
ptg

 From the Library of Wow! eBook

ptg

Tricks for
solving tough
CSS mysteries!

DENISE R. JACOBS

DDDENISE R. JACOBS

The CSS
DETECTIVE GUIDE

The CSS
DETECTIVE GUIDE

 From the Library of Wow! eBook

ptg

The CSS Detective Guide: Tricks for solving tough CSS mysteries
Denise R. Jacobs

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at www.newriders.com
To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2010 by Denise Jacobs

Editor: Wendy Sharp
Production Coordinator: Myrna Vladic
Copyeditor: Jacqueline Aaron
Compositor: Rick Gordon, Emerald Valley Graphics
Indexer: Emily Glossbrenner, FireCrystal Communications
Cover and interior design: Charlene Will

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN-13 978- 0-321-68394-6
ISBN-10 0-321-68394-3

9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

 From the Library of Wow! eBook

www.newriders.com

ptg

This book is dedicated to those who touched my

life with love and guidance and have moved on

to another place: Dennis R. Jacobs, Daniel Lev,

Kay Corbin, Charles Jacob, Michael Fajans,

Ferne Carpousis, and Leah Moussaioff.

It is further dedicated to all of my former web

students at Seattle Central Community College

from 2000–2005. You all were an absolute delight

to teach. For those of you who suggested that

I should write a web book, well, you got your wish.

 From the Library of Wow! eBook

ptg

Acknowledgments

They say that it takes an entire village to raise a child, and this is true for a book as well.

It started with a seemingly innocuous conversation with Robert Hoekman Jr. at
a SXSWi 2009 party where I met his editor, Wendy Sharp. That brief meeting and
 business card exchange set in motion a series of events that have produced this book.

I can’t thank Wendy enough for taking the overly ambitious writing schedules that
I created for myself with a huge grain of salt, for maintaining my voice while magi-
cally cutting away half the words, and for appreciating my oddball sense of humor.
I am indebted to my technical editor Estelle Weyl for invaluable feedback that kept
my code clean and for being even more of a web standardista than I am. I thank
our copy editor, Jacqueline Aaron, for her hard work and for going beyond the call
of duty by editing the content of the website examples. Myrna Vladic was the book
 production manager extraordinaire, generous with her time and energy in answering
my questions and responding to my needs. Thanks go to our designer, Charlene Will,
for running with the book concept and giving the book a fun and snappy look-and-
feel. And Rick Gordon provided great page layout, and I really appreciated his praise
for the concept of the book when he said that it’s “the CSS book I’ve needed, and so
far, hadn’t found.”

When plagued by doubts at the beginning of the project, I received amazing support
from peers, mentors, and former colleagues (my own personal version of Webgrrls):
Tiffany B. Brown, Cecily Walker, Elaine Nelson, Leslie Jensen-Inman, Jen Hanen,
Yvette Ferry, Cindy Li, Glenda Sims, Lynne D. Johnson, Gillian Reynolds, Kathy E.
Gill, Anna B. Scott, Molly Holzschlag, Erica Mauter, Eris Stassi, Shawn Lawton-Henry,
Alison Cramer, Sara Newman, Kimberlee Jensen-Stedl, Andrea Pruneda, Melissa
Acedera, Stephanie Sullivan, and Christine Van Valey.

Speaking of Webgrrls, thanks by association goes to Aliza Sherman for creating
Webgrrls, and to Betsy Aoki, Anne Baker, and Honora Wade and for starting, growing
and expanding Seattle Webgrrls and DigitalEve Seattle. Being a part of that commu-
nity gave me one of the best starts in the industry that anyone, female or male, could
ever want. I am pleased to still be connected with DigitalEve Seattle and NWR lists,
whose members were extraordinarily supportive when I needed it the most.

Deep thanks goes to the Web Standards Project Educational Task Force members
for cheering me on through the process and being understanding about my schedule
constraints: Aarron Walter, Chris Mills, Nick Fogler, Christopher Schmitt, Virginia
DeBolt, Terry Morris, Jinny Potter, Jeffrey Brown, Zac Gordon, Lars Gunther, Jessi
Taylor, Rob Dickerson.

Similarly, I want to thank the members of Social Media Club South Florida for their
interest in and excitement about this project, and cutting me slack on event plan-
ning: Agustina Prigoshin, Ulises Orozco, Alex de Carvalho, Murray Izenwasser,
Angie Moncada, Toby Srebnik, Jay Berkowitz, Neil Bardach, John Prieur, Matthew
Chamberlin, Michelle Catin.

 From the Library of Wow! eBook

ptg

I am excited to be a part of the growing tech community in South Florida, fast
becoming known as Silicon Beach. Compatriots include Maria de los Angeles, Robert
Murray, Brian Breslin, Davide de Cecillo, Willie Morris, Stefani Whylie, Chris Fullman,
Ines Hegedus-Garcia, Tami Stillwell, Steve Roitstein, Alisha Vera, David Bisset, Ben
Bewick, Josue Rodriguez, Amanda Stewart, Patrick Barbanes, Enzo Balc, Miguel
Lopez, Lisa Sparks, and Michelle Villalobos.

My BXSW peeps and SXSW and TODCon buddies supported me indirectly, largely
without them knowing it. Just being associated with these folks is reward enough:
J. Smith, E.J. Flavors, Baratunde Thurston, Rhazes Spell, Jason Toney, George Kelly,
Twanna Hines, Michael Moss, Jeffrey Bowman, Dave Shea, Hugh Forest, Jim Turner,
David Stiller, Kris Krug, Tara Hunt, and Dori Smith.

Mentors, former teachers, and people who have always believed in me also get due
thanks: Julia A. Davis, Mary MacDonald, Cynthia Mapes, Pam Conine, Rebecca Llyod,
Wadiyah Nelson, Carlene Brown, Merri-jo Hillaker, and Beth Wilson.

My long-term Lovefest and YS chosen family have stuck with me for at least seven-
teen years and hopefully they will stick around for a few more: Andrew Lambert,
Jessica Meistrich-Gidal, Lisa von Trotha, Stephen Moses, Stephanie Graham-Lvovich,
Carole Vacher, Jeremy Dragt, Lenny Rede, Emilie Zuffrey, Corinna MacDonald, and
Michael Harris.

Local-yocals checked on me to make sure everything was on track and often provided
occasional necessary diversions away from writing: Brent Knoll, Natalie Morales,
Melissa DeCastillo, Marlon Norris, Tricia Bannister, Terry Toney, David Fernan,
Martin Eschvarria, Mike Reynolds, and Caroline Gaudy.

I would be remiss not to acknowledge the 24/7 kitty companionship provided by Gheri
and Malcolm (who are both on loan), Aashika, and Zealand (who are with me for the
long haul).

Invaluable emotional support, preliminary readings, feedback, happy dances,
and quite a few good dinners came from chosen sisters and close friends: Amber
Zimmerman, Elizabeth Williams, Stephanie Troeth, and Julia Wakefield.

This book would not have been possible on so many levels without the support
of my family: my sister, Diane Jacobs, my grandparents, Robbie Mae and William
James Lowe. Most important, however, was the unwavering support on multiple
levels from my mother, Deloria L. Jacobs. I only hope I can return the gesture one
thousand-fold, Mom.

I want to give thanks in advance to all of the wonderful people who are coming into
my life on all levels—professional, social, and personal. I am looking forward to
meeting you.

An ultimate thank you goes to all of the people who read this book. I hope you can
get something out it and that it helps you in way.

 From the Library of Wow! eBook

ptg

Contents

PART 1 The Detective’s Apprentice

Chapter 1 INVESTIGATING THE SCENE OF THE CRIME 3

HTML Document Structure . 4
HTML tag structure . 5
POSH, or Plain Old Semantic HTML . 6

CSS Document Structure . 10
Employing styles in your documents . 11

CSS Foundations . 14
Document tree, hierarchy, and element ancestry 14
Inheritance . 16
The cascade . 16
Selectors . 20
Styles of writing CSS . 26
Preliminary CSS troubleshooting tips 27

Chapter 2 TOOLS OF THE TRADE . 29
Advanced Selectors and Style Declarations 30

Grouping selectors . 30
Complex relationship selectors . 30
Multiple classes to one element . 31
Style shorthand . 31
Shorthand troubleshooting tips . 36

CSS Reset . 37
Wherefore art thou, reset? . 37
To reset or not to reset, that is the question 37
As you like it: approaches and recommendations 38

 From the Library of Wow! eBook

ptg

CONTENTS vii

Building a Solid Foundation . 39
Tailored HTML . 39
Sleek CSS . 42
Standardized style sheets . 44

Intermediate CSS Troubleshooting Tips 47
Play by the rules . 47
Curb your creativity . 49
More is not always best . 50

Chapter 3 GIVING THE THIRD DEGREE 51

Validating Your Hunches . 52
“Huh? What are you saying?” . 53
What validating can and cannot do . 53
Errors vs. warnings . 54
Troubleshooting tips for validation . 54

Bait-and-Switch Tactics: Doctype Sniffing and Switching 55
Anatomy of a DTD . 55
Browser modes . 56
Troubleshooting tips with doctypes . 58

Zeroing In on the Problem . 60
Debugging interrogation techniques . 60
Troubleshooting tips for disabling and zeroing in 67

Resorting to Drastic Measures . 68
Start with the basics . 68
Process of elimination . 69
Dismantle it completely . 70
Rebuild it from the ground up . 70

The Shakedown: A Debugging Process . 71
Steps to finding the bug . 71
The big fix . 73

An Interrogator’s Work Is Never Done . 74

Chapter 4 THE USUAL SUSPECTS . 75

Concepts to Remember . 76

Document flow . 76
Positioning . 77

 From the Library of Wow! eBook

ptg

CSS Detective Guideviii

A Broken Box . 79
A boxed set of problems . 79
A complement of solutions . 81

hasLayout (hasIssues) . 82
hasWhat? . 83
I can hasLayout? . 84
A blanket hasLayout application . 85

Flaky Floats . 85
How floats work . 86
Containing floats . 87
“We have a float down!” . 94

Misbehaving Lists . 97
Scratching white space from lists . 97

Margins and Errors . 101
Negative margins . 101
Unwanted space . 102

Disappearing Acts . 105
Peekaboo bug . 105
Guillotine bug . 108

Fonts Gone Wrong . 111
An assortment of sizes . 111
Typography tips . 114
Text size bug . 115

Planning for the Future . 116
A Positive ID . 117

Properties . 117
Techniques . 119
Quick-fix list . 120

PART 2 The Game’s Afoot

Chapter 5 THE CASE OF THE DEVILISH DETAILS 123
 The Crime Scene . 124

Initial snapshots . 124
Follow the Evidence . 125

Identifying suspicious characters . 126
Mug shots . 126

 From the Library of Wow! eBook

ptg

CONTENTS ix

The Evidence Never Lies . 130
Confirming suspicions and naming the culprit 131

Case Closed! . 134

Chapter 6 THE CASE OF THE MISTAKEN IDENTITY 135

The Crime Scene . 136
Initial snapshots . 136

Follow the Evidence . 136
Identifying suspects . 136
Mug shots . 137

The Evidence Never Lies . 148
Confirming suspicions and naming the culprit 149

Case Closed! . 156

Chapter 7 THE CASE OF THE SINGLE WHITE SPACE 157

The Crime Scene . 158
Initial snapshots . 158

Follow the Evidence . 159
Identifying suspects . 160
Mug shots . 160

The Evidence Never Lies . 167
Confirming suspicions and naming the culprit 168

Case Closed! . 175

Chapter 8 THE CASE OF THE FLOAT . 177

The Crime Scene . 178
Initial snapshots . 178

Follow the Evidence . 178
Identifying suspects . 178

The Evidence Never Lies . 187
Confirming suspicions and naming the culprit 187

Case Closed! . 195

Chapter 9 THE CASE OF THE BROWSER 197
 The Crime Scene . 198

Initial snapshots . 198

 From the Library of Wow! eBook

ptg

CSS Detective Guidex

Follow the Evidence . 201
Identifying suspects . 201
Mug shots . 201

The Evidence Never Lies . 215
Confirming suspicions and naming the culprit 215

Case Closed! . 227

Chapter 10 THE CASE OF THE LOL LAYOUT 229

The Crime Scene . 230
Initial snapshots . 230

Follow the Evidence . 233
Identifying suspects . 233
Mug shots . 233

The Evidence Never Lies . 244
Confirming suspicions and naming the culprit 246

Case Closed! . 254

APPENDIX . 255

INDEX . 271

 From the Library of Wow! eBook

ptg

PART

1

1

YOU SIT LOOKING AT THE SCREEN, trying to understand why your
code is giving you the visual equivalent of gibberish instead of the
clear visual diction of your original design. Criminal CSS and browser
rendering have gotten the best of you again, but for the last time.
You are ready to start your training with the CSS Detective.

IN CHAPTER 1, “Investigating the Scene of the Crime,” you’ll learn how
to go over the evidence in the code, discovering what you’re looking at
and what you’re looking for.

IN CHAPTER 2, “The Tools of the Trade,” you’ll learn techniques and
tips that will go a long way toward preventing coding crimes before
they happen.

IN CHAPTER 3, “Giving the Third Degree,” we will cover methods
of isolating suspicious rules and lines of questioning techniques
to get your CSS to ’fess up as to where the rendering problems are
coming from.

BY CHAPTER 4, you’ll be ready to see the lineup of “The Usual Suspects”:
common bugs and problems that almost everybody who wrangles CSS
has had the misfortune of encountering face-to-face.

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

3

1

RUSHING INTO A CRIME SCENE TOO HASTILY CAN
cause us to miss picking up important pieces of
evidence, so we’ll start your apprenticeship by going
over HTML best practices: document structure, good
semantics, and tag structure. From there, we’ll move
on to CSS, including rule structure, getting the styles
into your documents, and commenting.

WE’LL ALSO TAKE A GOOD LOOK AT THE CLUES POSED
by inheritance, the cascade, and the vast array
of selectors you can employ to target the desired
elements in your HTML document.

 From the Library of Wow! eBook

ptg

4 CSS Detective Guide

HTML Document Structure

As you know, HTML (Hypertext Markup Language) is the basis for all things
web. And you also probably know that HTML has different version numbers,
and that there is a character on the block known as XHTML. Without going
into lengthy detail about the version histories and differences, I’ll cut to
the chase: HTML 4.01 is the latest version of HTML. The W3C (World Wide
Web Consortium) is working on a draft of HTML 5.0, which is slated to be
released “soon.” XHTML was created to be an “extensible” version of HTML,
which means that it conforms to the XML syntax and can be made modular
(divided into usable components).

To learn more about HTML, see http://www.w3.org/ TR/html4/.

The main difference between the two forms of markup is that XHTML by
definition needs to be well formed; therefore, all elements need to be in
lowercase, all elements need to be closed, and attributes are case-sensitive.
By contrast, HTML, technically, does not need to be all in lowercase, empty
elements do not have to be closed, nor are the attributes case-sensitive.
However, just because the specification says you can be loosey-goosey about
those items doesn’t mean you should be. To conform to best practices and
industry standards, you should create consistent, well-formed, semantically
correct documents.

Here are the underpinnings of a “well-formed” HTML document in a nutshell:

1. All elements are closed.

2. All tags are in lowercase.

3. All attributes values are enclosed by quotes.

4. All elements are properly nested.

A basic HTML 4.01 document using the strict doctype definition looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

➥ "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>HTML 4.01 Strict Document</title>

</head>

<body>

</body>

</html>

note
S� Chapter 3 for an
in-depth discu�ion
of doc�pes and their
importance in an
HTML document.

 From the Library of Wow! eBook

http://www.w3.org/TR/html4/

ptg

INVESTIGATING THE SCENE OF THE CRIME 5

 A basic XHTML 1.0 document using the transitional doctype definition looks
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title> XHTML 1.0 Transitional Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

</head>

<body>

</body>

</html>

HTML TAG STRUCTURE
HTML tags can be distilled into this syntax:

<tagname attribute="value"></tagname>

 The tag always has a tag name, may have an attribute, and when there is
an attribute, the best practice is to always give the attribute a value.

Keep this syntax in mind for later; being able to recognize patterns like this
one makes it easy to detect when tags fall outside the pattern.

Here’s a little quiz for you. What’s wrong with the HTML tag below?

<p class, highlight>Hunting for clues</p>

I know you caught it: the attribute and value were in the wrong format.
Rather, it should be like this:

<p class="highlight">Clues found!</p>

 The CSS pattern is analogous, which you will soon see. With both HTML and
CSS, once you have the patterns down, you’ll be able to recognize them and
know when a tag or a style declaration has gone wrong.

note
Please refer to the
Resources section
for a detailed
explanation of the
differences be��n
HTML and XHTML.

 From the Library of Wow! eBook

ptg

6 CSS Detective Guide

Tags vs. Elements
You may think that the terms tags and elements are interchangeable, but

in fact, they are not. Tags refer to the HTML tag itself, including all of its

properties and values. Elements refer not only to the tag, but also to the text

and other elements that are enclosed by the tag. An element is a complete

entity that starts with the opening tag and ends with the closing tag.

POSH, OR PLAIN OLD SEMANTIC HTML

Standards advocates have coined the phrase “Plain Old Semantic HTML,” or
POSH, as a mnemonic term to encapsulate the idea of using HTML as it was
originally intended: to present information so that it conveys meaning and
significance to the reader as well as the reader agent.

So what does that mean for you? It means that you must remember and
practice the key concept: semantics over presentation. You’ve heard the
term “separating presentation from content” before, right? It simply means
making sure the markup that creates visual effects, but lends no meaning to
the structure of the document, is stripped out and put into a style sheet.

To support separating content from presentation, you need to use your tags
for their meaning, not for how you would like them rendered by the browser.
Think of using the correct tags to convey meaning as adding the right intona-
tion and facial expressions when you talk. Proper semantics are the key to
getting the point across with HTML documents.

For example, while the following code snippet is syntactically correct (there
are no actual errors), from a semantics standpoint it needs major help:

<p>Greatest Detectives of All Times</p>

<p>These have proven to be some of the best detectives to read and

learn from in literature.</p>

<p>Sherlock Holmes

Encyclopedia Brown

Hercule Poirot

The CSS Detective</p>

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 7

 What’s wrong with it? There is no indication of what the elements are in
relationship to each other, and what they truly are themselves. With the
corrected snippet, you can clearly see their identities and the code hierarchy.

<h1>Greatest Detectives of All Times</h1>

<p>These have proven to be some of the best detectives to read and

learn from in literature.</p>

Sherlock Holmes

Encyclopedia Brown

Hercule Poirot

The CSS Detective

And trust me, it is truly a boon for both you and your markup. Your HTML
will be easier to read, you will be able to better control the visual display, and
you will be that much farther on the road to becoming not only a CSS detective,
but a CSS pro.

Practices for Achieving POSH:
Avoid using tags for display instead of meaning.■

■ Avoid use of for making things bold; use or instead.

■ Avoid use of
 to create space between elements or paragraphs; use

 only for forced line breaks with paragraphs, for example, with lines

of poetry.

■ Use semantic id and class values that speak to their function, not their

display.

Stop using tables for layout; use them only for tabular data.■

Use as little HTML as possible to get the job done.■

■ Avoid using more <div>s on the page than necessary.

■ Validate your HTML with an approved validator (see the Resources

section).

note
Did you know that
semantics helps with
a�e�ibili�? Having
a�e�ible pages
means that more than
one audience can
extract meaning �om
the page. For example,
a scr�n reader would
actually read a word
enclosed by
with vocal emphasis
to convey the
meaning to a blind
user. Not only is using
semantic instead
of presentational
markup the right
thing to do, Stevie
Wonder would
a
reciate your
efforts.

 From the Library of Wow! eBook

ptg

8 CSS Detective Guide

What’s in it for me?
POSH isn’t just a nice idea, nor is it solely promoted by a small contingent of
well-intentioned groupies. Semantic HTML has become the standard, not the
exception, for serious web professionals who care about their craft. What’s
more, standards-based markup has many immediate and far-reaching bene-
fits such as these:

Your pages will be easier to maintain.■

 ■ Authors, users, and browser agents will find it easier to determine docu-
ment and content hierarchies and relationships.

■ Your pages will get a better search-engine ranking, as document content
hierarchy is distinguishable.

Your pages will load faster thanks to less code.■

■ Your pages will be more accessible to people seeing the document in
an environment where CSS cannot be applied (text-only readers, other
media).

■ Your pages will be understandable to users who have it read to them
through a screen reader.

 But finally, writing HTML any other way makes it harder to see where the prob-
lems are in your code. Make life easy on yourself and write semantic code!

General HTML troubleshooting tips
When I troubleshoot, I start with the area that I think the problem is in and
then work my way out of it in a spiral or concentric circles. I also tell myself
“it’s something simple,” which helps me relax and find problems more easily.

Here are my guidelines for troubleshooting HTML code.

1. Check the <tag> name—is it spelled correctly? You’ll know it isn’t if you
have one or both of these problems:

Tag contents (ie, the tagname itself) show up as text.■

 ■ The text or section of the document is not affected by the tag the way
you intended.

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 9

2. Check that the tag has its ending bracket (>). You’ll know it’s missing if:

 ■ The tag name shows up as text with a < in front of it.

3. Make sure the start tag has a closing tag—for example, <tag>word</tag>.
You’ll know this is the problem if:

text—text from the start tag on has that formatting.■

lists—any new lists indent after the initial one.■

 tables—the new table is nested within the first table.■

4. Check the <tag attribute="value"> syntax. Check the spelling of the
tag name, attributes, and values, and make sure the attribute value has
an ending quotation mark. You’ll know this is the problem if:

Contents of the tag don’t show up at all.■

Contents of the tag don’t have any of the formatting.■

Contents of the tag have some of the formatting, but not all of it.■

5. Check that you have placed the attribute you want in the proper tag. You’ll
know this is the problem if:

Contents of the tag don’t have any of the formatting you wanted.■

Contents of the tag have some of the formatting, but not all of it.■

 This may not show up as a problem—the browser may render it anyway.

6. Check the order of nested tags. Make sure that tags are
nested properly, like parentheses: ([{ word }]). For example,
this is a link. You’ll
know this is the problem if:

■

 The text may not show up.■

7. Check that you have placed the tags in the proper place. You’ll know this is
the problem if:

 Content is affected in a different area than you intended.■

 If you are really stumped and can’t find the errors in your markup, then
validate your page using an HTML validator (see the Resources section for
a complete list). Validation for both markup and CSS code is covered in
further detail in Chapter 3.

 From the Library of Wow! eBook

ptg

10 CSS Detective Guide

CSS Document Structure
In the most basic form, a CSS style rule or “rule set” has the following syntax:

selector {property: value;}

Doesn’t that look suspiciously like the structure of an HTML tag? Earlier
I mentioned that the tag syntax and rule syntax were roughly analogous.
The image below (Figure 1.1) illustrates what I mean:

<tagname attribute=”value”></tagname>

selector {property: value; }

html

css

The tag name of the HTML tag and the selector of the CSS style rule are
similar, and sometimes even the same if you are using the tag name as the
selector. The CSS property is similar to the HTML attribute, and like the
tag/selector, may share the same name.

In a style rule, the selector targets the HTML element that will be affected by
the rule set. The selector is everything that comes before the curly brackets.

The declaration block is everything that is between the two curly braces, and
the style declaration itself is the property: value pair. The semicolon at the
end is not required for a single declaration, but is used to separate declara-
tions from each other and to end a list of multiple declarations. Therefore, it
is a good habit to end all declarations with a semicolon.

Just as HTML tags can have multiple attribute-value pairs in one tag, you can
have multiple property-value pairs per style rule:

selector {property: value; property: value; property: value;}

For some properties, you can also have multiple values for one property:

selector {property: value, value, value;}

And you can have multiple selectors for a set of properties and values:

selector1, selector2, selector3 {property: value; property: value;}

Figure 1.1 Analogous tag
and style-rule structure

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 11

In contrast to HTML, the CSS style rule always has a selector, the selector
always has a property, and the property always has a value. This is important
to keep in mind as it leads to some of the very first clues to hunt for when
troubleshooting CSS. Forgot a selector? Then the declaration has nothing
to be applied to. Don’t have a property? Then the browser can’t determine
where to assign the value. Missing a value? Then the selector and property
are all dressed up with nowhere to go and won’t render in the browser. Leave
off the opening or closing curly bracket? Then the style won’t render, and the
style declarations following it may be affected as well. Remember also that
misspellings, use of improper terms, and unaccepted values will all have the
same effect: your CSS won’t work as expected. These sorts of errors are among
the most common problems when your pages don’t render as expected.

EMPLOYING STYLES IN YOUR DOCUMENTS

Now that you know the syntax, let’s look at where to place the style rules.
There are several techniques for getting style rules into your HTML pages.

External styles
External style sheets are the modern-day workhorse of standards-based
websites. Most websites have at least one style sheet for rendering the page
on various media including standard monitors, cell phones, audio browsers,
and printers.

Linking to an external style document with <link>

Connecting your style sheet to your HTML document is as easy as using the
<link> tag, which establishes a relationship between documents. Here is the code:

<head>

<title>Black and White Page Example</title>

<link rel="stylesheet" href="stylesheet.css" type="text/css">

</head>

When the browser renders your page, it reaches the link tag, then retrieves
the style sheet document and renders the styles. After the style sheet is
downloaded, it is cached and reused without a new call to the server.

The external CSS document should not contain any HTML markup in it at all.
The only content it has is style rules and comments. So if you got all riled up
and put some <style></style> tags in the .css file, remove them! With HTML
markup in the style sheet, the browser cannot properly render the page styles.

 From the Library of Wow! eBook

ptg

12 CSS Detective Guide

Obviously, using external style sheets is the best method for a website of any
number of pages greater than one. Every page will call the style sheet and
apply the styles, making the styles consistent throughout the website. If you
ever want to change any piece of presentation, you just change the style sheet
and the whole site changes. How in the world did we ever survive without
this? Those were dark days pre-CSS!

Linking to an external style document with @import

Like using the <link> tag to link to an external CSS document, you can
use the @import directive through the <style> tag to link to external CSS
documents.

<head>

<title>Black and White Page Example</title>

<style type="text/css">

 @import url(“stylesheet.css");

</style>

</head>

The Importance of typetype and relrel

One of the most common errors for beginners is to omit the type or rel

attributes. So keep these points in mind:

1. Always indicate type="text/css" in the <link> or <style> tags. Never

use type="text/plain".

2. In the <link> tag, always indicate rel="stylesheet".

Forgetting either could end up causing your browser to render your pages

incorrectly.

The @import directive can also be used in an external style sheet. In this case,
again, no HTML tags are needed. Simply use the directive as the first declara-
tion in the document:

@import url("stylesheet.css");

If you use the @import directive in any of your style sheets, it needs to be the
first declaration. If it is after any other style rules, the browser will ignore it.

tip
When linking to a
s�le sh�t document
�om an HTML page,
the URL is relative to
the location of the
HTML page. However,
when linking to
another file �om a
s�le sh�t, the URL
is relative to the
location of the s�le
sh�t or the s�le
sh�t document.

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 13

A useful advanced technique is to import multiple style sheets from one CSS
document using the @import rule in that style sheet.

Document-level or embedded styles
Document-level styles are a great way to create and test all the styles you
create for your pages before you export them to an external style sheet.

You place document-level styles in the head of the HTML document using the
<style> tag.

<head>

<title>Black and White Page Example</title>

<style type="text/css">

body {background-color: #000000; color: #ffffff;}

</style>

</head>

The <style> tag always needs the type="text/css" attribute and value, and
always needs to be closed.

As mentioned above, document-level styles are great for when you create
your initial page or template document, and you want to work in one place
to access both your styles and your markup. All of the styles can be reused
within the document (as opposed to inline styles, which are only applied to
the tag it is in). However, document-level styles add to the size of the page,
and the styles are not applicable to any other pages in the website.

Inline styles
Inline styles are valid in HTML 4.01, but are so strongly recommended
against that they are practically verboten, while in early proposed drafts of
XHTML 2.0 the style attribute is fully deprecated and dropped from the spec-
ification altogether. In HTML 4.01 and XHTML 1.0, with the style attribute,
you can insert style declarations directly into any HTML tag.

Before you use an inline style, however, think about it: what is the difference
between that and, say, using the deprecated tag? The answer is, not
a whole lot. Don’t use inline styles: the styles themselves are not reusable
by other elements on the page, they can’t be overwritten by embedded or
external styles without the use of !important, they increase page-rendering
time, and they quickly become a maintenance nightmare. Implementing your
styles in other places will be a lot more powerful and portable for you in the
long run.

 From the Library of Wow! eBook

ptg

14 CSS Detective Guide

 Co�ents in S�les
You’ll probably use comments in your styles,

whether to help you organize and notate what

you have created (and why) or to make logical

sections of the styles. Commenting your code is

a really good practice and well worth a little extra

time. When you come back to the code three

months (or even three days) later, you’ll be happy

that you did. After all, you want to be solving CSS

mysteries, not creating them!

The comment syntax in styles is as follows:

/* comment */

Comments can be single words up to multiple

lines. You can break lines and have carriage

returns inside of the comment tag, and it won’t

affect the styles one whit.

/* A comment with

multiple lines of text. */

The one thing you shouldn’t do is nest style

comments inside each other.

The comment element is also incredibly useful

for creating titles for groups of styles, and for

temporarily removing a style for testing or

troubleshooting.

CSS Foundations

To really troubleshoot CSS, we need to understand a few foundational
concepts—specifically, document hierarchy and element relationships,
 inheritance, the cascade, and specificity.

DOCUMENT TREE, HIERARCHY, AND
ELEMENT ANCESTRY

 The best way to understand the document tree, document hierarchy, and the
relationships between elements is to see them. So let’s start with the code:

<html>

<head>

<title>Mikey Spillane vs. Mike Hammer</title>

</head>

<body>

<h1>Mikey Spillane vs. Mike Hammer</h1>

<p>Who is the toughest, smartest, and most steely? You get

➥ to be the judge by taking this survey.

➥ </p>

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 15

<p>Next month’s survey: Sir Arthur Conan Doyle or Sherlock Holmes?

➥ </p>

</body>

</html>

We can illustrate the document tree visually:

<title> <h1> <p>

<head>

<html>

<body>

 <a>

In this example, the html tag is the main ancestor of all of the tags in the
document. In the <body> of the page, the <h1>, <p>, , , and <a> tags
are all descendants of the <body> tag. The <h1> and <p> are siblings, and the
, <a>, and are descendants of one of the <p> tags.

Did you notice the pattern? A descendant element is nested inside another
element, which is its ancestor.

Let’s delve deeper into element relationships to get the full picture of the
“family tree.”

An ancestor is any element that is connected to other elements but is higher
up the document tree, no matter how many levels up. For example, in the
document above, both the <html> and <body> tags are ancestors of the <p> tag.

A descendant is any element connected to an ancestor, but lower in the docu-
ment tree, no matter how many levels down. In our example, the , <a>,
and are descendants of the <body> tag.

Figure 1.2 Document
tree showing hierarchy
and element ancestry

 From the Library of Wow! eBook

ptg

16 CSS Detective Guide

A parent is an element directly above a connected element in the document
tree. A parent element is also an ancestor, but an element can have ancestors
that are not its parents.

A child element is directly below a connected element. A child is a descen-
dant, but an element can have descendants that are not its children.

Sibling elements share the same parent, and are on the same level as each
other in the hierarchy.

INHERITANCE

Just as art mimics life, so does CSS. One of the foundations of CSS,
inheritance, is like a drama set in 18th-century England: just as in
a family with descendants fighting for the fortune of a wealthy relative,
in CSS, style rules often have to duke it out to be the one whose properties
get expressed and displayed.

Inheritance is a process by which ancestor elements pass down selected
properties to their descendants. The quality of inheritance in CSS is truly
a godsend. Think about it: without inheritance, you would have to establish
some of the exact same style rules for every single element in the page.

Not all the properties of the ancestor element are inherited, however, and
there is a beautiful logic to the way inheritance works. Properties that are
related to text display, foreground color, and list styles are inherited. These
are the properties you most likely want to stay consistent throughout the
document. In contrast, properties related to the box model are not inherited.
These include margin, padding, borders, position (absolute, relative, and
z-index), display, and overflow. You wouldn’t want these styles to be inher-
ited—pages would be practically incomprehensible if properties like margin,
padding, or position were inherited automatically.

THE CASCADE

Understanding how the cascade works is one of the most important skills
to have as a CSS detective. In essence, the cascade is the property of styles
being applied layer upon layer to each other. Some of your issues may be fixed
simply by changing the order of your styles, but knowing the rules of the
cascade will help you write cleaner, more concise style declarations.

note
Please s� the
Resources section for
a full list of properties
that are inherited
by default.

note
If you have a
situation where you
want a proper� that
normally would not
be inherited to be
inherited, you can
force inheritance
by using the
inherit value.

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 17

Origin and importance
What happens when two or more conflicting styles target the same element
in the page?

The style that ultimately gets applied trumps all of the others based on a scale
of specificity (explained below). To get a visual equivalent of the concept of
the cascade, imagine styles as steps. Styles that are closer to the element are
more important, and more likely to be applied.

The first part of the cascade is determined by the origin of the styles them-
selves. Styles can originate from three places: the user agent, the author, or
the user himself.

User agent is another term for a browser. Browsers have default styles built
into them that will render an HTML page a certain way whether there are
styles attached to it or not.

Author styles are the style sheets attached to the HTML file either externally
via a link or @import, or embedded at the document level in the <head>.

User styles are a set of styles established by the user for his particular
browser. This may be the case if a user is sight impaired or has any other
disability that needs accommodating for on a consistent basis.

Normal style declarations can be taken up a notch and designated as
!important. Doing so causes the style to override the cascade and be
 implemented over any conflicting styles. Both the style author and user can
designate !important styles. !important user styles will override !important
author styles.

Here is the cascade for user agents, author, and user styles (Figure 1.3):

User agent (browser) styles

Author styles

<element>

User styles

!important author styles

!important user styles

The second factor in the cascade is the location of the style, whether it’s
external, document level, or inline. This is a key factor in determining
distance or closeness from the element targeted by the styles.

 Figure 1.3 The cascade for user
agents, author, and user styles

 From the Library of Wow! eBook

ptg

18 CSS Detective Guide

External style sheets are farther away from the element, document-level
embedded styles are closer, and inline styles are closest.

Here is the cascade for external styles to inline styles (Figure 1.4):

External styles

Document-level styles

Inline styles

<element>

Specificity
The term specificity refers to how specific a style rule is to the desired
element. The mechanism works like this: the more specific a rule is, the more
easily it will trump other rules that may be targeting the same element. Let’s
use the close-versus-distant metaphor: if the selector is less specific, then it
is more distant from the element, whereas if it very specific, then it is closer
to the element. The closer the rule to the element, the higher the speci-
ficity weight or number, and the more precedence that rule has over others
targeting the same element.

Specificity takes into consideration all of the selectors to determine the prox-
imity of the style rule to the element. Here are the questions you would ask
to calculate the specificity weight and thus see which style will ultimately get
applied to the element:

1. Is it an inline style? If yes, then it has more weight. If it’s not an inline
style, then proceed to Question 2.

2. How many ids are in the selector? The more it has, the higher the weight.
If there are no ids in the selector, then proceed to Question 3.

3. How many class names, pseudo-classes, and attributes are there in the
selector? The more it has, the higher the weight. If there are none of these
in the selector, then proceed to Question 4.

4. How many element names or pseudo-elements are there in the selector?
This number will ultimately determine the weight of the style rule. (See the
next section for a description and examples of pseudo-elements.)

5. If it has !important in the declaration, then it has more specificity weight
than any other style.

 Figure 1.4 The cascade for
external styles to inline styles

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 19

Order
The order in which the styles are listed is important on all levels of styles: the
order of the links to the style sheets, the style tag, and the @import directive
in the HTML document; where the style is listed in the external style sheets,
and where the style is listed within the style tag at the document level. The
farther down the style is in the order of the documents, the closer it is to the
element—and thus, the more weight and precedence it will have over any
conflicting styles (Figure 1.5 and 1.6).

External styles

Style 1

<element>

User styles

Inline styles

Style 2
Style 3

Style 1
Style 2
Style 3

User agent (browser) styles

Style 1

Document-level styles

User styles

Style 2
Style 3

Style 1
Style 2
Style 3

Author styles
External styles

Inline styles

<element>

!important author styles

!important user styles

Figure 1.5 Style order

 Figure 1.6 The
grand view of the
cascade, taking
all factors into
consideration

 From the Library of Wow! eBook

ptg

20 CSS Detective Guide

SELECTORS

Styles don’t do us much good until they are associated with an HTML
element in a web page. To enable us to target the exact elements on the page
for the maximum amount of display control, the CSS 1 and CSS 2 specifica-
tions provide a vast number of selectors.

General selectors
The possibilities for applying selectors seem almost endless, but you have to
know the right way to do so. Once you know the rules for creating selectors
and understand the patterns, writing well-constructed CSS will be a snap.
As a bonus, you’ll able to troubleshoot really well and discern the root of any
issues that may come up later.

Universal

The universal selector is the asterisk (*). This selector lets you select every
element on the page and apply the style rules to them.

*{font-family: Arial, sans-serif;}

Element/type

The element or type selector targets an HTML element, and thus uses a tag
name. This enables you to select any of this kind of element in the document.

p {font-size: 1em;}

Class

In HTML, every single tag can have the class attribute. A class selector targets
the value of a class attribute of a tag. A class attribute can be used multiple
times in a document and applied to different elements.

For example, both <p> and the tag have the class attribute with the value
of "highlight" assigned to them, so they both get the style applied to them:

<p class="highlight">Someone has been murdered!</p>

<p>What was the possible weapon?</p>

A candlestick

<li class="highlight">A lead pipe

A rope

.highlight {color: #ffcc00;}

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 21

Because you can use a class selector many times in a document with multiple
elements, it is very flexible and portable.

You can increase the specificity of a class selector by attaching it to
an element selector, which would cause the style to be applied only to
an element with a class attribute with that value.

So, from the example above, if you wanted only an with the class="highlight"
to have the color declared, you would change the selector to this:

li.highlight {color: #ffcc00;}

ID

Id selectors target an element with a particular id attribute. Ids help you zero
in on a particular element, because you can only use an id once in any docu-
ment. Ids have a very high specificity weight.

<div id="maincontent">

<p>Would Nancy Drew ever write a tell-all? Yes, she would.

➥ In ”Confessions of Nancy Drew”

➥ you’ll find out that being a teen sleuth is not all the glitz and

➥ glamour that you may think.</p>

<p>Still want to be a detective? Then keep reading. <img

src="fingerprint.jpg" alt="fingerprint"></p>

</div>

#maincontent {background-color: #eee;}

IDs and Element Selectors
You could use the element that the id is associated with in the selector

like so:

div#maincontent {background-color: #eee;}

In this case, I added div. However, because the id that you are using is

unique to the page, the addition of the element name is unnecessary.

The results would be the same.

 From the Library of Wow! eBook

ptg

22 CSS Detective Guide

Contextual selectors (relationship-based)
There are several selectors that focus on target elements based on their rela-
tionship with other elements in the document tree. The important thing
to remember about all of the relationship-based or combined selectors—
also sometimes called combinators—is that the target element is the final
element of the combinator. It is easy to get distracted by all of the selectors at
the beginning, but they are only there in reference to the element at the end.

Let’s take a look at the different combinations available.

Descendant

Descendant selectors select the element that is a descendant of another
element in the document tree.

<div id="sidebar">

<h2>Missing Jewels</h2>

</div>

 The syntax is as follows:

ancestor selector (space) descendant selector {property: value;}

So to target the <h2> that is the descendant of the <div>, we would write this:

div h2 {color: green;}

Child

A child selector targets an element that is a child of another element.
Remember that a child is a direct descendant of an element in the document
tree (as opposed to a more distant descendant).

<p>Here is text that is forcefully emphasized.

➥ More text, but that is only normally emphasized.</p>

Here’s the syntax:

parent selector > descendant selector {property: value;}

So to target the element that is the child of the <p> element, we
would write this:

p > strong {font-family: Tahoma, sans-serif;}

tip
Be sure to check the
browser su
ort for
the selector you want
you use. Su
ort
for some of the
contextual selectors
varies greatly. S� the
Resources section for
g�d references.

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 23

Sibling/adjacent

A sibling selector (also known as adjacent) selects an element that is next
to another element in the document tree.

<div id="sectiontwo">

<h3>Priorities</h3>

<p>Things to accomplish today</p>

Interrogate suspects for the case of the Lost Content

Track clues for the case of the Notorious Em

Clean kitchen

</div>

 This is the syntax:

sibling selector + sibling selector {property: value;}

To target the element next to the <p> element (which are both
 descendants and children of the <div> element), we would write this:

p + ol {font-family: Georgia, serif;}

Pseudo-class selectors
Pseudo-class selectors let you select elements that are not part of the docu-
ment tree, but rather are events or qualities of certain elements.

Link pseudo-classes

You use link pseudo-classes to target link text in its various states.

■ :link targets an unvisited link

■ :visited targets a visited link

Dynamic pseudo-classes

These pseudo-classes are typically used on the link element, but you can apply
them to any element on the page as well.

■ :focus targets any element that is in focus

■ :hover targets any element that is being selected by a pointing device
(such as a cursor)

■ :active targets any element that is activated by the user (such as
an active link)

note

We will explore
more complex
variations of
pseudo cla�
combinations
in Chapter 2.

 From the Library of Wow! eBook

ptg

24 CSS Detective Guide

 The order of these pseudo-classes is important as it mimics the cascade
that the browser follows, and most of the states are mutually exclusive.
For example, you must have a regular link state before you have a visited
link state.

Many people use the mnemonic LoVe For HAte to remember the order :link,
:visited, :focus, :hover, :active. Usually, all of the link styles are written
together:

a {color: #3f0;}

a:link {text-decoration: none;}

a:visited {color: #0f3;}

a:focus {text-decoration: none;}

a:active {color: #f03;}

a:hover {text-decoration: underline; color: #636;}

Esoteric selectors
These selectors are part of the CSS specifications, but not as widely used
because of support issues with some browsers. Over time, however, the use
of esoteric selectors will probably increase. I encourage you to check recent
browser-support charts to determine which browsers support these selectors.
Several helpful browser-support charts are listed in the Resources section.

Other pseudo-classes

■ :first-child targets any element that is the first child of its parent element.

this list item is a first-child.

this list item is not.

li:first-child {font-variant: italic;}

■ :lang(n) targets any element on the basis of the language that has been set
for it.

<cite lang="fr">Faites les bon temps rouler!</cite>

:lang(fr) { font-face: Gigi, sans-serif;}

Pseudo-element

Pseudo-elements also target entities in the document that are not explicitly
part of the document tree.

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 25

■ :first-letter targets the first line of text within an element.

<h1>Solving your first case</h1>

<p>Make sure you act cool, calm, and collected. Remember

➥ everything you have learned about deduction, and take your

➥ toolkit.</p>

h1 + p:first-letter {font-size: 110%;}

■ :first-line targets the first letter of a line of text within an element.

<p>Once you arrive at the scene of the crime, you have to start

➥ gathering the evidence. Hopefully, they won’t have tidied up

➥ before you got there!</p>

p:first-line {font-weight: bold;}

■ :before specifies content to be inserted before a given element.

#breadcrumbnav:before {content: “Current page:";}

■ :after specifies content to be inserted after a given element.

<p>the crime took place at 13:00.</p>

.time:after {content: "hours";}

Attribute

Attribute selectors let you target an element by its attribute or attribute value.

■ selector[attribute] targets a selector with a particular attribute.

<a href="http://www.mst3kinfo.com" title="Mystery Science Theater

➥ 3000"> Mystery Science Theater 3000

a[title] {font-variant: italic;}

■

selector[attribute="value"] targets a selector with a particular attribute
and specific value.

img[src="catchathief.jpg"] {border: 1px solid #999;}

■ selector [attribute~="value"] targets a selector with a particular
 attribute and value where the value is one of multiple values separated
by a space.

img[alt~="CSI"] {border: 1px #ff8000 solid;}

note
Weirdly, the value
does not n�d to be
quoted.

 From the Library of Wow! eBook

ptg

26 CSS Detective Guide

■ selector [attribute|="value"] targets an element with an attribute that
contains values separated by a hyphen in a list.

img[title|="large"] {border: 1px solid #000;}

STYLES OF WRITING CSS
 People have different styles for writing their CSS code. You want to aim for

maximum ease of readability and scanability for yourself and anyone else
who may read your code after you.

Here are some ways of writing your style rules that can make your code
more readable.

Style rule all in one line

selector {property: value; property: value; property: value;}

Pro: All of the styles are on one line and thus easy to find in the document.

Con: It may be difficult to scan to find the property-value pair you are looking for.

Selector separated from style rules
selector {

property: value;

property: value;

property: value;}

Pro: The style-declaration block is on a separate line from the selector, which
can make it easier to find both the selector and the declarations.

Con: Breaking the declarations onto separate lines may cause the style-sheet
page to be marginally larger.

Selector separated from style rules, declarations
indented
selector

{

 property: value;

 property: value;

 property: value;

}

 From the Library of Wow! eBook

ptg

INVESTIGATING THE SCENE OF THE CRIME 27

Pros: The style-declaration block is on a separate line from the selector, and
with the declarations indented, it’s easy to distinguish between the selector
and the styles. Style declarations are easy to scan. You can add new declarations
without worrying about the end bracket.

Con: Breaking the declarations onto separate lines may cause the style-sheet
page to be marginally larger.

In all the cases above, the line breaks have no effect—the page will render
the same. There are many other slight variations, but ultimately, it just boils
down to your personal style. The way you think and find information visually
will determine what best works for you.

PRELIMINARY CSS TROUBLESHOOTING TIPS

At this point, with the core concepts of the cascade and the structure of
 selectors under your belt, you have a good idea of how to approach any
future coding crime scenes. But you also need to be able to correctly identify
the evidence. By focusing on the syntax patterns for the different kinds of
selectors and style rules, we can arrive at the first set of foundational trouble-
shooting tips for style declarations.

Basic style syntax troubleshooting
Selectors

Check spelling. ■

■ If grouped, make sure you have commas between selectors. Make sure
there is no comma between the selector list and the opening curly bracket,
and that you don’t accidentally use double commas.

If combinators, check that your combinator syntax is correct.■

Properties

Check spelling.■

Check that you are using the correct property name.■

■ Check that you are using the correct format and order (such as
with shorthand properties).

If multiple, make sure you have semicolons between the ■

property:value declarations to separate them.

 From the Library of Wow! eBook

ptg

28 CSS Detective Guide

Values

Check spelling.■

Check that you are using the correct unit of measure for the value.■

Check that the value is an acceptable value for the property.■

Where applicable, make sure the value is properly enclosed by quote marks.■

Declaration block

■ Make sure your declaration block is enclosed with curly brackets (not square
or angle brackets).

■ Make sure your whole style declaration ends with a semicolon (which, with
the end curly bracket, essentially delimits the end of the declaration).

In the markup

■ If you are linking to an external style sheet using the <link> tag, make sure
you have rel="stylesheet".

■ If you are embedding styles, make sure you have a closing </style> tag.

 Typical Tip-offs
How can you know what the culprits of your problems are? Here are some
outcomes to look for:

Outcome/Problem Possible Culprits

The style doesn’t show up at all on

the page

• a nonexistent or misspelled selector

• a missing opening or closing curly bracket

• rel=”stylesheet” missing from the <link> tag

• incorrect URL to the style sheet in the <link> tag

The styles lower in the style sheet

don’t show up on the page.

The previous style declaration wasn’t properly

closed with a semicolon or an end bracket.

The style shows up, but is applied

to the wrong element.

Your combinator selector probably has improper

structure and is targeting the wrong element.

These guidelines are just the beginning. As we start to review the tools of the
trade, you will learn some time-honored techniques for writing better and
more efficient CSS code, as well as some intermediate troubleshooting tips.

 From the Library of Wow! eBook

ptg

29

2

WHILE I WOULD HAVE PREFERRED TO ATTRIBUTE
this saying to Sherlock Holmes, it was Benjamin
Franklin who stated, “an ounce of prevention is worth
a pound of cure.” That adage is rarely as true as when it
comes to troubleshooting CSS.

A STRONG REPERTOIRE OF PROPER TECHNIQUES
will put you on a good footing from the start. These
tools create the equivalent of a neighborhood watch,
discouraging CSS felons and forestalling a significant
number of potential future offenses. When the game's
under way, you'll be ready!

 From the Library of Wow! eBook

ptg

30 CSS Detective Guide

Advanced Selectors and
S�le Declarations
Selectors pinpoint elements on the page, in order to apply styles to the
elements. To build the components of your detective toolkit, we will take
a closer look at styling elements with advanced selectors.

GROUPING SELECTORS
As you learned in Chapter 1, a selector can be a list of elements:

selector1, selector2, selector3 {property: value; property: value;}

 This technique of having multiple selectors for a style declaration is referred
to as grouping selectors. Grouping helps decrease the size of your style sheet,
because instead of using the same declaration for each element, you can list
them together.

For example, you could take code like this:

h1 {font-family: Verdana, sans-serif;}

h2 {font-family: Verdana, sans-serif;}

h3 {font-family: Verdana, sans-serif;}

h4 {font-family: Verdana, sans-serif;}

And condense it down to this:

h1, h2, h3, h4 {font-family: Verdana, sans-serif;}

 Isn’t that better? It’s easier to read and find what you may be looking for, and
it’s only one line of code instead of four!

COMPLEX RELATIONSHIP SELECTORS

The contextual selectors—pseudo-elements, pseudo-classes, and attributes—
are sometimes considered advanced selectors, which I consider complex
because they combine selector types. You can create ultraspecific selectors
using all of the essential selectors in combination.

For example, with any of the link pseudo-classes, you can have selectors
like these:

a.aboutus:link {text-decoration: none;}

#unav a.aboutus:link {

note
The first line is a
pseudo-element
with a cla�, while
the second block is
a pseudo-element
with a cla� as a
descendant of an id.
The third example is
an element with a
cla� as a child of an
element with a cla�
that is a descendant
of an id.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 31

text-decoration: none;

color: #ffcc99;}

#footer ol.firstcollinks > li.highlight {font-weight: bold;}

Once you identify which element to target, you can combine multiple types
of selectors to create highly specific contextual selectors that will target any
element on the page like a laser.

MULTIPLE CLASSES TO ONE ELEMENT
Another cool technique is to apply multiple class styles to an element.
Although this is not a selector itself, it is an advanced way to use
class selectors.

Say you have these two style rulesets:

.leftfloat {float; left;}

.thinborder {border: 1px solid #000000;}

And say you wanted to apply them both to a single element on the page. Easy.
All you have to do is refer to both styles like so:

<img src="magnifyingglass.png" class="leftfloat thinborder"

alt="magnifying glass" />

Both styles will be applied to the image.

This technique works best with styles that are fairly straightforward and
widely applicable. While you are creating your page and beginning to form
your styles, see which ones can be structured as simple styles so that you can
stack them up via the class attribute.

STYLE SHORTHAND

Now it’s time to get tricky. I introduce to you shorthand styles.

Style shorthand was created to act as a way of condensing multiple style
declarations into one. Once you understand the rules for each set of short-
hand properties, you will find that they are easy to use.

Thankfully, not all properties have a shorthand equivalent—that would be
a lot to remember! There are only a limited number of groups of properties
that take shorthand. The main ones are border, padding, margin, background,
font, and list-style.

 From the Library of Wow! eBook

ptg

32 CSS Detective Guide

There are three points to keep in mind when using style shorthand:

1. You do not have to state all of the values, but there are certain values that
you must establish in order for the style to be applied.

2. Any value that you do not provide explicitly will be filled in by the default
value for that user agent (aka browser); so if you want a particular value,
you absolutely need to make the value explicit—otherwise the browser
will use its own value.

3. The order of the values can be important for certain properties. Some
values are dependent upon the explicit declaration of other values.

Shorthand properties
Shorthand properties are extremely consistent. Again, it’s all about patterns.
Once you understand the pattern for constructing shorthand styles for one
set of properties, you will know what to do with the rest of them.

Margin

Have you written margin properties like this?

#localnavigation {

margin-top: 10px;

margin-right: 10px;

margin-bottom: 10px;

margin-left: 10px;

}

Shorthand can reduce the above code to this:

#localnavigation {margin: 10px;}

“But no,” you say, “my code is much more complicated than that: I have four
different values established, not just one.” As the French would say, pas de
quoi! — it’s nothing! All you have to do is follow the logical syntax:

margin: margin-top margin-right margin-bottom margin-left;

In other words:

margin: 10px 5px 20px 15px;

Note the pattern here: it is like clockwork, literally. The positions follow the
clockface starting with 12 o’clock, so if you can tell time, you can remember
the order of the values. Some people use the mnemonic TRouBLe to remember
the order, but I find the clockface image easier. Go with whatever works for you.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 33

If you include one value, all four sides will have the same margin. With two
values, the top and bottom with both have the first value, and the left and
right will have the second value. If you include three values, the first value
defines the top-margin, the second value defines the left- and right-margin
values, and the third value defines the bottom-margin.

Padding

The padding shorthand property condenses the padding-top, padding-right,
padding-bottom, and padding-left properties into one.

As with the margin shorthand property, you can establish one value for all
four positions:

padding: 10px;

Or use two values, for the top/bottom and right/left positions:

padding: 5px 15px;

 That’s 5px of padding on top/bottom and 15px for the right/left.

Or three values—one each for the top, the right/left, and the bottom:

padding: 10px 5px 15px;

That’s 10px of padding for the top, 5px for the right/left, and 15px for
the bottom.

Or finally, four values, one for each position:

padding: 10px 5px 20px 15px;

You’ll recognize this as 10px top padding, 5px right padding, 20px bottom
padding, and 15 left padding.

These order notations work for the margin property as well.

Border

You may have written CSS code that looks like this:

#maincontent {

border-width: 1px;

border-style: solid;

border-color: #eaeaea;

}

You can condense all of that code into one shorthand border style:

#maincontent {border: 1px solid #eaeaea;}

 From the Library of Wow! eBook

ptg

34 CSS Detective Guide

You probably gleaned the syntax from the example:

border: border-width border-style border-color;

In this case, the order of the values is not important. You could list them in
any order and the style would still show up correctly. However, if you keep to
this standard order, it will be easier to detect mistakes.

What if you want to establish width, style, and color for multiple borders? It
can be done! Other border shorthand properties are as follows: border-top,
border-right, border-bottom, border-left.

In the case of the border shorthand properties, it is good to know the default
values. If you don’t declare them, the default values are as follows:

border: medium none color;

This means that if you want the width of the border to be medium, then you
don’t have to declare it. Similarly, if you want the border to be the same
color as the text, you don’t have to declare that. The only required value is
border-style. As long as you have that one value, the style will be applied to
the element.

Background

The background shorthand property can really pack a wallop, because it
condenses a lot of properties into one tidy package. The background property
encompasses background-attachment, background-color, background-image,
background-position, and background-repeat.

Here is the syntax:

background: background-color background-image background-attachment

background-position background-repeat;

 The order is unimportant, and there are no required values.

background: #aaa url(maltesefalcon.jpg) fixed 50% 50% no-repeat;

Here are the default values:

background: transparent none scroll 0 0 repeat;

In terms of the background position, it is important to know that if you
declare only one of the background position values but not the second;
the declared value will be the horizontal value; and the background image
will be vertically centered.

note
When declaring a
background image,
you will generally
want to declare a
background color
as well.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 35

Font

Much like the background property, the font property reduces a lot of infor-
mation into a little space. The font shorthand property incorporates the font-
style, font-family, font-variant, font-size, font-weight, and line-height.

A word to the wise: for this property to work correctly, you do need to declare
both the font-size and the font-family.

Here is the syntax:

font: font-style font-variant font-weight font-size/line-height

font-family;

And an example:

p.intro {font: italic normal normal .9em/1 Palatino, serif;}

In the font shorthand property, the one value that is dependent upon
another is line-height. You cannot establish the value of line-height
unless you have first established the font-size, and it must come directly
after font-size, separated by a /.

The default value depends on both the element and the browser, but is
 generally this:

font: normal normal normal 1em/1.4em serif;

Lists

Finally, we are left with list-style. The list-style shorthand property
brings together the longhand list properties of list-style-image, list-
style-position, and list-style-type.

Syntax:

list-style: list-style-type list-style-position list–style-image;

Example:

ul {list-style: square inside url("squaretarget.gif");}

Default:

list-style: disc outside none;

 From the Library of Wow! eBook

ptg

36 CSS Detective Guide

Color shorthand

I’m sure you know that you can use either color names such as red or hexa-
decimal numbers such as #ff0000 for color values in styles. There are addi-
tional options.

You can use the RGB number values like so:

.callout {color: rgb(255,0,0);}

Or use RGB color percentage values:

.callout {color: rgb(100%, 0%, 0%)}

However, the true gem in color notation is the three-digit hexadecimal short-
hand. With this color shorthand, a color like #ffcc00 becomes #fc0.

Do you see the pattern? You can truncate the number only if the values in
each R, G, and B position are the same number. Thus, a color like #fea02c
cannot be represented in color shorthand, nor can #fe3399.

SHORTHAND TROUBLESHOOTING TIPS

Shorthand is great, but like any part of CSS, it can lead to trouble. Here are
some things to watch out for:

1. Know the default values.

Remember that any value you don’t explicitly establish will take on the
default value. You may actually want to use the default value. However,
if you do not, be sure to provide the property value that you want
applied instead.

2. Know your shorthand syntax.

Use references to double-check and make sure you are using the correct
values for the desired result.

3. In some cases, beware of the order of property values.

The order is important when one property’s value relies on the previous
establishment of another property’s value. If they are not in the proper
order, the browser may ignore the declaration.

4. Establish all the values that are necessary for that particular short-
hand property.

Some declarations will be completely ignored if any of the required values
are missing.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 37

CSS Reset
 If our goal is to start off strong from the beginning, employing a CSS reset

may be one of the strongest tools in our arsenal against code gone afoul.

WHEREFORE ART THOU, RESET?

Or, in modern verbiage, “Why use a CSS reset?”

Much to many a developer’s chagrin, the properties for elements are not
consistent across user agents. These differences between the browsers’
default presentation styles wouldn’t be so bad if they only affected minor,
infrequently used HTML entities. But the differences are evident with the
most major tags and properties, such as the padding and margins for head-
ings and paragraphs; the indentation for headings, lists, and other tags; and
line-heights. Although this may not seem like much, you will find that these
differences can have a strong effect on the visual rhythm and look-and-feel
of a page.

In order to avoid the rendering ills that result from the variations in browsers’
style sheets, many coders explicitly reset the styles for the most common
elements in their style sheets. In this way, one no longer has to fall victim to
the idiosyncrasies of the various browsers, and can be more in control of how
consistently the styles are rendered. In essence, a CSS reset creates a tabula
rasa and paves the way for a more consistent cross-browser user experience.

TO RESET OR NOT TO RESET, THAT IS THE QUESTION
 There are benefits to employing a CSS reset. Not only can you control

the margin and padding of common elements, but you can also establish
the font size, weight, family, and style. You can be deliberate about each
element’s presentation.

However, some argue that the reset is overkill, and that it makes them
spend more time trying to get elements to show up the way they want. Some
suggest that using a CSS reset focuses too much on trying to achieve pixel-
perfect layouts, and that the errant styles don’t need to be cleared completely,
merely overwritten with your own styles.

As a CSS detective, you need to pinpoint what and where your problems are in
order to solve them. To that end, starting with a clean slate will make solving
your CSS mysteries easier.

 From the Library of Wow! eBook

ptg

38 CSS Detective Guide

AS YOU LIKE IT: APPROACHES AND
RECOMMENDATIONS

You’ll decide how you want to structure your CSS reset based on which
 properties of which elements you want to clear and reestablish.

While you could create your own CSS reset, there are many available already.
I recommend finding a nice repository of them online and choosing one that
fits your needs.

Here is an example of a basic, minimal CSS reset:

html, body {

 padding: 0;

 margin: 0;

 }

html {font-size: 1em;}

body {font-size: 100%;}

a img {border: 0;}

This CSS reset clears the padding and margins of the HTML and body
elements, and forces a reset on the base font-size. It also removes the border
from image links.

Please see the Resources section for where to find other great CSS resets.

Beware the Universal Selector Reset
Some people use the universal selector in their CSS reset. You may come

across this code:

* {margin: 0; padding: 0;}

This is a drastic reset: it removes the margin and padding for every element
on the page, including inline elements that already have no padding or margin.

It also removes the padding on all form elements, which you don’t want to do.

Furthermore, the universal selector reset triggers some specific bugs in

certain browsers. Some elements won’t take the property back despite an

explicit style declaration later in the style sheet.

I recommend against using this particular form of CSS reset. Instead, think

ahead about which elements you want to control explicitly, and then use

only those as the selectors for your reset styles.

tip
It helps to know the
differences be��n
the popular user
agents’ default
s�le sh�ts. S� the
Resources section for
reco� endations
of sites that list and
compare various
browsers’ properties for
co� on elements.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 39

Building a Solid Foundation
While it is easy to rush into trying to create and complete your website proj-
ects as quickly as possible, thorough planning will prevent many coding errors
down the line and should be a key practice in your CSS detective approach.

TAILORED HTML

You want your HTML to perfectly fit the needs of the layout, reflect the
proper page semantics, and create the ideal container for the content. This
kind of tailored HTML is easy to achieve if you think it through.

Plan out your page from the outside in and from the top down. Sketch out the
page sections and figure out ahead of time what the semantics will be. This
process starts your brain thinking right from the start about how to construct
the code and what styles you will need to create.

Code your HTML first
While you may think it is more efficient to create your CSS styles while you
are coding the page’s HTML, think again. Write the HTML markup first,
before you create even one style declaration.

Why? Because by doing so, you’ll thoroughly understand the semantics of
the document and document tree: creating styles based on relationship and
context will make much more sense.

Create semantic hooks
As you know, your styles will be applied to the ids, classes, and elements
you employ as selectors. The ids and classes that tie your styles to the page
elements are sometimes referred to as hooks.

Base your id and class names on the semantics of the page, not on the visual
aspects of the design. Why? The page semantics are based on the structure
and meaning of the information on the page, and thus will stay the same.
The visual layout, as well as colors and other design elements, may change
with a site redesign or branding effort.

For example, if you name something redrightcolumn, but eventually the
colors are changed and the column is no longer on the right, that element
will be much more difficult to identify. Instead, focus on what the content is
or what the content does. A better name would refer to the content of that
page section—for example, favoriteslist.

 From the Library of Wow! eBook

ptg

40 CSS Detective Guide

Generating Selector Names
The CSS specification states the following:

In CSS 2.1, identifiers (including element names,
classes, and IDs in selectors) can contain only the
characters [A-Za-z0-9] and ISO 10646 characters
U+00A1 and higher, plus the hyphen (–) and the
underscore (_); they cannot start with a digit.

This means you can’t name your style by starting

with a number like 101solutions {...}, as the

style would simply be ignored in some browsers.

You shouldn’t start a selector with a hyphen or an

underscore either, although they can be used later

in the selector name.

Practice preventive medicine
Think of it this way: you are working to achieve “CSS Wellness.” As you know, it is
better to not catch a cold at all than to try to get over one. So let’s enact some preven-
tive measures to avoid coming down with bad cases of “divitis” and “classitis.”

The <div> tag is intended to create logical sections in the HTML document—
such as the header, main body, sidebars, and footer—for both semantic and
presentation purposes. One should be able to think correctly of the <div> as
a division in the page. However, many developers take a good thing too far, and
fall ill with divitis by creating divs that lend nothing to the meaning of the page.

When creating your HTML markup, ask yourself:

■ Do I really need this <div>? What do I really want this <div> to do?

■ Is this <div> about semantics or is it just for presentation?

■ Is there another element already present, one with semantic meaning, to
which I can assign an id?

Build your immunity

■ Keep in mind the semantic meaning of block-level HTML elements, and
use them appropriately when creating markup.

■ Leverage block-level HTML elements instead of adding an additional <div>.

 This code . . .

<div id="pagehead">

 <div class="strong">Heading</div>

</div>

<div id="subhead">

<div class="strong">Sub Heading</div>

</div>

<div>This is the content</div>

tip

When you create the
markup for a page
with a complex layout
and many content
sections, one helpful
technique is to notate
the end of a page
section with an HTML
co�ent. So at the
end of each major
page division, you
can a
 a co� ent
a�er the closing tag.
This will help you
s� the div pairs more
easily and as a unit/
single element.

<div id="bodycontent">

...

</div>

➥ <!-- end bodycontent -->

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 41

. . . becomes this code:

<h1>Heading</h1>

<h2>Sub Heading</h2>

<p>This is the content</p>

■ Assign multiple classes to one element, instead of targeting the element
with an additional <div> with an id and a descendant element with a class.

No-no:

<h2>Who has a clue?</h2>

<div id="cluelist">

<li class="suspects">Colonel Mustard

<li class="suspects">Miss Scarlet

<li class="suspects">Professor Plum

</div>

#cluelist {font-variant: small-caps;}

li.suspects {font-style: italic;}

Yes, yes:

<h2>Who has a clue?</h2>

<ol class="cluelist suspects">

Colonel Mustard

Miss Scarlet

Professor Plum

.cluelist li {font-variant: small-caps;}

.suspects li {font-style: italic;}

■ Consider altering some of your design decisions if it means lightening the
load of the page by removing unnecessary divs.

 Classes fall prey to a similar affliction. Classitis often occurs when coders
create classes for every little style instead of working with the rules of the
cascade to create only styles are that are well targeted and necessary.

Build your immunity

Understand the cascade and use it to your advantage.■

Make a rule that you will only declare a property once, then be strategic
and deliberate about placing that style early enough in the style sheet so
that it will be properly inherited.

 From the Library of Wow! eBook

ptg

42 CSS Detective Guide

Pay attention to default values of elements.■

Unless you have done a style reset, there are many properties that you do
not have to declare, such as font-weight: bold for any of the header tags
or margin: 0; on inline elements.

■ Keep selectors that you will use on multiple elements generic by not tying
them to a particular tag.

You can establish some basic styles for all the style sheets that you will use
all the time, such as these three for applying and clearing floats:

.left {float: left;}

.right {float: right;}

.clear {clear: both;}

SLEEK CSS

At this point, your HTML should be expertly constructed to show off the
assets of the content. The next step is to create CSS that completes the well-
groomed and polished presentation. Challenge yourself to write the most
trim and graceful CSS that you can. Some people would argue that well-
written code is poetry. You may be no bard, but the tips below can guide you
toward creating your own CSS masterpieces.

Know the properties and values
I’m not suggesting that you memorize all of the CSS properties and their cor res-
ponding values. However, you should know them well enough to know when
something just does not look or feel right and you need to check a reference.

Know your values, and remember default values (or have a great reference).■

Know the range of applicable units of measurement.■

 There is a wide range of units of measurements for length, height, and
font size in CSS. Be aware of what is possible for the property and value.

Zero Units of Measurement
You have probably heard this before, but it bears repeating: when you use 0

as the value, you don’t need a unit of measurement. Thus, 0px, em, %, and

so on are simply 0. Save yourself a little time and trouble!

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 43

■ In declaration values there are no quotation marks, except when
declaring a string.

 The only times you may use quote marks are with strings, and with URLs,
like body {background-image: url("images/fingerprintduster.jpg");},
or multiple-word font names, like #comments {font-family: Georgia,
"Times New Roman", serif;}. And even in these cases, the quote marks
are optional.

Use shorthand
There was a method to my madness in presenting style shorthand rules at
the beginning of this chapter: using shorthand is a great way to increase the
efficiency of your CSS.

When you employ shorthand, however, keep these tips in mind:

Remember your shorthand syntax, defaults, and order when necessary.■

■ Use any longhand properties to override the shorthand—for example, if
you want to change only one border out of four. It is easier to write two
style declarations than it is to write four.

■ Employ color shorthand when possible and avoid using color names.

Go with the flow
Remember, the cascade is your friend. While CSS was designed to separate
presentation from content, the cascade was expressly designed to save time
and effort. Sure, you could repeat declarations, but why do so when it’s
unnecessary? Work with the cascade, not against it:

■ Declare the styles that you want inherited at the beginning of the style
sheet, and use an appropriate ancestor element.

■

Create selectors using the lowest-weighted elements (see the section
“Specificity,” in Chapter 1) so you can easily overwrite them later if
need be.

 The descendant selector, with its higher specificity, is an ideal way to
target elements, and it is the most widely supported CSS selector by the
popular browsers.

■ Place selectors that need to override any inherited styles later in the style
sheet. It is a good practice to comment them to indicate what they are overriding.

tip
Remember to place
the longhand s�le
directly a�er the
shorthand s�le so
you don’t have to go
hunting for it.

tip
Be careful with color
shorthand and
search-and-replace.
Sometimes making a
change for 333 may
change a color like
de3332. If you do a
search and replace
for shorthand colors,
remember always to
include the # in �ont
of the color.

 From the Library of Wow! eBook

ptg

44 CSS Detective Guide

STANDARDIZED STYLE SHEETS
Now that you have written fantastic HTML and have constructed streamlined
CSS styles, the last step to getting all of your CSS in top shape is organizing
the style sheet itself.

Why organize?
Keeping your styles organized not only makes it easier for you to scan and hit
upon the styles you’re searching for, it also helps anyone else who might be
looking at and even working in your code.

Tips for optimized, organized style sheets
1. Order the selectors and declarations.

Group the selectors.■

 By grouping selectors, you use your style declarations only once in the
document and thus avoid code bloat.

#header a, #unav a {text-decoration: none;}

Indent the descendant selectors.■

 By indenting descendant selectors, not only can you easily identify any
given style, but also you can see the document tree hierarchy from the
way the styles are listed. From this, you can leverage the cascade, as the
descendant styles are listed under their ancestors.

 #unav {

 background-color: #ddd;

border-top: 1px solid #333;

border-bottom: 1px solid #333;

font-weight: bold;

text-align: right;

}

#unav ul {

 display: inline;

 }

#unav ul li {

list-style-type: none;

display: inline;

}

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 45

Alphabetize the style declarations.■

 This is by far one of the most useful tips that I know. Alphabetizing the
declarations by property name means you don’t have to hunt through a
list of styles only to miss the one you are really looking for. If you know
they are in alphabetical order, you can quickly zero in on the one you want.

 body {

 background-color: #fff;

 color: #636363;

font-family: Trebuchet MS, Arial, Helvetica, sans-serif;

 font-size: .8em;

margin: 1px 0 0 0;

 text-align: center;

 }

2. Organize the style sheet.

Now that you have your styles indented with the declarations in alpha-
betical order, organize the style sheet itself. Using the comment tags, create
logical visual dividers. There are several ways you can divide your style sheet:

By section■

 Start with the reset styles, then create sections by element groups, like
headers, text and link styles, navigation lists, forms, comments, and
additional areas; or create sections according to the way the actual page
code is laid out.

/*****Reset*****/

/*****Basic Elements*****/

/*****Generic Classes*****/

/*****Basic Layout*****/

Choose the way that makes the most sense to you, and stick with it.

Table of contents■

 Once you have grouped your styles in your style sheet, make a table of
contents at the top of the style sheet so that you or any other developer
working on it will know the sequence of the sections.

/* Table of Contents

1. CSS Reset Styles

2. General Styles

 3. Navigation

4. Main Content

 5. Footer

 */

 From the Library of Wow! eBook

ptg

46 CSS Detective Guide

 Mark your section title so that you can treat it like a flag, and so you can
do a quick search for the term and jump right to the section.

Here are some ideas on how you can do it:

/* footer styles */

/* =Footer */

/* ----------> Footer <-----------*/

3. Provide additional information.

Developer information■

 Include the file-created date and file-last-edited date, as well as your
name and email address so people can contact you with questions.

/* stylesheet information

File created date: 09.15.1890

File modified date: 01.12.1976

Developer: Agatha Christie

Developer contact: ladymallowan(at)iampoirot(dot)com

 */

Color-scheme information■

 This is a great way to keep track of the colors that you are using in the
design when you are using hexadecimal colors. I often start with the
relevant section or purpose, followed by the exact hex color number,
and then a color description.

/* styles for orientation nav colors, etc.

home {background-color:#660099;} purple

about us {background-color:#330099;} blue

services {background-color:#006633;} green

fees {background-color:#660000;} burgundy

contact us {background-color:#cc3300;} orange

*/

4. Create multiple style sheets.

 Once you have your code optimized and your style sheet organized into
sections, you may consider breaking your one large style sheet into
multiple style sheets, especially if your single style sheet is really long and
has many styles per section. Using the @import directive, you could have
the first style sheet call the rest in order for the styles to be implemented.

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 47

@import "styles/reset.css"

@import "styles/comments.css"

@import "styles/footer.css"

One advantage of doing this is it makes your style sheets modular and
easier to manage. A disadvantage of this practice is that you have to hunt
through multiple docs for a particular style, whereas if they are all in one
style sheet, you can easily find whatever you are looking for with a text search.

 It’s OK to Start Off Slowly
If trying to remember all of these tips and rules is too overwhelming, then

do this: first, write all of the styles for your page the easiest way for yourself,

even if that means using longhand and repeating declarations. Then go back

over your styles and condense them according to these guidelines.

Intermediate CSS
Troublesh�ting Tips
Spelling errors will still account for a huge share of CSS coding misdemeanors,
but here are some additional troubleshooting tips:

PLAY BY THE RULES
 1. Avoid default styles and make your selectors as specific as possible.

Instead of this:

a {text-decoration: overline;}

Target and focus like this:
#sponsorlinks a.topsponsor:link {text-decoration: overline;}

2. Watch for competing rules.

Rules declared multiple times in the style sheet■

 Nope:
dt {padding: 0;}

 and then at the bottom of the style sheet
dt {padding: 10px 20px;}

 From the Library of Wow! eBook

ptg

48 CSS Detective Guide

 Yep:
dt {padding: 0}

Use the rule just once in the stylesheet, and that’s it.

Rules that compete by mistake■

 Nah:
 <q id="hammett" class="hammett">I haven't any sort of plans

➥ for the future, but I reckon things will work out in some

➥ manner. </q>

.hammett {font-family: Century; }

 and later in the style sheet
#hammett {font: italic 12px Tahoma, sans-serif;}

Yah-sure, you betcha:
 <q class="hammett">Thanks for the information about what we

➥ call business. </q>

.hammett {font: italic 12px Tahoma, sans-serif;}

Use it just once in the stylesheet, and that’s it.

3. Remember to close comments.

This is straightforward. You will know this is the problem if a ton of styles
are not being rendered on the page, and you know that you created them
and they are definitely in the style sheet.

4. If using !important, make sure it always goes inside the semicolon of
the declaration.

Oops:
 h1, h2, h3,h4, h5, h6 {font-family: Garamond, Georgia,

➥ "Times New Roman", serif; !important}

There ya go:
 h1, h2, h3,h4, h5, h6 {font-family: Garamond, Georgia,

➥ "Times New Roman", serif !important;}

5. Remember the naming rules for selectors.

Don’t start with a number or any character other than a letter.

Not so much:
#23horsepower.engine {margin: 0;}

Better:
#commentblock {border: 1px solid #999;}

 From the Library of Wow! eBook

ptg

TOOLS OF THE TRADE 49

CURB YOUR CREATIVITY
1. Watch for mismatching ids and classes.

Wrong:

<div id="gallery">

</div>

.gallery {padding: 5px 10px;}

#galleryitem {float: left; border: 2px dotted #ddd;}

Right:

<div id="gallery">

</div>

#gallery {padding: 5px 10px;}

.galleryitem {float: left; border: 2px dotted #ddd;}

2. Beware of using a nonexistent property.

Take one:
p.copyright {horizontal-align: center;}

Take two:
p.copyright {text-align: center;}

3. Steer clear of nonexistent values.

Nice try, but . . . :
img.bio {float: yes;}

Much improved:
img.bio {float: right;}

4. Watch out for using the incorrect value for a property.

Problem:
li.last {font-variant: italic;}

Corrected:
li.last {font-style: italic;}

 From the Library of Wow! eBook

ptg

50 CSS Detective Guide

MORE IS NOT ALWAYS BEST
1. Check for extra commas, colons, or semicolons within the style declara-

tion, and semicolons at the end of the style declaration, after the brace.

Not good:
#booklist ol.whodunit, ol.felons, {list-style-type:: upper-roman;};

Better:
#booklist ol.whodunit, ol.felons {list-style-type: upper-roman;}

2. Check for extra white space, especially between a period [.] and class name
or between a value number and its unit of measurement; or forgetting
white space between shorthand properties.

Wrong:
. murdermystery {color: #dec;}

#suspects {padding: 5 px 10px 15px 20px;}

 #suspects.murdermystery ol li {font:

➥ .9emHelvetica,"Trebuchet MS",sans-serif;}

ol .murderlist {}

Right:
.murdermystery {color: #dec;}

#suspects {padding: 5px 10px 15px 20px;}

 #suspects.murdermystery ol li {font: .9em

➥ Helvetica,"Trebuchet MS",sans-serif;}

ol.murderlist {}

3. Check for multiple units of measure for one value number.

Bad:
#famousdetectives {width: 90%px;}

Good:
#famousdetectives {width: 90%;}

 From the Library of Wow! eBook

ptg

51

3

NOW THAT YOU’VE LEARNED HOW TO INVESTIGATE
the scene of the crime and you have the tools to crack
your cases, it’s time to take the next step and learn
techniques to thoroughly interrogate any code and
make it ’fess up as to where exactly it went wrong.

 From the Library of Wow! eBook

ptg

52 CSS Detective Guide

Validating Your Hunches

We’d all like to believe that our code is beyond reproach and has no issues,
but most of us have also had that lingering suspicion that we’ve missed some-
thing. In either case, it’s a good idea to validate.

Validation is a method of interrogating your code to see if it is written
correctly. Validation checks the markup and style code that you write against
the rules of that particular code version. A validator is a tool, usually online,
that finds all of the instances where your code does not match the standards
of the specification written for it, and then generates results to show you
what needs to be changed.

The biggest advantage of validators is that they catch small errors that are
often difficult to spot but that may have larger ramifications for the rest of
the document and related documents. Minor problems in HTML may be
negligible on their own, but when combined with a style sheet could cause
major problems. In short, validation is a great error-finder and quality-
 assurance tool.

To validate, you need a code validator, either online or stand-alone. You can
either point the validator to the location of the document that you want
checked (on the web or locally on your computer), then upload the document
to the validator; or cut and paste the code and submit it that way. Then, using
the document type, or doctype, definition (DTD) that you’ve included in your
document, the validator runs the page code against the DTD written by the
W3C, and provides a list of results based on the comparison. The results will
be a line-by-line itemized list of issues in your document (unless the page is
error free).

There are many good code validators for HTML, but the one most often used
is the one from the W3C, http://validator.w3.org/. In order for the validator
to work properly, your HTML document must have a proper doctype declara-
tion at the beginning of it. (I will cover doctypes in greater detail in the next
section of this chapter). A list of additional HTML markup validators can be
found in the Resources section.

The W3C also has a validator for CSS: http://jigsaw.w3.org/css-validator/.
In contrast to the HTML validator, it doesn’t require a doctype declaration
in your CSS. Instead, you have to indicate which version of CSS you’re using.
There are also some CSS validators whose results will show which properties
specific browsers support. For a list of additional CSS validators, please see
the Resources section.

 From the Library of Wow! eBook

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

ptg

GIVING THE THIRD DEGREE 53

“HUH? WHAT ARE YOU SAYING?”

Interpreting validation results takes some practice. The output is based on the
standards of the language definition, and is really geared more for standards
geeks than everyday web developers. However, with a little practice, you’ll
get the hang of it.

For example, here is a standard output:

End tag for X omitted, but its declaration does not permit this

And here is the translation:

You are missing a closing tag.

 The W3C has a great resource to help with interpreting validation results
called “Explanation of the Error Messages for the W3C Markup Validator”
(http://validator.w3.org/docs/errors.html), which explains many of the
more esoteric results that the validator produces.

WHAT VALIDATING CAN AND CANNOT DO

Validating is perfect for finding all the little mistakes that can make for
rendering problems that cause much pulling of hair and gnashing of teeth.
Once you have validated your code and fixed the issues, you can rest assured
that your page is free of syntax errors.

However, validating your code is no guarantee that your pages will show up
the same across all browsers (would that it were so easy!). To achieve this feat,
you will have to test your pages in various browsers and fix them accordingly.

Also, some of the issues that the validator points out may or may not be rele-
vant to your particular case. You may be expressly using a style that you know
will not validate, or you may choose to ignore CSS warnings if, for example,
styles higher up in the document take care of the issue through the cascade.

Take a look at this warning, for example:

Same colors for color and background-color in two contexts #container

and h1

 The warning resulted from this code:

#container {

background-color: #fff;

border-left: 2px solid #936; ➡

 From the Library of Wow! eBook

http://validator.w3.org/docs/errors.html

ptg

54 CSS Detective Guide

border-right: 2px solid #936;

margin:0 auto;

padding: 0;

width: 950px;

}

h1 {

color : #fff;

font-size : 1px;

line-height : 0;

margin : 0;

}

The h1 was styled with the color as part of an image-replacement technique
to keep the text on the page, but invisible. In this case, then, the warning is
easily ignored.

Finally, there are some mistakes that the validators just won’t pick up. If you
are still having problems, you will need to go over the document with a fine-
tooth comb.

ERRORS VS. WARNINGS

When you first start validating, the validator may return a lot of errors in
your markup and both errors and warnings in your CSS code. Errors definitely
need to be addressed and fixed, for they indicate that your code is incorrect
and does not conform to the standards in that instance. Warnings, however,
are simply spots in your code that may cause potential problems. Many
common warnings are accessibility related, such as the color warning above,
and aren't related to how the page actually renders. With practice, you will
learn to determine how serious a warning is and whether the problems it may
cause are acceptable or not.

TROUBLESHOOTING TIPS FOR VALIDATION
 ■

Make sure you have the correct doctype defined so that the validator
knows which DTD (document type definition) to validate against.

 ■

Start validating early. Don't wait until you've finished creating your
markup and styles. You will find simple errors sooner, and avoid what
might look like a lot of errors if you validate later in the process.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 55

■ Validate frequently. A good rule for HTML is to validate after you
add a major section of code. For CSS, validate after you style each
major section.

■

Set color and background color for ancestor elements high in the document
tree so that the styles cascade down to all of the descendants. Then you can
rest assured that you can safely ignore any warnings.

■

If you do have a lot of errors and warnings, don't freak out. Often, there
is one error early in the document that causes a cascade of other errors.
Start addressing the errors from the top of the document down, and then
revalidate. You may find that a list of 30 errors is cleared with one or two
tweaks to the code.

Bait-and-Switch Tactics:
Doc�pe Sniffing and Switching

Not only does a doctype declaration let the validator know which rules to
check your markup against, but the doctype declaration also affects how
the browser renders your pages by triggering different browser modes.
An unexpected browser mode could be contributing to your problem, so
understanding doctypes may help you get to the bottom of your code's
misdemeanors.

ANATOMY OF A DTD

Being familiar with the parts of a doctype declaration will give you
a better idea of what to look for when choosing and troubleshooting
your doctype declaration.

Here is the doctype declaration for HTML 4.01:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

➥ "http://www.w3.org/TR/html4/strict.dtd">

■ !DOCTYPE tells the browser that this is an element that defines
the doctype definition.

■ HTML is the root element of the document.

■ PUBLIC specifies the availability of this DTD.

 From the Library of Wow! eBook

ptg

56 CSS Detective Guide

■ "-//W3C//DTD HTML 4.01//EN" is the formal public identifier (FPI), which
indicates the registration, owning organization, which markup language is
being used, and which human language it is in.

■

http://www.w3.org/TR/html4/strict.dtd is the formal system identifier
(FSI)—that is, the location of the definition document.

 There are many incomplete doctype declarations floating around on the
web, so be sure to check the W3C’s complete list of valid doctypes at
http://www.w3.org/QA/2002/04/valid-dtd-list.html.

BROWSER MODES

If validating still hasn't revealed the felony in your code, there may be
extenuating circumstances. Browsers can render pages differently based on
the doctype declaration at the head of the HTML document. Doctypes were
originally designed to enable standards-savvy developers to choose how they
wanted their pages rendered intentionally, while simultaneously allowing
pages that were older or created by standards-ignorant applications to render
as well.

There are three rendering modes: standards (or strict), quirks (or loose),
and almost standards. The process by which a browser reads a document
to determine in which mode to render a page is called doctype sniffing or
doctype switching.

Standards (or strict) mode■

In compliant browsers, standards mode will render your pages according
to rules of the doctype definition that you have established at the head
of your document. This means that your pages will show up the way you
expect them to: the markup will be rendered according to the rules of the
version of (X)HTML you are using, and the CSS will be rendered according
to the latest CSS specification.

Quirks (or loose) mode■

Ah, quirks mode. Quirks mode is for the pages that time and developers
have both forgotten: for the pages that have lost their way and are without
a doctype, for the pages that have only partial doctype definitions or
incorrect doctype syntax, and for the pages created by WYSIWYG editors
and page generators that neglected to bestow upon their page progeny
a proper doctype declaration.

 From the Library of Wow! eBook

http://www.w3.org/QA/2002/04/valid-dtd-list.html

ptg

GIVING THE THIRD DEGREE 57

In essence, quirks mode renders pages based on the browser’s best guess,
with some browsers rendering pages the same way they did up to circa
2001. This was an era of poorly written invalid markup and before the
popular browsers released versions that conformed to the standards
written for the web by the W3C for both HTML and CSS. Yes, we are
talking browsers rendering like Netscape Navigator 4.0 and Microsoft
Internet Explorer 5 (IE5), to name names. The exact particulars of
rendering do vary slightly between different browsers.

Needless to say, having your pages rendering like those of the previous
millennium would throw a huge wrench in the works of determining
what the problems are in your code and making the most effective
and necessary changes. Most likely, you will want to avoid having your
 documents trigger quirks mode.

Making Quirks Mode Work for You
Before the advent of HTML5, we used to be able to throw the browser into

quirks mode by using <!DOCTYPE HTML> as the doctype, but that no longer

works. Try it out in the w3c validator and you'll see why: your document gets

validated as an HTML5 page! When HTML5 becomes better supported and

therefore more widespread, writing doctypes will be a lot simpler.

But you can still activate quirks mode by deleting the doctype altogether.

Why would you want to? Well, really only during testing, to be sure of what

mode your pages are being rendered in.

Almost-standards mode■

Almost-standards mode is exactly the same as standards mode except for
the rendering of images in table cells, in which case it operates like quirks
mode. This mode was created to let developers have pages with sliced
images in tables that can display as desired without a lot of workarounds.
However, if you’re not using tables to assemble sliced images and you’re
doing table-free CSS-based layouts, you won't really need this mode for
your pages.

 From the Library of Wow! eBook

ptg

58 CSS Detective Guide

Choosing the right doctype
After all of the above, you may be thinking, “OK, I get that I need to have the
proper doctype, but how do I choose the right one?” There are great charts
on the web that list every doctype and which browser mode each triggers.
However, to get you up and running quickly, here are some general guidelines:

All doctype declarations below HTML 4.0 will trigger quirks mode.■

■ Documents with incomplete URLs in the FSI or FPI will trigger
quirks mode.

■ Documents using the HTML 4.0/4.01 strict doctype with the correct
syntax will trigger standards mode.

■ All XHTML strict documents (regardless of version number) with the
correct syntax will trigger standards mode.

■ Documents with HTML transitional or frameset doctypes and XHTML
transitional doctypes will trigger almost-standards mode.

 The HTML5 doctype will trigger standards mode.■

 Tip-offs that an undesired browser mode may be
behind your problems
Although not exhaustive, here is a list of some of the rendering you may see if
your page is being rendered in quirks mode against your will:

Text inside a table has not inherited styles as you expected it to.■

 Widths and heights seem to be off.■

Default font size is small.■

List bullets do not inherit the font size of the list itself.■

Line-height does not show up as expected.■

 ■ The <hr> element renders differently than you expected.

TROUBLESHOOTING TIPS WITH DOCTYPES

While not the most dangerous character on the block in terms of wreaking
havoc, doctypes are significant enough to be on the list of suspicious char-
acters. Here is an overview of what to look for to make sure they don’t make
your rendered page look like it's going down the wrong path.

■ Be sure to have a doctype, or your browser will render like it's 1999.
Literally.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 59

Not this:

<html>

<head>

<title>Hunting for Suspects</title>

</head>

<body>

...

</body>

</html>

But more like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>Hunting for Suspects</title>

</head>

<body>

...

</body>

</html>

Make sure the doctype declaration syntax is correct.■

No:
<!-- DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" -->

Yes:
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Make sure the declaration is going to a valid DTD.■

I don't think so:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN”

➥ "http://www.superstandards.org/mydtd/looseygoosey.dtd">

Definitely:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

➥ "http://www.w3.org/TR/html4/loose.dtd">

 From the Library of Wow! eBook

ptg

60 CSS Detective Guide

■ Make sure the declaration has the correct URL—one that is not truncated,
incomplete, or relative.

Not gonna work:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "DTD/xhtml1-strict.dtd">

There we go:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

■ Avoid the XML prolog if using the XHTML doctypes: it will trigger quirks
mode in some browsers. Use the meta tag instead.

Instead of this:

<?xml version="1.0"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Do this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>Confessions of Crooked Stylesheet</title>

</head>

Zeroing In on the Problem
You've created your pages, chosen a doctype that triggers the browser mode
that you want, and validated your code. You've even employed a CSS reset,
as discussed in the previous chapter. However, your pages still don't look the
way you want them to. It's time to turn up the heat on your document to
expose the real culprits in your code.

DEBUGGING INTERROGATION TECHNIQUES
To help you get the information you need, here are some time-honored
 techniques that act like truth serum for getting your code to spill the source
of its problems.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 61

 You’re Going to N�d Some Backup
Before you start serious troubleshooting, make sure you back up the original

document. You always want to be able to start over if you ever get too far

off-track during your debugging process.

Shine some light on it
To better determine where and what the problems may be, highlighting
elements is often the first method for targeting areas of code.

Background

You can highlight the background of the element with a color so that you
can see the element in contrast to its surroundings, and also see the element's
boundaries.

Add this declaration, and the element should pop right off of the page at you.

background-color: pink;

Adding a contrasting background color does not add to the size of the element's
box and does make the element easier to see. However, if there are nesting
issues that you want to bring to light, then you should employ the next tech-
nique of adding a border. Also, background colors will not help you see any
margin issues.

Border

You can put a border box around an element by adding the declaration to
the code of the suspicious element:

border: 1px dashed red;

As effective as this is, you do need to be aware that adding a border to an
element will alter its width and height. If you use this technique on an inline
element, this may not be an issue. However, if you use this on a block-level
element, such as a <div> that is floated and part of a fixed-width pixel-perfect
page layout, you may end up breaking the layout of the page by those few
additional pixels. And again, this method does not help troubleshoot
margin issues.

note
You can use whatever
color you want, as
long as it provides
contrast to the
element’s s�les.

note
Again, use whatever
color you want, as
long as it provides
contrast to the
element’s s�les.

 From the Library of Wow! eBook

ptg

62 CSS Detective Guide

 G�d to Know: Universal Border
Another technique employing a border is to apply it to every element using

the * selector. Adding the style declaration

* {border: 1px dashed red;}

at the beginning of the style sheet will cause every element in the page to

have a dashed red border.

If this seems like overkill, then use a descendant selector to target all

elements in a particular section, for example:

#footer * {border: 1px dashed purple;}

It will definitely help you see the true lay of the land in your document.

Outline

You can also use the outline property. This method has an advantage over
border because instead of adding to an element’s width and height, as border
does, no dimension is added since an outline is visually placed over the edges
of the element's box. This method is most effective in browsers that support
the W3C box model, because outline is not supported by browsers that get
the box model wrong, namely IE6 and IE7.

So you can use this declaration to delineate the element:

outline: 1px dotted orange;

without affecting the layout of the page.

Get ugly

You've been playing nice guy by using border or background by itself. To take it
up a notch and make an element jump out at you, make it really ugly. Change
the font to one that you hate (for me, that would be Comic Sans); make the
font color a crazy, brash color; and add an equally garish background color,
border, or outline.

Here is an effective piece of code that you can add to a selector. It will make
you want to put a paper bag over its head, but it makes it much easier to see.
I like to think of it as “The Ugly Treatment”:

tip

You may have noticed
that the example
declarations use
color names instead
of hex or shorthand
hex numbers. This
is intentional. This
way, you make a
distinction be��n
the “true” declarations
versus the ones for
debu�ing, while
also visually fla�ing
the declaration
as temporary.
Furthermore, it is
easier to k�p track
of which section is
which color while
you are testing, and
easier to do a find
when you are ready
to delete them.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 63

/* start - the ugly treatment */

border: 1px dashed green;

background-color: yellow;

color: magenta;

font-family: MS Comic Sans;

/* end - the ugly treatment */

Wreak havoc with space
Another technique is to add either margin or padding values to the questionable
element to see if it causes any changes in the element or surrounding elements.
Ironically, the most powerful value to establish is 0. Why? Remember the
earlier discussion about default browser styles? Explicitly establishing
a value of 0 overrides whatever value the browser was rendering by default.

If setting margin or padding value to 0 doesn’t make anything come to light,
then try changing the values in very slight increments—for example, from
.9em to .89em.

Because either option will cause a change in how the element renders, it may
bring the problem to the surface.

Make it !important

You can also use !important to make a declaration override any conflicting
styles. If the element renders differently, it can indicate that a style later on
in the style sheet is causing a conflict, and that improper order of your styles
may be the source of your problem.

Get specific
Another way of isolating problems in your code is to leverage specificity. By
making a selector more specific, you can see if the problem is in the cascade,
the selector itself, or the style rules you have established for it.

In the style sheet

For example, take this:

.replies {...}

And turn it into this:

#comments .replies {...}

 This change makes the selector more specific, and will direct the styles that
you think might be the problem to very particular spots in the document.

 From the Library of Wow! eBook

ptg

64 CSS Detective Guide

You may find that your selector is not being correctly applied to the
desired element.

By limiting the target of the style, you should gain insight into the source
of the issue.

Inline

Although inline styles are not good for standard page development, during
troubleshooting you can leverage them and the cascade to help isolate your
problems by process of elimination.

By taking a style declaration out of the head of the document (or an external
style sheet) and making it inline in the markup, you can see if the problem
persists or if anything changes. If something does change, it may mean that
there is a declaration higher up in the document that is conflicting with
the style that you changed to inline, and it's the other style that is creating
the problem.

Once you have determined that the problem is elsewhere, you can remove
the inline style and put it back in your external style sheet.

Incapacitate it
You might just need to eliminate parts of your markup and code to better see
the root of the problem. Here are several ways to do so.

Comment out sections of the code

Commenting out certain parts of the code is another way to isolate the parts
that are buggy. You can comment out either parts of the HTML markup or
sections of the CSS code. In both cases it is important to remember that
you cannot nest comments, so you need to keep track of where you have the
comment tags, or your page will end up looking even more off the mark than
when you started. Using a text editor with code coloring will help you find
comments in a jiffy.

As a reminder, here are the comments:

■ HTML: <!-- comment -->

In action:

 <div id="container">

 <div id="header">

<h1>The Line-Up</h1>

 </div>

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 65

 <!-- <ul id="nav">

<li class="first">Shifty Sam

Unreliable Ray

Double-talking Dan

Alibi Allen

Wiley Warren

 -->

</div><!-- end container -->

■ CSS: /* comment */

In action:

body {

background: #E2DEE5 url(bg_suspects.jpg) no-repeat 0 0;

color: #993366;

font: .85em "Trebuchet MS", sans-serif;

margin: 0;

}

#container {

background-color: #fff;

border: 1px solid #369;

margin: 0 auto;

padding: 0;

width: 950px;

}

#header {

margin: 0;

padding: 5px 0 0 0;

}

/* temp nav removal

#nav {

background-color: #E2DEE5;

border: 2px solid #cdcecd;

margin: 0;

padding: 6px 0;

width: 100%;

} */

 From the Library of Wow! eBook

ptg

66 CSS Detective Guide

Comment out sections with the code

A less intrusive method—it’s gentler on the markup and you don’t have to
remember whether or not your comments are nested—is to use CSS proper-
ties to “comment out” sections of the page by making them invisible while
keeping the code intact.

There are two options: visibility: hidden and display: none.

The property visibility: hidden will prevent the element in question from
being seen. However, the element will continue to occupy its normal space on
the page.

In contrast, display: none will not only hide the element from view, but
also take it out of the normal flow of the page, and other elements will take
its place.

Adding either of these properties to the selector of the page section that you
are trying to eliminate will help you more easily see the area that you feel is
problematic. The one you use will be based on whether or not you want the
element to take up its normal space on the page.

During debugging, add the style declaration to the style sheet for the section
that you want to make disappear temporarily. Or, leverage the start tag of
the element that starts the section (such as a <div> or a) by adding
style="display: none;".

If there isn't a convenient element to comment out the part of the page you
want, then it's fine to create a temporary <div> to contain it expressly for the
purpose of making it disappear for a while. Give it an appropriate name like
id="testdiv" to remind you that it is temporary and is to be removed once
you have finished debugging.

For example, if you used the CSS property option, it would look like this:

#header {

margin-top: 0;

padding: 5px 0 0 0;

visibility; hidden;

}

If, instead, you add the style to the HTML, it would look like this:

<div id="header" style="display: none;>

<h1>The Line-Up</h1>

</div>

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 67

Quick disable

Commenting out sections both manually and by CSS works great, but if
you want to dispense with the niceties and get right to the point, there is
a quicker way to disable styles in both the CSS code and in the markup.

In the CSS, add an x in front of the suspicious selector to essentially switch
off its rendering. (You could also add the word disabled, but that is more
typing.) For example, if you had this:

.highlight {...}

You could turn it into this:

x.highlight {...}

Similarly, in the markup, you can disable a style from being applied to
an element thus:

<div id="xnav">...</div>

or

<li class="xfirst">...

Word to the Wise: Double-check
Is a problem continuing to make you crazy no matter what you do? It doesn’t

hurt to make sure that your style does what you think it does. Check the

specification again and read up on examples of the style in action. You might

not be getting the results that you expected because that property simply

doesn’t do what you thought!

TROUBLESHOOTING TIPS FOR DISABLING AND
ZEROING IN

Check the selector syntax and alter it to target the correct element(s).■

■ If the selector is not being applied, check to see if the style above it is
properly closed, or that the hook you are using in the HTML document
is catching the style.

note
You could also write it
as disabled.highight
{. . .}.

tip
Even be�er than
using a plain x, I
reco� end using
x-. Why? Because
it will be easier to
find with a search
in the document
when you are done
troublesh�ting and
n�d to remove it.

 From the Library of Wow! eBook

ptg

68 CSS Detective Guide

■

To be sure that the selector you are working with is targeting the piece of
code and area of the page that you are fixing, make it stand out from the
rest of the page.

■ If you add styles to the selector to make it bright, obvious, or ugly and
nothing happens, then the problem is that the selector is not being applied,
or you have another selector overriding the one you are working with.

■ If you think a selector is being overridden, check styles lower in the style
sheet, as they have more cascade precedence than higher ones.

■ If the problem is not in the section you thought it was, then search for the
problem in the markup and styling of the section immediately before it.

 G�d to Know: Developer T�ls
You could kick it old school and do all of your troubleshooting by hand in

Notepad, but thankfully there are many, many developer tools available that

make zeroing in on problem areas a whole lot easier.

Many developers swear by Firebug, the Developer Toolbar, and the DOM

Inspector for Firefox, some love Dreamweaver, while others use MSIE’s

Developer Tools.

Play around with several to find the one that best fits your working style.

Resorting to Drastic Measures

At this point, you've spent some time trying to get the document to fess up,
but it remains tight-lipped about sharing the source of the problems. When
even the most reliable methods of getting the answers are only moderately
effective, then you have to resort to last-ditch efforts and call in the SWAT
team of techniques.

START WITH THE BASICS
If you haven't done it already, you should simplify the cascade by putting the
styles back in the document. Taking the styles from external to document-
level will eliminate a layer of complication and rule out problems with the link
syntax, the path to the CSS document, or the @import rule.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 69

PROCESS OF ELIMINATION

You can lull the document into a false sense of security by initially being
gentle. When you are troubleshooting, often less is more. Instead of adding
style declarations and potentially making the problem worse and the solution
even more elusive, try taking them away. Adding styles often hides the bug
under more code and compounds the problem. Instead, execute a process of
elimination where you take out pieces of markup and CSS declarations until
you have the bug isolated.

In a copy of the original document, remove sections of markup one by one
until you have only the section where the bug is. You want to keep going until
there is no code left to remove without also losing the problem as well.

Then shift your focus to the CSS and remove all the unnecessary styles. You
want to reduce your declarations to the bare minimum needed to keep the
bug. Many times it's the declarations you wouldn’t suspect that are the ones
at fault.

Create a minimal test case
When you strip out as much of your CSS code as you can to isolate the section
you are dealing with, and to make sure that other elements aren't affecting
it, you are creating a minimal test case. This process is extremely helpful in
letting you see clearly all the factors that may be contributing to your bug.
Sometimes margins, widths, heights, floats, and other properties can influ-
ence each other in unexpected ways. Simplifying the code can reveal any
dubious interactions.

One way to pare down the code to the essentials is to follow the steps above
by taking out code from the document until you isolate your area.

Another way to make a minimal test case is to put the section in question into
a blank (X)HTML document, and make the styles for it inline. This converts
your test case into the most compact and immediate version possible. If
a section works by itself, then you know that the problem is coming from
conflicting styles elsewhere in the document.

If you have multiple problems, start with the one highest in the document
and work your way down, following the same minimal test case process. Just
as in validating, sometimes fixing problems higher up in the document hier-
archy eliminates issues in the lower elements.

 From the Library of Wow! eBook

ptg

70 CSS Detective Guide

DISMANTLE IT COMPLETELY

Although you are already getting tough by stripping out sections of the
markup and code, you may still be holding back from really laying into the
document and showing it who's boss once and for all. But you can take the
process of elimination a step further and burn the document down to the
ground to smoke out the true problems.

You would use this technique only in the most drastic situations, when you
absolutely can't find the source of the problem through any other means. In
essence, you fully disassemble the uncooperative markup and style sheet to
get as close to ground zero as possible. During the process of dismantling
everything you have done, you should manage to ferret out the nefarious bug.

Save your original document as a backup. In the test document, make sure all
of the styles are embedded and not external. Open a new file to place all the
code that you cut out of the test file.

Start cutting away sections of code from the test file and save them to the
cache file. After every cutting of code, view your test file in the browser to see
if the bug is still there. When you get to a point where the bug is no longer
there, you know that you have found the guilty section.

If you can't isolate the bug, continue until you have stripped the document
bare, and then move on to rebuilding the document.

REBUILD IT FROM THE GROUND UP

The teardown process has left you with a blank document, but still no insight
as to the source of the problem. It's time to reverse the process, then, and
build it back up, piece by piece, until you can reproduce your bug.

Upon adding each section back, test the file and see what changes have
occurred and if the bug is triggered. By keeping track of everything you
do, you will be able to pinpoint the section of the markup—and then,
 correspondingly, the code—where things started going afoul.

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 71

The Shakedown:
A Debu�ing Proce�
Over the course of this chapter, you've hardened yourself to become a ruthless
interrogator of CSS code and markup. You now have techniques to make your
code waive the right to silence. But let’s put them all together, for a solid
debugging process.

Word to the Wise:
Practical Troublesh�ting Advice
A thorough interrogation takes time and patience. Remember to take breaks

from the process if you need it. Some people find that a walk, a run, music,

or other break can help their subconscious work on the problem and get to

the ah-ha moment that changes the course of their problem solving.

STEPS TO FINDING THE BUG
 Here is a step-by-step process for finding and isolating the code that is

wreaking havoc in your document:

Start at the beginning
1. Make a backup copy of the original files in case the process goes awry.

2. If styles are external to the document, make them document-level.

Covering Your Bases
It may be overkill, but still, you might want to save a copy of every major

change you make in the code so that you have revision versions. This could

be very useful if you get to a point where you have the bug but then lose it

and need to backtrack a few steps. However, it will generate a lot of files to

keep track of. It really depends on how fastidious you want to be.

 From the Library of Wow! eBook

ptg

72 CSS Detective Guide

Due diligence
3. Validate both the HTML and the CSS.

Fix any errors that the validators reveal. Check your page in
a compliant browser.

4. Rule out the doctype by deliberately throwing the browser into quirks
mode to see if the problem is still there.

Eliminate to isolate
5. Eliminate sections of the HTML:

■ Determine the exact location in the code where the problem starts.
If the area is not obvious, try the various methods for highlighting
elements to make it more visible.

■ Remove (through commenting out or actual deletion) the markup for
the sections before the problem and anything after. Remove extra-
neous headers, footers, navigation bars, sidebars, and so on, to create
a minimal test case.

■ With the target section isolated, remove the piece of code immediately
before the problem to see if an element above is the trigger.

■ Remove the pieces in smaller and smaller increments until something
changes—if it does, you have found your errant piece of markup!

■ If nothing changes, then the problem is in the styles, so it is time to
move on to isolating them.

6. Eliminate sections of the CSS:

■ Take out all of the styles for the areas of the page you have removed,
leaving only the general styles for the page and all the styles for the
section of the page you have isolated.

■ If the problem is still there, then comment out the body styles. If the
problem is still there, then you know the problem is probably in the
styles for that section.

■ Remove the styles in the test-case area one by one. When you have
a change with your issue, you have found your errant style!

 From the Library of Wow! eBook

ptg

GIVING THE THIRD DEGREE 73

Rebuild to target
7. Create a copy of your original document. In this copy, remove all of the

HTML in the document between the <body></body> tags. Yes, all of it.

8. Take out all your CSS declarations. Yes, all of them.

9. Add back the sections of the page, one by one:

■ Add back the main layout <div>s.

■ Add back the CSS declarations for the main layout <div>s incrementally,
and view the page in the browser after every addition.

■ Start with the essential CSS rules like size, positioning, margin, and
padding, one at a time. Save visual styles like fonts, colors, and back-
grounds for later.

■ Add temporary background-color or outline to the layout <div>s to
determine if they are where you expect.

■ Add back test content in the form of headers and paragraphs. Add their
spacing and border rules as well.

■ Add back test content in the form of lists, images, and so on. Add their
spacing and border rules as well.

■ Last but not least, add back font and line-height rules where applicable.

THE BIG FIX

The big moment of the grand confession has come: you've finally found your
bug! To fix it, you get to exercise your brain power and creativity. Here are
some ideas to get you thinking:

1. The fix may be a matter of margin or padding, where either establishing
an explicit value of 0 or making a very slight change in a value is all
you need.

2. You may need to augment the style declaration with an additional property
or several.

3. Conversely, you may need to remove properties.

4. You may need to change the property altogether to create the effect that
you want.

tip

Before a
ing
navigation menus
to the rebuilt layout
page, build and
test the menus in a
separate document to
be sure they function
the way you want.

 From the Library of Wow! eBook

ptg

74 CSS Detective Guide

Totally stumped and don't know what to do?

1. Double-check the property to make sure it does what you want.

2. Do a web search to see if there is a known bug for what you are experiencing
and to find the solutions posted for it.

 An Inte�ogator’s Work Is
Never Done

After trying the techniques in this chapter, were you able to make the shady
styles squeal? Did they finally offer up the whys and wherefores of their
crimes and misdemeanors? With all the ways of getting at the truth behind
your coding errors, I suspect the answer is yes.

However, we've only dealt with coding errors. There is an additional group of
shifty characters that you absolutely need to be familiar with before we can
start solving the cases: the browser bugs.

In the next chapter, you will meet some of the usual suspects—many of the
common browser bugs that trip up developers—and learn how to outwit
them from the start.

 From the Library of Wow! eBook

ptg

75

4

HERE THEY COME SHUFFLING IN: A MOTLEY CREW
of problems and persistent bugs that every CSS
developer has run up against. To become more familiar
with the most pernicious of these characters, let’s
line ’em up so that you can study their distinguishing
features and learn how to spot their modus operandi.
After all, forewarned is forearmed: knowing about
these bugs and their fixes should help you change
them from the bad and the ugly to the quick and
the dead.

 From the Library of Wow! eBook

ptg

76 CSS Detective Guide

Concepts to Remember

Before we begin identifying the bad guys, let’s quickly review a couple of
important foundational concepts. As a burgeoning CSS detective, you need
to keep key concepts like document flow, element type, and positioning at
the forefront of your mind. Bugs are most often found where one or more
element’s properties and qualities collide with a browser’s rendering engine.

DOCUMENT FLOW

Every element on a standard HTML page is placed within the “flow” of the
page: elements follow each other in the order in which they’re placed in the
markup source, wrapping to the next line when they reach the edge of the
browser viewport or the edge of a parent element with a set width.

Elements are either block or inline. In the flow, each category has distinct
characteristics and behavior.

A block element is its own entity, a contained “block” of information, which
is the width of the container surrounding it, unless a specific width is given.
In terms of the document flow, block elements flow after one another verti-
cally unless otherwise specified.

You are already familiar with most of the block elements: <div>, headers, <p>,
<blockquote>, , , <dl>, <table>, and several others. With a few excep-
tions, block level elements can contain text and other block elements as well
as inline elements as long as they are properly nested.

Inline elements flow after one another on the same line as the element
before them horizontally. An inline element can contain text and other inline
elements, as long as it is properly nested. Inline elements cannot contain
block level elements. Common inline elements are , , , <a>,
and , as well as other less frequently used elements.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 77

Elements are in the flow unless the author of the page specifically codes
them out of the flow. What does being out of the flow of the page look like?
The most common instance of an element being out of the page flow is when
an author attributes a position on the page to an image, usually by applying
the float property with CSS, but also by using positioning.

POSITIONING

You can control the placement of elements on the page with the CSS
position property.

Static positioning is the default. All elements on the page that are in the flow
have a position value of static.

Relative positioned elements are in the flow of the page but you can shift
their position by using the top, right, bottom and left offset properties
as well as by establishing a stacking order with z-index. The element is posi-
tioned in relationship to itself, so its position is calculated based on where it
would be located on the page if the CSS wasn’t telling it to move. Changing
the offset values of a relatively positioned element does not affect the posi-
tion of other elements on the page.

Absolute positioning takes an element out of the flow completely. The posi-
tion of an absolute-positioned element is based on the closest non-static
positioned parent element. If the direct parent element is not positioned,
then the absolute positioned element will search outward to the page’s base
element until it finds an ancestor that is positioned, or reaches the base
<html> element, which would make its position relative to the page itself. If
the direct parent is positioned, then the absolutely-positioned element will
be positioned with the parent element as the base for the offset values.

Fixed positioning is akin to absolute positioning, except that the base element
is always the viewport itself. Fixed elements don’t move, even when the rest
of the page elements scroll.

 From the Library of Wow! eBook

ptg

78 CSS Detective Guide

A Side-View: Positioning in 3-D
One fascinating aspect of positioned elements is

their place in the 3-D space of the page. Yes, it’s

true — as with the fateful discovery by Christopher

Columbus (or a Chinese admiral, depending

on who’s doing the telling), a browser page is

not actually flat, limited by two dimensions, but

rather has infinite layers in the third dimension

(Figure 4.1).

Positioned elements are placed on layers and

moved above the flow. They can actually be

stacked on top of each other by establishing

their z-index, which is based on the z-axis of the

three-dimensional grid. Z-index values with smaller

numbers are farther away from the user in space,

while those with larger numbers are closer. If not

established, then the z-index stacking order should

be determined by the source order in the markup.

Box model and z-axis hiearchy

background-color

border

margin*

 padding*

 content

background-image

 * transparent elements

positioned elements with z-index

z-index: 10

z-index: 20

 Figure 4.1 The box
model hierarchy with
z-axis positioned
elements.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 79

A Broken Box
According to the box model as written by the W3C, every element in HTML
is composed of a rectangular box consisting of multiple concentric layers
(Figure 4.2):

 ■ The content itself, defined by the four edges of the content box.

 ■ The padding around the content, which surrounds the content edge. If the
padding value is 0, then the padding edge is the same as the content edge.

 ■ The border, which surrounds both the content and padding. If the border
value is 0, then the border edge is the same as the padding edge.

 ■ The margin outside of the border. If the margin value is 0, then the
margin edge is the same as the border edge.

margin edge

border edge

padding edge

content edge

margin

border

padding

content

A BOXED SET OF PROBLEMS

The box model as written is a great idea. But for great ideas to work well,
everybody has to adhere to the rules (or understand them the same way).
Most browsers calculate the size of the box according to the W3C specifi-
cation, where the width of the box is calculated using the content box as
the base.

 Figure 4.2 The components of the element box.

 From the Library of Wow! eBook

ptg

80 CSS Detective Guide

For example, for this code:

#keysersoze {

border: 2px solid black;

margin: 5px;

padding: 10px;

width: 200px;

}

Most browsers would calculate the width as

2px+10px+200px+10px+2px=224px

However, Microsoft Internet Explorer 6, 7 and 8 in quirks mode and lower
versions of IE in any mode, calculate the width by including the border and
padding in the width of the content: a width of 200px would actually equal
2px+10px+176px+10px+2px=200px (Figure 4.3).

width

width

margin

border

padding

content

margin

border

padding
content

W3C
Box Model

Internet
Explorer

Box Model

 Figure 4.3 Different interpretations of the box model.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 81

 Whoa — that’s a significant difference! Obviously, this can cause problems.

A COMPLEMENT OF SOLUTIONS
If you are lucky, you might never have to deal with IE’s broken box model.
Fewer and fewer people are using IE6 and earlier, so there’s light at the end of
the tunnel. But if your pages do have to work in older browsers, here are some
tips that will help.

Stay in standards mode
Use the HTML 4.01 strict or any of the XHTML doctypes, as described in
Chapter 3.

Margin and padding workarounds
Be proactive in your styling:

Avoid declaring the margin and padding on the same item.■

■ Avoid declaring either the margin or the padding on an item where you
have declared a width.

■

Apply the padding or margin to the parent element, instead of the element
to which you want the padding to apply. The visual outcome will be the
same, but you will avoid the headache of having to try to fix an element
box that is dramatically smaller than you intended.

Employ a CSS reset
Instituting a full reset will allow you to deliberately set values for the padding
and margins of all of the critical elements on the page, and help you avoid
issues based on incorrect box model interpretations.

If you don’t want to go whole-hog and do a full reset for most of the elements
in the document, you can do a partial reset to establish the margins and
padding for divs.

 From the Library of Wow! eBook

ptg

82 CSS Detective Guide

IE Hacks We Can Live With
While developers lamented IE’s limited capacity to

render selectors, they soon learned to capitalize

on it with ways to serve alternate styles to browsers

based on the properties the browsers support.

I’m not a fan of CSS hacks, but there are times

when they effectively solve cross-browser

issues. When employing hacks, the goal is to use

effective, visible solutions that validate. Here are

some of the least complicated methods:

Underscore Hack

IE6 and lower understand properties that are

preceded by an underscore or hyphen while other

browsers will ignore them. The jury is out on whether

or not this is true to the CSS specification, but these

declarations will not validate, so use with care.

Example:

#content {width: 268px; _width: 260px;}

Star HTML Hack

The star HTML hack works because IE6 and lower

act as if the HTML element was the child of a

higher parent element, while other browsers only

accept HTML as the parent element of the page.

Therefore, the older IEs will accept a declaration

with * html at the beginning of it, while the rest

of the browsers will not. These declarations

will validate.

Example:

* html p {font-size: 1.2em;}

Child Hack

In versions IE6 and below, the child selector is not

supported, while all other browsers will recognize

and render child selector declarations. Leverage

this by writing the first declaration for IE and then

overriding it with a second declaration for the rest

of the browsers.

#nav {width: 30em;}

html > body #nav {width: 32em;}

Conditional Comments

Conditional comments used in the HTML markup

are interpreted by IE only, and are ignored by

other browsers because they are cached in

comment tags.

For example, you could serve an IE-specific

stylesheet via a conditional statement with

this code:

<!--[if IE6]>

<link href="ie6boxfix.css" rel="stylesheet">

<![endif]-->

Conditional comments do validate.

You can find more information on the syntax for

conditional statements in the Resources section.

 hasLayout (hasI�ues)
Now that we have gotten past IE’s broken box model, let’s tackle hasLayout.
Many of the bugs that exist in IE7 and earlier versions of IE are a result of
the hasLayout model. Once you have ruled out the broken box model as the
culprit for your issue, it’s time to see if the element has a layout problem.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 83

HASWHAT?

In versions of IE7 and lower, hasLayout is a quality that is assigned to an
element to give it the ability to render itself, sizing and arranging its own
contents (including child elements), as opposed to inheriting its rendering
properties from an ancestor element.

While you may be thinking that not that many people use IE7 (or even IE6),
think again. According to some web browser usage statistics, as many as
30% of users are still using IE7 and below in early 2010, so the numbers are
significant enough to justify having a better understanding of this particular
aspect of IE and how it affects elements on the page.

Some of the characteristics of an element having layout are:

 The element is treated as a block element for formatting purposes.■

 The element sizes and positions itself, and its children.■

 ■

The element is constrained to a rectangular shape. In other words, it can’t
flow around other elements (such as text does around floated images).

■ Margins between parent and children elements do not collapse correctly
when an element hasLayout.

 ■

Parent elements will not “shrink to fit” their hasLayout children. They will
expand to full width even when a smaller width is defined.

What is Shrink-to-Fit?
You have already seen “shrink to fit” or “shrink-wrapping” in action: by

default, a display block shrinks to the size of its declared width and height

unless otherwise specified. This is normal behavior. When shrink-wrapping

does not occur as expected, it could be an indicator that your element is

talking a walk on the buggy side.

If need be, you can force shrink-wrapping by applying these properties to

an element: float: left or right, display: inline-block or table, and

position: absolute.

Many of the bugs you may encounter in IE are due to an element not having
layout. In fact, one of the main uses of giving elements layout is to solve
dimensional bugs! For the most part, having layout causes an element

 From the Library of Wow! eBook

ptg

84 CSS Detective Guide

to act as a potentially more stable, independent entity incurring fewer
browser bugs. However, sometimes having layout causes an element to
behave weirdly.

I CAN HASLAYOUT?

Many block-level elements and elements with default heights already have
layout assigned to them, including <html>, <body>, <table>, <tr>, <td>,
<textarea>, <legend>, and <fieldset>. Additionally, floated elements,
inline-block elements, inline elements such as <hr>, , <input>,
<button>, <select>, and absolutely-positioned elements also have layout
by default. Note the absence of the <div> element from the list: <div> does
not have layout by default.

If you are dealing with an element that doesn’t have layout already assigned
to it, certain CSS properties will trigger layout in IE, changing the IE
hasLayout flag from false to true, thereby giving the element layout.

For example, the following properties and values will give an element layout:

float: left, float: right■

display: inline-block■

overflow: hidden, overflow: auto, overflow: scroll■

■ position: absolute, position: fixed (IE7)

■ height (any value other than auto)

■ min-height (any value other than auto in IE7 only)

■ width (any value other than auto)

■ min-width (any value other than auto in IE7 only)

■ zoom (any value other than normal)

Can I not hasLayout?
While you cannot remove layout from any element that has layout by default,
you can unflag an element that previously had layout triggered by overriding
the CSS property that set the hasLayout property later in the CSS cascade.
The later ruleset will undo hasLayout if there are no other conflicting proper-
ties that give layout later in the CSS (or with greater specificity)

note
zoom is a Microso�
proprietary proper�.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 85

 The following values can override previous properties that have set hasLayout:

width: auto, height: auto■

■ max-width: none, max-height: none (IE7)

position: static■

float: none■

■ overflow: visible (IE7)

■ zoom: normal (MS proprietary property)

A BLANKET HASLAYOUT APPLICATION

You can apply hasLayout to the main container and allow it to cascade down
to all of the children. This is a good way to proactively code to avoid any
potential issues from not having layout in IE6 and 7.

#container {overflow: hidden; }

* html #container {height: 0;}

 IE7 will act on the first set of styles, ignoring the star HTML hack declara-
tion, whereas IE6 and below will take the height declaration, treat it as a
min-height, and resize the page’s elements accordingly.

Quick hasLayout Activation
To turn on hasLayout in a pinch, here are some tips:

■ For IE7, use display: inline-block.

■ For IE6 and lower, use the height property, unless it conflicts with

another important property like overflow: hidden. The values 0, 1px,

and 1% work similarly.

 Fla� Floats
Floats are true champs of CSS. Designers use them for everything from
 positioning images on a page, to making lists horizontal, to creating complex
page layouts. However, their very ubiquity means that they are also often the
source of problems.

note
The first line clears
floats in modern
browsers and �ves
layout in IE7 and
the second line �ves
layout in IE6.

 From the Library of Wow! eBook

ptg

86 CSS Detective Guide

HOW FLOATS WORK

The float property is used to move elements on the page to either the far
left or far right of the containing element. Floating an element takes it out
of the flow of the document, pushes it to the farthest edge of its containing
element, and forces the other elements to wrap around it unless otherwise
specified. Once floated, an element acts like a block, even if it is an inline
element by definition.

The values for float are left, right, inherit, and none (default).

To send an element to the far left of its containing element, apply float:
left (Figure 4.4).

float: left

To send an element to the far right of its containing element, apply float:
right (Figure 4.5).

float: right

To have an element exhibit the same floating behavior as its parent element,
apply float: inherit.

When two elements with combined widths that are smaller than their
container are floated next to each other, they will stack horizontally and
be aligned by their tops (Figure 4.6).

float: left float: left float: left

Figure 4.4 An element
floated left.

Figure 4.5 An element
floated right.

Figure 4.6 Multiple
elements floated left.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 87

If there is not enough room for them to display next to each other, then the
following floated element(s) will be pushed down to the next line (Figure 4.7).

float: left

float: left

float: left float: left

In order to help the browser render the floated element better, it is always
best to provide a value for the width of a floated element. Images are the
one exception.

CONTAINING FLOATS

One of the first float issues that novice developers encounter is what happens
when you enclose one or more floats in a container.

Because a floated element is taken out of the normal flow of the document,
the element that contains only floated children has no content to provide
height. The parent element “collapses”: in essence, it doesn’t take up any
dimension around the floated elements (Figure 4.8).

float: left float: left float: left

This isn’t a problem if you know that this is the standard behavior, but if you
were expecting the element to expand to contain the float, it could be a nasty
shock. For the parent element to not collapse, you need is to clear the floats.

There are several ways to clear floats: by floating the parent element, by using
a form of the “easy clear” method, or by using the “simple clear” (overflow)
method.

Figure 4.7 Multiple elements
floated left. The last element is
pushed to the next line.

Figure 4.8 Collapsed parent
element containing floats.

 From the Library of Wow! eBook

ptg

88 CSS Detective Guide

Floating the parent
Floating the parent element itself is known as “float nearly everything” or
FnE. It’s a simple solution, because a floated element always grows to be at
least as tall as its tallest floated child, and it doesn’t require any additional
markup. However, you may then have to make other adjustments in the
styles to accommodate the parent element being floated.

<div id="notablequotes">

 <p class=”floatleft”>First day on the job, you know what I learned?

➥ How to spot a murderer. Let's say you arrest three guys for the

➥ same killing. You put them all in jail overnight. The next

➥ morning, whoever's sleeping is your man. You see, if you're

➥ guilty, you know you're caught, you get some rest, you let your

➥ guard down.</p>

</div>

#notablequotes {

border: 1px solid #999;

float: left;

padding: 30px;

width: 550px;

}

.floatleft {

border: 1px solid #333;

float: left;

margin-right: 30px;

}

Easy clear
If you have an inline or block level element following a floated element and
you don’t want the inline or block element to either wrap around or stack
next to the floated element, you need to apply the clear property to the
inline or block element. The clear property has meaning only for block-level
elements and floated elements that behave like block elements.

Apply clear: left to clear an element that has been floated left (Figure 4.9).

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 89

img {
float: left;
}

img {
float: left;
clear: left;
}

Apply clear: right to clear an element that has been floated right.

Apply clear: both to a subsequent element to ensure that the previous
floated elements are cleared on both sides (Figure 4.10).

#MainContent
float : left

#Sidebar
float : right

#Footer
clear: both

You can use clear: inherit to apply the same clear value to a child element as
its parent, while clear: none is the default value.

With the “easy clear” method, you create an entity with the generated content
property and then apply the clear property to it. You style the entity to take
up no space and disappear. On the page, it’s invisible but it forces your floated
element to clear.

Figure 4.9 Two elements
floated left. The second
element is clearing the
first float.

Figure 4.10
The footer
element clears
both floats.

 From the Library of Wow! eBook

ptg

90 CSS Detective Guide

 The traditional easy-clear is usually structured as follows:

.clearfix {display: inline-block;}

.clearfix:after {

 clear: both;

 content: ".";

 display: block;

 font-size: 0;

 height: 0;

 visibility: hidden;

}

 There is also a variation on the first easy-clear method that employs a space
instead of a period. With this method, you don’t have to be concerned with
trying to hide a generated character.

.clearfix {display: inline-block;}

.clearfix:after {

 clear: both;

content: " ";

 display: block;

 font-size: 0;

 height: 0;

 visibility: hidden;

}

This code is useful for the standard browsers, but you will need a different
clearing method for IE 6/7. The simplest easy-clear for those browsers is to
trigger hasLayout by assigning height or another property that gives layout,
but this wreaks havoc in browsers other than IE 6/7, so you should use it
with conditional comments:

<!--[if lte IE7]>

<style type="text/css">

#photogallery {height: 1%;}

</style>

<![endif]-->

note
The period is the
generated content: it
has neither size nor
height, and is hi
en.

note
The generated content
is simply a space.

tip
For more information
on conditional
co� ents, s� the
Resources section.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 91

Simple clear (using overflow)
The “simple clear” method is aptly named as it uses only the overflow property
to clear the float.

The overflow property tells the browser how to render the contents of
an element’s box when that content is larger than the dimensions (height
and width) of the element. If you think of an element box as a window, you
can easily visualize how the overflow property works and hides (or clips)
pieces of content.

The default is overflow: visible, which allows the content to be rendered
regardless of the element box’s dimensions. Interestingly enough, while the
content is shown outside of the parameters of the box, it does not affect
the flow of the page (Figure 4.11).

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Donec nec orci id mi adipiscing facilisis. Ut erat orci,

fermentum ultrices ultrices et, luctus eu lectus.

Nulla euismod enim a nisi laoreet interdum id quis

sapien. Aliquam erat volutpat. Donec in elit metus, sed

semper massa. Nullam tristique eleifend est, ac congue

est molestie semper. Nam aliquet auctor mattis.

Aliquam non urna diam, vitae ullamcorper nisl.

Vivamus vitae arcu vel tellus pretium dapibus ac vel

lacus. Integer faucibus ligula id justo lacinia ultricies.

Donec vel diam id sem mollis facilisis. Proin venenatis

rutrum vehicula. Morbi eget mi lacinia mi malesuada

gravida. Suspendisse eros libero, tincidunt a rhoncus a,

tincidunt eu erat.

Pellentesque sit amet nunc augue, ac rhoncus odio.

Mauris sed ante ipsum.ultricies est, dignissim rhoncus

odio urna id nibh.

Apply overflow: hidden when you want the content in the element box
to disappear if it extends past the boundaries of the box. This property is
 particularly useful in maintaining control of page layouts where an overflow
could throw the rest of the page elements out of alignment (Figure 4.12 on
the next page).

Figure 4.11
An element
with
overflow:
visible.

 From the Library of Wow! eBook

ptg

92 CSS Detective Guide

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Donec nec orci id mi adipiscing facilisis. Ut erat orci,

fermentum ultrices ultrices et, luctus eu lectus.

Nulla euismod enim a nisi laoreet interdum id quis

sapien. Aliquam erat volutpat. Donec in elit metus, sed

semper massa. Nullam tristique eleifend est, ac congue

est molestie semper. Nam aliquet auctor mattis.

Aliquam non urna diam, vitae ullamcorper nisl.

Vivamus vitae arcu vel tellus pretium dapibus ac vel

lacus. Integer faucibus ligula id justo lacinia ultricies.

Donec vel diam id sem mollis facilisis. Proin venenatis

rutrum vehicula Morbi eget mi lacinia mi malesuada

With overflow: scroll, the browser creates scrollbars to let the user view the
content of the element while maintaining the specified dimensions. Both the
horizontal and vertical scrollbars will display, whether or not they are needed
(Figure 4.13).

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Donec nec orci id mi adipiscing facilisis. Ut erat orci,

fermentum ultrices ultrices et, luctus eu lectus.

Nulla euismod enim a nisi laoreet interdum id quis

sapien. Aliquam erat volutpat. Donec in elit metus, sed

semper massa. Nullam tristique eleifend est, ac congue

est molestie semper. Nam aliquet auctor mattis.

Aliquam non urna diam, vitae ullamcorper nisl.

Vivamus vitae arcu vel tellus pretium dapibus ac vel

lacus. Integer faucibus ligula id justo lacinia ultricies.

Donec vel diam id sem mollis facilisis. Proin venenatis

rutrum vehicula Morbi eget mi lacinia mi malesuada

Figure 4.12 An element
with overflow: hidden.

Figure 4.13 An element
with overflow: scroll.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 93

Finally, overflow: auto lets the browser determine whether scrollbars are
needed, and will only create them if and where necessary (Figure 4.14
and 4.15).

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Donec nec orci id mi adipiscing facilisis. Ut erat orci,

fermentum ultrices ultrices et, luctus eu lectus.

Nulla euismod enim a nisi laoreet interdum id quis

sapien. Aliquam erat volutpat. Donec in elit metus, sed

semper massa. Nullam tristique eleifend est, ac congue

est molestie semper. Nam aliquet auctor mattis.

Aliquam non urna diam, vitae ullamcorper nisl.

Vivamus vitae arcu vel tellus pretium dapibus ac vel

lacus. Integer faucibus ligula id justo lacinia ultricies.

Donec vel diam id sem mollis facilisis. Proin venenatis

rutrum vehicula Morbi eget mi lacinia mi malesuada

With the simple-clear method, you apply the overflow property to the parent
container, preventing it from collapsing around its floated children.

div.container {

border: 1px solid #000000;

overflow: hidden;

width: 998px;

}

div.left {

width: 75%;

float: left;

}

div.right {

width: 24%;

float: right;

}

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Donec nec orci id mi adipiscing facilisis. Ut erat orci,

fermentum ultrices ultrices et, luctus eu lectus.

Nulla euismod enim a nisi laoreet interdum id quis

sapien. Aliquam erat volutpat. Donec in elit metus, sed

semper massa. Nullam tristique eleifend est, ac congue

est molestie semper. Nam aliquet auctor mattis.

Aliquam non urna diam, vitae ullamcorper nisl.

Vivamus vitae arcu vel tellus pretium dapibus ac vel

lacus. Integer faucibus ligula id justo lacinia ultricies.

Donec vel diam id sem mollis facilisis. Proin venenatis

rutrum vehicula Morbi eget mi lacinia mi malesuada

Figure 4.14 and 4.15 An element with overflow: auto.

note
You can also use
overflow: auto;

 From the Library of Wow! eBook

ptg

94 CSS Detective Guide

For the purpose of clearing floats, there isn’t a lot of difference between
overflow: hidden and overflow: auto: they work by containing the float
and hiding anything past the established width.

The displaydisplay Proper�
In CSS, the display property can be used to establish the display of an

element as inline, block, inline-block, list-item, run-in, compact,

table or none (and some other less well known and supported values).

This property can override the default value of an element and effectively

change its behavior.

Through years of bug-fighting, this pearl of wisdom has emerged as a

simple solution to many IE float bugs: display: inline. If all else fails

add display: inline to your page and see if your problem disappears.

To learn more about the characteristics and uses of display, please refer

to the Resources section.

“WE HAVE A FLOAT DOWN!”

Even though floats are champs in the world of CSS, IE’s older rendering
engine still manages to bully and push them around. Don’t worry — we
have the means to stand up to those typical IE float bugs and show them
who’s boss.

Float drop
Float drop or pushdown happens when the float contains an item bigger
than its specified width. Current browsers render the item past the confines
of the float without having it affect the layout. However, old IE will try to
contain the item by expanding the float, which usually also alters the layout
(Figure 4.16).

It’s the overflow property to the rescue in this case. Applying overflow:
hidden to the container’s styles will hide or clip the oversized element,
thereby maintaining the layout.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 95

This i s the lef t e lement .

Lorem ipsum dolor s i t
amet, consec tetur
adipisc ing e l i t . Integer
a l iquam nunc eu urna

This i s the middle e lement .

Dolor s i t amet, consec tetur
adipisc ing e l i t . Integer a l i -
quam nunc eu urna t r ist ique
eu vest ibulum dolor dignis-
s im. Pel lentesque r isus diam,
t inc idunt a consequat et ,
feugiat sed nis i . Sed gravida
por ta commodo.

And this is the
dropped float.

Suspendisse eu
augue vitae ligula
ondimentum.

the next
float drops

beneath
adjacent float

(with slightly oversized content)

#maincontent {

float: left;

margin: 10px;

overflow: hidden;

padding: 10px;

width: 650px;

}

Float stepdown
Under most circumstances, when you float elements, they will stack according
to the float specification. However, not in IE6: when a series of floated
elements are contained in a series of block level elements that are not floated,
in IE6 the floated elements may end up in a step-down effect (Figure 4.17).

home
services

products
careers

contact

 Figure 4.16 Example of float drop.

 Figure 4.17 Example of float stepdown.

 From the Library of Wow! eBook

ptg

96 CSS Detective Guide

 You can fix this problem in one of two ways.

 You can employ FnE by floating the parent elements.■

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 700px;

}

#navigation li {float: left;}

#navigation li a {

border-right: 1px solid #BC4622;

background-color: #ddd;

display: block;

float: left;

padding: 2px;

text-decoration: none;

width: 100px;

}

■ You can also change the element’s display value to display: inline:

#navigation {

font-size: 1.1em;

list-style-type: none;

margin: 0;

padding: 0;

width: 700px;

}

#navigation li {display: inline;}

#navigation li a {

border-right: 1px solid #BC4622;

background-color: #ddd;

display: block;

float: left;

padding: 2px;

text-decoration: none;

width: 100px;

}

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 97

Misbehaving Lists
 After floats, lists are another key component of CSS page layouts. But unsur-

prisingly, IE6 keeps us on our toes with rendering lists that won’t listen
to reason.

SCRATCHING WHITE SPACE FROM LISTS
IE6 and down has a weird habit of adding extra white space to list items.
When you apply display:block to links within a list, IE6 and lower incorrectly
add white space. So whether you are employing a horizontal or vertical list,
the results will be the same in IE: unwanted extra space (Figure 4.18).

home

products

services

Here are a couple of ways to solve the problem.

Old-school markup solution
It’s not sexy, but it is effective. Eliminating the actual white space in the code
will take care of the problem in a pinch.

So,you would change this code:

<ul class="nysfinesttaxiservice">

take emeralds

take money

set car on fire

To this:

<ul class="nysfinesttaxiservice">

 take emeraldstake money

➥ set car on fire

And, yes, as strange as it seems, it does work.

Figure 4.18 Where does the
extra white space come from?

 From the Library of Wow! eBook

ptg

98 CSS Detective Guide

Solutions with style
If you start off with your styles like the below, you are going to find yourself
with an embarrassment of white space riches:

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 200px;

}

#navigation li a {

background-color: #ddd;

display: block;

margin: 0;

padding: 0;

text-decoration: none;

}

To pull everything back into place, you have a plethora of options:

1. Set the width of the anchor elements

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 200px;

}

#navigation li a {

background-color: #ddd;

display: block;

margin: 0;

padding: 0;

text-decoration: none;

width: 200px;

}

2. Change the display of the anchor elements

#navigation {

list-style-type: none;

margin: 0;

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 99

padding: 0;

width: 200px;

}

#navigation li a {

background-color: #ddd;

display: inline-block;

margin: 0;

padding: 0;

text-decoration: none;

width: 200px;

}

3. Change the height of the anchor elements

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 200px;

}

#navigation li a {

background-color: #ddd;

display: block;

height: 1em;

margin: 0;

padding: 0;

text-decoration: none;

}

4. Float the links

Floating the links within the list items will remove the extra white space,
but may not work for your design if you’ve applied a background color to
the links.

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 200px;

} ➡

note
You could also
use simply
display: inline;.

note
You can change the
size of the height to
suit your n�ds.

 From the Library of Wow! eBook

ptg

100 CSS Detective Guide

#navigation li a {

float: left;

clear: left;

background-color: #ddd;

display: block;

margin: 0;

padding: 0;

text-decoration: none;

}

5. Apply a bottom border to the list items (not the anchor element)

#navigation {

list-style-type: none;

margin: 0;

padding: 0;

width: 200px;

}

#navigation li {border-bottom: 1px solid #112233;}

#navigation li a {

background-color: #ddd;

display: block;

margin: 0;

padding: 0;

text-decoration: none;

}

Any of the above solutions will yield the desired result: a white space–free list
(Figure 4.19).

home

products

services

Figure 4.19 Extra
white space: fixed!

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 101

 Mar�ns and E�ors

As you know, margins are the transparent area around the borders of
an element box that maintains space between that box and other elements.

When the margins of two elements meet, the correct behavior according to
the box model is that the margins collapse. The term “collapse” sounds much
more ominous than it is. What happens is that the browser determines the
larger of the two joining margins, and instead of adding the two margins
together to determine the distance between the two elements, the browser
adjusts the margin height or width to equal the larger of the two measure-
ments. The value of the largest margin is honored while the other margin
“collapses” to zero. If either margin measurement value is negative, the
browser adds the values and combines them to form a single margin.

You can see this best in the case of paragraphs (Figure 4.20).

Quisque odio elit, tincidunt eget bibendum in, dictum aliquam magna. Ut eleifend orci neque. Cras eu nibh

eu elit vestibulum fermentum quis sit amet quam. Duis malesuada massa ut quam blandit pulvinar. Pellen-

tesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Quisque in dictum

arcu. Nunc accumsan pellentesque lorem ut aliquet. Suspendisse elit est, tempus et ornare tincidunt, porta

blandit ante.

Ut vitae nunc neque. Phasellus non tempor nulla. Aliquam sapien eros, euismod eget ultrices sit amet,

laoreet nec magna. Nunc vitae lorem leo. Curabitur augue nunc, dignissim ut ultrices sed, fermentum

pretium tortor. Maecenas scelerisque luctus pellentesque. Phasellus at leo arcu. Phasellus ut leo eget sem

pulvinar adipiscing vitae vel nisi. Mauris porttitor ante at arcu interdum consectetur. Fusce risus neque,

Donec molestie enim sagittis augue condimentum sed volutpat dui commodo. Donec lacinia malesuada

odio, eget ullamcorper dolor semper vitae. Nulla ut ligula velit, in malesuada dolor. Integer ullamcorper

posuere lorem ac luctus. Lorem ipsum dolor sit amet, conse

margins collapsed to this distance

Knowing about collapsing margins is important for the instances when
margins start acting funny and exhibiting behavior that you don’t want.

NEGATIVE MARGINS

Interestingly, margins can have negative values along with positive values. As
you may have suspected, negative values work the opposite of positive values.
While positive values push the element box away from the margin position
indicated, a negative value will pull the box toward the position. This moves
the box itself around on the page, and can be used as a method of positioning
for page layouts.

Figure 4.20 Paragraphs with collapsed margins

 From the Library of Wow! eBook

ptg

102 CSS Detective Guide

If either a top or left margin is given a negative value, the element box will
be pulled in that direction. If either a right or bottom margin is given a nega-
tive margin, it will pull the adjacent element towards the main element box,
creating an overlap. Many developers use this characteristic of negative
margins to fix spots where an element’s spacing seems a little off and needs
tweaking (Figure 4.21).

margin-top: -10px;

margin-left: -10px; margin-right: -10px;
(overlap)

margin-bottom: -10px;
(overlap)

T

R

B

L

Top/Left: Element moves in that direction

Bottom/Right: Subsequent element moves in that direction (overlaps)

UNWANTED SPACE
 The following margin bugs either give too much space or take it away. Let’s

see how we can set things straight.

3 pixel text jog bug
You have a floated element and you detect that the text that is floating next to
it is somehow pushed away by 3px. It’s the 3 pixel text jog bug (Figure 4.22).

Figure 4.21 Negative margin behavior

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 103

3px

float : left;

erat at mollis consequat, arcu arcu dapibus lacus, ut auctor erat

urna quis felis. Morbi et est eget mi aliquam consequat vitae

vel nunc. Cras tortor purus, cursus vitae hendrerit id, placerat at

felis. Morbi sed lorem nulla. Pellentesque velit libero, pretium in

faucibus vel, dictum id orci.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Fusce adipiscing consectetur elit nec feugiat. Nulla facilisi.

Nam tempor semper tincidunt. Sed lacus augue, perdiet

vel euismod lacinia, sagittis at lorem. Aenean et orci lorem,

eu mattis risus. Nulla vitae tempor elit. Donec diam purus,

hendrerit ac molestie in, viverra et augue. Donec posuere,

Fortunately, there are a couple of ways to solve this issue:

You can use the float nearly everything method (FnE) and float the parent
element. This will eliminate the behavior. Using the FnE example from earlier:

<div id="memorablequotes">

 <p>"Who is Keyser Soze? He is supposed to be Turkish. Some

➥ say his father was German. Nobody believed he was real....That

➥ was his power. The greatest trick the Devil ever pulled was

➥ convincing the world he didn't exist. And like that, poof. He's

➥ gone."</p>

</div>

#memorablequotes {

border: 1px solid #999999;

float: left;

padding: 30px;

width: 450px;

margin: 0 auto;

}

.floatleft {

border: 1px solid #333;

float: left;

}

p {float: left;}

Figure 4.22 3px Text Jog Bug

 From the Library of Wow! eBook

ptg

104 CSS Detective Guide

 You could also set a width or height on the affected element to eliminate
the behavior.

* html #memorablequotes p {float: left; height: 0;}

Double margin float bug
The double margin bug in IE6 occurs on the first floated element that has
a margin value set on the same side as the float on a line. The margin becomes
twice the intended size! For example, if you had an element floated left and
with margin-left: 10px, the 10px would actually render as 20px. The pecu-
liarity of this bug is that it only occurs when the float and margin are on
the same side — margins on the other side of the float will not be doubled
(Figure 4.23).

This bug is responsible for many of the layout problems that developers expe-
rience in IE6 and below. The additional pixels will cause one of your columns
to have insufficient space available for it based on the given widths, and you’ll
get float drop.

The fix is to set display: inline on the floating elements. Remember that we
are only affecting the display characteristics with this property; the elements
will remain block-level.

#navigation {

display: inline;

float: left;

margin-left: 10px;

width: 200px;

}

Compliant Browsers IE6 and lower

20 px 40 px
#content {
float: left;
margin-left: 20px;
}

#content {
float: left;
margin-left: 20px;
}

 Figure 4.23 Example of the double margin float bug.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 105

Bottom margin bug
If you have a floated parent element that also has floated children in it, you
may experience the bottom margin bug in which the bottom margin is
ignored by the parent and collapses in IE7 and earlier browsers (Figure 4.24).

 The fix is easy: rather than getting the space you want from the margin of the
children elements, establish the space by setting padding for the parent element.

 Disa
earing Acts

The peekaboo bug and the guillotine bug are probably the two most infamous
IE6/7 bugs. Fortunately, there are solid fixes for both of them.

PEEKABOO BUG

You’ve worked hard to layout and code your page — it’s only fair that you want
your users to actually see it, right? Well, IE6 seems to have a sense of humor,
adding a little Houdini spice into the mix.

The peekaboo bug causes floated elements or text inside of a container next
to floated elements to disappear — most often when the page is resized, and
sometimes seemingly at random (Figure 4.25 on the next page).

Cons claim line-up was a set-up

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Fusce adipiscing consectetur elit nec feugiat. Nulla facilisi.
Nam tempor semper tincidunt. Fusce ut urna eu tellus ultri-
ces laoreet. Aenean convallis adipiscing tempor. Sed cursus,
dolor sed pretium tempor, dui lorem mattis nisi, nec tincid-
unt elit tellus quis diam. Nullam ut dolor non justo auctor
fermentum. Integer luctus, ipsum sit amet pulvinar facilisis,
urna eros aliquet dolor, eget facilisis erat dui sed felis.

img {
float: left;
margin: 10px
5px 20px
5px;
}

img {
float: left;
margin: 10px
5px 20px
5px;
}

img {
float: left;
margin: 10px
5px 20px
5px;
}

#mugshots {float: right;
border: 1px solid #eeeeee;}

 Figure 4.24 Example of the bottom margin float bug.

 From the Library of Wow! eBook

ptg

106 CSS Detective Guide

Here is a stripped-down example of the code that will create the peekaboo
sleight of hand:

<h1>The Usual Suspects</h1>

<div id="container">

<p id="floater">

Q: Who are the ususal suspects?

 A: Dean Keaton, Michael McManus, Fred Fenster, Todd Hockney, Roger

➥ 'Verbal' Kint

</p>

<p>Q: Who disappeared without a trace?</p>

<div class="clearer"></div>

<p>A: Ha! We're not going to give you the spoiler!</p>

</div>

...

#container {

border: 1px solid #000;

background-color: #eee;

}

#floater {

background-color: #dec;

float: left;

width: 35%;

}

• background color/image set
• no width or height set

The content disappears in IE6, but
reappears when the page is refreshed

img {
float: left;
}

cleared element

#container

The content starts o being visible

cleared element

#container

img {
float: left;
}

• background color/image set
• no width or height set

 Figure 4.25 Example of the peekaboo float bug in action.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 107

.clearer {

clear: both;

}

 Manifold fixes
It may seem like magic, but each of these solutions will help solve your “now
you see it, now you don’t” problem.

Determine the position

Applying position:relative to the disappearing element will keep it visible
for everyone using IE6. For IE7 users, add min-width: 0 as well.

#container {

border: 1px solid #000;

background-color: #eee;

}

#floater {

background-color: #dec;

float: left;

width: 35%;

position: relative; /* peekaboo bug fix for IE6 */

min-width: 0; /* peekaboo bug fix for IE7 */

}

.clearer {

clear: both;

}

Trigger hasLayout

Giving layout to the parent container with any of the properties that trigger
hasLayout will also keep the content from disappearing:

float: left, float: right■

display: inline-block, display: block■

overflow: hidden, overflow: auto, overflow: scroll■

■ position: absolute, position: fixed (IE7)

■ height (any value other than auto)

■ min-height (any value other than auto in IE7 only)

■ width (any value other than auto)

 From the Library of Wow! eBook

ptg

108 CSS Detective Guide

■ min-width (any value other than auto in IE7 only)

■ zoom (any value other than normal)

Establish line-height

Setting the line-height on the main container will cascade down to the
descendants and keep all of the content in plain sight.

#container {

border: 1px solid #000;

background-color: #eee;

line-height: 1em;

}

#floater {

background-color: #dec;

float: left;

width: 35%;

}

.clearer {

clear: both;

}

 Presto! All fixed.

GUILLOTINE BUG

The guillotine bug is one of the oddest IE bugs. As with any good mystery, all
of the parts have to be in place: a parent container element, a floated element
inside of that container that is not cleared, links inside the parent container
in non-floated content after the float, and finally, style rules for those links
that change certain link properties on hover. The result? Not murder, no, but
hovering over the links causes part of the floated element inside of the parent
container to get cut off and become inaccessible (Figure 4.26).

Correct Layout Layout in IE Guillotined

note
zoom is a Microso�
proprietary proper�.

Figure 4.26
Example of the
guillotine bug.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 109

Clear solutions
The most popular fixes involve adding a cleared element either inside of the
container or outside and after the container.

By adding an element

Add an element, such as a <div>, that has the clear property assigned to it:

<div id="container">

<div id="left">

 <p>To a cop the explanation is never that complicated. It's always

➥ simple. There's no mystery to the street, no arch criminal behind

➥ it all. If you got a dead body and you think his brother did it,

➥ you're gonna find out you're right.</p>

</div>

<div id="right">

<p>This is a reset link here.</p>

<p>This is another reset link here.</p>

<p>This is a trigger link
</p>

</div>

<div class=”clear”></div>

</div>

...

#container {

background-color: #88eeaa;

border: 1px solid #44bb66;

width: 800px;}

#left {

border: 1px dotted #aa3355;

float: left;

width: 200px;

}

#container a:hover {

background: #FFFFCC;

padding: 5px;

text-style: italic;

border-bottom: #0000FF 1px solid;

}

.clear {clear: both;}

 From the Library of Wow! eBook

ptg

110 CSS Detective Guide

Easy clear

You can also use the easy-clear method, by adding a .clearfix class to the
elements that contain the uncleared float:

.clearfix {display: inline-block;}

.clearfix:after {

clear: both;

content: " ";

display: block;

font-size: 0;

height: 0;

visibility: hidden;

}

...

<div id="right" class=”clearfix”>

<p>This is a reset link here.</p>

<p>This is another reset link here.</p>

<p>This is a trigger link
</p>

</div>

By using easy clear, you get the parent element to completely contain the chil-
dren elements and stabilize them.

Alternate solutions
Giving all of the containers a height using the star HTML hack also does
the trick.

* html div {height: 1%;}

#container {

background-color: #88eeaa;

border: 1px solid #44bb66;

width: 800px;}

#left {

border: 1px dotted #aa3355;

float: left;

width: 200px;

}

note
the generated content
is a space.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 111

#container a:hover {

background: #FFFFCC;

padding: 5px;

text-style: italic;

border-bottom: #0000FF 1px solid;

}

 A final solution is to wrap the content outside of the float in another div
container and give it a width, which eliminates the quirky behavior.

<div id="right">

<p>This is a reset link here.</p>

<p>This is another reset link here.</p>

<p>This is a trigger link
</p>

</div>

...

#right {width: 400px;}

Your page will stay intact, and heads won’t roll from tragic IE outcomes.

Fonts Gone Wrong

Way back in the equivalent of the Mesozoic era of the web (which was only
about 10 years ago), web developers used to change
the font size on the page (and worked with only 6 sizes!). Now that we are
in the modern epoch of CSS, evolutionary progress has brought us many
more options.

However, with the power of options also comes the responsibility to be
mindful of potential issues. As a suspect, typography rarely reaches the level
of murder, but if done incorrectly, a change in font size can break the design
of the page for users who need a larger text size.

While your pages don’t need to be pixel-perfect in every browser, consistency
is still a goal. Let’s take a look at the different ways you can control fonts on
your page and also what to do if they turn out differently cross-browser.

AN ASSORTMENT OF SIZES
 There are still absolute or fixed sizes based on either pixels or points as in the

days of yore. However, there are now multiple relative sizing options as well,
using keywords, em, percentages, or ex.

 From the Library of Wow! eBook

ptg

112 CSS Detective Guide

Fixed (absolute) sizes
Pixels are usually the first choice for developers when they want a lot of
control over how the page looks. The advantage of pixels is that they are
more consistent across screens, browsers, and operating systems. However,
the main complaint about pixels is that in IE6 and below users cannot easily
resize them.

Points should really only be used for print CSS if at all. The point unit related
to the defacto printed point sizes. They are best avoided for screen use.

Size keywords
Keywords are actually very consistent across browsers and platforms. The
font-size keyword values are xx-small, x-small, small, medium, large,
x-large, and xx-large as well as relative keywords smaller and larger.

While the standard keywords (small, medium, large) don’t lend themselves
to scaling, the relative ones do. You could create pages with scalable text using
a fixed keyword as the base, and establishing the other font-sizes on the page
with the relative keywords.

Relative sizes
Relative-sized on-screen text allows the user to easily adjust the size of all of
the page text.

An important thing to remember when using relative font-sizing: unless
specified otherwise, with a few exceptions, an element will inherit the font
size of its parent. This means that you have to be particularly aware of nesting
elements and how the font sizes may change because of how the elements
are nested.

Ems are a measurement based on the height of a font and the width of the
letter ‘M’ in the same font. In terms of scalability and correspondingly,
accessibility, ems are the perfect choice. They are also resizeable in IE and
cascade well.

Ems aren’t just for fonts. Savvy developers will also use ems as a unit of
measurement for layout elements and spacing to keep the scale of the entire
page consistent.

Percentage font-sizing is another relative method, based on the default size
of the font. For example, 100% is equivalent to the current font size. 200% is
twice as large. Percentage font-sizing also cascades well.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 113

How Big Is an Em?
1em is equivalent to capital M in the the current font size; 2em is twice as

large, and so on.

Below is an extremely useful coversion table that lists the corresponding

values between pixels, points, ems and percentages:

Font Size Conversion

Points Pixels Ems Percent

6pt 8px 0.5em 50%

7pt 9px 0.55em 55%

7.5pt 10px 0.625em 62.5%

8pt 11px 0.7em 70%

9pt 12px 0.75em 75%

10pt 13px 0.8em 80%

10.5pt 14px 0.875em 87.5%

11pt 15px 0.95em 95%

12pt 16px 1em 100%

13pt 17px 1.05em 105%

13.5pt 18px 1.125em 112.5%

14pt 19px 1.2em 120%

14.5pt 20px 1.25em 125%

15pt 21px 1.3em 130%

16pt 22px 1.4em 140%

17pt 23px 1.45em 145%

18pt 24px 1.5em 150%

20pt 26px 1.6em 160%

22pt 29px 1.8em 180%

24pt 32px 2em 200%

26pt 35px 2.2em 220%

27pt 36px 2.25em 225%

28pt 37px 2.3em 230%

29pt 38px 2.35em 235%

30pt 40px 2.45em 245%

32pt 42px 2.55em 255%

34pt 45px 2.75em 275%

36pt 48px 3em 300%

Note that the numbers are approximate and may vary depending on font, browser

and operating system.

 From the Library of Wow! eBook

ptg

114 CSS Detective Guide

Yet another relative unit of measurement is the ex. An ex is based on the
height of the letter ‘x’ in the current font. Very few developers use ex at
present: ems are much more widely employed.

TYPOGRAPHY TIPS

Generally speaking, use relative font sizes as opposed to absolute: they are
better for usability and accessibility (users can scale their text as need be) and
cross-browser consistency.

But the world of CSS is rarely simple: while you might hope you could just
apply an em or percentage-based font value for the page and be able to go
on about your business, there are many inconsistencies in browser font-
rendering due to differences in established base values of the different font
families in the user agent style sheets.

Thus, there is a little additional thinking you should do in general when
coding the fonts for the page. We’ve already discussed the whys of relative
sizing, but there are some further considerations to incorporate.

Techniques for scaling
The one disadvantage with ems and percentages is all of the calculations that
you have to do to make sure that you are establishing the correct sizes for all
of the elements. You can avoid the math but still get the benefit of relative
font sizing by using a pixel size as the base, and then using relative font sizing
for all of the other elements (either by ems or percentages).

For example, you could establish the base font size to be 10 pixels, and then
scale up the elements relative to that base.

body {font-size: 10px}

p, li {font-size: 1.2em}

h1 {font-size: 2em;}

 The best thing about this: easy math! Usability, accessibility, and bug-free
functionality are bonus features.

Test the scale
After devising your font sizes for your pages, you should test your pages to be
sure that the sizes all work together as expected.

A well-designed page will flow with the resize, while a poorly designed page
will have overlapping elements that cause the page to be less readable or even
illegible as the page size and zoom change. Reset the font size and page zoom

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 115

to their default values in all your browsers before testing to be sure you are
getting accurate results, and use real-world combinations of text sizing and
page zooming in all of the major browsers to determine that the text remains
readable in every context. Increasing the font size twice should not break
the layout.

TEXT SIZE BUG

Despite all of the advantages of using ems to establish your font sizes in the
page, IE6 still manages to shift the rules on rendering them. The text size bug
comes about when the font size of the body is set to 1em. When a user uses
the text size feature of the browser, the rest of the sizes are hugely out of
proportion (Figure 4.27).

Usually this will be due to a font size set this way:

body {font-size:1em;}

The fix is easy. By changing the font size to 100%, the problem is solved:
body {font-size:100%;}

The solution is unconventional, but effective. By replacing the ems with
percentage, we still have the usability of relative fonts but side-step the
resizing bug. A few tips when using this solution:

■ Stick with percentages 100% and over. Lower numbers will cause Opera
(of all browsers) to render incorrectly.

■ Avoid using keywords to set the font size of other elements. Your values
should stay with ems or percentages.

Figure 4.27 Text
resizing feature in IE6.

 From the Library of Wow! eBook

ptg

116 CSS Detective Guide

Remember that line-height goes hand-in-hand with font-size, so the best
practice is to establish a properly scaling line-height as well. The recommen-
dation is this: once you have established the font-size at 100%, then establish
the line-height with ems, taking into consideration the corresponding size in
pixels. Using the example above, you would have this:

body {

font-size:100%;

line-height: 1.125em;

}

 This set-up at the very beginning of your document will cascade down to all of
the elements and create visual consistency throughout your page.

 Pla�ing for the Future

You have seen the lineup of known felons. But there are some new kids
on the block that you should also know about: CSS3 properties. Many of
these burgeoning properties are actually the new good guys, making time-
honored challenges such as drop-shadows, importing fonts, rounded corners,
column sizing, and multiple background images easy. But even heroes have
an Achilles heel. Unsurprisingly, the weak spot with CSS3 is not the proper-
ties themselves, but rather their support by browsers.

At present, the browsers that support most of the CSS3 properties are
Firefox, Safari, and Google Chrome. Opera supports many of the properties
but not all (although newer versions are slated to have increased support),
while Internet Explorer supports practically none of them, with the exception
of some of the newer selectors.

Another issue is that the CSS3 specifications themselves are not yet finalized.
Some browsers utilize the properties, but in a proprietary form. Because of
this, you may have to use several versions of the same property in order for
it to be rendered by different browsers. Hopefully, the specification will be
solidified soon and all browsers will accept the same standard properties.

So, what can you do now? I say, boldly go forth and start to incorporate CSS3
properties into your code, but also know that for true cross-browser compat-
ibility, you will have to employ alternate solutions.

note
1.125 em = 18px, which
is what we want.

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 117

Learn more about CSS3
Want to get on the CSS3 train? Here are some good resources for you to

familiarize yourself with the properties and which browsers support what:

The W3C CSS3 Specifications: http://www.w3.org/TR/css3-roadmap/■

CSS3 info: http://www.css3.info/■

■ CSS3 Property Support table at Quirksmode.org:

http://www.quirksmode.org/css/contents.html

A Positive ID

Looking at face after face, trying to remember who exactly did the crime, how
it went down and each character’s modus operandi can take a lot out you. The
work of a CSS detective is not all glitz and glamour! At the end of the day,
however, it is worth it to know that you have the tools to catch bugs before
they become delinquent and cause even bigger problems later.

Here is a quick and dirty wrap-up of the allies, miscreants, and solutions that
we gave the once-over to in this chapter.

PROPERTIES
 Here are the properties mentioned in this chapter and the bug fixes for which

they play a part:

Dimensions (height and width)

Easy clear

height: 1%, min-height, width, min-width, line-height

■

Give layout■

Fixes the peekaboo bug■

Fixes the guillotine bug■

note
Remember that IE6
does not understand
min-height or min-width.

 From the Library of Wow! eBook

http://www.w3.org/TR/css3-roadmap/
http://www.css3.info/
http://www.quirksmode.org/css/contents.html

ptg

118 CSS Detective Guide

Display changes

 Fixes the double margin float bug

display: inline

■

 Fixes multiple float problems■

Forces shrink wrapping

display: inline-block

■

Gives layout■

 Overflow changes

 Contains floats

overflow: hidden, overflow: auto

■

 Fixes float drop and overly wide floated columns■

Padding and margin changes
padding instead of margin

Fixes the bottom margin bug■

Fixes the double margin bug■

Positioning

Fixes the peekaboo bug

position: relative

■

Clear

Fixes the guillotine bug

clear: left, right or both

■

Generated Content (for IE8 and up)

 Contains floats

:after

■

Fixes the guillotine bug■

Font size

Fixes the text size bug

font-size

■

 From the Library of Wow! eBook

ptg

THE USUAL SUSPECTS 119

TECHNIQUES
 These techniques and solutions are achieved using these properties or practices:

 Broken box model fix
Stay in standards mode■

Margin and padding workarounds■

CSS reset■

Acceptable IE hacks
Star HTML hack■

Underscore hack■

Child hack■

Conditional comments■

Giving layout
■ float: left, float: right

■ display: inline-block, display: block

■ overflow: hidden, overflow: auto, overflow: scroll

■ position: absolute, position: fixed (IE7)

■ height (any value other than auto)

■ min-height (any value other than auto, not IE6)

■ width (any value other than auto)

■ min-width (any value other than auto, not IE6)

■ zoom (any value other than normal, Microsoft proprietary property)

Removing layout
■ width: auto, height: auto

■ max-width: none, max-height: none (IE7)

position: static■

float: none■

■ overflow: visible (IE7)

z■ oom: normal (Microsoft proprietary property)

 From the Library of Wow! eBook

ptg

120 CSS Detective Guide

Force shrink-wrapping
display: inline■

display: inline-block■

display: table■

 Preventing problems with floats
■ float: left, float: right (FnE)

■ overflow: hidden, overflow: auto, overflow: scroll

display: inline■

line-height: 0;■

■ width, height

■ :after (easy clear)

 List white space fix
■ float: left, float: right (FnE)

■ width, height

■ display: inline or inline-block

width■

border-bottom■

Margins and space issues
■ float: left, float: right (FnE)

■ width, height

■ margin, padding (on parent element)

QUICK-FIX LIST

One of these rules may be the fix you need. If you are pressed for time or
just want a quick fix without thinking about theory or strategy, here are
some styles you can apply and see if they solve your problem:

position: relative;■

display: inline;■

display: inline-block;■

margin: 0;■

padding: 0;■

overflow: hidden;■

 From the Library of Wow! eBook

ptg

PART

121

2

YOU’VE MADE IT THROUGH THE RIGORS OF YOUR APPRENTICESHIP,
and now you want to hone your training through real-world application,
right? Well, my friend, say no more: your time has come! Now we are
going to roll up our sleeves and get into the nitty-gritty of some classic
cases of code gone wrong.

EACH CHAPTER WILL PRESENT YOU WITH AN OVERVIEW OF THE CASE,
and then we will visit the crime scene by taking a look at screenshots
of the intended site, and of the site with the problems. Then you’ll
get to review the complete code for the page, down to the last detail.
Once you see all of the evidence, we will employ the tools of the CSS
detective — from validation to code elimination — to find the guilty
parties and solve the case.

SO PAY CLOSE ATTENTION TO THE DETAILS AND REMEMBER YOUR
training. By the end of the section, I am confident that you will be able
to crack any CSS mystery that crosses your path.

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

123

5

IN THIS CASE, WE’LL SEE HOW A HARRIED HARRY
Terry tarries and finds that the devil indeed is in
the details.

 From the Library of Wow! eBook

ptg

124 CSS Detective Guide

The Crime Scene

Renée Lilldeh of FarfallaEffect Design is suffering from an embarrassment
of good fortune. A blossoming in business has prompted an expanded office,
a move to bigger quarters, and a website redesign. But exhausted by the
demands of clients, new-business pitches, employee training, and settling
into a new space, she and her staff have handed the initial website develop-
ment to their newest intern, Harry Terry.

Passionate about design and front-end coding, Harry is eager to impress, but
also still a little unsure of his skills. He’s come to the CSS Detective for help
with a coding mystery that currently stumps him. Follow along and see if you
can spot where Harry’s code went wrong.

INITIAL SNAPSHOTS
 Harry shares the original design comp of the FarfallaEffect home page with us

(Figure 5.1).

 Figure 5.1 FarfallaEffect’s home-page design comp

 From the Library of Wow! eBook

ptg

THE CASE OF THE DEVILISH DETAILS 125

However, Harry’s late-night coding endeavors have left him with this
(Figure 5.2):

 Follow the Evidence
Harry is a closet procrastinator. He waited until the 11th hour to start on
the coding, thinking it would be easy, given the simplicity of the design.
But the developed page is due this afternoon, and his fatigue from late-night
hours and growing anxiety leave him unable to decipher the cause of the
problems in the page.

 Figure 5.2 Harry’s version of the FarfallaEffect home page

 From the Library of Wow! eBook

ptg

126 CSS Detective Guide

IDENTIFYING SUSPICIOUS CHARACTERS

I listen carefully to Harry, who, despite his fatigue, is talking a mile a minute,
pausing only long enough to burn his mouth with too-hot coffee. The first
thing I wonder is whether he has validated the page. As you know, validation
is one of the most important tools in our detective toolkit, because it's so
useful for showing the small but important details that one can miss —
 especially when in a hurry. Validating both markup and CSS should be
the first practice in solving any coding mystery.

MUG SHOTS
 Harry’s page code seems benign on first glance. He is using an HTML 4.01

strict doctype, and he has the correct syntax for the style tag. But something
is askew:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

➥ "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>FarfallaEffect Design</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<style type="text/css">

body {

background-color: #ffcc66;

border-top: 5px solid #C0272D;

border-bottom: 5px solid #C0272D;

color: #444444;

font-family: Arial, "Trebuchet MS", sans-serif;

font-size: 1em;

margin: 0;

padding: 0;

}

h1, h2, h3 {font-family: Cambria, serif;}

h2 {color: #96222A;}

#logo {

position: relative

top: 0;

left: -33px;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE DEVILISH DETAILS 127

 text-decoration: none;

 }

li.current a, #navigation a:hover {

border-bottom: 5px solid #C0272D;

font-weight: bold;

padding-bottom: 2px;

}

#mainbody {

border-right: 1px dotted #aaaaaa;

float: left;

margin-bottom: 15px;

padding: 0 10px 30px 15px;

width: 250px;

}

#introcontent {

margin-bottom: 50px;

}

.readmore a {

color: #990022;

float: right;

font-size: .9em;

text-decoration: none;

}

#blogteaser {

border-top: 1px dotted #aaaaaa;

margin-top: 10px;

}

.postinfo {

color: #aaaaaa;

font-size: .70em;

line-height: .5em;

}

.postinfo a {

color: #777777;

text-decoration: none;

} ➡

#tagline {

color: #BF4B1D;

font-size: .8em;

margin: -13px 0 0 28;

}

h3, #blogteaser h3 a {color: #D85623;}

container {

background-color: #ffffff;

border-left: 1px solid #aaaaaa;

font-size: .9em;

margin: 0 auto;

padding: 10px 1px 0 1px;

text-align: left;

width: 900px;

}

#container h1 {

color: #ffffff;

display: none;

font-size: 1px;

margin: 0;

}

#navigation {

border-bottom: 1px solid #aaaaaa;

font-size: 1.1em;

margin: 5px 0 15px 0;

padding: 0 0 6px 0;

text-align: right;

width: 899px;

}

#navigation li {

display: inline;

list-style-type: none;

}

#navigation a {

color: #BC4622;

font-weight: bold;

margin: 0 40px;

 From the Library of Wow! eBook

ptg

128 CSS Detective Guide

#sociallinks a {

color: #990022;

text-decoration: none;

}

#footerlogo {text-align: center;}

#footerlogo img {margin-top: 10px;}

</style>

</head>

<body>

<div id="container">

 <div id="logo">

 <img src="logo_farfallaeffect_serif_alt.png"

➥ alt="logo">

</div>

<h1>farfalle design</h1>

 <h2 id="tagline">inspired

➥ transformation.</h2>

<ul id="navigation">

 <li class="current">home

➥

 about

 projects

 blog

 contact

 <div id="mainbody">

 <div id="introcontent">

 <h2>about us</h2>

 <h3>Big Change

from Subtle Motions

 </h3>

 <p>If an action as subtle as the flap

➥ of a butterfly's wings can change

➥ the weather patterns on the other

➥ side of the world, imagine what

➥ focused attention and deliberate

➥ action from passionate web design

#recentprojects {

float: right;

margin: 0 0 10px 0;

width: 600px;

}

#recentprojects h3 {clear: both;}

 #recentprojects img {border: 1px solid

➥ #aaaaaa;}

dl.projects {

float: lefr;

margin: 0 10px 10px 10px;

text-align: center;

width: 260px;

}

dl.projects dd {

font-size: .8em;

margin: 0;

padding: 5px 10px;

text-align: left;

}

#footer {

clear: both;

border-top: 1px solid #aaaaaa;

font-size: .9em;

overflow: hidden;

padding: 0 0 0 15px;

}

#footer div {

float: left;

margin: 0;

padding: 0 0 10px 0;

}

#contactinfo, #sociallinks {width: 350px;}

#sociallinks img {

border: 0;

vertical-align: middle;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE DEVILISH DETAILS 129

➥ read more >></dd>

</dl>

<h3>logos</h3>

<dl class="projects">

 <dt>

➥ </dt>

 <dd>Cleaning up:

➥ Botani Handmade Soaps' new logo

➥ takes them from down and dirty to

➥ clean and crisp.

➥ read more >></dd>

</dl>

<dl class="projects">

 <dt>

➥ </dt>

 <dd>Small Bites:

➥ Thali Chota Bistro's new branding

➥ effort gives local foodies a taste

➥ of things to come.

➥ read more >></dd>

 </dl>

</div><!--end recentprojects-->

<div id="footer">

<div id="contactinfo">

<h3>get in touch</h3>

 <p>email:

➥ flutter@farfalladesign.com</p>

 <p>phone:

➥ +1 111.222.3333</p>

 </div><!--end contactinfo-->

 <div id="sociallinks">

 <h3>be social</h3>

 <p><img src="twitter_16.png"

➥ alt=""> twitter.ific

➥ </p> ➡

➥ professionals can do for your website.

➥

➥ read more >></p>

 </div><!--end introcontent -->

 <div id="blogteaser">

 <h2>from the blog</h2>

 <h3>Spreading Our Wings

➥ </h3>

 <p class="postinfo">Posted

➥ 23 November by <cite>

➥ Renee</cite></p>

 <p>With our recent growth, our old

➥ office was feeling like a cocoon, so

➥ we decided it was time to break out

➥ and find new digs...

➥ read more >></p>

 </div><!--end blogteaser -->

</div><!--end mainbody -->

<div id="recentprojects">

<h2>recent projects</h2>

<h3>websites</h3>

<dl class="projects">

 <dt>

➥ </dt>

 <dd>Tendrils, fronds, flowers

➥ and fruit: A redesigned

➥ website showcases how Brentii

➥ Landscape Design is going wild with

➥ organics.

➥ read more >></dd>

</dl>

<dl class="projects">

 <dt>

➥ </dt>

 <dd>Brush strokes:

➥ M. Weinberg Art produces eco-

➥ friendly tiles for a public art

➥ installation and lays the

➥ foundation for something big.

 From the Library of Wow! eBook

ptg

130 CSS Detective Guide

 <p><img src="facebook_16.png"

➥ alt=""> fan.tastic

➥ </p>

 </div><!--end sociallinks-->

 <div id="footerlogo">

 <img src="farfalle_bf.png" alt="logo"

 </div><!--end footerlogo-->

 </div><!--end footer-->

</div><!--end container-->

</body>

</html>

The Evidence Never Lies

Our initial review of the HTML page code indicated that the markup is well
structured, and a routine validation produced no errors. Harry grins with
self-satisfied relief.

The CSS validation results, however, are another story (Figure 5.3):

W3C CSS Validator results for TextArea (CSS level 2.1)

Sorry! We found the following errors (3)

18 #logo Value Error : position attempt to find a semicolon before

➥ the property name. Add it.

25 #tagline Value Error : margin only 0 can be a length. You must

➥ put a unit after your number : -13px 0 0 28

119 dl.projects Value Error : float lefr is not a float value : lefr

Figure 5.3
FarfallaEffect’s
page-validation
results

 From the Library of Wow! eBook

ptg

THE CASE OF THE DEVILISH DETAILS 131

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT

My first hunch was correct: Harry’s knowledge of HTML and CSS is solid, but
he missed some minutia that made the difference between the page he was
shooting for and the one he was getting.

Upon reviewing the validation results, it’s clear that we need to make the
following fixes:

1. The logo is out of position because Harry forgot the semicolon at the end
of the following declaration:

#logo {

position: relative;

top: 0;

left: -33px;

}

2. The tagline is slightly off because Harry forgot the unit of measurement
after the value:

#tagline {

color: #BF4B1D;

font-size: .8em;

margin: -13px 0 0 28px;

}

3. The list items aren’t floating to the left because of a misspelling:

dl.projects {

float: left;

margin: 0 10px 10px 10px;

text-align: center;

width: 260px;

}

Once these changes are incorporated, the validation results produce no errors,
but the look of the page shows that something is still amiss (Figure 5.4 on
the next page).

note
Le� was ori�nally
wri�en as lefr.

 From the Library of Wow! eBook

ptg

132 CSS Detective Guide

The logo is still not where it’s supposed to be and didn’t the main body area
have a white background in the original design spec? There is something
wrong with the styles that control the main body of the page. Let’s go back to
the styles to see what small detail could elude both the validator and Harry’s
tired eyes.

Did you spot it yet? If not, go back to the code and read it through from the
top, keeping in mind that the problem will probably be with a selector that
controls the main section of the page. Also remember that it may be a simple
detail that makes the difference.

 Aha! Something just isn’t quite right about the selector created for the
<div id=”container”>, is it? In typical Harry Terry fashion, he forgot to put
a # in front of the container selector. Thus, none of the #container styles
show up: the middle alignment from the margins, the background color
and the border, and the font size as well. If you found it, then bravo! Your
 apprenticeship has already served you well!

 Figure 5.4 Page after validation errors were fixed

 From the Library of Wow! eBook

ptg

THE CASE OF THE DEVILISH DETAILS 133

 Here is the fix:

#container {

background-color: #ffffff;

border-left: 1px solid #aaaaaa;

font-size: .9em;

margin: 0 auto;

padding: 10px 1px 0 1px;

text-align: left;

width: 900px;

}

With the addition of the # sign, voilà! The main container shows up as
expected, the logo and tagline finally fall into place properly (Figure 5.5)
and the relative text sizes all render as desired (Figure 5.6).

Figure 5.5 FarfallaEffect
Design’s logo in place

 Figure 5.6 Relative text sizes are fine and dandy.

 From the Library of Wow! eBook

ptg

134 CSS Detective Guide

Case Closed!

With these simple fixes, Harry is up and running again and on top of the
world. I commend him on his clean markup, but warn him to make sure to
give himself more time, remember the little details, and to validate before
panicking. He thanks us both profusely, and leaves to finish his preparation
for the big presentation — and his inevitable promotion.

Harry’s problems were simple ones, but also small and detail-oriented.
They could be easily missed by the untrained eye or without a reasonable
dose of patience. Obviously, the validators are invaluable for finding the sorts
of problems that a human can easily miss, but there are some problems that
even the validator will overlook that a keen eye won’t. After validating, a
great place to start is with the basics: spelling, punctuation, and proper syntax.
Often, something as small as a missing period can make a huge difference.

In addition to validating and starting with the basics, remember to start
searching for the culprit at the top of the document and work your way down.
Many of Harry’s problems were in the top third of the CSS code, but had large
effects on the way the page appeared.

Finally, using a process of elimination to focus on the elements that are out
of place will most often take you straight to the heart of the problem.

Our first case together was a success. However, I suspect that our problems
may get more complicated.

 From the Library of Wow! eBook

ptg

135

6

IN THIS CASE, WE’LL ANSWER THE AGE-OLD
question “What’s in a name?” and see just how
important it is to know exactly who’s who.

 From the Library of Wow! eBook

ptg

136 CSS Detective Guide

The Crime Scene

Zimma Studios, while great at designing websites, does not have the
resources to do any major programming. They hire Bob Cobb to do both
the front-end and back-end development for their client’s foodie blog
and community, EateryJunkie.com. Bob is mainly a back-end developer
who specializes in Java and doesn’t really deal with HTML and CSS much
anymore unless he has to. Ironically, he is a bit of a know-it-all despite being
a little rusty.

During the development process, Bob has run into problems. He swallows
his pride and discreetly turns to the CSS Detective for a fresh set of eyes and
solutions to his layout problems.

INITIAL SNAPSHOTS

Like many back-end programmers, Bob is less interested in the design and
more compelled by how the functionality will be achieved. However, he
knows that he does need to make the site look like the design given to him
(Figure 6.1). But from the results of his first attempt, you can see why he
seeks assistance (Figure 6.2).

 Follow the Evidence

I notice that Bob avoids eye contact, so I guess he is a bit ruffled by having to
ask for help. He hides his discomfort with bluster: “I’ve been doing stuff on
the web for years,” he says smugly, “probably way before you got started with
it. Once you learn HTML and CSS, there’s really not a lot more to it. That’s
why I got into the back end.”

IDENTIFYING SUSPECTS

Bob’s demeanor tells me that while he may know actual programming well,
he’s overconfident about his CSS coding. I suspect that he didn’t validate
because he didn’t think he needed to.

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 137

MUG SHOTS
I’m not surprised that as a developer, Bob has gone for using a strict doctype.
A preliminary review of the code shows this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> ➡

 Figure 6.1 The EateryJunkie design comp Figure 6.2 Not quite what we are shooting for

 From the Library of Wow! eBook

ptg

138 CSS Detective Guide

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=utf-8" />

<title>EateryJunkie - Get your eatery on!

➥ </title>

<link rel="shortcut icon" type="image/x-icon"

➥ href="eatery_junkie.ico" />

<style type="text/css">

body {

background-color: #D1000E;

color: #535353;

font: .95em/1em Arial, sans-serif;

margin: 0;

}

h2, h3, h4, #sitenav {

font-face: Courier New, monospace;}

a {

color: #F2F2F2;

text-decoration: none;

}

a:hover {

text-decoration: underline;}

a img {

border: none;}

ul {

list-style-type: none;}

input {

margin: 0 5px 5px 0;}

.styled {

font-style: italic;}

.morelink {

text-align: right;}

#pagehead, #sitenav li, #pagebody,

➥ #recentposts, #recentcomments,

➥ #recenttweets, #sideimage, #feed,

➥ #subscription, #community, #recipe, #social {

border-bottom: 2px solid #FFF4ED;}

#sitesearch, #postlist, #subscription p,

➥ #subscription form, #community p.members,

➥ #community ul, #recipe ul, #pagefoot {

text-align: center;}

#recentscolumn, #blogessentials {

font-size: .75em;}

#pagewrapper {

background-color: #FFF;

border-top: 1px solid #FFF4ED;

border-right: 2px solid #FFF4ED;

border-bottom: 1px solid #FFF4ED;

border-left: 2px solid #FFF4ED;

margin: 0 auto;

width: 979px;

}

#pagewrapper div {

 over-flow: hidden;}

#pagehead {

background: transparent url(bg_head.jpg)

➥ 178px 0 no-repeat;}

#pagehead h1 {

background: #F9ECD4 url(logo_eateryjunkie.png)

➥ middle middle no-repeat;

border-right: 2px solid #FFF4ED;

float: left;

height:200px;

margin: 0;

text-indent: -9999px;

width:189px;

}

#pagehead a {

display: block;

height: 100%;

width: 100%;

}

#sitenav {

background-color: #CC0000;

border-left: 2px solid #FFF4ED;

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 139

float: right;

margin: 0;

padding: 0;

height: 200px;

width: 250px;

}

#sitenav li {

font-size: 1.1em;

font-weight: bold;

line-height: 1.7em;

padding-left: 8px;

height: 15%;

width: 100%;

}

#sitenav li.about {

background-color: #660000;}

#sitenav li.reviews {

background-color: #9E0F13;}

#sitenav li.recipes {

background-color: #BE0E10;}

#sitenav li.community {

background-color: #D1000E;}

#sitenav li.contact {

background-color: #E82C0C;}

#sitenav li.last {

border-bottom: none;}

#sitenav a {

color: #FFF4ED;}

#sitenav a:hover {

font-style: italic;

text-decoration: none;

}

#searchsite {

background-color: #482C21;

border-top: 2px solid #FFF4ED;

clear: right;

float: right;

height: 40px;

margin: -42px 0 0 0;

 width: 250px;

 }

 #searchsite p {

margin: 8px 0 0 0;}

#pagebody {

background: transparent url(bg_fauxcolumns.gif)

➥ 0 0 repeat-y;

clear: both;}

#contentcolumn {

float: left;

line-height: 1.4em;

margin: 0;

width: 477px;}

#contentcolumn a {

color: #7E5E45; }

#contentcolumn .morelink {

font-size: .8em;}

#featuredpost {

padding: 0 15px 0;}

#featuredpost h2 {

 background: #FFF url(title_latestpost.png)

➥ 0 0 no-repeat;

height: 44px;

text-indent: -9999px;

width: 137px;

}

 #featuredpost h3 {

border-bottom: 1px dotted #A15825;

font-face: Georgia, serif;

line-height: 1.3em;

}

#featuredpost p a {

 text-decoration: underline;}

 #postinfo, #imagecaption {

 font-size: .7em;}

 #blogphoto {

border: 1px solid #7E5E45; ➡

 From the Library of Wow! eBook

ptg

140 CSS Detective Guide

 margin: 5px auto;

 padding: 5px;

 width: 400px;

 }

 #catstags {

 background-color: #F9ECD4;

border: 2px solid #edd0b2;

font-size: .76em;

line-height: .75em;

padding: 2px 8px;

}

#catstags p {

margin: 10px 0;

padding: 0;

}

#recentscolumn {

background-color: #7E5E45;

color: #FFF4ED;

float: left;

width: 250px;

margin: 0;

}

 #recentscolumn a {

 color: #FFF;}

 #recentscolumn ul {

margin: 10px 15px 10px;

 padding: 0;

 }

 #recentscolumn li {

margin: 0 0 .8em 0;}

#recentscolumn h3 {

color: #FFF4ED;

margin: 0;

}

h3.posts {

 background: transparent url

➥ (title_recentpost.png) 0 0 no-repeat;

 height: 35px;

 text-indent: -9999px;

 width: 113px;

 }

 h3.comment {

 background: transparent url

➥ (title_recentcomment.png) 0 0

➥ no-repeat;

height: 29px;

text-indent: -9999px;

width: 131px;

}

h3.tweet {

 background: transparent url

➥ (title_recenttweet.png) 0 0 no-repeat;

height: 28px;

text-indent: -9999px;

width: 107px;

}

h3.pic {

 background: transparent url

➥ (title_recentpic.png) 0 0 no-repeat;

height: 36px;

text-indent: -9999px;

width: 93px;

}

 #recentposts, #recentcomments,

➥ #recenttweets, #recentpics {

padding: 8px 10px;

}

#recentpics {}

#recentpics ul {

margin: 10px auto 10px;

over-flow: auto;

width: 156px;

}

#recentpics li {

float: left;

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 141

margin: 0;

width: 74px;

}

#recentpics img {

border: 2px solid #FFF4ED;

margin: 0;

}

#recentpics li.left {

margin-right: 8px;}

#recentpics li.top {

margin-bottom: 4px;}

#blogessentials {

background-color: #482C21;

color: #FFF4ED;

float: left;

line-height: 1.2em;

margin: 0 0 0 2px;

width: 250px;

}

 #feed, #subscription, #social, #recipe,

➥ #community, #blogroll {

 padding: 8px 10px;

 }

 #blogessentials img {

 margin-right: 5px;

 valign: middle;

 }

 #blogessentials p {

 margin-top: 0;}

 #blogessentials ul {

 margin: 0;

 padding: 0;

 }

 #blogessentials li {

 line-height: 2em;

padding: 0 0 0 12px;

 }

#blogessentials h4 {

color: #FFF4ED;

margin: 0;

}

h4.feed {

 background: transparent url

➥ (title_junkiefeed.png) 0 0 no-repeat;

 height: 32px;

 text-indent: -9999px;

 width: 101px;

 }

 h4.subscription {

 background: transparent url

➥ (title_junkiesubscribe.png) 0 0

➥ no-repeat;

 height: 32px;

 text-indent: -9999px;

 width: 147px;

 }

 h4.community {

 background: transparent url

➥ (title_junkiecommunity.png) 0 0

➥ no-repeat;

 height: 33px;

 text-indent: -9999px;

 width: 123px;

 }

 h4.recipe {

 background: transparent url

➥ (title_junkierecipe.png) 0 0

➥ no-repeat;

 height: 32px;

 text-indent: -9999px;

 width: 97px;

 }

 h4.social {

 background: transparent url

➥ (title_junkiesocial.png) 0 0

➥ no-repeat; ➡

 From the Library of Wow! eBook

ptg

142 CSS Detective Guide

height: 32px;

text-indent: -9999px;

width: 98px;

}

h4.blogroll {

 background: transparent url

➥ (title_junkieblogs.png) 0 0 no-repeat;

 height: 32px;

 text-indent: -9999px;

 width: 114px;

 }

 #sideimage {

 background: url(img_side.jpg) no-repeat

➥ 0px 0;

 height: 375px;

 width: 250px;

 }

 #feed p {

 margin: 5px 0;

 padding: 0 12px;

 }

 #community {}

 #community ul {

 margin: 5px auto 10px;

 over-flow: hidden;

 width: 225px;

 }

 #community li {

 float: left;

margin: 0 8px 0 0;

padding: 0;

width: 50px;

}

#community img {

border: 1px solid #FFF4ED;

margin: 0;

width: 48px;

}

 #community li.right {

 margin-right: 0;}

 #community li.top {

 margin-bottom: 4px;}

#pagefoot {

background-color: #999;

clear: both;

font-size: .70em;

line-height: 1.1em;

padding: 8px 0;

}

/* IE6 compensation */

* html #pagehead {height: 1%;}

* html #sitenav {width: 242px;}

* html #sitesearch {height: 44px;}

* html #community li {margin: 0 7px 0 0;}

* html #sociallinks img {margin-bottom: 5px;}

</style>

</head>

<body>

<div id="pagewrapper">

 <div id="pagehead">

 <h1>Eatery<span

class="styled">Junkie</h1>

 <ul id="sitenav">

 <li class="about">about

➥

 <li class="reviews">

➥ reviews

 <li class="recipes">recipes

 <li class="community">

➥ community

 <li class="contact last">

➥ contact

<div id="sitesearch">

 <form id="search" action="post">

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 143

 <p><input type="text" size="23"

➥ class="textinput" />

➥ <input type="submit" value="search"

➥ class="submit"/></p>

 </form>

</div><!-- end sitesearch -->

</div><!-- end pagehead -->

<div id="pagebody">

<div id="contentcolumn">

 <div id="featuredpost">

 <h2 class="latestpost">Latest Post

➥ </h2>

 <h3>We like it raw (and

➥ cooked, and everything in-between)

➥ </h3>

 <div class="blogphoto">

➥ <img src="main_blogphoto.jpg"

➥ alt="" />

 <p class="imagecaption">Raw foods

➥ goodness abounds at Cafe

➥ Gratitude.</p>

 </div>

 <p>Two years ago, my friend

➥ Ambalinn toyed with

➥ the idea of going completely raw,

➥ In solidarity and out of curiosity,

➥ I decided to try it myself for one

➥ month. My friend adapted and

➥ blossomed into a gourmet rawist

➥ seemingly overnight. In stark

➥ contrast, I found that my partial

➥ interest and demanding work

➥ schedule meant that I ate a lot of

➥ salads (when not sampling my

➥ friend's amazing and delicious

➥ concoctions, which wasn't often

➥ enough). At the end of the month, I

➥ went back to eating cooked foods,

➥ as I missed the warmth as well as

➥ the comfort of making things that

➥ were familiar.</p>

 <p>However, the endeavor did leave me

➥ with a deeper appreciation for raw

➥ foods and with an expanded

➥ repertoire of food preparation

➥ techniques (you wouldn't think that

➥ "massaging" greens would make them

➥ taste better, but it does). Now

➥ when I am out in my travels,

➥ sampling eateries all around the

➥ world, I can't help but stop in at

➥ raw restaurants and see what they

➥ have up their sleeves.</p>

 <p>A recent trip to San Francisco

➥ gave me the opportunity to try out

➥ Cafe Gratitude.

➥ I have their (un)cookbook,

➥ I Am Grateful,

➥ and I have been loving most of the

➥ recipes from it, especially the

➥ desserts. I ordered the "I Am

➥ Abundant" sampler platter to try a

➥ little of everything: sprouted

➥ almond hummus, Asian kale–sea

➥ vegetable salad, hemp-seed pesto

➥ crostini, spicy cashew nacho cheese

➥ with flax chips, olive tapenade,

➥ buckwheat crackers, spring roll,

➥ and mini house soup.</p>

 <p> Before I give my impressions, I

➥ must confess to having a bad habit

➥ of comparing all raw foods with

➥ those of Ms. Ambalinn, as she has

➥ developed a style that is flavorful

➥ without "cheating" (relying on

➥ fats, oils, and overspicing), and

➥ instead produces simple

➥ combinations with basic ingredients

➥ to let the flavors of the food

➥ itself sing through the dish.</p>

 ➥

 From the Library of Wow! eBook

ptg

144 CSS Detective Guide

 <p>Having said that, here was my take

➥ on Cafe Gratitude: overall, each

➥ item was good, but did seem to be

➥ much stronger flavor-wise than

➥ necessary. That didn't stop me from

➥ finishing everything, though, and

➥ it certainly did not stop me from

➥ ordering dessert. Ah, dessert. I

➥ went with the pear-ginger

➥ "cheesecake," which was so

➥ incredibly delicious that I still

➥ think about it to this day.</p>

 <p>So, if you are in the Bay Area and

➥ are curious about raw foods, make

➥ an effort to stop by Cafe

➥ Gratitude. You will be pleased that

➥ you did.</p>

 <p class="postinfo">Posted

➥ 18 June by <cite>

➥ Bonita</cite></p>

 <div id="catstags">

 <p>filed under: reviews

➥ </p>

 <p>tagged with: raw

➥ foods, restaurants

➥ , San Francisco

➥ , healthy eating

➥ </p>

<p>comments: (10)</p>

</div><!-- end catstags -->

 <p class="morelink">

➥ previous posts >></p>

</div><!-- end featuredpost -->

</div><!-- end contentcolumn -->

<div id="recentscolumn">

<div id="recentposts">

<h3 class="posts">recent posts</h3>

<ul id="postlist">

 What goes on at

➥ Vintner's Grill, stays...

 Brenda's breakfast

➥ breakdance

 Amsterdam was

➥ cold, but the poffertjes were

➥ warm and crisp

 Me, you, and the

➥ exotic spiced halibut

 Sweet potato

➥ biscuits and other products of

➥ garden bounty

 On a lark at

➥ Meadowlark

 <p class="morelink">

➥ More posts ></p>

</div><!-- end recentposts -->

<div id="recentcomments">

 <h3 class="comment">recent comments</h3>

<ul id="commentlist">

 Natalie

➥ commented on

 We like it raw (and

➥ cooked, and everything in

➥ between) March 1

 Amber

➥ commented on

 Brenda's breakfast

➥ breakdance January 19

 Deloria

➥ commented on

 What goes on at

➥ Vintner's Grill, stays...

➥ January 18

 Andrew

➥ commented on

 Amsterdam was cold,

➥ but the poffertjes were warm and

➥ crisp December 28

 Christine

➥ commented on

 Me, you, and the exotic

➥ spiced halibut December 5

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 145

 <p class="morelink">

➥ More comments ></p>

 </div><!-- end recentposts -->

 <div id="recenttweets">

 <h3 class="tweet">recent tweets</h3>

 <ul id="tweetlist">

 OH: "it's like a little man

➥ with a sweet potato outfit is

➥ breakdancing on my tongue!" with

➥ @tungstenrs on 21

➥ January

 Ahhh. Finally sitting down to

➥ a nice dinner at Michael's. Still

➥ my favorite place in town.

➥ 17 January

 The Winds never disappoints:

➥ pear poached in spiced red wine

➥ with mascarpone and almond

➥ shortbead. Very pleased.

➥ @drjartnsoul @luddlj

➥ 23 December

 Back in the homeland. Hello

➥ Winds, Jeet, Sunrise, and finally

➥ after many years, Auberge. I can't

➥ wait to eat you!

➥ 20 December

 @lipstickvegan has made more

➥ raw chocolate truffles! thank

➥ heavens for foodie friends.

➥ November 23

 Ft. Meyers had some nice

➥ surprises: Cibo and Crave.

➥ Definitely worth the trip, and

➥ next door to each other!

➥ @ciboftmeyers @craveftmeyers

➥ November 9

 <p class="morelink">

➥ More tweets ></p>

 </div><!-- end recenttweets -->

<div id="recentpics">

<h3 class="pic">recent pics</h3>

<ul id="photobadge">

 <li class="left top"><img src=

➥ "th_vintnergrill.jpg" alt="" />

 <li class="top"><img src="

➥ th_poffertjes.jpg" alt="" />

 <li class="left top"><img src=

➥ "th_empanadasplace.jpg" alt="" />

➥

 <li class="top"><img src=

➥ "th_amberstorte.jpg" alt="" />

 <li class="left top"><img src=

➥ "th_rawlv.jpg" alt="" />

 <li class="top"><img src=

➥ "th_dupain.jpg" alt="" />

 <li class="left"><img src=

➥ "th_rawchocolate.jpg" alt="" />

➥

 <img src="th_meadowlark.jpg"

➥ alt="" />

 <p class="morelink">

➥ More pics ></p>

</div><!-- end photos -->

</div><!-- end recentscolumn -->

 <div id="blogessentials">

 <div id="sideimage">

</div><!-- end sideimage -->

 <div id="feed">

 <h4 class="feed">feed

➥ junkie</h4>

 <p><img src="rss-red16.gif"

➥ alt="" /> Feed me Seymour!</p>

</div><!-- end feed -->

 <div id="subscription">

 <h4 class="subscription">subscription

➥ junkie

➥ </h4> ➡

 From the Library of Wow! eBook

ptg

146 CSS Detective Guide

 <p>You know you've gotta have it.

➥ Don't fight it. Get your fix by

➥ email:</p>

 <form id="subscribeform" action="post">

 <p><input type="text" size="16"

➥ class="textinput" /><input

➥ type="submit" value="subscribe"

➥ class="subscribe"/></p>

 </form>

</div><!-- end subscription -->

 <div id="recipe">

 <h4 class="recipe">recipe<span

➥ class="styled">junkie</h4>

 <ul id="recipelist">

 Sweet potato

➥ biscuits

 Tilapia Piccata

➥

 Cornmeal Pancakes

➥

 Jamaican Laktes

➥

 Vegan Chocolate

➥ Pudding

 Sunny Tapenade

➥

 <p class="morelink">

➥ More recipes ></p>

</div><!-- end recipe -->

 <div id="community">

 <h4 class="community">community<span

➥ class="styled">junkie</h4>

 <p class="members">Newest community

➥ members to join!</p>

 <ul id="communityphotos">

 <li class="top"><img src=

➥ "photos_community/th_mellemusic.jpg"

➥ alt="" />

➥ mellemusic

 <li class="top"><img src="photos_

➥ community/th_allaboutgeorge.jpg"

➥ alt="" />

➥ george

 <li class="top"><img src=

➥ "photos_community/th_webinista.jpg"

➥ alt="" />

➥ webinista

 <li class="top right"><img src=

➥ "photos_community/th_lynneluvah.png"

➥ alt="" />

➥ lynneluvah

 <img src="photos_community/

➥ th_mmoss7.jpg" alt="" />

➥ mmoss

 <img src="photos_community/

➥ th_msjen.jpg" alt="" />

➥ msjen

 <img src="photos_community/

➥ th_misterjt.jpg" alt="" />

➥ misterjt

 <li class="right"><img src="photos_

community/th_skeskali.jpg" alt="" />

➥
skeskali

 <p class="morelink">Join

➥ in and share! ></p>

</div><!-- end community -->

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 147

 <div id="social">

 <h4 class="social">social<span class=

➥ "styled">junkie</h4>

 <ul id="sociallinks">

 <img src="flickr.png"

➥ alt="" /> flickr

➥

 <img src=

➥ "twitter.png" alt="" />

➥ twitter

 <img src=

➥ "friendfeed.png" alt="" />

➥ friendfeed

 <img src=

➥ "facebook.png" alt="" />

➥ facebook

 <img src=

➥ "delicious.png" alt="" />

➥ delicious

 <img src=

➥ "yelp_16.png" alt="" />

➥ yelp

 <img src="dopplr.png"

➥ alt="" />

➥ dopplr

 <img src=

➥ "tripadvisor.png" alt="" />

➥ tripadvisor

 <img src=

➥ "brightkite.png" alt="" />

➥ brightkite

 <img src="vimeo.png"

➥ alt="" /> vimeo

➥

</div><!-- end social -->

 <div id="blogroll">

 <h4 class="blogroll">foodblog<span

➥ class="styled">junkie</h4>

 <ul id="bloglist">

 Mango & Lime

➥

 Serious Eats

 Chocolate and

➥ Zucchini

 Aapplemint

 Albion Cooks

 The Raw Chef

 Chez Pim

 Confessions of a

➥ Cardamom Addict

 Food Blogga

 Gluten-free Goddess

➥

 Lipstick Vegan

</div><!-- end blogroll -->

</div><!-- end blogessentials -->

</div><!-- end pagebody -->

<div id="pagefoot">

<p>copyright © eateryjunkie 2010

➥ · powered by somecms

➥

theme design by zimma studios

➥ · main photo by

➥ billwisserphoto.com</p>

</div><!-- end pagefoot -->

</div><!-- end pagewrapper -->

</body>

</html>

 From the Library of Wow! eBook

ptg

148 CSS Detective Guide

The Evidence Never Lies
 The XHTML validation produced no errors — I would expect no less from

a developer (Figure 6.3):

This document was successfully checked as XHTML 1.0 Strict!

In stark contrast, the CSS report was less than sterling (Figure 6.4):

Sorry! We found the following errors (8)

9 h2, h3, h4, #sitenav Property font-face doesn't exist :

➥ Courier New,monospace

54 #pagewrapper div Property over-flow doesn't exist : hidden

60 #pagehead h1 Value Error : background Too many values or

➥ values are not recognized : #f9ecd4 url(logo_eateryjunkie.png)

➥ middle middle no-repeat

161 #featuredpost h3 Property font-face doesn't exist :

➥ Georgia,serif

251 #recentpics ul Property over-flow doesn't exist : auto

287 #blogessentials img Property valign doesn't exist : middle

365 #community ul Property over-flow doesn't exist : hidden

Figure 6.3
EateryJunkie’s
HTML
validation
results

Figure 6.4 EateryJunkie’s CSS validation results

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 149

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT

My read of Bob was spot on: the CSS and design stuff was never particularly
interesting to him, so he hasn’t put much effort toward retaining it. Many
of his errors were made because he confused HTML tag attributes with the
equivalent CSS property, which he easily would have found with validating.
To wit:

1. The navigation font was incorrect because he confused font-face with
font-family in two instances.

If we look at the style, we can see that the intention was for the font to
show up as Courier (Figure 6.5):

h2, h3, h4, #sitenav {

font-face: Courier New, monospace;}

In order to let the style express itself, we need to make a simple change:

h2, h3, h4, #sitenav {

font-family: Courier New, monospace;}

Figure 6.5
Nice enough
navigation, but
not exactly the
style we wanted

 From the Library of Wow! eBook

ptg

150 CSS Detective Guide

Similarly, the blog-post title is supposed to be in Georgia, or at least with
a serif font, but instead we have this:

#featuredpost h3 {

border-bottom: 1px dotted #A15825;

font-face: Georgia, serif;

line-height: 1.3em;

}

And here’s the rendered product (Figure 6.6):

So we definitely need to make this change to get some satisfaction:

#featuredpost h3 {

border-bottom: 1px dotted #A15825;

font-family: Georgia, serif;

line-height: 1.3em;

}

2. Bob rightfully employed a clearing technique for all of the floated divs.
However, by misstating the overflow property as over-flow, the uncon-
tained floating divs break the design (Figure 6.7) and also cause some
spacing and layout issues (Figures 6.8 and 6.9).

Figure 6.6 A simple
case of an unintended
non-serif font

 Figure 6.7 Uncontained floats break the page head.

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 151

 All of these problems are fixed simply by changing over-flow to overflow:

#pagewrapper div {

overflow: hidden;}

...

➥

Figure 6.8 Uncontained
floats cause text
misplacement.

Figure 6.9 Where’s the page background for the faux columns?

 From the Library of Wow! eBook

ptg

152 CSS Detective Guide

#recentpics ul {

margin: 10px auto 10px;

overflow: auto;

width: 156px;

}

...

#community ul {

margin: 5px auto 10px;

overflow: hidden;

width: 225px;

}

With all of these changes, the page is looking a lot better, but there’s still
room for improvement (Figure 6.10 on the next page).

The final fixes from the CSS validation results help tremendously.

3. The page logo wasn’t showing up because Bob used middle instead of
center in the style declaration (Figure 6.11 on the next page).

But this is easily changed:

#pagehead h1 {

background: #F9ECD4 url(logo_eateryjunkie.png) center center

➥ no-repeat;

border-right: 2px solid #FFF4ED;

float: left;

height:200px;

margin: 0;

text-indent: -9999px;

width: 189px;

}

4. The RSS button wasn’t lining up with the text because Bob used valign
instead of vertical-align (Figure 6.12):

Say no more: we quickly change it to the correct property:

#blogessentials img {

margin-right: 5px;

vertical-align: middle;

}

 Figure 6.12 The RSS
button is out of alignment.

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 153

 Figure 6.10 Things are
falling into place.

Figure 6.11 EateryJunkie’s logo
is missing.

 From the Library of Wow! eBook

ptg

154 CSS Detective Guide

 Once we fix these problems, we re-validate the CSS and produce a report with
no errors. However, the head of the page still has issues (Figure 6.13), as do
parts of the main content area (Figures 6.14 and 6.15).

So far, Bob has consistently let what he thinks he knows get in the way of
using correct code. Let’s bear this in mind while looking at areas where he
may have mistakenly named one thing for another.

What do you think we found? You guessed it:

Figure 6.13 Search is still out of place.

Figure 6.14 The
image and caption
styling is missing.

 Figure 6.15 The styling for the “posted by” information is missing as well.

 From the Library of Wow! eBook

ptg

THE CASE OF MISTAKEN IDENTITY 155

1. The search-box div was out of place because he specified <div id=”sitesearch”>
in the markup, but referred to it as #searchsite in the CSS in two instances:

#searchsite {

background-color: #482C21;

border-top: 2px solid #FFF4ED;

clear: right;

float: right;

height: 40px;

margin: -42px 0 0 0;

width: 250px;

}

#searchsite p {

margin: 8px 0 0 0;}

Changing the div id to #sitesearch puts the box and the paragraph in it
right into place.

2. Neither the post date line nor the image caption were getting their
styling and the caption the smaller text because he confused #postinfo,
#imagecaption for .postinfo, .imagecaption:

#postinfo, #imagecaption {

font-size: .7em;

}

Changing them to .postinfo, .imagecaption gets those styles to render.

3. Finally, the main blog-post photo didn’t get the border styling for the
same reason: he confused #blogphoto for .blogphoto.

#blogphoto {

border: 1px solid #7E5E45;

margin: 5px auto;

padding: 5px;

width: 400px;

}

A simple swap of . for #, making it .blogphoto, does the trick.

With these problems fixed, the page is now where it needs to be, but there
was one last thing that I wanted to warn Bob about. Did you notice it? This
part of the code caught my eye — first the markup:

<div id="feed">

<h4 class="feed">feedjunkie</h4>

...

 From the Library of Wow! eBook

ptg

156 CSS Detective Guide

Then the CSS:

h4.feed {

background: url(title_junkiefeed.png) no-repeat;

height:32px;

text-indent: -9999px;

width: 101px;

}

You probably remember that an id should be a unique identifier and used
only once in a document. Because the true forbidden practice is to have two
ids with the same name, having an id and a class value the same is technically
allowable.

However, as a general principle, the best practice is to keep your values
different from one another. It’s easier to keep track of which element you
are targeting with your styles, and makes for cleaner markup as well.

Although he remained impassive throughout the process, I sense that Bob is
actually pleased and relieved that we have found all of the culprits in his code.
His page is back to looking exactly like the design spec, and now he can get to
the part he enjoys the most: developing the back end.

Case Closed!

It just goes to show you that it’s important to keep up with the CSS properties
and specifications. No matter how long you’ve been doing it, there’s a chance
you’ve simply gotten something wrong. It takes less time to validate and look
up a property than to spin your wheels just because you think (or hope) that
you are right.

Furthermore, as in the previous case, while we could rely heavily on the CSS
validation results to point the way to the problems, you also need to have
an idea of the range of items that could turn out to be issues. Keeping close
track of who’s who in terms of id and class names, as well as HTML attributes
versus CSS properties, will prevent you from mistaking one for the other.

Finally, you saw the importance of clearing floats in order to make sure
a floated layout doesn’t break in action. The overflow: hidden (or auto)
 property is a great technique and easy to apply to elements.

Another set of culprits found and summarily dealt with. On to the next case!

 From the Library of Wow! eBook

ptg

157

7

IN THIS CASE, WE’LL SEE HOW IMPORTANT IT IS TO
be clear about exactly what you want in your rendered
page, and how a seemingly benign single space can
wreak havoc with a layout.

 From the Library of Wow! eBook

ptg

158 CSS Detective Guide

The Crime Scene

Nena Stefani’s jewelry business is really taking off. A self-proclaimed “Jane
of all trades” and lover of all things creative, Nena learned web design and
development in order to create her own website. However, she is stymied by
the spacing problems that her page is giving her. She brings her code to the
CSS Detective for help in identifying the sources of slightly off placement
and spacing.

INITIAL SNAPSHOTS
Nena’s design is clean and simple, and does a good job of incorporating all the
features she needs, including links to the social media that have helped her
build a name for herself (Figure 7.1).

Figure 7.1
Nena
Adornments
design comp

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 159

Unfortunately, Nena’s knowledge gaps have her stalled here (Figure 7.2).

 Follow the Evidence
Nena loves the challenge of learning new things that will enable her to
express her limitless creativity. However, she tends to learn only the basics
until she is pushed to increase her knowledge, an inclination that is proving
to be the case with her CSS.

Figure 7.2
Nena’s slightly
off rendition

 From the Library of Wow! eBook

ptg

160 CSS Detective Guide

IDENTIFYING SUSPECTS

A big handmade arts show is coming up soon, and Nena planned on launching
her website in time for it. All of her print collateral has the web address listed,
and she wants to be sure that all of her marketing pieces are properly in place
so that she can continue to grow her business. However, with her website
development progress stalled, she worries that she won’t launch in time
for the event.

What do you think my first inquiry is? Of course: check to see if she has vali-
dated her code. She assures me that as a novice developer, she relies heavily
on both the HTML and CSS validators, and neither returned any errors. This
fact has only heightened her level of frustration. “I can’t figure out what in
the world could be wrong with it,“ she says angrily. “There’s nothing wrong
with the code!”

MUG SHOTS
I have to admit I was impressed that Nena has given herself the small chal-
lenge of using XHTML and wants to adhere to standards-based design. While
her initial document structure looks legitimate, I’m still skeptical as to her
claim, so I validate the code myself just to rule out invalid code as the culprit
in my own mind.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Nena Adornments</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link rel="shortcut icon" type="image/x-icon" href="nena.ico" />

<style type="text/css">

body {

background-color: #fff;

color: #444;

font: 1em/1em Arial, sans-serif;

}

h1, h2, h3, h4 {

font-family: "Palatino Linotype", Georgia, "Times New Roman", serif;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 161

.clearfix {display: inline-block;}

.clearfix:after {

 clear: both;

 content: ".";

 display: block;

 font-size: 0;

 height: 0;

 visibility: hidden;

}

#wrapper {

font-size: .9em;

margin: 10px auto 0;

width: 990px;

}

#navigation {

background: transparent url(bg_navigation.jpg)

➥ left top no-repeat;

margin: 10px 0 0 0;

width: 992px;

overflow: hidden;

}

#mainnav {

background-color: #cdcdcf;

height: 59px;

line-height: 4.2em;

margin: 0 0 10px 20px;

text-align: center;

width: 664px;

float: left;

display: inline;

}

 #mainnav li {

border-right: 1px solid #fff;

display: inline;

padding: 1.6em 1.95em;

} ➡

h1 {

background: transparent url(logo_

nenaadornments_updated.png) no-repeat 0 0;

height: 79px;

width: 223px;

text-indent: -9999px;

}

h1 a {

display: block;

height: 100%;

width: 100%;

}

h2 {

margin: 15px 0 20px 0;

padding: 0;}

h3 {

clear: both;

margin: 15px 0;

padding: 0;}

a {

color: #2A4D94;}

a img {

border: none;}

ul {

list-style-type: none;}

#latestlines img, #etsyphotobadge img {

border: 1px solid #ddd;

padding: 5px;

}

img.right {

border: 1px solid #ddd;

float: right;

margin-left: 20px;

padding: 5px;

}

 From the Library of Wow! eBook

ptg

162 CSS Detective Guide

 #feed img

 {vertical-align: middle;}

 #feed, #tagcloudtags, #earringlovephotos,

➥ #etsyphotobadge, #footer, form

{text-align: center;}

#maincontent, #etsy, #social, #newsletter

{border-bottom: 1px solid #ddd;}

#maincontent {

margin: 0;

padding: 0 0 45px 15px;

clear: both;

}

 img.main {

 margin-top: -30px;}

#newfeatures {

float: left;

padding: 0 5px 10px 15px;

width: 580px;

}

#newfeatures h4 {

line-height: .5em;

margin-top: 5px;

}

dl, dd, dt {

float: left;}

 dl {

margin: 0 0 10px 0;}

 dd {

margin: 0 0 0 15px;

width: 450px;

}

#earringlovephotos {

border: 1px solid #eee;

 #mainnav li.last {

 border-right: none;}

#mainnav li a {

color: #fff;

font-weight: bold;

text-decoration: none;

}

#mainnav li a:hover {

text-decoration: underline;}

#search {

background-color: #2A4D94;

border-left: 1px solid #fff;

height: 29px;

padding: 3px 0 0 0;

width: 307px;

float: right;

}

 input.textinput {

border: 1px solid #999;

margin: 0 8px 0 0;

}

input.submit {

color: #777;

font-size: .9em;

height: 24px;

}

#feed {

background-color: #678184;

border-top: 1px solid #fff;

border-left: 1px solid #fff;

clear: right;

color: #eee;

float: right;

font-size: .85em;

height: 27px;

line-height: 1.8em;

width: 307px;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 163

#social ul a:hover, #tagcloud a:hover {

 text-decoration: underline;}

#tagcloudtags {

border: 1px solid #ddd;

background-color: #eee;

margin: 0 0 20px 0;

padding: 0 5px 0;}

#tagcloud li {

float: left;

padding: 0 .3em 0 0;}

#tagcloud a {

line-height: 1.5em;

text-decoration: none;

}

.tclevel1 {font-size: .8em; font-weight: 200;}

.tclevel2 {font-size: .9em; font-weight: 300;}

.tclevel3 {font-size: 1em; font-weight: 400;}

.tclevel4 {font-size: 1.1em; font-weight: 500;}

.tclevel5 {font-size: 1.2em; font-weight: 600;}

.tclevel6 {font-size: 1.3em; font-weight: 700;}

.tclevel7 {font-size: 1.4em; font-weight: 800;}

.tclevel8 {font-size: 1.5em; font-weight: 900;}

#footer {

background: url(bg_footer.jpg) no-repeat;

clear: both;

color: #fff;

font-size: .75em;

height: 59px;

line-height: 5.5em;

width: 990px;

}

#footer a {

 color: #777;}

</style>

</head> ➡

float: left;

margin: 0 15px 20px 0;

padding: 1px;

width: 110px;

}

 li.spaced img {

 margin-top: 4px;}

#sidebar {

border-left: 1px solid #ddd;

float: right;

margin: 0 0 0 5px;

padding: 0 15px 0 20px;

width: 340px;

}

#etsy, #sociallinks, #newsletter {

 padding-bottom: 20px;}

 #etsyphotobadge {

margin: 0 auto;

}

 #etsyphotobadge li {

 padding: 0 1px;

 display: inline;}

 #social {

 overflow: hidden;

padding: 0 0 0 0;

 }

* html #social {height: 1%;}

#social ul{

float: left;

width: 100px;}

#social ul li {

line-height: 20px;}

#social ul a {

text-decoration: none;}

 From the Library of Wow! eBook

ptg

164 CSS Detective Guide

➥ and inspires, Nena Adornments provides

➥ exactly what you are looking for.</p>

 <p>Delve deeper into the world of Nena

➥ Adornments to see just how this

➥ particular blend of eclectic jewelry

➥ artistry came into being...

➥ More</p>

</div><!-- end maincontent -->

<div id="newfeatures">

<h2>What's New </h2>

<div id="latestlines">

 <h3>Latest Lines</h3>

 <dl>

 <dt><img src="sm_earrings_greenglass.jpg"

➥ alt="" /></dt>

 <dd><h4>Washed Ashore</h4>

 <p>The meeting of sand and water

➥ produces beautiful treasures of

➥ seaglass for us to appreciate. What

➥ better way to enjoy them than to

➥ incorporate them into adornments? See

➥ Nena's latest tribute to mother

➥ nature's cleverness...

➥ More</p>

 </dd>

 </dl>

 <dl>

 <dt><img src="sm_earrings_grapesofbliss.jpg"

➥ alt="" /></dt>

 <dd><h4>Grapes of Bliss</h4>

 <p>The new Midi line evokes images of

➥ Southern France: fields of lavender,

➥ bunches of ripe juicy grapes hanging

➥ from the vine, the richness of Burgundy

➥ and Bordeaux, the azure of the

➥ Mediterranean sky. If only we could

➥ add scent... More</p>

 </dd>

 </dl>

</div><!-- end latestlines -->

<body>

<div id="wrapper">

<div id="head">

<h1>Nena Adornments</h1>

</div><!-- end head -->

<div id="navigation">

 <ul id="mainnav">

 About

 Products

 Custom

 Events

 Learn

<li class="last">Contact

<form id="search" action="post">

 <input type="text" size="30"

➥ class="textinput" /><input type="submit"

➥ value="Search" class="submit"/>

</form>

 <p id="feed">get the feed!

➥ </p>

</div><!-- end navigation -->

<div id="maincontent">

<h2>Nena Adornments: For Every Body</h2>

 <img class="right main"

➥ src="necklace_bigbrown.jpg"

➥ alt="Earth and Sky Necklace" />

 <p>You can't resist the lure of a well-

porportioned pair of earrings that combines

➥ the earthiness of semi-precious stones

➥ mixed with the clean lines of contemporary

➥ design, can you? Nor the comforting weight

➥ of a necklace of artfully combined antique

➥ African trade beads, nor deftly paired silver

➥ and sand-burnished glass. If this is true,

➥ then Nena Adornments are made for you.</p>

 <p>For everybody who wants to adorn them

➥ selves with beautiful, thoughtful, and

➥ masterfully crafted jewelry that delights

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 165

 <p> Not quite sure how to work that

➥ newest fabulous piece? Can't quite

➥ figure what to pair with what? You're

➥ not alone. Sometimes trying to find

➥ your own signature style takes time.</p>

 <p>The latest Nena video demonstrates

➥ how to set your jewelry off and mix

➥ and match for the best effect. Get some

➥ new ideas -- and if you have some to

➥ share, add them through the comments!

➥ </p>

</div><!-- end multimedia -->

</div><!-- end newfeatures -->

<div id="sidebar">

<h2>Nothing but Nena</h2>

 <div id="etsy">

 <h3>Etsy Nena</h3>

 <p>At the Nena Etsy store, you can get

➥ just about everything you want. And

➥ you can be social while shopping,

➥ right from the comfort of your own

➥ home.</p>

 <ul id="etsyphotobadge">

➥

 <img src="th_tealglass.jpg"

➥ alt="" />

 <img src="th_earrings_hanging.jpg"

➥ alt="" />

➥

</div><!-- end etsy -->

<div id="social" class="clearfix">

 <h3>Social Nena</h3>

 <p>We know it's not possible to get

➥ enough of Nena, so here are all the

➥ other spaces you can find Nena on the

➥ interwebs:</p>

 ➡

 <div id="orgnews">

<h3>EarringLove.org Shows Some Love</h3>

 <ul id="earringlovephotos">

 <img src="logo_earringlove.png"

➥ alt="" />

➥

 <li class="spaced"><img src=

➥ "earringlove1.jpg" alt="" />

 <img src="logo_earringlovesyou.png"

➥ alt="" />

 <p>Our charitable organization,

➥ EarringLove.org, was created to spread

➥ beauty and goodwill in the world by

➥ committing random acts of handmade

➥ jewelry kindness. Now you can rely

➥ upon the kindness of strangers -- for

➥ earrings!</p>

 <p>How it works: if you ever see Nena

➥ with a pair of earrings that you like,

➥ just say the magic words (and no, the

➥ magic words are not “the magic

➥ words”), and she will give you

➥ the earrings -- just like that! So

➥ far, she has given away more than 30

➥ pairs of earrings to lucky women (and

➥ some men) all over the country. Next

➥ stop: the world! (You think we're

➥ kidding? We'll be in Brazil for the

➥ new year! Seriously! EarringLove and

➥ samba will make a great pair!)</p>

 <p>Want to spread some love of the

➥ earring ilk? See how you

➥ can get involved!</p>

</div><!-- end orgnews -->

 <div id="multimedia">

 <h3>Video Tutorial: Effortless Elegance

➥ </h3>

 <img src="video.jpg" class="right"

➥ alt="" />

 From the Library of Wow! eBook

ptg

166 CSS Detective Guide

<p>Enter your email address below:</p>

 <form action="post">

 <input type="text" size="30" class=

➥ "textinput" /><input type="submit"

➥ value="Sign me up!" class="submit" />

 </form>

</div><!-- end newsletter -->

<div id="tagcloud">

<h3>Tagged Nena</h3>

<ul id="tagcloudtags" class="clearfix">

 <li class="tclevel3">

➥ necklaces

 <li class="tclevel7">

➥ semi-precious stones

 <li class="tclevel2">

➥ peridot

 <li class="tclevel1">

➥ rings

 <li class="tclevel8">

➥ earrings

 <li class="tclevel4">

➥ matching sets

 <li class="tclevel2">

➥ amethyst

 <li class="tclevel3">

➥ lapis lazuli

 <li class="tclevel5">

➥ earringlove

 <li class="tclevel2">

➥ precious stones

 <li class="tclevel7">

➥ beads

 <li class="tclevel4">

➥ African trade beads

 <li class="tclevel1">

➥ matching sets

 <li class="tclevel3">

➥ bound

 <li class="tclevel8">

➥ silver

 <li class="tclevel2">

➥ form

 <li class="col1">

➥ <img src="flickr_16.png"

➥ alt="link to Nena on flickr" />

➥ flickr

 <li class="col1">

➥ <img src="twitter_16.png"

➥ alt="link to Nena on twitter" />

➥ twitter

 <li class="col1">

➥ <img src="friendfeed_16.png"

➥ alt="link to Nena on friendfeed" />

➥ friendfeed

 <li class="col1">

➥ <img src="facebook_16.png"

➥ alt="link to Nena on facebook" />

➥ facebook

 <li class="col2">

➥ <img src="linkedin_16.png"

➥ alt="link to Nena on linkedin" />

➥ linkedin

 <li class="col2">

➥ <img src="dopplr_16.png"

➥ alt="link to Nena on dopplr" />

➥ dopplr

 <li class="col2">

➥ <img src="youtube_16.png"

➥ alt="link to Nena on youtube" />

➥ youtube

 <li class="col2">

➥ <img src="yelp_16.png"

➥ alt="link to Nena on yelp" />

➥ yelp

</div><!-- end sociallinks -->

 <div id="newsletter">

 <h3>Newsletter Nena</h3>

 <p>Sign up for our newsletter to get

➥ information on new releases, upcoming

➥ events, and sales.</p>

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 167

 <li class="tclevel2">bracelets

 <li class="tclevel1">sale

 <li class="tclevel7">custom

 <li class="tclevel4">garnet

 <li class="tclevel1">gold

</div><!-- end tagcloud -->

</div><!-- end sidebar -->

<div id="footer">

 copyright © nena adornments 2010 | website design by

➥ farfallaeffect design

</div><!-- end footer -->

</div><!-- end wrapper -->

</body>

</html>

The Evidence Never Lies

To my eye, both Nena’s XHTML and CSS looked really solid from the standpoint
of well-formed markup, and the validation results confirmed this as well. And,
true to Nena’s emphatic testimony, neither validation produced any errors.

“I may not know everything about coding,” Nena admitted, “but what I do know,
I know well.”

Here is the validation report for the XHTML markup (Figure 7.3).

This document was successfully checked as XHTML 1.0 Transitional!

Figure 7.3 Nena
Adornments’ XHTML
validation results

 From the Library of Wow! eBook

ptg

168 CSS Detective Guide

And here is the report for the CSS (Figure 7.4).

Congratulations! No Error Found.

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT

The case was turning out to be a little trickier than I had expected. Obviously,
the validators weren’t going to shine any light on the problems, so now we
have to roll up our sleeves and take a much closer look at the code.

Has anything jumped out at you? One item that caught my eye was the
absence of margins and padding on some of the layout elements that were
having spacing problems. Nena was conscientious about using margins and
padding where she needed a value. However, she may not have known (or
remembered) that the browser will supply its own values for margins and
padding on an element if the author does not.

Here’s what I suggest for our first approach to fixing Nena’s spacing problems.
Let’s make the lack of margins and padding explicit where they currently are
not, starting with the most glaringly obvious problems.

Right at the top of the page, the search and RSS feed boxes aren’t at all where
they are supposed to be, and the alignment for the links in the navigation bar
seems to be a little off, doesn’t it (Figure 7.5)?

Figure 7.4 Nena Adornments’ CSS validation results

Figure 7.5 Nena Adornments’ problem RSS feed box and navigation bar

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 169

Both #search and #feed are floated right, and #mainnav is floated left. There
should be enough room for both of them, so I suspect this misplacement is
due to float drop caused by one element being wider than it should be.

An examination of the #mainnav styles confirms my suspicions. While there
are multiple style declarations for the #mainnav element, and even margin
values, the padding values are conspicuously absent. Remember that browsers
give ordered and unordered lists padding by default, and that the padding
may differ from browser to browser.

#mainnav {

background-color: #cdcdcf;

height: 59px;

line-height: 4.2em;

margin: 0 0 10px 20px;

text-align: center;

width: 664px;

float: left;

display: inline;

}

As a fix, let’s set the padding to 0 to effect the desired change:

#mainnav {

background-color: #cdcdcf;

height: 59px;

line-height: 4.2em;

margin: 0 0 10px 20px;

padding: 0;

text-align: center;

width: 664px;

float: left;

display: inline;

}

Aha! This takes care of the float drop issue (Figure 7.6).

Figure 7.6 Tremendous improvement, but still work to be done

 From the Library of Wow! eBook

ptg

170 CSS Detective Guide

I think we are on to something here, don’t you? Let’s see if we can use the
same approach with the out-of-place RSS box.

In the styles for the #feed element, this is what Nena has:

#feed {

background-color: #678184;

border-top: 1px solid #fff;

border-left: 1px solid #fff;

clear: right;

color: #eee;

float: right;

font-size: .85em;

height: 27px;

line-height: 1.8em;

width: 307px;

}

Hmmm. Do you see any margin or padding values declared? Nope, I don’t
either. From this code alone, you would think that everything would be
fine, but often when using positioning on elements, it is better to err on the
side of caution and explicitly declare the element’s margin, at the very least.
Margin is particularly relevant in this situation because the problem has to
do with the box’s relationship with the elements around it, as opposed to the
elements inside of it (which would lend itself more to looking at the padding).
Just a small addition should do the trick:

#feed {

background-color: #678184;

border-top: 1px solid #fff;

border-left: 1px solid #fff;

clear: right;

color: #eee;

float: right;

font-size: .85em;

height: 27px;

line-height: 1.8em;

margin: 0;

width: 307px;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 171

 Eureka! This seems to put the RSS box in the place that Nena intended
(Figure 7.7).

Now, on to the out-of-place photos in the sidebar (Figure 7.8).

Heartened that my hunch about the margin and padding has paid off so far,
I suggest we continue looking in the styles of the area in question for absent
explicit margin and padding declarations. Here’s what we find:

 #etsyphotobadge {

margin: 0 auto;}

 Figure 7.7 The RSS feed bar is in its proper place, and the navigation is much-improved.

 Figure 7.8 Off-kilter Etsy photo badge

 From the Library of Wow! eBook

ptg

172 CSS Detective Guide

Yep, again there is no explicit margin or padding on an unordered list.
Because the problem seems to be more about size than the box’s relationship
with the elements around it, I decide to make it clear that no padding is
wanted within that element box:

#etsyphotobadge {

margin: 0 auto;

padding: 0;

}

This fix did the trick (Figure 7.9)!

We’re pulling into the home stretch, but my client, with her discerning design
eye, sees that we are not quite there yet.

Nena points out that the spacing is still off on the page itself, notably on the
top of the page with the logo (Figure 7.10), and then at the bottom of the
page with the footer (Figure 7.11), and the alignment of the navigation links
isn’t quite right.

Figure 7.9
Fixed Etsy photos!

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 173

Original
Design Comp

Spacing
Issues

Original
Design Comp

Spacing
Issues

Figure 7.10 Too much between the logo and the top of the page and nav bar

 Figure 7.11 Hey! That space isn’t supposed to be there!

 From the Library of Wow! eBook

ptg

174 CSS Detective Guide

These points warrant a final look at the CSS, and a potential delving into the
HTML markup.

What do you think we will find when we look at the code once again? You
guessed it: right in front of our faces, the declarations for body are missing
an explicit margin value. Let’s put it in now:

body {

background-color: #fff;

color: #444;

font: 1em/1em Arial, sans-serif;

margin: 0;

}

 Nena smiles. The footer is flush with the bottom of the page, just as she
intended in her original design.

As for the extra space for the header, similarly, we make this addition:

h1 {

background: transparent url(logo_nenaadornments_updated.png) no-

repeat 0 0;

height: 79px;

margin: 0;

width: 223px;

text-indent: -9999px;

}

Now the site logo is the proper amount of space from the top.

The last mystery to solve is that of the navigation links (Figure 7.12).

Original
Design Comp

Spacing
Issues

 Figure 7.12 Just slightly off, but enough to notice the difference.

 From the Library of Wow! eBook

ptg

THE CASE OF THE SINGLE WHITE SPACE 175

This issue is especially puzzling, given that we have already fixed the spacing
styles for the #mainnav section. What else could cause the spacing to be off?
Then the answer comes to me: the list white-space bug! I go to the HTML
code to see if I am correct, and sure enough, we find this:

<ul id="mainnav">

About

Products

Custom

Events

Learn

<li class="last">Contact

I was hoping that the newer versions of browsers wouldn’t still have this
problem, but apparently they still do. The speediest fix is inelegant but
 effective: remove all the white space from in-between the list items. To wit:

<ul id="mainnav">

 AboutProducts</

li>

➥ CustomEvents

➥ Learn<li class="last">Contact

➥

 Once this is done, Nena and I celebrate — the page is completely fixed, and it
looks exactly the way she wanted it to.

Case Closed!

Nena’s case wasn’t as cut and dried as finding misspellings and incorrect
punctuation. With no validation errors, we have to understand more of the
issues that cause spacing errors. You can begin to see just how insidious the
browser’s default styles can be and how important it is to make explicit the
values that you need — particularly when it comes to margins, which affect

 From the Library of Wow! eBook

ptg

176 CSS Detective Guide

the relationship of an element with its neighbors; and padding, which often
affects an element’s rendered size.

Additionally, we uncovered a surprise problem of the list white-space bug,
which seems insignificant but can have unwanted effects on your page design.

In terms of process, if there are no validation errors, look for fixes in the CSS
first. As always, start from the top of the page and with the most heinous
problem, and then work your way down. Remember to solve only one
problem at a time and see how that fix may affect anything else on the page.
Once you can see the change in the fixed area, then you can move on to the
next problem area.

Finally, after you have made all of the fixes that you can to the CSS declarations,
look for any remaining issues in the markup itself.

Well done — another rousing success! But a CSS Detective’s work is never
done. Now, on to The Case of the Mistaken Identity!

 From the Library of Wow! eBook

ptg

177

8

IN THIS CASE, WE’LL SEE HOW TO TAME A HEADSTRONG
float by gently yet firmly persuading it to get back
in line.

 From the Library of Wow! eBook

ptg

178 CSS Detective Guide

The Crime Scene

Celebrated author Raymond Jay has finally capitulated. Because of pressure
from his growing readership, his agents, and even his family, he is getting
a website built to launch his web presence. Like some of his baby-boomer
brethren, he uses technology only when necessary and thus is a late adopter.
For example, he uses Microsoft Internet Explorer 6 as his browser, because he
doesn’t trust upgrading and downloading applications from the web. Needless
to say, Raymond is tentative about the web as a tool for self-promotion.

Luckily for him, his daughter, Diona — a bit of a renaissance woman with
a background in fine arts, design, and architecture — has recently taken up
web development and is creating the site for him. But because she is new to
the web development game, she doesn’t have experience with solving old-
school IE bugs. Imagine her horror when she sees her design is completely
broken in both IE6 and IE7!

INITIAL SNAPSHOTS
Diona’s design focuses on providing the user with the information she
believes is most important to Raymond Jay’s audience. It looks great in the
modern browsers Mozilla Firefox, IE8, and Opera (Figure 8.1). But you can
imagine Diona’s frustration when she saw her page in IE7 (Figure 8.2). And
to add insult to injury, it looks even worse in her dad’s favorite browser, IE6
(Figure 8.3).

 Follow the Evidence

Diona builds sites using CSS only for layout and relies heavily on floats.
However, IE is encouraging her floats to do exactly what they please, with
little regard for the style instructions.

IDENTIFYING SUSPECTS

Diona respects the importance of validating the HTML and CSS, but I suspect
that because the problems are showing up specifically in IE6 and IE7 she has
unwittingly stumbled into a nest of nasty IE float bugs.

Mug shots
Let’s take a look at the page code and see if we can identify why these floats
won’t listen to reason.

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 179

 Figure 8.1 The design looks the way it’s supposed to in
Mozilla Firefox, Microsoft Internet Explorer 8, and Opera.

Figure 8.2 Raymond Jay’s site in IE7 Figure 8.3 Raymond Jay’s site in IE6 (ouch!)

 From the Library of Wow! eBook

ptg

180 CSS Detective Guide

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

➥ Strict//EN" "http://www.w3.org/TR/xhtml1/

➥ DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

➥ xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=utf-8" />

<title>The Mind of Raymond Jay</title>

<link rel="shortcut icon" type="image/x-icon"

➥ href="raymondjay.ico" />

<style type="text/css">

/* -- reset styles -- */

html, body, div, p, span, h1, h2, h3, h4, h5,

➥ h6, a, img, ul, li, form, input, hr {

margin: 0;

padding: 0;

font-size: 100%;

background: transparent;

}

body {

line-height: 1.125em;}

ul {

list-style: none;}

/* -- font faces -- */

@font-face {

font-family: 'NewCicleGordita';

src: url('New_Cicle_Gordita.eot');

src: local('New Cicle Gordita'),

local('NewCicle-Gordita'),

➥ url('New_Cicle_Gordita.ttf')

➥ format('truetype');

}

/* -- general page styles -- */

body, html {

background-color: #9f9a86;

color: #424031;

font: .9em Arial, sans-serif;

}

h1, h2, h3 {

color: #652a01;

font-family: 'NewCicleGordita','Trebuchet MS',

➥ sans-serif;

}

h3 {

border-bottom: 1px solid #b6b18a;

padding-bottom: 4px;

}

a {

color: #9a884b;

text-decoration: none;

}

a:hover {text-decoration: underline;}

a img {border: none;}

.readmore a {

float: right;

font-size: .85em;

}

/* -- clearfix styles -- */

.clearfix {

display: block;

}

.clearfix:after {

content: ".";

display: block;

clear: both;

visibility: hidden;

line-height: 0;

height: 0;

}

* html .clearfix {

height: 1%;}

/* -- page layout styles -- */

#primary, #secondary, #footer {

clear: both;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 181

h1, p.authorphoto, #whois, #secondarycontent

➥ div {

float: left;}

#primary {

background: #d6d4ca url(bg_mainbody.gif) 0 0

repeat-x;

}

#headwrap {

background-image:url(bg_header.gif); }

#header {

background-color:#9f9a86;

margin:0 auto;

width: 986px;

height: 142px;

}

h1 {

 background: transparent url

➥ (logo_raymondjay.gif) no-repeat 0 0;

 height: 60px;

margin: 40px 0 0 37px;

width: 306px;

text-indent: -9999px;

}

h1 a {

display: block;

height: 100%;

width: 100%;

}

#navcontain {

width: 638px;

float: right;

position: relative;

right: -6px;

}

#mainnav {

 background: transparent url

➥ (bg_navcurve.gif) 0 0 no-repeat ;

 color: #652a01;

font-size: 1.2em;

float: left;

height: 60px;

line-height: 57px;

list-style-type: none;

margin: 40px 0 0;

padding: 0;

text-align: center;

width: 623px;

}

.end {

 background: transparent url

➥ (bg_navcurveend.gif) 0 0 no-repeat;

float: right;

height:76px;

width: 15px;

position: relative;

top: 40px;

margin: 0;}

#mainnav li a {

 background: transparent url

➥ (bg_navitems.gif) 0 0 repeat-x ;

border-right: 1px solid #8f8766;

border-left: 1px solid #fff;

color: #652a01;

display: block;

float: left;

font-weight: bold;

height: 58px;

line-height: 58px;

padding: 0 1px;

width: 118px;

}

#mainnav li.first a {

border-left: 0;

margin-left: 15px;

}

 #mainnav li.last a {border-right:

➥ 0;} ➡

 From the Library of Wow! eBook

ptg

182 CSS Detective Guide

#mainnav li a:hover {

font-weight: normal;

text-decoration: none;

}

#primarycontent {

margin: 0 auto;

background-color:#fff;

padding: 10px 0;

width: 986px;

}

#primarycontent h2 {

margin: 0 0 15px 0;

padding-bottom: 4px;

border-bottom: 1px solid #b6b18a;

}

.authorphoto {

margin: 0 0 0 10px;

width: 471px;

}

#whois {

font-size: 1.2em;

line-height: 1.3em;

margin:0 0 0 11px;

padding: 10px 10px;

width: 238px;

}

#whois h2 {

font-size: 2em;

line-height: 1.125em;

}

#whois p, #latestwork p {

margin: 0 0 15px 0px;

 padding: 0;

 }

#latestwork {

 background: url(bg_body_latestwork.gif)

➥ repeat-y scroll center bottom;

 color: #f3f1eb;

 margin: 0;

 width: 229px;

 float: right;

 position: relative;

 top: 1.125em;

 right: -6px;

 }

 #latestwork h2 {

 background:transparent url

➥ (bg_top_latestwork2.gif) no-repeat

➥ scroll 0 0;

 border: 0;

 color: #fdf6f1;

 font-size: 1.7em;

 margin: 0;

padding: 33px 0 0 15px;

position: relative;

top: -5px;

}

 #lwbody {

border-top: 1px solid #b6b18a;

 width: 200px;

 margin: auto;}

 #lwbody p {

margin: 10px 0 0 0;

 padding: 0;}

 #lwbody p.description {

 clear: both;

 }

 #latestwork h3 {

 border-bottom: 0;

 font-size: 1.5em;

padding: 0 0 0 10px;

 }

 #latestwork img {

 float: left;

margin: 5px 10px 10px 0;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 183

 #latestwork ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 }

 #latestwork a {

 color: #e2c9a1;}

 #promo {

 font-size: .85em;

 line-height: 1.2em;

margin: 0 0 15px 0;

}

p.latestend {

 background: url(bg_bottom_latestwork2.gif)

➥ 0 0 no-repeat;

height: 50px;

position: relative;

bottom: -5px;

}

#latestwork p.readmore {

padding-right: 10px;

margin: 0;

}

#secondary {

background: transparent url(bg_bottom.gif) 0

➥ 0 repeat-x;

font-size: 1.1em;

}

#secondarycontent, #footer {

margin: 0 auto;

width: 986px;

}

#secondarycontent {

background-color: #f5f4ef;

padding: 20px 0 10px 0;}

 #secondarycontent div {

width: 31%;

margin: 0 1%;

padding: 0;

}

#secondarycontent div div {

 width: 100%;

margin: 0 0 10px 0;

padding: 0;

}

#secondarycontent h3 {

font-size: 1.75em;

margin-bottom: 10px;

}

dl, dt, dd {float: left;}

dl {margin: 0 0 15px 0;}

dt {

clear: left;

margin: 5px 0;

width: 67px;

}

 dd {

margin: 5px 0 0 10px;

 width: 228px;

 }

#appearances li {

margin: 1.125em 0;}

#footer {

background-color: #F8F7F6;

font-size: .75em;

height: 40px;

line-height: 40px;

text-align: center;

padding: 3px 0;

}

#footer a {color: #B4AE9E;}

</style>

</head> ➡

 From the Library of Wow! eBook

ptg

184 CSS Detective Guide

<body>

<div id="primary">

<div id="headwrap">

<div class="wrap">

<div id="header">

 <h1>Raymond Jay</h1>

<div id="navcontain">

 <ul id="mainnav">

 <li class="about first">

➥ about

 <li class="work">work

➥

 <li class="appearances">

➥ appearances

 <li class="blog">blog<

➥ /a>

 <li class="contact last">

➥ contact

 <div class="end"></div>

 </div>

</div><!-- end header -->

 </div>

</div><!-- end headwrap -->

<div id="primarycontent" class="clearfix">

 <p class="authorphoto"><img

➥ src="authorphoto.jpg" alt=" " /></p>

 <div id="whois">

<h2>The Mind of Raymond Jay</h2>

 <p>Professor. Sociologist. Philosopher.

➥ Pundit. Poet. Inspired Essayist.

➥ MacArthur Genius Award recipient.</p>

 <p>Raymond Jay's work spans the gamut

➥ of disciplines and forces readers

➥ to challenge their perceptions and

➥ beliefs about the world and their

➥ place in it.

➥ read more...</p>

</div><!-- end whois -->

<div id="latestwork">

 <h2>Latest Work</h2>

 <div id="lwbody">

 <p>

➥ <img src="book_brownnosing_cover

➥ .jpg" alt="" /></p>

<h3>Brown Nosing</h3>

<div id="promo">

 <p>New York Times' Best Seller

➥ list, January 2010</p>

<p>Buy at</p>

 Amazon.com

➥

 Barnes &

Noble

 Books &

Books

 </div>

 <p class="description">What

➥ happens when you paint a standard

➥ Groucho nose brown? Discover how

➥ people react to a new spin on an

➥ old joke.</p>

 </div>

 <p class="latestend readmore">

➥ read more...</p>

</div><!-- end latestwork -->

</div><!-- end primarycontent -->

</div><!-- end primary -->

<div id="secondary">

 <div id="secondarycontent"

class="clearfix">

 <div id="otherwritings">

 <h3>Other Writings</h3>

 <dl class="projects">

 <dt>

➥ <img src="book_twomaplesjoy.jpg"

➥ alt="" /></dt>

 <dd>

 <h4>Two Maples and the Scent of Joy

➥ </h4>

 <p>From ashes to new life: giving the

➥ departed their due and honoring

➥ those we loved.</p>

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 185

 <p class="readmore">

➥ read more...</p>

 </dd>

 <dt>

➥ <img src="book_lookathowfast.jpg"

➥ alt="" /></dt>

 <dd>

<h4>Look at How Fast I Can Run!</h4>

 <p>Thoughts on why we continue to

➥ love parents who have walked

➥ away.</p>

 <p class="readmore">

➥ read more...</p>

 </dd>

 <dt>

➥ <img src="book_jazzinthedark.jpg"

➥ alt="" /></dt>

 <dd>

 <h4>Jazz in the Dark</h4>

 <p>Fully listening without sight:

➥ experiencing jazz with the whole of

➥ your being.</p>

 <p class="readmore">

➥ read more...</p>

</dd>

</dl>

 <p class="readmore">see

➥ all other writings »</p>

</div><!-- end otherwritings -->

<div id="appearances">

<h3>Appearances</h3>

 <p>1 January, 6pm

➥ </p>

 <p>Epic Book Shop, Yellow Springs,

➥ OH</p>

 <p>18 January, 7pm

➥ </p>

 <p>I (heart) Luddi Books, Detroit,

➥ MI</p>

 <p>14 February, 8pm

➥ </p>

 <p>Books & Books, Coral

➥ Gables, FL</p>

 <p>

➥ 21 March, 2pm

➥

 The Art and Soul of Books, Los

➥ Angeles, CA</p>

 <p>

➥ 2 April, 5pm

➥

 Vespucci's Well-Read, New York,

➥ NY</p>

 <p>

➥ 23 May, 5pm

➥

 Viggin's Bookshelf, Oshkosh, WI</p>

 <p>

➥ 14 June, 11am

➥

 Peaceful Passage Books, Henderson,

➥ NV</p>

 <p class="readmore">

➥ see all appearances »</p>

</div><!-- end appearance -->
➥

 From the Library of Wow! eBook

ptg

186 CSS Detective Guide

 <div id="blogmusings">

 <h3>Blog Musings</h3>

 <div class="blogpost">

 <h4>Launch It</h4>

 <p>Much like the previous year's election, a new year

➥ brings hope and the potential for change in our lives.

➥ Don’t be one of those folks who bellyache midway through

➥ the year about not being able to get it together...</p>

 <p class="readmore">read more...</p>

 </div>

 <div class="blogpost">

 <h4>At the roots of Joy</h4>

 <p>Sometimes the best thing to do when something is ready

➥ to leave is to let it pass on. Sometimes the ashes of

➥ despair can be mixed with the soil to help sow the seeds

➥ of renewal. Sometimes...</p>

 <p class="readmore">read more...</p>

 </div>

 <div class="blogpost">

 <h4>Dreams of Osirus</h4>

 <p>It could have the outcome of a prolific imagination, but

➥ when you meet the god of the Egyptian underworld in your

➥ dreams you should still take it seriously...</p>

 <p class="readmore">read more...</p>

</div>

 <p class="readmore clearfix">see all blog posts

➥ »</p>

</div><!-- end blogmusings -->

</div><!-- end secondarycontent -->

<div id="footer">

 <p>Copyright © 2010 - Raymond Jay | design:

➥ diona creative unlimited | development:

➥ deglorious devworks</p>

</div><!-- end footer -->

</div><!-- end secondary -->

</body>

</html>

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 187

The Evidence Never Lies
I’d be remiss if I didn’t do due diligence and double-check the validation
results, so I go ahead and validate to rule out any coding mistakes. Both
the HTML and CSS validation results are error free, as I expected. But then
again, most IE bugs are the outcome of perfectly valid code that has been
 erroneously rendered by IE’s “interesting” code interpretation engine.

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT

It was just Diona’s luck to hit three of the most common IE float bugs all in
the same document. Who’da thunk it? But in comparing the pages rendered
by the two older IE versions versus the modern browser, I notice our old usual
suspect buddies from Chapter 4 :

1. The double margin float bug (Figure 8.4).

logo & nav
in IE6

logo & nav
in IE7

 2. The float stepdown bug (Figure 8.5).

Figure 8.4 Raymond
Jay’s logo is in the right
place in IE7 (bottom)
but not in IE6, where
the double margin float
bug crops up. The nav
elements are also affected.
That’s a double bummer.

 Figure 8.5 The float
stepdown bug in IE6 and
IE7: quite the opposite of
the stairway to heaven

 From the Library of Wow! eBook

ptg

188 CSS Detective Guide

 3. The float drop bug (Figure 8.6).

Fortune is smiling upon us: the fixes for all these bugs are quick and easy.

So, let’s get these floats in line, shall we?

First, the double margin float bug. Do you remember from your earlier training
what keeps you from seeing double? That’s right: apply display: inline to the
style declaration of the errant floating element, and it will cure what ails you.

So let’s add it to the logo and fix that one first:

h1 {

background: transparent url(logo_raymondjay.gif) no-repeat 0 0;

display: inline;

height: 60px;

margin: 40px 0 0 37px;

width: 306px;

text-indent: -9999px;

}

Once we do that, you can see how the logo shows up comparably in both
browsers (Figure 8.7)

However, there are still issues in the navigation, so let’s tackle those next.

Float stepdown is so dramatic and over-the-top that I almost have to
do admire its pizzazz. However, just because something is entertaining
doesn’t mean it gets to stick around — especially when it causes major
layout problems.

 Figure 8.6 The float drop
bug in IE6

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 189

logo & nav
in IE6

logo & nav
in IE7

 Do you have an idea for the fix? Think back to the previous example and
you’ve got it: it’s display: inline to the rescue again! Add the property to
the style declaration of the containing in this way:

#mainnav {

background: transparent url(bg_navcurve.gif) 0 0 no-repeat ;

color: #652a01;

font-size: 1.2em;

float: left;

height: 60px;

line-height: 57px;

list-style-type: none;

margin: 40px 0 0;

padding: 0;

text-align: center;

width: 623px;

}

.end {

background: transparent url(bg_navcurveend.gif) 0 0 no-repeat;

float: right;

height:76px;

width: 15px;

position: relative;

top: 40px;

margin: 0;} ➡

Figure 8.7 Raymond
Jay’s logo in IE6: success!

 From the Library of Wow! eBook

ptg

190 CSS Detective Guide

#mainnav li {

display: inline;}

#mainnav li a {

background: transparent url(bg_navitems.gif) 0 0 repeat-x ;

border-right: 1px solid #8f8766;

border-left: 1px solid #fff;

color: #652a01;

display: block;

float: left;

font-weight: bold;

height: 58px;

line-height: 58px;

padding: 0 1px;

width: 118px;

}

#mainnav li.first a {

border-left: 0;

margin-left: 15px;

}

Now your former stepdown list items can get a new leg up on correct
rendering (Figure 8.8).

There is still a little problem in IE6, which is another instance of the double
margin float bug (Figure 8.9).

 No problem, we just add our favorite fix again, display: inline; , which
works like a charm:

 Figure 8.8 The navigation in IE7 as the W3C intended it — sans float stepdown

 Figure 8.9 The navigation in IE6: float stepdown due to the double margin float bug

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 191

#mainnav li.first a {

border-left: 0;

display: inline;

margin-left: 15px;

}

Is that the last of the double margin float bug? Somehow, my sense is “no.”
The float drop in the two content areas looks suspiciously like it may be
a product of the double or nothing effects of the bug, especially because
it is not happening in IE7.

Close examination reveals that my hunch is correct, as the author photo
is farther away from the container’s side in IE6 than in IE7 (Figure 8.10
and 8.11).

IE 6 IE 7

 Figure 8.10 The position of the author photo is not
quite the same.

 Figure 8.11 Aha! The double margin float bug strikes
again!

 I know you know the drill by now. So here’s the fix:

.authorphoto {

display: inline;

margin: 0 0 0 10px;

width: 471px;

}

...

➥

 From the Library of Wow! eBook

ptg

192 CSS Detective Guide

#secondarycontent div {

width: 31%;

margin: 0 1%;

padding: 0;

display: inline;

}

 And last but not least, we have some definition lists in need of a firm talking
to (Figure 8.12).

The <dd>s are not staying inline with the <dt>s as expected. You might be
thinking, “we could use clearfix — it works great to establish clearing.” True
enough, but in this instance, the Swiss Army knife method of clearfix is
woefully ineffective: throwing more elements in the mix won’t work, but
specifying the limits in the form of a height will. Yes, much like a cheeky
 teenager, what these floats want is structure and rules in order to feel
comfortable and do what is expected of them.

dd {

height: 123px;

margin: 5px 0 0 10px;

width: 228px;

}

Figure 8.12

The definitions are
definitely out of line

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 193

The result? The floated <dd>s now line up and express themselves in appropriate
ways (Figure 8.13). All it took was a little extra definition.

A final precautionary note: the instance of float stepdown, could have been
avoided completely by making a slight adjustment in the code. Do you remember
what the combination of factors is for float stepdown from Chapter 4? Here’s
a reminder: when a series of floated elements are contained in a series of block
level elements that are not floated, the floated elements may end up in a step-
down effect in IE6 and IE7 and lower. The other additional piece of informa-
tion is that padding on the element in question further triggers the bug.

Let’s take another look at the code:

#mainnav {

background: transparent url(bg_navcurve.gif) 0 0 no-repeat ;

color: #652a01;

font-size: 1.2em;

float: left;

height: 60px;

line-height: 57px;

list-style-type: none;

margin: 40px 0 0;

padding: 0;

text-align: center;

width: 623px;

} ➡

Figure 8.13 The
definitions can now do their
thing — in all browsers.

 From the Library of Wow! eBook

ptg

194 CSS Detective Guide

.end {

background: transparent url(bg_navcurveend.gif) 0 0 no-repeat;

float: right;

height:76px;

width: 15px;

position: relative;

top: 40px;

margin: 0;}

#mainnav li {

display: inline;}

#mainnav li a {

background: transparent url(bg_navitems.gif) 0 0 repeat-x ;

border-right: 1px solid #8f8766;

border-left: 1px solid #fff;

color: #652a01;

display: block;

float: left;

font-weight: bold;

height: 58px;

line-height: 58px;

padding: 0 1px;

width: 118px;

}

#mainnav li.first a {

border-left: 0;

margin-left: 15px;

display: inline;

}

I suggest we do a bit of transferring many of the properties that were
 originally assigned to #mainnav li a to #mainnav li instead:

#mainnav li {

background: transparent url(bg_navitems.gif) 0 0 repeat-x ;

border-right: 1px solid #8f8766;

border-left: 1px solid #fff;

display: inline;

float: left;

font-weight: bold;

height: 58px;

 From the Library of Wow! eBook

ptg

THE CASE OF THE FLOAT WITH A MIND OF ITS OWN 195

line-height: 58px;

padding: 0;

width: 120px;

}

#mainnav li.first {

border-left: 0;

display: inline;

margin-left: 15px;

}

#mainnav li.last {

border-right: 0;}

#mainnav li a {

color: #652a01;} /* the color should stay here */

#mainnav li a:hover {

font-weight: normal;

text-decoration: none;

}

Interestingly, it’s roughly the same amount of code (maybe a little more), but
it’s well worth never having to worry about seeing float stepdown again.

Case Closed!

Diona proudly presented the website to her father, who, despite his initial
diffidence, is starting to warm up to the idea of putting himself on the web in
order to share his ideas and writing with a wider audience. He’s even consid-
ering writing for major political and news blogs.

Not every client will want design integrity in IE6, but most will probably still
need the site to work in IE7. In any event, it is important to recognize those
shifty-eyed, sassy IE6 bugs, and code proactively against them.

Floats are wily beasts by nature (you would be too if you were always outside
the flow of the page), so you need to keep in mind how sensitive they are to
width, margin, padding, and border. Small changes in the size values of the
element can mean the difference between a rock-solid layout and one that
is broken.

note
The pa
ing isn’t
nece�ary so we can
remove it and with
the pa
ing removed,
the width value is
120px.

note
we now remove the
border in the list.

 From the Library of Wow! eBook

ptg

196 CSS Detective Guide

Having display:inline up your sleeve for emergency bug fixing — especially
in older versions of IE — usually puts you in good stead. Old standards like
explicitly declaring the margin and padding for everything is helpful, and
explicitly stating heights has proven useful as well. Using the overflow: hidden
property works great to contain floats, but it doesn’t fix every problem that
you may encounter.

Ready for more IE 6/7 bug hijinks? Let’s see if we can solve the next case.

 From the Library of Wow! eBook

ptg

197

9

IN THIS CASE, WE’LL SEE HOW TO DISARM
Microsoft Internet Explorer’s cloak-and-dagger
bugs and quickly bring them to justice.

 From the Library of Wow! eBook

ptg

198 CSS Detective Guide

The Crime Scene

Just when former diplomat Guy Thenose thought he could retire with ease,
an incident in the United Kingdom occurred that seemed to him to have huge
potential to compromise the nation’s security. His lobbying enabled him to
head up a new agency to address the very serious threat: the Agency for the
Prevention of Spontaneous Dancing (APoSD). Because of the whirlwind of
work that accompanies pulling an organization of this import together so
quickly, Guy has hired an assistant director, top Agent Single-Oh-Ten Jessica
Andrew, and charged her with managing the development of their website
and educating the public about the seriousness of this new threat.

As a government office, many of APoSD’s primary users are still obligated
to use IE 6 and 7 as their primary browsers. The APoSD site, therefore, has
to be more backward-compatible than most modern sites and work perfectly
in those browsers. Agent Andrew is finding that while their team is adept
at forestalling major international incidents on an almost daily basis, trying
to get their site to work in all browsers is a daunting task.

INITIAL SNAPSHOTS

Due to force of habit, Agent Andrew slips into my office under the cloak of
darkness and in disguise. “Nice Groucho nose,” I compliment her. “I almost
didn’t recognize you.”

From a large envelope, she pulls out images of how the website was designed to
look (Figure 9.1) and then, wincing, shows me how it looks in IE6 (Figure 9.2),
IE7 (Figure 9.3 on page 200), and Opera (Figure 9.4 on page 200) onscreen.
“This has to be the work of some evil mastermind,” she says, glancing around
furtively. “We just can’t figure out why they are so different!”

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 199

Figure 9.1 APoSD’s original design as seen in
Mozilla Firefox, IE8, Safari, and Google Chrome

Figure 9.2 APoSD’s
site as seen in IE6:
call in the troops!

 From the Library of Wow! eBook

ptg

200 CSS Detective Guide

Figure 9.3 APoSD’s site as seen in
Internet Explorer 7 — not horrible,
but there are issues.

Figure 9.4 APoSD’s
site navigation as
seen in Opera:
another indicator
that something
is amiss

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 201

 Follow the Evidence

None of our clients have a relaxed development schedule, and APoSD is no
exception. Director Thenose and Agent Andrew will be unveiling the new
website to their ultimate superior “D” in only three days. They need to quell
the riot of their layout so they can continue receiving much-needed support
and funding. They want to expand their organization internationally, where
the number of incidents is growing rapidly.

IDENTIFYING SUSPECTS

Even before seeing Agent Andrew’s pages, simply by noticing her high level of
twitchiness, I surmised that her problems were all from IE. Her screen shots
proved as much: the IE8 and IE7 shots are very close, but the site in IE6 is
vastly different from them both.

Because the current browsers have dramatically improved their CSS support
and rendering, pronounced layout issues are usually the product of the typical
IE bugs. Sadly, these problems will exist until the use of these browsers dies
out completely.

MUG SHOTS
True to form, APoSD employed an XHTML 1.1 Strict doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>The Agency for the Prevention of Spontaneous Dancing (APoSD)</

title>

<link rel="shortcut icon" type="image/x-icon" href="aposd.ico" />

<style type="text/css">

/* --- general styles --- */

body {

background: #b6c4e8 url(bg_blue.jpg) repeat-x;

font: .8em/1.35em Arial, Calibri, "Trebuchet MS", Trebuchet,

➥ sans-serif;

margin: 0 0 16px 0;

padding: 0 0 16px 0;

}

➥

 From the Library of Wow! eBook

ptg

202 CSS Detective Guide

h1, h2, h3 {

clear: both;

font-family: Georgia, "Palatino Linotype",

➥ "Times New Roman", serif;

}

h2 {

border-bottom: 1px dotted #3655a3;

color: #ad1c37;

margin: 0;

padding: 8px 0 6px 0;

text-transform: uppercase;

}

h3 {

color: #173187;

margin: 14px 0;

}

h4 {

color: #3655a3;

}

h5 {

font-size: 1em;

margin: 0;

}

ul {

list-style-type: square;

margin: 0;

padding: 0 0 0 16px;

}

ol {

margin: 0 0 0 8px;

padding: 0 0 0 16px;

}

a, a:link {

color: #293F6F;}

a:hover {

font-style: italic;

text-decoration: none;

}

 a:visited {

 color: #345193;}

a img {

border: none;}

li img {

vertical-align: middle;}

img {

border: 1px solid #D3D5D7;}

.morelink {

clear: both;

float: right;

font-size: .8em;

margin-bottom: 4px;

}

.clear {

clear: both;}

.clearoff {

clear: none;}

/* --- page layout styles --- */

#ubercontainer {

background: transparent url(bg_body.gif)

center repeat-y;

margin: 0 auto;

padding: 0;

width: 1000px;

}

#head {

background: transparent url(bg_head2.gif)

center no-repeat;

height: 324px;

margin: 0 auto;

overflow: hidden;

padding: 0;

width: 1000px;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 203

 h1 {

 background: transparent url(bg_aposd.gif)

➥ no-repeat;

 float: left;

 height: 58px;

 margin: 0;

 padding: 0;

 text-indent: -10000px;

 width: 214px;

 overflow: hidden;

 }

 h1 a {

 display: block;

 height: 100%;

 width: 100%;

 }

 #searchbox {

 float: right;

 height: 58px;

 margin: 0;

 overflow: hidden;

 padding: 0;

 width: 214px;

 }

 #searchbox p {

 margin: 0;

 padding: 0;

 }

 #searchbox input {

 float: left;

 font-size: .9em;

margin: 16px 0 0 0;

}

#searchbox input.textinput {

color: #aaa;

margin-left: 8px;

margin-right: 4px;

width: 150px;

}

#mainnav {

clear: both;

 font: bold 1.3em/58px Georgia, "Palatino

➥ Linotype", "Times New Roman", serif;

list-style-type: none;

height: 55px;

margin: 235px auto 0 auto;

padding: 0;

text-align: center;

text-transform: uppercase;

width: 936px;

}

#mainnav li {

display: inline;

float: left;

margin: 0;

padding: 0;

width: 156px;

}

#mainnav a {

color: #fff;

display: block;

height: 100%;

margin: 0;

padding: 8px 0;

text-decoration: none;

}

 #mainnav a:hover {

border-top: 8px solid #d9dde7;

border-bottom: 8px solid #d9dde7;

color: #d9dde7;

font-style: normal;

padding: 0;

}

#maincontain {

margin: -15px 0 0 0;

overflow: hidden;

padding: 0 0 16px 0;

width: 1000px;

} ➡

 From the Library of Wow! eBook

ptg

204 CSS Detective Guide

#primaryinfo {

float: left;

margin: 0 0 0 31px;

padding: 0 16px 0 16px;

width: 584px;

}

#about {

 background: #e5eaf7 url(bg_about.gif)

➥ no-repeat;

 height: 237px;

margin: 0 auto 16px auto;

 padding: 0 8px;

 width: 572px;

 }

 #about img {

 margin-top: -42px;}

 img.example {

 background-color: #fff;

border: 1px solid #D3D5D7;

 float: right;

margin: -10px 0 8px 10px;

 padding: 2px;

 }

 object {

 float: right;

margin: 0 0 0 8px;

 }

 ul#circumstances {

 float: left;

margin: -12px 0 10px 0;

padding: 0;

width: 390px;

}

#circumstances li {

margin: 0;

padding: 0;

}

 #circumstances li.title {

 list-style-type: none;}

 #circumstances li h4 {

 font-family: Georgia, "Palatino

➥ Linotype", "Times New Roman", serif;

margin: 10px 0 0 0;

 }

 ul#illustration {

 float: right;

 list-style-type: none;

margin: -4px 0 0 0;

padding: 0;

text-align: center;

width: 182px;

}

#illustration li {

border: 1px solid #D3D5D7;

height: 180px;

margin: 0 0 8px 0;

padding: 0;

width: 182px;

}

#illustration li img {

border: 1px solid #D3D5D7;

margin: 4px auto 0 auto;

}

#illustration p {

font-size: .75em;

margin-top: 2px;

}

#sidebar {

float: right;

margin: 0 33px 0 0;

padding: 0 16px 0 16px;

overflow: hidden;

width: 282px;

}

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 205

 #mission {

 background: #d8d9dc url(bg_mission.gif)

➥ top left no-repeat;

 height: 188px;

margin: 0 auto 16px auto;

padding: 0 8px;

width: 270px;

}

#mission blockquote {

font-size: 1.4em;

margin: 32px 30px 0;

text-align: center;

}

/* --- curly quote styles --- */

 .bqstart {

 color: #eee;

 float: left;

 font-family: Georgia, "Palatino

➥ Linotype", "Times New Roman",

serif;

 font-size: 500%;

 height: 45px;

margin: -20px -5px -50px -30px;

padding: 45px 0 0 0;

}

.bqend {

color: #eee;

float: right;

 font-family: Georgia, "Palatino

➥ Linotype", "Times New Roman", serif;

 font-size: 500%;

 height: 25px;

margin: -30px -30px 0 0;

padding: 45px 0 0 0;

}

.chart {

text-align: center;}

 dl {

 line-height: 1.2em;

 overflow: hidden;

margin: 0 0 12px 0;

 }

 dt {

 float: right;

margin: 3px 0 0 0;

 }

 dt img {

 padding: 2px;}

 dd {

 float: left;

 font-size: .9em;

margin: 0 12px 0 0;

 width: 165px;

 }

 dd p {

 margin: 0;}

 #sociallinks {

 list-style-type: none;

 margin: 0;

padding: 0 0 0 16px;

}

#sociallinks li {

padding: 4px 0;}

#fatfooter {

background: transparent url(bg_footer.gif)

bottom left no-repeat;

clear: both;

margin: 0 auto;

padding: 0 0 16px 0;

width: 968px;

}

➥

 From the Library of Wow! eBook

ptg

206 CSS Detective Guide

#containedfoot {

background-color: #fff;

border-top: 1px solid #E4E4E4;

font-size: .95em;

margin: 0 auto;

padding: 8px 16px 16px 16px;

width: 904px;

overflow: hidden;

}

#containedfoot h4 {

margin: 4px 0;}

#contactus {

float: left;

width: 620px;

margin: 0;

padding: 0;

}

#containedfoot ul {

list-style-type: none;

padding: 0;

}

#contactlinks li {

padding: 4px 0;}

address {

font-style: normal;}

#linklist a {

text-decoration: none;}

 #linklist a:hover {

 text-decoration: underline;}

</style>

</head>

<body>

<div id="ubercontainer">

 <div id="head">

 <h1>APoSD.gov - The Agency

➥ for the Prevention of Spontaneous

➥ Dancing</h1>

 <form id="searchbox" action="post">

 <p><input type="text" size="20"

➥ class="textinput" value="Search

➥ APoSD.gov" /><input type="submit"

➥ value="Go!" class="submit" /></p>

 </form>

 <ul id="mainnav">

 About

 Policies

 Programs

 News

 Get Involved

 Contact

</div><!-- end head -->

 <div id="maincontain">

 <div id="primaryinfo">

 <div id="about">

 <h2>About Us</h2>

 <div id="whois">

 <h3>Who is <acronym

➥ title="The Agency for the

➥ Prevention of Spontaneous

➥ Dancing">APoSD</acronym>?

➥ </h3>

 <img src="pic_whois.jpg"

➥ class="example" alt="The

➥ APoSD Team" />

 <p>The Agency for the

➥ Prevention of Spontaneous

➥ Dancing (<acronym title="The

➥ Agency for the Prevention of

➥ Spontaneous Dancing">APoSD

➥ </acronym>) was created as a

➥ proactive national security

➥ measure in response to the

➥ tragic spontaneous train

➥ station dance in Liverpool

➥ in early 2009, the after-

➥ effects of which are still

➥ being felt to this day. </p>

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 207

 <p>Because of the very

➥ serious threat that it

➥ poses, rather than being

➥ apposed, we are opposed

➥ to spontaneous dancing

➥ in any way, shape, or

➥ form.</p>

 </div><!-- end whois -->

 </div><!-- end about -->

 <div id="policy">

 <h2><acronym title="The Agency for

➥ the Prevention of Spontaneous

➥ Dancing">APoSD</acronym> Policy

➥ </h2>

 <div id="rising">

 <h3><acronym title="The Agency

➥ for the Prevention of

➥ Spontaneous Dancing">APoSD

➥ </acronym>: Rising from the

➥ Ashes of Tragedy</h3>

 <object width="232" height=

➥ "143" type="application/

➥ x-shockwave-flash"

➥ data="http://www.youtube.com/

➥ v/mUZrrbgCdYc&

➥ hl=en_US&fs=1&">

 <object data=

➥ "pic_traindancevideo.jpg"

➥ type="image/jpeg">Your

➥ browser is not displaying

➥ the video. Sorry.</object>

 <param name="movie"

 value="http://www.youtube.com/

➥ v/mUZrrbgCdYc&hl=en_US

➥ &fs=1&"/>

 <param name="allowFullScreen"

➥ value="true"/>

 <param

➥ name="allowscriptaccess"

➥ value="always"/>

 </object>

 <p>Midmorning one day in January

➥ 2009, the Liverpool train

➥ station was overrun by a group

➥ of incognito dancers, who

➥ shocked the public with a

➥ flagrant display of spirited

➥ funky dance moves to catchy

➥ popular tunes. Since this

➥ incident, spontaneous dancing

➥ has exploded worldwide, with

➥ brief surprise takeovers of

➥ stores, public squares, parks,

➥ train stations, and other

➥ public gathering places. </p>

 <p>We at <acronym title="The

➥ Agency for the Prevention of

➥ Spontaneous Dancing">APoSD

➥ </acronym> believe that

➥ dancing is serious business.

➥ Shaking your groove thing is

➥ fine every once in a while,

➥ but it must be done when

➥ everyone knows it is going to

➥ happen at pre-determined

➥ times. There is true danger in

➥ unexpectedly having a

➥ ridiculous amount of fun.</p>

 <p>We have gathered together a

➥ team of rigorously trained

➥ elite agents who are the

➥ product of a highly

➥ competitive selection process.

➥ We have the resources and the

➥ commitment at APoSD to keep

➥ dancing controlled and in its

➥ rightful place.</p>

</div><!-- end rising -->

<div id="mandatedlist">

 <h3>List of Mandated Dancing

➥ Circumstances</h3>

 <ul id="circumstances">

 <li class="title"> ➡

 From the Library of Wow! eBook

ptg

208 CSS Detective Guide

 <h4>Sanctioned</h4>

 Performances:

➥ musicals, ballet,

➥ contemporary, jazz,

➥ ethnic

 Dance classes,

➥ troupes, parties,

➥ clubs

 Cheerleading squads,

➥ drill teams, dance

➥ teams, and spirit and

➥ glee teams

 Religious dancing:

➥ whirling dervishes,

➥ temple, fancy dancing

➥ ("Getting Happy" under

➥ investigation)

 <li class="title"><h4>Pending

➥ Decision</h4>

 Carnival/Carnivale/

➥ Mardi Gras

 Capoeria and any

➥ other martial art

➥ practiced to music

 Break and hip-hop

➥ dancing

 Sport sack-dances

 Quasi-choreographed

➥ personal greetings

➥ (use of "The Bump" is

➥ under a dedicated task

➥ force review)

 <li class="title"><h4>Strictly

➥ Verboten</h4>

 Impromptu boogying,

➥ shimmying, or hip-

➥ shaking

 Extemporaneous

➥ dancing in public

➥ areas, especially in

➥ train stations, street

➥ intersections, parks,

➥ beaches, sidewalks,

➥ rooftops, and

➥ bridges

 Dance fights/dance-

➥ offs - getting

➥ "served" and/or being

➥ the server

<!-- end circumstances -->

<ul id="illustration">

 <img src="illust_fancydancing

➥ .jpg" alt="Fancy Dancer" />

<p>OK: Fancy Dancing</p>

 <img src="illust_breakdancing

➥ .jpg" alt="Breakdancers" />

 <p>Pending: Breakdancing</p>

 <img src="illust_parkdance.jpg"

alt="Dancing in the park" />

<p>Right out: Park dancing</p>

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 209

 <p>All groups and venues must be

➥ registered with <acronym title=

➥ "The Agency for the Prevention

➥ of Spontaneous Dancing">APoSD

➥ </acronym>. Circumstances

➥ listed apply to those both

➥ professional and amateur

➥ unless otherwise noted.</p>

 <p>We are always accepting new

➥ categories of dancing for

➥ review. Read the full set of

➥ criteria for

➥ acceptable forms of dance.

➥ </p>

 </div><!-- end mandatedlist -->

</div><!-- end policy -->

<div id="origins">

<h2>Origins</h2>

<div id="roots">

 <h3>Historical Roots of

➥ Spontaneous Dancing</h3>

 <img src="pic_ringrosy.jpg"

➥ class="example"

➥ alt="Children playing ring

➥ around the rosey" />

 <p>Scholars suggest that

➥ spontaneous dancing (<acronym

➥ title="spontaneous dancing">

➥ SD</acronym>) has its roots

➥ in children's games, notably

➥ those such as "Ring Around

➥ the Rosey" and "Simon Says."

➥ But from innocent beginnings

➥ can come unpredictable

➥ outcomes. We all know what

➥ happens after a pocket full

➥ of posey: it's ashes and we

➥ all fall down.</p>

 <p>While they may seem harmless,

➥ games such as these lay a

➥ foundation for future

➥ tendencies toward spontaneous

➥ dancing. Just as your parents

➥ always warned you: it's all

➥ fun and games until someone

➥ pokes an eye out.</p>

 </div><!-- end roots -->

 <div id="dangers">

 <h3>The Dangers of <acronym

➥ title="spontaneous dancing">SD

➥ </acronym></h3>

 <img src="pic_asianladies.jpg"

➥ class="example" alt="Ladies

➥ dancing" />

 <p>Spontaneous dancing looks

➥ benign, nay, even delightful

➥ at first glance. However,

➥ all of the surface fun and

➥ ebullience that it imparts

➥ actually masks the

➥ underlying dubious tenets of

➥ spontaneity, love of fun,

➥ and the sheer joy of being

➥ alive. Spontaneous dancing

➥ often causes huge smiles,

➥ laughter, and enjoyment, all

➥ of which is highly

➥ contagious. </p>

 <p>Freely expressing and

➥ epitomizing joyous thoughts

➥ and feelings -- even if only

➥ for a few minutes -- is

➥ extremely risky behavior. It

➥ is for this reason that we

➥ take our role so seriously:

➥ to protect the public from

➥ SD and its far-reaching

➥ effects.</p> ➡

 From the Library of Wow! eBook

ptg

210 CSS Detective Guide

 <p>It is our goal to keep

➥ outbreaks of <acronym

➥ title="spontaneous

➥ dancing">SD</acronym> to a

➥ minimum at present, and for

➥ as long as we are able.</p>

 </div><!-- end dangers -->

 <p>

➥ Read more about the

➥ problem of <acronym title=

➥ "spontaneous dancing">SD

➥ </acronym> »</p>

 </div><!-- end origins -->

 <div id="news">

 <h2>APoSD NEWS</h2>

 <div class="lateststory">

 <h3> Top Story</h3>

 <img src="pic_response.jpg"

➥ class="example" alt=

➥ "Spontaneous dance pizza

➥ party" />

 <h4>Recent YouTube

➥ Uploads from Train Station

Dance Trigger <acronym

➥ title="post-traumatic stress

➥ disorder">PTSD</acronym>-like

➥ Symptoms</h4>

 <p>Approximately one year since

➥ tragedy struck, just as the

➥ public was finally starting to

➥ forget the lingering traumatic

➥ memories of the joyous train

➥ station dance, the latest

➥ crop of spectator-uploaded

➥ YouTube videos illicits a

➥ unexpectedly strong emotional

➥ response...

➥ read more>

➥ </p>

 </div><!-- end lateststory -->

 <h3 class="clearoff">Other Stories

➥ </h3>

 <ul id="storylist">

 <a href="http://www.youtube

➥ .com/watch?v=OLj5zphusLw">

➥ 100 Single Lady <acronym

➥ title="spontaneous dance">SD</

➥ acronym>-ers Sashay Through

➥ Picadilly Square Without

➥ Recourse

 Security

➥ Measures at Trains Stations

➥ Increased Worldwide, All Boom

➥ Boxes Confiscated

 <a href="http://www.youtube

➥ .com/watch?v=NZW92lEzBAs">Stop

➥ Hammertime: LA Clothing Store

➥ Overrun by Crowd in Gold

➥ "Hammer" Pants

 <a href="http://www.youtube

➥ .com/watch?v=7EYAUazLI9k">How

➥ Do You Solve a Problem Like a

➥ Train Station in Antwerp?

➥ Belgium Latest Victim to

➥ <acronym title="spontaneous

➥ dancing">SD</acronym>

 German Telecom

➥ Company Entering Trial for

➥ Sponsoring and Promoting

➥ <acronym title="spontaneous

➥ dancing">SD</acronym> for

➥ Commercial Gain

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 211

 <a href="http://www.youtube

➥ .com/watch?v=I_DBKZQsldU">

➥ Worldwide Thriller SD Gives

➥ Credence and Raison D'Etre to

➥ New Agency

 Hundreds of New

➥ Bystander-Victims Surface in

➥ Liverpool

 <p>

➥ See all news »

➥ </p>

 </div><!-- end news -->

</div><!-- end primaryinfo -->

 <div id="sidebar">

 <div id="mission">

 <h2>Mission</h2>

 <blockquote>

 <p>

➥ “To fearlessly

➥ provide the public the best

➥ prevention of spontaneous

➥ dancing that is humanly

➥ possible.

➥ ”</p>

 </blockquote>

 </div><!-- end mission -->

 <div id="getfacts">

 <h2>Get the Facts</h2>

 <div id="progress">

 <h3><acronym title="The Agency

➥ for the Prevention of

➥ Spontaneous Dancing">APoSD

➥ </acronym> vs. <acronym

➥ title="spontaneous dancing">SD

➥ </acronym>s</h3>

 <p>Since our inception, we have

➥ prevented more than ten

➥ serious outbursts of

➥ spontaneous dancing, and we

➥ project that our prevention

➥ rates will only grow in years

➥ to come.</p>

 <p class="chart"><img src=

➥ "chart_aposd.gif" alt="dance

➥ prevention figures" /></p>

 <p>

➥ Read more »

➥ </p>

 </div><!-- end progress -->

 <div id="risks">

 <h3>Know the Risks</h3>

 <p>The general public simply

➥ does not have the means to

➥ handle massive groups of

➥ people dancing out of nowhere.

➥ It is far too interesting and

➥ thrilling for most people and

➥ can cause an aftermath that

➥ needs to be dealt with.</p>

 <p>Know ahead what effects being

➥ caught in an SD situation

➥ might have on you by

➥ taking our brief personality

➥ type quiz.</p>

 <p>

➥ Read more »

➥ </p>

 </div><!-- end risks -->

 <div id="quickref">

 <h3><acronym title="spontaneous

➥ dancing">SD</acronym>

➥ Prevention Quick Reference

➥ Guide</h3> ➡

 From the Library of Wow! eBook

ptg

212 CSS Detective Guide

 <p>In our eyes, an ounce of

➥ prevention is worth a true ton

➥ of cure. We have assembled a

➥ quick reference guide to help

➥ you learn the following:</p>

 <ul id="reflist">

 What to look

➥ for - recognizing the

➥ signs of impending <acronym

➥ title="spontaneous

➥ dancing">SD</acronym>

 What to do

➥ - if you suspect an <acronym

➥ title="spontaneous

➥ dance">SD</acronym> taking

➥ place

 Preventative

➥ measures - steps to

➥ take

 How to report

➥ suspicious activity -

➥ contacting us and what

➥ information to supply

 <p>

➥ Read more »

➥ </p>

 </div><!-- end quickref -->

 </div><!-- end getfacts -->

 <div id="getinvolved">

 <h2>Get Involved</h2>

 <p>We have agents working around

➥ the world, but <acronym title=

➥ "spontaneous dancing">SD

➥ </acronym> can happen anywhere

➥ and at any time. Here's how you

➥ can get involved:</p>

 <div id="ways">

<h3>Do Your Part</h3>

<ol id="name">

 Report problems

➥ before they happen

 Join a

➥ citizen's coalition,

➥ like CAPoSD (Citizens

➥ Against PDSD's [public

➥ displays of spontaneous

➥ dancing])

 Organize your

➥ own group or meetup

➥ (dancing allowed only if it

➥ is planned in advance)

 Join our team

➥ - become an APoSD

➥ agent

 <p>

➥ Read more »

➥ </p>

 </div><!-- end ways -->

 <div id="offenders">

 <h3>Report a Repeat Offender</h3>

 <p>Have you seen any of these

➥ people? If sighted, please

➥ report their whereabouts to

➥ <acronym title="The Agency for

➥ the Prevention of Spontaneous

➥ Dancing">APoSD</acronym> as

➥ soon as possible.</p>

 <dl class="wanted">

 <dt><img src="pic_wanted_

➥ pinqie.jpg" alt="Maaike

➥ Speijers" /></dt>

 <dd><h5>Maaike "Pinqie"

➥ Speijers</h5>

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 213

 <p>Last seen practicing

➥ <acronym title="spontaneous

➥ dancing">SD</acronym> in

➥ malls in Northern Europe.

➥ May be the mastermind behind

➥ several Michael Jackson

"Beat It" tribute <acronym

➥ title="spontaneous dance">

➥ SD</acronym>s in Sweden.</p>

 <p class="readmore">

➥ read more ></p>

 </dd>

 </dl>

 <dl class="wanted">

 <dt><img src="pic_wanted_

➥ bhuller.jpg" alt="Bhuller

➥ Darshan" /></dt>

 <dd><h5>"Bhuller" Darshan</h5>

 <p>Former <acronym title="The

➥ Agency for the Prevention of

➥ Spontaneous Dancing">APoSD

➥ </acronym> certified

➥ choreograper and agent gone

➥ renegade. He now encourages

➥ kung fu practioners to break

➥ into dance as part of their

➥ "practice".</p>

 <p class="readmore">

➥ read more ></p>

 </dd>

 </dl>

 <dl class="wanted">

 <dt><img src="pic_wanted_

➥ thelud.jpg" alt="The Lud" />

➥ </dt>

 <dd><h5>The Artist Formerly

➥ Known as "The Lud"</h5>

 <p>True name and whereabouts

➥ unknown. Is often spotted

➥ at senior athletic

➥ tournaments inciting

➥ those disinclined to

➥ dance to impetuously "cut

➥ a rug". Leader of

➥ <acronym title="Moms

➥ Opposed to The Agency for

➥ the Prevention of

➥ Spontaneous Dancing">MOtA

➥ </acronym> (Moms Opposed

➥ to APoSD). Frequently

➥ disguises herself with

➥ hats.</p>

 <p class="readmore">

➥ read more >

➥ </p>

 </dd>

 </dl>

 <p>

➥ See more offenders

➥ »</p>

 </div><!-- end offenders -->

 </div><!-- end getinvolved -->

 <div id="getsocial">

 <h2>Get Social</h2>

 <h3>Stay Connected</h3>

 <p>There are many ways to keep up

➥ with what we are doing. Check us

➥ out on:</p>

 <ul id="sociallinks">

 <img src=

➥ "twitter_16.png" alt="twitter

icon" />

➥ twitter

 <img src=

➥ "facebook_16.png"

➥ alt="facebook icon" />

➥ facebook

➥

 From the Library of Wow! eBook

ptg

214 CSS Detective Guide

 <img src=

➥ "dopplr_16.png" alt="dopplr

icon" />

➥ dopplr

 <img src=

➥ "youtube_16.png" alt="youtube

➥ icon" />

➥ youtube

 </div><!-- end getsocial -->

</div><!-- end sidebar -->

</div><!-- end maincontain -->

 <div id="fatfooter">

 <div id="containedfoot">

 <div id="contactus">

 <h4>Contact Us</h4>

 <address>

 <acronym title="The Agency for

➥ the Prevention of Spontaneous

➥ Dancing">APoSD</acronym> - The

➥ Agency for the Prevention of

➥ Spontaneous Dancing

 1123 A Street, suite #2010

 Washington, DC 20032

 </address>

 <p>Map to our

➥ office | Get

➥ directions to our office</p>

 <ul id="contactlinks">

 <img src="icon_phone_16.gif"

➥ alt="phone icon" />

➥ Phone: 202.010.0101 |

➥ Fax: 202.010.0110

 <img src="email_16.png" alt=

➥ "email icon" /> Send email to:

➥ director@aposd.gov

➥

 </div><!-- end contactus -->

 <div id="relatedlinks">

 <h4>Related Sites</h4>

 <ul id="linklist" >

 Bureau of

➥ International Joy Management

➥ and Mitigation

 Workplace

➥ Dancing Task Force

 Citizens Against

➥ PDSD's (CAPoSD.org)

 Flashmobbers

➥ Anonymous

 </div><!-- end relatedlinks -->

</div><!-- end containedfoot -->

</div><!-- end fatfooter -->

</div><!-- end ubercontainer -->

</body>

</html>

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 215

The Evidence Never Lies

Agent Andrew verified that she’d validated the page and that the code had
passed with flying colors. So now we have to get clever about the source of
the problems.

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT

One nice thing you can say about IE6 bugs is that a lot of them are not subtle.
Many of the common ones will jump right out of the page at you. Let’s be
systematic and start with one of the issues common to both IE6 and IE7:
the gap at the top of the page (Figure 9.5).

The code looks fine at first glance, validates, and shows up well in most of
the modern browsers (Firefox, IE8, Safari and Google Chrome) so we will
 definitely have to widen our sights to find the problem.

Any ideas yet? It would be nice if it were as simple as a margin or padding
error. But if that were the case, the problem would show up in all of the
browsers, right?

Following my own advice, I say we go right to the CSS of the element in
 question: #head. Both the top margin and padding are set to zero, and the
height is the same as the image, so what gives? Now I see it: there’s only one
value established to tell the browser the position (center) of the image. Ha!

Figure 9.5 Where is that gap at the top coming from?

 From the Library of Wow! eBook

ptg

216 CSS Detective Guide

#head {

background: transparent url(bg_head.gif) center no-repeat;

height: 324px;

margin: 0 auto;

overflow: hidden;

padding: 0;

width: 1000px;

}

If you don’t supply two coordinate values to determine where to place items
on the screen, then the browser may default to a value that you didn’t intend.
In this case, because one coordinate is specified but the second coordinate is
omitted, the browser has defaulted to a value of center center (or 50% 50%)
so the background image will be both horizontally and vertically centered. So
let’s add an additional value, which was implied, but not explicitly stated:

#head {

background: transparent url(bg_head.gif) top center no-repeat;

height: 324px;

margin: 0 auto;

overflow: hidden;

padding: 0;

width: 1000px;

}

Eureka! The background image for the #head is now in its proper place, and
the gap at the top of the screen is gone (Figure 9.6).

Next order of business: what’s up with the navigation bar? It looks like it’s
trying to hide itself behind the main body section in IE6 and IE7 (Figure 9.7).

Figure 9.6 Now the gap is gone.

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 217

Whereas, in Opera, it is completely out of a place, right out in the open
(Figure 9.8).

 I’m sure that these two extremes of “going into hiding” and flying free are
forced rather than freely chosen. Let’s take a closer look at what’s going on:

#mainnav {

clear: both;

font: bold 1.3em/4.5em Georgia, "Palatino Linotype",

➥ "Times New Roman", serif;

list-style-type: none;

height: 73px;

margin: 235px auto 0 auto;

padding: 0;

width: 936px;

text-align: center;

text-transform: uppercase;

}

 Figure 9.7 The hover indicator is all we can see of the navigation bar.

 Figure 9.8 The navigation in Opera is doing its own thing

 From the Library of Wow! eBook

ptg

218 CSS Detective Guide

Doesn’t that look fine to you? There is a clear: both; to accommodate the
element being in the container with the two floated elements prior to it. The
value for the top margin is exactly the number of pixels from the top of the
browser window to the navigation area of the background image. What could
the problem be?

Let’s do this: let’s clear the slate for the margins and see if that will reveal
what is eluding us.

Changing the margin values to this: margin: 0 auto; gives us this onscreen
(Figure 9.9).

I don’t know about you, but I believe I see the source of the problem. Did you
notice just how far down the navigation element was pushed in the earlier
screen shot (Figure 9.7)? Doesn’t it look as if it has the same height as that
of the two top floated elements? I’ve got it: the earlier versions of IE are inter-
preting the margin source-point location differently than the more current
browsers! Those older browsers are pushing the element down 235px from
the bottom of the two floats, rather than from the top of the browser window.

So, let’s even the playing field, shall we? We have two options to push
the element down to the correct position: we can either position #mainnav
relatively, or we can give #searchbox a bottom margin of 177px.

To relatively position #mainnav, these changes will do the trick:

#mainnav {

clear: both;

font: bold 1.3em/58px Georgia, "Palatino Linotype",

➥ "Times New Roman", serif;

list-style-type: none;

height: 55px;

margin: 0 auto;

padding: 0;

Figure 9.9 Now we can see the lay of the land.

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 219

text-align: center;

text-transform: uppercase;

width: 936px;

position: relative;

top: 177px;

}

By adding position: relative to the element, we are telling all of the browsers
that the starting point is the location where #mainnav would be if it stayed in
its place in the flow after clearing the prior floats.

Similarly, we could also make an adjustment to the bottom margin of #searchbox,
which is the element immediately before #mainnav in the source code.
Changing the bottom margin value will push #mainnav down the desired
amount, with the added advantage of keeping #mainnav in the flow of
the page:

#searchbox {

float: right;

height: 58px;

margin: 0 0 177px 0;

overflow: hidden;

padding: 0;

width: 214px;

}

...

#mainnav {

clear: both;

font: bold 1.3em/58px Georgia, "Palatino Linotype",

➥ "Times New Roman", serif;

list-style-type: none;

height: 55px;

margin: 0 auto;

padding: 0;

text-align: center;

text-transform: uppercase;

width: 936px;

}

 From the Library of Wow! eBook

ptg

220 CSS Detective Guide

Success! With either of these solutions, all of the browsers will now start from
the same coordinates, push the element down 177px from this point, and
align the element in the correct location on the page (Figure 9.10).

With Opera completely fixed and IE7 mostly taken care of, let’s turn our
sights solely to the IE6 issues.

If the serious case of float drop is the first thing that jumps out at you, then
we’re on the same page. Here’s my educated guess: the double margin float
bug (again!) — but this time on both the left and the right (Figure 9.11).

The two elements in question are #primaryinformation and #sidebar. The
double margin float bug returns to make a cameo appearance. Since we just
dealt with this issue extensively in Chapter 8, let’s put these floats back in
place with display: inline;.

 Figure 9.10 The head of the document: everything fixed

 Figure 9.11 The double-oh-margin float problem

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 221

#primaryinfo {

display: inline;

float: left;

margin: 0 0 0 31px;

padding: 0 16px 0 16px;

width: 584px;

}

...

#sidebar {

display: inline;

float: right;

margin: 0 33px 0 0;

padding: 0 16px 0 16px;

width: 282px;

overflow: hidden;

}

This does the trick perfectly. Now, we have a couple more items to address.

In the right column, the mugshots of the recent offenders and their
 descriptions are controlled by definition lists. Although the <dl> tag
has the margin defined with the declaration margin: 0 0 12px 0,
which is respected by other browsers, IE6 completely ignores the value
and collapses this bottom margin. The floated list items don’t clear
those before them and we get this (Figure 9.12 on the next page).

The solution? Be explicit and make sure the floats all clear in every browser,
by adding clear: both; to the dl style declaration:

 From the Library of Wow! eBook

ptg

222 CSS Detective Guide

 Figure 9.12 The bottom margin is
ignored and is collapsed

Figure 9.13 Now the space is respected

dl {

clear: both;

overflow: hidden;

margin: 0 0 12px 0;

line-height: 1.2em;

}

Now the lineup of repeat offenders, uh, lines up across all the browsers
(Figure 9.13, above right).

For the page overall, there is the issue of how the size of the text renders on
the page. There is enough of a difference cross-browser that it detracts from
the user experience (Figures 9.14 and 9.15).

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 223

 I propose a change that is not so much a bug fix, but rather a technique for
ensuring — as in the earlier example with the margin of the navigation bar —
that we establish the same sizing starting point for all of the browsers.

In order to get the consistency we want and still have relative sizes, let’s make
these few small adjustments:

body {

background: #b6c4e8 url(bg_blue.jpg) repeat-x;

font: 12px/18px Arial, Calibri, "Trebuchet MS", Trebuchet, sans-serif;

margin: 0 0 16px 0;

padding: 0 0 16px 0;

}

...

➥

Figure 9.14 Text sizing in modern browsers

Figure 9.15 Text sizing in IE 6 and 7

 From the Library of Wow! eBook

ptg

224 CSS Detective Guide

h2 {

border-bottom: 1px dotted #3655a3;

color: #ad1c37;

font-size: 1.6em;

margin: 0;

padding: 8px 0 6px 0;

text-transform: uppercase;

}

h3 {

color: #173187;

font-size: 1.4em;

margin: 14px 0;}

h4 {

color: #3655a3;

font-size: 1.2em;

}

Once we do this, we have fixed all of the problems, and the pages show up
essentially the same in Firefox and in IE 6, 7, and 8.

The footer of the page looks fine, except — wait, what just happened?! Did you
see that? Where is the bottom of the page (Figure 9.16)?

My goodness, it’s no small wonder that Agent Andrew is so tense — this kind
of unplanned interactivity would not shine a favorable light upon their orga-
nization, in the footer of the page or otherwise. My friend, we are looking at
none other but the infamous guillotine bug.

If you remember from Chapter 4, the elements that need to be in place for the
guillotine bug to appear are as follows: a parent container element, a floated
element inside of that container that is not cleared, links inside the parent
container in non-floated content after the float, and finally, style rules for
those links that change certain link properties on hover. What happens is
that hovering over the links causes part of the floated element inside of the
parent container to get cut off and become inaccessible.

This particular IE6 bug stumped front-end developers for years. However, this
bug has now met its match: from years of trial and error, we have several solid
code solutions to thwart it.

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 225

First
Take

Second
Take

Thankfully, this version of the guillotine bug was particularly obedient to the
IE6–specific Star HTML hack delivering a height of 1% to all of the divs on
the page, including the ones containing the bug: * html div {height: 1%;}.

Once this code is added as the second declaration in the CSS, the footer of the
page is neutralized and stays agreeably still.

However, just as APoSD is dedicated to prevention, I feel it is my patriotic
duty to show how this particular bug could have been avoided entirely.
Let’s take a look at the basic markup first:

<div id="fatfooter">

 <div id="containedfoot">

 <div id="contactus">

 ...

</div><!-- end contactus -->

 ➥

 Figure 9.16 The guillotine bug cut the footer short

 From the Library of Wow! eBook

ptg

226 CSS Detective Guide

 <div id="relatedlinks">

 ...

</div><!-- end relatedlinks -->

</div><!-- end containedfoot -->

</div><!-- end fatfooter -->

And now let’s look at the pertinent area of the CSS:

#contactus {

float: left;

width: 620px;

margin: 0;

padding: 0;

}

Hmm. It seems to me that whoever did the coding pushed the #relatedlinks
div over to the desired position by making #contactus really wide. While that
works, there are other ways of achieving the same visual outcome that are
a bit more elegant.

I suggest making the width of #contactus a more reasonable width, and then
floating #relatedlinks to the right:

#contactus {

border: 1px dotted red;

display: inline;

float: left;

width: 350px;

margin: 0;

padding: 0;

}

...

#relatedlinks {

display: inline;

float: right;

width: 280px;

}

 This also solves the guillotine bug, and is more in line with current
coding practices.

 From the Library of Wow! eBook

ptg

THE CASE OF THE BROWSER WHO HATED ME 227

We can breathe a sigh of relief. We have the satisfaction of knowing that we
prevented yet another coding situation that had the potential to threaten
national security and maybe even shift the axis of global political power.
However, for the rest of the world, it is just another ordinary day.

Case Closed!

From years of training, Agent Single-Oh-Ten (Andrew) managed to maintain
a calm exterior during the whole debugging process, but the faintest hint of
moisture on her brow belied her true anxieties over the way IE was rendering
her organization’s site. Once all of the fixes were in the document, however,
her tension dissipated and she was truly satisfied with the outcome.

Staying on the trail of bugs and divining the cause of their errant behavior
requires fortitude. However, getting around all of the intrigue and subter-
fuge that IE 6 and 7 provide is what keeps this job interesting. Well, that
plus all the travel to foreign lands and getting entangled with a vast array of
characters. CSS detectives and special government agents have much more
in common than one would initially think.

As in the previous cases, our process starts with validating to see if we have
missed some small yet necessary detail. Once that knowledge is established,
we start looking for the problems in the area of the pages located. This time,
because the browser differences were dramatic, we could use this fact to help
us further zero in on the source — browser-specific bugs — thereby ruling out
other possibilities and limiting the number of solutions.

This case also underlines the necessity of taking cross-browser testing
 seriously. We focused on certain major browsers based on the primary
 audience of the site. Having an idea of your target users — specifically, which
browsers they are using and to what degree they are using them — provides
the parameters for your coding, debugging, and QA processes.

Luckily for us, we were already aware of the bugs that presented themselves,
but that won’t always be the case. Whenever the page behaves strangely,
see yourself as duty-bound to research and find the true source of the problem
and then dispatch it with laser-like precision rather than flail around
 haphazardly trying random fixes.

 From the Library of Wow! eBook

ptg

228 CSS Detective Guide

Taking all of these steps into consideration and putting them into action
should give you some major bug-fixing confidence. Instead of getting
wrapped up in any given browser’s sly buggy-ness, use your keen eye to see
right through the façade and pinpoint the problems quickly. You will have
all the browsers you are coding for dancing to the same tune, so to speak.

Your training is almost complete. You’ll put your skills to the final test in
Chapter 10, The Case of the LOL Layout.

 From the Library of Wow! eBook

ptg

229

10

IN THIS CASE, WE’LL SEE HOW YOU CAN USE
hasLayout when you need it and effectively prevent
your pages from lapsing into IE bug silliness, as well
as provide solutions for all browsers that will make
everyone smile.

 From the Library of Wow! eBook

ptg

230 CSS Detective Guide

The Crime Scene

Despite a successful career as VP for a small innovative industrial design
company, Andrea Christine has decided to combine two of her passions into
a single website. While looking for a covered litter box for her cats that was
stylish enough to have out in the open in her apartment, she became frus-
trated by the dearth of classy, well-designed cat accessories available. She
realized that not only did few options exist, but no sites congregated them all
for other consumers. Additionally, while she loved the content on the popular
LOLcats sites, she cringed a little at their cartoonish look and feel.

She feels that the time is right for Oh-Hai.com, a site that combines more
intelligent LOLcats with reviews of well-designed cat products for owners
hungry for chic quality décor.

Getting the business off the ground is going well. However, while embarking
on the development of the site, she finds that the problems she is experi-
encing with getting her site to look the same in all browsers, and with certain
IE hasLayout bugs, are no laughing matter.

INITIAL SNAPSHOTS

Andrea was shooting for classy, but with fun elements sprinkled in for the
design. The close rendering of her prototyped design in Firefox, Safari, Google
Chrome made her smile (Figure 10.1).

It’s true that IE8 was missing the cool text effects, rounded corners, and drop
shadows, but it still maintained the correct layout, so Andrea gathered up her
courage to look at IE7 and IE6.

As to be expected, the site in IE6 (Figure 10.2) and IE7 (Figure 10.3, on the
next page) failed to crack even the smallest grin.

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 231

 Figure 10.1 The Oh-Hai.com original design Figure 10.2 Oh-Hai.com in IE6

 From the Library of Wow! eBook

ptg

232 CSS Detective Guide

In both browsers, the intro text was out of place, and Andrea was getting
strange results in the footer, where the links caused the background to change
considerably (Figure 10.4).

Figure 10.3 Even in
IE7, there wasn’t much
to laugh about.

Figure 10.4 Unstable footer links

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 233

 Follow the Evidence

Andrea is building this website as a labor of love. While she has worked for
years in the design industry professionally, she is relatively new to web devel-
opment. She is aware of some of the more common and easily avoided bugs in
the older IEs, such as the double margin float bug, so she was surprised that
her page would have so much difference in rendering, especially given that
she made an effort to code proactively against potential problems.

She also is up to date on the “newer” properties of CSS3 and made an effort
to not only incorporate some jazzy display properties, but build in progres-
sive enhancement. Andrea understands that many of these properties are
not fully supported by all the modern browsers, knows that the page will not
render the same across all browsers, and realizes that she will have to get
clever to serve up the same look-and-feel for all of them. She doesn’t know
exactly where to start with that process, but is eager to learn.

IDENTIFYING SUSPECTS

We’ll start with her rendering problems. Because they are almost solely in
IE6 and 7 and are involved with some of the larger elements on the screen,
I have a hunch that hasLayout may be the source of her chagrin. The disap-
pearing and reappearing of the footer link text are a dead giveaway, as are
some of the spacing problems.

As for the getting the same look-and-feel cross-browser, we’ll tackle that once
we have some of the other fixes in place.

MUG SHOTS
Despite the light-hearted nature of the site, Andrea has employed a XHTML
1.0 strict doctype. Here is her code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>Oh-Hai.com: Fur teh Sofiskatd Kitteh (an Hoomanz 2)</title>

<link rel="shortcut icon" type="image/x-icon" href="ohhai.ico" />

<style type="text/css"> ➡

 From the Library of Wow! eBook

ptg

234 CSS Detective Guide

/* --- font face fonts -- */

@font-face {

font-family: "Existence Light";

src: url(Existence-Light.eot);

src: url(Existence-Light.otf)

format("truetype");

}

@font-face {

font-family: "COM4t Nuvu Regular";

src: url(COM4NRG_.eot);

src: url(COM4NRG_.TTF) format("truetype");

}

/* --- minor css reset --- */

html, body, div, p, h1, h2, h3, h4, h5, h6,

a, img, ul, li, form {

margin: 0;

padding: 0;

border: 0;

font-size: 100%;

}

body {

font: 13px/18px "Lucida Sans Unicode",

"Lucida Grande", Arial,

➥ sans-serif;

}

ul {

list-style: none outside;}

/* --- font sizes for elements --- */

.login, .navlinks {font-size: 115%;}

h3 {font-size: 99%;}

.postinfo, .useraction , input {font-size:

95%;}

.commentstars, .bottom {font-size: 90%;}

#mininav, .readmore, .credits {font-size:

85%;}

#footer {font-size: 80%;}

/* --- general styles --- */

body {

background-color: #eff4fb;

color: #3B3F33;

width: 100%;

}

div, h1, h2, img, a {

behavior: url(iepngfix.htc);}

h2 {

color: #fcfdf6;}

a {

color: #275B9F;

text-decoration: none;}

.readmore a, .preventries a {

 color: #69824d;}

a:hover {

text-decoration: underline;}

.photonav img, .centeredimg img {

border: 1px solid #575d57;}

.readmore {

clear: both;

text-align: right;

margin-bottom: 20px;

}

#mostcontent .readmore {

 margin-right: 10px;

 }

.rightalign {

text-align: right;}

.last {

border: 0;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 235

/* --- main section styles ---- */

#mainwrap {

background: url(bg_faux_column_left.gif)

repeat-y 26% 0;

margin: 0 auto;

width: 100%;

overflow: hidden;

}

#secondwrap {

background: url(bg_faux_column_right.gif)

repeat-y 74% 0;

width: 100%;

}

#head {

background: url(bg_ohhai_top.gif) 0 0

repeat-x;

overflow: hidden;

}

#mininav {

color: #69824d;

float: right;

margin-top: 5px;

width: 280px;

}

 .login {

border-left: 1px solid #69824d;

float: right;

font-weight: bold;

line-height: 1.5em;

list-style-type: none;

margin-top: 5px;

padding-left: 5px;

width: 80px;

}

#mininav ul.login li {

border: 0;

display: block;

}

#mininav a {

color: #69824d;}

#mininav ul.infonav {

width: 190px;}

#mininav li, #footer li {

border-right: 1px solid #69824d;

padding: 0 5px;

display: inline;

}

#mininav li.last, #footer li.last {

border: 0;}

#search {

width: 190px;

margin-top: 10px;

}

 #siteintro {

margin: 64px auto 1px;

 height: 263px;

 width: 994px;

 overflow: hidden;

 }

 h1 {

 float: left;

margin: 0 0 0 -5px;

width: 312px;

}

h1 a {

background-image: url(logo_ohhai_glow.png);

display: block;

text-indent: -9999px;

height: 263px;

}

h1 a:hover {

 background-image: url

➥ (logo_ohhai_ceilingcat.png);} ➡

 From the Library of Wow! eBook

ptg

236 CSS Detective Guide

/* -- english/kitteh toggle styles -- */

#ekwelcome {

position: relative;

top: 235px;

left: 46%;

width: 682px;

}

 #ekwelcome a {

 text-decoration: none;}

.languages {

display: inline;

padding-left: 5px;}

 li.first{

border-right: 1px solid #3B3F33;}

 .introenglish, .introkitteh {

 color: #3B3F33;

 font: 1.58em/1.45em "Existence Light",

➥ "Century Gothic", sans-serif;

text-shadow: .01em .01em 1px #666;

float: left;

height: 200px;

margin-top: 10px;

width: 97%;

position: absolute;

top: -233px;

left: -143px;

text-decoration: none;

cursor: default;

}

.accent {

color: #5B8F00;}

.nobreak {

white-space: nowrap;}

 .ohhai {

font: 1.6em "COM4t Nuvu Regular", serif;

 }

 .introkitteh {

 font: 1.5em/1.45em "Existence Light",

➥ "Century Gothic", sans-serif;

visibility: hidden;

}

a.english:hover .introenglish {

visibility: visible;

}

a.kitteh:hover .introkitteh {

 background: url(bg_head.gif) 11% 9%

➥ repeat-x;

 visibility: visible;

 }

#maincontent {}

#maincontent h2 {

background-color: #fcfdf6;

clear: both;

 font: 1.35em/1.6em "Existence Light",

➥ "Century Gothic", sans-serif;

height: 30px;

text-indent: 5px;

text-shadow: .01em .01em 1px #fff;

}

#primarynav {

display: inline;

float: left;

overflow: hidden;

width: 26%;

}

 #primarynav h2 {

margin: 0 -1px 15px 0;

height: 30px;

}

.navheaderleft {

 background: url(bg_headers.png)

➥ 100% 0 no-repeat;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 237

 .navheaderright {

 background: url(bg_headers.png) 0

➥ 100% no-repeat;}

 #primarynav ul {

 float: right;

 text-align: right;

margin: 0 30px 20px 0;

width: 221px;

}

#primarynav a {

color: #27323F;}

#primarynav a:hover {

font-weight: bold;

text-decoration: none;

}

.navlinks {

 display: inline;}

➥ /* avoids double margin float bug */

#connect {

margin-right: 30px;}

 #subscribe {

 margin: 10px 0;}

 #connect h3 {

margin: 15px 0 10px 0;}

 ul#connectlinks {

margin: 15px 0 0 0;}

#connectlinks li {

line-height: 2.4em;}

 #connectlinks a img, #feed a img,

➥ .rightalign img {

 vertical-align: middle;}

#contentcolumn {

background-color: #fff;

 display: inline;

➥ /* avoids double margin float bug */

float: left;

margin: -40px 3% 0 3%;

overflow: hidden;

width: 42%;

-moz-border-radius: 20px 20px 0 0;

-webkit-border-top-left-radius: 20px;

-webkit-border-top-right-radius: 20px;

 -moz-box-shadow: 0 5px 20px rgba(0,0,0,0.6);

 -webkit-box-shadow: 0 5px 20px

➥ rgba(0,0,0,0.6);

box-shadow: 0 5px 20px rgba(0,0,0,0.6);

}

#content {

background-color: #fff;

margin: 1px auto;

width: 94%;

}

#contentcolumn h3 {

 font: 2.5em "COM4t Nuvu Regular",

➥ serif;

 padding-top: 10px;

 }

 #content h4 {

margin: 15px 0 5px 0;}

#content h4 a {

color: #3B4F18;

text-decoration: underline;

}

#content p {

line-height: 1.2em;}

 .lolcatentry, .productentry,

➥ .preventries {

border-top: 1px solid #3b5b13;

padding-bottom: 10px;

overflow: hidden;

} ➡

 From the Library of Wow! eBook

ptg

238 CSS Detective Guide

.postinfo {

margin-bottom: 15px;

line-height: 1em;

overflow: hidden;

}

.postdate {

float: left;}

.commentstars {

float: right;}

.credits {

clear: both;

margin-bottom: 15px;

padding-top: 15px;}

.centeredimg, #search p {

text-align: center;}

.centeredimg {

clear: both;

text-align: center;

margin: 10px 0;

}

.productentry img {

float: left;

margin-right: 15px;

}

.useraction {

line-height: .7em;}

p.preventries {

padding-top: 5px;

text-align: right;}

/* --- star rating code --- */

.star ul {

float: left;

height: 14px;

width: 75px;

}

.star li {

display: block;

float: left;

height: 14px;

margin-right: -25px;

width: 75px;

}

.star li.curr {

background-image: url('ystar.gif');}

#mostcontent {

background-color: #e1e9e5;

 display: inline;

float: right;

overflow: hidden;

width: 26%;

}

#mostcontent h2 {

clear: both;

margin-left: -1px;

}

 #mostcontent h3 {

margin: 15px 0 0 30px;}

#mostcontent p {

margin-left: 30px;

clear: both;}

 #mostcontent ul {

margin: 0 auto 10px 30px;

float: left;

width: 222px;

}

ul.photonav li {

display: inline;

float: left;

margin: 15px 15px 0 0;

}

ul.photonav li img {

display: block;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 239

 ul.articles li {

 margin: 15px 0;}

#footer {

background: #ecf1ee url(logo_fourcatevening_

➥ rect.gif) 99% 5px no-repeat;

clear: both;

color: #616F6A;

line-height: 1.3em;

margin-top: -55px;

padding: 8px 120px 5px 0;

position: relative;

text-align: right;

}

#footer a {

color: #69824d;}

#footer ul {

margin-top: -5px;}

.importantlinks {

float: left;

width: 26%;

text-align: left;

padding-left: 10px;

}

.clearer {

clear: both;

}

</style>

</head>

<body>

<div id="mainwrap">

<div id="secondwrap">

<div id="head">

<div id="mininav">

<ul class="login">

 login

 register

<ul class="infonav">

About

FAQ

Press

 <li class="last">

➥ Contact

 <form id="search" action="post">

 <p><input type="text" size="20"

➥ value="Search the site"

➥ class="textinput" /><input

➥ type="submit" value="Search"

➥ class="submit"/></p>

 </form>

</div><!-- end mininav -->

<div id="siteintro">

<h1>Oh-Hai.com</h1>

<div id="ekwelcome">

 <div class="languages">Toggle

➥ language:

<ul class="languages">

 <li class="languages first">

➥ English

 You prefer <span class=

➥ "accent">panini

➥ to cheeseburgers, <span

➥ class="accent">eco-friendly

➥ to mass-produced,

➥

➥ elegant, contemporary

➥ design to the

➥ prosaic, and <span class=

➥ "accent">you adore your

➥

➥ cat(s).

➥

 From the Library of Wow! eBook

ptg

240 CSS Detective Guide

 oh-hai.com

➥ provides a regular

➥ dose of exactly what you

➥ want: sophisticated <span

➥ class="accent">LOLcats

➥ alongside <span

➥ class="accent">fabulous,

➥ well-designed products

➥ for you and your

➥ kitty's modern lifestyle.

<li class="languages">

➥ Kitteh

 U liek nommin on <span class=

➥ "accent">fancee sammiches

➥ nstead of cheezburgers

➥ (kitteh dont undrstnd dat,

➥ srsly), u also liek <span

➥ class="accent">thanz frum

➥ natur not maed in

➥ factries (kitteh agree),

➥ purty

➥ thanz in teh hauze

➥ (all teh same 2 kitteh), an

➥ u luv

➥ kittehz (of

cuors)!

 wif

➥ oh-hai.com site

➥ hoomanz can haz funnys an

➥ purties evrydy: <span

➥ class="accent">sofiskatd

➥ LOLcats (wahtz dat?)

➥ an niec

➥ made thanz fur

➥ stylesh kittehz an hoomanz

➥ 2. kthxbai!

 </div>

 </div><!-- end ekwelcome -->

</div><!-- end siteintro -->

</div><!-- end head -->

<div id="maincontent">

<div id="primarynav">

<h2 class="navheaderleft">Laugh</h2>

<ul class="navlinks">

 Latest Additions

➥

 Top Rated

 Most Viewed

➥

 Most Commented

➥

 Submit Photos

➥

 Caption Photos

➥

 Kitteh 101

➥

<!-- end laugh section -->

<h2 class="navheaderleft">Shop</h2>

<ul class="navlinks">

 Scratching Posts

➥

 Beds and Loungers

➥

 Dining

➥ Accoutrements

 Grooming

 Collars and ID

➥

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 241

 Litter et al

➥

 Toys

 Eco-cleaning

➥

 Bling

<!-- end shop section -->

 <h2 class="navheaderleft">Commune

➥ </h2>

 <ul class="navlinks">

 Join the Community

➥

 Forums

 Eco-cycle and For

➥ Sale

 Cat Match

<!-- end commune section -->

 <h2 class="navheaderleft">Connect

➥ </h2>

<div id="connect" class="rightalign">

 <h3>Subscribin'</h3>

 <p>Get the latest email updates:

➥ </p>

 <form id="subscribe" action=

➥ "post">

 <p><input type="text" size="23"

➥ class="textinput" />

➥ <input type="submit"

➥ value="subscribe"

➥ class="subscribe"/></p>

 </form>

 <p id="feed">Get

➥ the Feed (nom!) <img src="rss_

➥ green.png" alt="RSS" /></p>

 <h3>Socializin'</h3>

 <p>See what makes us purr on</p>

 <ul id="connectlinks">

 twitter

➥ <img src="twitter_32.png"

➥ alt="" />

 facebook

➥ <img src="facebook_32.png"

➥ alt="" />

 flickr

➥ <img src="flickr_32.png"

➥ alt="" />

 </div><!-- end connect section -->

</div><!-- end primarynav -->

<div id="contentcolumn">

<div id="content">

<h3>Dose du Jour</h3>

<div class="lolcatentry">

 <h4>Deese cheezburgers

➥ loks funneh</h4>

 <p>3 May</p>

 <p class="centeredimg"><img src=

➥ "lol_mangocheezburgers.jpg"

➥ alt="Deese cheezburgers loks

➥ funneh" /></p>

 <div>

 <ul class="star" title="Rate

➥ this photo!">

 Rate it:

 <li id="starcur"

➥ class="curr">

 <p class="commentstars">

➥ Favorite?</p>

 </div> ➡

 From the Library of Wow! eBook

ptg

242 CSS Detective Guide

 <p class="credits">photo from:

➥ Ambs | caption

➥ from: Linnz</p>

 <div class="useraction">

 <p>Recaption |

➥ View all captions

➥ </p>

 <p>Comment |

➥ View all comments

➥ </p>

</div>

<p class="rightalign">

 <img src="sharethis.png"

➥ alt="" /> Share this

</p>

</div>

<div class="productentry">

 <h4>Get hep to the

➥ Hepper</h4>

 <p class="postinfo"><span class=

➥ "postdate">Posted

➥ 23 April<span class=

➥ "commentstars">

➥ 12 Comments</p>

 <p class="clearer">

➥ <img src="prod_hepper.jpg"

➥ alt="Hepper cat house" />

➥ Looking for something comfy for

➥ your cat, yet sleek and stylish

➥ enough to fit in with your

➥ contemporary home? Found it!

➥ Hepper's space-age looking kitty

➥ cubby is unobstrusive yet

➥ attractive. Your cats will love

➥ tucking themselves away in its

➥ cozy confines...</p>

 <p class="readmore">

➥ read more »</p>

 </div>

 <div class="lolcatentry">

 <h4>Marilyn Monroe,

➥ eat ur hart out!</h4>

 <p>2 April</p>

 <p class="centeredimg"><img src=

➥ "lol_marilyn.jpg" alt="Marilyn

➥ Monroe, eat ur hart out!" /></p>

 <div>

 <ul class="star" title="Rate

➥ this photo!">

 Rate it:

 <li id="starCur" class=

➥ "curr">

 <p class="commentstars">Favorite?</p>

 </div>

 <p class="credits">photo from:

➥ Andoo | caption

➥ from: Nat'rally

➥ </p>

 <div class="useraction">

 <p>Recaption |

➥ View all captions

➥ </p>

 <p>Comment |

➥ View all comments

➥ </p>

</div>

<p class="rightalign">

 <img src="sharethis.png"

➥ alt="" /> Share this

</p>

</div>

<div class="productentry">

 <h4>Traditional

➥ Japanese Kitty Hive House</h4>

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 243

 <p class="postinfo"><span class=

➥ "postdate">Posted

➥ 19 March<span class=

➥ "commentstars">

➥ 12 Comments</p>

 <p class="clearer">

➥ <img src="prod_japanese.jpg"

➥ alt="Traditional Japanese Kitty

➥ Hive House" /> I just

➥ stumbled upon this great find:

➥ hand-woven traditional Japanese

➥ cat houses. Made from natural

➥ materials, these little houses

➥ have natural climate control,

➥ keeping cats warm in the winter

➥ and cool in the summer...</p>

 <p class="readmore">

➥ read more »</p>

 </div>

 <p class="preventries">

➥ previous entries »</p>

 </div><!-- end content -->

</div><!-- end contentcolumn -->

 <div id="mostcontent">

 <h2 class="navheaderright">Must-Sees

➥ </h2>

 <h3>Recently added photos</h3>

 <ul class="photonav">

 <img src=

➥ "th_whee.jpg" alt="sleeping

➥ kitty-Aashika" />

 <img src=

➥ "th_gheri.jpg" alt="lounging

➥ kitty-Gheri" />

 <img src=

➥ "th_daisy.jpg" alt="alert kitty-

➥ Day-Z" />

 <img src=

➥ "th_sheets.jpg" alt="hiding

➥ kitty-Zealand" />

 <p>Be the first to

➥ caption!</p>

 <p class="readmore">

➥ see more »</p>

<!-- end mustsee section -->

 <h2 class="navheaderright">Must-

➥ Haves</h2>

 <h3>Recently reviewed products</h3>

 <ul class="photonav">

 <img src=

➥ "th_tree.jpg" alt="eco cat

➥ climbing tree" />

 <img src=

➥ "th_cubes.jpg" alt="stylish

➥ cat cubes" />

 <img src=

➥ "th_climber.jpg" alt="bamboo

➥ cat climber" />

 <img src=

➥ "th_modkat.jpg" alt="modkat

➥ litter box" />

 <p>Suggest a product to

➥ review!</p>

 <p class="readmore">

➥ see more »</p>

<!-- end musthave section -->

 <h2 class="navheaderright">Must-

➥ Reads</h2>

<h3>Recent articles</h3>

<ul class="articles">

 DIY or Buy? Tips

➥ to help you decide

 Favorite

➥ eco-litters

 Nommin' as nature

➥ intended: the latest crop of

➥ grain-free food ➡

 From the Library of Wow! eBook

ptg

244 CSS Detective Guide

 Getting loungey with it: chic loungers you

➥ wished were big enough for humans

 Say goodbye to ugly carpet and hello to

➥ the new mod cat trees

 <p class="readmore">Want to contribute? Contact us!

➥ </p>

 <p class="readmore">see more »</p>

<!-- end musthave section -->

</div><!-- end mostcontent -->

</div><!-- end maincontent -->

 <div id="footer">

 <p class="importantlinks">

Terms of Use

Privacy Policy

 Become a site partner

 Copyright © 2010. All rights reserved.

</p>

 <p>design by four cat evening studios

 powered by gabz.epress</p>

 <div class="clearer"></div> <!--deleting this is is part of

➥ the fix too -->

</div><!-- end footer -->

</div><!-- end secondwrap -->

</div><!-- end mainwrap -->

</body>

</html>

The Evidence Never Lies
We'll start by making certain there are no problems in the markup and
CSS code. Validation of the HTML yields no errors. However, the CSS vali-
dator produces several errors (Figure 10.5).

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 245

Sorry! We found the following errors (7)

URI : TextArea

45 div, h1, h2, img, a Property behavior doesn't exist :

➥ url(iepngfix.htc)

291 #contentcolumn Property -moz-border-radius doesn't exist :

➥ 20px 20px 0 0

292 #contentcolumn Property -webkit-border-top-left-radius doesn't

➥ exist : 20px

293 #contentcolumn Property -webkit-border-top-right-radius doesn't

➥ exist : 20px

294 #contentcolumn Property -moz-box-shadow doesn't exist :

➥ 0 5px 20px rgba(0,0,0,0.6)

295 #contentcolumn Property -webkit-box-shadow doesn't exist : 0

5px 20px rgba(0,0,0,0.6)

296 #contentcolumn 0 is not a box-shadow value : 0 5px 20px

rgba(0,0,0,0.6)

This is one situation where having code that doesn’t validate is entirely
legitimate. Parts of Andrea’s design relies upon transparent .png image files
(PNG-24), which aren’t supported by IE6 without the help of workaround
scripts or proprietary filters. Andrea used a popular script that helps the
images render correctly but the script requires the use of IE proprietary
 properties which are not part of the CSS specs and therefore are not valid
in any browser but IE.

Figure 10.5 CSS3 validation: the newer properties don’t validate (yet)

 From the Library of Wow! eBook

ptg

246 CSS Detective Guide

Additionally, to be able to employ the cool CSS3 effects that she wanted,
she had to use Mozilla- and Webkit- (Safari and Google Chrome) specific
properties, as well as a property that is still in draft form, but is slated to
be approved in the not-so-distant future. To future-proof the styles, she
included the anticipated CSS3 specification syntax.

These validation errors, therefore, are to be expected and can be ignored.

CONFIRMING SUSPICIONS AND NAMING
THE CULPRIT
Now that I have had a look at the code, I am eager to see the hasLayout status
of the page elements that are out of place. hasLayout may have a funny name,
but instead of bringing amusement, the problems that stem from an element
either having or not having layout can bring a front-end developer close
to tears. If you remember, hasLayout is a quality in both IE6 and IE7 that
elements have either intrinsically based on what element they are, or when
certain properties are applied to them. Layout can be removed by later prop-
erties once it is applied if necessary, but if it is intrinsic to the element it can’t
ever be removed.

While the problems in IE6 are not as important because of its low usage
by the demographic of her audience, IE7 is still widely used, and therefore
Andrea is taking the issues in that browser particularly seriously.

Let’s see what is going on with Andrea’s misplaced and strangely behaving
page sections, shall we?

At the very top of the page in IE6, there is a mysterious gap (Figure 10.6).

Now, while IE6 is not of major importance to Andrea, this is a big enough
issue to warrant fixing. The CSS for the head of the page is this:

#head {

background: url(bg_ohhai_top.gif) top left repeat-x;

overflow: hidden;

}

Figure 10.6 In IE6, ceiling gap says “Oh, hi — I’m at the top of your page, messing up your layout.”

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 247

Do you notice anything about this code? Since there are only two lines,
I think the telling thing about this code is what is missing, and that is this:
a property that will give the #head element layout.

I think the most effective way to activate hasLayout would be to make the
height explicit. If you’ll harken back to your earlier training, height is on
the list of properties that give layout. So let’s add this:

#head {

background: url(bg_ohhai_top.gif) top left repeat-x;

height: 328px;

overflow: hidden;

}

To Andrea’s delight, the explicit height works as hoped, and keeps the top
navigation from pushing the #head div down (Figure 10.7).

Now, on to the rest of the page.

The most troubling problem for both the early IEs is the misplaced introduc-
tory text. What seems to be happening is that the text in the other browsers
is acting like it has a property of float: left, but the IEs are not on board
with that. Any time an element acts out of character compared to other
browsers in IE7 and IE6, you can pretty much bet your kitty toys that it is due
to hasLayout. Indeed, I recall (from the very detailed treatise on hasLayout at
http://www.satzansatz.de/cssd/onhavinglayout.html) that if an element with
layout is next to a floated element, then essentially the element is displaced,
as if the element with layout were a float itself. Well, that sounds like a viable
explanation, especially when I test the theory by adding float: left; to the
code on the next page, which moves the element in all of the other browsers
to the same place it is in the IEs:

 Figure 10.7 Ceiling gap has left the building, but the intro text is pushed right off
the page — in both English and Kitteh

 From the Library of Wow! eBook

http://www.satzansatz.de/cssd/onhavinglayout.html

ptg

248 CSS Detective Guide

#ekwelcome {

float: left;

position: relative;

top: 235px;

left: 46%;

width: 682px;

}

 This helps me formulate a plan: instead of getting IE to conform, I decide
to make the other browsers play along instead. I add this extra bit of code to
change the value from -143px to -450px here:

.introenglish, .introkitteh {

color: #3B3F33;

font: 1.58em/1.45em "Existence Light","Century Gothic", sans-serif;

text-shadow: .01em .01em 1px #666;

float: left;

height: 200px;

margin: 10px 0 0 0;

width: 97%;

position: absolute;

top: -233px;

left: -450px;

text-decoration: none;

cursor: default;

}

And voila! Now all of the browsers have the introductory text in the correct
place (Figure 10.8)!

Andrea shows me another puzzler: when changing the width of the page in
the IEs, the right column flickers from float drop and then mysteriously goes
back into place. Weird!

Figure 10.8 Now the welcome message is fully accessible

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 249

As you know, float drop is usually caused by a float being too wide to fit into
the given space on the page, and therefore the float drops below the adjacent
element to the next available space. The double margin float bug is usually the
culprit behind float drop, and is easily fixed by adding display: inline to the
declaration. However, display: inline is already there! I imagine that you,
like myself, were expecting that to be the answer, but it isn’t.

Furthermore, there are two properties that give the element layout: float and
width. I have to conclude that the issues with this element may actually be
due to having layout rather than lacking it, but we do need both the float and
width properties and values, so getting rid of them is not the solution.

I suggest to Andrea that we slightly alter the size of the middle column for the
IEs, and deliver this new value through conditional statements. The other browsers
will ignore the conditional statements and render the CSS that they can see.

We try a small adjustment, nothing major, and change the width of the center
column from 42% to 41.9%:

#contentcolumn {

width: 41.9%;}

With this change, the columns seem much better behaved, and no longer
drop at the slightest provocation.

Finally, we get to the footer of the page, where all sorts of interesting things
are happening (Figure 10.9).

Can you guess what is causing the mysterious comings and goings of the
elements in the footer? That’s right, it is none other than the infamous
peekaboo bug in all of its splendor and glory. Unlike the famed LOL ceiling
cat peeking down at you, there is little cute about this bug.

The peekaboo bug is caused by an element not having layout, so the fix is
straightforward. I suggest giving the footer a height, which it lacked:

#footer {

background: #ecf1ee url(logo_fourcatevening_rect.gif) 99% 5px no-repeat;

clear: both;

color: #616F6A;

height: 55px;

line-height: 1.3em;

padding: 8px 120px 5px 0;

position: relative;

text-align: right;

}

 From the Library of Wow! eBook

ptg

250 CSS Detective Guide

With the addition that small line of code, the footer is stable and the page
looks as it should in both IEs (Figure 10.10).

With everything fixed and showing up correctly in all browsers, it seemed like
an opportune moment to let Andrea know that she could have avoided this
bug completely by coding this section of the page differently.

Here is her original code:

<div id="footer">

<p class="importantlinks">

Terms of Use

Privacy Policy

Become a site partner

Copyright © 2010. All rights reserved.

</p>

Peek

a-boo

I can’t

see

you!

Figure 10.9 Variations on a buggy theme

Figure 10.10 Bugless in the footer

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 251

<p>design by four cat evening studios

powered by gabz.epress</p>

 <div class="clearer"></div>

</div><!-- end footer -->

In terms of good page semantics, she could do a bit better by making the
.importantlinks paragraph an unordered list:

<div id="footer">

<ul class="importantlinks">

Terms of Use

Privacy Policy

Become a site partner

<p>Copyright © 2010. All rights reserved.</p>

<p>design by four cat evening studios

powered by gabz.epress</p>

<!-- delete <div class="clearer"></div> -->

</div><!-- end footer -->

This code makes a lot more sense from a page semantics standpoint, and she
still would be able to control the placement on the page and styling easily. Also,
ironically, having the links as list items in a , prevents the peekaboo bug entirely.

Andrea thanked me for my suggestion and assured me that she would think
about making that change before launching the site.

We’re making great progress, and Andrea is truly pleased that we have
squashed all of the major bugs. Now we have to make sure the rounded
corners and drop-shadow of the center column looks the same in as many
browsers as possible.

Currently, Firefox, Safari, and Google Chrome render the CSS3 text drop
shadows, rounded corners and drop-shadow on the center column, and
@font-face correctly. Opera renders the text effects just fine, but falls short
on the center column rounded corners and drop shadows. Andrea doesn’t
expect that much of her audience will use Opera, so is fine with letting that
one go for now.

However, IE7 and IE8 are a different story. She feels it is important that these
users see the site the way she intended it. Since we are serving the IEs some
specific code already, we decide to make separate CSS files for them and use
conditional comments to give each version their own tailor-made CSS.

 From the Library of Wow! eBook

ptg

252 CSS Detective Guide

We create two background images for the center column in order to employ
a technique that uses one image for the left, and a repeating image for the
right. Once we get those two in place, we need to make some small adjust-
ments to the margins and widths of the center column and some of its chil-
dren to make it show up correctly:

#contentcolumn {

background: url(bg_content_left.png) top left no-repeat;

display: inline;

margin: -40px 3% 0 3%;

padding: 0;

width: 41.9%;

}

#content {

background: url(bg_content_right.png) top right no-repeat;

margin: 1px auto 0 26px;

padding: 0 0 50px 0;

}

.lolcatentry, .productentry, .preventries {

width: 94%;}

As for IE6, while we know the browser is gasping its final breaths, some of
Andrea’s audience could still be using it. Chic cat decor is not just for the tech-
nologically savvy. While the scripts that handle PNG-24 support for IE can be
a great workaround for single images, they are not infallible, and there is still
a problem with rendering PNGs as repeating background images. Therefore,
instead of using the same PNG background images with a drop shadow that
we were able to use in IE7 and IE8, we will simply use plain old .gifs without
a drop shadow, which won’t have a problem with repeating.

Here is the code we will serve to IE6:

div, h1, h2, img, a {

behavior: url(iepngfix.htc);}

#contentcolumn {

background-image: url(bg_content_left_nds.gif);

margin: -40px 3% 0 3%;

width: 41.9%;}

 From the Library of Wow! eBook

ptg

THE CASE OF THE LOL LAYOUT 253

#content {

background: transparent url(bg_content_right_nds.gif) top right no-

repeat;

margin: 0 -5px 0 17px;

padding: 0 0 0 8px;

}

 The last requirement is to add the conditional comments in the regular page.
I advise her to put the code after the page CSS, so that it won’t be overridden
by the styles meant for modern browsers:

<!--[if lte IE6]>

<link rel="stylesheet" type="text/css" href="ohhai_ie6.css" />

<![endif]-->

<!--[if gte IE6]>

<link rel="stylesheet" type="text/css" href="ohhai_ie78.css" />

<![endif]-->

With these final changes in place and the site looking really good in all of the
browsers, Andrea finally lets out a huge smile and laugh, and even shows me
the mini Easter egg she put in the site just for kicks (Figure 10.11).

Figure 10.11 A little
surprise in the logo

 From the Library of Wow! eBook

ptg

254 CSS Detective Guide

Case Closed!

With the final changes completed, Andrea is thrilled. Now she has the begin-
nings of a web presence and the site may give her the opportunity to imple-
ment, produce and market some of her own well-designed product ideas.

We saw how hasLayout issues can cause pretty dramatic problems with the
rendering of elements on the page, but also how some of the fixes are as
simple as making height explicit. There are several in-depth articles about
hasLayout on the web, so it is a good idea to familiarize yourself with its
ins and outs. Although IE6 is on its way out, it’s not quite dead yet, and is
still being used enough to warrant being cordial to it. But even when IE6 is
completely defunct, its more refined sibling IE7 still harbors vestigial bugs
that will render parts of a page incorrectly.

It is seductive to think that you can code proactively against IE bugs — but you
may end up getting them anyway. Just as Andrea consciously coded against
the double margin float bug and employed properties that gave layout in most
of the major section containers on the page, she was not immune to other
bugs that she did not foresee.

If you want to start incorporating the increasingly popular CSS3 properties,
know in advance that getting your pages to render similarly cross-browser
may be a challenge. While it is admirable to want your pages to look exactly
the same in all, that aspiration needs to be balanced with a willingness to be
flexible and potentially have alternatives for less-compliant browsers. Also, by
knowing the limitations beforehand, you may be able to proactively design for
such possibilities.

Finally, it is important to note that some issues will require unconventional
solutions or those in which you may have to rework the structure of your
markup to be able to achieve your page layout. Employing good, semantic
markup will sometimes be the key to never coming up against old browser
bugs! By coding proactively against IE6 and IE7 bugs and by keeping web
standards in mind, you will most likely avoid many IE bug headaches.

Fantastic work! And congratulations are in order. You have faithfully stuck
to your training and have assisted me in solving several cases with tough CSS
mysteries. I am proud to say that you have passed your trial with flying colors,
and thus fully earned your new title of CSS Detective! Now you can fearlessly
go forth and more easily find the culprits behind your own CSS conundrums,
and maybe even those of other people.

Good luck to you, and remember — let’s be careful out there.

 From the Library of Wow! eBook

ptg

 A
endix

Resources
See? I’ve kept my word to you. Here is a compilation of resources — more
in-depth information than could be covered in the main part of this book —
that will provide food for thought and advanced techniques. Enjoy!

CHAPTER 1: INVESTIGATING THE SCENE OF
THE CRIME
Having a shallow foundation in web design and development is acceptable,
but possessing a deeper knowledge of the languages, properties, and browser
support thereof can really help you understand the source of problems down
the line, and may even help to prevent them.

Differences between HTML & XHTML
If you want to delve further into the differences between HTML and XHTML,
these pages will lend great history, comparisons, and opinions on which one
to use.

HTML & XHTML frequently answered questions

http://www.w3.org/MarkUp/2004/xhtml-faq

Nice overview of the differences between HTML and XHTML from the W3C
itself. If you can’t trust this source, I’m not sure who you can trust.

Frequently asked questions about XHTML vs. HTML

http://www.sitepoint.com/forums/showthread.php?t=393445

Another great resource comparing the markup languages that also gives a bit
of clarification about which is better.

HTML

http://en.wikipedia.org/wiki/HTML

A great overview on Wikipedia, with important history behind the versions
of HTML and XHTML, plus a nice breakdown of the differences between
 transitional and strict doctypes.

 From the Library of Wow! eBook

http://www.w3.org/MarkUp/2004/xhtml-faq
http://www.sitepoint.com/forums/showthread.php?t=393445
http://en.wikipedia.org/wiki/HTML

ptg

256 CSS Detective Guide

XHTML

http://en.wikipedia.org/wiki/XHTML

Good explanation on Wikipedia of why XHTML was developed, as well as
some criticisms about it.

Properties inherited by default
Simply knowing that some style properties are automatically inherited isn’t
enough; you should also know which ones are inherited so you won’t create
unnecessary declarations.

Cascading order & inheritance in CSS

http://monc.se/kitchen/38/cascading-order-and-inheritance-in-css

Nice article explaining order and inheritance, plus a comprehensive list of all
of the CSS properties inherited by default.

CSS cheat sheet: inheritance, cascade, specificity

http://www.communitymx.com/content/article.cfm?cid=2795D

Another article that lists the properties. Not as thorough as the article above,
but still provides valuable content on the cascade and specificity.

CSS selector browser support
Browser-support charts are critical to have at your fingertips when creating
your code, especially when trying to achieve cross-browser compatibility or
targeting specific browsers.

CSS browser support

http://www.evotech.net/blog/2009/02/css-browser-support

A concise, up-to-date chart that gives you the information you need about
which selectors are supported by the popular browsers.

CSS selectors: basic browser support

http://dev.l-c-n.com/CSS3-selectors/browser-support.php

Similar to the chart on Evotech.net, but also adds the CSS version number of
the selector and lists CSS3 selectors.

CSS contents & browser compatibility

http://www.quirksmode.org/css/contents.html

Provides some additional information such as support of multiple selectors.

 From the Library of Wow! eBook

http://en.wikipedia.org/wiki/XHTML
http://monc.se/kitchen/38/cascading-order-and-inheritance-in-css
http://www.communitymx.com/content/article.cfm?cid=2795D
http://www.evotech.net/blog/2009/02/css-browser-support
http://dev.l-c-n.com/CSS3-selectors/browser-support.php
http://www.quirksmode.org/css/contents.html

ptg

APPENDIX 257

Web browser CSS support

http://www.webdevout.net/browser-support-css

Another good chart on the browser support for CSS properties and selectors.

Comparison of layout engines (Cascading Style Sheets)

http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS)

Great Wikipedia article for geeking out on information about CSS support
for the engines driving the browsers rather than the browsers themselves.
Gives a better idea of which browsers are related to each other based on their
code engine.

CSS differences in Internet Explorer 6, 7, & 8

http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-
➥ explorer-6-7-and-8/

Good summary of the differences in CSS support between the major versions
of Microsoft Internet Explorer.

CHAPTER 2: TOOLS OF THE TRADE
 How can you get better at figuring out CSS problems or stopping them before

they start? You should know what the default styles are for the browsers, and
you need a good reference that lists all of the CSS properties and values for
common elements, as well as the whys and wherefores of CSS resets.

User agents’ style sheets
The user agents’ default style sheets are a key aspect in the CSS cascade.
Being aware of the differences between them is not only illuminating, but
also provides a good foundation for troubleshooting. These articles show
the importance of making some values explicit in your styles as well as the
argument for a CSS reset.

CSS2.1 User-agent style sheet defaults

http://css-class.com/test/css/defaults/UA-style-sheet-defaults.htm

A superb resource for familiarizing yourself with the default style values for
the various browsers. A compelling and informative read as well.

User-agent style sheets: basics & samples

http://meiert.com/en/blog/20070922/user-agent-style-sheets/

A fantastic compiled list of links to the actual CSS files of the popular browsers.

 From the Library of Wow! eBook

http://www.webdevout.net/browser-support-css
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS)
http://css-class.com/test/css/defaults/UA-style-sheet-defaults.htm
http://meiert.com/en/blog/20070922/user-agent-style-sheets/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/
http://www.smashingmagazine.com/2009/10/14/css-differences-in-internet-explorer-6-7-and-8/

ptg

258 CSS Detective Guide

CSS properties & values charts
You don’t need to memorize all of the CSS properties, but you do need
a reliable source to check if you are unsure of a property’s structure or values.

Full property table (CSS2)

http://www.w3.org/TR/CSS21/propidx.html

The full list of CSS2 properties from the W3C.

CSS reference

http://www.w3schools.com/css/css_reference.asp

A site where you can look up a CSS property and get the information you need
about its terms of use, values, and examples.

CSS properties index

http://meiert.com/en/indices/css-properties/

Another great listing of CSS properties, boasting CSS3 properties as well as
the default value for all properties listed.

90 CSS properties, values, & browser support

http://www.evotech.net/blog/2009/05/css-properties-values-and-
➥ browser-support/

Another useful chart from Evotech.com; lists the CSS properties and their
browser support.

Introduction to CSS3

http://www.w3.org/TR/2001/WD-css3-roadmap-20010523/

An introduction to the new properties coming in CSS3.

CSS reset
Whether or not to use a CSS reset is purely a matter of choice, and there are
pros and cons to all approaches. Here are some great resources for the most
popular CSS resets.

A killer collection of global CSS reset styles

http://perishablepress.com/press/2007/10/23/a-killer-collection-of-global-
➥ css-reset-styles/

 From the Library of Wow! eBook

http://www.w3.org/TR/CSS21/propidx.html
http://www.w3schools.com/css/css_reference.asp
http://meiert.com/en/indices/css-properties/
http://www.evotech.net/blog/2009/05/css-properties-values-and-browser-support/
http://www.w3.org/TR/2001/WD-css3-roadmap-20010523/
http://perishablepress.com/press/2007/10/23/a-killer-collection-of-global-css-reset-styles/
http://www.evotech.net/blog/2009/05/css-properties-values-and-browser-support/
http://perishablepress.com/press/2007/10/23/a-killer-collection-of-global-css-reset-styles/

ptg

APPENDIX 259

Fantastic compilation of just about every CSS reset available, with reviews of
the pros and cons of each. Includes Eric Meyer’s very popular CSS reset.

CSS frameworks & CSS reset: design from scratch

http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-
➥ design-from-scratch/

Many of the CSS resets listed in the PerishablePress.com article (above) are
in this listing from Smashingmagazine.com. The information on CSS frame-
works is useful for familiarizing yourself with the concepts.

Yahoo’s YUI

http://developer.yahoo.com/yui/

Along with Eric Meyer’s reset, YUI is one of the most popular CSS resets out
there. There is YUI 2 and YUI 3 — you can get to either from this index page.

Creating your own CSS reset
I have always had a strong leaning toward DIY. If you choose to use a CSS
reset, it may be worth it to make one that perfectly fits your needs rather
than tweaking a premade one.

To CSS reset or not to CSS reset

http://www.peachpit.com/blogs/blog.aspx?uk=To-CSS-Reset-or-Not-to-
➥ CSS-Reset

Gives the pros and cons of CSS resets, the thinking you need to create one of
your own, and further explanations of the popular resets.

Weekend quick tip: create your own simple Reset.css file

http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-
➥ create-your-own-resetcss-file/

This is another great tutorial on creating a CSS reset that fits your needs and
coding style.

Is your CSS reset doing more harm than good?

http://www.fivefingercoding.com/xhtml-and-css/create-custom-css-reset

Nice overview of how to create your own unique CSS reset customized for the
needs of each project.

 From the Library of Wow! eBook

http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://developer.yahoo.com/yui/
http://www.peachpit.com/blogs/blog.aspx?uk=To-CSS-Reset-or-Not-to-CSS-Reset
http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-create-your-own-resetcss-file/
http://www.fivefingercoding.com/xhtml-and-css/create-custom-css-reset
http://www.smashingmagazine.com/2007/09/21/css-frameworks-css-reset-design-from-scratch/
http://www.peachpit.com/blogs/blog.aspx?uk=To-CSS-Reset-or-Not-to-CSS-Reset
http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-create-your-own-resetcss-file/

ptg

260 CSS Detective Guide

CHAPTER 3: GIVING THE THIRD DEGREE

Part of giving the third degree is knowing what makes your subjects tick.
Knowing what to do when a browser switches into a different mode will help
you do just that.

Doctypes & browser modes
Doctype switching is important to consider when troubleshooting. These
articles outline which browser mode each doctype triggers. They also provide
background about how doctype switching came about.

Activating browser modes with doctype

http://hsivonen.iki.fi/doctype/

Outlines the modes, what triggers them, and their effects. An up-to-date
chart with the doctypes and browser engines is presented at the end of
the article.

Quirks mode & strict mode

http://www.quirksmode.org/css/quirksmode.html

Very good overview of the background behind browser modes, and a chart
of the differences in properties between the various modes.

Mozilla’s doctype sniffing

https://developer.mozilla.org/en/Mozilla%27s_DOCTYPE_sniffing

Doctype modes in Mozilla.

CSS enhancements in Internet Explorer 6

http://msdn.microsoft.com/en-us/library/bb250395%28VS.85%29.aspx#
➥ cssenhancements_topic2

Doctype modes in IE and their effects on page elements.

The Opera 9 doctype switches

http://www.opera.com/docs/specs/doctype/

Doctype modes in Opera and comparisons with other browsers.

Validators
If you have a hunch about your code, you must get validation. Here are the
industry-standard validators.

Markup validation service

http://validator.w3.org/

 From the Library of Wow! eBook

http://hsivonen.iki.fi/doctype/
http://www.quirksmode.org/css/quirksmode.html
http://msdn.microsoft.com/en-us/library/bb250395%28VS.85%29.aspx#cssenhancements_topic2
http://www.opera.com/docs/specs/doctype/
http://validator.w3.org/
https://developer.mozilla.org/en/Mozilla%27s_DOCTYPE_sniffing
http://msdn.microsoft.com/en-us/library/bb250395%28VS.85%29.aspx#cssenhancements_topic2

ptg

APPENDIX 261

The markup validator, provided by the W3C.

CSS validation service

http://jigsaw.w3.org/css-validator/

The CSS validator, provided by the W3C.

HTML & CSS validator Firefox extensions

https://addons.mozilla.org/en-US/firefox/

Do a search on the Mozilla Firefox extension site to install the validators of your
choice right into Firefox. It’ll save you the trouble of going to the W3C site.

Accessibility checkers
While accessibility isn’t covered as a topic in the book, keeping it in mind is
extremely important and will help you design and develop more effective websites.

WAVE: Web accessibility evaluation tool

http://wave.webaim.org/

The WAVE provides visual feedback by showing the semantics of the page and
the content of the link and image files (alt text, and so on). This will help you
remember to put meaningful information in your tags for all users.

Color blindness simulator

http://www.vischeck.com/vischeck/vischeckURL.php

I love tools that simulate color blindness, because it keeps designers on
their toes when creating color schemes for sites. Contrast and readability
are key for usability and accessibility, so checking with this simulator can be
extremely useful.

CHAPTER 4: THE USUAL SUSPECTS
Conditional comments and the display property are two methods you can
use to deal with the cast of buggy characters.

CSS conditional comments
Conditional comments and their syntax, values, hacks, and the style sheets
you should serve with them — it’s all here.

About conditional comments

http://msdn.microsoft.com/en-us/library/ms537512%28VS.85%29.aspx

Microsoft Developer Network’s full explanation of conditional comments,
their syntax and values, and how to construct them.

 From the Library of Wow! eBook

http://jigsaw.w3.org/css-validator/
http://wave.webaim.org/
http://www.vischeck.com/vischeck/vischeckURL.php
http://msdn.microsoft.com/en-us/library/ms537512%28VS.85%29.aspx
https://addons.mozilla.org/en-US/firefox/

ptg

262 CSS Detective Guide

How to create an IE-only style sheet

http://css-tricks.com/how-to-create-an-ie-only-stylesheet/

Ready-made conditional comments (and CSS hacks) for all versions of IE.

Hack-free CSS for IE

http://virtuelvis.com/archives/2004/02/css-ie-only

Similar to the article above, but with additional information about source
order for serving multiple IE-specific style sheets.

Supporting IE with conditional comments

http://dev.opera.com/articles/view/supporting-ie-with-conditional-comments/

Opera is kind enough to outline CSS IE hacks, conditional comments, and
how to construct an IE-specific style sheet that targets the main browser
bugs and issues.

 The display property
 The display property can be a powerful tool in many situations. The articles

below provide deeper information on what it does and how it works.

Visual formatting model

http://www.w3.org/TR/CSS2/visuren.html

A thorough list of all of the values of the display property from the W3C.

The display declaration

http://www.quirksmode.org/css/display.html

A useful chart of the support for the display property by the popular
browsers as well as good visual examples of how each value works.

CHAPTER 9: THE CASE OF THE BROWSER
WHO HATED ME
No matter what your feelings are about IE6 (and to some degree, IE7), it is
here to stay for a little while longer. Best to bone up on all the information
out there, so you’ll know what to expect from the little dear and how to
deal with it.

 From the Library of Wow! eBook

http://css-tricks.com/how-to-create-an-ie-only-stylesheet/
http://virtuelvis.com/archives/2004/02/css-ie-only
http://dev.opera.com/articles/view/supporting-ie-with-conditional-comments/
http://www.w3.org/TR/CSS2/visuren.html
http://www.quirksmode.org/css/display.html

ptg

APPENDIX 263

IE bugs
It would be so nice if IE bugs didn’t exist, but they are what keep us on
our toes and push our brains to innovate solutions. Know your bugs so
you can code proactively or develop a new solution that no one else has
thought of yet.

Explorer Exposed!

http://www.positioniseverything.net/explorer.html

Position Is Everything is one of the most well-respected sources on browser
bugs on the web. This website examines major IE bugs in depth and provides
solid fixes for all of them.

Internet Explorer Bugs

http://css-class.com/test/bugs/ie/ie-bugs.htm

Another good repository of IE bugs, bug examples, and fixes.

Internet Explorer & CSS issues

http://www.webcredible.co.uk/user-friendly-resources/css/internet-explorer.shtml

Light, easy-to-read overview of some of the more popular bugs in IE. Good to
read before digging into more in-depth, technical articles.

CSS & Developing for IE6/7
It’s best to have tricks up your sleeve for developing for IE6 and IE7 before
you even have to do any troubleshooting and adjusting.

Developing CSS for IE6 & IE7

http://www.edgeofmyseat.com/blog/developing-css-for-ie6-and-7

Great overview of the steps necessary for building a page and then fixing all
the IE problems that come up.

Universal Internet Explorer 6 CSS

http://forabeautifulweb.com/blog/about/universal_internet_explorer_6_css/

Relevant points about how to answer “the IE question” and a solution in the
form of a style sheet that addresses the known issues.

 From the Library of Wow! eBook

http://www.positioniseverything.net/explorer.html
http://css-class.com/test/bugs/ie/ie-bugs.htm
http://www.webcredible.co.uk/user-friendly-resources/css/internet-explorer.shtml
http://www.edgeofmyseat.com/blog/developing-css-for-ie6-and-7
http://forabeautifulweb.com/blog/about/universal_internet_explorer_6_css/

ptg

264 CSS Detective Guide

Cross-browser testing resources
If you don’t look at your pages in other browsers, then how will you know
if your code is solid? Cross-browser testing isn’t an option, it is an absolute
necessity. All you need are some reliable ways to accomplish it.

Multiple IE installer

http://tredosoft.com/Multiple_IE

I thanked the heavens when Estelle Weyl of Evotech.com turned me on to
this. Awesome to have all versions of IE on one machine. A little bugginess
with IE7, but functional.

IETester

http://www.my-debugbar.com/wiki/IETester/HomePage

An application that simulates multiple versions of IE in one place.

Seven fresh and simple ways to test cross-browser compatibility

http://freelancefolder.com/7-fresh-and-simple-ways-to-test-cross-browser-
➥ compatibility/

Reviews of multiple apps and sites that do cross-browser testing or provide it
as a service.

CHAPTER 10: THE CASE OF THE LOL LAYOUT

An issue like hasLayout, PNG support by IE6, or cross-browser rendering is
no laughing matter. However, these resources will help you feel more confi-
dent when tackling such problems, and at least one may even make you smile.

hasLayout
Oh, how I love the excitement that hasLayout brings to working with IE6!
Below are some must-reads to really understand the ins and outs of giving
layout or taking it away as the situation warrants.

HasLayout overview

http://msdn.microsoft.com/en-us/library/bb250481%28VS.85%29.aspx

Microsoft’s explanation of the hasLayout quality and its implications.

On having layout

http://www.satzansatz.de/cssd/onhavinglayout.html

 From the Library of Wow! eBook

http://tredosoft.com/Multiple_IE
http://www.my-debugbar.com/wiki/IETester/HomePage
http://freelancefolder.com/7-fresh-and-simple-ways-to-test-cross-browser-compatibility/
http://msdn.microsoft.com/en-us/library/bb250481%28VS.85%29.aspx
http://www.satzansatz.de/cssd/onhavinglayout.html
http://freelancefolder.com/7-fresh-and-simple-ways-to-test-cross-browser-compatibility/

ptg

APPENDIX 265

This article seems to be the premier source on hasLayout, its effects, and ways
to deal with it. A very detailed and long read, but invaluable in terms of content.

Welcome to hasLayout.net

http://haslayout.net/

Despite the name, haslayout.net not only covers hasLayout issues, but also
provides examples and fixes for many other CSS bugs.

The Internet Explorer hasLayout property

http://reference.sitepoint.com/css/haslayout

This article is a condensed version of the information in the “On Having
Layout” article (above), and thus a good starter article to familiarize yourself
with the issues around hasLayout.

PNG-24 support for IE
PNG is really a wonderful image format, and it’s a wonder that it has only
fairly recently become widely adopted. One of the main culprits is the lack of
support by IE6, but the following scripts provide viable workarounds.

PNG transparency for Internet Explorer (IE6 & beyond)

http://christopherschmitt.com/2007/10/30/png-transparency-for-internet-
➥ explorer-ie6-and-beyond/

Good article on the background of PNGs, how they work, and how to put
PNG support into your pages for IE6.

IE PNG Fix 2.0 Alpha 4

http://www.twinhelix.com/css/iepngfix/

One of several great and easy solutions for getting PNGs to show up correctly
in IE6.

Transparent PNGs in Internet Explorer 6

http://24ways.org/2007/supersleight-transparent-png-in-ie6

Another script to enable PNGs to show up in IE6.

Unit PNG fix

http://labs.unitinteractive.com/unitpngfix.php

And yet another script to enable PNGs to show up in IE6. It is good to have
multiple options, try them all, and see what works best for you.

 From the Library of Wow! eBook

http://haslayout.net/
http://reference.sitepoint.com/css/haslayout
http://christopherschmitt.com/2007/10/30/png-transparency-for-internet-explorer-ie6-and-beyond/
http://www.twinhelix.com/css/iepngfix/
http://24ways.org/2007/supersleight-transparent-png-in-ie6
http://labs.unitinteractive.com/unitpngfix.php
http://christopherschmitt.com/2007/10/30/png-transparency-for-internet-explorer-ie6-and-beyond/

ptg

266 CSS Detective Guide

Websites looking the same cross-browser
As designers and developers, we may be inclined to think that having your
pages show up 100 percent identical across browsers is the ultimate goal, but
that aspiration may be unrealistic. Here are some tips on how to get as close
as possible, but also some ideas on when to stop.

Tutorial: ten tips for building cross-browser websites

http://www.elated.com/articles/cross-browser-website-tips/

Good, generalized tips for getting your website to be as close as
possible cross-browser.

The cross-browser conundrum

http://www.worthwhile.com/blog/the-cross-browser-conundrum/

Some thoughts on cross-browser closeness in design, and thoughts for
dealing with others’ expectations of how the sites will look in different browsers.

Do websites need to look exactly the same in every browser?

http://dowebsitesneedtolookexactlythesameineverybrowser.com/

I believe you will appreciate the answer that this website provides.

Page semantics & lists
There may be a situation where you opted for paragraph text but a list would
be better. These articles will help you determine where to implement lists and
their proper structure.

Using HTML lists properly

http://green-beast.com/blog/?p=185

Good explanation of lists, their construction, and the situations that each
type of list is used for.

HTML lists

http://dev.opera.com/articles/view/16-html-lists/

Especially relevant is the section “The difference between HTML lists and text.”

 From the Library of Wow! eBook

http://www.elated.com/articles/cross-browser-website-tips/
http://www.worthwhile.com/blog/the-cross-browser-conundrum/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/
http://green-beast.com/blog/?p=185
http://dev.opera.com/articles/view/16-html-lists/

ptg

APPENDIX 267

 Image Credits/A�ributions

CHAPTER 4: THE USUAL SUSPECTS

Graphics:
 3D version of box model from HicksDesign.co.uk:http://www.hicksdesign.co.uk/■

➥ boxmodel/, CC BY 2.0

■ Fingerprints of Anna Timiriova: http://commons.wikimedia.org/wiki/File:
Fingerprints_of_Anna_Timiriova_3.jpg, part of the public domain.

CHAPTER 5: THE CASE OF THE DEVILISH DETAILS

Graphics:
Logos designed by the author.■

CHAPTER 6: THE CASE OF THE SINGLE
WHITE SPACE
Site design inspiration from Etsy.com.

Photos:
Photo of Stefani Whylie taken by the author. Used with permission.■

Photo of Angelia Betancourt taken by the author. Used with permission.■

■ Video still of Stephanie Troeth, from http://hippiesque.com. Used
with permission.

■ All jewelry photos came from Flickr.com users, and are all Creative
Commons licensed, CC BY 2.0.

 Blue and brown necklace: http://www.flickr.com/photos/madzik/36801146/■

■

Teal and green glass earrings:
http://www.flickr.com/photos/juniperberry/2106502090/, and
http://www.flickr.com/photos/juniperberry/2108578751/

 Amethyst and rhodolite garnet earrings: http://www.flickr.com/photos/■

 Turquoise necklace: http://www.flickr.com/photos/expressyourself-7/

➥ mmadden/

■

➥ 3847134534/

 From the Library of Wow! eBook

http://www.hicksdesign.co.uk/boxmodel/
http://commons.wikimedia.org/wiki/File:Fingerprints_of_Anna_Timiriova_3.jpg
http://hippiesque.com
http://www.hicksdesign.co.uk/boxmodel/
http://commons.wikimedia.org/wiki/File:Fingerprints_of_Anna_Timiriova_3.jpg
http://www.flickr.com/photos/madzik/36801146/
http://www.flickr.com/photos/juniperberry/2106502090/
http://www.flickr.com/photos/mmadden/
http://www.flickr.com/photos/mmadden/
http://www.flickr.com/photos/juniperberry/2108578751/
http://www.flickr.com/photos/expressyourself-7/3847134534/
http://www.flickr.com/photos/expressyourself-7/3847134534/

ptg

268 CSS Detective Guide

CHAPTER 7: THE CASE OF THE MISTAKEN
IDENTITY

Photos:
■ Main photo of author, courtesy of Bill Wisser Photos,

http://billwisserphoto.com. Used with permission.

Community pictures are the avatars of friends of the author on Twitter.■

All food and restaurant photos taken by the author.■

Other:
Design element for logo from istockphoto.com■

CHAPTER 8: THE CASE OF THE FLOAT WITH
A MIND OF ITS OWN

 This site is dedicated to the memory of my father, Dennis Raymond Jacobs.

Photos:
 ■ Walking Away: http://www.flickr.com/photos/saneboy/3811734996/,

CC BY 2.0

 ■ Twin Maples: http://www.flickr.com/photos/laserstars/623654566/,
CC BY 2.0

All other photos are stock photography from istockphoto.com.■

CHAPTER 9: THE CASE OF THE BROWSER
WHO HATED ME
Site concept inspiration from T-mobile “Life is for Sharing” video:
http://www.youtube.com/watch?v=mUZrrbgCdYc

Photos:
■ All dance photos came from Flickr.com users, and are all Creative Commons

licensed, CC BY 2.0

 Dancing at the Bedouin Lounge: http://www.flickr.com/photos/■

 ➥ itzafineday/3812947642/

 From the Library of Wow! eBook

http://billwisserphoto.com
http://www.youtube.com/watch?v=mUZrrbgCdYc
http://www.flickr.com/photos/saneboy/3811734996/
http://www.flickr.com/photos/laserstars/623654566/
http://www.flickr.com/photos/itzafineday/3812947642/
http://www.flickr.com/photos/itzafineday/3812947642/

ptg

APPENDIX 269

 Dance! http://www.flickr.com/photos/ kkendall/3613416741/■

 Spontaneous Dance party: http://www.flickr.com/photos/jordanfischer/■

 Fancy/Fringe Dancer: http://www.flickr.com/photos/78428166@N00/

➥ 3583935971/

■

 6–10 year old Breakdancers: http://www.flickr.com/photos/m500/

➥ 873166776/

■

 Parkdancing (The Dirty Urchins): http://www.flickr.com/photos/yourdon/

➥ 3541920725/

■

 Holland Dance Festival Preview: http://www.flickr.com/photos/

➥ 3903019257/

■

Photo of Darshan Bhuller used with permission.

➥ haagsuitburo/4046910999/

■

Photo of Deloria Jacobs (mother of the author) used with permission.■

All other photos are stock photography from istockphoto.com.■

Other:
Design elements for logo from istockphoto.com■

CHAPTER 10: THE CASE OF THE LOL LAYOUT
Site concept inspiration from: icanhazcheeseburger.com, lolcat.com, lolcats.com,
and moderncat.net.

Photos:
Product photos from sites listed on moderncat.net.■

■ All cat photos are those of the author. No cats were harmed in the making
of this website, and no kitty labor laws were broken.

Other:
Design elements for logo from istockphoto.com■

 From the Library of Wow! eBook

http://www.flickr.com/photos/kkendall/3613416741/
http://www.flickr.com/photos/jordanfischer/3583935971/
http://www.flickr.com/photos/jordanfischer/3583935971/
http://www.flickr.com/photos/78428166@N00/873166776/
http://www.flickr.com/photos/78428166@N00/873166776/
http://www.flickr.com/photos/m500/3541920725/
http://www.flickr.com/photos/m500/3541920725/
http://www.flickr.com/photos/yourdon/3903019257/
http://www.flickr.com/photos/yourdon/3903019257/
http://www.flickr.com/photos/haagsuitburo/4046910999/
http://www.flickr.com/photos/haagsuitburo/4046910999/

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

271

Index

IE's broken box model, 79–81
margin errors, 101–105
peekaboo, 105–108, 249
resources, 263
text size, 115–116
vs. coding errors, 74

browser modes, 56–58, 260
browsers. See also specific browsers

compatibility across, 82, 111,
116, 178, 198

consistency across, 37, 114, 254,
266

and CSS3 properties, 116–117
default styles for, 17, 175, 257
and doctype declarations, 56–58
problems with (See browser bugs)
and relative font sizes, 114–115
and selectors, 22, 24
standards-compliant, 56–57
and text sizing, 222–223
usage statistics, 83
and W3C box model, 62, 80

(See also box model)
browser-support charts, 256
Browser Who Hated Me case study,

197–228
design viewed in different

browsers, 199–200
image credits, 268–269
page code, 201–214
problems/solutions, 215–228
site concept inspiration, 268

 tag, 7
 tag, 7
bugs. See also browser bugs;

debugging
dimensional, 83–84, 117
and document flow, 76–77
margin, 101–105

: (colon), 50
{ } (curly brackets), 10, 11, 27, 28
- (hyphen), 26, 40, 82
" " (quote marks), 4, 9, 25, 28, 43
; (semicolon), 10, 27, 28, 50, 131
_ (underscore), 40, 82
, (comma), 27, 50
!important styles, 17, 48, 63
#container styles, 132
sign, 132–133
* (asterisk), 20, 38, 62
* HTML hack, 82, 110–111, 119,

225
@import directive, 12–13, 19, 46–47
3-D positioning, 78
3 pixel text jog bug, 102–104

A

absolute positioning, 77
absolute-size fonts, 112
accessibility, 7, 114, 261
:active pseudo-class, 23, 24
adjacent selectors, 23
advanced selectors, 30–36
:after pseudo-element, 25, 118,

120
Agency for Prevention of

Spontaneous Dancing. See
APoSD site

almost-standards mode, 57
ancestor elements, 15, 16
APoSD site, 198–228

image credits, 268–269
page code, 201–214
problems/solutions, 215–228
site concept inspiration, 268
as viewed in different browsers,

199–200

asterisk (*), 20, 38, 62
attributes

and HTML tag structure, 5
targeting, 25–26
troubleshooting, 9

attribute selectors, 25–26
author styles, 17

B

background colors, 61
background images, 116, 215–216,

252
background property, 34, 35
backups, 61, 71
base font size, 114
block elements, 76
bold text, 7
border property, 33–34, 61, 79
bottom margin bug, 105
box model

components of element box, 79
and IE browser versions, 80
and outline property, 62
problems, 79–81
workarounds for broken, 81, 119
and z-axis hierarchy, 78

breaks, 7
browser bugs, 75–120

clearing floats, 85–94
disappearing content, 105–111
double margin float, 104, 187, 188
extra white space in lists,

97–100, 120, 175
float drop, 94–95, 188, 249
float stepdown, 94–96, 187,

188–190, 193–195
guillotine, 108–111, 224–226
hasLayout problem, 82–85

 From the Library of Wow! eBook

ptg

272 CSS Detective Guide

conditional comments, 82, 119,
251, 253, 261–262

consistency, cross-browser, 37, 114,
254, 266

contact information, 46
container selector, 132
content

disappearing, 105–108
generated, 118
separating presentation from,

8–9
and W3C box model, 79

contextual selectors, 22–23, 30–31
corners, rounded, 116, 251
cross-browser compatibility, 82,

111, 116, 178, 198
cross-browser consistency, 37, 114,

254, 266
cross-browser testing, 227, 264
CSS

browser-support chart, 256
case studies (See case studies)
conditional comments, 82, 119,

251, 253, 261–262
document hierarchy, 14–16
document structure, 10–14
element relationships, 15–16
eliminating sections of, 72
floats, 85 (See also floats)
foundational concepts, 14–28,

76–77
frameworks, 259
hacks, 82
how cascade works, 16–19
inheritance, 16, 256
properties and values charts, 258
readability considerations,

26–27
reset, 37–38, 81, 258–259
resources, 256–266
selectors (See selectors)
style rules, 10–11, 26–27
styles of writing, 26–27
troubleshooting, 27–28, 47–50
validating, 52, 55, 130, 134,

260–261
writing sleek, 42–43

CSS3
properties, 116–117, 258
Property Support table, 117
selectors, 256
specifications, 117, 245–246
validation, 245

CSS-Class.com, 263
CSS-Tricks.com, 262
curly brackets ({ }), 10, 11, 27, 28

D

<dd>s, 192–193
debugging. See also troubleshooting

resources, 264
step-by-step process, 71–74
techniques, 60–67

declaration blocks, 10, 28
default styles, 47, 175, 257
default values, 42
definition lists, 192–193
descendant elements, 15
descendant selectors, 22, 43, 44
design, standards-based, 11, 160
design comps

EateryJunkie site, 137
FarfallaEffect site, 124
Nena Adornments site, 158

developer information, 46
Developer Toolbar, 68
Developer Tools, MSIE's, 68
Devilish Details case study, 123–134

design comp vs. home page,
124–125

image credits, 267
page code, 126–130
page-validation results, 130
problems/fixes, 131–134

dimensional bugs, 83–84, 117
disappearing content, 105–111
display: inline property, 188, 189,

196
display property, 84, 94, 118, 119,

120, 262
divitis, 40
<div>s, 7, 40–41, 84
doctype declaration, 52, 55, 56.

See also doctypes; DTD

C
cascade, 16–19, 43, 68, 256
Cascading Style Sheets, 257. See also

CSS
case-sensitivity, 4
case studies

Browser Who Hated Me,
197–228

Devilish Details, 123–134
Float with Mind of Its Own,

177–196
LOL Layout, 229–254
Mistaken Identity, 135–156
Single White Space, 157–176

child elements, 16
child hack, 82, 119
child selectors, 22, 82
christopherschmitt.com, 265
Chrome. See Google Chrome
classitis, 40
class selectors, 20–21
clearfix class, 90, 110, 192
clear property, 88–90, 109, 118
code

backing up, 61, 71
commenting out sections of,

64–67
debugging, 71–74

code validators. See validators
coding case studies. See case studies
coding errors, 74. See also debugging
collapsed margins, 101
colon (:), 50
color blindness simulator, 261
color-scheme information, 46
color shorthand, 36, 43
column sizing, 116
combinators, 22
comma (,), 27, 50
comments

conditional, 82, 119, 251, 253,
261–262

as debugging tool, 64–67
nesting, 14
in styles, 14, 48

compatibility, cross-browser, 82,
111, 116, 178, 198

 From the Library of Wow! eBook

ptg

273INDEX

doctypes
choosing, 58
HTML vs. XHTML, 4–5
list of valid, 56
purpose of, 56
resources, 260
traditional vs. strict, 255
troubleshooting, 58–60

doctype sniffing, 56, 260
doctype switching, 56, 260
document flow, 76–77
document hierarchy, 14–16
document-level styles, 13
documents

accessibility of, 7
employing styles in, 11–14
establishing relationship

between, 11–12
document structure

CSS, 10–14
HTML, 4–9

document tree, 15
document type definition, 52.

See also DTD
DOM Inspector for Firefox, 68
double margin float bug, 104, 187,

188, 190–191, 249
Dreamweaver, 68
drop-shadows, 116, 251
DTD

anatomy of, 55–56
and code validators, 52, 54
meaning of acronym, 52

dynamic pseudo-classes, 23–24

E
Easter egg, 253
easy-clear method, 88–90, 110, 120
EateryJunkie site, 136–156

design comp, 137
home page, 137
image credits, 268
page code, 137–147
problems/solutions, 149–156
validation results, 148

edgeofmyseat.com, 263
elated.com, 266

element ancestry, 15–16
elements

adding borders to, 61
applying multiple class styles

to, 31
block vs. inline, 76
controlling placement of, 77–78
and document flow, 76–77
floating, 86–87
highlighting, 61
with layout, 83
naming, 39, 40
overlapping, 114–115
resetting styles for, 37–38
understanding relationship

between, 14–16
vs. tags, 6

element selectors, 20
embedded styles, 13, 28
ems, 63, 112, 113, 114
 tag, 7
errors

punctuation, 134
spelling, 11, 47, 131, 175
validation, 54, 55

Evotech, 256, 258, 264
ex (unit of measure), 114
external styles, 11–13, 18

F

FarfallaEffect site, 124–134
design comp, 124
home page, 125
page code, 126–130
problems/fixes, 131–134
validation results, 130

file-created date, 46
file-last-edited date, 46
Firebug, 68
Firefox

and CSS3 properties, 116
DOM Inspector for, 68
and drop shadows, 251
as example of modern browser,

178
extensions, 261
and rounded corners, 251

fixed positioning, 77
fixed-size fonts, 112
float drop bug, 94–95, 169, 188,

220, 249
float property, 84, 86, 119, 120
floats, 85–96

applying, 42, 88
clearing, 42, 87, 88–94, 150,

156, 221
containing, 87, 150–151
how they work, 86–87
problems with, 94–96, 120,

195–196
ways of using, 85

float stepdown bug, 94–96, 187,
188–190, 193–195

Float with Mind of Its Own case
study, 177–196

design viewed in different
browsers, 179

image credits, 268
page code, 180–186
problems/solutions, 187–196
validation results, 187

flow, document, 76–77
:focus pseudo-class, 23, 24
font property, 35
fonts, 111–116. See also text

font-face vs. font-family, 149
importing, 116
serif vs. non-serif, 150
sizing options, 111–114

font-size conversion, 113
font-size keywords, 112, 115
font-size property, 118
footers, 172, 174, 224–226, 232,

249–250
forabeautifulweb.com, 263
frameworks, CSS, 259
freelancefolder.com, 264

G
gaps, 215, 216, 246–247
Google Chrome, 116, 246, 251
green-beast.com, 266
guillotine bug, 108–111, 117, 118,

224–226

 From the Library of Wow! eBook

ptg

274 CSS Detective Guide

and CSS3 properties, 116
and CSS support, 257
doctype modes in, 260
and float drop, 94
and floats, 178, 195–196
and font resizing, 112
hacks, 82, 119
hasLayout problems, 82–85, 254
installer, 264
and text sizing, 223
usage statistics, 83

IE5, 57
IE6

and child selectors, 82
clearing method, 90
CSS enhancements in, 260
double margin float bug, 104,

187, 188, 190–191
float drop bug, 188, 220
and floats, 195–196
float stepdown bug, 95–96, 187,

193–195
guillotine bug, 224–226
and hasLayout, 85, 254
list white-space bug, 97–100
and min-height property, 117
and min-width property, 117
and outline property, 62
peekaboo bug, 105–108, 249
and PNG files, 245, 252, 265
and star HTML hack, 82, 225
text size bug, 115–116
and text sizing, 223
and underscore hack, 82
and W3C box model, 62, 80

IE7
bottom margin bug, 105
clearing method, 90
and floats, 195–196
float stepdown bug, 187,

193–195
and hasLayout, 85, 254
and outline property, 62
peekaboo bug, 105–108, 249
and text sizing, 223
and W3C box model, 62, 80

IE8, 80, 118
IETester, 264
image credits, 267–269
images

background, 116, 215–216, 252
positioning, 131, 132, 171, 191,

216
sliced, 57
transparent, 245, 265

!important styles, 17, 48, 63
@import directive, 12–13, 19, 46–47
importing fonts, 116
indentation, 37, 44
inheritance, 16, 256
inline elements, 76
inline styles, 13, 18, 64
Internet Explorer. See IE
Internet resources, 255–266

K
keywords, font-size, 112, 115

L

layout
case study (See LOL Layout case

study)
characteristics of elements with,

83
engines, 257
problems, 82–85, 119
removing/overriding, 84–85, 119
using tables for, 7

line breaks, 7, 27
line-height property, 108, 116,

117, 120
link pseudo-classes, 23
link styles, 24
<link> tag, 11–12
lists

definition, 192–193
extra white space in, 97–100,

120, 175
proper structure for, 266
unordered, 172, 251
where to implement, 266

H
hacks, 82, 119
hasLayout

activating, 85, 107–108
and height property, 247, 254
and IE6/7, 82–85, 254
issues/problems, 82–85
overriding, 84–85
resources, 254, 264–265

hasLayout.net, 265
headers, 40, 42, 45, 73, 174
height property, 84, 117, 119, 247
hexadecimal color values, 36, 46, 62
hierarchy

document, 14–16
z-axis, 78

hooks, 39
:hover pseudo-class, 23, 24
HTML

best practices, 3
characteristics of "well-formed,"

4
document structure, 4–9
eliminating sections of, 72
hacks, 82
lists (See lists)
meaning of acronym, 4
resources, 255–256
semantic, 6, 8 (See also POSH)
tag structure, 5 (See also tags)
tailored, 39–42
troubleshooting, 8–9
validating, 7, 9, 52, 55, 260–261
versions, 4
vs. XHTML, 4–5, 255–256

Hypertext Markup Language, 4.
See also HTML

hyphen (-), 26, 40, 82

I

identifiers, 40, 56, 156
id selectors, 21, 155, 156
IE. See also specific versions

bugs, 79–81, 104–105, 108–111,
224–226, 262–263

clearing methods, 90

 From the Library of Wow! eBook

ptg

275INDEX

list-style property, 35
list white-space bug, 97–100, 120,

175, 176
logos, 131, 132, 152
LOL Layout case study, 229–254

design viewed in different
browsers, 231–232

image credits, 269
page code, 233–244
problems/solutions, 233,

246–254
site concept inspiration, 269
validation results, 244–246

loose mode, 56–57

M
margin bugs, 101–105
margin property, 32–33, 37, 63
margins, 79, 81, 101–105, 120,

168–172
markup languages, 56, 255
markup validation service, 260–261
max-width property, 119
measurement units, 42, 50,

111–114, 131
menus, 73
Meyer, Eric, 259
Microsoft

Developer's Network, 261
hasLayout overview, 264
Internet Explorer (See IE)

min-height property, 84, 117, 119
min-width property, 84, 117, 119
misspellings, 11, 47, 131, 175
Mistaken Identity case study,

135–156
design comp, 137
home page, 137
image credits, 268
page code, 137–147
problems/solutions, 149–156
validation results, 148

modes, browser, 56–58, 260
Mozilla, 246, 260, 261. See also

Firefox

MSIE's Developer Tools, 68
Multiple IE installer, 264
my-debugbar.com, 264

N
naming conventions/rules, 40, 48,

156
navigation bars, 72, 168, 190,

216–220, 223
navigation menus, 73
negative margins, 101–102
Nena Adornments site, 158–176

design comp, 158
image credits, 267
page code, 160–167
problems/solutions, 168–175
site-design inspiration, 267
validation results, 167–168

nesting
comments, 14
tags, 9

Netscape Navigator, 57

O

offset values, 77
Oh-Hai.com site, 230–254

Easter egg, 253
footer, 232, 249–250
logo, 253
original design, 231
page code, 233–244
problems/solutions, 233,

246–254
validation results, 244–246
as viewed in different browsers,

231–232
online resources, 255–266
Opera, 178, 251, 260, 262, 266
outline property, 62
overflow: auto property, 84, 93–94,

107, 118, 119, 120
overflow: hidden property, 84–85,

91–95, 120, 156, 196

overflow property, 84, 91–94, 119,
120, 150–151

overflow: scroll property, 84, 92,
107, 119, 120

overflow: visible property, 85, 91,
119

P

padding
and browser default values, 168
and CSS box model, 79
and spacing problems, 168–172,

175
and unordered lists, 172
workarounds, 81

padding property, 33, 37, 63, 118,
169

page logos. See logos
page semantics, 39
page zooming, 115
paragraph breaks, 7
parent elements, 16, 88
peekaboo bug, 105–108, 117, 118,

249
percentage font-sizing, 112, 113,

114, 115
PerishablePress.com, 258, 259
photo credits, 267–269
photos. See images
pixels, 112, 113
Plain Old Semantic HTML, 6.

See also POSH
PNG image files, 245, 252, 265
points, 112, 113
POSH, 6–9

benefits of using, 8
meaning of acronym, 6
practices for achieving, 7
purpose of, 6
troubleshooting, 8–9

Position Is Everything, 263
position property, 77, 84, 118, 119,

131
presentation, separating content

from, 8–9

 From the Library of Wow! eBook

ptg

276 CSS Detective Guide

scaling, 114–115
screen readers, 7
selectors, 20–26

advanced, 30–36
checking browser support for,

22, 24, 256–257
complex relationship, 30–31
contextual, 22–23, 30–31
creating/placing, 43
and CSS document structure, 10
esoteric, 24–26
general, 20–21
grouping, 30, 44
naming, 40, 48
pseudo-class, 23–24
purpose of, 10, 20
relationship-based, 22–23
troubleshooting, 27, 67–68
using multiple, 10, 30

semantic hooks, 39
Semantic HTML, 6, 8. See also

POSH
semicolon (;), 10, 27, 28, 50, 131
shorthand properties, 32–36
shorthand styles, 31–36, 43
shrink-to-fit, 83
shrink-wrapping, 83, 120
sibling elements, 16
sibling selectors, 23
simple-clear method, 91–94
Single White Space case study,

157–176
image credits, 267
page code, 160–167
problems/solutions, 168–175
site-design inspiration, 267
validation results, 167–168

sitepoint.com, 265
sliced images, 57
spaces, 7, 63, 90. See also white

space
spacing

and absence of margins/padding,
168–172, 175

and negative margins, 102
rules, 73

specificity, 18, 63–64, 256
spelling errors, 11, 47, 131, 175
stacking order, 77, 78
standards-based design, 11, 160
standards-based markup, 8. See also

POSH
standards mode, 56, 81
star HTML hack, 82, 110–111, 119,

225
static positioning, 77
strict mode, 56, 260
strings, 43
 tag, 7
style declarations, 17, 26–27, 43, 45
style order, 19
style rules, 10–11, 26–27
styles. See also style sheets

author, 17
changing order of, 16
comments in, 14, 48
conflicting, 17, 19
creating titles for groups of, 14
declaring, 17, 26–27, 43
default, 17, 175, 257
disabling, 67
document-level, 13
embedded, 13, 28
external, 11–13
inline, 13, 64
naming, 40
organizing, 44
resetting, 37–38
temporarily removing, 14
troubleshooting, 14
user, 17
user-agent, 257

style sheets. See also styles
connecting to HTML documents,

11–12
creating IE-only, 262
creating multiple, 46–47
linking to, 12
organizing, 45
resources, 257
standardized, 44–47

style shorthand, 31–36, 43
<style> tag, 11, 13

properties. See also specific
properties

bug fixes for, 117–120
CSS2, 258
CSS3, 116–117, 258
and inheritance, 16, 256
resources, 258
shorthand equivalents for,

31–36
troubleshooting, 27

property-value pairs, 10, 26
pseudo-class selectors, 23–24
pseudo-elements, 24–25
punctuation errors, 134, 175

Q
 quick-fix styles, 120

quirks mode, 56–57, 58, 80, 260
Quirksmode.org, 117, 256, 260, 262
quote marks (" "), 4, 9, 25, 28, 43

R

Raymond Jay site, 178–196
image credits, 268
page code, 180–186
problems/solutions, 187–196
validation results, 187
as viewed in different browsers,

179
readability, 26, 114, 115, 261
relative positioning, 77, 218–219
relative-size fonts, 112–114
relative text sizes, 133
rel attribute, 12
rendering modes, 56–57
reset styles, 37–38, 45
resources, 255–266
RGB color values, 36
rounded corners, 116, 251
RSS buttons, 152
RSS feed boxes, 168, 170–171

S
Safari, 116, 246, 251
satzansatz.de, 264–265

 From the Library of Wow! eBook

ptg

277INDEX

T
table-based layouts, 57
table of contents, 45–46
tables, 7
tabular data, 7
tag names, 5, 8, 10
tags

nesting, 9
syntax for, 5
troubleshooting, 8–9
vs. elements, 6

testing, cross-browser, 227, 264
text. See also fonts

aligning with other elements,
152

misplacement of, 151, 247–248
sizing, 114–115, 133, 222–223

text jog bug, 3 pixel, 102–104
text size bug, 115–116, 118
three-D positioning, 78
transparent images, 245, 265
tredosoft.com, 264
troubleshooting. See also debugging

backing up prior to, 61, 71
CSS, 27–28, 47–50
developer tools for, 68
by dismantling everything, 70
doctypes, 58–60
HTML, 8–9
by process of elimination, 69
by rebuilding from ground up, 70
selectors, 67–68
by simplifying cascade, 68
style shorthand, 36
taking breaks during, 71
using comment element for, 14
validation, 54–55

twinhelix.com, 265
type attribute, 12
type selectors, 20
typography, 114–115

U
s, 251
underscore (_), 40, 82
underscore hack, 119
units of measure, 42, 50, 111–114,

131
universal selector, 20, 38, 62
unordered lists, 172, 251
usability, 114
user agents, 17. See also browsers
user-agent style sheets, 257
user styles, 17

V

validation, 52–55

defined, 52
errors vs. warnings, 54
importance of, 126, 134
interpreting results from, 53,

130–133
limitations of, 53–54, 134
troubleshooting, 54–55

validators, 52, 260–261. See also
validation

values
charts, 258
and HTML tag structure, 5
resources, 258
troubleshooting, 9, 28

Virtuelvis.com, 262
Vischeck.com, 261
visited links, 23, 24

W

W3C
box model, 62 (See also box model)
CSS3 specification, 117
and HTML versions, 4
list of valid doctypes, 56
list of values for display

property, 262

meaning of acronym, 4
resource for interpreting

validation results, 53
validators, 52, 260–261

warnings, validation, 54, 55
WAVE, 261
web browsers. See browsers
WebCredible.co.uk, 263
web design, 158, 255. See also

design comps
Webkit, 246
web resources, 255–266
Weyl, Estelle, 264
white space, 50, 97–100, 120, 175,

176
White Space case study, 157–176

image credits, 267
page code, 160–167
problems/solutions, 168–175
site-design inspiration, 267
validation results, 167–168

width property, 84, 117, 119, 120
Wikipedia, 255, 256, 257
World Wide Web Consortium, 4.

See also W3C
worthwhile.com, 266
WYSIWYG editors, 56

X

XHTML
purpose of, 4
resources, 255–256
sample validation results, 167
transitional doctype definition, 5
vs. HTML, 4–5, 255

XML syntax, 4

Z
zero values, 42
z-index, 77, 78
zoom property, 84, 108, 119

 From the Library of Wow! eBook

	CONTENTS
	PART 1 The Detective’s Apprentice
	Chapter 1 INVESTIGATING THE SCENE OF THE CRIME
	HTML Document Structure
	CSS Document Structure
	CSS Foundations

	Chapter 2 TOOLS OF THE TRADE
	Advanced Selectors and Style Declarations
	CSS Reset
	Building a Solid Foundation
	Intermediate CSS Troubleshooting Tips

	Chapter 3 GIVING THE THIRD DEGREE
	Validating Your Hunches
	Bait-and-Switch Tactics: Doctype Sniffing and Switching
	Zeroing In on the Problem
	Resorting to Drastic Measures
	The Shakedown: A Debugging Process
	An Interrogator’s Work Is Never Done

	Chapter 4 THE USUAL SUSPECTS
	Concepts to Remember
	A Broken Box
	HasLayout (hasIssues)
	Flaky Floats
	Misbehaving Lists
	Margins and Errors
	Disappearing Acts
	Fonts Gone Wrong
	Planning for the Future
	A Positive ID

	PART 2 The Game’s Afoot
	Chapter 5 THE CASE OF THE DEVILISH DETAILS
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	Chapter 6 THE CASE OF THE MISTAKEN IDENTITY
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	Chapter 7 THE CASE OF THE SINGLE WHITE SPACE
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	Chapter 8 THE CASE OF THE FLOAT
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	Chapter 9 THE CASE OF THE BROWSER
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	Chapter 10 THE CASE OF THE LOL LAYOUT
	The Crime Scene
	Follow the Evidence
	The Evidence Never Lies
	Case Closed!

	APPENDIX
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

