widthy TiIpE
Bargiar 0 &uks;

= | padding: © Mhpmy
1

JEEE R R e

LI |

#ssadar |
widths L1Tpxs
- EBergiAi Sem Fues 1.%eE 0
L3 “mgy @3
ILghi Eigheg
lafty

Eric Meyer

CSS

PROFESSIONAL TECHNIQUES FOR MODERN LAYOUT

MASHING

PROFESSIONAL TECHNIQUES FOR
" MODERN LAYOUT

Eric A. Meyer

FWI LEY

A John Wiley and Sons, Ltd, Publication

PUBLISHER’'S ACKNOWLEDGMENTS

Some of the people who helped bring this book to market include the following:

Editorial and Production

VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director- Book Content Management: Martin Tribe
Associate Publisher: Chris Webb

Publishing Assistant: Ellie Scott

Project Editor: Brian Herrmann

Copy Editor: Debbye Butler

Editorial Manager: Jodi Jensen

Sr. Project Editor: Sara Shlaer

Editorial Assistant: Leslie Saxman

Marketing
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Parrett

Composition Services
Compositor: Jennifer Mayberry
Proofreader: Susan Hobbs

Indexer: Potomac Indexing, LLC

This edition first published 2011
© 2011 John Wiley & Sons, Ltd.

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offices, for customer services and for information about
how to apply for permission to reuse the copyright material in this book please see our
website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Content reproduced from Meyerweb.com is copyright material and cannot be repro-
duced without permission ©1995-2010 Eric A. and Kathryn S. Meyer. All Rights
Reserved. ©1995-2010 Eric A. and Kathryn S. Meyer. All Rights Reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks. All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

978-0-470-68416-0

Set in 10/12 Minion Pro Regular by Wiley Composition Services

Printed in the US by CJK

About the Author

Eric A. Meyer is an internationally recognized expert on the subjects of HTML, CSS, and
Web standards, and has been working on the web since late 1993. He is the founder of
Complex Spiral Consulting, which counts among its clients America On-Line, Apple, Adobe,
Microsoft, Progressive Insurance, Sherwin-Williams, and more; a co-founder of the micro-
formats movement; and co-founder (with Jeffrey Zeldman) of An Event Apart, the conference
series for people who make web sites. He is the author of five top-selling books on CSS and
web design.

Acknowledgements

Thanks to Chris Webb for bringing me aboard and then patiently suffering through all the
delays, setbacks, and stumbles. There were times when it looked like the project might grind
to a halt, and every time Chris was there to prod it forward with good humor and infinite
calm. Much respect, and one of these years we'll schedule our summer vacations to coincide
so we can hoist a few daiquiris by the pool.

Thanks also to Debbye Butler and Brian Herrmann for shepherding me through the editorial
review process and spotting the places I went off into the weeds, fumbled my explanations,

and was generally unclear.

To everyone who keeps reading what I write, whether on paper or on the web: thank you,
thank you, a hundred thousand times thank you.

To my wife and daughters, more thanks than I could begin to enumerate, let alone express.

Eric A. Meyer
Cleveland Heights, Ohio
13 August 2010

Contents

PART I: FUNDAMENTALS

Chapter 1:

Chapter 2:

Tools

Firebug

Web Developer Toolbar

Internet Explorer Developer Toolbar (or Tools)
Dragonfly (for Opera)

Web Inspector (Safari)

XRAY

SelectORacle

Diagnostic Style Sheet

Reboot Styles

1E9.js

Selectors

Pseudo What?

Targets with Style

Specificity

Importance

What Happens when You omit Shorthand Value Keywords
Selectively Overriding Shorthands
Universal Selection

ID vs. Class

ID with Class

Multiclassing

Simple Attribute Selection
Attribute Selection of Classes

ID vs. Attribute Selector
Substring Attribute Selection
More Substring Attribute Selection
Child Selection

Simulated Partial Child Selection
Sibling Selection

Generating Content

13
17
22
26
29
30
31
33
36

39
40
41
43
44
45
47
49
50
52
53
54
56
57
58
60
62
63
65
67

PART II: ESSENTIALS

Chapter 3:

Chapter 4:

Tips

Validate!

Ordering Your Font Values
Rolling in Line-Height
Unitless Line-Height Values
Avoid Style-less Border Values
Controlling Border Appearance with Color
Suppressing Element Display
Suppressing Element Visibility
Throwing Elements Off-screen
Image Replacement

Print Styles

Developing Print Styles
Block-level Links

Margin or Padding?
Outdenting Lists

Bulleting Lists

Background Bullets
Generating Bullets

You Have More Containers than You Think
Document Backgrounds
Server-specific CSS

Layouts

Outlines Instead of Borders
Centering Block Boxes

Float containment: overflow
Float containment: floating
Clearfixing

Adjacent Clearing

Two Simple Columns

Three Simple Columns

Faux Columns

Liquid Bleach

The One True Layout

The Holy Grail

Fluid Grids

Em-Based Layout

Negative Margins in Flow
Positioning Within a Context
Pushing out of the Containing Block
Fixed headers and footers

71

73
74
75
75
76
78
78
80
82
83
84
87
87
89
90
92
93
95
98
100
103
104

107
108
110
113
115
117
118
120
121
124
127
131
135
140
144
147
150
152
155

Chapter 5:

PART III:

Chapter 6:

Chapter 7:

Index

Effects

Complexspiral

CSS Pop-ups

CSS Menus
Boxpunching

Pre-CSS 3 Rounded Corners
CSS 3 Rounded Corners
CSS Sprites

Sliding Doors

Clipped Sliding Doors
CSS Parallax

Ragged Floats

Better Ragged Floats
Boxing Your Images
Constrained Images

CUTTING EDGE

Tables

Head, Body, Foot

Row Headers
Column-oriented Styling
Table Mapping

Table Graphs

The (Near) Future

Styling HTML 5

Classing like HTML 5
Media Queries

Styling Occasional Children
Styling Occasional Columns
RGB Alpha Color

HSL and HSL Alpha Color
Shadowy Styles

Multiple Backgrounds

2D Transforms

159
160
165
167
169
172
177
179
182
185
187
190
194
198
200

203

205
206
208
210
215
222

231
232
234
235
240
243
246
248
250
251
256

269

Introduction

CSS has become so phenomenally successful—almost as successful as HTML itself—that it is
sometimes hard to grasp. It's everywhere now, from Web browsers to app stores to chat clients,
and it doesn’t show any signs of fading away. As the language’s use continues to spread, its
capabilities continue to advance.

This book contains close to 100 tips, techniques, tools, and tricks for making great Web sites
using CSS. Each of them is meant to stand on its own: you can flip to any random page and
just read what you find there and not worry you've missed something crucial earlier in the
chapter. What that means is that the text assumes you are at least somewhat familiar with CSS
and how it’s used. The assumed level of proficiency is best described as “advanced beginner to
intermediate.” So if you're just starting out, or if you typically know more about CSS than the
people writing the specifications, youre not likely to get much out of this book. For everyone
else, there’s a fair amount to learn and enjoy.

In part 1 of the book, there’s an overview of handy tools and fundamental techniques,
including some of the more obscure CSS selectors. Part 2 presents a variety of things you can
do with CSS including interesting effects, different routes to the same goal, layouts, and more.
Then in part 3 are the advanced, cutting-edge techniques that might not be ready to use on
every project you get this month but will become more and more central to your work as time
progresses.

Please visit the book's companion web site at www.wiley.com/go/smashingcss to download
code samples.

Little more than a decade ago, you might have been forgiven for thinking CSS was on its
deathbed, but as of 2010 it's more vibrantly alive and compelling than ever. I hope you'll enjoy
what’s found between the covers of this book as much as I enjoyed assembling it!

=
o
<

FUNDAMENTALS

SMASHING CSS

TOOLS

THE PROCESS OF building Web pages (or
even applications), like anything else, is greatly
helped by the use of tools. When it comes to CSS,
there are both tools to help us write the CSS and
the use of CSS to construct tools that help us out.

There are even tools out there that make browsers
support more CSS than their native code base
can bear. You're a builder, a crafter, a maker—this
chapter details some things that will really flesh
out your toolbox.

CHAPTER

FUNDAMENTALS

FIREBUG

Firebug (see Figure 1-1) is one of two utterly essential tools in any Web creator’s toolbox. (For
the other one, jump ahead to the “Web Developer Toolbar” section.) It's a completely free
extension to the completely free Firefox. If you're using another browser, keep reading: You
can get in on the Firebug action too!

rrmrnd v e, Wl aed T b e orn e e e, v sk,
O TN

v.pf‘ Firebug
Web Deuel:lnrnmlf-'uuhlazl

The meoat popular web developmens tool for Firefos i b e
[P —
it TRy gl sy KR ol e | 3 iy, | gy g B
- L] e] R U A P R T D m :I_"""'_""’-"l
ATty md =qeoe o ard e ioeren =
i o S S ———— ”_;"I':_‘F_"""I""""
Farst e e bereral s s el o e sl il Wi b e
Wore Frsburer -
L nszen Bl Lo @ i
Fogani go rip=g o @ wripan Bl mayage n g oy ey s e
AN b E R AL P i e 1 perm i i 1 ek
e et
@ o i 2w 5 Layow
Harp iy ip e e drnsrey ool g s e o Tagu gl e e 1 A, ppnpen
= o Bt o LA ST, ST e D e U Livcsat. v
Recent rews Links and Elsewhare 3

Figure 1-1: The Firebug home page.

To get your copy, go to get £irebug. com in Firefox. Click the Install button (it's on the
upper-right as of this writing) and let it install. Relaunch Firefox and prepare to be amazed.

There’s no way I can cover everything Firebug is capable of doing in this single tip; in fact, a
whole chapter would not be enough. Here are some highlights.

The HTML tab (see Figure 1-2) shows you the document structure on the left (with twisty
arrows to expand or collapse subtree of the document). Note that when you hover over an
element name in the HTML tab, that element is highlighted in the page itself. This includes
showing you the content area and padding and margins of the element via color-coded
regions, which is just fantastic. As of this writing, the content area is light blue, padding light
purple, and margins light yellow, but the colors aren’t as important as the fact that you can just
see them right there on the page.

Thee: rrezst popler web desalepment ol for Firefos FrE e Al Nt

- L § vy e e g
o i o R e e B s [[———
M1

=i L TR O RO P R PRS0 b 4 D 1 ==
dqurmy ET e g ara by gz

B 4
M T ot * o aal sl oty i mane § ortay roree. mose pearrb R EE
i i, b e T B g 0 et T v MI}:.I-I.-.-| = e o play e ratde, e by
W FEaling = E

& T i DOM br Comian Frekede e &
s BRSO DR ERTERRAFER [Lipwad. EXM
e Ll rermrp—— [FrrTee————
B e = P = T 1™ .
E iy e . o
e e T — I
¥ b e v g], . Be. ade bl oL Liee ———r—

ol ik N Ty T
EEEEEET T S R s R s E
S p—— e, o, ek, g, Gy, o o e
b], Wi, T, v e, b e, B

- S e Ay Sy 0, ey by wh, ol
e Funbfaak, biem, biwl, brped, bshin, e,

-k el Colaal. < B bk, W, el b, b '

Sl 3 [I T 3

Figure 1-2: Element layout visualization with Firebug.

On the right side of the HTML tab, you can see the CSS that applies to the currently inspected
element by clicking the Style tab (see Figure 1-3). This not only can be the stuff you, the
author, have written, but also the things that the browser itself is applying from its built-in
styles. If you see styles from html.css or quirk.css, for example, those are the built-in styles.
(These are called “UA styles,” for user agent styles. You can change whether or not they’re
displayed via a pop-up menu from the Style tab.)

One thing to note is that sometimes Firebug will show you properties you didn’t specify, like
-moz-background-clip. Unless you're sure you declared those explicitly, you can more or less
ignore them. Also, if you use a shorthand property, it will be expanded out into the individual
properties. That is to say, something like this:

ont: lem ndale Mono", ourier New", Courier, monospace;
font: 1 "Andale M " "C New", C

...will be represented in Firebug like this:

font-family: "Andale Mono","Courier New",Courier, monospace;
font-size: lem;

font-size-adjust: none;

font-stretch: normal;

font-style: normal;

font-variant: normal;

font-weight: normal;

line-height: normal;

FUNDAMENTALS

= TR

e KT
i B I B]
e T

dea gl WY PR e B B R,

e i
il iy, Pt el L B j—
o]
_—j iy, Pl b WL e, Sy e

3 L W

[PPPRNEEN
i Sy Sl i T AN
- o - vicl ind i & L7WS POF 1
P L | ol [——
R e | R LY =yl B L
Y R il P, R i by
[y e i w13 1
e e i L .
i i v . I
e | " g e s
= }
S mrary P P L TN SR LR s S SRR D L i b st e

L, B e o P, L e Bercie, e S i
[EEE——. ral w bk e v G Tl e s By [
"

=rasamin b
WA
T K P T

N |
iy B i S
Wm0 T BT
Frypesa g2 rar po g
ey ... m i
T . M -
[e — £ 2

Tee & 13

Figure 1-3: Firebug split to a separate window with the Style tab in full effect.

While this representation isn't necessarily bad—it does remind you that there’s often more
said in using a shorthand property than what you actually say—it can be confusing at first.
(For more on shorthand properties, see Chapter 2.)

Another thing to note is that the rules shown in the Style tab are listed in reverse-specificity
order; that is, the first one is the most specific rule that applies to the inspected element, the
second is the next-most specific, and so on. (For more on specificity, see “Specificity” in
Chapter 2.)

You can inspect any element just by right-clicking on it and selecting Inspect Element from
the contextual menu that comes up (see Figure 1-4). You can also click the little pointer-and-
box icon next to the Firebug icon in order to switch into inspection mode. As you move
around the page, elements will outline, and clicking on one will inspect it.

You can click just to the left of any declaration to disable it via Firebug. This can be very useful
when you're trying to see how properties interact by testing the effects of turning them off one
at a time. As shown in Figure 1-5, you can also see a little box of whatever color a given color
declaration means by hovering the mouse pointer over the value.

Ak

e

HaEag

O Lotk o i Weim

g P LE N Tan pp——
o Toed Lok
R s ik
S ki
e iesian In OF X
L L re— F]1T— Fard gspeaiy & mmolnmean e s Fo

e I e
gm Y JLYEY S
AR g P i o

Feow band Brvem B et map B e 5t R T A

g T R I I 1 TS PO T T T Ul ORI M
s T Oy 8 B T T PR SRR ¢ T O R B Ay 4 e

o e Lol i] q ey
R o I WCCA 2Pl 3OV N TG
i m g e e e e e e

T whaiy P gyt Bl e d iy acl v

Lo @ fp iy o iyl i) meagep. o R ol o Srees (o Bl
'] B

mmm— g

Py PO N

W < I POF o Kl 5w
o i TR
g B ot R i
. e Peducs Fim ok i)

e’ Chshits ea Bvsl

CE Tesilem Whilisg Dpsshing Lekmer

S R | VAL

Fpipmsny o0

—rverwvii ey A

-l O, KT

=rroravmss e 6

s L

Figure 1-5: Disabled styles and hovered color box.

FUNDAMENTALS

You can also have Firebug’s Style tab show you the computed styles for the element (Figure
1-6), which means it will show you the values that the browser has applied for every CSS
property it knows, whether anyone said anything about them or not. Remember, all CSS
properties have default values; here you can see them all. This view can be useful when you
want to know, for example, exactly how many pixels of 1ine-height the browser is
applying to a heading.

Rishies CEN Teallms Wiy Bk oy [llrll_'m_l
Irspecior Scrutiny [———
T DB el ot Il W e s —F . Tragenip, Te apacon. A Sale e 2
R T DL T L S S N D L T SR e ———
e T e s i o iinies — Rkl
R R . T [R T ——
L i oA =
. el e o Y g s -
¥ . i) . R L] P L ﬂ
e - -
- T | -+ =
o AR P LI
- L] apr
“ucy e 1
. [y L
L = []
" —" AT e
E . N e -
Pl s | A :....-\.q £

Figure 1-6: Computed styles.

You can also get a look at the exact dimensions and sizes of an element’s box model compo-
nents, like height, width, padding, margins, and so on (see Figure 1-7). These are shown in
pixels. Even cooler: When you hover over the box shown in this panel, pixel rulers appear in
the page itself, placed along the top and left edges of the element’s outer border edge.

There’s tons more: As evident in Figure 1-8, you can edit element attribute values (like
class) or the element content itself, add or edit CSS properties and values, and much more.
Explore the interface by clicking or right-clicking just about anything in the Firebug interface
to see what you can do.

B s herkvnd TRy e iprie Wby

TN Tl s vty [L * |

howves CH | Teoban Aeieg Somskewy [—

-
1 o e o Ut B B B N
{114 e
F Py wimLs QM RN BN RH LA GepRRE THES B
b D BL o ey delmeidi o i e e T]
g

whasal pratile"riip e B Lt o

= 4

[P B [T ETE S e Y
- I TIE]

B -am Trdlain L b} maidoy

Letsren [|
i i iderar
Irnspedior Soring ¥ mim ey B 13
' v e e el ek Figing. L]
Ty, i Py J e L i
= g . P et . T P U I R SO FEDTEE 0 T 8 " g

iy TRy TR AP faom an g Ty

e’ iy Y iy Pl B e v

i Lo WiMLS 0N sEr D g e THES [XX
T T T e T T = S SR P S S—— r—
L S e i
B i pralile iy a1 =
T sy [rge - n
e
4
e
-
-1 1
- o WP e b
#a claeyasts .
.] g e B i e 5
111 - = 1+ - =

Figure 1-8: Editing (SS on the fly in the Style tab.

FUNDAMENTALS

One word of warning: When you're inspecting an element’s CSS in the Style tab, you will not
see any pseudo-element-driven rules that affect that element. As an example, if you have a
rule using the selector p: first-letter, that rule won't appear when you're inspecting a p
element. Pseudo-classes will show up, but pseudo-elements won’t. This can be especially

challenging if you're using a clearfix solution that involves generated content (see “Clearfixing,’
in Chapter 4, for more).

If you aren’t using Firefox for development but want to get Firebug’s essential goodness, go to
getfirebug.com/lite.html (shown in Figure 1-9) and follow the instructions for
enabling it in Internet Explorer, Opera, or Safari, as fits your situation. You can link it into a
page that you're testing, or add it to your bookmark bar as a bookmarklet (which I

recommend).
[o L) |-'\- AR - -
o= L " L] i
Fie [l S Fessies ek His
Formii Ly & = IC haaiininad = i Py
iyl i | Pl B L. TR TR TE e
WWhat 15 Mirebig? REStairnces Comimenity Gt Iesnlved
[EFE—EE - Esoummrpdoe wns ik arr b b wnmy i g el T D
o
@2 Firebug -
Web Development Evolved, Qb bprem P il frbpmicm
Firebisg Lite Lirks and Elsewhere

SR whinl s Fisabug?

Figure 1-9: Firebug Lite running in Infernet Explorer.

This version of Firebug isn’t as full-featured as the Firefox extension—thus the “Lite”
moniker—but it’s still quite powerful and useful.

WEB DEVELOPERTOOLBAR

In addition to Firebug, the Web Developer Toolbar (WDT) is the other essential tool in any
Web creator’s toolbox. It’s a completely free extension to the completely free Firefox.

To get your copy, go to chrispederick.com/work/web-developer and install it.
Alternatively, you can go to addons .mozilla. org, search for Web Developer Toolbar, and
install it from the WDT page there (see Figure 1-10).

L sl W Davebacer - dd-ar for Faslns

IO || N L - e badowra B T DL

racila Bagoumer -~ ingir. Cmhe ppicasaes -

Add-ons for e: Firefox

| err— — —

il Web Developer 1.1.8

T W

T, Ut EP e TR LPE LR ST PR Meet Lhe Dirndoger
e e e i o g
v = Dremad =11
T R rrare g e
o el ol
i
Tl ahicvaeligaeer i ot ashs harl gou [Fep——
e e datri hakp suprort it continued dessloproml by
by e ik ok oy e pbipmi
drm

e w T e AN Piiallars Mol -

D e b - o i e

=

Figure 1-10: The Web Developer foolbar page ot addons .mozilla. org.

As with Firebug, there’s no way I can cover everything the WDT is capable of doing; in fact, a
whole chapter would not be enough. Here are some highlights from selected menus, but of
course you should take the time to explore all the menus and options available to you after
you've installed WDT.

You can disable caching of the page, which is useful if you're doing a lot of tiny updates and
the browser cache is getting sticky. You can also turn off JavaScript (see Figure 1-11), which is
useful for finding out what happens to a page when all the scripted goodness breaks, or your
JavaScript framework doesn’t load.

FUNDAMENTALS

L. Til:l g Dasiosar - daid-cm for P

B i eoion moriien - i miien i o T |

il ke ipd

S, iy Firefox
[ioa e Fogw Cobss
Dira e Poaoun Bother

D e Brleavee . I samrch for mid-a=a

B T

ia Web Developer 1.1.8

By el

o W L il 00 s i el ool Meet the Disvdoper
frer= 9
- = U T T L s Al
= im u-
ey rmman 3 ey i Lo vl
bl e g e
e B 1

ok oL
T dinwdaper of thar odd-on ek ghat? goa P L i
L

Folp sxprort sy conlinoed dindapment by

king o srnal conirid P ¥
A wm
— - g Doaaa U
| ™ -‘ I'|. A > - &5 :_:I: Sk ol ol =l

L Y e e] i
= LT L

Figure 1-11: The Disable menu.

Several things in the CSS menu are covered by Firebug, but one thing that’s pretty nice is the
capability to switch off just the embedded styles, or just the linked styles (as shown in Figure
1-12), or just the inline styles. (Not that you should be using inline styles!) You can even kill
off most of the browser’s built-in styles, if you want to see things get freaky.

The Information menu (Figure 1-13) contains tons of interesting tidbits, including showing
the class and ID information in the document; an accounting of the page’s div order; a
summary of the colors used in the page; and more. You can also invoke an element informa-
tion mode that lets you click on any element to view a summary of its attributes and their
values, its position on the page, font information, its ancestor and descendant elements, and
so on. The Information menu is fairly similar to XRAY in what it tells you; more on XRAY
later in this chapter.

00 W Dot Al 241 b Fodion i

MR | LI L M- T N |

+ Skig o main i Dol C9E By Msda Tyee & Brperer Tefaat Fw'm q
+ Bpomay e AL | prtmdded

Sk TR Wi Mgy | DO TR

* AR il Ui By B | - Linkid bt kst |

UHE:&'I::UIHI B i
T indevihedl ke bt
oo FET Y
Mosls
v e A ke
Kopics o Log: 3
7 Caingaries

spmach for wdd-ome - LB
b

1, Ao G Fawes

sl Web Developer 115
B b mi

The Wi Dipvrloper exicmocn mich i roce el @ ol by sl v o devriope ks

Bt i Pimin o

Figure 1-12: Disabling linked style sheets via the (SS menu.

-_nﬂ Swalirmam Mdoam ke baka |

: L e
i || ke, s g L T i, . §

Do gy I mdd £

i e TR e By AT A B
———— Drphvdmeas
- D ey ok Bre
D piory D Daches
m By Tea @ mbevald s W& broam e arme Lol i
Dingiry Link Datails e —

D piary O [wicamuasa s

Add-ons for | 2

Divplwy Takle Dapad
Dui piary Takls noemamean
s

—— Bt gy Tiske vt

cie Doelry Topograohe: infpesglics
B Wew Anthae Infprmation

‘Wi Cpint infrrmanian

o P R - |
Wi Db | Ol
Wtw Bivte] Bpt o acdiana r
a W brvalSriot
“Wiws Lk Ivformasea
" Haes M T ko ios
R LT TR
s Wi Benoresn Hesdors
-
A 1 P
A A
L TE N, F— 1

Figure 1-13: Displaying class and ID values via the Information menu.

FUNDAMENTALS

With the Outline menu, depicted in Figure 1-14, you can outline classes of elements—all
blocks, all inlines, all links, all positioned elements, all table cells, and so forth—as well as set
up your own customized collection of elements and colors. You can also choose whether the
elements’ names will be displayed on the page while they’re outlined. This is a much more
powerful menu than it might first seem. I think of it as the Layout Diagnostic menu, because I
can quickly outline sets of elements in order to quickly see how they’re laying out in relation
to each other and where things might have gone wrong.

A Wk Dorvabooer — dcamy o Neglos =

B, e e e s grn b Papina wmeed L - L

Lo e v T
Sl Frwei

O form e res

* Cwlivs Linky b =

2= Sl wt Tt]

Add-ons for @ Firefi s |

Cutlirm Coviar Ceramm ..

< e Pl Rae Irea et de'g

i _.'I.'!:!_'.]_J]:'.II_:'«"I::]I:.!-].JI.'T i.1.8

e e

Figure 1-14: Outlining and identifying block elements via the Outline menu.

The Tools menu gives you quick access to a number of validators, error checkers, and debug-
ging consoles. One of its best features, though, is the presence of the Validate Local HTML
and Validate Local CSS items (see Figure 1-15). In both cases, the page you're currently
viewing is packed into a serialized string and shipped off to the relevant validator. So, if you
select Validate Local HTML, the markup of the page will be sent to the HTML validator, and
you'll get back a report. This is great for validating pages being served from behind a firewall,
or off your machine’s hard drive—that is, pages that are not on the public Web, and therefore
unreachable by the validator service. With local validation, that’s no longer an issue.

[Tsl:} Wal Dwvslopsr - Aedd-orm ' Rk —

B e o | L LS s adowrall L T

m momm -,
Yakdus [E5
Wiy Feil

alcdain HTRIL W e s T
% Sakdus Link
5 3 Wil BerhEs 08
Add-ons for Firefox i
et Gt Reipulel
Edit Tooh.
o e — e
Erer Coeschn i
| Craicks T
i P [t akiey Pt Wi #els
r - [Vabdahy e |
"] Web Developer 1.1.8 L g UL 2 TS
[T
Try Pl TS BRI S 8 TR SO TR 4 Meet the Developer
‘__"'“_“__ o s il L i a1
=y SERE— gy
S [ra— e e
S i Ll i b o P
i ncicicm
The develaper of thir add-ax asks tkat gou Fleel whsnpederich
L [———— halp axpport itr continued devalry by
king o sl cosfrik

ek ol ol Dby
dewarrbed Cembs JEFR Pelicr

i | - [M AN Tredbmes ikl mem 1 .
l‘_ L %

Figure 1-15: The Tools menu.

As Isaid at the outset, this is only a taste of what the WDT is capable of doing, so take the
time to really dig in and find the tools that will make your life easier.

INTERNET EXPLORER DEVELOPERTOOLBAR (OR
TOOLS)

If you're doing your primary Web development in Internet Explorer 7, then you can’t install
the Web Developer Toolbar (see preceding entry). Instead, you can install the Internet
Explorer Developer Toolbar (IEDT).

The URL for the IEDT is one of those classically indecipherable Microsoft URLSs, so go to your
favorite search engine (use Google for extra irony) and type Internet Explorer Developer
Toolbar. It should be the first result. Go ahead and install it if you're using IE7. The IEDT
doesn’t work in IE8; we'll get to what IE8 offers in a moment.

Once you've gone through the installation, you go to the Tools menu in the far upper-right
corner of the browser chrome near the Pages menu (see Figure 1-16), not the Tools menu
over toward the left between Favorites and Help. In that menu, choose Toolbars, then
Explorer Bar, and then (at last!) IE Developer Toolbar.

FUNDAMENTALS

T i M Prad Teghitzs Rasratiog ¥ Weu b Pavarees, | nple ey
[+ Tl TR CE
M BR e Fewim bk Heb

G] e e Ty Coa (71 G @ @i "

Emtiade tial el 2 B v WL

p fforc-adioec i
B foarcedtink: 1 i)

<porivin 18 cEst <doewick aoes Boldfacdng: ke o ps
Sampis sucagh: Fiow o i s comparsd e -0l 23 o ha | Sirgem”
Ty pogs bur plecd gy Uiy gy g oF e oy sy ploaop 1 o ol i P e
N K ORI L S T I T] pc n

girg LT s BiiTiend
B DS Bkt il oy ol of Sl B N L e ol =
Tl iy B ey b e ity compwiel Pors -0 oo sl be e L1040, 00 —
Haayn o ¥ =
€ >

BT 0w

Ta =T i vome o, prem o= W { om0 [wee 1Y
E—

Figure 1-16: Finding the IE Developer Toolbar in IE7.

Once you've reached the IE Developer Toolbar, you get a Firebug-ish panel opening at the
bottom of the browser window, as shown in Figure 1-17. There are also some Web Developer
Toolbar-like menus across the top of the panel. You can spawn the whole thing into its own
window by clicking the little “two windows” icon in the upper-right corner of the panel, next
to the close button. Expanding the panel in this manner can be particularly valuable in
low-resolution settings like netbook displays and overhead projectors.

P o I re— | i W Pl B - e B 0 Dl Pl

T e i e ooy, e ol §

Figure 1-17: The IE Developer Toolbar in action.

One nice feature of the Toolbar is that you can easily toggle between showing computed styles
and just the declared styles using the Show Default Style Values check box (Figure 1-18).
Similarly, you can use Show Read-Only Properties to show you every last aspect of an
inspected element’s DOM (Document Object Model) properties. If you aren’t comfortable
with JavaScript and DOM scripting, this probably isn’t for you. (It certainly isn’t for me.)

FUNDAMENTALS

Roundivg 047
N TR O SRRt R T D) I B ORCE WO COMCADRED DR | o e e

-]
it gy el g el ! el o™y D] B, o T e L

Eastiade i bt CEE avd TR

TFE Sy m Fis Pl Disble Fiew Coblrw Bmages Coche Dok Publebe:
":""‘ TS T [P
o N R e S wie el
E

TaresT 1 e ooy, I e N o] [e Oy
—

Figure 1-18: The IE Developer Toolbar with Show Default Styles disabled.

The IE Developer Toolbar includes a subset of the Web Developer Toolbar’s features, but most
of the really useful ones, like outlining elements and validating local HTML and CSS, appear
on the first layer. View also has a nifty entry called CSS Selector matches (see Figure 1-19).
This will pop up a window that shows you all the rules in the CSS and how many times each
one matches elements in the document. Any rule that says “0 match(es) for:” isn’t matching
anything on the page, and you should consider removing that rule.

T D] el b DB T Tl 1 e L sl = 5 ﬁiﬂd-n

Figure 1-19: The Selector Matches report.

IE8 includes built-in Developer Tools, so you don't have to install anything extra. The
documentation is online and, as of this writing, housed at a URL only slightly less indecipher-
able than that for the Toolbar. So, just type Discovering Internet Explorer Developer Tools
into your favorite search engine and you should get there via the top result.

To fire up the Tools, select Developer Tools in IE’s Tools menu (visible in Figure 1-20), or
press F12 on your keyboard. Yep, that’s it. What you get is something very similar to the IE
Developer Toolbar, which is to say a hybrid of Firebug and the Web Developer Toolbar. The
menus are mostly the same as the IE7 Toolbar’s, but the tabs below that are more like Firebug
than they are the IE7 Toolbar.

FUNDAMENTALS

[Esich] iy Epmador

SO
T o W
R Pkl Bl "

- e ey - - "

Foroue Jae
g e
e B
Crrmileommem
Rounding O - -
n i Comrm of dipgieg ima the pum oE e Tk .
0 bl b | b o berbilLsind L B 1 Mapleren B r
RR—— . CETTTTE .
WO Dol e Duind B Tehe e Nk e . M=
HH 0% o el D |
- [ty e o g
[= 4 A T kg L A
ey & = LI - K1 e]
Mokl A TLHT ¥ =}
e T T R | Pt s e
- OLLR L L B
a-olin L - s &
&G L P e 2 e
L, T
LN b B e
= CaE L Al 1
e bl <
- Hrac 1
L Gk kL -
A - s &
B s b ¥
"
i Wi -
Th o7 B Fod Dae, o LW = ol~4EH
E—

Figure 1-20: The Developer Tools in IE8.

One thing that I personally find confusing about the Developer Tool’s Style tab is that the
styles it lists are in an order that doesn’t really make sense to me. It certainly isn’t in order of
specificity. The listing does show which declarations are being overridden by others, which is
nice, but without a sensible ordering like that in Firebug, it’s harder to work with.

Still, even though the Toolbar and Tools don't capture the full range of features found in the
Firebug/Web Developer Toolbar, they are quite useful and should be a part of any Web
developer’s Internet Explorer install. They can be quite useful in tracking down the source of
layout and other oddities in Explorer.

DRAGONFLY (FOR OPERA)

If your primary development browser is Opera, then you’ll want to make use of Dragonfly
(Figure 1-21), a development environment that comes built into Opera 9.5 and later. Go to
opera.com/dragonfly to get more information.

L Ealal s D gy | Pk o i s e P b

.D e | e s oo iy

Dpam Dragonlly — Bug conrol, accslanted

S —

“Wekalrm b G [y Sk, B bip we p Qi Puisile birsind
Tt s Dimtady Do’y d lerary s sl Nl b o il i it By ot iy il B iy yme
W el phie e Corotimgii'y We wwlsl Far

Ll i =]
e bitn pet il D e ey Dl bl
herd BB lrw ok b B B W it Tl s o 1 gl g
et g el Bl

T

Figure 1-21: The Dragonfly page.

To bring up Dragontfly, the default path is to pull down the Tools menu, and then under
Advanced, select Developer Tools. However, you can install a Debug menu by going to
opera.com/dragonfly and finding the install link. Once you've installed it, there’s easy
access to Dragonfly and several features in that menu. Either way, you can also press
Option+Command+I (for Mac users) or Option+Control+I (for Windows) to bring it up. An
oddity is that this keyboard shortcut isn’t a toggle: If Dragonfly is already open, you can't use
the keyboard to close it. For that, you’ll need the mouse, or else Command+W (Control+W)
to close it. This works great if Dragonfly is open in a separate window. If Dragonfly is docked
in the browser window, though, Command+W only closes Dragonfly if it's been focused by
clicking on something in it. Otherwise, it closes the whole window.

A great feature of the Debug menu is that it has links straight to HTML, CSS, and other
specifications. Another fun area is the Layout submenu, which lets you set Opera into layout
modes like Emulate Text Browser and Show Structural Elements. There’s even a Nostalgia
layout mode (shown in Figure 1-22) that will warm the heart of any veteran of 1980s-era
computing.

FUNDAMENTALS

W Opgea Vi fdw Was Besbeasdcn Woomsiiil o B m i (W Tear fr el ki

Figure 1-22: The Dragonfly page in Nostalgia view.

Though Dragonfly’s layout bears a strong resemblance to Firebug’, there are some notable
differences. In the first place, the Styles tab on the right can show you the computed styles along
with the declared styles (see Figure 1-23), and each grouping can be expanded or contracted. As
with Firebug, what you see here is not exactly what was declared, with shorthand properties
being expanded out to individual properties. One nice touch is that Dragonfly will show you the
shorthand properties if you want to see them—at least in the computed styles.

Another, less welcome difference from Firebug is that any declaration that is overridden by
another is grayed out with [overwritten] in orange-yellow text next to it (shown in
Figure 1-24). This clutters things up and makes it harder to see the values in the overridden
declarations.

LNl] Tasn

Opera Cragonfly
T

POM R RS G R T
M D i Foskeia b Cows Duageeiy | T o posh nl B

-

e rew e
arwe g e g ey . 1 T L i

], EF T
TP e i mre e
o i

[- T
=T] el - podwidaTy - S - Suimgy = ey = Loy posy - Lriem - o

Figure 1-23: Dragonfly with the Computed Style grouping expanded.

[=T

v
el N E TR
M hem Amewh doeleass e R =
E O v T s ki fi O Dengeriiy 1 ke o pesh sl Fm = -
- .
{ b i
4D ’ q
4 B
N it sarpias i
- i - s el |

i L
I
4 sl
mrnmer olane arerim
T
’ .y a Lmiiday
=

Lo-asal ke . b e v "

L i

W ST LA

Figure 1-24: Overwritten styles shown in the Styles tab.

FUNDAMENTALS

Figure 1-25 depicts the Layout tab, which shows you the layout box for the element being
inspected. In addition to showing you the dimensions of the layout box, it will also tell you the
pixel values for various properties like of fsetTop and scrollLeft.

Fa) Tk b s ek [s e

Opamn Dragonily araam
- e - - L
e g i s ¥
T CHEE ML B DR N WG L e W
B L e F ok s [y Do Desgondly | T b pas. it Wagiricn
4 R e niw -
] = |
T |
- Rrm |
- O (O (O B el ||
I |
] |
B 1
Pagesre Triac :
i 1 dyrpae s cloags 1
g o e g s e | |
A o :
e OB Wikl |
] - T |
e P |
itk |
- L |
.23 - |
b || wammas |
- i -
T e ciantT)
H -]
» denfldh
B Sgan E LT T
1o v e o it o e el o i o k. W i o e M. gl

Figure 1-25: Dragonfly’s comprehensive Layout tab.

WEB INSPECTOR (SAFARI)

If your primary development browser is Safari, then you’ll want to call up the Web Inspector.

To activate the Web Inspector, go to Safari’s Preferences, select Advanced, and then check the
box next to Show Develop menu in menu bar (shown in Figure 1-26). Once you've done that,
you can call up the Web Inspector by selecting Show Web Inspector in the Develop menu, or
else pressing Option+Command+I. As with Dragonfly, the keyboard shortcut isn’t a toggle: If
Web Inspector is already open, you can’t use the keyboard to close it. For that, you need the
mouse. Command+W doesn’t work unless the Web Inspector is in its own window; try that
when it’s docked in the main window and you’ll close the whole window.

R L
d | r i | b e (e e o e, T mpw- | & z

mEEga e mm

@ AL bmcand

E
{ Asgir | Lo Remwed | Loge
| gy | premioery | e |
web | t Uiyl e : [S s fom e prmallyr thas - e Sl | Pt
T Wil roporine 5w oy w0 :::I:.w;‘:::tm“.'w e
Ersbrlis g Wab irmkpecier
8 Erlarl — Eraoks o Desvnl Grenm simgl ey Srigeierd F-x | o, Desvwicg e o [mag et Dermerg
e g o T
n GESE CFedeny Bl Fenis: | Chegs Smungi llie
= Ry MDA O — A [| R sy PR, IS Pk bl |

o e kol
deleine sritg -bandle- Demtifler mons Sesibemrlepcbnioer Bl W
LUaisg b Wak lnnpeciar

T Mgy Jrprine oo b oo e bey weh page o0 Frowpeer i Jmcn ppws, 1) highlighty
TR Y TR GGE G RO B R R EWERY. TER GBS RN R RO By rade narma. i an CRE ol e

O R R el L R L e Ry T TR e D ey B oeasle O odeg B e 1 B deacer, Thes e ves sl
Vol g O LD g B By TGk B B e Bkl Bl bedeh i B 1 P Paded b

Tl Filalii bl WPl Pk G 1 e L e 0 e e vl ke ' s, e B

U e i S S A B 18 CEG TR PR AR T T YRR . TR TR B PR Y R 00 W TR
crmppriinn wriord mat Deting yos truly e b contad =g wovinEen Sfhe b peor Lt B0 phorcheed proow rine e @ Bt
LS L S BNV PR RN DTESTTME AR DF L EETd.

Tht Faricn DRoEN B0 ION B QUACK Wil N0 B PR R B, DR TR S0 DR BYRCT TR O ML

Wariony HTHL g fprvalins m praopriins, nchuciog lpsoth of opw recies, Pt Wil Ao Hgin L coa s serm ok @n i eyl ing ifremgiics g

Figure 1-26: Enabling the Develop menu.

Though the layout of Web Inspector bears a strong resemblance to Firebug, there are some
notable differences. For instance, the panel on the right has computed styles as a grouping
(see Figure 1-27). As with Firebug, what you see in here is not exactly what was declared, with
shorthand properties being expanded out to individual properties as well as showing the
shorthands. Also, if you select the Show Inherited box, expect a very long list.

Just below that, each rule that applies to the inspected element is shown as its own separate
grouping. You can expand or contact each grouping. Below those is a Metrics subpanel that
shows the dimensions of the layout box for the element being inspected (see Figure 1-28).

FUNDAMENTALS

e o S MR S i— i [l [=

Ersaing Web rapssr i

B DM CRM L Dbl Aot LA T Adrbd B b O Ui U Bl Wb Bl Bl , Dubrobidgl Pt 4 Dbl Do
Ty PR Y S T ———— []

& DA DRI - DD By AL b DR R DR OO P TR OO DR TR O

n By Wi ok Fow e e o', i e, e e g rer s mww s Tee s e sy e brsdin wnd e,
#rdl riganch e papicwine. b grder o ven o el [moeoee.

delaciin winin becdle ldeed e care o EvbliiSeweiapra DA raa Eems Lrue

‘Ugirg s Web lnapacicr
THE W D L Gt Gl el by S SRR IHpEC DRTRENL. Dvdd b, & S L %
ey b g s b i b o Vi nan [S P TR =

i, " v e] v P e

Figure 1-27: The computed styles.

[Lals] =y =~ g L]
Ii|iilﬂi|ﬂ“lwumnﬂﬂm -:.I'h- ;\-I
| Erobiing Web lnspaciar H

& S — B T Dbkl e B ' D AR O L Dl O LD Calidn, Diarki M B DS B
e e s D Wre s,

u g (s — Duobind by celters. or w Deppant Do D0 e 0 0D T ol [moenr.

» Ay BT B PRI Ew'nd . BN el = G T A ol T L B e
aml rrlamh P sppbiadie el e e e W b,

oW FEILD D - LA LI LT - D - S LD L LT S LD

g e e s E

Figure 1-28: The regular styles and layout groupings.

XRAY

If you're looking for a lightweight cross-browser element inspector, then XRAY, shown in
Figure 1-29, is right up your alley. It has a very limited scope, but its focus is actually a
strength as long as limited scope is what you want.

B0 HLNY e mr e
s [TH] * i e e rery * LR T}

tools & rescurces for web professionals

syl modar g==cln FEICUTTEL do==loazh
KRAY: look benaath the skin Hyls murinr
AT B & s, andl Wishiit aned T
Iebcuibi B Bty [htacbnh g Bttt Floibin,, Earv e '~
[T [0 TP SRy Wy SRR . SRS —— e
Wrssems
e wrfil s ireer 0 o s g g o Veme e meroes sdosod e =1 F 1
revpirn vharging Tee bnwirnasdl v
Wra
Brag RAAT in yowsr Wi racks Bar e
=1 .
ERAY - j
Laad arey =ak pagpe
HH b ERAY haskrsirk

Elck slamasiti an the gajge ta KAAY sheen

G e Vae miars detled sstreclioni & e sbeun NALAY

W i i oo e 1 1 L iy o s i DAY b il

M

Figure 1-29: The XRAY page.

Head to westciv.com/xray and drag the big XRAY box to your bookmarks toolbar (or
the menu, if you want to hide it away). Then, whenever you’re on a page and want to inspect
an element, call up XRAY and select the element that interests you.

Once you've selected an element, it will be highlighted and show dimensional information to
the sides, and the XRAY box, visible in Figure 1-30, will provide some extra information
regarding its place in the document tree, any ID or class values, and a core set of CSS property
values. If you select any of the elements under the inheritance hierarchy, XRAY will switch to
inspecting that element. To get rid of XRAY until the next time you need it, just click the close
icon at the top-right corner of the box.

FUNDAMENTALS

LiRsl 3] WREF - ko mak dAicmT =

FErT T T
aliia Balar, Firsk
Bl Na) Ui B i D Bl Pl b by i ot Pl

Figure 1-30: XRAY in action.

A similar tool with a different purpose is MRI (westciv.com/mri), which lets you enter a
selector and then be shown which elements on the page that selector will select.

SELECTORACLE

The name SelectORacle (see Figure 1-31) sounds like an advertisement for a database product,
but it isn’t: Instead, it's an online tool that translates valid selectors into something resembling
regular English. (The name comes from mashing “Selector” and “Oracle” together.)

Gotogallery.theopalgroup.com/selectoracle and enter one or many valid CSS
selectors, no matter how complex. Stick with English or switch the language to Spanish, and
then click the Explain This! button. You’ll get back an explanation of each selector you
entered. For example:

ul li:nth-child(2n+3):not (:last-child)

...will get back the explanation:

Selects any 11 element that is an odd numbered child starting with the third child and that is
not a last child that is a descendant of a ul element.

The OPAL Group .

Heprg ‘e P oiaE o undanaendng rsrdres

' selectoracle

Engisn & Gpameh Fanelarions of CRES 157 CRER palEO
Eriy mpmiornd -r-up-mhl,r-a-uun TR seboonin bl mmdir ” Howrs vowe ol 0 Ciend on T S oy oo on G0 Mmoot s kil
"I Trpat” wsea, o peceridis cha LTRL of 0. eipiesheet e e "UHL [epe” aes. oo of ol e SeleciTEsds will

ﬂpm:rm:iﬁrpmbhu nud & vt chefix ooy] ks, Yau've e swrsal o keee bl ks these Tex-reiss peses k-
S T S

Dhireet |

Walp B opd B odg e

TEL I

pimmi |k e

Bl 5 R0 s DR - 1 B 1 -2 R
13

3
T Ll L. | | £ RARLER] 1§
Kigd | “reatirldenn

il sscope cither BT wik [0] wikch ah 1 R T—

Figure 1-31: The SeleciORacle page.

Okay, that might be a little confusing at first glance, but if you read it slowly it comes (mostly)
clear. Also, as of this writing, no browser in the world supported everything in that selector, so
don’t be too concerned about it. Just know that, should you come across a selector whose
purpose is unclear, the SelectORacle may be able to help.

Ever wanted your browser to scream at you when it loads a page with outdated, icky elements
like font? Now it can—visually, anyway—with diagnostic style sheet.

DIAGNOSTIC STYLE SHEET

With a diagnostic style sheet, you can have a quick visual cue as to when things have gone
wrong with the page’s markup. One example of a diagnostic style sheet can be found at
meyerweb.com/eric/tools/css/diagnostic (in both CSS3 and IE7-friendly
versions), and a similar resource is at accessites.org/site/2006/07/
big-red-angry-text.

What'’s the point? As an example, one line of the meyerweb diagnostic style sheet says:

*[style], font, center {outline: 5px solid red;}

FUNDAMENTALS

This will put a thick, solid red line around any element with a style attribute, any font
element, and any center element. You could spice it up even further with something like
background-color: lime to really drive home the point. The idea is to catch places
where dodgy markup has appeared, whether through entry via a CMS or some other means.

You might think that validation would catch any markup problems, but that’s not always true.
Sure, it will warn you if you're using font, but there are other problems you may encounter
that a validator won't catch. Consider the common example of a JavaScript link:

Next

This will all look fine to a validator, because the markup is correct. The problem is that for
anyone without JavaScript, the link will do nothing. There should be some kind of non-JS
fallback, and it should be handled with an href value. So another line of the meyerweb
diagnostic styles says:

alhref="4#"] {background: lime;}

That will punch up any link that lacks a non-JS fallback value for its hre £ attribute. (It works
using an attribute selector; for more, see “Simple Attribute Selection” in Chapter 2.)

How would you use diagnostic CSS? Either by importing it into your development site’s CSS
and then removing it before going live, or by setting it up as a user style sheet in your browser
so that you can apply it to any page you visit.

Here’ a full diagnostic style sheet which does things like find elements that have no content,
call out images without alt or title attributes as well as those that are empty, find tables
without summary attributes and table headers that have invalid scope values, and links that
have broken or empty title and href attributes. Note that this version will not work in IE7
because of the attribute selectors. This version won't work in IE8, either, because of the : not ()
and :empty () pseudo-classes. Figure 1-32 shows a test page for this diagnostic CSS.

div:empty, span:empty,
li:empty, p:empty,
td:empty, th:empty {padding: 0.5em; background: yellow;}

*[style], font, center {outline: 5px solid red;}
*[class=""], *[id=""] {outline: 5px dotted red;}
img[alt=""] {border: 3px dotted red;}
img:not([alt]) {border: 5px solid red;}
img[title=""] {outline: 3px dotted fuchsia;}
img:not ([title]) {outline: 5px solid fuchsia;}
table:not ([summary]) {outline: 5px solid red;}
table[summary=""] {outline: 3px dotted red;}

th {border: 2px solid red;}

th[scope="col"], th[scope="row"] {border: none;}
alhref]:not([title]) {border: 5px solid red;}
altitle=""] {outline: 3px dotted red;}

alhref="#"] {background: lime;}

alhref=""] {background: fuchsia;}

- Tals) Tarisg —
= .

1. erapiy fine e ol vy b e ol speoc-anky line e fnllare i [
S ﬁ"’l: Ll-lI! Apbad s §oemy mak g pallea g
Amiglel, du

k-3
£
. gy g Bk

: auan |,asds | sakla

i, wpey v ol | .—.--" l,.i|*|r-'|_-|—q'|
I [
I oy S

R — e e .

el mapiy sl Alled ol

b e E i o

Tahles :
L £0_ -

Figure 1-32: A test page for the diagnostic CSS.

REBOOT STYLES

One thing you may not have considered about CSS is that it’s always applied to documents,
even if you create an HTML document and don’t write a single line of CSS for it. In fact,
there’s a whole lot of CSS being applied to an “unstyled” document (like the one in Figure
1-33), all of it coming from the browser itself. The default size and font weight of headers, the
separation between elements and lines of text, the bullets next to list items, and even the
distinction between box and inline boxes are all driven by a set of default styles.

And, of course, the default styles vary slightly between browsers. This is not necessarily a
failing of browsers, because there is no specification saying exactly how documents should be
styled by default. Given that, most browsers do their best to simulate what Mosaic did with
documents. Yes, Mosaic—because that’s what Netscape 1.0 tried to simulate, which is what
IE3 tried to simulate, and so on. If you dig far enough into the default styles, you’ll find things
that are exactly replicated from the early Mosaic betas, right down to the pixel.

In response, a number of people developed reset styles (see Figure 1-34), which were meant to
reduce as many inconsistencies as possible by explicitly setting common properties. The

simplest of these is:

* {margin: 0; padding: 0;}

FUNDAMENTALS

L TaTs] [QTR

| Faplsraiisa

Subw roarch Form | s WieE | Enicr pom wowh e

& mrymechoom [Wb

B e 1) kb g Sl o Ll s
| Bkh e Dl From e
UES Tools: Rt D55

The paal of 0 e sivisbor B o msr bvesr s thing» ix kg, mag el o The
el rdasracy bobad i wids i ey ST g d K s g sl i O3 M, s e g insl
| il A M B s ol i cfeln
| The [C I E vy pomre- Th "] d ‘—h:—rrlh-:uwl.ﬁll
ey e R i e A s el i SRR A " LTy ind, ved i i v Biad W
| i o v e becire. Fill m ey [e g L,
| s ity v, thi e . WL g, P N- B ad
| N yws =as bovae mp vl syl e el Deeel BT ol ey im hplﬂl#-d.-r- s by sy il o e Pl ok, e ghere I mangly
| Y . o e il 6 e e L s bt . I g =1 o i R B wha g
| s poming, s 3

¢ vl 8 | IEEHLE

ol < ST BEE s, ERCL e,

W1, n-_. Bi, ki, 84, B, op, W

| ma e 3 midrmin; =)

Figure 1-33: An “unstyled” (but actually greatly styled) document.

L Anls] CEi T Rt 10]
o e e L D e DL LT ek e e O G e W B -

Tl o W
Ehip e WX B EI DT AL
1

The ol od aecwed nbMMMEhuﬂﬂhTﬁ-hlmﬂ . w-m. T
i ww dposend (8 8 Yy 307 peee. T yeu'r iemroend. s vy [gil= Y e arigiml
L Ty T s = T BT
h“mwh’lﬂ'l‘d:*ﬁ + Thare a1 ey ol it o M‘H’l“ﬂmimh%]m
roeEe e ,ulu:l.ntn-l.-n':ﬂﬂrn wumum-mm.] o= bl i maich
pn'p:tn:lml-hh“ 18

il il e bt
S e e e et Rt

1
¢ Wi, S, E.

ki, b, lmi, Gled. e 6, dea.
[

S bmighie 1y

Figure 1-34: A document with basic reset (SS applied.

TOOLS

A lot of people use this, mostly because it’s simple. The problem for others is that this applies
to all elements in the document, including form elements like text inputs and select boxes.
Since browsers currently handle CSS on form elements in very different ways (and some won't
apply it at all), the “all elements” approach means that forms get very inconsistent as a result
of trying to make the browsers more consistent with the reset.

So more complicated resets were developed. One fairly popular reset is available at me ye r-
web.com/eric/tools/css/reset. It starts out like this:

html, body, div, span, applet, object, iframe,
hl, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, g, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, 1i,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
margin: 0;
padding: 0;
border: 0;
outline: 0;
font-size: 100%;
vertical-align: baseline;
}
body {
line-height: 1;

Wow! That’s a lot of elements. The reason to do it that way is to select all of the elements that
aren’t form inputs (input, select, textarea) and make them act in similar ways. The
first rule explicitly sets margin, padding, border, and outline to zero, and forces all elements to
the same font size and text vertical alignment. The second rule sets the body element to a
reduced line height, and that value is inherited by all of the elements that descend from the
body element.

There are more rules in the meyerweb reset, including some that remove list bullets and
auto-generated quote marks around the blockquote and g elements, among others. Again,
the underlying point is to get all browsers as much on the same page as possible before
starting to write the CSS that will make the page look pretty.

At this point you might be thinking, “Wait a minute, that means I have to undo all the stuff I
just did! I never want the page to have a 1ine-height of one—that’s too cramped! And I
never want to mess with the vertical alignment of superscripts and subscripts either!”

Those are all valid concerns. What you do is modify a style sheet to meet your preferences.
Let’s say you always start with a 1ine-height of 1.4, to get that nice airy feel to your text.
Just modify that line of the reset:

FUNDAMENTALS

body {
line-height: 1.4;
}

While you're there, you might also feel like adding your standard page background and text
colors along with your favorite body font:

body {
font: smaller/1.4 Helvetica, sans-serif;
background: #ABACAB;
color: #444;

}

You can pull the rule that strips off list bullets because you know you’ll never want to change
those. (Which is not actually the case for me, but hey, we're all different.) Add in rules that
define exactly how and how far lists are indented, the separation between paragraphs and list
items, the way you prefer to style st rong, and so on.

By this point, what you have is not a reset style sheet, it’s a reboot style sheet. You're rebooting
the browser into your preferred baseline for styling a document, establishing a customized
starting point on which you can build any project. With that rebooter in hand, you can get a
jump-start on each new project, making it the kernel around which each final style sheet
SrOws.

Not only can you reboot browsers with CSS, you also can upgrade some of them with
JavaScript. Seriously.

IEQ.JS

With Dean Edwards’s IE9.js, you can make IE5 through IE8 act much more like (the still
unreleased, as of this writing) [E9 when it comes to handling CSS and HTML. You can find
this at code . google.com/p/ie7-js—yes, the ie7 partis correct (see Figure 1-35). (It’s
because this project started as IE7.js, and when IE8 and IE9 came out, new versions were
needed.)

IE9.js is a set of JavaScript routines that, if the browser is a version of Internet Explorer before
IE9, will scan through the CSS and HTML of a page and figure out which parts aren’t sup-
ported by the version of IE being used to view the page. It then does a bunch of fancy back-
end juggling to make that support happen transparently.

As an example, [E5 and IE6 did not support attribute selectors. Thus, if you have a rule like
this:

alhref] {text-decoration: none; color: red;}

LRl s B7-h - Prainc Sy om Cosgly Crde L=

ezl oo g b/ T

< gy phpen ey g Lo o

About Cotulimam ¥ 7 oo
Frinwe iy b il - i L i i Gl 1
peowmee. Iz U g AT el 0500 vt i sl o PG werl corecnyp ueeer 183 nd
Famsrad doiondn: P
TELE e
Status
Erarand o &1 Lini: e St
Crargan
Lsage Ml
SR o
T = T W
The I P i
[F8 4
Fowly Promoi s
41--{iF 1k 10 TR
il e 1 T il o o . L e T L Dromm: TogE Gra
21 [|~
L L] Fer mi e o Hass
BE AR
[F-0] o
41--{iL 1k 10 KT
ik Lk, "R s . LT gl i ' Y Pk B . 1 e T P D i L
21 |
Fi i o’ mpy’ b il BT ' v e e R
a
L LR "

Figure 1-35: The IE7.js page.

...IE5 and IE6 will ignore it completely, and your links will be left untouched. (While this
would make Jakob Neilsen happy, the project’s designer will be considerably less impressed.)
With IE9.js, though, the fancy script juggling will set things up so that IE5 and IE6 can apply
those styles to links, and so it Just Works. All you need is a link to IE9.js from any page that
needs it, and you're set.

Of course, none of this will have any effect if JavaScript is disabled, which means you have to
weigh the benefits of this script against what you expect of your site’s audience. Do a lot of
them even use IE6? Are they likely to have disabled JavaScript? And so on. Of course, those
are the same things we have to weigh with any site design, so at least it’s a familiar process.

The usual usage recommendation is to enclose the script element linking to the JavaScript
file in a conditional comment, like so:

<I-—[if 1t IE 9]>
<script src="/code/IE9.7js" type="text/javascript"></script>
<![endif]-->

FUNDAMENTALS

The script itself will make sure it’s only run when needed, so you could skip the conditional
comments. Doing that, though, means that every visitor ends up downloading it whether the
browsers will ever run it or not. With the conditional comments, you make sure that only
those browsers that have any chance of running the script will bother loading it.

As noted, there are also earlier versions of the script meant to bring previous versions of IE up
to the level of IE7 or IE8. If you find that IE9.js doesn’t suit your needs, try one of the earlier
versions.

SMASHING CSS

SELECTORS

IN A VERY real sense, selectors are the heart of
CSS. Without them, wed have no way of assign-
ing styles to elements short of embedding them
into the attributes of every element, and that
would be awful. By granting us the power to
select whole types or families of elements to be

styled, we can accomplish a great deal of styling
with just a few lines of CSS.

In this chapter, we delve into the details of using
selectors smartly as well as survey a broad sweep
of widely supported and used selector types.

CHAPTER

FUNDAMENTALS

PSEUDO WHAT?

There are two types of pseudo-thingies in CSS: pseudo-classes and pseudo-elements. The
CSS2.1 pseudo-classes are:

® :1ink: An unvisited link

m :visited: A visited link

m :hover: A hovered element

m :focus: A focused element

m :active: An active element (such as a link while it’s being clicked)

m :first-child: An element that is the first child of another element

® :lang (): An element based on the value of its lang attribute
The CSS2.1 pseudo-elements are:

m::first-line
m ::first-letter
m ::before

m ::after

So what’s the difference? It comes down to the way the pseudo-things affect the document.
Pseudo-classes act kind of like they add classes to the document. Pseudo-elements have effects
as though they caused elements to be inserted into the document.

Take : : first-letter asan example. Suppose you want to make the first letter of every h1
twice as big as the rest (see Figure 2-1). Easy:

hl::first-letter {font-size: 250%;}

This happens as though the CSS and markup were changed to be:
hl first-letter {font-size: 250%;}
<hl><first-letter>H</first-letter>owdy, y’all!</hl>

Is that what really happens inside the guts of the browser? Who knows? All you know is that it
works as if that’s what happened. Thus the name “pseudo-element.”

Similarly, pseudo-classes work as if they cause classes to be attached to elements within the
document. For example, imagine that a browser attached a class of “first-child” to every
element that was the first child of another element. You could then style any of them by saying
things like:

li.first-child {border-left: none;}

SELECTORS

Hnwdf, y'all! I'm just so darned excited!

Figure 2-1: Enlarging the first letter of an h1.

Simply by changing the dot to a colon, thus yielding 11 : first-child, you have the same
end result without the need to go sprinkling classes all over the markup.

You may also have picked up on the double-colon syntax used with pseudo-elements. This
was introduced after CSS2.1. As of this writing, no browser requires that you use the double-
colons before pseudo-elements: A single colon works just fine.

As a side note, CSS3 adds the following pseudo-classes, most of which are not widely sup-
ported as of this writing:

m :target

® :root

m :nth-child()

m :nth-of-type()

m :nth-last-of-type ()

m :first-of-type
m :last-of-type
m :only-of-type
m :only-child

m :last-child

B empty

m :not ()

m :enabled

m :disabled

m :checked

TARGETS WITH STYLE

It can be very useful to point to a fragment identifier within a document. What’s that, you say?
It’s as simple as this:

Section 2.7

FUNDAMENTALS

Anyone following that link will (if the browser gets it right) land not only on the targeted
page, but also at the point in the page where that fragment identifier (the #sec2-7 part)
appears. This is sometimes done with an anchor, but it’s better to just use an ID. Here are the
two scenarios:

<h3>Exceptions</h3>

<h3 id="sec2-7">Exceptions</h3>

In either case, while the browser will jump to that point in the document, there’s no visual cue
to show that you've gone there. With the : target pseudo-class, you can provide a cue. For
example, if you wanted to give a particular cue to any h3 that is the target of a fragment
identifier (see Figure 2-2), you could say:

h3:target {color: maroon;
background: #FFA;}

LAl [t] —
- L]
Tou'T harvr o da this F'ee owors page, ol b s o T kg (ma i i ocwerr vhe saew Wik st Far oy e, .

gt Pl I vma i’ i e T i M B, vl ol W qmare] cw b il i ey st el e e, Mars il s ey

Exceplisas

O e e P Bt e paipe WS MOl S OlaR o Tour peacrl Wkis. Pl cimrple, leTs 48 I o Melp pigge— e
i e 0 ol e, Egha - ehonld b 5 ey ikiehar inocsd of 6 ol ive b, Mo proslom | e seroar 8 oyl bt e vhe peas el
B el wvi | -

AETTLE iy

.l i d-Ealira ffa]
= iTLE
The -memcke meder defisd in e specifiostia woill comsr dhe sidcher in- barvs vy h - .0 Ty

Vsl vri s menl | Ll prinrars ot B afoch me pepagbd Boeidies Dl

Lix's mika tha ol e . Suppos v v § whols series o belp pege , 5l of which need sary ddeher. Yios don’ rally wam &
WEAE 0 il . e el vl shoed i vy o o e i jou " D coree w0l [O e, CFEE B e e e, ik
el wwn This S i pha coamsis:

Ll
8

= =iar
WLNE. B AL gLE 10 |

Thia filz s 8 madaced o of miTeciam fom preresl . ma, Wit 2s ol de vl charged . Mo In onter 13 6§ o omild Blegme §1
o -mch bclo pagx
SETTLE iy ek e

HLER L (0 L o P B L O AP L L Bl o
--s-n-.:?‘ = g

Tha becaviar will mpan da orykis (o kel p. wes A5 S Gew-- F yed plics e cormorarsd cormaly. Agais, the carads order oo s
Plrp 1 pom e wapeybong 5 bl D el (i, el pairor 0 Dl e il s e i e il Ui [l Lty siwrmi ks B
pocdcEor o the dme pecs, In oifwr wends, e clower mn i dapn. oormrmesd i e sore, e mow Lepesni B

AnaN i onker 1wl e ol b, ou SR Wi 08 8 Uspor il of your i, el sl e L ol e ees wone. i el plge
aemi b Bl Tt Ce iy 0 b i

: o

Figure 2-2: Highlighting a targeted element.

Of course, you might just want to apply that style to any element that’s a target, no matter
what element it is, so just drop the h3 part and add a universal selector at the front, like so:

*:target {color: maroon;
background: #FFA;}

SELECTORS

(And technically the universal selector is optional in that case; you can write simply : target
for the selector.)

If you're looking to go a little more Web 2.0 with the targeting style, you could set up a
fading-background effect. You know, that whole “you’ve done something, so a piece of the
page’s background will go from yellow to white to let you know you've done it” thing. You can
do that fairly easily with : target and an animated GIE Just create an animation that’s a fade
from yellow to white (if that’s your site’s background color) and use it as a background image.

*:target {background: url(/pix/yellow-fade.gif);}

SPECIFICITY

It’s hard to say three times quickly and can be even harder to thoroughly grasp, but it’s the key
to understanding how CSS rules interact with each other.

Specificity is a numeric representation of the “specific-ness” of a selector. There are three
things that are used to determine a selector’s specificity:

= Every element descriptor contributes 0,0,0,1.
= Every class, pseudo-class, or attribute descriptor contributes 0,0,1,0.

= Every ID descriptor contributes 0,1,0,0.

Don't freak out (yet)! Take a look at a few examples first.

div ul ul 1i 0,0,0,4 Four element descriptors

div.aside ul 1i 0,0,1,3 One class descriptor, three element descriptors

a:hover 0,0,1,1 One pseudo-class descripfor, one element descriptor

div.navlinks 0,0,2,2 One pseudo-class descriptor, one class descriptor, ftwo element
a:hover descriptors

#title em 0,1,0,1 One ID descriptor, one element descripfor

hlf#title em 0,1,0,2 One ID descriptor, two element descriptors

Hopefully, this begins to give you an idea of how specificity values are built up. Now, why the
commas? Because each “level” of specificity value stands on its own, so to speak. Thus, a
selector with a single class descriptor has more specificity than a selector with 13 element
descriptors. Their values would be:

.aside /* 0,0,1,0 */
div table tbody tr td div ul 1i ol 1i ul 1li pre /* 0,0,0,13 */

The “1” in the third position of the first selector beats the “0” in the third position of the
second selector. Given that fact, the “13” in the fourth position of the second selector means

FUNDAMENTALS

nothing at all (in this very limited example). The comma separators help keep this clear;
otherwise, the selectors might be written “10” and “13,” leading to the erroneous impression
that the latter is more specific. (This actually was a common misapprehension in the early
days of CSS, before the comma-separated notation was settled upon.)

There’s another common misconception, which is that structural proximity matters to
specificity. For example, suppose you write the following:

ul 1i {font-style: normal;}
html 1i {font-style: italic;}

Which will win? They both have two element descriptors, which means they both have
specificity of 0,0,0,2. Therefore, the last one written wins. The fact that the ul element is closer
to the 11 element in the document structure than the html element does not matter in the
slightest. Specificity is a straight numeric value. It does not evaluate the page structure in any
way. Thus, the list items all get to be italic, because the last rule wins when specificities are
equal.

You're probably wondering what the first zero in the specificity notation is for, given that I said
three things contribute to specificity. That first zero is used for inline styles, and only inline
styles. Therefore, given the following style and markup, the div’s background will be blue.

div#header {background: purple;} /* 0,1,0,0 */

<div id="header" style="background: blue;"> <!--1,0,0,0 -->

IMPORTANCE

There is something that overrides specificity, and that’s ! important. If youre a programmer,
I need to disabuse you of a misunderstanding right now: that does not mean “not important”

The way this works is that you can mark any individual declaration as important. Here’s a
basic example:

athover {color: red !important; text-decoration: none;}
In that example, color: red hasbeen marked important, but text-decoration:
none has not. Every declaration you want to mark as being important needs its own separate

'important.

Basically, any important declaration will override any non-important declaration, period—
end of story. Given the following, the result will be a green link:

div#gohome athome {color: red;}

div a {color: green !important;}

<div id="gohome">Home</div>

SELECTORS

The very high specificity of the first rule (0,2,0,2) is irrelevant to resolving this conflict of
colors, because the ! important trumps it.

Of course, if we add an indication of importance to the first rule, then the situation turns out
differently.

div#gohome a#home {color: red !important;}

div a {color: green !important;}

Because both color declarations are important, the conflict is resolved using the usual rules of
the cascade. In other words, specificity matters again, so the link will be red.

This points to the need to be very careful with ! important. If you start using it to override
rules, then you might find yourself having to override that important rule with other
limportant declarations, which then necessitate other ! important declarations, and
eventually you end up with all of your declarations being important—which means none of
them are.

WHAT HAPPENS WHENYOU OMIT SHORTHAND VALUE
KEYWORDS

We're all familiar with shorthand properties: background, border, font, margin, and
padding are among the most commonly used. Theyre a nice, compact way to express a
bunch of things all at once. But what happens if you leave out some of those things? Consider:

strong {font: bold italic small-caps medium/1.2 Verdana, sans-serif;}

That will, as illustrated in Figure 2-3, yield bold italicized small-caps medium-size Verdana
(or other sans-serif) text with a line height of 1. 2 for st rong elements.

SuperMuscleGro Works!

Hoee Sceroe Magic Conieci

Sugerusc el nesks mc T STROMGEST MAN ON THE BLOCK] Mow |
aiker poartion. Try it seday?

Scientifically Proven!

Figure 2-3: Crazy strong!
Suppose we pare that value back, though:

strong {font: medium Verdana, sans-serif;}

FUNDAMENTALS

The end result is medium-size Verdana (or other sans-serif if Verdana is not available) text
with normal weight. The boldfacing is gone (see Figure 2-4).

The reason is that when you leave off bits of a shorthand property’s value, the missing bits are
filled in with the default values of the corresponding properties. Therefore, by leaving off the
values for the font’s weight, style, and variant, you're saying:

strong {font: normal normal normal small/normal Verdana, sans-serif;}

Yes, even the 1ine-height is filled in with its default, which can override any inherited
value for the lin€’s height.

SuperMuscleGro Works!

Homa Goence Magis (Comiaci

Superhuselelirn made me the strongest man on the block) Now @
positkon. Try 1 odery!

Scientifically Proven!

grorwing lifeayle.

Sciemin have lokg smdiad the varioee ingsedisnts !'l'ul|£i||5|.|l{rh1'l.|i|'|j

Figure 2-4: Un-bolding by mistake.

This can become a problem if you aren’t careful about how you set up your styles. Consider
the following two rules, the first coming from a sitewide style sheet and the second from a
page’s embedded styles.

body {background: #FCC url (/i/pagebg.gif) 10px 25% no-repeat fixed;}
body {background: url (i/body-bg.gif);}

Given those two rules, the page in question will have a new image tiled all over the back-
ground starting from the top left that scrolls when the page is scrolled. That’s because the
second rule shown is exactly equivalent to saying:

body {background: transparent url() 0 0 repeat scroll;}

Now, if you wanted to have that happen, then this is the way to go. It's more likely that the
goal was to swap out one image for another. In that case, you just want to set the specific
property, like so:

body {background-image: url (i/body-bg.gif);}

SELECTORS

That is how things work with most shorthands, anyway. The exceptions are margin, pad-
ding,border-style, border-width, and border-color. In those cases, you have the
effect where missing values are “copied” from supplied values. Here’s a list of some function-
ally identical declarations.

margin: lem; margin: lem lem lem lem;
padding: 10px 25px; padding: 10px 25px 10px 25px;
border-color: red green blue; border-color: red green blue green;

And of course those values are in the order top-right-bottom-left, or TRBL (which keeps you
out of TRouBLe).

SELECTIVELY OVERRIDING SHORTHANDS

Just because shorthand properties fill in undeclared defaults, that doesn’t mean we have to
avoid them. In fact, it can be useful to declare 80% of what you want with a shorthand, and
override it in one place to get the other 20%.

Suppose you're trying to get a border that’s three pixels wide, dotted, and black on three sides
with red on the fourth side (see Figure 2-5). You could write it out one side at a time, but that
would get repetitive. Instead, you can declare:

border: 3px dotted black;

border-left-color: red;

That way, you tweak only the one little piece that needs to be different than the rest. Even
better, you can do it all within the same rule.

SuperMuscleGro Works!

Home Sclance Magio Contsci

E SuperMuscleling made me il slronpest mdn on the hlock! MNow T &g
+ puomaitian, Tey ir wday!

Scientifically Proven!

Seiemisg have loap snudasd (he varioe isgredicars found in Supeidese
prowing lifestyle.

Figure 2-5: Reddening one side of a border.

FUNDAMENTALS

Another common example of selectively overriding shorthands would be with headings,
which might have a great deal in common except for the font sizes. If you're satisfied with the
browser-default font sizes, then you can just do this:

hl, h2, h3, h4, h5, h6 {font-weight: normal;
font-style: italic;

font-family: Helvetica, sans-serif;
line-height: 1.5;}

If, on the other hand, you're going to be setting your own heading sizes, as in Figure 2-6, then
flip it around:

hl, h2, h3, h4, h5, h6 {font: italic 100%/1.5 Helvetica, sans-serif;}
hl {font-size: 225%;}
h2 {font-size: 185%;}
h3 {font-size: 140%;}

/* ..and so on */

Whenever you do this kind of selective overriding, it’s a good idea to make sure the overrides
come after the shorthand. That way; if (as is often the case) the selectors have equal specificity,
then the overrides will win out over the shorthands.

SuperMuscleGro Works!

iars Gowcs Mage Dowesct

Sparil mic boliee: ke e 1 e waa o U Blaek! Frow | doa o e uks shess diring doen, ying deen. = B e odhar
il i, T 1) it

Scientifically Proven!

S alrdn by bomp aben Ch e e ol 1a 8 T bl (T EARTTY ST Try o I
preag ko,

Paciad Wity Moldmins'
T Spper¥hcicTre Fareals bl o moppar = pinsical devdiopres: tasks o v onigee Hesd of perion asd viamins.

Sy ol s e i o O el el el dr e drk W Pl d s T el grealN el Fereaind
mwck demiEy.

Lemciad W Any-Crirmgn -4/
Ayl e o 1 e preceyliny wdakae of el ared rpriible et D bl b el B bl of | mprein b e bevediu)

EHyEET 1 yont bl oo sreom . [Eacho e siseapiies of ceooo Teny scids ned speees, resculer el froen bring caidissd i
i

: -

Figure 2-6: Quick header sizes with selective overriding.

SELECTORS

UNIVERSAL SELECTION

I'm going to show you the use of the asterisk symbol (*) in selectors. Don’t get overexcited:
This isn't as wild a card as you might think. Here’s a basic example:

* {color: blue;}

That asterisk is called the universal selector. What that does is directly select every element in
the document and apply those styles to them.

This looks like a wildcard, and in one way it is, because you can use it to select a whole lot of
elements without directly naming them. As an example, suppose I wanted to select all of the
elements inside this div.

<div>

<hl>Hey-ho!</hl>

<p>I'm a paragraph.</p>

<1i>Uno</1li>

Deux</1i>

Drei</1li>

</div>

That’s as simple as:

div * {border: lpx solid red;}
The result is exactly the same as if I'd written:
div hl, div p, div em, div ol, div 1i {border: lpx solid red;}

Well, almost exactly the same. The visual result is the same, as evident in Figure 2-7, but
there’s a very slight difference, which is in the specificity. You see, the universal selector has a
specificity contribution of 0,0,0,0. That means that div * has specificity 0,0,0,1 and div hl
(as well as all the others in that grouped selector) has a specificity of 0,0,0,2. Other than that,
though, the results are the same.

You might be hoping that this enables you to select all of your headings with h* instead of h1,
h2,h3, h4, h5, he. Sorry, but no. It doesn’t work that way. You can use it as a wildcard match
only for elements as shown before. That’s as far as it goes.

FUNDAMENTALS

Figure 2-7: Redboxing the descendants of a div.

IDVS. CLASS

One of the first big dilemmas faced by any aspiring Web stylist is: Should I use class or 1d?

As with many things in life, this question has a simple answer, and then there’s a much more
complicated answer. The simple answer is this: Use c1ass for any “label” that might show up
more than once in a page, and id for anything that will appear only once. By “label,” I mean a
descriptive word you might want to attach to an element, which is what c1ass and id get
used for 99.44% of the time.

Two classic examples of id values are header and footer, on the expectation that any
given page will have only one header and footer. c1ass values are a little more scattered,
since they could be anything from more for links to more information to tabs for any
collection of navigation tabs to odd for every other row in a table.

The more complicated answer requires weighing not only the expected uniqueness of a label,
but also the specificity effects of id and class. Since selectors containing ids have higher
specificity than those with just classes, you run into situations where it’s impossible to
override a given rule.

Here's a simple example. Suppose you've written in your site styles:

#header {background: black;}

#header a {color: white;}

Then later on you decide that your contact page should be less forbidding, so you want to
make your header a nice light gray and all of your navigation links a nice soothing medium
green. Since that contact page has a few collections of navigation links, you write:

#header {background: #BBRB;}
.navlinks a {color: #257000;}

SELECTORS

Unfortunately, the header’s navigation links will all stay white, thanks to the higher specific ity
of #header a, as shown in Figure 2-8.

SuperMuscleGro Works!

SupaMusielim mede me dhe strenpest man on the blech Mo | 8o’ hay
poeition Ty 1t doday!

Scientifically Proven!

5 I hive Ingg snedied the varein lierics foesd in S pest b oG
growing Idesivie

Figure 2-8: Unattractive links in the header.

You can work around the problem by saying this:

#header a, .navlinks a {color: #257000;}

Or even:

#header .navlinks a, .navlinks a {color: #257000;)

Either way works, but they seem a little clumsy, don’t they? (Not as clumsy as slamming an

limportant onthe .navlinks a rule, butstill.) Another way to handle this situation is
to convert the id containing header to a class in the markup. So youd have:

<div class="header">

... where an id="header" used to be. Then you can be a lot less worried about IDs creating
specificity conflicts that are difficult to resolve. To wit, in your site styles you have:

.header {background: black;}
.header a {color: white;}

Then, in your contact page’s styles, you have:

.header {background: #BBR;}
.navlinks a {color: #257000;}

The end result is nice green link text, as shown in Figure 2-9.

FUNDAMENTALS

SuperMuscleGro Works!

Homm Sdesca Magc Goniac

SuperhinckGen made e th Siregen fin an Ui Blosk! Mow [don't havy
positing. Try it ipday?

Scientifically Proven!

Scintivis have lonp sedicd ihe various ingredicnss found in Seperuskelm
roeing Ifesrie.

Figure 2-9: Attractive links in the header.
That's all it takes. So that’s a rationale for making most or all of your labels classes.

Another rationale is that you can never be quite certain when a label will shift from being
unique to being repetitive. header is actually a great example, because it’s possible a page
could have multiple headers. If that seems weird, think of a news site or other portal. Every
subsection and sidebar box could have its own little header—and, for that matter, footer.
Classing them all consistently makes a lot of sense.

Now, you might well argue that those aren’t real headers and footers like those on a page—
they’re headlines or additional information or what-have-you. That’s a semantic argument,
and not one that can be definitively resolved. What you call a topline, I might call a header.
The point is that a word you use to label a unique feature of your page might one day not be
unique. The best way to future-proof yourself against that happening is to use all c1lasses in
the first place.

So is there any point to using id? Of course. There are situations where you can be certain a
given element will be unique within the page, and will never be duplicated. There are also
situations where you want the increased specificity an 1d selector confers, because it lets you
trump other selectors very easily. And ids can be crucial for scripting, link targeting, and
other things beyond CSS. You just have to use them with a bit of care when it comes to
writing your CSS.

(There’s also an alternate way to address IDs that doesn’t carry the same concerns about
specificity with it; see “ID vs. Attribute Selector" later in this chapter.)

ID WITH CLASS

There may occasionally be situations where you have an element that is unique, and yet is part
of a broader class of elements. For example, suppose you have a bunch of little panels in your
site’s sidebar. Each one gets a box around it, and has a certain color and font combination, but
each one is also unique in its own way, such as each getting a different background image.

SELECTORS

In such cases, you can associate both class and id with the elements, like so:
<div class="panel" id="weather">
<div class="panel" id="stocks">
<div class="panel" id="latest">

Then, in CSS, you can address each bit as needed.

.panel {

border: lpx solid silver;

background: #EEE top left no-repeat;

color: #333;

font: x-small sans-serif;}
#weather {

background-image: url (/pix/panel-weather.jpg);}
#stocks {

background-image: url(/pix/panel-stocks.jpg);}
#latest {

background-image: url (/pix/panel-latest.jpg);}

You can even combine the two in a single selector, like so:

.panel#weather {font-weight: bold;}
#latest.panel {color: #511;}

The order you write them in doesn’t matter, as you can see there, and so doesn’t have to reflect
the order you put them in the HTML.

MULTICLASSING

An often-overlooked capability of the c1ass attribute is that you can have a space-separated
list of as many words as you like. In other words, you can attach multiple classes to an
element.

As an example, let’s take the markup from the preceding entry and modify it to use no id
attributes. It would look like this:

<div c

o)

lass="panel weather">
<div class="panel stocks">
<div class="panel latest">

Then the CSS would just need to be adjusted to deal with classes instead of IDs.

.panel {
border: lpx solid silver;
background: #EEE top left no-repeat;
color: #333;

font: x-small sans-serif;}

FUNDAMENTALS

.weather {

background-image: url (/pix/panel-weather.jpg);}
.stocks {

background-image: url (/pix/panel-stocks.jpg);}
.latest {

background-image: url (/pix/panel-latest.jpg);}

.panel.weather {font-weight: bold;}
.latest.panel {color: #511;}

The order you write the classes in the HTML source doesn’t matter to the order you write
them in the style sheet; . panel.weather has exactly the same effect as . weather.
panel, right down to the specificity, and no matter which order the two are listed in the
HTML source. It also doesn’t matter if they’re separated by other class names in the source,
like so:

<div class="weather alert tornado watch panel">
That element will still be selected by both . panel.weather and .weather.panel.

One slowly fading note of caution: IE6 (and earlier) gets confused by multiclassing in your
style sheet. Where you write . panel.weather, it only sees . weather. You can still have
multiple class names in the HTML and address them from your CSS, but you can only do it
one class name at a time. So . weather and .panel will work just fine in IE6, correctly
matching the example markup from before. It will just assume that . weather.panel
applies to any element with a class value containing the word panel, which probably isn’t
what you want.

SIMPLE ATTRIBUTE SELECTION

Attribute selectors were introduced in CSS2 and expanded upon in CSS3, and are as of this
writing supported by all major browsers. (They were not supported in IE6; if thats a concern,
see the section "IE9.js" in Chapter 1.)

The basic idea is that you can select elements based on their having an attribute, or based on
some aspect of the value of an element’s attribute. So you can select all a elements that are
actually hyperlinks, like this:

alhref]

That selects any a element that has an hre £ attribute. Therefore, it does not select any a
element that lacks an href attribute, named anchors (for example,)
being the most obvious example. It’s basically a more compact version of a: 1ink,
a:visited. For example:

alhref] {color: green;}

... produces the screen shown in Figure 2-10.

SELECTORS

Further Resources

Hama Abslidt Proposel Sunmary Futher Aeouas Contas

Huee ane soue links Tor fumser peading o thie and pelan: mopics
= WHAT- W3
« WIC
« HTMLS Dot

Figure 2-10: Selecting links with an attribute selector.

Note that it doesn’t matter in the slightest what value the href attribute holds. In fact, it
doesn’t even matter if the value is a valid URI or other resource. You'll select
just the same as .

Now, what if you wanted to, say, select all of the hyperlinks that point to a specific address?
If you have an exact URI you want to pick out, then you could do it just like this (see Figure

2-11):

alhref="http://w3.0rg/"] {font-style: italic;}

Further Resources
Home fbeias! Poposd | Summary | Fusher Ssanirons | Comiece
Herg an: pofi: links for ferier rssding an this and medame wpies,

» WHAT- WG

. WA

+ HTMILS D

Figure 2-11: Selecting links with a specific URL with an attribute selector.

That will select only a elements whose hre £ attributes have the value http: //w3.org/.
Notice how I phrased that? I didn't say “hyperlinks that point to the W3C site,” because that’s
not the deal. The deal is that you must have an exact match, character for character. If you
have , the selector shown just now will not select
that link. The match must be exact.

This might not be so useful with hyperlinks, but it could help you with picking specific images
to be styled—say, your company logo. If your CMS always spits out this for your top-of-page
logo:

FUNDAMENTALS

... then you can always select that image, like so:
img[src="/img/2010/mainlogo.png"]

You don't need to class or ID it or anything else: You can just style it based on the src value.
Assuming, as I say, that you know it will always have exactly that value, and no other. (For
adventures in less exact value matching, see “Substring Attribute Selection” later in this chapter.)

One thing to note is that, per the CSS specification, “the case-sensitivity of attribute names
and values in selectors depends on the document language” (www.w3.o0rg/TR/CSS2/
selector.html#matching-attrs). In other words, some markup languages might treat
attribute names case-sensitively, and others might not. XHTML does, and in general you're
better off assuming that both attribute names and values are case-sensitive.

ATTRIBUTE SELECTION OF CLASSES

If you read the preceding section, you may be thinking, “Hey, I could recreate the . class
notation with attribute selectors!” And you're right, you can. Just not in any of the ways I
showed you earlier.

Here’s how to get an exact equivalent to div.panel with attribute selectors:
div[class~="panel"]

Did you spot the tilde? It’s right before the equal sign, and it’s absolutely critical in this
situation. Its presence means the attribute selector selects “the following word in a space-

separated list of words,” which is a lot for a little squiggle to shoulder.

To understand more clearly, let me show you what happens if the tilde is removed. Then youd
have:

div[class="panel"]

That selects any div element whose class attribute is panel—and only if it is exactly
panel.Ifthe classisactually panel weather, then the preceding example will not
match it—because panel is not exactly the same as panel weather. On the other hand,

div.panel will match <div class="panel weather"> just fine.

By including the tilde, you get the exact same behavior as the dot-class syntax. So the follow-
ing two rules are exactly equivalent in all ways except the actual letters you use to type them:

div[class~="panel"]

div.panel

SELECTORS

At this point you may be thinking, “Hey, awesome. I always wanted to know how I could
select classes with a longer and more complicated syntax” Ah, but remember: Attribute
selectors are not confined to the paltry two attributes we're used to selecting upon—namely,
class and id. You can select based on any attribute whose value can be a space-separated
list of words, where by “words,” I mean “strings of characters”

Here are a few examples of other ways to use this kind of selector.

imglalt~="figure"] Any image whose aliernate text contains the word “figure”
table[summary~="data"] Any table whose summary fext confains the word “data”
*[title~="2009"] Any element whose fitle text contains the word "2009”"

IDVS. ATTRIBUTE SELECTOR

You can use attribute selectors not only as a long-winded way to replace class selectors, but
also as ID selectors. The following two rules will select the same element:

p#lead-in {font-weight: bold;}

plid="lead-in"] {font-weight: normal; font-style: italic;}

Okay, fine, but take a moment to contemplate the visual result of those two rules: The lead-in
paragraph will be both boldfaced and italicized, as in Figure 2-12.

This is because the specificity contribution of an attribute selector is 0,0,1,0—the same as a
class or pseudo-class. So the first rule’s specificity is 0,1,0,1 and the second’s is 0,0,1,1. In this
fight over font-weight, the first rule shown wins due to its higher specificity.

This is one of those interesting little wrinkles in specificity that can open the door to new
patterns of authoring. For example, you may remember the earlier discussion in “ID vs. Class”
about how IDs easily trump classes and so you might consider just labeling everything with
classes. If your user base is all on browsers that support attribute selectors, then you can go
back to a mixture of IDs and classes and then just use attribute selectors whenever you need
to reference an ID. That way, you don't have to worry about an #ID selector pattern trumping
the specificity of everything else you try to write.

FUNDAMENTALS

SuperMuscleGro Works!

M s Mage Dol

s ke e e B b Ve | S e e o ot alDey S, bong il e, o b o ey
periion. Try i ialey”
Scientificnlly Proven!

S e e g il B rdre el Nl i St Wb dd P e o Ui Wy ey Gl For I 1 i il
premg ki

Pasclied With N risinz!

-:'l.. iy il i b Mo |“,-.|- pagnd v kel e i lopernd Waki K 4 mimd) e Ddead] O palrmali. d i A e -
i AR LI W I PO B ol T pemoral grewel end neresaed

-...-\.nr LT

Laadad Wi Amiblrcdmiega-1}

o i -4 i 0! roprareny o el minend wed A e e, mrosaden e doiad
i O ey by e et B o e b i of £ uides I e el s eebidie e (e bt g om el il
damg ey s

Figure 2-12: Combining styles due to differing specificities.

SUBSTRING ATTRIBUTE SELECTION

After CSS2 was finished, work immediately started on the next version of CSS, which we may
as well call CSS3 even though there’s no single specification any more. (It’s a long story.) One
of the areas that got the most attention was selectors, and attribute selectors were no excep-
tion. They picked up a set of substring-match patterns, all of which are incredibly useful.

The most basic one is the substring matcher. To see how it’s useful, consider an old example.
alhref="http://w3.0rg/"]

That’s great for selecting any link to that exact URL. Suppose, though, that you have a lot of
links into the W3C’s Web site, not just the home page, and yet you want to style them all the

same way. A good way to do that would be to select on just the w3 . org part of the URL (see
Figure 2-13). Here’s how:

alhref*="w3.org"] {font-weight: bold;}

SELECTORS

Further Resources

Homia Abslias P i y Pufbad [T

Here am soms links for furiber reading on thos and relaied topies,

« WHAT-WG

« WHAT-'WO HTMLS speifcaiod

= WEC

= WIC HTMILS specilication (ke vereiod)

« WA HTMLS specilication lor Authors (JAest vwersios)
» HIDILS Doctof

Figure 2-13: Selecting all links that contain w3 . oxg in the URL.

That’s it: Just include an asterisk before the equal sign. No, this is not a universal selector.
Neither can you put asterisks in the value to create UNIX- or grep-style wildcards. You just
put it before the equal sign, and that means “this character sequence appears somewhere
inside the attribute value”

As always, this can be used on any element and attribute. To return to the example of uniquely
selecting the image of your company’s logo, you could write:

img[src*="mainlogo.png"]
That will select any img that points to a file named mainlogo.png, or indeed that has the

characters mainlogo . png anywhere within the src value. Thus it would select both of the
following:

You probably shouldn’t name your files and directories that way, though. I mean, I'm just
saying.

There are a lot of creative ways to use this particular power. You could select any image that
happens to come from a particular directory just by selecting the part of their URLs that
corresponds to that directory. For that matter, you could style all the links into a certain area
of your site by the directory that appears in their href values.

alhref*="/contact"] {color: maroon;}

alhref*="/news"] {font-weight: bold;}

FUNDAMENTALS

Always remember that attribute values should be treated as case-sensitive. (It’s just easier that
way.) Therefore, you’ll get a match on the first two of the three examples to follow, but not the
third.

imglalt*="Figure"] {border: lpx solid gray;}

<img src="fig2.gif" alt="Figure 2. Mayor Quimby, a political figure of some note."
/>

The third image isn’t matched because “figure” isn’t the same as “Figure”” In this case, of course,
that might be seen as a good thing, since (based on the a1t text) the third image doesn't
appear to be a figure in the formal sense. It just happens to have the word “figure” in its a1t
value. That’s okay, but realize that the following would also be matched by the shown rule:

Yep, there’s that “Figure” It’s a match!

You can step around this limitation in cases where you know capitalization will vary by only
one letter. Thus, if you wanted to make sure you selected all instances of “Figure” and “figure,”

you would make the selector:

imglalt*="igure"] {border: lpx solid gray;}

» «

Of course, that will match any instance of those characters, including “configure,” “disfigure,”
and “oliguresis” (to name a few).

However, this isn’t the end of substring selection—nor the beginning, as it were. See the next
section for an explanation.

MORE SUBSTRING ATTRIBUTE SELECTION

While arbitrary attribute value substring matching is nice (see preceding section), sometimes
you want to restrict where you look to just the beginning or end of an attribute’s value.
Fortunately, there are ways to do just that.

If you want to select based on a substring at the beginning of an attribute value, use this
pattern:

alhref ="http"]
Thanks to the caret (), that rule selects any a whose hre £ attribute starts with ht tp. This is
an easy way to select all the links that point to external sites, assuming that all of your internal

links are page- or site-relative and you never use the string http in your site’s file system. You
could do something simple, like this:

SELECTORS

alhref”="http"] {font-weight: bold;}
Or something slightly more complicated, like this:

alhref*="http"] {padding-right: 18px;
background: url (/pix/external.png) 100% 50% no-repeat;}

The result is that seen in Figure 2-14.

Further Resources

Homa JAbwmirscd Propoml Summsy Fosiher Fesoumss: Cowisc

Elee g seiree links Tor forther seading on this md redaned mogies

= WHAT W
= WHAT- G HTHILY spocification £

- WO

w WIC HTMLS & peocallcation o (lilen warsis)

= W HTMLS spocication For A silrons o7 (Litedl vefiia)
= HITLS Ducor

Figure 2-14: Adding icons to links that start with h t £p.

In order to select based on a substring at the end of an attribute value, use this pattern:

alhrefs=".pdf"]

Thanks to the dollar sign ($), that rule selects any a whose hre £ attribute ends with . pd£.
This is a really simple way to call attention to your PDF-download links with ease (as in
Figure 2-15). For example:

alhref$=".pdf"] {padding-right: 18px;
background: url (/pix/pdf.png) 100% 50% no-repeat;}

Further Resources

Homs fowimad Popeesl B Farha Camriach

Here aoa =ome links for furthar reasding o0 this and reloted fopies

WHAT-W'D

WHAT-W HTMLS spesifie aiion

W

WAC HTMILS specalicatioefl e versins)

WC HIMLS specaficaion for Asthors (Intest versian]
HTMLS Dogins

@ % & & = 42

FUNDAMENTALS

Figure 2-15: PDF icons for links to PDF documents.

Pretty awesome! Here are some other ideas for using attribute selectors to style types of links.

alhref"="https"] Secure-server links
alhref"="mailto"] E-mail contact links
alhref*="aim"] AQOL Insfant Messenger service links
alhrefs=".doc"] Microsoft Word documents
alhrefs=".x1s"] Microsoft Excel documents
alhref$=".zip"] Zip archives

As always, remember that you aren't restricted to hyperlinks here. If you recall the “Figure”
examples from the preceding section, you will quickly realize that a lot of the problems that
came up can be solved with a simple caret:

img[alt”="Figure"] {border: lpx solid gray;}

There: Now we're selecting based on an image’s a1t text beginning with that exact string, and
don’t have to worry about cases where it shows up later in the text. They’ll be skipped.

CHILD SELECTION

One of the things we do most often with CSS is select elements based on their place in the
document’s hierarchy. This is most often done with a descendant selector, like this:

div#header a {color: #DEFACE;}

That selects a elements that descend from (are contained within) any div with an id of
header.

In most cases, this is exactly what we want: to select the links within the header, no matter where
inside the header they may be, and no matter what elements might be “between” the two.

Sometimes, though, you want to select elements that are direct children of another element,
not an arbitrary descendant. Imagine that you only want to select list items that are the
children (not descendants) of an o1 element (see Figure 2-16). That way, if there are any
unordered lists within the ordered list, their list items won't be selected. All we need is a child
combinator.

SELECTORS

ol > 1i {list-style-type: upper-alpha;}

A Irrreaduciion

B. Premises
v The Ride of Gowestancl
o The Rile of Free haskers
o Hisfiis Belaior

C. Probem

D. Weraes Solotioas
o Syiieine Restriensing
o B pubaiiry Frameworks
o Code Framewarts
v Pyni bobing hoa] Hisckis
v Charlie Preses

E. Cornclitdos

Figure 2-16: Selecting only the st items that are children of an ordered-list element.

That greater-than symbol limits the selection to children of 01 elements. Take it away, and the
rule will apply to any list item that descends from an o1, even if those are list items in nested
unordered lists (see Figure 2-17).

A Imodities

H. Promises
A The Rok: of Govesamsgl
B. The Rk of Pz Markes
. Human Baberviar

C. Proklem

0. Vi Solaioss
M. Gymicmoc Resiructering
B. Bagulxiory Framewods
L. Caode Frameworks
[Fuychological Haks
E Ourlic Prosses

[. Conchizion

Figure 2-17: Ordering the unordered.

Yes, that can happen, and no, I didn’t cheat. Figure 2-17 is an unordered list with ordered list
markers, and that happened simply because I removed the child combinator.

SIMULATED PARTIAL CHILD SELECTION

If you have to support old browsers like IE6 that don't support the child combinatory and you
aren’t willing to rely on JavaScript to add support to those browsers (see “IE9.js” in Chapter 1),
then you can simulate child selection via the universal selector.

Let’s suppose we want to put a border around any div that’s a child of a div with an id of
main (see Figure 2-18). The child-combinator way is to say:

FUNDAMENTALS

div#main > div {border: lpx solid gray;}

Hey-ho!

T a v

1. Thic lix
T & ooaisined by
3 mmocher div.

Figure 2-18: Faking child selection.
Okay, so how do we simulate that effect? Like this:

div#main div {border: lpx solid gray;}

div#main * div {border: 0;}

The second rule selects any div that descends from any element that descends from a div
with an id of main. In effect, it undoes the effect of the first rule. Both apply to divs that are
at most grandchildren of div#main, and both are setting the borders, so they’re in conflict.
They're also the same specificity, so the last one declared wins. The divs of div#main,
though, are only selected by the first of the two rules, so the borders stay in place.

There’s one thing to keep very much in mind: This “faked” child-selection technique really
only works well with non-inherited properties. With inherited properties you can create some

very unintended effects. As an example, suppose you wrote:

ol 1i {font-weight: bold;}

ol * 1i {font-weight: normal;}

Now, suppose that you have a situation where you want the unordered lists of a certain class
of ordered list to be boldfaced (see Figure 2-19):

ol.urgent ul {font-weight: bold;}

Given this additional rule, the list items in those unordered lists will be ... not boldfaced.
That’s because the o1 * 11 rule shown previously directly applies to those list items. Its
directly assigned font-weight value of normal overrides the bold value that would ordinar-
ily be inherited from the o1 .urgent 1i rule.

SELECTORS

1. lirasilie i

2, Premiaes
= The Rale of Goverament
a The Role of Fres Markers
a Huisin Bekaving

3, Problem

4. Vit Selelinn
o Sysmemik Resincring
a Regulniory Frameworks
a Code Prumeworks
a Psyehological Macks
« Gorlic Prosses

5, Cemclusion

Figure 2-19: Inherited styles being overridden by directly assigned styles.

This problem doesn’t come up if you use non-inherited properties like background,
border, display, margin, padding, and so on. If you aren’t clear about whether a given
property is inherited, see w3.0rg/TR/CSS2/propidx.html or the property’s description
in the CSS specification.

SIBLING SELECTION

In addition to being able to select along parent-child and ancestor-descendant lines, it’s also
possible to select elements based on their being siblings—that is, that they share a common
parent element. We can see this in Figure 2-20, where the elements that are siblings are

highlighted.
body
|h1 p ul p p p |
JANREN
|I| li li li I|| |em al cite
|
a a a a a a

Figure 2-20: Highlighted siblings.

Things like list items are obvious siblings, but any collection of elements that share a common
parent element are siblings.

CSS defines a combinator that allows you to select an element based on its previous sibling
element. For example, if you wanted to remove the top margin from any paragraph that
immediately follows an h1 (see Figure 2-21), then it’s a simple matter of saying:

h2 {margin-bottom: 0;}
h2 + p {margin-top: 0;}

FUNDAMENTALS

Sibling selection is a great way to set up styles for certain element combinations, such as
increasing the space between a list that immediately follows a table or a heading that immedi-
ately follows a div.

There’s a closely related combinator that allows the selection of elements that are following
siblings, but not immediately adjacent following siblings. This uses the tilde as a combinator,

like so:

hl ~ ul {list-style-type: lower-alpha;}

SuperMuscleGro Works!

Home Towsw bsge Covied

Sops] dc rac i rean e L ek Mo 1 dae ' b o ke sbass o
paEtion, Tey H iodyye!

Sclentifically Proven!

Scenimt yve loog soodsd the varom found s iesicl nsd bave sbawy

werwing Likomylc.
Fucked YWith MNatrimins
“lur Separtlgeckaliem froreols balp 12 euasan vrer phraical devdiopro dueke 1 o weged
SeparloackaCire's cornbd nand e o asscndiad reariones and CORET GAITEAS WK B0 PR & o
IREE BRIy

Lo Witk Anii-Colrnega-4!

AL AR TER A o prOprisny ol of hiooril aad vepemable B s DT HRORL, H
i [B o bedy's cee systene.) Blecis e adsorprog off e TRy oo o spas
derzagmy wEyE.

Figure 2-21: Selecting paragraphs that immediately follow level-two headings.

The following code will select any ul element that follows an h1 that shares its parent
element, such as all the lists in the following markup except the first one.

<body>

..

<hl>Planning</hl>

<p>This is an abstract.</p>
..

.

<h2>Introduction</h2>

<p>We have some thoughts here.</p>
..

</body>

Because all those elements share the same parent (the body), they’re all siblings. The first list

in the markup does not follow an h1, so it is not selected by h1 ~ ul. The rest do, even
though there are other elements “between” them, so they are selected.

SELECTORS

GENERATING CONTENT

In a move that blurs the usual line between content and presentation, CSS offers a way to
generate content and insert it into the document. This is done using the pseudo-elements
:before and :after and the property content.

Here’s a basic example (also illustrated in Figure 2-22) of inserting content, putting a short
string in front of the text of any list item’s text:

li:before {content: "Item: "; border-bottom: lpx solid gray;}

- e [Eiroadise tis
e Presiiscs
& [wm: The Role of Government
o Duaa: Thie Rloke of Froe Blarkets
& [wom: Human Behavior
3 heire Probles
i Various Soletinas
v [wsa: Byiiene: Restucridag
e [Rt pubmory Frameworks
= liem: Code Pramewarks
e [om: Prschological Heckes
o [Garllo Presses
% heme Conclision

B -

-

Figure 2-22: Prefacing list items with a little content.

Note the space inside the content value. This is inserted as part of the value string. If it were
not there, the element text would be closer to the generated content unless a right padding
were applied to the generated content (which is completely possible; we just didn't do it here).

To be clear, you can insert only text, not structure. If you try to put markup into your
content value, it will be passed into the page as raw text (see Figure 2-23).

li:before {content: "Item: "; border-bottom: lpx solid gray;}
Oops.
On the other hand, you can insert any character glyph the browser is capable of supporting

(see Figure 2-24). All you need is to know its hexadecimal character number. Precede it with a
back-slash, otherwise known as an “escape,” and you're set.

li:before {content: "\BB ";}

FUNDAMENTALS

| ceEpeem<eme- nimdudion
cemrlem oo Promies
v sl oae The Rake of Cevermre
= <EnEloT <SS The Rake of Free Markes
a comxkor oome Hunn Beharior
L corp-imme<erme- PFroblem
4. sEsreleric eriis Vieknis Sokitoss
» wefre i T Sydbedin AesucTisiag
a cpmlom: <ome- R el piory Pramewnrios
1 cemabon clore Code Farmeworks
kecrme P Hacks
= apislir e Corlie Preweei
F TR T TR SO0 | 18 b

[

Figure 2-23: Passing markup through in the raw.

1. lnirsduction
1. wFremiser
o aThé Rasde of Gorsemment
o wTht Rede of Free Merken
o wHifss Behaviee
&Frabiom
d. e¥arkous Solutions
o wSuseni Resurmnining
o wHegelurey Framewoic
a =Cde Framsors
o aPyychologhoal Hacks
= w0uilie Pozizag
5. s mioa

=]

Figure 2-24: Inserfing a character with an escaped code.

In theory, you could also insert any Unicode character into your document by typing the
characters directly into your CSS and then serving up the style sheet with full Unicode
encoding. However, this may run into problems with servers that aren't configured to send
out CSS as anything but ASCILI. If you can overcome those kinds of problems, then you can
ignore the escaped-hex approach and just use the characters directly. Test thoroughly, though,
especially in older browsers that may not handle Unicode gracefully.

The reason :before and :after are pseudo-elements is that they insert the element as
though it were enclosed in an element. This pseudo-element is placed either at the very
beginning or end of the element’s content, depending on which pseudo-element you used.
You can style it much as you would a span in the same place.

You can do a lot of interesting things with generated content, but you have to be careful about
what you generate. What happens to your page if CSS doesn’t load or isn’'t supported, as on
some mobile devices? If you're using generated content to insert things that are crucial to the
understanding of the page, then you could have real trouble if the content isn’'t generated.
Thus, it’s strongly recommended that you use only generated content in the service of what’s
called progressive enhancement, where you use advanced features to add enhancements that
the page can live without.

SELECTORS

One great example is the insertion of hyperlink URLs into printed copies of pages (see Figure
2-25). To do this, add the following rule to your print-media style sheet:

alhref]:after {content: " [" attr(href) "]"; font-size: smaller;}

Print style sheets to the rescue

One of the wonderful things about CSS is that it allows authors to create media-specific styles for a single
document. We're pretty used to styling for the screen, but thinking about other media isn't a habit yet. And as all
the “printer-friendly” links attest, our thinking about the print medium has been limited to recreating a document in
a different way.

Why bother, when the power to offer your readers a better view of your material in print is no further away than a
well-structured document and a media-specific style sheet?

You can take any (X)HTML decument and simply style it for print, without having to touch the markup. Worries
about version skew between the web and print versions suddenly become a thing of the past. Best of all, it's simple
to do. (For more information on the basic principles involved in creating media-specific stylesheets in general and

print styles in particular, see "Print Different (http://www.meyerweb.com/eric/articles/webrev/200001.html) " at

meyerweb.com.)

Let's look at how A List Apart got some new print styles that danced around a browser bug and, in the end, made
the printed output look much better. {Ed. The print style sheet discussed below was used in ALA 2.0, whose
February 2001 CSS redesign helped usher in the modern CSS-layout era. Some details below pertain only to that
layout, and not to ALA 3.0. But the principles Eric Meyer discusses in this article are as true and as generally

applicable today as they were when this article first appeared in ALA.}

Fixing a float flub

As you can see by visiting Bugzilla ent illa.mozilla.o: .cgi?id=104040) , Gecko-based

browsers like Netscape 6.x or Mozilla have a problem with printing long floated elements. If a floated element runs
past the bottom of a printed page, the rest of the float will effectively disappear, as it won’t be printed on the next
page.

If you have a site styled like A List Apart, and the entire article content is contained in one big float, then that

Figure 2-25: Inserting URLs in print styles.

This counts as progressive enhancement because in browsers where it fails, the printed page
will simply show the links without the generated URLs, just as they’ve always done. Where it
works, the printed page is notably enhanced. (For more on this technique, see “Going To
Print” at http://alistapart.com/articles/goingtoprint.)

Support for generated content is fairly widespread, but only reached the Internet Explorer
family when IE8 came out. You can always use IE9.js (see Chapter 1) to graft support into
earlier versions of Explorer.

PART

ESSENTIALS

Chapter 3: Tips

Chapter 4: Layouts
Chapter 5: Effects

SMASHING CSS

CHAPTER

TIPS

EVERYONE CAN USE a few good tips to get In this chapter, we discuss the importance of
through life. Two of my favorites are “always ordering of values, proper uses of unitless values,
favor a small house on a nice street over a big ways to make elements disappear, a method for
house on a lousy street” and “don’t eat lead” And controlling border appearance, list tricks,

so it is in CSS: A few simple words to the wise print-style development, and much more.

can put you right in no time flat.

ESSENTIALS

VALIDATE!

This might be old hat to you. You might be wondering why I would waste precious ink and
tree pulp on so obvious a topic. And yet, how often do you actually validate? Once at the end
of the project, or all the way through?

While 'm not telling you to validate every time you hit “Save” on the document you're
writing, it is a good idea to get into the habit of validating at regular intervals as you go
through a page build. That way, you catch problems before they infect the whole page
structure.

There are a few good validators out there for both HTML and CSS. In the HTML sphere,
probably the most widely used validator is the one provided by the W3C itself and located at
validator.w3.org (see Figure 3-1). Its CSS-centric cousin, sited at jigsaw.w3.org/
css-validator/,is equally popular.

EHE iﬁ“““ o
.

Markup Velidation Service
Chesh e masiap (=7 THTH. bk de s e n

W ke y Wmbdae 3y B ophola Wi oy D BB g

Validwrie by URI

L o= g B T R

Midrmexr: bitp:Sioreverboport . com'

i More Upliond

Thach

Pl ik (et Ui rrsring sl of Wik chiursirds i HTRIL OHTIAL. EPIL WAGAAL ik 1] s w13 wil ki il

il it el RSSO e o S ki ek, ROSRLE Cofhid. o 16 g Deihops Bisigh, 1B e (IR yalchilocs and IodE
vl a ke
Tha W30 howiing
Dereis s halp o beild bedes foois lor 8 beiter wah

Home AR kisew Cows Helg k FAD Foadbeck Coewribain
4 Ak
Wi 0 : : Lo
L &
'

Figure 3-1: The W3C's HTML validator.

What if you're stuck developing behind a firewall, or do all your development on your laptop
with a locally run Web server? Then use the “Validate local” features in Firebug and other
developer tools. As long as you can browse the Web, then you can validate any page you're
viewing, whether or not the page you're viewing can be publicly browsed. (I pretty much
always use “validate local,” even when the page is on a public site, just to keep in the habit of
using it.)

ORDERINGYOUR FONT VALUES

This is one of the little quirks of CSS that lots of people stumble over, sometimes without
realizing what tripped them up.

Most CSS properties that accept multiple keywords let you list them in basically any order, and
don't insist that you include every single one of them. (Think for example of background,
which lets you specify anywhere from one to five keywords and doesn’t care how you arrange
them.) One of the few double exceptions is font, which not only has a minimum set of
required keywords, but also requires a certain order.

This is the most basic font declaration you can have:

font: <font-size> <font-family>;

Of course, youd replace those bracketed terms with actual values, like so:

font: 100% sans-serif;

The point is that you must include both values, and they must be in that order—size, then
family. Reverse them, or leave one out, and any modern browser will just ignore the declara-

tion outright.

Furthermore, if you include the other keywords in your declaration, they all (except for one,
which is the subject of the next section) have to come before the required values. Thus:

font: bold italic 100% sans-serif;
font: italic small-caps 125% Georgia, serif;

font: italic bold small-caps 200% Helvetica, Arial, sans-serif;

Note how those values before the size can be all scrambled around, and it doesn’t matter. The
only thing is that they all come before the size. Put them after, and again, browser will ignore
the whole declaration.

ROLLING IN LINE-HEIGHT

If you thought the font value patterns established in the preceding section were a little odd,
then this is where we get downright funky.

Earlier, I said that in order to have the minimum font value, “you must include both values,
and they must be in that order—size, then family” That’s true, but it so happens that you can

drop an optional 1ine-height value in place as a sort of hanger-on to the size (see Figure

3-2). It looks like this:

font: 100%/2.5 Helvetica, sans-serif;

ESSENTIALS

1 iy i iy BT Tt il bt i gt s reetciedy of (95 Tha Dpivive Gaigls Bnel o] of (eq il ook, bl

rersd ek AeedE K B diid Ul Kard, of publl, 194 reryERe 1S PR

T FSRATY |t i 0] LV Mstel Bba WHIAE. Vd CHE D 0 Line- adain LA wleRa, though

iy OU ST Bl i rrRE e s sl e or DRk proprty.

e il s P FrEeonT WhES vEu i i uriled villol, B e YEU'TE SinG THNGE LB 1 i @58 P coeRgalig risull

= mrwy For [55 i sppliad i TRrksg
FIRgTEn
i |femicsian Vg lisschaigbhs Jmm)
i |femicsinn Wp]
ERAIL I ELEE TENGF
s
IS E & LIEL LEE WILN SERAIDERALL LRSI AL
2 e
Tha ol # e s 1 0 8 g F | im-ba gk, se-DBSRE vakng Sre cakouinind LRIng the:

sl il L N e s ey kel

Figure 3-2: Increased line-height.

There’s no space between the font-size and 1ine-height values, just a forward slash.
(In case you're wondering, this is the only place in the whole of CSS that uses a forward slash.)

Adding the 1ine-height to a font declaration is always optional, but if you do include it,
its placement is not. You must immediately follow the font’s size with a forward slash and the
line-height value.

UNITLESS LINE-HEIGHT VALUES

The property 1ine-height can accept unitless number values. You can also give 1ine-
height united values, though generally you shouldn't.

So what’s the difference? When you define a united value, like 1em or 100%, you're setting
things up to pass along the computed result to any descendants. For example, suppose the
following CSS is applied to a document containing the following markup fragment:

ul {font-size: 15px; line-height: lem;}
1i {font-size: 10px;}

small {font-size: 80%;}

<1i>I’'m a list item with <small>small text</small>.</1li>

TIPS

The ul element has its 1 ine-height computed to be 15px because for 1ine-height,
em-based values are calculated using the computed font-size of the element itself, the
same as percentage values. Since I declared the font-size directly, we know its computed
size in pixels.

Here’s the potentially surprising part: The computed value of 1 5px is what’s passed on to the
descendent elements. In other words, the 11 and small elements will inherita 1ine-
height value of 15px. End of story. They don’t change it based on their own font sizes; in
fact, they don’'t change it at all. They just take that 1 5px and use it, exactly the same as if Id
written:

ul {font-size: 15px; line-height: lem;}
1i {font-size: 10px; line-height: 15px;}
small {font-size: 80%; line-height: 15px;}

Okay, now suppose I take the em off that 1ine-height value, so that the styles now read:

ul {font-size: 15px; line-height: 1;}
1i {font-size: 10px;}

small {font-size: 80%;}

<1i>I’'m a list item with <small>small text</small>.</1li>

Now what’s passed on to the descendants (the 11 and small elements) is that raw number,
which is used by said descendant elements as a scaling factor—a multiplier, if you will—and
not the computed result.

Thus all elements that inherit that value of 1 will take that value and multiply it with their
computed font-sizes. The list item, with its declared font-size: 10px, will have a
computed 1ine-height of 10px. Then it will pass that 1 on to the small element, which
will multiply it with its computed font-size. That’s 8 pixels; therefore, its computed
line-height will also be 8 pixels.

The end result is exactly the same as if I'd written:

ul {font-size: 15px; line-height: 1;}
1i {font-size: 10px; line-height: 10px;}

small {font-size: 80%; line-height: 8px;}

That’s a pretty major difference (see Figure 3-3). This is why it’s always strongly recommended
that you use unitless numbers if you're going to set a 1ine-height on something like the
html or body elements, or indeed on any element that is going to have descendant elements.

ESSENTIALS

» This lizi has o 1ios-kadght of L.
= Tre list Hom with el wor
= Fre o list Hem with sl oo
= Tie & Hit bem with el e

a Thin lixi kan 2 1ine-hadght of Lam
= Tk & Hik Den with el o

= Tri &1 hemn with sl oo

& T &g hem with sl o

Figure 3-3: The difference hetween united and unitless line-height values.

AVOID STYLE-LESS BORDER VALUES

Borders can add a nice touch to any design, but without a style, the border you meant your
border declaration to create will be missing in action.

When I say “without a style,” I don't mean CSS styles; I mean a border-style value. For
example, suppose you write:

form {border: 2px gray;}
Great, except that no border will be placed around your forms. The reason is simple: the
omission of a border-style value means that the default value for border-style was

used. And what is that default value? none. So the preceding rule is exactly equivalent to
saying:

form {border: 2px gray none;}

A border with a border-style of none will never be drawn, no matter how wide you
make its border-width value—because a border that doesn’t exist can’t have any width.

CONTROLLING BORDER APPEARANCE WITH COLOR

From time to time, you may find yourself with the need (or just plain desire) to create an inset
or outset border. I'm not here to judge, but I am here to point out a possible pitfall. Consider:

div {border: 5px red outset;}

Simple enough, right? But look at how that gets handled in various browsers (see Figure 3-4).

Pl e v B e e, st il ey ey g P i st 4 s e i
[T Ny e —

-
—
—
Thetaes e, e vt b, ol e ol e, ek T ca e e flomiz= o,
] g —
—

Figure 3-4: Differences in inset and outset across browsers.

That’s not an error, and none of the browsers are wrong. The CSS specification doesn’t say how
a border’s color should be modified in order to create the illusion of insetness or outsetness. It
just says, and I quote:

The color of borders drawn for values of groove’, ridge’, ‘inset’, and outset’ depends
on the element’s border color properties, but UAs may choose their own algorithm to
calculate the actual colors used (www.w3.org/TR/CSS21 /box.
html#border-style-properties).

Note that last part: “UAs [user agents] may choose their own algorithm...” It is a long-estab-
lished truth of Web development that given the chance to choose differently, browsers always
will. And so they have.

Maybe you’re okay with the differences in those borders, and if so, that’s cool; again, not here
to judge. If you want those border shades to be consistent across browsers, though (as in
Figure 3-5), then what you really want is to declare a solid border and set the colors yourself.

#innie {border-color: #800 #F88 #F88 #800;}
#outie {border-color: #F88 #800 #800 #F88;}

ESSENTIALS

E
Vit e T 0 B0 S el e . 1 S0 el el s ¥ [[ST B
ety m s S

- E
Thws o e kg e . b . o il iy e Tha in b i B i
e e

e
Figure 3-5: Creating consistent inset and outset borders with colored solid borders.

Obviously, this only works with inset and outset borders. To create consistently colored
groove and ridge borders (see Figure 3-6), you'll need to put a wrapper around (or just
inside) your element and style each one’s solid border with specific colors that create the
visual effect you want. Something like this:

#innie {border-color: #800 #F88 #F88 #800;}
form {border: 3px solid; border-color: #F88 #800 #800 #F88;}

<form>
<div class="wrap">
(content and form inputs and so on here)
</div>
</form>

Thii die lsaining lnukde o fees. Teah spon 5 sl Sosder wiil por-akds ondoms. s, 63t @ “ridged ™ Basder memeand ing chli cosre
will look e o sowmn ol Ths b foras e

Figure 3-6: Consistent “ridged” borders.

SUPPRESSING ELEMENT DISPLAY

Ever wanted to take an element and make it go away on the page without actually removing it
from the document source? There are a few ways to make that happen, each with its own
strengths and weaknesses. This and the next few sections discuss the various approaches.

The most obvious way to make an element disappear is to switch off its display.
.hide {display: none;}

That will suppress display of any element with a class of hide, of course. That means any
such element will generate no element box at all. It will therefore have no effect on the layout
of any other element. It’s like it never even existed. Like it was a ninja.

There are a couple of pitfalls with display: none, though—one potential, one persistent.
The potential problem is if you directly set the value of none via JavaScript, then how do you
know how to unset it? This is trickier than it might seem. Suppose you wrote:

var obj = document.getElementById(‘linker’);
obj.style.display = ‘none’;

Then, later in the JS, you want to show the element again. What value do you give? It depends
on the element, doesn’t it? If it's a span element, you probably want it to be inline. Ifitsa
p, then you probably want block. (Then again, maybe not: You can make spans generate
block boxes and divs generate inline boxes easily enough.)

There’s one fairly commonplace solution: assign no value at all:

obj.style.display = ‘';

That will cause the element to default back to whatever display value is called for in the rest
of the CSS, or by the browser’s built-in styles.

The other commonplace solution is to not set the di splay value directly, but instead add a
class value of, say, hide to the element. When you want to reveal it again later, you just
strip off the c1ass. This is a little more complicated because it requires you to write (or find
via Google) JavaScript that will add or remove c1ass values, but it’s a very workable solution.

The persistent problem is that (as of this writing) elements with a display of none are not
“seen” by the vast majority of assistive technologies like screen readers. Since the element isn’t
rendered to the screen, the reader can’t find it and so doesn’t read it. This is often exactly what
is wanted, but at other times, it’s exactly what isn’t wanted.

For example, suppose you have assistive links (generally called “skiplinks”) in your page. You
want them there for people who are using screen readers so they can jump forward in the
document, but you don’t want them on-screen getting in the way of people who are sighted. If
you set their container to display: none, then they disappear ... for everyone, sighted or
not. The people who need them don't hear them.

Similarly, if you have dropdown menus that are hidden (absent mouse action) for sighted
users, screen readers won't be able to find them if they’re hidden with display: none.

ESSENTIALS

SUPPRESSING ELEMENT VISIBILITY

In a manner very similar to suppressing the display of an element, you can reduce its
visibility to zero by declaring it to be hidden.

.hide {visibility: hidden;}
This will make the element invisible, which probably sounds a lot like it having no display.

There’s a crucial difference, though: An element that’s setto visibility: hidden still
participates in the layout of the page, as evident in Figure 3-7.

ann Wiy Fryloe =
n
A fuir petion. ol e Fodbark 1 pei I il piomy e nkong e hmes of “How is ihis ney & Forest: from sl Lis
RN, b s o by d B i i bl oy ™. Tamak b lad e che bailos of ha sarver ot gacaian. la s

vyl p Rl fallwl] [poie Sl Dt i, Uy et Dy ol 8 W) B e e s | o] s o ol] i

e b mecl ong s iparardeg T Well, ' canally ey reognaskl & oach iy s horen, o s nikepap with saibi oy aeel
e Bradlines I e s i Spamaer s O30 1o oe I ki o e wi, i wE A0, 1S Bebore sl Kie —cisol§ e
i i e el al il Sl e W e e O e Eeelore e b i e] e g e e
day oo e sk g ines may P ipreieg ary cowrn het's e hididen, s @ e m U coscored the sl B s fec

Thots i, Ut Wl s Okl W o] i oo Pl o k] T o e] o b W il iy Il il
it & bring vhikic. Srecxring dai des v schis vy thel dhe seee dets b5 ceofel o both barars psd machine — rrning, e sl
sy e i i b e 0 U 1 W e e il et gl diprais b, i o i (el e o e
e i lowsd i e

1A guick casrpie: us Ay Baip s . "F hCskesde: o popaler, Uxeming o omld emape ownis o of websices insicsd of poopke
cma ng e disect by (e Upcaming ™. Tasde. wie o alresdy el s g dals oen roarisg page , oold mark ap sk pages waing
ke el U plosny eoued pad sk i The The Bl s Wi] Bt i b g D By g
and der gu-mrser 6l e mlswadon Ex Upeeming; he joe ceser o updoss e page aad coni then piag Upcsming , or wai & ke epder
b g b, Ther v b il B i i bl y, Ol P W B el OlR . DY R T e
ol b e Witk regand 1o R VRN BT, ra jum Upcornin g and that s sacdhar sdvamsge righe charn)

B will the i s pfarrmdon may hiicd wo e vinkk infarmdoaT The's § bander T L when
st babindl L e AT, i o i et S0 b W o U D s il p e, i e et . i il e
= ix pull preswstion ped sreces span. & e e dorwer o rest open the Lefer iesicnd of heving, hem bld gcier. e e E

Figure 3-7: Invisible element.

So besides taking up space, what good is an invisible element? A mouse user can’t interact
with it, it may not be accessible by keyboard, and you certainly can’t see it. So why bother?

Well, it’s great for absolutely positioned elements, which are already not participating in the
page’s layout. (They sit sort of above everything else and aren’t taken into account when laying
out other elements.) So you can toggle their visibility between hidden and visible
without affecting the page’s layout. As a bonus, you can hide or show them without messing
with the element’s display role, thus sidestepping the potential problems mentioned in the
preceding section.

Unfortunately, the same accessibility problems persist: Elements set to visibility:
hidden are completely ignored by the vast majority of screen readers. Dropdown menus
hidden from sight in this manner are also hidden from speaking browsers.

THROWING ELEMENTS OFF-SCREEN

So you want to hide an element from people who can see but still make it available to screen
readers. How? Here’s one way.

.hide {position: absolute; top: -10000em; left: -10000em;}

Having done this, the third paragraph (the one that created a big blank space in Figure 3-7) is
essentially removed from the page, as shown in Figure 3-8.

B0 (e T Mo =

Alnrp [Lg= | il gl g B by o "Hess o Bao my e boom vl B KOF,
besiden hixing waizes suing o B ks mracmrd wocsbulery ™. Tansck b leid dowm b e of e smreer 10 b gaerdon. In o mvexly
D i bt - s e bt e i il o W T i e . it i b Bl e e

Whae: sbear search cogior rpammiag? el i eenlly ooy mocgainable m mck by s beran, 12 da's b berping wise vislbibry asd
e Frsvad b s, T o G i Jo ool st 720 o Bk i el e’ Piainaindl, b iy 0, i eiiatind @il — AEacI B el A
m . giac) mred georng e Torx Ay
T it o [s s ot ik vl L o D ool o wed B i @ e

Thea sgain, e ek by thar B kind ol el poapls vam nd hhnldd'l.ﬂnmmhhﬂn:ﬂ
16 g oalds Svecnag ar dis @ ach s s cica W il b ke b ey Sl ! i T

poopic i e sl - o 8 ek e o sppeech. el oo Ui ireskly diershy 8 legfer cheere ol
b, B b | thes et

TAquich commple Ay Balc mea. 'EH’.H:lﬂ.jnpp\.l.l' lb:nnnt.aq-m.ld KT <venm 2T of sebahos wrcsd of poaplc
ey abil dawcdy e Lycoiraog ”. Fusk, & Fubar 0] FRART bl gl i
Habrmlar el pord sk im The mhoamiages? rh-_'h.-u-rh-—.l- e i hare b e e L g
i U o el O H‘m# Lt b Pt joad v o pudi o (g g il i L i Lmwmi, i kil N 3 e’
crap ba . Tha maible ieormaas . it i araosed n 6 meches panisbl vy, ol be @ b vpdi s onee . OF coune. i am seld s

i il] e el g pak, el el Lpeiesag, and il s amalied s gV 1

B wid e VRN il SRR oy D R e o bormaion * That i 6 ki w10 doRcail | ivsemder wikon pRoanianan
st Bkl babon s By, i B 0 e v R e i D P v it e S O ol P, d et v
i] prosonisiies sed sirechern spari. e Bt Peeser cae s aace e leder Ewirnd of harving Fer bodicd fopeifer. ool wee B
Vo] s U ok O s B i s By () il D il s i R | e | R B il b b Y
e wpusen s Porbeps we 1] ok back ing deosdo o oo e, woih mew spprscie. i Fad, cleebtls over e Boaghi el vl e
o awm o, Abormas ok, poviaps. w1 baok baci Broa Ui reslage aed sonder sy e v dholga. B neo oold. ke alone

whwald b g paa sded
I i ol 1 e - P e e ey Coreabd & o bl dis boiay sead bk o o e mmacha s ooRi Eong o L) &
wih fx miceforrs ipp 11"y s K piiwighi andly prosped el mfpich e b wivior, waly 0 rpiy. vk

L il s P s . e i el i

b £ .

Figure 3-8: Throwing elements off-screen with positioning.

That’s right: the CSS took that third paragraph, absolutely positioned it, and then thrww it
way oft-screen. Doing this will remove an element from sight, and yet it will still be read by at
least some screen readers. This is the reason why this technique is generally held to be the
superior option for hiding elements.

ESSENTIALS

Technically speaking, however, you're placing the top-left corner of the element 10,000
ems—that is, ten thousand times the element’s font size—above and 10,000 ems to the left of
the top-left corner of the element’s containing block. In many cases, that’s the root element, as
in the html element. On other cases, it might be another element within the document. Either
way, the odds are overwhelming that given the above styles, it will be far, far out of sight.

To bring it back, you have a couple of options. If you want it to be absolutely positioned when
it’s visible, then you can just set its top and 1eft to place it where you want it. That would be
something like:

.show {top: 0; left: 0;}

If, on the other hand, you want it to come back into the normal flow of the document, you can
just set its position to the CSS default.

.show {position: static;}

If you take that approach, you don’t have to reset the values of top and 1eft, because values
for those properties are completely ignored when laying out a statically positioned element.
You could reset them, or not; it won't make a difference.

A third option comes into play if you want the element to come back into the normal flow, but
you need it to be a containing block for the elements it contains. This would be the case if you
want to absolutely position things that are inside the element you’re bringing back on-screen.
In that case, you can have the element be relatively positioned, but you do have to declare the
offset values.

.show {position: relative; top: 0; left: 0;}

If you leave out the top: 0; left: 0; part, then the element will be offset from its place
in the normal flow. That’ll leave a hole in the page where it would’ve shown up, had it not
been thrown 10,000 ems up and to the left.

And of course you don’t have to use exactly 10,000 ems here. You can use any number you like
up to 65535 in a few very old browsers, 16777271 in Safari 3, and 2147483647 in the rest. You
can also use any valid CSS measuring units, from ems to pixels to picas to inches. The key is to
make it a very large number so that there’s basically no chance of it ever being visible until you
call for it.

IMAGE REPLACEMENT

One of the longest-running design techniques in CSS is that of image replacement. This is a
class of techniques that allow you to use an image in place of text in such a way that the text is
still available for print, accessibility, and so forth. Image replacement (IR) is generally
intended for small, limited applications, such as company logos, page headlines (see Figure
3-9), and so on. It is not suitable for replacing entire paragraphs of text.

The most popular IR technique is known variously as the Phark or Rundle Method. (How
popular? People made T-shirts about it.) Basically, what you do is sling the text way oft to the
left with negative text indentation.

hl {height: 140px; text-indent: -9999px;
background: url (page-header.gif);}

A P L ke Bl W Y LT }' .

Kar corvvinsed ma h | shauld g for e evens j, dospia & resia s o o Ainsacs tos shesrean, Gocd hiag a1, ma— e e
cormores. Bsbers in moion, which v Ty cool. Hex's bow @ werk: i Esborman: rai s comemars frem chiclo. Then. iy w0 o ma i
rivis gl ek e o o o s b, il ol N EmTee avacaian exi I raps el ol [ok i
ey He commmiorrex ot i bwds ook, tom osereg el ey e oe- el e, or besihmg

T P, W s oo] o . e p i) 1 . W Wy ol s, Do i 0 W el Bl s, i e sl | s i,

whe vt i P rech. pecEs v e |} g & Jmw
yeisirred W 0l Bty Ol Dol ol il s b i B, Wi Do, 400 Wty sl sl o | il o i i i,
e ke e Bsh . Coie mposcom. rmally. We soe sbie o sox e birh diving hanko: io dhe reecr's shallesesess. o ey, el 0. poople of
Clalormas, Lawseera hang frace. vhe: frovs af @ Ssherwer’ bas. [sos climed e e sxmer bugi, witich e wae soeeacy i, bae [dld s’ e
@ g b Py o ot W Fmiua] W 0) e Ul B i e, Bl W o Do Wy o) s v il Ul i, v s]
e o the Lnicrs. 38 e hanps e probskdy there wolcly i allosy us tp i B binh diving. T pisd ey weorr dhare: the sipghi wm
rmaly e

AT g, W i, e P e U b, Agpii, I Okl e RO Por i bl b i g T g e i e 6l -
wwied o the

LEs £

Figure 3-9: A heading using image replacement.

This is in many ways similar to the trick of using absolute positioning to hide an entire
element well off-screen. Here, instead, we hide the element’s text content well off-screen
without actually moving the element box anywhere.

In print, background images are almost never printed. The option to do so exists, but the
default is to not print backgrounds, and almost nobody ever changes it. Thus, in a print style
sheet (see the next section for more details), you can simply say:

hl {text-indent: 0; background: none;}
The background: none is really only a precaution—almost nobody ever has background

printing enabled. Still, just in case they do, this will prevent the h1 text from printing over the
background image.

ESSENTIALS

The one edge case where this sort of replacement fails is when a user has a browser with CSS
enabled but image display disabled, and, more commonly;, if the image fails to load for some
reason. In those cases, the heading text will simply disappear, as in Figure 3-10, and not be
replaced by the background image.

Lilals) Mmpillp frefan =

Kai coarviceed e e | shamald po owt for e cveniag. dovpiic 8 modown. ol oy i s sfcmoes. Deod teeg vl 1L mo—- wx e
il Daders i 0w, Sl mih s 0w e e 1] e Uiyt o ot H ity ks, T ey il o T
arer B Right wof i binb widh i (8. - Ench bird hasi n. ropx ol srowsdl b moch i
ekl te crmnrirmes ol da bads meck, b b ey barvn k

To fh, the s dive el beem: o ey wou i nerarally. Wies chey ouch 5 fishy. ey rooen e o on- on: Qapie, chis s reeem | bobwrviar:
CREEEA. i e waar Howrne, tha mope el sroasd e sdck prevenss hars o soymlly el bosing , 0 i faborman mi
mave x Bib Bom e bisfs reowth pad e 5 oo . besha., Thes i, sill besgry ssd possdkly o i meorynd show: levieg i mxal,
e [e i, i et phally, W Sy dlie W ik D Bl v Ui Le B i s s e 0 o ot il e
Crlcran L haag, free. i Frowi of the fishomae’s b kvm dsimad i thow s bugs, which in ten mesc Bah, b § didn’ s
s sk e ras tha bt Wie coaald e ik binda: Siviog, b e ol vioss ey oo sk was oan e tha ek wasrs epoad e
s il Ol Ll i o Mt i Pl By W e By 0l i o s e . v, b il ey e Mhere D sl i
el moar

Afier rotwrring. o showe, v b b o shop. Ageie. Ex orderd 0w chem for s, indhading: 0. e Temily” chop forix ool n. L
il o tha

A= £ .

Figure 3-10: The result when the image is not available.

There are about a dozen different image-replacement techniques, each with its own unique
approach to the problem. Some involve wrapping the element’s content in a span and
suppressing its display or throwing it off-screen; others have you adding an extra image as
content that mirrors the background image.

One image replacement technique is worth mentioning here: using an image in the content
and nothing else. For example:

<hl></hl>

In this case, the image will show up both on-screen and in prnt, since browsers do print
content images. It will also be very friendly to screen readers, which know to use the a1t text
in place of the image. It does, again, fall down if the user has suppressed the loading of
images—though in cases where images are enabled but the image somehow fails to load, the
alt text should be shown in the image’s place.

PRINT STYLES

If you aren't creating styles for print, now might be a good time to consider it. Even if you
want your site to look basically the same on page as on-screen, you can still take the opportu-
nity to optimize the color contrast for what will very likely be grayscale output with no
background colors or images whatsoever.

It’s easy to do. You can associate them with the page in three ways:

<style type="text/css" media="print">..</style>

<link type="text/css" rel="stylesheet" media="print"
href="print.css">

@import url (print.css) print;

Almost everyone uses the 1ink approach. This is because embedding a print style sheet in
every page is pretty inefficient, and importing a print style sheet requires embedding a style
sheet in every page. Also, there were browser bugs around print-specific imported style sheets
that lasted for a very long time.

The print style sheet itself is where you can do things like unset image-replacement effects
(see preceding section). It’s also a very good idea to make sure all your text is dark in shade,
because white text on a dark background will almost inevitably become white text on a white
piece of paper, and that’s just really hard to read.

This happens because background images and colors are almost never printed. The option to
do so exists in every modern browser, but the default setting is not to print backgrounds,
which, when you think about it, is a really good default. (Imagine the effect on your printer’s
ink cartridge if you printed out ten pages of white text on a navy blue background.) Almost
nobody ever changes the setting, so you have to assume that no backgrounds will show up in
print. Therefore, it’s a good idea to just remove them in your print styles.

You can do that in a broad, sweeping way:
* {background: transparent; color: black;}
...or you could list out all the elements that need to be adjusted, something like this:

body, #navbar, #aside, .warning, .blockquote {

background: transparent; color: black;}

DEVELOPING PRINT STYLES

So what's the best way to develop print styles? Right there in the browser, unless of course
youd rather select Print Preview... about a kajillion times. Here’s how it works.

ESSENTIALS

You probably already have a stylesheet or two for browser layout. Let’s assume they’re 1 inked
in, like so:

<link type="text/css" rel="stylesheet" href="basic.css">

<link type="text/css" rel="stylesheet" href="theme.css">

Even though they don’t say so explicitly, both of these style sheets are applied in all media—
that is, things are exactly the same as if they had media="a11" included in the markup.

<link type="text/css" rel="stylesheet" href="basic.css" media="all">
<link type="text/css" rel="stylesheet" href="theme.css" media="all">

The first question is: Do you want these styles to apply in print? If not, then you probably want
to change the a11 values to screen.

<link type="text/css" rel="stylesheet" href="basic.css" media="screen">

<link type="text/css" rel="stylesheet" href="theme.css" media="screen">
Okay, that’s the default situation. To this, you want to add a print stylesheet:

<link type="text/css" rel="stylesheet" href="basic.css" media="screen">
<link type="text/css" rel="stylesheet" href="theme.css" media="screen">

<link type="text/css" rel="stylesheet" href="print.css" media="print">

Great! Um, except when you reload the page in the browser, nothing changes, because you're
looking at it using a screen medium. Since you probably don’t want to call up a print
preview every time you make a change to the CSS, and you definitely don’t want to print out
the page every time you tweak the print styles, you’ll need to get those print styles on-screen.

And that right there is the answer: Get them onto the screen while you get the other, screen-
specific styles off the screen (see Figure 3-11). So change print to screen and the existing
screen values to ... some other media value. I use tty because it’s the furthest medium
from screen that I can reasonably imagine. Also, it’s short to type. Here’s an example:

<link type="text/css" rel="stylesheet" href="basic.css" media="tty">
<link type="text/css" rel="stylesheet" href="theme.css" media="tty">

<link type="text/css" rel="stylesheet" href="print.css" media="screen">

Now you can develop the screen styles to your hearts content, reloading merrily until you
have things just the way you want them. When you're done, just change screen back to
print and tty back to screen, and you're ready to do a final printout to make sure
everything turned out okay.

To All Who Seek It

I peusm v ks 1 sl ol -omaensarabl p oo b2, By o (e scasea Pas rid-aumees and e e riverdid oade alss
[R-BRT-F 3. - -§ o] pul i warm ey v bark. b i i wail shoprrsg bag o bewd. Bosl L emps ke
il bk b, meoven: chillly. Mo winser o, b vy coald Rl b oerming s e seap moll shid ol e sk,

[ezommend e L ey bofere e Thoscl,. lncpiagg aa oyve om bk i abon-cyeke B wndd i sban-iompored mdTie. es ha dare
el el b s o ekt o R 0 - i aiy ' sitd daw handly dory el ol thil Tk ded
ey Bl el e derepions on bwil [s e ki e N i Dol weed |
vl e el e ncmgtl gy S, i ot w4, kil ks ol o iy ol

1 Dving; Seroaded deaugh b ceal] bueck af acomiag | aed iy eihe allownlk. [care wpea 5 |
e e el T okl rm i) ey el b He mndoced oF | bl i e B

femew whn Sex oxagh b orec oot ix epacn for o dalles, ald
Wi, o v e e, bt o B, Rarmeahag: i Tm S, P ad Thary'il v d itibod o (il Bl oo olhde ozt Mt o, B il Jwrir s
Linke bty mwking [conld da. br asid.

Hr= s by kel | bewnd s brlioes” | e B pvml] cwonres sbom] ool eong axy vl | ele el vk ook cmndee, 70
iy, b 1w o

Asd e, b wisd bidag bes oy dwecks m liscdc i Frora done. Temer Bowving § cursis al wacsd
meicr T ey b the ik, | thet alosantowr. Ti o (o ittt i i i iy g, i, o i oo gy a0 e, T bty
el maybs cighs, Toaldag up = o coriomaly. The g ol el pocping m o wasly Som bobicedl e man's bk PregeT Aocarsplicen?

(LR -

1 el] e oo ol L9 by g N b, Wil of eiriioe. bary = oy ks, 5 il of wsler o i e provhid. el B et |
et yo o afed. Ao sppls e weer. My ook cand B iy rendy e ke

Thrwagk ibx dowsi i e . U plesiee Ny TTEEAE =r Imwd | ekl ix wdcnnk
vl bt Myl i ol Bl s e, bl i B ety it il iy by W i o e 1 il (T]

ol b il

A —

Figure 3-11: Previewing print styles in the browser.

BLOCK-LEVEL LINKS

Messing around with display is one of the cornerstones of doing interesting layout on
minimal markup. And one of the best tricks in this card deck is to have hyperlinks, which
usually create an inline box, generate a block-level box instead.

To understand why, consider a list of links in a page’s sidebar. These are probably all an
unordered list, one link per list item, or else in some very similar structure. In fact, consider
two identical lists of links. The only difference is that one list will have block-level links, and the
other won't (see Figure 3-12). We'll give the links backgrounds to make the difference clear.

Archh Aochrven

(=

Ty e

Wiritia

Bmnthi s i

Laftessrs Wrillig

Abou thinnite Spealing
LeFirvrs
Ahg this gie

Figure 3-12: Two lists of links — one blocked, the other not.

ESSENTIALS

The inline links are lot less user-friendly—there’s less area to click. Accordingly, if we want to
do background hover effects on the links, the inline links will only “light up” behind the text,
not in the whole box.

Getting to block-level links is really easy.
#sidebar ul a {display: block;}
That’s all I needed to get the block-box links into Figure 3-12.

When a link generates a block box, it acts exactly like the boxes usually generated by para-
graphs, headings, divs, and so on—because it’s exactly the same kind of box. You can give it
padding, margins, and all the rest.

MARGIN OR PADDING?

Have you ever thought—I mean, really thought—about the indentation of lists? Or the “gutter
space” that surrounds a page by default? If so, have you thought about how they’re created?
Because it turns out there’s no universally correct answer.

Let’s take the space around a page’s content for a starter. As most people know, there are about
8 pixels of space that separate the page’s content from the edges of the browser window. As
shown in Figure 3-13, you can remove that space with reset styles, or by styling the body
element itself. But how should you style it? Are you removing a margin, or removing
padding?

If you want to be cross-browser friendly, the answer is both. That’s because most browsers
create the gutter with an 8-pixel margin, except Opera, which does it with 8 pixels of padding.

Now, before you start looking up ancient Norwegian curses, realize that nobody is in the
wrong here. There’s no specification that says exactly how to create the gutter (or even that
there needs to be one). There’s a strong argument to be made that padding is a better choice
than margins here. That really doesn’t matter, though, since there’s disagreement between
browsers. So:

body {padding: 0; margin: 0;}

That will eliminate the gutter in all known browsers. (Well, except for Netscape 4, but do you
really care?)

B0 K B Firwpiem

A Vi g o Db feiliach | it sisdmsiry [Tall s o radormas rm whong i s of Hn.r-wm-uw-:nm-m'r-nh.ﬂmﬁﬁ T e]
bring: wrices mmg oy kow praoard =csbalery™ . Tiench b i @ by o hnEverhy lineed pesbel: e
o vinkk e das, dha more Ebely b & w be wee mirvess. wral 18 B hepe e wwy.

Wi sbrwr woarch capise sparrmeng ! WL B wnally cmily roogniobic momch. by 5 borma, & iet's o kocpie g ol visibiley sl barsas.
Trovenlh adis, I v Sgpirs @ H-r-m'w:rmh.l 'Hl! The by I'l\.n 'r-lnrr\- s b, i1 B A e s e S el

wal mealy wha ardi b nsned igmoring S Sorne dwy (e T) e scsre on s reLy
i) g, s (el Dot Wb, e . Vi i 1 it vmen] i k] e it o
Spw, mian sk Tenber descs tha ned —wal ks v wibw vl A ceas) g Taek aed | e bad s peey

el] e b & e U bl O T S e g | ol & ey e 0 D b v O el M e
reaniorraion. A3 o mph pcws frem bin post. Tesch syps oo v U mrsorr specsie sbow: 1. Bt ovory owes of srectared deln esds il o bring
iopa e el b bl ppiiag wwwt hrah 6 A s g ki piokie & el bt d iy b iy ey ey, et b el Bavgers s 1 by difimi]
Erplay s s rarkea.

m“munhhu“ in N PRy el o vinible e in fosrda

o, s unu.l.t-u.u-ﬂ—nhllmﬂlp.wﬂdunﬂhmm:‘hmﬂhuﬂrmd
e, By o i T i e e e RO, by 9 S e o) kit b e L W e e ke 1 Mg el s O o et
oorspac 13 whet. 150 wrokons of e resdakls dass s Erd o ding .

Then npain. e orwib b i dhe kined of e b i end of i Terdy i om Icing
viahia S-nn'I'Lu t TR E l'I'If s i L s M.lu'l‘.u Tt b and e Bosca — rarming e e ' aheeing o poapls ima e
st P T degani ot e B dreky stardhy 0 hgher chanoe of mooos. ot lewst b dhe short toe.

Uik ol i S B e, "1 BCaieredar i i e ki 1 taing pag b Soape ek ol of Rrbaied ek of prigie e ing e
Elracdly beao Upooraing” . Bandi, wha s slesd ralesinis g halr oam e ng page , oold wark ap askd pepes. ssiag hiCaksder, sad Upcaming seoudd
Jird s i W i, The ddvantig e Thie BasT Sobabarted doria’ | e ks i e lowr gt el W o0 ey dll 1 r-l'-llhn b
Upreming: be i cosicy or ppdens e page nad oo fhea ping Uscorsing. o il fee i opides op b The wisillc which

5 s rachdee -pans s wap, anky b oo b epderad ohea . OF coama. e s woald e e with. mgard o oy orem SigEE. B sl meﬂ.'u and
Il wodley aclomimr # gl Buey |

B will e =rmedc ixormaiics vy kol ot viviblc infeeretiosT Tha's 8 Tesder oreedl 0 formoesd . [s hked inio
e, a2 been § el v gl i g o ren ovcn partal by scopamaed . Ow e e bl , i sk e o mee 0 el pressararics. nd
AT i) Wl D Frvd oy o] 0 e ey vl oo P s oy Bl Wiy [o e i e it o U0 e il ol

el mro. 0¥ coune. whst e reall s mosns by e [doa™) hink § mekey #m o pgec for e e ook ek i deowde
o r aad, wieh e Sppecec e (e usd, deckle cver tha haag i e wn'd e bobed (b + porisp s D baok back Braniche .
b .

Figure 3-13: A close-up of the “gutter” around the document’s content.

In a like fashion, the indentation of lists—either ordered or unordered—is accomplished by
either margin or padding, depending on the browser. Thus, if you declare the following:

ul, ol {margin-left: 0;}

. then you’ll remove list indentation in some, but not all, browsers. You need to strip off the
left padding as well if you want to be consistent across browsers.

ul, ol {margin-left: 0; padding-left: 0;}

Of course, you aren’t limited to just removing the indentation. Once you’ve gotten used to
setting both left margin and padding on lists to change list indentation, you can decide which
mix works best for you. Maybe you think all browsers should use padding to indent lists. Just
say so:

ul, ol ({margin-left: 0; padding-left: 2.5em;}

Or maybe youd like to split the difference:

ul, ol {margin-left: 1.25em; padding-left: 1.25em;}

ESSENTIALS

Or perhaps all margins, no padding is your cup of tea:
ul, ol {margin-left: 2.5em; padding-left: 0;}

In many cases, it won't really matter how you do this. If you assign a background to your lists,
though, then it very suddenly does matter (see Figure 3-14). This is largely because the list
markers—bullets, squares, letters, numbers, whatever—are placed to one side of each list item,
as though absolutely positioned there. (They aren’t actually placed using absolute positioning,
but the effect is very, very similar.) So they’ll hand over the list’s left padding or margin or
whatever is over there. If you want them “inside” the visible background, then you want your
list indentation to be done with padding. If you want them hanging out beyond the back-
ground, then use margin.

Figure 3-14: A comparison of list indentation techniques.

OUTDENTING LISTS

We were just talking about list indentation, and now we're talking about ... outdentation? Is
that even a word? Maybe not, but it’s better than “hanging indent,” which is the other term
used for this sort of thing and which makes no sense at all.

What we're talking about here is the technique of having the first line of a list item hanging
out to the left of where the rest sit (see Figure 3-15).

It’s a nice effect because it lets you distinguish between list items without having to clutter up
the page with bullets or what-have-you. It’s really easy to do, too.

ul {text-indent: -2em; list-style: none;}

Eo why 5ol 1 lmdoripl o do thel o = mhios g charsT | ih 1wl
pRil = daraw | icmald wish plain HTH[L+CES

A fre plemenmson rows :

| il HTIL 5 i e 1 iy il HT WAL -l ol b 1 o, e G i e
L3y i HTML AT didn't Il.in:m-ri.'rnnmr-ﬁmlw.-.tmmmnnm!ﬂﬂﬂ
i e Earggh i ol i it cineats, briad | ek Bx s palh jon [ia selrswh, el il 4im Heg
tharee rarmcy (ot b, owicy coavosan,

which ok R IT n poomp o dod wmid bk o i pecful
IR, plos ko ra bnos b o s 170 B k I btz 1 s tharn. Sy, [i wa serp ea e
el e Ul Ll s el i i s vl i, Pl ' | okl i B i

Tl Wi Wl O e Mool | e P o e gl o U0 et i 1 ot W il el vl i v e W i
Tomcy, which scrordia § o rry reomi esding, of e U255 2.1 speciionion b i coron thing: ia ot de. Every sther browsx 1
i ichods Sl ervwr §ee 13 bl b, choigh. sk [foaed e castel | kel Sppdyicg] evee i e kb 13 6 0w aher
s,] Wl gl e i e oot] o M. el i o 0 i e i s ey D, |t e
ol o oec brrescr peer ows of conie: 8 e, The bt Bou T e devieed B i s O inkles inocevn ond spply eviit oo
s s W o R | i) il U oy e i il iy, e o o) e i i Vo Vit i e o] o i ol
i shatly nlier puilication.

L blr s, i e d U oo oA bt o b i b0 ST Ul g bl ol Ui Ot b TEY . Thi i B b i i sior
bind of wikkh-doubling pobio dm's moly mvobal oo dornis wih 0 515 L i e when. e Fre bosder jpees o oo lines
wndad i g o e Dooag g s b Enpdasiasionn i i rad iy, did b W iy divet ol a0 00 ok d snaind e bl
cE o aodhing. B arpona raees w1 coasmersy tha profiern. cohar thas pen rearicg) e Besser o Bore ooy per . dog ke Bms,
Tl o s i 0, b 1" i e 1 ol w: [Sy o D ppe, 0 i diie | dary 01 L i
mmmnmmwunmdhmﬂntnmlm:l

Eaprra i e G b il p sk o B The dacilien & v ol B Wiphe diek i, sl didd e B oreed i lie e
wabmn

5] 1. e ke e ol -wickh ben mecwionnd in e previoes paind. | don’ roally barve o i e thin
i o i Ui by Sl T by i i, 4 b Py W b 1
&mhﬂl:iummuwmhmpmﬂhum oy dcwas them b
®

Figure 3-15: Outdenting.

That’s it. Note that I made sure to include 1ist-style: none there. If I hadn't, then the
first line of each list item would’ve been outdented, and the text would have overlapped the
bullets. So don’t mix outdenting with list markers.

You can outdent anything, of course, from paragraphs to headings to divs to pre to table
cells. It’s just most common to see it in lists.

BULLETING LISTS

There are a lot of ways to get bullets onto lists. The simplest, though the least precise, is to use
the list styling properties built into CSS.

Let’s say we have a list of the stars closest to the Earth, and we want each one to have a little
star bullet instead of a circle, disc, or square (see Figure 3-16).

ul.stars{list-style-image: url(star.gif);}

ESSENTIALS

The Sup

W45 Camaun (Proxims Centuariy
Alpba Co ot A
Alpia Coeeri B
Bamerds Sor
TWnlf 355
Lalsrsde 2118%
Simus A
Sirus B

Luyten 726-E A
Luyten 7245-6 B
Rosi 1534

Rias 248
Epsilom Bridani
Laszaill 9352
Bo=s 128

EE Adgidii A
EX Aguiail B
BX Adquari]l C
Procyon A
Procyor B

o E o E s EEEEEE R

Figure 3-16: Starred stars.

Easy as cake. The potential drawback here is that you don’t have any control over the place-
ment of the images. Their distance from the left edge of the list item’s text, and their vertical
alignment with respect to the first line, are entirely under the control of the browser. You don't
have any say.

Now, suppose you wanted just to have regular list markers—we’ll say discs—but have the
markers be a different color than the content of the list item (see Figure 3-17).

Unfortunately, it requires some structural hacking. You have to wrap the content of each list
item in an element—either a div or a span. I'll demonstrate using a div.

ul.stars {color: red; list-style: disc;}

ul.stars div {color: black;}

<ul class="stars">

<1li><div>The Sun</div></1i>

<1i><div>V645 Centauri (Proxima Centuari)</div></1li>
<div>Alpha Centauri A</div>

+« The Sun

« VidS Comenei (Prosima Centnar)
« Algha Cesimri A
« Algha Comimri It
+ Barmands Sbr

« Walf 333

« Lalande 21165

« Sirms A

» Sirms B

« Lupyrien T26-K A
» Luylen T33-8 B
« Rims 134

« R 245

+ Epsilon Ecdani
+ Lacwills 9352

« R 128

« EZ Aquaril A

+ EZ Aquarll B

» EX Aquarl ©

+ Procyon A

+ Pracyon B

Figure 3-17: Changing marker colors.

In this specific case, we could’ve switched the div to a span with no real change of result.
Had we wanted to throw in some borders or a background, then there could be a huge
difference between the two. (Granted, you could overcome the difference using display.)

Youd think that CSS would have ways to independently style the list markers without having
to drop extra elements into the markup—and in fact, youd be right. The problem is that
browsers never implemented them, so they’re kind of irrelevant.

BACKGROUND BULLETS

So you want to set customized image list markers, but you aren’t content with just letting the
browser put it wherever it feels like. That’s okay: Just turn oft the list's markers and drop your
image into the list items’ backgrounds (see Figure 3-18).

ul.stars {list-style: none;}

ul.stars 1i {background: url(star.gif) 0 O.lem no-repeat;

padding-left: 16px;}

ESSENTIALS

The Sun

e WS Centaun (Frosima Contuan)
A lphe Combar A
& Alpha Comtrari B
& Barmard's Star

W Woll 339

Lalande 21185

W Slriss A

W Slrivs B

Luyien T368 A
* Liyien TH-E B
* Roes |54

 Foges 245

* Epsilon Ecidani
w Lo ile 9352

W Roax 12K

B Aquaril A

B Aquarll B

B Aquarll ©
 Procyon A

Procyon B

Figure 3-18: Bullets in the background.

Because you can place the image wherever you want in the background, you have a lot more
flexibility than plain old 1ist-style-image permits. You do need to remember to add in
some left padding, of course—otherwise, the element content will sit on top of the back-
ground image!

If you want to line the image up with the first line of text, there is a little bit of an art to it, and
you can't absolutely guarantee to-the-pixel alignment with, say, the baseline of the first line of
text. You can get very close, and in many cases will be in the right place, but it’s never a sure
thing. This is one of those cases where you have to accept the potential flaws, or else try a
different approach.

A benefit of this particular approach is that you aren’t constrained to the first line of text. You
can have the markers be vertically centered compared to the whole list item, even if it goes to
multiple lines. Combined with intervening borders, as depicted in Figure 3-19, this can be a
nice effect.

 The: Sun

" V645 Centauri
(Proifs Ceanssi)

Alpha Centauri A
Alpha Centouri B
« Barnands Ser

« Walf 353

« Lalande 21183

« Sitius A

+ Sirius B
;LuﬂnnJﬂLBﬂ
 Luytzn T26-8 B
Bioss 154

 Rioss 248

« Epsilos Eriduni
+ Lacaillz 9352

Figure 3-19: Vertically centered background markers.

If you want to drop in variant markers for certain types of list items (see Figure 3-20), that’s as
simple as classing the list items and bringing in new images.

ul.stars {list-style: none;}

ul.stars 1li {background: 0 O.lem no-repeat;
padding-left: 16px;}

ul.stars li.m {background-image: url (star-m.gif);}

ul.stars li.k {background-image: url (star-k.gif);}

<ul class="stars">

<1li class="g">The Sun

<1li class="m">V645 Centauri (Proxima Centuari)
<1li class="g">Alpha Centauri A</1li>

<li class="k">Alpha Centauri B</1li>

ESSENTIALS

+r'The Sun

o ViidS Centawri (Proxima Centuard)
e Alpha Contans A
+ Alpha Centiurd B
* Bamands 51

o Wolf 359

¥ Lalinds 111585

T S A

> Sifis B

Luyien 725-3 A
Luyien 726-2 B
Ross 154

+ Ross 248

+ Epsilon Bridand
Lacwille 352

Ross 128

EE Adqufil A

+ EZ Agqukril B

* EZ Aquarii C

1 Proeyon &

7 Procyon B

Figure 3-20: Variant background markers.

One drawback to this approach is that the images, being in the background, won’t print for
the vast majority of users. Accordingly, you'll want to declare regular list markers in a print
stylesheet or something similar.

GENERATING BULLETS

There’s an even more advanced way to do your own customized list markers, though it is
incompatible with older browsers. In this approach, you mix outdenting with generated
content (see Figure 3-21).

ul.stars li:before {content: url(star.gif);margin-right: 8px;}

ul.stars 1i {text-indent: -20px; list-style: none;}

That’s it. You don't need to add any extra elements, because the generated content effectively
inserts its own at the beginning of each list item’s content. This does mean that the image is
being inserted as inline content, so you can vertically align it with respect to the text’s baseline
and so on.

You can of course address specific classes to get specific icons (see Figure 3-22).

ul.stars li.m:before {content: url(star-m.gif);}

ul.stars li.k:before {content: url(star-k.gif);}

% 88 NEFEESFFEESEdEE N

The Sun

Vil Cennusi (Frooima Conmari)
Alpha Centauri A
Alpha Centauri B
Barsand's Siar
Waoll 359
Ladarde T11ES
Sirius A

Sirus B

Luyien 726-3 A
Luyizn 726-8 B
Roes 154

Bosx 246

Bpsilon Bridani
Lpcaille 93532
Roas 128

EZ Aquars A

EZ Aquars B

BZ Aquars C
Frocyon A
Frocyon B

Figure 3-21: Generating markers.

¥ W

F o o W W o O N W

- The Sun
Vi Coemaur (Promima Centoard)

Alpla Ceataun &
Alpba Ceataun B
Bemands Star
Will 359
Lalande 21185
Sirins &

Ririus B

Luyten TH6.8 &
Luyten T26-3 B
Raoss 154

Rais 248
Epsilon Eridaii
Lacaills 9552
Rass 118

EZ Aapaarii A
EZ Aqearll B

EE Adaparil C
Procyon A
Procyon B

Figure 3-22: Generating variant markers.

ESSENTIALS

Since these are inserted into the content of the page, they will be printed, the same as if youd
added them with an img elementorvia 1ist-style-image.

The advantage is that instead of having to load images, you can just insert characters that you
can style independently of the content, no extra elements required. Here’s how you could
replace the above styles, with the result shown in Figure 3-23:

ul.stars 1li {text-indent: -1.25em; list-style: none;}
ul.stars li:before {content: "\2605";

margin-right: 0.75em;}

ul.stars li.m:before {color: red;}

ul.stars li.k:before {color: orange;}

The Sun
W WS Cermmer (Proxima Centuari)
Alphs Centauri A
Alphs Centauri I
Bamard s Sk
Wik 550
Lalande 210835
Siriea &
Eiriis B
Luswten T26-3 A
Luwien T26-3 B
Rass 134
Rass T4E
Egeilcs Eridai
Laculle 9352
HRaoss 128
EZ Muguarii &
EZ Acquarii B
EZ fuquarii C
Procyan A
Procyan B

&

L

o o o

Figure 3-23: Generating Unicode markers.

There isn’t quite as much precision here as you get with images and pixels, so it’s possible that
the text in the first line won't be precisely lined up with the text in following lines. You can
generally get really close, though, and furthermore, it’s only an issue if your list items will have
multiple lines of text.

YOU HAVE MORE CONTAINERSTHANYOU THINK

It’s a fairly common practice to wrap the entirety of a page’s content in a “wrapper” div,
something like this:

<body>

<div class="wrapper">

</div>
</body>

The rationale here is usually that you want to center the content, or otherwise have a couple of
containers sitting outside the content. In this case, it's the body and the div. So with that
markup, you'll often see this kind of CSS:

body {background: #ABACAB; text-align: center;}
div.wrapper {width: 800px; margin: 0 auto; text-align: left;)

That’s the classic “center the design even in old versions of IE, which didn’t understand auto
margin centering but thought text-align should be used to center element blocks”
technique.

But there were already two elements containing the page’s content, even without the extra
div:thebody and html elements. Yes, you can style html. Why not? To CSS, it’s just
another element. There’s nothing magic or even particularly special about it, save that it’s the
topmost element in the document tree and therefore the “root” element.

So we can just take the preceding rules and alter them ever so slightly:

html {background: #ABACAB; text-align: center;}
body {width: 800px; margin: 0 auto; text-align: left;)

Now we can remove the “wrapper” div entirely, with no change in layout, as shown in Figure
3-24.

After you realize that both body and html are available for your styling, you can do a
number of interesting things. For example, suppose you have a design that calls for a two-tone
stripe across the top of the page, with a logo inside the stripe. You can probably think of a way
to do that with a div. Here’s an alternate approach that doesn't require one (see Figure 3-25):

html {border-top: 5px solid navy;}
body {border-top: 55px solid silver; margin: 0; padding: 0;}

img.logo {position: absolute; top: 10px; left: 10px;}

ESSENTIALS

Ll ls] T M1l My L=
i e S S R VL SR
The Great Big Food Show

Ty, Ko aead. Ceol s 0§ e] oy o el S g Uised S dowe. ik 1-X Cronser: Thils B e Pl pmeopk ™
rmd i, o 0w b o pen vory i and thin o rvelsnad . Tha ilos ren
Wiy Pt b iy, il o rp iy ey e wm gk s b e [Ntk idas bl e ey, Wiisa Baldi,
Facher] Hes. md filion B U, el s o s ke The val ¢ ool s i oo poreomsl soobung,. Breseen &
oo, ol s A il o] Faciod caly dnlihd wdn . 8, prasigrapdl @ Al Fiocson sth bl v dirs i ke et Far.
W plintad b L b i o s o B Bk el el o b i P N Thimdi i ey P, il el
Fienly changed hew weo ponk [e iold bicw s Wik mx oo By, ibe werslerfl Hams & Bares i soods or B35 Fond
ke paid i B e o aden whaw i el b e . Thaer's il gt Wiead] Jldeca cxplsiaed B -an his o, [oonlén™t hase
el v e 8 Selad i i, b sk o b 15 ek

Sa, chemd p, | ol 8 TY ahorw), oo [sl rosure b e

S v e Al ieaF beal Hepr s, wherr Be sl 0 e of Leeasrios speie of el Bei” e g ows e, ooy
oo e wnd acher P -bavcd Fomde . 17w 0 Tew of e weih peokakdy poe: peren e prepie i smeienee . e
ot e o g sharen sk amdarky pape ke, and #il . e o Oy e e o e, 0 6 B o poapde. Beca
B o N i e el (s Bl s] ad B e B e Peeamt

A w1 L s e e B, el e D s e g el et dhwided & oh civedd B amiedes. The ol
wimia | g e g erre b T s b | il W ety T i B b, Bt 1] oo i b e

ooy mrrmmded by pagly vpeor. Furws s i ched sed yrar ey ples o reie § e bigper. e | cofsialp ope
s 1w ey b 12] hink ey b £ e e sres. Thue raay moan o dligie
B b e e ek A el | B e ey T R i et ot [e b el Wil vl e ol

morpiable, Faporials B o pirkds meore ofbew pom,

Thiersi bl ol B it b, i gl Bt o el el T e il | e it il o Pl ol i, i 2l
i s g "ol B Thowsd Sipoms” e, The s srilly palls o] e ioapes resr wpondhly Uee pow. mighi cegeoci

La all, Wil walby oy carecven. Hopetally Uicsd o yisd i bR o sl beve & chana 10 o L e el o

Figure 3-24: The layout.

L Ealsl B Wi |

* ke

The (Great Big Food Show

Woury, Bt . i ey o o 1 o 0 O il EL g el ey o 0 Wt | i, T U o, 5 il s ol
by, madl e wau el bn ey e ey bip aned happesiag: ciden i vem Midbacelphis aad Clevclesd, The sbow ran b for Geee
e, el ey s B Ralh Pl e, s o] Mersem s oo Slias Roaraeion | Blirey Fatsk | Roshes] By, sl Al
Hrrasy U bk, wbe oy o bebkbhag? Thr onis pral o oo prreemalpadimg byvsorsed o Aem, devpdy s by desle ol s by
ropi ot i 4 phosapraph of ks Breen with s s arm e Bric asd K. Wy siosd @ e io e car oepies of his bealis
gl el ke oo Liank baom For his Thasig iving wrkcy Kope, rhach gua bally chasged baw oo ooni. | alia wold bie e, Wk
e Cprobraly. U wesdioiel Haes 5 Kool sondy mASE loal. Hi okl e e bl po sien sl e bedl Gl recees. T 6l
righe. Uea] Alwa cypisised & -on his show, [oonldet ved whan o bhilk wa, ko1 shone Beey i relaed o conking,

B iy, |l TV o, o il s o

W ol wew Al sl mpe bow, whers b did 6 son of bec-acria aapinde of "Cpol D™ cansrdl, cpgEcy. kT
owadl,] v i Bl il T i & b o P, ik ity oot oo iy s d i T it i
mhey s sbares o drilarhy pron e, snd wiih sy G o dary oser e da . B’ o e of poepde, T e e s
Epcll ruacms , a's ol sl oser Lics dhoasnd

S w1 R e shew By, whoch e by e mesrnd e ireioer diwled saoih e ol sfireders. The ol reem |
e Eragine thing serrm na gl i e chep dide’s v o py P reorn Soor spae . beoeese the vhose e e complierly
sTearadod Fy oy apan . Rasor b o b sonr v oy el o rmke i o b g, e [coraan by leape that ' e caed. b we
rewrly o popuier o, w0 1 hick ey oun fl¥onl o e opder worksre e Thee: oy coemn 0 ohghl o ke dobeod prioms s =il

b bonomly, they womes™ aribly cxperaive e | hink 5 axal bormue weald B ool scorpaile. Erpecially B 5 pickds mare
el st

There o s mapr ek ol mming B v shores i TV specill | ope ey maler 1 mve boan bag. sed ol @ e "Oes
By "Orca: Big Foad Sae ' Shaw” . Tha sams sonslly redi 6l f wagss duly Lias o mdgh

Iz all. we mally enjovnd carsciven, 1lopefally those 22 you e Jow-kip cices will beve o charee 0 5o the sharw oo W

2w £0

Figure 3-25: Stars and stripes.

TIPS

You can of course do something very similar with repeating background images (see Figure
3-26).

html {background: url (stars-m.png) 1l4px 4lpx repeat-y;}
body {background: url (stars-k.png) 54px -20px repeat-x;}
img.logo {position: absolute; top: 10px; left: 10px;}

[l T Hawan B =

|

2 0. 0.9.0.0.0.0.0.0.0.0.0.0.0.0 0.1
The Great Big Food Show

Todwy. Kx ored Carcdyn. oral | spemi] iy mi e e B Feosll Bhpre dows ot it 1-X Comser. Thibs i e Presd Movwekc's emd
Ay, el B i e P ey i dd hepting €l i e Paobieiphs wnd il i, T shirss i eet i e
chaps. mral ey day e wer mokipks sppoanecns rom Pood Roreork. san Mar Soaersen, Masio Beisll, Rachsd Bas. mrd Akan
Ferrors, . Mook, o e o B T o by vl e o, ot ool ook i A oraan H Ao, ool v walry bl i i
ouok crmendirers . A piolopngh of Al Brosm with his pres sroesd Bric wsd i 9% sood inline o pet our-oopics f bis becks
aigmed, arad sl o bk hire o bls Thusbagiving redory racipe, which quics Fasly chus ped Sea we conk. [ol old e bl Wl
s (eifaly. che werslerfal Bams & Ry’ porcs se BE3 frod. He el e b bl o icess whl e bl] chl oo Thast s i1
mipha. Dmall Abwca acplabead b on bis e, 1 cmalde™ bave ol o wha 8 Wil rascrics wos, ke alona Sosr b relemedl s cooldng.

So. chewrdy, 1mond 5 TV sheee, 5o [oo reirn i fer.

Wy i e o '] g i, i b O] | e i b of Uil Bk Lol g ek, spireis. k8
cremrn . el i owweband Foosls. K s o B of P with probably onc or e cheasarsd pooplic i micedascr. v beanl i e
et il e b pape bad, i & b e @ e vt e o DT bl peopi, Esd if pom L pure s
erpond cosiores . Lhad s stil] wcll pecr EBfcn dhemasd.

Bl i] P i D s e, Sl Py i i Vi Do) i o] o] iy o Wil e oy pwanls o ailiwdines T ol oo |
un bragine dhings wes &0 dge: v Bt they didn”) vani & pay dfor o Ao e bromss the shew een s compleicly

v mdid by cpdy o Furmor s o hal) podr Dsdy Pl G8 i i v B gy, il | gmtital p Baper Wt s e e, [i
cheardy 8. popaias overs, & [sk sy can sf¥and 10 e op e siece . Thae reay wams & aligh borep in ok pices. s sl
el i B oty iy T Ly e v | D o s) i e o B Wl by b, Bt by 11 0 0o P
wlbew Fom.

Thetst e i it i) o W U Lo o i i T it il | Moo U e 1 Pl P Bk el il U
Big Trrai HE Ford Thae™ Shre” . The e soraslly mlls off the ionge mors weaothly chan. v ruighi expeci

Ir nll. wr wully £n joved o sow, Hopefally e of wow in koo e will e i e im e e sharee o o

M 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 3-26: Many stars.

DOCUMENT BACKGROUNDS

We're all used to setting a background on the body and having it fill the whole browser
window. But guess what happens if you also set a background for the html element?

html {background: #ABACAB;}
body {background: #DED;}

Yep: As evident in Figure 3-27, the browser window is filled out by the htm1 element’s
background, and the body’s background just fills in the content area and padding of that
specific element. This is true whether or not the body element is tall enough for its bottom to
reach the bottom of the browser window. If it doesn’t, then the htm1 background is visible
underneath. This would also be the case if the body element has a bottom margin, the html
element has bottom padding, or both.

ESSENTIALS

The Great Big Food Show
Touary, [il il o il | el)y) e kil . Pl i i ot Wt | iy, o e ol 5 e s
e o, mmed - [5] s e vy hip ki yEar mrl Cleve lesdl, The shos ran

L
T o s v, i PRy rhepr W i e apperaes ol Foad Mok Ma Seneee ek Buni,
Fachar] Ay, ned Afon Brrer. . berl. wia e we kidding? The oaly rmal sar in on el ceaking: e B
Ak, il y ey il e el e ok amwhbaint, & pherapsap ol A ks B sl b bt demd Br o Ka)
Wi mocdd i ke i pet e copics of hin ook s s pred. el alsn io chank. kirn Foae s Thenksgiving. ferkey recipe. which quic
Rkl p i b wep oo, | e ok P B W sl | i bl p, le i Tl Bl . Biaci] s i RSS Frmd
He ol mx b b oo | e oo e el e rrecmems. Thae'™s el sighii. Unidl Aban capisined it on his shore,] couldn’ b
rodd yoa wie & Vel seerics wai, b dam baw b il o ceaking.

B, il [romtel n T s, i | el bl Dl Vi

T ml e Aban’s Bral s dhaow, where ba did & son ol Bre-aorion siplade off “Caad [vl vie g cemsdi, aggacsn
o . i ol oad i kil (o . 11 it i bt o i, il ooy o o P Batiill il I dDemckinie . ['ve
Besnd thar the caier Bwa dhesn wex delerty popaler, ard il ah dhee 8 -dey o S deyw, s 8 kot off peaple. Esn
¥ el g b pegetal dunkimmiys, Wl s 1 el v it Bariimsd

Therr wex vapur promisos of g b Lrve: shores mio s TV apocl . [hepe they maiie § vn: bowns beog. aed ol & i
o By Greay B g Fead Shew ' Shew™. Tha mowas scraslly rali off e reagma mone umsocdhdy e yoa migh mpes.

I i, w= roalliy mjorved cunchves. Hopefally these of you n los-hip oitiey will ke m chaser oo woo e shows pexd wor.

T o _ s

Figure 3-27: The body does not always fill the viewport.

If we remove the rule html {background: yellow;} from the style sheet, though, the
entire window will fill with white.

This happens because the HTML specification says that the canvas, which is the area in which
the Web page is drawn, gets its background from the htm1 element. If there is no background
set for htm1, then it gets its background from the body element. If the body doesn't have a
background either, then the browser just fills in some default color.

This is a special case described in detail in the specification; there is no other case where a
background (or any other CSS property) applies upwards in the document tree. Just keep it in
mind if you're setting an html background.

SERVER-SPECIFIC CSS

How many times have you played out the following scenario?

1. Make local changes to your stylesheet(s).
2. Upload the changes to the staging server.
3. Switch to your browser and select Reload.
4. Nothing happens.

5. Force-reload. Nothing happens.

6. Go back to make sure the upload is finished and successful.

7. Reload again. Still nothing.
8. Try sprinkling in ! important. Upload, reload, nothing.
9. Start swearing at your computer.

10. Check Firebug to see what’s overriding your new styles. Discover they aren’t being
applied at all.

11. Continue in that vein for several minutes before realizing you were selecting Reload
while looking at the live production server, not the staging server.

12. Go to the staging server and see all your changes.

13. Start swearing at your own idiocy.

It's happened to me more times than I'd like to admit. The last time it did, I realized that if I
could just serve up a special extra stylesheet from my staging server, one that made it obvious
I was on the staging server without blowing away the whole design, I'd save myself a lot of
frustration.

html {background: url (staging-bg.png) 100% 50% repeat-y;}
As it turns out, you can do this in a variety of ways. The most elegant is to use HT TP headers
to send out an extra stylesheet. If your Web site runs on Apache, you can do this by adding

the following line to your server’s root . htaccess file:

Header add Link "</staging.css>;rel=stylesheet;type=text/css"

Now all you need is staging. css to sit at the root level of your development server, and
you're golden. You aren’t limited to that placement, either: You can put staging.css
anywhere on the server and just modify the bracketed URL to match its new home. You can
also use a fully qualified URL, like http: //example.com/staging. css, if you prefer.
Just make sure you keep the angle brackets, because they’re required.

Of course, there’s always the risk that you might migrate both staging.css and the
.htaccess file to the production server. You can avoid that by not using . htaccess to
serve up staging.css, but instead send it via an addition to ht tpd. conf. It would look
like this:

<Directory /path/to/website/rootlevel>
Header add Link "</staging.css>;rel=stylesheet;type=text/css"
</Directory>

Again, youd alter /path/to/website/rootlevel to match your local install. It's just the
UNIX file system path to the directory where your Web site lives. The advantage here is that
you're a lot less likely to have httpd. conf copied from one server to another. It isn’t
impossible that it would happen, but it’s mighty close.

ESSENTIALS

One drawback to using HT'TP headers to serve stylesheets is that it won’t work in either
Internet Explorer or Safari. That’s why this technique is very rarely used to serve up CSS on
public Web sites. It’s fine in a development environment, of course, as long as youre using
Firefox or Opera as your development browser.

Now, suppose you either don’t run Apache or can’t mess with its configuration, but still want
to do this.

If you're on an IIS server, you can send CSS via HT TP headers using the directions available
athttp://technet.microsoft.com/en-us/library/cc753133 (WS.10) .aspx.
You can do it either through the IIS Manager interface or from the command line.

If you're using PHP for all your pages, on the other hand, then you don't have to mess with the
server configuration at all, though you do have to add a PHP directive to every page that you
want to show the staging-server styles. As a bonus, this approach also works in all browsers.

The simplest way is to add the following in each page’s head element:
<?php if ($_SERVER[‘HTTP HOST’] == "staging.example.com") { 2>
<link rel="stylesheet" href="/staging.css" type="text/css" />

<?php } ?>

Thus you simply write out a 1ink to a stylesheet, and if there’s a browser that won’t support
that, it isn’t going to show you any CSS anyway.

That works great for any file served off of staging.example.com. A more robust solution,
one that works from any server with a certain string in its domain name or even from a local
development server running on your personal machine, looks like this:

<?php
if (preg match ("/staging|test|dev|localhost|127\.0\.0\.1/", $ SERVER[‘HTTP
HOST" 1)) { 2>

<link rel="stylesheet" href="/staging.css" type="text/css" />
<?php } ?>

You could also use PHP to conditionally emit HTTP headers to bring in a stylesheet; but
honestly, if you're already doing the server detection on each page, then you may as well just
write out the link element.

Similar approaches no doubt exist for the wide variety of Web development languages out
there. The above code should provide a good start toward working out the details.

My thanks to Zachary Johnson (http://www.zachstronaut.com/) and Alan Hogan

(http://alanhogan.com/) for their PHP contributions, and Peter Wilson (http://
peterwilson.cc/) for pointing me to the IIS directions. Gentlemen and scholars all.

SMASHING CSS

CHAPTER

LAYOUTS

IT IS UNSURPRISING that one of the most on the Web. People only thought of table layout
basic things designers want to do with CSS is lay as simple because we got used to it.) This chapter
out pages. What is sometimes a bit more of a takes a look at some ideas for making layout
surprise is that there isn’t a totally straightfor- work simpler as well as covers a number of

ward way to do layout with CSS. (Not that there common and useful layout techniques.

has ever been a straightforward way to do layout

ESSENTIALS

OUTLINES INSTEAD OF BORDERS

To lead off, I'd like to talk about the use of outlines, which at first glance look a lot like borders
but turn out to differ in ways that are very significant to layout. Outlines can be used in
published layouts, and are very handy diagnostic tools when creating and debugging layouts
in progress.

During layout creation, you can visualize the placement of your layout pieces using something
like this (see also Figure 4-1):

div {outline: 1lpx dashed red;}

[Lsl ﬂ Lo TEREEE] o =
tHomy Profwiy Byl Toieo ;
Pl |
]
L PV i B0 1 g Bk -\.lu--nu o B B LBl . BT '
e iTas) m bl
- B “wwwwmmuu WAL A T |
o R H“i’ﬂﬂl‘ﬂ— Trop rppprir iy) "R RS T wdl ey woEden @
= Bl ey L e | o et el ik
= bisruarre cubi hhﬁdhm BT D i T e e =T E
o i o PR T R T e o et (B ey wea Ve pea TR I D
LR | Pl PR A sl B e G 10 P e | i By A W e O e
4 Dwids =dir' Pl R T B b b AR Pl widy el b SHE] il 2w
2 A= il] Py [Ty e
1mrwhhmhnmrhhm“1hnﬂ Ll e 4
B o e g =T, Fogr e e rememosen vl Be ray o paeemgias il 1
i BT g
it v v g
P e S B e a il o L]
ey R B
o8 o W mmw:r T
= mrme GG Dy ™ e e B v ey bl
Fpmea | o ¥ aTd fP——
iy, Bl 1

W Rkl T by
e LI T ' n-.-n-—l--n i
werymm pliy ey

T e i

_H"MI'IH

i ™ "]
i g e

B " by o e EpTe] e R e B
L e O el e B 4 e
N 2
D i

ik i wll T e
Arealy =ra g al i

Figure 4-1: Qutlining the divs.

You might think that the same thing can be accomplished with border, but that’s actually
not true. The reason is that borders participate in layout. Outlines do not.

Here’s what I mean: Suppose you have three column divs that are meant to fit into a con-
tainer div 960 pixels wide. (If you dislike pixels, the same thing can happen with ems,
percentages, or any other width measure.) You set each one to £1loat: left; width:
33.33%; and are trying to visualize exactly where the column edges sit. If you add borders,
the last of the three divs will drop below the first two (see Figure 4-2). That’s because each
div will have a width of 320 pixels and then right and left borders added to that, which will
make each div’s layout box a minimum of 322 pixels wide. Multiply that by three columns
and you get a total of 966 pixels, which will not fit into a 960 pixel container. Float drop!

LAYOUTS

4 Looer o oelin - B B I T
BT = Ty Lhils: BUET

&] By b] wE Wb oy T
i Adyrie o Pl il - o ki i
=

. (i

+ Hihar v hmwmm T m,uhq:-

1 Banm=i bmiars s o T b

v L kb A e v

T n-r- q_ - AR g

vty e # Py arm =
e ot # =gy
iy o 1 gl HTIA Y Bt e memoeponing) ol e -
e e b ey

i oy LL]

Dol i wydeomed ins sereaon of B e oo rer me
D T e e L
e LSl O S e Ik Ce e o RO
Erd nFm
Sk i ded

E====z==s==s

P Rl
v iy el o et 4 b Tom e ek ke
ey i gy

BT [m e R R e WA e e e
e R iy

Pl TR S D T G O L DDl T

n o P, Wt e am

e S el

g ey Fa M OE S] e e e g el
et vy

e o N e o e L I e i
BTN ot Sty pm el aoe rplempene i dee
2y R R R T AR A S T e T

S i - T

Figure 4-2: The third column drops out of sight.

That's what's meant when we say that borders participate in layout. Outlines, on the other hand,
do not. They are effectively drawn around elements after they’ve been laid out, so in our three-
div scenario, the divs will all sit next to each other with the outlines drawn around them.

It doesn’t matter how thin or thick you make the outlines; they’ll never shift the divs—or
anything else on the page. All they can do is overlap or be overlapped, as evident in Figure 4-3.

This has immediately obvious advantages when it comes to trying to map a layout. If things
don’t seem to be lining up quite right, you can drop in some outlines to get a sense of where
the element edges sit and not worry about completely wrecking the layout in the process.

Another thing about outlines that differs from borders is that an outline must go all the way
around an element, and be the same all the way around. In other words, you cannot simply set
a left outline or a top outline, the way you can with a border. There is simply an outline
around all four sides of the element, or else there isn't. In a like manner, you cannot vary the
color, width, or style of the outline on each side. If you want a two-pixel dashed yellow border,
then it will be so all the way around the element.

Note that an element can have both a border and an outline. In such a case, the outline is
drawn just outside the border, so that the outline’s inner edge touches the border’s outer edge.
If the element has margins, then the outline is drawn over that margin area, but the margins
are not changed or displaced by the outline.

ESSENTIALS

B0 i pillp Firefan -

Horm Peshordy. B

Fenrddacs

e
Mesesescsccegpocsepoe
F et BT 1]
= e n.ruﬂ-um T PR T] ey O g
.:n'l.i.:nn].'l..l:l w e i i e W iy o wh R Al -
Sl 4 Iwhmiﬁl-i'\'.hﬂ T ramoeey facior 4 EpTe g e
= {Seocd e i ﬂrﬁ'hhﬁt I
.: :_-c-:;:-ﬁ-a:ﬂ :--up:h' -] ETETTS r= r:-rn.ul_pauﬁ. A D
13 i ikt M vl Vil -]
D G v E-™ e i .-mmuu;\.u
= s el =y i
i " = erenli. 2 yowteey b breeem - 1l
L N N O o o e ow e cas, clcisgci i
HIF: raEed of o wedg k7 ussaing TR []
i, P
& s, Wil [
ﬂ, ik
ol s ‘ e g TSI 4 e . i
R o e L
- e oo i “ﬂl““u i
el X d
"H"‘lmllllﬂ.-l- H-:' " - ' . - L]
e = :] [] p
SRR T Ty P B pgra g ey .
W e R e R L 0 P SR [}
E::ﬁmmﬂﬁmfrﬂh Mg iy .
T g d Y i
oy] o plir Caiom o irieng, W el
e =rah
S na P Vilnadil » 1
" SR TR R TR EeEmgney T e el peinoply B napeoy of
L 3 i
Jmlm1mmuﬂ“mmmﬂ-' '
i ey] ¥ i

ol

Figure 4-3: Great big dotted outlines.

CENTERING BLOCK BOXES

Sometimes you want to center a whole element within its container (even when that container
is the body element). There isn't a specific element-centering property in CSS, but you can get
the same effect with margins.

If you have a tightly locked layout, then it’s pretty simple: Figure out how much space you
need on each side of the centered element, and set up the appropriate margins (see Figure
4-4). For example:

div#contain {width: 800px;}
div#main {width: 760px; margin: 0 20px;}

In that case, it’s just simple math. In fact, you wouldn’t even need the div#main rule. You
could just use padding on the container:

div#contain {width: 760px; padding: 0 20px;}
Same visual result, different approach.

In a situation where you have an element with a specific width but you don’t know how large
its container will be, you still use margins. You just get a little sneaky about it.

LAYOUTS

£ e |
iﬁ- I e T
e b
S
e e T
b
T T
— e e i e of L i| i

Figure 4-4: One hox centered inside another.

Consider a situation where a div is the child of the body element. You want to center that
div but, because every browser window can be a different width, you don’t know how wide
or narrow the body will be. As long as you're giving the div a specific width, no problem:
Just auto the right and left margins (see Figure 4-5).

div#main {width: 55em; margin: 0 auto;}

This works because the CSS specification says that when an element has a specific width, and
both the right and left margins are automatically determined, then the browser takes the
difference between the widths of the element and its container, splits that difference in half,
and applies one half to the left margin and the other to the right. Thus the box is centered.

This will not center the text within that box, of course. If you want to do that too (see also
Figure 4-6):

div#main {width: 55em; margin: 0 auto; text-align: center;}

Note that in a case where the div is wider than its container, browsers will left-justify the box
(not the content) in left-to-right languages, and right-justify the box in right-to-left languages.

ESSENTIALS

-y ek Lo Torvmi :
| By |

™ Lo e =
o Dagica e PN A T L e R]
k rer ek e
b B - =
a baoam P T D W T T Ve sy Brprreng 9% PR,
& g, L e wFTEn
= i W eSlanoAd -
LATT™] BTy -] g o TRy
+ Dby =i P bt bl e ey O T P bl b e
oAbk e (28] at o
b iy Al e
o
[-
dirmg

WL LA
W B T e P e W e P Fra——
baliand Pl WEH

D] D
] gy ot s b S o o e
CELES Ty S e -
(S 1Y)
-

e @ e i s
B St by
b - 1
Figure 4-5: Centering a box with auto-margins.
[Lul] Mo i fowten -
e Gt G bedc i c mlewmon T mammdna v fed - S hew wasteew Wmewt 0 koW om0
Holl FREOE e Cema :
P I, g |
& Liosws ipeen o Ll G
5 Dnder S AT VAR TN K i [e
4 Ay e iy TN R P WD el
= Sopie gl] (e BTG 00 vk AT
= (i L T _HWI-WIHN
¥ P L il e 8 R
= b=l i rt i
v L A Wt S I g LA Do T A EnaBd 104 Pl
[y eyt Pk b vl b b i) TEH e P E e
" - §* bwll BT Wiy o sty ' Pl
e e
Warirdid b o]
reprh s — e

b by L 3

b IR R L

ol i d HA i gt b whmord v
L e g e] e, BTN
Wl

(o] o ol iy
ST gy A
= - Wy T
]
i etk
b R S T Bl
o STLA i g De ol
oo lnd ' e
-

L
h--h.r'r-l..-—'- iy = T
TF Tim = e -im-:n—nin

WA g E e TR T DA I PR
e e T e O R e P
A TR

Tra iyl RSO0 360 08 BATVIED a0 O OO W0 ®

Figure 4-6: Centering a box with auth-margins and text with text-align.

LAYOUTS

FLOAT CONTAINMENT: OVERFLOW

Since floats are such an important part of current CSS layout, it’s often the case that you need
to have an element that contains some floats that stretch around them. This doesn’t happen
by default (for some perfectly good reasons; see the first part of http: //complexspiral
.com/publications/containing-floats/ for details) so you can get situations like
the following:

div#main {border: 2px dashed gray; background: #9AC;}
div.column {float: left; width: 28%;
padding: 0 1%; margin: 0 1%;}

See that dashed line above the top of the columns in Figure 4-7? That’s the full border around
div#main. Its just that the div is zero pixels tall with the floated column divs sticking out
of it. (Again, this is not a bug or a flaw in CSS; see the previously cited URL for an explanation

as to why.)
L 1ils] Moy Firwfas —
Hoars Pedel B Demo :
[e |
- — Vb i B Dore bl sl o
[= ET] M E: T l'm-ll;'- ' Y armiing B
Lwdashad o Dk
e —— ey o ey W b % A
- = T e .] i P O gl b b ', W
Bty o B8] P T rmpoeimg e mppm o aotiocie i rwgt sdiod depmoieg
P . VOB
* e T
PO— — RGETEN ¥ S T o w-mote, bl BRRLTVHES Weoul
i] el el g R o o il P i = g’ i il
[S — el Arimidy S s by
Wbl bk e bbb IR iy kT B sl =] o
Dy g Tl mod il iy i rewh i vowrshy ow i, bl
el ey, v el et BT T T semeeind
Aol i B o

[s
FREHPTY B 3O S B T
Wi
Vo e o el I b g il
T iruppiy
A pr HTUL Ve basie ber spppairn

L
SEER

T i e s 8 e il B i
Frafy i g

o kgL il EART I T BEATTED

PR

Bt ik
[T RER RTINS T
i iy D ey pF SERLF e
Piyiogr Third, b sigepriogg s
(1
¥ ¥

Figure 4-7: A collapsed box failing to visually contain its floated descendants.

A number of options will get div#main to “stretch around” the floated columns. The
simplest is to exploit the behavior of overflow (see Figure 4-8).

div#main {border: 2px dashed gray; background: #9AC;

overflow: auto;}

ESSENTIALS

e e o i becoe IS0E0 Der

..L-“-._'::m_
P i

' e o F Doreageiln L s W T T |
R nbaer i e g Whal -2 vl BRI e]
S ramcm e b S Vs R i s v |
Al e [d [|

a8 g |
B s L] I-Hi- --'lh'hmﬂrrw-! |
P ey i _-tmhrm R i i AT Micat 1
S BATY B WOt B | PR a1 Vil Fan D R 1
:... i e e L ot e :
W.ﬂd-:i:..h h.lnﬂ- 1
dekry s e L’ |
-l i i 1
hhﬂ.ﬁ'.-*:-ﬁﬁﬁ 1
l'-u-- s 3 1
w4 i . o e i]
Lo |
o o i oo o I Srdmigne I Y. |
o' Ca ki . &]
o AT, PV e e RSt of |
EH T P EEARE T |

[e T |
byl VO s Mo) el

nﬂn_—l—.:wﬂl'h; | =)
R L=

Figure 4-8: Using ovex £1ow fo visually contain floated descendants.

Yes, that works. Yes, there’s a reason. No, we're not going to dig through it here. (But if you're
curious, read section 10.6.7 of CSS 2.1.) If you want to be sure you sidestep some glitches in
older versions of IE, add an explicit width to your overflowed element:

div#main {border: 2px dashed gray; background: #9AC;

overflow: auto; width: 100%;}

The width value doesn’t have to be exactly 100%: It can be anything that isn’t auto. And, as
I say, it only has to be there to keep older versions of IE from soiling themselves. If you don’t
care about older versions of IE, then you can drop the width declaration entirely.

The advantage with this approach is that it leaves the containing element (div#main) in the
normal flow of the document. That means that it will keep any following content below its
bottom edge, even if it’s narrower than the following content. This allows it to keep following
content from flowing next to your columns. It will also default to be as wide as its container.
That way you can say things like width: 100% and have the container stretch out like any
normal-flow element should.

Note, however, that since our example gives div#main side borders, declaring width:
100% means that div#main will actually stick out of its containing element by four pixels.
Using width: auto will prevent that—the whole element box, including borders, will fit
inside its container—but then you might get old-IE problems.

LAYOUTS

There’s one more thing to be wary about: The value of auto for overf1ow means that a
browser could, if it decided it was necessary, place scrollbars on div#main. This doesn't seem
to come up in practice, but there have been sporadic reports of accidental scrollbar invocation
and it’s something to keep an eye out for, just in case.

FLOAT CONTAINMENT: FLOATING

Another technique for containing floats is to float the container.

div#main {border: 2px dashed gray; background: #9AC;
float: left;}

div.column {float: left; width: 28%;

padding: 0 1%; margin: 0 1%;}

This works because floats are defined to contain any floated descendant elements. They're also
defined to be as wide as necessary for their contents, and no wider. In this particular case, that
can be dangerous: The columns are set to be one-third the width of div#main, but because it
has been floated, the browser gets to decide how wide or narrow div#main gets to be. The
result is unpredictable.

This is easily fixed by giving div#main an explicit width (see Figure 4-9):

div#main {border: 2px dashed gray; background: #9AC;
float: left; width: 100%;}

‘é“llg - ————

S F“"*::.ﬂ..ﬁ:: ek
i T e
s L =- —nﬂ_%‘“’
s v i e
=¥ -
- SETTEE
u:u-ll-h.ﬁ?:
S
T
o e
S
e T et
T T s s W e
ey
]
: i Y . -
L £0.

Figure 4-9: Using £10a t 1o visually contain floated descendants.

ESSENTIALS

Figure 4-9 looks the same as Figure 4-8, doesn’t it? And yet the two were generated using
different CSS. This is one of those places where you have more than one way to get to the
same result, and choosing which is a matter of preference and the project in question.

Once again, div#main will stick out a little bit farther to the right (by four pixels) due to the
values for width and border. Because floats aren’t in the normal flow, though, we can’t just
assign width: auto and be done with it. Doing that with a floated element just means it
will be as wide or narrow as the browser decides is necessary.

Also, when you float a box like this, you run the risk of following normal-flow content
running up next to it. To prevent that, you probably want to clear whatever element comes
after. If that’s a known element, you can just assign it, something like this (assuming the footer
always comes after div#main):

div#footer {clear: left;}

If you don't know for sure that the same element will always follow div#main, then you can
use the adjacent-sibling combinator with the universal selector (see Figure 4-10):

div#main + * {clear: left;}

B0 i B Firspbeoes, =

ey P @R gt gy]
Ly o

R Y L L

il o -

BATEE = R
R A g B B

v nall bk g i ey W
iy nﬁqh‘l—ihh e,

uﬁﬂrﬂl-l-ll-ﬁmi‘ur-lm

i
e Brpr g B0 T . MR
of SrebeErE VPN DAy T DT v T

F
o

=] -
r-'!-llldﬂ?lu:vh Wiy

C T v
il ikl ol el el gl

Pk, mirg-and-ac-and

o mwhm P o e mereE T Anying e

ol R B iy b
T e
ey F pll od o e

iy b i
Wt ooy b s Sy e

kg T okl PPl 6 kA
Aoy smg a gugmy =g, g o

= =ty Towy preiged dpcice op cren-ali
¥ T T R OrHeY

[P R Comsd

NEbr—arirs b s e

e 5

Figure 4-10: Using adjacent siblings and c1eax to push the footer below floated columns.

LAYOUTS

CLEARFIXING

“Clearfixing” is an older technique that has been largely supplanted by the preceding two
techniques, but it’s easier to use clearfixing under certain circumstances. These arise most
often with older versions of Internet Explorer, which in some circumstances don’t properly
contain floats using the previously discussed tips.

The simplest method of clearfixing is inserting an element into the document and setting it to
clear. For example:

div#main + * {clear: left;}

<div class="column one">...</div>
<div class="column two">...</div>
<div class="column three">...</div>
<br class="clearfix">

<p>...</p>

The br element is the key here. It will push itself, and therefore anything that comes after it,
below the floated columns that come before. In order to make that happen, you will need the
following CSS:

.clearfix {display: block; clear: both;}

LNl] RL R L

i b o P e ikt W bl
e Tl o TR T

= B Sl e o sl

O e e e
BT W s rasl T
ey F B

sy s o g e marn
e]
T by B i e e o poooent
Pl (R Ol LS 3wk
TSR AT ' i [T, AT
S P! Tk Rl T SR R P
BB b R e e b
B e e L LE]
m

4 "
r-l-lhl-ruh*lu::.lnhh

iy s mr vy b me
ke a g

Frat MR

Lt b e el R R R
o iy Wl i e g T dey g e

S R " DT By M P
e o B T O I B
Iyt L B P b
B S T s el b T
P Pk b i B
ey B e ek
gy Dhom rrmralan (Sl e e e

Figure 4-11: Using the “clearfix” method to push the footer below floated columns.

ESSENTIALS

The CSS used will make sure the br element sits below the two floated columns. It may also
insert a “blank line” in older browsers, so if you're going to use this method, test it out first. If
you do see a blank line, try altering your CSS like so:

.clearfix {display: block; clear: both;

font-size: 0; height: 0;}

Some people have also used an hr instead of a br on the theory that the clearing is a separa-
tor in the document and theyd like to have it visible in non-CSS browsers. However, that will
definitely create a gap in CSS-aware browsers, since the hr takes up layout space. You might
think you could prevent that with display: none, butif you do that, the hr won't affect
layout and so won’t clear below the floats! So instead the space is most often closed up with
some margin trickery:

hr.clearfix {display: block; clear: left;
font-size: 0; height: 0;
visibility: hidden;

margin: -0.66em 0;}

The result is basically the same as before, though you should certainly test it just to be sure.
And if you want exact-to-the-pixel placement of elements, this particular variant isn't your
best bet. Youd be better off with the br.

There is a related method that relies on generated content, but recent browsers have made its
use difficult thanks to changes in the handling of generated content, and it’s also been largely
supplanted by previously discussed tips on float containment. If your sense of historical
curiosity has been piqued, see http://positioniseverything.net/easy
clearing.html (but note the note at the top).

ADJACENT CLEARING

Similar to the preceding tip, this is a way to clear an element that immediately follows another,
as long as the element to be cleared has the same parent as the floated element(s).

Consider this markup:

<div class="column one">...</div>
<div class="column two">...</div>
<div class="column three">...</div>

<p>...</p>

You'll note that there’s no element between the last column div and the paragraph. So how
do we clear the paragraph below the two columns (see Figure 4-12)? Simple:

div.three + p {clear: both;}

LAYOUTS

Lokl] Wnpill Firyios

[+ ol
H-l-_.ﬂrﬂ'rliur]"luimi-
T e P LT
T‘tflhmhﬂhmﬂ

uuﬂm’;‘ k] o i iy
.

TR rh SR A
Abenlp Pow

[T -
B By b ke b

Tk, micr-archa-ard

o
o mriEl YR B A e ey g e

hlmﬂmh"ﬂl“l

mhmlﬂ o Py o Evweafirny Wt i s i ey i
Frem e = wiEn

_m“mﬂ1ﬂhu' e T TR FE LR T
R o R FADH B L Rl ST, Bl . RO

Laas dived Cendaci

e gl b w amana

Figure 4-12: Using adjacent siblings and c Leax to push the footer below floated columns.

Since both the columns and the paragraph share the same parent element, they’re siblings.
Therefore, we can use the adjacent-sibling combinator (+) to select the paragraph and have it
clear.

A more generic solution is to replace the p with a universal selector:
div.three + * {clear: both;}

That way, any element, be it paragraph, list, table, preformatted code, or anything else, will be
cleared.

Note that there is an easy way to break this approach, and that’s to enclose the columns in
their own div.

<div class="columns">

<div class="column one">...</div>
<div class="column two">...</div>
<div class="column three">...</div>
</div>

<p>...</p>

ESSENTIALS

Given this markup, the paragraph will not clear. That’s because it no longer shares a parent
element with the columns, and so it isn’t a sibling element. That prevents the sibling selector
from working at all. With this markup pattern, you'll want to use one of the previous float
containment tips, like overflow: auto.

TWO SIMPLE COLUMNS

Putting two columns of text side by side is very simple: Just float them. If you need to clear
anything below them, see the previous tips, or just clear any following element.

Consider this markup:

<div class="column one">...</div>

<div class="column two">...</div>

<div class="footer">...</div>

All you need is to set the columns next to each other, so your only real decision is which one
gets which side. Does column one go on the left or the right? Just to make it interesting,
assume you want it on the right. No problem:

.column {float: right; width: 50%;}

That’s enough to put the two columns side by side. They’ll be jammed up against each other
and look terrible, but they’re side by side!

With a little more CSS work, we can make them look passable (see also Figure 4-13):
.column {float: right; width: 30%; margin: 0 10%;}

Of course, the footer is not exactly what we want—its top border is now across the top of the
two columns. Simple: Just clear it!

.footer {clear: both;}

And that’s a simple two-column layout. It contains two bits of beauty. First is that you can put
the columns wherever you want regardless of their source order. As we saw, the first column
can go on the right instead of the left. Second is that if you change your mind, swapping them
is as simple as changing float: right; to float: left;.Easy-peasy!

And of course you can do this with any kind of width measure—pixels, ems, percentages, you
name it. It all depends on whether you want the columns’ widths to be “liquid”—that is, flex
with changes in the browser window’s width—or “fixed,” which sets an immovable value,
usually in pixels. Discussing which is better or worse could be an entire chapter all by itself, so
we'll leave it at “pick the one that fits the design” and move on.

L Rl] o e, =

s
L Prmbali ! Lardad v
o,

iy ey St g s e .
hhv#mmi—-:m-h ot i
PRI A P B
[T e B durel erwairbee
O oy i T D e o i hrgegrg 4
Pyl Thal Ty M’ 1 EDONRRGH,
[e A . e

o iy = B]
i o T W e =¥ [
e B ey mEn i e o =
=00 D A L D 7 el
FMALHRAH b, i il i L Th ks s
v e B e Wl - ik

i M T

=y
iy o o o s i e skl e
P T W gt
i B oo O s moal oL, o
E

il o
o T I

¥ = iy
o

L
by Wiy sl eyt o ik oF gy i

i Wil e e T
B i pcorm DT Car e
I D oty o POAE o Ppmon, Ty

L1

Ay eyl W o Y e il
iy g T s ey =g, b T R T

““wl;ﬁniru-r'

ki Gl s b i, s foay B
o ik eldend

. ; l_.i

Figure 4-13: Two simple columns.

THREE SIMPLE COLUMNS

The jump from two columns to three columns (see Figure 4-14) is pretty straightforward. Add
adiv, class it appropriately, and float the columns.

.column {width: 20%; margin: 0 5%; float: left;}
.two {width: 30%;}
.footer {clear: both;}

<div class="column one">...</div>
<div class="column two">...</div>

<div class="column three">...</div>

<div class="footer">...</div>

ESSENTIALS

ETals) hoa A pabn 3
jom Fedew ' Dewma .
——.
TR — Wi P o Gl pmiepn o v P 4 el by perwenin
S i SR IO LR el P Wwd e Ry o g
b Ty Lok B i Bl -] Y sk el Pl
M O AR uubtuuaqmﬂmuuhuuﬁ e e i, i
e = Al i o BBl
"-'h- Thm rupoeig larier in | AR iy] i e bt
R e ST g e aw ey e gl mpelfer] v g peripd o
! " e, M e i e didk
iy il i il (T LEEE A SRR
B cnrm petary mhmwmhmm- ey e s
i, TR ruay rmae? W i ol reed wrew @ prwey B o i
b e i by o e
rep——— SR mFEcat aad n s JEL. Tra S TR e
al g o K e Bl i sy e o i i o L
e e i s
Ay rowcin WY TR TR R

HEreny K- B B I un--i-cj‘ WG T A S
g i Do B S el TR

ol yrme i b g Ll

A o Pl e o g e
s

“-muh-lmuwldm-l
T Y |
v i e SIG e motrpionp bl
vy el pppriy o FQALF g Pt Thir “h

THEUIINE. Dol O MO0 WD HTYCI D
L 1]

i ey =, e dom P e i
~wily reppe? 1§ oy ingan, bl fy i T
ALY A7 - e r;-g-mm-g

amn

.w-vlﬂl-d"l n-.lnlu'\-l-mll . g gy .
WEATIEA FE sy '

Figure 4-14: Three simple columns.

That’s the basic drill. By itself, it’s nothing more than a simple two-column setup plus one
column. The reason I bring it up is to explore a few things about floated-column styling.

First is that, as you may have noticed here or in the preceding section, the left and right
margins of floated elements don’t “collapse.” Instead, the outer margin edges touch and sit
right next to each other. Thus, in the preceding bit of CSS, the columns will be 10% apart—5%
plus 5%. If we were to convert the 5% to 20px, the columns would then be 40 pixels apart.

Second is that it’s hard to put “full-height” separators between columns. This is one of those
CSS limitations that has been bugging people for over a decade now, but it still exists and we
still have to deal with it. However, with a three-column setup, if you know the middle column
will always (and I mean always) be the tallest, you can give it side borders to create lovely
separators.

It takes a little massaging of the CSS, but not much (see Figure 4-15).

.column {width: 20%; margin: 0 2%; padding: 0 2%; float: left;}

.two {width: 30%; border: lpx solid gray; border-width: 0 lpx;}

LAYOUTS

. e L g b
FrT— uhuﬁuuuﬂuuhuuuuﬂ s i Vi EncaTipl bt
m\- T oy Fact o s SOOI iy o e ol
madeE T 0O e e o Ay o of v buigee for
"ﬂﬁhiﬁﬂhﬂﬂﬁﬂ?ﬂdhﬂﬂw iy Vi e e e
s b A bl ol el i) b
5. pemd Ly it 'rrI-'H! lﬂdhhh—m ey i ovanirgie. P v
e, BT ey e 7 Y i i v § Fwingy o becores ol
o T A I CURL RO, FL
——— ARHER . 50 Pl Bl T ThE IR PPl
T T Iy =
e L L] g g
il-wr-rul.m-!hl hlmlwrlr R T T
Tl bl B P el T
iyl B el o -+ il HTHL. Pl bl o wh b
it far A L] gt p ey g, el
ol g iy - g T rrerw i
Fuiod 3 LT
B 4
Do b, gl Nl MIRR IR I P
i, VR il o b b o bk
.
Roanal o Emcoeras (T L\..lw?-“
= a:lnﬂl:_.lﬂFM el ByPe Trems oy
1
muauhduu-uuu&au
B B, Wl dow e o "'“-
Y T 0 O rar Bl B s The
e Vi e Skl By iy
iiﬂﬂ-immhﬂdiihimﬂ-ﬁ-
lm" LF] nul-llﬂ.m =4y e a
o I I .]

Figure 4-15: Using the tallest column’s borders as column separators.

Since the middle column is tallest, its borders serve as separators. We had to adjust the
margins and padding of the columns to keep the separators away from the column contents,
but that’s no big deal. Well, actually, we could have just adjusted the middle column and left
the . column rule alone, like this:

.column {width: 20%; margin: 0 5%; float: left;}
.two {width: 30%; border: 1lpx solid gray; border-width: 0 lpx;
margin: 0; padding: 0 4%;}

The result would be essentially the same, with maybe a pixel or two of difference in the
placement of the separators.

You may be looking askance at some of the numbers there, and with good reason. Where did the
4% on the padding come from, and what about the result that 5% divided by two equals 2%?

That brings me to point #3, which is that you have to be careful with fluid columns and
borders. Suppose you had just split the 5% margins in half. With the borders in place, you
would be taking a risk in doing that (see Figure 4-16).

.column {width: 20%; margin: 0 2.5%; padding: 0 2.5%; float: left;}
.two {width: 30%; border: lpx solid gray; border-width: 0 lpx;}

ESSENTIALS

vem Prsimh Do Do -
~ -

Lomwrs s

Wk el] S G il ke e T 2

[icic g SRS I Y T T
ol i e

A o R S e L

[rre——— [L k|
Pathgr. Thy spouring el i P0G

Tl I W e e wymitorion ! Byl

3

e e e

e brv ke d iy e ey Wl o L v
e BT sy o W bt sl vl

Lo ol v e ke o i s b

Lo g AL ol 4 w0l wmupt WEL Ty

i S coaoerae. cln-prd-ole ST
Pl mad T

Ay O RO R RO
g i b g e s
Irmayew s o - ared SR S
i o SRR ok b o e o
ol e i e ey

I o e e S . e B e, TN
[]

_ -
B, VR il TN I Wt £ L
g T T e
e e ey DTS Sl ey ks
Emiwd sk, o FIAE e Spbre ey
Com o

Iy bt e b el W aed

L3
WAL BT el YO B T T VDA
PRy W [B, kil Bl £ Bl [T
avh o
am irm v i By aw e
makisted Ing wea e g b —
i o g O L e ey e a
el S e]

= FE

Figure 4-16: Inadvertantly dropping the third column.

Yep: Float drop. The third column drops down below the other two because there isn’t enough
room for it to sit next to the others. That’s because the widths, margins, paddings, and borders
add up to more than 100%—to 100% plus two pixels, in fact. Even one pixel above 100% is
one pixel too many.

For this, I have no solutions save “double-check your math?” For the full-height separator
problem, the next two sections may well provide an answer.

FAUX COLUMNS

A classic CSS technique first popularized by Dan Cederholm (http://simplebits
.com/) in a 2004 article for A List Apart, faux columns are a venerable solution to the vexing
problem of creating equal-height columns in CSS.

In order to create faux columns, you first need columns.

<div class="column one">...</div>
<div class="column two">...</div>

<div class="column three">...</div>

LAYOUTS

They’ll most likely be floated, since positioning is generally a really bad solution for column
layout. The key making this technique work (see Figure 4-17) is to make sure the columns
have pixel widths, and really pixel everything (except, we hope, font size).

.column {width: 300px; margin: 0 5px; padding: 0 5px; float: right;}
[Lals] Wari e Frakes -
v SrmsaEn o Do .
[Hda]
L il [E

g, RPRA 8 o - Pl B

Dichoarnil

s '\l'in.-‘:r.c'lr Elactr i -r\-'ll-lll_llu-'\ﬂ e

P byl i o 8. e Fra—
T Wl R D TRy i m T e oo @ P 0E0R0TH.
woraareE. [0 s s BT T N O AR g Gad

il T Vi Enciil.

e o il e 1] %] ' e o
Wai domn |l e o e L] g gy o e e Frammre pmea
"Wy 7 Wiy ol o fewte B repemty e pertenyd B mvy g™ i i e ol
sy i el oy puarien. e i iw-w-':!lllhmlin-uli 3 L L
[T HRA e g S [reve—

Ay e
Pobp i vl bl ek i B B
I i i

- P

HE
i'r-;mil":rq.
0l T i O] s s, Il
Lo LR

Coraselle M M 008 Il T o
bt b Vi w] et Wn iblake f Sobd

[e
oy i e TR T G ok e

TLF g i, E
n

=
Y. B O TS A YO
- ¥ "
T e '
el P B ' Wit Bl Tl [Pk
=gy by s ngmgnind paga s pay eI rE
ey awilgmcirpinog F Sy g e e
it [s g p o e iy e
AT R B RN Y0 PRy N .
B ST

M

Figure 4-17: Placing the three columns.

Now all we need is a way to “paint in” a set of separators. We'll need an element that’s at least
as tall as the columns themselves, and ideally exactly as tall. Something like a container div.
<div class="contain">
<div class="column one">...</div>
<div
<div
</div>

class="column two">...</div>

class="column three">...</div>

Now we need two things. First is to contain the floated columns.

div.contain {width: 960px; overflow: auto;}

Second is an image that, when filled into the background of that container, will define the
column separators, as in Figure 4-18.

ESSENTIALS

S HDrd K AP0 B LA Ot L, S

= A et aa | il ﬁ

Figure 4-18: The background image containing the column separators.
It’s only a few pixels tall because it will be repeated vertically (see also Figure 4-19).

div.contain {width: 960px; margin: 0 auto; overflow: auto;

background: url (separators.png) 0 0 repeat-y;}

i R,
WWRG P B wil AT A g B
Fah ey v o werral Ve b By Lharia:
B S A] el B el b B e i SR Ll
b W s Vi bk [rd ool
ey Fpirge “rop ruggseg S o GG
e e

ey,

wprvi-cu, clvpanl-moye. et SRRATONTT | averysing, memendieen of comouritd Foue oo e

Wesgd fmggrgram 5y 40 B e e

e O Ry TR Rl P s TE Y el e
o=y iy ol Mtﬁ“r:nmﬁhnqm-u x s

T i e | e cusieg. Sat Ty i i i LT

AT e I

K AR el -y TN D

]
ey e e ey b
I i mrieraada vy = ek HA B

e o e gy
o P IR O TR G A TR
ShE

bl
ey ey ad gt ry pee i

i
i
i
5
i
:

Figure 4-19: Column separators by way of background image.

And there you go!

You aren't limited to separators, of course—any vertically repeating pattern will work,
including filled-color column backgrounds (see Figure 4-20). Just a quick change of image

accomplishes that.

div.contain {width: 960px; margin: 0 auto; overflow: auto;

background: url(filled-columns.png) 0 O repeat-y;}

LAYOUTS

B0 i B Firplem L=

Howm Fuceds By Darimd s
(e |
& ”
iy W it

d Wi bl inbernd i ol Wil i
L]

Do i

o b ol mrdard
G H"::m'l'!!] “;-I':d

Bl i
m\- :I-| g i o A $~'-u-¢
L]

M oy Fi

L
e

iy

4 ¥
wreHrE Do Eo naed B IEEY i O
oty

L)
o Bl T
P i

Pegi mowy 4wy g i D i e e A oy P e Trpinege. F o s e
mgEpsT M Y weirgn, BT mpaiy e Wy el e

EFRCH i MR RN STy A T ool A e L8 L
[ekl I

=y ¥ .
R - i AR EW
s e LR]
g I O SRR O A0 B - 4
e B o of Jas w-nu."t:-
sl o ' i i e o i,]
o i B P i’y

¥ i o iy o o e g i e e
b

ot S by spoplrme g oy piraonoe of
kel ' o e BOiecE of reEl B
. PO RO PEROML Rl I
kil B B VT Dl W'l nbs '
Gl il F FOWF e Fpllided T il
== A Wi
iy, it o e by wt; ey el
I g Iy (R
WRALEG WG T A OO T T i
Findlly Sk 1] et s Sl T W [k

e 3
=y pllrmisrpmnd gy g m engdy
s

e e O PO R T e

D T

LR £5

Figure 4-20: Filling in column colors.

The technique can of course support as many columns as you like; just set up the background
properly and you're good to go.

This is all great if youre using pixel-width layouts, of course, and many people do. There are
potential problems with doing so, but many of them are obviated by “page zoom” in modern
browsers. Not all, though: If a user has a browser window narrower than your overall layout,
then they’ll get a horizontal scrollbar. Conversely, if they come in with a browser window
much wider than your layout, there will be a ton of empty space on the side(s) of the design.
Those possibilities may not matter to you, but they’re worth considering.

If you want a faux-column-like technique for liquid layouts, then the next section is for you.

LIQUID BLEACH

Suppose you want to stretch column separators or backgrounds to be of equal height, but your
layout is liquid. In that case, Liquid Bleach is for you. This multicolumn layout technique was
jointly developed by Doug Bowman (of Sliding Doors fame) and Eric Meyer (who?) in late
2004, and gets its name from its support for liquid layouts and the name of Doug Bowman’s
blog theme (“Bleach”) at the time it was developed.

ESSENTIALS

Liquid Bleach starts out much like faux columns, but with an addition.

<div class="contain">

<div class="inner">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>
</div>

</div>

To make this work, you need one container for every gap between columns; or, if you prefer,
you need one less container than you have columns. Since we have three columns here, we
need two containers. Additionally, we'll need one separator and/or background pattern for
each container.

To get started, we'll add some liquid-width styles.

.column {width: 20%; margin: 0 5%; float: left;}
.two {width: 30%;}

Then we'll take just one background image. Note that Figure 4-21 shows just a portion of the
image itself, which is actually 3,000 pixels wide (really!).

2p0 ppem,
b e L T L HL T T T o - .
i

|
- e sl i | 1 == Fi

Figure 4-21: The first separator image.

Note that the image has a filled color to the left of the separator, and complete transparency to
the right. (The gray checkerboard pattern is Photoshop’s stand-in for the transparent part of
the image.)

Here’s the important part: The separator has to line up with the gap between two columns. In
this case, we'll place it between the leftmost and center columns (see Figure 4-22). We want
the separator to land 25% of the way across the container, as that’s the point between the two
leftmost columns. So two things have to be done.

First is that, as implied in the preceding figure, the separator image is 25% of the way across
the whole 3,000-pixel-wide image. Therefore, its midpoint is 750 pixels from the left edge of
the image.

Second is this CSS:

.inner {background: url(lb0l.png) 25% 0 repeat-y; overflow: auto;}

LAYOUTS

P P S el w0 T N gt Bl SRy

i SO o ey T S Tl Pkt B W
am s

R DRI s e wpE e e e T ard rrw ki w warden @

[r——— T Ty T e] i b o b B
i L e L Y A T

B i R W g ey et iy e L S Ll L

i - r iy, S U B

ot 4P = s s il SR B

[Fp—— g M i YIS Bl T W Tl ki K BN, T e
SR G PR T OV T T Pl b R R il

il B0 il bl i B B0 ey [s T

e RN S il ol P KEL TR TN Wit

- — S M B Pl s [EREEp———

Bl el S ol e L e L L e AL] e ige W s ¢
Ay oy e o W e e b TR TR R R
BT R R R N Tt “EERE T e nm
i & Corsingion of Jov gt R S o o A e o
P Flalebil. a3 o', Bk
B ! Bl T i3 LT
W B e 8 s S N T
LR

il "l M- 0 Jll TR O
e ik el o Tk BTt 0 PR B
ey [T
vl
o el g o IR e e == e
B I T T e
Sl e L L e

-

"
FRITE R TS WA 0 P T A
s g 1 e e, tul Ey e The
PR K e B By il
R o e ¥
Bl L pils Bl o e AR I B
ShE LT e i b e Sy B
K ik o

i | 'i'I"":'

Figure 4-22: Placing the first background image.

There, you see? The point in the background image 750 pixels (25%) from the image’s left edge
is lined up with the point 25% of the way across the container. As long as 25% of the width of
the container is less than 750 pixels, no problem!

To fill in the right separator, we just need another image with a similar setup to the first. In
this case, we want a separator sitting between the center and rightmost columns, as in Figure
4-23. The width of the rightmost column is 30%—20% for width and 5% for each of the side
margins. That means we need the separator to fall 70% of the way across a great big wide
image, or 2,100 pixels for a 3,000 pixel image. To the left of the separator is transparency; to
the right, a filled color. A little CSS and it’s in place:

.contain {background: url (lb02.png) 0 70% repeat-y; overflow: auto;}

Now no matter what browser window width, the separators will be in the right place; and as
long as the window is less than 3,000 pixels wide, the trick won't break down.

One last trick here: If you want to fill the center column with a color (see Figure 4-24), you
don’t need to add any markup. You just assign a background color to the outer container.

.contain {background: #DECADE url (1b02.png) 70% 0 repeat-y; overflow: auto;}

ESSENTIALS

--l-"!-.ﬂlnit-llun:
(L —
il

‘i b ol ol ln swbarer am s e m Pl aaprlin - et
Jaw i i i b L e o |
rarmgarey s de e Srvma bl wed S s e ke ey e
o A L R e f a i ok o o il e srd mii e
el Tl MR LI T Sl LA T 0 AL W ik BBl K
A T o M TSR S s b
Sord i TOHE Wil 3 wh M Ay b Pl B pleen eaigel
s TarpErp T Erdy S e vy e
— [e P e
il B e b o S ram ks e
el rd iy mi Ve Et P Sl Bivmd i gy W b e
0 e D il Wl B el bl COH T, Pl
5 L P el e gt L PR BT el
[S RO gDy WY Ll i el S
Mg mwd ol s =it AV e |
y LY £ e ' b
Pt L] 1 Fre e
i e W - @I e N T e L
o s v vl om ad e e e ey ey bl
o bkl e Ay T il

Wi P i 3 S il v T
e

u

e iy adll magt m apieuce of madny B
e

e m b g
oy s of FOALE g Py Tl e

T G e Tl W L A
-

FTADS] BT S B e e
B [T i S T

FE e e | o o
ik ey e a g e b b——
Finaii il T T] 1
A he iy

Figure 4-23: Placing the second background image.

J

o Peabon Bt dowes
T
[]

"hi--b-l-h"—nu-.-mt-ih n—rht:-.--'--h
e
ST TRy S B i Bl &b T N 3w D
protomera iyt g o
[rE— e T E ek od v | o gt e
mh“ e g i e i
P AT A i B B
b n] il hr—h:::q—
§ ey it L& bl W e e ey R e T TRy e
Hmw—‘l o ks e ol R @ Ty b PR s
L ey e) e e A]
W i, pd mol gt BEL T AT et
HES — F2 chaih A Ean By s
M el T e PP
L) 1 B T R
TRy I O el Wy TV A St
g s CE e s i - 0 T T ERCE s o el el B
[wrvar B smrnks pessiy B
W s el B iy Tl il
Faln
LR
- R
[
A b
= B
Ry B I TR e e

3 "o
iy " A poeor roE-a B e Tw

e [E ik WE i ST
=S 1 i el L, i il ik
s S

Figure 4-24: Adding a background color to fill the third column.

LAYOUTS

That color “shines through” the transparent portions of the background images, and all is well.

In cases where you don’t want to fill in column backgrounds, but just want liquid-friendly
separators, you can use the same CSS and replace the images. All you need is the vertically
repeating separator images with no extra; thus, they can be two pixels or five pixels or
however many pixels wide to contain just the separator. Then you repeat them vertically with
the same CSS as before.

.inner {background: url (sep0l.png) 25% 0 repeat-y; overflow: auto;}

.contain {background: url (sep02.png) 75% 0 repeat-y; overflow: auto;}

That’s all it takes. If you find the separators are off by a pixel or two horizontally, just add a
pixel or two of transparency to the separator images.

THE ONETRUE LAYOUT

The name of this layout technique is more than a bit tongue-in-cheek, but its usefulness is
beyond question. Popularized by Alex Robinson in late 2005 (see http://positionis
everything.net/articles/onetruelayout/), the core message is this: You can have
floated columns laid out in an order independent from the document source order. This is a
significant improvement on simple floated columns (see previous sections), whose layout is
tied to source order.

To make this work, you need only your columns in divs and some CSS. No extra container
elements are necessary, as was the case with previous attempts to permit source-independent
float layout.

We start, as usual, with a set of three columns. In this case, the page’s “main content” is in the
first column, and the “secondary” content and navigation links go into the next two columns.

<div class="column one">...</div>
<div class="column two">...</div>

<div class="column three">...</div>

To start things out, we'll float them all left and set some widths (see Figure 4-25). To keep
things simple, we'll use pixel widths, but please note that this works just as well with ems or
percentages. (The only restriction is that all the columns use the same units for their width,
and even that is bendable.)

.column {float: left; padding: 0 20px; margin: 0 20px;}
.two, .three {width: 200px;}

.one {width: 300px;}

ESSENTIALS

s P o Ooiem .
[Hiam

ek Bkl] D’ el b il o Pl L Hanglld babi s e
L e Y i v B & Ebdndi' Do
el G o v heey g el Hmad o aq ppmpmy T Ay =
Ty b Ry Tl pmaiey e i, morie e
Il L Lot e T L [T ———
m T g i on SO0 M L T
YR B0 el M DL Ay e o i Doa: for it 2w
o gy Bl o e prlere fram .
¥ i g i e —
Dt e o e nl-'-'\-'\-:.-n-il- ety B eareE. [v [
R T T e R T B i R T D ST
- el [L R D CRCR S-S0 D L are!
Lk, ek il i L T e T TOH T o =
Es ol iy [R —— L —
=y ani # gt Wl g]
gy g rod cowppmmip. I B ey gy e T e i e
3 O R B O O O - SPREE I VA LT
TR B OB Of Je- e ML Yo P DIy I S RO
[y e
o e BB B B Tl bl

= il o o ey o g s i T
== T

haliomy. el maeh P mofiucie of reitics
. o B oL B
il B Elh LTFEDC L Wiy " e
mmtmmw Thist. il

Bl i -Hrllh.lllwlbmri

s
o
rEby T R reEd, T e T
Vet T [u
¥ el | Wby de S ki
[prere

oy # e weoe sinely, o s e i s
R

Figure 4-25: Floating the three columns.

All right, now let’s assume that we want the first column in the middle, the second on the
right side, and the third on the left side, as depicted in Figure 4-26. That requires two more
rules.

.one {width: 300px; margin-left: 300px;}
.three {margin-left: -920px;}

That’s it. That’s the whole thing.

How does it work? Well, the left margin on the first column pushes it over and opens up a big
blank space that’s the same width as the entirety of the third column—content, padding, and
margins—plus the original left margin of the first column (which was 20px). With that ready,
the left margin of the third column pulls it leftward past the preceding two columns and drops
it over the top of the left margin of the first column. And that’s all it takes.

Now suppose we want the second column on the left side and the third column on the right,

thus switching the side columns around (see Figure 4-27). Easy. Keep the . one rule from
before, drop the . three rule, and add this rule:

.two {margin-left: -640px;}

ooy
Hamrst vt
-

el it d

R K TR G0 T T LoD
L Y T e
T S L T S

A mpisaer, e e emoam aEL Ty e
B e T Py T Y

=y ¢
s oo el e w il oo e e

ol Wi by g
i L ™ s el
CHEH T

AR T S B L O P
L e

Cherd (o Ul W T
vl iy BT o Py, "-m'-'
n

L
PREETY. B B R S HEOH P

Lokruay == -
e e’
e T e)) e Ty

Figure 4-26: Shifting the third column from right to left.

ey g ¢ o R e e B T R
e e L L]
P T T ey
g i e P b B O eed
Tog ey oo 4 P EOGERE0H.

e miy i T e PR Sl
L el e e N B T

s b e bl pegrdd Fid A

-
ry —ia
H-lvl-lrﬂl-'lihnm B
o

ol e i e e

—— o als
[T

o
kb A . S apeio o adees. fn

T
e B e e]
e TLF g Fpirge.

L1]

Irclarry ol oo ToEE Sat EEeom e

"

Y, ECTERETE Y O P e e

PR T B e, e T Teg
s

TR e R T Py

bl (s pied Pl s T I I BRCDRTE
bR I i B TN, i By Bl B
Aam

Figure 4-27: Shifting the second column from middle to left.

Homs Pavien Bed Do

e]

o Pesbal By (ovlem o

(B -
vl

A ae
) e

L T
Lo et b sl |

ESSENTIALS

The basic idea is exactly the same. It’s just a matter of making sure there’s enough room on the
left to accommodate the column that’s meant to go there, and then pulling that column
leftward by the appropriate amount.

Oh, and you can flip all this around to go rightward as well:

.column {float: right; padding: 0 20px; margin: 0 20px;}
.two, .three {width: 200px;}
.one {width: 300px; margin-right: 320px;}

.two {margin-right: -640px;}

You aren’t limited to three columns, either. If you have four, five, or even more columns, you
can rearrange them into pretty much any order you like. It gets more complicated as the
number of columns increases, of course, but if it were easy anyone could do it, right?

Of course, if you want to center your columns in the browser window, you will need a
container around the columns. Something like this:

.contain {width: 1000px; margin: 0 auto;}

<div class="contain">

<div class="column one">...</div>
<div class="column two">...</div>
<div class="column three">...</div>
</div>

As I said earlier, pixels were used in this tip because they make the math a little easier to
understand. The technique does not, however, depend on pixels. You can do the same thing
with percentage-based columns (see Figure 4-28) for that fluid feeling:

column {float: right; padding: 0 2.5%; margin: 0 2.5%;}
.two, .three {width: 20%;}

.one {width: 30%; margin-right: 32.5%;}

.two {margin-right: -70%;}

LAYOUTS

a
Horm Progacy Bef Gomed @
Lo

[, T

N bl dew
|) o b o bk ekl B T bk ikl s Tty & e
e ey iy Do 2 i R g - 2
- IFREGY B MGAG o B T R ﬂﬂr—‘\t LK HE
[RET—— oD M okons TR Il DA e O R e CATEE T i o
Ay, TP YRl e’ @ | SOONINRTH gk i s o e Il
bied s TOHEL, PR 6 wh el S g i] 0 v’ Bl K
S gramy iyl g o skt ey
ey ol B R i -t s ™ =gt e g e
Bl ‘M STl o ey T o e T Tl SO - e (B2
Sl M vk Y P e B e en el s B e el
L ket RS el b e 1 Dl o b Sk Sk
[p— B gyl av g VB Trm AT Wi
= b gty F g-and gy W Agrwimemiign yw sl ek
e] W e T
LT [TE=] W T
‘Heraey b b R ET T i s R
Ipgyp @ presiumgtom of §ore g HORL T iy o e T
e FECTTREY Pk B L N e el § e BT bl
o your o fer stiang TS
o L
ey
s B

e W adegerm it mdn Ty

e i o TEOED. Oar el

ﬂ“lﬂ;ﬂ.lﬂm i Firom -
o

wuppiry o oo ey s perorm e
Ll

BT L W O R T T
R YT R e . il B ra Tra
‘A b ek rirmasy
Sk ek b amd | Wby de e

B
e F L I . Y T T a
A A .

M

Figure 4-28: Any-order columns based on percentage widths.

THE HOLY GRAIL

A follow-on to the “One True Layout,” the “Holy Grail” technique is another serious tool with
a cheeky name. First published by Matthew Levine a few months after One True Layout made
its debut, the Holy Grail builds on Alex’s work with some contributions by your humble
author to create a hybrid fluid/fixed layout independent of course order. (See http: //
alistapart.com/articles/holygrail for the original.)

In this approach, given three columns, the outer two are of fixed width and the innermost is
fluid, resizing itself to fill any available space. Holy Grail starts with the usual three column
diwvs, plus a necessary container.

<div class="contain">
<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>
</div>

ESSENTIALS

As before, we'll put the first column in the middle. In this case, we'll put column two on the
left and column three on the right. These columns need to have a fixed width—that is, one not
based on percentages. (If we wanted all the columns to be percentage-based, wed just use the
original One True Layout discussed in the preceding section.) We could use pixels, but let’s
spice things up a bit with ems. We'll make the second column 13em wide, and the third 15em
wide.

Okay, so that’s 13em on the left and 15em on the right (see Figure 4-29). First, style the
container

.contain {padding: 0 15em 0 13em;}

g o D Ry e e R) b i oo
Eh i Mk T gl iy [
Pt S -1] i
o
e
i I B i Ol e T T e BT e [0 ey e e T B el
diad v b
w1y o S W O
L] i P HT

e St b LD
Rl CEd N TR PR S e e R

ety e T R T I
e e L R L e s T e el]

o FIF g Fyirom = L] Y e EA T T

¥ % Wl e s e
A T T F o AL A et T e B el Pl R
e s L s kil

Lt Ll ki

Toq e oo I P L e g ol picinederr

1D gl 0 Wl 1 g g Sy,
wdm*ﬂmhmmur“wmnﬂmb’nq
ek -9

[T ol

=
v b e |k oy b P st [
L s b =y T
i D H o o i e g

A b O A i W —u
o g 4w T Vi B B T g D
orw o e byl Y by Craa ey wma br

oy v girin, Tog e
= T IR T e e e o IR0 R aa
- et mmummmmg@u
T T R) o S W P, ol et B e) OO o 0
Sl . W P e BV

Figure 4-29: Setting up the necessary padding.

Now start floating the columns and pulling them into their intended slots. This fills up the
container’s content area with the first (center) column:

.column {float: left; position: relative;}
.one {width: 100%;}

LAYOUTS

We'll return to the position: relative; in a bit. For now, we set the widths of the
secondary columns and pull them into place (see also Figure 4-30).

.two {width: 13em; margin-left: -100%;}
.three {width: 15em; margin-right: -15em;}

O L O L D o e P D >
AT P M R Y L A L3 [% -] Tmreme
T Vi Wt ' & -
i Fa [= =
i F oy 4w i i i E Pl e
=_ W luimﬂmnq;i;.‘mdjh e WAL [Fr—

7 dry g e
-] hﬂlb’ﬁ'ﬂr
LY]

i
e i rpopes B gy porieg, e Py ol @ ol e o e oepent i ol i
iy, p oppap i gl

T gl
(G gyl iy g g g o IO ooy Tom gl b iy 0 oo
s gy i ey e e g 1 Ve e ey
- i o Secip o mgrecieg. Dot ol o R for

adi P £ T L
o ik i Vi B il Sl FOSTWORIH T ek
il ki T s o AL il il e ¥ .

i i e Pl iy oo, g :

Figure 4-30: One column in place, the other overlapping.

Well ... almost. The problem is that the left column is in the wrong place, overlapping the
main column. That’s because it was pulled all the way across the container from right edge to
left edge. To get it into place, we need a little more.

What we need to do is shove the left column farther (see Figure 4-31) to the left by a distance
equal to its own width. And that’s where the position: relative; comes in. We're going
to give the column a right offset equal to the distance it needs to travel, which happens to be
its own width.

.two {width: 13em; margin-left: -100%; right: 13em;}

ESSENTIALS

ace o -

N Pl (B D |
— ..
CorHagalis bup iy L iy by, O e
M BT D i vom “i-llu-rri Ry ‘D\rm"n LT
Py & L TR . 1°d ‘. - wm: — —
g, S e b B g, PR R B B, -, T sy ot W B I 0 e
HH SR S e A ol oen SR Tm e e oisbTE
L d - :1 i
] i LE LT T
bmﬂﬂﬂwhmwmmulwﬂnn‘ﬂw e b s
I e Pt Enbbmtl mih
Bl e Gl bwETy B 8 E O P e o e s, T PR
. D6 vl bk i e
rummlniﬂﬂ;ruu&uaﬂﬁﬂ:ru e —=
P vy, O RO R o DLt - |
mmmw.m'“‘-" i u . - bt E T
brparaaad, (e vl e
Ipimrsimion it TR (Rl Bl £ Wil o
il : Ty bW By P i, T P K B -l
— T~ ”L--ﬁ-*F"qhwhl-ﬁ-‘mﬂ
SO B8RS 1 1 g b et 1
[T
By
iy [HAra—— [ESET PSS [
Am nermpy
hwqmmmmlm?ﬂhmm W s
iyt e R0 e e BT LR i
bl K . i Sl B T T o)
ST e’ CIGECEY I WA

o Bt B oomdmg

T ey
el T L R i Bl T by b e d b
Mt M

ks 0 e T airam G

-t e e b
7 iy

v e mar et | EOEAEAE I T e

AT i T T W A mnlw-r-m VBT P P AR e T R
L s e e T e B e L =
FpilF, HL B ol S BV

A

R

Figure 4-31: All three columns properly in place.

Note that the same effect would have been possible with an offset of 1eft: -13em;.

And that’s really all there is to it. We just pull the secondary columns over the top of the
container’s padding, and all is right with the world. Of course, if we apply margins and
padding to the columns, then there’s more math to do, but the principle remains the same.

For example, suppose we want to push the side columns a bit apart from the content. That
could be accomplished by reworking the center column to use a combination of borders and
padding.

.contain {padding: 0 2em; border: lem solid white; border-width: 0 15em 0 13em;}
Notice that now we have great big fat borders on the sides. That is what’s holding open the
spaces for the two columns. The padding on the element will push its content inward even
farther, and thus away from the side columns.

This means that we have to adjust the placement styles for the side columns. For the second
column—the leftmost in this example—we just increase the right value to be the width of
the column (also the width of the center columnss left border) plus the left padding of the

center column.

.two {width: 13em; margin-left: -100%; right: 15em;}

LAYOUTS

For the rightmost column, you’re probably tempted to just increase the negative value of the
right margin. That doesn’t always work, though. Instead, leave the margin alone and add a
left offset.

.three {width: 15em; margin-right: -15em; left: 2em;}

A negative right offset would have worked as well, of course. Either way, we end up with the
result shown in Figure 4-32.

aco —_— -

Hem Peshel Pad Gordes :
LE T

[T

- il i .

Wi el Wi e B Ooiwr
oy o by, Wil i H-wnllln o ivped Syt onpp o I3 gl Pl Ti
g - Byl g i g g ik i L4 S —

g g e e hamaregain

ol Yo g srfea. BEH meey mam? MM'IlHum-ml--u'r =
o ey RO DN I L il e ol g S The mairioe i ¥ e
i, i e B ek by il £~

Ea Frv, il ki e i e il L B S b e e i W ST R
e m e

o L iy %y el breniiard

AR, (00 W S LITIES SEPCT JRpeme e TOPIg ST TP g . i
rrum“u Sl = e —
BT W PR VETE HAGEEN AHAKEL B e cwrn DS O EET
:':!:-#n lw:'i'n- P D ST A e Pypoe Tl o [TR w4 ma. s
it [
T -:::"" b, APl s s B TREiT Py ik 1 e P, Bl I Kl Thie
b Ay P gy b g [- T TR PR L SRR | S T T B
¢ i i i b o T s e oy, o ey b
1 B
ey, XS Tha T e e b e g s e
Corsiadlc ¥ . A J drpmag
i
e L v PPt bk e m o s Pl gl o By
s O] rinimprglmnige, ool 15TV R
il v il lgrh ey
PRy i et i N Bl
EOAHE i O DO I B
L ead Wy
L' Hagld i Dl T u-

e L DL T T T
i'!nl Mimmh’m Fark i yp, S g oEEE B Irll-l-ul-:l

Wa e st ey
-ulu T e e rEOaEcEg Hm’l P -

rE
L LN L R - —

Figure 4-32: Another way to place the rightmost column.

The subtle benefit of this approach is that if you ever want to put solid colors behind the side
columns, it’s a simple matter of setting a border color on the center column.

There is one more thing we should probably do, and that’s keep the design from getting too
narrow. That can be accomplished with a bit of body styling.

body {min-width: 50em;}

With this, the body element can’t get any narrower than 50 ems. That means that there will be
enough room for both side columns and another 22 ems left for the center column. This could
be set to any value, of course, though making it in a unit other than ems means you can't be as
sure of the results.

ESSENTIALS

FLUID GRIDS

The Fluid Grids technique, first described in detail by Ethan Marcotte (at http://alist
apart.com/articles/fluidgrids),isa way of turning a rigidly grid-based layout into
a more fluid composition that uses percentages and ems in a heady mixture. Even better, you
can alter the mixture away from ems to some other measure at any time you like.

But first, start with pixels.
No, really. This is easiest if you start with a finished layout design, say in Photoshop, and start
measuring things there. You won't use any pixel measures in the end, but that’s okay. It will all

still work.

First, Figure 4-33 shows a layout mockup with some “top-level” measures placed over top.

L Eadl ey B cor —

meyerweb.com
e =] Figsedino ey Somaing LEvaven Dnnn-l-i-nl I

The Wab Stack

Figure 4-33: Visualizing the layout needs of the page.

Now for the math. If we add up all the numbers, we get a total of 1,010 pixels. Now we just
need to divide each of those numbers by 1,010 to get the appropriate percentages.

But wait! How are we going to split up the blank spaces? Margins or padding? Evenly distrib-
ute the 70 pixels between the two elements, or assign them all to one or the other?

There is no right answer to any of these questions, to be honest. The answer can depend on
the specific design and just as easily come down to personal taste. Here, let’s assume that it

LAYOUTS

will all be padding just in case we ever want to set background colors. Further, we'll split the
difference between the space between the two.

In pixels, that would yield:

fcontain {width: 1010px;}

#main, fextra {float: left;}

#main {width: 715px; padding: 20px 35px 20px 25px;}
#extra {width: 190px; padding: 20px 10px 20px 35px;}

But remember, we're dividing all these by 1,010 pixels. That ends up as (see also Figure 4-34):

#contain {width: 1010px;}

#main, #extra {float: left;}

#main {width: 70.792%; padding: 1.98% 3.465% 1.98% 2.475%;}
#extra {width: 18.812%; padding: 1.98% 9.9% 1.98% 3.465%;}

drghives. CER Tanlwme ey Spmahing | e, Gaogh Sk 1|
A b o L Wk
The Web Stack [y ——
= Bined W Mg TEIE Torilim
- WY .
w Bl
bty S
b W Amal
= 1] s i gl
Foolisrsrng) ey oo HIE B . Flaiy” fll ol = i o gy pemd STRALK,
P, i momn. e oo, i e | e 0 et 0P| I TERCaDy IR
B | i m ey s, T - e FEHTML i ey e
] L] L B w0 ol e 0N BRI B0
B T T | DR AT Ol T i (550 ity
L W T W P B il o ol PO e i B Al T T
e e g o D55 « D08 o L FEr P s i

ok ' ferin, o pely o fop neew e gl Peages e ey miee g
AN 0 B O . Sy, § o Y oy e e e e P T i e B
RO P il B

W | o e e Tl . Peugh. (e] gm. T =rgn I Froeries.
cHri. e ra o e Aol poi oF v Hyme g [= Fi. Dig=ga
B, P, oF &N NG i Ty B

= [} i T Fiman, mai Tirsi, P, dscivndel

g | s by et e oy el oy v gy s i o el o ey o ey oy gy o e e

Figure 4-34: Placement of the two main columns of the layout.

Yes, you're leaving the container alone for the moment. It will keep things controlled while
you assemble the layout, to make sure things are landing where they’re supposed to go.

Now look at the measures of the things inside #main (see Figure 4-35).

ESSENTIALS

moeyarweb.com

ERTT ZEE Tealmn Whiley Epsaiing Lo e Sewe ||

Figure 4-35: Visualizing the layout needs within the two main columns.
Okay, now turn those into some CSS.

#main h2 {width: 575px; padding-left: 140px;}
#main .info {float: left; width: 95px;}
#main .text {float: right; width: 575px;}

You'll note that I didn’t define anything for the separation between . info and .main. That’s
because they’re floating in different directions, so we can rely on them to keep separated
simply by running away from each other. Now we divide all those pixel lengths by 715 pixels,
which is the width of #main. That yields the following CSS, which will result in the screen
shown in Figure 4-36.

#main h2 {width: 80.4196%; padding-left: 19.5804%;}
#main .info {float: left; width: 13.2867%;}
#main .text {float: right; width: 80.4196%;}

LAYOUTS

dechvas 059 Tesizos. i oaiag LeFmrs Caagh Saanh |
= eyl o T vike
The Wals Steck W T T

Fafiowing o my RS S va. Miged” ol o § coupie of e 30, e iwoing o do s 8 of
Dy e HTRALE, FRbAN. Wil WO, B0 W, il T | e I i ol WO
B wrans

-] T Y o R, T e B o
GO o ey B G, g e T b e e e e
e e B i I e P T R T O Do v srorerd. | besl

g
Harlr L L i

" ppd™ e By, Brinh o o=
e DR SIS W BT o o D58 « D06 o s
AL el il el S F
T i B oy 1]
e i el rpon e iy e of Frm ok By @
= o e g P oy e -

I | i U ol L, g [V . G A B 0 W oi. T
g e o, owrisein, D moi e e Ponl aec poie: oF skoes. 4 Deoweer doms | o #
e Pl il Pl O P D, B P 5 AT Nl . 0] el ol
Frm e e e Bpaghe or perariiog s

Brram p Tensaas

F [Tk, I . Pl O i s otk b T Sz gy |y
Fioyl, piren, e v forf Wit | s s sl mipar iy e o e iy iy i gy il Wiy ol
iy e pluging ooy beionsg ca b el el Thary'ss e ral s o el core: el s sy NEraH iy = oy
A U M il A i T M T T AR s s O oy ::E- W AP
il DL i 1 a

il o e B | o P da e e rm el

Figure 4-36: Properly placing the pieces with percentages.

There’s a little bit of vertical alignment to be worked out between the columns, but nothing
that a little bit of top margining won't fix in a jiffy.

You might wonder: Why do all this math when we had perfectly good pixels? Because now we
can change the width of the container to be anything, and the grid will hang together, with all
the pieces being the correct relative sizes. For example:

#contain {width: 70em;}

Or even:

#contain {width: 90%; margin: 0 5%;}

The world is now your oyster. If you do this, though, make sure you keep the oyster from
getting too skinny, like so:

#contain {width: 90%; min-width: 960px; margin: 0 5%;}

ESSENTIALS

EM-BASED LAYOUT

This technique is strikingly similar to the Fluid Grid technique, only here the layout dimen-
sions are specified in ems instead of percentages.

As before, we'll start with a layout mockup with some “top-level” measures placed over top
and the associated CSS (see Figure 4-37).

#contain {width: 1010px;}

#main, #extra {float: left;}

#main {width: 715px; padding: 20px 35px 20px 25px;}
#extra {width: 190px; padding: 20px 10px 20px 35px;}

Figure 4-37: Visualizing the layout sizes for the whole design.

Great. Time once more for math. This time around, we divide all these numbers by the
“baseline” font size we're using in our page. This is generally the font size set for the body or
html element. If you were to foreswear the use of all font-size, then the baseline font size
in the vast majority of browsers would be 16 pixels, because that’s the default preference
setting and almost nobody ever changes it. If, on the other hand, you said something like
body {font-size: 0.8215em; }, then the baseline youre setting is 13 pixels.

LAYOUTS

Once you've determined the baseline, you divide all the pixel measures by that number. The
resulting numbers will be in ems. Thus, assuming a 13-pixel baseline:

#contain {width: 77.692em;}

#main, fextra {float: left;}

#main {width: 55em; padding: 1.538em 2.692em 1.538em 1.923em;}
#extra {width: 14.615em; padding: 1.538em 0.769%em 1.538em 2.692em;}

Now the stuff inside the #main section.

#main h2 {width: 575px; padding-left: 140px;}
#main .info {float: left; width: 95px;}

#main .text {float: right; width: 575px;}

Again, we divide it all by 13 (see Figure 4-38).

#main .info {float: left; width: 7.308em;}
#main .text {float: right; width: 44.231em;}

Biibivma CHE Teales Wy sy [p— Cooge s ||
B it i

Thee Wb Stack .

. . Fralipueryg om o HIMIS vm g’ il o' orsapis o sopsiey mm, T gy i e o i ol bogeen n b
whond HTUELE, Flnd, oy apm, ped e, Bl e i Tumm

| | A Prm g g o

':"_ S =TT o e Pt . i i s —0 T el DO s T e P L
ok D ol 10 Dl g i |

T Pk il b it v e ¥ i il b W'l S et Eariee e

i g i, st ol s s’ o T s e o i i B e i rdie e
o w8 - Ok - R S Fenad A
eriahin
s JE- 7] & " T PR Y bt
Wl i bl sk i] o Wk bk i L 21
L L o ™
P R O el e e s B ol . i B2
o e 5 Teem, b, Pl o Lo it]

2 R B BT

Fos by, f dngppe't mplyr b phugiey Vi ol e Flagk, o i aipn e s Dk Trmwy, Pl
Berinapls’ g ' i e | g ey el i i gl ' e e iy, i e ey o il o
Py el iminey s o ol o ol Toupy g ey mod paed o el oy i e ey ey g e
by g oy e ol e Tl cimappen | i e sarsinerg g, ooy

Dap. 9o i ol o o Al BN | R Y A T = W -

B g])]]

Wab 2.0 Talk: HTMLS vu. Flash

Figure 4-38: Properly placing most of the pieces with ems.

ESSENTIALS

You probably noted that I left out the h2 containing the entry title. That’s because the size of
the text in the h2 is bigger than the default, so we can’t just divide by 13. Let’s see what size it’s
been given elsewhere in the CSS.

h2 {font-size: 1.6em;}

Okay, so its font size is 13 times 1.6, or 25.6. We therefore need to divide its two measures by
25.6 (see Figure 4-39).

#main h2 {width: 27.644em; padding-left: 6.731lem;}

Brskimia 0 Cewiem Wiilkiey sy [pe— Caopk Sawth ||
5 e e g
The Web Stack
T e L
s Pl i top "IN i b Bkl b bl gy
i HTBILN, B, e g,] e Bl Pl o
e o i ey i P g o e %1 - =
:' - —EiTe o ey s D55 el viloron— e v PIECHT T T P T D .
P e . D a

" =3 Fored e K
k™ o, b o "l i’ o e i i i b gy g
gy ereiry ey prrerayy b forp = [RE - D08 o S0 HpFpgee s

s aine
bl i o' Wt o mbn " i 0 ey e e
ol bl bl el B Bl Wik L 2 =
i iy paa
Wil ol P o,
i, T Bl 'l e B el 'l o v, o R’ sk L 1 it b
i i Dy FH, Dbl Pl Pl ol ol P e, (1 uieinf | s i e i P e ' _‘_m
b o i il e .
Faraarars. 1 oo Wi 0 g Vi e el Pl 501 @ e e O Nra, Pl
] i B o, R | P e e Che [ek T 3 Wi " [T —
- a Ty B I R P T Aparar iy | wanma
b il [S i G
M HE o' B D
W R Ol o e, O e S ey O e P Robars, AP e a2
e 0 ot 1 e Oreant g i 1 e P
- H
Wab 2.0 Tak: HTMLS ws. Flash emmees b s 1 :

Figure 4-39: Correcting the heading’s placement.

The math can get a little tricky, there’s no question. The beautiful part here is that if you bump
the document’s baseline font size up or down, the whole layout will scale to match. For
example, suppose you changed the CSS to say:

body {font-size: 90%;}
That shifts the whole layout to be larger along with the text, which means line lengths are
basically consistent, the layout hangs together, and it’s all nicely scalable for anyone who has

different browser default settings or likes to bump the text size up or down for readability
reasons.

LAYOUTS

As evident in Figure 4-40, though, it does mean that the layout may get wider than the
browser window. That’s a potential downside of Em-Based Layout, and not one you can really
get around. In fact, the whole point of Em-Based Layout is that it preserves line lengths and
relative placement regardless of how big or small the browser window might get. If that’s not
for you, then Em-Based Layout isn’t for you either.

Ambies [=F] Cimvhan [Tt Hymasing FLTT = " Craghe Esareh ||

et o) W
Thi Walb Stack

Foiiowsing & oy “HTHLS w8, Fisad” il of 8 cosaie of vl Bgo, 1 heging i do s B oF begging
ol HTHLA Flash, resbils soon. sed reore. (St Bt | s i e v Fermeinleegy woasipi i

:"“'" i e iy e, T going i e 0 e d i
i —PHTIAL jol sy eecr], CEE, srdl safon—am The w0 BE. A W e T e by

e

ooy iy

e e e i i e e e e 0 medemed et erkerd . 6 b wring i
Wt i) o il faly 1 o o Byi) T it i iy o Bl ', B TR 'l P—
™. e o, i o R B FRLGR B 0 DT — i Y L e -
LS BT [~T] CES = DOl + Wb Li-mpiRay mal” wal

[t o

Pragrn i

Thi fa il Wpalh, Bl ey o e sl o'l (Pl . ° e
ool] TR PR . P S sy i
Hre R - HECE.

| S T S BNk, Doaagh, Tre aol misring The:

o rgorint, cerisisfy, bl w0l rare T oni-eed poist of viswe & beosnar dossnl cese F o pape

o et bp PHP, Digege, Seds, Perd, or E gl LT,] e
i gkl O oy GRS TFriy Com

Feiherrans. E domn't nfe in phupiss. S bl mases Mlamh. bt £ s reere CaichTies, Ml
deciva. ped ac bor W | el o i e e o o cloing ke in e Bt T gl et L
[T i o Tl B TV gV bl S [l (0] (0 el O ey e P b
ot b i 0 B TP i i B oo Wi, e iy -

Figure 4-40: The horizontal scrollbar appears when the browser window gets too narrow.

This approach can even be extended to size images along with your text. Suppose you have an
image that’s 88 pixels wide. Divide that by the size of the text around it (we'll stick with 16)
and give it the resulting width, like so:

With this in place, the image will scale up or down in size in response to changes in text size.

Obviously this won’t be something you necessarily do to every image, but it can come in very
handy for section headers or other integrated images.

NEGATIVE MARGINS IN FLOW

Margins are great for letting elements keep their distance from each other, but did you know
that negative margins can close up the distance, and even completely overwhelm it?

ESSENTIALS

To take a simple example, suppose you have a page where you always want the element after
an h2 to start right below the bottom of the h2. The most common case is to have a first
paragraph begin with no “blank line” between it and the preceding heading. One way to do
this is with the adjacent-sibling heading (see “Sibling Selection” in Chapter 2). Another way,
pictured in Figure 4-41, is to put a negative bottom margin on the h2.

h2 {border-bottom: lpx solid; font-size: 150%; margin-bottom: -0.67em;}

p {margin: lem 0;}

The Web Stack

Follpaing an my HTRLS ve. Flash” tale of & osple of sk ago, I'm hoping |
mons, Bul finst | nesed fo gt eome lerminpingy amight

A | igigl in e fale. 1'm gedng D refer to e ool meion of fronband web-riandeng
JaivaSiaripl—e e Wl shaes”. P S i D geed P afed Fena @nd
1f etn writing caf the somcific bechnolog s svary ima or ingng 1D wse mimikary
il S0 G AT LT D A " D Tl Wil el b i
EPALHIY Fisuieal widsa Lt mesr bl

Tha wmb sech sl of includes downosdshis desls, Bk orly in L S EmE S
Smipty, § ercompassss framasorks Hka [{Quary in the mares et fey'ns bl

Figure 4-41: Bringing a heading and its following element close together.

You might think the paragraph lacks its top margin, but that’s not so. It’s still there. It’s just
overlapping the h2 because the bottom margin edge of the h2 is actually near the top of the
characters in the h2 text. The paragraph and its margin sit below that, not the bottom edge of
the h2’s border.

It’s possible to use this general technique to put bits of content “on the same line” That’s in
quotes because they’re only visually aligned. Consider:

<ul class="jump">

<1li class="prev">Salaries</1i>

<1li class="next">Punching the Clock</1li>

Now suppose we want these to sit next to each other in a line, as shown in Figure 4-42. We
could float them both, but there is another way.

ul.jump {list-style: none; line-height: 1; width: 25em;
margin: 0 auto; padding: 0.25em lem; border: lpx solid;}

li.next {text-align: right; margin-top: -lem;}

Figure 4-42: Pulling two elements into horizontal alignment.

LAYOUTS

The negative one-em top margin of 11 . next pulls it upward by just the right amount (since
we already defined line heights in this element to be 1).

Another useful trick is to pull elements partway out of their containers. Suppose you wanted a
section’s heading to be in a box that’s centered on a dividing line (as in Figure 4-43). Here’s the
markup and CSS:

.entry {border-top: lpx solid gray;}
.entry h2 {width: 80%; background: #FFF; border: lpx solid gray;

margin: -0.67em auto 0; text-align: center;}

<div class="entry">

<h2>The Web Stack</h2>

</div>

Tha ¥ab Stack

Foh el O vy AL ws . (Fion” ik f 0 dopuagend OF mdetit 0, 'y BB 000 & D41 0F ipdoaing iiaceut HT LS, Flgssin, DDy Boge. B
ricra. But frsd | resd io ot soma mrminciogy slmighd

Ag | i n oy isle, e going L refier i he colleciion of Nipnbsnd web-sisndands lechnokagies— (O HTML ol sy Rasvor), 035, and

i Bt T W il . | s Wil RV e P Gl ol 0 O P T WGl il 000 ol B 0 Bl) vl R el
i s e Ol T Se0m0iT0 e PO B SR L D T P 0 8t Ry Tty bl o B “Toeriend oo™, H g i Thiks !
“wab sack” an mroegh egutesiend b2 A s —a e thal v ineeried becsuns conbirusllp seg g EmToronoun Jeva oot < GRE + DOW +
EAENE L S TS PR T

Trod el B0 01 0 o DDA RO i ROP B Bl 2 1 19 Ve e TR, T B iy BTG RGO TR o 2] o T e,
Eimidarly, | sncomoasms rerrewors e Doy i Hhe ssres S Sreey'res (o0l ook o e componanin of e we b sleck.

Whisn | uee e o “weh Sac”, thowgh, T o sslering 10 back-and iEasiogiss Thass Iinge: 508 imoonisnt. perisialy, bt nal o (ke
FOvhEdl S50 O vides. A Dol | el T S0 Iyl P v A @00 D FHF. Diangs HalE, PEfL OF o] Biad vea K 356651 bvid e
T G e B A b O BREIT e,

Furthaawuore. i duean'] rebs? b phaging. Ved . sk imedees Fish, bol i sl e Guol Tined, Real Aothal, aved 50 Rith, Whai | need 1o muion
clmar in Bai i nol Soing his inen afsmpt o ol Bl pugiae don't belong on M sl ol ol They're ol ool pert of Bal core weh slec sy
R I o vl Gl] o P Tl (o] S WY o) Bl i, Oy

Oy, oy o o] Y W i | Pl e PR i STy R A or B P R et s e Ol

Figure 4-43: Centering a heading on a dividing line.

On the other hand, maybe you want the box to be “shrink-wrapped” to the text, not a
predefined width. In that case, you need a little more markup, but just a little:

<div class="entry">
<h2>The Web Stack</h2>

</div>
Then you just shift the CSS around a bit (see also Figure 4-44):

.entry h2 {margin-top: -0.67em; text-align: center;}

.entry h2 span {background: #FFF; border: lpx solid gray; padding: 0.25em lem;}

There you go!

ESSENTIALS

That’s all fine as long as the text doesn’t get longer than one line, of course. If it does run to
two lines, then the box will hang down from the divider, not recenter itself; and the box will
be split up between the lines. There really isn’t a good solution for this using negative margins.
You could just drop the border and keep the white background. That wouldn’t be perfect, but
it might be good enough.

The Wab Stack

Foldowing on sy H TRLE va. Flash” ek of & cossie of el sgo, |'m hoping o do e bk of bloggis g sbout HTVLE, Fash, mobis spps, e
more Bt fimd | eeed i et ores: Imeminoicgy e ight.

Aal i in ey ik, |'m going i wler e 1R codlsclion of fonend wal-aland s ischroiogess—[OH TR [al pey Bmaors, T35, snd
o, TR il W | s Tt TG il o i T] P LR YT L] G

i bsaln Ading cail i apeciic ok rolopiss saany e e or i ng Lo s = iy W ED s “Front-sad kech”. Hpou B, ihink of
il R B A G R M A B— TE T Tl s P Eea s B R Y) TR B v e < CIE + DOM 4
MRl Reqes e’ ARl Lneorasd s

'"I-" sk pard & l:hlu dosvnipadsbis o, bl nnh'n e sars senmm Thet iTages or arp ciher eeer sl FeEuroe: oA o e alec
[} Mg fdasry Eraryre badll ok o the oo penea i of Hhe wel eisck.

‘g | e Tt g el olaokl. aagh. I red gk o bagh-erad Thatelis bharpt 5% Puadin, Qi bt ok ek Pegn s
Wllﬂﬂvwnmmmfmmmmmww Citagels, i, AL O sl Nl 0, 1 S HIT] vt (950
1 i e rUne N s of Boametiing el

Furirmrmeors, A doaen' mefer i piuges. Fes, el resne Fieah, Bul B sle reens JeickTirs, Feal, Sodweld, srd eo fordn. 'Whaeil cesd omaka
i O] P] o B O Y T S oy LT o BT D 3 1 o] L TPl i 1 8 S o Wl £ s il
Tors than e vl sieck @pet of thees . Thal cosas sop e sorking togedher, obwicuely

iy, B 18T W iy, G P Py PR Nl P AT L Crraard

Figure 4-44: “Shrink-wrapping” the text of a heading with a hox.

POSITIONING WITHIN A CONTEXT

One thing that hasn’t really been touched upon in this chapter is the use of positioning. That’s
because positioning—by which, in this case, I mean absolute positioning—is usually a bad
choice for large-scale layout. Not always, but usually.

The reason for this is that if you absolutely position an element, it is entirely removed from
the normal flow of the document. That means that wherever it ends up, other elements will
act like it’s not even there. Thus, overlapped content is a common result of absolute
positioning.

It’s kind of a shame, because it would be really simple if you could position, say, columns of a
page and not worry about them completely overlapping the page’s footer.

However, don’t lose heart: You can easily use absolute positioning within limited contexts, like
headers or footers. Consider this header’s markup:

<div class="header">

<ul class="nav">

Home</1li>

Products</1i>

Buy!</1i>

Contact</1li>

<form method="get" action="/search">

LAYOUTS

<fieldset>

<legend>Search</legend>

<input type="text" name="terms" id="terms">
<input type="submit" value="Search">
</fieldset>

</form>

</div>

You could position three things: the logo, the navigation links, and the search box.

However, you probably wouldn't want to position them all. Consider for a moment what
would happen if you did: The header div wouldn't have any normal-flow content, and thus
wouldn't have any height. It would be zero pixels tall. Or maybe one line of text tall, depend-
ing on what exactly you positioned and how browsers treated the leftover whitespace. At any
rate, it wouldn’t be tall enough.

Assume the logo is what you leave unpositioned. That leaves you free to put the navlinks and
search wherever you like. First, establish a containing block (the technical term for a position-
ing context) for this to happen.

.header {position: relative;}

Bingo: That establishes a positioning context for any descendant elements. So if you want to
put the links into the upper-right corner, you start with this:

.nav {position: absolute; top: 0; right: 0;}

Perhaps you want to put the search form in the lower-right corner. The result is shown in
Figure 4-45.

.header form {position: absolute; bottom: 0; right: 0;}

Obviously there’s some other CSS at work here (otherwise the navlinks would be a bulleted
list) but you get the idea. Thanks to positioning, you can put these things wherever you like
within the header. Want to put the search up top and the links below? Swap top for bot tom
in the navlinks’ rule, and vice versa in the form’s rule, with the result shown in Figure 4-46.

.nav {position: absolute; bottom: 0; right: 0;}

.header form {position: absolute; top: 0; right: 0;}

Home Products Eruryt Cantact
Saanch

Search |

Figure 4-45: Positioning elements within another element.

ESSENTIALS

(" Search)

Home Products Buy? Conlas

Figure 4-46: Flipping the placement of the positioned elements.

Of course, you do have to be concerned about overlap. As an example, suppose the navigation
links run to two or three lines of text. They might start overlapping the search box. This is why
a lot of layout uses floats instead of positioning; floats don't naturally overlap. Still, used
judiciously, positioning can make it a lot easier to rearrange content within an area like a
header or footer.

PUSHING OUT OFTHE CONTAINING BLOCK

An interesting feature of absolute positioning is that you can position elements outside the
element that serves as the containing block (positioning context). This can come in a lot
handier than you might think.

For example, you can take navigation links that are structurally within a header div and
visually place them just below that div. Consider the following markup structure (see the
preceding section for the full details):

<div class="header">

<ul class="nav">...

<form method="get" action="/search">...</form>

</div>

In addition, apply (on top of some other color, font, and related styles which are omitted here
for clarity) the following styles to place the navigation and search form (see Figure 4-47):

.header {position: relative; margin-bottom: 1.5em;}
.nav {position: absolute; top: 100%; right: 0;}

.header form {position: absolute; top: 0; right: 0;}

Notice that the links are now sitting just below the bottom edge of the header div. In order to
leave room for the links to have enough space to avoid overlap with content after the header, a
bottom margin is applied to the header. This makes it a lot less likely that the search box (still
within the header) and the navigation links will overlap.

LAYOUTS

You might think the links are a little too close to the header. That’s easy to fix: Increase the
value for top. But maybe you want to place the links exactly seven pixels below the bottom of
the header. In that case, you could define the exact height of the header, then do the math to
figure out what percentage value would add seven pixels to the offset. Or you could just define
a top margin of seven pixels for the navigation (see Figure 4-48).

.nav {position: absolute; top: 100%; right: 0;

margin-top: 7px;}

Saanch

\ Seanch)

Homa Products BHary! Cantact

Figure 4-47: Placing the links outside the header.

Saarch
[: 'y Search

| St

Home Products Buy! Contact

Figure 4-48: Pushing the links down a bit with a top margin.

Thanks to the fact that top and margin-top have separate layout effects, you can do this
sort of thing in a way that simulates simple equations. That is, the top edge of the navigation
links’ content area is 100% + 7px below the top edge of the header (where “100%” means “the
entire height of the header” in this case).

Another interesting example of placing information outside its containing block is to take
some date-and-time information for a blog post and put it to the side. Consider this markup
structure:

<div class="entry">
<h2>Positioning in Context</h2>

<hr>

<ul class="datetime">
Tuesday, 18 May 2010</1i>
<1i>15:26:37 -0400</1i>

</div>

ESSENTIALS

So we have the content of the entry, and then the publication date and time information. We
could have more there, like categories or tags, but let’s stick with the date and time to keep
things simple. Thanks to absolute positioning, we can place it anywhere along the outer edge
of the entry.

First, as usual, create a containing block, and at the same time open up some space for the
date and time information to live:

.entry {position: relative; margin-left: 10em;}
Then grab the ul and position it outside the left edge of the entry div (see Figure 4-49).
. datetime {position: absolute; width: 9em; left: -10em; top: 0;

margin: 0; padding: 0;}
. datetime 1li {list-style: none; font-style: italic;}

;;ﬁ""* Pasitiaing s Comes
i AT e ot

F—u- e TR B e Pk i, of
ErEES

o
A1 G v

leun_huhn1‘ﬂ:marﬂuﬂﬂiﬂﬂn~!uq1niq:ﬂﬂnhn-uﬂ»nﬂ
- o kel e Ay
hﬂkﬂhﬂﬂmﬂiﬁ"ﬁiﬁﬂﬂwlrhﬂllhﬂ - Pl
apy Saranllmipi = TR =
e
L, o B o = -
HHE}IHﬂF!IHl-'Tlﬁmﬂﬂﬂﬂ?‘ﬂ--ﬁﬂﬂﬁﬂ‘lFHFI?H1ﬁHhiI“
FIIROE O P S RE
Pt | owm o " ke g u i]
e [Bbumie ki I N, DA
Apin Pyl o e R e T
rﬂvwm:h-'1blmﬂq?-nrwrﬂhqurnnﬂrnmnit\-lﬂqmrv-
IIWHJMEI Y] it B
i LK B 2481 F I e

ﬂu1qr#uﬂup

By b Py ot o P am e | =y mmaceny 8 sy BTy ma e e e P de e g e 04
=l T

S LA R

Figure 4-49: Positioning an entry’s metadata to one side.

The width is used to keep the content’s right edge from getting too close to the left edge of
the actual entry content. And just like that, we've put the date and time out to the left. Of
course, flipping this over to the right is just as simple (see also Figure 4-50):

.entry {position: relative; margin-right: 10em;}

. datetime {position: absolute; width: 9em; right: -10em; top: 0;
margin: 0; padding: 0;}

LAYOUTS

Thanks to positioning, we can put things anywhere. This is great power. Use it responsibly.

Positionieg in Comest e

S B oy TN b e e o il b bl . 1 Sl e el B B Bl ST
i,

ol ek R iy e T

iy g ey i, T g e sy P T, o oy B
A red Jwsalerd o P ek s~ T
TP ST g e g e) e g A ey o e e A ey

sy e, an bl ae e A b S ek e n @ e et Bprm e

= WG Jralorip o GO o [R5 exEwoamy s
i]
L " = PR 01 b OR ST
T 8 O T e, Py | R i - :Lﬂh d
eparn o e
W | e B O "l BT, g, (L A i et
el P P 3 PR LB

i iy
Uik P B el Rl . W Y et G T e R ok B A O R

R] S Wbt Y P S S Bl e Sl Do T S BIRR dd b
s ¢ v b e e s e g e 7 e e B T s e | sy v b

a Towry'om el el el o Bl e ks sl e, —w
b Kl

. P e o e | Fa e iy Py #i
a1 Craard

E;iL-----------------------‘EIF

Figure 4-50: Moving the metadata from left fo right.

FIXED HEADERS AND FOOTERS

Remember frames? You could put a navbar or a footer at the top or bottom of the browser
window and have it never, ever move. This was used for ill in many cases, but the core idea
isn't a bad one, and you can actually recreate frames with CSS as well as do frame-like things
that don’t really create frames. The key is fixed positioning.

For example, suppose you wanted your header to always be at the top of the screen while
content scrolled past it (see Figure 4-51). Simple:

.header {position: fixed; top: 0; left: 0; width: 100%; z-index: 1;}

That nails the header to the top of the browser window and, thanks to the explicit z-index
value, places it above any non-positioned content. (Without it, whether the positioned
element overlaps other content or vice versa is determined by their document source order.)
In technical terms, the browser window is the header’s containing block. No matter how
much you scroll the page, the header will not move.

ESSENTIALS

0 PR S RO R g 1A
Oy B e Do [D e oy WRE OueE E S DT
Pl b b s " o e el W™ iy Sk’ 'V Mot Tad |l
] o, i s iy o R e g
LTI MRt gl o el armagt BEL Thy i
P o, I S B SIS L Wi -C TRHET B
Frmad ol

I ke b e [W a
“prwigoply T Wiy nill o, iy e e B L
T DRy B A O T I f 4 e
R, e iy, gl [g1
[mearsa o o g o aiaing

=i

D 1 o i

ey P il gyt foop et oy of i i
O] B L B

Esidad B
il il 01 B S 0 P, TR ol
iy !lll';l et e e
-
it WA e D T, e

R
ey =par? K ey s bl T el T
ey b gt g pay D0 R

T '
chata. [P B G i I B
el ips Ty |]

i mierfenty

Tl BPIersl FCCS CF 6 BT 6T I o sl

iskadr e e

o=l iugs T *
il o Bl 'l =

Figure 4-51: A fixed header.

If you just leave it at that, you will very likely run into a problem: The top of the page’s content
will sit underneath the header, and nobody will ever be able to read it. To make it visible, you
need to move the page’s content downward.

One way to do this is to pad the top of the page by a measure at least as great as the height of
the header (see Figure 4-52).

body {padding-top: 100px;}

There’s another potential problem here, which is that page up and page down will skip
through the page at browser-window heights. This takes no account of the fixed header. Thus,
someone who uses page up/down will very likely miss several lines of content with each jump.
There isn’t a simple command to tell the browser to “skip less.” Instead, you have to redefine
the window in which the content appears (see Figure 4-53). That would mean applying fixed
positioning to a div that surrounds the rest of the page. For that, youd drop the body
padding and do something like this:

.contain {position: fixed; top: 100px; bottom: 0; width: 100%;}

tmi
wigrng i ey o e
ad s am e

L] ol

[
EarZg K e D T e
L e e ek e 1
e bl ekl e Tl A
AL ISR,] 0 gl KL T e
v

M
ety r

Ll Fmae

el L

o vowr buton Seudiipen

Bl 17

L2=m
e e e S N o LR b]
g

br!lrmn:'rﬂ!l'l-: Py, Thirm Daar-
p

LAY B e P el O

LT
- Tim
] Py amd gy
o SE TR e P
iy arepa

AT s R E e T

Figure 4-52: Pushing the main content down to avoid overlap by the fixed header.

o e |rh'.
el 1 i
ik BT il A ¥ T Tl VR
Dl el il T

il
AL VDR,) PO QR . TS e

et

Fepam sl s —me 1 d s e e
will -

g e ot f_i""-h."\v

e b s

i e e 0 RO W . PR

Lo TR

L T L T e T
ram i g e el e e
o b e [RETE (S gy sk, B
Bl i T T SRS el BT (R
%

i, il gl s
bl o
L] W e

T
ey o st Penand-DiE WEDm
-uu--m-n.u:. i bk B

ot ae e Y] L]

Figure 4-53: Using fixed positioning on hoth the header and the main content.

-} }

Ao g
e g

L
o it e it |

ESSENTIALS

The end result is that the header never overlaps the content, and page up and page down work
as expected. It also means that the scrollbar for the content is potentially within the browser
window. You know, like frames used to do. As with so many layout techniques, there are
benefits and drawbacks to be considered. Choose wisely.

SMASHING CSS

CHAPTER

EFFECTS

IT'S NICETO be able to change colors and fonts, was hard to do anything else. In this chapter you
of course, but everyone craves more—sparkle, see how to round corners, break out of boxes,
pizzazz, a bit of the old razzle-dazzle. It might be fake distortion filters, slide images into tabs,

a bit over-broad to lump all these things together create parallax, and much more.

as “effects,” but the scope here is so broad that it

ESSENTIALS

COMPLEXSPIRAL

This one’s an oldie but a goldie, if I do say so myself (and I do). This is what’s known as the
“complexspiral demo,” because that’s what I called it when I created it back in 2001. Even
though its primary use case has been eclipsed by translucent PNGs and RGBa colors, there’s
still some life left in the old battle-axe.

To make this one work, you need a minimum of two background images (see Figure 5-1).

Figure 5-1: The two images fo be used.

Then you’re going to assign one to the body background, and one to the background of a div
that contains most of the page’s content (see Figure 5-2). Here’s the CSS and skeleton HTML.

body {background: white url(shell.jpg) top left no-repeat fixed;}
div#main {background: white url(shell-rippled.jpg) top left no-repeat fixed;}

<body>
<div id="main">
(...content...)
</div>
</body>

EFFECTS

complexspliral distorted

T Bigh vin @ shiraie) AL P docibbi B0 vl o bl 07 Do aimel wed il pune (05, el Bl L
Tl N (T) K] el L ey CHER 1 e S T riage. Fiiediestoir: i you 100w i
i P, £ @ ey PP B, Foe) | ey avp peaaeslEry
il s iy OB g, (1 @) e g b b WA e waniial s s el gl eg, il
i ol ikl o B 1) e,

L [ull of CE51, snd only $oss browssm which Wy snd completaly
auppod O551 wil riphi. Cempéa scma dura iz | B 2l tin n not
caerecd, o i [y wisl o o other brovwsse dossr | pormesclly BN b b roscsdont Eechman b 1 men R
oy | e T Bhi oy, THst mpiess f impoea s 30 Fel oFY e inssaiad elfes CRRRY DITWsers. imap oF
iy] gt ol el gL,

R YD ML PR S RN Ve I8 DAGE I DN o T Bacsary mentnnad s, Do e
it . T Fodioey: Wit il R Ta S

Trod il sl I3 13 00 i wordl ol poignh virSicsidly. Wil o i el sl i ey Y iy el o4 Bl
e mnd back. Mobra how e vericos srees. wik EppEar iz

imaga m F hroagh Trp char it mios and riofios Fow He compoaking aflec i
corwdpl Taa iraui o Brireie wewkine sl p fe e Sl wey i d il Agi ¢, esvmed e ag aboukd
PR T] Sl

Thes gemorainated SFecs, a0 5l Iang EArce Bemants fecksd wih aekaen! §paed gies o varpng hussy :
== o P P e ML, PRLERF T EER AT AW RS E—

Figure 5-2: The end result.

The key here is the keyword f£ixed. In both cases, it places the background images so that
their top-left corners sit in the top-left corner of the viewport (in this case, the browser
window) and are fixed in place. They cannot move, even when the document scrolls. Thus,
they sit “atop” one another.

To see what this means, consider a simpler example that fixes two differently sized back-
ground images in the top-left corner of the viewport (see also Figure 5-3).

html, body {background: transparent top left no-repeat fixed;}
html {background-image: url (red-box.gif);}

body {background-image: url (green-box.gif);}

ESSENTIALS

k. Motica how the various araas
rough motiled glass, Try changi
B akS your browses winddw
s and consishent,

rabed effect, that of having varo
da using fixed-attechment backg
think it's evan possible with [E's
anough dewvies onae that [enf.

| missed the original complex

Glad you asked. The affect demonsirated he
For exampie, the main-content area (the biu

backgrownd:

ol i k i

Figure 5-3: Showing the two images fixed to the viewport.

Note how the images are in the top left of the window even though the page has been scrolled
down most of the way to the bottom of the content. Again, they’re fixed with respect to the
viewport. They literally can’t move, ever.

Thus the complexspiral demo. It takes two images of equal size, whose contents line up with
each other, and puts them together so that you can see one overlapping the other where its
element exists and coincides with the placement of the image. That’s why you see the rippled
shell in the main div, but the unrippled shell in the body background around it. The div’s
background image isn’t aligned with its top-left corner, but the viewport’s top-left corner. You
only see, as in Figure 5-4, the parts of it that intersect with the div itself.

Now, suppose you wanted to create a third distortion effect for the headings in the content.
All you need is another image—such as Figure 5-5.

EFFECTS

_ll'll-l ril-nn-plr- T i Bty el DT

fimd, sapas fing o do B cxl e pags sercslly S 50 i 500 B e &y 10 TS T a5 e
(] Iﬂlhuﬂmv—mw et it) B st =
o Fernsin

—.., [T o R T
walry L i gr

Tha deroeyinred #¥ed. Fal of hirvirg meros sl e 28 Tes o rooied e of serpng bee

i aniy I 5. [Doy, iy % el B cimens i Pl | dont
mlmm-mmm hmm il R |

iﬂmmmﬂnmm-tm e o BT
Fa T 2 yln oo T delnut pielarad

Figure 5-5: A third image to add.

ESSENTIALS

Now just add it in like so (see also Figure 5-6), and headings get their own effects.

div#main h2 {background: url (shell-traced.jpg) top left no-repeat;}

any alemer othar than the body. That mahes & impoasble o pul
may nat get the effect rigni.

= .."b -\-._\.. .1.: 1} l"j .?h
|'aﬂh.

‘\-__“-_!L-": e .| II'J

Befars you sla, make e wouTe Wiesing (his page in one of e
descriptions 1o folow wor't match what you sea.

‘The first, easlast thing 1o do is somll the page verically. Make surny
page and back, Mobds Fowy h varcus aness willh coke'ed bachgr

imaga as if through maottied glass. Try charging the teat size and
cansistant. Then make your broweer window raaly narmos and sof

rert T BRaMEES Ahd corsiaen].

Tre damaneiraied afec, that of having vanous eaments backsd
iz only po=sinle using fxad-attachment backgmounds in G335 (Cag
ke | don' hink B's even poasitde wilh IE propristery Gliers, b
couki emity ancugh daviss ong thal il

missed the original complex

LR T B -

Glad you agfosd, The affect damanetaled hars is scriesed by usil
For axample, the main-confent area |the biug part nenm) uses the
backgraund:

Figure 5-6: The result of adding the third image.

You aren't limited to non-repeated backgrounds for this effect, either. You could layer repeat-
ing patterns atop one another just as easily, as evident in Figure 5-7.

Well, maybe not those patterns. But you get the idea.

The original complexspiral demo, by the way, used color-shaded versions of the same image to
create an effect of semi-transparent backgrounds. Back in 2001, that was state of the art: Very
few installed browsers supported PNGs with alpha channels, and none of them supported
alpha-channel colors like RGBa. With widespread full PNG support, that form of the demo is
out of date (you can still seeitat http://meyerweb.com/eric/css/edge/complex
spiral/demo.html). The “distorted” version shown in this section, though, is as relevant
as ever. There’s just no other way to create the same effect.

EFFECTS

complexspiral distorted

Tha D Wi BN vilain g I ok Ban 13 ghoa off st o b BoooiTpdahed sdth peae D55 e thareal
Then spelp] oa ooapksoparsd dogant avy DERT in spampiah s mapic. RETETEST R 00K I
ST GRE e i 5 Lrensrpd bas o s wny PHOR being s re g | srmakay mny prpra ey
o in 75 or vy cfwr banguags. Teldons waing siraighs WORS-eeammancad mavkup and siving o
R, Dl Wl of fear (4] images

LriE sy, fod iy Brirede dupgaes) of COET, il S8 ik S vrariin® WA Foly il S gl iy
g G ol G L P Dol il i 0 W Sy, (EEANEY S el o MR B b Ak
el i L i el i Sl =W Bl | devirkt] Corvlly SESSA D schgrzand-arnanmmans flesd b
Ty sl oiher fan e b e T mskes B impomibls o pull of e irerges afleci . Oder brossers my or
map rid et v et g

| Hands-on: Things o Examine

Ealors you risr, maks e you's Sesing Hhin pegs v o of fa (= []
descrizions o olow wa'l meich wAr wou

Tha Pt Spaaay thingi o i ansll the pusgs ssticalls Rinks sas g o0l ol ha wiry 1 1 ol of 1
g W Bk Wy e e e ri i o i B s el b a8 Wil B e prta ed
v i | gt Tt g Tr R drgen B m] ou é0E ro o Pl s cireorrieien 0B restars
cnairend. Tran maks [Drsws siadow meally reee and sl sarpamally Agmn, serahing shoukd
PRTLER REATTEE 51 DS R

Tha dereonerrsd aleci. Tl of heseg veriows slemeTa: zeckes) with imeslscsni rippisd pleas of wrying bsas,
| inoaly o In CEX | Clury, mwybes ocould beidoas in Fissk; | dee’

i Sl A Sy _ o

Figure 5-7: Using aligned patterns.

CSS POP-UPS

Here’s an effect that can go all the way to driving pop-up menus, if you get fancy enough (see
the next section for details). At the simpler end, you can use this effect to make information
appear on mouseover and go away on mouseout without ever having to write a lick of
JavaScript.

Suppose you want a little bit of explanatory text to show up for each link in your sidebar, but
you don’t want to entrust it to tooltips, which are inconsistently presented across browsers and
anyway can't (yet) be styled. Youd set up the markup something like this:

<ul class="toc">

Chapter 1 <i>In which a dragon is seen</i></1li>

Chapter 2 <i>In which a knight is summoned</i></1li>

Chapter 3 <i>In which a princess is disappointed</i></
1i>

Wait a minute, 1? Isn’t that presentational? Well, yes, and so is what you’re doing. You could
just as easily use span, but i is a shorter element name and besides, that way if the CSS
somehow fails to be applied, the text will very likely be italicized. That’s an acceptable fallback,
in my opinion.

ESSENTIALS

So, pop-ups. All you need to do is first suppress the appearance of the i elements, and then
reveal each one as its parent link is hovered (see Figure 5-8).

ul.toc 1li {position: relative;}

ul.toc 1i a i {display: none;}

ul.toc 1i a:hover 1 {display: block; width: 6em;
position: absolute; top: 0; left: 100%;

margin: -lem 0 0 lem; padding: lem;

background: #CDE; border: 1lpx solid gray;}

Chapter 1
Chaptar 3
Chapter 3 T aadedehi

- PrECEES 15
LChepter 4 disupgoinnmf

Chaplor 5
Lhspier b
Chapter 7

Figure 5-8: Pop-up text next to links.

Ta-da! Little pop-ups. They’re positioned with respect to their containing 11 elements
because of the position: relative in the first line of CSS shown. If you wanted to place
them with respect to the whole set of links, youd just shift the relative positioning to the ul
itself and adjust placement of the pop-ups accordingly. For example, you could put them
underneath the last of the links in the list, as in Figure 5-9.

ul.toc {position: relative;}

ul.toc 1i a 1 {display: none;}

ul.toc 1i a:hover i {display: block; width: 6em;
position: absolute; top: 100%; right: O0;

margin: lem 0 0; padding: lem;

background: #CDE; border: lpx solid gray;}

EFFECTS

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter &
Chapter 7

In which a
princess is
disappointed

Figure 5-9: Pop-up text below links.

This technique can be ramped all the way up to multiple levels of nested menus—which you
do in the next section.

CSS MENUS

You can use the principles of CSS pop-ups to make multiple nested pop-up menus, if you like.
(Not that I do. I generally can’t stand pop-up menus. But then I also can't stand chocolate,
coffee, carbonation, or almost any form of alcohol, so what do I know?) One of the great
values of this particular technique is that it shows how hover effects aren’t restricted to
hyperlinks.

Here’s the basic setup (with very simplified URLs for clarity’s sake; see also Figure 5-10):

<ul class="menu">

<1li class="sub">Section 1

Subsection 1</1i>

Subsection 2</1li>

Subsection 3

ESSENTIALS

</1i>

<li class="sub">Section 2

Subsection 1</1li>
Subsection 2</1li>

</1i>
(..and so on..)

Saclion 1

ESubsootion 2
Eubsootion 3
Saction 2
Subaaclion 1
Bubsaction 2
Saclion 1
Saclion 4
ESubsedtion 1
Eubseation 2
Eubseation 3
Saction &

Figure 5-10: The unhidden submenus.
So far, all normal. Now hide the submenus.
li.sub ul {display: none;}

That’s it. Of course, you need to bring the submenus back. The simplest (and least visually
satisfying) way to do that is to say:

li.sub:hover > ul {display: block;}
That will just cause the submenus to pop back into place, pushing everything that comes after
them downward. Add in some positioning, though, and you get them popping up right next

to their parents (as in Figure 5-11) and not altering the rest of the documents layout.

li.sub {position: relative;}

li.sub:hover > ul {display: block; position: absolute; top: 0; left: 100%;

margin: 0; background: white;}

EFFECTS

Saction 1
Saction 2 Subsection 1
Saction 3 Subsaction 2
Saclion 4
Saclion b

Figure 5-11: The pop-up menu.

This can go to any level of nested menu, in fact. You can have seventeen-level-deep nested
menus if you so desire. You should quite probably be ashamed of that desire, but you can
fulfill it regardless.

In terms of placement of menus, you're limited only by the two-dimensional plane of the page
and your own imagination. You can put the top-level menu entries across the top of the page
and the first-level submenus below them, as in Figure 5-12, with second-and-later menus
popping out to the side. It’s just a matter of writing the necessary CSS. It would go something
like this:

ul.menu > 1li {display: inline; position: relative;}

ul.menu ul {display: none;}

ul.menu li.sub:hover > ul {display: block; position: absolute; white-space:
nowrap; }

ul.menu > li.sub:hover > ul {top: 100%; left: 0;}

ul.menu ul li.sub:hover > ul {top: 0; left: 100%;}

That way, only the top-level menus drop down. The rest would go to the right of their parents.

Beation 1 Bsotion 2 Soclion 3 Bodton 4 Eeotion 5

Subsactnn 1
bz tan 2

Sulmecion 3

Figure 5-12: Dropdown menus.

BOXPUNCHING

Sometimes, you want things to be a little bit irregular. That’s easy to do with the boxpunch
technique, which is a way of visually removing parts of a box. It works only on flat color or
fixed-image backgrounds, but that leaves a lot of room.

ESSENTIALS

The simplest form of boxpunching is to put one box in the corner of another (see Figure
5-13), and make sure its background matches the surrounding content instead of its parents.

body {background: #COFFEE;}

div.main {background: #BAD;}

.punch {background: #COFFEE; font-size: 500%;

float: left; margin: 0 O.lem O.lem 0; padding: 0.lem;}

<div class="main">

<hl class="punch">Wow.</hl>
(..content..)

</div>

Kar andl T e jus resumied Troom
[] Although we'd been seted are.
wirh @ Link: help fromm the g,
[elber i Bl of dedsae we desidiad o e
themaclves amazing. bet fhey »oxs.
The best part of this Wes HELWE e
i o Ak, oo weoniikd Sk g

1. Tiwn o oo of e restme's signinn: dh
2 Japaness oveiers on the half-shell with foer diffs
3. Soored scnliop

4 Sehiai saled of juek

5. hlungos innrbed with Hiey s b

Figure 5-13: A boxpunched greefing.

If you want to make things a little more complex, you can set a background for the punch and
use a nice thick border to separate it from the rest of the box, as in Figure 5-14.

body {background: #COFFEE;}

div.main {background: #BAD;}

.punch {background: #987; font-size: 500%;

float: left; margin: 0 O.lem O.lem 0; padding: 0.lem;
border: 0.2em solid #COFFEE; border-width: 0 0.2em 0.2em 0;}

That’s all fine so long as your main box doesn’t have any borders. The minute you add a
border, as in Figure 5-15, it goes around the punching element, which no longer looks so

punchy.

body {background: #COFFEE;}

div.main {background: #BAD; border: 3px solid black;}
.punch {background: #COFFEE; font-size: 500%;
float: left; margin: 0 O.lem O.lem O; padding: 0.lem;}

EFFECTS

K endl T Tewve Juss reromad from
Ahboigh we'd been soaed o 2
Wil Lk beks Trom e hod e,
e & B of e e detided w
hemmselves asazieg, bul they wize
e, The bt prt of dais was thei
ched by the same of Alex, 0 wa
ol vorm hvv?

1. Tor tartare (nac of ihe eyiasremi's sigraiws
2. Jepancss nyvicrs m the baliahell with four
3. Samed

4. Saihini daled of stiiped jack

5. Maigs webed with Gy wakehi bigaies

Figure 5-14: Using borders to punch out the greeting.

[Entand] heres jux coremed from.
Althopgh we'd boen weoed @i 3
'Ilmmllmhlﬂpﬂunﬁnluln,
ey a Bin of defile e decaded &
tbemaabves amnamn g, bui they wees
reacans, The Best par of fhis wis el
v ke name of Adox. =0 wo cosld a=k questions amd

1. Tam mare (one of GiE TESECALYS SiguanTy
% Jepereus oyners on the Balf-shell with four

3. Sewred scsllin
Figure 5-15: What happens when the container gets a border.

That’s okay, you can work around this. All it takes is a couple of borders on the punch, and a
little negative margining (see also Figure 5-16):

.punch {background: #COFFEE; font-size: 500%;
float: left; margin: -3px 0.lem 0.lem -3px; padding: 0.lem;
border: 3px solid black; border-width: 0 3px 3px 0;}

Figure 5-16: Bringing the boxpunch out of and integrating it with the border.

ESSENTIALS

Thanks to the negative top and left margins, the punching box is actually pulled outward so
that it overlaps the border of the main div. Setting right and bottom borders that match the
border on the main div creates the illusion of an irregularly shaped box. And so the box is
once again punched!

Of course, you can use this in contexts other than a corner. Here’s the CSS for a punched
treatment for a blockquote (also represented in Figure 5-17):

blockquote {font-size: 150%; font-weight: bold; background: #COFFEE;
float: right; width: 40%;

padding: 0.25em 5%; margin-right: -3px;

border: 3px solid black; border-right: 0;}

[] oz and 15are jom renrad frew Moo, e e bl eae of G2 maoa
Al a'd H“liﬂnﬂﬁdﬂﬂﬂllﬂmﬂﬂ““ﬂi ﬂ.bl'.ﬁ:-
i || witn Enke beip o

aftar & bir of dobms we doridal o ——-&ﬂ--ﬂﬂﬂdﬂ —-iﬁ.lﬂh.'_—h'

Uit P o i g Bl Ty s o 0t g il g [Py ety e vl L W oo, o ™ il i
pia T Beti T of O 1 i thald o e el T £ ot ot e 0 il R i 1l & it bl
fr e mex of Ao @ e ok sk geostion snd pukbe rmepess whilc b propesed wohmy A

1, Tor® bisard b 6 e Stiliard iy Mgl e bt
1. Jepsnesr wysiees an the hali-shell with four dffomi sy

0. Mogii v i b Mo Sy Wi, Wil (e g Bratael e (lang N Figimiis 1 el bt |, oo,
Aebr. wed Pl fin
§. Chaonlmr romple dovser.

Tl | 0 e o o B bl B e g el T e i i Pl ol vty g e, T O rail g i o e,
sraped -t recnd of Tl shel. then Wlired B im bl and best ever i closely Enpect e e habvo. W coaldn | e oo whast bo
SRt EFIL RS S R i R A Ader s fw choms meedl i, “Loak w s
s, Sow wward ha adgesT

‘Ieokred b v tiphe . B polge e peckieting and meving.

il altve.” b il ey, e chen i ol i e Eat “Harw do you got o meeal propared
s apebrl i by Morimito himself?™

rhough | b scallop ocke eur iz el
[I sl

g] i ey - e g . -

als sk L T P T T WS | P i ___ia}

Eka

Figure 5-17: A boxpunched blockquote.

PRE-CSS 3 ROUNDED CORNERS

Using a combination of boxpunching and CSS sprites (discussed later in this chapter), you
can create rounded corners with one image and four extra elements. The advantage is that
these are pretty cross-browser compatible, with only a few quirks in older browsers like IE6
and Safari 2. The downside is the need for the extra elements and image.

EFFECTS

Figure 5-18 shows the end result.

The first step is to make sure the element to be rounded is marked as such, and that it has the
pieces needed to create the corners.

<div class="rounded">
(..content..)

<b class="c tl">
<b class="c tr">
<b class="c bl">
<b class="c br">
</div>

Every truth has four corners: as a
teacher I give vou one corner, and it is
for you to find the other three.
—Confucius

Figure 5-18: The target result.

Yes, that’s right: b elements. The example is a presentational element because the whole point
of those elements is to create a presentational effect. You could as easily use div or span
elements in their place, but there’s really not much point. b is shorter and it serves as a
structural flag: “This is only here to make things prettier” (Of course, in an ideal world like
that described in the next section, no extra elements would be needed at all.)

The class name rounded is applied to any element that needs to have its corners rounded;
it will be used to apply a necessary bit of CSS. The b elements have two c1ass names each.
They all share ¢, which is short for “corner” After that comes the two-letter designation of
which corner the element will be used to create: t1 for top left, t r for top right, b1 for
bottom left, and so on.

Now for the CSS. First, set things up so you can see what youre doing:
b.c {background: red;} /* temporary */
That will outline the corner-holders nicely. Now put them into place (see Figure 5-19):

b.c {background: red;} /* temporary */

.rounded {position: relative; border: 2px solid black; background: white;}
b.c {position: absolute; height: 20px; width: 20px;}

b.tl {top: 0; left: 0;}

b.tr {top: 0; right: 0;}

b.bl {bottom: 0; left: 0;}

b.br {bottom: 0; right: 0;}

ESSENTIALS

Every truth has four corners: as a
teacher I give you one corner, and it is
for you to find the other three.
—Confucius

Figure 5-19: Placing b elements info the corners.

As you can see, each one is sitting in the corner where it belongs,
creating a little 20-by-20 box. That already points to a problem:
They're sitting inside their respective corners. The red background

should overlap the borders of the div, as in Figure 5-20. So: EVEIT t

b.tl {top: 0; left: 0; margin: -2px 0 0 -2px;} tﬂﬂﬂher

b.tr {top: 0; right: 0; margin: -2px -2px 0 0;}

b.bl {bottom: 0; left: 0; margin: 0 0 -2px -2px;} fﬂr vﬂu

b.br {bottom: 0; right: 0; margin: 0 -2px -2px 0;} Figure 5-20:Thenew
placement of the corners

This will pull each b outward just enough to overlap the div’s (close-up).

border. Of course, if the div had thicker borders, youd pull the b
elements outward by the matching amount.

All you need now is an image to fill in for the corners. And I do mean image, singular: only
one. It looks like Figure 5-21.

Figure 5-21: The entire image used to create the corners.

EFFECTS

I'll save you the trouble of counting: The image is 40 pixels by 40 pixels. It's actually PNG with
transparency of a punchout of a circle, with the punchout bordered, and the outside of that set
to the same color as the overall page background. Call it corners. png for clarity’s sake.

So now alter the CSS to say:

b.c {position: absolute; height: 20px; width: 20px;

background: url (corners.png) no-repeat;}

That’s all you're going to say here. The default values of t ransparent for the background
color, scroll for the background attachment, and 0 0 for the position are implicitly
assigned.

Now is also a good time to delete the red-background rule, although that isn’t strictly neces-
sary, since this rule’s implicit t ransparent will override it.

Now, change the b elements to align the image as needed (see Figure 5-22):

b.tl {top: 0; left: 0; margin: -2px 0 0 -2px;
background-position: top left;}

b.tr {top: 0; right: 0; margin: -2px -2px 0 0;
background-position: top right;}

b.bl {bottom: 0; left: 0; margin: 0 0 -2px -2px;
background-position: bottom left;}

b.br {bottom: 0; right: 0; margin: 0 -2px -2px 0;
background-position: bottom right;}

Every truth has four corners: as a
teacher I give you one corner, and it is
for you to find the other three.
—Confucius

Figure 5-22: The image filled into the elements creates the corners.

And just like that, rounded corners.

The great thing about this technique is that you aren’t limited to outward-curving borders.
You could just as easily create scalloped corners, or diagonally cut corners, or whatever comes
to mind (see Figure 5-23 for some examples). All you have to do is swap out the image you
use to create the corners, and possibly also adjust the size of the b elements.

ESSENTIALS

Every truth has four corners: as a
teacher [give you one corner, and it
is for you to find the other three.
—Confucius

Every truth has four corners: as a
teacher [give you one corner, and it
is for you to find the other three.
—Confucius

Figure 5-23: Some alternative corners.

Furthermore, you aren’t forced to always have four corners. If you only need to round two
corners, then just include the related b elements. For example, for a bottom-of-page footer,
you might just want to round the top two corners. So:

<div class="rounded footer">
(..content..)

<b class="c tl">

<b class="c tr">

</div>

No problem!

You may have noticed that I put the b elements after the content in the element being
rounded. Since they’re placed using absolute positioning, it doesn’t really matter where they’re
placed within the rounded element. They could be first, last, or all mixed up at random. So
put them where they make the most sense to you.

One disadvantage of this approach is that if you ever change the background color of the page,
the corner image has to be recreated to match it; furthermore, if you have different page
background colors throughout the site, you need a separate corner image for each possible
color and the CSS to match it. A possibly greater disadvantage is that if the background
surrounding your rounded-corner element isn’t a single color, such as a gradient or a tiled
pattern, you'll get mismatches between the corners and the surrounding page. The best you
can do with this technique is to minimize those occurrences.

EFFECTS

Also, on a history-compatibility note, this doesn’t work as intended in IE6 unless you
assign an explicit width to the div. You can use pixels, ems, percentages, or whatever,
but if you stick with the default value of auto, the bottom corners won't go where
they’re supposed to go. It’s a small annoyance, but one worth knowing about. IE6 also
didn’t support PNG transparencies, so you’ll also have to hack in a substitute GIF or else
just hide this stuft from IE6 altogether. The IE6 users won't suffer much from not having
rounded corners on the page anyway.

CSS 3 ROUNDED CORNERS

These really couldn’t be any easier, at least once you grasp how the curves are sized. The
advantage is that they’re purely CSS-driven, requiring no extra markup, and they don’t
require a flat-color background surrounding the rounded element. The downside is their
somewhat limited support—as of this writing, no version of Internet Explorer supports
them, although support has been promised for IE9—and the need for vendor prefixes.

First, refer to Figure 5-22, found in the preceding section. To create that same basic
effect using CSS 3, you would really need just this:

.rounded {background: #FFF; border: 2px solid #000;

border-radius: 20px;}

That’s it! Except that won’t work in almost any browser, because border-radius isn't
finalized yet. To make it work in supporting browsers, which means Safari/Chrome and
Firefox , and so on, you have to add a vendor prefix—twice, in fact (see also Figure
5-24). And then leave in the unprefixed version so that it will be there when browsers
support it.

.rounded {background: #FFF; border: 2px solid #000;
-moz-border-radius: 20px;

-webkit-border-radius: 20px;

border-radius: 20px;}

Every truth has four corners: as a
teacher I give you one corner, and it
is for you to find the other three.
—Confucius

e e

Figure 5-24: Very easily rounded corners.

ESSENTIALS

When IE supports rounded corners, will you also have to declare -ms-border-radius?
Possibly. It depends on when border-radius is declared stable enough to remove vendor
prefixes and when IE adds its support.

The advantage with this approach is that you don’t have to muck around with the extra
HTML, CSS, and image that the preceding technique required. You are also really rounding
the corners of the element, so the background of the page just shows past the rounded
corners, whether it’s a flat color, a gradient, or full-on plaid.

You can alter the shape of the curves by using two values (see Figure 5-25). For example:
.rounded { background: #FFF; border: 2px solid #000;

-moz-border-radius: 20px / 60px;

border-radius: 20px / 60px;}

Every truth has four corners: as a

teacher I give you one corner, and it
is for you to find the other three.

—Confucius

Figure 5-25: Oval-rounded corners.

Note how the corners are now not perfect circular arcs, but are instead elliptical in nature.
That’s the effect of having two slash-separated values. The slash is important: If you leave it
out, you'll be setting corners to differing sizes, but each one will use a circular arc. (I dropped
the —~webkit- line because, as of this writing, WebKit browsers didn’t support that value
pattern.)

Suppose you did just remove the slashes.
.rounded { background: #FFF; border: 2px solid #000;

-moz-border-radius: 20px 60px;

border-radius: 20px 60px;}

The result is shown in Figure 5-26.

EFFECTS

Every truth has four corners: as a
teacher I give you one corner, and it

is for you to find the other three.
—Confucius

Figure 5-26: Corners of unequal radius.

There are also properties that let you set each corner individually. The unprefixed versions are
border-top-right-radius, border-bottom-right-radius,border-bottom-
left-radius,and border-top-left-radius. Each one takes either one or two values:
One value gets you a circular arc, and two values gets you an elliptical. The slash is only used
onborder-radius, and is necessary there to distinguish one result (circular corners of
differing sizes) from another (same-size corners that are elliptical).

In fact, the individual-corner properties come in handy if you want to support WebKit. That’s
because while it doesn’t support value patterns like 20px 60px, it does support individual
corner properties. So in order to get Figure 5-26 in both Gecko- and WebKit-based browsers,
youd write:

.rounded { background: #FFF; border: 2px solid #000;
-webkit-border-radius: 20px;

-webkit-border-top-right-radius: 60px;
-webkit-border-bottom-left-radius: 60px;
-moz-border-radius: 20px 60px;

border-radius: 20px 60px;}

Ugly, but effective.

CSS SPRITES

A technique first popularized by Dave Shea (of CSS Zen Garden fame) way back in 2004, CSS
sprites are a way of having really fast hover effects. They’ve since become a way of reducing
server load by bundling decorative images together into a single download.

The basic example of a CSS sprite is one that contains two states for an icon—say, one for
normal display next to a link, and a “lit up” version for when the link is hovered. The image
looks like Figure 5-27.

ESSENTIALS

Figure 5-27: The sprifes.

There’s a reason for all that blank space between the two, as you'll see in a moment. With a
little CSS, you get the icons showing up next to links in a navbar.

.navbar 1li a {background: url (sprites.png) 5px 50% no-repeat;

padding-left: 30px;}

That places them right in the vertical midpoint of the link, all the way to the left edge. Now to
make the icon “light up” when the link is hovered (see Figure 5-28), change the position of the
background image.

.navbar 1li a:hover {background-position: -395px 50%;}

& Archives

O C88

& Toolbox

£ Writing

€ Speaking

& Leftovers

€ About this site

Figure 5-28: lcons, both hovered and not.

The negative horizontal offset is what does it: It pulls the background image 395 pixels to the
left. That’s 400 pixels of blank space in sprites.png minus the 5px of offset in the original
rule. Since the “lit up” variant of the icon is 400 pixels from the left edge of the background
image, it lands right in the same place.

EFFECTS

This is extendable to any number of link states, right up to all of them. You could have

differing icons for unvisited, visited, hovered, focused, and active links (see Figure 5-29):
.navbar 1li a:link {background-position: 5px 50%;}
.navbar 1li a:visited {background-position: -395px 50%;}
.navbar 1li a:hover {background-position: -795px 50%;}

.navbar 1li a:focus {background-position: -1195px 50%;}

[VR R V)

.navbar 1li a:active {background-position: -1595px 50%;}

Archives
< S5
$ Toolbhox
: Writing
© Speaking
> Leftovers
< About this site

Figure 5-29: Sprited icons for various link states.

For that matter, you could set up an image that has stripes of icons and their variants for
differing types of links. You just need to set up each icon set in its own stripe with enough
vertical separation so that they don’t show up in each others’ links.

In that case, you then write vertical offsets in pixels for each type. Here’s a snippet of what I
mean.

.navbar 1i .internal:1link {background-position: 0 0;}
.navbar 1li a.external:link {background-position: 50px 0;}

.navbar 1li a.internal:visited {background-position: 0 -400px;}

AU TR R

.navbar 1li a.external:visited{background-position: 50px -400px;}

You might think that this makes the image way bigger than two individual images, but it
actually doesn't. Because of the way the GIF algorithm works, the file is basically the same size
whether the variant icons are separated by 4 pixels or 4,000 pixels, assuming all those inter-
vening pixels are the same (lack of) color, as they are here. Once you factor in the extra size of
http headers and the load on the server to handle two connections, one for each image, it can
actually be more efficient to use sprites.

ESSENTIALS

This insight is key to understanding why some sites actually take all of the icons, rounded
corners, and other bits of image-based decoration and cram them all into a single large image.
The icons are then displayed as needed by simple use of background-position.

While this sort of thing might be overkill for your site, give your design another look. You
might find more use for sprites than it would first seem.

SLIDING DOORS

A technique first popularized by Doug Bowman (of the all-CSS Wired redesign fame) way
back in 2003, “Sliding Doors” is a way of creating really fancy tabs out of your text navigation
links. The general approach is adaptable to effects other than tabs, however.

Figure 5-30 depicts what you want to see in the end.

Figure 5-30: The final result.

Yes, you could do that with straight images, but then changing the text on the tabs becomes a
real pain, especially if there are multiple tab states. It’s a lot easier to have the markup look like
this:

<ul class="nav">

Home</1i>
Products</1i>
Buy!</1i>

Contact</1li>

Then, if “Buy!” becomes “Checkout” or “Store,” you just have to update the text in the markup.

Okay, that’s nice and all, but how about the tabs? Well, first you need a big image of a tab.
Really. A big image. Big like Figure 5-31.

L Tl Bl e, 0

Figure 5-31: The large tab image.

EFFECTS

Then you cut it into two pieces: a narrow strip from the left, and everything else, as in Figure
5-32.

=
- S — e L

Figure 5-32: The two “doors” of each tab.

Believe it or not, that’s all you need image-wise. Now you need the proper CSS (see Figure
5-33 for the finished product):

ul.nav, ul.nav 1li {float: left; margin: 0; padding: 0; list-style: none;}
ul.nav {width: 100%;}

ul.nav 1li {background: url (tab-right.png) no-repeat 100% 0;}

ul.nav 1i a {background: url (tab-left.png) no-repeat;

display: block; padding: 10px 25px 5px;

font: bold lem sans-serif; text-decoration: none; color: #000;}

Mome || Prodich | Bt | Comasl)

Figure 5-33: The end result.

And that’s done it—you have tabs!

The reason this works is easy to see if you temporarily remove the background image from the
links. Once they’re dropped, you can see the great big right-side-of-tab image filling out the
entire list item. Of course the link sits inside that, so when you add the left-side-of-tab stripe
to the left side of the link, it sits overtop the left side of the list item’s background.

Now, suppose you want the tabs to light up when they’re hovered. There are two ways to do it,
both making use of arbitrary-element hovering. The simplest is to swap out the images.

ul.nav li:hover {background-image: url (tab-right-hover.png);}

ul.nav li:hover a {background-image: url (tab-left-hover.png); color: #FFF;}

The drawback there is that the first time a tab is hovered after the page is loaded, there will be a
slight delay while the images are fetched from the server. To avoid that, merge the CSS sprites
technique (see preceding section) with this one. Now the tab slices look like Figure 5-34.

ESSENTIALS

Lk igaile-1 L iy - gl g i IR RERIE)

Figure 5-34: The two halves of the sprited tabs.
... and the hover-effect CSS looks like this:

ul.nav li:hover {background-position: 100% 400px;}

ul.nav li:hover a {background-image: 0 400px;}

It’s also quite possible to turn this whole idea on its side, and have flexible tabs that jut out
along the side of a design. In that case, youd slice a big tab image horizontally instead of
vertically, as in Figure 5-35.

ab-tng pra @ DO BCALE

an ™ ["
- beern pag B] DO ACELTE
& u .l-'r..l- -|:-|l]

Figure 5-35: The two halves of a set of horizontal tabs.

EFFECTS

Then the same markup as before gets styled like so:

ul.nav, ul.nav 1li {margin: 0; padding: 0; list-style: none;}
ul.nav 1i {background: url (tab-bottom.png) no-repeat 0 100%;}
ul.nav 1li a {background: url (tab-top.png) no-repeat 0 0;
display: block; padding: 5px 15px;

font: bold lem sans-serif; text-decoration: none; color: #000;

display: block;}

It will result in the screen shown in Figure 5-36.

| Home
e ———

|“‘-ﬂﬁ.ﬂl
|HI-M
|=nnh=I

Figure 5-36: The horizontally oriented result.

For hover effects, the same principles apply: Just use CSS sprites to make them happen.

Looking to the future, some day support for multiple backgrounds will be widespread enough
to combine all the tab pieces on a single element.

CLIPPED SLIDING DOORS

One of the drawbacks of the original Sliding Doors technique is that it forces you to include the
“page background” as part of the tabs. That’s okay as long as the background around the tabs is
a single solid color that never changes. But what if you want to put the tabs into different
contexts with changing backgrounds, or even over something like a patterned background?

To accomplish this, you'll need the same basic tab slices as before, only with transparent bits
that are meant to allow the surrounding area to “shine through?” The images are displayed in
Figure 5-37; for simplicity’s sake, just stick to straight tabs and leave off the hover effects.

ESSENTIALS

— = E

Figure 5-37: The two halves of the tab.

Whether you use GIF89a or alpha-channel PNG for this is up to you and your site’s audience.
I used PNGs, since they create smoother transparency edges.

Now, if you just drop those into place with the same markup and CSS from the preceding
technique, youd end up with the screen shown in Figure 5-38.

Moms | Producls | Bupl | Comiact)

Figure 5-38: The result of dropping the images onto the preceding technique’s markup.

Well, you're halfway there. Things are fine on the right side of each tab, but on the left, the
background image of the 11 element is visible through the transparent parts of the a ele-
ment’s background, including the top-left corner!

Working around this requires a bit of trickery. First, pull the a element leftward out of the 11,
which you can do a couple of ways. Perhaps the simplest is to relatively position them to the
left (see Figure 5-39), and make sure there’s enough space for them to land.

ul.nav, ul.nav 1i {float: left; margin: 0; padding: 0; list-style: none;}
ul.nav {width: 100%;}

ul.nav 1i {background: url (tab-clip-right.gif) no-repeat 100% O;
margin-right: 25px;}

ul.nav 1li a {background: url (tab-clip-left.gif) no-repeat;

display: block; padding: 10px 0 5px 25px;

position: relative; left: -25px;}

Heme | Products | Bupl | Comtact |

Figure 5-39: Making the dipped tabs line up.

See what I did there? Each a element is moved leftward by 15 pixels. That alone isn’t enough,
because it would mean that the second through last links would overlap the list item that
came before them. Giving those list items 1 5px of right margin opens up just enough space
for the a elements to land with no overlap or gaps.

EFFECTS

There is a small problem, however; the right side of each tab will become unclickable because
the link has moved to the left (look closely at Figure 5-39 to see the plain arrow over the last
tab). So a better way to do this is a little margin trickery. In that case, alter the last rule to read:

ul.nav 1i a {background: url (tab-clip-left.gif) no-repeat;

display: block; padding: 10px 25px 5px; margin-left: -25px;}

In this setup, the left edge of each hyperlink is pulled 15 pixels to the left of the left edge of the
list item. This causes the link to cover up the right margin extending from the preceding list
item, just as with the relative-positioning approach. This time, though, the linK’s right edge is
still lined up with the right edge of the list item, instead of being shifted away from it. So the
tabs work as intended, as the magic pointing hand shows in Figure 5-40, and the clipped
corners let the page background shine through!

Home | Products | Buyl | Contact |

Figure 5-40: Fully functioning clipped tabs.

CSS PARALLAX

CSS parallax is a subtle technique that’s fun to employ as an Easter Egg on your site, and also
sheds a little light on how simple, straightforward percentage-based background image
positioning can yield unexpected results. (It's also something that’s very, very difficult to
illustrate in print, so you’ll definitely want to try this one out for yourself.)

To start, consider how percentage-based positioning is done. Say you assign a background
image a position of 50% 50%. That will cause its center to be aligned with the center of the
background area. Similarly, if you assign 100% 100%, then its bottom-right corner will be
aligned with the bottom-right corner of the background area. See Figure 5-41 for an example
of two different image placements.

What that means is that percentage values for background image positioning are actually used
twice. The first time is to find the defined point in the background area. The second is to find
the defined point in the image itself. The two points are then aligned.

So what happens when the background area’s size dynamically changes? Take this rule:

body {background: url(ice-1l.png) 75% 0 no-repeat; width: 100%;

padding: 0; margin: 0;}

ESSENTIALS

Iiﬂ -“ P

Figure 5-41: Diagrams of and .

Further assume that i ce-1.png is 400 pixels wide. In a browser window that’s exactly 800
pixels wide, the 300th pixel from the left edge of ice-1.png will be aligned with the 600th
pixel from the left edge of the body, as illustrated in Figure 5-42.

H

Figure 5-42: The icicles in place.

EFFECTS

Now imagine what happens to the icicles as the browser window (and therefore the body) is
made narrower. The icicles will shift leftward as compared to the page’s layout, of course, as
the 75% point in the body moves leftward. If the window and body are then made wider, the
icicles will shift rightward.

Now consider what will happen if the horizontal placement of the image is changed to 50%.
That will center it in the body, and its rate of movement will be lower than when it was at
75%. Take it all the way down to 0%, placing it against the left edge of the body, and it won’t
move at all (when compared to the overall page layout) as the body resizes.

Now suppose you have two backgrounds, one left-aligned and the other at 75%, and both are
horizontally repeated (see Figure 5-43). For example:

body {background: url (ice-l.png) 0 0 repeat-x; width: 100%;
padding: 0; margin: 0;}
div#main {background: url (ice-2.png) 75% 0 repeat-x; width: 100%;}

S i

Figure 5-43: Two sefs of icicles.

A lovely layered look. More to the point, though, as the window is made narrower or wider,
the icicles on div#main will slide past the ones on the body. That in itself is potentially
interesting, but take it one step further and shift the body’s background so it isn't left-aligned.

body {background: url (ice-1l.png) 25% 0 repeat-x; width: 100%;
padding: 0; margin: 0;}

div#main {background: url (ice-2.png) 75% 0 repeat-x; width: 100%;}

ESSENTIALS

Now as the browser window changes size, both sets of icicles will shift, but at different rates of
speed. In fact, the body icicles will move at one-quarter the speed of the size change, and the
divi#main icicles will move at three-quarters that speed. Thus, if you resize the window at a
speed of 12 pixels per second, the body background will shift at 3 pixels per second, and the
div#main background at 9 pixels per second.

Therefore, if you want the background to move faster than the speed of the resize, you would
give the horizontal offset a percentage value of greater than 100%. Shifting the image at twice
the speed of the resize would call for a background-position valueof 200% 0, assuming
you wanted the image along the top of the body. Along the bottom, the value would be 200%
100%, and centered vertically in the body it would be 200% 50%.

Now for the bit that can give you a real parallax feeling: You can make the images move
opposite to the direction of the window resize by using negative percentages.

Thus, instead of having the background shift right as the window gets wider and left as it gets
narrower, you can have the opposite effect. For example:

body {background: url(ice-1l.png) -75% 0 repeat-x; width: 100%;
padding: 0; margin: 0;}
div#main {background: url(ice-2.png) 75% 0 repeat-x; width: 100%;}

With this setup, the icicles will seem to move away from the window center as the window
gets wider, creating sort of a “zoom in” illusion; as the window is narrowed, the icicles will
move toward the center, appearing to “zoom out.”

RAGGED FLOATS

One of the things on many a designer’s wish list is the capability to flow text along irregular
shapes instead of the boring boxes they deal with every day. Well, it’s not only possible, but it’s
also pretty easy and reliable, albeit at a markup cost.

Say you want to flow your text along a gently sloping curve, as in Figure 5-44.

EFFECTS

Ah, the appeal of curves and other fiowing shapes. They
comes o text fioes an the Web, everything's been o the
stuff. Until now, amywey. Yes, the text is flowing alang, with
Wih dexign was all about siroight lines and boxes.

Gently Floating...

All I didl i make this happen was creaie a 100 100 image of a oy
{depending on the strahim) and only as wide as necessary o show

Siack all five srans vopedses (withoun ke borders, of course) ard
stack wp., and text can fow around them, aed their decreasing ws
the text away from the curve; the greater the mangin valoe, the

Taking it Further

0f course, the origmal image could have been sliced wp inmo five
downlpad tha many images. On the other hand , you could try 2y

Figure 5-44: The infended result of flowing text along a curve.

Seems impossible at first glance, right? It’s actually really simple. All you have to do is slice
that curve up into a stack, and then float all the images. Create 20-pixel-tall slices of the curve
and make sure they have transparent areas beyond the curve (see Figure 5-45).

Figure 5-45: The curve with slicing guides.

ESSENTIALS

Note how each slice is just wide enough to contain the visible portion of the curve, and no
more. Now toss those slices into the markup right before the point where you want the curve
to start.

<div class="curves">

</div>

Of course, more slices means more img elements, but you get the idea. The CSS is then really,
really simple:

.curves img {float: left; clear: left; margin-right: lem;}
The margin keeps the text from getting too close to the slices, and can be adjusted as needed.
If you add a temporary border to the images, as shown at the top left of Figure 5-46, you can

see what’s happening in the browser.

.curves img {border: lpx solid red;} /* temporary */

| A, the appeal of curves and other flowing shapes, They
gomee b texf flowes on the Wb, everpthing's bees on the sird
s, Undil mow, amywey, Yes, the text is fowing along with
thought Weh design wes all abom straight lines and boxes.

Gently Floating...

All Idid 10 make this happen was creene 2 100x 100 image of a :ﬂ
{depending on the stralom} and cnly as wide 25 necessery o sha

Seack all five steas topetser (without the bordees, of course) and o

staok up, and 1ext can Mow around them, and their decreasing wid
the: [exr away from the corve; de greaiee the marps value, the

Taking it Further

Of cougse, the origing] Engps could bave been slioad up imo five
& ir 1 . 1 4

Figure 5-46: The curve slices with borders turned on for visualization.

EFFECTS

This technique isn’t limited to simple curves, either. Any irregular shape (such as the curve
illustrated in Figure 5-47) can have text flowing over its peaks and into its valleys (see Figure
5-48) by taking the same approach.

[t i
T —

Figure 5-47: The more complex curve with slicing guides.

The CSS used for this version of the technique is exactly the same as with the curve. Only the
slices have changed.

One note of caution: The more radical the changes in slice width from one slice to the next,
the more likely it is that you’ll have overlap between text and image. This can happen because
browsers don’t test every pixel along the edge of a line box to see if it’s overlapping a floated
element. For example, they might only test the top-left corner of the box. If that’s just a couple
of pixels above a much wider floated image, then the text in that line will overlap that wider
image.

ESSENTIALS

Al the eppxal of corvis &sd ober Nowing shages, They
WG JTSomes 10 X Mows of The Web, sveryhing s besn on
that cther suff. Until now, anyway. Yes, the iext is fowing o
And you thought We design was all about sraight lines 2

Gently Floating...
Al il oo msake thes BRppen was ereans a 1000 image of 4 ¢
wides as necessary 0 stow the corve without azy clipping.

Stack all tem sirata together azd we got the same curve [saried with, B
e Thern. and (hedr decreasisg wilth allows th e 1 reughly folks
Cibeve, Ch ErcATGT (e margsd valec, the fonher sy nexn will b pushead

Taking it Further

O course, e oeiging] Enege could have been sliced ug apo five star,
download thal maty isgafes, On due ofber Rand, you Sould [y 3 vadirsl

Figure 5-48: The ragged float in a browser.

Of course, creating all those slices is kind of annoying, and geez, what about the server
overhead? Fortunately, there’s an improved variant of this technique, which the next section
explains.

BETTER RAGGED FLOATS

Building on the “ragged float” technique explained in the preceding section, Nilesh Chaud-
hari came up with what he called “Super Ragged Floats” in the Evolt article of the same name
(http://www.evolt.org/article/Super Ragged Floats/22/50410/). Nilesh’s
insight was that rather than slice up the image, you could put it in the background and lay
transparent boxes overtop of it. The drawback of his approach was that it required you to
wrap the enclosing div around both the floated slices and the content that accompanied
them. So, building on Nilesh’s building on the original, here’s a variant that lets you have little
self-contained bits of markup to create the curves and ragged outlines.

First, consider the markup from the preceding section. Suppose you convert all those images
to empty divs.

<div class="curves'">
<div id="sll"></div>
<div id="sl2"></div>
<div id="sl3"></div>
<div id="sl4"></div>
<div id="sl5"></div>
</div>

Now, get the original, unsliced version of the curve image (see Figure 5-49).

EFFECTS

- A [LTl i

Figure 5-49: The curve image as shown in Photoshop.

At this point, you have everything you need to curve the flow of text. It just takes some sizing
and background positioning in the CSS (see also Figure 5-50):

.curves div {float: left; clear: left; margin-right: 20px; height: 20px; width:
100px;
background: url (curve.png) no-repeat;}

.curves #sl1l2 {width: 42px; background-position: 0 -20px;}

.curves #sl13 {width: 21px; background-position: 0 -40px;}
.curves #sl4 {width: 10px; background-position: 0 -60px;}
.curves #sl5 {width: 5px; background-position: 0 -80px;}

Ah, the appeal of curves and oiher Bowing shages.
when it comes to text flows on the Web, everything's been 11

that oiher siwff. Umtil now, anyway. Yes, the iext is flowisg slo
wou thought Web design was all abowt straight lines and bones.

Gently Floating...

AL T did to make this bappen was create a 100% 14 image of & cuny
or 20 pixels @l (depending an the stramm) and anly as wide as ned

Sinck all five stram difvs together and visuelly we get the same cur

text can fAow around them, and their decreasing width allows the
from: the curve; the greater the margin valoe, the further away text

Taking it Further

O conrse, the arpiral mnape could have been paced ino five
markup and C55. On the ather band, vou oould oy 2 variani oz xi

Figure 5-50: The curve placed into the browser using hackground positioning on .

ESSENTIALS

You could of course also do those things with inline CSS, if you were so inclined. That would
eliminate the need for all the ID’ed rules and indeed the IDs themselves, leaving you with only
.curves div to retain. On the other hand, youd have a bunch of CSS cluttering your
markup.

<div class="curves">

<div></div>

<div style="width: 42px; background-position: 0 -20px;"></div>
<div style="width: 21px; background-position: 0 -40px;"></div>
<div style="width: 10px; background-position: 0 -60px;"></div>
<div style="width: 5px; background-position: 0 -80px;"></div>
</div>

The choice is yours. Choose wisely.

One more wrinkle on this technique (which would apply as well to the sliced version shown
in the last section) is that you aren’t limited to having all your divs be the same height. If you
have an area of the curve that’s, well, un-curvy, you can stretch the div to the proper height.
That cuts down on the number of elements you need. You can plan for this by drawing out the
flow boxes (see Figure 5-51) in your image-editing program beforehand.

The sizes of the boxes can then be copied directly to your document. Figure 5-52 depicts the
end result.

<div class="curves">

<div style="width: 8px; height: 40px;"></div>

<div style="width: 25px; height: 20px; background-position: -40px; "></div>
-60px; "></div>
-75px; "></div>
-90px; "></div>
-110px; "></div>

<div style="width: 50px; height: 15px; background-position:
<div style="width: 75px; height: 15px; background-position:
<div style="width: 92px; height: 20px; background-position:

o O O O o

<div style="width: 97px; height: 15px; background-position:
<div style="width: 100px; height: 50px; background-position: 0 -125px;"></div>
-175px; "></div>
-190px; "></div>

<div style="width: 97px; height: 15px; background-position: 0
0

<div style="width: 75px; height: 15px; background-position: 0 -210px;"></div>
0
0

<div style="width: 92px; height: 20px; background-position:
<div style="width: 50px; height: 15px; background-position: -225px;"></div>

<div style="width: 25px; height: 20px; background-position: -240px; "></div>

<div style="width: 8px; height: 40px; background-position: 0 -260px;"></div>
</div>

EFFECTS

A 7O » wavepsd @ 200

Figure 5-51: The flow hoxes as visualized in Photoshop.

ESSENTIALS

Ah, the appeal of ourves and oiher Siowing shapes. They bave
00 e flows on the Wik, cverthing's Beds om te: sraipht and
Uil now, anyway. Yes, the iext is Sowing along with the oy
Wik desipn wis Al abow SIcaigin lincs sl Bonce.

Gently Floating...

AT i o resakos this B ppcn was chckis a 100x300 §
*sirain® divs, ach as tall as needed (depending an thy
hi eurve withomr any clipping.

Seack all the scrath Jivs ropeiscr and wispally we per the sam
and text an floer aroued them, sed their docreasing width albowd
T wway Toom e carve; the goeanrcr the mwsingin value, tie sther

Taking it Further
Of conrse, fbe oriping] imaps could have becn plased innm v erras

markup and CE8_ On the ather band., you could iry 2 variant o sing
oné-pinc] div, exscnly th fight S5c W make up parm of b carve,

Figure 5-52: The wave dropped into place using the various .

BOXING YOUR IMAGES

There’s something that most people don't realize about images: They have the same box model
as any other element. That means you can apply things like backgrounds and padding to
images.

Why would you bother? Well, one example is a method of filling colors into the background
of a square icon with transparent parts. It goes something like this (see also Figure 5-53):

img.icon {background-color: #826;}

img.icon:hover {background-color: #C40;}

Figure 5-53: lcons in both the hovered and unhovered states.

You can even drop images into the backgrounds of images, as in Figure 5-54, which can make
for some fun combinatorial effects.

EFFECTS

img.flakel {background-image: url(flakel.png) center no-repeat;}
img.flake2 {background-image: url (flake2.png) center no-repeat;}

img.flake3 {background-image: url (flake3.png) center no-repeat;}

- L.

Figure 5-54: Combining snowflakes.

Padding can be applied to images just as easily. In fact, with a
combination of padding, background color, and a border, you can
make your images look like they have a two-tone border (see Figure
5-55).

Figure 5-55: A two-tone
frame with padding and
borders.

img.twotone {background: #C40; padding: 5px; border: 5px
solid #4C0;}

ESSENTIALS

Heck, add an outline and you get what looks like a triple border
(see Figure 5-56).

img.threetone {background: #C40; padding: 5px; border: 5px
solid #4C0; outline:
5px solid #40C;}

Figure 5-56: A three-tone frame
with padding, border, and
outline.

CONSTRAINED IMAGES

Following on the theme of doing fun things with images, here’s a way to keep them as big as
possible without busting out of their parent elements or forcing them to scale up past their
natural size. This is a very handy effect, especially if youre going to be, say, including photo-
graphs or other possibly large images in your page and you want to make sure they don’t
break the layout in skinny-browser situations.

img {max-width: 100%;}

That simple rule will keep your images no wider than the element that contains them, but in
cases where the parent is wider than the image, they’ll stay their natural size. You can enhance
this to center the image within the parent, like so:

img max-width: 100%; display: block; margin: 0 auto;}

Figure 5-57 shows an example of the same image in three different parents of differing widths:

two narrower than the image, and one wider. (The edges of the parent elements are marked
with green borders.)

Figure 5-57: Three instances of the same image.

EFFECTS

This does obviously put you at the mercy of browsers’ scaling routines as they shrink the
image. Fortunately, most browsers have gotten pretty good at doing so without too many
eye-wateringly bad artifacts.

PART

CUTTING EDGE

Chapter 6: Tables
Chapter 7: The (Near) Future

SMASHING CSS

TABLES

I KNOW, | KNOW—you’ve been hearing for
years now that Tables Are Evil, and that nobody
should ever use them in page layout. And that’s
broadly true: Tables shouldn’t be used for layout.
On the other hand, laying out tables is a fine and
often overlooked pursuit. After all, sometimes
you have a table of data that you need to present.
No sense doing so half-heartedly!

In this chapter, you explore ways to use table
structure to your styling advantage as well as
turning tables into entirely different visualiza-
tions, like maps or bar graphs. Hopefully by the
time you're done, you’ll see that tables are just
like any other collection of markup—a rich
source of styling possibilities.

CHAPTER

CUTTING EDGE

HEAD, BODY, FOOT

HTML defines three elements that serve to group rows within tables: thead, tbody, and
tfoot. Perhaps unsurprisingly, these represent the head, main body, and footer of the table.

Here’s a stripped-down table structure using two of these row groupers.

<thead>
<tr>.</tr>
</thead>
<tbody>
<tr>.</tr>
<tr>.</tr>
<tr>.</tr>
<tr>.</tr>
</tbody>
</table>

These elements impart more structure to your tables, which is nice from a semantic point of
view, but the nicer thing is that you can use them to uniquely style elements within the table
header as opposed to its main body (see Figure 6-1). Thus, you might center column headings
(which live in the thead) while right-aligning row headings (those in the tbody).

thead th {text-align: center;}
tbody th {text-align: right;}

m 02 o]

#¥O7 | 51140 | SIZME 0 514300 | Slv20E
fB%E | 59345 | FREM 510035 | 28672
wINT-B3G | OSLYET 0 ERIXY) =17 =}

Figure 6-1: Right- and center-aligning different types of header cells.

Similarly, you could alter the color, background, padding, or any other stylable aspect of the
cells within the respective groups just by referring to the appropriate element.

The surprising thing about these row-grouping elements is that even if you don’t write them
out explicitly, most browsers will create one in the DOM (Document Object Model) anyway
(see Figure 6-2). In such browsers, the following rule will always fail:

table > tr {font-weight: bold;}
That’s because there’s always a tbody between the table and the tr. And it is, specifically, a
tbody that gets created if no grouping element is written in the source. So you could modify

the preceding rule’s selector to be table > tbody > tr and it would match rowsina
table without any row groupers.

TABLES

_® D O Source of: file:/ {/Usersiemeyer/Documents.. "~
o C/DOCTFPE HTHML PIBLIC "=/ /F3ICs/DTD HIWE 4.0177EN

juld atdp s . Wil arg,TRAMNId ratrick . dtad ">
<html=

<head=>

ctitlo>Table Groupera</titlo>

<cptyle type="text/oss" media="all"> et
table = tr {fonkt-weight: bold;}

</stylo=

" </haad>

<hody>

Ciol

<tablo=
e e
. <bd>Texk i</ td>
ke
=/ tabler

2/ body>
=/html>

Figure 6-2: Browsers automatically create some elements if they aren't explicitly written.

The really surprising thing is that in HTML 4, t foot must come before tbody in the
document structure. HTML 5 removes this restriction, allowing t foot to follow tbody, and
browsers have never enforced the HTML 4 rule anyway. So while it’s surprising, it isn’t exactly
burdensome.

Theoretically, the thead and tfoot rows would be placed at the top and bottom of every
table fragment displayed in multiple viewports. That’s a fancy specification way of saying that
if you print a long table and it goes for a few pages, the thead and tfoot would be placed at
the top and bottom of every page or fragment of the table appearing on a page. However,
please note my use of the word theoretically. In practice, this never happens. Perhaps one day
it will. As Grover the Waiter once said, to live is to hope.

Remember: One of the big advantages of including thead and tfoot is that you can use
them to uniquely style the cells within. As an example, consider the following HTML 5
fragment:

<table>

<thead>

<tr>
<th scope="col">Q1l</th>
<th scope="col">02</th>

CUTTING EDGE

<th scope="col">Q3</th>
<th scope="col">Q4</th>

</tr>

</thead>

<tbody>

</tbody>

<tfoot>

<tr>
<td>$83,340</td>
<td>$87,195</td>
<td>$91,022</td>
<td>$90,489</td>

</tr>

</tfoot>

</table>

Now suppose you want to draw a line below the column headings, and above the total figures
in the table’s footer, as in Figure 6-3. No classes needed: Just use the structure of the table
itself.

thead th {border-bottom: lpx solid #333; text-align: center; font-weight: bold;}
tfoot th, tfoot td {border-top: 2px solid #666; color: #363;}

o1 Q2 01 o
FNTL.O8 S1I5d0 RI24E 514301 51T OB
FHTL.ORE 5545 &0 514 510035 S98T:
FNT-BM 51787 531,123 $4.137 23,711
o A0T 51 65T 53 Do 52 BE2 52 500
FINE-ALL SR54T §57.24% 56,102 5TALl
oS A1 59034 S11.027 511,793 SI0283
FIE-A13 SIDG33 5123574 S12B34 Sl 36K
FIE-AZ3 S1383 516239 5164057 SIS TI2
oheLC1T 58245 56 509 56,408 S5 006
FIW-C55 54390 54 369 54,383 56308
Toial ER1 340 SET 95 S01023 Eo0480

Figure 6-3: Using borders to set the header and footer apart from table’s main body.

ROW HEADERS

The preceding section briefly mentions row headers. “Row headers?” you may have said to
yourself. “I thought only columns could have header cells” Not so! In fact, there exists an HTML
attribute designed to let you specify whether a given th is a header for a column or a row.

TABLES

Consider the following markup:

<table>

<thead>

<tr>

<th></th>
<th>Pageviews</th>
<th>Visitors </th>
</tr>

</thead>

<tbody>

<tr>

<th>January 2010</th>
<td>1,367,234</td>
<td>326,578</td>
</tr>

<tr>

<th>February 2010</th>
<td>1,491,262</td>
<td>349,091</td>
</tr>

</tbody>

</table>

Note that each row in the tbody starts with a th element. Those are row headers. As a
human, you can infer that they relate to the data that follows them in the row. Even a browser
might be able to draw that inference. Still, it’s better to be explicit, like this:

<table>

<thead>

<tr>

<th></th>

<th scope="col">Pageviews</th>
<th scope="col">Visitors </th>
</tr>

</thead>

<tbody>

<tr>

<th scope="row">January 2010</th>
<td>1,367,234</td>
<td>326,578</td>

</tr>

<tr>

<th scope="row">February 2010</th>
<td>1,491,262</td>
<td>349,091</td>

</tr>

</tbody>

</table>

CUTTING EDGE

By adding the appropriately valued scope attribute to your th elements, you've told the
browser exactly how the th elements relate to the cells around them (see Figure 6-4).

In visual browsers, this isn’t such a big deal, though you can use attribute selectors to style the
two types uniquely.

th[scope="col"] {border-bottom: lpx solid gray;}

th[scope="row"] {border-right: lpx solid gray;}

This can be a handy hook on which to hang your styles. In this particular case, the same result
could be achieved just using thead thand tbody th but there may sometimes be cases
where there are row headers in the thead or column headers in the tbody. So it’s good to
have both techniques handy.

Web iraffic
Mo th Papwviews Visilors
Jasary 2000 1,357,134 116,578
Febrwary 2000 | 1491 262 14004

Figure 6-4: Styling header cells based on their scope.

In speaking browsers, the scope value can theoretically be used to make tables easier to
comprehend by associating column and row header content with the content of each cell.
Thus, as a speaking browser moved through the table shown previously, it could say
“Pageviews January two thousand ten one million three hundred sixty seven thousand two
hundred thirty four—visitors January two thousand ten three hundred twenty six thousand
five hundred seventy eight” for the first row. (Where I put in a dash it would probably
announce “data cell” or something similar, but you get the idea.)

Again, note the word theoretically. In this case, at least some speaking browsers support the

use of scope to make these sorts of determinations, but that capability is generally not
enabled by default.

COLUMN-ORIENTED STYLING

You likely are used to table rows, but there are times you want to set up and style table
columns. This turns out to be hard to do simply and (relatively) easy to do with some ugly
complexity (did you follow that?).

The simple markup route is to use col elements. Take this simple table as an example.
<table>
<col span="2" />

<col />
<col />

TABLES

<tbody>

<tr>
<td>Row 1 cell 1</td>
<td>Row 1 cell 2</td>
<td>Row 1 cell 3</td>
<td>Row 1 cell 4</td>
<td>Row 1 cell 5</td>

</tr>

<tr>
<td>Row 2 cell 1</td>
<td>Row 2 cell 2</td>
<td>Row 2 cell 3</td>
<td>Row 2 cell 4</td>
<td>Row 1 cell 5</td>

</tr>

</tbody>

</table>

This sets up three columns, one of which “spans” two cells per row and two of which encircle
one cell per row. That adds up to four cells per row, and you can see that each row has five
cells. That means that the last cell in each row is not part of a structural column.

Okay, fine, but what about styling the columns you do have (see Figure 6-5)? That would seem
to be straightforward enough: Just apply CSS to the col elements.

col {background: red; width: 10em;}

And that very limited example works fine in just about any browser available today. If your
goal with columns is simply background colors and setting the column widths, then youre
golden.

If you want to do just about anything else to style the columns, though, you're basically out of
luck. That’s because the CSS specification allows only two more properties on table columns,
border and visibility, and neither is well supported.

In the former case, if you declare a border, browsers will not draw it the same way. Some
browsers will draw your border around the whole column, whereas others will cause it to be
applied to the column and all of the cells inside the column. This has relatively decent results
when you just set a solid one-pixel border, but it breaks down with anything thicker or less
solid. It also requires that you declare table {border-collapse: collapse;} to
work at all, which would be more worth knowing if the results were more consistent.

In the latter case, all you can do is set visibility: collapse in order to hide whole
columns. That’s great, except it doesn’t work in all browsers, most notably Safari and Chrome
and their mobile cousins.

CUTTING EDGE

Rarw | el §
Ry | ol 5

Figure 6-5: Styling column elements.

Some of you may be sure that you've heard about applying other CSS properties to columns.
It’s entirely possible that you have, since Internet Explorer allows you to apply just about any
CSS property to col elements. The reasons other browsers (and the CSS specification itself)
don’t is long, tortuous, and frankly kind of annoying. IE really does the expected and desirable
thing here.

So while col elements are the theoretically easy way to do column styling, they’re incredibly
limited in the real world. If you want to do column styling, you have to get more creative. The
usual way to accomplish this is with classes on all the cells throughout the whole table.

<table>
<tbody>
<tr>

<td class="cl">Row 1 cell 1</td>
<td class="c2">Row 1 cell 2</td>
<td class="c3">Row 1 cell 3</td>
<td class="c4">Row 1 cell 4</td>
<td class="c5">Row 1 cell 5</td>
</tr>
<tr>

<td class="cl">Row 2 cell 1</td>
<td class="c2">Row 2 cell 2</td>
<td class="c3">Row 2 cell 3</td>
<td class="c4">Row 2 cell 4</td>
<td class="c5">Row 1 cell 5</td>

</tr>

</tbody>

</table>

Now if you want to make a specific column red-backed, say, you simply write CSS the
addresses that the cell classes. This will recreate the effect seen in Figure 6-5.

.cl, .c2, .c3, .cd {background: red; width: 10em;}
Clumsier in both markup and style, yes. The advantage here is that you can continue on to any
other CSS property that can be applied to a table cell (just about anything except margins). So

if you want to center-align and italicize all those cells (as in Figure 6-6), it's simple enough.

.cl, .c2, .c3, .cd {background: red; width: 10em;

text-align: center; font-style: italic;}

TABLES

Rowr 1l 5
Reow 1 cxdl 5

Figure 6-6: Using classes to style “columns.”

Remember: When styling col elements, that simple change of style is impossible in non-IE
browsers, because the CSS specification forbids it.

If you want to put a border around a specific column using this markup approach (see Figure
6-7), it takes a little bit of work. All you have to do is fill in the side borders for all the cells in
the column, then drop top and bottom borders on the top and bottom cells in the column.

td.c2 {border: 2px solid #000; border-width: 0 2px;}

tr:first-child td.c2 {border-top-width: 2px;}
tr:last-child td.c2 {border-bottom-width: 2px;}

Raw 1l ¥
Baw gl &

Figure 6-7: Using a combination of approaches to border a “column.”

If you're uncomfortable using those selectors for backwards-compatibility reasons, then you
can employ a bit more class trickery. Just class the first and last rows in your table
appropriately.

<table>
<tbody>

<tr class="first">

</tr>
<tr class="last">

</tr>

</tbody>
</table>

With those in place, you need only alter the CSS a little bit to use the new hooks.

td.c2 {border: 2px solid #000; border-width: 0 2px;}
tr.first td.c2 {border-top-width: 2px;}
tr.last td.c2 {border-bottom-width: 2px;}

CUTTING EDGE

But back up a bit and consider a somewhat unusual way to style columns, one that requires no
classes at all. First, strip all those classes out of the markup.

<table>
<tbody>
<tr>
<td>Row 1 cell 1</td>

<td>Row 1 cell 5</td>
</tr>
<tr>

<td>Row 2 cell 1</td>

<td>Row 1 cell 5</td>
</tr>
</tbody>
</table>

Now, how do you style just the second column? With : first-child and the adjacent-
sibling combinator.

td:first-child + td {border: 2px solid #000; border-width: 0 2px;}
tr:first-child td:first-child + td {border-top-width: 2px;}
tr:last-child td:first-child + td {border-bottom-width: 2px;}

In this approach, styling the first column means just using td: first-child (since youre
selecting all the table cells that are the first children of their t r parents). Any column after
that is selected by adding n-1 instances of + td. So if you want to shift that border to the
fourth column (see Figure 6-8):

td:first-child + td +td + td {border: 2px solid #000; border-width: 0 2px;}
tr:first-child td:first-child + td + td + td {border-top-width: 2px;}
tr:last-child td:first-child + td + td + td {border-bottom-width: 2px;}

Rew | pdl 5
Row | pdl 5

Figure 6-8: Using child and sibling selectors to style a “column.”

Clumsy or elegant? Depends on your aesthetics, I suppose.

TABLES

The one thing to watch out for with this approach is that it will be spoiled by any cols-
panned table cells. But then, if youre making your cells span columns, you probably aren't
doing full-column styling anyway. (Well, okay, you are. But most people aren’t.) If you're
doing column-spanning cells, then classes are probably your best bet.

TABLE MAPPING

There are times when you have a bunch of data that has geographic relevance: sales figures by
state, polling results by region, that sort of thing. The data is usually best structured as a table,
but that doesn’t mean that you have to lay it out that way. In fact, why not put it onto a map?

To do this, you really need two things besides the CSS. First you need the appropriate classes
and IDs in the markup. Here’s part of the markup for a U.S.-states example.

<table>

<thead>

<tr>

<th scope="col">State</th>
<th scope="col">Representatives</th>
</tr>

</thead>

<tbody>

<tr id="AL">

<th scope="row">AL</th>
<td>7</td>

</tr>

<tr id="AK">

<th scope="row">AK</th>
<td>1</td>

</tr>

<tr id="WYy">

<th scope="row">WY</th>
<td>1</td>

</tr>

</tbody>

</table>

So that plus 47 other rows of data now need to be placed onto a map. And that’s the second
thing you need: an image of the map (Figure 6-9).

CUTTING EDGE

= £3_ .

Figure 6-9: The map.

With the map, you can start figuring out where you want to place your data. In this case, what
you need is the approximate midpoint of each state. My approach is to open the image up in
an image editor like Photoshop and use it to figure out the X,Y coordinates of each point,
which I write down in a list. Thus:

AL 692 448
AK 210 560
WY 330 300

These are the points where you'll place each bit of data. But don’t stop with just plain pixel
values: These need to be converted to percentages of the image’s dimensions. This map is an
1,000 x 700 image. Thus, divide each horizontal measure by 1,000 and each vertical measure

by 700 to get:
AL 69.2% 64%
AK 21% 80%
WY 33% 42.9%

TABLES

Put the list aside for a moment, because now you start writing the CSS to get things rolling.
First, make sure the map will show up:

table, table * {margin: 0; padding: 0; font: lem/l sans-serif;}
table {display: block; width: 1000px; height: 700px;

background: url (us-state-map.gif) no-repeat;}

Okay, the map’s in place, but the data is all on the left side, not stretched out (see Figure 6-10).
Interesting, no? It’s because the table cells are all hanging together in the manner of a table,
but the table element itself is no longer acting as a table usually does. It’s now generating a
block box, just like any div would do. Thus, the layout association between the table
element and the rows and cells and everything else has been broken. Yes, really.

You need to get all bits of data into place. The first step is to get them all to generate block
boxes and then position them all. (In theory, positioning them forces them to generate block
boxes, but I like to explicitly declare changes of display just to be sure.) You also should add
in a temporary border so you can see where things go (see Figure 6-11).

tr, th, td {display: block;}

tr {position: absolute; top: 0; left: 0;
color: #527435;

border: lpx dotted red;}

FELLER TR EEEF PRI FE Y

g B
;2
— ==

1

i
|

Figure 6-10: The map and the data.

CUTTING EDGE

£ et ol A

Figure 6-11: Positioning the data, step one.

Yikes, they’re all in the top-left corner of the map instead of their respective proper spots. This
is where that list of percentages comes in handy. Each horizontal percentage becomes the
value of 1eft, and each vertical percentage is a top value (see Figure 6-12).

#AL {left: 69.2%; top: 64%;}
#AK {left: 21%; top: 80%;}

#WY {left: 33%; top: 42.5%;}

Well, they’re mostly in place. The reason they aren’t lined up is that the midpoint (or at least
some reasonable point) of the each state was selected when you wrote down the list. Supplying
those values as the offsets for top and 1eft places the top-left corner of each positioned
element at those chosen points. Thus the positioned t r elements sit below and to the right of
those points.

TABLES

Figure 6-12: Placing the data into each state.

(There’s also the problem of all those tiny Northeastern states having their data overlap each
other, but that’s something to tackle later.)

The easiest way to overcome this is to assign each tr a width and height, and then pull it up
and to the left by half the assigned dimensions. A little experimentation arrives at the follow-
ing (see also Figure 6-13):

tr {position: absolute; top: 0; left: 0;
width: 2em; height: 2em;
margin-left: -lem; margin-top: -lem;
color: #527435;
border: lpx dotted red;}

CUTTING EDGE

= g
— —

Figure 6-13: Adjusting the placement of each data box.

Hey, look at that! The data’s all more or less where you wanted it. There’s certainly room for
some adjustment—for example, Florida’s box seems a little bit off—but things are coming
together relatively nicely. Outside of the Northeast, anyway. The text is a little out of align-
ment, so clean up that and a few other things.

tr {position: absolute; top: 0; left: 0;
width: 2em; height: 2.2em;
margin-left: -lem; margin-top: -1.lem;
color: #527435;}
tbody th, tbody td {text-align: center;}
tbody th {font-weight: bold; border-bottom: lpx solid gray; margin-bottom:
0.lem;}

Figure 6-14 is better still! Of course, the Northeast is still kind of a jumbled mess. (Hold the
partisan jokes, please.)

TABLES

— e

Figure 6-14: Cleaning up the data.

I'm actually going to let this stand as is. It serves as a perfect illustration of why you have to be
careful when mapping data onto a table. Yes, there are ways to mitigate the problem with CSS,
like hiding pieces of data boxes in those tiny states and then revealing them on hover. A better
idea might be to pick a map that has sufficient space for each state’s data (for example, one which
has the Northeast in magnified form, or which has callout lines pointing into the small states).
The data could then be placed at the end of each callout line. I'll leave it to your imagination.

There is one other thing to do here, and that’s make the table more accessible than the already
extant scope attributes make it. As a bonus, you have something else to style and place. This
table needs both a summary and a caption.

<table summary="A list of American states and the number of representatives
allocated to each in the United States House of Representatives, which is
the lower chamber of the United States Congress.">

<caption>U.S. Representatives, by State</caption>
<thead>

CUTTING EDGE

Now you can use the caption element as a title for the map (see Figure 6-15) while you also
switch off the thead, which has been hanging out in the top-left corner of the map, looking ugly.

thead {display: none;}

caption {position: absolute;
top: 0; left: 0; right: 0; text-align: center;
font: bold 200% sans-serif;}

Figure 6-15: Using the caption as a graph fitle.

Excellent! And there you go: a table of data placed on a map. The data is properly structured,
highly accessible, and visually pleasing in a way a plain old table just isn't.

TABLE GRAPHS

Sometimes, your table of data lends itself to being graphed. Whether it’s quarterly profits, high
and low temperatures for the past week, or rainfall averages for the year, there are lots of data
sets that can be charted.

Consider something a little closer to home: a set of data describing the number of hits and
pageviews on a Web site for a ten-day period.

<table summary="Server hits and pageviews for meyerweb.com over the period
1/10/10 to
1/19/10.">

TABLES

<caption>Web traffic</caption>
<thead>
<tr>
<th scope="col">Day</th>
<th scope="col" class="hits">Hits</th>
<th scope="col" class="views">Views</th>
</tr>
</thead>
<tbody>
<tr id="dayO01l">
<th scope="row">1/10/10</th>
<td class="hits">151,308</td> <td class="views">70,342</td>
</tr>
<tr id="day02">
<th scope="row">1/10/11</th>
<td class="hits">138,887</td> <td class="views">70,410</td>
</tr>
<tr id="day03">
<th scope="row">1/10/12</th>
<td class="hits">106,563</td> <td class="views">58,383</td>
</tr>
<tr id="day04">
<th scope="row">1/10/13</th>
<td class="hits">117,551</td> <td class="views">64,181</td>
</tr>
<tr id="day05">
<th scope="row">1/10/14</th>
<td class="hits">251,969</td> <td class="views">171,790</td>
</tr>
<tr id="day06">
<th scope="row">1/10/15</th>
<td class="hits">213,228</td> <td class="views">134,238</td>
</tr>
<tr id="day07">
<th scope="row">1/10/16</th>
<td class="hits">186,099</td> <td class="views">113,014</td>
</tr>
<tr id="day08">
<th scope="row">1/10/17</th>
<td class="hits">246,637</td> <td class="views">161,287</td>
</tr>
<tr id="day09">
<th scope="row">1/10/18</th>
<td class="hits">210,124</td> <td class="views">135,479</td>
</tr>
<tr id="daylO0">
<th scope="row">1/10/19</th>
<td class="hits">168,413</td> <td class="views">115,541</td>
</tr>
</tbody>
</table>

CUTTING EDGE

Rendered in a browser, the raw data looks like Figure 6-16.

Turning this table into a chart is really straightforward. All you need to do is place each day in
the proper place and then scale up the table cells to the necessary height. Simple!

Web traffic

Date Hits Views
1/10/10 151 308 70 342
/10710 136 887 70410
12710 106 563 35 383
1713710 117,551 64,181
1714710 251,968 171,790
15100213 228 134 238
1/16/10 186,099 113,014
117710 246 637 161 287
V18710 210,124 135479
1/19/10 168,413 115,541

Figure 6-16: The table in the raw.

Okay, so maybe it’s not quite that easy. But as you'll see, it’s not that complex either. First, set
the area in which youre going to work.

table, table * {outline: 1lpx dotted red;}
table {display: block; position: relative;
height: 300px; width: 600px;

font: small sans-serif;}

The height and width could really be any set of measures, but the pixels make it easier to
explain certain mathy bits as you go along. Rest assured, however, that nothing you do will
require the use of pixels. When done, you’ll be able to change those values to whatever you
want and still have the data be graphed. The out1ine rule is temporary, existing only so you
can see what you’re doing as you go.

Now start positioning everything in the table.

tr, th, td {display: block; position: absolute;}
tbody tr {left: 0; bottom: 0; width: 10%; height: 100%;}

TABLES

All the tbody table rows are set to a width of 10% because you want to place them side by
side, and there are 10 of them, so 100% (the full width of the table) divided by 10 is 10. Then
just place the rows next to each other (see Figure 6-17).

#day02 {left: 10%;}
#day03 {left: 20%;}
#day04 {left: 30%;}
#day05 {left: 40%;}
#day06 {left: 50%;}
#day07 {left: 60%;}
#day08 {left: 70%;}
#day09 {left: 80%;}
#dayl0 {left: 90%;}
tbody td {bottom: 0;}

[¥rin feine AAzdn [AMad0 A4M0 1S40 1HEAD AHTH0 AHEAD [AAwAD |
Lamd - | | | | | |

s

ToOeas TomBa7| [SAmEE: SB[(FEVE0 (30238 1650W [2e4EE7 [190.428) 108043

Figure 6-17: Setting up the containment for each bar of the graph.

This is kind of the tedious part: writing out the left offset for every row. Just imagine doing it
for a whole month! (That is why you get a script to write this sort of thing out for you instead
of doing it by hand, of course. More on that later.)

At this point, make the bars stand up as appropriate. And this is where it gets really tedious,
because a height has to be computed for every single one and then assigned. Just to get
started, the highest value needs to be determined; in this case, its 251, 969. Then pick a value
at or above that which represents the very top of the graph. It could be 260,000; 275,000; or
even 300,000. For this example, go with 260,000.

Having done that, next divide every single value by that maximum to get a percentage. So for
the first row, which contains the numbers 151, 308 and 70, 342, the percentages are 58.2%
and 27.05%, respectively. Those are the height values to assign to the td elements in the

CUTTING EDGE

first row. Similarly, the values for the second row are 53.42% and 27.08%. (Doing all this by
hand is a royal pain, yes. An automated script would be better. It’s discussed a little later in
this chapter.)

#day0l td.hits {height: 58.2%;}

#day0l td.views {height: 27.05%;}
#day02 td.hits {height: 53.42%;}
#day02 td.views {height: 27.08%;}

Doing that same process for all ten rows nets the layout result shown in Figure 6-18.

[wmrin mine azne 1hann Baspe hviste [Aeto iamae [Asne [1nano
it | I Ll | 248,837

s
[praz=m |z1d,124
1] 186,000
iH T |
161,267 A
151,208 |]
128,887 134 258 [13547a
] 7Em] I 116541
T _ 13844 B.5d
342 | Fod10 Sl

Figure 6-18: Sizing the bars.

Okay, it’s a little more step-like, but it’s still hard to see the bars. Filling in some colors (see
Figure 6-19) helps.

.hits {background: #4444ED; color: #FFF;}
.views {background: #44ED44;}

That simple change makes the bars really easy to see. In fact, even taking out the dotted red
outlines would result in having almost a good-enough graph as things stand. One big problem
concerns the thead and caption elements: Their contents are still hanging out in the
top-left corner. Plus there are a few minor problems, like the bars on the left of the graph not
having equal width, and the tallest bar for 1/14/10 overlapping the th content.

TABLES

Figure 6-19: Adding in colors makes the hars more obvious.

Tackle these in reverse order. First, pull the red outlines and toss in a subtle border along the
top and bottom of the whole graph.

table, table * {outline: none;}

table {display: block; position: relative;
height: 300px; width: 600px;

border: lpx solid #999; border-width: 1lpx 0;

font: small sans-serif;}

For the overlapping of the date, shift the dates above the table altogether (see Figure 6-20),
thus ensuring that they won't get overlapped.

tbody th {top: -1.33em;}

e VMAe 1AM WIRe A4 1R8N0 AETe IATAD wied 1f1aa0
wiab

Figure 6-20: Cleaning up the header cells.

CUTTING EDGE

Now equalize the bar widths and center them within their containing blocks (the tr
elements).

tbody td {bottom: 0; width: 90%; left: 5%;}

The text seems a little out of place, actually, but centering it should make things look nicer
(see Figure 6-21). If you want to center most of the content, you do that at a higher point in
the document.

table {display: block; position: relative;
height: 300px; width: 600px;
border: 1lpx solid #999; border-width: 1px 0;

font: small sans-serif; text-align: center;}

1098 VA0 R0 1H3A0 A4 14898 1980 TG 1R 1RRA0

el

trafic
Oops—the dates are out of alignment with the bars. That’s because you gave the td elements a

width and left offset, but not the th elements. So rewrite that stretch of rules a bit, by assigning

Figure 6-21: Equalizing bar widths.
the width and 1eft rules to both th and td elements that descend from the tbody. Do this
by moving the width: 90%; left: 5%; fromthe tbody td ruleinto one of its own.

tbody th, tbody td {width: 90%; left: 5%;}
tbody td {bottom: 0;}
tbody th {top: -1.33em;}

So what’s left? The thead and caption, which are still cluttering up the top-left corner.
Place the caption below the table, center, and boldface, like so:

caption {position: absolute; bottom: -1.75em; width: 100%;
text-align: center; font-weight: bold;}

TABLES

Now turn thead into the legend for the chart. After all, the information you need is there
already.

The first step is to “un-position” the tr and th elements in the thead. At the moment,
thanks to the tr, th, tdrule, they’re absolutely positioned. So override that by explicitly
assigning the default value of static, which basically means “not positioned”

thead * {position: static; padding: 0.25em;}

Alternatively, you could adjust the tr, th, tdrulesselectortoread tbody tr, tbody
th, tbody td.That would remove the need to “un-position” the thead’s descendant,
although youd then have to write thead * {display: block;} in order to get the cells
to stack up on top of each other.

Either approach would have the same result in this case of this table (see Figure 6-22). So,
having done that (whichever way it’s done), position the thead itself.

thead {position: absolute;
top: 50%; margin-top: -2.5em;
left: 100%; margin-left: 2.5em;}

migng 1ALHe Aane 1Ha3nd 1nenn 14848 1Aen0 1ATAE dand 1Ase

Wb raffic

Figure 6-22: Using the column headers as a graph legend.
And there you go!

A couple of times I promised to talk about scripting some of this process, so do that now.
When it comes to figuring out the upper bound of the graph (260,000 in this particular
example), not to mention calculating the heights of all the bars, it’s obvious that a little bit of
programming would go a long way. That could be accomplished one of two ways.

CUTTING EDGE

The first would be to have the server figure it out. In this scenario, the data being graphed is
being pulled from a database and the page generated by a template of some type. In that case,
you would just build into the template the means of calculating the various needed values,
possibly in their own separate style sheet.

The second is to write some JavaScript to do the heavy lifting. In this approach, the various
bar heights would not be included in the stylesheet along with the rest of the graph styles.
Then, once the page was loaded, the JS would loop through the table twice: once to collect all
the values and determine the maximum, and then a second time to dynamically assign the
percentage height values to their respective td elements.

SMASHING CSS

CHAPTER

THE (NEAR)
FUTURE

INTHIS CHAPTER, the focus is on what’s to transforming element layout, these are all
coming: styling techniques you’ll use in the techniques that you may use tomorrow, next
immediate and near-term future. From styling month, or next year. With partial browser
HTML 5 elements to rearranging layout based support, they’re all on the cutting edge of

on display parameters to crazy selection patterns Web design.

CUTTING EDGE

Accordingly, be careful not to get cut! A number of sites can help you figure out the exact
syntaxes and patterns you need to use these techniques.

m http://css3please.com/
m http://css3generator.com/
m http://www.westciv.com/tools/gradients/

m http://gradients.glrzad.com/

Furthermore, a number of JavaScript libraries can extend support for advanced CSS back into
older browsers, in some cases as far back as IE/Win 5.5. Some are very narrowly focused on
certain browser families, whereas others are more broadly meant to allow support in all
known browsers. These can be useful in cases where your visitors haven’t quite caught up with
the times but you don’t want them to miss out on all the fun.

m http://css3pie.com/

®m http://www.useragentman.com/blog/csssandpaper-a-css3-java
script-library/

http://www.keithclark.co.uk/labs/ie-css3/

http://code.google.com/p/ie7-js/ (actually a good deal more powerful than
the URL makes it sound)

http://ecsstender.com/

There are also a good many CSS enhancements available as plug-ins for popular JavaScript
libraries such as jQuery. If you're a user of such a library, definitely do some digging to see
what's been created.

Again: Be careful! While these techniques are powerful and can deliver a lot of power to your
pages, you need to test them thoroughly in the browsers of the day to make sure you didn’t
just accidentally make the page completely unreadable in older browsers.

STYLING HTML 5

Styling HTML 5 is really no different than styling HTML 4. There are a bunch of new ele-
ments, but styling them is basically the same as styling any other element. They generate the
same boxes as any other div, span, h2, a, or what have you.

The HTML 5 specification is still being worked on as of this writing, so this may change a bit
over time, but the following declarations may be of use to older browsers that don’t know
quite what to do with the new elements.

article, aside, canvas, details, embed, figcaption, figure, footer, header,
hgroup, menu, nav, section, summary {display:block;}
command, datalist, keygen, mark, meter, progress, rp, rt, ruby, time, wbr {display:

inline;}

THE (NEAR) FUTURE

You may have noticed that I left out two fairly important new elements: audio and video.
That’s because it’s hard to know exactly how to treat them. Block? Inline? All depends on how
you plan to use them. Anyway, you can place them in the declaration that makes the most
sense to you.

But what about really old browsers, like IE6? (Note I said “old,” not “unused.” In an interesting
subversion of popular culture, browser popularity has very little to do with age.) For those,
you need to use a bit of JavaScript in order to get the browser to recognize them and therefore
be able to style them. There’s a nice little script available at http: //remysharp.com/
downloads/html5. s that auto-forces old versions of IE to play nicely with HTML 5
elements. If you're going to use and style them, you should definitely grab that script and put
it to use.

Once you've gotten your browser ducks in a row and quacking “The Threepenny Opera,” you
can get down to styling. Remember: There’s really nothing new about styling with these new
elements (see Figure 7-1). For example:

figure {float: left; border: lpx solid gray; padding: 0.25em; margin: 0 0 1.5em
lem;}

figcaption {text-align: center; font: italic 0.9em Georgia, "Times New Roman",
Times,

serif;}

<figure>
<img src="splash.jpg" alt="A toddler’s face is obscured by a rippled and

dimpled wall of water thrown up by her hands slapping into the surface of
the swimming pool in whose waters she sits.">
<figcaption>SPLASH SPLASH SPLASH!!!</figcaption>
</figure>

Figure 7-1: A styled HTML 5 figure and figure caption.

CUTTING EDGE

CLASSING LIKE HTML 5

Perhaps you like the new semantics of HTML 5, but you're just not ready to take your sites to
full-on HTML 5. Maybe your site’s user base is mostly older browsers and youd rather stick to
known quantities like HTML 4 or XHTML. Not to worry: You can have the best of both
worlds with the venerable c1ass attribute.

This approach was documented by Jon Tan in his article at ht tp: //jontangerine.com/
1og/2008/03/preparing-for-html5-with-semantic-class-names. The basic
idea is to use old-school elements like div and span, and add to them classes that exactly
mirror the element names in HTML 5. Here’s a code example. Figure 7-2 shows this example
rendered in a browser.

.figure {float: left; border: lpx solid gray; padding: 0.25em; margin: 0 0 1.5em
lem; }

.figcaption {text-align: center; font: italic 0.9em Georgia, "Times New Roman",
Times,

serif;}

<div class="figure">
<img src="spring.jpg" alt="A small child with twin pigtail braids,
her back to the camera, swings away from the camera on a playground
swingset while the late afternoon sun peeks over the crossbar of
the swingset.">
<div class="figcaption">Swinging into spring.</div>
</div>

Sngluy (e apring:

Figure 7-2: A styled HTML 4-classed figure and figure caption.

If you compare the styles there to those found in the preceding section, you’ll see that the only
difference is that the names figure and figcaption are preceded by periods—thus
marking them as c1ass names. The markup is a little different, of course, though it’s the
same basic structure.

THE (NEAR) FUTURE

The advantage of this approach is that if you have these styles in place at the point when you
decide you can convert to HTML 5, then all you need to do is change your markup to use
HTML 5 elements instead of classed divs and then strip off the periods to turn the class
selectors into element selectors. That’s it. Easy as cake!

MEDIA QUERIES

This could honestly be its own chapter, or possibly even its own book. Thus, what follows will
necessarily be just a brief taste of the possibilities. You should definitely follow up with more
research, because in a lot of ways this is the future of Web styling.

The point of media queries is to set up conditional blocks of styles that will apply in different
media environments. For example, you could write one set of styles for portrait displays and
another for landscape displays. You might change the colors based on the bit depth of the
display. You could change the font based on the pixel density of display. You might even
rearrange the page’s layout (see Figure 7-3) depending on the width or number of pixels
available in the display.

Mg illy Frrine

DS ¢ CEREH ¢ DT 5 R ¢ FEGEE R ¢ MR ¢ O ¢ DRCH ¢ TEGD S et ¢ DR L
.

#three #two #one
Cartismeia bany pregrety thmm-ﬂ-ﬂﬂhw—'kmﬂ o oy
T T o b ke g Th 1 v il
PR i ki e mulq-. r el i el

L w wa rop o S of 0 arad Fpibom 'l'-|w|-'u » imirissivn il
FTE Ve g e wn'mnm dmgi o vy T Aeyreen L
e) il T .. [Tt T
Rl o e d D g PR e—]
i ik ol Vil e Filies [E P vl wwrerd
- I Al B N O I A I T T e DAL eofln e il et & o TR
Dy i e arTs. De oy m...--m Trm ey s ﬂumwm B AT T
e
b, e, M!J%ﬁmhmlﬁmh
BRI W
O [mb’m'\] Wi B _mﬂwmb
piraniaiar. e dom [s
s . i oy

ol] . Fiod F m el Wyl iref tecwem i
o

nw-:v.a mm:: . o T
[—— ; . Mﬂmdmﬂ:m WG A i

o e e i e [RIED Do nchomiogy e P
mmfl‘ﬂﬂl"ﬂ- Thish el -l (b
redupiry il oo wen ek

- By
mmﬂ\‘-‘umﬂuﬂm!ﬁwﬁm
i - T

e i Lol
[™ P
B e N T

Tem wrw wprd piwiny-
TR

] i
o ey p-arphin ieryfing e wapry g, wpaniaen o

EEALu A it e B S il el B (R TR
i BBl T By Vi ol vk ot b S il

o [= | s il =
e e

Figure 7-3: A basic three-column layout.

CUTTING EDGE

How? Consider some basic layout styles for a three-column layout.

body {background: #FFF; color: #000;
font: small Arial, sans-serif;}
.col {position: relative;
margin: 3em 1%; padding: O0.5em 1.5%;
border: 1px solid #AAA; border-width: 1px lpx 0 lpx;
float: right; width: 20%;}
#two {width: 40%;}
#footer {clear: both;}

As nice as this might be (in a minimalist sort of way), it is likely to run into trouble on
smaller—which is to say, narrower—displays. What if you could magically change to a
two-column layout on such displays?

Well, you can. First, restrict the three-column layout to environments that are more than 800
pixels across. This is done by splitting the layout bits into their own declarations:

body {background: #FFF; color: #000;
font: small Arial, sans-serif;}
.col {position: relative;
margin: 3em 1%; padding: 0.5em 1.5%;
border: lpx solid #AAA; border-width: 1lpx lpx 0 1lpx;}
#footer {clear: both;}
.col {float: right; width: 20%;}
#two {width: 40%;}

Then wrap those last two declarations in a media query:
@media all and (min-width: 800px) {

.col {float: right; width: 20%;}
#two {width: 40%;}

What that says is “the rules inside this curly-brace block apply in all media that have a
minimum display width of 800 pixels” Anything below that, no matter the medium, and the
rules inside the block will be ignored. Note the parentheses around the min-width term and
its value. These are necessary any time you have a term and value (which are referred to as an
expression).

THE (NEAR) FUTURE

At this point, nothing will really change unless you shrink the browser window until it offers
fewer than 800 pixels across to the document (see Figure 7-4). At that point, the columns stop
floating altogether.

T L TS LR bk o s B g e . Dl
S T T R B gL B 4
=P 4 T s Ay
-
LA T N AT] e
[

iy S R 5 e RN N RSTE e G
B ETYL il Tl L A & it)
[aywiw T

darn 1w in an E

BT IR R

Torn wder-rarmive Do evleeay o creersbe -

v -
R A MY T P L0 P 0
Bearid iy o] -]
8 A A I S ST SBSA W TSR ER P

g P OO IF 6 R o O SO DR O 1
'
Foar

s : T

Figure 7-4: What happens below 800 pixels.

What you can do at this point is write another media-query block of layout rules that apply in
narrower conditions. Say you want a two-column layout between 500 and 800 pixels, as in
Figure 7-5).

@media all and (min-width: 500px) and (max-width: 799px) {
.col {float: left; width: 20%;}
#two {float: right; width: 69%;}
#three {clear: left; margin-top: 0;}

CUTTING EDGE

- »
aReeplemrivir] “1% b e,

aind e il = PPt
100 B

. et
B T R R A O I e e m ey, e e
v i

A il e s, ey vt ey o
!.'F“."'llm“m'“ - mr

EAR S E b F T Ay b B el b b P S
] Sonduand®™

Bl T Tl WS W bl D

g i rahy e Dw
o ot 2]
¥

o b W 07 B T o T B ST PR

7%
L
i?

i
4

e L T P T F T Ty O TR A I e e
e T] i i T i

|
i

B RS T e e B "-“HHH"F L
R T i

-y
“M"*ﬂim -H-H-
b i P 7 S
=
T Fonad Bl B el e B T T ! Bl U i B
ST Wl e i

Srreradm - .

H

Figure 7-5: The reworked layout, which shows between 500 and 800 pixels.

And finally, you can apply some single- — —— -
column styles for any medium with fewer | Daakie - Cavkim EIL - Pews G o i -
than 500 pixels of display width (see .
Figure 7-6). o l

Gmedia all and (max-width: 499px) { e

#one {text-align: center;} e s | e il
#one 1li {display: inline; list-
style: none;
padding: 0 0.5em; m
border-right: 1lpx solid gray;

I Fui i v bollw i umlenin
line-height: 1.66;) sy v. Q. oa s
i - 3 —r1 . raimy e e Pt
#one li:last-child {border-right: erﬁlﬁﬂ;ﬂWh&wﬂ
0;} Dl il s s Bt i i VAPl ke e
#three {display: none;} e mh:l.i i “':m g WL, Tha
Pl e
} v o Wi il e] 1 iy “Wnﬁ-’“-g'“m
mmﬂﬁhhm:ﬂhqmui
Note that in all these queries, layout styles are T ot -
. . . s
defined in relation to the display area of the e e
browser window. More generically, they are ﬂ.‘.ﬁw rarr mm P hacernlty
defined in relation to the display area e
. . . . Wi o S e Tt apply = e =i, el T
available to the document in any medium in T e ey | B

which it is rendered. That means that if a [L D

printer, for example, is used to print the

document and it has an available display area Figure 7-6: Single-column layout, which shows below
784 pixels wide, then the two-column layout 500 pixels.

will be for printing.

THE (NEAR) FUTURE

To restrict the column shifting to screen media only, alter the queries, like so:

@media screen and (min-width: 800px) {...}
@media screen and (min-width: 500px) and (max-width: 799px) {...}

@media screen and (max-width: 499%px) {...}

But what if you want the three-column layout used in some non-screen media, like print and
TV displays? Then add in those media using commas, like so:

@media print, tv, screen and (min-width: 800px) {...}
@media screen and (min-width: 500px) and (max-width: 799%px) {...}

@media screen and (max-width: 499%ox) {...}

The commas here act as logical ORs, so the first query reads “use these styles on print media
OR TV media OR a display area on a screen medium where the display area is 800 pixels
or more”

And if you want the three-column layout used in all non-screen media? Add a statement to
the first query using the not modifier saying “anything that isn’t screen”

@media not screen, screen and (min-width: 800px) {...}
@media screen and (min-width: 500px) and (max-width: 799%px) {...}

@media screen and (max-width: 499%px) {...}

As before, the comma joins the two in an OR statement, so it reads as “anything not on a
screen medium OR a display area on a screen medium where the display area is 800 pixels
or more.”

There is also an only modifier, so that a query can say something like only print oronly
screen and (color).As of this writing, not and only are the only modifiers in media
queries.

You aren't restricted to pixels for the previous queries, by the way. You can use ems, centim-
eters, or any other valid length unit.

Table 7-1 shows all the query terms that can be used in constructing media queries. Note that
almost all of these terms accept min- and max- prefixes (for example, device-height also
hasmin-device-height and max-device-height cousins). The exceptions are
orientation, scan,and grid.

Table 7-1 The base media query terms

Term Description
width The width of the display area (e.g., a browser window).
height The height of the display area (e.g., a browser window).

continued

CUTTING EDGE

Table 7-1

(continued)

Term

Description

device-width

device-height

orientation

aspect-ratio

device-aspect-ratio

color

color-index

monochrome

resolution

scan

grid

The width of the device's display area (e.g., a deskiop monitor or
mobile device display).

The height of the device's display area.

The way the display is oriented; the two values are portrait and
landscape.

The ratio of the display area’s width to its height. Values are two inte-
gers separated by a forward slash.

The ratio of the device display’s width fo its height. Values are two
infegers separated by a forward slash.

The color bitdepth of the display device. Values are unitless integers
which refer to the bit depth. If no value is given, then any color display
will match.

The number of colors maintained in the device's “color lookup table.”
Values are unitless infegers.

Applies to monochrome (or grayscale] devices.

The resolution of the device display. Values are expressed using units
dpi or dpcm.

The scanning type of a “TV" media device; the two values are progres:
sive and interlace.

Whether the device uses a grid display (e.g., a TTY device). Values are
Oand 1.

STYLING OCCASIONAL CHILDREN

There are times when you may want to select every second, third, fifth, eighth, or thirteenth
element in a series. The most obvious cases are list items in a long list or rows (or columns) in
a table, but there are as many cases as there are combinations of elements.

Consider one of the less obvious cases. Suppose you have a lot of quotes that you want to float
in a sort of grid. The usual problem in these cases is that quotes of varying length can really
break up the grid, as evident in Figure 7-7.

A classic solution here is to add a class to every fourth div (because that is what encloses
each quote) and then clear it. Rather than clutter up the markup with classes, though, why
not select every fourth div (see Figure 7-8)?

.quotebox:nth-child (4n+1)

{clear: left;}

THE (NEAR) FUTURE

o L

o ulak &1 i [Lhidkdrrm mall w T cmad vl
vl e LS b ey e el ol Sl ik bt L Dkl o i i
Eallsl ma rham rmbai o chlldnan, aad ha warriad rhings v ka5 il aboald
BN impresion . repeemn, o pusicdod b e ke play amorigst kealy
o, (RS HRT] ol i thiop o i o
g i e b i P
smimd bl b Bvbard [Fame
S s
1o eF p mm e
et ol ke
[o vt v e e
ol b
Sdrac Bl
Thi paiwaly of Tl Lulorek bats Boradt T bl Fu v & s wd shddne L
und by Li 5 apbare Dl ey ol BT el S = by ks dem ca
o et oy I il e i g o (e e on e than b o, pui =mm
Fr pereided e, e oy e i = pbr meypaiinen tor
i chinn ol ol . e
[, e
Aoy b e F L T
LRl = Tha corowd. Indermling
Enprodicabin. Y i e
Brees lipars mha Erern oM e for Uy
s e Ly 've Erll a1 g e i
ol il pwiln bl o
3 M T
T e
[Vi il ren. wha e 3
Figure 7-7: The problem with floating variable-height elements.
. Talsl WL e]
Al pen e Wea wel i v b e [hlkdren will ret Tha e, wileciovn
. Whsioe Bp = b ey o il roeczierro e il w! pdmrion. s 1
alls v fvem. walas rxrchidrz. el ibe mwresinl i e ikt el phomald
uE preeden, Eﬂﬁwd L-h.lhrlk plar mmagyt by
T e U BEF =T A e |
pirm- e .
sl d sl b, dimbeed L Framn — — —
|
Lot e pi o miemiE The pazrai ol Tmia Chidrme T e
e o win . bty b om b o vy g i e Ty i
o n maer for o i = e hhh— n-drrrh“ll-
- L profvlrre in
- s vrvma i il i e w aff -mLHLEl-hb e
L
Ly T s B ft
¥pa il Chillin Th [ra— nk
o b iy i eapradcuile. Toa IS Colas o childeen. They
ke sl P TS it v whis Eom chiidwa, for thay s O s 2
serpoadiny ga dalr Iecainaany sl . ey oo s of LI
LT ping i rehs . I CEN PR larging for i Thay
L o 6 By [T e Tasls o whrwagh e b
ITERAE T o fren P nad
emgh ey wrr wilh
Pt oy g,
i fm e
Rttty
[' e dabgha s L || How paramoa nl e | | i o s bt il o v e | :

Figure 7-8: Clearing every fourth child.

CUTTING EDGE

A quick explanation of the 4n+1 part.

= 4n means every element that can be described by the formula 4 times n, where n
describes the series 0, 1, 2, 3, 4... .That yields elements number 0, 4, 8, 12, 16, and so on.
(Similarly, 3n would yield the series 0, 3, 6,9, 12... .)

= But there is no zeroth element; elements start with the first (that is, element number 1).
So you have to add + 1 in order to select the first, fifth, ninth, and so forth elements.

Yes, you read that right: the :nth-child () pattern starts counting from 0, but the elements
start counting from 1. That's why + 1 will be a feature of most : nth-child () selectors.

The great thing with this kind of selector is that if you want to change from selecting every
fourth element to every third element (see Figure 7-9), you need only change a single number.

.quotebox:nth-child(3n+1l) {clear: left;}

Lilals) g pillp Frnfun =

-
St are ke e Wit oy ey g Chtirmn sl et
o Whatrar wp o b ey el wexwrs ey e dor i
allks ooy ey e wur ikl e matrrial thingy e
an mpowios o ingporiesi ol et for L
A jlsmvon all thr thing = rm i ywn
gre thmais -:llrr:w.llhn
enarigors] kar Fisdomi | inere
i R
Thw st e fwativw Lt s pann iy ke Tl praralt o oot
Ik o i acadinn B i e B il T 1y b aphare
ehar 5 s awall B i sl oalew e of mxdviry e which we
il el gl loaly i e prE i
P Sl wowraald ikldmn ol
Fig= &l e L
R imgm
CalkSren bave raver T ool wl v E o, e clildnen
Ul oy e 2 shldnn aratevle La e e el i .
Saaed g 1 ekl y rerdrber cathe das b el Pl e
e, T ey barvw il e L6 e gl iy o theslr
v e o irmiass Erper Liwin bkl
Mg v B
ey s
[="a % T T rmicait. Ll Toomr shlldocn e ol
el Tod s ywar ke, Thasy
v T il B chliras, S oy e thas sols ared
Bm ity thed e el ol s T e ol o LiEs's
il - bk ek b [T Uiy Ao sl L Ty

Figure 7-9: Clearing every third child.

That might seem pretty nifty on its own, but it gets better. If you combine this approach with
media queries, you get an adaptable grid-like layout (see Figure 7-10).

@media all and (min-width: 75.5lem) {
.quotebox:nth-child(5n+1l) {clear: left;}

THE (NEAR) FUTURE

@media all and (min-width: 60.0lem) and (max-width: 75em) {
.quotebox:nth-child (4n+1l) {clear: left;}

}

@media all and (min-width: 45.5lem) and (max-width: 60em) {
.quotebox:nth-child(3n+1l) {clear: left;}

}

@media all and (min-width: 30.0lem) and (max-width: 45.5em) {
.quotebox:nth-child(2n+1) {clear: left;}

}

@media all and (max-width: 30em) {
.quotebox {float: none;}

Ll gl e (= T e T S m——emns 0 weE
[e e s———— -
. . ——s e e . —
I ey r—ren) "8 . =g}
— =
— = 4 =] == ——
. e =y == —a
. =5 -
rmra Al i i b, ey i ——— e
- r
v ma ramw
I e o e e e e Ep——— —_— == =k mmr e
i e T == — === — [——-
Lo —— — .| -
——— ———— b == amrm——
e S = = =
1 1
ey T —. == =~y '
emambes pn F i vl ol ek i [it i T =iy ==im |t
r=pn [1 == e
Fanal e et P el el — - —r—} - L - ——
= [
g Jad rea doar 1T
derahed ham e =
L . .
.
I
b i T ek e Ve paret A vk
e bl e wa
e b b B
wran M o el
— v iy a2
et b
it [t
j —
ks, ‘v oy rkiegm e -
| il | | Pt .

Figure 7-10: Two views of an adaptable floated grid.

Note that this particular set of queries is based on the width of the display area of the browser
as measured in ems. That helps make the layout much more adaptable to changes of text size
and browser window.

If you're interested in selecting every other element—say, every other table row—there are
some more human alternatives to 2n+1. You can select even-numbered or odd-numbered

children using :nth-child (even) and :nth-child (odd), as in this example.

tr:nth-child(odd) {background: #EEF;}

STYLING OCCASIONAL COLUMNS

It’s easy enough to select alternate table rows for styling, but how about table columns?
Actually, that’s just as easy, thanks to the :nth-childand :nth-of-type selectors.

CUTTING EDGE

In a simple table with rows consisting of nothing but data cells (those are td elements), you
can select every other column like so (see also Figure 7-11):

td:nth-child (odd) {background: #FED;}

Jan Fal Mar Apr My Jum Jul
SOl ST ME 1430 S0 DE SIA0EY R16dY Als A
R AR WAH 30 WaAT AN WA WA
.70 EL11} 03T ®3TU E}H] 53371 2EN
31457 Al SRR A1 Sa a3 s s
507 STy s HE FIRN ET a5 A0 4,197
IOH IO ST NOEY WSl I0SeT MO
SEVEN] BITATE BIZAM LR HILEW Bl LI
FI8A% A2 RIEET SESTI: MA0NT RISRTEL S16001
TEZH1 JRSIP RAE [0 A AT mn
54 205 S4OEF S B EE £4.555 SER AT
T30 WETAET WD WL MR REJIR WA

Figure 7-11: Styling the odd-numbered columns.

Want to fill in the alternate ones, as in Figure 7-12? Easy-peasy!

td:nth-child (odd) {background: #FED;}
td:nth-child (even) {background: #DEF;}

If you're after every third (Figure 7-13), fourth, fifth, or similarly spaced-out interval, then you
need the n+1 pattern.

td:nth-child (3n+1) {background: #EDF;}

™ Pk Blr Ape My Im Tl
SIIM0 GILME SI301 SIT200 SI60ET SIROD SIGADS
SME EBAM SI00%5 SRATD SOAS SNA0S A
BMT BMD I SATL WO S1AT SR
SLBST END0Y SDEED ALAWD SIME S13W S10W
MM ETIS SEME STAN STEM SIOE SEaNT
Wms SIET S1OWE SMOZE] SGAEE SI0SAT %I0300
BINGE BILSM SIZERE SILSGE BIZUMD BALGGY 11243
SISESE BIADIG SIGEET SISTED SISMT SISP84 SI6800
WIS AN 4T 53010 MR SELT T
HER MR BIED SREE BRI 5NA19 AT
HOMD BRI LA SS0AI BELIES BMUB A

Figure 7-12: Styling hoth odd- and even-numbered columns.

THE (NEAR) FUTURE

Tan Feh Mar Apr Ty Tim Iidl
18 FEF JHON BTME 3T RIRDR Rla4M
841 W\EM SHI3Y BRATE WHEM Eh 01 = E0|
LI MmIT MY Tl mmz Ba REN
B3 R300E §1.45] e (R T B4l 51535
BT 2R 11 AL AT E 2] I} B0
800N HI0ET 1L RIDIEY M S EHSRY 10300
TI0EI} BI2a78 SILEM RIS BI,IE IS4 R34
B8Rl 1A SIRORY SISTIE SBSOIT BI3JE SISD0O0
SEE s 0w Shaas Sfas A S 5T S5 07
LAm e 54,353 HEE BN Sharlk HEATY
SELMD TN MO WOAER 53,08 SN dmadan

Figure 7-13: Styling every third data column.

That’s all relatively straightforward. Now, what happens when you put a th at the beginning of
each row? In one sense, nothing. The columns that are selected don’t change; you're still
selecting the first, fourth, seventh, and so on children of the t r elements. In another sense,
the selected columns are shifted, because youre no longer selecting the first, fourth, seventh,
and so on data columns. You're selecting the third, sixth, and so on data columns. The first
column, which is composed of th element, doesn't get selected at all because the selector only
refers to td elements (see Figure 7-14).

R Fiels Mar Agsr M I LT Isl
FEEME MDD RIS NTIE FlDET BIAET DA
FIELEME WS WEM DR BAETD AN WAD FaE
FIELEN R i BIAT 3 W 8 s
FIEE-ADT 3 BS7 fadoc prd g 32580 F158T p i SLEFR
FiEs-all AT AT B 821EN 3TAM 0 BROE BE
FIEE-A11 M= AT 11T NI WEA E 1L R]
Al W0ED SIESH §IRAH ML 3100 SIGE §iEE
Fidaadd W5E% AIEdF Re0dd faEME diede? SIATE Beanin
FIFRLCIT M348 ot] LA 1AM w0 WIST 13347
FiEaCl s WS AN MR NI SR BT
[Ay ELITY LG PR DERGIEY LAY hEaAS

Figure 7-14: Disrupting the pattern with row headers.
To adjust, you could change the terms of the : nth-child selector (see Figure 7-15).
td:nth-child (3n+2) {background: #EDF;}

Alternatively, as shown in Figure 7-16, you could keep the original pattern and switch from
using :nth-childto :nth-of-type.

td:nth-of-type (3n+l) {background: #FDE;}

CUTTING EDGE

EOTEM WIB HIME HAWI] NTEE JADE A AleAM
BTN WY WEM L0 N WAN A |
BTN W WL W07 B0 DR 5L E2EN
BT WA WA REE RS0 NRr Do SLEm
AL WET W2N MR E2 TEM mOD ST
EEN-AL] WS HIET O HILTH NEr W DD AInTE
AL WOEN BT HREM BNSEE SIZIM Sliged EIHA
BT WNEW TMIW WMAMMT ERLFIE SIAOIT SIE7Ed EIADOD
ERCIT RS AR s Blde EAR BT BRMT
EEALCEE WEM MMM MEY SR MM AT BT

Teisl | WAL HTITE WO | JELSE SSIIEY YALIN SEEN

Figure 7-15: Restoring the pattern by adjusting the selection formula.

Jas Fel Mar ApE Wiy ban Jel

ET-AM Nl B0 SII JI4d TSR BGOET RIEAEE NIEAE
ETAE WM WEM SIDO AT WS a1
bR KT BT BT B Wes A KA
L ZE L O F - a] EAT LR Lo 12 ¥ i I8 ik
ATl Y AR Bl BTED s 0D W
EE-AL I BIIETT 311.TE] LSRR HERS THMI IHIN
ETE-ADl FHOATE BT SIZAM SOl O RILSS RN 3A
IEAIY SI3AM KI6IM §leidT BRERTIT WGAIT R13084 KlE0a)
ERCH? M Wy s BTG SR W5 W)
ENR-CEE BN TAED SAOE SEEE 0 WA WA HAT
Tl 1 LET M WO BEAR JEEE AN AN

Figure 7-16: Restoring the pattern with : nth-of-type.

This works because it selects every nth element of a given type (in this case, td elements)
that shares a parent element with the others. Think of it as : nth-child that also skips any
elements that aren’t named in the : nth-child selector.

RGB ALPHA COLOR

Color values are probably one of the most familiar things in all of CSS; some people are to the
point of being able to estimate a color’s appearance based on its hexadecimal representation.
(Go on, try it: #E07713.) It’s not quite as common to use the rgb () notation for colors, but
they’re still pretty popular.

In CSS 3, the rgb () notation is joined by rgba () notation. The a part of the value is the
alpha, as in alpha channel, as in transparency. Thus you can supply a color that is partly
see-through (see Figure 7-17).

.boxl {background: rgb(255,255,255);}
.box2 {background: rgba(255,255,255,0.5);}

THE (NEAR) FUTURE

L als] i a fnae

Figure 7-17: Boxes with opaque and translucent RGB backgrounds.
You can also use the percentage form of RGB color values in RGBA.

.boxl {background: rgb(100%,100%,100%);}
.box2 {background: rgba(100%,100%,100%,0.5);}

The alpha value is always represented as a number between 0 and 1 inclusive, with 0 meaning
“no opacity at all” and 1 meaning “fully opaque.” So half-opaque (and thus half-transparent)
is 0. 5. You can’t put a percentage in there for historical reasons that are too messy to get into
here.

If you supply a number outside the 0 to 1 range, it will (in the words of the specification) be
“clamped” to the allowed range. So if you give an alpha value of 4. 2, the browser will treat it
as if youd written 1. Also, it isn’t clear what should happen when an alpha of 0 is used. Since
the color is fully transparent, what will happen to, say, invisible text? Can you select it? If it’s
used on a link, is the link clickable? Both are interesting questions with no definitive answers.
So be careful.

CUTTING EDGE

RGBA colors can be used with any property that accepts a color value, such as color and
background-color. To keep older browsers from puking on themselves, it’s advisable to
supply a non-alpha color before the alpha color. That would take a form like so:

{color: #000; color: rgba(0,0,0,0.75);}

The older browsers see the first value and know what to do with it. Then they see the second
value and don’t know what to do with it, so they ignore it. That way, at least older browsers get
black text. Modern browsers, on the other hand, understand both values and thanks to the
cascade, override the first with the second.

Note that there is no hexadecimal form of RGBA colors. Thus, you cannot write #00000080
and expect half-opaque black.

HSL AND HSL ALPHA COLOR

A close cousin to RGBA values are the HSLA values, and an even closer cousin to them are
HSL colors. These are new to CSS 3, and will be a delightful addition to many designers.

For those not familiar with HSL, the letters —
stand for Hue-Saturation-Lightness. Even if

you didn’t know the name, you’ve probably

worked with HSL colors in a color picker

such as that shown in Figure 7-18. |

Figure 7-19 represents a few tables to give an]

idea of how the various pieces of HSL work

together.

The hue is represented as a unitless number

corresponding to the hue angle on a color

wheel. Saturation and lightness are both 4

percentages, and alpha is (as with RGBA) a
number between 0 and 1 inclusive. In Figure 7-18: An HSL color picker.

practice, you can use HSL colors anywhere a

color value is accepted. Consider the follow-

ing rules, which create the equivalent effect to that shown in Figure 7-17 (as demonstrated by
Figure 7-20).

.boxl {background: hsl (0,0%,100%);}
.box2 {background: hsla(0,0%,100%,0.5);}

You can do old-browser fallbacks with regular RGB values, though having to specify an RGB

color and then HSL color does sort of detract from the point of using HSL in the first place.
HSL allows you to get away from RGB altogether.

THE (NEAR) FUTURE

Hiiin

Sxursmarn

100

10T BT B s B DR A 0% JMe WS TR

fr

Lig s s
paddaEiaNgEg

o = 1

Hisi
& 40 B0 130 180 200 240 250 T30 3D

Figure 7-19: Various HSL color tables.

Figure 7-20: Boxes with opaque and translucent HSL backgrounds.

CUTTING EDGE

SHADOWY STYLES

Ah, drop shadows. Remember drop shadows? In the mid-90’s, everything had a drop shadow.
Of course, back then the shadows were baked into images and constructed with tables even
more tortuously convoluted than usual. Now you can relive the glory days with some fairly
simple CSS.

There are actually two properties available: text-shadow and box-shadow. Take the
former first. The following CSS will result in the image shown in Figure 7-21.

hl {text-shadow: gray 0.33em 0.25em 0.lem;}

The first length (0 . 33em) indicates a horizontal offset; the second (0 . 25em), a vertical offset.
The third is a blur radius, which is the degree by which the shadow is blurred. These values
can use any length unit, so if you want to do all your shadow offsets and blurs in pixels, go to
town. Blurs can’t be negative, but offsets can: A negative horizontal offset will push the
shadow to the left, and a negative vertical offset will go upward.

Running Between the Shadows.

Figure 7-21: Dropping shadows from a heading.

You can, as in Figure 7-22, even have multiple shadows! Of course, whether you should is a
matter of opinion.

hl {text-shadow: gray 0.33em 0.25em 0O.lem, -10px 4px 7px blue;}

Note that the color of a shadow can come before all the lengths or after them, whichever you
prefer. Note also that the CSS 3 specification says that the first shadow is “on top,” which is
closest to you. Shadows after that are placed successively further away from you as you look at
the page. Thus, the gray shadow is placed over the top of the blue shadow.

Now to shadow boxes (see Figure 7-23). It’s pretty much the same drill, only with a different
property name.

hl {box-shadow: gray 0.33em 0.25em 0.25em;}

‘Running Between the Shadows

Figure 7-22: A heading with multiple shadows.

THE (NEAR) FUTURE

Running Between the Shadows i

Figure 7-23: Shadowing the element box of a heading.

Even though there’s no obvious element box for the h1, a shadow is generated anyway. It’s also
drawn only outside the element, which means that you can't see it behind/beneath the
element, even when the element has a transparent (or, with RGBA colors, semi-transparent)
background. The shadows are drawn just beyond the border edge, so youre probably better
off putting a border or a visible background (or both) on any shadowed box.

You can have more than one box shadow, as depicted in Figure 7-24, just like you can with
text shadows.

hl {box-shadow: gray 0.33em 0.25em 0.25em, -10px 2px 6px blue;}

JRunning Between the Shadows I

Figure 7-24: Multiple shadows on the element hox of a heading.

Here’s where I have to admit a small fib: The previous examples are the ideal cases. As of this
writing, they wouldn't actually work in browsers. In fact, the figures were produced using a
different syntax than whats shown in the text. As of mid-2010, to make the single-shadow
example work, youd actually need to say:

hl {-moz-box-shadow: gray 0.33em 0.25em 0.25em;
-webkit-box-shadow: gray 0.33em 0.25em 0.25em;
box-shadow: gray 0.33em 0.25em 0.25em;}

That will cover all modern browsers as of mid-2010. Over time, the need for the prefixed
properties (-moz- and —webkit-) will fade and you'll be able to just write the single
box-shadow declaration. When exactly will that happen? It all depends on your design, your
site’s visitors, and your own sense of comfort.

If you also want to get drop shadows on boxes in older versions of Internet Explorer, then
you’ll need to add in the IE-only Shadow filter. See http://robertnyman.com/
2010/03/16/drop-shadow-with-css-for-all-web-browsers/ for details.

MULTIPLE BACKGROUNDS

One of the really nifty things in CSS 3 is its support for multiple background images on a
given element. If you've ever nested multiple div elements just to get a bunch of background
decorations to show up, this section is for you.

CUTTING EDGE

Take, for example, this simple set of styles and markup to present a quotation, the result of
which is shown in Figure 7-25:

body {background: #COFFEE; font: lem Georgia, serif; padding: lem 5%;}
.quotebox {font-size: 195%; padding: 80px 80px 40px; width: l6em; margin: 2em
auto;

border: 2px solid #8D7961; background: #FFF;}

.quotebox span {font-style: italic; font-size: smaller; display: block;
margin-top:

0.5em; text-align: right;}

<div class="quotebox">

One’s mind has a way of making itself up in the background, and it suddenly

becomes clear what one means to do.

—Arthur Christopher Benson

</div>

One's mind has a way of making
itself up in the background, and it
suddenly becomes clear what one

means to do.
—Artfr Christopher Bemrson

Figure 7-25: Setting up the quotation’s hox.

Now, adding a single background image (as in Figure 7-26) is no big deal. Everyone has done
it about a zillion times.

.quotebox {background: url (bg0l.png) top left no-repeat; background-color: #FFF;}

Cme's mind has a way of making
itself up in the background, and it
suddenly becomes clear what one
means to do.

—dArthur Christopher Benson

Figure 7-26: Adding a single background.

THE (NEAR) FUTURE

But what if you want a little quarter-wheel in every corner (see Figure 7-27)? Previously, you
would have nested a bunch of divs just inside the quotebox div. With CSS 3, just keep
adding them to the background declaration.

.quotebox {background:
url (bg0l.png) top left no-repeat,
url (bg02.png) top right no-repeat;
background-color: #FFF;}

%

One’s mind has a way of making
itself up in the background, and it
suddenly becomes clear what one
means to do.

—Artiner Christopher Hansan

Figure 7-27: Applying two backgrounds to the sume element.
Comma-separate each background value to get multiple backgrounds (see Figure 7-28).

.quotebox {background:

url (bg0l.png) top left no-repeat,

)

url (bg02.png) top right no-repeat,
url (bg03.png) bottom right no-repeat,
url (bg04.png) bottom left no-repeat;

background-color: #FFF;}

Ome’s mind has a way of making

itself up in the background, and it

suddenly becomes clear what one

means to do.)
s L —dArthur Christopher Benson ﬁ

Figure 7-28: Applying four backgrounds to a single element.

The effect here is extremely similar to nesting a bunch of divs. It’s just that with CSS 3, you
don’t have to bother any more.

CUTTING EDGE

That similarity extends into the way background are composited together. You may have
noticed that I split out the background-color declaration in order to have a nice flat white
behind all the images. But what if you wanted to fold it into the background declaration?
Where would you put it? After all, each of these comma-separated values sets up its own
background. Put the color in the wrong place, and one or more images will be overwritten by
the color.

As it turns out, the answer is the last of the values.

.quotebox {background:
url (bg0l.png) top left no-repeat,
url (bg02.png) top right no-repeat,
url (bg03.png) bottom right no-repeat,
#FFF url (bg04.png) bottom left no-repeat;}

That’s because the multiple background go from “highest”—that is, closest to you as you look
at the page—to “lowest”—furthest away from you. If you put the color on the first back-
ground, it would sit “above” all the others.

This also means that if you want some kind of patterned background behind all the others (as
in Figure 7-29), it needs to come last and you need to make sure to shift any background color
to it.

.quotebox {background:
url (bg0l.png) top left no-repeat,

url (bg02.png) top right no-repeat,

url (bg03.png) bottom right no-repeat,

url (bg04.png) bottom left no-repeat,

#FFF url (bgparch.png) center repeat;}

One's mind has a way of making
itself up in the background, and it
suddenly becomes clear what one
means to do.

E‘@ : —Arthur Christopher Benson

Figure 7-29: One element, five backgrounds.

THE (NEAR) FUTURE

Because of the possible complexities involved, I prefer to split any default background color
into its own declaration, as shown earlier. Thus I'd write the preceding as:

.quotebox {background:
url (bg0l.png) top left no-repeat,
url (bg02.png) top right no-repeat,

url (bg04.png) bottom left no-repeat,

()
()
url (bg03.png) bottom right no-repeat,
()
url (bgparch.png) center repeat;

background-color: #FFF;}

When you use the separate property, the color is placed behind all the images and you don’t
have to worry about shifting it around if you reorder the images or add new images to the pile.

You can comma-separate the other background properties such as background-image. In
fact, an alternate way of writing the preceding styles would be:

.quotebox {
background-repeat: no-repeat, no-repeat, no-repeat, no-repeat, repeat;
background-image: url (bg0l.png), url(bg02.png), url (bg03.png), url(bgl04.png),
url (bgparch.png) ;
background-position: top left, top right, bottom right, bottom left, center;
background-color: #FFF;}

Different format, same result. This probably looks more verbose, and in this case it really is,
but not always. If you drop the parchment background, which would result in the screenshot
shown in Figure 7-30, then you could simplify the first declaration quite a bit:

.quotebox {
background-repeat: no-repeat;
background-image: url (bg0l.png), url(bg02.png), url(bg03.png), url(bgl04.png);
background-position: top left, top right, bottom right, bottom left;
background-color: #FFF;}

One's mind has a way of making
itself up in the background, and it
suddenly becomes clear what one
means to do.

=Artfur Christopher Berson

L

Figure 7-30: Similar background, alternate syntax.

CUTTING EDGE

Given those styles, none of the background images would be repeated, because the single
no-repeat is applied to all the backgrounds that are assigned to the element. The only
reason you had to write out all the repeat values before was that the first four have one value
and the fifth had another.

And if you were to write two values for background-repeat?

.quotebox {
background-repeat: no-repeat, repeat-y;
background-image: url (bg0l.png), url(bg02.png), url(bg03.png), url(bgl4.png);
background-position: top left, top right, bottom right, bottom left;
background-color: #FFF;}

In that case, the first and third images would not be repeated, whereas the second and fourth

images would be repeated along the y axis. With three repeat values, they would be applied to
the first, second, and third images, respectively, whereas the fourth image would take the first
repeat value.

2DTRANSFORMS

If you've ever wanted to rotate or skew an element, border, and text and all, then this section
is definitely for you.

First, though, a word of warning: In order to keep things legible, this section uses the unpre-
fixed version of the trans form property. As of this writing, doing transforms in a browser
actually would require multiple prefixed declarations, like so:

-webkit-transform: ..;
-moz-transform: ..;
-o-transform: ..;
-ms-transform: ..;

transform: ..;

That should cease to be necessary in a year or two (I hope!) but in the meantime, keep in
mind as you read through this section that it’s been boiled down to the unprefixed version for
clarity.

Time to get transforming! Possibly the simplest transform to understand is rotation (see
Figure 7-31). (In the next and subsequent figures, the dashed red lines indicate where the

transformed elements were placed before their transformations.)

.boxl {-moz-transform: rotate(33.3deqg);}

.box2 {-moz-transform: rotate (-90deg);}

THE (NEAR) FUTURE

= £4

Figure 7-31: Rotated element boxes. The red dashes show the original placement of the elements before their rotation.

In a sense, transforming is a lot like relative positioning: The element is placed normally and
then transformed. You can transform any element at all, and in the case of rotation can use
any real-number amount of degrees, radians, or grads to specify the angle of rotation. If
you've ever wanted to rotate your blog by e radians or 225 grads, well, now’s your chance.

As you no doubt noticed, the boxes in the preceding example were rotated around their
centers. That’s because the default transformation origin is 50% 50%, or the center of the

element. You can change the origin point using t ransform-origin (see Figure 7-32).

.boxl {transform: rotate(33.3deg); transform-origin: bottom left;}

.box2 {transform: rotate(-90deg); transform-origin: 75% 0;}

CUTTING EDGE

L Al o iy Crefan L=

— re

Figure 7-32: Elements rotated around points other than their centers.

Two notes: First, negative angles can be equivalent to positive angles. Thus, 270deg is
equivalent to —90deg in the final positioning of the element, just as 0deg and 360deg are
the same. Second, you can specify angles greater than the apparent maximum value. If you
declare 540deg, the elements final rotation will look exactly the same as if youd declared
180deg (as well as ~180deg, 900deg, and so on). The interim result may be different if you
also apply transitions (see next section), but the final “resting” state will be equivalent.

Almost as simple as rotation is scaling, an example of which is depicted in Figure 7-33. As you
no doubt expect, this scales an element up or down in size, making it larger or smaller. You
can do this consistently along both axes, or to a different degree along each axis.

.boxl {transform: scale(0.5);}
.box2 {transform: scale(0.75, 1.5);}

THE (NEAR) FUTURE

[remeemssscsssscss e ———

Figure 7-33: Scaled elements.

One scale () value means the element will be scaled by that amount along both the x and y
axes. If there are two values, the first specifies the horizontal (X) scaling, and the second, the
vertical (Y) scaling. Thus, if you want to leave the horizontal axis the same and only scale on
the y axis, do this:

.boxl {transform: scale(0.5);}

.box2 {transform: scale(l, 1.5);}
Alternatively, you can use the scaleY () value.

.box1l {transform: scale(0.5);}

.box2 {transform: scaleY(1l.5);}
Regardless of which particular path you choose, Figure 7-34 is the end result.

Along the same lines is the scaleX () value, which causes horizontal scaling without
changing the vertical scaling (see Figure 7-35).

.boxl {transform: scaleX(0.5);}

.box2 {transform: scaleX(1.5);}

CUTTING EDGE

L Anls e P =

= LA B

Figure 7-34: Two scaled elements, one scaled only on the Y axis.

L Lals] Wimrids, o bem

Rl o

Figure 7-35: Two scaled elements, one scaled only on the X axis.

THE (NEAR) FUTURE

When writing CSS yourself, it seems most convenient to just stick with scale () and fill in
a 0 for the horizontal any time you want a purely vertical scaling. If you're programmatically
changing the scaling via DOM scripting, it might be easier to manipulate scaleX () and
scaleY () directly.

As with rotation, you can affect the origin point for scaling. This allows you, for example, to
cause an element to scale toward its top-left corners instead of shrink down toward its center
(see Figure 7-36).

.boxl {transform: scale(0.5); transform-origin: top left;}

.box2 {transform: scale(l.5); transform-origin: 100% 100%;}

R 2R

Figure 7-36: Two scaled elements, each with a different scaling origin.

Similarly simple is translation. In this case, it isn’t changing the language from one to another,
but “translating” a shape from one point to another, as in Figure 7-37. It’s an offset by either
one or two length values.

.boxl {transform: translate (50px);}

.box2 {transform: translate (5em, 10em);}

CUTTING EDGE

L azks) Sy b
B - e O fm b ke + M - G+

L Eo -

Figure 7-37: Translated elements.

Again, this is very much like relative positioning. The elements are placed normally and then
transformed as directed.

When there’s only one length valueina translate () value, it specifies a horizontal
movement and the vertical movement is assumed to be zero. If you just want to translate an
element up or down, you have two choices. First is to simply give a length of 0 for the

horizontal value.

.boxl {transform: translate(0,50px);}

.box2 {transform: translate (5em,10em) ;}
The other is to use the value pattern translateY ():

.boxl {transform: translateY (50px);}

.box2 {transform: translate (5em, 10em);}
Either way, you get Figure 7-38 as a result.

Thereis alsoa translateX (), which does about what youd expect: moves the element
horizontally.

THE (NEAR) FUTURE

= £2

Figure 7-38: Two differently translated elements.

While you can declare a transform-origin in cases where you're just translating, it doesn’t
matter all that much whether you do so. After all, whether an element’s center or top-left
corner is pushed 50 pixels to the right doesn't really matter. The element will end up in the
same place either way. But that’s only true if all you're doing is translating. If you do anything
else at the same time, like rotate or scale, then the origin will matter. (More on combining
transforms in a bit.)

The last type of transformation, skewing, is slightly more complex, although the method of
declaring it is no more difficult than you've seen so far. Skewing an element distorts its shape
along one or both axes (see Figure 7-39).

.boxl {transform: skew (23deqg);}
.box2 {transform: skew(1l3deg,-45deqg);}

If you provide only a single value for skew (), then there is only horizontal (X) skew, and no
vertical (Y) skew. As with translations and scaling, there are skewX () and skewY () values
for those times you want to explicitly skew along only one axis (see Figure 7-40).

.boxl {transform: skewX(-23deg);}
.box2 {transform: skewY (45deqg);}

CUTTING EDGE

= o

Figure 7-39: Two skewed elements.

LRl Mg By Fogiom

L L

Figure 7-40: Two elements, each one skewed along a different axis.

THE (NEAR) FUTURE

Here’s how skewing works: Imagine there are two bars running through the element, one
along each of the x and y axes. When you skew in the x direction, the y axis is rotated by the
skew angle. Yes, the y (vertical) axis is the one that rotates in a skewX () operation. Positive
angles are counterclockwise, and negative angles are clockwise. That’s why the first box in the
preceding example appears to tilt rightward: The y axis was tilted 33.3 degrees clockwise.

The same basic thing happens with skewY () : The x axis is tilted by the specified number of
degrees, with positive angles tilting it counterclockwise and negative angles tilting clockwise.

The interesting part here is how the origin plays into it. If the origin is in the center and you
provide a negative skewX (), then the top of the element will slide to the right of the origin
point while the bottom will slide to the left. Change the origin to the bottom of the element,
though, and the whole thing will tilt right from the bottom of the element (see Figure 7-41).

.boxl {transform: skewX(-23deqg);}

.box2 {transform: skewY(-23deg); transform-origin: bottom center;}

Lo Rals] L LT
i o

iy Chslel © W< B o e - Wl ¢ Mkl - Qo - R

=1

Figure 7-41: Two skewed elements, each with a different skewing origin.

Similar effects happen with vertical skews.

CUTTING EDGE

So those are the types of transforms you can carry out. But what if you want to do more than
one at a time (see Figure 7-42)? No problem! Just list them in the order you want them to
happen.

.boxl {transform: translateX(50px) rotate(23deg);}

.box2 {transform: scale(0.75) translate (25px,-2em);}

o fr_

Figure 7-42: Multiple transforms in action.

In every case, the transforms are executed one at a time, starting with the first. This can make
a significant difference. Consider the differing outcomes of the same transforms in different
orders (see Figure 7-43).

.boxl {transform: rotate(45deg) skew(-45deqg);}
.box2 {transform: skew(-45deg) rotate(45deqg);}

There is one more transformation value type to cover: matrix (). This value type allows you
to specify a transformation matrix in six parts, the last two of which define the translation.

Here’s a code example, which is then illustrated in Figure 7-44.

.boxl {transform: matrix(0.67,0.23,0,1,25px,10px);}
.box2 {transform: matrix(1,0.13,0.42,1,0,-25px);}

THE (NEAR) FUTURE

LRl Wi Trwfes —

L EL =

Figure 7-43: The differences caused by transform value ordering.

L Nl LR o

= LA,

Figure 7-44: Matrix transforms.

CUTTING EDGE

Basically, the first four numbers are a compact form of expressing the end result of rotating,
skewing, and scaling an element, and the last two translate that end result. If you understand
matrix-transformation math, then you’ll love this. If you don’t, don’t worry about it overmuch.
You can get to the same place with the other transform values reviewed in this chapter.

If youd like to learn about matrix transforms, here are two resources:

m http://en.wikipedia.org/wiki/Linear transformation#Examples
of linear transformation matrices

m http://www.mathamazement.com/Lessons/Pre-Calculus/08 Matrices-
and-Determinants/coordinate-transformation-matrices.html

Index

SYMBOLS AND
NUMERICS

* (asterisks)
in selectors, 49
in substring matchers, 59
A (caret), 60
$ (dollar sign), 61
> (greater-than symbol),
63
2D transforms, 256-259,
261-263, 265-266

A

absolute positioning
containing blocks,
152-155
within context, 150-152
of elements, 82-84
lists, 92
accessibility, and visually
impaired users, 81,
83, 86
accessites.org (Web site),
31
adjacent clearing, 118-120

adjusting position
absolute
containing blocks,
152-155
within context,
150-152
of elements, 82-84
lists, 92
fixed, 155-158
in graphs, 224-229
of images, 94, 96, 187
transforms, 257, 262
alanhogan.com (Web site),
106
alistapart.com (Web site),
69, 135, 140
alt text, 86
ancestor-descendant
features. see also child
elements; sibling
elements
elements, 115
selectors
about, 62, 65
line height values,
76-77
anchors, IDs or, 42

angles, negative/positive,
258
AOL Instant Messenger
service links, 62
Apache Software, 106
Apple Safari
Firebug in, 12
rounded corners with,
172,177
table columns in, 211
tools for, 26-28
assistive technologies, 81,
83, 86
asterisks (*)
in selectors, 49
in substring matchers, 59
attributes
editing, 10
selectors
about, 54-56
classes of, 56-57
as ID selectors, 57-58
substrings, 58-62
audio elements, 233
authoring patterns, 57
auto centering, 101
auto sizing, 114, 115

background-position,
182
backgrounds
color, 176
of documents, 103-104
hover effects, 90
images, 85, 131, 160-162
lists with, 92
multiple, 251-256
with sliding doors, 185
backwards-compatibility
browsers, 232-234, 248
columns, 213
bar graphs, 222-230
blind users, 81, 83, 86
block boxes, 110-112
block-level links, 89-90
body, 206-208
bold fonts, 75
borders
about, 78-80
outlines with, 108, 109
pitfalls, 123-124, 211
types of, 79-80
Bowman, Doug (devel-
oper), 127, 182
boxing images, 198-200
boxpunching, 169-172
br element, 117-118
browsers
backwards-compatibility,
232-234,248
Chrome
rounded corners
with, 177
table columns in, 211

compatibility, 172
cross-browser usage
compatibility, 172
consistency, 79-80
element inspection, 29
friendly, 90
CSS, 118
differences, 78-79, 90
Document Object Model
in, 206
Firefox
Firebug in, 12
rounded corners with,
177
Internet Explorer
code for versions 7, 8
and 9, 36
drop shadows, 251
Firebug in, 12
HTTP headers,
105-106
rounded corners with,
172,177,178
table columns in, 212
with Liquid Bleach out-
put, 129
Netscape 4, 90
page zoom, 127
printing styles, develop-
ing, 87-89
with row headers, 210
Safari
Firebug in, 12
rounded corners with,
172,177
table columns in, 211
tools for, 26-28

scaling routines, 200
style differences, 33, 35
table columns in, 211,
213
window display areas,
238,243
built-in styles, 7
bulleted lists, 92-100

C
caching, disabling, 13
caret (1), 60
Cascading Style Sheets
(CSS)
browsers, 118
editing, 10-12
effects. see effects
future developments.
see future
developments
layout techniques
about, 107
absolute positioning,
150-152
adjacent clearing,
118-120
block boxes, 110-112
clearfixing, 117-118
columns, 120-127
containing blocks,
152-155
em-based, 144-147
float containment,
113-116
Fluid Grids, 140-143

footers, 155-158

headers, 155-158

“Holy Grail,” 135-139

Liquid Bleach,
127-131

negative margins,
147-150
one true layout,
131-135
outlines, 108-110
menus, 14, 15, 167-169
parallax, 187-190
popups, 165-167
rounded corners,
172-179
selectors. see selectors
server-specific, 104-106
sprites, 172, 179-182,
185
tables. see tables
tips. see tips
tools. see tools
validation
about, 16
markup language with,
32
tools, 20, 74
case-sensitivity
of attributes, 60
of markup languages, 56
Cederholm, Dan (devel-
oper), 124
centering
block boxes, 110-112
margins, 101
Chaudhari, Nilesh (devel-
oper), 194

child elements
combinators, 62-63, 214
selectors
about, 62-65
line height values,
76-77
styling, 240-243
chrispederick.com
(Web site), 13
Chrome
rounded corners with,
177
table columns in, 211
classes
of attribute selectors,
56-57
displaying, 14-15
in geographic data
mapping, 215
HTML 5, 234-235
IDs and, 50-53, 57
ordering of, 56
in table columns,
213-215
clearfixing, 117-118
clipped sliding doors,
185-187
code.google.com (Web
site), 36, 232
coding
effects
boxpunching, 170-172
complexspiral,
160-161, 164
CSS sprites, 180-181
images, 198-200
menus, 165-169

layout techniques

parallax, 187-190

ragged floats, 192,
194-196

rounded corners,
173-179

sliding doors, 182-187

future developments

2D transforms,
256-259, 261-263,
265-266

color, 246-248

HTML 5, 232-234

media environments,
236-239

multiple backgrounds,
252-256

selective styling, 240,
242-245

shadows, 250-251

absolute positioning,
150-151

adjacent clearing,
118-119

block box centering,
110-111

clearfixing, 117-118

containing blocks,
152-154

em-based layout,
144-147

faux columns, 124-126

float containment,
113-116

Fluid Grids, 141-143

footers, 155-156

headers, 155-156

coding (continued)

“Holy Grail,” 135-139

Liquid Bleach,
128-129, 131

negative margins,
148-149

one true layout,
131-132, 134

outlines, 108

three-column layout,
121-123

two-column layout,
120

selectors

attributes, 54-62

child, 62-64

content generation,
67-69

IDs, 50-51, 53

multiclassing, 53-54

pseudo-classes/
elements, 40-41

shorthand keywords,
45-48

sibling, 65-66

specificity, 43-45

targets with style,
41-43

universal, 49

tables

body, 206-208

columns, 210-214

foot, 206-208

graphs, 222-229

head, 206-208

maps, 215, 217-222
row headers, 209-210

tips
backgrounds, 103
borders, 78-80
elements, 81-84
fonts, 75
images, 85-86
line height, 75-77
lists, 90-95, 97-98, 100
printing styles, 88
server-specific CSS,
105-106
for wrapper div, 101,
103
tools
diagnostic style sheets,
31-32
Firebug, 7
IE9.js, 36-37
reboot styles, 33-36
SelectORacle, 30
color
backwards-compatibility,
248
of borders, 78-80
of bullets, 94
contrasting, 87
corners, pitfalls with, 176
HSL alpha color,
248-249
with Liquid Bleach out-
put, 129-131
printing, 87
RGB alpha color,
246-248
white, 254

columns
in media environments,
236, 238, 239
selective styling, 243-246
switching, 132-133
in tables, 210-215
types of, 120-127
commercial effects
about, 159
boxpunching, 169-172
complexspiral, 160-165
CSS
menus, 167-169
parallax, 187-190
popups, 165-167
rounded corners,
172-179
sprites, 179-182
images
boxing, 198-200
constrained, 200-201
ragged floats, 190-198
sliding doors, 182-187
complexspiral, 160-165
complexspiral.com
(Web site), 113
computed styles
in Dragonfly, 24
in Firebug, 10
in Safari, 27, 28
toggling, 19
conditional styles, 235
consistency
across browsers, 79-80
rebooting styles for, 33

constrained images,
200-201

containing blocks,
152-155

content
in browser windows, 90
generation, 67-69, 118
images, 86
layout convenience, 152
contextual menus, 8
conversion to HTML 5,
235
coordinates X/Y
finding, 216
in transforms, 259-261,
263-265
corners, rounded, 172-179
cross-browser usage
compatibility, 172
consistency, 79-80
element inspection, 29
friendly, 90
CSS (Cascading Style
Sheets)
browsers, 118
editing, 10-12
effects. see effects
future developments.
see future
developments
layout techniques
about, 107
absolute positioning,
150-152
adjacent clearing,
118-120
block boxes, 110-112

clearfixing, 117-118
columns, 120-127
containing blocks,
152-155
em-based, 144-147
float containment,
113-116
Fluid Grids, 140-143
footers, 155-158
headers, 155-158
“Holy Grail,” 135-139
Liquid Bleach,
127-131
negative margins,
147-150
one true layout,
131-135
outlines, 108-110
menus, 14, 15, 167-169
parallax, 187-190
popups, 165-167
rounded corners,
172-179
selectors. see selectors
server-specific, 104-106
sprites, 172, 179-182,
185
tables. see tables
tips. see tips
tools. see tools
validation

about, 16
markup language
with, 32
tools, 20, 74
css3generator.com
(Web site), 232

css3pie.com (Web site),
232

css3please.com (Web site),
232

D
data mapping, 215-222
dates in graphs, 227-228
Debug menu, 23
debugging
diagnostic style sheets,
31-33
in Dragonfly, 23
validators for, 16
declarations
disabling, 8
in Dragonfly, 24
importance ranking,
44-45
declared styles
in Dragonfly, 19
in Safari, 27
toggling, 19
defaults
CSS, 84
Firebug, 10
showing, 20
descendant features
elements, 115
selectors
about, 62
line height values,
76-77
Develop menu (Safari), 27

developers
Bowman, Doug, 127, 182
Cederholm, Dan, 124
Chaudhari, Nilesh, 194
Edwards, Dean, 36
Hogan, Alan, 106
Johnson, Zachary, 106
Levine, Matthew, 135
Marcotte, Ethan, 140
Meyer, Eric, 127
Robinson, Alex, 131
Shea, Dave, 179
Tan, Jon, 234
Wilson, Peter, 106
developments, future
2D transforms, 256-259,
261-263, 265-266
about, 231-232
HSL alpha color,
248-249
HTML 5
classes, 234-235
styling, 232-233
Web site for patterns
and syntax, 232
media environments,
235-240
multiple backgrounds,
251-256
RGB alpha color,
246-248
selective styling
children, 240-243
columns, 243-246
shadowy styles, 250-251
diagnosing
elements, 16
selectors, 30
style sheets for, 31-33,
175

dimensions
constrained images, 200
em-based layout,
144-147
faux columns, 125, 127
in Firebug, 10
float containment, 114,
115
in Fluid Grids, 140-142
fonts, 48, 75
“Holy Grail,” 135-139
in Liquid Bleach,
128-129
one true layout, 131-132
in Safari, 27
three-column layout, 124
two-column layout,
120-121
Disable menu, 13-14
disabling
caching, 13
declarations, 8
image display, 86
styles, 9, 14, 15
display suppression, 80-82
divs
about, 94
outlines around,
108-109
Document Object Model
(DOM)
creating, 206
properties, 19
documents
background of, 103-104
Firebug structure, 6
dollar sign ($), 61

DOM (Document Object
Model)
creating, 206
properties, 19
double-colon syntax, 41
downloading
Firebug, 6, 12
Internet Explorer
Developer Toolbar
(IEDT), 17-18
Web Developer Toolbar,
13
XRAY, 29
Dragonfly (for Opera),
22-26
drop shadows, 250-251
dropdown menus, 81,
83, 169

E
ecsstender.com (Web site),
232
editing
attributes and elements,
10
CSS, 10-12
Edwards, Dean (developer),
36
effects
about, 159
boxpunching, 169-172
complexspiral, 160-165
CSS
menus, 167-169
parallax, 187-190
popups, 165-167

rounded corners,

172-179
sprites, 179-182
images

boxing, 198-200
constrained, 200-201
ragged floats, 190-198
sliding doors, 182-187
elements
with asterisks, 59
with classes, 53-54
diagnosing, 16
with diagnostic style
sheets, 31-33
display suppression,
80-82
editing, 10
information, 14
inspecting
Firebug, 8, 9
with XRAY, 29-30
layout visualization, 7
off-screen, 83-84
standardizing, 35
visibility suppression,
82-83
elliptical corners, 178
E-mail contact links, 62
em-based layout, 144-147
embedded styles
inefliciencies of, 87
switching off, 14
equal-height columns, 124
error checkers.
see validation
evolt.org (Web site), 194
Excel documents, links, 62

F
tading-background effect,
43
faux columns, 124-127
Firebug
tools, 6-12
validation tools, 74
Firebug Lite, 12
Firefox
Firebug in, 12
rounded corners with,
177
firewalls, validating from
behind, 16, 74
fixed footers, 155-158
fixed headers, 155-158
flexible tabs, 184
floated-column styling,
122
floats
containment, 113-116,
118
overlap compared with,
152
ragged, 190-198
fluid columns, 123-124
Fluid Grids, 140-144
fonts
coding, 75
sizing, 48, 75
foot, 206-208
footers, 155-158
forward slash, 76
future developments
2D transforms, 256-259,
261-263, 265-266
about, 231-232

HSL alpha color,
248-249
HTML 5
classes, 234-235
styling, 232-233
Web site for patterns
and syntax, 232
media environments,
235-240
multiple backgrounds,
251-256
RGB alpha color,
246-248
selective styling
children, 240-243
columns, 243-246
shadowy styles, 250-251

G
Gecko, 179
geographic data mapping,
215-222
getfirebug.com (Web site),
6,12
glossary, media environ-
ments, 239-240
Google Chrome
rounded corners with,
177
table columns in, 211
gradients/glrzad.com (Web
site), 232
graphics
background, 85, 131,
251-256
boxing, 198-200

graphics (continued)
for complexspiral,
160-162
constrained, 200-201
for corners, 174, 175, 177
for CSS sprites, 181-182
display disabling, 86
maps, 215-222
positioning, 94, 96, 187
printing, 85-87, 98
with ragged floats, 194
graphs, 222-230
grayscale output, 87
greater-than
symbol (>), 63
grep-style wildcard, 59
grids, fluid, 140-144
groove borders, 78-80
gutter space, 90-92

H
hanging indents, 92
head, 206-208
headers
fixed, 155-158
in tables, 208-210
headings
images as, 84
sizing, 48
hidden elements, 82-83,
85
hierarchy in documents,
62
highlighting with
hovering, 6

Hogan, Alan (developer),
106
“Holy Grail,” 135-139
horizontal elements
offset, 180
percentages, 218
scrollbars, 127
hovering
background effects
with, 90
fast, 179
highlighting with, 6
over color boxes, 9
over tabs, 184, 185
rulers with, 10
HSL alpha color, 248-249
HTML (HyperText
Markup language)
code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206-208
HTML 4
code ordering, 207
styling, 232, 234
HTML 5
classes, 234
code ordering, 207
conversion to, 235
styling, 232-233
Web site for patterns
and syntax, 232

HTML tab, Firebug, 6-7

Internet Explorer
with, 36

validation, 16, 20, 32, 74

HTTP headers, drawbacks,
105-106

Hue-Saturation-Lightness.
see HSL alpha color
hybrid fluid/fixed
layout, 135
hyperlinks, block-level,
89-90
HyperText Markup
language (HTML)
code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206-208
HTML 4
code ordering, 207
styling, 232, 234
HTML 5
classes, 234
code ordering, 207
conversion to, 235
styling, 232-233
Web site for patterns
and syntax, 232
HTML tab, Firebug, 6-7
Internet Explorer
with, 36
validation, 16, 20, 32, 74

|

IDs
anchors or, 42
attribute selectors, 57-58
class and, 50-53

in geographic data map-
ping, 215
values, 14-15
IE (Internet Explorer)
code for versions 7, 8
and 9, 36
drop shadows, 251
Firebug in, 12
HTTP headers, 105-106
rounded corners with,
172,177,178
table columns in, 212
IE9.js, 36-38
IEDT (Internet Explorer
Developer Toolbar)
for IE7, 17-21
for IES, 21-22
IIS servers, 106
image replacement (IR),
84-86
images
background, 85, 131,
251-256
boxing, 198-200
for complexspiral,
160-162
constrained, 200-201
for corners, 174, 175, 177
for CSS sprites, 181-182
display disabling, 86
maps, 215-222
positioning, 94, 96, 187
printing, 85-87, 98
with ragged floats, 194
importance, of selectors,
44-45

inconsistencies
across browsers, 79-80
reducing, 33
indentation
with bullets, 94
lists, 90-92
Information menu, 14, 15
inherited properties, 64-65
ink cartridges, color
use, 87
inline elements
links, 89-90
styles, 14
inset borders, 79-80
Instant Messenger (AOL)
service links, 62
Internet browsers
backwards-compatibility,
232-234, 248
Chrome
rounded corners
with, 177
table columns in, 211
compatibility, 172
cross-browser usage
compatibility, 172
consistency, 79-80
element inspection, 29
friendly, 90
CSS, 118
differences, 78-79, 90
Document Object Model
in, 206
Firefox
Firebug in, 12
rounded corners with,
177

Internet Explorer (IE)
code for versions 7, 8
and 9, 36
drop shadows, 251
Firebug in, 12
HTTP headers, 105-106
with Liquid Bleach out-
put, 129
Netscape 4, 90
page zoom, 127
printing styles, develop-
ing, 87-89
rounded corners with,
172,177,178
with row headers, 210
Safari
Firebug in, 12
rounded corners with,
172,177
table columns in, 211
tools for, 26-28
scaling routines, 200
style differences, 33, 35
table columns in, 211,
213
window display areas,
238, 243
Internet Explorer Devel-
oper Toolbar (IEDT)
forIE7, 17-21
for IES, 21-22
Internet sites

accessites.org, 31
alanhogan.com, 106
alistapart.com, 69, 135,
140
chrispederick.com, 13

Internet sites (continued)
code.google.com, 36, 232
complexspiral.com, 113
css3generator.com, 232
css3pie.com, 232
css3please.com, 232
for diagnostic style
sheet, 31

for Dragonfly, 22, 23

for drop shadows, 251

ecsstender.com, 232

evolt.org, 194

for Firebug, 6, 12

for float containment,
113

for Fluid Grids, 140

getfirebug.com, 6, 12

gradients/glrzad.com,
232

grep-style wildcard, 59

for HTML 5 patterns and
syntax, 232

JavaScript support for
older browsers, 232

jontangerine.com, 234

keithclark.co.uk, 232

mathamazement.com,
268

meyerweb.com, 31, 35,
164, 222

mozilla.org, 13

for one true layout, 135

opera.com, 22, 23

for patterns, 232

peterwilson.cc, 106

positioniseverything.net,
118, 131

for ragged floats, 194
remysharp.com, 233
robertnyman.com, 251
for scripting, 233
for SelectORacle, 30, 31
simplebits.com, 124
for syntax, 232
technet.microsoft.com,
106
theopalgroup.com, 30,
31
useragentman.com, 232
w3.org
attributes, 55, 56,
58, 59
child selectors, 65
on color, 79
validation tools, 74
for Web Developer Tool-
bar (WDT), 13
westciv.com, 29, 30, 232
wikipedia.org, 268
wildcards, 49, 59
zachstronaut.com, 106
IR (image replacement),
84-86
irregular flow text, 190
italic fonts, 75

J

JavaScript
for backwards-
compatibility,
232,233
with diagnostic style
sheets, 32

properties, 19
settings, 81
support for older
browsers, 232
turning off, 13
upgrading with, 36-38
Web sites, 232
Johnson, Zachary
(developer), 106
jontangerine.com
(Web site), 234
jQuery, 232

K
keithclark.co.uk (Web site),
232
keyboard shortcuts
in Dragonfly, 23
in Safari, 26

L

landscape displays, 235
languages (markup)
case-sensitivity of, 56
HTML
code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206-208
HTML 4, 207, 232, 234
HTML 5, 207, 232-235
HTML tab, Firebug,
6-7

Internet Explorer with,
36
validation, 16, 20, 74
with validators, 32
“Layout Diagnostic”
menus, 16
layout submenus, 23
Layout tab
in Dragonfly, 26
in Firebug, 11
layout techniques
about, 107
absolute positioning,
150-152
adjacent clearing,
118-120
block boxes, 110-112
clearfixing, 117-118
columns, 120-127
containing blocks,
152-155
em-based, 144-147
float containment,
113-116
Fluid Grids, 140-143
footers, 155-158
headers, 155-158
“Holy Grail,” 135-139
Liquid Bleach, 127-131
negative margins,
147-150
one true layout, 131-135
outlines, 108-110
legends, graphs, 229
Levine, Matthew
(developer), 135
lightness, color, 248

line height, 75-78

link approach, 87
linked styles, 14, 15
links, block-level, 89-90
Liquid Bleach, 127-131
lists

bulleted, 93-100
indentation, 90-92
ordering of, 63
outdenting, 92-93
lite versions, Firebug, 12
local validation, 16, 20, 74
logos, 84
low-resolution settings,
17-18

Mac users, 23
mapping, 215-222
Marcotte, Ethan
(developer), 140
margins
about, 90-92
block boxes, 110
centering, 101, 110
negative, 147-150
outlines with, 109
markup languages
case-sensitivity of, 56
HTML

code ordering, 53, 54
color, 104

for complexspiral, 160
Debug menu, 23
elements of, 206-208
HTML 4, 207, 232, 234

HTML 5, 207, 232-235
HTML tab, Firebug,
6-7
Internet Explorer with,
36
validation, 16, 20, 74
with validators, 32
mathamazement.com
(Web site), 268
matrix transforms, 267
media environments,
235-240
menus
contextual, 8, 9
CSS, 14, 15, 167-169
debugging, 23
Develop (Safari), 26, 27
disable, 14
dropdown, 81, 83, 169
information, 14, 15
“Layout Diagnostic,” 16
layout submenu, 23
nested, 167-169
outline, 16
pages, 17
popup, 7, 165, 167, 169
Show Develop, 26
Style tab, 7
tools, 16-18, 21, 22, 23
unhidden submenus, 168
Meyer, Eric (developer),
127
meyerweb.com, 31, 35,
164, 222
Microsoft Excel
documents, links, 62

Microsoft Internet

Explorer (IE)
code for versions 7, 8
and 9, 36
drop shadows, 251
Firebug in, 12
HTTP headers, 105-106
rounded corners with,
172,177,178
table columns in, 212
Microsoft Word docu-
ments, links, 62
Mozilla
add-ons, 13
Firefox
Firebug in, 12
rounded corners with,
177
mozilla.org, 13
MRI (inspector tool), 30
multiclassing, 53-54
multiple backgrounds,
251-256
multiple shadows, 250
multiple transforms, 266

negative angles, 258

negative horizontal offset,
180

negative margins, 147-150

nested menus, 167-169

Netscape 4, 90

non-inherited properties,
64-65
numbered lists, 92

0
oddities, keyboard short-
cuts, 23, 26
offline validation, 16
off-screen features
elements, 83-84
text, 85
one true layout, 131-135
Opera
Firebug in, 12
indentation in, 90
tools for, 22-26
opera.com (Web site), 22,
23
ordering
classes, 56
coding, 75
fonts, 75
lists, 63
in tables, 207
outdenting lists, 92-93
Outline menu, 16
outlines, layout, 108-110
outset borders, 79-80
overflow in layout,
113-115
overlap
floats or, 152
text/image, 193

overriding
selective, 48
styles, 24-25

P
padding, 90-92
page backgrounds
color, 176
of documents, 103-104
hover eftects, 90
images, 85, 131, 160-162
lists with, 92
multiple, 251-256
with sliding doors, 185
page zoom, 127
Pages menu, 17
parallax, 187-190
parent-child selection, 65
partial child selection,
63-65
patterns
repeating, 164
Web sites for, 232
percentage-based position-
ing, 187
peterwilson.cc (Web site),
106
Phark Method, 85
PHP directives, 106
pictures
background, 85, 131,
251-256
boxing, 198-200

for complexspiral,
160-162
constrained, 200-201
for corners, 174, 175, 177
for CSS sprites, 181-182
display disabling, 86
maps, 215-222
positioning, 94, 96, 187
printing, 85-87, 98
with ragged floats, 194
plug-ins, JavaScript, 232
popup menus, 7, 165, 167,
169
portrait displays, 235
positioning
absolute
containing blocks,
152-155
within context,
150-152
of elements, 82-84
lists, 92
fixed, 155-158
in graphs, 224-229
of images, 94, 96, 187
transforms, 257, 262
positioniseverything.net,
118,131
positive angles, 258
pre-CSS 3 rounded cor-
ners, 172-177
prefixed properties, 251
Print Preview, 87-89
printing
images, 85-86, 98
styles, 87-89

properties
common settings, 33
CSS, 10
of Document Object
Model, 19
in Dragonfly, 24
Firebug, 7-9
hovering over, 9, 90
inherited, 64-65
prefixed, 251
in Safari, 27
table limitations,
210-212
pseudo-classes/elements
inspection visibility, 12
types of, 40-41

Q
queries, media, 235-240

R
ragged floats, 190-198
readability of graphs, 226
read-only properties, 19
relative positions, 137
remysharp.com (Web site),
233
reset styles, 33, 90
reverse-specificity order
(Firebug), 8
RGB alpha color, 246-248
ridge borders, 79-80
robertnyman.com
(Web site), 251

Robinson, Alex
(developer), 131
root elements, 84
rotating elements, 256,
257,258
rounded corners
with Chrome, 177
with Firefox, 177
with Internet Explorer,
172-178
with pre-CSS 3, 172-177
with Safari, 172, 177
row headers, 208-210
rules
element matching, 20
overriding, 45
pseudo-element-driven,
12
reverse-specificity order
(Firebug), 8
in Safari, 27
with styles, 46
Rundle Method, 85

S

Safari
Firebug in, 12
rounded corners with,
172,177
table columns in, 211
tools for, 26-28
sans-serif fonts, 75
saturation (color), 248
scaling
browser routines, 200
transforms, 258-261

scalloped corners, 175
screen readers, 81, 83, 86
scripting
graphs, 229-230
JavaScript
for backwards-

compatibility, 232,
233
with diagnostic style
sheets, 32
properties, 19
settings, 81
support for older
browsers, 232
turning off, 13
upgrading with, 36-38
Web sites, 233
Web sites, 233
scrollbars, horizontal, 127
Secure-server links, 62
selective styling
children, 240-243
columns, 243-246
SelectORacle, 30-31
selectors
about, 39
attributes
about, 54-56
classes of, 56-57
as ID selectors, 57-58
substrings, 58-62
child, 62-65
classes, 50-53
content generation,
67-69
diagnosing, 30
1Ds, 50-53
importance of, 44-45

matches, 20-21
multiclassing, 53-54
shorthand keywords
omitting, 45-47
overriding, 47-48
sibling, 65-66
specificity, 43-44
targets with style, 41-43
universal, 49-50, 59
separators
column, 123, 125-126
in Liquid Bleach, 128,
129
server-specific CSS,
104-106
shadowy styles, 250-251
shape translation, 261-263
Shea, Dave (developer),
179
shorthand keywords
omitting, 45-47
overriding, 47-48
shorthand properties
Firebug, 7-9
Safari, 27
Show Develop menus, 26
sibling elements
combinators, 214
selectors
about, 65-66
line height values,
76-77
sighted users, 81, 83, 86
simplebits.com (Web site),
124
simulation, child selection,
63-65

sizing
constrained images, 200
em-based layout,
144-147
faux columns, 125, 127
in Firebug, 10
float containment, 114,
115
in Fluid Grids, 140-142
fonts, 48, 75
“Holy Grail,” 135-139
in Liquid Bleach,
128-129
one true layout, 131-132
in Safari, 27
three-column layout, 124
two-column layout,
120-121
skewing elements, 256,
263-265
skiplinks, 81
slash-separated values, 178
sliding doors, 182-187
small-caps, coding, 75
space, closing up, 147
span, 94
specificity, selectors,
43-44, 49, 57
sprites, 172, 179-182, 185
studio effects
about, 159
boxpunching, 169-172
complexspiral, 160-165
CSS
menus, 167-169
parallax, 187-190
popups, 165-167

rounded corners,
172-179

sprites, 179-182
images
boxing, 198-200
constrained, 200-201
ragged floats, 190-198
sliding doors, 182-187
style sheets
class ordering, 56
diagnostic, 31-33
modifying, 35-36
printing, 87, 88
Style tab
about, 7
in Dragonfly, 24, 25
in Firebug, 8-12
styles
borders, 78-80
browser differences, 33
challenges, 22
combining, 58
conditional, 235
disabling, 9, 14, 15
drop shadows, 250-251
Firebug, 7
overwritten, 24-25
printing, 87-89
rebooting, 33-36
reset, 33, 90
rules with, 46
in Safari, 28
selective
children, 240-243
columns, 243-246
shadowy, 250-251
switching off, 14

in tables, 206
targets with, 41-43
toggling between, 19
styling
HTML 5, 232-233
of substring matchers,
58-60
substrings
as attribute selectors,
58-62
matches, 58-62
syntax, Web sites for, 232

T
tables
about, 205
body, 206-208
columns, 210-215
foot, 206-208
graphs, 222-230
head, 206-208
mapping, 215-222
row headers, 208-210
tabs, 182-187
Tan, Jon (developer), 234
targets with style, 41-43
technet.microsoft.com, 106
techniques (layout)
about, 107
absolute positioning,
150-152
adjacent clearing,
118-120
block boxes, 110-112
clearfixing, 117-118

columns, 120-127
containing blocks,
152-155
em-based, 144-147
float containment,
113-116
Fluid Grids, 140-143
footers, 155-158
headers, 155-158
“Holy Grail,” 135-139
Liquid Bleach, 127-131
negative margins,
147-150
one true layout, 131-135
outlines, 108-110
text
alignment, 101
image replacement of,
84-86
irregular flow, 190
theopalgroup.com
(Web site), 30, 31
three-column layout,
121-124
tips
about, 73
block-level links, 89-90
borders, 78-80
bulleted lists, 93-100
elements
display suppression,
80-82
off-screen, 83-84
visibility suppression,
82-83
fonts, ordering, 75

image replacement,
84-86

line height, 75-78

margins, 90-92

padding, 90-92

printing
images, 85-86
styles, 87-89

validation, 74
wrapper div, 100-103
toggling between styles, 19
tools
about, 5
Dragonfly (for Opera),
22-26
Firebug, 6-12
IE9.js, 36-38
Internet Explorer Devel-
oper Toolbar, 17-22
menus, 18, 23
rebooting styles, 33-36
SelectORacle, 30-31
Web Developer Toolbar,
13-17
Web Inspector (Safari),
26-28
XRAY, 29-30
Tools menu
in Dragonfly, 22-23
Internet Explorer
Developer Toolbar,
17-18, 21
in Web Developer
Toolbar, 16-17
transforms
2D, 256-259, 261-263,
265-266
coordinates X/Y in,
259-261, 263-265

matrix, 267

multiple, 266

positioning, 257, 262

scaling, 258-261
translation, shape, 261-263
transparency, quality, 186
two-column layout,

120-121

U

UA (user agent) styles, 7
unhidden submenus, 168
unit/unitless values,
76-78, 81
universal selectors,
49-50, 59
UNIX
file system path, 105
wildcard, 59
updating conveniences, 13
user agent styles (UA
styles), 7
useragentman.com (Web
site), 232

vV
validation
about, 16
markup language
with, 32
sources of, 74
tools, 20
values
ordering
fonts, 75
transforms, 267
units/unitless, 76-78, 81

vendor prefix, 177

vertical alignment, 94

vertical percentages, 218

video elements, 233

visibility suppression,
82-83

visually impaired users, 81,
83, 86

W
W3C validation tools, 74
w3.org
attributes, 55, 56, 58, 59
child selectors, 65
on color, 79
validation tools, 74
Web Developer Toolbar
(WDT)
alternative for, 17-22
tools, 13-17
Web site for, 13
Web Inspector (Safari),
26-28
Web sites
accessites.org, 31
alanhogan.com, 106
alistapart.com, 69, 135,
140
chrispederick.com, 13
code.google.com, 36, 232
complexspiral.com, 113
css3generator.com, 232
css3pie.com, 232
css3please.com, 232
for diagnostic style
sheet, 31
for Dragonfly, 22, 23
for drop shadows, 251

ecsstender.com, 232

evolt.org, 194

for Firebug, 6, 12

for float containment,
113

for Fluid Grids, 140

getfirebug.com, 6, 12

gradients/glrzad.com,
232

grep-style wildcard, 59

for HTML 5 patterns
and syntax, 232

JavaScript support for
older browsers, 232

jontangerine.com, 234

keithclark.co.uk, 232

mathamazement.com,
268

meyerweb.com, 31, 35,
164, 222

mozilla.org, 13

for one true layout, 135

opera.com, 22, 23

for patterns, 232

peterwilson.cc, 106

positioniseverything.net,
118, 131

for ragged floats, 194

remysharp.com, 233
robertnyman.com, 251
for scripting, 233
for SelectORacle, 30, 31
simplebits.com, 124
for syntax, 232
technet.microsoft.com,
106
theopalgroup.com, 30,
31
useragentman.com, 232
w3.org
attributes, 55, 56, 58,
59
child selectors, 65
on color, 79
validation tools, 74
for Web Developer Tool-
bar (WDT), 13
westciv.com, 29, 30, 232
wikipedia.org, 268
wildcards, 49, 59
zachstronaut.com, 106
WebKit, 178, 179
westciv.com (Web site), 29,
30,232
wikipedia.org (Web site),
268
wildcards, 49, 59

Wilson, Peter (developer),
106

Word documents, links, 62

wrapper div, 100-103

X
X coordinates
finding, 216
in transforms, 259-261,
263-265
XHTML, 56
XRAY
Information menu, 14
tools for, 29-30

Y
Y coordinates
finding, 216
in transforms, 259-261,
263-265

V4

zachstronaut.com (Web
site), 106
Zip archives, links, 62

AVAILABLE
ONLINE OR
AT ALL GOOD
BOOKSHOPS

IeS

9-€5199-0/1-0-826 ‘NS L-€2/26-02v-0-826 :NgS|

. — . - : 5

UK DESIGN
R

[; mmm i
_ j12] i

€-G1¥89-0/¥-0-826 :N9S| 2-58999-02¥-0-826 :NGSI

g

SlASH

A SMASHING
new Ser
&ﬂSMASHING

	Smashing CSS: Professional Techniques for Modern Layout
	About the Author
	Acknowledgements
	Contents
	Introduction
	Part I: FUNDAMENTALS
	Chapter 1: TOOLS
	FIREBUG
	WEB DEVELOPER TOOLBAR
	INTERNET EXPLORER DEVELOPER TOOLBAR (OR TOOLS)
	DRAGONFLY (FOR OPERA)
	WEB INSPECTOR (SAFARI)
	XRAY
	SELECTORACLE
	DIAGNOSTIC STYLE SHEET
	REBOOT STYLES
	IE9.JS

	Chapter 2: SELECTORS
	PSEUDO WHAT?
	TARGETS WITH STYLE
	SPECIFICITY
	IMPORTANCE
	WHAT HAPPENS WHEN YOU OMIT SHORTHAND VALUE KEYWORDS
	SELECTIVELY OVERRIDING SHORTHANDS
	UNIVERSAL SELECTION
	ID VS. CLASS
	ID WITH CLASS
	MULTICLASSING
	SIMPLE ATTRIBUTE SELECTION
	ATTRIBUTE SELECTION OF CLASSES
	ID VS. ATTRIBUTE SELECTOR
	SUBSTRING ATTRIBUTE SELECTION
	MORE SUBSTRING ATTRIBUTE SELECTION
	CHILD SELECTION
	SIMULATED PARTIAL CHILD SELECTION
	SIBLING SELECTION
	GENERATING CONTENT

	Part II: ESSENTIALS
	Chapter 3: TIPS
	VALIDATE!
	ORDERING YOUR FONT VALUES
	ROLLING IN LINE-HEIGHT
	UNITLESS LINE-HEIGHT VALUES
	AVOID STYLE-LESS BORDER VALUES
	CONTROLLING BORDER APPEARANCE WITH COLOR
	SUPPRESSING ELEMENT DISPLAY
	SUPPRESSING ELEMENT VISIBILITY
	THROWING ELEMENTS OFF-SCREEN
	IMAGE REPLACEMENT
	PRINT STYLES
	DEVELOPING PRINT STYLES
	BLOCK-LEVEL LINKS
	MARGIN OR PADDING?
	OUTDENTING LISTS
	BULLETING LISTS
	BACKGROUND BULLETS
	GENERATING BULLETS
	YOU HAVE MORE CONTAINERS THAN YOU THINK
	DOCUMENT BACKGROUNDS
	SERVER-SPECIFIC CSS

	Chapter 4: LAYOUTS
	OUTLINES INSTEAD OF BORDERS
	CENTERING BLOCK BOXES
	FLOAT CONTAINMENT: OVERFLOW
	FLOAT CONTAINMENT: FLOATING
	CLEARFIXING
	ADJACENT CLEARING
	TWO SIMPLE COLUMNS
	THREE SIMPLE COLUMNS
	FAUX COLUMNS
	LIQUID BLEACH
	THE ONE TRUE LAYOUT
	THE HOLY GRAIL
	FLUID GRIDS
	EM-BASED LAYOUT
	NEGATIVE MARGINS IN FLOW
	POSITIONING WITHIN A CONTEXT
	PUSHING OUT OF THE CONTAINING BLOCK
	FIXED HEADERS AND FOOTERS

	Chapter 5: EFFECTS
	COMPLEXSPIRAL
	CSS POP-UPS
	CSS MENUS
	BOXPUNCHING
	PRE-CSS 3 ROUNDED CORNERS
	CSS 3 ROUNDED CORNERS
	CSS SPRITES
	SLIDING DOORS
	CLIPPED SLIDING DOORS
	CSS PARALLAX
	RAGGED FLOATS
	BETTER RAGGED FLOATS
	BOXING YOUR IMAGES
	CONSTRAINED IMAGES

	Part III: CUTTING EDGE
	Chapter 6: TABLES
	HEAD, BODY, FOOT
	ROW HEADERS
	COLUMN-ORIENTED STYLING
	TABLE MAPPING
	TABLE GRAPHS

	Chapter 7: THE (NEAR) FUTURE
	STYLING HTML 5
	CLASSING LIKE HTML 5
	MEDIA QUERIES
	STYLING OCCASIONAL CHILDREN
	STYLING OCCASIONAL COLUMNS
	RGB ALPHA COLOR
	HSL AND HSL ALPHA COLOR
	SHADOWY STYLES
	MULTIPLE BACKGROUNDS
	2D TRANSFORMS

	Index

