
ptg

ptg

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Julie Meloni
Michael Morrison

24in

Hours

SamsTeachYourself

HTML
and CSS
Eighth Edition

ptg

Sams Teach Yourself HTML and CSS in 24 Hours, Eighth Edition

Copyright © 2010 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

International Standard Book Number: 0-672-33097-0

Library of Congress Cataloging-in-Publication Data

Meloni, Julie C.

Sams teach yourself HTML and CSS 24 hours / Julie Meloni, Michael

Morrison. -- 8th ed.

p. cm.

Rev. ed. of: Sams teach yourself HTML and CSS in 24 hours / Dick

Oliver, 7th ed., 2006.

ISBN 978-0-672-33097-1 (pbk.)

1. HTML (Document markup language) 2. XHTML (Document markup

language) 3. Cascading style sheets. I. Morrison, Michael, 1970- II.

Oliver, Dick. Sams teach yourself HTML and CSS in 24 hours. III. Title.

QA76.76.H94O4526 2010

006.7'4--dc22

2009046100

Printed in the United States of America

First Printing: December 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Acquisitions Editor

Mark Taber

Development Editor

Michael Thurston

Managing Editor

Patrick Kanouse

Project Editor

Jennifer Gallant

Indexer

Ken Johnson

Proofreader

Dan Knott

Technical Editor

William Wolff

Publishing Coordinator

Vanessa Evans

Composition

Mark Shirar

Book Designer

Gary Adair

ptg

Contents
PART I: Getting Started on the Web
HOUR 1: Understanding How the Web Works
A Brief History of HTML and the
World Wide Web ..1
Creating Web Content2
Understanding Web Content Delivery3
Selecting a Web Hosting Provider6
Testing with Multiple Web Browsers8

HOUR 2: Publishing Web Content
Creating the Sample File for this Hour13
Using FTP to Transfer Files..............................14
Understanding Where to Place
Files on the Web Server18
Distributing Content without a Web Server22
Testing Web Content24

HOUR 3: Understanding HTML and XHTML
Connections

Getting Started with a Simple Web Page..........28
HTML Tags Every XHTML Web
Page Must Have ..32
Organizing a Page with Paragraphs
and Line Breaks ..34
Organizing Your Content with Headings36
Validating Your Web Content39
The Scoop on HTML, XML, XHTML,
and HTML 5 ..41

HOUR 4: Understanding Cascading Style Sheets
How CSS Works ..48
A Basic Style Sheet..49
A CSS Style Primer ..54
Using Style Classes58
Using Style IDs ..61
Internal Style Sheets and Inline Styles62

PART II: Building Blocks of Practical
Web Design

HOUR 5: Working with Text Blocks and Lists
Aligning Text on a Page68
The Three Types of HTML Lists71
Placing Lists Within Lists................................73

HOUR 6: Working with Fonts
Boldface, Italics, and Special Text Formatting......82
Tweaking the Font ..85
Working with Special Characters89

HOUR 7: Using Tables to Display Information
Creating a Simple Table..................................96
Controlling Table Sizes99
Alignment and Spanning Within Tables102
Page Layout with Tables................................105

HOUR 8: Using External and Internal Links
Using Web Addresses111
Linking Within a Page Using Anchors114
Linking Between Your Own Web Content117
Linking to External Web Content....................120
Linking to an Email Address120
Opening a Link in a New Browser Window......122
Using CSS to Style Hyperlinks123

HOUR 9: Working with Colors
Best Practices for Choosing Colors131
Understanding Web Colors............................133
Using Hexadecimal Values for Colors135
Using CSS to Set Background,
Text, and Border Colors136

HOUR 10: Creating Images for Use on the Web
Choosing Graphics Software143
The Least You Need to Know About Graphics144
Preparing Photographic Images145
Creating Banners and Buttons151
Reducing the Number of Colors in an Image153
Working with Transparent Images154
Creating Tiled Backgrounds154
Creating Animated Web Graphics156

HOUR 11: Using Images in Your Web Site
Placing Images on a Web Page162
Describing Images with Text..........................163
Specifying Image Height and Width................165
Aligning Images..165
Turning Images into Links169
Using Background Images172
Using Imagemaps ..173

HOUR 12: Using Multimedia in Your Web Site
Linking to Multimedia Files184
Embedding Multimedia Files187
Additional Tips for Using Multimedia..............190

HOUR 13: Working with Frames
What Are Frames?..197
Building a Frameset199
Linking Between Frames and Windows202
Using Inline Frames204

ptg

iv

PART III: Advanced Web Page Design
with CSS

HOUR 14: Working with Margins, Padding,
Alignment, and Floating

Using Margins..212
Padding Elements ..219
Keeping Everything Aligned223
Understanding the Float Property224

HOUR 15: Understanding the CSS Box Model
and Positioning

The CSS Box Model231
The Whole Scoop on Positioning235
Controlling the Way Things Stack Up..............239
Managing the Flow of Text242

HOUR 16: Using CSS to Do More with Lists
HTML List Refresher245
How the CSS Box Model Affects Lists246
Placing List Item Indicators249
Creating Image Maps with List
Items and CSS ..251

HOUR 17: Using CSS to Design Navigation
How Navigation Lists Differ
from Regular Lists..259
Creating Vertical Navigation with CSS260
Creating Horizontal Navigation with CSS270

HOUR 18: Using Mouse Actions to Modify
Text Display

Creating a Tool Tip with CSS277
Displaying Additional Rollover Text with CSS281
Accessing Events ..283
Using onclick to Change <div> Appearance....284

HOUR 19: Creating Fixed or Liquid Layouts
Understanding Fixed Layouts294
Understanding Liquid Layouts295
Creating a Fixed/Liquid Hybrid Layout............298

PART IV: Advanced Web Site
Functionality and Management

HOUR 20: Creating Print-Friendly Web Pages
What Makes a Page Print-Friendly?312
Applying a Media-Specific Style Sheet............315
Designing a Style Sheet for Print Pages317
Viewing a Web Page in Print Preview..............320

HOUR 21: Understanding Dynamic Web Sites
Understanding the Different
Types of Scripting ..325
Including JavaScript in HTML326
Displaying Random Content328
Understanding the Document Object Model332
Changing Images Based on User Interaction333

HOUR 22: Working with Web-Based Forms
How HTML Forms Work339
Creating a Form ..340
Accepting Text Input344
Naming Each Piece of Form Data345
Including Hidden Data in Forms345
Exploring Form Input Controls346
Submitting Form Data349

HOUR 23: Organizing and Managing a Web Site
When One Page Is Enough............................356
Organizing a Simple Site357
Organizing a Larger Site................................360
Writing Maintainable HTML Code364

HOUR 24: Helping People Find Your Web Pages
Publicizing Your Web Site371
Listing Your Pages with the
Major Search Sites373
Providing Hints for Search Engines374
Additional Tips for Search
Engine Optimization......................................379

ptg

v

PART V: Appendixes
APPENDIX A: HTML and CSS Resources on

the Internet
General HTML, XHTML, and CSS Information385
Web Browsers..386
Web Page Design ..386
Software..386
Colors and Graphics387
Multimedia ..388
Advanced Developer Resources388
Web Site Hosting ..389
Web Site Services..389

APPENDIX B: HTML and CSS Quick Reference
HTML Structure..392
HTML Text Phrases and Paragraphs395
XHTML Text Formatting Elements398
XHTML Lists ..399
XHTML Links..400
XHTML Tables ..402
XHTML Embedded Content407
XHTML Style ..410
XHTML Forms ..410
XHTML Scripts ..413
XHTML Common Attributes414
CSS Dimension Style Properties415
CSS Text and Font Style Properties416
CSS Background Style Properties..................419
CSS Border Style Properties420
CSS Margin Style Properties423
CSS Padding Style Properties424
CSS Layout and Display Style Properties424
CSS List and Marker Style Properties............427
CSS Table Style Properties428

ptg

vi

About the Authors
Julie C. Meloni is both the technical director for i2i Interactive, a multimedia company located in
Los Altos, CA, and a scholar working in the field of Digital Humanities. She has written several
books and articles on Web-based programming languages and database topics, including the best-
selling Sams Teach Yourself PHP, MySQL, and Apache All in One.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of computer technolo-
gy books and interactive web-based courses. In addition to his primary profession as a writer and
freelance nerd for hire, Michael is the creative lead at Stalefish Labs, an entertainment company
he co-founded with his wife, Masheed.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we’re doing right, what we could do better, what areas you’d like to see
us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or email address. I will carefully review your comments and share them with the author and
editors who worked on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our web site and register this book at informit.com/register for convenient access to any
updates, downloads, troubleshooting hints, or errata that might be available for this book.

ptg

vii

Introduction

In 2009, it is estimated that more than 1.5 billion people have access to the Internet, including
220 million in the U.S. alone. Throw in 338 million Chinese users, 55 million German users, 48
million British users, 38 million Russian users, and 67 million Brazilians, and you can see the
meaning of the word “world” in the term World Wide Web. Many of these Internet users are also
creating content for the Web—you can be one of them! Although accurate measurements of the
total number of web pages are difficult to come by, Google’s most recent data indicates they hit
the 1 trillion mark of indexed pages in the middle of 2008.

In the next 24 hours, hundreds of millions of new pages will appear in accessible areas of the
Internet. At least as many pages will be placed on private intranets, where they will be viewed by
businesspeople connected via their local networks. Every one of those pages—like the more than
1 trillion pages already online—will use Hypertext Markup Language (HTML).

As you complete the 24 one-hour lessons in this book, your web pages will be among those that
appear on the Internet. These lessons will also help you develop one of the most valuable skills in
the world today: mastery of HTML.

Can you really learn to create top-quality web pages yourself, without any specialized software, in
less time than it takes to schedule and wait for an appointment with a highly paid HTML wizard?
Can this relatively short, easy-to-read book really enable you to teach yourself state-of-the-art web
page publishing?

Yes. In fact, within the first two lessons in this book, someone with no previous HTML experience
at all can have a web page ready to place on the web.

How can you learn the language of the Web so fast? By example. This book organizes HTML into
simple steps and then shows you exactly how to tackle each step. Every HTML code example is
listed directly before a picture of the web page it produces. You see how it’s done, you read a
clear, concise explanation of how it works, and then you immediately do the same thing with your
own page. Ten minutes later, you’re on to the next step.

After 24 hours of work, you’re marveling at your own impressive pages on the Internet.

Beyond HTML
This book covers more than just HTML because HTML isn’t the only thing you need to know to cre-
ate web content today. The goal of this book is to give you all the skills you need to create a mod-
ern, standards-compliant web site in just 24 short, easy lessons. This book covers the following
key skills and technologies:

. XHTML (eXstensible Hypertext Markup Language) is the current standard for web page cre-
ation. Every example in this book is fully XHTML-compatible. Where applicable, HTML 5 is
also covered.

ptg

viii

. All the examples in the book have been tested for compatibility with the latest version of
every major web browser. That includes Apple Safari, Google Chrome, Microsoft Internet
Explorer, Mozilla Firefox, and Opera. You’ll learn from the start to be compatible with the
past, yet ready for the future.

. There is extensive coverage of Cascading Style Sheets (CSS), which allows you to carefully
control the layout, fonts, colors, and formatting of every aspect of your web pages, including
both text and images. When it comes to creating eye-popping web pages, CSS goes far
beyond what traditional HTML pages could do by themselves. For example, did you know that
CSS allows you to specifically tailor the information on a page just for printing, in addition to
normal web viewing?

. Hours 10 through 12 introduce you to multimedia applications and their use, including where
to find industry-standard software you can download and try free.

. The technical stuff is not enough, so this book also includes the advice you need when set-
ting up a web site to achieve your goals. Key details—designing an effective page layout,
posting your page to the Internet with FTP software, organizing and managing multiple pages,
and getting your pages to appear high on the query lists at all the major Internet search
sites—are all covered in enough depth to get you beyond the snags that often frustrate
beginners.

Attention to many of these essentials are what made the first seven editions of this book best-
sellers, and this updated edition—the first for this title since 2005—is no different. All of the
examples have been updated and a significant portion of the content has been revised to match
new examples and new technologies.

Visual Examples
Every example in this book is illustrated in two parts:

. The text you type to make an HTML page is shown first, with all HTML and CSS code high-
lighted.

. The resulting web page is shown as it will appear to users who view it with the world’s most
popular web browsers.

You’ll often be able to adapt the example to your own pages without reading any of the accompany-
ing text at all.

All the examples in this book are standards-compliant and work with Apple Safari, Google Chrome,
Microsoft Internet Explorer, Mozilla Firefox, and Opera. While all of the screenshots are taken in
Firefox, rest assured that all of the code has been tested in all other browsers.

ptg

ix

You will also find the use of colors within code examples and when elements of code appear in the
explanatory text. These colors highlight the different bits and pieces of code both to enhance your
familiarity with them and to call attention to their use.

. HTML tags are displayed in dark blue.

. HTML comments are displayed in brown.

. CSS elements are displayed in green.

. HTML attribute names are displayed in light blue.

. HTML attribute values are displayed in magenta.

Be aware that the colors of certain terms change depending on their context. For instance, when
CSS elements are used within the style attribute of an HTML tag, they will be color-coded as HTML
attribute values (magenta) rather than CSS elements (green).

Special Elements
As you complete each hour, margin notes help you immediately apply what you just learned to your
own web pages.

Q&A, Quiz, and Exercises
Every hour ends with a short question-and-answer session that addresses the kind of “dumb ques-
tions” everyone wishes they dared to ask. A brief but complete quiz lets you test yourself to be
sure you understand everything presented in the hour. Finally, one or two optional exercises give
you a chance to practice your new skills before you move on.

TIP

Tips and tricks to save you
precious time are set aside in
“Tip” boxes so that you can
spot them quickly.

WARNING

When there’s something you
need to watch out for, you’ll be
warned about it in “Warning”
boxes.

NOTE

“Note” boxes provide addition-
al information about the topics
being discussed.

ptg

This page intentionally left blank

ptg

Before learning the intricacies of HTML and CSS, it is important that you
gain a solid understanding of the technologies that help transform these
plain-text files to the rich multimedia displays you see on your computer
or handheld device when browsing the World Wide Web.

A file containing HTML and CSS is useless without a web browser to view
it, and no one besides yourself will see your content unless a web server is
involved. Web servers make your content available to others who, in turn,
use their web browsers to navigate to an address and wait for the server to
send information to them. You will be intimately involved in this process,
as you must create files and then put them on a server to make them avail-
able in the first place, and you must ensure that your content will appear
to the end-user as you intended.

A Brief History of HTML and the
World Wide Web
Once upon a time, back when there weren’t any footprints on the moon,
some farsighted folks decided to see whether they could connect several
major computer networks together. I’ll spare you the names and stories
(there are plenty of both), but the eventual result was the “mother of all
networks,” which we call the Internet.

Until 1990, accessing information through the Internet was a rather techni-
cal affair. It was so hard, in fact, that even Ph.D.-holding physicists were
often frustrated when trying to swap data. One such physicist, the now-
famous (and knighted) Sir Tim Berners-Lee, cooked up a way to easily
cross-reference text on the Internet through “hypertext” links.

HOUR 1
Understanding How

the Web Works

WHAT YOU’LL LEARN IN
THIS HOUR:

. A very brief history of the
World Wide Web

. What is meant by the term
“web page,” and why that
term doesn’t always reflect
all the content involved

. How content gets from
your personal computer
to someone else’s web
browser

. How to select a web
hosting provider

. How different web
browsers and device types
can affect your content

ptg

2 HOUR 1: Understanding How the Web Works

This wasn’t a new idea, but his simple Hypertext Markup Language
(HTML) managed to thrive while more ambitious hypertext projects floun-
dered. Hypertext originally meant text stored in electronic form with cross-
reference links between pages. It is now a broader term that refers to just
about any object (text, images, files, and so on) that can be linked to other
objects. Hypertext Markup Language is a language for describing how text,
graphics, and files containing other information are organized and linked
together.

By 1993, only 100 or so computers throughout the world were equipped to
serve up HTML pages. Those interlinked pages were dubbed the World
Wide Web (WWW), and several web browser programs had been written to
allow people to view web pages. Because of the growing popularity of the
Web, a few programmers soon wrote web browsers that could view graph-
ical images along with text. From that point forward, the continued devel-
opment of web browser software and the standardization of the HTML—
and XHTML—languages has lead us to the world we live in today, one in
which more than 110 million web servers answer requests for more than 25
billion text and multimedia files.

These few paragraphs really are a brief history of what has been a remark-
able period of time. Today’s college freshmen have never known a time in
which the World Wide Web didn’t exist, and the idea of “always-on” infor-
mation and ubiquitous computing will shape all aspects of our lives mov-
ing forward. Instead of seeing web content creation and management as a
set of skills possessed only by a few technically-oriented folks (ok, call
them “geeks” if you will), by the end of this book you will see that these
are skills that anyone can master, regardless of inherent geekiness.

Creating Web Content
You may have noticed the use of the term “web content” rather than “web
pages”—that was intentional. Although we talk of “visiting a web page,”
what we really mean is something like “looking at all the text and the
images at one address on our computer.” The text that we read, and the
images that we see, are rendered by our web browsers, which are given
certain instructions found in individual files.

Those files contain text that is marked up, or surrounded by, HTML codes
that tell the browser how to display the text—as a heading, as a paragraph,
in a red font, and so on. Some HTML markup tells the browser to display

NOTE
For more information about the
history of the World Wide Web,
see the Wikipedia article on
this topic:
http://en.wikipedia.org/
wiki/History_of_the_Web.

http://en.wikipedia.org/wiki/History_of_the_Web
http://en.wikipedia.org/wiki/History_of_the_Web

ptg

Understanding Web Content Delivery 3

an image or video file rather than plain text, which brings me back to the
point—different types of content are sent to your web browser, so simply
saying “web page” doesn’t begin to cover it. Here we use the term “web
content” instead, to cover the full range of text, image, audio, video, and
other media found online.

In later lessons, you will learn the basics of linking to or creating the vari-
ous types of multimedia web content found in web sites. All you need to
remember at this point is that you are in control of the content a user sees
when visiting your web site. Beginning with the file that contains text to
display or codes that tell the server to send a graphic along to the user’s
web browser, you have to plan, design, and implement all the pieces that
will eventually make up your web presence. As you will learn throughout
this book, it is not a difficult process as long as you understand all the little
steps along the way.

In its most fundamental form, web content begins with a simple text file
containing HTML or XHTML markup. XHTML is another flavor of HTML;
the “X” stands for eXtensible, and you will learn more about it as you con-
tinue through the lessons. The most important thing to know from the out-
set is that all the examples in this book are HTML 4 and XHTML compati-
ble, meaning that they will be rendered similarly both now and in the
future by any newer generations of web browsers. That is one of the bene-
fits of writing standards-compliant code: you do not have to worry about
having to go back to your code sometime in the future and change it
because it “doesn’t work.” Your code will likely always “work” for as long
as web browsers adhere to standards (hopefully a long time).

Understanding Web Content
Delivery
Several processes occur, in many different locations, to eventually produce
web content that you can see. These processes occur very quickly—on the
order of milliseconds—and occur behind the scenes. In other words, while
we might think all we are doing is opening a web browser, typing in a web
address, and instantaneously seeing the content we requested, technology
in the background is working hard on our behalf. Figure 1.1 shows the
basic interaction between a browser and a server.

ptg

4 HOUR 1: Understanding How the Web Works

However, there are several steps in the process—and potentially several
trips between the browser and server—before you see the entire content of
the site you requested.

Suppose you want to do a Google search, so you dutifully type
http://www.google.com in the address bar or select the Google bookmark
from your bookmarks list. Almost immediately, your browser will show
you something like what’s shown in Figure 1.2.

FIGURE 1.1
A browser request
and a
server response.

FIGURE 1.2
Visiting www.google.com.

Figure 1.2 shows a web site that contains text plus one image (the Google
logo). A simple version of the processes that occurred to retrieve that text
and image from a web server and display it on your screen is as follows:

1. Your web browser sends a request for the index.html file located at
the http://www.google.com/ address. The index.html file does not
have to be part of the address that you type in the address bar; you’ll
learn more about the index.html file in Hour 2, “Publishing Web
Content.”

http://www.google.com
www.google.com
http://www.google.com/

ptg

Understanding Web Content Delivery 5

2. After receiving the request for a specific file, the web server process
looks in its directory contents for the specific file, opens it, and sends
the content of that file back to your web browser.

3. The web browser receives the content of the index.html file, which is
text marked up with HTML codes, and renders the content based on
these HTML codes. While rendering the content, the browser hap-
pens upon the HTML code for the Google logo, which you can see in
Figure 1.2. The HTML code looks like this:

<img src=”/logos/logo.gif” width=”384” height=”121” border=”0”
alt=”Google”/>

The tag provides attributes that tell the browser the file source loca-
tion (src), width (width), height (height), border type (border), and
alternative text (alt) necessary to display the logo. You will learn
more about attributes throughout later lessons.

4. The browser looks at the src attribute in the tag to find the
source location. In this case the image logo.gif can be found in the
“logos” directory at the same web address (www.google.com) from
which the browser retrieved the HTML file.

5. The browser requests the file at the
http://www.google.com/logos/logo.gif web address.

6. The web server interprets that request, finds the file, and sends the
contents of that file to the web browser that requested it.

7. The web browser displays the image on your monitor.

As you can see in the description of the web content delivery process, web
browsers do more than simply act as picture frames through which you
can view content. Browsers assemble the web content components and
arrange those parts according to the HTML commands in the file.

You can also view web content “locally,” or on your own hard drive, with-
out the need for a web server. The process of content retrieval and display
is the same as the process listed in the previous steps in that a browser
looks for and interprets the codes and content of an HTML file, but the trip
is shorter: the browser looks for files on your own computer’s hard drive
rather than on a remote machine. A web server would be needed to inter-
pret any server-based programming language embedded in the files, but
that is outside the scope of this book. In fact, you could work through all
the lessons in this book without having a web server to call your own, but
then nobody but you could view your masterpieces.

www.google.com
http://www.google.com/logos/logo.gif

ptg

6 HOUR 1: Understanding How the Web Works

Selecting a Web Hosting Provider
Despite just telling you that you can work through all the lessons in this
book without having a web server, we actually recommend that you work
with a web server. Don’t worry— obtaining a hosting provider is usually a
quick, painless, and relatively inexpensive process. In fact, you can get
your own domain name and a year of web hosting for just slightly more
than the cost of the book you are reading now.

If you type web hosting provider in your search engine of choice, you will
get millions of hits and an endless list of sponsored search results (also
known as ads). There are not this many web hosting providers in the
world, although it might seem like there are. Even if you are looking at a
managed list of hosting providers, it can be overwhelming—especially if
all you are looking for is a place to host a simple web site for yourself or
your company or organization.

You’ll want to narrow your search when looking for a provider and choose
one that best meets your needs. Some selection criteria for a web hosting
provider are

. Reliability/server ”uptime”—if you have an online presence, you
want to make sure people can actually get there consistently.

. Customer service—look for multiple methods for contacting cus-
tomer service (phone, email, chat) as well as online documentation
for common issues.

. Server space—does the hosting package include enough server space
to hold all the multimedia files (images, audio, video) you plan to
include in your web site (if any)?

. Bandwidth—does the hosting package include enough bandwidth
so that all the people visiting your site and downloading files can do
so without you having to pay extra?

. Domain name purchase and management—does the package
include a custom domain name, or must you purchase and maintain
your domain name separately from your hosting account?

. Price—do not overpay for hosting. You will see a wide range of prices
offered and should immediately wonder “what’s the difference?”
Often the difference has little to do with the quality of the service and
everything to do with company overhead and what the company
thinks they can get away with charging people. A good rule of thumb
is that if you are paying more than $75 per year for a basic hosting
package and domain name, you are probably paying too much.

ptg

Selecting a Web Hosting Provider 7

Here are three reliable web hosting providers whose basic packages con-
tain plenty of server space and bandwidth (as well as domain names and
extra benefits) at a relatively low cost. If you don’t go with any of these
web hosting providers, you can at least use their basic package descrip-
tions as a guideline as you shop around.

. A Small Orange (http://www.asmallorange.com)—their “Tiny” and
“Small” hosting packages are perfect starting places for the new web
content publisher.

. DailyRazor (http://www.dailyrazor.com)—their RazorLIMIT and
RazorSTARTER hosting packages are full-featured and reliable.

. LunarPages (http://www.lunarpages.com)—the Basic hosting pack-
age is suitable for many personal and small business web sites.

One feature of a good hosting provider is that they provide a “control
panel” for you to manage aspects of your account. Figure 1.3 shows the
control panel for my own RazorPRO hosting account at Daily Razor. Many
web hosting providers offer this particular control panel software, or some
control panel that is similar in design—clearly labeled icons leading to
tasks you can perform to configure and manage your account.

FIGURE 1.3
A sample control panel.

http://www.asmallorange.com
http://www.asmallorange.com
http://www.dailyrazor.com
http://www.lunarpages.com

ptg

8 HOUR 1: Understanding How the Web Works

You might never need to use your control panel, but having it available to
you simplifies the installation of databases and other software, the viewing
of web statistics, and the addition of e-mail addresses (among many other
features). If you can follow instructions, you can manage your own web
server—no special training required.

Testing with Multiple Web Browsers
Having just discussed the process of web content delivery and the acquisi-
tion of a web server, it might seem a little strange to step back and talk
about testing your web sites with multiple web browsers. However, before
you go off and learn all about creating web sites with HTML and CSS, do
so with this very important statement in mind: every visitor to your web
site will potentially use hardware and software configurations that are dif-
ferent than your own. Their device types (desktop, laptop, netbook, smart-
phone, iPhone), their screen resolutions, their browser types, their browser
window sizes, their speed of connections—remember that you cannot con-
trol any aspect of what your visitors use when they view your site.

Although all web browsers process and handle information in the same
general way, there are some specific differences among them that result in
things not always looking the same in different browsers. Even users of the
same version of the same web browser can alter how a page appears by
choosing different display options and/or changing the size of their view-
ing windows. All the major web browsers allow users to override the back-
ground and fonts specified by the web page author with those of their own
choosing. Screen resolution, window size, and optional toolbars can also
change how much of a page someone sees when it first appears on their
screens. You can ensure only that you write standards-compliant HTML
and CSS.

Do not, under any circumstances, spend hours on end designing some-
thing that looks “perfect” on your own computer—unless you are willing
to be disappointed when you look at it on your friend’s computer, the
computer in the coffee shop down the street, or on your iPhone.

You should always test your web sites with as many of these web browsers
as possible:

. Apple Safari (http://www.apple.com/safari/) for Mac and Windows

. Google Chrome (http://www.google.com/chrome) for Windows

http://www.apple.com/safari/
http://www.google.com/chrome

ptg

Summary 9

. Mozilla Firefox (http://www.mozilla.com/firefox/) for Mac,
Windows, and Linux

. Microsoft Internet Explorer (http://www.microsoft.com/ie) for
Windows

. Opera (http://www.opera.com/) for Mac, Windows, and
Linux/UNIX

Summary
This hour introduced you to the concept of using HTML to mark-up text
files in order to produce web content. You also learned that there is more
to web content than just the “page”—web content also includes image,
audio, and video files. All of this content lives on a web server—a remote
machine often far away from your own computer. On your computer or
other device, you use a web browser to request, retrieve, and eventually
display web content on your screen.

You learned the criteria you should consider when determining if a web
hosting provider fits your needs. You also learned the importance of test-
ing your work in multiple browsers once you’ve placed it on a web server.
Writing valid, standards-compliant HTML and CSS will help ensure your
site looks reasonably similar for all visitors, but you still shouldn’t design
without receiving input from potential users outside your development
team—it is even more important to get input from others when you are a
“design team” of one!

http://www.mozilla.com/firefox/
http://www.microsoft.com/ie
http://www.opera.com/

ptg

10 HOUR 1: Understanding How the Web Works

Q&A
Q You’ve said “web content” instead of “web page,” but I hear people

refer to “web pages.” So what do they mean? And how are these
terms different from a “home page” or a “web site”?

A The metaphor of the World Wide Web as a library has always been easy
for people to understand; in that library, individual web sites are books,
and the individual content files on web sites as “pages.” A “web site”
is comprised of one or more pages that are created together and relat-
ed in content. A “home page” usually means the first page people visit
when they look at a web site. Problems arise, however, when people say
“visit my web page” when really they mean “come to my web site”—
sites are full of pages. Referring to a collection of web content as a
page instead of a site can tip someone off that you really don’t under-
stand how the web works—either because you don’t understand the
way web content works together to create a site, or because you’ve
planned, designed, and implemented a site in which your content really
is all on one page!

Q I’ve looked at the HTML “source” of some web pages on the Internet
and it looks frighteningly difficult to learn. Do I have to think like a
computer programmer to learn this stuff?

A Although complex HTML pages can indeed look daunting, learning HTML
is much easier than learning actual software programming languages
(such as C++ or Java). HTML is a markup language rather than a pro-
gramming language; you mark-up text so that the text can be rendered
a certain way by the browser. That’s a completely different set of
thought processes than developing a computer program. You really
don’t need any experience or skill as a computer programmer to be a
successful web content author.

One of the reasons the HTML behind many commercial web sites looks
complicated is because it was likely created by a visual web design
tool—a “what you see is what you get” or “WYSIWYG” editor that will
use whatever markup its software developer told it to use in certain cir-
cumstances—as opposed to being hand-coded, in which you are com-
pletely in control of the resulting markup. In this book, you are taught
fundamental coding from the ground up, which typically results in clean,
easy-to-read source code. Visual web design tools have a knack for
making code difficult to read, and also for producing code that is convo-
luted and non-standards compliant.

ptg

Workshop 11

Workshop
The workshop contains quiz questions and exercises to help you solidify
your understanding of the material covered. Try to answer all of the ques-
tions before looking at the “Answers” section that follows.

Quiz
1. Define the term web content.

2. How many files would you need to store on a web server to produce
a single web page with some text and two images on it?

3. What are some of the features to look for in a web hosting provider?

Quiz Answers
1. Web content is a term that describes the full range of text, image,

audio, video, and other media files delivered from web servers to
web browsers.

2. You would need three: one for the web page itself, which includes
the text and the HTML markup, and one for each of the two images.

3. Look for reliability, customer service, web space and bandwidth,
domain name service, site management extras, and price.

Exercises
. Get your web hosting in order—are you going to go through the les-

sons in this book by viewing files locally on your own computer, or
are you going to use a web hosting provider? Note that most web
hosting providers will have you up and running the same day you
purchase your hosting plan.

ptg

This page intentionally left blank

ptg

In the previous hour, you learned about the process of requesting web con-
tent via a web browser and how the web server responds to those requests.
In this hour you’ll learn where you, as the content creator, fit into making
web content available online—you have to publish that content on a web
server in order for other people to find it.

Creating the Sample File for this Hour
Before we begin, take a look at Listing 2.1. This listing represents a simple
piece of web content—a few lines of HTML that print “Hello World!
Welcome to My Web Server.” in large, bold letters on two lines centered
within the browser window.

Listing 2.1 Our Sample HTML File
<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1 align=”center”>Hello World!
Welcome to My Web Server.</h1>
</body>
</html>

To make use of this content, open a text editor of your choice, such as
Notepad (on Windows) or TextEdit (on a Mac). Do not use WordPad,
Microsoft Word, or other full-featured word-processing software, as those
create different sorts of files than the plain-text files we use for web content.

HOUR 2
Publishing Web Content

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to create a basic
HTML file using a text
editor

. How to transfer files to
your web server using FTP

. Where files should be
placed on a web server

. How to distribute web con-
tent without a web server

. How to use other publish-
ing methods such as blogs

NOTE
You will learn more about text
editors in Hour 3. Right now, we
just want you to have a sample
file that you can put on a web
server!

ptg

14 HOUR 2: Publishing Web Content

Type the content that you see in Listing 2.1 and then save the file using
sample.html as the file name. The .html extension tells the web server that
your file is, indeed, full of HTML. When the file contents are sent to the
web browser that requests it, the browser will also know that it is HTML
and will render it appropriately.

Now that you have a sample HTML file to use—and hopefully somewhere
to put it, such as a web hosting account—let’s get to publishing your web
content.

Using FTP to Transfer Files
As you’ve learned so far, you have to put your web content on a web serv-
er in order to make it accessible to others. This process typically occurs by
using File Transfer Protocol (FTP). To use FTP, you need an FTP client—a
program used to transfer files from your computer to a web server.

FTP clients require three pieces of information in order to connect to your
web server; this information will have been sent to you by your hosting
provider after you set up your account:

. The hostname, or address, to which you will connect

. Your account username

. Your account password

Once you have this information, you are ready to use an FTP client to
transfer content to your web server.

Selecting an FTP Client
Regardless of the FTP client you use, FTP clients generally use the same
type of interface. Figure 2.1 shows an example of FireFTP, which is an FTP
client used with the Firefox web browser. The directory listing of the local
machine (your computer) appears on the left of your screen and the direc-
tory listing of the remote machine (the web server) appears on the right.
Typically you will see right-arrow and left-arrow buttons—as shown in
Figure 2.1. The right arrow sends selected files from your computer to your
web server; the left arrow sends files from the web server to your comput-
er. Many FTP clients also allow you to simply select files and then drag
and drop those files to the target machines.

ptg

Using FTP to Transfer Files 15

There are many FTP clients freely available to you, but you can also trans-
fer files via the web-based File Manager tool that is likely part of your web
server’s control panel. However, that method of file transfer typically
introduces more steps into the process and isn’t nearly as streamlined (or
simple) as installing an FTP client on your own machine.

Here are some popular free FTP clients:

. Classic FTP (http://www.nchsoftware.com/classic/) for Mac and
Windows

. Cyberduck (http://cyberduck.ch/) for Mac

. Fetch (http://fetchsoftworks.com/) for Mac

. FileZilla (http://filezilla-project.org/) for all platforms

. FireFTP (http://fireftp.mozdev.org/) Firefox extension for all plat-
forms

Once you have selected an FTP client and installed it on your computer,
you are ready to upload and download files from your web server. In the
next section, you’ll see how this process works using the sample file creat-
ed at the beginning of this hour.

Using an FTP Client
The following steps show how to use Classic FTP to connect to your web
server and transfer a file. However, all FTP clients use similar, if not exact,

FIGURE 2.1
The FireFTP interface.

http://www.nchsoftware.com/classic/
http://cyberduck.ch/
http://fetchsoftworks.com/
http://filezilla-project.org/
http://fireftp.mozdev.org/

ptg

16 HOUR 2: Publishing Web Content

interfaces. If you understand the following steps, you should be able to use
any FTP client.

Remember, you first need the hostname, the account username, and the
account password.

1. Start the Classic FTP program and click the Connect button. You will
be prompted to fill out information for the site to which you wish to
connect, as shown in Figure 2.2.

FIGURE 2.2
Connecting to a new site in
Classic FTP.

2. Fill in each of the items shown in Figure 2.2 as follows:

. The site Label is the name you’ll use to refer to your own site.
Nobody else will see this name, so enter whatever you want.

. The FTP Server is the FTP address of the web server to which you
need to send your web pages. This address will have been given
to you by your hosting provider. It will probably be
yourdomain.com, but check the information you received when
you signed up for service.

. The User Name field and the Password field should also be com-
pleted using information given to you by your hosting provider.

. Don’t change the values for Initial Remote Directory on First
Connection and Initial Local Directory on First Connection until
you are used to using the client and have established a workflow.

ptg

Using FTP to Transfer Files 17

3. When you’re finished with the settings, click OK to save the settings
and establish a connection with the web server.

You will see a dialog box indicating that Classic FTP is attempting to
connect to the web server. Upon successful connection, you will see
an interface like that which is shown in Figure 2.3, showing the con-
tents of the local directory on the left and the contents of your web
server on the right.

FIGURE 2.3
A successful connection to a
remote web server via Classic FTP.

4. You are now almost ready to transfer files to your web server. All that
remains is to change directories to what is called the document root of
your web server. The document root of your web server is the direc-
tory that is designated as the top-level directory for your web con-
tent—the starting point of the directory structure, which you will
learn more about later in this hour. Often, this directory will be
named public_html (as shown in Figure 2.3), www (also shown in
Figure 2.3, as www has been created as an alias for public_html) or
htdocs. This is not a directory that you will have to create, as your
hosting provider will have created it for you.

Double-click the document root directory name to open it. The dis-
play shown on the right of the FTP client interface should change to
show the contents of this directory (it will probably be empty at this
point, unless your web hosting provider has put placeholder files in
that directory on your behalf).

ptg

18 HOUR 2: Publishing Web Content

5. The goal is to transfer the sample.html file you created earlier from
your computer to the web server. Find the file in the directory listing
on the left of the FTP client interface (navigate around if you have to)
and click it once to highlight the file name.

6. Click the right-arrow button in the middle of the client interface to
send the file to the web server. Once the file transfer is completed,
the right side of the client interface should refresh to show you that
the file has made it to its destination.

7. Click the Disconnect button to close the connection, and then exit out
of the Classic FTP program.

These steps are conceptually similar to the steps you will take anytime you
want to send files to your web server via FTP. You can also use your FTP
client to create subdirectories on the remote web server. To create a subdi-
rectory using Classic FTP, click the Remote menu and then click New
Folder. Different FTP clients will have different interface options to achieve
the same goal.

Understanding Where to Place Files
on the Web Server
An important aspect of maintaining web content is determining how you
will organize that content—not only for the user to find, but also for you to
maintain on your server. Putting files in directories will help you to man-
age those files.

Naming and organizing directories on your web server, and developing
rules for file maintenance, is completely up to you. However, maintaining
a well-organized server simply makes your management of its content
more efficient in the long run.

Basic File Management
As you browse the web, you might have noticed that URLs change as you
navigate through web sites. For instance, if you’re looking at a company’s
web site and you click on graphical navigation leading to the company’s
products or services, the URL will probably change from

ptg

Understanding Where to Place Files on the Web Server 19

http://www.companyname.com/

to

http://www.companyname.com/products/

or

http://www.companyname.com/services/

In the previous section, I used the term document root without really
explaining what that is all about. The document root of a web server is
essentially the trailing “slash” in the full URL. For instance, if your domain
is yourdomain.com and your URL is http://www.yourdomain.com/, then
the document root is the directory represented by the trailing slash (/). The
document root is the starting point of the directory structure you create on
your web server; it is the place where the web server begins looking for
files requested by the web browser.

If you put the sample.html file in your document root as previously direct-
ed, then you will be able to access it via a web browser at the following
URL:

http://www.yourdomain.com/sample.html

If you were to enter this URL into your web browser, you would see the
rendered sample.html file as shown in Figure 2.4.

FIGURE 2.4
The sample.html file accessed via
a web browser.

However, if you created a new directory within the document root and put
the sample.html file in that directory, then the file would be accessed at
this URL:

http://www.yourdomain.com/newdirectory/sample.html

http://www.companyname.com/
http://www.companyname.com/products/
http://www.companyname.com/services/
http://www.yourdomain.com/
http://www.yourdomain.com/sample.html
http://www.yourdomain.com/newdirectory/sample.html

ptg

20 HOUR 2: Publishing Web Content

If you put the sample.html file in the directory you originally saw upon
connecting to your server—that is, you did not change directories and
place the file in the document root—then the sample.html file would not
be accessible from your web server at any URL. The file will still be on the
machine that you know as your web server, but since the file is not in the
document root—where the server software knows to start looking for
files—it will never be accessible to anyone via a web browser.

The bottom line? Always navigate to the document root of your web server
before you start transferring files.

This is especially true with graphics and other multimedia files. A common
directory on web servers is called “images,” where, as you can imagine, all
the image assets are placed for retrieval. Other popular directories include
“css” for stylesheet files (if you are using more than one) and “js” for exter-
nal JavaScript files. Or, if you know you will have an area on your web site
where visitors can download many different types of files, you might sim-
ply call that directory “downloads.”

Whether it’s a ZIP file containing your art portfolio or an Excel spreadsheet
with sales numbers, it’s often useful to publish files on the Internet that
aren’t simply web pages. To make a file available on the Web that isn’t an
HTML file, just upload the file to your web site as if it were an HTML file,
following the instructions earlier in this hour for uploading. After the file is
uploaded to the web server, you can create a link to it (as you’ll learn in
later hours). In other words, your web server can “serve” much more than
HTML.

Here’s a sample of the HTML code that you will learn in that hour. The
following code would be used for a file named artfolio.zip, located in the
downloads directory of your web site, and link text that reads “Download
my art portfolio!”:

Download my art portfolio!

Using an Index Page
When you think of an index, you probably think of the section in the back
of a book that tells you where to look for various keywords and topics. The
index file in a web server directory can serve that purpose—if you design
it that way. In fact, that’s where the name originates.

The index.html file (or just index file, as it’s usually referred to) is the name
you give to the page you want people to see as the default file when they

ptg

Understanding Where to Place Files on the Web Server 21

navigate to a specific directory in your web site. If you’ve created that page
with usability in mind, your users will be able to get to all content in that
section from the index page.

For example, Figure 2.5 shows the drop-down navigation and left-side
navigation both contain links to three pages: Solutions Overview (the sec-
tion index page itself), Connection Management, and Cost Management.
The content of the page itself—called index.html and located within the
solutions directory—also has links to those two additional pages in the
solutions section. When users arrive at the index page of the solutions sec-
tion in this particular web site, they can reach any other page in that sec-
tion (and three different ways!).

FIGURE 2.5
Showing a good section index
page.

Another function of the index page is that when users visit a directory on
your site that has an index page, but they do not specify that page, they
will still land on the main page for that section of your site—or for the site
itself.

For instance, in the previous example, a user could have typed either of the
following URLs and landed on the main page of the solutions section of
that web site:

http://www.ipass.com/solutions/

http://www.ipass.com/solutions/index.html

http://www.ipass.com/solutions/
http://www.ipass.com/solutions/index.html

ptg

22 HOUR 2: Publishing Web Content

Had there been no index.html page in the solutions directory, the results
would depend on the configuration of the web server. If the server is con-
figured to disallow directory browsing, the user would have seen a
“Directory Listing Denied” message when attempting to access the URL
without a specified page name. However, if the server is configured to
allow directory browsing, the user would have seen a list of the files in
that directory.

These server configuration options will have already been determined for
you by your hosting provider. If your hosting provider allows you to mod-
ify server settings via a control panel, then you can change these settings
so that your server responds to requests based on your own requirements.

Not only is the index file used in subdirectories, it’s used in the top-level
directory (or document root) of your web site as well. The first page of
your web site—or home page or main page, or however you wish to refer to
the web content you want users to see when they first visit your domain—
should be named index.html and placed in the document root of your web
server. This will ensure that when users type
http://www.yourdomain.com/ into their web browsers, the server will
respond with content you intended them to see (rather than “Directory
Listing Denied” or some other unintended consequence).

Distributing Content without a Web
Server
Publishing HTML and multimedia files online is obviously the primary
reason to learn HTML and create web content. However, there are also sit-
uations in which other forms of publishing simply aren’t viable. For exam-
ple, you might want to distribute CD-ROMs, DVD-ROMs, or USB drives at
a trade show with marketing materials designed as web content—that is,
hyperlinked text viewable through a web browser, but without a web serv-
er involved. You might also want to include HTML-based instructional
manuals on removable media for students at a training seminar. These are
just two examples of how HTML pages can be used in publishing scenar-
ios that don’t involve the Internet.

This process is also called creating local sites; even though there’s no web
server involved, these bundles of hypertext content are still called sites. The
local term comes into play since your files are accessed locally and not
remotely (via a web server).

http://www.yourdomain.com/

ptg

Distributing Content without a Web Server 23

Publishing Content Locally
Let’s assume you need to create a local site that you want to distribute on a
USB drive. Even the cheapest USB drives hold so much data these days—
and basic hypertext files are quite small—that you can distribute an entire
site and a fully-functioning web browser all on one little drive.

Simply think of the directory structure of your USB drive just as you
would the directory structure of your web server. The top-level of the USB
drive directory structure can be your document root. Or if you are distrib-
uting a web browser along with the content, you might have two directo-
ries—for example, one named browser and one named content. In that
case, the content directory would be your document root. Within the docu-
ment root, you could have additional subfolders in which you place con-
tent and other multimedia assets.

It’s as important to maintain a good organization with a local site as it is
with a remote web site, so that you avoid broken links in your HTML files.
You will learn more about the specifics of linking together files in a later
hour.

Publishing Content on a Blog
You might have a blog hosted by a third-party, such as Blogger or
WordPress (among others), and thus have already published content with-
out having a dedicated web server or even knowing any HTML. These
services offer visual editors in addition to source editors, meaning that you can
type your words and add visual formatting such as bold, italics, or font col-
ors without knowing the HTML for these actions. But still, the content
becomes actual HTML when you click the Publish button in these editors.

However, with the knowledge you will acquire throughout this book, your
blogging will be enhanced because you will able to use the source editor
for your blog post content and blog templates, thus affording you more
control over the look and feel of that content. These actions occur different-
ly than the process you learned for creating an HTML file and uploading it
via FTP to your own dedicated web server, but I would be remiss if I did
not note that blogging is, in fact, a form of web publishing.

NOTE
Distributing a web browser isn’t
required when creating and dis-
tributing a local site, although
it’s a nice touch. You can rea-
sonably assume that users
have their own web browsers
and will open the index.html file
in a directory to start browsing
the hyperlinked content.
However, if you would like to
distribute a web browser on the
USB drive, go to
http://www.portableapps.com/
and look for Portable Firefox.

http://www.portableapps.com/

ptg

24 HOUR 2: Publishing Web Content

Testing Web Content
Whenever you transfer files to your web server or place them on remov-
able media for local browsing, you should immediately test every page
thoroughly. The following checklist will help ensure that your web content
behaves the way you expected. Note that some of the terms might be unfa-
miliar to you at this point, but come back to this checklist as you progress
through this book and create larger projects:

. Before you transfer your files, test them locally on your machine to
ensure that the links work and the content reflects the visual design
you intended. After you transfer the pages to a web server or remov-
able device, test them all again.

. Perform these tests with as many browsers that you can—Chrome,
Firefox, Internet Explorer, Opera, and Safari is a good list—and on
both Mac and Windows platforms. If possible, check at low resolu-
tion (800x600) and high resolution (1600x1200).

. Turn off auto image loading in your web browser before you start
testing so that you can see what each page looks like without the
graphics. Check your alt tag messages and then turn image loading
back on to load the graphics and review the page carefully again.

. Use your browser’s font size settings to look at each page in various
font sizes to ensure that your layout doesn’t fall to pieces if users
override your font specifications with their own.

. Wait for each page to completely finish loading and then scroll all the
way down to make sure that all images appear where they should.

. Time how long it takes each page to load. Does it take more than a
few seconds to load? If so, is the information on that page valuable
enough to keep users from going elsewhere before the page finishes
loading? Granted, broadband connections are common, but that
doesn’t mean you should load up your pages with 1 MB images.

If your pages pass all those tests, you can rest easy; your site is ready for
public viewing.

ptg

Summary 25

Summary
You began this hour by creating a very simple HTML file to use as a test
file for the process of transferring files to your web server. You learned
how that file transfer process works and what type of software you need to
perform those transfers (an FTP client). You also learned a little bit about
web server directory structures and file management, as well as the very
important purpose of the index.html file in a given web server directory.
You also learned that you can distribute web content on removable media,
and you learned how to go about structuring the files and directories to
achieve the goal of viewing content without using a remote web server.
Finally, you learned how to test your files before releasing your site for
public consumption.

Q&A
Q All the tests you recommend would take longer than creating my

pages! Can’t I get away with less testing?

A If your pages aren’t intended to make money or provide an important
service, it’s probably not a big deal if they look funny to some users or
produce errors once in a while. In that case, just test each page with a
couple of different browsers and call it a day. However, if you need to
project a professional image, there is no substitute for rigorous testing.

Q Seriously, who cares how I organize my web content?

A Believe it or not, the organization of your web content does matter to
search engines and potential visitors to your site—you’ll learn more
about this in Hour 24, “Helping People Find Your Web Pages.” But over-
all, having an organized web server directory structure will help you
keep track of content that you are likely to update frequently. For
instance, if you have a dedicated directory for images or multimedia,
you will know exactly where to look for a file you wish to update—no
need to hunt through directories containing other content.

ptg

26 HOUR 2: Publishing Web Content

Workshop
The workshop contains quiz questions and exercises to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Quiz Answers” section that follows.

Quiz
1. What three pieces of information do you need to connect to your

web server via FTP?

2. What is the purpose of the index.html file?

3. Does your web site have to include a directory structure?

Quiz Answers
1. The hostname, your account username, and your account password.

2. The index.html file is typically the default file for a directory within a
web server. It allows users to access
http://www.yourdomain.com/somedirectory/ without using a trail-
ing file name and still end up in the appropriate place.

3. No. Using a directory structure for file organization is completely up
to you, although it is highly recommended to use one because it sim-
plifies content maintenance.

Exercises
. Using your FTP client, create a subdirectory within the document

root of your web site. Paste the contents of the sample.html file into
another file named index.html, change the text between the <title>
and </title> tags to something new, and change the text between the
<h1> and </h1> tags to something new. Save the file and upload it to
the new subdirectory. Use your web browser to navigate to the new
directory on your web server and see that the content in the
index.html file appears. Then, using your FTP client, delete the
index.html file from the remote subdirectory. Return to that URL
with your web browser, reload the page, and see how the server
responds without the index.html file in place.

. Using the same set of files created in the exercise above, place these
files on a removable media device—a CD-ROM or a USB drive, for
example. Use your browser to navigate this local version of your
sample web site, and think about the instructions you would have to
distribute with this removable media so that others could use it.

http://www.yourdomain.com/somedirectory/

ptg

The first two hours gave you a basic idea of the process behind creating
web content and viewing it online or locally, if you do not yet have a web
hosting provider. In this hour, we’ll get down to the business of explaining
the various elements that must appear in an HTML file.

At the end of the hour, you’ll learn how HTML differs from XHTML and
why there are two different languages designed to do the same thing—cre-
ate web content. In general, this hour provides a quick summary of HTML
and XHTML basics and gives some practical tips to make the most of your
time as a web page author and publisher. It’s not all theory, however; you do
get to see a real web page and the HTML code behind it.

Here’s a review of what you need to do before you’re ready to use the rest
of this book:

1. Get a computer. I used a computer with Windows Vista to test the
sample web content and capture the figures in this book, but you can
use any Windows, Macintosh, or Linux/UNIX machine to create and
view your web content.

2. Get a connection to the Internet. Whether you have a dial-up, wire-
less, or broadband connection doesn’t matter for the creation and
viewing of your web content, but the faster the connection, the better
for the overall experience. The Internet Service Provider (ISP), school,
or business that provides your Internet connection can help you with
the details of setting it up properly. Additionally, many public spaces
such as coffee shops, bookstores, and libraries offer free wireless
Internet service that you can use if you have a laptop computer with
Wi-Fi network support.

HOUR 3
Understanding HTML

and XHTML Connections

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to create a simple
web page in HTML

. How to include all the
HTML Tags that every web
page must have

. How to organize a page
with paragraphs and line
breaks

. How to organize your con-
tent with headings

. How to validate your web
content

. How to differentiate
between HTML, XML,
XHTML, and HTML 5

NOTE

Not sure how to find an ISP?
The best way is to comparison-
shop online (using a friend’s
computer or a public computer
that’s already connected to the
Internet). You’ll find a compre-
hensive list of national and
regional ISPs at http://www.the-
list.com/.

http://www.thelist.com/
http://www.thelist.com/

ptg

28 HOUR 3: Understanding HTML and XHTML Connections

3. Get web browser software. This is the software your computer needs
in order to retrieve and display web content. As you learned in the
first hour, the most popular browser software (in alphabetical order)
is Apple Safari, Google Chrome, Mozilla Firefox, Microsoft Internet
Explorer, and Opera. It’s a good idea to install several of these
browsers so that you can experiment and make sure that your con-
tent looks consistent across them all; you can’t make assumptions
about the browsers other people are using.

4. Explore! Use a web browser to look around the Internet for web sites
that are similar in content or appearance to those you’d like to create.
Note what frustrates you about some pages, what attracts you and
keeps you reading others, and what makes you come back to some
pages over and over again. If there is a particular topic that interests
you, consider searching for it using a popular search engine such as
Google (http://www.google.com/) or Bing
(http://www.bing.com/).

Getting Started with a Simple Web
Page
In the first hour, you learned that a “web page” is just a text file that is
“marked-up” by (or surrounded by) HTML codes that tell the browser
how to display the text. To create these text files, use a text editor such as
Notepad (on Windows) or TextEdit (on a Mac)—do not use WordPad,
Microsoft Word, or other full-featured word-processing software, as those
create different sorts of files than the plain-text files we use for web content.

Before you begin working, you should start with some text that you want
to put on a web page:

1. Find (or write) a few paragraphs of text about yourself, your family,
your company, your softball team, or some other subject in which
you’re interested.

2. Save this text as plain, standard ASCII text. Notepad and most sim-
ple text editors always save files as plain text, but if you’re using
another program, you might need to choose this file type as an
option (after selecting File, Save As).

As you go through this hour, you will add HTML markup (called tags) to
the text file, thus making it into web content.

NOTE

Although all web browsers
process and handle information
in the same general way, there
are some specific differences
among them that result in things
not always looking the same in
different browsers. Be sure to
check your web pages in multi-
ple browsers to make sure that
they look reasonably consistent.

NOTE

As discussed in Hour 1, if you
plan to put your web content on
the Internet (as opposed to pub-
lishing it on CD-ROM or a local
intranet), you’ll need to transfer it
to a computer that is connected
to the Internet 24 hours a day.
The same company or school that
provides you with Internet access
might also provide web space; if
not, you might need to pay a host-
ing provider for the service.

WARNING

Do not create your first HTML
file with Microsoft Word or any
other HTML-compatible word
processor; most of these pro-
grams attempt to rewrite your
HTML for you in strange ways,
potentially leaving you totally
confused. Additionally, I recom-
mend that you do not use a
graphical, what-you-see-is-what-
you-get (WYSIWYG) editor, such
as Microsoft FrontPage or
Adobe Dreamweaver. You’ll like-
ly find it easier and more edu-
cational to start out with a sim-
ple text editor while you’re just
learning HTML. You can
progress to visual tools (such
as FrontPage and Dreamweaver)
after you have a better under-
standing of what’s going on
“under the hood.”

http://www.google.com/
http://www.bing.com/

ptg

Getting Started with a Simple Web Page 29

When you save files containing HTML tags, always give them a name end-
ing in .html. This is important: if you forget to type the .html at the end of
the filename when you save the file, most text editors will give it some
other extension (such as .txt). If that happens, you might not be able to
find the file when you try to look at it with a web browser; if you find it, it
certainly won’t display properly. In other words, web browsers expect a
web page file to have a file extension of .html.

You might also encounter a web page with a file extension of .htm, which
is also acceptable. You might find other file extensions used on the Web,
such as .jsp (Java Server Pages), .asp (Microsoft Active Server Pages), or
.php (PHP: Hypertext Preprocessor), but these file types use server-side
technologies that are beyond the scope of HTML.

Listing 3.1 shows an example of text you can type and save to create a sim-
ple HTML page. If you opened this file with Firefox, you would see the
page shown in Figure 3.1. Every web page you create must include the
<html></html>, <head></head>, <title></title>, and <body></body> tag pairs.

Listing 3.1 The <html>, <head>, <title>, and <body> Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The First Web Page</title>

</head>

<body>
<p>
In the beginning, Tim created the HyperText Markup Language. The Internet
was without form and void, and text was upon the face of the monitor and
the Hands of Tim were moving over the face of the keyboard. And Tim said,
Let there be links; and there were links. And Tim saw that the links were
good; and Tim separated the links from the text. Tim called the links
Anchors, and the text He called Other Stuff. And the whole thing together
was the first Web Page.

</p>
</body>

</html>

NOTE
If you’re using TextEdit on a
Macintosh computer, the steps
for creating an HTML file are a
little different than for using
Notepad on a Windows comput-
er—both are popular text edi-
tors, but with the latter you
must first click on the Format
menu and select Make Plain
Text and then change the pref-
erences under the Saving head-
er by unchecking the box for
Append ‘.txt’ Extension to Plain
Text Files. Also, the default pref-
erences are set to show .html
documents as they would
appear in a browser, which
won’t allow you to edit them. To
fix this, check Ignore Rich Text
Commands in HTML Files under
the Rich Text Processing header.

ptg

30 HOUR 3: Understanding HTML and XHTML Connections

FIGURE 3.1
When you save the text in Listing
3.1 as an HTML file and view it
with a web browser, only the actual
title and body text are displayed.

NOTE
Technically speaking, HTML 5
will be the next web standard
but it’s not quite at the point of
full adoption. Current estimate
put the full adoption of HTML
somewhere in the year 2011.
However, as you learn about
important features of HTML and
XHTML in this book, I will
include notes about how HTML
5 features might differ.

In Listing 3.1, as in every HTML page, the words starting with < and end-
ing with > are actually coded commands. These coded commands are
called HTML tags because they “tag” pieces of text and tell the web brows-
er what kind of text it is. This allows the web browser to display the text
appropriately.

The first few lines of code in the web page serve as standard boilerplate
code that you will include in all of your pages. This code actually identifies
the page as an XHTML 1.1 document, which means that, technically, the
web page is an XHTML page. All the pages developed throughout the
book are XHTML 1.1 pages. Because XHTML is a more structured version
of HTML, it’s still okay to generally refer to all the pages in the book as
HTML pages. By targeting XHTML 1.1 with your code, you are developing
web pages that adhere to the very latest web standards. This is a good
thing!

ptg

Getting Started with a Simple Web Page 31

If you have obtained a web hosting account, you could use FTP
at this point to transfer the firstpage.html file to the web server.
In fact, from this hour forward, the instructions will assume you
have a hosting provider and are comfortable sending files back
and forth via FTP; if that is not the case, please review the first
two hours before moving on. Or, if you are consciously choosing
to work with files locally (without a web host), be prepared to
adjust the instructions to suit your particular needs (such as
ignoring “transfer the files” and “type in the URL”).

Creating and Viewing
a Basic Web Page

Before you learn the meaning of the HTML tags used in Listing 3.1, you might
want to see exactly how I went about creating and viewing the document
itself. Follow these steps:

1. Type all the text in Listing 3.1, including the HTML tags, in Windows
Notepad (or use Macintosh TextEdit or another text editor of your
choice).

2. Select File, Save As. Be sure to select plain text (or ASCII text) as the
file type.

3. Name the file firstpage.html.

4. Choose the folder on your hard drive where you would like to keep your
web pages—and remember which folder you choose! Click the Save or
OK button to save the file.

5. Now start your favorite web browser. (Leave Notepad running, too, so
you can easily switch between viewing and editing your page.)

In Internet Explorer, select File, Open and click Browse. If you’re using Firefox,
select File, Open File. Navigate to the appropriate folder and select the
firstpage.html file. Some browsers and operating systems will also allow
you to drag and drop the firstpage.html file onto the browser window in
order to view it.

Voilà! You should see the page shown in Figure 3.1.

TRY IT YOURSELF ▼

NOTE
You don’t need to be connected to the
Internet to view a web page stored on
your own computer. By default, your web
browser tries to connect to the Internet
every time you start it, which makes
sense most of the time. However, this
can be a hassle if you’re developing
pages locally on your hard drive (offline)
and you keep getting errors about a page
not being found. If you have a full-time
web connection via a LAN, cable modem,
or DSL, this is a moot point because the
browser will never complain about being
offline. Otherwise, the appropriate disci-
plinary action will depend on your breed
of browser; check the options under your
browser’s “Tools” menu.

ptg

32 HOUR 3: Understanding HTML and XHTML Connections

HTML Tags Every XHTML Web Page
Must Have
The time has come for the secret language of HTML tags to be revealed to
you. When you understand this language, you will have creative powers
far beyond those of other humans. Don’t tell the other humans, but it’s
really pretty easy.

Before you get into the HTML tags, let’s first address the messy-looking
code at the top of Listing 3.1. The first line indicates that the HTML docu-
ment is, in fact, an XML document:

<?xml version=”1.0” encoding=”UTF-8”?>

The version of XML is set to 1.0, which is fairly standard, as is the type of
character encoding (UTF-8).

The second and third lines of code in Listing 3.1 are even more complicat-
ed looking:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Again, the specifics of this code aren’t terribly important as long as you
remember to include the code at the start of your pages. This code identi-
fies the document as being XHTML 1.1, which then allows web browsers
to make sure the code meets all the requirements of XHTML 1.1.

Most HTML tags have two parts: an opening tag, which indicates where a
piece of text begins, and a closing tag, which indicates where the piece of
text ends. Closing tags start with a / (forward slash) just after the < sym-
bol. Another type of tag is the empty tag, which is unique in that it doesn’t
include a pair of matching opening and closing tags. Instead, an empty tag
consists of a single tag that starts with a < and ends with a / just before the
> symbol. Following is a quick summary of these three tags just to make
sure you understand the role each of them plays:

. An opening tag is an HTML tag that indicates the start of an HTML
command; the text affected by the command appears after the open-
ing tag. Opening tags always begin with < and end with >, as in
<html>.

. A closing tag is an HTML tag that indicates the end of an HTML com-
mand; the text affected by the command appears before the closing
tag. Closing tags always begin with </ and end with >, as in </html>.

NOTE

It isn’t terribly important that
you understand concepts such
as character encoding at this
point. What is important is that
you include the appropriate boil-
erplate code in your pages so
that they adhere to the latest
web standards. As of this writ-
ing, XHTML 1.1 is a web stan-
dard. HTML 5 is not yet a web
standard, but if you were creat-
ing an HTML 5 document, these
lines at the beginning of your
HTML file would not be neces-
sary.

NOTE

The XML/XHTML boilerplate
code isn’t strictly required in
order for you to create web
pages. You can delete the
opening lines of code in the
example so that the page
starts with the <html> tag and it
will still open fine in a web
browser. The extra code is
included to ensure your pages
are up to date with the current
web standards. Additionally, the
extra code allows you to vali-
date your web pages for accura-
cy, which you’ll learn how to do
a bit later in this lesson.

ptg

HTML Tags Every XHTML Web Page Must Have 33

. An empty tag is an HTML tag that issues an HTML command with-
out enclosing any text in the page. Empty tags always begin with <
and end with />, as in
 and .

For example, the <body> tag in Listing 3.1 tells the web browser where the
actual body text of the page begins, and </body> indicates where it ends.
Everything between the <body> and </body> tags will appear in the main
display area of the web browser window, as shown in Figure 3.1.

The very top of the browser window (refer to Figure 3.1) shows title text,
which is any text that is located between <title> and </title>. The title
text is also used to identify the page on the browser’s Bookmarks or
Favorites menu, depending on which browser you use. It’s important to
provide titles for your pages so that visitors to the page can properly
bookmark them for future reference.

You will use the <body> and <title> tag pairs in every HTML page you cre-
ate because every web page needs a title and body text. You will also use
<html> and <head>, which are he other two tags shown in Listing 3.1.
Putting <html> at the very beginning of a document simply indicates that
the document is a web page. The </html> at the end indicates that the web
page is over.

Within a page, there is a head section and a body section. Each section is
identified by <head> and <body> tags. The idea is that information in the
head of the page somehow describes the page but isn’t actually displayed
by a web browser. Information placed in the body, however, is displayed
by a web browser. The <head> tag always appears near the beginning of the
HTML code for a page, just after the opening <html> tag.

The <title> tag pair used to identify the title of a page appears within the
head of the page, which means it is placed after the opening <head> tag
and before the closing </head> tag. (Upcoming hours reveal some other
advanced header information that can go between <head> and </head>, such
as style sheet rules that are used to format the page.)

The <p> tag used in Listing 3.1 encloses a paragraph of text. You should
enclose your chunks of text in the appropriate container tags whenever
possible.

NOTE

You no doubt noticed in Listing
3.1 that there is some extra
code associated with the
<html> tag. This code consists
of two attributes (xmlns and
xml:lang), which are used to
specify additional information
related to the tag. These two
attributes are standard require-
ments of all XHTML web pages;
the former defines the XML
namespace, while the latter
defines the language of the
content. Throughout this book a
standard namespace is
defined, and the English lan-
guage is used. If you are writing
in a different language, replace
the “en” (for English) with the
language identifier relevant to
you.

TIP

You might find it convenient to
create and save a bare-bones
page (also known as a skeleton
page) with just the opening and
closing <html>, <head>, <title>,
and <body> tags, similar to the
document used in Listing 3.1.
You can then open that docu-
ment as a starting point when-
ever you want to make a new
web page and save yourself the
trouble of typing all those oblig-
atory tags every time.

ptg

34 HOUR 3: Understanding HTML and XHTML Connections

Organizing a Page with Paragraphs
and Line Breaks
When a web browser displays HTML pages, it pays no attention to line
endings or the number of spaces between words. For example, the top ver-
sion of the poem shown in Figure 3.2 appears with a single space between
all words, even though that’s not how it’s entered in Listing 3.2. This is
because extra whitespace in HTML code is automatically reduced to a sin-
gle space. Additionally, when the text reaches the edge of the browser win-
dow, it automatically wraps to the next line, no matter where the line
breaks were in the original HTML file.

Listing 3.2 HTML Containing Paragraph and Line Breaks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The Advertising Agency Song</title>

</head>

<body>
<p>
When your client’s hopping mad,
put his picture in the ad.

If he still should prove refractory,
add a picture of his factory.

</p>

<hr />

<p>
When your client’s hopping mad,

put his picture in the ad.

</p>
<p>
If he still should prove refractory,

add a picture of his factory.

</p>
</body>

</html>

ptg

Organizing a Page with Paragraphs and Line Breaks 35

FIGURE 3.2
When the HTML in Listing 3.2 is
viewed as a web page, line and
paragraph breaks only appear
where there are
 and <p>
tags.

You must use HTML tags if you want to control where line and paragraph
breaks actually appear. When text is enclosed within the <p></p> container
tags, a line break will be assumed after the closing tag. In later hours, you
will learn to control the height of the line break using CSS. The
 tag
forces a line break within a paragraph. Unlike the other tags you’ve seen
so far,
 doesn’t require a closing </br> tag—this is one of those empty
tags discussed earlier. Although HTML 4 does not require the / in empty
tags, XHTML does and future standards will, so it’s important for you to
stick to the latest standards and create web pages that are coded properly.
Always code empty tags so that they end with />.

The poem in Listing 3.2 and Figure 3.2 shows the
 and <p> tags
being used to separate the lines and verses of an advertising agency song.
You might have also noticed the <hr /> tag in the listing, which causes a
horizontal rule line to appear on the page (see Figure 3.2). Inserting a hori-
zontal rule with the <hr /> tag also causes a line break, even if you don’t
include a
 tag along with it. Like
, the <hr /> horizontal rule
tag is an empty tag and therefore never gets a closing </hr> tag.

WARNING

You might find that a lot of web
content that includes

instead of
. Or you might
find that it does not include the
closing </p> tag. Just remem-
ber there is a lot of antiquated
web content floating around the
Internet, and just because you
see it in use doesn’t mean it’s
correct. Save yourself a lot of
future work and frustration by
adhering to the standards you
learn in this book. Developing
clean HTML coding habits is a
very important part of becoming
a successful web designer.

ptg

36 HOUR 3: Understanding HTML and XHTML Connections

Organizing Your Content with
Headings
When you browse through web pages on the Internet, you’ll notice that
many of them have a heading at the top that appears larger and bolder
than the rest of the text. Listing 3.3 is sample code and text for a simple
web page containing an example of a heading as compared to normal
paragraph text. Any text between <h1> and </h1> tags will appear as a large
heading. Additionally, <h2> and <h3> make progressively smaller head-
ings, and so on as far down as <h6>.

TRY IT YOURSELF▼

Formatting
Text in HTML

Take a passage of text and try your hand at formatting it as proper HTML:

1. Add <html><head><title>My Title</title></head><body> to the begin-
ning of the text (using your own title for your page instead of My
Title). Also include the boilerplate code at the top of the page that
takes care of meeting the requirements of XHTML.

2. Add </body></html> to the very end of the text.

3. Add a <p> tag at the beginning of each paragraph and a </p> tag at
the end of each paragraph.

4. Use
 tags anywhere you want single-spaced line breaks.

5. Use <hr /> to draw horizontal rules separating major sections of text,
or wherever you’d like to see a line across the page.

6. Save the file as mypage.html (using your own filename instead of
mypage).

7. Open the file in a web browser to see your web content. (Send the
file via FTP to your web hosting account, if you have one.)

8. If something doesn’t look right, go back to the text editor to make
corrections and save the file again (and send it to your web hosting
account, if applicable). You then need to click Reload/Refresh in the
browser to see the changes you made.

WARNING

If you are using a word
processor to create the web
page, be sure to save the
HTML file in plain-text or
ASCII format.

ptg

Organizing Your Content with Headings 37

Listing 3.3 Heading Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>My Widgets</title>

</head>

<body>
<h1>My Widgets</h1>
<p>My widgets are the best in the land. Continue reading to
learn more about my widgets.</p>

<h2>Widget Features</h2>
<p>If I had any features to discuss, you can bet I’d do
it here.</p>

<h3>Pricing</h3>
<p>Here, I would talk about my widget pricing.</p>

<h3>Comparisons</h3>
<p>Here, I would talk about how my widgets compare to my
competitor’s widgets.</p>

</body>
</html>

As you can see in Figure 3.3, the HTML that creates headings couldn’t be
simpler. In this example, the phrase “My Widgets” is prominently dis-
played using the <h1> tag. To create the biggest (level-1) heading, just put
an <h1> tag at the beginning and a </h1> tag at the end of the text you wish
to use as a heading. For a slightly smaller (level-2) heading—for informa-
tion that is of lesser importance than the title— use the <h2> and </h2> tags
around your text. For content that should appear even less prominently
than a level-2 heading, use the <h3> and </h3> tags around your text. Your
headings should follow a content hierarchy; use only one level-1 heading,
have one (or more) level-2 headings after the level-1 heading, use level-3
headings directly after level-2 headings, and so on.

Theoretically, you can also use <h4>, <h5>, and <h6> tags to make progres-

NOTE

By now you’ve probably caught
on to the fact that HTML code
is often indented by its author
to reveal the relationship
between different parts of the
HTML document. This indenta-
tion is entirely voluntary—you
could just as easily run all the
tags together with no spaces or
line breaks and they would still
look fine when viewed in a
browser. The indentations are
for you so that you can quickly
look at a page full of code and
understand how it fits together.
Indenting your code is a very
good web design habit and ulti-
mately makes your pages easi-
er to maintain.

ptg

38 HOUR 3: Understanding HTML and XHTML Connections

sively less important headings, but these aren’t used very often. Web
browsers seldom show a noticeable difference between these headings and
the <h3> headings anyway, and content usually isn’t displayed in such a
manner as to need six levels of headings in order to show the content hier-
archy.

It’s important to remember the difference between a title and a heading.
These two words are often interchangeable in day-to-day English, but
when you’re talking HTML, <title> gives the entire page an identifying
name that isn’t displayed on the page itself; it’s displayed only on the
browser window’s title bar. The heading tags, on the other hand, cause
some text on the page to be displayed with visual emphasis. There can be
only one <title> per page and it must appear within the <head> and </head>

tags, whereas you can have as many <h1>, <h2>, and <h3> headings as you
want, in any order that suits your fancy. However, as I mentioned before,
you should use the heading tags to keep tight control over content hierar-
chy; do not use headings as a way to achieve a particular “look,” as that’s
what CSS is for.

You’ll learn to take complete control over the appearance of text on your

FIGURE 3.3
The use of three levels of head-
ings shows the hierarchy of con-
tent on this sample product page.

NOTE

On many web pages nowadays,
graphical images of ornately
rendered letters and logos are
often used in place of the ordi-
nary text headings discussed in
this hour. However, using text
headings is one of many search
engine optimization (SEO) tips
that you will learn about in Hour
24, “Helping People Find Your
Web Pages.” Search engines
look at heading tags to see
how you organize your content;
they give higher preference to
content that you have indicated
is more important (for example,
a level-1 heading) versus con-
tent that you indicate is of less-
er importance (lower-level head-
ings).

ptg

Validating Your Web Content 39

web pages in Part II of this book. Short of taking exacting control of the
size, family, and color of fonts, headings provide the easiest and most pop-
ular way to draw extra attention to important text.

Peeking at Other Designers’ Pages

Given the visual and sometimes audio pizzazz present in many popular
web pages, you probably realize that the simple pages described in this
hour are only the tip of the HTML iceberg. Now that you know the basics,
you might surprise yourself with how much of the rest you can pick up
just by looking at other people’s pages on the Internet. You can see the
HTML for any page by right-clicking and selecting View Source in any
web browser.

Don’t worry if you aren’t yet able to decipher what some HTML tags do or
exactly how to use them yourself. You’ll find out about all those things in
the next few hours. However, sneaking a preview now will show you the
tags that you do know in action and give you a taste of what you’ll soon
be able to do with your web pages.

Validating Your Web Content
In Hour 2, I discussed ways to test your pages; one very important way to
test your pages is to validate them. Think of it this way: it’s one thing to
design and draw a beautiful set of house plans, but it’s quite another for an
architect to stamp it as a safe structure suitable for construction. Validating
your web pages is a similar process; in this case, however, the architect is
an application—not a person.

In brief, validation is the process of testing your pages with a special appli-
cation that searches for errors and makes sure your pages follow the strict
XHTML standard. Validation is simple. In fact, the standards body respon-
sible for developing web standards—the World Wide Web Consortium
(W3C)—offers an online validation tool you can use. To validate a page,
follow this URL: http://validator.w3.org/. The W3C Markup Validation
Service is shown in Figure 3.4.

WARNING

Don’t forget that anything
placed in the head of a web
page is not intended to be
viewed on the page, whereas
everything in the body of the
page is intended for viewing.

http://validator.w3.org/

ptg

40 HOUR 3: Understanding HTML and XHTML Connections

If you’ve already published a page online, you can use the Validate by URI
tab. Use the Validate by File Upload tab to validate files stored on your
local computer file system. The Validate by Direct Input tab allows you to
paste the contents of a file from your text editor. If all goes well, your page
will get a passing report (see Figure 3.5).

FIGURE 3.4
The W3C Markup Validation
Service allows you to validate an
HTML (XHTML) document to
ensure it has been coded
accurately.

FIGURE 3.5
If a page passes the W3C Markup
Validation Service, you know it is
ready for prime time.

ptg

The Scoop on HTML, XML, XHTML, and HTML 5 41

If the W3C Markup Validation Service encounters an error in your web
page, it will provide specific details (including the line numbers of the
offending code). This is a great way to hunt down problems and rid your
pages of buggy code. Validation not only informs you whether your pages
are constructed properly, it also assists you in finding and fixing problems
before you post pages for the world to see.

The Scoop on HTML, XML, XHTML,
and HTML 5
In its early days, HTML was great because it allowed scientists to share infor-
mation over the Internet in an efficient and relatively structured manner. It
wasn’t until later that graphical web browsers were created and HTML started
being used to code more than scientific papers. HTML quickly went from a
tidy little markup language for researchers to an online publishing language.
After it was established that HTML could be jazzed up for graphical brows-
ing, the creators of web browsers went crazy by adding lots of nifty features to
the language. Although these new features were neat at first, they compro-
mised the original design of HTML and introduced inconsistencies when it
came to how browsers displayed web pages; new features worked on only
one browser or another, and you were out of luck if you happened to be run-
ning the wrong browser. HTML started to resemble a bad remodeling job on a
—a job done by too many contractors and without proper planning. As it
turns out, some of the browser-specific features created during this time have
now been adopted as standards while others have been dropped completely.

As with most revolutions, the birth of the Web was very chaotic, and the
modifications to HTML reflected that chaos. Over the years, a significant
effort has been made to reel in the inconsistencies of HTML and restore some
order to the language. The problem with disorder in HTML is that it results
in web browsers having to guess at how a page is to be displayed, which is
not a good thing. Ideally, a web page designer should be able to define exact-
ly how a page is to look and have it look the same regardless of what kind of
browser or operating system someone is using. Better still, a designer should
be able to define exactly what a page means and have that page look consis-
tent across different browsers and platforms. This utopia is still off in the
future somewhere, but a markup language called XML (Extensible Markup
Language) began to play a significant role in leading us toward it.

XML is a general language used to create specific languages, such as
HTML. It might sound a little strange, but it really just means that XML

TIP

Some web development tools
include built-in validation fea-
tures you can use in lieu of the
W3C Markup Validation Service.
Some examples include brows-
er extensions such as Firebug
(http://getfirebug.com/) and
HTML Validator
(http://users.skynet.be/mg
ueury/mozilla/), but many
other programs offer similar
functionality—check your user
documentation.

http://getfirebug.com/
http://users.skynet.be/mgueury/mozilla/
http://users.skynet.be/mgueury/mozilla/

ptg

42 HOUR 3: Understanding HTML and XHTML Connections

provides a basic structure and set of rules to which any markup language
must adhere. Using XML, you can create a unique markup language to
describe just about any kind of information, including web pages.
Knowing that XML is a language for creating other markup languages, you
could create your own version of HTML using XML. You could even create
a markup language called BCCML (Bottle Cap Collection Markup
Language), for example, which you could use to create and manage your
extensive collection of rare bottle caps. The point is that XML lays the
ground rules for organizing information in a consistent manner, and that
information can be anything from web pages to bottle caps.

You might be thinking that bottle caps don’t have anything to do with the
Web, so why mention them? The reason is that XML is not entirely about
web pages. XML is actually broader than the Web in that it can be used to
represent any kind of information on any kind of computer. If you can
visualize all the information whizzing around the globe among computers,
mobile phones, handheld computers, televisions, and radios, you can start
to understand why XML has much broader applications than just cleaning
up web pages. However, one of the first applications of XML is to restore
some order to the Web, which is why XML is relevant to learning HTML.

If XML describes data better than HTML, does it mean that XML is set to
upstage HTML as the markup language of choice for the Web? No. XML is not
a replacement for HTML; it’s not even a competitor of HTML. XML’s impact
on HTML has to do with cleaning up HTML. HTML is a relatively unstruc-
tured language that benefits from the rules of XML. The natural merger of the
two technologies resulted in HTML’s adherence to the rules and structure of
XML. To accomplish this merger, a new version of HTML was formulated that
follows the stricter rules of XML. The new XML-compliant version of HTML is
known as XHTML. Fortunately for you, you’ll actually be learning XHTML
throughout this book since it is really just a cleaner version of HTML.

You might have heard about HTML 5, which is touted as the next web
standard. It will be, but not for several years. When it does become a web
standard, it will not render XHTML useless—HTML 5 is not a replacement
for XHTML, but is a major revision of HTML 4. In other words, XHTML
and HTML 5 can coexist on the web, and web browsers that currently sup-
port XHTML will also (one day) support HTML 5 as well.

The goal of this book is to guide you through the basics of web publishing,
using XHTML and CSS as the core languages of those pages. However,
whenever possible I will note elements of the languages that are not pres-
ent in HTML 5, should you want to design your content for even further

ptg

Summary 43

sustainability. If you gain a solid understanding of web publishing and the
ways in which CSS works with the overall markup language of the page
(be it XHTML or HTML 5), you will be in a good position if, in a few years,
you decide you want to move from XHTML to HTML 5.

Summary
This hour introduced the basics of what web pages are and how they
work. You learned that coded HTML commands are included in a text file,
and that typing HTML text yourself is better than using a graphical editor
to create HTML commands for you—especially when you’re learning
HTML. You were introduced to the most basic and important HTML tags.
By adding these coded commands to any plain-text document, you can
quickly transform it into a bona fide web page. You learned that the first
step in creating a web page is to put a few obligatory HTML tags at the
beginning and end, including a title for the page. You then mark where
paragraphs and lines end and add horizontal rules and headings if you
want them. Table 3.1 summarizes all the tags introduced in this hour.

Table 3.1 HTML Tags Covered in Hour 3

Tag Function

<html>…</html> Encloses the entire HTML document.

<head>…</head> Encloses the head of the HTML document. Used with-
in the <html> tag pair.

<title>…</title> Indicates the title of the document. Used within the
<head> tag pair.

<body>…</body> Encloses the body of the HTML document. Used with-
in the <html> tag pair.

<p>…</p> A paragraph; skips a line between paragraphs.

 A line break.

<hr /> A horizontal rule line.

<h1>…</h1> A first-level heading.

<h2>…</h2> A second-level heading.

<h3>…</h3> A third-level heading.

<h4>…</h4> A fourth-level heading (seldom used).

<h5>…</h5> A fifth-level heading (seldom used).

<h6>…</h6> A sixth-level heading (seldom used).

ptg

44 HOUR 3: Understanding HTML and XHTML Connections

Finally, you learned about XML and XHTML, and how they relate to
HTML, as well as what “HTML 5” means in relation to what it is you’re
learning here.

Q&A
Q I’ve created a web page, but when I open the file in my web browser, I

see all the text including the HTML tags. Sometimes I even see weird
gobbledygook characters at the top of the page! What did I do wrong?

A You didn’t save the file as plain-text. Try saving the file again, being
careful to save it as Text Only or ASCII Text. If you can’t quite figure out
how to get your word processor to do that, don’t stress. Just type your
HTML files in Notepad or TextEdit instead and everything should work
just fine. (Also, always make sure that the filename of your web page
ends in .html or .htm.)

Q I’ve seen web pages on the Internet that don’t have <html> tags at the
beginning. You said pages always have to start with <html>. What’s the
deal?

A Many web browsers will forgive you if you forget to include the <html>
tag and will display the page correctly anyway. However, it’s a very good
idea to include it because some software does need it to identify the
page as valid HTML. Besides, you want your pages to be bona fide
XHTML pages so that they conform to the latest web standards.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What four tags are required in every HTML page?

2. What HTML tags and text would you use to produce the following
web content:

. A small heading with the words We are Proud to Present

. A horizontal rule across the page

. A large heading with the one word Orbit

ptg

Workshop 45

. A medium-sized heading with the words The Geometric Juggler

. Another horizontal rule

3. What code would you use to create a complete HTML web page with
the title Foo Bar, a heading at the top that reads Happy Hour at the
Foo Bar, followed by the words Come on down! in regular type?

Answers
1. <html>, <head>, <title>, and <body> (along with their closing tags,

</html>, </head>, </title>, and </body>).

2. Your code would look like this:

<h3>We are Proud to Present</h3>
<hr />
<h1>Orbit</h1>
<h2>The Geometric Juggler</h2>
<hr />

3. Your code would look like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Foo Bar</title>

</head>

<body>
<h1>Happy Hour at the Foo Bar</h1>
<p>Come on Down!</p>

</body>
</html>

ptg

46 HOUR 3: Understanding HTML and XHTML Connections

Exercises
. Even if your main goal in reading this book is to create web content

for your business, you might want to make a personal web page just
for practice. Type a few paragraphs to introduce yourself to the
world and use the HTML tags you’ve learned in this hour to make
them into a web page.

. Throughout the book you’ll be following along with the code exam-
ples and making pages of your own. Take a moment now to set up a
basic document template containing the XML declaration, doctype
declaration, and tags for the core HTML document structure. That
way, you can be ready to copy and paste that information whenever
you need it.

ptg

In the previous hour, you learned the basics of HTML and XHTML, includ-
ing how to set up a skeletal HTML template for all your web content. In
this hour, you will learn how to fine-tune the display of your web content
using cascading style sheets(CSS). The concept behind style sheets is simple:
You create a style sheet document that specifies the fonts, colors, spacing,
and other characteristics that establish a unique look for a web site. You
then link every page that should have that look to the style sheet, instead
of specifying all those styles repeatedly in each separate document.
Therefore, when you decide to change your official corporate typeface or
color scheme, you can modify all your web pages at once just by changing
one or two entries in your style sheet rather than changing them in all of
your static web files. So a style sheet is a grouping of formatting instruc-
tions that control the appearance of several HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics,
including exacting typeface controls, letter and line spacing, and margins
and page borders, just to name a few. Style sheets also enable sizes and
other measurements to be specified in familiar units, such as inches, mil-
limeters, points, and picas. You can also use style sheets to precisely posi-
tion graphics and text anywhere on a web page, either at specific coordi-
nates or relative to other items on the page.

In short, style sheets bring a sophisticated level of display to the Web. And
they do so—you’ll pardon the expression—with style.

HOUR 4
Understanding Cascading

Style Sheets

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to create a basic style
sheet

. How to use style classes

. How to use style IDs

. How to construct internal
style sheets and inline
styles

NOTE

If you have three or more web
pages that share (or should
share) similar formatting and
fonts, you might want to create
a style sheet for them as you
read this hour. Even if you
choose not to create a com-
plete style sheet, you’ll find it
helpful to apply styles to individ-
ual HTML elements directly
within a web page.

ptg

48 HOUR 4: Understanding Cascading Style Sheets

How CSS Works
The technology behind style sheets is called CSS, which stands for
Cascading Style Sheets. CSS is a language that defines style constructs such
as fonts, colors, and positioning, which are used to describe how informa-
tion on a web page is formatted and displayed. CSS styles can be stored
directly in an HTML web page or in a separate style sheet file. Either way,
style sheets contain style rules that apply styles to elements of a given
type. When used externally, style sheet rules are placed in an external style
sheet document with the file extension .css.

A style rule is a formatting instruction that can be applied to an element on
a web page, such as a paragraph of text or a link. Style rules consist of one
or more style properties and their associated values. An internal style sheet is
placed directly within a web page, whereas an external style sheet exists in a
separate document and is simply linked to a web page via a special tag—
more on this tag in a moment.

The “cascading” part of the name CSS refers to the manner in which style
sheet rules are applied to elements in an HTML document. More specifical-
ly, styles in a CSS style sheet form a hierarchy in which more specific styles
override more general styles. It is the responsibility of CSS to determine
the precedence of style rules according to this hierarchy, which establishes
a cascading effect. If that sounds a bit confusing, just think of the cascading
mechanism in CSS as being similar to genetic inheritance, in which general
traits are passed from parents to a child, but more specific traits are entire-
ly unique to the child. Base style rules are applied throughout a style sheet
but can be overridden by more specific style rules.

A quick example should clear things up. Take a look at the following code
to see whether you can tell what’s going on with the color of the text:

<div style=”color:green”>
This text is green.
<p style=”color:blue”>This text is blue.</p>
<p>This text is still green.</p>

</div>

In the previous example, the color green is applied to the <div> tag via the
color style property. Therefore, the text in the <div> tag is colored green.
Because both <p> tags are children of the <div> tag, the green text style cas-
cades down to them. However, the first <p> tag overrides the color style
and changes it to blue. The end result is that the first line (not surrounded
by a paragraph tag) is green, the first official paragraph is blue and the sec-
ond official paragraph retains the cascaded green color.

NOTE

You might notice that I use the
term element a fair amount in
this hour (and I will for the rest
of the book, for that matter). An
element is simply a piece of
information (content) in a web
page, such as an image, a para-
graph, or a link. Tags are used
to code elements, and you can
think of an element as a tag
complete with descriptive infor-
mation (attributes, text, images,
and so on) within the tag.

ptg

A Basic Style Sheet 49

Like many web technologies, CSS has evolved over the years. The original
version of CSS, known as Cascading Style Sheets Level 1 (CSS1) was created
in 1996. The later CSS 2 standard was created in 1998 and CSS 2 is still in
use today. All modern web browsers support CSS 2, and you can safely use
CSS 2 style sheets without too much concern. So when I talk about CSS
throughout the book, I’m referring to CSS 2.

You’ll find a complete reference guide to CSS at
http://www.w3.org/Style/CSS/. The rest of this hour explains how to put
CSS to good use.

A Basic Style Sheet
Despite their intimidating power, style sheets can be simple to create.
Consider the web pages shown in Figure 4.1 and Figure 4.2. These pages
share several visual properties that could be put into a common style sheet:

. They use a large, bold Verdana font for the headings and a normal
size and weight Verdana font for the body text.

. They use an image named logo.gif floating within the content and
on the right side of the page.

. All text is black except for subheadings, which are purple.

. They have margins on the left side and at the top.

. There is vertical space between lines of text.

. The footnotes are centered and in small print.

FIGURE 4.1
This page uses a style sheet to
fine-tune the appearance and
spacing of the text and images.

http://www.w3.org/Style/CSS/

ptg

50 HOUR 4: Understanding Cascading Style Sheets

Listing 4.1 shows the code for style sheet specifying these properties.

Listing 4.1 A Single External Style Sheet
body {
font-size: 10pt;
font-family: Verdana, Geneva, Arial, Helvetica,sans-serif;
color: black;
line-height: 14pt;
padding-left: 5pt;
padding-right: 5pt;
padding-top: 5pt;

}

h1 {
font: 14pt Verdana, Geneva, Arial, Helvetica,sans-serif;
font-weight: bold;
line-height: 20pt;

}

p.subheader {
font-weight: bold;
color: #593d87;

}

img {
padding: 3pt;
float: right;

}

FIGURE 4.2
This page uses the same style
sheet as the one shown in Figure
4.1, thus maintaining a consistent
look and feel.

ptg

A Basic Style Sheet 51

Listing 4.1 A Single External Style Sheet

a {
text-decoration: none;

}

a:link, a:visited {
color: #8094d6;

}

a:hover, a:active {
color: #FF9933;

}

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

}

This might initially appear to be a lot of code, but if you look closely, you’ll
see that there isn’t a lot of information on each line of code. It’s fairly stan-
dard to place individual style rules on their own line to help make style
sheets more readable. Speaking of code readability, perhaps the first thing
you noticed about this style sheet code is that it doesn’t look anything like
normal HTML code. CSS uses a language all its own to specify style sheets.

Of course, the listing includes some familiar HTML tags. As you might
guess, body, h1, p, img, a, and div in the style sheet refer to the correspon-
ding tags in the HTML documents to which the style sheet will be applied.
The curly braces after each tag name contain the specifications for how all
content within that tag should appear.

In this case, all body text should be rendered at a size of 10 points, in the
Verdana font (if possible), and with the color black and 14 points between
lines. If the user does not have the Verdana font installed, the list of fonts
in the style sheet represents the order in which the browser should search
for fonts to use: Geneva, then Arial, then Helvetica. If the user has none of
those fonts, the browser will use whatever default sans-serif font is avail-
able. Additionally, the page should have left, right, and top margins of 5
points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a
size of 14 points. Moving on, any paragraph that uses only the <p> tag will

ptg

52 HOUR 4: Understanding Cascading Style Sheets

inherit all the styles indicated by the body element. However, if the <p> tag
uses a special class named subheader, the text will appear bold and in the
color #593d87 (a purple color).

The pt after each measurement in Listing 4.1 means points (there are 72
points in an inch). If you prefer, you can specify any style sheet measure-
ment in inches (in), centimeters (cm), pixels (px), or widths-of-a-letter-m,
which are called ems (em).

You might have noticed that each style rule in the listing ends with a semi-
colon (;). Semicolons are used to separate style rules from each other. It is
therefore customary to end each style rule with a semicolon so you can
easily add another style rule after it.

To link this style sheet to HTML documents, include a <link /> tag in the
<head> section of each document. Listing 4.2 shows the HTML code for the
page shown in Figure 4.1. It contains the following <link /> tag:

<link rel=”stylesheet” type=”text/css” href=”styles.css” />

This assumes that the style sheet is stored under the name styles.css in
the same folder as the HTML document. As long as the web browser sup-
ports style sheets—and all modern browsers do support style sheets—the
properties specified in the style sheet will apply to the content in the page
without the need for any special HTML formatting code. This confirms the
ultimate goal of XHTML, which is to provide a separation between the
content in a web page and the specific formatting required to display that
content.

Listing 4.2 HTML Code for the Page Shown in Figure 4.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About BAWSI</title>
<link rel=”stylesheet” type=”text/css” href=”styles.css” />

</head>
<body>

<h1>About BAWSI</h1>
<p>The Bay Area Women’s
Sports Initiative (BAWSI) is a public benefit, nonprofit
corporation with a mission to create programs and partnerships
through which women athletes bring health, hope and wholeness to
our community. Founded in 2005 by Olympic and World Cup soccer

NOTE

You can specify font sizes as
large as you like with style
sheets, although some display
devices and printers will not
correctly handle fonts larger
than 200 points.

ptg

A Basic Style Sheet 53

Listing 4.2 HTML Code for the Page Shown in Figure 4.1
stars Brandi Chastain and Julie Foudy and Marlene Bjornsrud,
former general manager of the San Jose CyberRays women’s
professional soccer team, BAWSI provides a meaningful path for
women athletes to become a more visible and valued part of the
Bay Area sports culture.</p>
<p class=”subheader”>BAWSI’s History</p>
<p>The concept of BAWSI was inspired by one of the most
spectacular achievements in women’s sports history and born out
of one its biggest disappointments... </p>
<p>[continue reading]</p>
<div class=”footer”>Copyright © 2005-2009 BAWSI
(www.bawsi.org). All rights reserved. Used with permission.</div>

</body>
</html>

The code in Listing 4.2 is interesting because it contains no formatting of
any kind. In other words, there is nothing in the HTML code that dictates
how the text and images are to be displayed—no colors, no fonts, nothing.
Yet the page is carefully formatted and rendered to the screen, thanks to
the link to the external style sheet, styles.css. The real benefit to this
approach is that you can easily create a site with multiple pages that main-
tains a consistent look and feel. And you have the benefit of isolating the
visual style of the page to a single document (the style sheet) so that one
change impacts all pages.

TIP
In most web browsers, you can
view the style rules in a style
sheet by opening the .css file
and choosing Notepad or anoth-
er text editor as the helper
application to view the file. (To
determine the name of the .css
file, look at the HTML source of
any web page that links to it.) To
edit your own style sheets, just
use a text editor.

NOTE

Although CSS is widely support-
ed in all modern web browsers,
it hasn’t always enjoyed such
wide support. Additionally, not
every browser’s support of CSS
is flawless. To find out about
how major browsers compare to
each other in terms of CSS sup-
port, take a look at this web site:
http://www.quirksmode.org/css
/contents.html.

Create a Style
Sheet of Your Own

Starting from scratch, create a new text document called mystyles.css and
add some style rules for the following basic HTML tags: <body>, <p>, <h1>,
and <h2>. Once your style sheet has been created, make a new HTML file
that contains these basic tags. Play around with different style rules and
see for yourself how simple it is to change entire blocks of text in para-
graphs with one simple change in a style sheet file.

TRY IT YOURSELF ▼

http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html

ptg

54 HOUR 4: Understanding Cascading Style Sheets

A CSS Style Primer
You now have a basic knowledge of CSS style sheets and how they are
based on style rules that describe the appearance of information in web
pages. The next few sections of this hour provide a quick overview of
some of the most important style properties and allow you to get started
using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors,
alignment, and margins, to name just a few. The style properties in CSS can
be generally grouped into two major categories:

. Layout properties, which consist of properties that impact the posi-
tioning of elements on a web page, such as margins, padding, align-
ment, and so on.

. Formatting properties, which consist of properties that affect the
visual display of elements within a web site, such as the font type,
size, color, and so on.

Layout Properties
CSS layout properties are used to determine how content is placed on a
web page. One of the most important layout properties is the display prop-
erty, which describes how an element is displayed with respect to other
elements. There are four possible values for the display property:

. block—The element is displayed on a new line, as in a new paragraph.

. list-item—The element is displayed on a new line with a list-item
mark (bullet) next to it.

. inline—The element is displayed inline with the current paragraph.

. none—The element is not displayed; it is hidden.

It’s easier to understand the display property if you visualize each element
on a web page occupying a rectangular area when displayed—the display
property controls the manner in which this rectangular area is displayed.
For example, the block value results in the element being placed on a new
line by itself, whereas the inline value places the element next to the con-
tent just before it. The display property is one of the few style properties
that can be applied in most style rules. Following is an example of how to
set the display property:

display:block;

NOTE

The display property relies on
a concept known as relative
positioning, which means that
elements are positioned rela-
tive to the location of other ele-
ments on a page. CSS also
supports absolute positioning,
which allows you to place an
element at an exact location on
a page independent of other
elements. You’ll learn more
about both of these types of
positioning in Part III,
“Advanced Web Design with
CSS.”

ptg

A CSS Style Primer 55

You control the size of the rectangular area for an element with the width
and height properties. Like many size-related CSS properties, width and
height property values can be specified in several different units of meas-
urement:

. in—Inches

. cm—Centimeters

. mm—Millimeters

. px—Pixels

. pt—Points

You can mix and match units however you choose within a style sheet, but
it’s generally a good idea to be consistent across a set of similar style prop-
erties. For example, you might want to stick with points for font properties
or pixels for dimensions. Following is an example of setting the width of
an element using pixel units:

width: 200px;

Formatting Properties
CSS formatting properties are used to control the appearance of content on
a web page, as opposed to controlling the physical positioning of the con-
tent. One of the most popular formatting properties is the border property,
which is used to establish a visible boundary around an element with a
box or partial box. The following border properties provide a means of
describing the borders of an element:

. border-width—The width of the border edge.

. border-color—The color of the border edge.

. border-style—The style of the border edge.

. border-left—The left side of the border.

. border-right—The right side of the border.

. border-top—The top of the border.

. border-bottom—The bottom of the border.

. border—All the border sides.

ptg

56 HOUR 4: Understanding Cascading Style Sheets

The border-width property is used to establish the width of the border
edge. It is often expressed in pixels, as the following code demonstrates:

border-width:5px;

Not surprisingly, the border-color and border-style properties are used to
set the border color and style. Following is an example of how these two
properties are set:

border-color:blue;
border-style:dotted;

The border-style property can be set to any of the following values:

. solid—A single-line border.

. double—A double-line border.

. dashed—A dashed border.

. dotted—A dotted border.

. groove—A border with a groove appearance.

. ridge—A border with a ridge appearance.

. inset—A border with an inset appearance.

. outset—A border with an outset appearance.

. none—No border.

The default value of the border-style property is none, which is why ele-
ments don’t have a border unless you set the border property to a different
style. The most common border styles are the solid and double styles.

The border-left, border-right, border-top, and border-bottom properties
allow you to set the border for each side of an element individually. If you
want a border to appear the same on all four sides, you can use the single
border property by itself, which expects the following styles separated by a
space: border-width, border-style, and border-color. Following is an exam-
ple of using the border property to set a border that consists of two (dou-
ble) red lines that are a total of 10 pixels in width:

border:10px double red;

Whereas the color of an element’s border is set with the border-color prop-
erty, the color of the inner region of an element is set using the color and
background-color properties. The color property sets the color of text in an

NOTE

The exception to the default
border-style of none is when
an image is placed within an
<a> tag so that it serves as a
linked image. In that case, a
solid border is automatically set
by default. That’s why you often
see linked images with the
style border-style:none, which
turns off the automatic border.

ptg

A CSS Style Primer 57

element (foreground) and the background-color property sets the color of
the background behind the text. Following is an example of setting both
color properties to predefined colors:

color:black;
background-color:orange;

You can also assign custom colors to these properties by specifying the col-
ors in hexadecimal (covered in more detail in Hour 9, “Working with
Colors”) or as RGB (Red Green Blue) decimal values, just as you do in
HTML:

background-color:#999999;
color:rgb(0,0,255);

You can also control the alignment and indentation of web page content
without too much trouble. This is accomplished with the text-align and
text-indent properties, as the following code demonstrates:

text-align:center;
text-indent:12px;

After you have an element properly aligned and indented, you might be
interested in setting its font. The following font properties are used to set
the various parameters associated with fonts:

. font-family—The family of the font.

. font-size—The size of the font.

. font-style—The style of the font (normal or italic).

. font-weight—The weight of the font (light, medium, bold, and so on).

The font-family property specifies a prioritized list of font family names. A
prioritized list is used instead of a single value to provide alternatives in
case a font isn’t available on a given system. The font-size property speci-
fies the size of the font using a unit of measurement, usually points.
Finally, the font-style property sets the style of the font and the font-
weight property sets the weight of the font. Following is an example of set-
ting these font properties:

font-family: Arial, sans-serif;
font-size: 36pt;
font-style: italic;
font-weight: medium;

ptg

58 HOUR 4: Understanding Cascading Style Sheets

Now that you know a whole lot more about style properties and how they
work, refer back at Listing 4.1 and see whether it makes a bit more sense.
Here’s a recap of the style properties used in that style sheet, which you
can use as a guide for understanding how it works:

. font—Lets you set many font properties at once. You can specify a
list of font names separated by commas; if the first is not available,
the next is tried, and so on. You can also include the words bold
and/or italic and a font size. Each of these font properties can be
specified separately with font-family, font-size, font-weight, and
font-style if you prefer.

. line-height—Also known in the publishing world as leading. This
sets the height of each line of text, usually in points.

. color—Sets the text color using the standard color names or hexadec-
imal color codes (see Hour 9 for more details).

. text-decoration—Useful for turning link underlining off—simply set
it to none. The values of underline, italic, and line-through are also
supported. The application of styles to links is covered in more detail
in Hour 8, “Using External and Internal Links.”

. text-align—Aligns text to the left, right, or center, along with justi-
fying the text with a value of justify.

. padding—Adds padding to the left, right, top, and bottom of an ele-
ment; this padding can be in measurement units or a percentage of
the page width. Use padding-left and padding-right if you want to
add padding to the left and right of the element independently. Use
padding-top or padding-bottom to add padding to the top or bottom of
the element, as appropriate. You’ll learn more about these style prop-
erties in Hours 14 and 15.

Using Style Classes
This is a “teach yourself” book, so you don’t have to go to a single class to
learn how to give your pages great style, although you do need to learn
what a style class is. Whenever you want some of the text on your pages to
look different from the other text, you can create what amounts to a cus-
tom-built HTML tag. Each type of specially formatted text you define is
called a style class. A style class is a custom set of formatting specifications
that can be applied to any element in a web page.

ptg

Using Style Classes 59

Before showing you a style class, I need to take a quick step back and clari-
fy some CSS terminology. First off, a CSS style property is a specific style
that can be assigned a value, such as color or font-size. You associate a
style property and its respective value with elements on a web page by
using a selector. A selector is used to identify tags on a page to which you
apply styles. Following is an example of a selector, a property, and a value
all included in a basic style rule:

h1 { font: 36pt Courier; }

In this code, h1 is the selector, font is the style property, and 36pt Courier is
the value. The selector is important because it means that the font setting
will be applied to all h1 elements in the web page. But maybe you want to
differentiate between some of the h1 elements—what then? The answer lies
in style classes.

Suppose you want two different kinds of <h1> headings for use in your
documents. You would create a style class for each one by putting the fol-
lowing CSS code in a style sheet:

h1.silly { font: 36pt Comic Sans; }
h1.serious { font: 36pt Arial; }

Notice that these selectors include a period (.) after h1, followed by a
descriptive class name. To choose between the two style classes, use the
class attribute, like this:

<h1 class=”silly”>Marvin’s Munchies Inc. </h1>
<p>Text about Marvin’s Munchies goes here. </p>

Or you could use this:

<h1 class=”serious”>MMI Investor Information</h1>
<p>Text for business investors goes here.</p>

When referencing a style class in HTML code, simply specify the class
name in the class attribute of an element. In the previous example, the
words Marvin’s Munchies Inc. would appear in a 36-point Comic Sans
font, assuming that you included a <link /> to the style sheet at the top of
the web page and assuming that the user has the Comic Sans font
installed. The words MMI Investor Information would appear in the 36-
point Arial font instead. You can see another example of classes in action in
Listing 4.2: look for the subheader <p> class and the footer <div> class.

What if you want to create a style class that could be applied to any ele-
ment, rather than just headings or some other particular tag? You can asso-

ptg

60 HOUR 4: Understanding Cascading Style Sheets

ciate a style class with the <div> tag, as in Listing 4.2, which is used to
enclose any text in a block that is somewhat similar to a paragraph of text;
the <div> tag is another useful container element.

You can essentially create your own custom HTML tag by using the div
selector followed by a period (.) followed by any style class name you
make up and any style specifications you choose. That tag can control any
number of font, spacing, and margin settings all at once. Wherever you
want to apply your custom tag in a page, use a <div> tag with the class
attribute followed by the class name you created.

For example, the style sheet in Listing 4.1 includes the following style class
specification:

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

}

This style class is applied in Listing 4.2 with the following tag:

<div class=”footer”>

Everything between that tag and the closing </div> tag in Listing 4.2
appears in 9-point, centered, italic text with 12-point vertical line spacing
and 30 points of padding at the top of the element.

What makes style classes so valuable is how they isolate style code from
web pages, effectively allowing you to focus your HTML code on the actu-
al content in a page, not how it is going to appear on the screen. Then you
can focus on how the content is rendered to the screen by fine-tuning the
style sheet. You might be surprised by how a relatively small amount of
code in a style sheet can have significant effects across an entire web site.
This makes your pages much easier to maintain and manipulate.

TIP
You might have noticed a
change in the coding style when
multiple properties are included
in a style rule. For style rules
with a single style, you’ll com-
monly see the property placed
on the same line as the rule,
like this:
div.footer { font-size: 9pt; }

However, when a style rule con-
tains multiple style properties,
it’s much easier to read and
understand the code if you list
the properties one-per-line, like
this:
div.footer {
font-size:9pt;
font-style: italic;
line-height:12pt;
text-align: center;
padding-top: 30pt;

}

ptg

Using Style IDs 61

Using Style IDs
When you create custom style classes, you can use those classes as many
times as you would like—they are not unique. However, there will be
some instances when you want to have precise control over unique ele-
ments for layout or formatting purposes (or both). In such instances, look
to IDs instead of classes.

A style ID is a custom set of formatting specifications that can be applied
only to one element in a web page. You can use IDs across a set of pages
but only once per time within each page.

For example, suppose you have a title within the body of all your pages.
Each page has only one title, but all of the pages themselves include one
instance of that title. Following is an example of a selector with an ID indi-
cated, plus a property and a value:

p#title {font: 24pt Verdana, Geneva, Arial, sans-serif}

Notice that this selector includes a hash mark, or pound sign (#), after p,
followed by a descriptive ID name. When referencing a style ID in HTML
code, simply specify the ID name in the id attribute of an element, like so:

<p id=”title”>Some Title Goes Here</p>

Everything between the opening and closing <p> tags will appear in 24-
point Verdana text—but only once on any given page. You will often see
style IDs used to define specific parts of a page for layout purposes, such
as a header area, footer area, main body area, and so on. These types of
areas in a page will appear only once per page, so using an ID rather than
a class is the appropriate choice.

Add Classes to
Your Style Sheet

Using the style sheet you created earlier in this hour, add some style class-
es to your style sheet. To see the fruits of your labor, apply those classes to
the HTML page you created as well. Use classes with your <h1> and <p>

tags to get the feel for things.

TRY IT YOURSELF ▼

ptg

62 HOUR 4: Understanding Cascading Style Sheets

Internal Style Sheets and Inline
Styles
In some situations, you might want to specify styles that will be used in
only one web page, in which case you can enclose a style sheet between
<style> and </style> tags and include it directly in an HTML document.
Style sheets used in this manner must appear in the <head> of an HTML
document. No <link /> tag is needed and you cannot refer to that style
sheet from any other page (unless you copy it into the beginning of that
document, too). This kind of style sheet is known as an internal style sheet,
as you learned earlier in the hour.

Listing 4.3 shows an example of how you might specify an internal style
sheet.

Listing 4.3 A Web Page with an Internal Style Sheet
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Some Page</title>

<style type=”text/css”>
div.footer {
font-size: 9pt;
line-height: 12pt;
text-align: center;

}
</style>

</head>
<body>
...
<div class=”footer”>
Copyright 2009 Acme Products, Inc.
</div>
</body>

</html>

In the listing code, the div.footer style class is specified in an internal style
sheet that appears in the head of the page. The style class is now available
for use within the body of this page. And, in fact, it is used in the body of
the page to style the copyright notice.

ptg

Internal Style Sheets and Inline Styles 63

Internal style sheets are handy if you want to create a style rule that is
used multiple times within a single page. However, in some instances you
might need to apply a unique style to one particular element. This calls for
an inline style rule, which allows you to specify a style for only a small
part of a page, such as an individual element. For example, you can create
and apply a style rule within a <p>, <div>, or tag via the style attrib-
ute. This type of style is known as an inline style because it is specified
right there in the middle of the HTML code.

Here’s how a sample style attribute might look:

<p style=”color:green”>
This text is green, but this text is
red.
Back to green again, but...

</p>
<p>
...now the green is over, and we’re back to the default color
for this page.

</p>

This code makes use of the tag to show how to apply the color style
property in an inline style rule. In fact, both the <p> tag and the tag in
this example use the color property as an inline style. What’s important to
understand is that the color:red style property overrides the color:green style
property for the text appearing between the and tags. Then in
the second paragraph, neither of the color styles applies because it is a com-
pletely new paragraph that adheres to the default color of the entire page.

NOTE

 and are dummy
tags that do nothing in and of
themselves except specify a
range of content to apply any
style attributes that you add.
The only difference between
<div> and is that <div>
is a block element and there-
fore forces a line break, where-
as doesn’t. Therefore,
you should use to modi-
fy the style of any portion of
text that is to appear in the
middle of a sentence or para-
graph without any line break.

Validate Your Style
Sheets
Just as it is important to vali-
date your HTML or XHTML
markup, it is important to vali-
date your style sheet. A specific
validation tool for CSS can be
found at
http://jigsaw.w3.org/css-
validator/. Just like the vali-
dation tool discussed in Hour
3, you can point the tool to a
web address, upload a file, or
paste content into the form
field provided. The ultimate goal
is a result such as that shown
in Figure 4.3: valid!

FIGURE 4.3
The W3C CSS Validator shows
there are no errors in the style
sheet contents of Listing 4.1.

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

ptg

64 HOUR 4: Understanding Cascading Style Sheets

Summary
In this hour, you learned that a style sheet can control the appearance of
many HTML pages at once. It can also give you extremely precise control
over the typography, spacing, and positioning of HTML elements. You also
learned that by adding a style attribute to almost any HTML tag, you can
control the style of any part of an HTML page without referring to a sepa-
rate style sheet document.

You learned about three main approaches to including style sheets in your
web site: a separate style sheet file with the extension .css that is linked to
in the <head> of your documents, a collection of style rules placed in the
head of the document within the <style> tag, and as rules placed directly
in an HTML tag via the style attribute.

Table 4.1 summarizes the tags discussed in this hour. Refer to the CSS 2
style sheet standards at http://www.w3c.org for details on what options
can be included after the <style> tag or the style attribute.

Table 4.1 HTML Tags and Attributes Covered in Hour 4

Tag/Attributes Function

<style>…</style> Allows an internal style sheet to be included within a
document. Used between <head> and </head>.

Attribute
type=”contenttype” The Internet content type. (Always “text/css” for a

CSS style sheet.)

<link /> Links to an external style sheet (or other document
type). Used in the <head> section of the document.

Attribute
href=”url” The address of the style sheet.

type=”contenttype” The Internet content type. (Always “text/css” for a
CSS style sheet.)

rel=”stylesheet” The link type. (Always “stylesheet” for style sheets.)

… Does nothing but provide a place to put style or
other attributes. (Similar to <div>…</div> but does
not cause a line break.)

Attribute
style=”style” Includes inline style specifications. (Can be used in

, <div>, <body>, and most other HTML tags.)

http://www.w3c.org

ptg

Q&A 65

Q&A
Q Say I link a style sheet to my page that says all text should be blue,

but there’s a tag in the page some-
where. Will that text display as blue or will it display as red?

A Red. Local inline styles always take precedence over external style
sheets. Any style specifications you put between <style> and </style>

tags at the top of a page will also take precedence over external style
sheets (but not over inline styles later in the same page). This is the
cascading effect of style sheets that I mentioned earlier in the hour. So
you can think of cascading style effects as starting with an external
style sheet, which is overridden by an internal style sheet, which is
overridden by inline styles.

Q Can I link more than one style sheet to a single page?

A Sure. For example, you might have a sheet for formatting (text, fonts,
colors, and so on) and another one for layout (margins, padding, align-
ment, and so on)—just include a <link /> for both. Technically speak-
ing, the CSS standard requires web browsers to give the user the
option to choose between style sheets when multiple sheets are pre-
sented via multiple <link /> tags. However, in practice, all major web
browsers simply include every style sheet. The preferred technique for
linking in multiple style sheets involves using the special @import com-
mand. Following is an example of importing multiple style sheets with
@import:

@import url(styles1.css);
@import url(styles2.css);

Similar to the <link /> tag, the @import command must be placed in
the head of a web page. You learn more about this handy little com-
mand in Hour 20, “Creating Print-Friendly Designs,” when you learn
how to create a style sheet specifically for printing web pages.

ptg

66 HOUR 4: Understanding Cascading Style Sheets

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What code would you use to create a style sheet to specify 30-point

blue Arial headings and all other text in double-spaced, 10-point blue
Times Roman (or the default browser font)?

2. If you saved the style sheet you made for Question 1 as
corporate.css, how would you apply it to a web page named
intro.html?

3. How many different ways are there to ensure style rules can be
applied to your content?

Answers
1. Your style sheet would include:

h1 { font: 30pt blue Arial; }
body { font: 10pt blue; }

2. Put the following tag between the <head> and </head> tags of the
intro.html document:

<link rel=”stylesheet” type=”text/css” href=”corporate.css” />

3. Three: externally, internally, and inline.

Exercises
. Develop a standard style sheet for your web site and link it into all

your pages. (Use internal style sheets and/or inline styles for pages
that need to deviate from it.) If you work for a corporation, chances
are it has already developed font and style specifications for printed
materials. Get a copy of those specifications and follow them for
company web pages, too.

. Be sure to explore the official style sheet specs at
http://www.w3.org/Style/CSS/ and try some of the more esoteric
style properties not covered in this hour.

http://www.w3.org/Style/CSS/

ptg

In the early days of the Web, text was displayed in only one font and in
one size. However, a combination of HTML and CSS now makes it possi-
ble to control the appearance of text and how it is aligned and displayed
on a web page. This hour will show you the basics of text alignment and
will guide you through some advanced text tips and tricks, such as the use
of lists. Because lists are so common, HTML provides tags that automati-
cally indent text and add numbers, bullets, or other symbols in front of
each listed item. You’ll learn how to format different types of lists, which
are part of the many ways to display content in your web site.

HOUR 5
Working with Text
Blocks and Lists

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to align text on a
page

. How to use the three types
of HTML lists

. How to place lists within
lists

Preparing
Sample Text

You can make the most of learning how to style text throughout this hour
if you have some sample text that could be indented, centered, or other-
wise manipulated:

. Any type of outline, bullet points from a presentation, numbered
steps, glossary, or list of textual information from a database will
serve as good material to work with.

. Any text will do, but try to find (or type) some text you want to put
onto a web page. The text from a company brochure or from your
résumé might be a good choice.

. If the text you’ll be using is from a word processing or database pro-
gram, be sure to save it to a new file in plain-text or ASCII format.
You can then add the appropriate HTML tags and style attributes to
format it as you go through this lesson.

. Before you use the code introduced in this chapter to format the
body text, add the set of skeleton HTML tags you’ve used in previ-
ous hours (the <html>, <head>, <title>, and <body> tags).

TRY IT YOURSELF ▼

ptg

68 HOUR 5: Working with Text Blocks and Lists

Aligning Text on a Page
It’s easy to take for granted the fact that most paragraphs are automatically
aligned to the left when you’re reading information on the Web. However,
there certainly are situations in which you might choose to align content to
the right or even the center of a page. HTML gives you the option to align
a single HTML block-level element, such as text contained within a <p></p>
or <div></div> tag pair. Before we get into the details of aligning block ele-
ments, however, let’s briefly note how attributes work.

Using Attributes
Attributes are used to provide additional information related to an HTML
tag. Attributes are special code words used inside an HTML tag to control
exactly what the tag does. They are very important in even the simplest bit
of web content, so it’s important that you are comfortable using them.

Attributes invoke the use of styles, classes, or IDs that are applied to par-
ticular tags. If you define a particular class or ID in a style sheet—as you
learned in Hour 4—then you can invoke that class or ID using
class=”someclass” or id=”someid” within the tag itself. When the browser
renders the content for display, it will look to the style sheet to determine
exactly how the content will appear according to the associated style defi-
nitions. Similarly, you can use the style attribute to include style informa-
tion for a particular element without connecting the element to an actual
style sheet. For example, when you begin a paragraph with the <p> tag,
you can specify whether the text in that particular paragraph should be
aligned to the left margin, the right margin, or to the center of the page by
setting the style attribute. If you want to associate that particular para-
graph with an existing class or ID, you set the class or id attribute.

In the following example, each paragraph could be left-aligned:

<p style=”text-align: left;”>Text goes here.</p>
<p class=”leftAlignStyle”>Text goes here.</p>
<p id=”firstLeftAlign”>Text goes here.</p>

In the first paragraph, the style appears directly in the style attribute. In
the second paragraph, the paragraph will be left-aligned if the style sheet
entry for the leftAlignStyle class includes the text-align statement.
Similarly, the third paragraph will be left-aligned if the style sheet entry for
the firstLeftAlign class includes the text-align statement.

ptg

Aligning Text on a Page 69

In the previous example and in examples shown in previous hours, you
might have noticed the use of lowercase for tags, attributes, and styles.
The exacting XHTML standard requires tags and attributes to be lowercase;
the XHTML standard also requires quotation marks around attribute val-
ues.

For example, the following code will be rendered by most popular web
browsers:

<P STYLE=TEXT-ALIGN:CENTER>

However, this code does not conform to XHTML standards because the tag
is uppercased, the style attribute and its value (text-align:center) is
uppercased, and the value isn’t in quotation marks. If you want to stay
compatible with the latest standards and software, you should always use
the following instead:

<p style=”text-align:center”>

Aligning Block-Level Elements
To align a block-level element such as <p> to the right margin without cre-
ating a separate class or ID in a style sheet, simply place style=”text-
align:right” inside the <p> tag at the beginning of the paragraph.
Similarly, to center the element, use <p style=”text-align:center”>. To
align a paragraph to the left, use <p style=”text-align:left”>.

The text-align part of the style attribute is referred to as a style rule, which
means that it is setting a particular style aspect of an HTML element. There
are many style rules you can use to carefully control the formatting of web
content.

The text-align style rule is not reserved for just the <p> tag. In fact, you can
use the text-align style rule with any block-level element, which includes
<h1>, <h2>, the other heading tags, and the <div> tag, among others. The
<div> tag is especially handy because it can encompass other block-level
elements and thus allow you to control the alignment of large portions of
your web content all at once. The div in the <div> tag is for division.

Listing 5.1 demonstrates the style attribute and text-align style rule with
both the <p> and the <div> tags. The results are shown in Figure 5.1. You’ll
learn many more advanced uses of the <div> tag in Part III.

NOTE

Every attribute and style rule in
HTML has a default value that
is assumed when you don’t set
the attribute yourself. In the
case of the text-align style
rule of the <p> tag, the default
value is left, so using the bare-
bones <p> tag has the same
effect as using <p
style=”text-align:left”>.
Learning the default values for
common style rules is an impor-
tant part of becoming a good
web page developer.

ptg

70 HOUR 5: Working with Text Blocks and Lists

Listing 5.1 The text-align Style Rule Used with the style Attribute
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Bohemia</title>

</head>

<body>
<div style=”text-align:center”>
<h1>Bohemia</h1>
<h2>by Dorothy Parker</h2>

</div>
<p style=”text-align:left”>
Authors and actors and artists and such

Never know nothing, and never know much.

Sculptors and singers and those of their kidney

Tell their affairs from Seattle to Sydney.

</p>
<p style=”text-align:center”>
Playwrights and poets and such horses’ necks

Start off from anywhere, end up at sex.

Diarists, critics, and similar roe

Never say nothing, and never say no.

</p>
<p style=”text-align:right”>
People Who Do Things exceed my endurance;

God, for a man that solicits insurance!

</p>
</body>

</html>

FIGURE 5.1
The results of using the text
alignment in Listing 5.1.

ptg

The Three Types of HTML Lists 71

The use of <div style=”text-align:center”> ensures that the content area,
including the two headings, are centered. However, the text alignment of
the individual paragraphs within the <div> override the setting and ensure
that the text of the first paragraph is left-aligned, the second paragraph is
centered, and the third paragraph is right-aligned.

The Three Types of HTML Lists
For clarity, it’s often useful to present information on a web page as a list
of items. There are three basic types of HTML lists. All three are shown in
Figure 5.2, and Listing 5.2 reveals the HTML used to construct them:

. Ordered list—An indented list that has numbers or letters before
each list item. The ordered list begins with the tag and ends
with a closing tag. List items are enclosed in the tag
pair and line breaks appear automatically at each opening tag.
The entire list is indented.

. Unordered list—An indented list that has a bullet or other symbol
before each list item. The unordered list begins with the tag and
closes with . Like the ordered list, its list items are enclosed in
the tag pair. A line break and symbol appear at each open-
ing tag and the entire list is indented.

. Definition list—A list of terms and their meanings. This type of list,
which has no special number, letter, or symbol before each item,
begins with <dl> and ends with </dl>. The <dt></dt> tag pair encloses
each term and the <dd></dd> tag pair encloses each definition. Line
breaks and indentations appear automatically.

Listing 5.2 Unordered Lists, Ordered Lists, and Definition Lists
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>How to Be Proper</title>

</head>

<body>
<h1>How to Be Proper</h1>
<h2>Basic Etiquette for a Gentlemen Greeting a Lady Aquaintance</h2>

Wait for her acknowledging bow before tipping your hat.
Use the hand farthest from her to raise the hat.

ptg

72 HOUR 5: Working with Text Blocks and Lists

Listing 5.2 Unordered Lists, Ordered Lists, and Definition Lists
Walk with her if she expresses a wish to converse; Never
make a lady stand talking in the street.
When walking, the lady must always have the wall.

<h2>Recourse for a Lady Toward Unpleasant Men Who Persist in Bowing</h2>

A simple stare of iciness should suffice in most instances.
A cold bow discourages familiarity without offering insult.
As a last resort: “Sir, I have not the honour of your
aquaintance.”

<h2>Proper Address of Royalty</h2>
<dl>
<dt>Your Majesty</dt>
<dd>To the king or queen.</dd>
<dt>Your Royal Highness</dt>
<dd>To the monarch’s spouse, children, and siblings.</dd>
<dt>Your Highness</dt>
<dd>To nephews, nieces, and cousins of the sovereign.</dd>

</dl>
</body>

</html>

FIGURE 5.2
The three basic types
of HTML lists.

NOTE

Remember that different web
browsers can display web con-
tent quite differently. The HTML
standard doesn’t specify exactly
how web browsers should for-
mat lists, so users with older
web browsers might not see
exactly the same indentation
you see. You can use CSS to
gain precise control over list
items, which you will learn
about later in this hour.

ptg

Placing Lists Within Lists 73

Placing Lists Within Lists
Although definition lists are officially supposed to be used for defining
terms, many web page authors use them anywhere they’d like to see some
indentation. In practice, you can indent any text simply by putting <dl><dd>
at the beginning of it and </dd></dl> at the end and skipping over the
<dt></dt> tag pair. However, a better approach to indenting text is to use
the <blockquote></blockquote> tag pair, which indents content without the
presumption of a definition and allows for much more clear styling. With
one set of attributes, you can set the width, height, background color, bor-
der type and color of your element area, and other visual effects.

Because of the level of control over the display of your items that you have
when using CSS, there is no need to use nested lists to achieve the visual
appearance of indentation. Reserve your use of nested lists for when the
content warrants it. In other words, use nested lists to show a hierarchy of
information, such as in Listing 5.3.

Ordered and unordered lists can be nested inside one another, down to as
many levels as you want. In Listing 5.3, a complex indented outline is con-
structed from several unordered lists. You’ll notice in Figure 5.3 that
Firefox automatically uses a different type of bullet for each of the first
three levels of indentation, making the list very easy to read. This is com-
mon in modern browsers.

Listing 5.3 Using Lists to Build Outlines
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Vertebrates</title>

</head>

<body>
<h1>Vertebrates</h1>

Fish

Barramundi
Kissing Gourami
Mummichog

Amphibians

NOTE

Nesting refers to a tag that
appears entirely within another
tag. Nested tags are also
referred to as child tags of the
(parent) tag that contains them.
It is a common (but not
required) coding practice to
indent nested tags so that you
can easily see their relationship
to the parent tag.

ptg

74 HOUR 5: Working with Text Blocks and Lists

Listing 5.3 Using Lists to Build Outlines

Anura

Goliath Frog
Poison Dart Frog
Purple Frog

Caudata

Hellbender
Mudpuppy

Reptiles

Nile Crocodile
King Cobra
Common Snapping Turtle

</body>

</html>

FIGURE 5.3
In Firefox, multilevel unordered
lists are neatly indented and
bulleted for improved readability.

ptg

Placing Lists Within Lists 75

As shown in Figure 5.3, a web browser will normally use a solid disc for
the first-level bullet, a hollow circle for the second-level bullet, and a solid
square for all deeper levels. However, you can explicitly choose which type
of bullet to use for any level by using <ul style=”list-style-type:disc”>,
<ul style=”list-style-type:circle”>, or <ul style=”list-style-
type:square”> instead of .

You can even change the bullet for any single point within an unordered
list by using the list-style-type style rule in the tag. For example, the
following codes displays a hollow circle in front of the words extra and
super and a solid square in front of the word special:

<ul style=”list-style-type:circle”>
extra
super
<li style=”list-style-type:square”>special

The list-style-type style rule also works with ordered lists, but instead of
choosing a type of bullet, you choose the type of numbers or letters to
place in front of each item. Listing 5.4 shows how to use Roman numerals
(list-style-type:upper-roman), capital letters (list-style-type:upper-alpha),
lowercase letters (list-style-type:lower-alpha), and ordinary numbers in a
multilevel list. Figure 5.4 shows the resulting outline, which is nicely for-
matted.

Although Listing 5.4 uses the list-style-type style rule only with the
tag, you can also use it for specific tags within a list (though it’s hard
to imagine a situation in which you would want to do this). You can also
explicitly specify ordinary numbering with list-style-type:decimal and
you can make lowercase Roman numerals with list-style-type:lower-
roman.

Listing 5.4 Using the list-style-type Style Rule with the style Attribute
in Multitiered Lists
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Advice from the Golf Guru</title>

</head>

<body>
<h1>How to Win at Golf</h1>

ptg

76 HOUR 5: Working with Text Blocks and Lists

Listing 5.4 Using the list-style-type Style Rule with the style Attribute in
Multitiered Lists

<ol style=”list-style-type:upper-roman”>
Training

Mental prep
<ol style=”list-style-type:upper-alpha”>
Watch golf on TV religiously
Get that computer game with Tiger whatsisname
Rent “personal victory” subliminal tapes

Equipment
<ol style=”list-style-type:upper-alpha”>
Make sure your putter has a pro autograph on it
Pick up a bargain bag of tees-n-balls at Costco

Diet
<ol style=”list-style-type:upper-alpha”>
Avoid junk food
<ol style=”list-style-type:lower-alpha”>
No hotdogs

Drink wine and mixed drinks only, no beer

Pre-game

Dress
<ol style=”list-style-type:upper-alpha”>
Put on shorts, even if it’s freezing
Buy a new hat if you lost last time

Location and Scheduling
<ol style=”list-style-type:upper-alpha”>
Select a course where your spouse or boss won’t find you
To save on fees, play where your buddy works

Opponent
<ol style=”list-style-type:upper-alpha”>

Look for: overconfidence, inexperience
Buy opponent as many pre-game drinks as possible

ptg

Placing Lists Within Lists 77

Listing 5.4 Using the list-style-type Style Rule with the style Attribute in
Multitiered Lists

On the Course

Tee off first, then develop severe hayfever
Drive cart over opponent’s ball to degrade aerodynamics
Say “fore” just before ball makes contact with opponent
Always replace divots when putting
Water cooler holes are a good time to correct any errors in ball
placement

</body>

</html>

FIGURE 5.4
A well-formatted outline can make
almost any plan look more plausible.

ptg

78 HOUR 5: Working with Text Blocks and Lists

Summary
In this hour, you learned that attributes are used to specify options and
special behavior of many HTML tags and you also learned to use the style
attribute with CSS style rules to align text. You also learned how to create
and combine three basic types of HTML lists: ordered lists, unordered lists,
and definition lists. Lists can be placed within other lists to create outlines
and other complex arrangements of text.

Table 5.1 summarizes the tags and attributes discussed in this hour. Don’t
feel like you have to memorize all these tags, by the way! That’s why you
have this book: You can look up the tags when you need them. Remember
that all the HTML tags are listed in Appendix B, “Complete XHTML 1.1
and CSS 2 Quick Reference.”

Table 5.1 HTML Tags and Attributes Covered in Hour 5

Tag/Attribute Function

<div>…</div> A region of text to be formatted.

<dl>…</dl> A definition list.

<dt>…</dt> A definition term, as part of a definition list.

<dd>…</dd> The corresponding definition to a definition term, as
part of a definition list.

… An ordered (numbered) list.

… An unordered (bulleted) list.

… A list item for use with or .

Attributes

style=”text-align:alignment” Align text to center, left, or right.
(Can also be used with <p>, <h1>,
<h2>, <h3>, and so on.)

style=”list-style-type:numtype” The type of numerals used to label
the list. Possible values are decimal,
lower-roman, upper-roman, lower-
alpha, upper-alpha, and none.

style=”list-style-type:bullettype” The bullet dingbat used to mark list
items. Possible values are disc, cir-
cle, square, and none.

style=”list-style-type:type” The type of bullet or number used to
label this item. Possible values are
disc, circle, square, decimal, lower-
roman, upper-roman, lower-alpha,
upper-alpha, and none.

ptg

Workshop 79

Q&A
Q I’ve seen web pages that use three-dimensional little balls or other

special graphics for bullets. How do they do that?

A That trick is a little bit beyond what this hour covers. You’ll learn how to
do it yourself in Hour 11.

Q How do I “full justify” text so that both the left and right margins are
flush?

A You can use text-align:justify in your style declaration.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. How would you center everything on an entire page?

2. How would you indent a single word and put a square bullet in
front of it?

3. What would you use to create a definition list to show that the word
“glunch” means “a look of disdain, anger, or displeasure” and that
the word “glumpy” means “sullen, morose, or sulky”?

Answers
1. If you thought about putting a <div style=”text-align:center”>

immediately after the <body> tag at the top of the page, and </div>
just before the </body> tag at the end of the page, then you’re correct.
However, the text-align style is also supported directly in the <body>
tag, which means you can forego the <div> tag and place the
style=”text-align:center” style directly in the <body> tag. Presto, the
entire page is centered!

2. You would use:

<ul style=”list-style-type:square”>
supercalifragilisticexpealidocious

ptg

80 HOUR 5: Working with Text Blocks and Lists

(Putting the style=”list-style-type:square” in the tag would
give the same result because there’s only one item in this list.)

3. You would use:

<dl>
<dt>glunch</dt><dd>a look of disdain, anger, or displeasure</dd>
<dt>glumpy</dt><dd>sullen, morose, or sulky</dd>
</dl>

Exercises
. Use the text alignment style attributes to place blocks of text in vari-

ous places on your web page. Try nesting your paragraphs and divi-
sions (<p> and <div>) to get a feel for how styles do or do not cascade
through the content hierarchy.

. Try producing an ordered list outlining the information you’d like to
put on your web pages. This will give you practice formatting HTML
lists and also give you a head start on thinking about the issues cov-
ered in later hours of this book.

ptg

In the previous hour, you learned the basics of creating blocks of text and
putting that text into list format. In this hour, you’ll take a closer look at
the bits of text themselves, and learn how to change the visual display of
the font—it’s font family, size, and weight, for example. You’ll learn to
incorporate boldface, italics, superscripts, subscripts, and strikethrough
text into your pages. You will also learn how to change typefaces and font
sizes.

NOTE

When viewing other designers’ web content, you might notice methods of mark-
ing up text that are different than those taught in this book. The “old way” of
formatting text includes the use of the tag pair to indicate when a word
should be bolded, the <i></i> tag pair to indicate when a word should be in ital-
ics, and the use of a tag pair to specify font family, size, and
other attributes. However, there is no reason to learn it because it is being
phased out of HTML, and CSS is considerably more powerful.

HOUR 6
Working with Fonts

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to use boldface, ital-
ics, and special text for-
matting

. How to tweak the font

. How to use special charac-
ters

More Work with
Sample Text

Just like you created a sample file to work with in the previous hour, create
one for this hour so you can follow along and make the most of learning
how to style text throughout this hour.

Since the information in this hour has to do with font-level styles, it does-
n’t really matter what type of text you use. There are so many different
stylistic possibilities to try that they would never appear all on the same
web page anyway (unless you wanted to drive your visitors batty). Take
this opportunity to get a feel for how text-level changes can affect the
appearance of your content.

TRY IT YOURSELF ▼

ptg

82 HOUR 6: Working with Fonts

Boldface, Italics, and Special Text
Formatting
Way back in the age of the typewriter, we were content with plain-text and
an occasional underline for emphasis. Today, boldface and italic text have
become de rigueur in all paper communication. Naturally, you can add
bold and italic text to your web content as well. There are several tags and
style rules that make text formatting possible.

The “old school” approach to adding bold and italic formatting to text
involves the and <i></i> tag pairs. For boldface text, put the tag
at the beginning of the text and at the end. Similarly, you can make
any text italic by enclosing it between <i> and </i> tags. Although this
approach still works fine in browsers and is supported by XHTML, it isn’t
as flexible or powerful as the CSS style rules for text formatting.

Although you’ll learn much more about CSS style rules in Part III, it’s
worth a little foreshadowing just so you understand the text formatting
options. The font-weight style rule allows you to set the weight, or bold-
ness, of a font using a style rule. Standard settings for font-weight include
normal, bold, bolder, and lighter (with normal being the default). Italic text is
controlled via the font-style rule, which can be set to normal, italic, or
oblique. Style rules can be specified together if you want to apply more
than one, as the following example demonstrates:

<p style=”font-weight:bold; font-style:italic”>This paragraph is bold and
italic!</p>

In this example, both style rules are specified in the style attribute of the
<p> tag. The key to using multiple style rules is that they must be separated
by a semicolon (;).

You aren’t limited to using font styles in paragraphs, however. The follow-
ing code shows how to italicize text in a bulleted list:

<li style=”font-style:italic”>Important Stuff
<li style=”font-style:italic”>Critical Information
<li style=”font-style:italic”>Highly Sensitive Material
Nothing All That Useful

You can also use the font-weight style rule within headings, but a heavier
font usually doesn’t have an effect on headings because they are already
bold by default.

NOTE
An alternative to style rules
when it comes to bold and italic
text involves the
 and
 tag pairs. The
 tag does the same
thing as the tag in most
browsers, whereas the tag
acts just like the tag <i> by for-
matting text as italics.

The and tags are
considered by some to be an
improvement over and <i>

because they imply only that
the text should receive special
emphasis, rather than dictating
exactly how that effect should
be achieved. In other words, a
browser doesn’t necessarily
have to interpret as
meaning bold or as mean-
ing italic. This makes
and more fitting in XHTML
because they add meaning to
text, along with affecting how
the text should be displayed. All
four tags remain part of HTML
5, although their use becomes
slightly more nuanced.

ptg

Boldface, Italics, and Special Text Formatting 83

Although using CSS allows you to apply richer formatting, there are a few
other HTML tags that are good for adding special formatting to text when
you don’t necessarily need to be as specific as CSS allows you to be.
Following are some of these tags. Listing 6.1 and Figure 6.1 demonstrate
each tag in action.

. <small></small>—Small text

. <big></big>—Big text; not present in HTML 5 because text size is bet-
ter controlled by CSS.

. —Superscript text

. —Subscript text

. or <i></i>—Emphasized (italic) text

. or —Strong (boldface) text

. <tt></tt>—Monospaced text (typewriter font) ; not present in HTML
5 because font appearance is better controlled by CSS.

. <pre></pre> —Monospaced text, preserving spaces and line breaks

Listing 6.1 Special Formatting Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The Miracle Product</title>

</head>

<body>
<p>
New ^{Super}Strength H₂O
plus will knock out any stain, <big>big</big> or
<small>small</small>.
 Look for new
^{Super}Strength H₂O <i>plus</i>
in a stream near you.

</p>
<p>
<tt>NUTRITION INFORMATION</tt> (void where prohibited)

</p>
<pre>

Calories Grams USRDA
/Serving of Fat Moisture

Regular 3 4 100%
Unleaded 3 2 100%

WARNING

There used to be a <u> tag for
creating underlined text, but
there are a couple of reasons
not to use it now. First off,
users expect underlined text to
be a link, so they might get con-
fused if you underline text that
isn’t a link. Secondly, the <u>
tag is deprecated, which means
that it has been phased out of
the HTML/XHTML language, as
has the <strike> tag. Both
tags are still supported in web
browsers and likely will be for
quite a while, but using CSS is
the preferred approach to creat-
ing underlined and
strikethrough text. In HTML 5,
deleted text can be surrounded
by the <strike><strike> tag
pair, which will render as text
with a strikethrough.

ptg

84 HOUR 6: Working with Fonts

Listing 6.1 Special Formatting Tags
Organic 2 3 99%
Sugar Free 0 1 110%

</pre>
</body>

</html>

The <tt> tag usually changes the typeface to Courier New, a monospaced
font. (Monospaced means that all the letters and spaces are the same width.)
However, web browsers let users change the monospaced <tt> font to the
typeface of their choice (look on the Options menu of your browser). The
monospaced font might not even be monospaced for some users, though
the vast majority of users stick with the standard fonts that their browsers
show by default.

FIGURE 6.1
Here’s what the character format-
ting from Listing 6.1 looks like.

The <pre> tag causes text to appear in the monospaced font, but it also does
something else unique and useful. As you learned in Hour 3, multiple
spaces and line breaks are normally ignored in HTML files, but <pre> caus-
es exact spacing and line breaks to be preserved. For example, without
<pre>, the text at the end of Figure 6.1 would look like the following:

calories grams usrda /serving of fat moisture regular
3 4 100% unleaded 3 2 100% organic 2 3 99% sugar free 0 1 110%

Even if you added
 tags at the end of every line, the columns would-
n’t line up properly. However, when you put <pre> at the beginning and
</pre> at the end, the columns line up properly because the exact spaces

ptg

Tweaking the Font 85

are kept—no
 tags are needed. The <pre> tag gives you a quick and
easy way to preserve the alignment of any monospaced text files you
might want to transfer to a web page with minimum effort.

CSS provides you with more robust methods for lining up text (and doing
anything with text, actually), and you’ll learn more about them through-
out Part III.

Tweaking the Font
The <big>, <small>, and <tt> tags give you some rudimentary control over
the size and appearance of the text on your pages. However, there might
be times when you’d just like a bit more control over the size and appear-
ance of your text. Before I get into the appropriate way to tinker with the
font in XHTML code, let’s briefly take a look at how things were done
prior to CSS because you might still find examples of this method when
you look at the source code for other web sites. Remember, just because
these older methods are in use doesn’t mean you should follow suit.

Before style sheets entered the picture, the now phased-out tag was
used to control the fonts in web page text. For example, the following
HTML will change the size and color of some text on a page:

this text will be big and purple.

As you can see, the size and color attributes of the tag made it pos-
sible to alter the font of the text without too much effort. Although this
approach worked fine, it was replaced with a far superior approach to font
formatting, thanks to CSS style rules. Following are a few of the main style
rules used to control fonts:

. font-family—Sets the family (typeface) of the font.

. font-size—Sets the size of the font.

. color—Sets the color of the font.

The font-family style rule allows you to set the typeface used to display
text. You can and usually should specify more than one value for this style
(separated by commas) so that if the first font isn’t available on a user’s
system, the browser can try an alternative. You’ve already seen this in pre-
vious lessons. Providing alternative font families is important because each
user potentially has a different set of fonts installed, at least beyond a core

NOTE

You’ll learn more about control-
ling the color of the text on your
pages in Hour 9, “Working with
Colors.” That hour also shows
you how to create your own cus-
tom colors and how to control
the color of text links.

ptg

86 HOUR 6: Working with Fonts

set of common basic fonts (Arial, Times New Roman, and so forth). By pro-
viding a list of alternative fonts, you have a better chance of your pages
gracefully falling back on a known font when your ideal font isn’t found.
Following is an example of the font-family style used to set the typeface
for a paragraph of text:

<p style=”font-family:arial, sans-serif, ‘times roman’”>

There are several interesting things about this example. First, arial is speci-
fied as the primary font. Capitalization does not affect the font family, so
arial is no different from Arial or ARIAL. Another interesting thing about
this code is how single quotes are used around the times roman font name
because it has a space in it. However, since ‘times roman’ appears after the
generic specification of sans-serif, it is unlikely that ‘times roman’ would
be used. Because sans-serif is in the second position, it says to the browser
“if Arial is not on this machine, use the default sans-serif font.”

The font-size and color style rules are also commonly used to control the
size and color of fonts. The font-size style can be set to a predefined size
(such as small, medium, or large) or you can set it to a specific point size
(such as 12pt or 14pt). The color style can be set to a predefined color
(such as white, black, blue, red, or green) or you can set it to a specific hexa-
decimal color (such as #FFB499.) Following is the previous paragraph exam-
ple with the font size and color specified:

<p style=”font-family:arial, sans-serif, ‘times roman’; font-size:14pt;
color:green”>

The example web content in Listing 6.2 and shown in Figure 6.2 uses some
font style rules to create the beginning of a basic online résumé.

Listing 6.2 Using Font Style Rules to Create a Basic Résumé
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Résumé for Jane Doe</title>

<style type=”text/css”>
body {
font-family: Verdana, sans-serif;
font-size: 12px;

}

NOTE

You’ll learn about hexadecimal
colors in Hour 9. For now, just
understand that the color style
rule allows you to specify exact
colors beyond just using green,
blue, orange, and so forth.

ptg

Tweaking the Font 87

Listing 6.2 Using Font Style Rules to Create a Basic Résumé
h1 {
font-family:Georgia, serif;
font-size:28px;
text-align:center;

}

p.contactinfo {
font-size:14px;
text-align:center;

}

p.categorylabel {
font-size:12px;
font-weight:bold;
text-transform:uppercase;

}

div.indented {
margin-left: 25px;

}
</style>

</head>
<body>

<h1>Jane Doe</h1>
<p class=”contactinfo”>1234 Main Street, Sometown,
CA 93829

tel: 555-555-1212, e-mail: jane@doe.com</p>

<p class=”categorylabel”>Summary of Qualifications</p>

Highly skilled and dedicated professional offering a
solid background in whatever it is you need.
Provide comprehensive direction for whatever it is
that will get me a job.
Computer proficient in a wide range of industry-related
computer programs and equipment. Any industry.

<p class=”categorylabel”>Professional Experience</p>
<div class=”indented”>

<p>Operations Manager,
Super Awesome Company, Some City, CA [Sept 2002 –
present]</p>

Direct all departmental operations
Coordinate work with internal and external
resources
Generally in charge of everything

<p>Project Manager,
Less Awesome Company, Some City, CA [May 2000 - Sept

ptg

88 HOUR 6: Working with Fonts

Listing 6.2 Using Font Style Rules to Create a Basic Résumé
2002]</p>

Direct all departmental operations
Coordinate work with internal and external
resources
Generally in charge of everything

</div>

<p class=”categorylabel”>Education</p>

MBA, MyState University, May 2002
B.A, Business Administration, MyState University,
May 2000

<p class=”categorylabel”>References</p>

Available upon request.

</body>
</html>

FIGURE 6.2
Here’s what the code used in
Listing 6.2 looks like.

Using CSS, which organizes sets of styles into classes—as you learned in
Hour 4—you can see how text formatting is applied to different areas of
this content. If you look closely at the definition of the div.indented class,
you will see the use of the margin-left style. This style, which you will
learn more about in Part II, applies a certain amount of space (25 pixels, in
this example) to the left of the element. That space accounts for the inden-
tation shown in Figure 6.2.

ptg

Working with Special Characters 89

Working with Special Characters
Most fonts now include special characters for European languages, such as
the accented é in Café. There are also a few mathematical symbols and spe-
cial punctuation marks, such as the circular . bullet.

You can insert these special characters at any point in an HTML document
using the appropriate codes shown in Table 6.1. You’ll find an even more
extensive list of codes for multiple character sets at http://www.
webstandards.org/learn/reference/named_entities.html.

For example, the word café could be written using either of the following
methods:

café
café

Table 6.1 Commonly Used English Language Special Characters

Character Numeric Code Code Name Description

“ " " Quotation mark

& & & Ampersand

< < < Less than

> > > Greater than

¢ ¢ ¢ Cent sign

£ £ £ Pound sterling

| ¦ ¦ or &brkbar; Broken vertical bar

§ § § Section sign

© © © Copyright

® ® ® Registered trademark

° ° ° Degree sign

+– ± ± Plus or minus
2 ² ² Superscript two
3 ³ ³ Superscript three

· · · Middle dot
1 ¹ ¹ Superscript one
1⁄4 ¼ ¼ Fraction one-fourth
1⁄2 ½ ½ Fraction one-half
3⁄4 ¾ ¾ Fraction three-fourths

Æ Æ Æ Capital AE ligature

http://www.webstandards.org/learn/reference/named_entities.html
http://www.webstandards.org/learn/reference/named_entities.html

ptg

90 HOUR 6: Working with Fonts

Table 6.1 Commonly Used English Language Special Characters

Character Numeric Code Code Name Description

æ æ æ Small ae ligature

É É É Accented capital E

é é é Accented small e

× × × Multiplication sign

÷ ÷ ÷ Division sign

Although you can specify character entities by number, each symbol also
has a mnemonic name that is often easier to remember.

HTML/XHTML uses a special code known as a character entity to represent
special characters such as © and ®. Character entities are always specified
starting with & and ending with ;. Table 6.1 lists the most commonly used
character entities, although HTML supports many more.

Table 6.1 includes codes for the angle brackets, quotation, and ampersand.
You must use those codes if you want these symbols to appear on your
pages; otherwise, the web browser interprets them as HTML commands.

In Listing 6.3 and Figure 6.3, several of the symbols from Table 6.1 are
shown in use.

Listing 6.3 Special Character Codes
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Punctuation Lines</title>

</head>

<body>
<p>
Q: What should you do when a British banker picks a fight
with you?

A: £ some ¢¢ into him.
<hr />
Q: What do you call it when a judge takes part of a law
off the books?

A: § violence.
<hr />
Q: What did the football coach get from the locker room
vending machine in the middle of the game?

A: A ¼ back at ½ time.

TIP
Looking for the copyright © and
registered trademark ®sym-
bols? Those codes are ©
and ®, respectively.

To create an unregistered trade-
mark ™ symbol, use ™.

ptg

Working with Special Characters 91

Listing 6.3 Special Character Codes
<hr />
Q: How hot did it get when the police detective interrogated
the mathematician?

A: x³°
<hr />
Q: What does a punctilious plagiarist do?

A: ©
<hr />

</p>
</body>

</html>

FIGURE 6.3
This is how the HTML page in
Listing 6.3 looks in most web
browsers.

ptg

92 HOUR 6: Working with Fonts

Summary
In this hour you learned how to make text appear as boldface or italic and
how to code superscripts, subscripts, special symbols, and accented letters.
You saw how to make the text line up properly in preformatted passages
of monospaced text and how to control the size, color, and typeface of any
section of text on a web page.

Table 6.2 summarizes the tags and attributes discussed in this hour.
Remember that all the HTML tags are listed in Appendix B, “XHTML 1.1
and CSS 2 Quick Reference.”

Table 6.2 HTML Tags and Attributes Covered in Hour 6

Tag/Attribute Function

… Emphasis (usually italic).

… Stronger emphasis (usually bold).

… Boldface text.

<i>…</i> Italic text.

<tt>…</tt> Typewriter (monospaced) font.

<pre>…</pre> Preformatted text (exact line endings and spacing
will be preserved—usually rendered in a mono-
spaced font).

<big>…</big> Text is slightly larger than normal.

<small>…</small> Text is slightly smaller than normal.

_… Subscript.

[…] Superscript.

Attributes

style=”font-family:typeface” The typeface (family) of the font, which is
the name of a font, such as Arial. (Can
also be used with <p>, <h1>, <h2>, <h3>,
and so on.)

style=”font-size:size” The size of the font, which can be set to
small, medium, or large, as well as x-small,
x-large, and so on. Can also be set to a
specific point size (such as 12pt).

style=”color:color” Changes the color of the text.

ptg

Q&A 93

Q&A
Q How do I find out the exact name for a font I have on my computer?

A On a Windows or Macintosh computer, open the Control Panel and click
the Fonts folder—the fonts on your system are listed (Vista users
might have to switch to “Classic View” in your Control Panel). When
specifying fonts in the font-family style rule, use the exact spelling of
font names. Font names are not case-sensitive, however.

Q How do I put Kanji, Arabic, Chinese, and other non-European charac-
ters on my pages?

A First of all, users who need to read these characters on your pages
must have the appropriate language fonts installed. They must also
have selected that language character set and its associated font for
their web browsers. You can use the Character Map program in
Windows (or a similar program in other operating systems) to get the
numerical codes for each character in any language font. To find
Character Map, click Start, All Programs, Accessories, and then System
Tools. If the character you want has a code of 214, use Ö to place
it on a web page. If you cannot find the Character Map program, use
your operating system’s built-in Help function to find the specific loca-
tion.

The best way to include a short message in an Asian language (such
as We Speak Tamil—Call Us!) is to include it as a graphics image.
That way every user will see it, even if they use English as their primary
language for web browsing. But even to use a language font in a graph-
ic, you will likely have to download a specific language pack for your
operating system. Again, check your system’s Help function for specific
instructions.

ptg

94 HOUR 6: Working with Fonts

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. How would you create a paragraph in which the first three words

are bold, using styles rather than the or tags?

2. How would you represent the chemical formula for water?

3. How do you display “© 2009, Webwonks Inc.” on a web page?

Answers
1. You would use:

<p>First three words are
bold.</p>

2. You would use H₂O.

<p>First three words are

bold.</p>

3. You would use either of the following:

© 2004, Webwonks Inc.
© 2004, Webwonks Inc.

Exercises
. Apply the font-level style attributes you learned about in this chapter

to various block-level elements such as <p>, <div>, , and
items. Try nesting your elements to get a feel for how styles do or do
not cascade through the content hierarchy.

ptg

In this hour, you learn how to build HTML tables you can use to control
the spacing, layout, and appearance of tabular data in your web content.
Although you can achieve similar results using CSS, there are definitely
times when a table is the best way to present information and you’ll find
that tables are useful for arranging information into rows and columns. I
will also explain how designers have used tables for page layout in the
past, and how that isn’t always the best idea. Before we begin, just remem-
ber a table is simply an orderly arrangement of content into vertical
columns and horizontal rows.

HOUR 7
Using Tables to

Display Information

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to create simple
tables

. How to control the size of
tables

. How to align content and
span rows and columns
within tables

Putting Your
Content into Tables

As you read this hour, think about how arranging text into tables could
benefit your web content. The following are some specific ideas to keep in
mind:

. The most obvious application of tables is to organize tabular infor-
mation, such as a multicolumn list of names and numbers.

. Whenever you need multiple columns of text or images, tables are
the answer.

On your own, try adding a table modeled after the examples in this hour.
The “Exercises” section at the end of this hour offers a couple of detailed
suggestions along these lines as well.

TRY IT YOURSELF ▼

ptg

96 HOUR 7: Using Tables to Display Information

Creating a Simple Table
A table consists of rows of information with individual cells inside. To
make tables, you have to start with a <table> tag. Of course, you end your
tables with the </table> tag. If you want the table to have a border, use a
border attribute to specify the width of the border in pixels. A border size
of 0 or none (or leaving the border attribute out entirely) will make the bor-
der invisible, which is often handy when you are using a table as a page
layout tool.

With the <table> tag in place, the next thing you need is the <tr> tag. The
<tr> tag creates a table row, which contains one or more cells of informa-
tion before the closing </tr>. To create these individual cells, use the <td>
tag (<td> stands for table data). Place the table information between the
<td> and </td> tags. A cell is a rectangular region that can contain any text,
images, and HTML tags. Each row in a table is made up of at least one cell.
Multiple cells within a row form columns in a table.

There is one more basic tag involved in building tables. The <th> tag works
exactly like a <td> tag except <th> indicates that the cell is part of the head-
ing of the table. Most web browsers render the text in <th> cells as centered
and boldface.

You can create as many cells as you want, but each row in a table should
have the same number of columns as the other rows. The HTML code
shown in Listing 7.1 creates a simple table using only the four table tags
I’ve mentioned thus far. Figure 7.1 shows the resulting page as viewed in a
web browser.

Listing 7.1 Creating Tables with the <table>, <tr>, <td>, and <th> Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Baseball Standings</title>

</head>

<body>
<h1>Baseball Standings</h1>
<table>
<tr>
<th>Team</th>
<th>W</th>

TIP

There are some style properties
that allow you to take much
more control over table borders.
For example, you can set the
border width (border-width),
style (border-style), and color
(border-color). These proper-
ties work fine, but you have to
apply them to each table ele-
ment, which can be cumber-
some even if you use classes
for your table row or table cell
elements.

ptg

Creating a Simple Table 97

Listing 7.1 Creating Tables with the <table>, <tr>, <td>, and <th> Tags
<th>L</th>

<th>GB</th>
</tr>
<tr>
<td>Los Angeles Dodgers</td>
<td>62</td>
<td>38</td>
<td>—</td>

</tr>
<tr>
<td>San Francisco Giants</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td>Colorado Rockies</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>

<td>Arizona Diamondbacks</td>
<td>43</td>
<td>58</td>
<td>19.5</td>

</tr>
<tr>

<td>San Diego Padres</td>
<td>39</td>
<td>62</td>
<td>23.5</td>

</tr>
</table>

</body>
</html>

TIP

HTML ignores extra spaces
between words and tags.
However, you might find your
HTML tables easier to read
(and less prone to time-wasting
errors) if you use spaces to
indent <tr> and <td> tags, as I
did in Listing 7.1.

ptg

98 HOUR 7: Using Tables to Display Information

The table in the example contains baseball standings, which are perfect for
arranging in rows and columns—if not a little plain. You’ll learn to jazz
things up a bit during this hour. The headings in the table show the Team,
Wins (W), Losses (L), and Games Behind (GB) in the standings.

Although we did not apply any styles to the HTML in Listing 7.1, you can
use any text style in a table cell. However, styles or HTML tags used in one
cell don’t carry over to other cells, and tags from outside the table don’t
apply within the table. For example, consider the following table:

<p style=”font-weight:bold”>
<table>
<tr>
<td style=”font-style:italic”>hello</td>
<td>there</td>

</tr>
</table>

</p>

In this example, the <p> tag is used around a table to demonstrate how
tables are immune to outside tags. The word there would be neither bold-
face nor italic because neither the font-weight:bold style outside the table
nor the font-style:italic style from the previous cell affects it. In this
example, the word hello is in italics, however.

To boldface the words hello and there, change the table code to this:

<table style=”font-weight:bold”>
<tr>
<td style=”font-style:italic”>hello</td>
<td>there</td>

</tr>
</table

FIGURE 7.1
The HTML code in Listing 7.1
creates a table with six rows and
four columns.

ptg

Controlling Table Sizes 99

In this example, both words are in bold and the word hello is italicized as
well. Of course, you don’t have to apply styles at the table level. The font-
weight:bold style could just as easily be applied to each cell individually;
you could repeat style=”font-weight:bold” in each cell or create a class in
your style sheet and use class=”classname” in each cell—it’s your choice.

Controlling Table Sizes
When a table width is not specified, the size of a table and its individual
cells automatically expand to fit the data you place into it. However, you
can choose to control the exact size of the entire table by using width
and/or height styles in the <table> tag. You can also control the size of each
cell by putting width and height styles in the individual <td> tags. The width
and height styles can be specified as either pixels or percentages. For exam-
ple, the following code creates a table 500 pixels wide and 400 pixels high:

<table style=”width:500px; height:400px”>

To make the first cell of the table 20% of the total table width and the sec-
ond cell 80% of the table width, type the following:

<table style=”width:100%”>
<tr>
<td style=”width:20%”>skinny cell</td>
<td style=”width:80%”>fat cell</td>

</tr>
</table>

Notice that the table is sized to 100%, which ensures the table fills the
entire width of the browser window. When you use percentages instead of
fixed pixel sizes, the table will resize automatically to fit any size browser
window while maintaining the aesthetic balance you’re after. In this case,
the two cells within the table are automatically resized to 20% and 80% of
the total table width, respectively.

In Listing 7.2, the simple table from Listing 7.1 is expanded to show specif-
ic control over table cell widths.

NOTE

There are actually width and
height HTML attributes that
were deprecated in the move to
XHTML, and you might still see
them when you look at another
designer’s code. These attrib-
utes still work in web browsers
but you should use the width
and height style properties
instead, because they represent
the appropriate use of XHTML.

ptg

100 HOUR 7: Using Tables to Display Information

Listing 7.2 Specifying Table Cell Widths
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Baseball Standings</title>

</head>

<body>
<h1>Baseball Standings</h1>
<table>
<tr>
<th style=”width:35px;”></th>
<th style=”width:175px;”>Team</th>
<th style=”width:25px;”>W</th>
<th style=”width:25px;”>L</th>
<th style=”width:25px;”>GB</th>

</tr>
<tr>
<td><img src=”losangeles.gif” alt=”Los Angeles

Dodgers” /></td>
<td>Los Angeles Dodgers</td>
<td>62</td>
<td>38</td>
<td>—</td>

</tr>
<tr>
<td><img src=”sanfrancisco.gif” alt=”San Francisco

Giants” /></td>
<td>San Francisco Giants</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td><img src=”colorado.gif” alt=”Colorado

Rockies” /></td>
<td>Colorado Rockies</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td><img src=”arizona.gif” alt=”Arizona

Diamondbacks” /></td>
<td>Arizona Diamondbacks</td>
<td>43</td>
<td>58</td>
<td>19.5</td>

</tr>

ptg

Controlling Table Sizes 101

Listing 7.2 Specifying Table Cell Widths
<tr>
<td></td>
<td>San Diego Padres</td>
<td>39</td>
<td>62</td>
<td>23.5</td>

</tr>
</table>

</body>
</html>

FIGURE 7.2
The HTML code in Listing 7.2 cre-
ates a table with six rows and five
columns, with specific widths used
for each column.

There are two differences between the code from Listing 7.1 and the code
used in Listing 7.2. First, an additional column has been added in Listing
7.2; this column does not have a heading, but the <th></th> tag pair is still
present in the first table row. In rows two through six, this additional col-
umn contains an image (the tag). The second difference in Listing
7.2 is the addition of a specific width style for each <th> element in the first
row. The first column is defined as 35px wide, the second 175px wide, and
the third, fourth, and fifth columns are each 25px wide.

Also note that these widths are not repeated in the <td> elements in subse-
quent rows. Technically you must define only the widths in the first row;
the remaining rows will follow suit because they are all part of the same
table. However, if you used another formatting style (such as a style to
change font size or color), that style must be repeated for each element that
should have those display properties.

ptg

102 HOUR 7: Using Tables to Display Information

Alignment and Spanning Within
Tables
By default, anything you place inside a table cell is aligned to the left and
vertically centered. Figures 7.1 and 7.2 show this default alignment.
However, you can align the contents of table cells both horizontally and
vertically with the text-align and vertical-align style properties.

You can apply these alignment attributes to any <tr>, <td>, or <th> tag.
Alignment attributes assigned to a <tr> tag apply to all cells in that row.
Depending on the size of your table, you can save yourself a considerable
amount of time and effort by applying these attributes at the <tr> level and
not in each <td> or <th> tag.

The HTML code in Listing 7.3 uses a combination of text alignment styles
to apply a default alignment to a row, but overridden in a few individual
cells. Figure 7.3 shows the result of the code in Listing 7.3.

Following are some of the more commonly used vertical-align style prop-
erty values: top, middle, bottom, text-top, text-bottom, and baseline (for
text). These property values give you plenty of flexibility in aligning table
data vertically.

Listing 7.3 Alignment, Cell Spacing, Borders, and Background Colors in
Tables

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Things to Fear</title>

</head>

<body>
<h1>Things to Fear</h1>
<table border=”2” cellpadding=”4” cellspacing=”2”
width=”100%”>
<tr style=”background-color:red;color:white”>
<th colspan=”2”>Description</th>
<th>Size</th>
<th>Weight</th>
<th>Speed</th>

</tr>
<tr style=”vertical-align:top”>
<td></td>

ptg

Alignment and Spanning Within Tables 103

Listing 7.3 Alignment, Cell Spacing, Borders, and Background Colors in
Tables

<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>.38 Special</td>
<td>Five-inch barrel.</td>
<td>Twenty ounces.</td>
<td>Six rounds in four seconds.</td>

</tr>
<tr style=”vertical-align:top”>
<td></td>
<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>Rhinoceros</td>
<td>Twelve feet, horn to tail.</td>
<td>Up to two tons.</td>
<td>Thirty-five miles per hour in bursts.</td>

</tr>
<tr style=”vertical-align:top”>
<td></td>
<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>Broad Axe</td>
<td>Thirty-inch blade.</td>
<td>Twelve pounds.</td>
<td>Sixty miles per hour on impact.</td>

</tr>
</table>

</body>
</html>

FIGURE 7.3
The code in Listing 7.3 shows the
use of the colspan attribute and
alignment styles.

ptg

104 HOUR 7: Using Tables to Display Information

At the top of Figure 7.3, a single cell (Description) spans two columns. This
is accomplished with the colspan attribute in the <th> tag for that cell. As
you might guess, you can also use the rowspan attribute to create a cell that
spans more than one row.

Spanning is the process of forcing a cell to stretch across more than one row
or column of a table. The colspan attribute causes a cell to span across mul-
tiple columns; rowspan has the same effect on rows.

Additionally, text styles are used in the second cell within the Description
column to create bold text that is both vertically aligned to the middle and
horizontally aligned to the center of the cell.

There are a few tricks in Listing 7.3 that I haven’t explained yet. You can
give an entire table—and each individual row or cell in a table—its own
background, distinct from any background you might use on the web page
itself. You can do this by placing the background-color or background-image

style in the <table>, <tr>, <td>, or <th> tag exactly as you would in the
<body> tag (see Hour 9, “Working with Colors”). To give an entire table a
yellow background, for example, you would use <table style=”background-

color:yellow”> or the equivalent <table style=”background-color:#FFFF00”>.
In Listing 7.3, only the top row has a background color; it uses <tr
style=”background-color:red;color:white”> to apply a red background
across the cells in that row. Additionally, the color style ensures that the
text in that row is white.

Similar to the background-color style property is the background-image prop-
erty (not shown in this example), which is used to set an image for a table
background. If you wanted to set the image leaves.gif as the background
for a table, you would use <table style=”background-image:url(leaves.gif)”>.
Notice that the image file is placed within parentheses and preceded by the
word url, which indicates that you are describing where the image file is
located.

Tweaking tables goes beyond just using style properties. As shown in
Listing 7.3, you can control the space around the borders of a table with
the cellpadding and cellspacing attributes. The cellspacing attribute sets
the amount of space (in pixels) between table borders and between table
cells themselves. The cellpadding attribute sets the amount of space around
the edges of information in the cells, also in pixels. Setting the cellpadding
value to 0 causes all the information in the table to align as closely as possi-
ble to the table borders, possibly even touching the borders. The cell-
padding and cellspacing attributes give you good overall control of the
table’s appearance.

TIP
Keeping the structure of rows
and columns organized in your
mind can be the most difficult
part of creating tables with
cells that span multiple
columns or rows. The tiniest
error can often throw the whole
thing into disarray. You’ll save
yourself time and frustration by
sketching your tables on paper
before you start writing the
HTML to implement them.

NOTE
You will often see alternating
row colors in a table. For
instance, one row might have a
grey background and the next
row might have a white back-
ground. Alternating row colors
helps users read the content of
your table more clearly, espe-
cially if the table is quite large.

NOTE

Although the cellpadding and
cellspacing attributes are still
allowed in XHTML, a CSS equiv-
alent for them exists in the
form of the padding and bor-

der-spacing style properties.
Review the information in
Appendix B, “XHTML 1.1 and
CSS 2 Quick Reference,” for
information and examples.

ptg

Page Layout with Tables 105

Page Layout with Tables
At the beginning of this Hour, I indicated that designers have used tables
for page layout as well as to display tabular information. You will still find
many examples of table-based layouts if you peek at another designer’s
source code. This method of design grew out of the old (mid-1990s to early
2000s) inconsistencies in browser support for CSS. All browsers supported
tables and in generally the same way, so web designers latched on to the
table-based method of content creation to achieve the same visual page
display across all browsers. However, now that support for CSS is relative-
ly similar across all major browsers, designers can follow the long-standing
standards-based recommendation not to use tables for page layout.

The World Wide Web Consortium (W3C), the standards body that oversees
the future of the Web, promotes style sheets as the proper way to lay out
pages (instead of using tables). Style sheets are ultimately much more
powerful than tables, which is why the bulk of this book teaches you how
to use style sheets for page layout.

The main reasons for avoiding using tables for layout include:

. Mixing Presentation with Content—One of the goals of CSS and
standards-compliant web design is to separate the presentation layer
from the content layer.

. Creating Unnecessarily Difficult Redesigns—To change a table-based
layout, you would have to change the table-based layout on every
single page of your site (unless it is part of a complicated, dynamically-
driven site, in which case you would have to undo all the dynamic
pieces and remake them).

. Accessibility Issues—Screen reading software looks to tables for con-
tent, and so will often try to read your layout table as a content table.

. Rendering on Mobile Devices—Table layouts are often not flexible
enough to scale downward to small screens (see Hour 19, “Creating
Fixed or Liquid Layouts”).

These are but a few of the issues in table-based web design. For a closer
look at some of these issues, see the popular presentation “Why Tables for
Layout is Stupid” at
http://www.hotdesign.com/seybold/everything.html.

http://www.hotdesign.com/seybold/everything.html

ptg

106 HOUR 7: Using Tables to Display Information

Summary
In this hour, you learned to arrange text and images into organized
arrangements of rows and columns called tables. You learned the three
basic tags for creating tables and many optional attributes and styles for
controlling the alignment, spacing, and appearance of tables. You also
learned that tables can be used together and nested within one another for
an even wider variety of layout options.

Table 7.1 summarizes the tags and attributes covered in this hour.

Table 7.1 HTML Tags and Attributes Covered in Hour 7

Tag/Attribute Function

<table>…</table> Creates a table that can contain
any number of rows (<tr> tags).

Attributes

border=”width” Indicates the width in pixels of the
table borders. Using border=”0” or
omitting the border attribute
makes borders invisible.

cellspacing=”spacing” The amount of space between the
cells in the table, in pixels.

cellpadding=”padding” The amount of space between the
edges of the cell and its contents,
in pixels.

style=”width:width” The width of the table on the
page, either in exact pixel values
or as a percentage of the page
width.

style=”height:height” The height of the table on the
page, either in exact pixel values
or as a percentage of the page
height.

style=”background-color:color” Background color of the table and
individual table cells that don’t
already have a background color.

style=”backgroundimage:url(imageurl)” A background image to display
within the table and individual
table cells that don’t already have
a background image (if a back-
ground color is also specified, the
color will show through transpar-
ent areas of the image).

ptg

Summary 107

Table 7.1 HTML Tags and Attributes Covered in Hour 7

Attributes

<tr>…</tr> Defines a table row containing one
or more cells (<td> tags).

Attributes

style=”text-align:alignment” The horizontal alignment of the
contents of the cells within this
row. Possible values are left,
right, and center.

style=”vertical-align:alignment” The vertical alignment of the con-
tents of the cells within this row.
Common used values include top,
middle, and bottom.

style=”background-color:color” Background color of all cells in the
row that do not already have a
background color.

style=”backgroundimage:url(imageurl)” Background image to display with-
in all cells in the row that do not
already have their own background
image.

<td>…</td> Defines a table data cell.

<th>…</th> Defines a table heading cell.
(Accepts all the same attributes
and styles as <td>.)

Attributes

style=”text-align:alignment” The horizontal alignment of the
contents of the cell. Possible val-
ues are left, right, and center.

style=”vertical-align:alignment” The vertical alignment of the con-
tents of the cell. Commonly used
values are top, middle, and bottom.

rowspan=”numrows” The number of rows this cell will
span.

colspan=”numcols” The number of columns this cell
will span.

style=”width:width” The width of this column of cells,
in exact pixel values or as a per-
centage of the table width.

ptg

108 HOUR 7: Using Tables to Display Information

Table 7.1 HTML Tags and Attributes Covered in Hour 7

Attributes

style=”height:height” The height of this row of cells, in
exact pixel values or as a percent-
age of the table height.

style=”background-color:color” Background color of the cell.

style=”backgroundimage:url(imageurl)” Background image to display with-
in the cell.

Q&A
Q I made a big table and when I load the page, nothing appears on the

page for a long time. Why the wait?

A Complex tables can take a while to appear on the screen. The web
browser has to figure out the size of everything in the table before it
can display any part of it. You can speed things up a bit by always
including width and height attributes for every graphics image within a
table. Using width attributes in the <table> and <td> tags also helps.

Q Can I put a table within a table?

A Yes, you can nest tables within other table cells. However, nested
tables—especially large ones—take time to load and render properly.
Before you create a nested table, think about the content you are plac-
ing on the page and ask yourself if it could be displayed using CSS. You
might not know all the answers until you finish this book, but here’s a
hint: In most cases, the answer will be “yes.”

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. How would you create a simple two-row, two-column table with a

standard border?

2. Expanding on Question 1, how would you add 30 pixels of space
between the table border and the cells?

ptg

Exercises 109

3. Continuing with the table you’ve built in Questions 1 and 2, how
would you make the top-left cell green, the top-right cell red, the bot-
tom-left cell yellow, and the bottom-right cell blue?

Answers
1. Use the following HTML:

<table border=”1”>
<tr>
<td>Top left...</td>
<td>Top right...</td>

</tr>
<tr>
<td>Bottom left...</td>
<td>Bottom right...</td>

</tr>
</table>

2. Add cellspacing=”30” to the <table> tag.

3. Add style=”background-color:green” to the top left <td> tag, add
style=”background-color:red” to the top right <td> tag, add
style=”background-color:yellow” to the bottom left <td> tag, and add
style=”background-color:blue” to the bottom right <td> tag.

Exercises
. Do you have any pages that have information visitors might be inter-

ested in viewing as lists or tables? Use a table to present some tabu-
lar information. Make sure each column has its own heading (or per-
haps its own graphic). Play around with the various types of align-
ment and spacing that you have learned in this hour.

. You will often see alternating row colors in a table, with one row
having a grey background and the next a white background. The
goal of alternating colors in table rows is so that the individual rows
are easier to discern when looking quickly at the table full of data.
Create a table with alternating row colors and text colors (if neces-
sary). Although the lesson on colors comes in Hour 9, you have
enough information in this lesson to begin trying out the process.

ptg

This page intentionally left blank

ptg

So far, you have learned how to use HTML tags to create some basic web
pages. However, at this point, those pieces of content are islands unto
themselves, with no connection to anything else (although it is true that in
Hour 4 I sneaked a few page links into the examples). To turn your work
into “real” web content, you need to connect it to the rest of the Web—or at
least to your other pages within your own personal or corporate sites.

This hour shows you how to create hypertext links to content within your
own document and how to link to other external documents. Additionally,
you will learn how to style hypertext links so that they display in the color
and decoration that you desire—not necessarily the default blue under-
lined display.

Using Web Addresses
The simplest way to store web content for an individual web site is to
place the files all in the same folder together. When files are stored together
like this, you can link to them by simply providing the name of the file in
the href attribute of the <a> tag.

An attribute is an extra piece of information associated with a tag that pro-
vides further details about the tag. For example, the href attribute of the
<a> tag identifies the address of the page to which you are linking.

Once you have more than a few pages, or once you start to have an organi-
zation structure to the content in your site, you should put your files into
directories (or “folders,” if you will) whose names reflect the content with-
in them. For example, all your images could be in an “images” directory,
corporate information could be in an “about” directory, and so on.

HOUR 8
Using External and Internal Links

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to use anchor links

. How to link between pages
on your own site

. How to link to external con-
tent

. How to link to an e-mail
address

. How to use window target-
ing with your links

. How to style your links with
CSS

NOTE
Before we begin, you might
want a refresher on the basics
of where to put files on your
server and how to manage files
within a set of directories. This
information is important to
know when creating links in
web content. Refer back to
Hour 2, specifically the section
entitled “Understanding Where
to Place Files on the Web
Server.”

ptg

112 HOUR 8: Using External and Internal Links

Regardless of how you organize your documents within your own web
server, you can use relative addresses, which include only enough informa-
tion to find one page from another.

A relative address describes the path from one web page to another, instead
of a full (or absolute) Internet address.

If you recall from Hour 2, the document root of your web server is the
directory designated as the top-level directory for your web content. In
web addresses, that document root is represented by the forward slash (/).
All subsequent levels of directories are separated by the same type of for-
ward slash. For example:

/directory/subdirectory/subsubdirectory/

Suppose you are creating a page named zoo.html in your document root
and you want to include a link to pages named african.html and
asian.html in the elephants subdirectory. The links would look like the
following:

Learn about African elephants.
Learn about Asian elephants.

These specific addresses are actually called relative-root addresses in that
they are relative addresses that lack the entire domain name, but they are
specifically relative to the document root specified by the forward slash.

Using a regular relative address, you can skip the initial forward slash.
This type of address allow the links to become relative to whatever directo-
ry they are in—it could be the document root or it could be another direc-
tory one or more levels down from the document root:

Learn about African elephants.
Learn about Asian elephants.

Your african.html and asian.html documents in the elephants subdi-
rectory could link back to the main zoo.html page in either of these ways:

Return to the zoo.
Return to the zoo.
Return to the zoo.

The first link is an absolute link. With an absolute link there is absolutely no
doubt where the link should go, because the full URL is provided—
domain name included.

The second link is a relative-root link. It is relative to the domain you are

WARNING

The / forward slash is always
used to separate directories in
HTML. Don’t use the \ back-
slash (which is normally used in
Windows) to separate your
directories. Remember, every-
thing in the web moves forward,
so use forward slashes.

ptg

Using Web Addresses 113

currently browsing and therefore does not require the protocol type (for
example, http://) and the domain name (for example,
www.yourdomain.com), but the initial forward slash is provided to show
that the address begins at the document root.

In the third link, the double dot (..) is a special command that indicates the
folder that contains the current folder—in other words, the parent folder.
Anytime you see the double dot, just think to yourself “go up a level” in
the directory structure.

If you use relative addressing consistently throughout your web pages,
you can move the pages to another folder, disk drive, or web server with-
out changing the links.

Relative addresses can span quite complex directory structures if necessary.
Hour 23, “Organizing and Managing a Web Site,” offers more detailed
advice for organizing and linking large numbers of web pages.

TIP

The general rule surrounding
relative addressing
(elephants/african.html) versus
absolute addressing
(http://www.takeme2thezoo.com
/elephants/african.html) is that
you should use relative
addressing when linking to files
that are stored together, such
as files that are all part of the
same web site. Absolute
addressing should be used
when you’re linking to files
somewhere else—another com-
puter, another disk drive, or,
more commonly, another web
site on the Internet.

Hopefully by now you’ve created a page or two of your own while work-
ing through the lessons. Follow these steps to add a few more pages and
link them together:

1. Use a “home” page as a main entrance and as a central hub to which
all of your other pages are connected. If you created a page about
yourself or your business, use that page as your home page. You also
might like to create a new page now for this purpose.

2. On the home page, put a list of links to the other HTML files you’ve
created (or placeholders for the HTML files you plan to create soon).
Be sure that the exact spelling of the filename, including any capital-
ization, is correct in every link.

3. On every other page besides the home page, include a link at the bot-
tom (or top) leading back to your home page. That makes it simple
and easy to navigate around your site.

4. You might also want to include a list of links to related or interesting
sites, either on your home page or on a separate links page. People
often include a list of their friends’ personal pages on their own
home page. Businesses, however, should be careful not to lead poten-
tial customers away to other sites too quickly—there’s no guarantee
they’ll remember to use relative addressing for links between your
own pages and absolute addressing for links to other sites.

TRY IT YOURSELF ▼

http://www.takeme2thezoo.com/elephants/african.html
http://www.takeme2thezoo.com/elephants/african.html

ptg

114 HOUR 8: Using External and Internal Links

Linking Within a Page Using
Anchors
The <a> tag—the tag responsible for hyperlinks on the web—got its name
from the word “anchor,” which means a link serves as a designation for a
spot in a web page. In examples shown throughout this book so far, you’ve
learned how to use the <a> tag to link to somewhere else, but that’s only
half of its usefulness. Let’s get started working with anchor links that link
to content within the same page.

Identifying Locations in a Page with Anchors
The <a> tag can be used to mark a spot on a page as an anchor, allowing
you to create a link that points to that exact spot. Listing 8.1, which is pre-
sented a bit later in the hour, demonstrates a link to an anchor within a
page. To see how such links are made, let’s take a quick peek ahead at the
first <a> tag in the listing:

The <a> tag normally uses the href attribute to specify a hyperlinked target.
The <a href> is what you click and <a id> is where you go when you click
there. In this example, the <a> tag is still specifying a target but no actual
link is created. Instead, the <a> tag gives a name to the specific point on the
page where the tag occurs. The tag must be included and a unique
name must be assigned to the id attribute, but no text between <a> and

is necessary.

Linking to Anchor Locations
Listing 8.1 shows a site with various anchor points placed throughout a
single page. Take a look at the last <a> tag in Listing 8.1 to see an example:

Return to Index.

The # symbol means that the word top refers to a named anchor point
within the current document, rather than to a separate page. When a user
clicks Return to Index, the web browser displays the part of the page
starting with the tag.

NOTE

Instead of using id, older ver-
sions of HTML used name.
Newer versions of HTML and
XHTML have done away with the
name attribute and instead use
id.

ptg

Linking Within a Page Using Anchors 115

Listing 8.1 Setting Anchor Points by Using the <a> Tag with an id Attribute
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Alphabetical Shakespeare</title>

</head>

<body>
<h1>First Lines of Shakespearean Sonnets</h1>
<p>Don’t you just hate when you go a-courting, and you’re down
on one knee about to rattle off a totally romantic Shakespearean
sonnet, and zap! You space it. ”Um... It was, uh... I think it
started with a B...”</p>

<p>Well, appearest thou no longer the dork. Simply refer to this page,
click on the first letter of the sonnet you want, and get an instant
reminder of the first line to get you started. ”Beshrew that
heart that makes my heart to groan...”</p>

<h2 style=”text-align:center”>Alphabetical Index</h2>
<h3 style=”text-align:center”>
A B C
D E F
G H I
J K L
M N O
P Q R
S T U
V W X
Y Z
</h3>
<hr />
<h3>A</h3>

A woman’s face with nature’s own hand painted,
Accuse me thus, that I have scanted all,
Against my love shall be as I am now
Against that time (if ever that time come)
Ah wherefore with infection should he live,
Alack what poverty my muse brings forth,
Alas ‘tis true, I have gone here and there,
As a decrepit father takes delight,
As an unperfect actor on the stage,
As fast as thou shalt wane so fast thou grow’st,

<p>Return to Index.</p>
<hr />
<!-- continue with the alphabet —>
<h3>Z</h3>

NOTE
Near the end of Listing 8.1 you
will see a line that reads:

<!-- continue with the alpha-

bet -->

This text (an HTML comment)
will appear in your source code
but will not be displayed by the
browser. You can learn more
about commenting your code in
Hour 23.

ptg

116 HOUR 8: Using External and Internal Links

Listing 8.1 Setting Anchor Points by Using the <a> Tag with an id Attribute
<p>(No sonnets start with Z.)</p>
<p>Return to Index.</p>

</body>
</html>

Each of the <a href> links in Listing 8.1 makes an underlined link leading
to a corresponding <a id> anchor—or it would if I had filled in all the text.
Only A and Z will work in this example since only the A and Z links have
corresponding text to link to, but feel free to fill in the rest on your own!
Clicking the letter Z under Alphabetical Index in Figure 8.1, for example,
takes you to the part of the page shown in Figure 8.2.

WARNING

Anchor names specified via the
id attribute in the <a> tag must
start with an alphanumeric
character. So if you want to sim-
ply number the IDs of anchors,
be sure to start them with text
(as in photo1, photo2, and so
on) instead of just 1, 2, and so
on. Purely numeric anchor IDs
will work in browsers but they
don’t qualify as valid XHTML
code.

FIGURE 8.1
The <a id> tags in Listing 8.1
don’t appear at all on the web
page. The <a href> tags appear
as underlined links.

Having mastered the concept of linking to sections of text within a single
page, you can now learn to link together other pieces of web content.

ptg

Linking Between Your Own Web Content 117

Linking Between Your Own Web
Content
As you learned earlier in this hour, you do not need to include http://
before each address specified in the href attribute when linking to content
within your domain (or on the same computer, if you are viewing your site
locally). When you create a link from one file to another file within the
same domain or on the same computer, you don’t need to specify a com-
plete Internet address. In fact, if the two files are stored in the same folder,
you can simply use the name of the HTML file by itself:

Go to Page 2.

As an example, Listing 8.2 and Figure 8.3 show a quiz page with a link to
the answers page shown in Listing 8.3 and Figure 8.4. The answers page
contains a link back to the quiz page. Because the page in Listing 8.2 links
to another page in the same directory, the filename can be used in place of
a complete address.

FIGURE 8.2
Clicking the letter Z on the page
shown in Figure 8.1 takes you to
the appropriate section of the
same page.

ptg

118 HOUR 8: Using External and Internal Links

Listing 8.2 The historyanswers.html file
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>History Quiz</title>

</head>

<body>
<h1>History Quiz</h1>
<p>Complete the following rhymes. (Example: William the Conqueror
Played cruel tricks on the Saxons in... ten sixty-six.)</p>

Columbus sailed the ocean blue in...
The Spanish Armada met its fate in...
London burnt like rotten sticks in...

<p style=”text-align: center;font-weight: bold;”>
Check Your Answers!
</p>

</body>
</html>

Listing 8.3 The historyanswers.html file which historyquiz.html
Links To
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>History Quiz Answers</title>

</head>

<body>
<h1>History Quiz Answers</h1>

...fourteen hundred and ninety-two.
...fifteen hundred and eighty eight.
...sixteen hundred and sixty-six.

<p style=”text-align: center;font-weight: bold;”>
Return to the Questions
</p>

</body>
</html>

ptg

Linking Between Your Own Web Content 119

Using filenames instead of complete Internet addresses saves you a lot of
typing. More important, the links between your pages will work properly
no matter where the group of pages is stored. You can test the links while
the files are still on your computer’s hard drive. You can then move them
to a web server, a CD-ROM, a DVD, or a memory card and all the links
will still work correctly. There is nothing magic about this simplified
approach to identifying web pages—it all has to do with web-page
addressing, as you’ve already learned.

FIGURE 8.3
This is the historyquiz.html
file listed in Listing 8.2 and
referred to by the link in Listing
8.3.

FIGURE 8.4
The Check Your Answers! link
in Figure 8.3 takes you to this
answers page. The Return to
the Questions link takes you
back to what’s shown in Figure
8.3.

ptg

120 HOUR 8: Using External and Internal Links

Linking to External Web Content
The only difference between linking to pages within your own site and
linking to external web content is that when linking outside your site, you
need to include the full address to that bit of content. The full address
includes the http:// before the domain name and then the full pathname
to the file (for example, an HTML file, image file, multimedia file, and so
on).

For example, to include a link to Google from within one of your own web
pages, you would use this type of absolute addressing in your <a> link:

Go to Google

You can apply what you learned in previous sections to creating links to
named anchors on other pages. Linked anchors are not limited to the same
page. You can link to a named anchor on another page by including the
address or file name followed by # and the anchor name. For example, the
following link would take you to an anchor named photos within the
african.html page inside the elephants directory on the domain
www.takeme2thezoo.com.

Check out the African Elephant Photos!

If you are linking from another page already on the www.takemetothezoo.com
domain (because you are, in fact, the site maintainer), then your link might
simply be:

Check out the African Elephant
Photos!

The http:// and the domain name would not be necessary in that
instance, as you have already learned.

Linking to an Email Address
In addition to linking between pages and between parts of a single page,
the <a> tag allows you to link to email addresses. This is the simplest way
to enable your web page visitors to “talk back” to you. Of course, you
could just provide visitors with your email address and trust them to type
it into whatever email programs they use, but that increases the likelihood
for errors. By providing a clickable link to your email address, you can
make it almost completely effortless for them to send you messages and
eliminate the chance for tyops.

WARNING

As you might know, you can
leave out the http:// at the
front of any address when typ-
ing it into most web browsers.
However, you cannot leave that
part out when you type an
Internet address into an <a
href> link on a web page.

WARNING

Be sure to include the # symbol
only in <a href> link tags. Don’t
put the # symbol in the <a id>

tag; links to that name won’t
work in that case.

www.takeme2thezoo.com
www.takemetothezoo.com

ptg

Linking to an Email Address 121

An HTML link to an email address looks like the following:

Send me an email
message.

The words Send me an email message will appear just like any other <a>
link.

If you want people to see your actual email address (so that they can make
note of it or send a message using a different email program), include it
both in the href attribute and as part of the message between the <a> and
 tags, like this:

yourusername@yourdomain.com

In most web browsers, when someone clicks the link, she gets a window
into which she can type a message that is immediately sent to you—what-
ever email program the person uses to send and receive email will auto-
matically be used. You can provide some additional information in the link
so that the subject and body of the message also have default values. You
do this by adding subject and body variables to the mailto link. You sepa-
rate the variables from the email address with a question mark (?), the
value from the variable with an equal sign (=), and then separate each of
the variable and value pairs with an ampersand (&). You don’t have to
understand the variable/value terminology at this point. Here is an exam-
ple of specifying a subject and body for the preceding email example:

<a href=”mailto:author@somedomain.com?subject=Book Question&body=
When is the next edition coming out?”>author@somedomain.com

When a user clicks this link, an email message is created with
author@somedomain.com as the recipient, Book Question as the subject of
the message, and When is the next edition coming out? as the mes-
sage body.

Before you run off and start plastering your email address all over your
web pages, I have to give you a little warning and then let you in on a
handy trick. You’re no doubt familiar with spammers that build up data-
bases of email addresses and then bombard them with junk mail advertise-
ments. One way spammers “harvest” email addresses is by using pro-
grams that automatically search web pages for mailto links.

Fortunately, there is a little trick that will thwart the vast majority of spam-

TIP

If you want to specify only an
email message subject and not
the body, you can just leave off
the ampersand and the body
variable, equal sign, and value
text string as follows:

<a
href=”mailto:author@somedomai
n.com?subject=Book
Question>author@somedomain.co
m

ptg

122 HOUR 8: Using External and Internal Links

mers. This trick involves using character entities to encode your email
address, which confuses “scraper” programs that attempt to “harvest”
your email address from your web pages. As an example, take the email
address, jcmeloni@gmail.com. If you replace the letters in the address with
their character entity equivalents, most email harvesting programs will be
thrown off. Lowercase ASCII character entities begin at a for letter a
and increase through the alphabet in order. For example, letter j is j, c
is c, and so on. Replacing all the characters with their ASCII attributes
produces the following:

<a
href=”mailto:jcmeloni@g
mail.com”>Send me an email
message.

Since the browser interprets the character encoding as, well, characters, the
end result is the same from the browser’s perspective. However, automat-
ed email harvesting programs search the raw HTML code for pages, which
in this case is showing a fairly jumbled-looking email address. If you don’t
want to figure out the character encoding for your own address, just type
email address encoder in your search engine and you will find some serv-
ices online that will produce an encoded string for you.

Opening a Link in a New Browser
Window
Now that you have a handle on how to create addresses for links—both
internal (within your site) and external (to other sites)—there is one addi-
tional method of linking: forcing the user to open links in new windows.

You’ve no doubt heard of pop-up windows, which are browser windows—
typically advertising products or services—that are opened and displayed
automatically without the user’s approval. However, the concept of open-
ing another window or targeting another location does serve a valid pur-
pose in some instances. For example, you might want to present informa-
tion in a smaller secondary browser window but allow the user to still see
the information in the main window. This is often the case when clicking
on a link to an animated demo, movie clip, or other multimedia element.
You could also want to target a new browser window when you are link-
ing to content off-site.

However, opening a new browser window on behalf of your user—espe-

TIP

It is customary to put an email
link to the web page author at
the bottom of every web page.
Not only does this make it easy
for others to contact you, it
gives them a way to tell you
about any problems with the
page that your testing might
have missed. Just don’t forget
to use the email address char-
acter entity trick so that your
address flies under the radar of
spammers.

ptg

Using CSS to Style Hyperlinks 123

cially when it’s a full-size new window—goes against some principles of
usability and accessibility. When people opened new windows, typically it
happened through the use of the target attribute of the <a> tag. The target
attribute has been removed from the <a> tag in the strict XHTML 1.1 speci-
fication.

There are valid ways to achieve the same result while still adhering to
principles of usability and accessibility, but these methods require a little
JavaScript and other advanced techniques. You will learn these methods in
Hour 18, “Using Mouse Actions to Modify Text Display,” which will also
cover standards-compliant and accessible ways to invoke new windows
with your external links.

Using CSS to Style Hyperlinks
The default display of a text-based hyperlink on a web page is underlined
blue text. You might also have noticed that links you have previously visit-
ed appear as underlined purple text—that color is also a default. If you’ve
spent any time at all on the web, you will also have noticed that not all
links are blue or purple—and for that, I think, we are all thankful. Using a
little CSS and knowledge of the various pseudoclasses for the <a> link,
you can make your links look however you want.

A pseudoclass is a class that describes styles for elements that apply to cer-
tain circumstances, such as various states of user interaction with that ele-
ment.

For example, the common pseudoclasses for the <a> tag are link, visited,
hover, and active. You can remember them with the mnemonic “Love-
Hate”—LV (love) HA (hate), if you wish.

. a:link describes the style of a hyperlink that has not been visited
previously

. a:visited describes the style of a hyperlink that has been visited pre-
viously and is present in the browser’s memory

. a:hover describes the style of a hyperlink as a user’s mouse hovers
over it (and before it has been clicked)

. a:active describes the style of a hyperlink that is in the act of being
clicked but has not yet been released.

For example, let’s say you want to produce a link with the following styles:

NOTE
You can use graphics as links
(instead of using text as links)
by putting an tag
between the opening <a> and
closing tags. You’ll learn
how to use graphics as links in
Hour 11, “Using Images in Your
Web Site.”

ptg

124 HOUR 8: Using External and Internal Links

. A font that is bold and Verdana (and not underlined, meaning it has
no text decoration)

. A base color that is light blue

. A color of red when users hover over it or when they are clicking it

. A color of grey after users have visited it.

Your style sheet entries might look like the following:

a {
font-family: Verdana, sans-serif;
font-weight: bold;
text-decoration: none;

}
a:link {

color: #6479A0;
}
a:visited {

color: #CCCCCC;
}
a:hover {

color: #E03A3E;
}
a:active {

color: #E03A3E;
}

Since the example link will be Verdana bold (and not underlined) regard-
less of the state it is in, those three property and value pairs can reside in
the rule for the a selector. However, since each pseudoclass must have a
specific color associated with it, we use a rule for each pseudoclass as
shown in the code example. The pseudoclass inherits the style of the par-
ent rule, unless the rule for the pseudoclass specifically overrides that rule.
In other words, all the pseudoclasses in the previous example will be
Verdana bold, (and not underlined). If, however, we had used the follow-
ing rule for the hover pseudoclass, the text would display in Comic Sans
when users hovered over it (if, in fact, the user has the Comic Sans font
installed):

a:hover {
font-family: “Comic Sans MS”;
color: #E03A3E;

}

Additionally, since the active and hover pseudoclasses use the same font

NOTE
The colors in this example are
indicated by their hexadecimal
values, which you will learn
about in Hour 9, “Working with
Colors.”

ptg

Using CSS to Style Hyperlinks 125

color, you can combine style rules for them:

a:hover, a:active {
color: #E03A3E;

}

Listing 8.4 puts these code snippets together to produce a page using styled
pseudoclasses; the results of this code can be seen in Figure 8.5.

Listing 8.4 Using Styles to Display Link Pseudoclasses
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Link Style</title>

<style type=”text/css”>
a {

font-family: Verdana, sans-serif;
font-weight: bold;
text-decoration: none;

}
a:link {

color: #6479A0;
}
a:visited {

color: #CCCCCC;
}
a:hover, a:active {

color: #FF0000;
}
</style>

</head>
<body>

<h1>Sample Link Style</h1>
<p>The first time you see me, I should
be a light blue, bold, non-underlined link in the Verdana font.</p>

</body>
</html>

If you view the example in your web browser, indeed the link should be a
light blue, bold, non-underlined Verdana font. If you hover over the link, or
click the link without releasing it, it should turn red. If you click and release
the link, the page will simply reload because the link points to the file with
the same name. However, at that point the link will be in your browser’s

ptg

126 HOUR 8: Using External and Internal Links

You can use CSS to apply a wide range of text-related changes to your
links. You can change fonts, sizes, weights, decoration, and so on.
Sometimes you might want several different sets of link styles in your style
sheet. In that case, you can create classes; you aren’t limited to working
with only one set of styles for the <a> tag. The following example is a set of
style sheet rules for a footerlink class for links I might want to place in
the footer area of my web site:

a.footerlink {
font-family: Verdana, sans-serif;
font-weight: bold;
font-size: 75%;
text-decoration: none;

}
a.footerlink:link, a.footerlink:visited {

color: #6479A0;
}
a.footerlink:hover, a.footerlink:active {

color: #E03A3E;
}

As you can see in the example that follows, the class name (footerlink)
appears after the selector name (a), separated by a dot, and before the
pseudoclass name (hover), separated by a colon:

selector.class:pseudoclass
a.footerlink:hover

Spend some time with Appendix B, “XHTML 1.1 and CSS 2 Quick
Reference” for an idea of the styles you can apply to your links.

FIGURE 8.5
A link can use particular styles to
control the visual display.

memory and thus will be displayed as a visited link—and it will appear
grey instead of blue.

ptg

Summary 127

Summary
The <a> tag is what makes hypertext “hyper.” With it, you can create links
between pages as well as links to specific anchor points on any page. This
hour focused on creating and styling simple links to other pages using
either relative or absolute addressing to identify the pages.

You learned that when you’re creating links to other people’s pages, it’s
important to include the full Internet address of each page in an <a href>

tag. For links between your own pages, include just the filenames and
enough directory information to get from one page to another.

You also learned how to create named anchor points within a page and
how to create links to a specific anchor. You also learned how to link to
your email address so that users can easily send you messages. You even
learned how to protect your email address from spammers. Finally, you
learned methods for controlling the display of your links using CSS.

Table 8.1 summarizes the <a> tag discussed in this hour.

Table 8.1 HTML Tags and Attributes Covered in Hour 8

Tag/Attribute Function

<a>… With the href attribute, creates a link to another document
or anchor; with the id attribute, creates an anchor that can
be linked to.

Attributes
href=”address” The address of the document or anchor point to link to.

id=”name” The name for this anchor point in the document.

Q&A
Q What happens if I link to a page on the Internet and then the person

who owns that page deletes or moves it?

A That depends on how the maintainer of that external page has set up
his web server. Usually, you will see a page not found message or
something to that effect when you click a link that has been moved or
deleted. You can still click the Back button to return to your page. As a
site maintainer, you can periodically run link-checking programs to
ensure your internal and external links are valid. An example of this is
the Link Checker service at http://validator.w3.org/checklink.

http://validator.w3.org/checklink

ptg

128 HOUR 8: Using External and Internal Links

Q One of the internal links on my web site works fine on my computer,
but when I put the pages on the Internet, the link doesn’t work any-
more. What’s up?

A These are the most likely culprits:

. Capitalization problems. On Windows computers, linking to a file
named MyFile.html with will work. On
most web servers, the link must be (or you
must change the name of the file to MyFile.html). To make matters
worse, some text editors and file transfer programs actually change
the capitalization without telling you! The best solution is to stick
with all-lowercase filenames for web pages.

. Spaces in filenames. Most web servers don’t allow filenames with
spaces. For example, you should never name a web page my
page.html. Instead, name it mypage.html or even my_page.html
(using an underscore instead of a space).

. Local absolute addresses. If, for some reason, you link to a file using
a local absolute address, such as C:\mywebsite\news.html, the
link won’t work when you place the file on the Internet. You should
never use local absolute addresses; when this occurs, it is usually
an accident caused by a temporary link that was created to test part
of a page. So, be careful to remove any test links before publishing
a page on the Web.

Q Can I put both href and id in the same <a> tag? Would I want to for
any reason?

A You can, and it might save you some typing if you have a named anchor
point and a link right next to each other. It’s generally better, however, to
use <a href> and <a id> separately to avoid confusion because they
play very different roles in an HTML document.

Q What happens if I accidentally misspell the name of an anchor or for-
get to put the # in front of it?

A If you link to an anchor name that doesn’t exist within a page or mis-
spell the anchor name, the link goes to the top of that page.

Workshop
The workshop contains quiz questions and exercises to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

ptg

Exercises 129

Quiz
1. Your best friend from elementary school finds you on the Internet

and says he wants to trade home page links. How do you put a link
to his site at www.supercheapsuits.com/~billybob/ on one of your
pages?

2. What HTML would you use to make it possible for someone clicking
the words “About the Authors” at the top of a page to skip down to
a list of credits somewhere else on the page?

3. If your email address is bon@soir.com, how would you make the text
“goodnight greeting” into a link that people can click to compose
and send you an email message?

Answers
1. Put the following on your page:

Billy Bob’s
site

2. Type this at the top of the page:

About the Authors

Type this at the beginning of the credits section:

3. Type the following on your web page:

Send me a goodnight greeting!

Exercises
. Create an HTML file consisting of a formatted list of your favorite

web sites. You might already have these sites bookmarked in your
web browser, in which case you can visit them to find the exact URL
in the browser’s address bar.

. If you have created any pages for a web site, look through them and
consider whether there are any places in the text where you’d like to
make it easy for people to contact you. Include a link in that place to
your email address. You can never provide too many opportunities
for people to contact you and tell you what they need or what they
think about your products—especially if you’re running a business.

www.supercheapsuits.com/~billybob/

ptg

This page intentionally left blank

ptg

All the sample pages shown in this book thus far have used a standard
white background and black text. That’s not a requirement, although some
variation of dark text on a light background is the most common color
combination you’ll find online. After a brief overview of some best prac-
tices in color selection, you’ll learn when you can use colors, how to pick
colors, and how to specify colors when creating various elements of your
web site.

Best Practices for Choosing Colors
I can’t tell you exactly which colors to use in your web site, but I can help
you understand the considerations you should make when selecting those
colors on your own. The colors you use can greatly influence your visitors;
if you are running an e-commerce site, you will want to use colors that
entice your users to view your catalog and eventually purchase something.
To that end, you want to make sure colors are used judiciously and with
respect. You might wonder how “respect” enters into the mix when talking
about colors, but remember the World Wide Web is an international com-
munity and interpretations differ; for instance, pink is a very popular color
in Japan, but very unpopular in Eastern European countries. Similarly,
green is “the color of money” in the United States, but the vast majority of
other countries have multi-colored paper bills such that “the color of
money” isn’t a single color at all and thus the metaphor would be of no
value to them.

HOUR 9
Working with Colors

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to choose colors for
your website

. How colors work on the
Web

. How to use hexadecimal
values for color

. How to use CSS to set
background, text, and
border colors

ptg

132 HOUR 9: Working with Colors

Besides using colors that are culturally sensitive, other best practices include:

. Use a natural palette of colors. This doesn’t mean you should use
earth tones, but instead refers to using colors that one would natural-
ly see on a casual stroll around town—avoid ultrabright colors that
can cause eye strain.

. Use a small color palette. You don’t need to use 15 different colors to
achieve your goals. In fact, if your page includes text and images in
15 different colors, you might reevaluate the message you’re attempt-
ing to send. Focus on three or four main colors with a few compli-
mentary colors, at the most.

. Consider your demographics. You are likely not able to control your
demographics and thus have to find a middle ground that accommo-
dates everyone. The colors enjoyed by younger people are not neces-
sarily those appreciated by older people, just as there are color biases
between men and women and people from different geographic
regions and cultures.

With just these few tips in mind, it might seem as if your color options are
limited. Not so—it simply means you should think about the decisions
you’re making before you make them. A search for “color theory” in the
search engine of your choice should give you more food for thought, as
will the use of the color wheel.

The color wheel is a chart that shows the organization of colors in a circular
manner. The method of display is an attempt to help you visualize the rela-
tionships between primary, secondary, and complementary colors. Color
schemes are developed from working with the color wheel; understanding
color schemes can help you determine the color palette to use consistently
throughout your web site. For example, knowing something about color
relationships will hopefully allow you to avoid using orange text on a light
blue background, or bright blue text on a brown background.

Some common color schemes in web design are:

. Analogous—Colors that are adjacent to each other on the color
wheel, such as yellow and green. One color is the dominant color
and its analogous friend is used to enrich the display.

. Complementary—Colors that are opposite from each other on the
color wheel, such as a warm color (red) and a cool color (green).

. Triadic—Three colors that are equally spaced around the color
wheel. The triadic scheme provides balance while still allowing rich
color use.

ptg

Understanding Web Colors 133

There are entire books and courses devoted to understanding color theory,
so continuing the discussion in this book would indeed be a tangent.
However, if you intend to work in web design and development, you will
be served well by a solid understanding of the basics of color theory.
Spend some time reading about it—an online search will provide a wealth
of information.

Additionally, spend some hands-on time with the color wheel. The Color
Scheme Generator at http://colorschemedesigner.com/ allows you to start
with a base color and produce monochromatic, complementary, triadic,
tetradic, analogic, and accented analogic color schemes.

Understanding Web Colors
Specifying a background color other than white for a web page is easier
than you probably realize. For example, to specify blue as the background
color for a page, put style=”background-color:blue” inside the <body> tag or
in the style sheet rule for the body element. Of course, you can use many
colors other than blue. In fact, there are 16 colors listed in the W3C stan-
dards: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
purple, red, silver, teal, white, and yellow.

Obviously there are many more colors displayed on the Web than just
those 16. In fact, there are 140 color names that you can use with assurance
that all browsers will display these colors similarly. Here’s a partial list of
the 140 descriptive color names: azure, bisque, cornflowerblue, dark-
salmon, firebrick, honeydew, lemonchiffon, papayawhip, peachpuff, sad-
dlebrown, thistle, tomato, wheat, and whitesmoke.

But names are subjective—for instance, if you look at the color chart of 140
cross-browser color names, you will not be able to distinguish between
fuchsia and magenta. You will then realize that the associated hexadecimal
color values for those two terms, fuchsia and magenta, are exactly the
same: #FF00FF. You’ll learn about hexadecimal color values in the next sec-
tion, but for now, know that if you want to be standards-compliant and
use more than the 16 color names the W3C standards dictate, you should
use the hexadecimal color codes whenever possible.

There are, in fact, 16 million colors made possible with hexadecimal color
codes. However, most modern computer displays can display “only”
16,384. But 16,384 is still a lot more than 140, or 16.

NOTE
For a complete list of the 140
descriptive color names, as well
as their hexadecimal codes and
an example of the color as dis-
played by your browser, visit
http://www.w3schools.com/
HTML/html_colornames.asp.

TIP

It’s worth pointing out that color
names are not case-sensitive.
So, Black, black, and BLACK
are all black, although most
web designers stick with lower-
case or mixed case (if they use
color names at all, as most
designers will use the hexadeci-
mal notation for a more
nuanced approach to color
use).

http://colorschemedesigner.com/
http://www.w3schools.com/HTML/html_colornames.asp
http://www.w3schools.com/HTML/html_colornames.asp

ptg

134 HOUR 9: Working with Colors

You should be aware that not all computer monitors display colors in the
same hues. What might appear as a beautiful light blue background color
on your monitor might be more of a purple hue on another user’s monitor.
Neutral, earth-tone colors (such as medium gray, tan, and ivory) can pro-
duce even more unpredictable results on many computer monitors. These
colors might even seem to change color on one monitor depending on
lighting conditions in the room or the time of day.

In addition to changing the background of your pages to a color other than
white, you can change the color of text links, including various properties
of links (such as the color for when a user hovers over a link versus when
the user clicks a link—as you learned in the previous hours). You can also
set the background color of container elements (such as paragraphs, divs,
blockquotes, and table cells) and you can use colors to specify the borders
around those elements. You’ll see some examples of colors and container
elements later in this hour.

There are plenty of very bad websites, some created by earnest people with
no trace of irony whatsoever. However, “The World’s Worst Website”
shown in Figure 9.1 was purposefully created to show some of the more
egregious sins of web site design, especially with its use of colors. A
screenshot does not do it justice—visit and experience the site for yourself
at http://www.angelfire.com/super/badwebs/main.htm.

FIGURE 9.1
A partial screenshot of “The
World’s Worst Website.”

http://www.angelfire.com/super/badwebs/main.htm

ptg

Using Hexadecimal Values for Colors 135

If you search for bad web site examples in your search engine, you will
find many sites that collect examples of bad design and explain just why
such a site should be in a Hall of Shame rather than a Hall of Fame. Many
sites are considered “bad” because of their visual displays, and that dis-
play begins with color selection. Therefore, understanding colors, as well
as the nuances of their specification and use, is a crucial step to creating a
good web site.

Using Hexadecimal Values for
Colors
To remain standards-compliant, as well as to retain precise control over the
colors in your web site, you can reference colors by their hexadecimal
value. The hexadecimal value of a color is an indication of how much red,
green, and blue light should be mixed into each color. It works a little bit
like Play-Doh—just mix in the amounts of red, blue, and green you want
to get the appropriate color.

The hexadecimal color format is #rrggbb, in which rr, gg, and bb are two-
digit hexadecimal values for the red (rr), green (gg), and blue (bb) compo-
nents of the color. If you’re not familiar with hexadecimal numbers, don’t
sweat it. Just remember that FF is the maximum and 00 is the minimum.
Use one of the following codes for each component:

. FF means full brightness.

. CC means 80 percent brightness.

. 99 means 60 percent brightness.

. 66 means 40 percent brightness.

. 33 means 20 percent brightness.

. 00 means none of this color component.

For example, bright red is #FF0000, dark green is #003300, bluish-purple is
#660099, and medium-gray is #999999. To make a page with a red back-
ground and dark green text, the HTML code would look like the following:

<body style=”background-color:#FF0000; color:#003300”>

Although only six examples of two-digit hexadecimal values are shown
here, there are actually 225 combinations of two-digit hexadecimal val-

ptg

136 HOUR 9: Working with Colors

ues—0 through 9 and A through F, paired up. For example, F0 is a possible
hex value (decimal value 240), 62 is a possible hex value (decimal value
98), and so on.

As previously discussed, the rr, gg, and bb in the #rrggbb hexadecimal
color code format stand for the red, green, and blue components of the
color. Each of those components has a decimal value ranging from 0 (no
color) to 255 (full color).

So, white (or #FFFFFF) translates to a red value of 255, a green value of
255, and a blue value of 255. Similarly, black (#000000) translates to a red
value of 0, a green value of 0, and a blue value of 0. True red is #FF0000 (all
red, no green, and no blue), true green is #00FF00 (no red, all green, no
blue), and true blue is #0000FF (no red, no green, and all blue). All other
hexadecimal notations translate to some variation of the 255 possible val-
ues for each of the three colors. The cross-browser compatible color name
CornflowerBlue is associated with the hexadecimal notation #6495ED—a
red value of 40, a green value of 149, and a blue value of 237 (almost all of
the available blue values).

When picking colors, either through a graphics program or by finding
something online that you like, you might see the color notion in hexadeci-
mal or decimal. If you type hexadecimal color converter in your search
engine, you will find numerous options to help you convert color values
into something you can use in your style sheets.

Using CSS to Set Background, Text,
and Border Colors
When using CSS, there are three instances in which color values can be
used: when specifying the background color, the text color, or the border
color of elements. Previous hours contained examples of specifying colors
without going in great detail about color notion or color theory. For exam-
ple, in Hour 8, you learned about using colors for various link states. In
Hour 7, one of the quiz questions asked how to fill table cells with colors.

Figure 9.2 shows an example of color usage that could very easily go into a
web design Hall of Shame. I can’t imagine ever using these combinations
of colors and styles in a serious web site, but it serves here as an example
of how color style could be applied to various elements.

Listing 9.1 shows the XHTML and CSS styles used to produce Figure 9.2.

ptg

Using CSS to Set Background, Text, and Border Colors 137

Listing 9.1 Using Styles to Produce Background, Text, and Border Colors
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Background, Text, and Border Colors</title>

</head>

<body>
<h1>Background, Text, and Border Colors</h1>

<p style=”background-color:#CCCCCC;
border:1px solid #000000; color:#FF0000”>
Grey paragraph, black border, red text with a
orange span.</p>

<div style=”width:300px; height:75px; margin-bottom: 12px;
background-color:#000000; border:2px dashed #FF0000;color:
#FFFFFF”>

Black div, red border, white text. </div>

<table border=”1”>
<tr>
<td style=”background-color: #00FF00”>Green Table Cell</td>
<td style=”background-color: #FF0000”>Red Table Cell</td>
</tr>
<tr>
<td style=”background-color: #FFFF00”>Blue Table Cell</td>
<td style=”background-color: #0000FF”>Yellow Table Cell</td>
</tr>
</table>

<blockquote style=”background-color:#0000FF;
border:4px dotted #FFFF00; color:#FFFFFF”><p>Blue blockquote,
yellow border, white text.</p></blockquote>

</body>
</html>

ptg

138 HOUR 9: Working with Colors

FIGURE 9.2
Background, text, and border col-
ors can all be set using CSS.

NOTE
You can do quite a lot with bor-
ders, specifying different
widths, types, and colors for all
four borders of an element: top,
right, bottom, and left. See
Appendix B, “XHTML 1.1 and
CSS 2 Quick Reference” for
more information.

Looking at the styles used in Listing 9.1, you should be able to figure out
almost everything except some of the border styles. In CSS, borders can’t
be designated as a color without also having a width and type; in the first
example shown in Listing 9.1, the border width is 1px and the border type
is solid. In the second example shown in Listing 9.2, the border width is
2px and the border type is dashed. In the fourth example shown in Listing
9.2, the border width is 4px and the border type is dotted.

When picking colors for your web site, remember that a little bit goes a
long way—if you really like a bright and spectacular color, use it as an
accent color and not throughout the primary design elements. For readabil-
ity, remember that light backgrounds with dark text are much easier to
read than dark backgrounds with light text.

Finally, consider the not-insignificant portion of your audience that might
be color blind. For accessibility, you might consider using the Colorblind
Web Page Filter tool at http://colorfilter.wickline.org/ to see what your
site will look like to a person with color blindness.

http://colorfilter.wickline.org/

ptg

Q&A 139

Summary
In this hour, you learned a few best practices for thinking about color use,
and how to use the color wheel to help you find colors that will comple-
ment your text. Additionally, you learned about hexadecimal notion for
colors—that all colors are expressed in notations related to the amount of
red, green, and blue in them—and how hexadecimal notation allows you
to apply nuanced colors to your elements. More importantly, you learned
about the three color-related style properties that can be used to apply
color to container backgrounds, borders, and text using CSS.

Table 9.1 summarizes these style properties.

Table 9.1 Style Properties Covered in Hour 9

Attribute/Style Function

style=”background-color:color” Sets the background color of an ele-
ment (such as <body>, <p>, <div>,
<blockquote>, and other containers).

style=”color:color” Sets the color of text within an ele-
ment.

style=”border:size type color “ Sets the color of the four borders
around an element. Border colors
cannot be used without also specify-
ing the width and type of the border.

Q&A
Q Don’t web browsers let people choose their own background and text

colors?

A Yes, web browsers allow users to override the colors that you, as a web
page author, specify. Some might see your white-on-blue page as green-
on-white or their own favorite colors instead, but very few people actual-
ly use this option. The colors specified in the <body> tag will usually be
seen.

Q I’ve heard that there are 231 “browser-safe colors” that I can use on
web pages and that I shouldn’t use any other colors. Is that true?

A Here’s the real story: There are 231 colors that will appear less “fuzzy”
to users who operate their computers in a 256-color (8-bit) video mode.
Some web page authors try to stick to those colors. However, true-color

ptg

140 HOUR 9: Working with Colors

or high-color computer displays are all but standard these days, and
they show all colors with equal clarity. So if your graphics program can
provide color values to you in hexadecimal format, feel free to plug that
value straight into your style sheet to display custom color schemes.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. How would you give a web page a black background and make all

text bright green? Would you want to?

2. When selecting a color scheme for your web site, which of the fol-
lowing types of color relationships would give you more color
options: analogous, complementary, or triadic?

3. If you specify background-color #FFFFFF for the body element in your
style sheet, then use background-color #FF0000 for the first <div> that
you use on your page, will the background of that <div> be red or
white?

Answers
1. Put the following at the beginning of the web page or use a style rule

for the body element:

<body style=”background-color:#000000; color:#00FF00”>

2. Triadic. It refers to three colors evenly spaced around the color
wheel.

3. The background of your <div> will be red, because the background-
color specification of a container element will override the specifica-
tion in the <body> tag or body entry in the style sheet.

ptg

Exercises 141

Exercises
. Select a base color that you like—perhaps a lovely blue or an

earthy tone—and use the Color Scheme Generator at
http://colorschemedesigner.com/ to come up with a set of colors
that you can use in a web site. I recommend the tetrad or accented
analogic scheme types.

. Once you have a set of colors—or a few options for sets of colors—
create a basic HTML page with a <h1> element, a paragraph of text,
and perhaps some list items. Use the color-related styles you’ve
learned about in this hour to change the background color of the
page, and the text of the various block-level elements, in order to see
how these sets of colors might work together. See how they interact
and determine which colors are best used for containers and which
are best used for plain text, header text, and link text.

http://colorschemedesigner.com/

ptg

This page intentionally left blank

ptg

Although paying attention to color schemes and producing a visually
appealing web site is important, you don’t have to be an artist by trade to
put high-impact graphics on your web pages. More importantly, you don’t
need to spend hundreds or thousands of dollars on software, either. This
hour will help you get started with creating some of the images you can
use in your web site. Although the sample figures in this chapter use a
popular and free graphics program for Windows, Mac, and Linux users
(GNU Image Manipulation Program, or GIMP), you can apply the knowl-
edge learned in this hour to any major Windows or Macintosh graphics
application—although the menus and options might be slightly different.

In this hour, you learn only how to create the graphics themselves, including
different types of graphic uses. In Hour 11, “Using Images in Your Web Site,”
you’ll learn how to integrate your graphics using HTML and CSS.

Choosing Graphics Software
You can use almost any graphics program to create images for your web
site, from the simple paint program that typically comes free with your
computer’s operating system to an expensive professional program such as
Adobe Photoshop. Similarly, if you have a digital camera or scanner
attached to your computer, it probably came with some graphics software
capable of creating web page graphics. There are also several free image
editors available for download—or even online as a web application—that
deal just with the manipulation of photographic elements.

HOUR 10
Creating Images for

Use on the Web

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to choose graphics
software

. How to prepare photo-
graphs for use online

. How to create banners and
buttons

. How to reduce the number
of colors in an image

. How to create transparent
images

. How to create tiled back-
grounds

. How to create animated
web graphics

NOTE

Adobe Photoshop is without a
doubt the cream of the crop
when it comes to image-editing
programs. However, it is expen-
sive and quite complex if you
don’t have experience working
with computer graphics. For
more information on Adobe’s
products, visit the Adobe web
site at http://www.adobe.com/.
If you are in the market for one
of their products, you can down-
load a free evaluation version
from their site.

http://www.adobe.com/

ptg

144 HOUR 10: Creating Images for Use on the Web

If you already have software you think might be good for creating web graph-
ics, try using it to do everything described in this hour. If it can’t do some of
the tasks covered here, it probably won’t be a good tool for web graphics. In
that case, download and install GIMP from http://www.gimp.org. This fully-
functional graphics program is completely free:

1. Go to http://www.gimp.org/ and click the Downloads link.

2. You should see a link leading to a download for your operating sys-
tem. You can also click the Show other downloads link, which will
lead you to all the available options. Once you see the link to the
software specifically made for your operating system, click that link
to begin the download.

3. Once the download is complete, double-click the installer to install
the program.

The examples in this hour use GIMP to illustrate several key web graphics
techniques you’ll need to know. Of course, there are so many ways to pro-
duce images, and so many different types of software you can use, I can’t
even begin to explain them all. However, all of the major software pro-
grams for creating graphics will include detailed help functions, documen-
tation, and online user tutorials. Use the power of your search engine to
learn what I simply cannot explain in just one hour.

If GIMP doesn’t suit you, consider downloading the evaluation version of
Adobe Photoshop or Corel DRAW. For photo manipulation only, there are
many free options, all with helpful features. Google’s Picasa, which is
available free at http://picasa.google.com/, is one such option. Picnik
(http://www.picnik.com/) is another. Both of these programs are suited
for editing images rather than creating them from scratch, and Picasa is
also oriented toward organizing your digital photograph collection. As
such, these types of programs are not necessarily going to help you design
a banner or button image for your site. However, these programs can help
you work with some supplementary images and they are powerful enough
that they are worth checking out.

The Least You Need to Know About
Graphics
Two forces are always at odds when you post graphics and multimedia on
the Internet. The users’ eyes and ears want all your content to be as
detailed and accurate as possible and they also want that information dis-

Using Another Site’s
Material
One of the best ways to save
time creating the graphics and
media files for web pages is, of
course, to avoid creating them
altogether. Grabbing a graphic
from any web page is as simple
as right-clicking it (or clicking
and holding the button on a
Macintosh mouse) and select-
ing Save Image As or Save
Picture As (depending on your
browser). Extracting a back-
ground image from a page is
just as easy: Right-click it and
select Save Background As.

However, you should never use
images without the explicit per-
mission of the owner, either by
asking them or by looking for a
Creative Commons license. To
take images without explicit
permission is a copyright viola-
tion (and is also distasteful). To
learn more about copyrights, visit
http://www.utsystem.edu/OGC/
IntellectualProperty/cprtindx.htm.

You might also want to consider
royalty-free clip art, which does-
n’t require you to get copyright
permission. A good source of
clip art online is Microsoft’s
Office Online Clip Art and Media
web site, which is located at
http://office.microsoft.com/
clipart/. Barry’s Clipart Server
is another popular clip art
destination, and it’s located at
http://www.barrysclipart.com/.

http://www.gimp.org
http://www.gimp.org/
http://picasa.google.com/
http://www.picnik.com/
http://www.utsystem.edu/OGC/IntellectualProperty/cprtindx.htm
http://www.utsystem.edu/OGC/IntellectualProperty/cprtindx.htm
http://office.microsoft.com/clipart/
http://office.microsoft.com/clipart/
http://www.barrysclipart.com/

ptg

Preparing Photographic Images 145

played immediately. Intricate, colorful graphics mean big file sizes, which
increase the transfer time even over a fast connection. How do you maxi-
mize the quality of your presentation while minimizing file size? To make
these choices, you need to understand how color and resolution work
together to create a subjective sense of quality.

The resolution of an image is the number of individual dots, or pixels, that
make up an image. Large, high-resolution images generally take longer to
transfer and display than small, low-resolution images. Resolution is usu-
ally specified as the width times the height of the image, expressed in pix-
els; a 300×200 image, for example, is 300 pixels wide and 200 pixels high.

You might be surprised to find that resolution isn’t the most significant fac-
tor determining an image file’s storage size (and transfer time). This is
because images used on web pages are always stored and transferred in
compressed form. Image compression is the mathematical manipulation
that images are put through to squeeze out repetitive patterns. The mathe-
matics of image compression is complex, but the basic idea is that repeat-
ing patterns or large areas of the same color can be squeezed out when the
image is stored on a disk. This makes the image file much smaller and
allows it to be transferred faster over the Internet. The web browser then
restores the original appearance of the image when the image is displayed.

In the rest of this hour, you’ll learn exactly how to create graphics with big
visual impact and small file sizes. The techniques you’ll use to accomplish
this depend on the contents and purpose of each image. There are as many
uses for web graphics as there are web pages, but four types of graphics
are by far the most common:

. Photos of people, products, or places

. Graphical banners and logos

. Buttons or icons to indicate actions and provide links

. Background textures for container elements

Preparing Photographic Images
To put photos on your web pages, you need to convert your print-based
photos to digital images or create photos digitally by using a digital camera.
You might need to use the custom software that comes with your scanner
or camera to save pictures onto your hard drive, or you can just drag and

NOTE
There are several types of
image resolution, including
pixel, spatial, spectral, tempo-
ral, and radiometric. You could
spend hours just learning about
each type; and if you were tak-
ing a graphics design class, you
might do just that. For now,
however, all you need to remem-
ber is that large images take
longer to download and also
use a lot of space in your dis-
play. Display size and storage
or transfer size are factors you
should take into consideration
when designing your web site.

ptg

TRY IT YOURSELF▼

Cropping in GIMP
The GIMP toolbox offers quick access to the crop tool and its possible attrib-
utes. Find an image file—either a digital image you have taken with your cam-
era and stored on your hard drive, or an image you have found online. After
opening the image in GIMP, perform the following steps to crop it in GIMP:

1. In the GIMP toolbox, click the crop tool (see Figure 10.1). Depending
on the tool you select, there might be additional attributes you can
select. For example, Figure 10.1 shows the attributes for the cropping
tool (such as the aspect ratio, position, size, and so on).

146 HOUR 10: Creating Images for Use on the Web

drop files from your camera to your hard drive. If you are using a scanner
to create digital versions of your print photos, you can control just about
any scanner directly from the graphics program of your choice—see the
software documentation for details.

After you transfer the digital image files to your computer, you can use
your graphics program to crop, resize, color-correct, and compress to get
them ready for use in your web site.

Cropping an Image
Since you want web page graphics to be as compact as possible, you’ll usu-
ally need to crop your digital photos. When you crop a photo, you select
the area you want to display and you crop away the rest. .

TIP

If you don’t have a scanner or
digital camera, almost all film
developers offer a service that
transfers photos from 35mm
film to a CD-ROM or DVD-ROM
for a modest fee. You can then
copy the files from the CD-ROM
or DVD-ROM to your hard drive
and then use your graphics pro-
gram to open and modify the
image files.

FIGURE 10.1
Select the crop tool from the
toolbox.

ptg

TRY IT YOURSELF ▼

Preparing Photographic Images 147

FIGURE 10.2
Select the area of the image
that you wish to display.

Cropping in GIMP
2. In the image you want to crop, draw a box around the selection by

clicking the upper-left corner of the portion of the image you want to
keep and holding the left mouse button while you drag down to the
lower-right corner. See Figure 10.2.

3. Click one of the corners of the selection to apply the cropping.

Your graphics program will likely have a different method than the one
shown, but the concept is the same: select the area to keep and then crop
out the rest.

Even after your image has been cropped, it might be larger than it needs to
be for a web page. Depending on the design of a specific web page, you
might want to limit large images to no more than 800×600 pixels (if it is
shown on a page by itself, such as an item catalog) or even 640×480 pixels
or smaller. When shown alongside text, images tend to be in the 250 to 350
pixel range for width, so there’s just enough room for the text as well. In
some cases, you might want to also provide a thumbnail version of the
image that links to a larger version, in which case you’ll probably stick
closer to 100 pixels in the larger dimension for the thumbnail.

TIP

Your graphics software will likely
have an omnipresent size dis-
play somewhere in the image
window itself. In GIMP, the cur-
rent image size can be seen in
the top of the window. Other
programs might show it in the
lower-right or lower-left corner.
You might also see the magnifi-
cation ratio in the window, as
well as the ability to change it
(by zooming in or zooming out).

ptg

148 HOUR 10: Creating Images for Use on the Web

Resizing an Image
The exact tool necessary to change an image’s size will depend on the pro-
gram you are using. In GIMP, go to the Image menu and click Scale Image
to open the Scale Image dialog box (see Figure 10.3).

FIGURE 10.3
Use the Scale Image dialog box to
change the size of an image.

You’ll almost always want to resize using the existing aspect ratio, mean-
ing that when you enter the width you’d like the image to be, the height
will be calculated automatically (and vice versa) to keep the image from
squishing out of shape. In GIMP, the aspect ratio is locked by default, as
indicated by the chain link displayed next to the Width and Height options
shown in Figure 10.3. Clicking once on the chain will unlock it, enabling
you to specify pixel widths and heights of your own choosing—squished
or not.

In most, if not all, graphics programs, you can also resize the image based
on percentages instead of providing specific pixel dimensions. For exam-
ple, if my image started out as 1629 x 1487 and I didn’t want to do the
math to determine the values necessary to show it as half that width, I
could simply select Percent (in this instance from the drop-down next to
the pixel display shown in Figure 10.3) and change the default setting (100)
to 50. The image width would then become 815 pixels wide by 744 high —
and no math was necessary on my part.

NOTE
As with many of the features in
GIMP, the Scale Image dialog
box appears in front of the win-
dow containing the image being
resized. This placement allows
you to make changes in the dia-
log box, apply them, and see
the results immediately.

ptg

Preparing Photographic Images 149

Tweaking Image Colors
If you are editing photographic images rather than creating your own
graphics, you might need to use some color-correction tools to get the
photo just right. Like many image editing programs, GIMP offers several
options for adjusting an image’s brightness, contrast, and color balance, as
well as a filter to reduce the dreaded red-eye. To remove red-eye using
GIMP, go to Filters, click Enhance, and then click Red Eye Removal.

Most of these options are pretty intuitive. If you want the image to be
brighter, adjust the brightness. If you want more red in your image, adjust
the color balance. In GIMP, the Colors menu gives you access to numerous
tools. As with the Scale Image dialog box described in the previous section,
each tool displays a dialog box in the foreground of your workspace. As
you adjust the colors, the image reflects those changes. This preview func-
tion is a feature included in most image editing software.

Figure 10.4 shows the Adjust Hue/Lightness/Saturation tool, one of the
many tools provided on the Colors menu. As shown in the figure, many
color-related changes occur by using various sliders in dialog boxes to
adjust the values you are working with. The Preview feature allows you to
see what you are doing as you are doing it. The Reset Color button returns
the image to its original state without any changes applied.

FIGURE 10.4
The Adjust Hue/Lightness/
Saturation tool is one of many slid-
er-based color modification tools
available in GIMP.

ptg

150 HOUR 10: Creating Images for Use on the Web

Because of the numerous tools available to you, and the preview function
available with each tool, a little playful experimentation is the best way to
find out what each tool does.

Controlling JPEG Compression
Photographic images on the web work best when saved in the JPEG file
format rather than GIF; JPG allows you to retain the number of colors in
the file while still keeping the overall file size to a manageable level. When
you’re finished adjusting the size and appearance of your photo, select
File, Save As and choose JPEG as the file type. Your graphics program will
likely provide you with another dialog box through which you can control
various JPEG options, such as compression.

Figure 10.5 shows the Save as JPEG dialog box you’ll see when you save a
JPEG in GIMP. You can see here that you can control the compression ratio
for saving JPEG files by adjusting the Quality slider between 1 (low quali-
ty, small file size) and 100 (high quality, large file size).

FIGURE 10.5
GIMP allows you reduce file size
while still retaining image quality
by saving in the JPEG format.

You might want to experiment a bit to see how various JPEG compression
levels affect the quality of your images, but 85% quality (or 15% compres-
sion) is generally a good compromise between file size (and therefore
download speed) and quality for most photographic images.

ptg

Creating Banners and Buttons 151

Creating Banners and Buttons
Graphics that you create from scratch, such as banners and buttons,
require you to make considerations uniquely different from photographs.

The first decision you need to make when you produce a banner or button
is how big it should be. Most people accessing the web now have a com-
puter with a screen that is at least 1024×768 pixels in resolution, if not con-
siderably larger. For example, my screen is currently set at 1440×900 pixels.
You should generally plan your graphics so that they will always fit within
smaller screens (1024×768), with room to spare for scrollbars and margins.
The crucial size constraint is the horizontal width of your pages because
scrolling a page horizontally is a huge hassle and a source of confusion for
web users. Vertically scrolling a page is much more acceptable, so it’s okay
if your pages are taller than the minimum screen sizes.

Assuming that you target a minimum resolution of 800×600 pixels, full-
sized banners and title graphics should be no more than 770 pixels wide by
430 pixels tall, which is the maximum viewable area of the page after
you’ve accounted for scrollbars, toolbars, and other parts of the browser
window. Within a page, normal photos and artwork should be from 100 to
300 pixels in each dimension, and smaller buttons and icons should be 20
to 100 pixels tall and wide. Obviously, if you design for the 1024×768 reso-
lution, you have more screen “real estate” to work with, but the size guide-
lines for banners, buttons, and other supplementary graphics are still in
effect.

To create a new image in GIMP, go to File and choose New. The Create a
New Image dialog box displays (see Figure 10.6). If you aren’t sure how
big the image needs to be, just accept the default size of a 640×480. Or you
can choose one of the other pre-determined sizes in the Template drop-
down, such as Web banner common 468×60 or Web banner huge 728×90.
Those two settings are indeed considered “common” and “huge” for web
site banners. Otherwise, enter the width and height of the new image.

TIP

For many years, designing for
800×600 screen resolution has
been the norm. Still keep that
low number in mind, as many
people do not open applica-
tions in full-screen mode.
However, designing for a base-
line 1,024×768 screen resolu-
tion is not a bad idea.

ptg

152 HOUR 10: Creating Images for Use on the Web

For the image’s background color, you should usually choose white to
match the background that most web browsers use for web pages
(although as you learned in the previous hour, that color can be
changed).When you know that you’ll be creating a page with a back-
ground other than white, you can choose a different background color for
your image. Or you might want to create an image with no background at
all, in which case you’ll select Transparency as the background color. When
an image’s background is transparent, the web page behind the image is
allowed to show through those areas of the image. In GIMP, select the
background color for your new image by opening the Advanced Options
in the Create a New Image dialog box.

When you enter the width and height of the image in pixels and click OK,
you are faced with a blank canvas—an intimidating sight if you’re as art-
phobic as most of us! However, there are so many image creation tutorials
(not to mention entire books) available to lead you through the process, I
am comfortable leaving you to your own creative devices. This hour is all
about introducing you to the things you want to keep in mind when creat-
ing graphics for use in your sites. This hour does not necessarily teach you
exactly how to do it, because being comfortable with the tool you choose is
the first step to mastering them.

FIGURE 10.6
You need to decide on the size of
an image before you start working
on it.

ptg

Reducing the Number of Colors in an Image 153

Reducing the Number of Colors in
an Image
One of the most effective ways to reduce the size of, and therefore the
download time for, an image is to reduce the number of colors used in the
image. This can drastically reduce the visual quality of some photographic
images, but it works great for most banners, buttons, and other icons.

You’ll be glad to know that there is a special file format for images with a
limited number of colors; it’s called the Graphics Interchange Format
(GIF). When you save an image as a GIF, you might be prompted to flatten
layers or reduce the number of colors by converting to an indexed image,
as those are requirements for GIFs, as shown in Figure 10.7. The dialog box
will simply ask you to confirm these changes that the save process will do
for you—do not concern yourself with understanding these options at this
time, but read your software’s help file regarding layers and indexed col-
ors for a full understanding.

Remember, the GIF image format is designed for images that contain areas
of solid colors, such as web page titles and other illustrated graphics; the
GIF format is not ideal for photographs.

TIP

Dithering is a technique used
by image-editing programs to
simulate a color that isn’t in
the color palette with alternat-
ing pixels of two similar colors.
For example, a dithered pink
color would consist of alternat-
ing pixels of red and white pix-
els, which would give the gener-
al impression of pink. Dithering
can make images look better in
some cases, but it should usu-
ally be avoided for web page
graphics. Why? It substantially
increases the information com-
plexity of an image, and that
usually results in much larger
file sizes and slower down-
loads.

FIGURE 10.7
When saving an image as a GIF,
you might be prompted to convert
it to an indexed color palette.

PNG (pronounced “ping”) is another useful file format that is supported in
all major web browsers. While the GIF image format allows you to specify
a single transparent color, which means that the background of the web
page will show through those areas of an image, the PNG format takes
things a step further by allowing you to specify varying degrees of trans-
parency.

ptg

154 HOUR 10: Creating Images for Use on the Web

Working with Transparent Images
You might have seen web sites that use background colors or images in
their container elements, but also have images present in the foreground
that allow the background to show through parts of the foreground graph-
ics. In these cases, the images in the foreground have portions which are
transparent, so that the images themselves—which are always on a rectan-
gular canvas—do not show the areas of the canvas in which the design
does not occur. You’ll often want to use these types of partially transparent
images to make graphics look good over any background color or back-
ground image you might have in place.

To make part of an image transparent, the image must be saved in the GIF
or PNG file format. As mentioned previously in this lesson, most graphics
programs that support the GIF format allow you to specify one color to be
transparent, whereas PNG images allow for a range of transparency.
Largely because of this transparency range, the PNG format is superior to
GIF. All the latest web browsers already support PNG images. For more
information on the PNG image format, visit
http://www.libpng.org/pub/png/pngintro.html.

The process of creating a transparent image depends on the type of image
you are creating (GIF or PNG) and the graphics software you are using to
create it. For instructions, look in your graphics program’s help files or
type transparent images with [your program here] into your search engine.

Creating Tiled Backgrounds
Any GIF or JPEG image can be used as a background tile within a contain-
er element. However, before you go off and create a tiled background,
especially a highly patterned tiled background, ask yourself what that tiled
background adds to the overall look and feel of your web site, and—more
importantly—ask yourself if the text of the site can be read easily when
placed over that pattern?

Think about the web sites you frequent every day and consider the fact
that few use tiled, patterned backgrounds on their entire pages. If you
restrict your browsing to web sites for companies, products, sports teams,
or other sites in which information (primarily text) is privileged, the num-
ber of sites with tiled, patterned backgrounds will decrease even further.
While the web affords everyone the right of individuality in design, if you

http://www.libpng.org/pub/png/pngintro.html

ptg

Creating Tiled Backgrounds 155

are creating a site for your business, you might want to avoid a highly pat-
terned background with contrasting colored text.

If you do use a tiled, patterned background image for your entire site,
remember that tiled images look best when you can’t tell they’re tiled
images. In other words, you know you have a good image when the top
edge of a background tile matches seamlessly with the bottom edge, and
the left edge matches with the right.

Figures 10.8 and 10.9 show background tiles in use, both with seamless
background, but with varying degrees of effectiveness.

FIGURE 10.8
This is an example of a seamless
background image whereby you
can tell the background is tiled
because you can see six identical
shapes.

FIGURE 10.9
This is also an example of a seam-
less background image, only you
can’t tell that it is tiled.

ptg

156 HOUR 10: Creating Images for Use on the Web

In Hour 11, you’ll learn how to place background images within your con-
tainer elements. Despite my warnings in this section, there are actually
times when background images can be powerful weapons in your design
arsenal—just not when used as entire page backgrounds.

Creating Animated Web Graphics
The GIF image format allows you to create animated images that can be
used to add some motion that will spice up any web page. Animated GIF
images also transfer much faster than most of the video or multimedia files
that are often used for similar effect. With GIMP, you can create animated
GIFs by creating multiple layers within an image and then modifying the
Animated GIF options when saving the file. Additionally, if you have a
series of images you want to animate, you can use the free, web-based GIF
animation service at Gickr (http://www.gickr.com/).

The first step in creating a GIF animation is to create a series of images to
be displayed one after the other—or a series of layers, depending on your
particular software program. Each of these images is called a frame. By the
way, this use of the word frame has nothing whatsoever to do with the
frames you’ll learn about in Hour 13, “Working with Frames.” Instead,
think of the frames like how movies or cartoons are put together—the
images that you see on the screen are made up of many individual frames
with slight differences in their appearance. Once you have your frames in
mind, the process of tying them together is relatively simple—it’s the plan-
ning stage that’s the most difficult. Take some time to sketch out the
frames in storyboard fashion, especially if you plan to have more than just
a few frames. After you know how your frames are going to fit together,
use the Gickr service mentioned earlier in this section, or read the docu-
mentation for your graphics software to learn its particular process for
pulling it all together.

TIP

If you really want to use a back-
ground tile but you just cannot
seem to get the pattern you
want, you can check out some
of the hundreds of sites on the
Internet offering public-domain
background images that are
free or inexpensive yet profes-
sionally designed.

http://www.gickr.com/

ptg

Summary 157

Summary
In this hour, you learned the basics of preparing graphics for use on web
pages. If nothing else, you learned that this is a very complex topic, and
you learned just enough in this hour to whet your appetite. The examples
in this hour used the popular (and free!) GIMP software package, but feel
free to use the graphics software that best suits your needs.

You learned how to crop, resize, and tweak image colors, and you learned
about the different file formats. There are many considerations you must
keep in mind when including graphics in your site, including graphic size
and resolution and how to use transparency, animated GIFs, and tiled
backgrounds.

Q&A
Q Instead of learning all this stuff myself, shouldn’t I just hire a graphics

artist to design my pages?

A This is a difficult question to answer, and it’s not because I have a con-
flict of interest here—I work for a web development and design agency,
so it’s in my best interest to recommend agencies. But an agency isn’t
always the best solution. Hiring a graphic designer takes time and
money. Additionally, there are many graphics artists who do not produce
work suitable for the web—they are specifically print-based artists, and
the print world is quite different than the online world. Also, hiring an
individual who deems himself a graphics designer to create a web site
might not play to the strengths of that particular graphics designer. In
other words, he might be good at designing the graphical elements of a
web site, but he might not be good as a content architect or at working
with HTML and CSS. If your site is simply a personal site, a profession-
al design might not be where you want to spend your money. But if your
site is intended to promote a business, a product, a school, or anything
else whereby your image is integral to your success, it’s worth your
while (and money) to consult with web design professional.

Q I’ve produced graphics for printing on paper. Are web page graphics
any different?

A Yes. In fact, many of the rules for print graphics are reversed on the
Web. Web page graphics have to be low-resolution, while print graphics
should be as high-resolution as possible. White washes out black on
computer screens, while black bleeds into white on paper. Also, some-
one might stop a web page from loading when only half the graphics
have been downloaded. Try to avoid falling into old habits if you’ve done
a lot of print graphics design.

ptg

158 HOUR 10: Creating Images for Use on the Web

Q I have a Windows AVI video clip. Can I turn it into a GIF animation?

A Yes. Simply open the AVI file with software such as Animation Shop to
convert it to a GIF animation. The software will give you the option to
reduce the number of frames; it’s usually a good idea to sample every
third frame or so to keep the file size down to reasonable proportions.
You can also embed AVI files directly into web pages, as discussed in
Hour 12, “Using Multimedia in Your Web Site.”

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. You have a scanned picture of a horse that you need to put on a web

page. How big should you make it? In what file format should you
save it?

2. Your company logo is a black letter Z with a red circle behind it.
What size should you draw or scan it? What file format should you
save it for use on your web page?

3. Your business partner comes to you with a richly detailed back-
ground graphic of dark forest foliage and wants you to use it as the
background on your corporate site—with bold white text. What do
you do?

Answers
1. Depending on how important the image is to your page, you should

make it as small as 100×40 pixels or as large as 300×120 pixels. The
JPEG format, with about 85% compression, would be best. Of course,
you could also provide a thumbnail link to a larger image that is
viewed by itself. You’ll learn how to use images as links in the next
hour.

2. About 100×100 pixels is generally good for a square logo, but a sim-
ple graphic like that will compress very well. You could make it up
to 300×300 pixels or more (and have the space in your template to
position it appropriately—but that’s a pretty big square). Save it as
an indexed GIF file since it contains very few colors.

ptg

Exercises 159

3. You tell him no and you refuse to allow him to have any input on
design decisions in the future.

Exercises
. If you have an archive of company (or personal) photo prints, look

through it to find a few that might enhance your web site. Scan them
(or send them out to be scanned), so that you’ll have a library of digi-
tal photos, ready to use on your pages. If you have digital files of
photos taken on a digital camera, you can obviously skip the scan-
ning step and jump straight into prepping the images for your web
pages.

. Before you start designing graphics for an important business site,
try spicing up your own personal home page. This will give you a
chance to learn GIMP (or give you a chance to use your graphics
software) so that you’ll know what you’re doing when you tackle the
task at work.

ptg

This page intentionally left blank

ptg

In Hour 10, “Creating Images for Use on the Web,” you learned how to
find and create digital images for use in your web site. This hour shows
you how easy it is to place those images in your web site. In this hour
you’ll learn the HTML for placing and describing images in your site, how
to align images, and how to use images as links or “maps” to other content.

HOUR 11
Using Images in Your Web Site

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to place an image on
a web page

. How to describe images
with text

. How to specify image
height and width

. How to align images

. How to turn images into
links

. How to use background
images

. How to use image maps

Prepare Images for
Use in Your Web Site

You should get two or three images
ready now so that you can try putting
them on your own pages as you follow
along with this hour. If you have some
image files already saved in the GIF,
PNG, or JPEG format (the filenames
will end in .gif, .png, or .jpg), use
those. It’s also fine to use any graphics
you created while reading the preced-
ing lesson.

Search engines (such as Google) can
become a gold mine of images by lead-
ing you to sites related to your own
theme. Search engines can also help
you discover the oodles of sites specifi-
cally dedicated to providing free and
cheap access to reusable media collec-
tions. Also, don’t forget Microsoft’s
massive clip art library at the Office

TRY IT YOURSELF ▼

Online Clip Art and Media
web site, located at
http://office.microsoft.com/
clipart/. Other valuable
sources include Google Images
(http://images.google.com/)
and Flickr
(http://www.flickr.com)—
look for images using
Creative Commons licenses
that allow for free use with
attribution.

http://office.microsoft.com/clipart/
http://office.microsoft.com/clipart/
http://images.google.com/
http://www.flickr.com

ptg

162 HOUR 11: Using Images in Your Web Site

Placing Images on a Web Page
To put an image on a web page, first move the image file into the same fold-
er as the HTML file or in a directory named Images for easy organization.

Insert the following HTML tag at the point in the text where you want the
image to appear. Use the name of your image file instead of myimage.gif:

If your image file were in the images directory below the document root,
you would use:

Both the src and the alt attributes of the tag are required in
XHTML web pages. The src attribute identifies the image file and the alt
attribute allows you to specify descriptive text about the image, the latter
of which is intended to serve as an alternative to the image in the event
that a user is unable to view the image. You’ll read more on the alt attrib-
ute later, in the section “Describing Images with Text.”

As an example of how to use the tag, Listing 11.1 inserts an image
at the top of the page, before a paragraph of text. Whenever a web browser
displays the HTML file in Listing 11.1, it automatically retrieves and dis-
plays the image file as shown in Figure 11.1.

Listing 11.1 Using the Tag to Place Images on a Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>A Spectacular Yosemite View</title>

</head>

<body>
<h1>A Spectacular Yosemite View</h1>
<p></p>
<p>Half Dome is a granite dome in Yosemite National Park,
located in northeastern Mariposa County, California, at the eastern
end of Yosemite Valley. The granite crest rises more than 4,737 ft
(1,444 m) above the valley floor.</p>
<p>This particular view is of Half Dome as seen from Washburn Point.</p>

</body>
</html>

NOTE
It doesn’t matter to the web
server, web browser, or end
user just where you put your
images, as long as you know
where they are and as long as
you use the correct paths in
your HTML code.

NOTE

The tag also supports
a title attribute that is used to
describe an image. Unlike the
alt attribute, the title attrib-
ute is truly intended to provide
an image description with the
assumption that the image is
visible. The alt attribute
serves a more important pur-
pose, and is put into play pri-
marily when an image cannot
be displayed, such as when a
blind user is “viewing” a page
using supplementary screen
reading software. The alt attrib-
ute is required but it’s a good
idea to provide both alt and
title attributes if you want to
ensure that your images are all
well-described.

ptg

Describing Images with Text 163

If you guessed that img stands for image, you’re right. And src stands for
source, which is a reference to the location of the image file. As discussed
earlier in the book, an image is always stored in a file separate from the
text, even though it appears to be part of the same page when viewed in a
browser.

Just as with the <a href> tag used for hyperlinks, you can specify any com-
plete Internet address in the src attribute of the tag. Alternatively,
if an image is located in the same folder as the HTML file, you can specify
just the filename. You can also use relative addresses, such as
/images/birdy.jpg or ../smiley.gif.

Describing Images with Text
Each tag in Listing 11.1 includes a short text message, such as
alt=”Half Dome”. The alt stands for alternate text, which is the message that
appears in place of the image itself if it does not load. An image might not
load if its address is incorrect, if the user has turned off automatic image
downloading in her web browser preferences, or if the Internet connection
is very slow and the data has yet to transfer. Figure 11.2 shows an example
of alt text used in place of an image.

FIGURE 11.1
When a web browser displays the
HTML code shown in Listing 11.1,
it renders the hd.jpg image.

NOTE
Theoretically, you can include
an image from any web site
within your own pages. In those
cases, the image is retrieved
from the other page’s web serv-
er whenever your page is dis-
played. You could do this, but
you shouldn’t! Not only is it bad
manners, because you are
using the other person’s band-
width for your own personal
gain, it also can make your
pages display more slowly. You
also have no way of controlling
when the image might be
changed or deleted.

If you are granted permission to
republish an image from anoth-
er web page, always transfer a
copy of that image to your com-
puter and use a local file refer-
ence, such as <img src=”myim-
age.jpg” /> instead of <img
src=”http://www.otherserver.c
om/theirimage.jpg” />. This
advice is not applicable, howev-
er, when you host your
images—such as photo-
graphs—at a service specifical-
ly meant as an image reposito-
ry, such as Flickr
(http://www.flickr.com/).
Services like Flickr provide you
with a URL for each image, and
each URL includes Flickr’s
domain in the address.

http://www.flickr.com/

ptg

164 HOUR 11: Using Images in Your Web Site

Even when graphics have fully loaded and are visible in the web browser,
the alt message typically appears in a little box (known as a tool tip) when-
ever the mouse pointer passes over an image. The alt message also helps
any user who is visually impaired (or is using a voice-based interface to
read the web page).

You must include a suitable alt attribute in every tag on your web
pages, keeping in mind the variety of situations in which people might see
that message. A very brief description of the image is usually best, but web
page authors sometimes put short advertising messages or subtle humor in
their alt messages; too much humor and not enough information is
frowned upon, however. For small or unimportant images, it’s tempting to
omit the alt message altogether, but it is a required attribute of the
tag. This doesn’t mean your page won’t display properly, but it does mean
you’ll be in violation of the latest XHTML standards. I recommend assign-
ing an empty text message to alt if you absolutely don’t need it (alt=””),
which is sometimes the case with small or decorative images.

The title attribute is not required by the tag, but it functions simi-
larly to the alt attribute; in fact, the title attribute supersedes the alt
attribute for tool tips if both attributes are present. Knowing this, the best
approach for describing images via text is to use both the alt attribute and
the title attribute to provide relevant notation or helpful hints about the
image that you think might be useful when viewed as a tool tip or via
screen reader software.

FIGURE 11.2
Users will see alt messages
when images do not appear.

ptg

Aligning Images 165

Specifying Image Height and Width
Because text moves over the Internet much faster than graphics, most web
browsers display the text on a page before they display images. This gives
users something to read while they’re waiting to see the pictures, which
makes the whole page seem to load faster.

You can make sure that everything on your page appears as quickly as
possible and in the right places by explicitly stating each image’s height
and width. That way, a web browser can immediately and accurately make
room for each image as it lays out the page and while it waits for the
images to finish transferring.

For each image you want to include in your site, you can use your graph-
ics program to determine its exact height and width in pixels. You might
also be able to find these image properties by using system tools. For
example, in Windows, you can see an image’s height and width by right-
clicking on the image, selecting Properties, and then selecting Details. Once
you know the height and width of an image, you can include its dimen-
sions in the tag, like this:

Aligning Images
Just as you can align text on a page, you can align images on the page
using special attributes. Not only can you align images horizontally, you
also can align them vertically with respect to text and other images that
surround them.

Horizontal Image Alignment
As discussed in Hour 5, “Working with Text Blocks and Lists,” you can use
<div style=”text-align:center”>, <div style=”text-align:right”>, and <div
style=”text-align:left”> to align an element to the center, to the right mar-
gin, or to the left margin. These style settings affect both text and images
and can be used within the <p> tag as well.

Like text, images are normally lined up with the left margin unless a
style=”text-align:center” or style=”text-align:right” setting indicates that
they should be centered or right-justified. In other words, left is the
default value of the text-align style property.

TIP
The height and width specified
for an image don’t have to
match the image’s actual height
and width. A web browser will
try to squish or stretch the
image to display whatever size
you specify. However, this is
generally a bad idea because
browsers aren’t particularly
good at resizing images. If you
want an image to display small-
er, you’re definitely better off
resizing it in an image editor.

ptg

166 HOUR 11: Using Images in Your Web Site

You can also wrap text around images by using the float style property
directly within the tag.

In Listing 11.2, aligns the first image to the left
and wraps text around the right side of it, as you might expect. Similarly,
 aligns the second image to the right and
wraps text around the left side of it. Figure 11.3 shows how these images
align on a web page. There is no concept of floating an image to the center
because there would be no way to determine how to wrap text on each
side of it.

Listing 11.2 Using text-align Styles to Align Images on a Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>More Spectacular Yosemite Views</title>

</head>

<body>
<h1>More Spectacular Yosemite Views</h1>
<p><img src=”elcap_sm.jpg” alt=”El Capitan” width=”100”
height=”75” style=”float:left; padding: 6px;”/>El
Capitan is a 3,000-foot (910 m) vertical rock formation
in Yosemite National Park, located on the north side of Yosemite
Valley, near its western end. The granite monolith is one of the
world’s favorite challenges for rock climbers. The formation was
named “El Capitan” by the Mariposa Battalion when it explored the
valley in 1851.</p>
<p><img src=”tunnelview_sm.jpg” alt=”Tunnel View” width=”100”
height=”80” style=”float:right; padding: 6px;”/>Tunnel
View is a viewpoint on State Route 41 located directly east
of the Wawona Tunnel as one enters Yosemite Valley from the south.
The view looks east into Yosemite Valley including the southwest face
of El Capitan, Half Dome, and Bridalveil Falls. This is, to many, the
first views of the popular attractions in Yosemite.</p>

</body>
</html>

NOTE

The float style property is
actually more powerful than
described here and, in fact,
applies to more than just
images. You can use the float
style property creatively to
arrive at some interesting page
layouts, as you’ll learn later in
the book.

ptg

Aligning Images 167

Vertical Image Alignment
Sometimes, you might want to insert a small image in the middle of a line
of text; or you might like to put a single line of text next to an image as a
caption. In either case, it would be handy to have some control over how
the text and images line up vertically. Should the bottom of the image line
up with the bottom of the letters, or should the text and images all be
arranged so that their middles line up? You can choose between these and
several other options:

. To line up the top of an image with the top of the tallest image or let-
ter on the same line, use .

. To line up the bottom of an image with the bottom of the text, use
.

. To line up the middle of an image with the overall vertical center of
everything on the line, use .

. To line up the bottom of an image with the baseline of the text, use
.

All four of these options are used in Listing 11.3 and displayed in Figure
11.4. Four thumbnail images are now listed vertically down the page, along
with descriptive text next to each image. Various settings for the vertical-
align style property are used to align each image and its relevant text.

FIGURE 11.3
Showing the image alignment from
Listing 11.2.

NOTE

Notice the addition of padding
in the style attribute for both
 tags used in Listing
11.2. This padding provides
some “breathing room”
between the image and the
text—6 pixels on all four sides
of the image. You will learn
more about padding in Hour 13.

NOTE

The vertical-align style prop-
erty also supports values of top
and bottom, which can be used
to align images with the overall
top or bottom of a line of ele-
ments regardless of any text on
the line.

ptg

168 HOUR 11: Using Images in Your Web Site

Listing 11.3 Using vertical-align Styles to Align Text with Images
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Small But Mighty Spectacular Yosemite Views</title>

</head>

<body>
<h1>Small But Mighty Yosemite Views</h1>
<p><img src=”elcap_sm.jpg” alt=”El Capitan” width=”100”
height=”75” style=”vertical-align:text-top;”/>El
Capitan is a 3,000-foot (910 m) vertical rock formation
in Yosemite National Park.</p>
<p><img src=”tunnelview_sm.jpg” alt=”Tunnel View” width=”100”
height=”80” style=”vertical-align:text-bottom;”/>Tunnel
View looks east into Yosemite Valley.</p>
<p><img src=”upperyosefalls_sm.jpg” alt=”Upper Yosemite Falls”
width=”87” height=”100” style=”vertical-align:middle;”/>Upper
Yosemite Falls are 1,430 ft and are among the twenty highest
waterfalls in the world. </p>
<p><img src=”hangingrock_sm.jpg” alt=”Hanging Rock” width=”100”
height=”75” style=”vertical-align:baseline;”/>Hanging
Rock, off Glacier Point, used to be a popular spot for people
to, well, hang from. Crazy people.</p>

</body>
</html>

TIP

If you don’t include any align
attribute in an tag, the
bottom of the image will line up
with the baseline of any text
next to it. That means you
never actually have to type
style=”vertical-align:base-
line” because it is assumed by
default. However, if you specify
a margin for an image and
intend for the alignment to be a
bit more exacting with the text,
you might want to explicitly set
the vertical-align attribute to
text-bottom. Take a look at the
last image shown in Figure
11.4 to see an example of the
text appearing slightly below
the image due to the image
margin—this is a result of the
baseline setting for vertical-
align.

FIGURE 11.4
Showing the vertical image align-
ment options used in Listing 11.3.

ptg

Turning Images into Links 169

Turning Images into Links
You probably noticed in Figure 11.1 that the image on the page is quite
large, which fine in this particular example but isn’t ideal when you’re try-
ing to present multiple images. It makes more sense in this case to create
smaller image thumbnails that link to larger versions of each image. Then
you can arrange the thumbnails on the page so that visitors can easily see
all the content, even if they see only a smaller version of the actual (larger)
image. Thumbnails are one of the many ways you can use image links to
spice up your pages.

To turn any image into a clickable link to another page or image, you can
use the <a href> tag that you used previously to make text links . Listing
11.4 contains the code for a modification of Listing 11.2—which already
used thumbnails—to provide links to larger versions of the images. To
ensure that the user knows to click the thumbnails, the image and some
helper text is enclosed in a <div>, as shown in Figure 11.5.

Experiment with
Image Alignment

Try adding some images to your web pages now and experiment with dif-
ferent values of text-align, vertical-align, and float. To get you started,
here’s a quick review of how to add a hypothetical fish image (fish.jpg)
to any web page.

1. Copy the fish.jpg image file to the same directory as the HTML file
(or leave the image in its current location and make sure you remem-
ber where it is located).

2. With a text editor, choose where you want the image to appear in the
text and add <img src=”fish.jpg” alt=”Bright Orange Goldfish with

Bulging Eyes” />to that location.

3. If you want the image to be centered, put <div style=”text-

align:center”> before the tag and </div> after it. To wrap text
around the image, add style=”float:right” or style=”float:left” to
the tag. And, finally, use the vertical-align style property
directly within the tag to control the vertical alignment of the
image with respect to other images and text next to it.

4. If you have time for a little more experimentation, try combining
multiple images of various sizes using various vertical alignment
settings.

TRY IT YOURSELF ▼

ptg

170 HOUR 11: Using Images in Your Web Site

Listing 11.4 Using Tumbnails for Effective Image Links
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>More Spectacular Yosemite Views</title>
<style type=”text/css”>
div.imageleft {
float:left;
clear: all;
text-align:center;
font-size:9px;
font-style:italic;

}
div.imageright {
float:right;
clear: all;
text-align:center;
font-size:9px;
font-style:italic;

}
img {
padding: 6px;
border: none;

}
</style>

</head>
<body>
<h1>More Spectacular Yosemite Views</h1>
<p><div class=”imageleft”>

click image to enlarge</div>El Capitan
is a 3,000-foot (910 m) vertical rock formation in Yosemite National
Park, located on the north side of Yosemite Valley, near its western
end. The granite monolith is one of the world’s favorite challenges
for rock climbers. The formation was named “El Capitan” by the
Mariposa Battalion when it explored the valley in 1851.</p>
<p><div class=”imageright”>
<img
src=”tunnelview_sm.jpg” alt=”Tunnel View” width=”100”
height=”80”/>

click image to enlarge</div>Tunnel View is a
viewpoint on State Route 41 located directly east of the Wawona Tunnel
as one enters Yosemite Valley from the south. The view looks east into
Yosemite Valley including the southwest face of El Capitan, Half Dome,
and Bridalveil Falls. This is, to many, the first views of the popular
attractions in Yosemite.</p>
</body>

</html>

ptg

Turning Images into Links 171

The code in Listing 11.4 uses additional styles that will be explained in
more detail in Hours 14 and 15, but you should be able to figure out the
basics:

. The <a> tags link these particular images to larger versions, which in
this case are stored on an external server (at Flickr).

. The <div> tags, and their styles, are used to align those sets of graph-
ics and caption text (and also include some padding).

Unless instructed otherwise, web browsers display a colored rectangle
around the edge of each image link. Like text links, the rectangle usually
appears blue for links that haven’t been visited recently or purple for links
that have been visited recently—unless you specify different colored links
in your style sheet. Because you seldom, if ever, want this unsightly line
around your linked images, you should usually include
style=”border:none” in any tag within a link. In this instance, the
border:none style is made part of the style sheet entry for the img element
because we use the same styles twice.

When you click one of the thumbnail images on the sample page shown,
the link is opened in the browser, as shown in Figure 11.6.

FIGURE 11.5
Using thumbnails as links
improves the layout of a page that
uses large images.

ptg

172 HOUR 11: Using Images in Your Web Site

Using Background Images
As you learned in the previous hour, you can use background images to
act as a sort of “wallpaper” in a container element, so that the text or other
images appear on top of this underlying design.

The basic style properties that work together to create a background are:

. background-color: specifies the background color of the element.
While not image-related, it is part of the set of background-related
properties.

. background-image: specifies the image to use as the background of the
element using the following syntax: url(‘imagename.gif’).

. background-repeat: specifies how the image should repeat, both hori-
zontally and vertically. By default (without specifying anything),
background images will repeat both horizontally and vertically. Other
options are: repeat (same as default), repeat-x (horizontal), repeat-y
(vertical), and no-repeat (only one appearance of the graphic).

. background-position: specifies where the image should be initially
placed relative to its container. Options include: top-left, top-center,
top-right, center-left, center-center, center-right, bottom-left, bot-
tom-center, bottom-right, and specific pixel and percentage placements.

When specifying a background image, you can put all of these specifica-
tions together into one property, like so:

body {
background: #ffffff url(‘imagename.gif’) no-repeat top right;

}

FIGURE 11.6
Clicking a linked thumbnail image
opens the target of the link.

ptg

Using Imagemaps 173

In the previous style sheet entry, the body element of the web page will be
white and include a graphic named imagename.gif on the top right.
Another use for the background property is the creation of custom bullets
for your unordered lists. To use images as bullets, first define the style for
the tag as follows:

ul {
list-style-type: none;
padding-left: 0;
margin-left: 0;

}

Next, change the declaration for the tag to:

li {
background: url(mybullet.gif) left center no-repeat

}

Make sure that mybullet.gif (or whatever you name your graphic) is on
the web server and accessible; in that case, all unordered list items will
show your custom image rather than the standard filled disc bullet.

We will return to the specific use of background properties in later lessons
when using CSS for overall page layouts.

Using Imagemaps
Sometimes you might want to use an image as navigation, but beyond the
simple button-based or link-based navigation that you often see in web
sites. For example, perhaps you have a web site with medical information
and you want to show an image of the human body that links to pages
that provide information about various body parts. Or you have a web site
that provides a world map users can click to access information about
countries. You can divide an image into regions that link to different docu-
ments, depending on where users click within that image. This is called an
imagemap, and any image can be made into an imagemap.

Why Imagemaps Aren’t Always Necessary
The first thing you should know about imagemaps is that you probably
won’t need to use them except in very special cases. It’s almost always eas-
ier and more efficient to use several ordinary images that are placed direct-
ly next to one another and provide a separate link for each image.

For example, see Figure 11.7. This is a web page that shows 12 different
corporate logos; this example is a common type of web page in the busi-
ness world, one in which you give a little free advertisement to your part-

ptg

174 HOUR 11: Using Images in Your Web Site

ners. You could present these logos as one large image and create an
imagemap that provides links to each of the 12 companies. Users could click
each logo in the image to visit each company’s site. Or you could display the
images on the page as in this example, and use 12 separate images—one for
each company—with each image including a link to that particular company.

FIGURE 11.7
Web page with 12 different logos;
this could be presented as a sin-
gle imagemap or divided into 12
separate pieces.

Mapping Regions Within an Image
To create any type of imagemap, you need to figure out the numerical pixel
coordinates of each region within the image that you want to turn into a click-
able link. These clickable links are also known as areas. Your graphics program
might provide you with an easy way to find these coordinates. Or you might
want to use a standalone imagemapping tool such as Mapedit

FIGURE 11.8
An image that wouldn’t take well to
being sliced up—better make it an
imagemap.

An imagemap is the
best choice for an
image that has numer-
ous parts, is oddly
arranged, or the design
of the image itself
might be too compli-
cated to divide into
separate images.
Figure 11.8 shows an
image that is best suit-
ed as an imagemap.

ptg

Using Imagemaps 175

(http://www.boutell.com/mapedit/) or the online imagemap maker at
http://www.image-maps.com/. In addition to helping you map the coordinates,
these tools also provide the HTML code necessary to make the maps work.

Using an image mapping tool is often as simple as using your mouse to draw
a rectangle (or a custom shape) around the area you wish to be a link. Figure
11.9 shows the result of one of these rectangular selections as well as the inter-
face for adding the URL and the title or alternate text for this link. Several
pieces of information are necessary to creating the HTML for your imagemap:
coordinates, target URL, title of link, and alternative text for the link.

FIGURE 11.9
Using an imagemapping tool to
create linked areas of a single
graphic.

Create Your Own
Imagemap

You’re more likely to remember how to make imagemaps if you get an
image of your own and turn it into an imagemap as you continue with this
hour:

. For starters, it’s easiest to choose a fairly large image that is visually
divided into roughly rectangular regions.

. If you don’t have a suitable image handy, use your favorite graphics
program to make one. Perhaps use a single photograph showing sev-
eral people and use each person as an area of the imagemap.

. Try a few different imagemapping tools to determine which you like
best. Start with standalone software such as MapEdit
(http://www.boutell.com/mapedit/) and move to the online
imagemap maker at http://www.image-maps.com/. There are others;
use the search engine of your choice to find variations on the
“imagemap software” theme.

TRY IT YOURSELF ▼

http://www.boutell.com/mapedit/
http://www.image-maps.com/
http://www.boutell.com/mapedit/
http://www.image-maps.com/

ptg

176 HOUR 11: Using Images in Your Web Site

Creating the HTML for an Imagemap
If you use an imagemap generator, you will already have the HTML neces-
sary for creating the imagemap. However, it is a good idea to understand
the parts of the code so that you can check it for accuracy. The following
HTML code is required to start any imagemap:

<map name=”mapname”>

Keep in mind that you can use whatever name you want for the name of the
<map> tag, although it helps if you make it as descriptive as possible. Next,
you’ll need an <area /> tag for each region of the image. Following is an
example of a single <area /> tag that is used in the mapping-a-map
imagemap example:

<area shape=”rect” coords=”100,136,116,152”
href=”http://www.whitmancounty.org/”
alt=”Whitman County, WA”

title=”Whitman County, WA” />

This <area /> tag has five attributes, which you will use with every area
you describe in an imagemap:

. shape indicates whether the region is a rectangle (shape=”rect”), a cir-
cle (shape=”circle”), or an irregular polygon (shape=”poly”).

. coords gives the exact pixel coordinates for the region. For rectangles,
give the x,y coordinates of the upper-left corner followed by the x,y
coordinates of the lower-right corner. For circles, give the x,y center
point followed by the radius in pixels. For polygons, list the x,y coor-
dinates of all the corners in a connect-the-dots order.

. href specifies the page to which the region links. You can use any
address or filename that you would use in an ordinary <a href> link
tag.

. alt allows you to provide a piece of text that is associated with the
shape. Most browsers (Firefox excluded) display this text in a small box
when a user hovers his mouse over the shape. This text adds a subtle
but important visual cue to users who might not otherwise realize that
they are looking at an imagemap. Firefox correctly uses the title attrib-
ute in addition to the alt attribute to provide a visual cue, which is
why, as noted previously in this hour, you should use both attributes.

Each distinct clickable region in an imagemap must be described as a sin-
gle area, which means a typical imagemap consists of a list of areas. After
coding the <area /> tags, you are done defining the imagemap, so wrap
things up with a closing </map> tag.

ptg

Using Imagemaps 177

The last step in creating an imagemap is wiring it to the actual map image.
The map image is placed on the page using an ordinary tag.
However, there is an extra usemap attribute that is coded like this:

<img src=”map.png” usemap=”#countymap”
style=”border:none; width:650px; height:509px”
alt=”Native Peoples Census Map” />

When specifying the value of the usemap attribute, use the name you put in
the id of the <map> tag (and don’t forget the # symbol). Also include the
style attribute to specify the height and width of the image and to turn off
the border around the imagemap, which you might or might not elect to
keep in imagemaps of your own.

Listing 11.5 shows the complete code for a sample web page containing the
map graphic, its imagemap and a few mapped areas.

Listing 11.5 Defining the Regions of an Imagemap with <map> and
<area /> Tags

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Testing an Imagemap</title>

</head>

<body>
<h1>Testing an Imagemap</h1>

<p style=”text-align:center”>Click on a logo to go to the
county’s web site.

<img src=”map.png” usemap=”#countymap”
style=”border:none; width:650px;height:509px”
alt=”Native Peoples Census Map” /></p>

<map name=”countymap” id=”countymap”>
<area shape=”rect” coords=”100,136,116,152”
href=”http://www.whitmancounty.org/”
alt=”Whitman County, WA” title=”Whitman County, WA” />

<area shape=”rect” coords=”29,271,42,283”
href=”http://www.sccgov.org/” alt=”Santa Clara County, CA”
title=”Santa Clara County, CA” />

<area shape=”rect” coords=”535,216,548,228”
href=”http://visitingmifflincounty.com/”
alt=”Mifflin County, PA” title=”Mifflin County, PA” />

</map>
</body>

</html>

NOTE

If you’re a stickler for details,
you might have noticed—check
out the first few lines of code—
that this web page is coded as
an XHTML 1.0 document, as
opposed to the XHTML 1.1
used with most of the other
examples in the book. This is
done because some browsers
(Internet Explorer, for one) are
lagging in their support of a sin-
gle XHTML 1.1 change in how
imagemaps are used. This
change is specific to the
usemap attribute, which in
XHTML 1.1 doesn’t require the
symbol in front of the map
name. In fact, the # symbol
isn’t allowed at all in XHTML
1.1. The # symbol is, however,
allowed in XHTML 1.0, so to
satisfy current web browsers
and still provide you with a valid
web page, this particular exam-
ple uses XHTML 1.0.

ptg

178 HOUR 11: Using Images in Your Web Site

Figure 11.10 shows the imagemap in action. Notice in the bottom of your
browser window that your browser (in this example, Firefox) displays the
link address for whatever area the mouse is hovering over. Additionally,
when you hover the mouse over an area, the alt or title text for that
area—in this example, Whitman County—is displayed on the imagemap.

FIGURE 11.10
The imagemap defined in Listing
11.5 as it displays on the web
page.

NOTE
There is a method of producing
mapped images that relies
solely on CSS and not the
HTML <map> tag. You will learn
more about this in Hour 16,
“Using CSS to Do More With
Lists.”

ptg

Summary 179

Summary
This hour has shown you how to use the tag to place images on
your web pages. You learned how to include a short text message that
appears in place of the image as it loads and also appears whenever users
move the mouse pointer over the image. You also learned how to control
the horizontal and vertical alignment of each image and how to wrap text
around the left or right of an image.

You also learned how to use images as links—either by using the <a> tag
around the images or by creating imagemaps. You also learned a little bit
about how to use images in the background of container elements.

Table 11.1 summarizes the attributes of the tag covered in this hour,
along with relevant style properties.

Table 11.1 HTML Tags and Attributes Covered in Hour 11

Tag/Attribute Function

 Places an image file within the page.

<map>…</map> A client-side imagemap referenced by
. Includes one
or more <area /> tags.

<area /> Defines a clickable link within a client-
side imagemap.

Attributes
src=”address” The address or filename of the image.

alt=”altdescription” An alternative description of the image
that is displayed in place of the
image, primarily for users who can’t
view the image itself.

title=”title” A text message that is displayed as
an image title, typically in a small pop-
up box (tool tip) over the image.

width=”width” The width of the image (in pixels).

height=”height” The height of the image (in pixels).

style=”border:attributes” Gets rid of the border around the
image if the image is serving as a
link.

style=”vertical-align:alignment” Aligns the image vertically to text-top,
top, text-bottom, bottom, middle, or
baseline.

ptg

180 HOUR 11: Using Images in Your Web Site

Table 11.1 HTML Tags and Attributes Covered in Hour 11

Tag/Attribute Function

style=”float:float” Floats the image to one side so text
can wrap around it. Possible values
are left, right, and none (default).

usemap=”name” The name of an imagemap specifica-
tion for client-side image mapping.
Used with <map> and <area />.

shape=”value” Within the <area /> tag, specifies the
shape of the clickable area. Valid
options for this attribute are rect,
poly, and circle.

coords=”values” Within the <area /> tag, specifies the
coordinates of the clickable region
within an image. Its meaning and set-
ting vary according to the type of area.

href=”linkurl” Within the <area /> tag, specifies the
URL that should be loaded when the
area is clicked.

Q&A
Q How long can I make a message that I put after alt= in an tag?

A Theoretically, as long as you want. For practicality, you should keep the
message short enough that it fits in a smaller space than the image
itself. For big images, 10 words might be fine; in some cases, I’ve even
seen web page authors include a small paragraph of text. For small
images, a single word is best.

Q I used the tag just as you advised, but when I view the page,
all I see is a little box with an × or some shapes in it. What’s wrong?

A The broken image icon you’re seeing can mean one of two things:
Either the web browser couldn’t find the image file or the image isn’t
saved in a format the browser recognizes. To solve these problems,
first check to make sure that the image is where it is supposed to be.
If it is, then open the image in your graphics editor and save it again as
a GIF, JPG, or PNG format.

ptg

Workshop 181

Q What happens if I overlap areas on an imagemap?

A You are allowed to overlap areas on an imagemap. Just keep in mind
that when determining which link to follow, one area will have prece-
dence over the other area. Precedence is assigned according to which
areas are listed first in the imagemap. For example, the first area in the
map has precedence over the second area, which means that a click in
the overlapping portion of the areas will link to the first area. If you
have an area within an imagemap that doesn’t link to anything (known
as a “dead” area), you can use this overlap trick to deliberately prevent
this area from linking to anything. To do this, just place the dead area
before other areas so that the dead area overlaps them, and then set
its href attribute to “”.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. How would you insert an elephant.jpg image file at the very top of

a web page?

2. How would you make the word Elephant display whenever the
actual elephant.jpg image couldn’t be displayed by a web browser?

3. You want to create an imagemap of a 200×200-pixel image named
quarters.gif. When viewers click the upper-left quarter of the
image, you want them to get a page named topleft.html. When
they click the upper-right quarter, you want them to get
topright.html. Clicking the lower-left quarter should bring up bot-
tomleft.html, and the lower-right panel should lead to bottom-
right.html. What HTML would you use to implement this as an
imagemap?

Answers
1. Copy the image file into the same directory folder as the HTML text

file. Immediately after the <body> tag in the HTML text file, type
<p></p>.

2. Use the following HTML:

ptg

182 HOUR 11: Using Images in Your Web Site

3. Create the following imagemap:

<map name=”quartersmap” id=”quartersmap”>
<area shape=”rect” coords=”0,0,99,99” href=”topleft.html”

alt=”top left” />
<area shape=”rect” coords=”100,0,199,99” href=”topright.html”

alt=”top right” />
<area shape=”rect” coords=”0,100,99,199” href=”bottomleft.html”

alt=”bottom left” />
<area shape=”rect” coords=”100,100,199,199”

href=”bottomright.html”
alt=”bottom right” />

</map>
<img src=”quarters.gif” width=”200” height=”200”

usemap=”#quartersmap”
alt=”quarters” title=”quarters” />

Exercises
. Practicing any of the image placement methods in this lesson will go

a long way toward helping you determine the role that images can,
and will, play in the web sites you design. Using a few sample
images, practice using the float style to place images and text in rela-
tion to one another. Remember the possible values for float are left,
right, and none (default).

. Image alignment is also an important aspect of good visual web
design. Using a few sample images, practice using the vertical-align
style to place images and text in relation to one another. Remember
the possible values for image-align are text-top, top, text-bottom, bot-
tom, middle, and baseline.

ptg

The term multimedia encompasses everything we see and hear on a web
page: audio, video, and animation, as well as static images and text. In pre-
vious hours, you learned how to use images and text, so in this hour, you’ll
learn about including the other types of multimedia in your web sites. You
won’t learn how to create any particular audio, video, or animation, but
you will learn how to include such files in your site, through either linking
or embedding the content.

Before even thinking about including multimedia in your site, remember
that not every user has devices that will play your media type, nor do all
users have broadband Internet connections which allow these large files to
transfer quickly. Always warn your visitors that the links they click will
take them to multimedia files, and offer them the choice to view or listen
to the content—don’t force the files upon them.

HOUR 12
Using Multimedia
in Your Web Site

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to link to multimedia
files

. How to embed multimedia
files

. Additional tips for using
multimedia

Create or Find some
Multimedia to Use in
Your Web Site

Before you learn how to place multimedia on your web pages, you need to
have some multimedia content to start with.

Creating multimedia of any kind can be a challenging and complicated
task. If you’re planning to create your own content from scratch, you’ll
need far more than this book to become the next crackerjack multimedia
developer. After you have some content, however, this hour will show you
how to place your new creations into your web pages.

For those of us who are artistically challenged, several alternative ways to
obtain useful multimedia assets are available. Aside from the obvious
(such as hiring an artist), here are a few suggestions:

. Much of the material on the Internet is free. Of course, it’s still a
good idea to double-check with the author or current owner of the

TRY IT YOURSELF ▼

ptg

184 HOUR 12: Using Multimedia in Your Web Site

Linking to Multimedia Files
The simplest and most reliable option for incorporating a video or audio
file into your web site is to simply link it in with <a href>, exactly as you
would link to another HTML file.

For example, the following line could be used to offer a MOV video of a
hockey game:

View the hockey video clip.

When the user clicks the words View the hockey video clip., the hockey.mov
QuickTime video file is transferred to her computer from your web server.
Whichever helper application or plug-in she has installed automatically
starts as soon as the file has finished downloading. If no compatible helper
or plug-in can be found, the web browser will offer her a chance to down-
load the appropriate plug-in or save the video on her hard drive for later
viewing.

TRY IT YOURSELF▼

Create or Find some
Multimedia to Use in
Your Web Site

content; you don’t want to be sued for copyright infringement. In
addition, various offices of the U.S. government generate content
which, by law, belongs to all Americans. (For example, any NASA
footage found online is free for your use.)

. Many search engines (google.com, yahoo.com, lycos.com, and so on)
have specific search capabilities for finding multimedia files. As long
as you are careful about copyright issues, this can be an easy way to
find multimedia related to a specific topic. A simple search for sam-
ple Flash animations, sample QuickTime movie, or sample audio
files will produce more results than you can handle.

. If you are creatively inclined, determine the medium you like most—
for some of you it might be video production, others may enjoy
audio production, and still others might want to dabble in animation.
Once you have determined a starting point, look into the various
types of software which will enable you to create such artistic mas-
terpieces. Many companies provide multimedia software, such as
Adobe (http://www.adobe.com/) and Apple (http://www.apple.com/) to
name but two.

NOTE

Regardless of the specific
media types shown in this hour,
the procedures shown for incor-
porating multimedia into your
web pages will be similar no
matter which media format you
choose.

http://www.adobe.com/
http://www.apple.com/

ptg

Linking to Multimedia Files 185

Listing 12.1 contains the code for a web page that uses a simple image link
to play a video in Windows Media file format. In addition to the image
link, a link is also placed within the text to provide context for the user.

Listing 12.1 Using the <a> to Link an Image to a Windows Media Video
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fun in the Pond</title>

</head>

<body>
<h1>Fun in the Pond</h1>
<p><img src=”projector.gif” alt=”Pond Video”
style=”border-style:none; float:left; padding:12px” />
Michael’s backyard pond is not only a fun hobby but also an
ongoing home improvement project that is both creative and
relaxing. He has numerous fish in the pond, all Koi from various
places as far as Japan, Israel, and Australia. Although they
don’t bark, purr, or fetch anything other than food, these fish
are his pets, and good ones at that. You can
click here or on the animated graphic on the left
to see a movie clip of some fish in the pond.</p>
</body>

</html>

This code simply uses the projector.gif animated GIF image as a link to
the pond.wmv video clip. Figure 12.1 shows the pond sample page with the
projector image in view. When the image is clicked, the Windows Media
Player is invoked and begins to play the movie.

NOTE
In case you’re unfamiliar with
helper applications (helper apps
for short), they are the external
programs that a web browser
calls on to display any type of
file it can’t handle on its own.
Generally, the helper application
associated with a file type is
called on whenever a web
browser can’t display that type
of file on its own.

Plug-ins are a special sort of
helper application installed
directly into a web browser and
they allow you to view multime-
dia content directly within the
browser window.

ptg

186 HOUR 12: Using Multimedia in Your Web Site

To view the video, you need only to click the animated projector (or the
text link in the paragraph). This action results in the browser either playing
the video with the help of a plug-in (if one is found that can play the clip)
or deferring to a suitable helper application.

If you change the link from pond.wmv (Windows Media) to pond.mov
(QuickTime), your browser handles the link differently. Instead of launch-
ing another program, the QuickTime plug-in allows you to view the movie
clip directly in the browser window (see Figure 12.2).

FIGURE 12.1
The projector.gif animated GIF
image is used as an image link to
a Windows Media file that launch-
es an external helper application.

FIGURE 12.2
When you follow the image link,
the pond.mov QuickTime movie is
played using the QuickTime brows-
er plug-in.

ptg

Embedding Multimedia Files 187

As you might have guessed, this approach of using a simple link to play
multimedia files offers the best backward compatibility because the brows-
er bears all the responsibility of figuring out how to play a multimedia
clip. The downside to this is that you don’t have much control over how a
clip is played, and you definitely can’t play a clip directly in the context of
a page.

Embedding Multimedia Files
XHTML contains a standard <object> tag that is the preferred way to
embed multimedia of any kind in a web page. This tag is used instead of
the old <embed /> tag that you might still see in some HTML source code.

Embedding a multimedia file into a page produces a set of software con-
trols that allow the file to be played directly—no secondary window is nec-
essary, and there’s no need to navigate away from the page you are on.
Following is code to embed the pond video, which you saw earlier, using
the <object> tag by itself:

<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
width=”320” height=”305”>
<param name=”type” value=”video/x-ms-wmv” />
<param name=”URL” value=”pond.wmv” />
<param name=”uiMode” value=”full” />
<param name=”autoStart” value=”false” />

</object>

This code isn’t too terribly complicated when you consider that it literally
embeds a video directly into your web page (see Figure 11.3). The messiest
part of the code is the classid attribute of the <object> tag, which is set to a
long alphanumeric code. This code is the “global ID” for Windows Media
Player, which means that you’re telling the <object> tag to embed
Windows Media Player on the page to play the video clip. You can just
copy and paste this code into your own web pages.

NOTE

If your browser has no support
for QuickTime, you can down-
load the QuickTime player free
from Apple at
http://www.apple.com/quick-
time/. Even if you do have
QuickTime installed, some
browsers might still play
QuickTime movies differently
based on whether a plug-in is
installed. For example, on my
Windows computer, Internet
Explorer and Firefox both play
QuickTime movies directly in
the browser window via a plug-
in, whereas Opera launches
QuickTime as a helper applica-
tion.

NOTE

It’s important to note that
Windows Media Player is a
sophisticated enough media
player that it automatically
streams multimedia files, which
means that it begins playing
them after loading only the first
few seconds of content. The
idea is that the rest of the con-
tent is loaded in the back-
ground while you’re watching or
listening to earlier portions. The
result is that visitors don’t have
to wait through long download
times when viewing or listening
to your multimedia clips.

http://www.apple.com/quicktime/
http://www.apple.com/quicktime/

ptg

188 HOUR 12: Using Multimedia in Your Web Site

The width and height attributes of the <object> tag determine the size of the
embedded Windows Media Player window. Some browsers will automati-
cally size the embedded player to fit the content if you leave these attrib-
utes off, whereas others won’t show anything at all. Play it safe by setting
them to a size that suits the multimedia content being played.

There are four <param> tags within the <object> tag that are responsible for
additional details about how the clip is to be played. Each tag has two
attributes, name and value, which are responsible for associating data (value)
with a particular setting (name). In this example, the URL for the media clip is
set to pond.wmv. The third parameter, uiMode, determines which buttons and
user interface options are made available by Windows Media Player—full

indicates that all user interface features are enabled, such as the control
buttons and volume slider. Finally, the autoStart parameter is set to false
so that the video clip does not automatically start playing when the page is
opened in a browser.

The type parameter is perhaps the trickiest. It identifies the type of media
being displayed, which in this case is a Windows Media Video (WMV) file.
This media type must be specified as one of the standard Internet MIME
types.

FIGURE 12.3
The <object> tag allows you to
embed a video clip on a web page
while specifying which media play-
er is to play it.

ptg

Embedding Multimedia Files 189

A MIME type is an identifier for uniquely identifying different types of
media objects on the Internet. MIME stands for Multipurpose Internet Mail
Extensions, and this name comes from the fact that MIME types were orig-
inally used to identify email attachments. These MIME types should be
used in the type attribute of the <object> tag to identify what kind of multi-
media object is being referenced in the data attribute.

Following are the MIME types for several popular sound and video for-
mats you might want to use in your web pages:

. WAV Audio—audio/x-wav

. AU Audio—audio/basic

. MP3 Audio—audio/mpeg

. MIDI Audio—audio/midi

. WMA Audio—audio/x-ms-wma

. RealAudio—audio/x-pn-realaudio-plugin

. AVI—video/x-msvideo

. WMV—video/x-ms-wmv

. MPEG Video—video/mpeg

. QuickTime—video/quicktime

Listing 12.2 shows the relevant code for the pond web page, where you can
see the <object> tag as it appears in context.

Listing 12.2 Using an <object> Tag to Directly Embed a WMV Video Clip
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fun in the Pond</title>

</head>

<body>
<h1>Fun in the Pond</h1>
<div style=”float:left; padding:3px”>

<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
width=”320” height=”305”>
<param name=”type” value=”video/x-ms-wmv” />
<param name=”URL” value=”pond.wmv” />

ptg

190 HOUR 12: Using Multimedia in Your Web Site

Listing 12.2 Using an <object> Tag to Directly Embed a WMV Video Clip
<param name=”uiMode” value=”full” />
<param name=”autoStart” value=”false” />
<embed width=”320” height=”305” type=”video/x-ms-wmv”
src=”pond.wmv” controls=”All” loop=”false” autostart=”false”
pluginspage=”http://www.microsoft.com/windows/windowsmedia/” />

</object>
</div>
<p>Michael’s backyard pond is not only a fun hobby but also
an ongoing home improvement project that is both creative and
relaxing.</p>
<p>He has numerous fish in the pond, all Koi from various places
as far as Japan, Israel, and Australia. Although they don’t bark,
purr, or fetch anything other than food, these fish are his pets,
and good ones at that.</p>

</body>
</html>

You might notice that there’s some extra code that didn’t appear in the ear-
lier <object> tag example. Unfortunately, as discussed earlier in the hour,
not all web browsers are entirely consistent in their support of the <object>
tag. For this reason, it is necessary to include an <embed /> tag within the
<object> tag to account for browser inconsistencies. This isn’t an ideal solu-
tion, but it’s all we have while browser vendors continue to lag behind
prevailing standards. If you pay close attention, you’ll notice that the
<embed /> tag contains all the same information as the <object> tag.

The <object> tag is a bit more complex than what is revealed here.
However, you don’t need to know how to use the more advanced facets of
the <object> tag just to play multimedia content. In other words, it isn’t
important for you to become a multimedia guru in order to share some
multimedia clips on your web pages.

Additional Tips for Using Multimedia
Before you add video, audio, or animations to your web site, first ask
yourself if you really should. When you use these types of multimedia, be
sure to do so for a reason. Gratuitous sound and video, just like gratuitous
images, can detract from your overall message. Then again, if your mes-
sage is “Look at the videos I have made” or “Listen to my music and
download some songs,” then multimedia absolutely must play a role in
your web site.

NOTE

Because the <embed /> tag is
not supported in XHTML, it will
prevent your pages from validat-
ing. Unfortunately, there really
is no workaround for this prob-
lem—we’ll just have to wait for
browsers to fully support the
<object> tag by itself or move
to the <embed /> element of
HTML 5.

NOTE

Video files aren’t the only
media files you can include
within your web site using the
<object> and <embed /> tags.
Adding any multimedia file will
follow the same process. To
determine exactly which classid
and codebase attributes to use,
as well as additional parame-
ters (in the <param /> tags),
use your search engine to look
up something like object
embed mediatype where medi-
atype is Real Audio, QuickTime,
Flash, or whatever you want.

ptg

Additional Tips for Using Multimedia 191

Here are a few additional tips to keep in mind:

. Don’t include multimedia in a page and set it to automatically play
when the page loads. Always give users the option to start (and stop)
your sound or video.

. When possible, give users a choice of multimedia players. Don’t limit
yourself to multimedia content playable by only one type of player
on only one operating system.

. Multimedia files are larger than the typical graphics and text files,
which means you need to have the space on your web server to store
them, as well as the bandwidth allotment to transfer them to
whomever requests them via your web site.

. If your site is entirely audio or video and offers very little by way of
text or graphics, understand that a certain segment of your audience
won’t see or hear what you want to present because of the limita-
tions of their system or bandwidth. Provide these users with addi-
tional options to get your information.

. Leverage free online video hosting services, such as YouTube
(http://www.youtube.com/). Not only does YouTube provide storage for
your video clips, it will provide you with the code necessary to
embed the video in your own web page. For example, Figure 12.4
shows the YouTube page for the cutest puppy in the world. If you
copy and paste the text from the “Embed” area shown in the figure,
you would get the following:

<object width=”425” height=”344”>
<param name=”movie”
value=”http://www.youtube.com/v/yPxiHd2BOpo&rel=0&color1=0xb1b1b1
&color2=0xcfcfcf&feature=player_profilepage&fs=1”></param>
<param name=”allowFullScreen” value=”true”></param>
<param name=”allowScriptAccess” value=”always”></param>
<embed
src=”http://www.youtube.com/v/yPxiHd2BOpo&rel=0&color1=0xb1b1b1&c
olor2=0xcfcfcf&feature=player_profilepage&fs=1”
type=”application/x-shockwave-flash” allowfullscreen=”true”
allowScriptAccess=”always” width=”425” height=”344”></embed>
</object>

You could then insert the code into your web page.

http://www.youtube.com/

ptg

192 HOUR 12: Using Multimedia in Your Web Site

Summary
In this hour, you’ve learned how to embed video and sound into a web
page. You learned how to use a simple link to a multimedia file, which is
the most broadly supported but least flexible option for playing media
content. You then learned how to use the <object> tag to embed a media
player directly in a web page. Not only that, you learned that for maxi-
mum browser compatibility, it helps to assist the <object> tag with the
<embed /> tag. The <object> and <embed /> tags can be used to include a vast
array of media types, including WAV, MP3, RealAudio, and MIDI files—
not to mention AVI, WMV, and QuickTime videos, to name just a few.

Table 12.1 summarizes the tags discussed in this hour.

FIGURE 12.4
YouTube provides storage of your
video files as well as links and
<object> code for use in your own
pages.

ptg

Summary 193

Table 12.1 HTML Tags and Attributes Covered in Hour 12

Tag/Attribute Function

<object>…</object> Inserts images, videos, Java applets,
ActiveX controls, or other objects into a doc-
ument.

<param>…</param> Runtime settings for an object, such as the
width and height of the area it occupies on
a page.

Attributes

name=”name” A named parameter property.

value=”value” The value associated with a named parame-
ter property.

<embed /> Embeds a multimedia file to be read or dis-
played by a plug-in application; this tag is
technically deprecated but still useful due
to browsers not fully supporting the <object>
tag yet.

Attributes

width=”width” The width of the embedded object in pixels.

height=”height” The height of the embedded object in pixels.

type=”mimetype” The MIME type of the multimedia content.

src=”mediaurl” The URL of the file to embed.

controls=”controls” The configuration of the user input controls
for the media player; use all to enable all
controls.

loop=”loop” Play the media clip once or loop it
repeatedly; set to true or false.

autostart=”autostart” Play the media clip upon opening the page;
set to true or false.

pluginspage=”pluginurl” The URL of the plug-in required to play the
media clip.

ptg

194 HOUR 12: Using Multimedia in Your Web Site

Q&A
Q I hear a lot about streaming video and audio. What does that mean?

A In the past, video and audio files took minutes and sometimes hours to
retrieve through most modems, which severely limited the inclusion of
video and audio on web pages. The goal that everyone is moving toward
is streaming video or audio, which plays while the data is being
received. In other words, you don’t have to completely download the clip
before you can start to watch it or listen to it.

Streaming playback is now widely supported through most media play-
ers, in both standalone versions and plug-ins. When you embed a
media object using the <object> tag, the underlying media player auto-
matically streams the media clip if streaming is supported in the player.

Q How do I choose an audiovisual file format among QuickTime,
Windows AVI/WAV, RealVideo/RealAudio, and MPEG? Is there any sig-
nificant difference among them?

A QuickTime is the most popular video format among Macintosh users,
though QuickTime players are available for Windows as well. Similarly,
AVI/WMV and WAV/WMA are the video and audio formats for Windows
users, but you can get players for the Macintosh that support these for-
mats. MPEG is another popular audio and video standard. MPEG-3
(MP3 is already extremely popular as the high-fidelity audio standard of
choice). One other audio format that is based on MPEG is Apple’s AAC
format, which might be more familiar to you as the native iTunes music
format.

If most of your audience uses Windows, use AVI/WMV for video and
WAV/WMA or MP3 for audio. If your audience includes a significant
number of Macintosh users, use QuickTime or RealVideo/RealAudio, or
at least offer some alternative. MP3 is also a viable option for Mac
audio. If cross-platform compatibility is essential, consider going specifi-
cally with MP3 for audio or RealVideo/RealAudio—although only those
who download special software from http://www.real.com/player/ will
be able to see RealVideo/RealAudio clips.

http://www.real.com/player/

ptg

Workshop 195

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What’s the simplest method to provide access to a video on your

web site for the widest possible audience?

2. What HTML would you use to embed a video file named myvideo.avi
into a web page so that the users of all major web browsers will be
able to see it? The video requires an area on the page that is
320[ts]305 pixels in size.

3. How would you code a <param> tag within an <object> tag so that a
media clip is played repeatedly?

Answers
1. Just link to it:

my video

2. Because the video clip is in a Microsoft format (AVI), you should
embed a Windows Media player object using the following HTML
code:

<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
width=”320” height=”305”>
<param name=”type” value=”video/x-ms-avi” />
<param name=”URL” value=”myvideo.avi” />
<param name=”uiMode” value=”full” />
<param name=”autoStart” value=”false” />
<embed width=”320” height=”305” type=”video/x-ms-avi”
src=”myvideo.avi” controls=”All” loop=”false” autostart=”false”
pluginspage=”http://www.microsoft.com/windows/windowsmedia/”>

</embed>
</object>

3. <param name=”loop” value=”true” />

ptg

196 HOUR 12: Using Multimedia in Your Web Site

Exercises
. Try your hand at creating your own video clip and embedding it in a

web page, or find some freely available clips from the web and prac-
tice placement within your text.

. The techniques and tags covered in this hour for embedding media
also work with Flash files. To find out how you can use Flash to put
interactive animations in your web pages, check out the Flash home
page at http://www.adobe.com/products/flash/.

http://www.adobe.com/products/flash/

ptg

You might have visited web sites in which the browser window seemingly
allowed you to move between several different pages. The truth is that the
browser really was allowing you to view several pages at once by separat-
ing the browser window into regions that contain separate web pages;
each region is known as a frame. Of course, from the user’s perspective,
everything comes together to form a single window of web content, but
there are separate pages at work.

What Are Frames?
A frame is a rectangular region within the browser window that displays a web
page alongside other pages in other frames. At first glance, Figure 13.1 might
look like an ordinary web page, but it is actually two separate HTML pages,
both displayed in the same web browser window. Each page is displayed in its
own frame, arranged horizontally and separated by the horizontal bar.

HOUR 13
Working with Frames

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to build a frameset

. How to link between
frames and windows

. How to use inline frames

FIGURE 13.1
Frames allow more than one web
page to be displayed at once.

ptg

198 HOUR 13: Working with Frames

If frames are used, typically they are used to create a framed site that takes
advantage of a static set of navigational links; you can see these links in the
top frame of Figure 13.1. When one of the links in this example is clicked,
the top frame will not change; a new page will be loaded and displayed in
the bottom frame (see Figure 13.2).

FIGURE 13.2
Clicking Products brings up a new
bottom page but leaves the top
frame the same.

You should be aware that frames have long been a vexed issue in web
design. The advantages have never really outweighed the disadvantages,
yet due to differences in browser support for HTML and CSS standards,
frames were seen as a way to achieve certain goals despite their shortcom-
ings. As a web developer, I do not recommend the use of frames for the
following reasons:

. Frames go against the fundamental concept of the Web, which is the
hypertextual connection between individual instances of web content
that can be accessed via a single web address (URL).

. Printing parts of a framed site are very difficult; unless you have
clicked on the specific frame you wish to print, and select “Print this
Frame” from a context menu (if one is available), all that will print is
the frameset itself, which will have no content in it.

. If a frame lacks proper coding, or if it has proper coding but the code
is used for nefarious purposes, a user could get stuck inside a framed
site unable to view external content outside of the frame.

ptg

Building a Frameset 199

. Frames have been used historically in lieu of standard, professional,
accessible methods of web development and design. There is no rea-
son to choose the lesser option when the better option of CSS layout
is available.

. For these (and other) reasons, frames have been removed from the
HTML 5 standard. The antiquated <frame />, <frameset>, and
<noframes> tags will simply not be available in the future.

Despite these shortcomings, you will learn in this hour how to create a
very simple framed site. It is quite likely that you will still encounter
framed sites, and you might need to know how to re-create the “look and
feel” of the site but without using frames. In that case, it is important to
understand how frames are constructed so you can successfully decon-
struct them.

Additionally, you will learn about a type of frame—the <iframe>—that does
serve an important purpose and will still be present in HTML 5.

Later in this book, you will learn how to use XHTML and CSS to produce
the same functionality only without using the frames. For now, follow
along the construction of this simple framed site so that you can learn the
process should you ever have to undo one and re-create it a different way.

Building a Frameset
This section shows you how to create the simple framed site shown in
Figures 13.1 and 13.2. The contents of each frame were created as ordinary
HTML pages. The pages are top.html (for the navigation), home.html,
products.html, services.html, and contact.html. These pages don’t contain
any tags you haven’t already seen in other hours. A special page known as
a frameset document was used to put the pages together; in this case, that
document is index.html.

Creating a Frameset Document
A frameset document is an HTML page that instructs the web browser to
split its window into multiple frames and specifies which web page should
be displayed in each frame.

A frameset document actually has no content. It only tells the browser
which other pages to load and how to arrange them in the browser

ptg

200 HOUR 13: Working with Frames

window. Listing 13.1 shows the frameset document for the sample framed
site shown in Figure 13.1 and Figure 13.2.

Listing 13.1 Frameset Document for the Site Shown in Figure 13.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<frameset rows=”50,*”>
<frame src=”top.html” name=”top” />
<frame src=”home.html” name=”main” />
<noframes>
<body>
<h1>Sample Framed Site</h1>
Your browser does not support frames. Sorry!

</body>
</noframes>

</frameset>
</html>

Listing 13.1 uses a <frameset> tag instead of a <body> tag. No tags that
would normally be contained in a <body> tag can be within the <frameset>
tag. The <frameset> tag in this example includes a rows attribute, meaning
that the frames should be arranged on top of each other like the horizontal
rows of a table. If you want your frames to be side by side, use a cols
attribute (instead of a rows attribute).

You must specify the sizes of the rows or cols, either as precise pixel values
or as percentages of the total size of the browser window. You can also use
an asterisk (*) to indicate that a frame should fill whatever space is avail-
able in the window. If more than one frame has an * value, the remaining
space will be divided equally between them.

In Listing 13.1, <frameset rows=”50,*”> splits the window vertically into
two frames. The top frame will be exactly 50 pixels tall and the bottom
frame will take up all the remaining space in the window. The top frame
contains the document top.html (see Listing 13.2) and the bottom frame
contains home.html (see Listing 13.3).

NOTE

It’s important to notice that the
DTD used in this sample page
is not the familiar XHTML 1.1
DTD that you’ve been using
throughout the book. This is
because frames are not sup-
ported in the standard XHTML
1.1 DTD. Therefore, to validate
a page with frames, you must
instead use the XHTML 1.0
Frameset DTD, which is a spe-
cial DTD designed just for
pages that use frames.

ptg

Building a Frameset 201

Listing 13.2 The top.html Navigation Bar for the Sample Framed Site
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<body style=”background-color:#0000FF;”>
<div style=”text-align:center;color:#FFFFFF;font-weight:bold;

font-size:16pt”>
<a style=”color:#FFFFFF;” href=”home.html”

target=”main”>HOME ::
<a style=”color:#FFFFFF;” href=”products.html”

target=”main”>PRODUCTS ::
<a style=”color:#FFFFFF;” href=”services.html”

target=”main”>SERVICES ::
<a style=”color:#FFFFFF;” href=”contact.html”

target=”main”>CONTACT
</div>

</body>
</html>

Listing 13.3 The home.html Single Content Frame Within the Sample
Framed Site

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<body style=”background-color:#FFFFFF”>
<h1 style=”text-align:center”>Sample Framed Site: Home</h1>
<p style=”text-align:center”>This is an example of the “home”

page.</p>
</body>

</html>

In this example, the top navigation frame has a fixed height of 50 pixels.
But because you can’t predict the size of the window in which users will

TIP
After the framesets in Listing
13.1, there is a complete web
page between the <body> and
</body> tags. Notice that this
doesn’t appear at all in Figure
13.1 or Figure 13.2. All web
browsers that support frames
will ignore anything between the
<noframes> and </noframes>

tags.

All major browsers these days
support frames, so the issue of
frames compatibility is much
less significant now than in
years past. Even so, it’s easy
enough to include the
<noframes> tag and cover the
few users who might still use
ancient browsers—if you use
frames at all, that is.

NOTE

The pages in Listing 13.2 and
Listing 13.3 use the XHTML 1.0
Transitional DTD. XHTML 1.1
DTD is newer and much stricter,
but frames require you to stick
with XHTML 1.0 for validation
purposes, so it made sense to
also use XHTML 1.0 for the
pages that appear within the
frames.

ptg

202 HOUR 13: Working with Frames

view your web page, it is often convenient to use percentages rather than
exact pixel values to dictate the size of the rows and columns. For example,
to make a left frame 20% of the width of the browser window with a right
frame taking up the remaining 80%, you would type the following :

<frameset cols=”20%,80%”>

Whenever you specify any frame size in pixels, it’s a good idea to include
at least one frame in the same frameset with a variable (*) width so that
the document can grow to fill a window of any size.

Adding Individual Frames
Within the <frameset> and </frameset> tags, you should have a <frame />
tag indicating which HTML document to display in each frame. Note that
if you have fewer <frame /> tags than the number of frames defined in the
<frameset> tag, any remaining frames will be left blank.

Include an src attribute in each <frame> tag with the address of the web
page to load in that frame. You can put the address of an image file,
instead of a web page, if you just want a frame with a single image in it.

Linking Between Frames and
Windows
The real power of frames begins to emerge when you give a frame a
unique name with the name attribute in the <frame /> tag. You can then
make any link on the page change the contents of that frame by using the
target attribute in an <a> tag. For example, Listing 13.1 includes the follow-
ing tag:

<frame src=”home.html” name=”main” />

This code displays the home.html page in that frame when the page loads
and names the frame “main”.

In the code for the top frame, which is shown in Listing 13.2, you will see
the following link:

<a style=”color:#FFFFFF;” href=”services.html”

target=”main”>SERVICES

When the user clicks this link, services.html is displayed in the frame
named main (the lower frame). If the target=”main” attribute had been left
out, the services.html page would be displayed in the current (top) frame
instead.

NOTE

Technically speaking, the name
tag is outdated and has been
replaced by the id tag.
However, current web browsers
still rely on name instead of id
when it comes to identifying
frames as targets and the use
of name is still valid XHTML. So,
for now, you need to stick with
the name attribute when identify-
ing frames. Of course, it would-
n’t hurt to use both attributes.

ptg

Linking Between Frames and Windows 203

To save space, I haven’t provided a listing of the services.html page; it’s
just a regular web page with no special frame-related features. You can see
what it looks like within the frameset in Figure 13.2.

There are HTML attributes that you can use with your frame code to get
rid of the frame dividers, make more space in small frames by reducing the
size of the margins, and force frames not to have scrollbars. Listing 13.4
shows a modified version of the code in Listing 13.1. The two changes
made to the code are the addition of the following attributes to the <frame>
tags: scrolling=”no” and frameborder=”0”.

Listing 13.4 Frameset Document for the Site Shown in Figure 13.3
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<frameset rows=”50,*”>
<frame src=”top.html” name=”top” scrolling=”no” frameborder=”0” />
<frame src=”home.html” name=”main” scrolling=”no” frameborder=”0” />
<noframes>
<body>
<h1>Sample Framed Site</h1>
Your browser does not support frames. Sorry!

</body>
</noframes>

</frameset>
</html>

FIGURE 13.3
This is the page whose code is
shown in Listing 13.4 after attrib-
utes were added to the <frame />
tags.

ptg

204 HOUR 13: Working with Frames

Using Inline Frames
Inline frames do not have the same usability issues that regular frames do,
but inline frames are used for different reasons. Instead of being a pure lay-
out trick, the <iframe> is used much like an <object> tag—to place a chunk of
something within an existing document. In the case of the <object> tag, that
“something” is usually multimedia. You can use an <iframe> to embed an
entirely separate HTML document, image, or other source. Listing 13.5 and
Listing 13.6 show the code to produce the inline frame shown in Figure 13.4.

Listing 13.5 XHTML code to call an <iframe>
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Using an iframe</title>

</head>
<body style=”background-color:#CCCCCC”>

<h1 style=”text-align:center”>Inline Frame Example</h1>
<div style=”text-align:center”>

<iframe src=”iframe_src.html”
style=”width:500px;height:100px;border:1px solid black;
background-color:#FFFFFF”>
<p>Uh oh...your browser does not support iframes.</p>
</iframe>

</div>
</body>

</html>

The only XHTML code you haven’t yet encountered in Listing 13.5 is the
<iframe> itself. You can see that it requires a value for the src attribute—the
source—and that you can use styles to define a width, height, border type,
and background color (among other things). Listing 13.6 shows the source
of the <iframe>, which is just a regular file with some text and styles in it.

Listing 13.6 The Source of the <iframe> Called in Listing 13.5
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>iframe source</title>

</head>
<body>

<p style=”color:#FF0000;font-weight:bold”>I AM A

ptg

Using Inline Frames 205

Listing 13.6 The Source of the <iframe> Called in Listing 13.5
SOURCE DOCUMENT...inside an iframe.</p>

</body>
</html>

FIGURE 13.4
Listing 13.5 calls the inline frame
whose code is shown in Listing
13.6.

Inline frames are often used to bring in content from other web sites.
Common uses include serving ads to users from third-party advertising
services and using Google’s Site Search to display search results to your
users (leveraging Google’s search technology). Figure 13.5 shows an instance
of an <iframe> used to pull search results into a custom site template.

FIGURE 13.5
Using an <iframe> to display
Google Custom Search results.

ptg

206 HOUR 13: Working with Frames

In Figure 13.5, everything in the white area is actually content in an
<iframe>, with the source being a script on Google’s web site that runs and
then displays content within the template at the Digital Inspiration web
site. If you look closely at Figure 13.5—and I do not believe you can see it
in the figure—you can see a faint grey border around the actual <iframe>
itself.

Unlike the <frame /> you learned about earlier in this hour, the <iframe> is
here to stay and is still a part of HTML 5.

Summary
In this hour, you learned how to display more than one page simultane-
ously by splitting the web browser window into frames. You learned how
to use a frameset document to define the size and arrangement of the
frames and you learned which web content will be loaded into each frame.
You learned how to create links that change the contents of any frame you
choose while leaving the other frames unchanged. You also learned about
a few optional settings that control the appearance of resizable borders and
scrollbars in frames. Finally, you learned how to use the inline frame to
display content from your site or other web sites.

Table 13.1 summarizes the tags and attributes covered in this hour.

Table 13.1 HTML Tags and Attributes Covered in Hour 13

Tag/Attribute Function

<frame /> Defines a single frame within a <frameset>.

Attributes

src=”url” The URL of the document to be displayed in this
frame.

id=”name” A name to be used for targeting this frame with
the target attribute in <a href> links; compliant
with XHTML.

name=”name” A name to be used for targeting this frame with
the target attribute in <a href> links. Will eventu-
ally be replaced by id but for the time being is
still useful because it works in current web
browsers.

scrolling=”yes/no/auto” Determines whether a frame has scrollbars.
Possible values are yes, no, and auto.

ptg

Q&A 207

Table 13.1 HTML Tags and Attributes Covered in Hour 13

Attributes

noresize=”noresize” Prevents the user from resizing this frame (and
possibly adjacent frames) with the mouse.

<frameset>…</frameset> Divides the main window into a set of frames
that can each display a separate document.

Attributes

rows=”numrows” Splits the window or frameset vertically into a
number of rows specified by a number (such as
7), a percentage of the total window width (such
as 25%), or an asterisk (*) indicating that a frame
should take up all the remaining space or divide
the space evenly between frames (if multiple *
frames are specified).

cols=”numcols” Works similar to rows, except that the window or
frameset is split horizontally into columns.

frameborder=”yes/no” Specifies whether to display a border for a frame.
Options are 1 (yes) and 0 (no).

<noframes>…</noframes> Provides an alternative document body in <frame-
set> documents for browsers that do not support
frames (usually encloses <body>…</body>).

<iframe>…</iframe> Creates an inline frame; accepts all the same
attributes as does <frame /> and can be styled
with CSS.

Q&A
Q Can I display other users’ web pages in one frame and my own pages

in another frame at the same time? What if those other sites use
frames, too?

A You can load any document from anywhere on the Internet (or an
intranet) into a frame. If the document is a frameset, its frames are
sized to fit within the existing frame into which you load it.

For example, you could put a list of your favorite links in one frame and
use a separate frame to display the pages that those links refer to.
This makes it easy to provide links to other sites without risking that
someone will get lost and never come back to your own site.

You should also be aware that framing somebody else’s pages so that
they appear to be part of your own site might get you in legal trouble,

ptg

208 HOUR 13: Working with Frames

so be sure to get explicit written permission from anyone whose pages
you plan to put within one of your frames (just as you would if you were
putting images or text from their site on your own pages).

Q Do I need to put a <title> in all my frames? If I do, which title will be
displayed at the top of the window?

A The title of the frameset document is the only one that will be dis-
played. <head> and <title> tags are not required in framed documents,
but it’s a good idea to give all your pages titles just in case a user
opens one by itself outside any frame.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. Write the HTML code to list the names Mickey, Minnie, and Donald

in a frame taking up the left 25% of the browser window. Make it so
that clicking each name brings up a corresponding web page in the
right 75% of the browser window.

2. What <iframe> code would produce a borderless <iframe> with a
white background that encompasses 98% of the width of the page
and is 250 pixels high?

Answers
1. You need five separate HTML documents. The first document is the

frameset:

<html>
<head>
<title>Our Friends</title>

</head>

<frameset cols=”25%,75%”>
<frame src=”index.html” />
<frame src=”mickey.html” name=”mainframe” />

</frameset>
</html>

ptg

Exercises 209

Next, you need the index.html document for the left frame:

<html>
<head>
<title>Our Friends Index</title>

</head>

<body>
<p>Pick a friend:</p>
<p>Mickey

Minnie

Donald</p>

</body>
</html>

Finally, you need the three HTML pages named mickey.html,
minnie.html, and donald.html. They contain the information about
each friend.

2. Use the following code:

<iframe src=”some_source.html”
style=”width:98%;height:250px;border:none;

background-color:#FFFFFF”>
<p>Put message here for people not able to see the inline frame.</p>
</iframe>

Exercises
. Consider the reasons you might want to use a framed layout, and

then sketch this layout on a piece of paper. Save this sketch for the
upcoming lessons when you will learn to design layouts using
XHTML and CSS, as these technologies offer you standards-compliant
and user-friendly ways to achieve similar displays and functionality.

. Think of some ways you can use an <iframe> or two in your site—
perhaps for an ad, or perhaps to leverage the free Google Site Search
that you can offer to your users. Leave room in your design for that
element.

ptg

This page intentionally left blank

ptg

Now that you’ve learned some of the basics of creating web content, you’ll
spend this hour learning the nitty-gritty of using CSS to enhance that con-
tent. Throughout the previous hours, you have learned how to use basic
CSS for display purposes (such as font sizes and colors). In the hours that
follow, you’ll dive in to using CSS to control aspects of your entire web
“page” and not just individual pieces of text or graphics.

Before tackling page layout, however, it is important to understand four
particular CSS properties individually before putting them all together:

. The margin and padding properties—for adding space around ele-
ments.

. The align and float properties—used to place your elements in rela-
tion to others.

The examples provided during this hour are not the most stylish examples
of web content ever created, but they are not intended to be. Instead, the
examples clearly show just how XHTML and CSS are working together.
Once you master CSS through this and other hours, you’ll be able to create
web-based masterpieces such as the one shown in Figure 14.1, an example
at CSS Zen Garden.

The sites at CSS Zen Garden probably do not look like the typical e-com-
merce or social networking sites that you visit on a regular basis. Instead,
these sites showcase the artistic possibilities that can unfold using CSS.
Make no mistake, these sites take careful thought and planning, but the
potential designs are limitless.

HOUR 14
Working with Margins, Padding,

Alignment, and Floating

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to add margins
around elements

. How to add padding within
elements

. How to keep everything
aligned

. How to use the float
property

ptg

212 HOUR 14: Working with Margins, Padding, Alignment, and Floating

Using Margins
Style sheet margins allow you to add empty space around the outside of the
rectangular area for an element on a web page. It is important to remember
that the margin property works with space outside of the element.

Following are the style properties for setting margins:

. margin-top—Sets the top margin.

. margin-right—Sets the right margin.

. margin-bottom—Sets the bottom margin.

. margin-left—Sets the left margin.

. margin—Sets the top, right, bottom, and left margins as a single
property.

You can specify margins using any of the individual margin properties or
using the single margin property. Margins can be specified as auto, meaning
the browser itself sets the margin in specific lengths (pixels, points, ems) or
in percentages. If you decide to set a margin as a percentage, keep in mind
that the percentage is calculated based on the size of the entire page, not

FIGURE 14.1
This is one of many examples in
the CSS Zen Garden of XHTML
and CSS at work.

NOTE
Sites in the CSS Zen Garden
(http://www.csszengarden.
com/) show the types of design
that can be accomplished
through using standards-
compliant CSS. All of the user-
submitted entries in the Garden
use exactly the same HTML file,
but artists are free to modify
the CSS file to create their own
visual display. The example
shown in Figure 14.1 is by Andy
Clarke of Stuff and Nonsense
(http://www.stuffandnon-
sense.co.uk/).

http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.stuffandnonsense.co.uk/
http://www.stuffandnonsense.co.uk/

ptg

Using Margins 213

the size of the element. So if you set the margin-left property to 25%, the
left margin of the element will end up being 25% of the width of the entire
page.

The code in Listing 14.1 produces four rectangles on the page, each 250
pixels wide, 100 pixels high, and with a 5 pixel solid black border (see
Figure 13.2). Each rectangle—or <div>, in this case—has a different back-
ground color. We want the margin around each <div> to be 15 pixels on all
sides, so we can use:

margin-top:15px;
margin-right:15px;
margin-bottom:15px;
margin-left:15px;

You could also write that in shorthand, using the margin property:

margin:15px 15px 15px 15px;

When you use the margin property (or padding, or border) and you want
all four values to be the same, you can simplify this even further and use:

margin:15px;

When using shorthand for setting margins, padding or borders, there are
actually three approaches, which vary based on how many values you use
when setting the property:

. One value—The size of all the margins.

. Two values—The size of the top/bottom margins and the left/right
margins (in that order).

. Four values—The size of the top, right, bottom, and left margins (in
that order).

You might find it easier to stick to either using one value or all four values,
but that’s certainly not a requirement.

Listing 14.1 Simple Code to Produce Four Colored <div>s with Borders
and Margins

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>

NOTE
You can remember the short-
hand order at least two differ-
ent ways. First, if you think of
an element as a rectangle,
start at the top and work your
way clockwise around the sides:
top side, right side, bottom
side, left side. Or you can use a
first-letter mnemonic device and
remember “TRBL,” pronounced
“trouble,” which also represents
a possible state of being
should you forget the order of
the margin properties.

Also note that the TRBL order is
valid for padding properties and
border properties as well.

ptg

214 HOUR 14: Working with Margins, Padding, Alignment, and Floating

Listing 14.1 Simple Code to Produce Four Colored <div>s with Borders
and Margins

<style type=”text/css”>
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
text-align:center;

}

div#d1 {
background-color:red;
margin:15px;

}

div#d2 {
background-color:green;
margin:15px;

}

div#d3 {
background-color:blue;

}

div#d4 {
background-color:yellow;
margin:15px;

}
</style>

</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

Next, working with just the margin property in the style sheet entries in
Listing 14.1, let’s shift the margins around. In this example, you can’t really
see the right-side margin on any of these <div> elements because there’s
nothing to the right of them and they are not aligned to the right. With that

ptg

Using Margins 215

in mind, let’s set margin-right to 0px in all of these. Beyond that, the next
set of goals is to produce the following:

. No margin around the first color block.

. A left-side margin of 15 pixels, a top margin of 5 pixels, and no bot-
tom margin around the second color block.

. A left-side margin of 75 pixels and no top margin or bottom margins
around the third color block.

. A left-side margin of 250 pixels and a top margin of 25 pixels around
the fourth color block.

This seems like it would be straightforward—no margin is being set
around the first block. Except we want a margin at the top of the second
block, so really there will be a visible margin between the first and second
blocks even if we are not specifying a margin for the first block.

The new style sheet entries for the four named <div>s would now look like
this:

div#d1 {
background-color:red;

FIGURE 14.2
The basic color blocks sample
page shows four color blocks,
each with equal margins.

ptg

216 HOUR 14: Working with Margins, Padding, Alignment, and Floating

margin:0px;
}

div#d2 {
background-color:green;
margin:5px 0px 0px 15px;

}

div#d3 {
background-color:blue;
margin:0px 0px 0px 75px;

}

div#d4 {
background-color:yellow;
margin:25px 0px 0px 250px;

}

The result of Listing 14.2 (see Figure 14.3) seems random but is actually
quite useful for pointing out a few other important points. For example,
when you recall that one of the goals was to produce no margin at all
around the first color block, you might expect the border of the color block
to be flush with the browser window. But as shown in Figure 14.3, there is
a clear space between the content of the page and the frame of the browser
window.

FIGURE 14.3
Modifications to the color blocks
sample page display some differ-
ent margins.

ptg

Using Margins 217

If we were working on element placement—which we will get to in the
next hour—this would cause a problem in your layout. To ensure that your
placements and margins are counted from a position flush with the brows-
er, you will need to address the margin of the <body> element itself. In this
case, you would add the following to your style sheet:

body {
margin:0px;

}

Another “gotcha” to remember is that if you have two bordered elements
stacked on top of each other but with no margin between them, the point
at which they touch will appear to have a double border. You might then
consider making the top element’s border-bottom half the width, and also
make the bottom element’s border-top half the width. If you do this, the
borders will appear to be the same width as the other sides when stacked
on top of each other.

Also, you might have thought that by using a left-side margin of 250 pix-
els—the width of the <div>s—the fourth color block would begin where the
third color block ended. That is not the case, however, because the third
color block has a margin-left of 75 pixels. In order for them to even be close
to lining up, the margin-left value for the fourth div would have to be 325
pixels.

Changing the styles to those shown in the code that follows produces the
spacing shown in Figure 14.4. This gives the <body> element a zero margin,
thus ensuring that a margin-left value of 25 pixels truly is 25 pixels from
the edge of the browser frame. It also shows the second and third color
blocks stacked on top of each other but with modifications to the border
element so that a double border does not appear. Additionally, the fourth
color block begins where the third color block ends.

body {
margin:0px;

}
div {
width:250px;
height:100px;
color:black;
font-weight:bold;
text-align:center;

}
div#d1 {
border:5px solid #000000;
background-color:red;

ptg

218 HOUR 14: Working with Margins, Padding, Alignment, and Floating

margin:0px;
}
div#d2 {
border-width:6px 6px 3px 6px;
border-style:solid;
border-color:#000000;
background-color:green;
margin:10px 0px 0px 15px;

}
div#d3 {
border-width:3px 6px 6px 6px;
border-style:solid;
border-color:#000000;
background-color:blue;
margin:0px 0px 0px 15px;

}
div#d4 {
border:5px solid #000000;
background-color:yellow;
margin:0px 0px 0px 265px;

}

FIGURE 14.4
A third modification to the color
blocks pulls items into closer rela-
tion with each other.

ptg

Padding Elements 219

Figure 14.4 shows some overlap between the right edge of the third color
block and the left edge of the fourth color block. Why is that the case, if the
color blocks are 250 pixels wide, the third color block has a margin-left
value of 15 pixels, and the fourth color block is supposed to have a 265
pixel margin to its left? Well, it does have that 265 pixel margin, but that
margin size is not enough because we also have to factor in the 6 pixels of
border. If we change the margin property for the fourth color block to reflect
the following code, the third and fourth blocks line up according to plan
(see Figure 14.5):

margin:0px 0px 0px 276px;

FIGURE 14.5
Changing the margin to allow for
11 pixels of border width.

As shown in these examples, margin specifications are incredibly useful for
element placement but you must use caution when setting these specifica-
tions.

Padding Elements
Padding is similar to margins in that it adds extra space to elements, but
the big difference is where that space is located. If you recall, margins are

ptg

220 HOUR 14: Working with Margins, Padding, Alignment, and Floating

added to the outside of elements. On the other hand, padding adds space
inside the rectangular area of an element. As an example, if you create a
style rule for an element that establishes a width of 50 pixels and a height
of 30 pixels, and then sets the padding of the rule to 5 pixels, the remaining
content area will be 40 pixels by 20 pixels. Also, because the padding of an
element appears within the element’s content area, it will assume the same
style as the content of the element, including the background color.

You specify the padding of a style rule using one of the padding properties,
which work very much like the margin properties. The following padding
properties are available for use in setting the padding of style rules:

. padding-top—Sets the top padding.

. padding-right—Sets the right padding.

. padding-bottom—Sets the bottom padding.

. padding-left—Sets the left padding.

. padding—Sets the top, right, bottom, and left padding as a single
property.

As with margins, you can set the padding of style rules using individual
padding properties or the single padding property. Padding can also be
expressed using either a unit of measurement or a percentage.

Following is an example of how you might set the left and right padding
for a style rule so that there are 10 pixels of padding on each side of an ele-
ment’s content:

padding-left:10px;
padding-right:10px;

As with margins, you can set all the padding for an element with a single
property (the padding property). To set the padding property, you can use
the same three approaches available for the margin property. Following is
an example of how you would set the vertical padding (top/bottom) to 12
pixels and the horizontal padding (left/right) to 8 pixels for a style rule:

padding:12px 8px;

Following is more explicit code that performs the same task by specifying
all the padding values:

padding:12px 8px 12px 8px;

ptg

Padding Elements 221

In all of the previous figures, you’ll note that the text DIV #1, DIV #2, and
so on appears at the top of the colored block, with just a little space
between the border and the text. That amount of space hasn’t been speci-
fied by any padding value, but it appears as a sort of default within the
element. But if you want specific control over your element padding,
Listing 14.2 shows some examples. All of the color blocks are 250 pixels
wide, 100 pixels high, have a 5 pixel solid black border, and 25 pixels of
margin (see Figure 14.6). The fun stuff happens within the padding values
for each individual <div>.

Listing 14.2 Simple Code to Produce Four Colored <div>s with Borders,
Margins, and Padding

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>
<style type=”text/css”>
body {

margin:0px;
}
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
margin:25px;

}

div#d1 {
background-color:red;
text-align:center;
padding:15px;

}

div#d2 {
background-color:green;
text-align:right;
padding:25px 50px 6px 6px;

}

div#d3 {
background-color:blue;
text-align:left;
padding:6px 6px 6px 50px;

}

ptg

222 HOUR 14: Working with Margins, Padding, Alignment, and Floating

Listing 14.2 Simple Code to Produce Four Colored <div>s with Borders,
Margins, and Padding

div#d4 {
background-color:yellow;
text-align:center;
padding:50px;

}
</style>

</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

FIGURE 14.6
The basic color blocks sample
page shows four color blocks with
variable padding.

You should immediately recognize that something is amiss in this example.
The color blocks are all supposed to be 250 pixels wide and 100 pixels
high. The color blocks in Figure 14.6 are not uniform because despite our
efforts to control the size of the <div>, the padding applied later overrides
that initial size declaration.

ptg

Keeping Everything Aligned 223

If you place the text in a <p> element and give that element a white back-
ground (see Figure 14.7), you can see where the padding is in relation to
the text. When there just isn’t room to use all the padding that is defined,
the surrounding element has to make adjustments. You will learn about
this effect in detail in Hour 15, “Understanding the CSS Box Model and
Positioning.”

The greatest number of “tweaks” or “nudges” you make in your web
design with CSS will have to do with margins and padding. Just remem-
ber: margins outside the element, padding inside it.

Keeping Everything Aligned
Knowing that content on a web page doesn’t always fill the entire width of
the rectangular area in which it is displayed, it is often helpful to control
the alignment of the content. Even if text within a rectangular area extends
to multiple lines, alignment still enters the picture because you might want
the text left-justified, right-justified, or centered. There are two style prop-
erties that allow you to control the alignment of elements: text-align and
vertical-align.

FIGURE 14.7
Showing the padding in relation to
the text.

ptg

224 HOUR 14: Working with Margins, Padding, Alignment, and Floating

You saw examples of these style properties in action—aligning images—in
Hour 11, but it doesn’t hurt to mention these properties again here because
alignment plays a role in overall page design as well.

As a refresher, using text-align aligns an element horizontally within its
bounding area and it can be set to left, right, center, or justify.

The vertical-align property is similar to text-align except that it is used to
align elements vertically. The vertical-align property specifies how an ele-
ment is aligned with its parent, or in some cases, the current line of ele-
ments on the page. Current line refers to the vertical placement of elements
that appear within the same parent element—in other words, inline ele-
ments. If several inline elements appear on the same line, you can set their
vertical alignments the same to align them vertically. A good example
would be a row of images that appear one after the next—the vertical-
align property allows you to align them vertically.

Following are common values for use with the vertical-align property:

. top—Aligns the top of an element with the current line.

. middle—Aligns the middle of an element with the middle of its parent.

. bottom—Aligns the bottom of an element with the current line.

. text-top—Aligns the top of an element with the top of its parent.

. baseline—Aligns the baseline of an element with the baseline of its
parent.

. text-bottom—Aligns the bottom of an element with the bottom of its
parent.

Alignment works in conjunction with margins, padding, and—as you will
learn in the next section—the float property to allow you to maintain con-
trol over your design.

Understanding the Float Property
Understanding the float property is fundamental to understanding CSS-
based layout and design; it is one of the last pieces in the puzzle of how all
these elements fit together. Briefly stated, the float property allows ele-
ments to be moved around in the design such that other elements can
wrap around them. You will often find float used in conjunction with
images (as you saw in Hour 11), but you can—and many designers do—
float all sorts of elements in their layout.

ptg

Understanding the Float Property 225

Elements float horizontally, not vertically, so all you have to concern your-
self with are two possible values: right and left. When used, an element
that floats will float as far right or as far left (depending on the value of
float) as the containing element will allow it. For example, if you have
three <div>s float values of left, they will all line up to the left of the con-
taining body element. If you have your <div>s within another <div>, they
will line up to the left of that element, even if that element itself is floated
to the right.

Floating is best understood by seeing a few examples, so let’s move on to
Listing 14.3. This listing simply defines three rectangular <div>s and floats
them next to each other (floating to the left).

Listing 14.3 Using float to Place <div>s
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>
<style type=”text/css”>
body {

margin:0px;
}
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
margin:25px;

}

div#d1 {
background-color:red;
float:left;

}

div#d2 {
background-color:green;
float:left;

}

div#d3 {
background-color:blue;
float:left;

}
</style>

ptg

226 HOUR 14: Working with Margins, Padding, Alignment, and Floating

Listing 14.3 Using float to Place <div>s
</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>

</body>
</html>

The resulting page is shown in Figure 14.8, and already you can see a
problem—these three color blocks were supposed to be floated next to
each other. Well, actually they are floated next to each other, except the
browser window is not wide enough to display these three 250 pixel wide
blocks with 25 pixels of margin between them. Since they are floating, the
third one simply floats to the next line.

FIGURE 14.8
Using float to place the
color blocks.

You can imagine this could be a problem in a specifically designed visual
layout, so pay attention to your margins, padding, alignment, and floating
while also testing within a target browser window size. Granted, the
browser window shown in Figure 14.8 is a small one, to make this point
about floating elements moving to the next line when there is no room for
them to fit where they should. In other words, if you open the same HTML

ptg

Understanding the Float Property 227

file with a larger browser window you might not see the issue—this is why
you should also check your sites at different resolutions to see if a fix is
needed. The “fix” here is to adjust the margins and other size-related prop-
erties of your <div>s.

Figure 14.9 shows another interesting possibility when using the float
property. The only changes made to the code from Listing 14.3 involved
making the color blocks only 100 pixels wide, reducing the margins to
10px, and changing the float alignment of the second color block to right
(instead of left).

FIGURE 14.9
Using float to place the color
blocks.

However, something very interesting happened. The second color block
now appears visually as the third color block, as it is flush right. The sec-
ond color block has a float value of right, so it has floated all the way to the
right. The first and third color blocks are floating as left as possible, regard-
less of the way in which the <div> code appears in the HTML, which is:

<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>

Floating takes a lot of practice to get used to, especially when there are
additional elements in your page and not just a few colored blocks. For
example, what happens when you add a basic paragraph into the mix? All
elements placed after the floating element will float around that element.
To avoid that, use the clear property.

ptg

228 HOUR 14: Working with Margins, Padding, Alignment, and Floating

The clear property has five possible values: left, right, both, none, and
inherit. The most common values are left, right, and both. Specifying
clear:left will ensure there are no other floating elements allowed to the
left, clear:right ensures there are no other floating elements to the right,
and so on. Floating and clearing is a learn-by-doing process, so look for
more situations in the workshop later in this hour.

Summary
This hour introduced you to some of the most fundamental style proper-
ties in CSS-based design: margin, padding, and float. You learned how the
margin property controls space around the outside of elements and you
learned how the padding property works with space within the elements.

After a refresher on the text-align and vertical-align properties you
learned about in a previous lesson, you learned about the float property.
The float property allows for specific placement of elements and addition-
al content around those elements.

Q&A
Q The examples of margins and padding all had to do with boxes and

text. Can I apply margins and padding to images as well?

A Yes, you can apply margins and padding to any block-level element,
such as a <p>, a <div>, an , and lists such as and as
well as list items ()—just to name a few.

ptg

Exercises 229

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. To place two <div> elements next to each other, but with a 30 pixel

margin between them, what entry or entries can you use in the style
sheet?

2. Which CSS style property and value is used to ensure that content
does not appear to the left of a floating element?

3. What style sheet entry is used to place text within a <div> to appear
12 pixels from the top of the element?

Answers
1. You can use several. The first <div> uses a style property of margin-

right:15px and the second <div> uses a style property of margin-
left:15px. Or you can assign the full 30 pixels to either <div> using
margin-right or margin-left as appropriate.

2. In this instance, use clear:left.

3. padding-top:12px

Exercises
. Fully understanding margins, padding, alignment, and floating takes

practice. Using the color blocks code or <div>s of your own, practice
all manner and sorts of spacing and floating before moving on to the
next hour. The next hour discusses the CSS “box model” as a whole,
which encompasses the individual items discussed in this hour.

. While you’re at it, practice applying margins and padding to every
block-level element you’ve learned so far. Get used to putting images
within blocks of text and putting margins around the images so that
the text does not run right up to the edge of the graphic.

ptg

This page intentionally left blank

ptg

In the previous hour, I mentioned the CSS Box Model a few times—this
hour begins with a discussion of the box model and explains how the
information you learned in the previous hour helps you understand this
model. By learning the box model, you won’t tear your hair out when you
create a design and then realize the elements don’t line up or that they
seem a little “off.” You’ll know that in almost all cases, something—the
margin, the padding, the border—just needs a little tweaking for it to work
out.

You’ll also learn more about CSS positioning, including stacking elements
on top of each in a three-dimensional way (rather than a vertical way).
Finally, you’ll learn about controlling the flow of text around elements
using the float property.

The CSS Box Model
Every element in HTML is considered a “box,” whether it is a paragraph, a
<div>, an image, or so on. Boxes have consistent properties, whether we see
them or not, and whether they are specified at all in the style sheet or not.
They’re always present, and as designers, we have to keep their presence
in mind when creating a layout.

Figure 15.1 is a diagram of the box model. The box model describes the
way in which every HTML block-level element has the potential for a bor-
der, padding, and margin, and how the border, padding, and margin are
applied. In other words, all elements have some padding between the con-
tent and the border of the element. Additionally, the border might or might
not be visible, but space for it is here, just as there is a margin between the
border of the element and any other content outside of the element.

HOUR 15
Understanding the CSS

Box Model and Positioning

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to conceptualize
the CSS box model

. How to position your
elements

. How to control the way
elements stack up

. How to manage the flow
of text

ptg

232 HOUR 15: Understanding the CSS Box Model and Positioning

Here’s yet another explanation of the box model, going from the outside
inward:

. The margin is the area outside of the element. It never has color; it is
always transparent.

. The border extends around the element, on the outer edge of any
padding. The border can be of several types, widths, and colors.

. The padding exists around the content and inherits the background
color of the content area.

. The content is surrounded by padding.

Here’s where the tricky part comes in: to know the true height and width of
an element, you have to take all the elements of the box model into account.
If you remember the example from the previous hour when, despite specifi-
cally indicating a <div> should be 250 pixels wide and 100 pixels high, that
<div> had to grow larger to accommodate the padding in use.

You already know how to set the width and height of an element using the
width and height properties. The following example shows how to define
a <div> that is 250 pixels wide, 100 pixels high, and has a red background,
and has a black single pixel border:

FIGURE 15.1
Every element in HTML is repre-
sented by the CSS Box Model.

MARGIN

BORDER

PADDING

CONTENT GOES HERE

ptg

The CSS Box Model 233

div {
width: 250px;
height: 100px;
background-color: #ff0000;
border: 1px solid #000000;

}

This simple <div> is shown in Figure 15.2.

FIGURE 15.2
This is a simple <div>.

If we define a second element with these same properties, but also add
margin and padding properties of a certain size, we begin to see how the size
of the element changes. This is because of the box model.

The second <div> will be defined as follows, just adding 10 pixels of mar-
gin and 10 pixels of padding to the element:

div#d2 {
width: 250px;
height: 100px;
background-color: #ff0000;
border: 5px solid #000000;
margin: 10px;
padding: 10px;

}

The second <div>, shown in Figure 15.3, is defined as the same height and
width as the first one, but the overall height and width of the entire box
surrounding the element itself is much larger when margins and padding
are put in play.

ptg

234 HOUR 15: Understanding the CSS Box Model and Positioning

The total width of an element is the sum of:

width + padding-left + padding-right + border-left + border-right +
margin-left + margin-right

The total height of an element is the sum of:

height + padding-top + padding-bottom + border-top + border-bottom +
margin-top + margin-bottom

Therefore, the second <div> has an actual width of 300 (250 + 10 + 10 + 5 +
5 + 10 + 10) and an actual height of 150 (100 + 10 + 10 + 5 + 5 + 10 + 10).

By now you can begin to see how the box model will affect your design.
Let’s say you have only 250 pixels of horizontal space but you like 10 pix-
els of margin, 10 pixels of padding, and 5 pixels of border on all sides. To
accommodate what you like with what you have room to display, you
must specify the width of your <div> as only 200 pixels, so that 200 + 10 +
10 + 5 + 5 + 10 + 10 would add up to that 250 pixels of available horizontal
space.

Now that you’ve been schooled in the way of the box model, keep it in
mind throughout the rest of the work you do in this book and in your web
design. Among other things, it will affect element positioning and content
flow, which are the two topics we will tackle next.

FIGURE 15.3
This is supposed to be another
simple <div> but the box model
affects the size of the second
<div>.

NOTE
Throughout this book you’ve
been drilled in the use of the
DOCTYPE declaration—all sam-
ple code includes a DOCTYPE.
Continue this practice not only
so that your code validates, but
because there is a very specific
issue with Internet Explorer and
the CSS Box Model: if a DOC-
TYPE is not defined, Internet
Explorer manipulates the height
and width of your elements in a
way you did not intend. This
causes browser incompatibility
issues with your layout, so just
remember to include a DOC-
TYPE.

ptg

The Whole Scoop on Positioning 235

The Whole Scoop on Positioning
Relative positioning is the default type of positioning used by HTML. You
can think of relative positioning as being akin to laying out checkers on a
checkerboard: The checkers are arranged from left to right, and when you
get to the edge of the board, you move on to the next row. Elements that
are styled with the block value for the display style property are automati-
cally placed on a new row, whereas inline elements are placed on the same
row immediately next to the element preceding them. As an example, <p>
and <div> tags are considered block elements, whereas the tag is
considered an inline element.

The other type of positioning supported by CSS is known as absolute posi-
tioning because it allows you to set the exact position of HTML content on
a page. Although absolute positioning gives you the freedom to spell out
exactly where an element is to appear, the position is still relative to any
parent elements that appear on the page. In other words, absolute position-
ing allows you to specify the exact location of an element’s rectangular
area with respect to its parent’s area, which is very different from relative
positioning.

With the freedom of placing elements anywhere you want on a page, you
can run into the problem of overlap, which is when an element takes up
space used by another element. There is nothing stopping you from speci-
fying the absolute locations of elements such that they overlap. In this case,
CSS relies on the z-index of each element to determine which element is on
the top and which is on the bottom. You’ll learn more about the z-index of
elements later in the hour. For now, let’s take a look at exactly how you
control whether a style rule uses relative or absolute positioning.

The type of positioning (relative or absolute) used by a particular style rule
is determined by the position property, which is capable of having one of
the following two values: relative or absolute. After specifying the type of
positioning, you then provide the specific position using the following
properties:

. left—The left position offset.

. right—The right position offset.

. top—The top position offset.

. bottom—The bottom position offset.

ptg

236 HOUR 15: Understanding the CSS Box Model and Positioning

You might think that these position properties make sense only for
absolute positioning, but they actually apply to both types of positioning.
Under relative positioning, the position of an element is specified as an off-
set relative to the original position of the element. So if you set the left
property of an element to 25px, the left side of the element will be shifted
over 25 pixels from its original (relative) position. An absolute position, on
the other hand, is specified relative to the parent of the element to which
the style is applied. So if you set the left property of an element to 25px
under absolute positioning, the left side of the element will appear 25 pix-
els to the right of the parent element’s left edge. On the other hand, using
the right property with the same value would position the element so that
its right side is 25 pixels to the right of the parent’s right edge.

Let’s return to the color blocks example to show how positioning works. In
Listing 15.1, the four color blocks have relative positioning specified. As
you can see in Figure 15.4, the blocks are positioned vertically.

Listing 15.1 Showing Relative Positioning with Four Color Blocks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>
<style type=”text/css”>
div {

position:relative;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;

}
div#d1 {
background-color:red;

}

div#d2 {
background-color:green;

}

div#d3 {
background-color:blue;

}

ptg

The Whole Scoop on Positioning 237

Listing 15.1 Showing Relative Positioning with Four Color Blocks
div#d4 {
background-color:yellow;

}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

FIGURE 15.4
The color blocks are positioned
vertically with one on top of the
other.

The style sheet entry for the <div> element itself sets the position style
property for the <div> element to relative. Because the remaining style
rules are inherited from the <div> style rule, they inherit its relative posi-
tioning. In fact, the only difference between the other style rules is that
they have different background colors.

Notice in Figure 15.4 that the <div> elements are displayed one after the
next, which is what you would expect with relative positioning. But to
make things more interesting, which is what we’re here to do, you can
change the positioning to absolute and explicitly specify the placement of

ptg

238 HOUR 15: Understanding the CSS Box Model and Positioning

the colors. In Listing 15.2, the style sheet entries are changed to use
absolute positioning to arrange the color blocks.

Listing 15.2 Using Absolute Positioning of the Color Blocks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>

<style type=”text/css”>
div {

position:absolute;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;

}
div#d1 {
background-color:red;
left:0px;
top:0px;

}
div#d2 {
background-color:green;
left:75px;
top:25px;

}
div#d3 {
background-color:blue;
left:150px;
top:50px;

}
div#d4 {
background-color:yellow;
left:225px;
top:75px;

}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

ptg

Controlling the Way Things Stack Up 239

This style sheet sets the position property to absolute, which is necessary in
order for the style sheet to use absolute positioning. Additionally, the left
and top properties are set for each of the inherited <div> style rules.
However, the position of each of these rules is set so that the elements are
displayed overlapping each other, as shown in Figure 15.5.

FIGURE 15.5
The color blocks are displayed
using absolute positioning.

Now we’re talking layout! Figure 15.5 shows how absolute positioning
allows you to place elements exactly where you want them. It also reveals
how easy it is to arrange elements so that they overlap each other. You
might be curious as to how a web browser knows which elements to draw
on top when they overlap. The next section covers how you can control
stacking order.

Controlling the Way Things Stack Up
There are situations in which you’d like to carefully control the manner in
which elements overlap each other on a web page. The z-index style prop-
erty allows you to set the order of elements with respect to how they stack
on top of each other. Although the name z-index might sound a little
strange, it refers to the notion of a third dimension (Z) that points into the
computer screen, in addition to the two dimensions that go across (X) and
down (Y) the screen. Another way to think of the z-index is the relative
position of a single magazine within a stack of magazines. A magazine
nearer the top of the stack has a higher z-index than a magazine lower in
the stack. Similarly, an overlapped element with a higher z-index is dis-
played on top of an element with a lower z-index.

ptg

240 HOUR 15: Understanding the CSS Box Model and Positioning

The z-index property is used to set a numeric value that indicates the rela-
tive z-index of a style rule. The number assigned to z-index has meaning
only with respect to other style rules in a style sheet, which means that set-
ting the z-index property for a single rule doesn’t mean much. On the other
hand, if you set z-index for several style rules that apply to overlapped ele-
ments, the elements with higher z-index values will appear on top of ele-
ments with lower z-index values.

Listing 15.3 contains another version of the color blocks style sheet and
HTML that uses z-index settings to alter the natural overlap of elements.

Listing 15.3 Using z-index to Alter the Display of Elements in the Color
Blocks Sample

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>
<style type=”text/css”>
div {

position:absolute;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;

}
div#d1 {
background-color:red;
left:0px;
top:0px;
z-index:0;

}
div#d2 {
background-color:green;
left:75px;
top:25px;
z-index:3;

}
div#d3 {
background-color:blue;
left:150px;
top:50px;
z-index:2;

}
div#d4 {

NOTE

Regardless of the z-index value
you set for a style rule, an ele-
ment displayed with the rule will
always appear on top of its par-
ent.

ptg

Controlling the Way Things Stack Up 241

Listing 15.3 Using z-index to Alter the Display of Elements in the Color
Blocks Sample

background-color:yellow;
left:225px;
top:75px;
z-index:1;

}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

The only change in this code from what you saw in Listing 15.3 is the addi-
tion of the z-index property in each of the numbered div style classes.
Notice that the first numbered div has a z-index setting of 0, which should
make it the lowest element in terms of the z-index, whereas the second div
has the highest z-index. Figure 15.6 shows the color blocks page as dis-
played with this style sheet, which clearly shows how the z-index affects
the displayed content and makes it possible to carefully control the overlap
of elements.

FIGURE 15.6
Using z-index to alter the display
of the color blocks.

ptg

242 HOUR 15: Understanding the CSS Box Model and Positioning

Although the examples show color blocks that are simple <div> elements,
the z-index style property can impact any HTML content, including images.

Managing the Flow of Text
Now that you’ve seen some examples of placing elements relative to other
elements or placing them absolutely, it’s time to revisit the flow of content
around elements. The conceptual current line is an invisible line used to
place elements on a page. This line has to do with the flow of elements on
a page; it comes into play as elements are arranged next to each other
across and down the page. Part of the flow of elements is the flow of text
on a page. When you mix text with other elements (such as images), it’s
important to control how the text flows around those other elements.

You’ve already seen two of these style properties in Hour 14. Following are
some style properties that provide you with control over text flow:

. float—Determines how text flows around an element.

. clear—Stops the flow of text around an element.

. overflow—Controls the overflow of text when an element is too small
to contain all the text.

The float property is used to control how text flows around an element. It
can be set to either left or right. These values determine where to position
an element with respect to flowing text. So setting an image’s float proper-
ty to left positions the image to the left of flowing text.

As you learned in the previous hour, you can prevent text from flowing
next to an element by using the clear property, which can be set to none,
left, right, or both. The default value for the clear property is none, indicat-
ing that text is to flow with no special considerations for the element. The
left value causes text to stop flowing around an element until the left side
of the page is free of the element. Likewise, the right value means that text
is not to flow around the right side of the element. The both value indicates
that text isn’t to flow around either side of the element.

The overflow property handles overflow text, which is text that doesn’t fit
within its rectangular area; this can happen if you set the width and height

of an element too small. The overflow property can be set to visible, hidden,
or scroll. The visible setting automatically enlarges the element so that
the overflow text will fit within it; this is the default setting for the property.

ptg

Q&A 243

The hidden value leaves the element the same size, allowing the overflow
text to remain hidden from view. Perhaps the most interesting value is
scroll, which adds scrollbars to the element so that you can move around
and see the text.

Summary
This hour began with the very important discussion about the CSS Box
Model and how to calculate the width and height of elements when taking
margins, padding, and borders into consideration. The hour continued by
tackling absolute positioning of elements, and then you learned about
positioning using z-index. You then learned about a few nifty little style
properties that allow you to control the flow of text on a page.

Q&A
Q How would I determine when to use relative positioning and when to

use absolute positioning?

A Although there are no set guidelines regarding the usage of relative ver-
sus absolute positioning, the general idea is that absolute positioning
is required only when you want to exert a finer degree of control over
how content is positioned. This has to do with the fact that absolute
positioning allows you to position content down to the exact pixel,
whereas relative positioning is much less predictable in terms of how it
positions content. This isn’t to say that relative positioning can’t do a
good job of positioning elements on a page; it just means that absolute
positioning is more exact. Of course, this also makes absolute position-
ing potentially more susceptible to changes in screen size, which you
can’t really control.

Q If you don’t specify the z-index of two elements that overlap each
other, how do I know which element will appear on top?

A If the z-index property isn’t set for overlapping elements, the element
appearing later in the web page will appear on top. The easy way to
remember this is to think of a web browser drawing each element on a
page as it reads it from the HTML document; elements read later in the
document are drawn on top of those which were read earlier.

ptg

244 HOUR 15: Understanding the CSS Box Model and Positioning

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What’s the difference between relative positioning and absolute posi-

tioning?

2. Which CSS style property controls the manner in which elements
overlap each other?

3. What HTML code could you use to display the words “Where would
you like to” starting exactly at the upper-left corner of the browser
window and displays the words “GO TODAY?” in large type exactly
80 pixels down and 20 pixels to the left of the corner?

Answers
1. In relative positioning, content is displayed according to the flow of a

page, with each element physically appearing after the element pre-
ceding it in the HTML code. Absolute positioning, on the other hand,
allows you to set the exact position of content on a page.

2. The z-index style property is used to control the manner in which
elements overlap each other.

3. You could use:

Where would you like to
<h1 style=”position:absolute;left:80px;top:20px”>GO TODAY?</h1>

Exercises
. Practice working with the intricacies of the CSS Box Model by creat-

ing a series of elements with different margins, padding, and borders
and see how these properties affect their height and width.

. Find a group of images that you like and use absolute positioning
and maybe even some z-index values to arrange them in a sort of
gallery. Try to place your images such that they form a design (such
as a square, triangle, or circle).

ptg

In Hour 5, you were introduced to three types of HTML lists, and in Hour
14 you learned about margins, padding, and alignment of elements. In this
hour, you will learn of how margins, padding, and alignment styles can be
applied to different types of HTML lists, helping you produce some pow-
erful design elements purely in HTML and CSS.

Specifically, you will learn how to modify the appearance of list ele-
ments—beyond the use of the list-style-type property that you learned in
Hour 5—and how to use a CSS-styled list to replace the client-side image
maps you learned about in Hour 11. You will put into practice many of the
CSS styles you’ve learned thus far, and the knowledge you will gain in this
hour will lead directly into the projects you will tackle in Hour 17, “Using
CSS to Design Navigation.”

HTML List Refresher
As you learned in Hour 5, there are three basic types of HTML lists. Each
presents content in a slightly different way based on its type and the con-
text:

. The ordered list is an indented list that displays numbers or letters
before each list item. The ordered list is surrounded by and
 tags and list items are enclosed in the tag pair. This
list type is often used to display numbered steps or levels of content.

. The unordered list is an indented list that displays a bullet or other
symbol before each list item. The unordered list is surrounded by
 and tags and list items are enclosed in the tag
pair. This list type is often used to provide a visual cue that brief, yet
specific, bits of information will follow.

HOUR 16
Using CSS to Do More with Lists

WHAT YOU’LL LEARN IN
THIS HOUR:

. How the CSS Box Model
affects lists

. How to customize the list
item indicator

. How to use list items and
CSS to create an image
map

ptg

246 HOUR 16: Using CSS to Do More with Lists

. A definition list is often used to display terms and their meanings,
thereby providing information hierarchy within the context of the list
itself—much like the ordered list but without the numbering. The
definition list is surrounded by <dl> and </dl> tags with <dt> and
</dt> tags enclosing the term and <dd> and </dd> tags enclosing the
definitions.

When the content warrants it, you can nest your ordered and unordered —
or place lists within other lists. Nested lists produce a content hierarchy, so
reserve their use for when your content actually has a hierarchy you wish
to display (such as content outlines or tables of content). Or, as you will
learn in Hour 17, you can use nested lists when your site navigation con-
tains sub-navigational elements.

How the CSS Box Model Affects
Lists
Specific list-related styles include list-style-image (for placement of an
image as a list-item marker), list-style-position (indicating where to
place the list-item marker), and list-style-type (the type of list-item mark-
er itself). But while these styles control the structure of the list and list
items, you can use margin, padding, color, and background-color styles to
achieve even more specific displays with your lists.

In Hour 14, you learned that every element has some padding between the
content and the border of the element; you also learned there is a margin
between the border of the element and any other content. This is true for
lists, and when you are styling lists, you must remember that a “list” is
actually made up of two elements: the parent list element type (or
) and the individual list items themselves. Each of these elements has
margins and padding that can be affected by a style sheet.

The examples in this hour show you how different CSS styles affect the
visual display of HTML lists and list items. With these basic differences in
mind, you will be able to fully control lists and, as you will practice in
Hour 17, you will be able to use lists to achieve advanced visual effects
within site navigation.

Listing 16.1 creates a basic list containing three items. In this listing, the
unordered list itself (the) is given a blue background, a black border,
and a specific width of 100 pixels, as shown in Figure 16.1. The list items
(the individual) have a grey background and a yellow border. The list
item text and indicators (the bullet) are black.

NOTE
Some older browsers handle
margins and padding differently,
especially around lists and list
items. However, at the time of
writing, the HTML and CSS in
this and other chapters in this
book are displayed identically in
current versions of the major
web browsers (Apple Safari,
Google Chrome, Microsoft
Internet Explorer, Mozilla
Firefox, and Opera). Of course,
you should still review your web
content in all browsers before
you publish it online, but the
need for “hacking” style sheets
to accommodate the rendering
idiosyncrasies of browsers is
fading away.

ptg

How the CSS Box Model Affects Lists 247

Listing 16.1 Creating a Basic List with Color and Border Styles
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>List Test</title>
<style type=”text/css”>
ul {

background-color: #6666ff;
border: 1px solid #000000;
width:100px;

}
li {

background-color: #cccccc;
border: 1px solid #ffff00;

}
</style>

</head>

<body>
<h1>List Test</h1>

Item #1
Item #2
Item #3

</body>

</html>

FIGURE 16.1
Styling the list and list items with
colors and borders.

ptg

248 HOUR 16: Using CSS to Do More with Lists

As shown in Figure 16.1, the creates a box in which the individual list
items are placed. In this example, the entirety of the box has a blue back-
ground. But also note that the individual list items—in this example, they
use a grey background and a yellow border—do not extend to the left edge
of the box created by the .

This is because browsers automatically add a certain amount of padding to
the left side of the . Browsers don’t add padding to the margin, as that
would appear around the outside of the box. They add padding inside the
box and only on the left side. That padding value is approximately 40 pixels.

The default left-side padding value remains the same regardless of the
type of list. If you add the following line to the style sheet, creating a list
with no item indicators, you will find the padding remains the same (see
Figure 16.2):

list-style-type: none;

NOTE
You can test the default
padding-left value as displayed
by different browsers by creat-
ing a simple test file such as
that shown in Listing 16.1, then
adding padding-left: 40px; to
the declaration for the ul selec-
tor in the style sheet. If you
reload the page and the display
does not change, then you
know that your test browser
uses 40 pixels as a default
value for padding-left.

FIGURE 16.2
The default left-side padding
remains the same with or without
list item indicators.

When you are creating a page layout that includes lists of any type, play
around with padding to place the items “just so” on the page. Similarly,
just because there is no default margin associated with lists doesn’t mean
you can’t assign some to the display; adding margin values to the declara-
tion for the ul selector will provide additional layout control.

But remember, so far we’ve worked with only the list definition itself; we
haven’t worked with the application of styles to the individual list items.
In Figures 16.1 and 16.2, the grey background and yellow border of the list
item shows no default padding or margin. Figure 16.3 shows the different

ptg

Placing List Item Indicators 249

effects created by applying padding or margin values to list items rather
than the overall list “box” itself.

FIGURE 16.3
Different values affect the padding
and margins on list items.

The first list item is the base item with no padding or margin applied to it.
However, the second list item uses style=”padding: 6px;” and you can see
the six pixels of padding on all sides (between the content and the yellow
border surrounding the element). Note that the placement of the bullet
remains the same as the first list item. The third list item uses style=”mar-
gin: 6px;” to apply six pixels of margin around the list item; this margin
allows the blue background of the to show through.

Placing List Item Indicators
All this talk of margins and padding raises another issue: the control of list
item indicators (when used) and how text should wrap around them (or
not). The default value of the list-style-position property is “outside”—
this placement means the bullets, numbers, or other indicators are kept to
the left of the text, outside of the box created by the tag pair.
When text wraps within the list item, it wraps within that box and remains
flush left with the left border of element.

But when the value of list-style-position is “inside,” the indicators are
inside the box created by the tag pair. Not only are the list item
indicators then indented further (they essentially become part of the text),
the text wraps beneath each item indicator.

An example of both outside and inside list-style-positions is shown in
Figure 16.4. The only changes between Listing 16.1 and the code used to

ptg

250 HOUR 16: Using CSS to Do More with Lists

produce the example shown in Figure 16.4 (not including the filler text
added to “Item #2” and “Item #3”) is that the second list item contains
style=”list-style-position: outside;” and the third list item contains
style=”list-style-position: inside;”.

FIGURE 16.4
The difference between outside
and inside values for list-style-
position.

The additional filler text used for the second list item shows how the text
wraps when the width of the list is defined as a value that is too narrow to
display all on one line. The same result would have been achieved without
using style=”list-style-position: outside;” because that is the default
value of list-style-position without any explicit statement in the code.

However, you can clearly see the difference when the “inside” position is
used. In the third list item, the bullet and the text are both within the grey
area bordered by yellow—the list item itself. Margins and padding affect
list items differently when the value of list-style-position is inside (see
Figure 16.5).

FIGURE 16.5
Margin and padding changes the
display of items using the inside
list-style-position.

ptg

Creating Image Maps with List Items and CSS 251

In Figure 16.5, both the second and third list items have a list-style-
position value of inside. However, the second list item has a margin-left
value of 12 pixels and the third list item has a padding-left value of 12
pixels. While both content blocks (list indicator plus the text) show text
wrapped around the bullet, and the placement of these blocks within the
grey area defining the list item is the same, the affected area is the list item
within the list itself.

As you would expect, the list item with the margin-left value of 12 pixels
displays 12 pixels of red showing through the transparent margin sur-
rounding the list item. Similarly, the list item with the padding-left value of
12 pixels displays 12 pixels of grey background (of the list item) before the
content begins. Padding is within the element; margin is outside the ele-
ment.

By understanding the way margins and padding affect both list items and
the list in which they appear, be able to create navigation elements in your
web site that are pure CSS and do not rely on external images. In Hour 17,
you will learn how to create both vertical and horizontal navigation menus
as well as menu drop-downs.

Creating Image Maps with List
Items and CSS
In Hour 11, you learned how to create client-side image maps using the
<map/> tag in HTML. Image maps allow you to define an area of an image
and assign a link to that area (rather than having to slice an image into
pieces, apply links to individual pieces, and stitch the image back together
in HTML). However, you can also create an image map purely out of valid
XHTML and CSS.

The code in Listing 16.2 produces an image map similar to the one shown
in Figure 16.6. (The code in Listing 16.2 does not produce the red borders
shown in the figure. The borders were added to the figure to highlight the
defined areas.) When the code is rendered in a web browser, it simply
looks like a web page with an image placed in it. The actions happen when
your mouse hovers over a “hot” area.

NOTE
For links to several tutorials
geared toward creating XHTML
and CSS image maps, visit
http://designreviver.com/
tutorials/css-image-map-tech-
niques-and-tutorials/. The levels
of interactivity in these tutorials
differ, and some might intro-
duce client-side coding outside
of the scope of this book, but
the explanations are thorough.

http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/
http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/
http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/

ptg

252 HOUR 16: Using CSS to Do More with Lists

Listing 16.2 Creating an Image Map Using CSS
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>CSS Image Map Example</title>
<style type=”text/css”>
#theImg {

width:500px;
height:375px;
background:url(tea_shipment.jpg) no-repeat;
position:relative;
border: 1px solid #000000;

}
#theImg ul {

margin:0px;
padding:0px;
list-style:none;

}
#theImg a {

position:absolute;
text-indent: -1000em;

}
#theImg a:hover {

border: 1px solid #ffffff;
}
#ss a {

top:0px;
left:5px;
width:80px;
height:225px;

}
#gn a {

top:226px;
left:15px;
width:70px;
height:110px;

}
#ib a {

top:225px;
left:85px;
width:60px;
height:90px;

}
#iTEA1 a {

top:100px;
left:320px;
width:178px;
height:125px;

}

ptg

Creating Image Maps with List Items and CSS 253

Listing 16.2 Creating an Image Map Using CSS
#iTEA2 a {

top:225px;
left:375px;
width:123px;
height:115px;

}
</style>

</head>
<body>

<div id=”theImg”>

<li id=”ss”><a href=”[some URL]”

title=”Sugarshots”>Sugarshots
<li id=”gn”><a href=”[some URL]”

title=”Golden Needle”>Golden Needle
<li id=”ib”><a href=”[some URL]”

title=”Irish Breakfast”>Irish Breakfast
<li id=”iTEA1”><a href=”[some URL]”

title=”IngenuiTEA”>IngenuiTEA
<li id=”iTEA2”><a href=”[some URL]”

title=”IngenuiTEA”>IngenuiTEA

</div>
</body>

</html>

FIGURE 16.6
CSS allows you to define hotspots
in an image map.

ptg

254 HOUR 16: Using CSS to Do More with Lists

As shown in Listing 16.2, the style sheet has quite a few entries but the
actual HTML is quite short. List items are used to create five distinct click-
able areas; those “areas” are list items given a specific height and width
and placed over an image that sits in the background. If the image is
removed from the background of the <div> that surrounds the list, the list
items still exist and are still clickable.

Let’s walk through the style sheet so that you understand the pieces that
make up this XHTML and CSS image map, which is—at its most basic
level—just a list of links.

The list of links is enclosed in a <div> named “theImg”. In the style sheet,
this <div> is defined as block element that is 500 pixels wide, 375 pixels
high, and with a 1 pixel solid black border. The background of this element
is an image named tea_shipment.jpg that is placed in one position and does
not repeat. The next bit of HTML that you see is the beginning of the
unordered list (). In the style sheet, this unordered list is given margin
and padding values of zero pixels all around and a list-style of none—list
items will not be preceded by any icon.

The list item text itself never appears to the user because of this trick in the
style sheet entry for all <a> tags within the <div>:

text-indent: -1000em;

By indenting the text negative 1000 ems, you can be assured that the text
will never appear. It does exist, but it exists in a non-viewable area 1000
ems to the left of the browser window. In other words, if you raise your
left hand and place it to the side of your computer monitor, text-indent:
-1000em places the text somewhere to the left of your pinky finger. But
that’s what we want because we don’t need to see the text link. We just
need an area to be defined as a link so that the user’s cursor will change as
it does when rolling over any link in a web site.

When the user’s cursor hovers over a list item containing a link, that list
item shows a one-pixel border that is solid white, thanks to this entry in
the style sheet:

#theImg a:hover {
border: 1px solid #ffffff;

}

The list items themselves are then defined and placed in specific positions
based on the areas of the image that are supposed to be the clickable areas.

ptg

255

For example, the list item with the “ss” id, for “Sugarshots”—the name of
the item shown in the figure—has its top-left corner placed zero pixels
from the top of the <div> and five pixels in from the left edge of the <div>.
This list item is 80 pixels wide and 225 pixels high. Similar style declara-
tions are made for the “#gn”, “#ib”, “#iTEA1”, and “#iTEA2” list items, such
that the linked areas associated with those ids appear in certain positions
relative to the image.

Summary
This hour began with examples of how lists and list elements are affected
by padding and margin styles. You first learned about the default padding
associated with lists and how to control that padding. Next you learned
how to modify padding and margin values and how to place the list item
indicator either inside the list item or outside it, so you could begin to
think about how styles and lists can affect your overall site design. Finally,
you learned how to leverage lists and list elements to create a pure
XHTML and CSS image map, thus reducing the need for slicing-up linked
images or using the <map/> tag.

All of the examples in this hour were geared toward having you “think
outside the (list) box,” if you will, so that in the next hour you can embrace
the use of unordered lists to produce horizontal or vertical navigation
within your web site.

Q&A
Q There are an awful lot of web pages that talk about the “Box Model

hack” regarding margins and padding, especially around lists and list
elements. Are you sure I don’t have to use a hack?

A At the beginning of this hour, you learned that the HTML and CSS in
this hour (and others) all look the same in the current versions of the
major web browsers. This is the product of several years of web devel-
opers having to do code hacks and other tricks before modern
browsers began handling things according to CSS specifications rather
than their own idiosyncrasies. Additionally, there is a growing movement
to rid Internet users of the very old web browsers that necessitated
most of these hacks in the first place. So, while I wouldn’t necessarily
advise you to design only for the current versions of the major web
browsers, I also wouldn’t recommend that you spend a ton of time
implementing hacks for the older versions of browsers—which are used

Q&A

ptg

256 HOUR 16: Using CSS to Do More with Lists

by less than five percent of the Internet population. You should contin-
ue to write solid code that validates and adheres to design principles,
test your pages in a suite of browsers that best reflects your audience,
and release your site to the world.

Q The CSS Image Map seems like a lot of work. Is the <map/> tag so
bad?

A The <map/> tag isn’t at all bad, and is valid in both XHTML and HTML 5.
The determination of coordinates used in client-side image maps can
be difficult, however, especially without graphics software or software
intended for the creation of client-side image maps. The CSS version
gives you more options for defining and displaying clickable areas, only
one of which you’ve seen here.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What is the difference between the “inside” and “outside” list-

style-position values? Which is the default value?

2. Does a list-style with a value of “none” still produce a structured
list, either ordered or unordered?

3. What HTML code creates a list item that is 350 pixels wide, 100 pix-
els high, with a green background, a two-pixel dashed black border,
and the list item indicator placed inside the container?

Answers
1. The list-style-position value of “inside” places the list item indica-

tor inside the block created by the list item. A value of “outside”
places the list item indicator outside the block. When “inside,” con-
tent wraps beneath the list item indicator. The default value is “out-
side.”

2. Yes. The only difference is that no list item indicator is present before
the content within the list item.

ptg

Exercises 257

3. Use the following code:

<li style=”width:350px; height:100px; background-color:#00ff00;
border:2px dashed #000000; list-style-position:inside;”>text goes
here

Exercises
. Find an image and try your hand at mapping areas using the tech-

nique shown in this hour. Select an image that has areas you could
use “hot spots” or clickable areas leading to other web pages on your
site or to someone else’s site. Then create the HTML and CSS to
define the clickable areas and the URLs to which they should lead.

. In preparation for using lists as navigational elements in the next
hour, think about your site structure and sketch out some top-level
navigation as well as some secondary navigation links in those main
sections. Think about whether your omnipresent navigational
method will be horizontal or vertical navigation.

ptg

This page intentionally left blank

ptg

In the previous hour, you learned how to manipulate the appearance of
lists and how to use a list for more than just simply presenting a bulleted
or numbered set of items. In this lesson, you will learn a few of the many
ways to use lists as vertical or horizontal navigation, including how to use
lists to create drop-down menus.

The methods explained in this hour represent a very small subset of the
numerous and varied navigation methods you can create using lists.
However, the concepts are all similar; different results come from your
own creativity and application of these basic concepts. To help you get
your creative juices flowing, I will provide pointers to other examples of
CSS-based navigation at the end of this hour.

How Navigation Lists Differ from
Regular Lists
When we talk about using lists to create navigation elements, we really
mean using CSS to display content in the way web site visitors expect nav-
igation to look—in short, different from simple bulleted or numbered lists.
While it is true that a set of navigation elements is essentially a list of links,
those links are typically displayed in a way that makes it clear that users
should interact with the content:

. The user’s mouse cursor will change to indicate that the element is
clickable.

. The area around the element changes appearance when the mouse
hovers over it.

. The content area is visually set apart from regular text.

HOUR 17
Using CSS to Design Navigation

WHAT YOU’LL LEARN IN
THIS HOUR

. How navigation lists differ
from regular lists

. How to create vertical
navigation with CSS

. How to create horizontal
navigation with CSS

ptg

260 HOUR 17: Using CSS to Design Navigation

Older methods of creating navigation tended to rely on images—such as
graphics with beveled edges and the use of contrasting colors for back-
grounds and text—plus client-side programming with JavaScript to handle
image-swapping based on mouse actions. But using pure CSS to create
navigation from list elements produces a more usable, flexible, and search-
engine friendly display that is accessible by users using all manner and
sorts of devices.

Regardless of the layout of your navigational elements—horizontal or ver-
tical—this hour discusses two levels of navigation: primary and secondary.
Primary navigation takes users to the introductory pages of main sections of
your site; secondary navigation reflects those pages within a certain section.

TRY IT YOURSELF▼

Create Site-Wide
Navigation

In the exercise at the end of the previous hour, you were asked to think
about a navigational structure you might use within your own web site. If
you have the information architecture in mind—the sections of information
and, when necessary, the sub-sections—that’s a good start. You can use
that outline throughout this hour to create both vertical and horizontal
navigation using that structure as a base.

Creating Vertical Navigation with CSS
Depending on your site architecture—both the display template you have
created and the manner in which you have categorized the information in
the site—you might find yourself using vertical navigation for either pri-
mary navigation or secondary navigation.

For example, suppose you have created a web site for your company and
the primary sections are About Us, Products, Support, and Press. Within
the primary About Us section, you might have several other pages, such as
Mission, History, Executive Team, and Contact Us—these other pages are
the secondary navigation within the primary About Us section.

Listing 17.1 sets up a basic secondary page with vertical navigation in the
side of the page and content in the middle of the page. The links in the
side and the links in the content area of the page are basic HTML list ele-
ments.

This listing and the example shown in Figure 17.1 provides a starting point
for showing you how CSS enables you to transform two similar HTML struc-
tures into two different visual displays (and thus two different contexts).

ptg

Creating Vertical Navigation with CSS 261

Listing 17.1 Basic Page with Vertical Navigation in a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About Us</title>
<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#nav {

width:150px;
float:left;
margin-top:12px;
margin-right:18px;

}
#content {

width:550px;
float:left;

}
</style>

</head>

<body>
<div id=”nav”>

Mission
History
Executive Team
Contact Us

</div>
<div id=”content”>
<h1>About Us</h1>
<p>On the introductory pages of main sections, it can be useful
to repeat the secondary navigation and provide more context,
such as:</p>

Mission: Learn more about our corporate
mission and philanthropic efforts.
History: Read about our corporate history
and learn how we grew to become the largest widget maker
in the country.
Executive Team: Our team of executives makes
the company run like a well-oiled machine (also useful for
making widgets).
Contact Us: Here you can find multiple
methods for contacting us (and we really do care what you
have to say).

</div>
</body>

</html>

ptg

262 HOUR 17: Using CSS to Design Navigation

The contents of this page are set up in two <div> elements that sit next to
each other: one is given an id value of nav and the other is given an id
value of content. The only styles assigned to anything in this basic page are
the width, margin, and float values associated with each <div>. No styles
have been applied to the list elements.

To differentiate between the links present in the list in the content area and
the links present in the list in the side navigation, add the following styles
to the style sheet:

#nav a {
text-decoration: none;

}
#content a {

text-decoration: none;
font-weight: bold;

}

These styles simply say that all <a> links in the <div> with the id of nav
have no underline and all <a> links in the <div> with the id of content have
no underline and are bold. The difference is shown in Figure 17.2.

FIGURE 17.1
The starting point: unstyled list
navigation.

ptg

Creating Vertical Navigation with CSS 263

But to really make the side navigation list look like something special, you
have to dig deeper into the style sheet.

Styling the Single-Level Vertical Navigation
The goal with this particular set of navigation elements is simply to pres-
ent them as a block of links without bullets and with background and text
colors that change depending on their link state (regular link, visited link,
hovering over the link, or activated link). The first step in the process is
already complete: separating the navigation from the content. We have
done that by putting the navigation in a <div> with an id of nav.

Next, you need to modify the that defines the link within the nav
<div>. Let’s take away the list indicator and ensure that there is no extra
margin or padding hanging around besides the top margin. That top mar-
gin is used to line up the top of the navigation with the top of the “About
Us” header text in the content area of the page:

#nav ul {
list-style: none;
margin: 12px 0px 0px 0px;;
padding: 0px;

}

Since the navigation list items themselves appear as colored areas, give
each list item a bottom border so that some visual separation of the content
can occur:

#nav li {
border-bottom: 1px solid #ffffff;

}

FIGURE 17.2
Differentiating the list elements
using CSS.

ptg

264 HOUR 17: Using CSS to Design Navigation

Now on to building the rest of the list items. The idea is that when the list
items simply sit there acting as links, they are a special shade of blue with
bold white text (although they are a smaller font size than the body text
itself). To achieve that, add the following:

#nav li a:link, #nav li a:visited {
font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #628794;
color: #ffffff;

}

All of the styles used previously should be familiar to you, except perhaps
the use of display: block; in the style sheet entry. Setting the display prop-
erty to block ensures that the entire element is in play when a user
hovers his mouse over it. Figure 17.3 shows the vertical list menu with
these new styles applied to it.

FIGURE 17.3
The vertical list is starting to look
like a navigation menu.

When the user’s mouse hovers over a navigational list element, the idea is
that some visual change takes place so the user knows the element is click-
able. This is akin to how most software menus change color when a user’s
cursor hovers over the menu items. In this case, we’ll change the back-

ptg

Creating Vertical Navigation with CSS 265

ground color of the list item and we’ll change the text color of the list item;
they’ll be different from the blue and white shown previously.

#nav li a:hover, #nav li a:active {
font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #6cac46;
color: #000000;

}

Figure 17.4 shows the results of all the stylistic work so far. By using a few
entries in a style sheet, the simple list has been transformed into a visually
differentiated menu.

FIGURE 17.4
The list items now change color
when the mouse hovers over
them.

Styling the Multi-Level Vertical Navigation
What if your site architecture calls for another level of navigation that you
want your users to see at all times? That is represented by nested lists
(which you learned about in previous hours) and more style sheet entries.
In this case, assume that there are four navigation elements under the
Executive Team link. In the HTML, modify the list as follows:

Mission
History
Executive Team

ptg

266 HOUR 17: Using CSS to Design Navigation

» CEO
» CFO
» COO
» Other Minions

Contact Us

This code produces a nested list under the Executive Team link (see Figure
17.5). The » HTML entity produces the right-pointing arrows that
are displayed before the text in the new links.

FIGURE 17.5
Creating a nested navigation list
(but one that is not yet styled
well).

The new items appear as block elements within the list, but the hierarchy
of information is not visually represented. To add some sort of visual ele-
ment that identifies these items as sub-navigational elements attached to the
Executive Team link, modify the style sheet again to add some indentation.

But before doing that, modify some of the other style sheet entries as well.
In the previous section, we added selectors such as #nav ul and #nav li,
which indicate “all in the <div> called nav” and “all in the <div>
called nav,” respectively. However, we now have two instances of and
another set of elements with the <div> called nav, all of which we want
to appear different from the original set.

To ensure both sets of list items are styled appropriately, make sure that
the style sheet selectors clearly indicate the hierarchy of the lists. To do
that, use entries such as #nav ul and #nav ul li for the first level of lists
and #nav ul ul and #nav ul ul li for the second level of lists. Listing 17.2

ptg

Creating Vertical Navigation with CSS 267

shows the new version of style sheet entries and HTML that produces the
menu shown in Figure 17.6.

Listing 17.2 Muli-Level Vertical Navigation in a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About Us</title>
<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#nav {

width:150px;
float:left;
margin-top:12px;
margin-right:18px;

}
#content {

width:550px;
float:left;

}
#nav a {

text-decoration: none;
}
#content a {

text-decoration: none;
font-weight: bold;

}
#nav ul {

list-style: none;
margin: 12px 0px 0px 0px;
padding: 0px;

}
#nav ul li {

border-bottom: 1px solid #ffffff;
}
#nav ul li a:link, #nav ul li a:visited {

font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #628794;
color: #ffffff;

}
#nav ul li a:hover, #nav ul li a:active {

font-size: 10pt;
font-weight: bold;

ptg

268 HOUR 17: Using CSS to Design Navigation

Listing 17.2 Muli-Level Vertical Navigation in a List
display: block;
padding: 3px 0px 3px 3px;
background-color: #c6a648;
color: #000000;

}
#nav ul ul {

margin: 0px;
padding: 0px;

}
#nav ul ul li {

border-bottom: none;
}
#nav ul ul li a:link, #nav ul ul li a:visited {

font-size: 8pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 18px;
background-color: #628794;
color: #ffffff;

}
#nav ul ul li a:hover, #nav ul ul li a:active {

font-size: 8pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 18px;
background-color: #c6a648;
color: #000000;

}
</style>

</head>

<body>
<div id=”nav”>

Mission
History
Executive Team

» CEO
» CFO
» COO
» Other Minions

Contact Us

</div>
<div id=”content”>
<h1>About Us</h1>
<p>On the introductory pages of main sections, it can be useful
to repeat the secondary navigation and provide more context,

ptg

Creating Vertical Navigation with CSS 269

Listing 17.2 Muli-Level Vertical Navigation in a List
such as:</p>

Mission: Learn more about our corporate
mission and philanthropic efforts.
History: Read about our corporate history
and learn how we grew to become the largest widget maker
in the country.
Executive Team: Our team of executives makes
the company run like a well-oiled machine (also useful for
making widgets).
Contact Us: Here you can find multiple
methods for contacting us (and we really do care what you
have to say.

</div>
</body>

</html>

FIGURE 17.6
Creating two levels of vertical navi-
gation using CSS.

The different ways of styling vertical navigation are limited only by your
own creativity. You can use colors, margins, padding, background images,
and any other valid CSS to produce vertical navigation that is quite flexible
and easily modified. If you type CSS vertical navigation in your search
engine, you will find thousands of examples—and they are all based on
the simple principles you’ve learned in this hour.

ptg

270 HOUR 17: Using CSS to Design Navigation

Creating Horizontal Navigation with
CSS
This hour began with vertical navigation because the concept of converting
a list into navigation is easier to grasp when the navigation still looks like a
list of items that you might write vertically on a piece of paper, like a gro-
cery list. When creating horizontal navigation, you still use HTML list ele-
ments but instead of a vertical display achieved by using the inline value
of the display property for both the and the , use the block value
of the display property instead. It really is as simple as that.

Listing 17.3 shows a starting point for a page featuring horizontal naviga-
tion. The page contains two main <div> elements: one for the header and
one for the content. The header <div> contains a logo <div> and a naviga-
tion <div> floated next to each other. The list that appears in the navigation
<div> has a display property value of inline for both the list and the list
items. You can see these elements and their placement in Figure 17.7.

Listing 17.3 Basic Horizontal Navigation from a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>ACME Widgets LLC</title>
<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#header {

width: auto;
}
#logo {

float:left;
}
#nav {

float:left;
}
#nav ul {

list-style: none;
display: inline;

}
#nav li {

display: inline;
}
#content {

ptg

Creating Horizontal Navigation with CSS 271

Listing 17.3 Basic Horizontal Navigation from a List
width: auto;
float: left;
clear: left;

}
#content a {

text-decoration: none;
font-weight: bold;

}
</style>

</head>
<body>
<div id=”header”>

<div id=”logo”>

</div>
<div id=”nav”>

About Us
Products
Support
Press

</div>
</div>
<div id=”content”>

<p>ACME Widgets LLC is the greatest widget-maker
in all the land.</p>
<p>Don’t believe us? Read on...</p>

About Us: We are pretty great.
Products: Our products are the best.
Support: It is unlikely you will need support,
but we provide it anyway.
Press: Read what others are saying (about how
great we are).

</div>
</body>

</html>

ptg

272 HOUR 17: Using CSS to Design Navigation

Modifying the display of this list occurs purely through CSS; the structure
of the content within the HTML itself is already set. To achieve the desired
display, use the following CSS. First, the <div> with the id of nav is modi-
fied to be a particular width, display a background color and border, and
use a top margin of 85 pixels (so that it displays near the bottom of the logo).

#nav {
float:left;
margin: 85px 0px 0px 0px;
width: 400px;
background-color: #628794;
border: 1px solid black;

}

The definition for the remains the same as in Listing 17.3 except for
the changes in margin and padding:

#nav ul {
margin: 0px;
padding: 0px;
list-style: none;
display: inline;

}

The definition for the remains the same as in Listing 17.3 except it has
been given a line-height value of 1.8em:

#nav li {
display: inline;
line-height: 1.8em;

}

FIGURE 17.7
Creating functional—but not nec-
essarily beautiful—horizontal navi-
gation using inline list elements.

ptg

Creating Horizontal Navigation with CSS 273

The link styles are similar to those used in the vertical navigation; these
entries have different padding values, but the colors and font sizes remain
the same:

#nav ul li a:link, #nav ul li a:visited {
font-size: 10pt;
font-weight: bold;
text-decoration: none;
padding: 7px 10px 7px 10px;
background-color: #628794;
color: #ffffff;

}
#nav ul li a:hover, #nav ul li a:active {

font-size: 10pt;
font-weight: bold;
text-decoration: none;
padding: px 10px 7px 10px;
background-color: #c6a648;
color: #000000;

}

Putting these styles together, you produce the display shown in Figure 17.8.

FIGURE 17.8
Creating horizontal navigation with
some style.

When the user rolls over the navigation elements, the background and text
colors change in the same way they did when the user hovered her mouse
over the vertical navigation menu. Also, just as you did with the vertical
navigation menu, you can use nested lists to produce drop-down function-
ality in your horizontal menu. Try it yourself!

ptg

274 HOUR 17: Using CSS to Design Navigation

Summary
In this hour you learned how to use CSS to turn simple HTML unordered
lists into horizontal and vertical navigation. By using CSS instead of graph-
ics or JavaScript or other technologies, you will have more flexibility in
both the display and maintenance of your site. Throughout this hour you
learned that with a few entries in your style sheet, you can turn plain
underlined text links into areas with borders and background colors and
other text styles. Additionally, you learned how to present nested lists
within menus.

Q&A
Q Can I use graphics in the navigation menus as a custom list indicator?

A Yes. You can use graphics within the HTML text of the list item or as
background images within the element. You can style your naviga-
tion elements just as you style any other list element. The only differ-
ences between an HTML unordered list and a CSS-based horizontal or
vertical navigation list is that you are calling it that and you are using
the unordered list for a specific purpose outside of the body of the text.
Along with that, you then style the list to show the user that it is indeed
something different—and you can do that with small graphics to accen-
tuate your lists.

Q Where can I find more examples of what I can do with lists?

A The last time I checked, typing CSS navigation in a search engine
returned approximately 44 million results. Here are a few starting
places:

. A List Apart’s CSS articles at
http://www.alistapart.com/topics/code/

. Maxdesign’s CSS Listamatic at http://css.maxdesign.com.au/
listamatic/

. Vitaly Friedman’s CSS Showcase at http://www.alvit.de/
css-showcase/

http://www.alistapart.com/topics/code/
http://css.maxdesign.com.au/listamatic/
http://css.maxdesign.com.au/listamatic/
http://www.alvit.de/css-showcase/
http://www.alvit.de/css-showcase/

ptg

Exercises 275

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. When creating list-based navigation, how many levels of nested lists

can you use?

2. True or False: using an inline value for the display property pro-
duces a horizontal list.

3. When creating a navigation list of any type, can the four pseudo-
classes for the a selector have the same values?

Answers
1. Technically, you can nest your lists as deep as you want to. But from

a usability standpoint, there is a limit to the number of levels that
you would want to use to nest your lists. Three levels is typically the
limit—more than that and you run the risk of creating a poorly
organized site or simply giving the user more options than they need
to see at all times.

2. True, if the display property is provided for the ul and li selectors in
the style sheet.

3. Sure, but then you run the risk of users not realizing that your beau-
tiful menus are indeed menus (since no visual display would occur
for a mouse action).

Exercises
. Using the techniques shown for a multi-level vertical list, add sub-

navigation items to the vertical list created at the end of the chapter.

. Look at the numerous examples of CSS-based navigation used in
web sites and find some tricky-looking actions. Using the “view
source” function of your web browser, look at the CSS used by these
sites and try to implement something similar for yourself.

ptg

This page intentionally left blank

ptg

Throughout this book, you have seen examples of how mouse actions can
affect the display of text. The simplest example is when the hover pseudo-
class of the <a> link is defined in the style sheet to display text in a different
color when a user’s mouse hovers over it. In the previous hour, you
learned how the hover pseudoclass changed both the text color and the
background color of an element.

In this hour, you’ll learn how to achieve two specific actions that combine
CSS and mouse actions—displaying additional text when an item is rolled
over with the mouse, and using a mouse click to change the color of a con-
tainer element. These two actions are useful in some circumstances to be
sure; but, more importantly, they provide an entry point into more advanced
work you might want to tackle later on in your web development.

Creating a Tool Tip with CSS
A tooltip is an element within a graphical user interface—could be a soft-
ware program, could be a web site—that provides additional information
when a cursor hovers over a specific item. Figure 18.1 shows a tooltip in
action: the mouse rolls over the linked text “HTML” and the tooltip dis-
plays “HTML” in a small box. In this case, the text displayed in the tooltip
comes from the title attribute of the <a> tag.

HOUR 18
Using Mouse Actions

to Modify Text Display

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to create tool tips
with CSS

. How to display additional
rollover text with CSS

. How to access events

. How to use onclick to
change the appearence of
<div>

ptg

278 HOUR 18: Using Mouse Actions to Modify Text Display

The display of the tooltip shown in Figure 18.1 is controlled by the soft-
ware itself. That is, its display and appearance is not something you (as
web developer) can control. However, you can create your own tooltips
with a little CSS by applying concepts you’ve already practiced in previous
hours.

Listing 18.1 contains the style sheet entries and HTML for a page that con-
tains images and links, but with one link that also displays a custom tool
tip.

Listing 18.1 Creating a Simple Tool Tip with CSS
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Steptoe Butte</title>
<style type=”text/css”>
a {

text-decoration: none;
font-weight: bold;

}
a.tip {

position:relative;
z-index:24;

}

FIGURE 18.1
A standard tooltip in action.

ptg

Creating a Tool Tip with CSS 279

Listing 18.1 Creating a Simple Tool Tip with CSS
a.tip:hover {

z-index:25;
}
a.tip span {

display: none;
}
a.tip:hover span {

font-weight: normal;
display: block;
position: absolute;
top: 20px;
left: 25px;
width: 150px;
padding: 3px;
border:1px solid #000;
background-color:#ddd;
color:#000;

}
</style>

</head>
<body>
<h1>Steptoe Butte</h1>
<p><img src=”steptoebutte.jpg” alt=”View from Steptoe Butte”
style=”float:left;margin-right:12px;margin-bottom:6px;border:1px
solid #000” />Steptoe Butte is a quartzite island jutting out of the
silty loess of the <a class=”tip”
href=”http://en.wikipedia.org/wiki/Palouse”>Palouse Learn more
about the Palouse! hills in Whitman County, Washington. The
rock that forms the butte is over 400 million years old, in contrast
with the 15-7 million year old
Columbia River
basalts that underlie the rest of the Palouse (such “islands” of ancient
rock have come to be called buttes, a butte being defined as a small hill
with a flat top, whose width at top does not exceed its height).</p>
<p>A hotel built by Cashup Davis stood atop Steptoe Butte from 1888 to
1908, burning down several years after it closed. In 1946, Virgil McCroskey
donated 120 acres (0.49 km2) of land to form Steptoe Butte State Park,
which was later increased to over 150 acres (0.61 km2). Steptoe Butte is
currently recognized as a National Natural Landmark because of its unique
geological value. It is named in honor of
Colonel Edward
Steptoe.</p>
<p>Elevation: 3,612 feet (1,101 m), approximately 1,000 feet (300 m) above

the
surrounding countryside.</p>
<p>Text from
Wikipedia, photo by
the author.</p>

</body>
</html>

ptg

280 HOUR 18: Using Mouse Actions to Modify Text Display

Note that the first link in the text has a class associated with it. That class
is called tip—that name differentiates it from other links that do not con-
tain tooltips. However, because this is a class and not an id, it could be
used for all of the other links in the page as well.

Note that the tip class itself has a defined position and z-index. The
position values (relative) ensures that it remains presented as it naturally
occurs in the text; the z-index, when compared to the z-index used by other
related styles, ensures that the text of the link remains below other text
with higher z-index values. The hover state of links using the tip class has
a higher z-index value, for example.

The next two styles relate to the tag in use. Text within the
tag within the <a> tag will not be displayed unless the tooltip is invoked by
hovering the mouse over the visible link. For example, the link text looks
like this:

Palouse
Learn more about the Palouse!

When you look at this bit of HTML, it looks like the words “Palouse Learn
more about the Palouse!” should all be a link. However, since “Learn more
about the Palouse!” is enclosed in the tag, and a specific style is
applied to that in the style sheet, the words do not appear until the
user’s mouse hovers over the actual link (the word “Palouse”). Figure 18.2
displays this result.

The text “Learn more about the Palouse!” is placed in a tag in the
HTML but is styled within the style sheet. Namely, the a.tip:hover span
selector creates a box that is 150 pixels wide with a grey background and
black border. This box appears 20 pixels from the top of the element and 25
pixels in from the left of the parent element. This creates the tooltip.

ptg

Displaying Additional Rollover Text with CSS 281

Displaying Additional Rollover Text
with CSS
A tooltip serves a specific purpose: to show a textual “tip” attached to a
link. But you can use the same concept to show hidden text somewhere
else in your layout, based on a mouse action. Take, for example, the ACME
Widgets LLC main page from Hour 17—the version with horizontal navi-
gation. By using the same concepts as those used in Listing 17.1, you can
show additional text above the menu when users roll over one of the main
section links. Figure 18.3 shows one of these in action; I recaptured some of
that white space above the navigation and to the right of the logo.

FIGURE 18.2
A custom tooltip appears when the
mouse hovers over the first link in
the page.

ptg

282 HOUR 18: Using Mouse Actions to Modify Text Display

The only change made to the CSS from Listing 18.3 is the addition of the
following four styles. They perform the same tasks as the tip class styles
used in Listing 18.1 but the display is slightly different than the display in
Listing 18.1.

a.more {
position:relative;
z-index:24;

}
a.more:hover {

z-index:25;
}
a.more span {

display: none;
}
a.more:hover span {

font-weight: bold;
display: block;
position: absolute;
top: -35px;
width: 400px;
padding: 3px;
color:#ff0000;
line-height: 1em;

}

The value of -25px for the top property places the text enclosed in the
 tag 25 pixels above the top-left corner of the parent tag, as opposed

FIGURE 18.3
Custom text above another ele-
ment, visible only on rollover.

ptg

Accessing Events 283

to the previous example, which placed it 20 pixels below the top-left corner
of the parent tag. The changes to the HTML are similar to the changes in
the previous section in that the text that is hidden until rollover appears in
a tag within an <a> link:

About Us We are pretty
great.
Products Our products are
the best.
Support It is unlikely you
will need support, but we provide it anyway.
Press Read what others are
saying (about how great we are).

Using these basic concepts, you can make any text appear anywhere you
wish based on the user’s mouse actions when hovering over an <a> link. In
the next section, you’ll learn how to use event attributes plus a little
JavaScript to do even more with mouse actions and CSS.

Accessing Events
A user interaction such as a mouse click or key press is known as an event.
The process of a script taking action based on an event is known as event
handling. You use special attributes to associate event-handling script code
with elements on a web page.

Following are some of the commonly used event attributes that come in
handy in JavaScript, along with a description of when they occur with
respect to a web page element:

. onload—Browser loads the element.

. onkeydown—User presses a key.

. onkeyup—User releases a key.

. onclick—User clicks the element with the left mouse button.

. ondblclick—User double-clicks the element with the left mouse button.

. onmousedown—User presses either mouse button while the mouse
pointer is over the element.

. onmouseup—User releases either mouse button while the mouse point-
er is over the element.

ptg

284 HOUR 18: Using Mouse Actions to Modify Text Display

. onmouseover—User moves the mouse pointer into the boundaries of
the element.

. onmousemove—User moves the mouse pointer while the pointer is over
the element.

. onmouseout—User moves the mouse pointer out of the boundaries of
the element.

As you can see, event attributes are used to responding to common user
input events such as mouse clicks and key presses. You can associate
JavaScript with an event by assigning the code to the event attribute, like
this:

<h1 onclick=”this.style.color = ‘red’;”>I turn red when clicked.</h1>

In the code example above, a JavaScript snippet is assigned to the onclick
event attribute of an <h1> tag, which means that the code runs in response
to users clicking the left mouse button on the text. The script code
responds by setting the color of the text to red. In this way, interactivity is
added to normally bland text by changing the color of the text in response
to a mouse click. This is the basis for how client-side scripts work in con-
junction with your web browser.

In the next section, you’ll see an example of how to use event handling to
change the appearance of a <div>. Specifically, the contents of a <div>
appear or disappear based on a mouse click.

Using onclick to Change <div>
Appearance
The onclick event can be used to invoke all sorts of action; you might think
of a mouse click as a way to submit a form by clicking on a button, but you
can capture this event and use it to provide interactivity within your pages
as well. In this example, you will see how you can use the onclick event to
show or hide information contained in a <div>. Using the same text and
image from in Listing 18.1 you will see how to add interactivity to your
page by allowing the user to show previously hidden information when
users click on a piece of text. This is referred to as a “piece of text” because,
strictly speaking, the text is not a link. That is to say, it will look like a link
and act like a link, but it will not be marked up within an <a> tag.

Listing 18.2 provides the complete code for this example, shown initially in
Figure 18.4.

ptg

Using onclick to Change <div> Appearance 285

Listing 18.2 Using onclick to Show or Hide Content
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Steptoe Butte</title>
<style type=”text/css”>
a {

text-decoration: none;
font-weight: bold;
color: #7a7abf;

}
#hide_e {

display: none;
}
#elevation {

display: none;
}
#hide_p {

display: none;
}
#photos {

display: none;
}
#show_e {

display: block;
}
#show_p {

display: block;
}
.fakelink {

cursor:pointer;
text-decoration: none;
font-weight: bold;
color: #E03A3E;

}
</style>

</head>
<body>
<h1>Steptoe Butte</h1>
<p><img src=”steptoebutte.jpg” alt=”View from Steptoe Butte”
style=”float:left;margin-right:12px;margin-bottom:6px;border:1px
solid #000” />Steptoe Butte is a quartzite island jutting out of the
silty loess of the <a class=”tip”
href=”http://en.wikipedia.org/wiki/Palouse”>Palouse Learn more
about the Palouse! hills in Whitman County, Washington. The
rock that forms the butte is over 400 million years old, in contrast
with the 15-7 million year old
Columbia

ptg

286 HOUR 18: Using Mouse Actions to Modify Text Display

Listing 18.2 Using onclick to Show or Hide Content
River

basalts that underlie the rest of the Palouse (such “islands” of ancient
rock have come to be called buttes, a butte being defined as a small hill
with a flat top, whose width at top does not exceed its height).</p>
<p>A hotel built by Cashup Davis stood atop Steptoe Butte from 1888 to
1908, burning down several years after it closed. In 1946, Virgil McCroskey
donated 120 acres (0.49 km2) of land to form Steptoe Butte State Park,
which was later increased to over 150 acres (0.61 km2). Steptoe Butte is
currently recognized as a National Natural Landmark because of its unique
geological value. It is named in honor of
Colonel Edward
Steptoe.</p>
<div class=”fakelink”

id=”show_e”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

“>» Show Elevation</div>

<div class=”fakelink”
id=”hide_e”
onclick=”this.style.display=’none’;
document.getElementById(‘show_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’none’;

“>» Hide Elevation</div>

<div id=”elevation”>3,612 feet (1,101 m), approximately 1,000 feet (300 m)
above the surrounding countryside.</div>

<div class=”fakelink”
id=”show_p”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_p’).style.display=’block’;
document.getElementById(‘photos’).style.display=’inline’;

“>» Show Photos from the Top of Steptoe Butte</div>

<div class=”fakelink”
id=”hide_p”
onclick=”this.style.display=’none’;
document.getElementById(‘show_p’).style.display=’block’;
document.getElementById(‘photos’).style.display=’none’;

“>» Hide Photos from the Top of Steptoe Butte</div>

ptg

Using onclick to Change <div> Appearance 287

Listing 18.2 Using onclick to Show or Hide Content
<div id=”photos”><img src=”steptoe_sm1.jpg” alt=”View from Steptoe Butte”
style=”margin-right: 12px; border: 1px solid #000” /><img
src=”steptoe_sm2.jpg” alt=”View from Steptoe Butte”
style=”margin-right: 12px; border: 1px solid #000” /><img
src=”steptoe_sm3.jpg” alt=”View from Steptoe Butte” style=”margin-right:
12px; border: 1px solid #000” /></div>

<p>Text from
Wikipedia, photos
by the author.</p>

</body>
</html>

FIGURE 18.4
The initial display of Listing 18.2.
Note the mouse pointer changes
to a hand when hovering over the
red text despite the fact it is not
an <a> link.

To begin, look at the six entries in the style sheet. The first entry simply
styles links that are surrounded by the <a> tag pair; these links display
as non-underlined, bold, blue links. You can see these regular links in the
two paragraphs of text in Figure 18.4 (and in the line at the bottom of the
page).

ptg

288 HOUR 18: Using Mouse Actions to Modify Text Display

The next four entries are for specific IDs, and those IDs are all set to be
invisible (display: none) when the page initially loads. The two IDs that
follow are set to display as block elements when the page initially loads.
Again, strictly speaking, these two IDs would not have to be defined as
such because it is the default display. The style sheet includes these entries
for the purpose of illustrating the differences. If you count the number of
<div> elements in Listing 18.1, you will find six in the code: four invisible
and two that are visible upon page load.

The goal in this example is to change the display value of two IDs when
another ID is clicked. But first you have to make sure users realize a piece
of text is clickable, and that typically happens when users see their mouse
pointers change to reflect a link is present. Note in Figure 18.4 that the
mouse pointer changes to a hand with a finger pointing at a particular
link.

This functionality is achieved by defining a class for this particular text; the
class is called fakelink, as you can see in this snippet of code:

<div class=”fakelink”
id=”show_e”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

“>» Show Elevation</div>

The fakelink class ensures that the text is rendered as non-underlined,
bold, and red; cursor: pointer causes the mouse pointer to change in such
a way that users think the text is a link of the type that would normally be
enclosed in an <a> tag. But the really interesting stuff happens when
we associate an onclick attribute with a <div>. In the example snippet just
shown, the value of the onclick attribute is a series of commands that
change the current value of CSS elements.

Let’s look at them separately:

this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

What you are looking at are different JavaScript methods meant to change
particular elements. You will learn a little bit more about JavaScript in
Hour 21. In general, JavaScript is well beyond the scope of this book, but I
think you can follow along with what is happening here.

ptg

Using onclick to Change <div> Appearance 289

In the first line, the this keyword refers to the element itself. In other
words, this refers to the <div> ID called show_e. The keyword style refers
to the style object; the style object contains all the CSS styles that you
assign to the element. In this case, we are most interested in the display
style. Therefore, this.style.display means “the display style of the
show_e ID,” and what we are doing here is setting the value of the display
style to none when the text itself is clicked.

But that is not all we are doing, as there are three actions that occur within
the onclick attribute. The other two actions begin with
document.getElementByID() and include a specific ID name within the
parentheses. We use document.getElementByID() instead of this because
the second and third actions set CSS style properties for elements that are
not the parent element. As you can see in the snippet, in the second and
third actions, we are setting the display property values for the element
IDs hide_e and elevation. All told, when users click the currently-visible
<div> called show_e:

. The show_e <div> becomes invisible.

. The hide_e <div> becomes visible and is displayed as a block.

. The elevation <div> becomes visible and is displayed inline.

The result of these actions is shown in Figure 18.5.

FIGURE 18.5
After clicking “Show Elevation,” the
visibility of it and other <div> ele-
ments change based on the com-
mands in the onclick attribute.

ptg

290 HOUR 18: Using Mouse Actions to Modify Text Display

There is another set of <div> elements in the code in Listing 18.2, the ones that
control the visibility of the additional photos. These elements are not affected
by the onclick actions in the elevation-related elements. That is to say, when
you click on either “Show Elevation” or “Hide Elevation,” the photos-related
<div> elements do not change at all. You could show the elevation and not the
photos (as seen in Figure 18.5), the photos and not the elevation, or both the
elevation and photos at the same time (see Figure 18.6).

FIGURE 18.6
The page after clicking both “Show
Elevation” and “Show Photos from
the Top of Steptoe Butte.”

This brief example has shown you the very beginning of the layout and
interaction possibilities that await you when you master CSS in conjunc-
tion with events. For example, you can code your pages so that your users
can change elements of the stylesheet or change to an entirely different
stylesheet, move blocks of text to other places in the layout, take quizzes or
submit forms, and much, much more.

ptg

Q&A 291

Summary
In this hour, you learned how mouse actions can affect the display of text.
In the first two sections, these actions were based on styles associated with
the hover pseudoclass of the <a> tag, while later in the hour you were
introduced to actions associated with specific user interaction events. The
specific event in the example was the onclick event, but you also saw a list
of other possible events, such as onload and onmouseover just to name a few.

The only new code introduced in the code itself was the use of the cursor
property. Assigning a cursor property of pointer allowed you to indicate to
users that particular text was acting as a link even though it was not
enclosed in <a> tags as you are used to seeing.

Q&A
Q Some of the events covered in this hour sound a lot like the pseudo-

classes for the <a> tag. What’s the difference?

A It is true that the onmousedown event is like the active state and
onmouseup and onmouseover are much like the hover state. There isn’t a
specific rule about when to use events instead of using the pseudo-
classes, but it stands to reason that if you have no other reason to use
an <a> tag, you shouldn’t just to use the pseudoclasses.

Q Can you capture mouse or keyboard events on elements other than
text, such as images?

A Yes, these types of events can be applied to actions related to clicking
on or rolling over images as well as text. However, other multimedia
objects, such as embedded YouTube videos or Flash files, are not inter-
acted with in the same way, as those objects are played via additional
software for which other mouse or keyboard actions are applicable. For
instance, if you click on a YouTube video that is embedded in your web
page, you are interacting with the YouTube player and no longer your
actual web page—that action cannot be captured in the same way.

ptg

292 HOUR 18: Using Mouse Actions to Modify Text Display

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What happens when you use a negative value for the top property?

2. Which event is used to change something about the page when the
user moves the mouse out of the boundaries of a particular element?

3. If you saw the cursor: crosshair style in a style sheet, what would
you assume it did?

Answers
1. Using a negative value for top places content above the top-left cor-

ner of the parent element (rather than below it).

2. The onmouseout event is used.

3. Turn the user’s mouse pointer into a large plus sign (or crosshair). It
is unclear why you would do that, though, because this is an atypical
presentation of the cursor. In other words, users will wonder why
you did that to their interfaces; they won’t appreciate it as a design
decision on your part.

Exercises
. Create your own page with rollover tooltip texts, using colors and

other styles that work with your own display template.

. Add commands to the onclick attributes in Listing 18.2 such that
only one of the <div> elements (the elevation or photos) is visible at a
time.

ptg

The bulk of this book has taught you all about styling web content, from
font sizes and colors to images, block elements, lists, and more. But what
has yet to be discussed is a high-level overview of page layout. In general,
there are two types of layouts—fixed and liquid—but also a layout that is a
combination of the two, wherein some elements are fixed while others are
liquid.

In this hour, you’ll first learn about the characteristics of these two types of
layouts and see a few examples of web sites that use them. At the end of
the hour, you will see a basic template that combines elements of both
types of layouts. Ultimately, the type of layout you decide is up to you—
it’s hard to go wrong as long as your sites follow HTML and CSS standards.

HOUR 19
Creating Fixed or Liquid Layouts

WHAT YOU’LL LEARN IN
THIS HOUR:

. How fixed layouts work

. How liquid layouts work

. How to create a fixed/
liquid hybrid layout

Find Examples of
Layouts You Like

A good place for examples of liquid layouts is the WordPress Theme
Gallery at http://wordpress.org/extend/themes/. WordPress is a blog-
ging platform that is seeing increasing use as a non-blog site management
tool. The theme gallery shows hundreds of examples of both fixed-width
and liquid layouts which give you an idea, if not all of the code, for what
you could create. Even though you are not working with a WordPress blog
as part of the exercises in this book, the template gallery is a place where
you can see and interact with many variations on designs.

Spend some time looking at the WordPress examples and perhaps the CSS
Zen Garden as well at http://www.csszengarden.com/. This will help you
get a feel for the types of layouts you like without being swayed one way
or the other by the content within the layout.

TRY IT YOURSELF ▼

http://wordpress.org/extend/themes/
http://www.csszengarden.com/

ptg

294 HOUR 19: Creating Fixed or Liquid Layouts

Understanding Fixed Layouts
A fixed layout, or fixed-width layout, is just that—a layout in which the
body of the page is set to a specific width. That width is typically con-
trolled by a master “wrapper” <div> in which all content is contained. The
width property of that <div> would be set in the style attribute or in a style
sheet entry if the <div> was given an ID value such as “main” or “wrap-
per” (although the name is up to you).

When creating a fixed-width layout, the most important decision is deter-
mining the minimum screen resolution you want to accommodate. For
many years, 800x600 has been the “lowest common denominator” for web
designers, resulting in a typical fixed width of approximately 760 pixels.
However, since 2007, the number of people using 800x600 screen resolution
has been less than eight percent (and is currently approximately four per-
cent). Given that, many web designers consider 1024x768 the current mini-
mum screen resolution, leading to fixed-width designs anywhere between
800 and 1000 pixels wide.

A main reason for creating a fixed-width layout is so that you can have
precise control over the appearance of the content area. However, if users
visit your fixed-width site with smaller or much larger screen resolutions
than the resolution you had in mind while you designed it, they might
encounter scroll bars (if their resolution is smaller) or a large amount of
empty space (if their resolution is greater).

The current ESPN.com home page provides a visual example of this issue;
it has a content area fixed at 964 pixels wide. In Figure 19.1, the browser
window is 800 pixels wide. On the right side of the image, important con-
tent is cut off (and at the bottom of the figure, a horizontal scroll bar dis-
plays in the browser).

However, Figure 19.2 shows how this site looks when the browser window
is more than 1300 pixels wide: there is a lot of empty space (or “real
estate”) on both sides of the main body content.

There is another consideration when creating a fixed-width layout:
whether to place the content flush-left or whether to center it. Placing the
content flush-left produces extra space on the right side only; centering the
content area creates extra space on both sides.

WARNING
Remember, the web browser
window contains non-viewable
areas, including the scroll bar.
So if you are targeting a 1024
pixel wide screen resolution,
you really can’t use all 1024 of
those pixels.

ptg

Understanding Liquid Layouts 295

Understanding Liquid Layouts
A liquid layout—also called a fluid layout—is one in which the body of the
page does not use a specified width in pixels, although it might be
enclosed in a master “wrapper” <div> that uses a percentage width. The
idea behind the liquid layout is that it can be perfectly usable and still

FIGURE 19.1
A fixed-width example with a small-
er screen size.

FIGURE 19.2
A fixed-width example with a larger
screen size.

ptg

296 HOUR 19: Creating Fixed or Liquid Layouts

retain the overall design aesthetic even if the user has a very small or very
wide screen.

Three examples of a liquid layout in action are shown in Figures 19.3, 19.4,
and 19.5.

In Figure 19.3, the browser window is approximately 770 pixels wide. This
example shows a reasonable minimum screen width before a horizontal
scrollbar appears. In fact, the scrollbar does not appear until the browser is
735 pixels wide. On the other hand, Figure 19.4 shows a very small brows-
er window (545 pixels wide).

FIGURE 19.3
A liquid layout as viewed in a
relatively small screen.

In Figure 19.4, you can see a horizontal scroll bar; in the header area of the
page content, the logo graphic is beginning to take over the text and
appear on top of it. But the bulk of the page is still quite usable. The infor-
mational content on the left side of the page is still legible and it is sharing
the available space with the input form on the right side.

Figure 19.5 shows how this same page looks in a very wide screen.

ptg

Understanding Liquid Layouts 297

In Figure 19.5, the browser window is approximately 1330 pixels wide.
There is plenty of room for all of the content on the page to spread out.
This liquid layout is achieved because all of the design elements have a
percentage width specified (instead of a fixed width). In doing so, the lay-
out makes use of all the available browser real estate.

FIGURE 19.4
A liquid layout as viewed in a very
small screen.

FIGURE 19.5
A liquid layout as viewed in a wide
screen.

ptg

298 HOUR 19: Creating Fixed or Liquid Layouts

The liquid layout approach might seem like the best approach at first
glance—after all, who wouldn’t want to take advantage of all the screen
real estate available to them? There is a fine line between taking advantage
of space and not allowing the content to “breathe,” as it were. Too much
content is overwhelming; not enough content in an open space is under-
whelming.

The pure liquid layout can be quite impressive, but it requires a significant
amount of testing to ensure that it is usable in a wide range of browsers at
varying screen resolutions. You might not have the time and effort to pro-
duce such a design; in that case, a reasonable compromise is the fixed/liq-
uid hybrid layout.

Creating a Fixed/Liquid Hybrid
Layout
A fixed/liquid hybrid layout is one that contains elements of both types of
layouts. For example, you could have a fluid layout that includes fixed-
width content areas either within the body area or as anchor elements
(such as a left-side column or as a top navigation strip). You can even cre-
ate a fixed content area that acts like a frame, as alluded to in Hour 13,
“Working with Frames,” in which the fixed content area remains fixed
even as users scroll through the content.

Starting with a Basic Layout Structure
In this example, you’ll learn to create a template that is liquid but with two
fixed-width columns on either side of the main body area (which is a third
column, if you think about it, only much wider than the others). The tem-
plate will also have a delineated header and footer area. Listing 19.1 shows
the basic HTML structure for this layout.

Listing 19.1 Basic Fixed/Liquid Hybrid Layout Structure
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Layout</title>
<link href=”layout.css” rel=”stylesheet” type=”text/css” />

</head>

ptg

Creating a Fixed/Liquid Hybrid Layout 299

Listing 19.1 Basic Fixed/Liquid Hybrid Layout Structure

<body>
<div id=”header”>HEADER</div>
<div id=”wrapper”>

<div id=”content_area”>CONTENT</div>
<div id=”left_side”>LEFT SIDE</div>
<div id=”right_side”>RIGHT SIDE</div>

</div>
<div id=”footer”>FOOTER</div>

</body>
</html>

First, note that the style sheet for this layout is linked to with the <link> tag
rather than included in the template. As a template is used for more than
one page, you want to be able to control the display elements of the tem-
plate in the most organized way possible. This means you need only to
change the definitions of those elements in one place—the style sheet.

Next, you’ll notice that the basic HTML is just that: extremely basic. And,
truth be told, this basic HTML structure can be used for a fixed layout, a
liquid layout, or the fix/liquid hybrid you’ll see here, because all of the
actual styling that makes a layout fixed, liquid, or hybrid happens in the
style sheet.

What you actually have with the HTML structure in Listing 19.1 is an iden-
tification of the content areas you want to include in your site. This plan-
ning is crucial to any development; you have to know what you want to
include before you even think about the type of layout you are going to
use, let alone the specific styles that will be applied to that layout.

At this stage, the layout.css file includes only this entry:

body {
margin:0;
padding:0;

}

If you look at the HTML in Listing 19.1 and say to yourself “but those
<div> elements will just stack on top of each other without any styles,” you
are correct. As shown in Figure 19.6, there is no layout to speak of.

ptg

300 HOUR 19: Creating Fixed or Liquid Layouts

Defining Two Columns in a Fixed/Liquid
Hybrid Layout
We can start with the easy things first. Since this layout is supposed to be
liquid, we know that whatever we put in the header and footer areas will
extend the width of the browser window regardless of how narrow or
wide the window might be.

Adding the following code to the style sheet gives the header and footer
area each a width of 100 percent as well as the same background color:

#header {
float: left;
width: 100%;
background-color: #7152F4;

}
#footer {
float: left;
width: 100%;
background-color: #7152F4;

}

Now things get a little trickier. We have to define the two fixed columns on
either side of the page, plus the column in the middle. In the HTML, note
that there is a <div> that surrounds all three and it is called “wrapper.” This
element is defined as follows:

#wrapper {
float: left;
padding-left: 200px;
padding-right: 125px;

}

FIGURE 19.6
A basic HTML template with no
styles applied to the <div>
elements.

ptg

Creating a Fixed/Liquid Hybrid Layout 301

The use of the two padding definitions is to essentially reserve space for
the two fixed-width columns on the left and right of the page. The column
on the left will be 200 pixels wide, the column on the right will be 125 pix-
els wide, and each will have a different background color. But we also
have to position the items relative to where they would be placed if the
HTML remained unstyled (see Figure 19.6). This means adding position:
relative to the style sheet entries for each of these columns. Additionally,
we indicate that the <div> elements should float to the left.

But in the case of the left_side <div>, we also indicate that we want the
right-most margin edge to be 200 pixels in from the edge (this is in addi-
tion to the column being defined as 200 pixels wide). We also want the
margin on the left side to be a full negative margin; this will pull it into
place (as you will soon see). The right_side <div> does not include a
value for right but it does include a negative margin on the right side:

#left_side {
position: relative;
float: left;
width: 200px;
background-color: #52f471;
right: 200px;
margin-left: -100%;

}
#right_side {
position: relative;
float: left;
width: 125px;
background-color: #f452d5;
margin-right: -125px;

}

At this point let’s also define the content area so that it has a white back-
ground, takes up 100% of the available area, and floats to the left relative
to its position:

#content_area {
position: relative;
float: left;
background-color: #ffffff;
width: 100%;

}

At this point, the basic layout will look something like that which is shown
in Figure 19.7, with the areas clearly delineated.

ptg

302 HOUR 19: Creating Fixed or Liquid Layouts

However, there’s a problem with this template if the window is resized
below a certain width. Since the left column is 200 pixels wide and the
right column is 125 pixels wide, and you want at least some text in the con-
tent area, you can imagine this page will “break” if the window is only 350
to 400 pixels wide. Figure 19.8 shows what happens when the window is
resized just under 400 pixels wide (390, to be exact).

FIGURE 19.7
A basic HTML template after some
styles have been put in place.

FIGURE 19.8
A basic HTML template resized
under 400 pixels: bad!

Setting the Minimum Width of a Layout
Although it is unlikely that users will visit your site with a browser less
than 400 pixels wide, the example serves its purpose within the confines of
this book’s pages. You can extrapolate and apply this information broadly:

ptg

Creating a Fixed/Liquid Hybrid Layout 303

even in fixed/liquid hybrid sites, there will be a point at which your lay-
out breaks down, unless you do something about it.

That “something” is to use the min-width property. The min-width property
sets the minimum width of an element, not including padding, borders, or
margins. Figure 19.9 shows what happens when min-width is applied to the
<body> element.

FIGURE 19.9
A basic HTML template resized
under 400 pixels: better!

Figure 19.9 shows a wee bit of the right column after scrolling to the right,
but the point is that the layout does not break when resized below a mini-
mum width. In this case, the minimum width is 525 pixels:

body {
margin: 0;
padding: 0;
min-width: 525px;

}

The horizontal scrollbar appears in this example because the browser win-
dow itself is less than 500 pixels wide. The scrollbar disappears when the
window is slightly larger than 525 pixels wide, and it’s definitely out of the
picture entirely when the browser is approximately 875 pixels wide (see
Figure 19.10).

ptg

304 HOUR 19: Creating Fixed or Liquid Layouts

Handling Column Height in a Fixed/Liquid
Hybrid Layout
This example is all well and good except for one problem: it has no con-
tent. When content is added to the various elements, more problems arise.
As shown in Figure 19.11, the columns become as tall as necessary for the
content they contain.

FIGURE 19.10
A basic HTML template when
viewed in a browser window
wider than 800 pixels.

FIGURE 19.11
Columns are only as tall
as their contents.

ptg

Creating a Fixed/Liquid Hybrid Layout 305

Since you cannot count on a user’s browser being a specific height, or that
the content will always be the same length, you might think this poses a
problem with the fixed/liquid hybrid layout. Not so. If you think a little
outside the box, you can apply a few more styles that will bring all the
pieces together.

First, add the following declarations in the style sheet entries for the
left_side, right_side, and content_area IDs:

margin-bottom: -2000px;
padding-bottom: 2000px;

These declarations add a ridiculous amount of padding and assign a
ridiculously large margin to the bottom of all three elements. You must
also add position:relative to the footer ID in the style sheet so that it is
visible despite this padding.

At this point, the page would look like that which is shown in Figure
19.12—still not what we want, but closer.

FIGURE 19.12
Color fields are now visible despite
the amount of content in the
columns.

ptg

306 HOUR 19: Creating Fixed or Liquid Layouts

To clip off all that extra color, add the following to the style sheet for the
wrapper ID:

overflow: hidden;

Figure 19.13 shows the final result: a fixed-width/liquid hybrid layout
with the necessary column spacing.

FIGURE 19.13
Congratulations! It’s a fixed-
width/liquid hybrid layout.

The full HTML code can be seen in Listing 19.2 and the final style sheet is
shown in Listing 19.3.

Listing 19.2 Basic Fixed/Liquid Hybrid Layout Structure (with content)
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Layout</title>
<link href=”layout.css” rel=”stylesheet” type=”text/css” />

</head>

<body>
<div id=”header”><img src=”acmewidgets.jpg” alt=”ACME Widgets

LLC”/></div>
<div id=”wrapper”>

<div id=”content_area”>
<h1>Welcome to ACME Widgets!</h1>

ptg

Creating a Fixed/Liquid Hybrid Layout 307

Listing 19.2 Basic Fixed/Liquid Hybrid Layout Structure (with content)
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nam tincidunt posuere malesuada. Suspendisse ac felis ac ante
tincidunt ullamcorper. Nulla vitae ligula vitae mi rhoncus
adipiscing. Etiam congue felis id ante semper at imperdiet
massa tempor. Nullam hendrerit fermentum ligula, sit amet
pellentesque purus faucibus in. Sed molestie lacus mauris,
ultrices accumsan sem. Phasellus facilisis malesuada sem, nec
ornare ipsum dictum consectetur. Nulla libero nisl,
consectetur eget accumsan vel, interdum ut risus. Donec
vitae enim vitae nulla feugiat dignissim ut sit amet odio.
Nunc non enim id sem faucibus congue. Integer ac mi in justo
euismod sodales. Aenean imperdiet vestibulum auctor. Sed
ullamcorper congue ipsum, eget vulputate sem scelerisque in.
Donec ornare vestibulum congue. Etiam sapien nulla, rutrum
mattis mattis ut, pellentesque eget augue. Proin nisl mauris,
suscipit quis elementum ac, vestibulum quis lacus. Ut eget
justo vitae urna varius sodales. </p>
</div>
<div id=”left_side”>

Mission
History
Executive Team
Contact Us

</div>
<div id=”right_side”>SPECIAL WIDGET DEAL!

Buy three widgets and get a fourth for free.

Act now!

</div>
</div>
<div id=”footer”> Copyright information usually goes here.</div>

</body>
</html>

Listing 19.3 Full Style Sheet for Fixed/Liquid Hybrid Layout
body {
margin:0;
padding:0;
min-width: 525px;

}
#header {
float: left;
width:100%;
background-color: #ffffff;

}
#footer {
float: left;
width:100%;

ptg

308 HOUR 19: Creating Fixed or Liquid Layouts

Listing 19.3 Full Style Sheet for Fixed/Liquid Hybrid Layout
background-color: #7152f4;
font-size: 8pt;
font-weight: bold;
text-align: center;
position: relative;

}
#wrapper {
float: left;
padding-left: 200px;
padding-right: 125px;
overflow: hidden;

}
#left_side {
position: relative;
float: left;
width: 200px;
background-color: #52f471;
right: 200px;
margin-left: -100%;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#right_side {
position: relative;
float: left;
width: 125px;
background-color: #f452d5;
margin-right: -125px;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#content_area {
position: relative;
float: left;
background-color: #ffffff;
width: 100%;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#left_side ul {
list-style: none;
margin: 12px 0px 0px 12px;
padding: 0px;

}
#left_side li a:link, #nav li a:visited {
font-size: 12pt;
font-weight: bold;
padding: 3px 0px 3px 3px;
color: #000000;
text-decoration: none;
display: block;

ptg

Q&A 309

Listing 19.3 Full Style Sheet for Fixed/Liquid Hybrid Layout
}
#left_side li a:hover, #nav li a:active {
font-size: 12pt;
font-weight: bold;
padding: 3px 0px 3px 3px;
color: #ffffff;
text-decoration: none;
display: block;

}

Summary
In this hour, you saw some practical examples of the three main types of
layouts: fixed, liquid, and a fixed/liquid hybrid. In the third section of the
hour, you saw an extended example that took you through the process bit-
by-bit for creating a fixed/liquid hybrid layout in which the HTML and
CSS all validate properly. Remember, the most important part of creating a
layout is figuring out the sections of content you think you might need to
account for in the design.

Q&A
Q I’ve heard about something called an elastic layout. How is that differ-

ent than the liquid layout?

A An elastic layout is a layout whose content areas resize when the user
resizes the text. Elastic layouts use ems, which are inherently propor-
tional to text and font size. An em is a typographical unit of measure-
ment equal to the point size of the current font. When ems are used in
an elastic layout, if a user forces the text size to increase or decrease
in size using Ctrl and the mouse scroll wheel, the areas containing the
text increase or decrease proportionally. Elastic layouts are very difficult
to achieve and are more commonly found in portfolios rather than actu-
al practice due to the number of hours involved in perfecting them.

Q You’ve spent a lot of time talking about liquid layouts or hybrid lay-
outs—are they better than a purely fixed layout?

A “Better” is a subjective term; in this book the concern is with stan-
dards-compliant code. Most designers will tell you that liquid layouts
take longer to create (and perfect), but the usability enhancements are
worth it. When might the time not be worth it? If your client does not
have an opinion and if they are paying you a flat rate rather than an
hourly rate. In that case, you are working only to showcase your own
skills—that might be worth it to you, however.

ptg

310 HOUR 19: Creating Fixed or Liquid Layouts

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. Which is the best layout to use, in general: fixed, liquid, or a hybrid?

2. Can you position a fixed layout anywhere on the page?

3. What does min-width do?

Answers
1. This was a trick question; there is no “best” layout. It depends on

your content and the needs of your audience.

2. Sure. Although most fixed layouts are flush-left or centered, you
could assign a fixed position on an XY axis where you could place a
<div> that contains all the other layout <div>s.

3. The min-width property sets the minimum width of an element, not
including padding, borders, or margins.

Exercises
. Figure 19.13 shows the “finished” fixed/liquid hybrid layout, but

notice there are a few areas for improvement: there isn’t any space
around the text in the right-side column, there aren’t any margins
between the body text and either column, the footer strip is a little
sparse, and so on. Take some time to fix up these design elements.

. After you’ve added margin or padding as appropriate in the first
exercise, spruce up this page with a horizontal navigation strip and
fancier vertical navigation based on what you learned in Hour 17.

ptg

If you’ve ever used an online mapping tool such as MapQuest or Google
Maps, you’ve no doubt experienced the need to print a web page. Similarly,
the proliferation of coupons offered only online, purchase receipts for items
from online resellers, and web-based flight check-in and the ability to print
boarding passes from your home computer have increased the need for
print-friendly pages. It’s true, not all web pages are designed entirely for
viewing on the screen. You might not realize this, but it’s possible to specifi-
cally design and offer print-friendly versions of your pages for users who
want to print a copy for offline reading—something that Google Maps
offers after showing you the on-screen version of content. CSS makes it easy
to create web pages that will change appearance based on how they are
viewed. In this hour, you learn how to create such pages.

HOUR 20
Creating Print-Friendly Web Pages

WHAT YOU’LL LEARN IN
THIS HOUR:

. What makes a page print-
friendly

. How to apply a media-
specific style sheet

. How to create a style
sheet for print pages

. How to view your web page
in print preview mode

Review Your Content
for Print-Friendliness

As you work your way through this hour, consider any of your own web
pages that might look good in print. Then think about what you would
want to change about them to make them look even better on the printed
page. Here are some ideas to consider:

. Even against warnings in previous lessons, do you have pages that
use a patterned background image or an unusual background color
with contrasting text? This kind of page can be difficult to print
because of the background, so you might consider offering a print
version of the page that doesn’t use a custom background image or
color and simply uses black text. When preparing a page for print-
ing, stick to black text on a white background if possible.

TRY IT YOURSELF ▼

ptg

312 HOUR 20: Creating Print-Friendly Web Pages

What Makes a Page Print-Friendly?
I already touched on this topic a bit in the preceding Try It Yourself, but it’s
worth a more thorough exploration of what constitutes a print-friendly
web page. First off, it’s important to point out that some web pages are
print-friendly already. If your pages use white backgrounds with dark con-
trasting text and few images, you might not even need to concern yourself
with a special print-friendly version. On the other hand, pages with dark
backgrounds, dynamic links, and several images might prove to be
unwieldy for the average printer.

The main things to keep in mind as you consider what it takes to make
your pages more print-friendly are the limitations imposed by the medi-
um. In other words, what is it about a printed page that makes it uniquely
different from a computer screen? The obvious difference is size—a printed
page is at a fixed size, typically 8 1/2 by 11 inches, whereas the size of
screens can vary greatly. In addition to size, printed pages also have color
limitations (even on color printers). Very few users want to waste the ink
required to print a full-color background when they really just want to
print the text on the page.

Most users also aren’t interested in printing more than the text that serves
as the focus on the page. For example, Figure 20.1 shows a travel route
mapped out from San Jose, California to Pullman, Washington.

TRY IT YOURSELF▼

Review Your Content
for Print-Friendliness

. Do your pages include lots of links? If so, you might consider chang-
ing the appearance of links for printing so that they don’t stand
out—remove any underlining, for example. Remember, you can’t
click a piece of paper!

. Finally, is every image on your pages absolutely essential? Colorful
images cost valuable ink to print on most printers, so you might con-
sider leaving some, if not all, images out of your print-friendly
pages.

ptg

What Makes a Page Print-Friendly? 313

The page shown in Figure 20.1 contains form input fields, a large image
that can itself be controlled (moved, zoomed), and other ancillary items
that you come to expect in web content. Above the map appears a set of
Actions that you can perform, one of which is a link to print the page. At
this point, you might wonder why you can’t just click the Print button on
your web browser. You certainly can do this, but that command prints the
page as it is shown on your screen—complete with the form input fields
and graphical elements, when all you really want to know are the turns
you need to make when driving this route.

If you click the Print link in the body of the page, your web browser will
display a page (see Figure 20.2) that Google has formatted specifically to
be printed.

FIGURE 20.1
This page isn’t very print-friendly
due to the form inputs and large
image with its own display con-
trols.

ptg

314 HOUR 20: Creating Print-Friendly Web Pages

As shown in the figure, the print-friendly version of this page represents a
significant improvement over the original, at least from the perspective of
a printer. All the form inputs and images were removed.

In the spirit of giving you a better grasp on what, specifically, to consider
as you move toward creating print-friendly pages, following is a list of
changes you should at least consider:

. Remove the background of the page, which effectively gives the
printed page a white background.

. Change text colors to black; it’s okay to have some color in the text
but black is preferred.

. Make sure that the font size is large enough that the page can be easi-
ly read when printed. You might have to test some different sizes.

. Remove link formatting or simply revert to a basic underlined link.
Some designers like to retain an underline just so a visitor knows
that a link exists in the original page.

. Remove any and all nonessential images. This typically includes any
images that aren’t critical to conveying the content in the page, such
as navigation buttons, most ads, and animated images.

FIGURE 20.2
The print-friendly version of the
page isolates the text of the driv-
ing instructions so that it can be
printed by itself.

NOTE

If the font of printer-specific
pages is Sans-Serif, some web
designers recommend changing
the font to Serif, which is con-
sidered easier to read in print.
If you use a Sans-Serif font on
your pages, it’s up to you to
decide whether you want to
maintain the core look of a
page when it’s printed—which
means you don’t change the
font to Serif.

ptg

Applying a Media-Specific Style Sheet 315

In addition to these suggestions, you might find it useful to add a byline
with information about the author of the page, along with a URL for the
page and copyright information. This is information that could potentially
get lost after the user leaves your web site and has only the printed version
of the page in hand.

You probably don’t need to make these changes to your pages just yet. The
idea is to plant the seed of what constitutes a print-friendly page so that
you can do a better job of creating a printer-specific style sheet. That’s
right, it’s possible to create a style sheet that is applied to pages only when
they are printed. You learn this in the next section.

Applying a Media-Specific Style
Sheet
Figure 20.1 showed how a small printer icon with a link allows you to
view a special print-friendly version of a page. This type of icon is popular
on many news sites, and it’s an important feature because you otherwise
might not want to hassle with printing a page and wasting paper and ink
on the graphics and ads that accompany articles. Although the printer icon
and link approach is intuitive and works great, there is an option that does
not require these specific links to print-friendly content.

This option involves using a print-specific style sheet that is automatically
applied to a page when the user elects to print the page. CSS supports the
concept of media-specific style sheets, which are style sheets that target a par-
ticular medium, such as the screen or printer. CSS doesn’t stop with those
two forms of media, however. Check out the following list of specific
media types that CSS 2 allows you to support with a unique style sheet:

. all: for all devices

. aural: for speech synthesizers (called speech in CSS 1 media types)

. braille: for Braille tactile feedback devices

. embossed: for paged Braille printers

. handheld: for handheld devices with limited screen size and band-
width

. print: for printed material and documents viewed on screen in Print
Preview mode

. projection: for projected presentations

ptg

316 HOUR 20: Creating Print-Friendly Web Pages

. screen: for color computer screens

. tty: for devices using a fixed-pitch character grid (such as a terminal,
teletype, or handheld devices with limited displays).

. tv: for television-type devices, which are typically low resolution,
color, and have limited ability to scroll.

Perhaps the most interesting of these media is the aural type, which allows
for web pages that can be read aloud or otherwise listened to. Clearly, the
architects of CSS envision a Web with a much broader reach than we cur-
rently think of as we design pages primarily for computer screens. While
you probably don’t need to worry too much about aural web page design
just yet, it serves as a good heads-up as to what might be on the horizon.

The good news about style sheets as applied to other media is that they
don’t require you to learn anything new. Okay, maybe in the case of aural
web pages you’ll need to learn a few new tricks, but for now you can use
the same style properties you’ve already learned to create print-specific
style sheets. The trick is knowing how to apply a style sheet for a particu-
lar medium.

If you recall, the <link /> tag is used to link an external style sheet to a
web page. This tag supports an attribute named media that you haven’t
seen yet. This attribute is used to specify the name of the medium to which
the style sheet applies. By default, this attribute is set to all, which means
that an external style sheet will be used for all media if you don’t specify
otherwise. The other acceptable attribute values correspond to the list of
media provided in the previous list.

Establishing a print-specific style sheet for a web page involves using two
<link /> tags, one for the printer and one for each remaining medium.
Following is code that handles this task:

<link rel=”stylesheet” type=”text/css” href=”standard.css” media=”all” />
<link rel=”stylesheet” type=”text/css” href=”for_print.css” media=”print” />

In this example, two style sheets are linked into a web page. The first sheet
targets all media by setting the media attribute to all. If you did nothing
else, the standard.css style sheet would apply to all media. However, the
presence of the second style sheet results in the for_print.css style sheet
being used to print the page.

You can specify multiple media types in a single <link /> tag by separat-

NOTE

You can also use the @import
command to link media-specific
style sheets. For example, the
following code works just like
the previous <link /> code:
@import url(player.css) all;
@import url(player_print.css)
print;

ptg

Designing a Style Sheet for Print Pages 317

ing the types with a comma, like this:

<link rel=”stylesheet” type=”text/css” href=”for_pp.css” media=”print,
projector” />

This code results in the for_pp.css style sheet applying solely to the print
and projector media types and nothing else.

Designing a Style Sheet for Print
Pages
Using the recommended list of modifications required for a print-friendly
web page, it’s time to take a stab at creating a print-friendly style sheet.
Let’s first take a look at a page that is displayed using a normal (screen)
style sheet (see Figure 20.3).

WARNING

You might have been tempted
to specify media=”screen” in
the first linked style sheet in
the previous code. Although
this would work for viewing the
page in a normal web browser,
it would cause problems if a
user viewed the page using a
handheld browser or any of the
other types of media. In other
words, a style sheet applies
only to the specific media types
mentioned in the media attrib-
ute, and nothing more.

NOTE

You can specify a media type
for your style sheets even if you
aren’t linking to external ver-
sions. The <style> tag also
uses the same media attribute
as the <link /> tag.

FIGURE 20.3
A CSS-styled page as viewed in a
normal web browser.

This figure reveals how the page looks in a normal web browser. In reality,
this page isn’t too far from being print-ready, but it could still benefit from
some improvements.

The following changes can help make this web page more print-friendly:

. Change the color of all text to black.

. Remove link formatting (bold and color).

ptg

318 HOUR 20: Creating Print-Friendly Web Pages

. Stack the two player information sections vertically because they are
unlikely to fit horizontally on the printed page.

. Remove the contact link entirely.

The first two changes to the normal style sheet are fairly straightforward;
they primarily involve changing or undoing existing styles. The third
change, however, requires a bit of thought. Because you know that printed
pages are a fixed size, you should use absolute positioning for all the ele-
ments on the printed page. This makes it much easier to place the content
sections exactly where you want them. Finally, the last item on the list is
very easy to accommodate by simply setting the display style property of
the contact element to none.

Listing 20.1 shows the CSS code for the player_print.css style sheet,
which incorporates these changes into a style sheet that is perfectly suited
for printing hockey player pages.

Listing 20.1 CSS Code for the Print-Specific Hockey Player Style Sheet
body {
font-family:Verdana, Arial;
font-size:12pt;
color:black;

}

div {
padding:3px;

}

div.title {
font-size:18pt;
font-weight:bold;
font-variant:small-caps;
letter-spacing:2px;
position:absolute;
left:0in;
top:0in;

}

div.image {
position:absolute;
left:0in;
top:0.5in;

}

div.info {
position:absolute;
left:1.75in;

WARNING

Although absolute positioning
works for the hockey player
sample page, it’s not always a
good idea for styling print-spe-
cific pages. More specifically, if
you have a page that contains
more than a printed page worth
of content, you’re better off
using relative positioning and
letting content flow onto multi-
ple pages.

ptg

Designing a Style Sheet for Print Pages 319

Listing 20.1 CSS Code for the Print-Specific Hockey Player Style Sheet
top:0.5in;

}

div.favorites {
position:absolute;
left:1.75in;
top:2in;

}

div.footer {
position:absolute;
text-align:left;
left:0in;
top:9in;

}

table.stats {
width:100%;
text-align:right;
font-size:11pt;
position:absolute;
left:0in;
top:3.75in;

}

div.contact {
display:none;

}

.label {
font-weight:bold;
font-variant:small-caps;

}

tr.heading {
font-variant:small-caps;
background-color:black;
color:white;

}

tr.light {
background-color:white;

}

tr.dark {
background-color:#EEEEEE;

}

th.season, td.season {
text-align:left;

}

ptg

320 HOUR 20: Creating Print-Friendly Web Pages

Listing 20.1 CSS Code for the Print-Specific Hockey Player Style Sheet

a, a:link, a:visited {
color:black;
font-weight:normal;
text-decoration:none;

}

Probably the neatest thing about this code is how it uses inches (in) as the
unit of measure for all the absolute positioning code. This makes sense
when you consider that we think of printed pages in terms of inches, not
pixels. If you study the code carefully, you’ll notice that the text is all black,
all special style formatting has been removed from the links, and content
sections are now absolutely positioned (so that they appear exactly where
you want them).

Viewing a Web Page in Print
Preview
Figure 20.4 shows the print-friendly version of a hockey player page as it
appears in Internet Explorer’s Print Preview window.

FIGURE 20.4
You can use Print Preview to view
the print-friendly version of a web
page before you print it.

ptg

Viewing a Web Page in Print Preview 321

If Figure 20.4 had shown the entire page—all 11 inches of height and then
some—you would have noticed that the print-friendly version of the page
now includes the footer at the very bottom of the page (see Figure 20.5).

Just to show you how print-friendly pages can be used in a practical situa-
tion, check out Figure 20.5. This figure shows the same hockey player page
as a PDF document that can be viewed in Adobe Acrobat Reader.

FIGURE 20.5
The hockey player page was con-
verted to a PDF document by print-
ing it as an Adobe PDF.

Adobe’s virtual printer can be used to “print” the hockey player web page
to a PDF document. You might also find PDF converters such as DoPDF
(http://www.dopdf.com/) will work for you for at a lower cost than the
Adobe Acrobat software. Printing to a PDF effectively creates a version of
the print-friendly web page in a format that can be easily shared electroni-
cally for printing.

NOTE

To learn more about Acrobat,
visit http://www.adobe.com/
products/acrobat/.

http://www.dopdf.com/
http://www.adobe.com/products/acrobat/
http://www.adobe.com/products/acrobat/

ptg

322 HOUR 20: Creating Print-Friendly Web Pages

Summary
This hour focused on a practical application of CSS that solves a common
need: printing web pages. You began the hour by learning what exactly
constitutes a print-friendly web page. From there, you learned about the
mechanism built into CSS that allows a page to distinguish between the
media in which it is being rendered, and then you learned how to select a
style sheet accordingly. And finally, you created a print-specific style sheet
that was used to style a page just for printing. Although most users prefer
viewing a page on a large computer screen to reading it on paper, there are
times when a printed web page is a necessity. Be sure to give your web
page visitors the utmost in flexibility by offering print-friendly pages.

Q&A
Q Can I use the media attribute of the <link /> tag to create a style

sheet specifically for viewing a web page on a handheld device?

A Yes. By setting the media attribute of the <link /> tag to handheld, you
specifically target handheld devices with a style sheet. You will likely
see all mobile web sites eventually shift toward this approach to serv-
ing mobile pages, as opposed to using specialized markup languages
such as WML (Wireless Markup Language).

Q Do I still need to provide printer icons on my pages so that they can
be printed?

A No. The linked style sheet technique you learned about in this hour
allows you to support print-friendly web pages without any special links
on the page. However, if you want to enable the user to view a print-
friendly version of a page in a browser, you can link to another version
of the page that uses the print-specific style sheet as its main (brows-
er) style sheet. Or you can provide some “fine print” on the page that
instructs the user to use the browser’s Print Preview feature to view the
print-friendly version of the page.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

ptg

Exercises 323

Quiz
1. Does having a button to a print-friendly page mean the page is actu-

ally print-friendly?

2. What happens to an external style sheet that is linked to a page with-
out any media attribute specified?

3. How would you link a style sheet named freestyle.css to a page
so that it applies only when the page is viewed on a television?

Answers
1. No—you still have to link to a page with a specific stylesheet applied

to the content such that it appears “print-friendly.”

2. The media attribute assumes its default value of all, which causes the
style sheet to target all media types.

3. <link rel=”stylesheet” type=”text/css” href=”freestyle.css”

media=”tv” />

Exercises
. Create a print-friendly style sheet for a page that has a fair number of

colors and images. Be sure to add an extra <link /> tag to the page
that links in the print-specific style sheet.

. If you’re feeling really ambitious, try using the handheld value of the
<link /> tag’s media attribute to create a handheld-specific version of
one of your web pages. The concept is the same as creating a print-
friendly page, except in this case you’re dealing with an extremely
constrained screen size instead of a printed page. You can test the
page by publishing it and then opening it on a mobile phone or
handheld browser.

ptg

This page intentionally left blank

ptg

The term dynamic means something active or something that motivates
another to become active.

When talking about web sites, a dynamic web site is one that incorporates
interactivity into its functionality and design, but also motivates a user to
take an action—read more, purchase a product, and so on. In this hour,
you’ll learn a little bit about the different types of interactivity that can
make a site dynamic, including information about both server-side and
client-side scripting (as well as some practical examples of the latter).

I’ve mentioned client-side scripting elsewhere in this book and you used a
little of it in Hour 18 when you used event attributes and JavaScript to
change the styles of particular elements—that is called manipulating the
Document Object Model (DOM). You will do a bit more of that type of
manipulation in this chapter. Specifically, after learning about the different
technologies, you’ll use JavaScript to display a random quote upon page-
load and swap images based on user interaction.

Understanding the Different Types
of Scripting
In web development, there are two different types of scripting: server-side
and client-side. Both types of scripting—which is, in fact, computer pro-
gramming—are beyond the scope of this book. However, they are not too
far beyond this book. Two very useful and popular books in the Sams
Teach Yourself series are natural extensions of this one: Sams Teach Yourself
PHP, MySQL and Apache All-in-One (for server-side scripting) and Sams
Teach Yourself JavaScript in 24 Hours (for client-side scripting).

HOUR 21
Understanding Dynamic Web Sites

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to conceptualize dif-
ferent types of dynamic
content

. How to include JavaScript
in your HTML

. How to display randomized
text with JavaScript

. How to change images
using JavaScript and user
events

ptg

326 HOUR 21: Understanding Dynamic Web Sites

Server-side scripting refers to scripts that run on the web server, which then
sends results to your web browser. If you have ever submitted a form at a
web site, which includes using a search engine, you have experienced the
results of a server-side script. Popular server-side scripting languages
include the following; to learn more, visit the web sites listed here:

. PHP (PHP: Hypertext Preprocessor)—http://www.php.net/

. JSP (Java Server Pages)—http://java.sun.com/products/jsp/

. ASP (Active Server Pages)—http://www.asp.net/

. Perl—http://www.perl.org/

. Python—http://www.python.org/

. Ruby—http://www.ruby-lang.org/

On the other hand, client-side scripting refers to scripts that run within your
web browser—there is no interaction with a web server in order for the
scripts to run. The most popular client-side scripting language, by far, is
JavaScript. For several years, research has shown that more than 93 percent
of all web browsers have JavaScript enabled.

Another client-side scripting language is Microsoft’s VBScript (Visual Basic
Scripting Edition). This language is only available with Microsoft Internet
Explorer web browser, and therefore should not be used unless you are
very sure that users will access your site with that web browser (such as in
a closed corporate environment). Given a desire to reach the largest possi-
ble audience, this hour assumes the use of JavaScript for client-side script-
ing; the coding examples in this lesson are all JavaScript.

Including JavaScript in HTML
JavaScript code can live in one of two places within your files:

. In its own file with a .js extension.

. Directly in your HTML files.

External files are often used for script libraries (code you can reuse
throughout many pages), while code appearing directly in the HTML files
tends to achieve functionality specific to those individual pages.
Regardless of where your JavaScript lives, your browser learns of its exis-
tence through the use of the <script></script> tag pair.

NOTE
Despite its name, JavaScript is
not a derivation or any other
close relative to the object-
oriented programming language
called Java. Released by Sun
Microsystems in 1995, Java is
very closely related to the
server-side scripting language
JSP. JavaScript was created by
Netscape Communications,
also in 1995, and given the
name to indicate a similarity in
appearance to Java but not a
direct connection with it.

http://www.php.net/
http://java.sun.com/products/jsp/
http://www.asp.net/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/

ptg

Including JavaScript in HTML 327

When you store your JavaScript in external files, it is referenced in this
manner:

<script type=”text/javascript” src=”/path/to/script.js”>

These <script></script> tags are typically placed between the <head></head>
tag because it is not, strictly speaking, content that belongs in the <body> of
the page. Instead, the <script> tag makes available a set of JavaScript func-
tions or other information that the rest of the page can then use. However,
you can also just encapsulate your JavaScript functions or code snippets
with the <script> tag and place them anywhere in the page, as needed.
Listing 21.1 shows an example of a JavaScript snippet placed in the <body>
of an HTML document.

Listing 21.1 Using JavaScript to Print Some Text
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>JavaScript Example</title>

</head>

<body>
<h1>JavaScript Example</h1>
<p>This text is HTML.</p>
<script type=”text/javascript”>
<!-- Hide the script from old browsers
document.write(‘<p>This text comes from JavaScript.</p>’);
// Stop hiding the script -->
</script>

</body>
</html>

Between the <script></script> tags is a single JavaScript command that
outputs the following HTML:

<p>This text comes from JavaScript.</p>

When the browser renders this HTML page, it sees the JavaScript between
the <script></script> tags, stops for a millisecond to execute the command,
then returns to rendering the output that now includes the HTML output
from the JavaScript command. Figure 21.1 shows that this page appears as
any other HTML page appears. It’s an HTML page, but only a small part of
the HTML comes from a JavaScript command.

ptg

328 HOUR 21: Understanding Dynamic Web Sites

Displaying Random Content
You can use JavaScript to display something different each time a page is
loaded. Maybe you have a collection of text or images that you find inter-
esting enough to include in your pages?

I’m a sucker for a good quote. If you’re like me, you might find it fun to
incorporate an ever-changing quote into your web pages. To create a page
with a quote that changes each time the page loads, you must first gather
all your quotes together, along with their respective sources. You’ll then
place these quotes into a JavaScript array, which is a special type of storage
unit in programming languages that is handy for holding lists of items.

After the quotes are loaded into an array, the JavaScript used to pluck out a
quote at random is fairly simple. You’ve already seen the snippet that will
print the output into your HTML page.

Listing 21.2 contains the complete HTML and JavaScript code for a web
page that displays a random quote each time it loads.

Listing 21.2 A Random-Quote Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>

FIGURE 21.1
The output of a JavaScript snippet
looks like any other output.

NOTE
You might have noticed these
two lines in Listing 21.1:
<!-- Hide the script from old
browsers
// Stop hiding the script -->

This is an HTML comment.
Anything between the <!--
start and the --> end will be
visible in the source code but
will not be rendered by the
browser. In this case, JavaScript
code is surrounded by HTML
comments on the off chance
that your visitor is running a
very old web browser or has
JavaScript turned off.

ptg

Displaying Random Content 329

Listing 21.2 A Random-Quote Web Page
<title>Quotable Quotes</title>

<script type=”text/javascript”>
<!-- Hide the script from old browsers
function getQuote() {
// Create the arrays
quotes = new Array(4);
sources = new Array(4);

// Initialize the arrays with quotes
quotes[0] = “When I was a boy of 14, my father was so “ +
“ignorant...but when I got to be 21, I was astonished “ +
“at how much he had learned in 7 years.”;
sources[0] = “Mark Twain”;
quotes[1] = “Everybody is ignorant. Only on different “ +
“subjects.”;
sources[1] = “Will Rogers”;
quotes[2] = “They say such nice things about people at “ +
“their funerals that it makes me sad that I’m going to “ +
“miss mine by just a few days.”;
sources[2] = “Garrison Keilor”;
quotes[3] = “What’s another word for thesaurus?”;
sources[3] = “Steven Wright”;

// Get a random index into the arrays
i = Math.floor(Math.random() * quotes.length);

// Write out the quote as HTML
document.write(“<dl style=’background-color: lightpink’>\n”);
document.write(“<dt>” + “\”” + quotes[i] + “\”\n”);
document.write(“<dd>” + “- “ + sources[i] + “\n”);
document.write(“<dl>\n”);

}
// Stop hiding the script -->

</script>
</head>

<body>
<h1>Quotable Quotes</h1>
<p>Following is a random quotable quote. To see a new quote just
reload this page.</p>
<script type=”text/javascript”>
<!-- Hide the script from old browsers
getQuote();
// Stop hiding the script -->

</script>
</body>

</html>

ptg

330 HOUR 21: Understanding Dynamic Web Sites

Although this code looks kind of long, if you look carefully, you’ll see that
a lot of it consists of the four quotes available for display on the page. After
you get past the length, the code itself isn’t too terribly complex.

The large number of lines between the first set of <script></script> tags is
creating a function called getQuote(). Once a function is defined, it can be
called in other places in the same page. Note that if the function existed in
an external file, the function could be called from all of your pages.

If you look closely at the code you will see some lines like this:

// Create the arrays

and

// Initialize the arrays with quotes

These are code comments. The developer uses these comments to leave
notes in the code so that anyone reading it has an idea of what the code is
doing in that particular place. After the first comment about creating the
arrays, you can see that two arrays are created—one called quotes and one
called sources—each containing four elements:

quotes = new Array(4);
sources = new Array(4);

After the second comment (about initializing the arrays with quotes), four
items are added to the arrays. We’ll look closely at one of them, the first
quote by Mark Twain:

quotes[0] = “When I was a boy of 14, my father was so “ +
“ignorant...but when I got to be 21, I was astonished at “ +
“how much he had learned in 7 years.”;
sources[0] = “Mark Twain”;

You already know that the arrays are named quotes and sources. But the
variable to which values are assigned (in this instance) are called
quotes[0] and sources[0]. Because quotes and sources are arrays, the
items in the array will each have their own position. When using arrays,
the first item in the array is not in slot #1, it is in slot #0. In other words,
you begin counting at 0 instead of 1. Therefore, the text of the first quote (a
value) is assigned to quotes[0] (a variable). Similarly, the text of the first
source is assigned to source[0].

ptg

Displaying Random Content 331

Text strings are enclosed in quotation marks. However, in JavaScript, a line
break indicates an end of a command, such that the following would cause
problems in the code:

quotes[0] = “When I was a boy of 14, my father was so
ignorant...but when I got to be 21, I was astonished at
how much he had learned in 7 years.”;

Therefore, you see that the string is built as a series of strings enclosed in
quotation marks, with a plus sign (+) connecting the strings.

The next chunk of code definitely looks the most like programming; this
line gets a random number:

i = Math.floor(Math.random() * quotes.length);

But you can’t just pick any random number, because the purpose of the
random number is to determine which of the quotes and sources should be
printed—and there are only four quotes. So, this line of JavaScript:

. Uses Math.random() to get a random number between 0 and 1. For
example, 0.5482749 might be a result of Math.random().

. Multiplies the random number by the length of the quotes array,
which is currently 4; the length of the array is the number of ele-
ments in the array. If the random number is 0.5482749 (as shown pre-
viously), multiplying that by 4 results in 2.1930996.

. Uses Math.floor() to round the result down to the nearest whole
number. In other words, 2.1930996 turns into 2.

. Assigns the variable i a value of 2.

The rest of the function should look familiar, with a few exceptions. First,
as you learned earlier this hour, document.write() is used to write HTML
which is then rendered by the browser. Next, the strings are separated in
such a way as to make it clear when something needs to be handled differ-
ently, such as escaping the quotation marks with a backslash when they
should be printed literally (\”) or when the value of a variable is substitut-
ed. The actual quote and source that is printed is the one that matches
quotes[i] and sources[i], where i is the number determined by the
mathematical functions above.

But the act of simply writing the function doesn’t mean that any output
will be created. Further on in the HTML, you can see getQuote();
between two <script></script> tags—that is how the function is called.
Wherever that function call is made, that is where the output of the func-

ptg

332 HOUR 21: Understanding Dynamic Web Sites

tion will be placed. In this example, the output displays below a paragraph
that introduces the quotation.

Figure 21.2 shows the Quotable Quotes page as it appears when loaded in
a web browser. When the page reloads, there is a one in four chance a dif-
ferent quote displays—it is random, after all!

FIGURE 21.2
The Quotable Quotes page dis-
plays a random quote each time it
is loaded.

Keep in mind that you can easily modify this page to include your own
quotes or other text that you want to display randomly. You can also
increase the number of quotes available for display by adding more entries
in the quotes and sources arrays in the code.

If you use the Quotable Quotes page as a starting point, you can easily
alter the script and create your own interesting variation on the idea. And
if you make mistakes along the way, so be it. The trick to getting past mis-
takes in script code is to be patient and carefully analyze the code you’ve
entered. You can always remove code to simplify a script until you get it
working, and then add new code one piece at a time to make sure each
piece works.

Understanding the Document Object
Model
Client-side interactivity using JavaScript typically takes the form of manip-
ulating the Document Object Model (DOM) in some way. The DOM is the

ptg

Changing Images Based on User Interaction 333

invisible structure of all documents—not the HTML structure or the way in
which you apply levels of formatting, but a sort of overall framework or
container. If this description seems vague, that’s because it is; it’s not a tan-
gible object.

The overall container object is called the document. Any container within
the document that has an ID is referenced by that ID. For example, if you
have a <div> with an ID called wrapper, then in the DOM that element is
referenced by:

document.wrapper

In Hour 17, you changed the visibility of a specific element by changing
something in the style object associated with it. If you wanted to access
the background-color style of the <div> with an ID called wrapper, it would
be referred to as:

document.wrapper.style.background-color

To change the value of that style to something else, perhaps based on an
interactive user event, use the following to change the color to white:

document.wrapper.style.background-color=”#ffffff”

The DOM is the framework behind your ability to refer to elements and
their associated objects in this way. Obviously, this is a brief overview of
something quite complicated, but at least you can now begin to grasp what
this document-dot-something business is all about. To learn a lot more
about the DOM, visit the World Wide Web Consortium’s information
about the DOM at http://www.w3.org/DOM/.

Changing Images Based on User
Interaction
In Hour 18 you were introduced to the different types of user interaction
events, such as onclick, onmouseover, onmouseout, and so on. In that hour,
you invoked changes in text based on user interaction; in this section,
you’ll see an example of a visible type of interaction that is both practical
and dynamic.

Figure 21.3 shows a page from an online catalog for a collectibles company.
Each page in the catalog shows a large image, information about the item,
and a set of smaller images at the bottom of the page. In this type of cata-

http://www.w3.org/DOM/

ptg

334 HOUR 21: Understanding Dynamic Web Sites

log, close-up images of the details of each item are important to the poten-
tial buyer, but several large images on a page becomes unwieldy from both
a display and bandwidth point of view.

FIGURE 21.3
The catalog item page when first
loaded by the user.

The large image on the page is called using this tag:

As you can see, this image is given a name of product_img. Therefore, this
image exists in the DOM as document.product_img. This is important
because a little bit of JavaScript functionality allows us to dynamically
change the value of document.product_img.src, which is the source (src)
of the image.

The following code snippet creates the fourth small image in the group of
five images shown at the bottom of Figure 21.3. The onmouseover event indi-
cates that when the user rolls over this small image, the value of docu-
ment.product_img.src—the large image slot—is filled with the path to a
matching large image.

<a href=”#” onmouseover=”javascript:document.product_img.src =
‘/path/to/large4.jpg’”><img src=”/path/to/small4.jpg”
width=”104” height=”104” style=”padding: 4px; border: 0px”
alt=”photo” />

ptg

Summary 335

Figure 21.4 shows the same page—not reloaded by the user—whereby the
slot for the large image is filled by a different image when the user rolls
over a smaller image at the bottom of the page. The mouse pointer hovers
over the second image from the right. As the user rolls over the small ver-
sion of the interior photo, the large version of it is shown in the top area on
the page.

FIGURE 21.4
The large image is replaced when
the user rolls over a smaller one.

Summary
In this hour, you’ve learned about the differences between server-side
scripting and client-side scripting and you’ve learned how to include
JavaScript in your HTML files in order to add a little interactivity to your
web sites. You also learned how to use the JavaScript document.write()
method to display random quotes upon page load. Lastly, you learned
what the Document Object Model is all about.

ptg

336 HOUR 21: Understanding Dynamic Web Sites

By applying the knowledge you’ve gained from previous hours, you’ve
learned how to use client-side scripting to make images on a web page
respond to mouse movements. None of these tasks requires much in the
way of programming skills, but they might inspire you to learn more about
JavaScript or a server-side programming language so you can give your
pages more complex interactive features.

Q&A
Q If I want to use the random quote script from this lesson, but I want to

have a library of a lot of quotes, do I have to put all the quotes in
each page?

A Yes. Each item in the array has to be there. This is where you can
begin to see a bit of a tipping point between something that can be
client-side and something that is better dealt with on the server side. If
you have a true library of random quotations and only one is presented
at any given time, it’s probably best to store those items in a database
table and use a little piece of server-side scripting to connect to that
database, retrieve the text, and print it on the page. Alternately, you can
always continue to carry all the quotes with you in JavaScript, but you
should at least put that JavaScript function into a different file that can
be maintained separately from the text.

Q I’ve seen some online catalogs that display a large image in what
looks to be a layer on top of the web site content — I can see the reg-
ular web site content underneath it, but the focus is on the large
image. How is that done?

A The description sounds like an effect created by a JavaScript library
called “Lightbox.” The Lightbox library allows you to display an image, or
a gallery of images, in a layer that is placed over your site content. This
is a very popular library used to show the details of large images or
just a set of images deemed important enough to showcase “above”
the content, as it were. The library is freely available from its creator at
http://www.huddletogether.com/projects/lightbox/. To install
and use it, follow the instructions included with the software. You will
be able to integrate it into your site using the knowledge you’ve gained
in this book so far.

http://www.huddletogether.com/projects/lightbox/

ptg

337

Workshop

Quiz
1. You’ve made a picture of a button and named it button.gif. You’ve

also made a simple GIF animation of the button whereby it flashes
green and white. You’ve named that GIF flashing.gif. What HTML
and JavaScript code would you use to make the button flash when-
ever a user moves the mouse pointer over it and also link to a page
named gohere.html when a user clicks the button?

2. How would you modify the code you wrote for Question 1 so that
the button flashes when a user moves his mouse over it and contin-
ues flashing even if he moves the mouse away from it?

3. What does the plus sign mean in the following context:
document.write(‘This is a text string ‘ + ‘that I have created.’);

Answers
1. Your code might look something like this:

<a href=”gohere.html”
onmouseover=”javascript:document.flasher.src=’flashing.gif’”
onmouseout=”javascript:document.flasher.src=’button.gif’”>

2. Your code might look something like this:

<a href=”gohere.html”
onmouseover=”javascript:document.flasher.src=’flashing.gif’”>

3. The plus sign (+) is used to join two strings together.

Workshop

ptg

338 HOUR 21: Understanding Dynamic Web Sites

Exercises
. Do you have any pages that would look flashier or be easier to

understand if the navigation icons or other images changed when the
mouse passed over them? If so, try creating some highlighted ver-
sions of the images, and try modifying your own page using the
information presented in this hour.

. You can display random images—such as graphical banners or
advertisements—in the same way you learned to display random
content using JavaScript earlier in this chapter. Instead of printing
text, just print the tag for the images you want to display.

ptg

To this point, pretty much everything in this book has focused on getting
information out to others. But you can also use your web pages to gather
information from the people who read them.

Web forms allow you to receive feedback, orders, or other information
from the users who visit your web pages. If you’ve ever used a search
engine such as Google, Yahoo!, or Bing, you’re familiar with HTML
forms—those single field entry forms with one button that, when pressed,
give you all the information you are looking for and then some. Product
order forms are also an extremely popular use of forms; if you’ve ordered
anything from Amazon.com or purchased something from an eBay seller,
you’ve used forms. In this hour, you learn how to create your own forms,
but you learn only how to create the front-end of those forms. Working
with the back-end of forms requires the knowledge of a programming lan-
guage and is beyond the scope of this book.

An HTML form is part of a web page that includes areas where users can
enter information to be sent back to you, sent to another e-mail address
that you specify, sent to a database that you manage, or sent to another
system altogether such as a third-party management system for your forms
such as Salesforce.com.

How HTML Forms Work
Before you learn the HTML tags that are used to make your own forms,
you should at least conceptually understand how the information from
those forms makes its way back to you. The actual behind-the-scenes (the
server-side or back-end) process requires knowledge of at least one program-
ming language or at least the ability to follow specific instructions when

HOUR 22
Working with Web-Based Forms

WHAT YOU’LL LEARN IN
THIS HOUR:

. How HTML forms work

. How to create the front
end of an HTML form

. How to name pieces of
form data

. How to include hidden data
in forms

. How to choose the correct
form input controls for the
situation

. How to submit form data

ptg

340 HOUR 22: Working with Web-Based Forms

using someone else’s server-side script to handle the form input. At that
point in the process, you should either work with someone who has the
technical knowledge or you should learn the basics on your own. Simple
form-processing is not difficult at all and it is likely that your web-hosting
provider has several back-end scripts that you can use with minimal cus-
tomization.

Forms include a button for the user to submit the form; that button can be
an image that you create yourself or a standard HTML form button that is
created when a form <input> tag is created and given a type value of submit.
When someone clicks a form submission button, all the information typed
in the form is sent to a URL that you specify in the action attribute of the
<form> tag . That URL should point to a specific script that will process
your form, sending the form contents via email or performing another step
in an interactive process (such as requesting results from a search engine or
placing items in an online shopping cart).

Once you start thinking about doing more with form content than simply
e-mailing results to yourself, additional technical knowledge is required.
For example, if you want to create an online store that accepts credit cards
and processes transactions, there are some well-established practices for
doing so, all geared toward ensuring the security of your customers’ data.
That is not an operation that you’ll want to enter into lightly; you’ll need
more knowledge than that which is provided in this book.

Before you put a form online, you should look in the user guide for your
web-hosting provider and see what they offer in the way of form-processing
scripts. A keyword you might search for is CGI (Common Gateway
Interface). CGI is a standard way for programs (such as form-handling
scripts) to interact with web servers.

Creating a Form
Every form must begin with a <form> tag, which can be located anywhere
in the body of the HTML document. The <form> tag normally has two
attributes, method and action:

<form method=”post” action=”mailto:me@mysite.com”>

The most common method is post, which sends the form entry results as a
document. In some situations, you might need to use method=”get”, which
submits the results as part of the URL header instead. For example, get is

NOTE
PHP is the most popular server-
side programming language; it’s
supported by any web-hosting
provider worth their salt. You
can learn more about PHP at
http://www.php.net/ or you
can just dive right in to learning
this programming language
(plus database interactivity, as
discussed in Hour 21) from the
ground up in Sams Teach
Yourself PHP, Apache, and
MySQL All-in-One. Although
several other books on PHP
and related technologies are
available, I am partial to this
one because I wrote it. It is
geared toward the absolute
beginners with PHP or any
other programming language.

NOTE
Technically, there is a way to
send form data without a
server-side script, but that
method—which uses a mailto
link in the action attribute of
the <form>—produces inconsis-
tent results. Individual web
browsers, as well as personal
security settings, will cause that
action to respond differently
than you intended and certainly
not as the user expects. When
users submit a form, they
expect it to invoke a script, per-
form a process that is invisible
to them, and then return a mes-
sage stating that the process
has been completed. That is
not the case with a form that
invokes a mailto.

http://www.php.net/

ptg

Creating a Form 341

sometimes used when submitting queries to search engines from a web
form. Because you’re not yet an expert on forms, just use post unless your
web-hosting provider’s documentation tells you to do otherwise.

The action attribute specifies the address to which to send the form data.
You have two options here:

. You can type the location of a form-processing program or script on a
web server and the form data will then be sent to that program.

. You can type mailto: followed by your email address and the form
data will be sent directly to you whenever someone fills out the
form. However, this approach is completely dependent on the user’s
computer being properly configured with an email client. People
accessing your site from a public computer without an email client
will be left out in the cold.

The form created in Listing 22.1 and shown in Figure 22.1 includes just
about every type of user input component you can currently use on HTML
forms. Refer to this figure and listing as you read the following explana-
tions of each type of input element.

Listing 22.1 A Form with Various User-Input Components
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Guest Book</title>

<style type=”text/css”>
.formlabel {

font-weight:bold;
width: 250px;
margin-bottom: 12px;
float: left;
text-align: left;
clear: left;

}
.formfield {

font-weight:normal;
margin-bottom: 12px;
float: left;

ptg

342 HOUR 22: Working with Web-Based Forms

Listing 22.1 A Form with Various User-Input Components
text-align: left;

}

input, textarea, select {
border: 1px solid black;

}
</style>

</head>
<body>
<h1>My Guest Book</h1>
<p>Please sign my guest book. Thanks!</p>
<form method=”post” action=”URL_to_script”>

<div class=”formlabel”>What is your name?</div>
<div class=”formfield”><input type=”text” name=”name”

size=”50” /></div>

<div class=”formlabel”>What is your e-mail address?</div>
<div class=”formfield”><input type=”text” name=”email”

size=”50” /></div>

<div class=”formlabel”>Please check all that apply:</div>
<div class=”formfield”>

<input type=”checkbox” name=”website_response[]” value=”I
really like your Web site.” />I really like your Web site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” />One of the best sites I’ve
seen.

<input type=”checkbox” name=”website_response[]” value=”I sure
wish my site looked as good as yours.” />I sure wish my site
looked as good as yours.

<input type=”checkbox” name=”website_response[]” value=”I have
no taste and I’m pretty dense, so your site didn’t do much for
me.” />I have no taste and I’m pretty dense, so your site
didn’t do much for me.

</div>

<div class=”formlabel”>Choose the one thing you love best about my
web site:</div>
<div class=”formfield”>

<input type=”radio” name=”lovebest” value=”me” />That gorgeous
picture of you.

<input type=”radio” name=”lovebest” value=”cats” />All the
beautiful pictures of your cats.

<input type=”radio” name=”lovebest” value=”childhood” />The
inspiring recap of your suburban childhood.

<input type=”radio” name=”lovebest” value=”treasures” />The
detailed list of all your Elvis memorabilia.

</div>

ptg

Creating a Form 343

Listing 22.1 A Form with Various User-Input Components
<div class=”formlabel”>If my web site were a book, how many copies
would it sell?</div>
<div class=”formfield”>
<select size=”3” name=”sales”>
<option value=”Millions, for sure.” selected=”selected”>Millions,

for sure.</option>
<option value=”100,000+ (would be Oprah’s favorite)”>100,000+

(would be Oprah’s favorite)</option>
<option value=”Thousands (an under-appreciated classic)”>Thousands

(an under-appreciated classic)</option>
<option value=”Very few: not banal enough for today’s public”>Very

few: not banal enough for today’s public.</option>
<option value=”Sell? None. Everyone will download it for free.”>Sell?

None. Everyone will download it for free.</option>
</select>

</div>

<div class=”formlabel”>How can I improve my web site?</div>
<div class=”formfield”>
<select name=”suggestion”>
<option value=”Couldn’t be better.” selected=”selected”>Couldn’t

be better.</option>
<option value=”More about the cats.”>More about the cats.</option>
<option value=”More about the family.”>More about the family.</option>
<option value=”More about Elvis.”>More about Elvis.</option>

</select>
</div>

<div class=”formlabel”>Feel free to type more praise, gift offers, etc.
below:</div>

<div class=”formfield”>
<textarea name=”comments” rows=”4” cols=”55”></textarea>

</div>

<div style=”float:left;”>
<input type=”submit” value=”Click Here to Submit” />
<input type=”reset” value=”Erase and Start Over” />

</div>
</form>

</body>
</html>

ptg

344 HOUR 22: Working with Web-Based Forms

The code in Listing 22.1 uses a <form> tag that contains quite a few <input
/> tags. Each <input /> tag corresponds to a specific user input component,
such as a check box or radio button. The input, select, and text area ele-
ments contain borders in the style sheet, so it is easy to see the outline of
the elements in the form. Keep in mind that you can apply all sorts of CSS
to those elements.

The next few sections dig into the <input /> and other form-related tags in
detail.

Accepting Text Input
To ask the user for a specific piece of information within a form, use the
<input /> tag. This tag must fall between the <form> and </form> tags, but it
can be anywhere on the page in relation to text, images, and other HTML
tags. For example, to ask for someone’s name, you could type the following:

What’s your name? <input type=”text” size=”50” maxlength=”100”
name=”name” />

FIGURE 22.1
The code shown in Listing 22.1
uses nearly every type of HTML
form input element.

ptg

Including Hidden Data in Forms 345

The type attribute indicates what type of form element to display—a sim-
ple, one-line text entry box in this case. (Each element type is discussed
individually in the following sections.)

The size attribute indicates approximately how many characters wide the
text input box should be. If you are using a proportionally spaced font, the
width of the input will vary depending on what the user enters. If the
input is too long to fit in the box, most web browsers will automatically
scroll the text to the left.

The maxlength attribute determines the number of characters the user is
allowed to type into the text box. If a user tries to type beyond the speci-
fied length, the extra characters won’t appear. You can specify a length that
is longer, shorter, or the same as the physical size of the text box. size and
maxlength are used only for type=”text” because other input types (check
boxes, radio buttons, and so on) have fixed sizes.

Naming Each Piece of Form Data
No matter what type an input element is, you must give a name to the data it
gathers. You can use any name you like for each input item, as long as each
one on the form is different (except in the case of radio buttons and checkbox-
es, which are discussed later in this hour). When the form is processed by a
back-end script, each data item is identified by name. This name becomes a
variable, which is filled with a value. The value is either what the user typed
in the form or the value associated with the element the user selected.

For example, if a user enters Jane Doe in the text box defined previously, a
variable is sent to the form processing script; the variable is name and the
value of the variable is Jane Doe. Form-processing scripts work with these
types of variable names and values.

Additional examples of name/value pairs are covered in the following
sections.

Including Hidden Data in Forms
Want to send certain data items to the server script that processes a form
but don’t want the user to see those data items? Use an <input /> tag

with a type=”hidden” attribute. This attribute has no effect on the display;
it just adds any name and value you specify to the form results when they
are submitted.

TIP

If you want the user to enter
text without the text being dis-
played on the screen, you can
use <input type=”password”
/> instead of <input
type=”text” />. Asterisks
(***) are then displayed in
place of the text the user types.
The size, maxlength, and name
attributes work exactly the
same for type=”password” as
they do for type=”text”. Keep
in mind that this technique of
hiding a password provides only
visual protection; there is no
encryption or other protection
associated with the password
being transmitted.

NOTE
Form-processing scripts are
oversimplified here for the sake
of explanation within the scope
of this book. The exact appear-
ance (or name) of the variables
made available to your process-
ing script depends on the pro-
gramming language of that
script. But conceptually, it’s
valid to say that the name of
the input element becomes the
name of the variable and the
value of the input element
becomes that variable’s value
on the back-end.

ptg

346 HOUR 22: Working with Web-Based Forms

If you are using a form-processing script provided by your web-hosting
provider, you might use this attribute to tell a script where to email the
form results. For example, the following code will e-mail the results to
me@mysite.com:

<input type=”hidden” name=”mail_to” value=”me@mysite.com” />

Scripts often use at least one or two hidden input elements to carry addi-
tional data along for the ride that might be useful when you receive the
results of the form submission; some examples include an e-mail address
and a subject for the e-mail. If you are using a script provided by your web
hosting provider, consult the documentation provided with that script for
additional details about potential required hidden fields.

Exploring Form Input Controls
Various input controls are available for retrieving information from the
user. You’ve already seen one text-entry option, and the next few sections
introduce you to most of the remaining form-input options you can use to
design forms.

Check Boxes
The simplest input type is a check box, which appears as a small square.
Users can click checkboxes to select or deselect one or more items in a
group. For example, the checkboxes listed in Listing 22.1 display after a
label that reads “Please check all that apply,” implying that the user could
indeed check all that apply.

The HTML for the checkboxes in Listing 22.1 shows that the value of the
name attribute is the same for all of them: website_response[].

<input type=”checkbox” name=”website_response[]” value=”I
really like your Web site.” /> I really like your Web site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” /> One of the best sites
I’ve seen.

<input type=”checkbox” name=”website_response[]” value=”I sure
wish my site looked as good as yours.” /> I sure wish my site
looked as good as yours.

<input type=”checkbox” name=”website_response[]” value=”I have
no taste and I’m pretty dense, so your site didn’t do much for
me.” /> I have no taste and I’m pretty dense, so your site
didn’t do much for me.

ptg

Exploring Form Input Controls 347

The use of the brackets ([]) indicates to the processing script that a series
of values will be placed into this one variable, instead of just one value
(well, it might just be one value if the user only selects one checkbox). If a
user selects the first checkbox, the text string “I really like your Web site.”
will be placed in the website_response[] bucket. If the user selects the third
checkbox, the text string “I sure wish my site looked as good as yours.”
will also be put into the website_response[] bucket. The processing script
will then work with that variable as an array of data rather just a single
entry.

However, you might see groups of checkboxes that do use individual
names for the variables in the group. For example, the following is another
way of writing the checkbox group:

<input type=”checkbox” name=”liked_site” value=”yes” /> I really like
your Web site.

<input type=”checkbox” name=”best_site” value=”yes” /> One of the best
Sites I’ve seen.

<input type=”checkbox” name=”my_site_sucks” value=”yes” />I sure wish my
site looked as good as yours.

<input type=”checkbox” name=”am_dense” value=”yes” />I have no taste and
I’m pretty dense, so your site didn’t do much for me.

In the previous checkboxes, the variable name of the first checkbox is
“liked_site” and the value (if checked) is “yes.”

If you want a check box to be checked by default when the form is ren-
dered by the web browser, include the checked attribute. For example, the
following code creates two check boxes and the first is checked by default:

<input type=”checkbox” name=”website_response[]” value=”I
really like your site.” checked=”checked”/> I really like your
site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” /> One of the best sites I’ve
seen.

The check box labeled ”I really like your site.” is checked in this example.
The user would have to click the checkbox to indicate they had another
opinion of your site. The checkbox marked ”One of the best I’ve seen.”
would be unchecked to begin with, so the user would have to click it to
turn it on.

Check boxes that are not selected do not appear in the form output at all.

TIP

If you find that the label for an
input element is displayed too
close to the element, just add a
space between the close of the
<input /> tag and the start of
the label text, like this:
<input type=”checkbox”
name=”mini” /> Mini Piano
Stool

WARNING

XHTML requires all attributes to
have an equal sign followed by
a value. This explains why
checked=”checked” is used to
indicate that a check box is
checked (as opposed to just
checked). This rule applies to
all Boolean (true/false,
on/off, yes/no, and so on)
attributes that you might come
across in HTML.

ptg

348 HOUR 22: Working with Web-Based Forms

Radio Buttons
Radio buttons, for which only one choice can be selected at a time, are
almost as simple to implement as check boxes. The simplest use of a radio
button is for yes/no questions or for voting when only one candidate can
be selected.

To create a radio button, just use type=”radio” and give each option its own
<input /> tag. Use the same name for all the radio buttons in a group, but
don’t use the [] that you used with the checkbox:

<input type=”radio” name=”vote” value=”yes” checked=”checked” /> Yes

<input type=”radio” name=”vote” value=”no” /> No

The value can be any name or code you choose. If you include the checked
attribute, that button is selected by default. No more than one radio button
with the same name can be checked.

When designing your form and choosing between checkboxes and radio
buttons, ask yourself: is the question being asked or implied one that could
be answered only one way? If so, use a radio button.

Selection Lists
Both scrolling lists and pull-down pick lists are created with the <select> tag.
You use this tag together with the <option> tag, as the following example
shows:

<select name=”extras” size=”3” multiple=”multiple”>
<option value=”Electric windows” selected=”selected”>Electric

windows</option>
<option value=”Sunroof”>Sunroof</option>
<option value=”AM/FM Radio”>AM/FM Radio</option>
<option value=”CD Player”>CD Player</option>
<option value=”GPS”>GPS</option>

</select>

No HTML tags other than <option> and </option> should appear between
the <select> and </select> tags.

Unlike the text input type, the size attribute here determines how many
items show at once on the selection list. If size=”2” were used in the pre-
ceding code, only the first two options would be visible and a scrollbar
would appear next to the list so the user could scroll down to see the third
option.

NOTE
If you look at other web design-
ers’ forms, you might see
checkboxes use the same
names but with different val-
ues, as in the following code:
<input type=”checkbox”
name=”pet” value=”dog”>
dog

<input type=”checkbox”
name=”pet” value=”cat”>
cat

<input type=”checkbox”
name=”pet” value=”iguana”>
iguana

If the user checks more than
one checkbox, it is more than
likely only the last value will be
processed by the script. This is
one reason why you should give
some thought to your checkbox
groups, the name of the group,
and the individual values you
want sent to the script before
you submit it.

ptg

Submitting Form Data 349

Including the multiple attribute allows users to select more than one option
at a time; the selected attribute makes an option initially selected by
default. When the form is submitted, the text specified in the value attrib-
ute for each option accompanies the selected option.

Text Areas
The <input type=”text”> attribute mentioned earlier this hour allows the
user to enter only a single line of text. When you want to allow multiple
lines of text in a single input item, use the <textarea> and </textarea> tags.
Any text you include between these two tags is displayed as the default
entry. Here’s an example:

<textarea name=”comments” rows=”4” cols=”20”>Please send more
information.
</textarea>

As you probably guessed, the rows and cols attributes control the number
of rows and columns of text that fit in the input box. The cols attribute is a
little less exact than rows and approximates the number of characters that
fit in a row of text. Text area boxes do have a scrollbar, however, so the
user can enter more text than what fits in the display area.

Submitting Form Data
Every form must include a button that submits the form data to a script on
the server. You can put any label you like on this button with the value
attribute:

<input type=”submit” value=”Place My Order Now!” />

A gray button will be sized to fit the label you put in the value attribute.
When the user clicks it, all data items on the form are sent to the email
address or program script specified in the form’s action attribute.

You can also include a Submit Reset button that clears all entries on the
form so users can start over if they change their minds or make mistakes.
Use the following:

<input type=”reset” value=”Clear This Form and Start Over” />

If the standard Submit and Reset buttons look a little bland to you, remem-
ber that you can style them using CSS. If that’s not good enough, you’ll be
glad to know that there is an easy way to substitute your own graphics for

TIP

If you leave out the size attrib-
ute or specify size=”1”, the list
creates a drop-down pick list.
Pick lists don’t allow for multi-
ple choices; they are logically
equivalent to a group of radio
buttons. The following example
shows another way to choose
yes or no for a question:
<select name=”vote”>
<option

value=”yes”>Yes</option>
<option

value=”no”>No</option>
</select>

ptg

350 HOUR 22: Working with Web-Based Forms

these buttons. To use an image of your choice for a Submit button, type the
following:

<input type=”image” src=”button.gif” alt=”Order Now!” />

The button.gif image will display on the page and the form will be sub-
mitted when a user clicks the button.gif image. You can also include any
attributes normally used with the tag, such as alt and style.

Summary
This hour demonstrated how to create HTML forms, which allow your
web page visitors to enter specific information. We stopped short of doing
anything with that information because form-handling requires an external
script to process that form.

You learned about all the major form elements, as well as how form-
processing scripts interpret the names and value attributes of those ele-
ments. When you are ready to try a back-end form processing script,
you’re now well-versed in the front-end details.

Table 22.1 summarizes the HTML tags and attributes covered in this hour.

Table 22.1 HTML Tags and Attributes Covered in Hour 22

Tag/Attribute Function

<form>…</form> Indicates an input form.

Attributes

action=”scripturl” The address of the script to process this form input.

method=”post/get” How the form input will be sent to the server.
Normally set to post, rather than get.

<input /> An input element for a form.

Attributes

type=”controltype” The type for this input widget. Possible values are
checkbox, hidden, radio, reset, submit, text, and
image.

name=”name” The unique name of this item, as passed to the
script.

value=”value” The default value for a text or hidden item. For a
check box or radio button, it’s the value to be sub-
mitted with the form. For reset or submit buttons,
it’s the label for the button itself.

ptg

Summary 351

Tag/Attribute Function

src=”imageurl” The source file for an image.

checked=”checked” For check boxes and radio buttons. Indicates that
this item is checked.

size=”width” The width, in characters, of a text input region.

maxlength=”maxlength” The maximum number of characters that can be
entered into a text region.

<textarea>…</textarea> Indicates a multiline text entry form element.
Default text can be included.

Attributes

name=”name” The name to be passed to the script.

rows=”numrows” The number of rows this text area displays.

cols=”numchars” The number of columns (characters) this text area
displays.

<select>…</select> Creates a menu or scrolling list of possible items.

Attributes

name=”name” The name that is passed to the script.

size=”numelements” The number of elements to display. If size is indi-
cated, the selection becomes a scrolling list. If no
size is given, the selection is a drop-down pick list.

multiple=”multiple” Allows multiple selections from the list.

<option>…</option> Indicates a possible item within a <select> element.

Attributes

selected=”selected” With this attribute included, the <option> will be
selected by default in the list.

value=”value” The value to submit if this <option> is selected
when the form is submitted.

ptg

352 HOUR 22: Working with Web-Based Forms

Q&A
Q I’ve heard that it’s dangerous to send credit card numbers over the

Internet. Can’t thieves intercept form data on its way to me?

A It is possible to intercept form data (and any web pages or email mes-
sages) as it travels through the Internet. If you ask for credit card num-
bers or other sensitive information on your forms, you should imple-
ment secure web browsing on a secure server using an SSL (Secure
Sockets Layer) certificate. These SSL certificates are available from
companies such as VeriSign (http://www.verisign.com/), but you
should check with your web-hosting provider for the types of SSL certifi-
cates they install and resell.

To put the level of risk in perspective, remember that it is much more
difficult to intercept information traveling through the Internet than it is
to look over someone’s shoulder in a restaurant or retail store. Even
so, you should always utilize secure pages anytime you’re handling sen-
sitive financial information such as credit card numbers, especially when
someone else is trusting you to handle their sensitive information.

Q Can I put forms on a CD/DVD-ROM or do they have to be on the
Internet?

A You can put a form anywhere you can put a web page. If it’s on a disk
or CD-ROM instead of a web server, it can be filled out by users
whether or not they are connected to the Internet. Of course, they must
be connected to the Internet (or your local intranet) when they click the
Submit button or the information won’t reach the processing script.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What HTML code would you use to create a guestbook form that

asks someone for his or her name, sex, age, and email address?
Assume that you have a form-processing script set up at
/cgi/generic and that you need to include the following hidden
input element to tell the script where to send the form results:

<input type=”hidden” name=”mailto” value=”you@yoursite.com” />

http://www.verisign.com/

ptg

Workshop 353

2. If you created an image named sign-in.gif, how would you use it
as the Submit button for the guestbook you created in Question 1?

Answers
1. You would use HTML code similar to the following (with the appro-

priate DOCTYPE declaration, of course):

<html>
<head>
<title>My Guestbook</title>

</head>

<body>
<h1>My Guestbook: Please Sign In</h1>
<form method=”post” action=”/cgi/generic”>
<p>
<input type=”hidden” name=”mailto” value=”you@yoursite.com” />
Your name: <input type=”text” name=”name” size=”20” />

Your sex: <input type=”radio” name=”sex” value=”male” /> male
<input type=”radio” name=”sex” value=”female” /> female

Your age: <input type=”text” name=”age” size=”4” />

Your e-mail address: <input type=”text” name=”email”

size=”30” />

<input type=”submit” value=”sign in” />
<input type=”reset” value=”erase” />

</p>
</form>

</body>
</html>

2. Replace the following code:

<input type=”submit” value=”Sign In” />

with this code:

<input type=”image” src=”sign-in.gif” alt=”Sign In” />

ptg

354 HOUR 22: Working with Web-Based Forms

Exercises
. Create a form using all the different types of input elements and

selection lists to make sure you understand how each of them works.

. Investigate the form-handling options at your web-hosting provider
and use a script made available to you by the web-hosting provider
to process the form you created in the previous exercise.

ptg

The bulk of this book has led you through the design and creation of your
own web content, from text to graphics and multimedia. Along the way
I’ve noted some of the ways you can think about the lifecycle of that con-
tent, but in this hour you’ll learn how to look at your work as a whole.

This hour shows you how to think about organizing and presenting multi-
ple web pages so that visitors will be able to navigate among them without
confusion. You’ll also learn about ways to make your web site memorable
enough to visit again and again. Web developers use the term “sticky” to
describe pages that people don’t want to leave. Hopefully this chapter will
help you to make your web sites downright gooey!

Because web sites can be (and usually should be) updated frequently, it’s
essential to create pages that can be easily maintained. This hour shows you
how to add comments and other documentation to your pages so that you—
or anyone else on your staff—can understand and modify your pages.

HOUR 23
Organizing and

Managing a Web Site

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to determine when
one page is enough to han-
dle all your content

. How to organize a simple
site

. How to organize a larger
site

. How to write maintainable
HTML code

Evaluate Your
Organization

By this point in the book, you should have enough HTML and CSS knowl-
edge to produce most of your web site. You probably have created a num-
ber of pages already, and perhaps even published them online.

As you read this hour, think about how your pages are organized now and
how you can improve that organization. Have you used comments in your
HTML, or a document for future web site maintainers regarding your
organization? If not, this would be a good time to start. Along the way,
don’t be surprised if you decide to do a redesign that involves changing
almost all of your pages—the results are likely to be well worth the effort!

TRY IT YOURSELF ▼

ptg

356 HOUR 23: Organizing and Managing a Web Site

When One Page Is Enough
Building and organizing an attractive and effective web site doesn’t always
need to be a complex task. If you are creating a web presence for a single
entity (such as a local event) that requires only a brief amount of very spe-
cific information, you can effectively present that information on a single
page without a lot of flashy graphics. In fact, there are several positive fea-
tures to a single-page web presence:

. All the information on the site downloads quicker than on more
extensive sites.

. The whole site can be printed on paper with a single print command,
even if it is several paper pages long.

. Visitors can easily save the site on their hard drives for future refer-
ence, especially if it uses a minimum of graphics.

. Links between different parts of the same page usually respond more
quickly than links to other pages.

Figure 23.1 shows the first part of a web page that serves its intended audi-
ence better as a single lengthy page than it would as a multipage site. The
page begins, as most introductory pages should, with a succinct explanation of
what the page is about and who would want to read it. A detailed table of
contents allows visitors to skip directly to the reference material in which they
are most interested. It contains about eight paper pages worth of text explain-
ing how to begin the process of buying a house—something a visitor might
think about printing out and reading later, perhaps while also taking notes.

FIGURE 23.1
A good table of contents can make
a lengthy page easy to navigate.

ptg

Organizing a Simple Site 357

As Figure 23.2 shows, each short section of the page is followed by a link
back up to the table of contents, so navigating around the page feels much
the same as navigating around a multipage site. Because the contents of
the page are intended as a handy reference, visitors will definitely prefer
the convenience of bookmarking or saving a single page instead of eight or
10 separate pages.

Having seen all the fancy graphics and layouts in this book, you might be
tempted to forget that a good, old-fashioned outline is often the clearest
and most efficient way to organize long web pages within a site.

FIGURE 23.2
Always provide a link back to the
table of contents after each sec-
tion of a long web page.

Organizing a Simple Site
Although single-page sites have their place, most companies and individu-
als serve their readers better by dividing their site into short, quick-read
pages surrounded by graphical navigation that allows them to reach
almost all the information they could want within a few clicks.
Furthermore, using multiple pages instead of a series of very long pages
minimizes scrolling around on the page, which can be especially bother-
some for visitors who are using mobile devices to view the site or who
have relatively low-resolution monitors (less than 800×600).

The goal of the “home” page is simply to make the organization “visible”
on the Internet, but also—and more importantly—act as a portal to the

ptg

358 HOUR 23: Organizing and Managing a Web Site

information contained within the site itself. The main page of a site should
provide the user with enough information to provide a clear picture of the
organization, as well as traditional address and telephone contact informa-
tion and an e-mail address to contact with questions or feedback. It should
also provide clear pathways into the highly structured information that
should be contained on other pages in the site. The main page shown in
Figure 23.3 provides examples of all these good features: basic information,
contact information, and paths to information for multiple audiences.

FIGURE 23.3
This university main page uses a
basic design, minimal but useful
graphics, and clear structure to
entice users to explore for more
information.

One of the most common mistakes beginning web site developers make is
creating pages that look different than other pages on the site. Another
equally serious mistake is using the same, publicly available clip art that
thousands of other web authors are also using. Remember that on the
Internet, one click can take you around the world. The only way to make
your pages memorable and recognizable as a cohesive site is to make all
your pages adhere to a unique, unmistakable visual theme. In other words,
strive for uniqueness as compared to other web sites, yet uniformity within
the site itself.

TIP

Regardless of how large your
site is, it’s a good idea to care-
fully organize your resources.
For example, place the images
for your web pages in a sepa-
rate folder named images.
Similarly, if you have files that
are available for download,
place them in a folder called
downloads. This makes it
much easier to keep track of
web page resources based on
their particular types (HTML
pages, GIF images, and so on).
Additionally, if you organize your
site into sections, such as
“Company,” “Products,”
“Press,” and so on, put the indi-
vidual pages into similarly-
named directories (company,
products, press, and so on)
for the same organizational
reasons.

ptg

Organizing a Simple Site 359

As an example of how uniformity can help make a site more cohesive,
think about large, popular sites you might have visited, such as ESPN.com.
If you visit the MLB section at ESPN.com (see Figure 23.4) and the NFL
section (see Figure 23.5), you’ll notice a very similar structure.

FIGURE 23.4
The MLB section at ESPN.com.

FIGURE 23.5
The NFL section at ESPN.com.

ptg

360 HOUR 23: Organizing and Managing a Web Site

In both examples, you see navigation elements at the top of the page
(including some sub-navigation elements), a large area in the middle of the
page for the featured item graphic, a rectangle on the right side containing
links to top stories at the moment, and a second rectangle under the top
stories links for the display of an advertisement. The only difference
between the MLB section and the NFL section is the color scheme: the MLB
section is part of a predominantly blue color scheme, while the NFL sec-
tion is predominantly green. However, in both sections, you know that if
you want to read the popular news stories, you look to the right of the
page. If you want to navigate to another section in the site or to the site’s
main page, you look to a navigational element in the top left of the page.

These consistent elements help ensure your users will be able to navigate
throughout your content with confidence. From a maintenance perspec-
tive, the consistent structural template enables you to reuse pieces of the
code. This code reuse typically happens through dynamic programming
outside the scope of this book, but in general it means that instead of copy-
ing and pasting the same HTML over and over, the HTML only exists in
one place and is applied dynamically to the content. Therefore, instead of
making changes to thousands of files, you would only need to make a
change once.

Organizing a Larger Site
For complex sites, sophisticated layout and graphics can help organize and
improve the looks of your site when used consistently throughout all of
your pages. To see how you can make aesthetics and organization work
hand-in-hand, let’s look at examples of navigation (and thus underlying
organization) for a few sites that present a large volume of information to
several different audiences.

Figure 23.6 shows the main page of Amazon.com, specifically with the side
navigation selected. Amazon is in the business of selling products, plain
and simple. Therefore, it makes sense for Amazon to show product cate-
gories as the main navigational elements, as shown in this figure.

ptg

Organizing a Larger Site 361

Although Amazon is in the business of selling products, it still has to pro-
vide information regarding who they are, how to contact them, and other
ancillary yet important information to enhance the business-to-consumer
relationship. Links to this sort of information appear in the footer, or bot-
tom portion, of the Amazon.com web site—outside of the viewing area of
this screenshot. When creating your site template, you must determine the
most important content areas and how to organize that content; also,
remember to provide users with basic information—especially if that infor-
mation will enhance your image and make the user feel as if you value
what they have to say.

The next example is of a secondary page within the Starbucks.com web
site. All of the pages in the Starbucks.com web site follow one of the com-
mon types of presenting navigation and sub-navigation: a horizontal strip
for main navigation, with secondary elements for that section placed in a
vertical column on the left. As shown in Figure 23.7, the section the user is
currently browsing (“about us”) is highlighted. This visual indicator helps
users orient themselves within the site. Using a visual indicator is a useful
tactic because your users might arrive at a page via a search engine or by a
link from another web site. Once your users arrive, you want them to feel
at home—or at least feel as if they know where they are in relation to your
site—once they get there.

FIGURE 23.6
Amazon.com shows product
categories as primary navigation
elements.

ptg

362 HOUR 23: Organizing and Managing a Web Site

As you can see by the different main navigation elements—”our coffees,”
“our stores,” “starbucks card,” “at home,” “for business,” “about us,” and
“shop online”—the Starbucks web site has to serve the needs of many dif-
ferent types of people coming to the web site for many different reasons.
As you organize your own site content, determine the information that is
most important to you, as well as that which is most important to your
users, and create a navigation scheme that finds a happy medium between
the two.

Figure 23.8 shows another example of a navigation style, this time with a
twist on the standard top navigation/left-side navigation scheme. In this
example, the left side navigation (secondary navigation in this case) also
appears in a drop-down menu under the main navigation (refer to Hour 17
for information on how to do something like this). Hovering the mouse
over any of the other main navigation elements shows similar menus. This
scheme allows users to have an entire site map at their fingertips, since
they would be able to reach any place in the site within one click of any
other page.

FIGURE 23.7
This Starbucks.com secondary
page shows a main navigation ele-
ment selected with secondary navi-
gation on the left side of the page.

ptg

Organizing a Larger Site 363

You will also notice that the “Overview” link in the side navigation win-
dow is styled a bit differently—with heavier purple text—than the other
links in the window, indicating to visitors what page they are on. This
visual detail, similar to what you saw on the Starbucks site, is an unobtru-
sive way to provide users with a sense of where they are within the current
navigational scheme.

There are many different types of navigation styles and ways of indicating
to users just where they are and where they might want to go next. Keep in
mind the following fact: studies have repeatedly shown that people
become confused and annoyed when presented with more than seven
choices at a time, and people feel most comfortable with five or fewer
choices. Therefore, you should avoid presenting more than five links
(either in a list or as graphical icons) next to one another if at all possible,
and definitely avoid presenting more than seven at once. Amazon.com gets
a pass here, because they are an Internet superstore and users expect a lot
of “departments” in which to shop when they get there. But when you
need to present more than seven links in a navigation list, break them into
multiple lists with a separate heading for each of the five to seven items, as
you saw in the Amazon.com example in Figure 23.6.

It will also help your readers navigate your site without confusion if you
avoid putting any page more than two (or, at most, three) links away from
the main page. You should also always send readers back to a main category

FIGURE 23.8
The BAWSI.org web site shows
sub-navigation attached to each
main navigation element.

ptg

364 HOUR 23: Organizing and Managing a Web Site

page (or the home page) after they’ve read a subsidiary page. In other words,
try to design somewhat of a flat link structure in which most pages are no
more than one or two links deep. You don’t want visitors to have to rely heav-
ily, if at all, on their browsers’ Back buttons to navigate through your site.

Writing Maintainable HTML Code
If you’ve ever done any programming, you already know how important it
is to write code that can be maintained—that is, you or someone else
should be able look at your code later and not be utterly confused by it.
The challenge is to make your code as immediately understandable as pos-
sible. There will come a time when you’ll look back on a page that you
wrote and you won’t have a clue what you were thinking or why you
wrote the code the way you did. Fortunately, there is a way to combat this
problem of apparent memory loss!

Documenting Code with Comments
Whenever you develop an HTML page, keep in mind that you or some-
one else will almost certainly need to make changes to it someday. Simple
text web pages are usually fairly easy to read and revise, but complex
pages with graphics, tables, and other layout tricks can be quite difficult
to decipher.

To see what I’m talking about, visit just about any page in a web browser
and view its source code. Using Internet Explorer, click the View menu and
then click Source. Using Firefox, click the View menu and then click Page
Source. You might see a jumbled bunch of code that is tough to decipher as
pure HTML. This might be due to the fact that the markup has been gen-
erated dynamically by content management software systems. Or it might
be due to the fact that its human maintainer has not paid attention to struc-
ture, ease of reading, code commenting, and other methods for making the
code readable by humans. For the sake of maintaining your own pages, I
encourage you to impose a little more order on your HTML markup.

NOTE
To include comments in a
JavaScript script, put // at the
beginning of each comment
line. (No closing tag is needed
for JavaScript comments.) In
style sheets, start comments
with /* and end them with */.

The HTML <!— and —> tags
will not work properly in scripts
or style sheets!

You can and should, however,
include one <!-- tag just after
a <script> or <style> tag,
with a --> tag just before the
matching </script> or
</style>. This hides the script
or style commands from older
browsers that would otherwise
treat them as regular text and
display them on the page.

ptg

Writing Maintainable HTML Code 365

As you have seen in several different hours, you can enclose comments to
yourself or your co-authors between <!-- and --> tags. These comments
will not appear on the web page when viewed with a browser but can be
read by anyone who examines the HTML code in a text editor or via web
browser’s View Source (or View Page Source) function. The following
example provides a little refresher just to show you how a comment is
coded:

<!-- This image needs to be updated daily. -->

As this code reveals, the comment just before the tag provides a
clue as to how the image is used. When someone reads this code, they
know immediately that this is an image that must be updated every day.
The text in the comment is completely ignored by web browsers.

TIP

One handy usage of comments
is to hide parts of a web page
that are currently under con-
struction. Rather than making
the text and graphics visible
and explaining that they’re
under construction, you can
hide them from view entirely
with some carefully placed
opening and closing comment
tags around the HTML you do
not want to appear. This is a
great way to work on portions
of a page gradually and show
only the end result to the world
when you’re finished.

Comment Your Code

It will be well worth your time now to go through all the web pages,
scripts, and style sheets you’ve created so far and add any comments that
you or others might find helpful when revising them in the future. Here’s
what to do:

1. Put a comment explaining any fancy formatting or layout techniques
before the tags that make it happen.

2. Use a comment just before an tag to briefly describe any
important graphic whose function isn’t obvious from the alt mes-
sage.

3. Consider using a comment (or several comments) to summarize how
the cells of a <table> are supposed to fit together visually.

4. If you use hexadecimal color codes (such as <div style=”color:

#8040B0”>), insert a comment indicating what the color actually is
(bluish-purple).

5. Indent your comments to help them stand out and make both the
comments and the HTML easier to read. Don’t forget to use indenta-
tion in the HTML itself to make it more readable, too, as we’ll discuss
in the next section.

TRY IT YOURSELF ▼

ptg

366 HOUR 23: Organizing and Managing a Web Site

Indenting Code for Clarity
I have a confession. Throughout the book I’ve been carefully indoctrinating
you into an HTML code development style without really letting on. It’s
time to spill the beans. You’ve no doubt noticed a consistent pattern with
respect to the indentation of all the HTML code in the book. More specifi-
cally, each child tag is indented to the right two spaces from its parent tag.
Furthermore, content within a tag that spans more than one line is indent-
ed within the tag.

The best way to learn the value of indentation is to see some HTML code
without it. You know how the song goes—”you don’t know what you’ve
got [‘]til it’s gone.” Anyway, here’s a very simple table coded without any
indentation:

<table>
<tr><td>Cell One</td><td>Cell Two</td></tr>
<tr><td>Cell Three</td><td>Cell Four</td></tr>
</table>

Not only is there no indentation, there also is no delineation between rows
and columns within the table. Now compare this code with the following
code, which describes the same table:

<table>
<tr>
<td>Cell One</td>
<td>Cell Two</td>

</tr>
<tr>
<td>Cell Three</td>
<td>Cell Four</td>

</tr>
</table>

This heavily indented code makes it plainly obvious how the rows and
columns are divided up via <tr> and <td> tags.

Consistent indentation might even be more important than comments
when it comes to making your HTML code understandable and maintain-
able. And you don’t have to buy into this specific indentation strategy. If
you’d rather use three or four spaces instead of two, that’s fine. And if you
want to tighten things up a bit and not indent content within a tag, that
also works. The main thing to take from this is that it’s important to devel-
op a coding style of your own and then ruthlessly stick to it.

TIP

If you work with other people or
plan on working with other peo-
ple developing web pages, you
should consider getting togeth-
er as a group to formulate a
consistent coding style. That
way everyone is on the same
page, pun intended.

ptg

Q&A 367

Summary
This hour has given you examples and explanations to help you organize
your web pages into a coherent site that is informative, attractive, and easy
to navigate. Web users have grown to become quite savvy in terms of
expecting well-designed web sites, and they will quickly abandon your site
if they experience a poor design that is difficult to navigate.

This hour also discussed the importance of making your HTML code easy
to maintain by adding comments and indentation. Comments are impor-
tant not only as a reminder for you when you revisit code later but also as
instruction if someone else should inherit your code. Indentation might
seem like an aesthetic issue, but it can truly help you to quickly analyze
and understand the structure of a web page at a glance.

Q&A
Q I’ve seen pages that ask viewers to change the width of their

browser window or adjust other settings before proceeding beyond
the home page. Why do they do this?

A The snarky response is that the site creators do not care about their
users. Never force your users to do something differently than they
are doing with their browsers, and especially never, ever resize the
browser automatically. Those are some of the biggest usability no-
no’s. When sites tell you to change your settings, it is because the site
creators think they can offer a better presentation if they’re given that
specific control over the size of users’ windows or fonts. Of course,
few people bother to change their settings when told to do so (as
they shouldn’t), so these sites often look weird or unreadable. You’ll
be much better off using the tips you learn in this book to make your
site readable and attractive using any window size and using a wide
variety of browser settings. The better organized your site is, the
more usable it will be for visitors.

Q Won’t lots of comments and spaces make my pages load slower
when someone views them?

A The size of a little extra text in your pages is negligible when com-
pared to other, chunkier web page resources (such as images and
multimedia). Besides, slower dial-up modem connections typically
do a decent job of compressing text when transmitting it, so adding
spaces to format your HTML doesn’t usually change the transfer
time at all. You’d have to type hundreds of comment words to cause

ptg

368 HOUR 23: Organizing and Managing a Web Site

even one extra second of delay in loading a page. And keep in mind
that with the broadband connections (cable, DSL, and so on) that
many people now have, text travels extremely fast. It’s the graphics
that slow pages down, so squeeze your images as tightly as you can
(refer to Hour 10), but use text comments freely.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. What are three ways to ensure all your pages form a single cohesive

web site?

2. What two types of information should always be included in your
home page?

3. You want to say, “Don’t change this image of me. It’s my only chance
at immortality,” to future editors of a web page, but you don’t want
users who view the page to see that message. How would you do it?

Answers
1. Use consistent background, colors, fonts, and styles. Repeat the same

link words or graphics on the top of the page that the link leads to.
Repeat the same small header, buttons, or other element on every
page of the site.

2. Use enough identifying information so that users can immediately
see the name of the site and what it is about. Also, whatever the most
important message you want to convey to your intended audience is,
state it directly and concisely. Whether it’s your mission statement or
trademarked marketing slogan, make sure that it is in plain view
here.

3. Put the following comment immediately before the tag:
<!-- Don’t change this image of me.

It’s my only chance at immortality. -->

ptg

Exercises 369

Exercises
. Grab a pencil (the oldfangled kind) and sketch out your web site as a

bunch of little rectangles with arrows between them. Sketch a rough
overview of what each page will look like by putting squiggles
where the text goes and doodles where the images go. Each arrow
should start at a doodle icon that corresponds to the navigation but-
ton for the page the arrow leads to. Even if you have the latest whiz-
bang web site management tools (which are often more work than
just creating the site itself), sketching your site by hand can give you
a much more intuitive grasp of which pages on your site will be easy
to get to and how the layout of adjacent pages will work together—
all before you invest time in writing the actual HTML to connect the
pages together. Believe it or not, I still sketch out web sites like this
when I’m first designing them. Sometimes you can’t beat a pencil
and paper!

. Open the HTML files that make up your current web site, and check
them all for comments and code indentation. Are there areas in
which the code needs to be explained to anyone who might look at it
in the future? If so, add explanatory comments. Is it difficult for you
to tell the hierarchy of your code—is it difficult to see headings and
sections? If so, indent your HTML so that the structure matches the
hierarchy and thus allows you to jump quickly to the section you
need to edit.

ptg

This page intentionally left blank

ptg

Your web pages are ultimately only as useful as they are accessible—if no
one can find your pages, your hard work in creating a useful architecture,
providing interesting content, and coding them correctly will be for
naught. The additional HTML tags you’ll discover in this hour won’t make
any visible difference in your web pages, but they are extremely important
in that they will help your audience more easily find your web pages. For
most web site creators, this might be the easiest—but most important—
hour in the book. You’ll learn how to add elements to your pages and how
to construct your site architecture in such a way as to increase the possibili-
ty that search engines will return links to your site when someone search-
es for words related to your topic or company; this is called search engine
optimization (SEO). Contrary to what you might hear from companies
who try to sell these services to you, there are no magic secrets that guar-
antee you’ll be at the top of every search list. However, there are a series of
free best practices that you can do on your own to make sure your site is as
easy to find as possible.

Publicizing Your Web Site
Presumably, you want your web site to attract someone’s attention, or you
wouldn’t bother to create it in the first place. However, if you are placing
your pages only on a local network or corporate intranet, or you are dis-
tributing your site exclusively on removable storage media, helping users
find your pages might not be much of a problem. But if you are adding the
content of your web site to the billions of other pages of content indexed
by search engines, bringing your intended audience to your site is a very
big challenge indeed.

HOUR 24
Helping People Find

Your Web Pages

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to publicize your web
site

. How to list your pages with
the major search sites

. How to optimize your site
for search engines

ptg

372 HOUR 24: Helping People Find Your Web Pages

To tackle this problem, you need a basic understanding of how most peo-
ple decide which pages they will look at. There are basically three ways
people become aware of your web site:

. Somebody tells them about it and gives them the address; they enter
that address directly into their web browser.

. They follow a link to your site from someone else’s site.

. They find your site indexed in the databases that power the Google,
Bing, or Yahoo! search engines (among others).

You can increase your web site traffic with a little time and effort. To increase
the number of people who hear about you through word-of-mouth, well, use
your mouth—and every other channel of communication available to you. If
you have an existing contact database or mailing list, announce your web site
to those people. Add the site address to your business cards or company liter-
ature. If you have the money, go buy TV and radio ads broadcasting your
Internet address. In short, do the marketing thing. Good old-fashioned word-
of-mouth marketing is still the best thing going, even on the Internet.

Increasing the number of incoming links to your site from other sites is also
pretty straightforward—though that doesn’t mean it isn’t a lot of work. If
there are specialized directories on your topic, either online or in print, be
sure you are listed. Participate in social networking, including the imple-
mentation of Facebook “fan” pages (if applicable) for your service or busi-
ness. Create a Twitter account to broadcast news and connect with cus-
tomers—again, if that is applicable to your online presence. Go into the
spaces where your customers might be, such as blogs that comment on your
particular topic of interest, and participate in those communities. That is not
to say that you should find a forum on your topic or service and spam its
users with links to your site. Act as an expert in your given field, offering
advice and recommendations along with your own site URL. There’s not
much I can say in this book to help you with that, except to go out and do it.

The main thing I can help you with is making sure your content has been
gathered and indexed correctly by search engines. It’s a fair assumption
that if your content isn’t in Google’s databases, you’re in trouble.

Search engines are basically huge databases that index as much content on
the Internet as possible—including videos and other rich media. They use
automated processing to search sites, using programs called robots or spi-
ders to search pages for content and build the databases. After the content
is indexed, the search applications themselves use highly sophisticated
techniques of ranking pages to determine which content to display first,
second, third, and so on when a user enters a search term.

NOTE
A very popular, high traffic, and
well-respected site (due to their
accuracy and added value) for
tips for interacting in social net-
working spaces, especially for
the business user, is Mashable:
http://www.mashable.com/.

http://www.mashable.com/

ptg

Listing Your Pages with the Major Search Sites 373

When the search engine processes a user query, it looks for content that
contains the key words and phrases that the user is looking for. But it is
not a simple match, as in “if this page contains this phrase, return it as a
result,” because content is ranked according to frequency and context of
the keywords and phrases, as well as the number of links from other sites
that lend credibility to it. This hour will teach you a few ways to ensure
that your content appears appropriately in the search engine, based on the
content and context you provide.

Listing Your Pages with the Major
Search Sites
If you want users to find your pages, you absolutely must submit a request
to each of the major search sites to index your pages. Even though search
engines index web content automatically, this is the best way to ensure
your site has a presence on their sites. Each of these sites has a form for
you to fill out with the URL address, a brief description of the site, and, in
some cases, a category or list of keywords with which your listing should
be associated. These forms are easy to fill out; you can easily complete all
of them in an hour with time left over to list yourself at one or two special-
ized directories you might have found as well. (How do you find the spe-
cialized directories? Through the major search sites, of course!)

Before You List Your Pages
But wait! Before you rush off this minute to submit your listing requests, read
the rest of this hour. Otherwise, you’ll have a very serious problem, and you
will have already lost your best opportunity to solve it.

To see what I mean, imagine this scenario: You publish a page selling auto-
matic cockroach flatteners. I am an Internet user who has a roach problem,
and I’m allergic to bug spray. I open my laptop, brush the roaches off the key-
board, log on to my favorite search site, and enter cockroach as a search
term. The search engine promptly presents me with a list of the first 10 out
of 10,254 Internet pages containing the word cockroach. You have submitted
your listing request, so you know that your page is somewhere on that list.

Did I mention that I’m rich? And did I mention that two roaches are mating on
my foot? You even offer same-day delivery in my area. Do you want your page
to be number 3 on the list, or number 8,542? Okay, now you understand the
problem. Just getting listed in a search engine isn’t enough—you need to
work your way up the rankings.

ptg

374 HOUR 24: Helping People Find Your Web Pages

Even though listing with the major search engines is easy and quick, it can
be a bit confusing: Each search engine uses different terminology to identi-
fy where you should click to register your pages. The following list might
save you some frustration; it includes the addresses of some popular
search engines which will include your site for free, along with the exact
wording of the link you should click to register:

. Google—Visit http://www.google.com/addurl/, enter the address
of your site and a brief description, and then enter the squiggly veri-
fication text, called a CAPTCHA, (or Completely Automated Public
Turing test to tell Computers and Humans Apart) shown on the
page. Then click the Add URL button to add your site to Google.

. Yahoo! Search—Visit http://siteexplorer.search.yahoo.com/submit,
enter the address of your site, and then click the Submit URL button.

. Bing—Visit http://www.bing.com/docs/submit.aspx, enter the veri-
fication text, enter the address of your site, and then click the Submit
URL button.

. AllTheWeb—AllTheWeb search results are provided by Yahoo!
Search, so just be sure to submit your site to Yahoo! Search, as
explained previously.

. AltaVista—AltaVista search results are also provided by Yahoo!
Search, so just be sure to submit your site to Yahoo!.

Providing Hints for Search Engines
Fact: There is absolutely nothing you can do to guarantee that your site
will appear in the top 10 search results for a particular word or phrase in
any major search engine (short of buying ad space from the search site,
that is). After all, if there were such guarantees, why couldn’t everyone
else who wants to be number 1 on the list do it, too? What you can do is
avoid being last on the list and give yourself as good a chance as anyone
else of being first; this is called search engine optimization (SEO), or opti-
mizing the content and structure of your pages so that search engines will
favor your pages over others.

Each search engine uses a different method for determining which pages
are likely to be most relevant and should therefore be sorted to the top of a
search result list. You don’t need to get too hung up on the differences,
though, because they all use some combination of the same basic criteria.

TIP

There are sites that provide one
form that automatically submits
itself to all the major search
engines, plus several minor
search engines. These sites—
such as
http://www.scrubtheweb.com/,
http://www.submitexpress.
com/, and http://www.
hypersubmit.com/—are popular
examples of sites that attempt
to sell you a premium service
that lists you in many other
directories and indexes as well.
Depending on your target audi-
ence, these services might or
might not be of value, but I
strongly recommend that you go
directly to the major search
sites listed previously in this
hour and use their own forms
to submit your requests to be
listed. That way you can be
sure to answer the questions
(which are slightly different at
every site) accurately, and you
will know exactly how your site
listing will appear at each
search engine.

http://www.google.com/addurl/
http://siteexplorer.search.yahoo.com/submit
http://www.bing.com/docs/submit.aspx
http://www.scrubtheweb.com/
http://www.submitexpress.com/
http://www.submitexpress.com/
http://www.hypersubmit.com/
http://www.hypersubmit.com/

ptg

Providing Hints for Search Engines 375

The following list includes almost everything any search engine considers
when trying to evaluate which pages best match one or more keywords.

. Do keywords appear in the <title> tag of the page?

. Do keywords appear in the first few lines of the page?

. Do keywords appear in a <meta /> tag in the page?

. Do keywords appear in <h1> headings in the page?

. Do keywords appear in the names of image files and alt text for
images in the page?

. How many other pages within the web site link to the page?

. How many other pages in other web sites link to the page? How
many other pages link to those pages?

. How many times have users chosen this page from a previous search
list result?

Clearly, the most important thing you can do to improve your position is
to consider the keywords your intended audience are most likely to enter.
I’d recommend that you not concern yourself with common, single-word
searches like “food”; the lists they generate are usually so long that trying
to make it to the top is like playing the lottery. Focus instead on uncom-
mon words and two- or three-word combinations that are most likely to
indicate relevance to your topic (for instance, “Southern home-style cook-
ing” instead of simply “food”). Make sure that those terms and phrases
occur several times on your page, and be certain to put the most important
ones in the <title> tag and the first heading or introductory paragraph.

Of all the search-engine evaluation criteria just listed, the use of <meta />
tags is probably the least understood. Some people rave about <meta />
tags as if using them could instantly move you to the top of every search
list. Other people dismiss <meta /> tags as ineffective and useless. Neither
of these extremes is true.

A <meta /> tag is a general-purpose tag you can put in the <head> portion of
any document to specify some information about the page that doesn’t
belong in the <body> text. Most major search engines look at <meta /> tags
to provide them with a short description of your page and some keywords
to identify what your page is about. For example, your automatic cock-
roach flattener order form might include the following two tags:

<meta name=”description”
content=”Order form for the SuperSquish cockroach flattener.” />
<meta name=”keywords”
content=”cockroach,roaches,kill,squish,supersquish” />

NOTE
Some over-eager web page
authors put dozens or even
hundreds of repetitions of the
same word on their pages,
sometimes in small print or a
hard-to-see color, just to get the
search engines to position that
page at the top of the list when-
ever users search for that word.
This practice is called search
engine spamming.

Don’t be tempted to try this
sort of thing—all the major
search engines are aware of
this practice and immediately
delete any page from their data-
base that sets off a “spam
detector” by repeating the
same word or group of words in
a suspicious pattern. It’s still
fine (and quite beneficial) to
have several occurrences of
important search words on a
page, in the natural course of
your content. Make sure, how-
ever, that you use those words
in normal sentences or phras-
es—then the spam police will
leave you alone.

WARNING
Always place <meta /> tags
after the <head>, <title>, and
</title> tags but before the
closing </head> tag.

According to XHTML standards,
<title> must be the very first
tag in the <head> section of
every document.

ptg

376 HOUR 24: Helping People Find Your Web Pages

The first tag in this example ensures that the search engine has an accurate
description of the page to present on its search results list. The second
<meta /> tag slightly increases your page’s ranking on the list whenever
any of your specified keywords are included in a search query.

You should always include <meta /> tags with name=”description” and
name=”keywords” attributes in any page that you want to be indexed by a search
engine. Doing so might not have a dramatic effect on your position in search
lists, and not all search engines look for <meta /> tags, but it can only help.

To give you a concrete example of how to improve search engine results,
consider the page shown in Listing 24.1.

This page should be fairly easy to find because it deals with a specific topic
and includes several occurrences of some uncommon technical terms for
which users interested in this subject would be likely to search. However,
there are several things you could do to improve the chances of this page
appearing high on a search engine results list.

TIP

The previous cockroach exam-
ple aside, search engine
experts suggest that the ideal
length of a page description in
a <meta /> tag is in the 100- to
200-character range. For key-
words, the recommended length
is in the 200- to 400-character
range. Experts also suggest not
wasting spaces in between key-
words, which is evident in the
cockroach example. And, finally,
don’t go crazy repeating the
same keywords in multiple
phrases in the keywords—some
search engines will penalize you
for attempting to overdo it.

TIP
In the unlikely event that you
don’t want a page to be includ-
ed in search engine databases
at all, you can put the following
<meta /> tag in the <head> por-
tion of that page:
<meta name=”robots”
content=”noindex,noindex” />

This causes some search
robots to ignore the page. For
more robust protection from
prying robot eyes, ask the per-
son who manages your web
server to include your page
address in the server’s
robots.txt file. (She will know
what that means and how to do
it; if not, you can refer to the
handy information at
http://www.robotstxt.org/.) All
major search spiders will then
be sure to ignore your pages.
This might apply to internal
company pages that you’d
rather not be readily available
via public searches.

Listing 24.1 A Page That Will Have Little Visibility During an Internet Site
Search

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fractal Central</title>

</head>

<body>
<div style=”text-align:center”>

</div>
<div style=”width:133px; float:left; padding:6px; text-align:center;
border-width:4px; border-style:ridge”>
Discover the latest software, books and more at our online store.

<img src=”orderform.gif” alt=”Order Form”
style=”border-style:none” />

</div>
<div style=”float:left; padding:6px”>
<h2>A Comprehensive Guide to the

Art and Science of Chaos and Complexity</h2>
<p>What’s that? You say you’re hearing about “fractals” and “chaos” all
over the place, but still aren’t too sure what they are? How about a
quick summary of some key concepts:</p>

<p>Even the simplest systems become deeply complex and richly
beautiful when a process is “iterated” over and over, using the
results of each step as the starting point of the next. This is how
Nature creates a magnificently detailed 300-foot redwood tree from a

http://www.robotstxt.org/

ptg

Providing Hints for Search Engines 377

seed the size of your fingernail.</p>
<p>Most “iterated systems” are easily simulated on computers,
but only a few are predictable and controllable. Why? Because a tiny
influence, like a “butterfly flapping its wings,” can be strangely
amplified to have major consequences such as completely changing
tomorrow’s weather in a distant part of the world.</p>
<p>Fractals can be magnified forever without loss of detail, so
mathematics that relies on straight lines is useless with them.
However, they give us a new concept called “fractal dimension” which
can measure the texture and complexity of anything from coastlines to
storm clouds.</p>
<p>While fractals win prizes at graphics shows, their chaotic
patterns pop up in every branch of science. Physicists find beautiful
artwork coming out of their plotters. “Strange attractors” with
fractal turbulence appear in celestial mechanics. Biologists diagnose
“dynamical diseases” when fractal rhythms fall out of sync. Even pure
mathematicians go on tour with dazzling videos of their
research.</p>

<p>Think all these folks may be on to something?</p>

</div>
<div style=”text-align:center”>
<img src=”findout.gif”
alt=”Find Out More” style=”border-style:none” />

</div>
</body>

</html>

Now compare the page in Listing 24.1 with the changes made to the page
in Listing 24.2. The two pages look almost the same, but to search robots
and search engines, these two pages appear quite different. The following
list summarizes what was changed in the page and how those changes
affected indexing:

. Important search terms were added to the <title> tag and the first
heading on the page. The original page didn’t even include the word
fractal in either of these two key positions.

. <meta /> tags were added to assist search engines with a description
and keywords.

. A very descriptive alt attribute was added to the first tag.
Not all search engines read and index alt text, but some do.

. The quotation marks around technical terms (such as “fractal” and
“iterated”) were removed because some search engines consider
“fractal” to be a different word than fractal. The quotation marks were
replaced with the character entity ", which search robots simply
disregard. This is also a good idea because XHTML urges web devel-
opers to use the " entity instead of quotation marks anyway.

ptg

378 HOUR 24: Helping People Find Your Web Pages

. The keyword fractal was added twice to the text in the order-form box.

It is impossible to quantify how much more frequently users searching for
information on fractals and chaos were able to find the page shown in
Listing 24.2 versus the page shown in Listing 24.1, but it’s a sure bet that
the changes could only improve the page’s visibility to search engines. As
is often the case, the improvements made for the benefit of the search spi-
ders probably made the page’s subject easier for humans to recognize and
understand as well. This makes optimizing a page for search engines a
win-win effort!

Listing 24.2 An Improvement on the Page in Listing 24.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fractal Central: A Guide to Fractals, Chaos, and Complexity</title>
<meta name=”description” content=”A comprehensive guide to fractal
geometry, chaos science and complexity theory.” />
<meta name=”keywords” content=”fractal,fractals,chaos science,chaos
theory,fractal geometry,complexity,complexity theory” />

</head>

<body>
<div style=”text-align:center”>
<img src=”fractalaccent.gif” alt=”Fractal Central: A Guide to Fractals,
Chaos, and Complexity” />

</div>
<div style=”width:133px; float:left; padding:6px; text-align:center;
border-width:4px; border-style:ridge”>
Discover the latest fractal software, books and more at the
Fractal Central online store.

<img src=”orderform.gif” alt=”Order Form”
style=”border-style:none” />

</div>
<div style=”float:left; padding:6px”>
<h2>A Comprehensive Guide to Fractal Geometry,

Chaos Science, and Complexity Theory</h2>
<p>What’s that? You say you’re hearing about "fractals" and
"chaos" all over the place, but still aren’t too sure what
they are? How about a quick summary of some key concepts:</p>

<p>Even the simplest systems become deeply complex and richly
beautiful when a process is "iterated" over and over, using
the results of each step as the starting point of the next. This is
how Nature creates a magnificently detailed 300-foot redwood tree from
a seed the size of your fingernail.</p>

ptg

Additional Tips for Search Engine Optimization 379

These changes will go a long way toward making the content of this site
more likely to be appropriately indexed. In addition to good, indexed con-
tent, remember that the quality of content—as well as the number of other
sites linking to yours—is important as well.

Additional Tips for Search Engine
Optimization
The most important tip I can give you regarding search engine optimiza-
tion is to not pay an SEO company to perform your SEO tasks if that com-
pany promises specific results for you. If a company promises that your
site will be the number one result in a Google search, run for the hills and
take your checkbook with you—no one can promise that, as the search
algorithms have so many variables that the number one result might
change several times over the course of a given week. That is not to say
that all SEO companies are scam artists. Some legitimate site content and

<p>Most "iterated systems" are easily simulated on
computers, but only a few are predictable and controllable. Why?
Because a tiny influence, like a "butterfly flapping its
wings," can be strangely amplified to have major consequences
such as completely changing tomorrow’s weather in a distant part of
the world.</p>
<p>Fractals can be magnified forever without loss of detail, so
mathematics that relies on straight lines is useless with them.
However, they give us a new concept called "fractal
dimension" which can measure the texture and complexity of
anything from coastlines to storm clouds.</p>
<p>While fractals win prizes at graphics shows, their chaotic
patterns pop up in every branch of science. Physicists find beautiful
artwork coming out of their plotters. "Strange attractors"
with fractal turbulence appear in celestial mechanics. Biologists
diagnose "dynamical diseases" when fractal rhythms fall out
of sync. Even pure mathematicians go on tour with dazzling videos of
their research.</p>

<p>Think all these folks may be on to something?</p>

</div>
<div style=”text-align:center”>
<img src=”findout.gif”
alt=”Find Out More” style=”border-style:none” />

</div>
</body>

</html>

ptg

380 HOUR 24: Helping People Find Your Web Pages

architect consultants who perform SEO tasks get lumped in with the spam-
mers who send unsolicited e-mail, such as this:

“Dear google.com,
I visited your website and noticed that you are not listed in most of the
major search engines and directories...”

This sample e-mail is used as an example in Google’s own guidelines for
webmasters, along with the note to “reserve the same skepticism for unso-
licited email about search engines as you do for burn fat at night diet pills
or requests to help transfer funds from deposed dictators.” Yes, someone
actually sent Google a spam e-mail about how to increase their search
ranking...in Google. For more good advice from Google, visit
http://www.google.com/webmasters/.

Here are some additional actions you can take, for free, to optimize your
content for search engines:

. Use accurate page titles. Your titles should be brief, but descriptive
and unique. Do not try to stuff your titles with keywords.

. Create human-friendly URLs, such as those with words in them that
users can easily remember. It is a lot easier to remember—and it’s
easier for search engines to index in a relevant way—a URL such as
http://www.mycompany.com/products/super_widget.html com-
pared to something like
http://www.mycompany.com?c=p&id=4&id=49f8sd7345fea.

. Create URLs that reflect your directory structure. This assumes you
have a directory structure in the first place, which you should.

. When possible, use text—not graphical elements—for navigation.

. If you have content several levels deep, use a breadcrumb trail so
users can find their way back home. A breadcrumb trail also pro-
vides search engines with more words to index. For example, if you
are looking at a recipe for biscuits in the Southern Cooking category
of a food-related web site, the breadcrumb trail for this particular
page might look like this:

Home > Southern Cooking > Recipes > Biscuits

. Within the content of your page, use headings (<h1>, <h2>, <h3>)
appropriately.

In addition to providing rich and useful content for your users, you should
follow these tips to increase your site’s prominence in page rankings.

http://www.google.com/webmasters/
http://www.mycompany.com/products/super_widget.html
http://www.mycompany.com?c=p&id=4&id=49f8sd7345fea

ptg

381

Summary
This hour covered some extremely important territory by exploring how to
provide hints to search engines (such as Google, Bing, and Yahoo!) so users
can find your pages more easily. You also saw an example of the HTML
behind a perfectly reasonable web page redone to make it more search
engine friendly. Finally, you learned a few more tips to optimize the index-
ing of your site overall.

Table 24.1 lists the tags and attributes covered in this hour.

Table 24.1 HTML Tags and Attributes Covered in Hour 24

Tag/Attribute Function

<meta /> Indicates meta-information about this document (infor-
mation about the document itself). Most commonly used
to add a page description and to designate keywords.
Used in the document <head>.

Attributes
name=”name” Can be used to specify which type of information about

the document is in the content attribute. For example,
name=”keywords” means that keywords for the page
are in content.

content=”value” The actual message or value for the information speci-
fied in http-equiv or name. For example, if the http-
equiv attribute is set to refresh, the content attribute
should be set to the number of seconds to wait, followed
by a semicolon and the address of the page to load.

Q&A
Q I have lots of pages in my site. Do I need to fill out a separate form for

each page at each search site?

A No. If you submit just your home page (which is presumably linked to
all the other pages), the search spiders will crawl through all the links
on the page (and all the links on the linked pages, and so on) until they
have indexed all the pages on your site.

Q I submitted a request to be listed with a search engine, but when I
search for my page, my page never comes up—not even when I enter
my company’s unique name. What can I do?

Q&A

ptg

382 HOUR 24: Helping People Find Your Web Pages

A Most of the big search engines offer a form you can fill out to instantly
check whether a specific address is included in their database. If you
find that it isn’t included, you can submit another request form.
Sometimes it takes days or even weeks for the spiders to get around to
indexing your pages after you submit a request.

Q When I put keywords in a <meta /> tag, do I need to include every pos-
sible variation of spelling and capitalization?

A Don’t worry about capitalization; almost all searches are entered in all
lowercase letters. Do include any obvious variations or common spelling
errors as separate keywords. Although simple in concept, there are
more advanced strategies available when it comes to manipulating the
<meta /> tag than I’ve been able to cover in this hour. Visit
http://en.wikipedia.org/wiki/Meta_element for good information on the
various attributes of this tag and how to use it.

Q I’ve heard that I can I use the <meta /> tag to make a page automati-
cally reload itself every few seconds or minutes. Is this true?

A Yes, but there’s no point in doing that unless you have some sort of
program or script set up on your web server to provide new information
on the page. And if that is the case, the chances are good that you can
go about that refresh in a different way using AJAX (see Hour 21 for
basic information on AJAX). For usability reasons, the use of <meta />
to refresh content is frowned upon by the W3C and users in general.

Workshop
The workshop contains quiz questions and activities to help you solidify
your understanding of the material covered. Try to answer all questions
before looking at the “Answers” section that follows.

Quiz
1. If you publish a page about puppy adoption, how could you help

make sure that the page can be found by users who enter puppy,
dog, and/or adoption at all the major Internet search sites?

2. Suppose you decide to paste your keywords hundreds of times in
your HTML code, using a white font on a white background, so that
your readers cannot see them. How would search engine spiders
deal with this?

3. Is it better to throw all your content in one directory, or to organize it
into several directories?

http://en.wikipedia.org/wiki/Meta_element

ptg

Exercises 383

Answers
1. Make sure that puppy, dog, and adoption all occur frequently on your

main page (as they probably already do) and title your page some-
thing along the lines of Puppy Dog Adoption. While you’re at it, put
the following <meta /> tags in the <head> portion of the page:

<meta name=”description”
content=”dog adoption information and services” />
<meta name=”keywords” content=”puppy, dog, adoption” />

Publish your page online and then visit the site submittal page for
each major search engine (listed earlier in the hour) to fill out the site
submission forms.

2. Search engine spiders would ignore the duplications and possibly
blacklist you from their index and label you as a spammer.

3. Definitely organize your content into directories. This will provide
easier maintenance of your content, but will also give you the oppor-
tunity to create human-readable URLs with directory structures that
make sense, and also to create a navigational breadcrumb trail.

Exercises
. You’ve reached the end of the hours. If you have a site that is ready

for the world to see, review the content and structure for the best
possible optimizations and then submit the address to all the major
search engines.

ptg

This page intentionally left blank

ptg

The links in this appendix represent only a few of the numerous resources
you’ll find with a simple keyword search. But if you’re overwhelmed by
the options, these are good starting places.

General HTML, XHTML,
and CSS Information
The World Wide Web Consortium (W3C):

http://www.w3.org/

The W3C Markup Validation Service:

http://validator.w3.org/

W3Schools.com Web Building Tutorials:

http://www.w3schools.com/

The Web Standards Project:

http://www.webstandards.org/

The HTML Writer’s Guild:

http://www.hwg.org/

The Web Developer’s Virtual Library:

http://www.wdvl.com/

APPENDIX A
HTML and CSS Resources

on the Internet

http://www.w3.org/
http://validator.w3.org/
http://www.w3schools.com/
http://www.webstandards.org/
http://www.hwg.org/
http://www.wdvl.com/

ptg

386 APPENDIX A: HTML and CSS Resources on the Internet

Web Browsers
Apple Safari:

http://www.apple.com/safari/

Google Chrome:

http://www.google.com/chrome/

Microsoft Internet Explorer:

http://www.microsoft.com/windows/ie/

Mozilla Firefox:

http://www.getfirefox.com/

Opera:

http://www.opera.com/

Web Page Design
Web Monkey:

http://webmonkey.wired.com/webmonkey/

A List Apart (“for people who make web sites”):

http://www.alistapart.com/

Web Pages That Suck:

http://www.webpagesthatsuck.com/

HTML Help (Web Design Group):

http://www.htmlhelp.com/

Software
Adobe Creative Suite

http://www.adobe.com/products/creativesuite/

Corel PaintPro:

http://www.corel.com/

http://www.apple.com/safari/
http://www.google.com/chrome/
http://www.microsoft.com/windows/ie/
http://www.getfirefox.com/
http://www.opera.com/
http://webmonkey.wired.com/webmonkey/
http://www.alistapart.com/
http://www.webpagesthatsuck.com/
http://www.htmlhelp.com/
http://www.adobe.com/products/creativesuite/
http://www.corel.com/

ptg

Colors and Graphics 387

GIMP (GNU Image Manipulation Program):

http://gimp.org/

Picasa:

http://picasa.google.com/

Mapedit:

http://www.boutell.com/mapedit/

Shareware.com:

http://shareware.cnet.com/

Classic FTP:

http://www.nchsoftware.com/classic/

Cyberduck (FTP client):

http://cyberduck.ch/

FileZilla (FTP client):

http://filezilla-project.org/

Colors and Graphics
Microsoft Clip Art Gallery:

http://dgl.microsoft.com/

Barry’s Art Server:

http://www.barrysclipart.com/

HTML Color Picker:

http://www.pagetutor.com/pagetutor/makapage/picker/

HTML Color Codes:

http://htmlcolorcodes.org/

Color Scheme Designer:

http://colorschemedesigner.com/

Kuler by Adobe:

http://kuler.adobe.com/

http://gimp.org/
http://picasa.google.com/
http://www.boutell.com/mapedit/
http://shareware.cnet.com/
http://www.nchsoftware.com/classic/
http://cyberduck.ch/
http://filezilla-project.org/
http://dgl.microsoft.com/
http://www.barrysclipart.com/
http://www.pagetutor.com/pagetutor/makapage/picker/
http://htmlcolorcodes.org/
http://colorschemedesigner.com/
http://kuler.adobe.com/

ptg

388 APPENDIX A: HTML and CSS Resources on the Internet

Color Blender:

http://www.meyerweb.com/eric/tools/color-blend/

Multimedia
Apple QuickTime:

http://www.apple.com/quicktime/

Windows Movie Maker:

http://www.microsoft.com/windowsxp/using/moviemaker/default.mspx

RealAudio:

http://www.real.com/

Adobe Flash:

http://www.adobe.com/products/flash/

Sound Central:

http://www.soundcentral.com/

MIDIworld:

http://www.midiworld.com/

Advanced Developer Resources
WebReference:

http://www.webreference.com/

JavaScript.com:

http://www.javascript.com/

IRT.org developer resource:

http://www.irt.org/

http://www.meyerweb.com/eric/tools/color-blend/
http://www.apple.com/quicktime/
http://www.microsoft.com/windowsxp/using/moviemaker/default.mspx
http://www.real.com/
http://www.adobe.com/products/flash/
http://www.soundcentral.com/
http://www.midiworld.com/
http://www.webreference.com/
http://www.javascript.com/
http://www.irt.org/

ptg

Web Site Services 389

Web Site Hosting
Web Hosting Geeks (reviews of hosting providers):

http://webhostinggeeks.com/

A Small Orange (hosting provider):

http://asmallorange.com/hosting/shared/

Bluehost (hosting provider):

http://www.bluehost.com/tell_me_more.html

Daily Razor (hosting provider):

http://www.dailyrazor.com/php/promo.php

DreamHost (hosting provider):

http://www.dreamhost.com/hosting.html

Just Host (hosting provider):

http://www.justhost.com/web-hosting

Lunar Pages (hosting provider):

http://www.lunarpages.com/starter-hosting/

Web Site Services
Google’s Webmaster Tools:

http://www.google.com/webmasters/

Open Directory Project:

http://dmoz.org/about.html

Freedback.com (free form processing service):

http://www.freedback.com/

http://webhostinggeeks.com/
http://asmallorange.com/hosting/shared/
http://www.bluehost.com/tell_me_more.html
http://www.dailyrazor.com/php/promo.php
http://www.dreamhost.com/hosting.html
http://www.justhost.com/web-hosting
http://www.lunarpages.com/starter-hosting/
http://www.google.com/webmasters/
http://dmoz.org/about.html
http://www.freedback.com/

ptg

This page intentionally left blank

ptg

XHTML 1.1 represents a modern reformulation of HTML as an XML appli-
cation, allowing extensions to the language to be more easily defined and
implemented. This appendix provides a quick reference to the elements
and attributes of XHTML 1.1 that you are most likely to see and use, as
well as the style properties that CSS 2 comprises. For the complete specifi-
cations, visit http://www.w3.org/.

To make the information readily accessible, this appendix organizes HTML
elements by their function in the following order:

. Structure

. Text phrases and paragraphs

. Text formatting elements

. Lists

. Links

. Tables

. Embedded content

. Style

. Forms

. Scripts

The elements are listed alphabetically within each section, and the follow-
ing information is presented:

. Usage–Gives a general description of the element.

. Start/End Tag–Indicates whether these tags are required, optional, or
illegal.

APPENDIX B
XHTML 1.1 and CSS 2

Quick Reference

http://www.w3.org/

ptg

392 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

. Attributes–Lists the attributes of the element with a short description
of their effect. Any attributes that are used for mouse control or to
invoke client-side scripting are not indicated here; please see the full
specification at the W3C web site for those action-oriented attributes.

. Empty–Indicates whether the element can be empty.

. Notes–Relates any special considerations for using the element.

The CSS style properties follow a similar arrangement except that they are
listed with acceptable values, as opposed to attributes.

XHTML Structure
XHTML relies on several elements to provide structure to a document (as
opposed to structuring the text within) as well as to provide information
that is used by the browser or search engines.

Comments <!-- … -->

Usage Used to insert notes or scripts that are not displayed by
the browser.

Start/End Tag Required/Required.

Attributes None.

Empty Yes.

Notes Comments are not restricted to one line and can be any
length. The end tag is not required to be on the same line
as the start tag.

<!doctype...>

Usage Version information appears on the first line of an HTML
document and is an SGML declaration rather than an ele-
ment.

NOTE

XHTML 1.1 includes several
fundamental attributes that
apply to a significant number of
elements. These are referred to
within each element listing as
core, i18n, and events. These
attribute groups are covered in
detail after all the XHTML ele-
ments are presented. There
you’ll find the specific attributes
associated with each of these
attribute groups.

ptg

XHTML Structure 393

<body>…</body>

Usage Contains the document’s content.

Start/End Tag Optional/Optional.

Attributes core, i18n, events.

Empty No.

Notes There can be only one <body> and it must follow the
<head>. If you are using frames (please try not to), the
<body> element can be replaced by a <frameset> element.

<div>…</div>

Usage The division element is used to add structure to a block of
text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Cannot be used within a p element.

<h1>…</h1> Through <h6>…</h6>

Usage The six headings (h1 is uppermost, or most impor-
tant) are used in the body to structure informa-
tion in a hierarchical fashion.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Visual browsers will display the size of the head-
ings in relation to their importance; <h1> is the
largest and <h6> is the smallest.

NOTE

You might run across HTML web
pages that use the <div> ele-
ment with an attribute named
align. This attribute was
removed in XHTML and HTML 5,
with the new approach to align-
ment involving the text-align
CSS style property. This style
property is covered later in this
appendix.

ptg

394 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

<head>…</head>

Usage This is the document header and it contains other
elements that provide information to users and
search engines.

Start/End Tag Optional/Optional.

Attributes i18n.

profile=”url”–URL specifying the location of meta
data.

Empty No.

Notes There can be only one <head> per document. It
must follow the opening <html> tag and precede
the <body>.

<hr />

Usage Horizontal rules are used to separate sections of a
web page.

Start/End Tag Required/Illegal.

Attributes core, events, i18n.

Empty Yes.

<html>…</html>

Usage The html element contains the entire document.

Start/End Tag Optional/Optional.

Attributes i18n.

Empty No.

Notes The version information is duplicated in the
<!doctype...> declaration and is therefore not
essential.

TIP
The profile attribute is not
allowed in HTML 5.

ptg

XHTML Text Phrases and Paragraphs 395

<meta />

Usage Provides information about the document.

Start/End Tag Required/Illegal.

Attributes i18n.

http-equiv=”servercmd”–HTTP response head-
er name.

name=”name”–Name of the meta information.

content=”value”–Content of the meta informa-
tion.

scheme=”scheme”–Assigns a scheme to interpret
the meta data.

Empty Yes.

…

Usage Organizes the document by defining a span of
text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<title>…</title>

Usage The name you give your web page. The <title>
tag is placed in the <head> tag and is displayed
in the browser window title bar.

Start/End Tag Required/Required.

Attributes i18n.

Empty No.

Notes Only one title allowed per document.

XHTML Text Phrases and Paragraphs
Text phrases (or blocks) can be structured to suit a specific purpose, such
as creating a paragraph. This should not be confused with modifying the
formatting of the text.

TIP
The scheme attribute is not
allowed in HTML 5.

ptg

396 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

<blockquote>…</blockquote>

Usage Used to display long quotations.

Start/End Tag Required/Required.

Attributes core, i18n, events.

cite=”url”–The URL of the quoted text.

Empty No.

Usage Forces a line break.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

Empty Yes.

<cite>…</cite>

Usage Cites a reference.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<code>…</code>

Usage Identifies a code fragment for display.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<h1>…</h1> Through <h6>…</h6>

Usage Text heading.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

ptg

XHTML Text Phrases and Paragraphs 397

<p>…</p>

Usage Defines a paragraph.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

Empty No.

<pre>…</pre>

Usage Displays preformatted text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

…

Usage Stronger emphasis.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

_…

Usage Creates subscript.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

[…]

Usage Creates superscript.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

ptg

398 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

XHTML Text Formatting Elements
General text characteristics (such as the size, weight, and style) can be
modified using these elements, but the preferred approach is to use CSS
style properties. Later in the appendix, you’ll find a complete reference for
these properties, which provide an incredible amount of control over text
formatting.

…

Usage Bold text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<big>…</big>

Usage Large text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<i>…</i>

Usage Italicized text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<small>…</small>

Usage Small text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

TIP
This element has been removed
in HTML 5 because its effect is
purely presentational and thus
better handled by CSS.

ptg

XHTML Lists 399

<tt>…</tt>

Usage Teletype (or monospaced) text.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

XHTML Lists
You can organize text into a more structured outline by creating lists. Lists
can be nested.

<dd>…</dd>

Usage The definition description used in a <dl> (defini-
tion list) element.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

Empty No.

Notes Can contain block-level content, such as the <p>
element.

<dl>…</dl>

Usage Creates a definition list.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Must contain at least one <dt> or <dd> element
in any order.

<dt>…</dt>

Usage The definition term (or label) used within a <dl>
(definition list) element.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

Empty No.

Notes Must contain text (which can be modified by text
markup elements).

TIP
This element has been removed
in HTML 5 because its effect is
purely presentational and thus
better handled by CSS.

ptg

400 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

…

Usage Defines a list item within a list.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

Empty No.

…

Usage Creates an ordered list.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Must contain at least one list item.

…

Usage Creates an unordered list.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Must contain at least one list item.

XHTML Links
Hyperlinking is fundamental to XHTML. These elements enable you to
link to other documents, other locations within a document, or external
files.

<a>…

Usage Used to define links and anchors.

Start/End Tag Required/Required.

Attributes core, i18n, events.

charset=”encoding”–Character encoding of the
resource.

name=”name”–Defines an anchor.

href=”linkurl”–The URL of the linked resource.

ptg

XHTML Links 401

rel=”linktype”–Forward link types.

rev=”linktype”–Reverse link types.

shape=”value”–Enables you to define client-side
imagemaps using defined shapes (default, rect,
circle, poly).

coords=”values”–Sets the size of the shape
using pixel or percentage lengths.

Empty No.

<base />

Usage All other URLs in the document are resolved
against this location.

Start/End Tag Required/Illegal.

Attributes href=”linkurl”–The URL of the linked resource.

Empty Yes.

Notes Located in the document <head>.

<link />

Usage Defines the relationship between a link and a
resource.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

charset=”encoding”–The character encoding of
the resource.

href=”linkurl”–The URL of the resource.

rel=”linktype”–The forward link types.

rev=”linktype”–The reverse link types.

type=”contenttype”–The Internet content type.

media=”media”–Defines the destination medium
(such as screen, print, projection, braille,
speech, all).

target=”placement”–Determines where the
resource is displayed (user-defined name, blank,
parent, self, top).

Empty Yes.

Notes Located in the document <head>.

TIP
The charset, name, rev,
shape, and coords attributes
are not allowed in HTML 5.

TIP
The charset, rev, and target
attributes are not allowed in
HTML 5.

ptg

402 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

XHTML Tables
Tables are meant to display data in a tabular format. Prior to XHTML,
tables were widely used for page layout purposes, but with the advent of
style sheets, this is officially discouraged by the W3C as well as the authors
of this book.

<caption>…</caption>

Usage Displays a table caption.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

Notes Optional.

<col />

Usage Groups individual columns within column groups
in order to share attribute values.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

span=”numcols”–The number of columns the
group contains.

width=”width”–The column width as a percent-
age, pixel value, or minimum value.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of a cell (top, middle, bottom,
baseline).

Empty Yes.

TIP
The width, align, char,
charoff, and valign attrib-
utes have been removed in
HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

XHTML Tables 403

<colgroup>…</colgroup>

Usage Defines a column group.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

span=”numcols”–The number of columns in a
group.

width=”width”–The width of the columns.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of a cell (top, middle, bottom,
baseline).

Empty No.

<table>…</table>

Usage Creates a table.

Start/End Tag Required/Required.

Attributes core, i18n, events.

width=”width”–Table width.

cols=”numcols”–The number of columns.

border=”borderwidth”–The width in pixels of a
border around the table.

frame=”frame”–Sets the visible sides of a table
(void, above, below, hsides, lhs, rhs, vsides,
box, border).

rules=”rules”–Sets the visible rules within a
table (none, groups, rows, cols, all).

cellspacing=”cellspacing”–Spacing between
cells.

cellpadding=”cellpadding”–Spacing in cells.

summary=”description”–Provides a text descrip-
tion of the table for accessibility purposes.

Empty No.

TIP
The width, align, char,
charoff, and valign attrib-
utes have been removed in
HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

TIP
The width, align, border,
frame, rules, cellspacing,
cellpadding, and summary
attributes have been removed
in HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

404 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

<tbody>…</tbody>

Usage Defines the table body.

Start/End Tag Optional/Optional.

Attributes core, i18n, events.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

Empty No.

<td>…</td>

Usage Defines a cell’s contents.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

abbr=”name”–Abbreviated name.

axis=”axisnames”–axis names listing row and
column headers pertaining to the cell.

rowspan=”numrows”–The number of rows
spanned by a cell.

colspan=”numcols”–The number of columns
spanned by a cell.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

TIP
The align, char, charoff, and
valign attributes have been
removed in HTML 5 because
their effects are purely presen-
tational and thus better han-
dled by CSS.

TIP
The axis, align, char,
charoff, valign, and scope
attributes have been removed
in HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

XHTML Tables 405

headers=”headers”–Header information for a
cell.

scope=”scope”–Indicates whether a cell provides
header information for other cells.

Empty No.

<tfoot>…</tfoot>

Usage Defines the table footer.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

Empty No.

<th>…</th>

Usage Defines the cell contents of the table header.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

axis=”name”–Abbreviated name.

axes=”axisnames”–axis names listing row and
column headers pertaining to the cell.

rowspan=”numrows”–The number of rows
spanned by a cell.

colspan=”numcols”–The number of columns
spanned by a cell.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify, char).

char=”charalignment”–Sets a character on

TIP
The align, char, charoff, and
valign attributes have been
removed in HTML 5 because
their effects are purely presen-
tational and thus better han-
dled by CSS.

TIP
The axis, axes, align, char,
charoff, and valign attrib-
utes have been removed in
HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

406 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

headers=”headers”–Header information for a
cell.

scope=”scope”–Indicates whether a cell provides
header information for other cells.

Empty No.

<thead>…</thead>

Usage Defines the table header.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

Empty No.

<tr>…</tr>

Usage Defines a row of table cells.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

align=”alignment”–Horizontally aligns the con-
tents of cells (left, center, right, justify,
char).

char=”charalignment”–Sets a character on
which the column aligns.

TIP
The align, char, charoff, and
valign attributes have been
removed in HTML 5 because
their effects are purely presen-
tational and thus better han-
dled by CSS.

TIP
The align, char, charoff, and
valign attributes have been
removed in HTML 5 because
their effects are purely presen-
tational and thus better han-
dled by CSS.

ptg

XHTML Embedded Content 407

charoff=”charoffset”–Offset to the first align-
ment character on a line.

valign=”verticalalignment”–Vertically aligns
the contents of cells (top, middle, bottom, base-
line).

Empty No.

XHTML Embedded Content
Also called inclusions, embedded content applies to images, imagemaps,
Java applets, Flash animations, and other multimedia or programmed con-
tent that is placed in a Web page to provide additional functionality.

<area />

Usage The <area> element is used to define links and
anchors.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

shape=”value”–Enables you to define client-side
imagemaps using defined shapes (default, rect,
circle, poly).

coords=”values”–Sets the size of the shape
using pixel or percentage lengths.

href=”linkurl”–The URL of the linked resource.

nohref=”nohref”–Indicates that the region has
no action.

alt=”alttext”–Displays alternative text.

Empty Yes.

Usage Includes an image in the document.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

src=”sourceurl”–The URL of the image.

alt=”alttext”–Alternative text to display.

height=”height”–The height of the image.

TIP
The hspace and vspace attrib-
utes have been removed in
HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

408 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

width=”width”–The width of the image.

border=”border”–Border width.

hspace=”horizontalspace”–The horizontal
space separating the image from other content.

vspace=”verticalspace”–The vertical space
separating the image from other content.

usemap=”mapurl”–The URL to a client-side
imagemap.

ismap=”ismap”–Identifies a server-side
imagemap.

Empty Yes.

<map>…</map>

Usage When used with the <area> element, creates a
client-side imagemap.

Start/End Tag Required/Required.

Attributes core, i18n, events.

name=”name”–The name of the imagemap to be
created.

Empty No.

<object>…</object>

Usage Includes an object.

Start/End Tag Required/Required.

Attributes core, i18n, events.

declare=”declare”–A flag that declares but
doesn’t create an object.

classid=”objecturl”–The URL of the object’s
location.

codebase=”codebaseurl”–The URL for resolving
URLs specified by other attributes.

data=”dataurl”–The URL to the object’s data.

type=”datatype”–The Internet content type for
data.

TIP
The hspace and vspace attrib-
utes have been removed in
HTML 5 because their effects
are purely presentational and
thus better handled by CSS.

ptg

XHTML Embedded Content 409

codetype=”codetype”–The Internet content type
for the code.

standby=”waitmsg”–Show message while load-
ing.

height=”height”–The height of the object.

width=”width”–The width of the object.

border=”border”–Displays the border around an
object.

hspace=”horizontalspace”–The space between
the sides of the object and other page content.

vspace=”verticalspace”–The space between
the top and bottom of the object and other page
content.

usemap=”mapurl”–The URL to an imagemap.

shapes=”shapes”–Enables you to define areas to
search for hyperlinks if the object is an image.

name=”nameurl”–The URL to submit as part of a
form.

Empty No.

<param />

Usage Initializes an object.

Start/End Tag Required/Illegal.

Attributes name=”name”–Defines the parameter name.

value=”value”–The value of the object parame-
ter.

valuetype=”valuetype”–Defines the value type
(data, ref, object).

type=”contenttype”–The Internet medium type.

Empty Yes.

ptg

410 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

XHTML Style
Style sheets (both inline and external) are incorporated into an HTML doc-
ument through the use of the <style> element

<style>…</style>

Usage Creates an internal style sheet.

Start/End Tag Required/Required.

Attributes i18n.

type=”contenttype”–The Internet content type.

media=”media”–Defines the destination medium
(screen, print, projection, braille, speech,
all).

title=”title”–The title of the style.

Empty No.

Notes Located in the <head> element.

XHTML Forms
Forms create an interface for the user to select options, enter information,
and return data to the Web server for processing.

<button>…</button>

Usage Creates a button.

Start/End Tag Required/Required.

Attributes core, i18n, events.

name=”name”–The button name.

value=”value”–The value of the button.

type=”type”–The button type (button, submit,
reset).

disabled=”disabled”–Sets the button state to
disabled.

Empty No.

ptg

XHTML Forms 411

<fieldset>…</fieldset>

Usage Groups related controls.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<form>…</form>

Usage Creates a form that holds controls for user input.

Start/End Tag Required/Required.

Attributes core, i18n, events.

action=”actionurl”–The URL for the server
action.

method=”post/get”–The HTTP method (get,
post). get is deprecated.

enctype=”mediatype”–Specifies the MIME
(Internet media) type.

accept=”contenttypes”–The list of content
types acceptable by the server.

accept-charset=”encodings”–The list of char-
acter encodings.

Empty No.

<input />

Usage Defines controls used in forms.

Start/End Tag Required/Illegal.

Attributes core, i18n, events.

type=”controltype”–The type of input control
(text, password, checkbox, radio, submit, reset,
file, hidden, image, button).

name=”name”–The name of the control (required
except for submit and reset).

value=”value”–The initial value of the control
(required for radio and check boxes).

checked=”checked”–Sets the radio buttons to a
checked state.

ptg

412 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

disabled=”disabled”–Disables the control.

readonly=”readonly”–For text password types.

size=”size”–The width of the control in pixels
except for text and password controls, which are
specified in number of characters.

maxlength=”maxlength”–The maximum number
of characters that can be entered.

src=”imageurl”–The URL to an image control
type.

alt=”alttext”–An alternative text description.

usemap=”mapurl”–The URL to a client-side
imagemap.

accept=”filetypes”–File types allowed for
upload.

Empty Yes.

<label>…</label>

Usage Labels a control.

Start/End Tag Required/Required.

Attributes core, i18n, events.

for=”control”–Associates a label with an identi-
fied control.

Empty No.

<option>…</option>

Usage Specifies choices in a <select> element.

Start/End Tag Required/Optional.

Attributes core, i18n, events.

selected=”selected”–Specifies whether the
option is selected.

disabled=”disabled”–Disables control.

label=”label”–Defines a label for the group of
options.

value=”value”–The value submitted if a control
is submitted.

Empty No.

ptg

XHTML Scripts 413

<select>…</select>

Usage Creates choices for the user to select.

Start/End Tag Required/Required.

Attributes core, i18n, events.

name=”name”–The name of the element.

size=”size”–The width in number of rows.

multiple=”multiple”–Allows multiple selec-
tions.

disabled=”disabled”–Disables the control.

Empty No.

<textarea>…</textarea>

Usage Creates an area for user input with multiple lines.

Start/End Tag Required/Required.

Attributes core, i18n, events.

name=”name”–The name of the control.

rows=”numrows”–The width in number of rows.

cols=”numcols”–The height in number of
columns.

disabled=”disabled”–Disables the control.

readonly=”readonly”–Sets the displayed text to
read-only status.

Empty No.

Notes Text to be displayed is placed within the start and
end tags.

XHTML Scripts
Scripts make it possible to process data and perform other dynamic events.
Scripts are included in web pages thanks to the <script> element, which
also identifies the specific scripting language being used (JavaScript,
VBScript, and so on.).

ptg

414 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

<noscript>…</noscript>

Usage Provides alternative content for browsers unable
to execute a script.

Start/End Tag Required/Required.

Attributes core, i18n, events.

Empty No.

<script>…</script>

Usage The <script> element contains client-side scripts
that are executed by the browser.

Start/End Tag Required/Required.

Attributes type=”scripttype”–Script language Internet con-
tent type.

src=”scripturl”–The URL for the external
script.

defer=”defer”–Indicates that the script doesn’t
alter document content.

Empty No.

Notes You can set the default scripting language in the
<meta /> element.

XHTML Common Attributes
The following six attributes are abbreviated as core in the preceding sections:

. id=”id”–A global identifier.

. class=”styleclasses”–A list of classes separated by spaces.

. style=”styles”–Style information.

. title=”title”–Provides more information for a specific element (as
opposed to the <title> element, which titles the entire Web page).

. accesskey=”shortcut”–Sets the keyboard shortcut used to access an
element.

. tabindex=”taborder”–Sets the tab order of an element.

ptg

CSS Dimension Style Properties 415

The following two attributes for internationalization are abbreviated as
i18n in the preceding sections:

. lang=”lang”–The language identifier.

. dir=”textdir”–The text direction (ltr, rtl).

The following intrinsic events are abbreviated events. For more informa-
tion on their application in specific elements, see the W3C specification:

. onclick=”eventcode”–A pointing device (such as a mouse) was sin-
gle-clicked.

. ondblclick=”eventcode”–A pointing device (such as a mouse) was
double-clicked.

. onmousedown=”eventcode”–A mouse button was clicked and held
down.

. onmouseup=”eventcode”–A mouse button that was clicked and held
down was released.

. onmouseover=”eventcode”–A mouse moved the cursor over an
object.

. onmousemove=”eventcode”–The mouse was moved.

. onmouseout=”eventcode”–A mouse moved the cursor off an object.

. onkeypress=”eventcode”–A key was pressed and released.

. onkeydown=”eventcode”–A key was pressed and held down.

. onkeyup=”eventcode”–A key that was pressed has been released.

CSS Dimension Style Properties
Quite a few CSS style rules rely on dimensional properties in one form or
another. It would be difficult to size elements with them.

height

Usage Sets the height of an element.

Values auto, length, %.

ptg

416 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

line-height

Usage Sets the distance between lines of elements.

Values normal, length, %.

max-height

Usage Sets the maximum height of an element.

Values none, length, %.

max-width

Usage Sets the maximum width of an element.

Values none, length, %.

min-height

Usage Sets the minimum height of an element.

Values length, %.

min-width

Usage Sets the minimum width of an element.

Values length, %.

width

Usage Sets the width of an element.

Values auto, length, %.

CSS Text and Font Style Properties
The heart of CSS styling lies in the text and style properties, which give
you an incredible amount of control over the appearance of Web page text.

color

Usage Sets the color of text.

Values color.

ptg

CSS Text and Font Style Properties 417

direction

Usage Sets the direction of text, as in left-to-right or
right-to-left.

Values ltr, rtl.

font

Usage A shorthand property that allows you to set all the
font properties in one declaration.

Values font-style, font-variant, font-weight,
font-size/line-height, font-family.

font-family

Usage A prioritized list of font family names and/or
generic family names for an element.

Values family-name, generic-family.

font-size

Usage Sets the size of a font.

Values xx-small, x-small, small, medium, large, x-
large, xx-large, smaller, larger, length, %.

font-style

Usage Sets the style of the font.

Values normal, italic, oblique.

font-variant

Usage Displays text in a small-caps font or a normal
font.

Values normal, small-caps.

font-weight

Usage Sets the weight (boldness) of a font.

Values normal, bold, bolder, lighter, 100, 200, 300,
400, 500, 600, 700, 800, 900.

ptg

418 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

letter-spacing

Usage Increases or decreases the space between char-
acters of text.

Values normal, length.

text-align

Usage Aligns the text within an element.

Values left, right, center, justify.

text-decoration

Usage Applies a decoration to text.

Values none, underline, overline, line-through,
blink.

text-indent

Usage Indents the first line of text in an element.

Values length, %.

text-transform

Usage Controls the capitalization of letters of text.

Values none, capitalize, uppercase, lowercase.

white-space

Usage Establishes the handling of white space within an
element.

Values normal, pre, nowrap.

word-spacing

Usage Increases or decreases the space between words.

Values normal, length.

ptg

CSS Background Style Properties 419

CSS Background Style Properties
There are several CSS style properties that can be used to alter the back-
grounds of pages and individual elements on pages.

background

Usage A shorthand property that allows you to set all the
background properties in one declaration.

Values background-color, background-image,
background-repeat, background-attachment,
background-position.

background-attachment

Usage Determines whether a background image is fixed
or scrolls with the rest of the page.

Values scroll, fixed.

background-color

Usage Sets the background color of an element.

Values color-rgb, color-hex, color-name,
transparent.

background-image

Usage Sets an image as the background.

Values url, none.

background-position

Usage Sets the starting position of a background image.

Values top left, top center, top right, center
left, center center, center right, bottom
left, bottom center, bottom right, x-% y-%,
x-pos y-pos.

ptg

420 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

background-repeat

Usage Sets whether and how a background image is
repeated.

Values repeat, repeat-x, repeat-y, no-repeat.

CSS Border Style Properties
Every block element has a border that can be styled. Although you can cer-
tainly leave borders invisible, there are several styles that can be applied to
element borders.

border

Usage A shorthand property that allows you to set all the
properties for the four borders in one declaration.

Values border-width, border-style, border-color.

border-bottom

Usage A shorthand property that allows you to set all the
bottom border properties in one declaration.

Values border-bottom-width, border-style,
border-color.

border-bottom-color

Usage Sets the color of the bottom border.

Values border-color.

border-bottom-style

Usage Sets the style of the bottom border.

Values border-style.

border-bottom-width

Usage Sets the width of the bottom border.

Values thin, medium, thick, length.

ptg

CSS Border Style Properties 421

border-color

Usage Sets the color of the four borders.

Values color.

Notes Can be specified using from one to four colors.

border-left

Usage A shorthand property that allows you to set all the
left border properties in one declaration.

Values border-left-width, border-style, border-
color.

border-left-color

Usage Sets the color of the left border.

Values border-color.

border-left-style

Usage Sets the style of the left border.

Values border-style.

border-left-width

Usage Sets the width of the left border.

Values thin, medium, thick, length.

border-right

Usage A shorthand property that allows you to set all the
right border properties in one declaration.

Values border-right-width, border-style, border-
color.

border-right-color

Usage Sets the color of the right border.

Values border-color.

ptg

422 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

border-right-style

Usage Sets the style of the right border.

Values border-style.

border-right-width

Usage Sets the width of the right border.

Values thin, medium, thick, length.

border-style

Usage Sets the style of the four borders.

Values none, hidden, dotted, dashed, solid, double,
groove, ridge, inset, outset.

Notes Can be specified using from one to four styles.

border-top

Usage A shorthand property that allows you to set all the
top border properties in one declaration.

Values border-top-width, border-style,
border-color.

border-top-color

Usage Sets the color of the top border.

Values border-color.

border-top-style

Usage Sets the style of the top border.

Values border-style.

border-top-width

Usage Sets the width of the top border.

Values thin, medium, thick, length.

ptg

CSS Margin Style Properties 423

border-width

Usage A shorthand property for setting the width of the
four borders in one declaration.

Values thin, medium, thick, length.

Notes Can be specified using one to four widths.

CSS Margin Style Properties
Margins allow you to add a bit of spacing around the outer edge of an ele-
ment, outside of the element’s border.

margin

Usage A shorthand property that allows you to set all the
margin properties in one declaration.

Values margin-top, margin-right, margin-bottom,
margin-left.

margin-bottom

Usage Sets the bottom margin of an element.

Values auto, length, %.

margin-left

Usage Sets the left margin of an element.

Values auto, length, %.

margin-right

Usage Sets the right margin of an element.

Values auto, length, %.

margin-top

Usage Sets the top margin of an element.

Values auto, length, %.

ptg

424 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

CSS Padding Style Properties
Padding allows you to add space around an element, inside of the ele-
ment’s border.

padding

Usage A shorthand property that allows you to set all the
padding properties in one declaration.

Values padding-top, padding-right, padding-bottom,
padding-left.

padding-bottom

Usage Sets the bottom padding of an element.

Values length, %.

padding-left

Usage Sets the left padding of an element.

Values length, %.

padding-right

Usage Sets the right padding of an element.

Values length, %.

padding-top

Usage Sets the top padding of an element.

Values length, %.

CSS Layout and Display Style
Properties
The layout and display properties in CSS play an extremely important role
in determining how elements are laid out and arranged on the page.

ptg

CSS Layout and Display Style Properties 425

bottom

Usage Sets the offset between the bottom edge of the
element and the bottom edge of its parent ele-
ment.

Values auto, length, %.

clear

Usage Determines the sides of an element where other
floating elements are not allowed.

Values left, right, both, none.

clip

Usage Sets the shape of an element.

Values auto, shape.

Notes The element is clipped to this shape when dis-
played.

cursor

Usage Specifies the type of mouse cursor to be dis-
played.

Values url, auto, crosshair, default, pointer, move,
e-resize, ne-resize, nw-resize, n-resize, se-
resize, sw-resize, s-resize, w-resize, text,
wait, help.

display

Usage Sets whether and how an element is displayed.

Values none, inline, block, list-item, run-in, com-
pact, marker, table, inline-table, table-row-
group, table-header-group, table-footer-
group, table-row, table-column-group, table-
column, table-cell, table-caption.

ptg

426 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

float

Usage Sets where an image or text will appear relative to
another element.

Values left, right, none.

left

Usage Sets the offset between the left edge of the ele-
ment and the left edge of its parent element.

Values auto, length, %.

overflow

Usage Determines what happens if the content of an ele-
ment overflows its area.

Values auto, visible, hidden, scroll.

position

Usage Specifies the layout of an element as using static,
relative, absolute, or fixed positioning.

Values static, relative, absolute, fixed.

right

Usage Sets the offset between the right edge of the ele-
ment and the right edge of its parent element.

Values auto, length, %.

top

Usage Sets the offset between the top edge of the ele-
ment and the top edge of its parent element.

Values auto, length, %.

ptg

CSS List and Marker Style Properties 427

vertical-align

Usage Sets the vertical alignment of an element.

Values baseline, sub, super, top, text-top, middle,
bottom, text-bottom, length, %.

visibility

Usage Determines whether an element should be shown
(visible) or hidden (invisible).

Values visible, hidden, collapse.

z-index

Usage Sets the z-order (stacking order) of an element.

Values auto, number.

CSS List and Marker Style
Properties
You might not have realized how much flexibility there is when it comes to
the styling of lists via CSS. Several CSS styles apply to lists and the list-
item markers (or bullets) within the lists.

list-style

Usage A shorthand property that allows you to set all the
list properties in one declaration.

Values list-style-type, list-style-position,
list-style-image.

list-style-image

Usage Sets an image as the list-item marker (bullet) for
the list.

Values none, url.

ptg

428 APPENDIX B: XHTML 1.1 and CSS 2 Quick Reference

list-style-position

Usage Sets where the list-item marker (bullet) is placed
in the list.

Values inside, outside.

list-style-type

Usage Sets the type of the list-item marker (bullet).

Values none, disc, circle, square, decimal, decimal-
leading-zero, lower-roman, upper-roman,
lower-alpha, upper-alpha, lower-greek,
lower-latin, upper-latin, hebrew, armenian,
georgian, cjk-ideographic, hiragana,
katakana, hiragana-iroha, katakana-iroha.

CSS Table Style Properties
There are a few advanced table properties that enable you to fine-tune the
manner in which tables are rendered and displayed.

border-collapse

Usage Sets the border model of a table.

Values collapse, separate.

border-spacing

Usage Sets the distance between the borders of adja-
cent cells.

Values length length.

caption-side

Usage Sets the position of the caption relative to the
table.

Values top, bottom, left, right.

ptg

CSS Table Style Properties 429

empty-cells

Usage Determines whether cells with no visible content
should have borders.

Values show, hide.

table-layout

Usage Determines how the table is laid out.

Values auto, fixed.

Notes Speeds up browser rendering for fixed-size tables
if you set it to fixed.

ptg

This page intentionally left blank

ptg

INDEX

CSS, 224
text-align property, 57-58, 223
vertical-align property, 223

graphics, 165
HTML tables, 102-104
images

horiztonal alignment, 165-167
vertical alignment, 167-169

text, 68
page sections, 69-71
paragraphs, 69

AllTheWeb, 374
alt attribute

area tags, 176
img tags, 162-163

AltaVista, 374
alternative text, images, 163
Amazon.com, website organization,

361
analogous color schemes, 132
anchors (a tags), 184-185

psuedoclasses, 123
web pages

identifying page locations, 114
linking to page locations,

114-116
animated web graphics, 156
animations. See multimedia
area / tags, 407
area tags, 176-177
areas (imagemaps), 174-175
ASP (Active Server Pages), 326
.asp file extension, 29

Symbols
@import command, 316
!— — tags (HTML), 364-365, 392
!doctype… tags, 392

A
a href tags, 169
a tags (anchors), 114, 184-185, 400-

401
psuedoclasses, 123
web pages

identifying page locations, 114
linking to page locations,

114-116
absolute addresses, 112-113
absolute positioning,

54, 235, 238-239
absolute value (position property),

235
accesskey attribute, 414
action attribute

form tags, 340-341
input tags, 349

Adobe Photoshop, 143
advanced developer resources, 388
aligning

align attribute, 69, 393
img tags, 168
tables, 102

attributes
align, 69
default values, 69
HTML tags, 111
XHTML common atttributes, quick

reference, 414-415
audio. See multimedia

B
b tags, 81-83, 398
backgrounds

banner creation, 152
color, 133-138
CSS

background property, 419
background style properties,

quick reference, 419-420
background-attachment

property, 419
background-color attribute

(tables), 104
background-color property, 56,

419
background-color style (body

tags), 133, 135
background-image attribute

(tables), 104
background-image property, 419
background-position property,

419
background-repeat property, 420

ptg

backslashes (\), directories432

border-style property,
55-56, 422

border-top property,
55-56, 422

border-top-color property, 422
border-top-style property, 422
border-top-width property, 422
border-width property,

55-56, 423
changing color, 136-138
CSS box model, 232

HTML lists, 248
bottom property (CSS), 235, 425
bottom value (vertical-align property),

224
br / tags, 396
br /> tags (HTML), 35
br tags, 84
browsers

client-side scripting, 326
color, 139
comparing, 28
CSS, viewing style rules, 53
distributing, 23
helper applications, 185
HTML lists, formatting, 72
links, opening in new windows,

122
plug-ins, 185
selecting, 8, 28
testing, 8
web content

delivering, 4
retrieving, 5

web pages, viewing, 31
web resources, 386

bullets (markers)
CSS marker style properties,

quick reference, 427-428
HTML lists, 73-74

button tags, 410
buttons, creating, 151-152

images, 144, 172-173
tiled backgrounds, 154-155

backslashes (\), directories, 112
banners, creating, 151-152
bare-bones web pages, 33
base tags, 401
baseline value (vertical-align proper-

ty), 224
big tags, 83, 398
Bing, 374
block value (CSS display property), 54
blockquote tags, 73, 396
blogs, 23
body tags, 33, 393
boldface text, 82-85
bookmarks (web pages), 33
borders

border attribute (html tags), 96
border width attribute (html tags),

96
CSS

border property, 55, 420
border style properties, quick

reference, 420-423
border-bottom property,

55-56, 420
border-bottom-color property,

420
border-bottom-style property,

420
border-bottom-width property,

420
border-collapse property, 428
border-color property,

55-56, 421
border-left property, 55-56, 421
border-left-color property, 421
border-left-style property, 421
border-left-width property, 421
border-right property,

55-56, 421
border-right-color property, 421
border-right-style property, 422
border-right-width property, 422
border-spacing property, 428

C
cameras (digital), exporting images

to computer, 146
caption tags, 402
caption-side property (CSS), 428
cellpadding attribute (tables), 104
cells (tables), defining, 96
cellspacing attribute (tables), 104
character entities (HTML), 90
check boxes, HTML forms, 346-348
cite tags, 396
class attribute, 414
Classic FTP (File Transfer Protocol),

operating, 16-18
classid attribute (object tags), 187
clear property (CSS), 228, 242, 425
client-side scripting, 326
clip art, 144, 161-163
clip property (CSS), 425
closing tags (HTML), 32
code listings, providing hints for

search sites, 377
code tags, 396
col / tags, 402
colgroup tags, 403
color

analogous color schemes, 132
backgrounds

color, 133-134
CSS, 136-138

borders (CSS), 136-138
browser-safe colors, 139
Color Scheme Generator, 133
color wheel, 132
complementary color schemes,

132
CSS, 136-138
dithering, 153
hexadecimal values, 135-136
HTML

adding color to tables, 104
lists, 248

images
correcting in, 149-150
reducing color in, 153

ptg

CSS (Cascading Style Sheets) 433

retrieving, 5
searching, 372-373
testing, 24

coords attribute (area tags), 176
copyright symbol (©), 90, 144
Corel DRAW, 144
Creative Commons licenses, images,

144
cropping images, 146-147
CSS (Cascading Style Sheets), 48

alignment, 223-224
backgrounds

changing color, 136-138
style properties, quick

reference, 419-420
borders

box model, 232
changing color, 136-138
style properties, quick

reference, 420-423
box model, 231-233

borders, 232
content, 232
DOCTYPE declaration, 234
HTML lists, 246-249
margins, 232
padding, 232

clear property, 228, 242
color, 136-138
.css file extension, 48
current line, 242
development of, 49
dimension style properties, quick

reference, 415-416
display style properties, quick

reference, 424-427
event handling, 283-284
external style sheets, 48-51
float property, 224-227, 242
font style properties, quick

reference, 416-418
formatting text, 88
history of, 49
HTML

linking to documents, 52
tags, 51

text, 56, 85-88
changing color, 134
CSS, 136-138

triadic color schemes, 132
web resources, 387
websites

background color, 133-134
hexadecimal values, 135-136
selecting for, 131-132
text color, 134

color attribute
font tags, 85
html tags, 96

color property (CSS), 56-58, 416
color style (font tags), 85
cols attribute

frameset tags, 200
textarea tags, 349

colspan attribute (th tags), 104
columns (tables)

color, adding to columns, 104
fixed/liquid hybrid layouts, 300-

309
spanning, 104

comments
documenting HTML code via,

364-365
hiding web page sections via, 365

common atttributes, XHTML quick
reference, 414-415

complementary color schemes, 132
complex (large) websites, organizing,

360-362
compression, .JPEG files, 150
content (web)

creating, 2-3
delivering, process of, 4
publishing

blogs, 23
locally, 23
operating a FTP client, 16-18
organizing web server directo-

ries, 18-20
selecting a FTP client, 14-15
web server index files, 20-22
without web servers, 22

image maps, creating, 251-254
internal style sheets, 48, 62-63
layout style properties, quick

reference, 424-427
links

displaying pseudoclasses, 125
styling, 123-126

list style properties, quick
reference, 427-428

margins
box model, 232
margin property, 212-214
margin style properties, quick

reference, 423
margin-bottom property, 212
margin-left property, 212
margin-right property, 212
margin-top property, 212
properties of, 212
styling, 217-219
writing in shorthand, 213-214

marker style properties, quick
reference, 427-428

navigation
horizontal navigation, 270-273
navigation lists, 259
primary navigation, 260
secondary navigation, 260
vertical navigation, 260-269

overflow property, 242
overlapping elements, 235
padding, 219-222

box model, 232
padding property, 220
padding style properties, quick

reference, 424
padding-bottom property, 220
padding-left property, 220
padding-right property, 220
padding-top property, 220

positioning
absolute positioning, 235,

238-239
bottom property, 235
left property, 235

ptg

CSS (Cascading Style Sheets)434

tooltips, creating, 277-280
validating, 63
web resources, 385
z-index property, 235, 239-241

CSS Zen Garden, liquid layouts, 293
current line (CSS), 242
cursor property (CSS), 425
custom HTML tags, creating, 60

D
dashed values (CSS border-style

property), 56
dd tags, 71-73, 246, 399
default values (attributes), 69
definition lists (HTML), 73, 246
deprecated attributes, align, 393
deprecated HTML tags, 83
developers, advanced developer

resources, 388
digital cameras, exporting images

to computer, 146
dire attribute, 415
direction property (CSS), 417
directories

backslashes (\), 112
double dot command (..), 113
forward slashes (/), 112

display property (CSS), 54, 425
dithering, 153
div tags, 165, 232-233, 284-289, 393
dl tags, 71-73, 246, 399
DOCTYPE declaration, CSS box model,

234
!doctype… tags, 392
document roots, 17-19, 112
DOM (Document Object Model), 332

dotted value (CSS border-style
property), 56

double dot command (..), directories,
113

double value (CSS border-style
property), 56

DRAW (Corel), 144

position property, 235
relative positioning, 235-237
right property, 235
top property, 235

print-friendly web pages
media-specific style sheets,

315-317
style sheet design, 317-320

quick reference
background style properties,

419-420
border style properties,

420-423
dimension style properties,

415-416
display style properties,

424-427
font style properties, 416-418
layout style properties,

424-427
list style properties, 427-428
margin style properties, 423
marker style properties,

427-428
padding style properties, 424
table style properties, 428-429
text style properties, 416-418

rollover text, displaying, 281-282
stacking elements, 239-241
style classes, 58-61
style ID, 61
style properties

defining, 48
formatting properties, 55-58
layout properties, 54-55

style rules, 59
defining, 48
viewing in web browsers, 53

style sheets, 48-53
support for, 53
table style properties, quick

reference, 428-429
text

changing color, 136, 138
managing flow, 242-243
text style properties, quick

reference, 416-418

dt tags, 71, 246, 399
dummy tags (HTML), 63
dynamic websites

defining, 325
DOM, 332
scripting

changing images based on
user interaction via
JavaScript, 333

client-side scripting, 326
displaying random content via

JavaScript, 328-332
JavaScript in HTML, 326-327
server-side scripting, 326

E
em tags, 82-83
email addresses, linking to, 120-121
embedded content

embed tags (HTML), 187, 190
multimedia, 187-190
XHTML, quick reference, 407-409

empty tags (HTML), 32
empty-cells property (CSS), 429
ESPN.com, website organization, 359
events

handling, mouse actions and,
283-284

onclick, 415
ondblclick, 415
onkeydown, 415
onkeypress, 415
onkeyup, 415
onmousedown, 415
onmousemove, 415
onmouseout, 415
onmouseover, 415
onmouseup, 415

external style sheets (CSS), 48-51

ptg

GIMP (GNU Image Manipulation Program) 435

border-color property, 55-56
border-left property, 55-56
border-right property, 55-56
border-style property, 55-56
border-top property, 55-56
border-width property, 55-56
color property, 56, 58
font property, 58
font-family property, 57
font-size property, 57
font-style property, 57
font-weight property, 57
line-height property, 58
padding property, 58
text-align property, 57-58
text-decoration property, 58
text-indent property, 57

HTML lists, 246-249
text

boldface text, 82-85
color, 85-88
CSS, 88
font size, 85-88
HTML web pages, 36
italic text, 82-85
line breaks, 84
monospaced text, 83-84
spacing, 84
special characters, 89-91
special formatting, 82-85
XHTML, quick reference,

398-399
websites, color, 131-136

forms (HTML)
accepting text input, 344-345
creating, 340-344
defining, 339
form-processing scripts, 340, 345
hidden data, 345
input controls

check boxes, 346-348
pull-down pick lists, 348
radio buttons, 348
scrolling lists, 348

F
fieldset tags, 411
file extensions

.asp, 29

.css, 48

.html, 29
files

saving, 29
sound, streaming, 194
transfers. See FTP

(File Transfer Protocol)
fixed layouts, 294
fixed/liquid hybrid layouts

basic structure of, 298-299
defining columns in, 300-302
handling column height in,

304-309
setting minimum width of a

layout, 302
Flickr website, 161-163
float property (CSS),

224-227, 242, 426
float style property (img tags), 166
flow (text), managing in CSS, 242-243
fluid layouts. See liquid layouts
fonts (text)

CSS font style properties, quick
reference, 416-418

font property (CSS), 58, 417
font tags, 81, 85
font-family property (CSS), 57, 417
font-family style (font tags), 85
font-size property (CSS), 57, 417
font-size style (font tags), 85
font-style property (CSS), 57, 417
font-variant property (CSS), 417
font-weight property (CSS), 57, 417
size, 85-88

form tags, 340-341, 344, 411
formatting

formatting properties (CSS)
background-color property, 56
border property, 55
border-bottom property, 55-56

selection lists, 348
text areas, 349

naming data, 345
submitting data, 340, 349

forms (XHTML), quick reference,
410-413

forward slashes (/), directories, 112
frames, 156

advantages/disadvantages of,
198

compatiblity, 201
defining, 197
frame tags (HTML), 202
framesets, 199

adding individual frames, 202
creating frameset documents,

199-201
frameset documents, 203
frameset tags (HTML), 200-

202
inline frames, 204-206
linking with windows, 202-203
naming, 202
splitting, 200
windows, sizing frames for, 200

FTP (File Transfer Protocol)
Classic FTP, operating, 16-18
clients

operating, 16-18
selecting, 14-15

G
.GIF (Graphics Interchange Format)

files, 153
animated web images, 156
tiled backgrounds, 154
transparent images, 154

GIMP (GNU Image Manipulation
Program)

banner creation, 151-152
button creation, 151-152
color-correcting images in, 149
cropping images in, 146-147
installing, 144

ptg

GIMP (GNU Image Manipulation Program)436

resolution, 145
scaling, 148
scanners, getting graphics from,

146
sizing, 165
software

Adobe Photoshop, 143
Corel DRAW, 144
GIMP, 144-152
Picasa, 144
Picnik, 144

thumbnail graphics, turning into
links, 169-172

tiled backgrounds, 154-155
transparent graphics, 154
web pages, adding graphics to,

162-163
web resources, 387
wrapping text around, 166

groove value (CSS border-style
property), 56

H
h1 tags, 393, 396
h2 tags, 393, 396
h3 tags, 393, 396
h4 tags, 393, 396
h5 tags, 393, 396
h6 tags, 393, 396
head tags, 33, 394
headings

boldface text, 82
heading tags (HTML), 36-38

height
column height, handling in

fixed/liquid hybrid layouts,
304-309

height attribute
object tags, 188
table tags, 99

height property (CSS), 55, 415
images, specifying in, 165

helper applications, 185
hexadecimal values (color), 135-136

.JPEG file compression, 150
scaling images in, 148

Google, 374
Google Images website, 161
graphics

aligning
horizontal alignment, 165-167
vertical alignment, 167-169

alternative text descriptions, 163
animated web graphics, 156
background graphics, 144, 172-

173
banners, creating, 151-152
buttons, creating, 151-152
clip art, 144
color reduction, 153
color-correcting, 149-150
copyrights, 144
Creative Commons licences, 144
cropping, 146-147
digital cameras, exporting images

to computer, 146
extracting from web pages, 144
Flickr website, 161-163
.GIF files, 153

animated web graphics, 156
tiled backgrounds, 154
transparent graphics, 154

Google Images website, 161
graphical editors, 28
hot linking, 163
imagemaps

areas, 174-175
creaating HTML for, 176-178
mapping regions within

graphics, 174-175
uses for, 173-174

.JPEG files
compression, 150
tiled backgrounds, 154

links, 123, 169-172
permissions, 163
photographs, 146
.PNG files, 153-154
resizing, 148

hidden attribute (input tags), 345
hidden data in HTML forms, 345
hiding web pages via comments, 365
home (main) pages (websites), index

files, 22
horizontal aligning images, 165
horizontal navigation (CSS), 270-273
horizontally aligning images, 165-167
hosting (web)

video hosting services, 191
web pages, selecting providers,

6-7, 28
web resources, 389

hot linking images, 163
hr / tags, 394
hr /> tags (HTML), 35
href attribute (a tags), 114-117
href attribute (area tags), 176
href atttribute (a tags), 184
HTML (Hypertext Markup Language)

character entities, 90
CSS, linking to, 52
development of, 2, 41
files, creating, 29
forms

accepting text input, 344-345
check boxes, 346-348
creating, 340-344
defining, 339
form-processing scripts, 340,

345
hidden data, 345
input controls, 346-349
naming data, 345
pull-down pick lists, 348
radio buttons, 348
scrolling lists, 348
selection lists, 348
submitting data, 340, 349
text areas, 349

history of, 2, 41
.html file extension, 29
imagemaps, creating HTML for,

176-178
JavaScript in, 326-327

ptg

images 437

br /> tags, 35
closing tags, 32
CSS, 51
custom tags, 60
dd tags, 71-73, 246
default attribute values, 69
deprecated tags, 83
div tags, 165, 232-233,

284-289
dl tags, 71-73, 246
dt tags, 71, 246
dummy tags, 63
em tags, 82-83
embed tags, 187, 190
empty tags, 32
font tags, 81, 85
form tags, 340-341, 344
frame tags, 202
frameset tags, 200-202
head tags, 33
heading tags, 36-38
hr /> tags, 35
html tag, 394
i tags, 81-83
iframe tags, 204
img tags, 101, 162-163,

166-167, 365
input tags, 344-345
li tags, 75, 246
link tags, 316
map tags, 177
meta tags, 375-377
name tags, 202
noframes tags, 201
ol tags, 71, 75, 246
opening tags, 32
option tags, 348
p tags, 33, 68-69, 98
pre tags, 83-84
select tags, 348
small tags, 83
strike tags, 83
strong tags, 82-83
style tags, 62

links, email addresses, 121
lists

building outlines via, 73-74
bullets, 73-74
creating image maps via,

251-254
CSS box model and, 246-249
defintion lists, 246
formatting, 246-249
formatting in Web browsers, 72
nesting, 73-77
ordered lists, 71-73, 245
placing item indicators,

249-250
unordered lists, 71-73, 245

maintainable code, writing
documenting code via

comments, 364-365
indenting code, 366

positioning
absolute positioning, 235,

238-239
relative positioning, 235-237

tables
adding color to, 104
aligning within, 102-104
cells, 96
creating, 96-99
sizing, 99-101
spanning within, 102-104
web page layouts, 105

tags, 29-30
!— — tags, 364-365
a href tags, 169
a tags (anchors), 114-116,

123, 184-185
area tags, 176-177
attributes, 68, 111
b tags, 81-83
big tags, 83
blockquote tags, 73
body tags, 33
br tags, 84

sub tags, 83
sup tags, 83
table tags, 99, 365
td tags, 96-102
textarea tags, 349
th tags, 96, 101-102
title tags, 33
tr tags, 96-97, 102
tt tags, 83-84
u tags, 83
ul tags, 71, 75, 246-248
viewing, 39

web pages
formatting text, 36
line breaks, 34-35
paragraph breaks, 34-35
XHTML web pages, 32-33

web resources, 385
HTML 5 (Hypertext Markup Language

version 5), 42
hue (images), adjusting, 149-150
hyperlinks. See links

I
i tags, 81-83, 398
id attribute, 114-116, 414
iframe tags (HTML), 204
image maps, creating via HTML lists,

251-254
images

aligning
horizontal alignment, 165-167
vertical alignment, 167-169

alternative text descriptions, 163
animated web images, 156
backgrounds, 144, 154, 172-173
banners, creating, 151-152
buttons, creating, 151-152
changing based on user interac-

tion via JavaScript, 333
clip art, 144
color reduction, 153
color-correcting, 149-150

ptg

images438

indenting
HTML code, 366
text-indent property (CSS), 57

index files, web servers, 20-22
inline styles, internal style sheets

(CSS), 62-63
inline value (CSS display property), 54
input controls (forms)

check boxes, 346-348
pull-down pick lists, 348
radio buttons, 348
scrolling lists, 348
selection lists, 348
text areas, 349

input / tags, 411-412
input tags (HTML), 344-345
inset value (CSS border-style

property), 56
internal style sheets (CSS), 48, 62-63
Internet connections, 27
Internet Explorer, viewing web pages

in Print Preview, 320
ISPs (Internet service providers),

comparing, 27
italic text, 82-85
item indicators, placement in HTML

lists, 249-250

J - K - L
JavaScript scripting language

changing images based on user
interaction, 333

DOM, 332
event attributes, 283
HTML and, 326-327
random content web pages,

328-332
.JPEG files

compression (images), 150
tiled backgrounds, 154

JSP (Java Server Pages), 326

label tags, 412

copyrights, 144
Creative Commons licenses, 144
cropping, 146-147
digital cameras, exporting images

to computer, 146
extracting from web pages, 144
Flickr website, 161-163
.GIF files, 153

animated web images, 156
tiled backgrounds, 154
transparent images, 154

Google Images website, 161
hot linking, 163
imagemaps

areas, 174-175
creating HTML for, 176-178
mapping regions within

graphics, 174-175
uses for, 173-174

.JPEG files
compression, 150
tiled backgrounds, 154

links
turning images into, 169-172
video, 185

permissions, 163
.PNG files, 153-154
resizing, 148
resolution, 145
scaling, 148
scanners, getting images from,

146
sizing, 165
thumbnail images, turning into

links, 169-172
tiled backgrounds, 154-155
transparent images, 154
web pages, adding images to,

162-163
wrapping text around, 166

img tags, 101, 162-163, 166-167,
365

img / tags, 123, 407-408
@import command, 316
inclusions. See embedded content

lang attribute, 415
large (complex) websites, organizing,

360-362
layouts

CSS layout style properties
display property, 54
height property, 55
quick reference, 424-427
width property, 55

fixed layouts, 294
fixed/liquid hybrid layouts

basic structure of, 298-299
defining columns in, 300-302
handling column height in,

304-309
setting minimum width of a

layout, 302
liquid layouts, 293-295, 298

leading (text), 58
left property (CSS), 235, 426
letter-spacing property (CSS), 418
li tags, 75, 246, 400
lightness (images), adjusting,

149-150
line breaks, 34-35, 84
line-height property (CSS), 58, 416
links

a tags (anchors), 184-185
identifying web page locations,

114
linking to web page locations,

114-116
psuedoclasses, 123

absolute addresses, 112
CSS

CSS to HTML documents, 52
styling in, 123-126

email addresses, 120-121
frames to windows, 202-203
graphics as links, 123
hot linking images, 163
images, turning into links,

169-172
images to video, 185
link tags, 316, 401

ptg

navigation (CSS) 439

ordered lists, 71-73, 245
placing item indicators,

249-250
unordered lists, 71-73, 245

locally publishing web content, 23

M
main (home) pages (websites), index

files, 22
maintainable HTML code, writing

documenting code via comments,
364-365

indenting code, 366
map tags, 177-178, 408
margins

CSS
CSS box model, 232
margin property, 212-214, 423
margin style properties, quick

reference, 423
margin-bottom property, 212,

423
margin-left property, 212, 423
margin-right property, 212, 423
margin-top property, 212, 423
properties of, 212
styling, 217-219
writing in shorthand, 213-214

HTML lists, 249
markers (bullets), CSS marker style

properties quick reference, 427-428
max-height property (CSS), 416
max-width property (CSS), 416
maxlength attribute (input tags), 345
media-specific style sheets, 315-317
meta tags, 375-377, 395
method attribute (form tags), 340
middle value (vertical-align property),

224
MIME (Multi-purpose Internet Mail

Extensions) types, 189-190
min-height property (CSS), 416
min-width property (CSS), 416
monospaced text, 83-84

multimedia, 184
images to video, 185
playing linked content, 187

psuedoclasses, displaying, 125
relative addresses, 112
testing, 119
troubleshooting, 128
web browsers, opening links in

new windows, 122
web content, linking

between content, 117-119
to external content, 120

web pages, 372
creating for, 113
email addresses, 120-121
linking between content,

117-119
linking to external content, 120
opening links in new windows,

122
XHTML, quick reference, 400-401

liquid layouts, 295
fixed/liquid hybrid layouts

basic structure of, 298-299
defining columns in, 300-302
handling column height in,

304-309
setting minimum width of a

layout, 302
web resources, 293

list-item value (CSS display property), 54
list-style property (CSS), 427
list-style-image property (CSS), 427
list-style-position property (CSS), 428
list-style-type property (CSS), 428
list-style-type style (ul tags), 75
lists

CSS list style properties, quick
reference, 427-428

HTML, 71
creating images via, 251-254
CSS box model and, 246-249
definition lists, 246
formatting, 246-249
nesting, 73-77

mouse actions
event handling, 283-284
rollover text, displaying via CSS,

281-282
tooltips, creating via CSS, 277-280

multi-level vertical navigation (CSS),
265-269

multimedia
audiovidual file formats, choosing,

194
automatically playing, 191
creating, 183-184
embedded files, 187-190
file sizes, 191
file storage, 192
finding files, 183-184
linking, 184

images to video, 185
playing linked content, 187

MIME types, 189-190
players, choosing, 191
QuickTime, downloading, 187
streaming files, 187, 194
text and, 191
video hosting services, 191
web resources, 183-184, 388

multiple attribute (select tags), 349

N
name attribute

a tags, 114
frame tags, 202
param tags, 188

name tags (HTML), 202
navigation (CSS)

horizontal navigation, 270-273
navigation lists, 259
primary navigation, 260
secondary navigation, 260
vertical navigation, 260-262

multi-level navigation, 265-269
single-level navigation,

263-264

ptg

nesting, HTML lists440

padding. See also spacing text
CSS, 219-222

CSS box model, 232
padding property, 58, 220, 424
padding style properties, quick

reference, 424
padding-bottom property,

220, 424
padding-left property, 220, 424
padding-right property,

220, 424
padding-top property, 220, 424

HTML lists, 249
paragraphs

aligning, 69
breaks, HTML web pages, 34-35

param / tags, 409
param tags (object tags), 188
Perl scripting language, 326
permissions, images, 163
photographs, 146
Photoshop (Adobe), 143
PHP (PHP Hypertext Preprocessor),

326, 340
Picasa, 144
Picnik, 144
pictures

aligning
horizontal alignment, 165-167
vertical alignment, 167-169

alternative text descriptions, 163
animated web pictures, 156
backgrounds,

144, 154-155, 172-173
banners, creating, 151-152
buttons, creating, 151-152
clip art, 144
color reduction, 153
color-correcting, 149-150
copyrights, 144
Creative Commons licenses, 144
cropping, 146-147
digital cameras, exporting images

to computer, 146
extracting from web pages, 144

nesting, HTML lists, 73-77
noframes tags (HTML), 201
none value (CSS)

border-style property, 56
display property, 54

noscript tags, 414
Notepad, HTML files

creating, 28
saving, 29

O
object tags, 187-190, 408-409
ol tags, 71, 75, 246, 400
onclick event, 283-289, 415
ondblclick event, 283, 415
onkeydown event, 283, 415
onkeypress event, 415
onkeyup event, 283, 415
onload event attribute (JavaScript), 283
onmousedown event, 283, 415
onmousemove event, 284, 415
onmouseout event, 284, 415
onmouseover event, 284, 415
onmouseup event, 283, 415
opening tags (HTML), 32
option tags, 348, 412
ordered lists (HTML), 71-73, 245
outlines, building via HTML lists,

73-74
outset value (CSS border-style

property), 56
overflow property (CSS), 242, 426
overflow sheets, float property, 242
overlapping elements, CSS, 235

P
p tags, 33, 98, 397

style attribute, 68
text-align: center style, 69
text-align: left style, 69
text-align: right style, 69

Flickr website, 161-163
.GIF files, 153

animated web pictures, 156
tiled backgrounds, 154
transparent pictures, 154

Google Images website, 161
hot linking, 163
imagemaps

areas, 174-175
creating HTML for, 176-178
mapping regions within

graphics, 174-175
uses for, 173-174

.JPEG files
compression, 150
tiled backgrounds, 154

links, turning pictures into,
169-172

permissions, 163
.PNG files, 153-154
resizing, 148
resolution, 145
scaling, 148
scanners, getting pictures from,

146
sizing, 165
thumbnail pictures, turning into

links, 169-172
tiled backgrounds, 154-155
transparent pictures, 154
web pages, adding pictures to,

162-163
wraping text around, 166

plug-ins, 185
.PNG (Portable Network Graphics)

files, 153-154
points (text), 52
pop-up windows, opening links in, 122
position property (CSS), 235, 426
positioning

absolute positioning, 54, 235,
238-239

relative positioning, 54, 235-237
pre tags, 83-84, 397
primary navigation (CSS), 260

ptg

strike tags 441

S
saturation (images), adjusting,

149-150
saving files, 29
scaling images, 148
scanners getting images from, 146
scripting

client-side scripting, 326
form-processing scripts, 340, 345
script tags, 414
server-side scripting, 326
XHTML, quick reference, 414

scrolling lists, HTML forms, 348
search engines, 372

AllTheWeb, 374
AltaVista, 374
Bing, 374
Google, 374
listing web pages on, 373-374
optimizing website searchability,

374-380
providing hints for, 374-379
spam, 375
Yahoo! Search, 374

secondary navigation (CSS), 260
select tags, 348, 413
selected attribute (select tags), 349
selection lists, HTML forms, 348
selectors, CSS, 59
SEO (search engine optimization),

374-380
servers

server-side scripting, 326
web servers

document roots, 17-19
file transfers, 17
index files, 20-22
organizing directories, 18-20
publishing web content

without, 22
selecting, 6-7
server-side scripting, 326

shape attribute (area tags), 176
shorthand, writing margins in (CSS),

Print Preview (Internet Explorer),
viewing web pages in, 320

print-friendly web pages, 311
designing, 312-315
media-specific style sheets,

315-317
style sheet design, 317-320
viewing, 320

pseudoclasses
a tags (anchors), 123
link pseudoclasses, displaying, 125

publicizing web pages, 371-372
pull-down pick lists, HTML forms, 348
Python scripting language, 326

Q - R
QuickTime, 187, 194

radio buttons, HTML forms, 348
random content, displaying in

websites via JavaScript, 328-332
registered trademark symbol (®), 90
registering web pages with search

engines, 373-374
relative addresses, 112-113
relative positioning, 54, 235-237
relative value (position property), 235
resizing images, 148
resolution (images), 145
ridge value (CSS border-style

property), 56
right property (CSS), 235, 426
robots, 372, 376
rollover text, displaying via CSS,

281-282
rows (tables)

adding color to, 104
spanning, 104

rows attribute
frameset tags, 200
textarea tags, 349

rowspan attribute (th tags), 104
Ruby scripting language, 326

213-214
simple websites, organizing, 357-359
single-level vertical navigation (CSS),

263-264
single-page websites, 356
size attribute

font tags, 85
input tags, 345
select tags, 348-349

sizing
HTML tables, 99-101
images, 165

skeleton web pages, 33
small tags, 83, 398
software

graphics
Adobe Photoshop, 143
Corel DRAW, 144
GIMP, 144-152
Picasa, 144
Picnik, 144

multimedia, creating, 184
web resources, 386-387

solid value (CSS border-style
property), 56

sound files, streaming, 194
source editors, blogs, 23
spacing text, 84. See also padding
spam, search engines, 375
span tags, 395
spanning within HTML tables,

102-104
special characters, 89-91
special formatting, 82-85
spiders, 372, 376
src attribute

frame tags, 202
iframe tags, 204
img tags, 162-163

stacking elements, CSS, 239-241
Starbucks.com, website organization,

361-362
storing multimedia files, 192
streaming files, 187, 194
strike tags, 83

ptg

strong tags442

text-decoration property, 58
text-indent property, 57

inline styles, internal style sheets,
62-63

internal style sheets, 48, 62-63
layout properties

display property, 54
height property, 55
width property, 55

links
displaying pseudoclasses, 125
styling, 123-126

margins
box model, 232
margin property, 212-214
margin-bottom property, 212
margin-left property, 212
margin-right property, 212
margin-top property, 212
properties of, 212
styling, 217-219
writing in shorthand, 213-214

navigation
horizontal navigation, 270-273
navigation lists, 259
primary navigation, 260
secondary navigation, 260
vertical navigation, 260-269

overlapping elements, 235
padding, 219-222, 232
positioning

absolute positioning, 235,
238-239

bottom property, 235
left property, 235
position property, 235
relative positioning, 235-237
right property, 235
top property, 235

print-friendly web pages
media-specific style sheets,

315-317
style sheet design, 317-320

rollover text, displaying, 281-282
stacking elements, 239-241
style classes, 58-61

strong tags, 82-83, 397
style attribute, 414

div tags, 165
html tags, 96
p tags, 68
table tags, 104

style classes (CSS), 58-61
style ID (CSS), 61
style properties (CSS)

defining, 48
formatting properties, 55-58
layout properties, 54-55

style rules (CSS), 59
defining, 48
viewing in web browsers, 53

style sheets (CSS)
alignment, 223-224
borders, 232
box model, 231-234
clear property, 228, 242
creating, 53
current line, 242
event handling, 283-284
external style sheets, 48-51
float property, 224-227, 242
formatting properties

background-color property, 56
border property, 55
border-bottom property, 55-56
border-color property, 55-56
border-left property, 55-56
border-right property, 55-56
border-style property, 55-56
border-top property, 55-56
border-width property, 55-56
color property, 56, 58
font property, 58
font-family property, 57
font-size property, 57
font-style property, 57
font-weight property, 57
line-height property, 58
padding property, 58
text-align property, 57-58

style ID, 61
style rules, 59
text flow, managing, 242-243
tooltips, creating, 277-280
validating, 63
z-index property, 235, 239-241

style tags, 62, 410
sub tags, 83, 397
sup tags, 83, 397

T
tabindex attribute, 414
tables

CSS table style properties, quick
reference, 428-429

HTML tables
adding color to, 104
aligning within, 102-104
columns, 104
creating, 96-99
defining cells, 96
rows, 104
sizing, 99-101
spanning, 102-104
web page layouts, 105

table of contents (TOC), websites,
356-357

table tags, 96, 99, 365, 403
table-layout property (CSS), 429
XHTML tables, quick reference,

402-406
target attribute

frame tags, 202
a tags, 123

tbody tags, 404
td tags, 96-102, 404-405
testing links, 119
text. See also HTML lists

aligning, 68
page sections, 69-71
paragraphs, 69

alternative text, images, 163
color, 56, 134-138

ptg

visual editors, blogs 443

non-European characters, 93
spacing, 84
special characters, 89-91
special formatting, 82-85

HTML
creating files via TextEdit, 29
forms, 344-345, 349
tags, 29-30

leading, 58
multimedia and, 191
points, 52
rollover text, displaying via CSS,

281-282
text-align property, 57-58, 223, 418
text-align: center style (p tags), 69
text-align: left style

div tags, 165-167
p tags, 69

text-align: right style
div tags, 165-167
p tags, 69

text-bottom value (vertical-align
property), 224

text-top value (vertical-align
property), 224

textarea tags, 349, 413
TextEdit, creating HTML files, 29
tooltips, creating via CSS, 277-

280
wrapping around images, 166

tfoot tags, 405
th tags, 96, 101-102, 405
thead tags, 406
thumbnail images as image links,

169-172
tiled backgrounds, 154-155
titles

headings versus titles, 38
title attribute, 414, 162
title tags, 33, 395

TOC (table of contents), websites,
356-357

tooltips, creating via CSS, 277-280
top property (CSS), 235, 426
top value (vertical-align property),

224

CSS
creating tooltips, 277-280
font property, 57-58, 417
font style properties, quick ref-

erence, 416-418
font-family property, 57, 417
font-size property, 57, 417
font-style property, 57, 417
font-variant property, 417
font-weight property, 57, 417
managing flow in, 242-243
text style properties, quick

reference, 416-418
text-align property, 57-58, 418
text-decoration property, 58, 418
text-indent property, 57, 418
text-transform property, 418

editors, 28
fonts (text)

CSS font style properties,
quick reference, 416-418

font property (CSS), 57-58,
417

font tags, 81, 85
font-family property (CSS), 57,

417
font-family style (font tags), 85
font-size property (CSS), 57,

417
font-size style (font tags), 85
font-style property (CSS), 57,

417
font-variant property (CSS),

417
font-weight property (CSS), 57,

417
size, 85-88

formatting
boldface text, 82-85
color, 85-88
CSS, 88
font size, 85-88
HTML web pages, 36
italic text, 82-85
line breaks, 84
monospaced text, 83-84

tr tags, 96-97, 102, 406
trademark symbol (™), 90
transferring files. See FTP

(File Transfer Protocol)
transparent images, 154
triadic color schemes, 132
troubleshooting links, 128
tt tags, 83-84, 399
type attribute

input tags, 345
object tags, 188

U - V
u tags, 83
ul tags, 71, 75, 246-248, 400
units of measurements, CSS

height/width properties, 55
unordered lists (HTML), 71-73, 245
usemap attribut (img tags), 177

validating web pages, 39
value attribute

input tags, 349
param tags, 188

VBScript (Visual Basic Scripting
Edition), 326

vertical navigation (CSS), 260-262
multi-level navigation, 265-269
single-level navigation, 263-264

vertical-align attribute (tables), 102
vertical-align property, 223, 427
vertically aligning images, 167-169
video

embedding, 190
hosting services, 191
streaming, 187, 194

visibility property (CSS), 427
visual editors, blogs, 23

ptg

W3C CSS Validator444

testing, 24
validating, 39

web hosting providers, selecting, 6-7, 28
web pages

backgrounds, extracting from web
pages, 144

bare-bones web pages, 33
bookmarks, 33
creating, text tags, 29-30
designing, web resources, 386
fixed layouts, 294
fixed/liquid hybrid layouts

basic structure of, 298-299
defining columns in, 300-302
handling column height in,

304-309
setting minimum width of a

layout, 302
hiding sections via comments, 365
hosting, finding providers, 28
HTML web pages

formatting text, 36
HTML tables, 105
line breaks, 34-35
organizing content via heading

tags, 36-38
paragraph breaks, 34-35
viewing tags, 39

images
adding to, 162-163
extracting from web pages, 144

internal style sheets (CSS), 62
links, 113, 372

email addresses, 120-121
linking between content,

117-119
linking to external content, 120
opening in new windows, 122
troubleshooting, 128

liquid layouts, 293-295, 298
page locations

identifying via a tags
(anchors), 114

linking to via a tags (anchors),
114-116

W
W3C CSS Validator, 63
W3C Markup Validation Service,

39-41
wallpaper. See backgrounds
web addresses, 111

absolute addresses, 112-113
document root, 112
relative addresses, 112-113

web browsers
client-side scripting, 326
comparing, 28
CSS, viewing style rules, 53
distributing, 23
helper applications, 185
HTML lists, formatting, 72
links, opening in new windows, 122
plug-ins, 185
selecting, 8, 28
testing, 8
web content

delivering, 4
retrieving, 5

web pages, viewing, 31
web resources, 386

web content
creating, 2-3
delivering, process of, 4
linking

between content, 117-119
external content, 120

organizing via HTML heading tags,
36-38

publishing
blogs, 23
locally, 23
operating a FTP client, 16-18
organizing web server

directories, 18-20
selecting a FTP client, 14-15
web server index files, 20-22
without web servers, 22

retrieving, 5
searching, 372-373

print-friendly, 311
designing, 312-315
media-specific style sheets,

315-317
style sheet design, 317-320
viewing, 320

publicizing, 371-372
search engines

listing web pages on, 373-374
optimizing website

searchability, 374-380
providing hints for, 374-379
spam, 375

validating, 39
viewing, 31
XHTML web pages, HTML tags,

32-33
web resources

advanced developer resources,
388

color, 387
CSS, 385
graphics, 387
HTML, 385
multimedia, 388
software, 386-387
web browsers, 386
web pages, 386
websites, hosting, 389
XHTML, 385

web servers
directories, organizing, 18-20
document roots, 17-19
file transfers, 17
index files, 20-22
publishing web content without, 22
selecting, 6-7
server-side scripting, 326

web-based forms (HTML)
accepting text input, 344-345
creating, 340-344
defining, 339
form-processing scripts, 340, 345
hidden data, 345
input controls

ptg

z-index property 445

providing hints for, 374-379
spam, 375
Yahoo! Search, 374

services, web resources, 389
single-page websites, 356
web browsers, testing websites

on, 8
white-space property (CSS), 418
width

fixed/liquid hybrid layouts, setting
minimum width in, 302

images, specifying in, 165
width attribute

map tags, 177
table tags, 99

width property (CSS), 55, 416
windows, linking with frames,

202-203
Windows Media Player, streaming

multimedia files, 187
word-spacing property (CSS), 418
WordPress Theme Gallery, liquid

layouts, 293
wrapping text around images, 166
WWW (World Wide Web),

development of, 2

X
XHTML (Extensible Hypertext Markup

Language), 42
character entities, 90
quick reference

common attributes, 414-415
embedded content, 407-409
forms, 410-413
links, 400-401
lists, 399
paragraphs, 395-397
scripts, 414
structure elements, 392-395
style sheets, 410
tables, 402-406
text formatting, 398-399
text phrases, 395-397

check boxes, 346-348
pull-down pick lists, 348
radio buttons, 348
scrolling lists, 348
selection lists, 348
text areas, 349

naming data, 345
submitting data, 340, 349

websites
color

background color, 133-134
formatting, 131-136
hexadecimal values, 135-136
selecting, 131-132
text color, 134

dynamic websites
changing images based on

user interaction via
JavaScript, 333

client-side scripting, 326
defining, 325
displaying random content via

JavaScript, 328-332
DOM, 332
JavaScript in HTML, 326-327
server-side scripting, 326

formatting, color, 131-136
home (main) pages, index files, 22
hosting, web resources, 389
organizing

Amazon.com, 361
ESPN.com, 359
large (complex) websites,

360-362
simple websites, 357-359
Starbucks.com, 361-362
TOC, 356-357

search engines, 372
AllTheWeb, 374
AltaVista, 374
Bing, 374
Google, 374
listing web pages on, 373-374
optimizing website

searchability, 374-380

tags
iframe tags, 204
object tags, 187-190

web pages, HTML tags, 32-33
web resources, 385

XML (Extensible Markup Language),
applications of, 41-42

Y - Z
Yahoo! Search, 374
YouTube, 192

z-index property (CSS),
235, 239-241, 427

	Contents
	PART I: Getting Started on the Web
	HOUR 1: Understanding How the Web Works
	A Brief History of HTML and the World Wide Web
	Creating Web Content
	Understanding Web Content Delivery
	Selecting a Web Hosting Provider
	Testing with Multiple Web Browsers

	HOUR 2: Publishing Web Content
	Creating the Sample File for this Hour
	Using FTP to Transfer Files
	Understanding Where to Place Files on the Web Server
	Distributing Content without a Web Server
	Testing Web Content

	HOUR 3: Understanding HTML and XHTML Connections
	Getting Started with a Simple Web Page
	HTML Tags Every XHTML Web Page Must Have
	Organizing a Page with Paragraphs and Line Breaks
	Organizing Your Content with Headings
	Validating Your Web Content
	The Scoop on HTML, XML, XHTML, and HTML 5

	HOUR 4: Understanding Cascading Style Sheets
	How CSS Works
	A Basic Style Sheet
	A CSS Style Primer
	Using Style Classes
	Using Style IDs
	Internal Style Sheets and Inline Styles

	PART II: Building Blocks of Practical Web Design
	HOUR 5: Working with Text Blocks and Lists
	Aligning Text on a Page
	The Three Types of HTML Lists
	Placing Lists Within Lists

	HOUR 6: Working with Fonts
	Boldface, Italics, and Special Text Formatting
	Tweaking the Font
	Working with Special Characters

	HOUR 7: Using Tables to Display Information
	Creating a Simple Table
	Controlling Table Sizes
	Alignment and Spanning Within Tables
	Page Layout with Tables

	HOUR 8: Using External and Internal Links
	Using Web Addresses
	Linking Within a Page Using Anchors
	Linking Between Your Own Web Content
	Linking to External Web Content
	Linking to an Email Address
	Opening a Link in a New Browser Window
	Using CSS to Style Hyperlinks

	HOUR 9: Working with Colors
	Best Practices for Choosing Colors
	Understanding Web Colors
	Using Hexadecimal Values for Colors
	Using CSS to Set Background, Text, and Border Colors

	HOUR 10: Creating Images for Use on the Web
	Choosing Graphics Software
	The Least You Need to Know About Graphics
	Preparing Photographic Images
	Creating Banners and Buttons
	Reducing the Number of Colors in an Image
	Working with Transparent Images
	Creating Tiled Backgrounds
	Creating Animated Web Graphics

	HOUR 11: Using Images in Your Web Site
	Placing Images on a Web Page
	Describing Images with Text
	Specifying Image Height and Width
	Aligning Images
	Turning Images into Links
	Using Background Images
	Using Imagemaps

	HOUR 12: Using Multimedia in Your Web Site
	Linking to Multimedia Files
	Embedding Multimedia Files
	Additional Tips for Using Multimedia

	HOUR 13: Working with Frames
	What Are Frames?
	Building a Frameset
	Linking Between Frames and Windows
	Using Inline Frames

	PART III: Advanced Web Page Design with CSS
	HOUR 14: Working with Margins, Padding, Alignment, and Floating
	Using Margins
	Padding Elements
	Keeping Everything Aligned
	Understanding the Float Property

	HOUR 15: Understanding the CSS Box Model and Positioning
	The CSS Box Model
	The Whole Scoop on Positioning
	Controlling the Way Things Stack Up
	Managing the Flow of Text

	HOUR 16: Using CSS to Do More with Lists
	HTML List Refresher
	How the CSS Box Model Affects Lists
	Placing List Item Indicators
	Creating Image Maps with List Items and CSS

	HOUR 17: Using CSS to Design Navigation
	How Navigation Lists Differ from Regular Lists
	Creating Vertical Navigation with CSS
	Creating Horizontal Navigation with CSS

	HOUR 18: Using Mouse Actions to Modify Text Display
	Creating a Tool Tip with CSS
	Displaying Additional Rollover Text with CSS
	Accessing Events
	Using onclick to Change <div> Appearance

	HOUR 19: Creating Fixed or Liquid Layouts
	Understanding Fixed Layouts
	Understanding Liquid Layouts
	Creating a Fixed/Liquid Hybrid Layout

	PART IV: Advanced Web Site Functionality and Management
	HOUR 20: Creating Print-Friendly Web Pages
	What Makes a Page Print-Friendly?
	Applying a Media-Specific Style Sheet
	Designing a Style Sheet for Print Pages
	Viewing a Web Page in Print Preview

	HOUR 21: Understanding Dynamic Web Sites
	Understanding the Different Types of Scripting
	Including JavaScript in HTML
	Displaying Random Content
	Understanding the Document Object Model
	Changing Images Based on User Interaction

	HOUR 22: Working with Web-Based Forms
	How HTML Forms Work
	Creating a Form
	Accepting Text Input
	Naming Each Piece of Form Data
	Including Hidden Data in Forms
	Exploring Form Input Controls
	Submitting Form Data

	HOUR 23: Organizing and Managing a Web Site
	When One Page Is Enough
	Organizing a Simple Site
	Organizing a Larger Site
	Writing Maintainable HTML Code

	HOUR 24: Helping People Find Your Web Pages
	Publicizing Your Web Site
	Listing Your Pages with the Major Search Sites
	Providing Hints for Search Engines
	Additional Tips for Search Engine Optimization

	PART V: Appendixes
	APPENDIX A: HTML and CSS Resources on the Internet
	General HTML, XHTML, and CSS Information
	Web Browsers
	Web Page Design
	Software
	Colors and Graphics
	Multimedia
	Advanced Developer Resources
	Web Site Hosting
	Web Site Services

	APPENDIX B: HTML and CSS Quick Reference
	HTML Structure
	HTML Text Phrases and Paragraphs
	XHTML Text Formatting Elements
	XHTML Lists
	XHTML Links
	XHTML Tables
	XHTML Embedded Content
	XHTML Style
	XHTML Forms
	XHTML Scripts
	XHTML Common Attributes
	CSS Dimension Style Properties
	CSS Text and Font Style Properties
	CSS Background Style Properties
	CSS Border Style Properties
	CSS Margin Style Properties
	CSS Padding Style Properties
	CSS Layout and Display Style Properties
	CSS List and Marker Style Properties
	CSS Table Style Properties

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W
	X
	Y - Z

