.com/products/golive/), formerly the Mac-only CyberStudio,
was unceremoniously ousted from Adobe’s Creative Suite bundles once Dreamweaver CS3
arrived. Taking a more graphic-design approach, many of the tools in GoLive 9 are seem-
ingly derived from Adobe’s desktop publishing application, InDesign. Although the appli-
cation is fairly easy to use, it pales beside Dreamweaver when it comes to working with
CSS-based sites and web standards, and using its control panel tends to result in unwieldy
span-infested markup and a document littered with inline styles.

Microsoft Expression Web (www.microsoft.com/products/expression/en/expression-web)
arrived on the scene in very late 2006, and after the disaster that was Microsoft FrontPage,
was a surprisingly strong effort from Microsoft. While weaker than Dreamweaver, it man-
aged—at the time of release—to provide some CSS tools superior to Adobe’s application,
and although its workflow is inferior to Dreamweaver’s, it’s a surprisingly capable and user-
friendly application. Unfortunately, Microsoft Expression Web is hampered by a lack of
support for PHP (it concentrates primarily on Microsoft-originated technologies) and the
lack of a Mac OS X release. However, for Windows-based web designers only interested in
static sites, and those who develop ASP.NET-based sites, it’s worth a look.

Other applications in this area are more extreme in terms of working method than those
discussed so far, either relying on a purely layout-based approach, or being based around
hand-coding. An example of a purely layout-oriented application is the Mac-only Softpress
Freeway (www.softpress.com/), which is even more geared toward print designers than
GoLive and has an interface akin to QuarkXPress. Software geared toward hand-coding
includes BBEdit (Mac OS X, www.barebones.com/), TextMate (Mac OS X, www.macromates.
com/), HomeSite (Windows, www.adobe.com/products/homesite/), HTML Kit (Windows,
www.chami.com/html-kit/), and TopStyle Pro (Windows, www.newsgator.com/Individuals/
TopStyle/Default.aspx).

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

504

9071appF.qxd 10/17/07 1:39 PM Page 504

http://www.adobe.com/products/dreamweaver
http://www.adobe.com/products/golive
http://www.microsoft.com/products/expression/en/expression-web
http://www.softpress.com
http://www.barebones.com
http://www.macromates
http://www.adobe.com/products/homesite
http://www.chami.com/html-kit
http://www.newsgator.com/Individuals
http://www.adobe.com/products/dreamweaver

Graphic design software
Adobe Photoshop (www.adobe.com/products/photoshop/) is a Mac and Windows appli-
cation that’s pretty much ubiquitous in the print design world. Immensely powerful and
surprisingly user-friendly once you get to grips with the interface, more recent versions
have provided a number of tools geared toward web designers, including a decent Save
for Web function. Now part of the same suite as Dreamweaver, Photoshop integrates with
the popular web design application, and if you can afford it, the application is pretty much
unbeatable for bitmap editing.

Adobe Photoshop Elements (www.adobe.com/products/photoshopel) is also available for
Mac and Windows, and is a cut-down consumer-oriented version of Photoshop. Although
not as feature-rich as its bigger brother, Elements nonetheless has enough useful tools to
warrant purchase for any designer on a tight budget. Note that the Mac and Windows ver-
sions of Elements are significantly different in terms of feature set, with the Mac version
lacking a number of the extras from the Windows version (although many of those deal
with asset organization, a task iPhoto can deal with on Mac OS X).

Adobe Fireworks (www.adobe.com/products/fireworks/) is a Mac and Windows applica-
tion formerly part of Macromedia’s suite of web design tools. Previously something of a
web-focused rival to Photoshop, Adobe has repositioned Fireworks as a tool primarily
aimed at rapidly working up mockups of websites. However, its tool set is such that it’s just
as capable as Photoshop for working up entire layouts. (In fact, the vector tools within
Fireworks are generally considered superior to Photoshop’s equivalents), and at a much
lower cost.

Corel Paint Shop Pro (www.corel.com/) is a Windows-only graphics editor, which has his-
torically been seen as a low-budget alternative to Photoshop. Enabling users to edit both
bitmap and vector graphics, previous versions of the application were well suited to web
design, and its price point—significantly lower than Photoshop’s—made it a good choice
for designers on a tight budget. More recent versions have seen the application focus
rather more significantly on photo editing, however.

GIMP (www.gimp.org/)—the GNU Image Manipulation Program—is the closest open
source equivalent to Photoshop, and is available in various flavors for Linux, Windows, and
Mac OS X (although the main Mac version requires X11 to run, with native ports being
rather flaky by comparison). Primarily a bitmap editor, the application includes a surprising
range of tools equivalent to those found in Adobe’s market-leading application, although
it lacks strong color model support, and the omission of a free transform tool is a disap-
pointment.

Adobe Illustrator (www.adobe.com/products/illustrator/) is a Mac and Windows appli-
cation for working with vector graphics. Although the majority of web graphics are
bitmap-based, there’s nothing to stop you from using a vector-oriented application for
crafting the initial design, and Illustrator’s tools prove flexible when creating sites with
clean lines and large blocks of color. Usefully, the application has a modicum of tools for
web publishing.

SOFTWARE GUIDE

505

F

9071appF.qxd 10/17/07 1:39 PM Page 505

http://www.adobe.com/products/photoshop
http://www.adobe.com/products/photoshopel
http://www.adobe.com/products/fireworks
http://www.corel.com
http://www.gimp.org/)%E2%80%94
http://www.adobe.com/products/illustrator
http://www.adobe.com/products/illustrator

The author’s toolbox
I often get asked what hardware and software I use, so here is a quick list:

Hardware: I use a Mac Pro, with lots of extra RAM and several hard drives for daily
and weekly backups, along with a MacBook as a backup machine. I personally pre-
fer Mac OS X over Windows, but with Intel Macs, the real advantage is being able
to design on the Mac, test on Mac and Windows, and host stuff locally for testing
on the built-in Apache server.

Design software: I mostly use Adobe Photoshop for layout design, although Adobe
Illustrator is wheeled out occasionally. Color Consultant Pro (www.code-line.com/
software/colorconsultantpro.html) assists with color schemes, while Color
Oracle (http://colororacle.cartography.ch/) and Sim Daltonism (www.michelf.
com/projects/sim-daltonism/) both enable me to check whether designs are
usable for people who are color blind.

Authoring software: This will likely come as no surprise if you’ve read this book, but
I tend to favor a code-based approach to creating site templates. However, I don’t
like wasting time, so applications that speed up code creation are a must. CSSEdit
(www.macrabbit.com/cssedit/) is my weapon of choice for CSS, and it’s perhaps
the best piece of shareware available for the Mac (worth the entry price just for its
preview override function, which enables you to override a live site’s CSS with a
local file). For code, I tend to flit between BBEdit and TextMate. For managing con-
tent and sites, I sometimes use Dreamweaver, and for uploading everything, Panic’s
Transmit (www.panic.com/transmit/) is unbeatable.

Miscellaneous software: A few bits of shareware provide supporting roles when I’m
working: ImageWell (www.xtralean.com/IWOverview.html) is handy for batch pro-
cessing images without requiring you to open up Photoshop; Paparazzi (www.
derailer.org/paparazzi/) makes it simple to take full-page grabs of any web-
site—handy for the portfolio; Headdress (http://headdress.twinsparc.com/)
makes virtual hosting a breeze, removing the need to muck about with config files;
and SuperDuper (www.shirt-pocket.com/SuperDuper/) is essential for creating
system clones, which suddenly become extremely important on those inevitable
days when my main hard drive decides to keel over and die.

THE ESSENTIAL GUIDE TO CSS AND HTML WEB DESIGN

506

9071appF.qxd 10/17/07 1:39 PM Page 506

http://www.code-line.com/software/colorconsultantpro.html
http://www.code-line.com/software/colorconsultantpro.html
http://colororacle.cartography.ch
http://www.michelf.com/projects/sim-daltonism
http://www.michelf.com/projects/sim-daltonism
http://www.macrabbit.com/cssedit
http://www.panic.com/transmit
http://www.xtralean.com/IWOverview.html
http://www.derailer.org/paparazzi
http://www.derailer.org/paparazzi
http://headdress.twinsparc.com
http://www.shirt-pocket.com/SuperDuper
http://www.derailer.org/paparazzi
http://www.derailer.org/paparazzi
http://www.shirt-pocket.com/SuperDuper

9071appF.qxd 10/17/07 1:39 PM Page 507

9071Index.qxd 10/18/07 1:03 PM Page 508

INDEX

9071Index.qxd 10/18/07 1:03 PM Page 509

Numbers and symbols
<!–– . . . ––> element, 404
(hash sign), 175
* (universal selector), 43, 375, 381, 389, 490
2000 AD Books website, 272
3-pixel text jog, 362

A
<a> element, 404–405
a img rule, 377, 385, 391
a selector, 157, 181
a:link selector, 157
<abbr> element, 69, 364, 405
abbr=string attribute, 442
abbreviations, 68–69
absolute links, 151
absolute positioning, 269–272
accept-charset=charset list attribute, 417
accept=content–type list attribute, 417
accept=list attribute, 425
accessibility, 5, 11

alt text for, 134
of collapsed content, 191–192
of forms, 318–319
of tables, 239–246

Accessibility layout option, in Opera, 351
accesskey attribute, 163–164, 400, 417, 428
<acronym> element, 406
acronyms, 68–69
action attribute, 328, 418
:active pseudo-class, 491
active state, 155–156
additive color system, 121
<address> element, 406, 409–411
adjacent selectors, 86, 490
Adobe Dreamweaver, 504
Adobe Fireworks, 505
Adobe GoLive, 504
Adobe Illustrator, 505–506
Adobe Photoshop, 505–506
Adobe Photoshop Elements, 505
advanced-boilerplates folder, 18, 372
:after pseudo-selector, 292, 491
aliased text, 76
align attribute, 406, 412, 413, 416, 440, 442, 444
alignment, table, 237–239
alink attribute, 155
@allow_mail_to value, 327–328
alpha transparency, 129
AlphaImageLoader filter, 364
alt attribute, 134–136, 406, 424, 425
alternate styles, 87

INDEX

510

alternative (alt) text, 134–136, 163, 359
alternatives

defining, 87–88
for pull quotes, 105–106

analogous color scheme, 122
anchor elements, 150
angle brackets, 7
anti-aliasing, 76–77
<applet> element, 406–407
archive=URL attribute, 406, 432
<area> element, 176, 407–408
Arial Black, 75
Arial font, 75
arrow characters, 466
attribute selector, 490
attributes, 9, 254. See also specific attributes
audience requirements, 4–5
author tag, 38
authoring software, 506
axis attribute, 242, 440, 442

B
 element, 409
background colors, 17, 46, 279, 475
background property, 103, 475
background-attachment property, 47, 475
background-color property, 46, 475
background-image property, 475
background-position property, 48, 475
background-repeat property, 46, 475
backgrounds, 45–56, 294

adding to CSS layouts, 265–268
busy, 131
in CSS, 46–49
drop shadows, 51–54
faux column, 294–296
floated content and, 288–292
ideas for, 49–56
images, 46, 169–169
patterns, 50
for skip navigation, 168–169
watermarks, 55–56

backward compatibility, 34, 153
<base /> element, 409
baseline grids, 63, 97–98, 376
basic-boilerplates folder, 18, 372
BBEdit, 504, 506
<bdo> element, 409
be nice to Opera hack, 355
:before pseudo-element, 491
Berners-Lee, Tim, 2
<big> element, 67, 410
blink, 67

9071Index.qxd 10/18/07 1:03 PM Page 510

<blockquote> element, 68, 102, 104–106, 410
BMP format, 129, 131
body class values, using to automate layouts, 304–306
body copy

rendered as image, 77
using graphics for, 130

<body> element, 42, 57, 350, 410
body rule, 375, 381, 393
body section, 42–45

font and font color, 44
margins and padding, 42–43

body selector, 81
body start tag, 44
boilerplates

advanced-boilerplates folder, 18, 372
basic-boilerplates folder, 18, 372
creating, 18–23

bold font, 67
Book Antiqua font, 75
border property, 136–138, 235–236, 243, 247, 476–477
border-color property, 138, 476
border=n attribute, 424, 439
borders, 17, 294

applying to images, 136–138
for linked images, 170
table, 235, 247–249

bottom property, 477
box models, 17, 263–264, 355, 359, 472
boxes

centering, 269–272
CSS shorthand for, 43–44
expanding, 362
for layout, 258–259
nesting, 272–277

boxouts, 272–277, 293–297

 element, 410
breadcrumb navigation, 202–207
browser guide, 498–500
browser test suite, 351–354
browsers

font sizes and, 81
installing multiple versions of, 353–354
quirks mode, 34
support, for CSS, 10, 261
targeting other, 367–368
testing in text mode, 351

bullet point lists, 107
business website

creating, 387–391
design and images for, 387
styling, 389–391

<button> element, 411

INDEX

511

C
Calibri font, 76
calligraphy, 62
Cambria font, 76
Candara font, 76
capitalization, 87
<caption> element, 239, 244, 411
caption-side property, 478
card suites, 466
cascade, 16–17, 160–162, 297
Cascading Style Sheets (CSS), 3. See also CSS layouts

adding to a page, 15–16
advantages of, 64, 71
attaching external files, 38–39
backgrounds in, 46–49, 211–230
boilerplates and management, 492–494
borders, 136–138, 236, 247
box model, 17, 263–264, 355, 359, 472
cascade, 16–17, 160–162, 297
comments, 18–19, 58, 373, 493
common values, 473–474
creating boilerplates, 18–23
defining alternatives in, 87–88
defining link states with, 156
drop caps, 98–102
drop-down menus, 224–226
editing link styles with, 157–159
faking image maps with, 177–182
font colors with, 71–72
font properties in, 84–85
font size, 79–83
fonts in, 71–85
for forms, 320–325
HTML and, 6
image-replacement techniques, 78–79
images with, 136–143
inline lists, 202–207
introduction to, 10–17
letter-spacing property, 86
line height in, 79–83
link styling with, 160–162
list navigation styling with, 196–200
list styling with, 108–112
managing, 372–373, 494–494
margins in, 85
navigation bar styling with, 200–201, 207–230
outdated methods for hacking, 355–356
for printable layouts, 392–396
properties and values, 474–489
pseudo-classes, 491
pseudo-elements, 491
pull quotes, 98, 102–106
rules of, 11–12

9071Index.qxd 10/18/07 1:03 PM Page 511

selectors, 12–15, 489–491
separating content from design, 10–11
table borders in, 247
vs. table layouts, 260
text styling with, 71–106
text wrapping images, 138–139

case sensitivity, of PHP, 330
case, of letters, 87
cell spacing, 235–236
cellpadding attribute, 235, 439
cellspacing attribute, 235, 439
CGI scripts

editing, 327
for user feedback, 326–328

cgi-bin directory, setting permissions for, 328
character entities

arrows, 466
card suites, 466
converting nonstandard Microsoft set, 466–468
currency signs, 460
for European languages, 455–459
Greek characters, 463–465
lozenge, 466
mathematical characters, 460–463
overview, 451
punctuation characters and symbols, 452–455
technical characters, 461–463
used in XHTML, 452

character sets, 32
charset=charset attribute, 429, 436
checked=checked attribute, 425
child selector, 490
CHMOD command, 328
circle attribute, 176
cite attribute, 68–69, 106
<cite> element, 68, 104, 411
cite=URL attribute, 410, 414, 427, 436
class attribute, 320
class selectors, 12–13, 490
class value, 78, 305–306
class=classname attribute, 400
classes. See also specific classes

creating alternatives with, 88
pull quotes and, 105–106

classid=URL attribute, 432
clear property, 478
clearFix method, 292–293, 325
clearFix rule, 174, 383, 494
ClearType, 76
client-side image maps, 175
clip property, 478
closing tags, missing, 350
code blocks, in lists, 115–116
<code> element, 412

INDEX

512

codebase=URL attribute, 407, 432
codetype=MIME type attribute, 432
<col /> element, 412–413
<colgroup> element, 413–414
collapsed content

accessibility of, 191–192
on navigation bars, 200–201
script modularization, 192–194
targets for scripts, 194–195

collapsible div tags, 190–195
Color Consultant Pro, 121
Color Contrast Verification Tool, 349
color names, 449
Color Oracle, 506
color property, 45, 64, 71–72, 478
color reference, 448–449
color schemes, 121–123
color theory, 120–125
color values, 448, 473
Color Wheel Pro, 121
color wheels, 121, 123
ColorImpact, 121
colors

additive, 121
background, 17, 46, 279
cool, 123
defining, 383
font, 44–45, 71–72
hexadecimal system for, 123
primary, 121
secondary, 121
subtractive, 121
tertiary, 121
warm, 123
web-safe, 124–125

Colour Blindness Simulator, 349
cols attribute, 307
cols=n attribute, 420, 441
colspan attribute, 236–237, 241, 245, 440, 443
.columnLeft img rule, 391
.columnLeft rule, 390
.columnRight img rule, 391
.columnRight rule, 390
columns, 63

creating with two structural divs, 278–288
faux, 282, 294–297, 382
placing within wrappers, 288–290
sizing, using percentages, 290
styling, 376
working with, 259–260

comments, 58
conditional, 356–358, 385
CSS, 18–19, 58, 373, 493

complementary color scheme, 122

9071Index.qxd 10/18/07 1:03 PM Page 512

conditional comments, 356–358, 385
Consolas font, 76
Constantia font, 76
contact information

structure for, 342–344
using microformats to enhance, 336–341

contact pages, 26, 333–335
Contacts Feed Service, 341
content

collapsible, 190–195
inaccessible, 350
inline, 362
print-only, 395
scrollable areas, 306–311
separating from design, 10–11
working with, 24–27

content attribute, 38, 479
#content .itemDetails ul rule, 385
#content img rule, 391
#content rule, 212, 382, 386, 389
#content ul, #pullNav rule, 385
content type declaration, 31
content-type meta tag, 35
contextual selectors, 14–15, 88, 109, 304–306
contrast, lack of, 131
cool colors, 123
coords=coordinates list attribute, 408
copyright issues, 133
Corbel font, 76
core attributes, XHTML, 400
core events, XHTML, 401–402
corporate logo, 77
counter-increment property, 479
counter-reset property, 479
Courier New font, 75
crossheads, 62, 96
CSS. See Cascading Style Sheets
CSS Creator, 292
.css file extension, 15, 38
CSS layouts. See also Cascading Style Sheets

advanced, 278–306
columns within wrappers, 288–290
flanking sidebars, 298–303
multiple boxouts, 293–294, 296–297
sidebars, 293–297
two structural divs, 278–288

automating variations, 304–306
backgrounds, adding, 265–266
box models, 17, 263–264355, 358, 472
boxouts, 272–277
browser support for, 261
centering, 360
creating page structure, 262
for forms, 323–325

INDEX

513

logical element placement and, 261
margins, adding, 265–266
maximum-width, 268–269
padding, adding, 265–266
scrollable content areas, 306–311
single box, 264–272
vs. tables, 262
workflow for, 261–264

CSS shorthand
for backgrounds, 48–49
for boxes, 43–44

CSS-parsing bug, 355
CSS-with-ToC.css document, 18
CSSEdit, 506
currency signs, 460
cursor property, 479
curves, 258
custom bullets, 109
Cynthia Says Portal Tester, 349

D
data, tabular, 235
data=URL attribute432
datetime attribute, 69, 414, 427
<dd> element, 414
dead links, 350
declaration, rule, 11–12
declare=declare attribute, 432
decorative elements, 63
defer=defer attribute, 436
definition list <dl> element 107
definition lists, 107, 342–344
 element, 69–70, 414
deprecated attributes, 254
descendant selector, 490
description tag, 37–38
designs

separating content from, 10–11
stealing, 133

desktop-publishing software, 62
<dfn> element, 68, 414
diffusion dithering, 127
dir=dir attribute, 401
direction property, 479
disabled=disabled attribute, 411, 425, 434, 437, 441
display property, 480
dithering, 124, 127
<div> element, 89, 415

centering, with absolute positioning, 269–272
collapsible, 190–195
fixed width, 264–266
page structure and, 262
maximum-width, 268–269

9071Index.qxd 10/18/07 1:03 PM Page 513

<dl> element, 415
#dmenu rule, 386
DOCTYPE declarations, 31–33
<!DOCTYPE> element, 404
document flow, 261
Document Object Model (DOM), 141
document type definitions (DTDs), 31, 34
document-relative links, 42
documents

attaching external, 38–42
opening in new windows, 169–170

double quotes, 331
double-float margin bug, 302, 361
Dreamweaver, 504
drop caps, 63, 98–102
drop shadows, 51–54
drop-down menus

creating, 224–226
multicolumn, 226–230
problems with, 365

<dt> element, 415

E
e-mail

headers, 329–331
sending form data via, 333

e-mail addresses
harvesting of, 314
scrambling, 315

element selector, 87
elements. See also specific types

multiple class values, 13
parent/sibling paths, 194–195

 element, 66, 416
<embed> element, 416–417
emphasis, 67
empty-cells property, 480
ems, 81
enctype attribute, 333, 418
end tags, 7, 57, 70, 235
Enkoder form, 315
entities. See character entities
errors, common, 349–350
European languages, characters for, 455–459
event attributes, XHTML, 401–403
Evolt, 353
external documents, attaching, 38–42
external files, checking paths of, 42
external style sheets, 15–16

INDEX

514

F
face attribute, 64
faux columns, 282, 294–297, 382
favicons, attaching, 41–42
Feed Validation Service, 348
<fieldset> element, 318, 322, 324, 417
fieldset rule, 321
file compression, 125–126
files

external, 42
naming, 57

Firefox, 351–354, 498
:first-child pseudo–class, 491
:first-letter pseudo-element, 492
:first-line pseudo-element, 492
:focus pseudo-class, 491
fixed design, 27
fixed-width div, 264–266
fixed-width layouts, 260, 278–283, 288–289
flanking sidebars, 298–303
float property, 98–99, 138–139, 273, 480
floated content, clearing, 288–293
floats, 282, 285
:focus pseudo-class, 159
focus state, of links, 155–156
font colors

defining, 71–72
setting default, 44–45

font declaration, invalid, 85
font properties, shorthand for, 84–85
font property, 481
font sizes, 79–83, 90

defining, 376
inheritance of, 82, 109–110, 360
in percentages, 80–82
in pixels, 80–81
setting, 384
using ems, 81
using keywords, 80–81

font tags, 64–65
font-family property, 45, 72–77, 84, 481
font-size property, 79, 84, 90–91, 109–110, 377, 482
font-smoothing, 76
font-style property, 83–84, 482
font-variant property, 83–84, 482
font-weight property, 83–84, 482
fonts, 62

anti-aliasing, 76–77
defining in CSS, 72–77
for headings, 75–76
monospace, 72, 75–76
properties of, 83–84
for print, 393–394

9071Index.qxd 10/18/07 1:03 PM Page 514

sans serif, 72–74, 93–94
serif, 72, 74–75, 95
setting default, 44–45
styling, 376, 390
web-safe, 73–76

footers, styling, 385
footnotes, 62
for=text attribute, 428
<form> element, 316, 417–418
form element events, XHTML, 402–403
FormMail, 326–328
forms, 315–319

accessibility of, 318–319
adding controls, 316–318
adding styles to, 320, 322
creating, 316
layout, with CSS, 323–325
sending, 326–333

using e-mail, 333
with FormMail, 326–328
to multiple recipients, 328
using PHP, 329–332

styling with CSS, 320–325
using microformats to enhance, 336–341

fragment identifiers, 153–154
<frame> element, 307–309, 418–419
frameborder=0|1 attribute, 419, 423
frames, 33

iframes, 309, 363–364
working with, 307–309

<frameset> element, 307, 420
framesets, 307
friends of ED website, 18
full URLs, 151

G
Gecko browsers, 33, 351
Geneva font, 73
Georgia font, 74, 95
GIF (Graphics Interchange Format), 126–129
GIF89 format, 128
GIMP, 505
GoLive, 504
Google Custom Search Engine, 150
grammar, 64
graphic design software, 505
graphical navigation, with rollover effects, 211–230
graphical tabs, expandable, 217–218
graphics

for body copy, 130
for text, 77–79

Greek characters, 463–465
grid images, for styling links, 214–217

INDEX

515

grids, for layout, 258–259
grouped selectors, 13–14

H
h1 rule, 384
h1+p rule, 384
hash sign (#), 175
hasLayout property, 365, 391
hCard information, 341
<head> element, 350, 421
head section, 17, 31, 35–42

attaching external documents in, 38–42
meta tags, 37–38
page titles, 35–36

Headdress, 506
headers element, 242
headers=id list attribute, 440, 443
headings, 62

fonts for, 75–76
semantic markup of, 66
styling, 90–92, 95

height attribute, 17, 134, 237–238, 482
height=n attribute, 423, 424, 432, 441, 443
height=number attribute, 416
Helvetica font, 73
hexadecimal format, 123, 448
hidden fields, 327
hidden property, 78
hidden=yes|no attribute, 416
<hn> element, 421
Holly hack, 362
homepage

content for, 26
title for, 36

HomeSite, 504
horizontal navigation bars, 202–207
hover menus, problems with, 365
:hover pseudo-class, 179, 182, 491
hover state, 155–158
<hr /> element, 421
hr rule, 383, 390
href attribute, 150, 152–153
href=URL attribute, 404, 408, 409, 429
hreflang=language code attribute, 429
hspace=number attribute, 407, 416
HTML (Hypertext Markup Language). See also specific

elements
closing documents, 57
comments, 58
development of, 2
DOCTYPES, 33
entities, 21
introduction to, 6–7

9071Index.qxd 10/18/07 1:03 PM Page 515

tags, 7–8, 31
vs. XHTML, 8, 30–32

<html> element, 7, 31, 57, 422
.html file extension, 38
HTML Kit, 504
html start tag, 31
HTML-Kit for Windows, 327
hyperlinks. See links

I
<i> element, 422
icons, for navigation, 170
id attribute, 153
ID selectors, 13, 490
id values, 141, 153, 242, 262
id=name attribute, 400, 430, 435
<iframe> element, 422–423
iframes, 309, 363–364
image formats, 125–131

GIF, 126–127
GIF89, 128
JPEG, 125–126
PNG, 129
using wrong, 131

image gallery
adding captions to, 187
creating, 185–190

image maps, 175–182
image-replacement techniques, 78–79, 102, 376
images

adding pop-ups to, 171–175
alternative text for, 134–136
applying CSS borders to, 136–138
background, 46, 168–169
for body copy, 130
common mistakes with, 130–134
CSS with, 136–143
displaying random, 139–143
dithering, 127
file sizes of, 132
interface, 135
introduction to, 120
as links, 134, 170–175
for navigation bars, 211–230
optimized, 132
original, 130
quality of, 132
resizing in HTML, 132
splitting, 133
stealing, 133
styling, 377, 385, 391
for text, 77–79
text overlays, 133

INDEX

516

text wrapping, 138–139
tooltips, 135
in XHTML, 134–136

ImageWell, 506
 element, 134–136, 424–425
img.leadImage rule, 391
#imgPhoto rule, 377
Impact font, 75
@import method, 39, 41
indented text, 85–86
information architecture, 24–25
inherit value, 474
inline content, 362
inline navigation, 148–149
inline quotes, 68
inline styles, 16, 66–70
!important declaration, 474
<input /> element, 316–317, 325, 425–426
ins element, 69–70
.itemContainer rule, 383
.itemContainer:after rule, 383
.itemCost rule, 385
.itemDetails li rule, 385
.itemDetails li:first-child rule, 385
.itemImage img rule, 385
.itemImage img:hover rule, 385
.itemImage rule, 383
.itemName rule, 385
<ins> element, 427
interface images, 135
internal frames. See iframes
internal links, 153
Internet, history of, 2–3
Internet Explorer, 498

alpha transparency and, 129
bugs in, 302, 354–365
double-float margin bug, 302
fixes for, 359–365, 391
flanking sidebars in, 301
floated content and, 291
hacks for, 385
market share for, 351
standalone installations of, 353

Internet Explorer 5
common fixes for, 361–365
style sheet for, 378

Internet Explorer 5.5, 352
Internet Explorer 5.x, common fixes for, 359–360
Internet Explorer 6, 35, 352

common fixes for, 361–365
conditional comments and, 356
drop-down lists and, 230

Internet Explorer 7, 351, 354
ismap=URL attribute, 424

9071Index.qxd 10/18/07 1:03 PM Page 516

ISO-8859 standard, 32
italics, 67
itemImage div rule, 385

J
JavaScript

adding table separator stripes with, 251–253
attaching, 41–42
collapsible content, 190–195
creating image gallery with, 185–190
creating pop-up windows, 183–185
encrypting e-mail addresses with, 315
enhancing links with, 183–195
image randomizer creation with, 139–142

JPEG (Joint Photographic Experts Group) format, 125–126
.js file extension, 38

K
<kbd> element, 427
kerning, 63
keyboard attributes, XHTML, 400
keyword values, for font sizes, 80–81
<keywords> element, 37–38
Konqueror, 500

L
<label> element, 318, 428
label=string attribute, 434, 435
lang attribute, 31, 42, 401
:lang pseudo-class, 491
language attributes, XHTML, 401
language declarations, 31
language-specific quotes, 68
language=encoding attribute, 437
languages, characters for

European languages, 455–459
Greek language, 463–465

layouts. See also CSS layouts
basic, 25–27
centering, 378
for contact pages, 333–335
liquid, 27, 285–288
maximum-width, 268–269
portfolio, 373–378
tables vs. CSS, 260

leading, 63, 82
left property, 482
<legend> element, 324, 428
legend rule, 321
length value, 473

INDEX

517

letter-spacing property, 86, 482
 element, 107, 428–429
Lightbox2, 188, 190
line height, 79–83
line length, 63
line-height property, 63, 82–83, 377, 483
link attribute, 155
Link Checker, 348
<link /> element, 38–39, 429–430
:link pseudo-class, 491
link states, 155–62

correctly ordering, 156–157
defining, with CSS, 156
styling multiple, 160–162

link tags, 15, 39
link targeting, 169–170
link-based images, 134
links. See also navigation

a selector vs. a:link selector, 157
absolute, 151
accessibility and usability of, 162–169
color, 158
creating and styling, 150–170
dead, 350
document-relative, 42
editing styles, with CSS, 157–159
end tags with, 151
enhancing with JavaScript, 183–195
images as, 170–175
internal, 153
multiple styles, with grid images, 214–227
relative, 42, 151–152
root-relative, 152
top-of-page, 154–155
underlines for, 158

Linux, 75, 353
liquid layouts, 27, 285–288
liquid web design, 260
list element , 107, 428–429
list styles, shorthand for, 111
list-style property, 483
list-style-image property, 109, 483
list-style-position property, 110, 483
list-style-type property, 110, 483
lists, 106

for blocks of code, 115–116
creating better looking, 112–115
definition, 107
inline, 202–207
margins, 111–112
for navigation, 112, 195–210
nesting, 108
ordered, 107
padding, 111–112

9071Index.qxd 10/18/07 1:03 PM Page 517

styling with CSS, 108–112
unordered, 107
whitespace bugs in, 363

logical element placement, 261
logical styles, 66, 68–69
#logo rule, 382
longdesc attribute, 136, 419, 423, 425
lossless compression, 126
lossy compression, 125
lowerCamelCase, 88
lowercase attribute, 87
lozenge characters, 466
Lucida Console, 75
Lucida fonts, 73, 75, 93–94
Lucida Grande, 73
Lucida Sans Typewriter, 75
Lucida Sans Unicode, 73

M
Mac OS X, 353
Mac Pro, 506
Macs

color display on, 72
fonts for, 73, 76–77

mail() function, 329–332
$mailprog value, 327
mailto: URLs, 314, 333
<map> element, 176, 430
margin property, 138–139, 376, 483
margin-bottom property, 484
margin-left property, 484
margin-right property, 484
margin-top property, 484
marginheight=n attribute, 419, 423
margins, 17, 42–43, 66, 91, 96

adding to CSS layouts, 265–268
adding to liquid layouts, 286
box, 263
controlling, 85
double-float margin bug, 361
list, 111–112

marginwidth=n attribute, 423
marginwidth=number attribute, 419
markup, well-formed, 70
Markup Validation Service, 348
#masthead p rule, 390
#masthead rule, 382
mathematical characters, 460–463
max-height property, 484
max-width property, 361, 484
maximum-width layouts, 268–269
maxlength=n attribute, 425
—, 21

INDEX

518

media attribute, 39
media=list attribute, 439
media=media type list attribute, 430
menus. See also navigation

drop-down, 224–226, 365
multicolumn drop-down, 226–230

<meta /> element, 31, 431
meta tags

author, 38
content-type, 35
description, 37–38
keywords, 37–38
revisit-after, 38
robots, 38
search engines and, 37–38

method=get|post attribute, 418
microformats, 336–341
Microsoft characters, nonstandard set, 466–468
Microsoft Expression Web, 504
min-height property, 484
min-width property, 269, 361, 484
modular style sheets, 494
Monaco font, 75
monochromatic color schemes, 122
monospace fonts, 72, 75–76
Mosaic, 2
mouse, use of, 163
movable type, 62
Mozilla Firefox, 498
multicolumn drop-down menus, 226–230
multiple=multiple attribute, 437

N
name attribute, 38, 317
name=name attribute, 407, 411, 416, 418, 419, 426, 430,

433, 435, 437, 441
name=string attribute, 431
namespaces, 31
naming conventions, of thumbnail images, 374
#navContainer rule, 212, 383
navigation. See also links

basic, 24–25
breadcrumb, 202–204
creating and styling links, 150–170
designing, 26
dos and don’ts, 230
image maps, 175–176

faking, with CSS, 177–182
images for, 134
inline, 148–149
inline lists for, 112
introduction to, 148
search-based, 148, 150

9071Index.qxd 10/18/07 1:03 PM Page 518

site, 148–150
site maps, 24–25
skip links, 164–169
types of, 148–150

navigation bars
with collapsible sections, 200–201
creating, 195–230
drop-down menus, 224–230
with expandable tabs, 217–218
graphical, with rollover effects, 211–230
horizontal, 202–207
inline lists, 202–207
lists for, 195–210
multicolumn drop-down menus, 226–230
names for items on, 195
styling links, 160–162
tab-style, 207–210
two-tier, 220–223
vertical, styled with CSS, 196–200

#navigation ul rule, 383
nesting

boxes, 272–277
lists, 108
tags, 7–8

Netscape, 351
nms FormMail, 326–328
noBorder class, 137
<noembed> element, 431
<noframes> element, 309, 432
nohref=nohref attribute, 408
noise dithering, 127
nonprinting characters, 453
nonstandard Microsoft set, 466–468
noresize=noresize attribute, 419
<noscript> element, 432
nowrap=nowrap attribute, 441–443
null alt attributes, 135
number value, 473

O
<object> element, 311, 432–433
object=name attribute, 407
 element, 433
onblur=script event, 402
onchange=script event, 402
onclick attribute, 183
onclick=script attribute, 401
ondblclick=script attribute, 401
onfocus=script event, 402
onkeydown=script attribute, 402
onkeypress=script attribute, 402
onkeyup=script attribute, 402

INDEX

519

online gallery
creating, 185–190
styling, 375–377

online storefront layout
creating, 378–386
design and images for, 379
fonts for, 384
styling, 381–383
techniques for, 380–381

onload=script event, 403
onmousedown=script attribute, 402
onmousemove=script attribute, 402
onmouseout=script attribute, 402
onmouseover=script attribute, 402
onmouseup=script attribute, 402
onreset=script event, 403
onselect=script event, 403
onsubmit=script event, 403
onunload=script event, 403
Opera, 351, 354, 499
<optgroup> element, 316, 434
<option> element, 316, 434–435
ordered lists, 107
original images, 130
orphans property, 485
outline property, 485
outline-color property, 485
outline-style property, 485
outline-width property, 485
overflow property, 485
overflow settings, 78, 310

P
<p> element, 435
p em rule, 377
p rule, 377
p.footer rule, 391
padding, 17, 42–43

adding to CSS layouts, 265–268
adding to liquid layouts, 287
list, 111–112

padding property, 486
padding-bottom property, 486
padding-left property, 486
padding-right property, 486
padding-top property, 486
padding values, pixel-based, 287
page content. See content
page margins, 42–43
page structure, creating in CSS, 262
page titles, 35–36
page-break-after property, 486
page-break-before property, 486

9071Index.qxd 10/18/07 1:03 PM Page 519

page-break-inside property, 486
Palatino font, 75
Paparazzi, 506
paragraphs

indented text for, 85–86
semantic markup of, 66
styling, 90–92, 96

<param> element, 435
parent/sibling paths, finding, 194–195
parsing bugs, 355
pattern dithering, 127
peekaboo bug, 365
percent value, 473
perceptual palette, 127
period (.), 12
permissions, script server, 328
Photoshop, 505–506
Photoshop Elements, 505
PHP

adding table separator stripes with, 253
creating image randomizer with, 142–144
includes, scrollable content and, 310
sending form data using, 329–332

physical styles, 66–67
Pinkflag.com website, 293
pixel-based padding, 287
pixels, 80–81
pluginspage=URL attribute, 416
PNG (Portable Network Graphics) format, 129
PNG transparency, 364–365
poly attribute, 176
pop-ups

adding to images, 171–175
creating, 183–185

portfolio layouts
creating, 373–378
design and images for, 374
styling, 375–377
techniques for, 374–375

Position Is Everything, 292, 353
position property, 486
positioning, absolute, 269–272
$postmaster value, 327
$_POST array, 330
<pre> element, 435–436
presentation-oriented tags, 10
primary colors, 121
print design, vs. web design, 258, 260
print-only content, 395
printable layouts, style sheets for, 392–396
printOnly class, 395
profile=URL attribute, 421
programming-oriented content, 68
pseudo-class selectors, 156

INDEX

520

pseudo-classes, 159, 491. See also specific classes
pseudo-elements, 98–99, 491. See also specific elements
pull caps, 98
pull quotes, 63, 102–106
#pullNav li rule, 383
#pullNav rule, 383
pull-navigation, 380, 383
punctuation characters and symbols, 452–455

Q
<q> element, 68, 436
quirks mode, 34
quotation marks, 452–453
quotations, 68
quotes, pull, 98, 102–106
quotes property, 487

R
random images, 139–143
”, 21
readonly=readonly attribute, 426, 442
recipient_alias value, 328
rect attribute, 176
redirect value, 327
reference citations, 106
@referers value, 327
rel=relationship attribute, 404, 430
relative links, 151
Reply-to field, 331
Reset button, 318
rev=relationship attribute, 405, 430
revisit-after tag, 38
RGB colors, 72, 121, 448
right property, 487
robots tag, 38
rollover effect, for graphical navigation, 211–230
root-relative links, 152
rounding errors, 288, 301, 358
row group elements, 240–241
rows attribute, 308
rows=%|n\"* attribute, 420
rows=n attribute, 442
rowspan attribute, 236–237, 241, 441, 443
* rule, 90
rule sets, multiple, 350
rules

defining, with the cascade, 16–17
of CSS, 11–12

9071Index.qxd 10/18/07 1:03 PM Page 520

S
<s> element, 436
Safari, 302, 351, 353–354, 500
<samp> element, 436
sans serif fonts, 72–74, 93–94
Scalable Inman Flash Replacement (sIFR), 79
scheme=string attribute, 431
scope attribute, 241–242, 244
scope=col|colgroup|row|rowgroup attribute, 443
screen readers, 11, 31, 66, 239–242
<script> element, 183, 436–437
script server permissions, 328
script start tags, 42
scripts, for image galleries, 188–190
scrolling, content areas, 306–311
scrolling=auto|no|yes attribute, 419, 423
search boxes, 150
search engines, meta tags and, 37–38
search-based navigation, 148–150
secondary colors, 121
Section 508 compliance, 349
<select> element, 316, 437
selected=selected attribute, 435
selective palette, 127
selectors. See also specific selectors

class, 12–13
common, 489, 491
contextual, 14–15
grouped, 13–14
ID, 13
rule, 11–12
types of, 12–15

semantic markup, 9, 65–70, 262
defined, 65
importance of well-formed, 70
logical and physical styles, 66–70
paragraphs and headings, 66
styling, 89–97

sendmail binary, 327
separator stripes, for tables, 250–253
serif fonts, 72, 74–75, 95
server-side image maps, 175
shape attribute, 176
shape=rect|circle|poly|default attribute, 408
shims, 254, 261
#sidebar h2 rule, 384
sidebars

flanking, 298–303
working with, 293–297

Sim Daltonism, 506
simplicity, in web design, 259
simplified box model hack (or SBMH), 355
site design. See web design

INDEX

521

site maps, 24–25
site navigation. See navigation
size attribute, 64
size=n attribute, 426, 437
skip navigation links, 164–169

background images for, 168–169
creating, 165–166
styling, 166–167

<small> element, 67, 438
snippets folder, 20
Softpress Freeway, 504
software

graphic design, 505
Web design, 504

software guide, 504–506
spacers, 254, 261
spacing, 63, 91, 453
spam, combating, 315
spambots, 314–315
 element, 78, 172–173, 438

alternatives and, 88
drop caps with, 100–102

span=n attribute, 412, 413
spelling, 64
spelling errors, 349
split-complementary color scheme, 122
src attribute, 134
src=URL attribute, 417, 419, 423, 425, 426, 437
sRGB design, 125
stand-firsts, 62
standard attributes, XHTML, 400–401
standards=based design, 6
standby=text attribute, 433
star HTML hack, 356
start attribute, 107
start tag, body element, 42
start=n attribute, 433
states, link, 155–156
strap-lines, 62
<strike> element, 438
strikethrough (s), 67
 element, 438
structural divs

creating faux columns with, 294–295
creating two-column fixed-width layout with, 288–289
for fixed-width layouts, 278–283
for liquid layouts, 285–288
working with two, 278–288

style attribute, 16
<style> element, 15–16, 40, 367, 438–439
style sheets. See also Cascading Style Sheets

alternate, 39
external, 15–16
linking multiple, 17

9071Index.qxd 10/18/07 1:03 PM Page 521

managing, 372–373
modular, 494
persistent, 39
preferred, 39
for print, 392–396

style=stylename attribute, 400–401
styles

abbreviations, 68–69
acronyms, 68–69
adding to forms, 320–322
adding to web pages, 15–16
deprecated, 67
for emphasis, 67
for inserted and deleted text, 69–70
inline, 16, 66–70
text, 71–106

<sub> element, 439
Submit button

styling, 320
using image for, 321

subscript (sub), 67
subtractive color system, 121
summary attribute, 239, 243
summary=string attribute, 439
<sup> element, 439
SuperDuper, 506
superscript (sup), 67
symbols, 349, 454–455

T
tab-style navigation bars, 207–210
tabindex attribute, 163–164, 319
tabindex=number attribute, 400, 434
table cell elements <td>, 235, 440–444
table cells, vertical alignment of content, 238–239
<table> element, 235, 439
table headers, 240–242
table row elements <tr>, 235, 444
table-layout property, 487
tables

accessibility of, 239–246
alignment of, 237–239
borders, 235, 247–249
building, 242, 244–246
captions, 239, 244
cell padding, 235–236
cell spacing, 235–236
column spans, 236–237
font-size inheritance in, 360
for layout, 234, 253–255
for layouts, vs. CSS, 260, 262
nesting, 254
row groups, 240–241

INDEX

522

row spans, 236–237
separator stripes, 250–253
setting dimensions of, 237–239
styling, 247–253
summary attribute, 239, 243
workings of, 235–239

tabular data, 235–237
tag attributes, 9
tag selectors, 69, 87–88
tagging, 37
tags. See specific tags
Tahoma font, 73
target attribute, 169–170
target=_blank|_parent|+self|_top|[name attribute, 405,

408–409, 418, 430
<tbody> element, 240, 439–440
<td> element, 235, 440–444
TCP/IP, 2
technical characters, 461–463
teletype text (TT), 67
tertiary colors, 121
testing

browser test suite, 351–354
validation tools for, 349
websites, 348, 350

text
alt, 134–136, 163, 359
controlling case, 87
deleted, 69–70
hiding, 79
in pixels, 80
indented, 85–86
inserted, 69–70
letter spacing, 86
margins, 85
styling with CSS, 71–106
styling with font tag, 64–65
using images for, 77–79
word spacing, 86
wrapping around images, 138–139

text-align property, 487
text-decoration property, 67, 158, 487
text-indent property, 79, 85–86, 179, 182, 487
text-transform bug, 360
text-transform property, 87, 487–488
<textarea> element, 316–317, 441–442
TextMate, 504, 506
<tfoot> element, 240, 442
Thalamus Publishing website, 259
<th> element, 442
<thead> element, 240, 444
thumbnail images, naming conventions, 374
#thumbnailsContainer img rule, 377
TIFF format, 129, 131

9071Index.qxd 10/18/07 1:03 PM Page 522

Times New Roman font, 75
title attribute, 39, 68, 135, 163
<title> element, 35–37, 444
title text, alt text overriding, 359
title=string attribute, 400, 439
tooltips, 135
top property, 488
top-of-page links, 154–155
TopStyle Pro, 504
Total Validator, 349
<tr> element, 235, 444
transitional layouts, 254
Transmission Control Protocol/Internet Protocol (TCP/IP), 2
Transmit, 506
transparency

GIF89 and, 128
PNG format and, 129, 364–365

Trebuchet MS font, 73
Tredosoft, 353
triadic color scheme, 123
<tt> element, 444
two-tier navigation systems, 220–223
type attribute, 316
type selector, 490
type=1|A|a|I|I attribute433
type=button|checkbox|file|hidden|image|password|rad

io|reset|submit|text attribute, 426
type=button|reset|submit attribute, 411
type=format attribute, 429
type=MIME type attribute, 405, 417, 430, 433, 435, 437,

439
typography, introduction to, 62–64

U
 element, 107, 445
ul#pullNav li:first-child rule, 383
underline (u), 67
Unicode-bidi property, 488
universal selector (*), 43, 375, 381, 389, 490
unordered list element , 107, 445
unordered lists, 107, 445
uppercase attribute, 87
url value, 473–474
usability, 5, 26
usemap attribute, 175
usemap=URL attribute, 425, 433
user feedback

forms for, 315–319
introduction to, 314–315
mailto: URLS for, 314
sending, 326–333
using microformats to enhance, 336–341

UTF-8 (Unicode) character set, 31

INDEX

523

V
validation tools, 31, 348
valign attribute, 238–239
valign=top|middle|bottom|baseline attribute, 413, 440,

441, 442, 443, 444
value=n attribute, 429
value=string attribute, 411, 426, 435
valuetype=data|object|ref attribute, 435
<var> element, 68, 445
vCard format, 336, 341
Verdana font, 73
vertical-align property, 238–239, 488
visibility property, 488
visited state, 155, 159
visual presentation, 10. See also Cascading Style Sheets
visual tags, 37
vlink attribute, 155
vspace=number attribute, 407, 417

W
WAI (Web Accessibility Initiative), 349
warm colors, 123
watermarks, 55–56
WDG HTML Validator, 349
WDG Link Valet, 349
web browsers, 2, 5

CSS support and, 15
DTD and, 31
font sizes in, 82
guide to, 498–500
restrictions of, 71

web color reference, 448–449
web design. See also web pages; websites

accessibility and, 11
conventions, 63
fixed vs. liquid, 260
limitations of, 27
overview, 5–6
vs. print design, 258, 260
semantic markup and, 9
separating content from design, 10–11
simplicity in, 259
software, 504
usability and, 26

web designers, backgrounds of, 258
web layouts. See also CSS layouts

columns, 259–260
CSS vs. tables for, 260
fixed vs. liquid, 260
grids and boxes, 258–259
logical element placement and, 261
tables vs. CSS, 262

9071Index.qxd 10/18/07 1:03 PM Page 523

web navigation. See navigation
web page links. See links
web pages. See also web design; websites

adding styles to, 15–16
attaching external documents, 38–42
backgrounds, 45–56
basic structure of, 25–27
body section, 42–45
boilerplate creation, 18–23
centering in browser window, 376
creating, styling, and restyling (exercise), 20–23
dimensions of, 259
essentials for, 30, 59
head section, 35–39, 41–42

Web palette, 127
web standards, 6, 8–9
web typography, 63
web-safe colors, 124–125, 448
web-safe fonts, 73–76
WebKit, 354
website content. See content
websites. See also web design; web pages

business website, 387–391
common errors in, 349–350
creating, 387–391
design and images for, 387
styling, 389–391
audience requirements, 4–5
reasons to create, 3–4
testing, 348–354

white-space property, 489
whitespace bugs, 350, 363
widows property, 489
width attribute, 17, 134, 237–238, 489
width=%|n attribute, 413, 414, 423, 439
width=n attribute, 425, 433, 436, 441, 444
width=number attribute, 417
Wikipedia, 149–150
Window events, XHTML, 403
Windows

color display in, 72
fonts for, 74–77

word-spacing property, 86, 489
word-wrap property, 362
World Wide Web Consortium (WC3), 7
#wrapper rule, 49, 52, 90, 212, 376, 382, 386, 389
wrappers, 264–272

fixed-width, 264–265, 288–289
maximum-width, 268–269
placing columns within, 288–290

WYSIWYG editing tools, 6, 71, 132

INDEX

524

X
XHTML (Extensible Hypertext Markup Language)

character entities used in, 452
comments, 58
core attributes, 400
core events, 401–402
elements and attributes, 403–445
event attributes, 401–403
form element events, 402–403
vs. HTML, 8, 30–32
images in, 134–136
introduction to, 8–9
keyboard attributes, 400
lack of consistency in, 350
language attributes, 401
standard attributes, 400–401
Window events, 403

XHTML documents
closing, 57
document defaults, 30–32

XHTML frameset, 33
XHTML strict, 32
XHTML transitional, 33
XML declarations, 34–35
XML prologs, 34–35
xml:lang attribute, 31
xmlns=namespace attribute, 422
xml:lang=language attribute, 401

Y
Yahoo Search Builder, 150

Z
z-index property, 489

9071Index.qxd 10/18/07 1:03 PM Page 524

9071Index.qxd 10/18/07 1:03 PM Page 525

9071Index.qxd 10/18/07 1:04 PM Page 526

	The Essential Guide to CSS and HTML Web Design
	CONTENTS AT A GLANCE
	CONTENTS
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL REVIEWER
	ACKNOWLEDGMENTS
	FOREWORD
	INTRODUCTION
	Unknown
	This book is different

	Layout conventions

	AN INTRODUCTION TO WEB DESIGN
	A brief history of the Internet
	Why create a website?
	Audience requirements
	Web design overview
	Why WYSIWYG tools aren’t used in this book

	Introducing HTML and XHTML
	Introducing the concept of HTML tags and elements
	Nesting tags
	Web standards and XHTML
	Semantic markup

	Introducing CSS
	Separating content from design
	The rules of CSS
	Types of CSS selectors
	Adding styles to a web page
	The cascade
	The CSS box model explained

	Creating boilerplates
	Working with website content
	Information architecture and site maps
	Basic web page structure and layout
	Limitations of web design

	WEB PAGE ESSENTIALS
	Starting with the essentials
	Document defaults
	DOCTYPE declarations explained
	Partial DTDs
	What about the XML declaration?

	The head section
	Page titles
	meta tags and search engines
	Attaching external documents

	The body section
	Content margins and padding in CSS
	Zeroing margins and padding on all elements
	Working with CSS shorthand for boxes
	Setting a default font and font color

	Web page backgrounds
	Web page backgrounds in CSS
	Web page background ideas

	Closing your document
	Naming your files
	Commenting your work
	Web page essentials checklist

	WORKING WITH TYPE
	An introduction to typography
	Styling text the old-fashioned way (or, why we hate font tags)
	A new beginning: Semantic markup
	Paragraphs and headings
	Logical and physical styles
	The importance of well-formed markup

	Styling text using CSS
	Defining font colors
	Defining fonts
	Using images for text
	Defining font size and line height
	Defining font-style, font-weight, and font-variant
	CSS shorthand for font properties
	Controlling text element margins 3
	Using text-indent for print-like paragraphs
	Setting letter-spacing and word-spacing
	Controlling case with text-transform
	Creating alternatives with classes and spans
	Styling semantic markup
	Creating drop caps and pull quotes using CSS

	Working with lists
	Unordered lists
	Ordered lists
	Definition lists
	Nesting lists
	Styling lists with CSS
	List margins and padding
	Inline lists for navigation
	Thinking creatively with lists

	WORKING WITH IMAGES
	Introduction
	Color theory
	Color wheels
	Additive and subtractive color systems 4
	Creating a color scheme using a color wheel
	Working with hex
	Web-safe colors

	Choosing formats for images
	JPEG
	GIF
	PNG
	Other image formats

	Common web image gaffes
	Using graphics for body copy
	Not working from original images
	Overwriting original documents
	Busy backgrounds
	Lack of contrast
	Using the wrong image format
	Resizing in HTML
	Not balancing quality and file size
	Text overlays and splitting images
	Stealing images and designs

	Working with images in XHTML
	Using alt text for accessibility benefits
	Descriptive alt text for link-based images
	Null alt attributes for interface images
	Using alt and title text for tooltips

	Using CSS when working with images
	Applying CSS borders to images
	Using CSS to wrap text around images
	Displaying random images

	USING LINKS AND CREATING NAVIGATION
	Introduction to web navigation
	Navigation types
	Inline navigation
	Site navigation
	Search-based navigation

	Creating and styling web page links
	Absolute links
	Relative links
	Root-relative links
	Internal page links
	Backward compatibility with fragment identifiers
	Top-of-page links
	Link states
	Defining link states with CSS
	Correctly ordering link states
	The difference between a and a:link
	Editing link styles using CSS
	Multiple link states: The cascade
	Enhanced link accessibility and usability
	Link targeting

	Links and images
	Adding pop-ups to images
	Image maps
	Faking images maps using CSS

	Enhancing links with JavaScript
	Creating a pop-up window
	Creating an online gallery
	Collapsible page content

	Creating navigation bars
	Using lists for navigation bars
	Working with inline lists
	Graphical navigation with rollover effects

	The dos and don’ts of web navigation

	TABLES: HOW NATURE (AND THE W3C) INTENDED
	The great table debate
	How tables work
	Adding a border
	Cell spacing and cell padding
	Spanning rows and cells
	Setting dimensions and alignment

	Creating accessible tables
	Captions and summaries
	Using table headers
	Row groups
	Scope and headers
	Building a table

	Styling a table
	Adding borders to tables
	Adding separator stripes

	Tables for layout

	PAGE LAYOUTS WITH CSS
	Layout for the Web
	Grids and boxes
	Working with columns
	Fixed vs. liquid design
	Layout technology: Tables vs. CSS
	Logical element placement

	Workflow for CSS layouts
	Anatomy of a layout: Tables vs. CSS
	Creating a page structure
	Box formatting

	CSS layouts: A single box
	Nesting boxes: Boxouts
	The float property

	Advanced layouts with multiple boxes and columns
	Working with two structural divs
	Placing columns within wrappers and clearing floated content
	Working with sidebars and multiple boxouts
	Creating flanking sidebars
	Automating layout variations

	Scrollable content areas
	Working with frames
	Working with internal frames (iframes) 7
	Scrollable content areas with CSS

	GETTING USER FEEDBACK
	Introducing user feedback
	Using mailto: URLs
	Scrambling addresses

	Working with forms
	Creating a form
	Adding controls
	Improving form accessibility

	CSS styling and layout for forms
	Adding styles to forms
	Advanced form layout with CSS

	Sending feedback
	Configuring nms FormMail
	Script server permissions
	Sending form data using PHP
	Using e-mail to send form data

	A layout for contact pages
	Using microformats to enhance contact information
	Online microformat contacts resources

	Contact details structure redux

	DEALING WITH BROWSER QUIRKS
	The final test
	Weeding out common errors
	A browser test suite
	Installing multiple versions of browsers

	Dealing with Internet Explorer bugs
	Outdated methods for hacking CSS documents
	Conditional comments
	Dealing with rounding errors
	Alt text overriding title text
	Common fixes for Internet Explorer 5.x
	Common fixes for Internet Explorer 6 and 5
	Fixing hasLayout problems (the peekaboo bug)

	Targeting other browsers

	PUTTING EVERYTHING TOGETHER
	Putting the pieces together
	Managing style sheets
	Creating a portfolio layout
	About the design and required images
	Putting the gallery together
	Styling the gallery
	Hacking for Internet Explorer

	Creating an online storefront
	About the design and required images
	Putting the storefront together
	Styling the storefront
	Fonts and fixes for the storefront layout

	Creating a business website
	About the design and required images
	Putting the business site together
	Styling the business website

	Working with style sheets for print

	XHTML REFERENCE
	Standard attributes
	Core attributes
	Keyboard attributes
	Language attributes

	Event attributes
	Core events
	Form element events
	Window events

	XHTML elements and attributes

	WEB COLOR REFERENCE
	Color values
	Web-safe colors

	Color names

	ENTITIES REFERENCE
	Characters used in XHTML
	Punctuation characters and symbols
	Quotation marks
	Spacing and nonprinting characters
	Punctuation characters
	Symbols

	Characters for European languages
	Currency signs
	Mathematical, technical, and Greek characters
	Common mathematical characters
	Advanced mathematical and technical characters
	Greek characters

	Arrows, lozenge, and card suits
	Converting the nonstandard Microsoft set

	CSS REFERENCE
	The CSS box model
	Common CSS values
	CSS properties and values
	Basic selectors
	Pseudo-classes
	Pseudo-elements
	CSS boilerplates and management
	Modular style sheets

	BROWSER GUIDE
	Firefox
	Internet Explorer
	Opera
	Safari
	Other browsers

	SOFTWARE GUIDE
	Web design software
	Graphic design software
	The author’s toolbox

	INDEX

