Pro
HTML5 and CSS3
Design Patterns

APPLY DESIGN PATTERNS TO INCREASE
CREATIVITY AND PRODUCTIVITY IN YOUR
WEB DESIGNS

Michael Bowers, Dionysios Synodinos, and Victor Sumner

Apresse

Download from Wow! eBook <www.wowebook.com>

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

0N

Apress°

Contents at a Glance

iv

Contents at @ GlaNCe..........ccvcerimmimmsmmmsnn s ———— iv
Contents.......ccmimmmmmm e ———————————————— Vi
About the AUtROrS.........cuvmmmesmimmms s —————————————— Xiv
About the Technical REVIEWETcusmmssessssmmsssnsssansssssssassssassssnsssasssssssssnsssassssnsssansas XV
AcCKNOWIedgmentsccuuvesmismmsssmmsssmsssmsassssssssssnsnssss s snn s snsm s san s s n s s e Xvi
11T LT (1 XVi
Chapter 1: Design Patterns: Making CSS Easy!.........cccusmmmmsemmmsssnsmsssnsssssssssssnsesssnsess 1
Chapter 2: HTML Design Patterns.........coummmmmsmmsmsmsmsms s 33
Chapter 3: CSS Selectors and Inheritance...........cccucimissmmssmmsssmsssmssmms s 63
Chapter 4: BoX MOdeIS.........ccussummsanmssensssnsssassssasssssssssnsssasssssssssssssansssassssnsssassssanssanssss 81
Chapter 5: Box Model Extents..........cccouvsmmsmmmmsssmsssmmsssmssssmssssmsssssssssssssssssssssnssssnsnsnnns 99
Chapter 6: Box Model Properties.......cccuusmmmsssmmssssssssssnsssssnsesssssesssssesssnsesssssssssnnsssnas 111
Chapter 7: Positioning Models...........ccusumismmmmmmmmmmmmsmmsmms s s 129
Chapter 8: Positioning: Indented, Offset, and Aligned........c..ccccurmmmmsnmnmssnsssssnnssnns 153
Chapter 9: Positioning: Advancedccucsssemmsnmssesssssssssssssassssssssassssassssnsssassssnsss 179
Chapter 10: Styling TeXtccccccerrrrrrmmssssssnsssnnsmssssssssssssssssssessssssssssnsnnssssssssssnsnnnnnnnness 205
Chapter 11: Spacing Contentccccccmmnnnemnmmnnsesnmmmsssnnmmssssnmssss————————— 225
Chapter 12: Aligning Content.........ccccnssummmmssnmmssssnmssssnmsssssssssssssssssssssssssssnsssssnsssssnns 247
Chapter 13: BIOCKSccuisssessssssssssssssassssssssssssssssssasssnssssssssssasssnsssnsssnssnsssnsnsnsnsnsnnnsns 265
Chapter 14: IMAQEScicusemmsmmsssmssmssmmssmmssss s s s ssas s s sss s s ssnsnnnens 293
1 T T N I] 327
Chapter 16: Table Column Layout........coccemmmmmmmmmmmmmssssmsssssmmsssssssssssssssssssssssssssnnnnnsnns 353
Chapter 17: Layouts........ccccummumssmnmmmsssssnsnmsssssnsnnssssssnnssssssnssssssssnnnssssssnnnssssssnnnssssnnnnns 381
Chapter 18: Drop CapSccccuserrssnsrssansssssnsesssnsssssnsesssnsesssnsesssnsesssnsesssnnesssnnssssnnssssnns 427
Chapter 19: Callouts and QUOLESccsssmmsmmsmsmssmsssmsssmse s ———— 447

CONTENTS AT A GLANCE

Chapter 20: Alerts..........ccummmmmmmmm s ——————— 465
INA@X . eeiiiersesssmsssn s s s s s s ——————————— 493

Introduction

This is a solutions book for styling HTML5 with CSS3. It contains more than 350 design patterns you can
put to use right away. Each design pattern is modular and customizable, and you can combine patterns
to create an unlimited number of designs.

Each design pattern has been thoroughly tested and proven to work in all major web browsers including
Chrome, Firefox, Internet Explorer, Opera, and Safari. All the content in this book is usable and practical.
You won’t waste time reading about things that don’t work! With this book, you will no longer have to
use hacks, tricks, endless testing, and constant tweaking in multiple browsers to get something to work.

Using a design pattern is as easy as copying and pasting it into your code and tweaking a few values. You
will immediately see which values you can modify and how they affect the result so you can create the
exact style and layout you want—without worrying whether it will work.

This is more than a cookbook. It systematically covers several usable features of CSS and combines these
features with HTML to create reusable patterns. Each pattern has an intuitive name to make it easy to
find, remember, and talk about. Accessibility and best practices are carefully engineered into each
design pattern, example, and source code.

You can read straight through the book, use it as a reference, and use it to find solutions. Each example
includes a screenshot and all relevant HTML and CSS code so you can easily see how each design
pattern works. The explanation for each design pattern is included alongside, so you can easily study the
example while you read about how it works.

Design patterns are organized by topic, and all usable CSS rules are covered in depth and in context like
no other book. All design patterns are accessible and follow best practices, making this book a
worthwhile read from cover to cover, as well as an excellent reference to keep by your side while you are
designing and coding.

This book unleashes your productivity and creativity in web design and development. Design patterns
are like Legos—you can combine them in countless ways to create any design. They are like tools in a
toolbox, and this book arms you with hundreds of tools you can whip out to solve problems quickly and
reliably. Instead of hacking away at a solution, this book shows you how to create designs predictably—
by combining predictable patterns.

Audience

This book is written for those who have some familiarity with CSS and HTML. It is for newcomers who
have previously read an introductory book on CSS and HTML. It is for designers and developers who
tried CSS at one time and gave up because it never seemed to work right. It is for professionals who want
to take their CSS skills to a higher level. It is for all who want to create designs quickly without hacking
around until they find something that works in all browsers.

We assume that you know the basics of coding CSS and HTML. If you work exclusively in WYSIWYG
designers like Dreamweaver or FrontPage and never look at HTML or CSS code, you may find the code in
this book overwhelming.

INTRODUCTION

If you like to learn by example, like to see how code works, and have some familiarity with CSS and
HTML, you will love this book.

Some design patterns use JavaScript. To fully understand them, you need to understand the basics of
JavaScript, but you do not need to know JavaScript to use these patterns. Most importantly, you do not
need to know anything about JavaScript to understand and use the remaining 340+ design patterns
because they have nothing to do with JavaScript!

Innovations

This book contains several innovative concepts, terms, and approaches. These are not new or radical:
the technology is already built into the major browsers, the concepts are implied in the CSS
specification, and the terms are commonly used. What makes them innovative is how we define and use
them to show what can be done with CSS and HTML. In other words, they are innovative because they
simplify learning, understanding, and using CSS and HTML. These ideas change how you think about
CSS and HTML, and that makes all the difference. Furthermore, many of the design patterns in the book
are innovative because they document combinations of properties and elements to solve difficult
problems like never before.

Six Box Models

One innovation in the book is the idea that CSS has six box models instead of one. CSS officially has one
box model that defines a common set of properties and behaviors. A single box model is a very useful
concept, but it is oversimplified. Over the years, we learned the hard way that box model properties work
differently depending on the type of box.

This is one reason why so many people struggle with CSS. The box model seems simple, yet when one
uses a box model property, such aswidth, it works only some of the time or may work differently than
expected. For example, the width property sets the interior width of a block box, but on table boxes it
sets the outer width of the border, and on inline boxes it does absolutely nothing.

Rather than treating different behaviors as an exception to one very complicated box model, we define
six simple box models that specify the behavior for each type of box. Chapter 4 presents the six box
models, which are inline, inline-block, block, table, absolute, and float. Since you always know which of
these six box models you are using, you always know how each box model property will behave.

Furthermore, each box model defines its own way that it flows or is positioned. For example, inline
boxes flow horizontally and wrap across lines. Block boxes flow vertically. Tables flow their cells in
columns and rows. Floats flow horizontally, wrap below other floats, and push inline boxes and tables
out of the way. Absolute and fixed boxes do not flow; instead, they are removed from the flow and are
positioned relative to their closest positioned ancestor.

Box Model Extents

Another innovation in the book is the concept that there are three ways a box can be dimensioned: it can
be sized, shrinkwrapped, or stretched (see Chapter 5). Each type of box requires different combinations
of properties and property values for it to be sized, shrinkwrapped, or stretched. Various design patterns
in Chapters 5 through 9 show how this is done. These three terms are not official CSS terms, but they are
implied in the CSS specification in its formulas and where it mentions “size,” “shrink-to-fit,” and
“stretch.””

' In the CSS 2.1 specification, the terms “size” and “sized” occur 15 times in Chapters 8, 9, 10, 11, 17, and
18. These occurrences refer to the general sense that a box has size.

xviii

INTRODUCTION

xviii

Of course, sizing, shrinkwrapping, and stretching are not new ideas. What is innovative is that this book
clearly defines these three terms and shows how they are a foundational feature of CSS and a key
generator of CSS design patterns.

Box Model Placement

Another innovation is the idea that there are three ways a box can be placed in relation to its container
or its siblings: specifically, it can be indented (or outdented), offset from its siblings, or aligned and offset
from its container (see Chapter 8). The CSS specification talks much about offsetting positioned
elements, and it talks a little about aligning elements (see Chapter 9 of the CSS 2.1 specification), but it
does not discuss how elements can be indented, although this behavior is implied in its formulas.

Indenting, offsetting, and aligning are different behaviors. For example, an indented box is stretched and
its margins shrink its width, whereas an aligned box is sized or shrinkwrapped and its margins do not
shrink its width. Aligned and indented boxes are aligned to their containers, whereas offset boxes can be
offset from their container or offset from their siblings.

Different combinations of properties and property values are needed to indent, offset, and align
different types of boxes. The design patterns in Chapters 8 and 9 show how this is done.

Of course, indenting, offsetting, and aligning are not new ideas. What is innovative is that this book
clearly defines these three terms and shows how they are a foundational feature of CSS and a key
generator of CSS design patterns.

Column Layouts

Another innovation is the discovery, naming, and documenting of 12 automated techniques built into
browsers for laying out columns in tables (see Chapter 16).

All the major browsers include these powerful column layout features. They are compatible across the
major browsers and are very reliable. Even though using tables for page layout is not recommended,’
tabular data still needs to be laid out, and you can take advantage of these column layouts to make
tabular data look great.

Fluid Layouts

Another innovation is fluid layouts (see Chapter 17). The concept of fluid layouts is not new, but the
process of creating them is commonly one of trial and error. In Chapter 17, we present four simple
design patterns you can use to create complex fluid layouts with confidence and predictability in all
major browsers.

The terms “shrink” and “shrink-to-fit” occur nine times in Chapters 9 and 10 of the CSS 2.1 specification.
The idea that different boxes can shrinkwrap to fit their content is implied in Sections 10.3.5 through
10.3.9 and Section 17.5.2.

The terms “stretch” and “stretched” occur four times in Chapters 9 and 16. The idea of stretching a box
to its container is mentioned in passing as shown in the following quote (italics added), “many box
positions and sizes are calculated with respect to the edges of a rectangular box called a containing
block.” (See Sections 9.1.2,9.3.1, and 10.1.)

? Using tables for layout creates accessibility issues for nonsighted users. Furthermore, fluid layout
techniques (as shown in Chapter 17) are completely accessible and much more adaptable than tables.

INTRODUCTION

These design patterns, Outside-In Box, Floating Section, Float Divider, and Fluid Layout, use floats and
percentage widths to make them fluid, but they do so without the problems you normally encounter
using these techniques, such as collapsed containers, staggered floats, and percentages that push floats
below each other.’

The Fluid Layout design pattern creates columnar layouts with the versatility of tables but without using
tables. Even better than tables, these layouts automatically adjust their width and reflow from columns
into rows as needed to fit into narrow displays.

Event Styling

Another innovation is the Event Styling JavaScript Framework presented in Chapter 17. This is a simple,
powerful, open source framework for dynamically and interactively styling a document. It uses the latest
best practices to ensure that HTML markup is completely free of JavaScript code and completely
accessible, and all styling is done with CSS. Furthermore, the framework allows you to select elements in
JavaScript using the same selectors you use to select elements in CSS. This vastly simplifies and unifies
the styling and scripting of a dynamic HTML document!

The book includes this framework to show how to integrate JavaScript, CSS, and HTML so you can use
styles interactively. Of course, if you do not want to use JavaScript, you can skip over the five JavaScript
design patterns in Chapter 17 and the two JavaScript patterns in Chapter 20—the remaining 343+ design
patterns do not use JavaScript.

Combining HTML5 and CSS3 to Create Design Patterns

The final and most pervasive innovation in the book is the idea of combining general types of HTML
elements with CSS properties to create design patterns. The book defines four major types of HTML
elements in Chapter 2 (structural block, terminal block, multi-purpose block, and inline), and Chapter 4
maps them to the six box models (inline, inline-block, block, table, absolute, and float).

Each design pattern specifies how it applies to types of HTML elements. In other words, a design pattern
is more than a recipe that works only when you use specific elements; it is a pattern that applies to all
equivalent fypes of HTML elements.

For example, the Floating Drop Cap design pattern in Chapter 18 specifies a pattern that uses block and
inline elements, but it does not specify which block and inline elements you have to use (see Listing 1).
For example, you could use a paragraph for the BLOCK element and a span for the INLINE element (see
Listing 2), or you could use a division for the BLOCK and a for the INLINE, and so forth.

In some exceptional cases, a design pattern may specify an actual element, like a . This happens
when a specific element is the best solution, the only solution, or an extremely common solution. Even
in these cases, you can usually swap out the specified element for another element of the same type.

1. Listing 1. Floating Drop Cap Design Pattern

HTML

<BLOCK class="hanging-indent">
<INLINE class="hanging-dropcap"> text </INLINE>
</BLOCK>

* Internet Explorer 6 has a number of bugs that may occur when you float elements. Unfortunately, there
is no way to create a solution that always bypasses these bugs, although the Fluid Layout design pattern
does a good job of avoiding them most of the time. Fortunately, Internet Explorer 7 fixes these bugs.

Xixi

INTRODUCTION

CSS

.hanging-indent { padding-left:+VALUE; text-indent:-VALUE; margin-top:+VALUE; }
.hanging-dropcap { position:relative; top:#VALUE; left:-VALUE; font-size:+SIZE;
line-height:+SIZE; }

2. Listing 2. Floating Drop Cap Example

HTML
<p class="hanging-indent">
Hanging Dropcap.
</p>
CSS

.hanging-indent { padding-left:50px; text-indent:-50px; margin-top:-25px; }
.hanging-dropcap { position:relative; top:0.55em; left:-3px; font-size:60px;
line-height:60px; }

Conventions

Each design pattern uses the following conventions:

e Uppercase tokens should be replaced with actual values. (Notice how the uppercase
tokens in Listing 1 are replaced with values in Listing 2.)

¢ Elements are uppercase when you should replace them with elements of your
choice. If an element name is lowercase, it should not be changed unless you
ensure the change produces the same box model. The following are typical
element placeholders:

e ELEMENT represents any type of element.
e INLINE represents inline elements.

e INLINE_TEXT represents inline elements that contain text such as ,
, or <code>.

e BLOCK represents block elements.

e TERMINAL_BLOCK represents terminal block elements.

e INLINE_BLOCK represents inline block elements.

e HEADING represents <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>.

e PARENT represents any element that can be a valid parent of its children.
e CHILD represents any element that can be a valid child of its parent.

e LIST represents any list element including , , and <d1>.

e LIST_ITEMrepresents any list item including <1i>, <dd>, and <dt>.

¢ Selectors that you should replace are uppercase. If a selector contains lowercase
text, that part of the selector should not be changed unless you also modify the
HTML pattern, such as changing a class name. The following are typical
placeholders:

SELECTOR {} represents any selector.
INLINE_SELECTOR {} represents any selector that selects inline elements.

INLINE_BLOCK SELECTOR {} represents any selector that selects inline-block
elements.

BLOCK SELECTOR {} represents any selector that selects block elements.

TERMINAL_BLOCK_SELECTOR {} represents any selector that selects terminal
block elements.

SIZED_BLOCK_SELECTOR {} represents any selector that selects sized block
elements.

TABLE_SELECTOR {} represents any selector that selects table elements.
CELL_SELECTOR {} represents any selector that selects table cell elements.

PARENT SELECTOR {} represents any selector that selects the parent in the
design pattern.

SIBLING_SELECTOR {} represents any selector that selects the children in the
pattern.

TYPE {} represents a selector that selects elements by a type of your choice
such as h1 or span.

*_,CLASS {} represents a selector that selects elements by a class name of
your choice.

#ID {} represents a selector that selects elements by an ID of your choice.

¢ Values that you should replace are represented by uppercase tokens. If a value
contains lowercase text, that part of the value should not be changed. The
following are typical value tokens:

Some values are literal and not meant to be replaced such as 0, -9999px, 1px,
1em, none, absolute, relative, and auto. These values are always lowercase.

+VALUE represents a positive measurement greater than or equal to zero,
such as 0, 10px, or 2em.

-VALUE represents a positive measurement less than or equal to zero, such as
0, -10px, or -2em.

+VALUE represents any measurement.
VALUEem represents an em measurement.
VALUEpx represents a pixel measurement.

VALUE% represents a percentage measurement.

INTRODUCTION

xxii

INTRODUCTION

xxii

e VALUE_OR_PERCENT represents a value that can be a measurement or a
percentage.

e WIDTH STYLE COLOR represents multiple property values, such as those
required by border. We use an uppercase token for each value.

e url("FILE.EXT") represents a background image where you replace
FILE.EXT with the URL of the image.

e CONSTANT represents a valid constant value. For example, white-space allows
three constant values: normal, pre, and nowrap. For convenience, we often
list the valid constant values in uppercase with underscores in between each
possible value, such as NORMAL_PRE_NOWRAP.

e ABSOLUTE_FIXED represents a list of constant values from which you can
choose one value. The underscore separates the constant values. The
complete list of values for position includes static, relative, absolute,
and fixed. If a design pattern works only for absolute and fixed, the pattern
specifies position:ABSOLUTE_FIXED. If it works for all four values, it specifies
position:STATIC_RELATIVE_ABSOLUTE_FIXED or position:CONSTANT.

e -(TAB_BOTTOM + EXTRA_BORDER + EXTRA_PADDING) is an example of a
formula that you would replace with a calculated value. The uppercase
tokens in the formula are tokens that occur elsewhere in the design pattern.
For example, if you assigned TAB_BOTTOM to 10px, EXTRA_BORDER to 10px, and
EXTRA_PADDING to 10px, you would replace the formula with -30px.

Using This Book

You can use the book to master CSS. You can read straight through the book to take your CSS skills to a
higher level and to discover the many golden nuggets tucked away inside design patterns. Each chapter
is organized so that it builds on design patterns presented earlier in the chapter and presented in
previous chapters. On the other hand, since individual chapters and design patterns are self-contained,
you can read them one by one in any sequence to master a specific topic or technique.

You can use the book as a reference book. This book explains all of the usable CSS properties and
shows how to use them in examples. Even more importantly, many properties behave differently when
combined with other properties. Each design pattern identifies and documents the unique combination
of properties required to create a specific result. This makes it a reference book not only for how CSS
properties work alone, but also for how they work in combination.

You can use the book to learn by example. Since all examples in the book follow best practices, you
can learn good habits and techniques just by studying them. To make studying the book by example
easier, you can use the “See also” sections to look up all related design patterns. This allows you to easily
see many examples of how a specific CSS property or feature can be used in a variety of contexts.

You can use the book as a cookbook to help you create designs or to solve problems. Design patterns
are organized by topic so you can quickly find related solutions.

We have added extra features to the book to make it easy to find a solution when you need it. You can
use the table of contents, the index, thumb tabs, chapter outlines, design pattern names, and the “See
also” section of each design pattern to quickly find properties, patterns, answers, and solutions. Since
the screenshots in each example are in the same location on every page, you can even thumb through
the book while looking at screenshots to find a solution. We find visual scanning a very easy, fast, and
effective way to find solutions!

Download from Wow! eBook <www.wowebook.com>

INTRODUCTION

How This Book Is Structured
Chapters 1 through 3 explore the fundamentals of CSS and HTML:

e Chapter 1 shows how design patterns make CSS easy. Here we demonstrate how
to combine simple design patterns into more complex and powerful patterns. We
also review the syntax of CSS and the cascade order. In addition, we present
several charts that make using CSS easy: a list of links to useful CSS web sites, a
summary of CSS properties; a four-page listing of all usable CSS properties, values,
and selectors organized by where they can be used; charts on units of measure and
font size; two example style sheets for normalizing the styles of elements in all
browsers; media queries; transitions, animations and 2D transformations; and a
12-step guide to troubleshooting CSS.

e Chapter 2 introduces the design patterns that underlie HTML. In this chapter, we
present the best practices of using HTML including coding in XHTML. We also
explore the types of structures you can create with HTML including structural
blocks, terminal blocks, multi-purpose blocks, and inlines. We also show how to
use IDs and attributes for easy selection by CSS selectors.

e Chapter 3 introduces design patterns for CSS selectors and inheritance. Here we
demonstrate how selectors are the bridge between HTML and CSS. We present
design patterns for type, class, ID, position, group, attribute, pseudo-element,
pseudo-class, and subclass selectors. We also explore CSS inheritance.

Chapters 4 through 6 explore the six CSS box models. They show how each HTML element is rendered as
one of these six types of boxes (or not rendered at all). They demonstrate how the same properties
produce different results in each box model, and how each box model flows differently from the other
box models.

¢ Chapter 4 explores the six box models: inline, inline-block, block, table, absolute,
and float.

¢ Chapter 5 explores the three ways of dimensioning a box: sized, shrinkwrapped, or
stretched.

e Chapter 6 explores each of the box model properties: margin, border (radius,
shadows, etc.), padding, background, overflow, visibility, and pagebreak.

Chapters 7 through 9 explore how boxes flow or are positioned.

e Chapter 7 explores the five positioning models (static, absolute, relative, fixed, and
floated) and relates them to the six box models.

e Chapter 8 explores the three ways a box can be positioned—for example, a box
can be indented or outdented, offset from its siblings, or aligned and offset from
its container.

¢ Chapter 9 combines the patterns in Chapters 7 and 8. The combinations result in
more than 50 design patterns for positioning elements—with a particular focus on
absolute and fixed positioning.

Chapters 10 through 12 explore in detail how inline boxes flow and how to style, space, and align text
and objects.

Xxiiii

INTRODUCTION

XXiv

e Chapter 10 explores the properties that style text and also contains three design
patterns for hiding text while remaining accessible to nonsighted users. It also
presents advanced techniques like text replacement with canvas and vml, and
CSS3 font-embedding.

¢ Chapter 11 shows how to space inline content horizontally and vertically.
¢ Chapter 12 shows how to align inline content horizontally and vertically.
Chapters 13 and 14 explore in detail how blocks and images flow and how they can be styled.

¢ Chapter 13 explores blocks, starting with a discussion of the structural meaning of
blocks and how you can visually display that meaning. It covers lists, inlining
blocks, collapsed margins, run-in blocks, block spacing, and marginal blocks.

e Chapter 14 explores images, such as image maps, semi-transparent images,
replacing text with images, sprites, shadowed images, and rounded corners.

Chapters 15 and 16 explore in detail how to style and lay out tables and cells.

e Chapter 15 explores tables including table selectors, collapsed borders, hiding cells,
vertically aligning content in cells, and displaying inline and block elements as
tables.

¢ Chapter 16 explores laying out table columns using 12 patterns, which
automatically shrinkwrap columns, size them, proportionally distribute them, and
so forth.

Chapter 17 explores how the flow of floats can be used to create fluid layouts.

e Chapter 17 shows how to create fluid layouts that automatically adapt to different
devices, fonts, widths, and zoom factors. It also shows how to create interactive
layouts using JavaScript.

Chapters 18 through 20 show how to combine design patterns to create a variety of solutions to the same
problem. Each solution addresses different needs and has different advantages and disadvantages.
Besides being useful solutions in and of themselves, they demonstrate how you can combine patterns to
solve any design problem.

» Chapter 18 explores drop caps. Here we cover seven types of drop caps using seven
different combinations of design patterns.

¢ Chapter 19 explores callouts and quotes. The chapter demonstrates five types of
callouts and three types of quotes.

e Chapter 20 explores alerts. Here we present three types of interactive alerts and
eight types of text alerts (i.e., attention getters). It also explores HTML5 Form
Validation and shows how to natively validate HTML5 forms and alert users for
wrong input.

Downloading the Code

You can download all the code at waw.apress.com by searching for and going to the detail page for
Pro HTMLS5 and CSS3 Design Patterns. On the book’s detail page is a link to the sample code compressed
into a ZIP file.

http://www.apress.com

INTRODUCTION

Using the Code

The code is arranged in folders, with a folder for each chapter. To make chapter folders easy to navigate,
each folder name includes the chapter number and title. Inside each chapter folder are example folders:
one for each design pattern presented in the chapter.

So you can easily find examples, each example folder has the same name as its design pattern. This
makes it easy and fast to find design patterns by searching folder names. Since the HTML in each
example names and describes its design pattern, you can find a design pattern by searching for words
inside HTML files. You could also search inside CSS files for examples that use a particular CSS property,
such as display.

To make it easy to view examples in multiple browsers, we put a file named index.html in the root folder
that links to all design pattern folders. In turn, each folder contains a file named index. html that links to
all the design patterns in that folder. These navigation pages make it quick to find and view each design
pattern in each chapter.

Each example folder contains all the files needed to make the example work. This makes it a breeze to
use the examples in your own work: simply copy a folder and start making changes. You don’t have to
worry about tracking down and including files from other folders.

The most important files in each example folder are example.html and page.css. example.html contains
the HTML code for the example. page.css is the main style sheet for the example.

Each example also uses a CSS file named site.css. It contains a few nonessential font and heading rules
that give all the examples in the book the same basic look and feel.

In a few exceptional cases, we use an additional CSS file to overcome bugs or nonstandard behavior in
Internet Explorer and these rules override rules in page.css.

The seven JavaScript examples use five JavaScript files. These are explained in the Event Styling design
pattern in Chapter 17. page. js is the most important file because it contains JavaScript code specific to
the example. The remaining JavaScript files are open source libraries.

Lastly, each example folder contains all image files used by that example.

Contacting the Authors

You can contact us at the following addresses:
e Michael Bowers at mike@cssDesignPatterns.com
¢ Dionysios Synodinos at synodinos@gmail.com

We look forward to your comments, suggestions, and questions.

mailto:mike@cssDesignPatterns.com
mailto:synodinos@gmail.com

CHAPTER 1

Design Patterns: Making CSS an

On the surface, CSS seems easy. It has 45 commonly used properties you can employ to style a
document. Below the surface, different combinations of properties and property values trigger
completely different results. I call this CSS polymorphism because the same property has many
meanings. The result of CSS polymorphism is a combinatorial explosion of possibilities.

Learning CSS is more than learning about individual properties. It is about learning the contexts in
which properties can be used and how different types of property values work differently in each
context. As an example, take the width property, which has many different meanings depending on how
it is combined with other rules and what values are assigned to it. For instance, width has absolutely no
effect on inlines. width:auto shrinkwraps floats to the width of their content. width:auto shrinkwraps
absolutes when left and right are set to auto. width:auto stretches blocks to the width of their parent
element. width:auto stretches absolutes to the width of their containing block when left and right are
set to 0. width:100% stretches blocks and floats to the width of their parent element as long as they do not
have borders, padding, and margins. width:100% stretches tables to the width of their parent even if they
do have borders and padding. width:100% stretches absolutes to the width of their closest positioned
ancestor instead of their parent. width:100em sizes an element in relation to the height of its font-size,
which allows the element to be sized wide enough to contain a certain number of characters.
width:100px sizes an element to a fixed number of pixels regardless of the font-size of its text.

To complicate matters further, not all of the rules are implemented by browsers. For example, over
40 out of 122 properties and over 250 out of 600 CSS rules are not implemented by one or more of the
major browsers. CSS combines several specifications that define various levels and profiles. Each level of
CSS builds upon the last, typically adding new features and typically denoted as CSS 1, CSS 2, and CSS 3.
Profiles are typically a subset of one or more levels of CSS built for a particular device or user interface.
Browser support for CSS3 is an important issue for developers, especially since it is still rapidly evolving
as a specification.

Trying to learn CSS by memorizing the extraordinary number of exceptions to each rule is extremely
frustrating.

To make learning CSS easy, this book documents all usable combinations of properties and property
values. It puts properties in context and paints a complete picture of how CSS works.

Imagine the time you will save by not having to read about rules that do not work and by not having
to test every rule to see whether it works in every browser and in combination with other rules. I have
already done this for you. I have run many thousands of tests. I have tested every CSS property and every
combination of properties in every major browser, including Internet Explorer 6/7/8/9, Firefox 7,
Chrome 12, Opera 9, and Safari 5.

I'have boiled down these results into simple design patterns—all the CSS and HTML design patterns
you need to create stunning, high-performance, and accessible web sites. This edition of the book (2nd)
has been updated to include the latest information and tips about HTML5 and CSS3.

After you learn these design patterns, you'll wonder how you ever developed web sites without
them!

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

In this chapter, I discuss the purpose of design patterns and how they work. I give some examples of
how to combine design patterns to create new patterns. I also discuss how to use style sheets, CSS
syntax, and the cascading order to your advantage.

Next, I present a series of charts that list all the usable CSS properties and units of measure. I then
present 12 techniques for troubleshooting CSS quickly. Lastly, I discuss how to standardize the way
various browsers style elements—so you can override these default styles with confidence.

Design Patterns—Structured Recipes

Design patterns have been used with great success in software programming. They improve
productivity, creativity, and efficiency in web design and development, and they reduce code bloat and
complexity. In the context of CSS and HTML, design patterns are sets of common functionality that work
across various browsers and screen readers, without sacrificing design values or accessibility or relying
on hacks and filters. But until now they have not been applied systematically to HTML and CSS web
design and development.

Design patterns underlie all creative activities. We think in terms of patterns when we talk, write,
and create. Design patterns are similar to document templates that we can fill in with our own content.
In literature, they are like archetypal characters and plots. In music, they are like themes and variations.
In programming, they are similar to reusable algorithms that can be systematically varied and combined
with each other to produce a desired result.

Once a design pattern is revealed, it greatly increases creativity and productivity. It can be used by
itself to create quick results, and it can be easily combined with other patterns to create more complex
results. Design patterns simplify and amplify the creative process. They make creation as easy as
building with blocks or Legos. You simply choose predesigned patterns, vary them, and combine them
to create the result you want. Patterns do not limit creativity—they unleash creativity.

The seminal work Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995), explains that a design pattern
consists of four elements: a pattern name, a problem, a solution, and trade-offs. This book follows this
approach.

Since this is a practical book, it focuses directly on the concrete patterns designed into CSS and
HTML that are actually implemented in the major browsers. This book also creates new design patterns
by combining built-in patterns into higher-level patterns.

In a very real sense, this is a book of patterns that you can use to create your designs.

Using Design Patterns

Chapters 1 through 7 present the basic properties and elements for styling layout. Chapters 8 and 9
combine these properties to create all possible block, positioned, and floated layouts. Chapters 10
through 12 present the basic properties for styling text and also present combinations of properties you
can use to create inline layouts. Chapters 13 through 16 combine design patterns from previous chapters
with specialty properties and elements to style blocks, lists, images, tables, and table columns.

Together, Chapters 1 through 16 present over 300 design patterns created by combining 45 common
CSS properties with four types of elements (inline, inline-block, block, and table) and five types of
positioning (static, relative, absolute, fixed, and float).

This is the great power of design patterns: it is easy to take basic patterns and combine them to form
more complex patterns. This makes learning CSS easy, and it makes using CSS very productive. Chapters
17 through 20 show how to combine these design patterns to create fluid layouts, drop caps, callouts,
quotes, and alerts.

To illustrate the simplicity and power of design patterns, the next five examples show how to take a
series of basic design patterns and combine them into more complex patterns. You do not need to
understand the details of each pattern—just the process of combining patterns.

The first example in this series shows the background property in action. background is a design
pattern built into CSS that displays an image behind an element. Example 1-1 shows the background

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

property combined with a division element. The division is sized 250 by 76 pixels so it will reveal the
entire background image.'

Example 1-1. Background Image

3 Background Image - Mozilla Firefox (2=

Eie Edit Yew History Bockmarks Tools Helb

Background Image

c%adxiﬂgx 2

HTML

<h1>Background Image</h1>
<div></div>

CSS

div { background:url("heading2.jpg") no-repeat; width:250px; height:76px; }

Example 1-2 demonstrates the Absolute design pattern. The idea behind the Absolute design
pattern is to remove an element from the flow and position it relative to another element. CSS provides
the position:absolute rule for this purpose. When position:absolute is combined with the top and left
properties, you can position an element at an offset from the top left of its closest positioned ancestor. I
used position:relative to position the division so it would be the closest positioned ancestor to the
span. I then absolutely positioned the span 10 pixels from the top and left sides of the division.?

' This example is simple and yet it combines seven design patterns: the Structural Block Elements design
pattern in Chapter 2; the Type Selector pattern in Chapter 3; the Block Box pattern in Chapter 4; the
Width, Height, and Sized patterns in Chapter 5; and the Background design pattern in Chapter 6.

*This example is simple, and yet it combines seven design patterns: the Inline Elements and Structural
Block Elements design patterns in Chapter 2; the Class Selector pattern in Chapter 3; the Absolute Box
pattern in Chapter 4; and the Absolute, Relative, and the Closest Positioned Ancestor patterns in Chapter
7.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Example 1-2. Absolute

3 Absolute - Mozilla Firefox

Fie Edit Wew History Bookmarks Tools Heb

Absolute

Sized Absolute

HTML

<h1>Absolute</h1>

<div class="positioned">
Sized Absolute
</div>

CSS

* positioned { position:relative; }
*.absolute { position:absolute; top:10px; left:10px; }

/* Nonessential styles are not shown */

Example 1-3 combines the design patterns in the first two examples to create the Text Replacement
design pattern. The idea behind text replacement is to display an image in the place of some text (so you
can have more stylistic control over the text because it is embedded in an image). In addition, you want
the text to be present behind the image so that it becomes visible if the image fails to download.

I combined the Background and Absolute design patterns to create the Text Replacement pattern. I
placed an empty span inside a heading. I relatively positioned the heading so child elements can be
absolutely positioned relative to it. I assigned a background image to the span and absolutely positioned
itin front of the text in the heading element. I sized the span and the heading to the exact size of the
background image.

The end result is that the background image of the span covers the text in the heading, and if the
image fails to download, the styled text in the heading is revealed.’

’The Text Replacement example uses the 14 design patterns shown in the previous two examples. It also
introduces the ID Selector design pattern in Chapter 3. You can learn more about the Text Replacement
design pattern in Chapter 10.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Example 1-3. Text Replacement

€3 Text Replacement - Mozrilla Firefox

Ele Edit Yew History Boowmarks Toals Heb

Text Replacement

(%adéng/:?

HTML

<h1>Text Replacement</h1>
<h2 id="h2" >Heading 2<span»</span»</h2>

CSS

#h2 { position:relative; width:250px; height:76px; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px; left:0; top:0;
background:url("heading2.jpg") no-repeat; }
Example 1-4 demonstrates the Left Marginal design pattern. The idea behind this pattern is to move

one or more elements out of a block into its left margin so you can have headings (or notes, images, etc.)
on the left and content on the right.’

‘ The Left Marginal design pattern combines the Position Selector design pattern in Chapter 3; the
Margin pattern in Chapter 6; the Absolute Box pattern in Chapter 4; and the Absolute, Relative, and the
Closest Positioned Ancestor patterns in Chapter 7.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Example 1-4. Left Marginal

3 Laft Marginal - Mozilla Firefox

Fie Edit Yew Higtory Qooomarks Tools Hep

Left Marginal

Heading You want to excerpt an elemeant and move it into the left
margin.

HTML

<h1>Left Marginal</h1>

<div class="left-marginal" >
<h2 class="marginal-heading">Heading</h25
You want to excerpt an element and move it into the left margin.</div>

CSS

* ,left-marginal { position:relative; margin-left:200px; }
* ,marginal-heading { position:absolute; left:-200px; top:0; margin:0; }

Example 1-5 demonstrates the Marginal Graphic Dropcap design pattern. This pattern combines all
the design patterns shown in the previous four examples. The idea behind this pattern is to create a
graphical drop cap in the left margin of a block with all the advantages of the Text Replacement and Left
Marginal design patterns.”’

To meet these requirements, I used the indent class to relatively position the paragraph so that it
will be the closest positioned ancestor of the drop cap and to add a 120-pixel left margin to the
paragraph to make room for the drop cap. I used the graphic-dropcap class to absolutely position the
drop cap, to move it into the paragraph’s left margin, and to set it to the exact size of the dropcap image.
I then absolutely positioned the span inside the graphic drop cap and moved it over the dropcap text so
it covers the text with its background image.

Viewed by itself, the Marginal Graphic Dropcap pattern is a somewhat complex combination of 16+
design patterns. On the other hand, when viewed as a combination of the Text Replacement and Left
Marginal design patterns, it is quite simple. This is the power of design patterns.

° The Marginal Graphic Dropcap design pattern is discussed in detail in Chapter 18.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Example 1-5. Marginal Graphic Dropcap

History Bookmarks Tools Heb

FBle Gt
Marginal Graphic Dropcap
arginal Graphic Dropcap. The letter M has been covered by the
dropcap image. Screen readers read the text and visual users
’ see the image. If the browser cannot display the dropcap
image, the text becomes visible.

HTML

<h1>Marginal Graphic Dropcap</hi1>

<p class="indent"»><span class="graphic-dropcap" »M<span»</spanyarginal
Graphic Dropcap. The letter M has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image,
the text becomes visible.</p>

CSS

*.indent { position:relative; margin-left:120px; }

*,graphic-dropcap { position:absolute;
width:120px; height:90px; left:-120px; top:0; }

*,graphic-dropcap span { position:absolute;
width:120px; height:90px; margin:0; left:0; top:0;
background:url("m.jpg") no-repeat; }

Using Style Sheets

You can place styles in three locations: style sheets, <style>, and style.

A style sheet is an independent file that you can attach to an HTML document using the <link>
element or CSS’s @import statement. <style> is an HTML element that you can embed within the HTML
document itself. style is an attribute that can be embedded within any HTML element.

I recommend putting styles in style sheets. This reduces noncontent in your HTML documents, and
it puts all your styles in files that are easily managed.

I recommend naming style sheets using single-word, lowercase names. This keeps style sheet
names simple and easy to remember, and works safely in all operating systems. I suggest you use a name
that describes the scope and purpose of the style sheet, such as site.css, page.css, handheld.css,
print.css, and so forth. The standard extension for a style sheet is .css. The standard Internet media
type is text/css.

I recommend using the location of a style sheet to control its scope. If a style sheet is for an entire
web site, you could place it in the root directory of the web site. If a style sheet applies only to a

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

document, you could place it in the same directory as the document. Another option, depending on how
you organize your site, is to keep all style sheets in one directory.

To link a style sheet to an HTML document, you can include a <1ink> element in the <head> section
of HTML documents, and you can place the URI of the style sheet within the href attribute of the <1ink>
element. Listing 1-1 shows the style sheet links that I use in each example in this book. See the Header
Elements and Conditional Stylesheet design patterns in Chapter 2 for more information on linking style
sheets.

Listing 1-1. Attaching Style Sheets

<link rel="stylesheet" href="site.css" media="all" type="text/css" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<link rel="stylesheet" href="print.css" media="print" type="text/css" />
<!--[if 1te IE 6]>

<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->

For increased download performance, you may want to include page-specific styles in the <style>
element instead of in a separate page-specific style sheet. Since these styles are page-specific, there is
little disadvantage to putting these styles in the header of the page. On the other hand, I do strongly
recommend against using the style attribute of HTML elements because this creates very hard-to-
maintain code.

CSS Syntax

CSS syntax is easy. A style sheet contains styles; a style contains selectors and rules; and a rule contains
a property and a value. The following is the design pattern for a style:

SELECTORS { RULES }
The following is the design pattern for a rule:
PROPERTY :VALUE;

For example, p{margin:0;} is a style. p is the selector, which selects all <p> elements in an HTML
document. The curly bracket ({}) operators assign the rule, margin:0;, to the selector, p. The colon (:)
operator assigns the value 0 to the property, margin. The semicolon (;) operator terminates the rule.

A style may have one or more selectors and one or more rules. For example, p.tip{margin:0; line-
height:150%;} is a style. The curly bracket operators group the two rules, margin:0; and line-
height:150%;, into a ruleset and assign it to the selector, p.tip, which selects all <p class="tip">
elements in an HTML document.

CSS Syntax Details
The key points of CSS syntax are as follows:

¢ Unicode UTF-8 should be used to encode CSS files—the same way you should
encode HTML files.

e CSS code should be lowercase. Selectors are case-sensitive when referencing
element names, classes, attributes, and IDs in XHTML.® CSS properties and values

° In HTML, CSS selectors are case-insensitive.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

are case-insensitive. For simplicity and consistency, I use lowercase characters for
all CSS code including elements, classes, and IDs.

¢ Element names, classes, and IDs are restricted to letters, numbers, underscores
(), hyphens (-), and Unicode characters 161 and higher. The first character of an
element, class, or ID must not be a number or a hyphen. A classname and ID must
not contain punctuation other than the underscore and hyphen. For example,
my_name2-1 is a valid name for a class or ID, but the following are invalid: 1,
1my_name, -my_name, my :name, my .name, and my, name.

e Multiple classes can be assigned to an element by separating each class name
with a space, such as class="class1 class2 class3".

e Constant values should not be placed in quotes. For example, color:black; is
correct, but color: "black"; is not.

e The backslash (\) can be used to embed characters in a context where they
normally cannot occur; for example, \26B embeds & in a string or identifier.
Anywhere from two to eight hex codes can follow a backslash, or a character can
follow a backslash.

e A string may contain parentheses, commas, whitespace, single quotes ('), and
double quotes (") as long as they are escaped with a backslash, such as the
following:

"embedded left parentheses \("
"embedded right parentheses \) "
"embedded comma \, "
"embedded single quote \'
"embedded double quote \" "

"embedded single quote ' in a double-quoted string"
'embedded double quote " in a single-quoted string'

e A semicolon should terminate each CSS rule and @import statement.

color:red;
@import "mystylesheet.css";

¢ Rulesets are created by enclosing multiple rules in curly braces, such as
{ color:red; font-size:small; }.

¢ The right curly brace (}) immediately terminates a set of properties, unless it is
embedded within a string, such as "}".

e A CSS comment starts with /* and ends with */, such as /* This is a CSS
comment */. Comments cannot be nested. Thus, the first time a browser
encounters */ in a style sheet, it terminates the comment. If there are subsequent
occurrences of /*, they are not interpreted as part of the comment—for example:

/* This is an incorrect comment
/* because it tries to nest
/* several comments. */
STARTING HERE, THIS TEXT IS OUTSIDE OF ALL COMMENTS! */ */

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

10

Using Whitespace in CSS

Whitespace in CSS includes only the following characters: space (\20), tab (\09), new line (\0A), return
(\oD), and formfeed (\0C). A browser will not interpret other Unicode whitespace characters as
whitespace—such as the nonbreaking space (\A0).

You can optionally place whitespace before and after the following: selectors, curly braces,
properties, colons, values, and semicolons. For example, all the following statements are correct and
produce the exact same result:

body{font-size:20px;line-height:150%;}
body { font-size:20px; line-height:150%; }
body { font-size : 20px ; line-height : 150% ; }

body
{
font-size: 20px;
line-height: 150%;
}

In this book, I use a compact coding style in which I put no whitespace inside rules, and I put one
space in between rules and selectors, such as the following:

body { font-size:20px; line-height:150%; }

Whitespace never occurs within a property name or within a constant property value. Whenever
CSS uses multiple words for a property name or constant property value, it uses a hyphen to separate the
words, such as font-family and sans-serif. On rare occasions, CSS uses CamelCase to combine
multiple words into one constant value, such as ThreeDLightShadow.

Using Property Values

Property values come in the following forms: constant text, constant numbers, lengths, percentages,
functions, comma-delimited lists of values, and space-delimited series of values. Each property accepts
one or more of these types of values.

I have included all common types of values in Example 1-6. But first, I have listed them here along
with an explanation:

e color:black; assigns the constant value black to the color property. Most
properties have unique constant values. For example, the color property can be
assigned to over 170 constants that represent colors ranging from papayawhip to
ThreeDDarkShadow.

e background-color:white; assigns the constant value white to the background-
color property. Notice that the following three rules do the same thing as this rule,
but use different types of property values. Hex is also commonly used for color
properties in styles, e.g., background-color:#000000;.

¢ background-colorx:rgh(100%,100%,100%) ; assigns the CSS function rgb() to
background-color. rgh() takes three comma-delimited parameters between its
parentheses, which specify the amount of red, green, and blue to use for the color.
In this example, percentages are used. One hundred percent of each color makes
white.

e background-color:rgh(255,255,255); assigns white to the background-color. In
this case, values from 0 to 255 are used instead of percentages. The value 0 is no

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

color. The value 255 equals 100% of the color. Using 255 for red, green, and blue
makes white.

¢ background-colorx:WindowInfoBackground; assigns the operating system color
WindowInfoBackground to background-color. Notice how operating system color
constants are in CamelCase.’

o font-style:italic; assigns the constant value of italic to font-style. The font-
style property also allows two other constant values: normal and oblique.

o font-size:20px; assigns a length of 20 pixels to font-size. You can assign a variety
of measurements to most properties including px (pixel), em (height of the font or
font-size), ex (height of the letter “x”), pt (point, i.e., 1/72 of an inch), in (inch), cm
(centimeter), mm (millimeter), and pc (pica, i.e., 12 points, or 1/6 of an inch).

o font-family:"Century Gothic", verdana, arial, sans-serif; assigns a comma-
delimited list of font names to font-family. If the first font name is unavailable, a
browser uses the second, and so forth. The last font name should be one of the
generic font names: “serif”, “sans-serif”, “cursive”, “fantasy”, “monospace”, which
work in every browser. Whenever a font name contains a space, it must be

enclosed in double quotes, such as "Century Gothic".
e line-height:150%; assigns 150% of the font-size to line-height.
e margin:iem; assigns the size of the font to margin (i.e., font-size multiplied by 1).

e border:4px double black; creates a black, 4-pixel, double-line border. Notice how
border takes three space-delimited values that represent the border’s width, style,
and color. The sequence of the values does not matter. border is a shortcut
property for three properties: border-width, border-style, and border-color.
There are several other shortcut properties including background, font, 1ist-
style, margin, and padding.

e padding:0.25em; assigns one-quarter of the font size to padding (i.e., font-size
multiplied by 0. 25).

e background-image:url("gradient.jpg"); assigns the gradient.jpg image to
background-image using the url function, which takes the URL of a file as its only
parameter. I always put a URL in quotes, but you have to only if the URL contains
whitespace.

e background-repeat:repeat-x; assigns the constant repeat-x to background-
repeat. Other background-repeat values include repeat-y, repeat, and no-repeat.

e margin:0; assigns zero to margin. Zero is the only length that may be specified
without a unit of measurement. All other lengths must be immediately followed by
a measurement, such as 1px, -1.5em, 2ex, 14pt, 0.5in, -3cm, 30mm, or 5pc.

o font-weight:900; assigns the constant 900 to font-weight. This number is actually
a constant. You can use the following constants for font-weight: normal, bold,
bolder, lighter, 100, 200, 300, 400, 500, 600, 700, 800, or 900. (Note that browser

"Each time you assign the same property to the same element, the new rule overrides the previous rule.
Since the example contains four background-color rules in a row, the last one is applied.

11

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

12

support is poor for numerical font weights, generally treating 100 through 400 as
normal and 500 through 900 as bold. Furthermore, bolder and lighter are rarely
supported by browsers and/or operating system fonts. Thus, I rarely use any value
for font-weight other than normal or bold.)

Later in the chapter, I present a four-page chart that lists all usable CSS properties and values. color
is the only property in the chart that has an incomplete list of usable values. It shows 79 of the 170 color
constants. I organized the 79 color constants into three groups that you may find useful: the 16 standard
colors organized by hue, 35 common colors organized by hue from light to dark, and the 28 operating
system colors. Throughout this book, I often use the color gold. I also use related hues such as wheat,
orange, tomato, firebrick, and yellow.

Tip You can disable a rule by placing the number 1 (or any other character for that matter) immediately in
front of a property name—for example, 1background-color:white. This invalidates the rule, but only the one
rule. All other valid rules before and after the invalid one are still processed. | often use this technique to invalidate
one rule temporarily to disable its effect while testing other rules.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Example 1-6. CSS Syntax Is Easy

oSS Syntax - Morilla Firefox

Eie Edt Yew Higtory Boowmarks Toals Helb

CSS synfax is EASY!

HTML
<!DOCTYPE html>

<html lang="en">

<head><title>CSS Syntax</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />

<style><!--
body { color:black; background-color:white;
background-colox:rgh(100%,100%,100%) ;
background-colox:rgh(255,255,255);
background-colox :WindowInfoBackground; }
-->¢</style>
</head>

<body>
<p>CSS syntax is <span style="font-style:italic;"»EASY!</p>
</body>

</html>

CSS

body { font-family:"Century Gothic",verdana,arial,sans-serif;
font-size:20px; line-height:150%;
margin:lem; border:4px double black; padding:0.25em;
background-image:url("gradient.gif"); background-repeat:repeat-x; }

p { margin:o; }

span { font-weight:900; }

13

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

14

Using Cascade Order

CSS allows you to assign the same rule to the same element multiple times. I call these competing rules.
Browsers use the cascading order to determine which rule in a set of competing rules gets applied. For
example, a browser assigns default rules to each element. When you assign a rule to an element, your
rule competes with the default rule, but since it has a higher cascading priority, it overrides the default
rule.

The cascading order divides rules into six groups based on the type of selector used in the rule. A
rule in a higher-priority group overrides a competing rule in a lower-priority group. Groups are
organized by the specificity of their selectors. Selectors in lower-priority groups have less specificity than
selectors in higher-priority groups.

The guiding principle behind the cascade order is that general selectors set overall styles for a
document and more specific selectors override the general selectors to apply specific styles.

For example, you may want to style all elementsin a document with no bottom margin using
*{margin-bottom:0;}. You may also want to style all paragraphsin a document with a bottom margin of
10 pixels using p{margin-bottom:10px;}. You may also want to style the few paragraphs belonging to the
double-space class with a bottom margin of 2 ems using *.double-space{margin-bottom:2em;}. You may
also want to style one paragraph with an extra-large bottom margin of 40 pixels using
#paragraph3{margin-bottom:40px; }. In each of these cases, the cascade order ensures a more specific
selector overrides a more general one.

Here are the six selector groups listed from highest to lowest priority:

1. The highest-priority group contains rules with !important added to them. They
override all non-!important rules. For example, #i100{border:6px solid
-black!important;} takes priority over #i100{border:6px solid black;}.

2. The second-highest-priority group contains rules embedded in the style
attribute. Since using the style attribute creates hard-to-maintain code, I do
not recommend using it.

3. The third-highest-priority group contains rules that have one or more ID
selectors. For example, #i100{border:6px solid black;} takes priority over
*,c10{border:4px solid black;}.

4. The fourth-highest-priority group contains rules that have one or more class,
attribute, or pseudo selectors. For example, *.c10{border:4px solid black;}
takes priority over div{border:2px solid black;}.

5. The fifth-highest-priority group contains rules that have one or more element
selectors. For example, div{border:2px solid black;} takes priority over
*{border:0px solid black;}.

6. The lowest-priority group contains rules that have only a universal selector—
for example, *{border:0px solid black;}.

When competing rules belong to the same selector group (such as both rules contain ID selectors),
the type and number of selectors prioritize them further. A selector has higher priority when it has more
selectors of a higher priority than a competing selector. For example, #1100 *.c20 *.c10{} has a higher
priority than #1100 *.c10 div p span em{}. Since both selectors contain an ID selector, they are both in
the third-highest-priority group. Since the first has two class selectors and the second has only one class
selector, the first has higher priority—even though the second has more selectors.

When competing rules are in the same selector group and have the same number and level of
selectors, they are further prioritized by location. Any rule in a higher-priority location overrides a
competing rule in a lower-priority location. (Again, this applies only when competing rules are in the

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

same selector group and have the same number and level of selectors. Selector groups always take
precedence over location groups.)

The six locations are listed here from highest to lowest priority:

1. The highest-priority location is the <style> element in the head of the HTML
document. For example, a rule in <style> overrides a competing rule in a style
sheet imported by an @import statement embedded within <style>.

2. The second-highest-priority location is a style sheet imported by an @import
statement embedded within the <style> element. For example, a rule in a style
sheet imported by an @import statement embedded within <style> overrides a
competing rule in a style sheet attached by a <link> element.

3. The third-highest-priority location is a style sheet attached by a <1ink>
element. For example, a rule in a style sheet attached by a <1ink> element
overrides a competing rule imported by an @import statement embedded
within the style sheet.

4. The fourth-highest-priority location is a style sheet imported by an @import
statement embedded within a style sheet attached by a <1ink> element. For
example, a rule imported by an @import statement embedded within a linked
style sheet overrides a competing rule in a style sheet attached by an end user.

5. The fifth-highest-priority location is a style sheet attached by an end user.

e Anexception is made for ! important rules in an end-user style sheet. These
rules are given the highest priority. This allows an end user to create rules to
override competing rules in an author’s style sheet.

6. The lowest-priority location is the default style sheet supplied by a browser.

When multiple style sheets are attached or imported at the same location level, the order in which
they are attached determines the priority. Style sheets attached later override style sheets attached
previously.

When competing rules are in the same selector group, have the same number and level of selectors,
and have the same location level, rules listed later in the code override rules listed earlier.

In Example 1-7, each rule in the style sheet is applied to the division element. Each rule applies a
different border-width to <div>. Cascading order determines which rule actually gets applied. I sorted
the styles in the style sheet into cascading order from least to most important. As you can see from the
screenshot, the browser applies the last rule to the <div>, which sets a 14-pixel border around the <div>.
The browser applies this rule because it has the highest priority in the cascading order—it is an ID
selector with !important attached to it.

Notice how ID selectors override class selectors, which in turn override element selectors, which in
turn override the universal selector. Notice how ! important gives selectors a whole new magnitude of
importance. For example, the ! important universal selector is more important than the un-!important
ID selector!

Notice how border-style:none!important; is placed in the body and html selectors to prevent the
universal selector * from putting a border around <body> and <html>. This also illustrates how element
selectors override universal selectors.

15

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

16

Example 1-7. Cascade Order

2 Cascading Order - Level 1: limportant - Mozilla Firefos

Eie Edt Yew History Boolmarks Toaols Hel

limpertant has highest priority.

HTML

<body>
<div id="1100" class="c10">!important has highest priority.</divs
</body>

CSS

html, body { border-style:none!important; }

* { border:opx solid black; } /* Universal Selector */

div { border:2px solid black; } /* Element Selector */

,c10 { border:4px solid black; } / Secondary Selector */

#1100 { border:6px solid black; } /* ID Selector */

* { border:8px solid black!important; } /* lUniversal Selector */
div { border:10px solid black!important; } /* 1Element Selector */

,c10 { border:12px solid black!important; } / 1Secondary Selector */
#1100 { border:14px solid black!important; } /* 11D Selector */

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Simplifying the Cascade

To keep the cascade order as simple as possible, I minimize the number of style sheets that I attach and I
do not use @import statements. I also avoid the !important operator. Most importantly, I sort my
selectors so they are listed in cascade order in each style sheet.

I organize the style sheet into six groups. I put all universal selectors first, followed by element, class,
attribute, pseudo, and ID selectors. If I have any ! important selectors, I place them after the ID selectors
in another set of groups.

Keeping style sheets sorted in cascade order helps me remember that the ID selectors override all
class, attribute, pseudo, element, and universal selectors—no matter where they occur in the current
style sheet and in all other style sheets. Likewise, it reminds me that class, attribute, and pseudo
selectors in each style sheet override all element and universal selectors—no matter where they occur.

Keeping rules sorted in cascading order makes it easy to see the order in which competing rules are
applied. This makes it easy to track down which rules are overriding other rules. I keep rules sorted in
the cascading order as follows:

/* Universal Selectors */

/* Element Selectors */

/* Class, Attribute, and Pseudo Selectors */
/* ID Selectors */

/* limportant Universal Selectors */

/* limportant Element Selectors */

/* limportant Class, Attribute, and Pseudo Selectors */
/* limportant ID Selectors */

17

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

18

CSS and HTML Links

Description URL
W3C Homepage for CSS www.w3.org/Style/CSS
W3C CSS 2.1 Specification www.w3.0rg/TR/CSS21

W3C CSS Validator Service

W3C HTML Validator Service

W3C Mobile Web Validator

W3C HTML Home Page

W3C HTML 4.01 Specification
W3C XHTML 1.0 Specification
W3C Mobile Web Best Practices 1.0
W3C Accessibility Initiative

“HTML 5” Working Group

Mozilla Developer Center

Microsoft Web Workshop

Opera Web Specifications
Apple Safari Developer Connection

Web Design Information

Web Design Tutorials

Tools

CSS Mailing Lists

jigsaw.w3.org/css-validator
validator.w3.org
validator.w3.org/mobile
www.w3.org/MarkUp
www.w3.0rg/TR/html401
www.w3.0rg/TR/xhtml1
www.w3.0rg/TR/mobile-bp
Www.w3.0rg/WAI
www.whatwg.org

developer.mozilla.org/en/docs

msdn.microsoft.com/workshop/author/css/

css_node_entry.asp

www.opera.com/docs/specs

developer.apple.com/internet/safari

www.welie.com/patterns
microformats.org
www.alistapart.com
www.simplebits.com/notebook
www.positioniseverything.net
css.maxdesign.com.au
csszengarden.com
meyerweb.com/exric/css

www.w3schools.com
www.westciv.com/style master/house

developer.yahoo.com
dean.edwards.name/my/cssQuery
addons.mozilla.org/firefox/60
addons.mozilla.org/firefox/179

css-discuss.org
babblelist.com

http://www.w3.org/Style/CSS
http://www.w3.org/TR/CSS21
http://www.w3.org/MarkUp
http://www.w3.org/TR/html401
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/mobile-bp
http://www.w3.org/WAI
http://www.whatwg.org
http://www.opera.com/docs/specs
http://www.welie.com/patterns
http://www.alistapart.com
http://www.simplebits.com/notebook
http://www.positioniseverything.net
http://www.w3schools.com
http://www.westciv.com/style_master/house

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Common CSS Properties

display margin

text-indent

visibility margin-left text-align
margin-right
float margin-top color
clear margin-bottom
font
position border font-family
z-index border-left font-size
overflow border-left-color font-style

cursor border-left-width
border-left-style

left border-right text-de
right border-right-color
width border-right-width

font-variant
font-weight

coration
text-transform

min-width border-right-style vertical-align
max-width

border-top line-height
top border-top-color white-space

bottom border-top-width

height border-top-style

min-height

max-height border-bottom
border-bottom-color
border-bottom-width

/* LESS USABLE------- */ border-
/* caption-side */
/* clip

/* content *
/* empty-cells */
/* outline

/* outline-color */
/* outline-style */
/* outline-width */
/* quotes */
/* orphans */
/* page-break-inside */

/* widows */
/* __________________________ */

word-spacing
etter-spacing

direction
unicode-bidi

bottom-style

*/ padding list-style

/ padding-left list-style-type
padding-right list-style-position
*/ padding-top list-style-image

padding-bottom
border-collapse

background table-layout
background-color
background-image
background-repeat
background-attachment
background-position

page-break-after
page-break-before

19

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

20

CSS Properties and Values: Common

This list includes only those CSS properties and values that work in all the major browsers. The letter
before a property means it is inherited. The value in ifalics is the default. Some values are symbols
representing multiple possibilities for a value. For example, LENGTH represents 0, auto, none, and all
measurements (%, px, em, ex, pt, in, cm, mm, and pc).

“wsn
1

Common applies to all elements and box models.
display: inline, none, block, inline-block, list-item,
table-cell, table, table-row

I visibility: visible, hidden
background-color: transparent, COLOR
background-image: none, url("file.jpg")
background-repeat: repeat, repeat-x, repeat-y, no-repeat

background-attachment: scroll, fixed
background-position: 0% 0%, Hk V%, HYV,
left top, left center, left bottom,

right top, right center, right bottom,

center top, center center, center bottom

border: WIDTH STYLE COLOR

border-width: medium, LENGTH, thin, thick

border-style: none, hidden, dotted, dashed, solid, double,
groove, ridge, inset, outset

border-color: black, COLOR

border-left: WIDTH STYLE COLOR

border-left-width: same as border-width
border-left-style: same as border-style
border-left-color: same as border-color
border-right: WIDTH STYLE COLOR

border-right-width: same as border-width
border-right-style: same as border-style
border-right-color: same as border-color
border-top: WIDTH STYLE COLOR

border-top-width: same as border-width
border-top-style: same as border-style
border-top-color: same as border-color

border-bottom: WIDTH STYLE COLOR

border-bottom-width: same as border-width
border-bottom-style: same as border-style
border-bottom-color: same as border-color

I cursor: auto, default, pointer,
help, wait, progress, move, crosshair, text,
n-resize, s-resize, e-resize, w-resize

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

CSS Properties and Values: Content

Content applies to all except for rows.

[

[

He e

He He He He

padding: 0, LENGTH
padding-left: 0, LENGTH
padding-right: 0, LENGTH
padding-top: 0, LENGTH
padding-bottom: 0, LENGTH

font: caption, icon, menu, message-box, small-caption, status-bar

font-family: serif, FONTLIST, sans-serif, monospace, fantasy, cursive

font-size: medium, LENGTH, %ParentElementFontSize, xx-small, x-small,
smaller, small, large, larger, x-large, xx-large

font-style: normal, italic, oblique
font-variant: normal, small-caps
font-weight: normal, lighter, bold, bolder,

100, 200, 300, 400, 500, 600, 700, 800, 900

text-decoration: none, underline, line-through, overline

text-transform: none, lowercase, uppercase, capitalize

direction: 1tr, rtl

unicode-bidi: normal, bidi-override, embed

line-height: normal, LENGTH, %FontSize, MULTIPLIER

letter-spacing: normal, LENGTH

word-spacing: normal, LENGTH

white-space: normal, pre, nowrap

color: #rrggbb, #rgb, rgb(RED,GREEN,BLUE), rgb(RED%,GREEN%,BLUE%)
black, gray, silver, white,
red, maroon, purple, fuchsia,

lime, green, olive, yellow,
blue, navy, teal, aqua,

violet, fuschia, red, maroon, black

wheat, gold, orange, tomato, firebrick
lightyellow, yellow, yellowgreen, olive, darkolivegreen
palegreen, lime, seagreen, green, darkgreen
lightcyan, cyan, turquoise, teal, midnightblue

lightskyblue,deepskyblue,royalblue, blue, darkblue
whitesmoke, lightgrey, silver, gray, dimgray, darkslategray

ActiveBorder, ActiveCaption, AppWorkspace, Background,
ButtonFace, ButtonHighlight, ButtonShadow, ButtonText,
CaptionText, GrayText, Highlight, HighlightText,

InactiveBorder, InactiveCaption, InactiveCaptionText,
InfoBackground, InfoText, Menu, MenuText, Scrollbar,
ThreeDDarkShadow, ThreeDFace, ThreeDHighlight,
ThreeDLightShadow, ThreeDShadow, Window, WindowFrame, WindowText

21

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

22

CSS Properties and Values: Layout

Float applies to all except cells and rous.
float: none, 1left, right
Clear applies to all except inlines, inline-blocks, cells, & rows.
clear: none, left, right, both
Positioned applies to all except cells and rous.
position: static, relative; absolute, fixed
left: auto, LENGTH, %WidthOfContainingBlock
right: auto, LENGTH, %WidthOfContainingBlock
top: auto, LENGTH, %HeightOfContainingBlock
bottom: auto, LENGTH, %HeightOfContainingBlock
z-index: auto, INTEGER
Horizontal Margin applies to all except cells and rous.
margin: 0, LENGTH, %WidthOfContainingBlock, auto
margin-left: o, LENGTH, %WidthOfContainingBlock, auto
margin-right: o, LENGTH, %WidthOfContainingBlock, auto
Vertical Margin applies to all except inlines, cells, and rows.
margin: o, LENGTH, %WidthOfContainingBlock, auto
margin-top: o, LENGTH, %WidthOfContainingBlock, auto
margin-bottom: o0, LENGTH, %WidthOfContainingBlock, auto
Width applies to all except inlines and rows.
width: auto, LENGTH, %WidthOfContainingBlock
min-width: o, LENGTH, %WidthOfContainingBlock
max-width: none, LENGTH, %WidthOfContainingBlock
Height applies to all except inlines and tables.
height: auto, LENGTH, %HeightOfContainingBlock
min-height: 0, LENGTH, %HeightOfContainingBlock
max-height: none, LENGTH, %HeightOfContainingBlock
Content Layout applies to all except inlines, tables, and rows.
i text-indent: o0, LENGTH, %WidthOfContainingBlock
i text-align: left, center, right, justify

overflow: visible, hidden, auto, scroll

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

CSS Properties and Values: Specialized

List applies only to lists.

i TYPE POSITION IMAGE

disc, circle, square, none, decimal,
lower-alpha, upper-alpha, lower-roman, upper-roman

i list-style-position:

i list-style:

i list-style-

i list-style-

type:

image:

none,

Table applies only to tables.
i border-collapse:
table-layout:

outside,inside
url("file.jpg")

separate, collapse
auto, fixed

Cell applies only to cells.
vertical-align: baseline, bottom, middle, top

Inline applies only to inlines and inline-blocks.
vertical-align: baseline, LENGTH, %LineHeight,
text-bottom, text-top, middle, top, bottom

Page applies only to blocks and tables.
page-break-after:
page-break-before:

Selectors

* {} selects
p {} selects
*.c {} selects

all elements

all <p> elements

auto, always, avoid
auto, always, avoid

all elements where class="c

p.c {} selects all <p>
#main {} selects
a:link {} selects
a:visited{} selects
athover {} selects
a:active {} selects
a:focus {} selects
p:first-letter {}
p:first-line {:
p:first-child {}

tr:nth-child(even)
tr:nth-child(2n+0)
tr:nth-child(2n+0)
tr:nth-child(10n+9)
#n *.c :first-line {}
#n > *.c > :first-line {}
#n + *.c + :first-line {}
#n , *.c , :first-line {}

*[title]
*[title~="WORD"]

{
{

elements where class="c

one element where id ="main"

all unvisited links

all visited links

all links being hovered over
the current link being activated
all links that have the focus

selects
selects
selects
selects
same as
same as
same as

—

first letter of all <p> elements
first line of all <p> elements

first child of all <p> elements
every even row of a table

above

above

above

selects every 9th, 19th, 29th, etc., row

child selector example

sibling selector example

applies independent selectors to same block of properties
selects all elements with a title attribute

selects all where title attribute contains "WORD"

*[title="EXACT_MATCH_OF ENTIRE_VALUE"] {} selects all with exact attribute match

23

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

24

Media Queries

CSS has long supported media-dependent style sheets tailored for different media types. For example, a
document may use sans-serif fonts when displayed on a screen and serif fonts when printed. “Screen”
and “print” are two media types that have been defined.

In the old days of HTML4, this could be written as follows:

<link rel="stylesheet" type="text/css" media="screen" href="sans-serif.css">
<link rel="stylesheet" type="text/css" media="print" href="serif.css">

With CSS3, media queries extend the functionality of media types by allowing more precise labeling
of style sheets. A media query consists of a media type and zero or more expressions that check for the
conditions of particular media features. By using media queries, presentations can be tailored to a
specific range of output devices without changing the content itself. A media query is a logical
expression that is either true or false. A media query is true if the media type of the media query matches
the media type of the device where the user agent is running, and all expressions in the media query are
true.

Here are a few examples:

<--! Applies to devices of a certain media type ('screen') with certain feature (it must be a
color screen)-->
<link rel="stylesheet" media="screen and (color)" href="example.css" />

<!-- The same media query written in an @import-rule in CSS -->
@import url(color.css) screen and (color);

A shorthand syntax is offered for media queries that apply to all media types; the keyword “all” can
be left out (along with the trailing “and”), i.e., the following are identical:

@media (orientation: portrait) { .. }
@media all and (orientation: portrait) { .. }

This way designers and developers can create more complex queries that map their specific needs:

@media all and (max-width: 698px) and (min-width: 520px), (min-width: 1150px) {
body {
background: #ccc;

There is a large list of media features, which includes the following:
e width and device-width
e height and device-height
e orientation
e aspect-ratio and device-aspect-ratio
e color and color-index
e monochrome (if not a monochrome device, equals 0)
e resolution
e scan (describes the scanning process of “tv” output devices)

e grid (specifies whether the output device is grid or bitmap)

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Flexible Units of Measure

Unit

Description

em

ex

emis the font-size assigned to an element. In the case of the font-size property, it is the font-size
assigned to the element’s parent. For example, 5em is five times the font-size. Ems are a useful
measure when you want to size an element relative to the size of its text. This allows the layout of your
documents to flex with the size of the text.

You can use ems to roughly size the width of an element to fit a certain number of characters. You can
do this by multiplying the number of characters by 0.625 to create the em measurement. For example,
if you want an element to be 10 characters wide, you can set it to 6.25em.

In Internet Explorer 7 and earlier versions, a user can use the View » Text Size menu to enlarge or
shrink the overall size of the text. When you assign font-size:medium to <body> and use ems for all
font-size properties, Internet Explorer sizes text relative to the text size chosen by the user. This
makes your document more usable to users who want to see text larger or smaller than normal. If you
assign a fixed measurement to font-size, Internet Explorer uses the fixed size and ignores the text
size chosen by the user.

ex is the height of the letter “x” of an element’s current font. This measurement is related to the em, but
is rarely used.

Fixed Units of Measure

Unit

Description

in

px
pt
pc
cm

mm

in stands for logical inches.

in is a “logical” inch because the actual physical size depends on the monitor and settings chosen by
the operating system and/or user. The dot pitch of a monitor determines the physical size of its pixels,
and thus the physical size of the logical inch. Various operating systems have different settings for dpi.
Common values are 72 dpi (Macintosh), 75 dpi (Unix), 96 dpi (Windows Normal), 100dpi (Unix Large),
and 120 dpi (Windows Large). Since the dots on a monitor do not change size, the logical inch is
physically larger at 120 dpi than at 72 dpi because the logical inch contains more dots. Thus, setting
the width of an element to 96px is the same as setting it to 1in on Windows and 1.33in on a Mac
running at 72 dpi.

The problem with logical inches and all other fixed units of measure is that they do not scale well on
systems with different dot-per-inch settings. What may seem just right on Windows at 96 dpi may be
too large or too small on other systems. Thus, percentages or ems work best when cross-platform
compatibility is desired.

px stands for pixels. Pixels are useful when you want to precisely align elements to images because
images are measured in pixels.

pt stands for point. A point is 1/72 of a logical inch.
pc stands for picas. A pica is 12 points or 1/6 of a logical inch.
cm stands for logical centimeters. There are 2.54 centimeters per logical inch.

mm stands for millimeters. There are 25.4 millimeters per logical inch.

25

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

26

Ratios Between Units of Measure at 96 dpi

Value Pixel Point Pica Inch Millimeter
1 pixel =1px =0.75pt (3/4) =0.063pc (1/16) =0.0104in (1/96) =0.265mm
1point =1.333px (4/3) =1pt =0.083pc (1/12) =0.0138in (1/72) =0.353mm
1 pica =16px =12pt =1pc = 0.1667in (1/6) =4.233mm
1inch =96px =72pt =6pc =1in =25.4mm
1 mm =3.779px =2.835pt =4.233pc =0.039in =1mm
Typical font-size Values at 96 dpi
CSS Ems Points Pixels Percent Heading HTML Physical Size
xx-small 0.50em 6pt 8px 50% 10 pixels
0.57em 7pt 9px 57% 12 pixels
x-small 0.63em 7.5pt 10px 63% hé 1 12 pixels
0.69em 8pt 11px 697% 13 pixels
0.75em 9pt 12px 75% 2 14 pixels
small 0.82em 9.75pt 13px 82% h5 16 pixels
0.88em 10.5pt 14px 88% 17 pixels
0.94em 11.25pt 15px 94% 18 pixels
medium lem 12pt 16px 100% ha 3 18 pixels
1.08em 13pt 17px 108% 20 pixels
large 1.13em 13.5pt 18px 113% h3 4 22 pixels
1.17em 14pt 19px 117% 23 pixels
1.25em 15pt 20px 125% 25 pixels
1.38em 16.5pt 22px 138% 26 pixels
x-large 1.50em 18pt 24px 150% h2 5 29 pixels
1.75em 21pt 28px 175% 34 pixels
xx-large 2em 24pt 32px 200% h1 6 38 pixels

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Transitions, Animations, and 2D Transformations

The CSS Transitions spec allows property changes in CSS values to occur smoothly over a specified
duration. Normally when the value of a CSS property changes, the rendered result is instantly updated,
but with CSS Transitions, the author has the ability to animate smoothly from the old state to the new
state over time.

Here is an example:

#box {
transition-property: opacity, left;
transition-duration: 3s, 5s;

}

The foregoing code will cause the opacity property to transition over a period of three seconds and
the left property to transition over a period of five seconds.

CSS Animations are similar to transitions in that they change the presentational value of CSS
properties over time. The key difference is that while transitions trigger implicitly when property values
change, animations are explicitly executed when the animation properties are applied. Because of this,
animations require explicit values for the properties being animated. These values are specified using
keyframes.

The author can specify how many times the animation iterates, whether it alternates between the
begin and end values, whether the animation should be running or paused, etc.

Here is an example:

#warning {
animation-name: 'horizontal-slide';
animation-duration: 5s;
animation-iteration-count: 10;

}

@keyframes 'horizontal-slide' {

from {
left: o;
}
to {
left: 100px;
}
}

This will produce an animation that moves #warning horizontally for 100px over five seconds and
repeats itself nine times for a total of ten iterations.

The CSS 2D Transforms spec allows elements rendered by CSS to be transformed in two-
dimensional space. Here is an example:

#box {
height: 100px; width: 100px;
transform: translate(50px, 50px) scale(1.5, 1.5) rotate(90deg);

The foregoing example moves #box by 50 pixels in both the X and Y directions, scales the element by
150%, and then rotates it 90 degrees clockwise about the z axis.

27

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

28

Troubleshooting CSS

You can use the following steps to troubleshoot a style sheet that is not working. I listed the steps in the
order that will most likely help you find the problem quickly.

1.

Validate the HTML document. This ensures you have no syntax problems
that may cause a browser to interpret the structure of the document differently
than you expect. Developers can use the W3C Validation Service
(http://validator.w3.org/), the W3C Unicorn Validator
(http://validator.w3.org/unicorn/), or one of the various browser plug-ins
that provide markup and style validation.

Validate each CSS style sheet. This ensures you have no syntax problems,
which would cause one or more rules to be ignored.

o Make sure a proper unit of measure (UOM) follows nonzero
measurements and that no space occurs between the number and its UOM,
such as 1em or 100%. (1ine-height is an exception; it allows a nonzero
measurement without a UOM.)

. Make sure only a colon (:) and optional whitespace occur between a
property name and its value, such as width:100% or width : 100%.

. Make sure a semicolon (;) closes each rule, such aswidth:100%;.

Review the list of CSS parsing errors using the Error Console in Mozilla
browsers. Browsers ignore each rule that has a parsing error, but unlike many
other programming languages, they continue parsing and applying the
remaining rules.

Verify a selector is selecting all the elements you think it should be selecting,
and only those elements. You can easily see the results of a selector by putting
outline:2px solid invert; in the selector. (Note that outline does not work
in Internet Explorer 7, but border does.)

Look carefully at the cascade priority of each rule that fails to be applied.
Cascade priority takes precedence over document order. For example,
#myid{color:red;} takes priority over *.myclass{color:blue;}, and #myid
*.myclass{color:green;} takes priority over both—no matter where they
occur in a style sheet and no matter if they occur in a style sheet that was
loaded before or after the current style sheet. I find this to be a common cause
of trouble because a rule with higher cascade priority can be anywhere in any
style sheet. Assuming you have already validated your style sheet, you can
often tell when cascade priority is the problem when some properties in a
selector work, but others do not—no matter what values you use. This typically
happens when properties are being overridden by another rule with a higher
cascade priority. You can usually verify this is the case by adding ! important
after a property. ! important gives a property a higher priority than all non-
limportant properties. If limportant makes a property work, you probably
have a cascading priority problem.

Verify the case of elements, classes, and IDs in the style sheet exactly
matches their case in the HTML document. This is important because XHTML
is case-sensitive. You may want to use lowercase values at all times to avoid
accidental mismatches.

http://validator.w3.org/
http://validator.w3.org/unicorn/

10.

11.

12.

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Check shorthand properties carefully to see whether you left out any
property values when you created the rule. The problem with shorthand
properties is that they assign values to all properties for which they are
shorthand—even if you set only one value! For example, background:blue; sets
background-color to blue, and it also sets background-image to none,
background-repeat to repeat, background-attachment to scroll, and
background-position to 0% 0%. If a rule containing background:blue; has a
higher cascading priority than an overlapping rule that assigns background-
image to url("image.jpg"), you will not see the background image because the
shorthand property background:blue; overrides it and sets background-image
to none.

o Shorthand properties include margin, border, padding, background, font, and
list-style.

o font is a particularly troublesome shorthand property because it combines
so many properties into one, and all these values are inherited! These
properties include font-family, font-size, font-weight, font-variant,
font-style, and line-height. Remember that assigning even one value to
font, such as font:1em;, causes the browser to set the default values for all
these properties!

Verify a browser loads all your style sheets. You can make sure each one is
referenced through a <link> statement within the <head> section of your
HTML document, or through @import statements in style sheets. If you are not
sure a style sheet is being loaded, you can place a unique rule in the style sheet
to see whether it gets applied. Such a rule would be something obvious, like
*{border:1px solid black;}.

Avoid using @import statements. If you use @import statements, verify they
occur as the first items in the style sheet to ensure they have a lower priority
than the rules in the style sheet.

Verify style sheets are loaded in the order you want by listing <1ink>
statements and @import statements in order of ascending priority. Rules at the
same level in the cascading order are overridden by rules in style sheets linked
or imported later. But remember that rules with a higher cascading priority
always override rules with a lower priority no matter in what order the rules
occur in a style sheet or whether they occur in style sheets linked or imported
later.

Verify the server sends text/css as the Content-Type header for CSS style
sheets. Mozilla browsers refuse to use a style sheet unless it has a content type
of text/css. You can view the HTTP headers in Mozilla browsers by using the
Web Developer Toolbar and selecting the menu option View Response
Headers.

Remove HTML elements that may have been put in a CSS style sheet, such
as <style>. Also make sure no child elements have been accidentally placed
inside the <style> element, which is inside the head of the HTML document.

29

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Normalized Style Sheet

Because each browser has slightly different default settings, you may want to build rules into your style
sheets to define baseline settings for each element. For example, different browsers assign the <h1>
element to different sizes and margins. By assigning your own size and margins to <h1>, you can
standardize its appearance in all browsers.

The simplest approach (and the easiest approach to maintain) is to create a baseline set of rules for
all elements and to load those rules in the first style sheet you attach to a document. You can load a small
set of rules that reset all elements to the simplest of styles as shown in Listing 1-2. Or you can load a
more extensive set of rules that create a standard style for your site, such as those shown in Listing 1-3.
You can find standard sets of baseline rules on the Internet, such as Yahoo’s YUI Reset CSS rules (see
http://developer.yahoo.com/yui/reset/).

Loading a separate baseline style sheet affects the speed at which your page is rendered (see the
sidebar “How Fast Will Your Page Load?”). Thus, for performance reasons, you may want to combine
style sheets or move styles into the <style> section of the HTML document.

Listing 1-2. Simple Baseline Style Sheet (Similar to Yahoo's YUI Reset CSS)

body,div,dl,dt,dd,ul,ol,1i,h1,h2,h3,h4,h5,h6,pre, form,fieldset, input,p,
blockquote,th,td { margin:0; padding:0; }

table { border-collapse:collapse; border-spacing:0; }
fieldset,img { border:o0; }
address,caption,cite,code,dfn,em,strong,th,var

{ font-style:normal; font-weight:normal; }

ol,ul { margin:iem 0; margin-left:40px; padding-left:0; }
ul { list-style-type:disc; }

ol { list-style-type:decimal; }

caption,th { text-align:left; }

h1,h2,h3,h4,h5,h6 { font-size:100%; }

HOW FAST WILL YOUR PAGE LOAD?

How fast your document renders is important. A web page that renders within 0.5 seconds is considered
instantaneous; 1 second is fast; 2 seconds is normal; more than 2 seconds becomes noticeable; and about
6 seconds is all most broadband users will tolerate. As a rule of thumb, the latency involved in looking up
each file typically takes 0.1 to 0.5 seconds—this is on broadband connections and does not include the
time it takes to actually download a file. Because of latency, a fast page can typically load three extra files,
such as one style sheet, one JavaScript file, and one image, and a normal page can load about seven extra
files.

To help with performance, a browser caches files. This may help on subsequent downloads, but it does not
help the first time a page downloads. Furthermore, cached files speed performance only when the server
sets their expiration date to expire in the future. When the refresh date on a cached file expires, a browser
asks the server whether the file has changed. This takes about 0.1 to 0.5 seconds per file—even if the file
has not changed and does not need to be downloaded again. Thus, it is important to set the expiration date
as far in the future as you dare. How far in the future depends on how often you expect the file to change
on the server. The problem is that if you change the file on the server before the expiration date, users will
not get the updated file because browsers will not bother asking for it, unless you clear the cache.

30

http://developer.yahoo.com/yui/reset/

CHAPTER 1 DESIGN PATTERNS: MAKING CSS EASY!

Listing 1-3. Complete Baseline Style Sheet

/* BLOCK ELEMENTS */
html, div, map, dt, form { display:block; }

body { display:block; margin:8px; font-family:serif; font-size:medium; }
p, dl { display:block; margin-top:1em; margin-bottom:1em; }
dd { display:block; margin-left:40px; }

address { display:block; font-style:italic; }

blockquote { display:block; margin:iem 40px; }

hi { display:block; font-size:2em; font-weight:bold; margin:0.67em 0

h2 { display:block; font-size:1.5em; font-weight:bold; margin:0.83em 0

h3 { display:block; font-size:1.125em; font-weight:bold; margin:iem 0

h4 { display:block; font-size:1em; font-weight:bold; margin:1.33em 0;
0
0
0

.
b

e e

hs5 { display:block; font-size:0.75em; font-weight:bold; margin:1.67em
hé6 { display:block; font-size:0.5625em; font-weight:bold; margin:2.33em
pre{ display:block; font-family:monospace; white-space:pre; margin:iem

hr { display:block; height:2px; border:1px; margin:0.5em auto 0.5em auto; }

. we

b

-
e e o e e

)

/* TABLE ELEMENTS */

table { border-spacing:2px; border-collapse:separate;
margin-top:0; margin-bottom:0; text-indent:0; }

caption { text-align:center; }

td { padding:1px; }

th { font-weight:bold; padding:1px; }

tbody, thead, tfoot { vertical-align:middle; }

/* INLINE ELEMENTS */

strong { font-weight:bold; }

cite, em, var, dfn { font-style:italic; }

code, kbd, samp { font-family:monospace; }

ins { text-decoration:underline; }

del { text-decoration:line-through; }

sub { vertical-align:-0.25em; font-size:smaller; line-height:normal; }
sup { vertical-align: 0.5em; font-size:smaller; line-height:normal; }
abbr[title], { border-bottom:dotted 1px; }

/* LIST ELEMENTS */

ul { list-style-type:disc; margin:ilem 0; margin-left:40px; padding-left:0;}
ol { list-style-type:decimal; margin:1lem 0; margin-left:40px; padding-left:0;}
/* remove top & bottom margins for nested lists */

ul ul, ul ol, ul dl, ol ul, ol ol, ol dl, dl ul, dl ol, dl dl

{ margin-top:0; margin-bottom:0; }

/* use circle when ul nested 2 deep */

ol ul, ul ul { list-style-type:circle; }

/* use square when ul nested 3 deep */

ol ol ul, ol ul ul, ul ol ul, ul ul ul { list-style-type:square; }

Tip You can view Mozilla Firefox’s internal default style sheet using resource://gre-resources/html.css.

31

CHAPTER 2

HTML Design Patterns

This chapter explores HTML only as it relates to CSS. It contains design patterns that are essential for
styling a document with CSS. It explores HTML at a high level with an eye toward explaining how
elements can be put to use structurally and semantically. Each design pattern in this book is created
using structural and semantic elements combined with CSS. There are four major types of elements used
in design patterns: structural block, terminal block, multi-purpose block, and inline elements.
Understanding these types of elements is key to understanding the design patterns in this book and
essential to creating your own.

Chapter Outline

HTML Structure shows how HTML elements work together to create a document.

XHTML shows how to mark up a document with valid XHTML. It also points out
why using valid XHTML makes styling with CSS more reliable.

DOCTYPE shows how to use document types to validate the way documents are
coded, and it explores what document types work best for CSS and HTML.

Header Elements shows how to create metadata about a document and how to
link a document to supporting documents and related documents.

Conditional Style Sheet shows how to load a style sheet to fix problems unique to
Internet Explorer.

Structural Block Elements shows how to create structural meaning in a
document.

Terminal Block Elements shows how certain blocks have semantic meaning
because they contain content instead of other blocks.

Multi-purpose Block Elements shows how certain elements can be used for
block structure and semantic meaning.

Inline Elements shows how styles can bring out the meaning of semantic
markup.

Class and ID Attributes shows how CSS relies on class and id attributes to select
elements. It also shows how the class attribute can add meaning to an element.

HTML Whitespace shows how to make whitespace work for you instead of
against you.

33

CHAPTER 2 HTML DESIGN PATTERNS

HTML Structure

Container Contents
<html> <head> <body>
<head> <title> & (<meta> | <link> | <object> | <script> | <style> | <base>)
<body> <noscript> <div>
<noscript> inline | block
<article> inline | block
<section> inline | block
<nav> inline | block
<div> inline | block
<h1> inline
<p> inline
 or
 inline | block
<dl> <dt> <dd>
<dt> inline
<dd> inline | block
<table> <caption> <colgroup> <thead> <tfoot> <tbody>
<caption> inline
<colgroup> <col>
<col> null
<thead> <tr>
<tfoot> <tr>
<tbody> <tr>
<tr> <th> <td>
<th> inline | block
<td> inline | block
<form> inline | block (excluding <form>)
<fieldset> inline | block (excluding <formy)
<label> inline (excluding <label>)
<input> null
<textarea> text
<select> <optgroup> | <option>
<optgroup> <option>

34

HTML Structure cont.

CHAPTER 2 HTML DESIGN PATTERNS

Container Contents
<option> text
<button> inline | block (excluding <a>, <form>, controls)
<address> inline

<a> inline (excluding <a»)
 null
<canvas> null
<audio> null
<video> null
<map> <area>

<area> null
<object> <param> | inline | block

<param> null

 null
null No content; single tag with closing slash (e.g., <br /)
text Unicode text including HTML entities that are parsed and replaced
block Includes the following three types of block elements:

structural block - «dl> <table> <tr> <thead> <tfoot> <tbody> <colgroup> <col>

multi-purpose block
terminal block

inline

inline-semantic
importance
phrase
word
char
inline-flow
inline-block

replaced
controls

<div> <1i> «dd> <td> <th> <form> <noscript>
<h1> <p> <dt> <caption> <address> <blockquote>

Includes the following three major types and six minor types of inline

elements:

Includes text intermingled with zero or more of the following elements:

<a> <cite> <code> <kbd> <samp> <var>
<abbr> <dfn> <cite>

<sub> <sup>

 <bdo>
Includes replaced elements and form controls:

 <object> <embed> <iframe> <audio> <video> <canvas> <svg>
<input> <textarea> <select> <button> <label> <video> (with controls

attribute present)

35

CHAPTER 2 HTML DESIGN PATTERNS

36

Additional elements are included in the HTMLS5 specification, but I did not list them in the
preceding table because they have little semantic or structural meaning, are rarely used, or have quirky
implementations. The following elements style text: <i>, , <big>, <small>. The <pre> element
preserves whitespace, but it cannot contain images, objects, subscripts, or superscripts. The <q> element
automatically inserts quotes differently depending on the browser. The <ins> and elements mark
elements as inserted or deleted. Frames can cause problems for search engines and users: <iframe>,
<frameset>, <frame>, and <noframe>. Internet Explorer 7 will not remove built-in styles from <hr>,
<fieldset>, and <legend>, but later versions will. Also from an SEO perspective, traditional frames are
not indexed well when displayed since the content is typically indexed outside of the controls that reside
in a separate frame. At the same time, traditional framesets are fairly obsolete. Finally, <base> changes
the root of all links in your document—use it only if you fully understand it, or it may break all your links.
Similarly there are many other elements defined in the HTML5 draft spec that are either not yet
implemented in browsers or still undergoing significant revisions.

CHAPTER 2 HTML DESIGN PATTERNS

HTML Structure

®n0o Mozilla Firefox

HTML Structure

Paragraph

1. Ordered List Item
2. Ordered List Item

e Unordered List Item
e Unordered List Item

Definition Term

Definition Term
Definition Data
Definition Data

Table Caption
row1-coll row1-col2
row3-coll row3-col2
Item1

em2 Textarea

— |
® Radiol O Radio2 & Checkbox1 Input-text Type here Select T 2 (Submit)
Division within a Division Link Dspan em strong cite code kbd samp var abbr dfn g, *'P sdrawkcab

cssDesignPatterns.com

My blog post
The article element represents a self-contained composition in page that is independently distributable or reusable, e.g. in syndication.

Show comments...

First section heading

The section element represents a generic section of a document (thematic grouping of content).
And one more section

A page could be split into sections for an introduction, news items, contact information, etc.
Some Navigation

o Index of articles
eC inf .

A nav element doesn't have to contain a list, it can contain other kinds of content as well.

address

37

CHAPTER 2 HTML DESIGN PATTERNS

38

HTML
<IDOCTYPE html>

<html lang="en">

<head><title>HTML Structure</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8"/>
<link rel="stylesheet" href="site.css" media="all" type="text/css"/>
<link rel="stylesheet" href="page.css" media="all" type="text/css"/>

<link rel="stylesheet" href="print.css" media="print" type="text/css"/>

<!--[if 1te IE 6]>
<link rel="stylesheet" href="ie6.css" media="all" type="text/css"/>
<![endif]-->
</head>
<body>
<noscript>Show this when script cannot run.</noscript>
<div>
<h1>HTML Structure</h1>

<p>Paragraph</p>

Ordered List Item
Ordered List Item

Unordered List Item</1i>
Unordered List Item

<dl>
<dt>Definition Term</dt>
<dt>Definition Term</dt>
<dd>Definition Data</dd>
<dd>Definition Data</dd>
</dl>

<table>

<caption>Table Caption</caption>

<colgroup>
<col/>
<col/>

</colgroup>

<thead>

<tr>
<td>rowl-coli</td>
<td>row1-col2</td>

</tr>

</thead>

<tfoot>

<tr>
<td>row3-coli</td>
<td>row3-col2</td>

</tr>

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 HTML DESIGN PATTERNS

</tfoot>

<tbody>

</tbody>
</table>

<form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test">
<input type="hidden" title="input hidden" name="hidden" value="Secret"/>

<input id="radio1" name="radios" type="radio" value="radiol" checked="checked"/>
<label for="radio1">Radioi</label>

<input id="radio2" name="radios" type="radio" value="radio2-pushed"/>
<label for="radio2">Radio2</label>

<input id="xbox1" name="xbox1" type="checkbox" value="xbox1" checked="checked"/>
<label for="xbox1">Checkboxi</label>

<label for="inputtext">Input-text</label>
<input id="inputtext" name="inputtext" type="text" value="Type here" size="14"/>

<label for="select1"»Select</label>

<select id="select1" name="select" size="2">
<option selected="selected" value="item1">Itemi</option>
<option value="item2">Item2</option>

</select>

<label for="textarea"»>Textarea</label>
<textarea id="textarea" name="textarea" rows="2" cols="10">Textarea</textarea>

<input type="submit" id="submit1" name="submiti" value="Submit"/>

<input type="reset" id="reset1" name="reset1" value="Reset"/>

<button type="submit" id="buttoni" name="button1" value="Button1">Button</button>
</form>

<div>Division within a Division Link

<map id="map1" name="map1">
<area href="left.html" alt="left" shape="rect" coords="0,0,10,20"/>
<area href="right.html" alt="right" shape="rect" coords="10,0,20,20"/>
</map>

<span»span
em
strong
<cite>cite</cite>
<code>code</code>
<kbd>kbd</kbd>
<samp>samp</samp>
<var»var</var>
<abbr>abbr</abbr>
<dfny>dfn</dfn>
_{sub}
^{sup}

<bdo dir="rtl">backwards</bdo>

39

http://www.tipjar.com/cgi-bin/test

CHAPTER 2 HTML DESIGN PATTERNS

<object type="application/x-shockwave-flash">
<param name="movie" value="http://myserver.com/movie.swf">
<param name="allowfullscreen" value=true>
</object>
</div>
<article>
<header>
<h1>My blog post</h1>

<p>
<time pubdate datetime="2011-10-07T10:00-08:00"></time>
</p>
</header>
<p>The article element represents a self-contained composition in page that is
independently distributable or
reusable, e.g., in syndication.</p>
<footer>
Show comments...
</footer>
</article>
<section>
<h1>First section heading</h1>

<p>
The section element represents a generic section of a document (thematic grouping of
content).
</p>
</section>
<section>
<h1>And one more section</h1>

<p>A page could be split into sections for an introduction, news items, contact
information, etc.</p>
</section>
<nav»
<h1>Some Navigation</h1>

Index of articles</1i>
Contact information</1i>

<p>A nav element doesn't have to contain a list; it can contain other kinds of content as
well.</p>
</nav>
<address>address</address>
</div>
</body>
</html>

CSS

/* There are no CSS styles attached to this document. */

40

http://myserver.com/movie.swf

CHAPTER 2 HTML DESIGN PATTERNS

HTML Structure

Problem

You want to know how HTML elements work together to create an HTML document.

Solution

HTML is a strict hierarchical nesting of elements. Elements may be nested within each
other, but they cannot overlap each other. HTML organizes elements into three major
categories: structural, block, and inline elements.

The core structural elements are <html>, <head>, and <body>. Information about a
document goes in <head> and document content goes in <body>. Header elements are
covered in the Header Elements design pattern discussion.

There are three types of block elements: structural, multi-purpose, and terminal. These are
covered in the following design pattern discussions: Structural Block Elements, Terminal
Block Elements, and Multi-purpose Block Elements.

There are three major types of inline elements: semantic, flow, and inline-block. These are
covered in the Inline Elements design pattern discussion.

Pattern

HTML Core Structure

<!DOCTYPE DOCUMENT_TYPE_DEFINITION USED FOR_VALIDATION >
<html>

<head> METADATA </head>

<body> CONTENT </body>
</html>

Example

The example contains the simplest expression of each common HTML element.

The concept behind the <object> element is that it represents an external resource, which,
depending on the type of the resource, will be treated as an image, as a nested browsing
context, or as an external resource to be processed by a plug-in. Different browsers have
varying support for this element. The HTMLS5 specification defines several attributes like
data, type, name, etc.

Related to

Header Elements, Structural Block Elements, Terminal Block Elements, Multi-purpose Block
Elements, Inline Elements, Structural Meaning, Visual Structure (Chapter 13)

41

CHAPTER 2 HTML DESIGN PATTERNS

XHTML

7 XHTML - Mazilla Firefox A=1l3] 27 HIML - Mozilla Firefox =13
Ble Edt Yew Hitory Qeokmerks Toos Hep Ele Edt Mew History Hookmarks Tools Help
Paragraph Paragraph
Break
Break 1. Ordered List Item
2. Ordered List Item
1. Ordered List ltem
2. Ordered List ltem Defmiton Term
Dieftion Data
Dehnrbion Term
Dehmtion Diata
Valid XHTML

<!DOCTYPE html >

<html lang="en"»
<head><title>XHTML</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" /»
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
</head>
<body>
<h1>XHTML</h1> <p>Paragraph</p» <bx />Break
<0l> Ordered List Item¢/li» Ordered List Item¢/li>
<d1> <dt>Definition Term</dt> <dd>Definition Data</dd> </d1>
</body>
</html>

Valid HTML
<!DOCTYPE html >

<html lang="en” >
<head><title>HTML</title>
<meta http-equiv=Content-type content="text/html; charset=utf-8" >
<link rel=stylesheet href=page.css media=all type="text/css" >
<body>
<h1>HTML</h1> <psParagraph <brs>Break
<0l> Ordered List Item <lisOrdered List Item
<d1> <dtsDefinition Term <dd>Definition Data </dl>

42

XHTML

CHAPTER 2 HTML DESIGN PATTERNS

Problem

You want to create a document using XHTML.

Solution

The HTMLS5 specification defines an abstract language for describing documents and applications, and
some APIs for interacting with what is known as the "DOM HTML", or "the DOM" for short. There are
various concrete syntaxes for the foregoing language, and two are HTML and XHTML.

HTML (or HTMLS5) is the format suggested for most authors. It is compatible with most legacy web
browsers. If a document is transmitted with an HTML MIME type, such as text/html, then it will be
processed as an HTML document by web browsers.

XHTML (or XHTMLS5) is an application of XML. When a document is transmitted with an XML MIME
type, such as application/xhtml+xml, then it is treated as an XML document by web browsers, to be
parsed by an XML processor. Authors are reminded that the processing for XML and HTML differs; in
particular, even minor syntax errors will prevent a document labeled as XML from being rendered fully,
whereas they would be ignored in the HTML syntax.

Essentially an XHTMLS5 page is a simple HTML5 document that has the following:

HTML doctype/namespace: The <!DOCTYPE html> definition is optional, but it would be useful for
preventing browser quirks mode.

XHTML well-formed syntax

XML MIME type: application/xhtml+xml; this MIME declaration is not visible in the source code, but it
would appear in the HTTP Content-Type header that could be configured on the server.

Default XHTML namespace: <html xmlns="http://www.w3.0rg/1999/xhtml">

XHTML is case-sensitive, and HTML is case-insensitive. XHTML requires all tags and attributes to be
lowercase (e.g., <html> instead of <HTML>). CSS selectors are case-sensitive in XHTML! In XHTML, the
case of class or id values must match before they will be selected by CSS! For example, the selectors
#test and *.test select <h1 id="Test" class="TEST"> in HTML, but notin XHTML. For this
reason, I reccommend always using lowercase attribute values and tag names in XHTML and CSS.

XHTML requires the <html> tag to include the xmlns attribute with the value of
"http://www.w3.0rg/1999/xhtml". XHTML requires the xml:lang attribute to be present each time
the HTML lang attribute is used, such as xml:1lang="en" lang="en".

XHTML requires all elements to have start and end tags and all attributes to be enclosed in quotes and
to have a value. HTML does not.

HTML lets you omit the start tags for <html>, <head>, <body>, and <tbody>. HTML lets you omit end
tags for <html>, <head>, <body>, <p>, <115, <dt>, <dd>, <tr>, <th>, and <td>. A browser implies their
presence in HTML. In XHTML, a document will not validate if these tags are omitted.

HTML prohibits end tags for elements that must always be empty: <meta>, <1ink>, <base»,
, <hr>,
<areay, , <paramy, <input>, <optiony, and <col>. XHTML requires end tags for all elements.
Thus, a valid XHTML document containing one of these elements can never be a valid HTML document
and vice versa. There is a compromise that works in HTML browsers because they do not require
documents to be valid HTML. You can use the XML shorthand notation for an empty element as long as
itincludes a space before the closing slash and less-than sign. This works as follows: <meta />, <link
/>,<base />,
,<hr />,<area />,,<param />,<input />, <option />,and<col
/>.You should use a separate closing tag for all other empty elements, such as .

Advantages

It has been argued that the strict coding requirements of XHTML identify the structure of a document
more clearly than HTML. In HTML, a browser assumes the location of a missing end tag to be the start
tag of the next block element. In the example,
 is rendered after the paragraph in the XHTML
document and as part of the paragraph in the HTML document. This is why there is an extra line of
whitespace in the XHTML part of the example.

A valid and unambiguous structure is essential when you use CSS to style a document because CSS
selectors select elements based on their structure. For this reason, some developers might prefer
XHTML for their projects.

Related to

DOCTYPE

43

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 2 HTML DESIGN PATTERNS

44

DOCTYPE
HTML

<!-- The following DOCTYPEs place the browser in almost-standards mode.
The first one is for XHTML, the second one is for HTML 4, and the
third one for HTML5 (browser support varies).
-->

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitionmal//EN"
"http://www.w3.org/TR/html4/1loose.dtd">
<IDOCTYPE html >

CONTENT TYPE VS. DOCTYPE

Web servers identify each document they serve with a MIME content type. MIME stands for Multipart Internet
Mail Extensions. The content type is identified in the HTTP header for the document. A browser determines how
to process a document based on its MIME content type. When it gets a document with a content type of
"text/html", it renders the document as HTML.

According to the W3C’s Note titled “XHTML Media Types” (www.w3.org/TR/xhtml-media-types/), a web
server may serve XHTML with one of the following three content types.

e An XHTML document may be served as "text/html" as long as you do not want the
browser to treat the document as XML and you do not include content from other XML
namespaces, such as MathML. A browser receiving an XHTML document with this
content type treats the document as HTML.

e XHTML should be served as "application/xhtml+xml". Unfortunately, Internet
Explorer 7 and earlier versions refuse to display pages served this way.

e XTHML may be served as "application/xml" or "text/xml". Unfortunately,
Internet Explorer 7 and earlier versions recognize such a document as generic XML,
which means they ignore all XHTML semantics. This means links and forms do not
work, and it takes much longer to render the document.

A Gecko browser renders a document served with an XML content type only after it has completely downloaded
and has absolutely no coding errors. It also renders the document in strict mode regardless of its DOCTYPE (see
www.mozilla.org/docs/web-developer/faq.html#accept).

At the current time, the most reliable content type for serving XHTML web pages is "text/html". This tells a
browser to render a document as HTML. This approach is supported by the W3C, and it works well in all major
browsers. It works because browsers do not validate HTML. They parse web pages in a way that allows them to
display any version of HTML and XHTML—including documents containing errors. Contrast this with how a
browser processes an XHTML document where the rules of XML prohibit it from rendering an entire XHTML
document when it has an error—even the tiniest error created by an accidental typo! Such precision is essential
for computer-to-computer transactions, but it is not good for human-generated web pages.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/xhtml-media-types/
http://www.mozilla.org/docs/web-developer/faq.html#accept

CHAPTER 2 HTML DESIGN PATTERNS

DOCTYPE

Alias

Metadata Declaration

Problem

You want to declare the type of your document so you can validate it against a Document Type
Definition (DTD). You want to ensure your document is valid. You want to ensure web
browsers follow the same rules in rendering your document.

Solution

The <IDOCTYPE> prolog identifies the type and version of HTML or XHTML in which the
document is coded. In technical terms, < !DOCTYPE> specifies the type of document and the
DTD that validates the document. The W3C provides a free online service at
http://validator.w3.org/ that you can use to validate your documents.

All HTML and XHTML code should be validated. This verifies the code contains no coding
errors. If there are errors, CSS selectors may fail to select elements as expected or may even
select elements unexpectedly.

There are benefits to using XHTML. Validated XHTML documents are well formed and have
unambiguous structure. You can also use XSLT (Extensible Stylesheet Language) and XQUERY
(XML Query Language) processors to extract content and rearrange documents.

In the HTMLA era, there were two additional varieties of DOCTYPEs: strict and transitional.
Strict removes all presentational elements and attributes, and transitional allows them. I do
not recommend presentation elements and attributes, but the strict DOCTYPE may be too
strict for some needs. For example, it prohibits the start attribute in <ol» and the value
attribute in <115, which are the only available means to control the numbering of an ordered
list. The strict DOCTYPE also prohibits <iframe>.

Most important to CSS, browsers use < IDOCTYPE> to determine how closely they will follow the
CSS standard when they render the document. There are two basic modes: quirks and
standards. In quirks mode, browsers do not follow the CSS standard, which makes this mode
undesirable for styling with CSS. In standards mode, they follow the CSS specification.

To complicate matters, Internet Explorer in strict mode violates a part of the CSS spec by not
aligning images in table cells to the baseline. It does this to remove the baseline space below
images so that sliced images in tables work as expected. The other major browsers have a third
mode called almost-standards mode that emulates this nonstandard behavior.

The standards mode of Internet Explorer and the almost-standards mode of the other major
browsers are the most compatible modes. There are two main < !DOCTYPE> declarations that
trigger this level of compatibility: one for XHTML and one for HTML. They are listed in the
DOCTYPE code example. You can find a complete list of DOCTYPEs at
http://hsivonen.iki.fi/doctype/.

Location

<IDOCTYPE> must be the first item in an HTML document. There must be only one < !DOCTYPE>
per document. You must not precede this DOCTYPE with an XML declaration, such as <?xml
version="1.0" 25, or Internet Explorer 6 will trigger quirks mode.

Tip

As mentioned earlier, the HTML5 <!DOCTYPE>is <!DOCTYPE html>. You'll note thatit’s
significantly simpler than earlier DOCTYPEs, and that was intentional. A lot has changed in
HTMLS5 in an attempt to make it even easier to develop a standards-based web page, and it
should really pay off in the end. One nice thing about this new DOCTYPE is that all current
browsers (IE, FF, Opera, Safari) will look at it and switch the content into standards mode, even
if they don’t implement HTML5. This means that you could start writing your web pages using
HTMLS5 today, without having to worry about future compatibility.

Related to

XHTML

45

http://validator.w3.org/
http://hsivonen.iki.fi/doctype/

CHAPTER 2 HTML DESIGN PATTERNS

Header Elements

HTML

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en" >

<head>
<title>Header Elements</title>

<meta http-equiv="Content-type" content="text/html; charset=utf-8" />

<!-- Include links to stylesheets -->

<link rel="stylesheet" href="site.css" media="all" type="text/css" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<link rel="stylesheet" href="print.css" media="print" type="text/css" />
¢!--[if 1te IE 6]>

<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->

<!-- Optionally include alternate style sheets that the user can apply. -->
<link rel="alternate stylesheet" type="text/css" title="cool" href="cool.css" />
<link rel="alternate stylesheet" type="text/css" title="hot" href="hot.css" />

<!-- Optionally include style rules that apply only to this page. -->

<style type="text/css" media="all"»

body { margin:opx; padding:20px; padding-top:0px; width:702px;
font-family:verdana,arial,sans-serif; font-size:medium; }

hi { margin:10px 0 10px 0; font-size:1.9em; }

</style>

<!-- Optionally link to a JavaScript file. -->
<script type="text/javascript" src="script.js" ></script>

<!-- Optionally include JavaScript that applies only to this page. -->
<script type="text/javascript" ><!--

alert("Hello World!");

-=>¢/scripts

</head>

<body> <hi1>Header Elements</h1> </body>
</html>

46

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 2 HTML DESIGN PATTERNS

Header Elements

Problem

You want to add metadata to a document. You also want to link the document to style sheets
and JavaScript files. You also want to improve performance by embedding CSS rules and
JavaScript inside the page.

Solution

You can use <link rel="stylesheet" type="text/css" /> tolink style sheets to a
document. You can use href="URI" to specify the URI of the style sheet. You can use
media="all" to apply a style sheet to all devices. You can use media="print" to apply a style
sheet only when printing. This allows you to hide navigational bars, remove backgrounds,
reset inverse color schemes (like white text on a black background) to normal black text on a
white background, and so forth. You can use media="handheld" to apply a style sheet to
handheld devices only. You may find this impractical because styles that work on one
handheld device may be ignored or not work at all on another. Few browsers have
implemented the following media types: "tty", "tv", "projection”, "braille", and
"aural".

You can use <1ink rel="alternate stylesheet" /> to provide a user with alternate style
sheets. Most browsers put alternate style sheets in a drop-down list and allow users to select
and apply one alternate style sheet at a time to a document. Since most web sites do not
provide alternate style sheets and since there is no visual indication that they are available,
few users look for them or use them. Thus, sites that supply alternate style sheets often put
buttons or menus in the document and link them to JavaScript that switches between
alternate style sheets.

You can embed styles in the <style> element. These should be styles specific only to the
current document. Styles that are used for more than one document should be contained in
external style sheets. You may find that putting styles directly in a document greatly speeds
the rendering of the document because a browser has fewer files to download. You may also
find that this increases the amount of work it takes to maintain a web site.

Other elements are common in <head>, such as <title>, <meta>, and <script>. I have
included these elements in the example, but their usage is beyond the scope of this book.

Pattern

HTML

<head>

<base href="http://www.example.com/">

<link rel="stylesheet" href="FILE.CSS"
media="ALL_PRINT_HANDHELD" type="text/css" />

<link rel="alternate stylesheet" type="text/css"
title="NAME_TO_SHOW USER" href="FILE.css" />

<style type="text/css" media="all"> STYLES </style>

</head>

Location

<link>, <style>, <title>, <meta>, <base> and <script> belong in <head>.

Related to

HTML Structure, Conditional Style Sheet

47

http://www.example.com/

CHAPTER 2 HTML DESIGN PATTERNS

48

Conditional Style Sheet

F.a
- J Conditional Styleshest - Mozilla Firefox
Fie Edit Vi=s History Bockmerks Tods Hep

Conditional Stylesheet

In Internet Explorer 6, this box has a border and background.

Rendered in Firefox without the conditional style sheet

E Conditional Stylesheat - Microsoft Internet Explorer

file Edt Yew Fevorites Tools tHeb f,'

Conditional Stylesheet

[In Internet Explorer 6, this box has a border and background.

Rendered in Internet Explorer with the conditional style sheet

HTML
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en" >

<head><title>Conditional Stylesheet</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" href="page.css" media="all" type="text/css" />
<!--Embed the following style sheet only in IE 6 and higher--»>
<!--[if gt IE 5.5]»
<link rel="stylesheet" href="ie6.css" media="all" type="text/css" />
<![endif]-->
</head>

<body>

<h1>Conditional Stylesheet</h1>

<p class="test">In Internet Explorer 6, this box has a border and background.</p>
</body>
</html>

CSS page.css

*.test { font-size:18px; }

CSS ieb.css

*,test { border:2px solid black; background-color:gold; }

http://www.w3.org/1999/xhtml

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 HTML DESIGN PATTERNS

Conditional Style Sheet

Problem

You want one set of styles to be applied to Internet Explorer and another set to be applied to
other browsers.

Solution

You can use Microsoft Internet Explorer’s conditional comments to load a style sheet
created exclusively for Internet Explorer. You can place a conditional comment in <head>
after all links to other style sheets. Inside the conditional comment, you can place alink to a
style sheet. I call this the conditional style sheet. Since the conditional style sheet comes
last, it overrides previously loaded styles.

You can create a separate conditional style sheet for Internet Explorer 6, and if necessary
you can create one for Internet Explorer 7. You can include styles in this style sheet to
compensate for different behaviors and bugs.

The following pattern loads two conditional style sheets. The first is for Internet Explorer
versions 6 and earlier. The second is for Internet Explorer 7 and higher. Internet Explorer 7
fixes most of the bugs in Internet Explorer 6, but there are still a number of CSS features that
it does not implement, such as the content property.

Pattern
HTML

<!--[if 1te IE 6]>
<link rel="stylesheet" href="ie6.css" media="all"
type="text/css" />
<![endif]--»
<!--[if gt IE 6]>
<link rel="stylesheet" href="ie.css" media="all"
type="text/css" />
<![endif]-->

Limitations

Conditional style sheets apply only to Internet Explorer. This is unfortunate because they are
a good way to work around browser-specific problems. Fortunately, there are few problems
in other browsers. I do not recommend CSS hacks because they rely on parsing bugs in a
browser’s CSS engine. When these bugs get fixed, the hack no longer works. For this reason,
I do not use or discuss CSS hacks in this book. In other words, all the design patterns in this
book work without hacks.

Also in Internet Explorer 10, this is considered a legacy feature and will work only in legacy
mode.

<!--[if IE]> This content is ignored in IE10 and other browsers. <![endif]-->

Variations

To target different versions of Internet Explorer, you can change the operator and version in
the conditional comment. For example, you can use <!--[if 1t IE 5]> or<!--[if IE
71>.

The following operators are available: 1te (less than or equals), 1t (less than), gt (greater
than), or gte (greater than or equals). You can omit the operator for an equals comparison,
suchas<!--[if IE 7]>.

If another browser ever implements conditional comments, you can replace IE with the
constant that identifies that browser.

Related to

Header Elements

49

CHAPTER 2 HTML DESIGN PATTERNS

Structural Block Elements
HTML Pattern

<!-- Ordered List -->
<ol»
<liy </1i>
 One or more list items...

<!-- Unordered List -->

<uly
<li» </1i>
 One or more list items... </1i>

<l-- Definition List -->

<dly
<dt> </dt>
<dt> One or more definition terms... </dt>
<dd» </dd>
<dd> One or more definitions... </dd>

</dl>

<!-- Table --»
<table>

<caption> One optional caption per table. </caption>

<colgroup> <col /> <col /> </colgroup>
<thead>
<tr>

<th» One or more header cells in a row...
<td> One or more data cells in a row...

</tr>
</thead>
<tfoot>
<tr>
<th> One or more rows in a row group...
<td>
</tr>
</tfoot>
<tbody>
<tr>

<th> Zero or more row groups in a table...

<td>
</tr>
</tbody>
</table>

<!-- Divisions -->
<div> <div> <div> ... </div> </div> </div>

50

</th>
</td>

</th>
</td>

</th>
</td>

CHAPTER 2 HTML DESIGN PATTERNS

Structural Block Elements

Problem

You want to structure your document so web browsers can render an enhanced view of the document;
search engines can determine important keywords; document processors can use technologies like XSLT
to extract content and transform the structure; and JavaScript can navigate the structure to modify
content and make a document interactive.

Solution

You can mark up a document with block elements to identify its structure. There is meaning in structure,
and HTML markup is most meaningful when its structure reflects the hierarchy and relationships of a
document’s topics.

Because a parent element contains child elements, they are related structurally. This implies their content
is related. For example, a child’s content is typically a subtopic of its parent’s topic, and siblings typically
have related subtopics. Implicit in the hierarchical nature of HTML is the assumption that document
organization is hierarchical.

Structural blocks may contain block elements only. They have structural meaning, but they have little
semantic meaning. In other words, they do not tell you what something is; they tell you how it is
organized.

There are four major structural block elements (<01>, <ul», <d1>, and <table>) with nine supporting
structural elements (<11i>, <dt>, <dd>, <caption», <thead>, <tfoot>, <tbody>, <colgroup>, and <col>).

Details

<ol» creates an ordered list of one or more list items (<11>). Items belong to the same set and are in
order. Order implies sequence or ranking.

<uly creates an unordered list of one or more list items (<11i»). Items belong to the same set without
sequence or ranking.

<d1> creates a definition list of one or more terms (<dt>) and definitions (<dd>). Structurally, a
definition list implies all its terms are synonyms and all its definitions are alternate definitions of its terms.
The HTML specification also shows that a definition list can have a broader application, such as listing
speakers and their dialog. In generic terms, a definition list is an associative entity that associates keys with
values.

<table» creates a tabular data structure in rows (<tr>) and cells (<th> and <td>). It may optionally
contain groups of rows: one table header (<thead»), one table footer (<tfoot»), and one or more table
body groups (<tbody>). It may optionally contain one or more column groups (<colgroup>) containing
one or more columns (<c0l»). Column groups and columns are the only structural blocks that are
relational instead of hierarchical. In other words, each <col> element forms a relationship with cells in a
column without actually being their parent. A table may optionally contain a <caption>.

<divy is a multi-purpose block element. It can be structural or terminal. I mention it here because it
normally creates a document division. Document divisions are essential for organizing a document into
sections, and sections are the essential building blocks of documents. That is why I list <div> as the parent
of all structural elements in the HTML Structure design pattern.

<articles represents a self-contained composition in a page that is, in principle, independently
distributable or reusable, e.g., via syndication. This could be a forum post, a magazine or newspaper
article, a blog entry, etc. When article elements are nested, the inner article elements represent articles
that are in principle related to the contents of the outer article. For instance, a blog entry on a site that
accepts user-submitted comments could represent the comments as article elements nested within the
article element for the blog entry.

<sectiony represents a generic section of a document and acts as a thematic grouping of content,
typically with a heading. Examples of sections would be chapters, the various tabbed pages in a tabbed
dialog box, or the numbered sections of a thesis. A web site’s home page could be split into sections for an
introduction, news items, and contact information. Developers may use <article> instead of the section
element when it would make sense to syndicate the contents of the element.

<nav> defines a section of a page that links to other pages or to parts within the page—basically a section
with navigation links.

Related to HTML Structure, Terminal Block Elements, Multi-purpose Block Elements

51

CHAPTER 2 HTML DESIGN PATTERNS

52

Terminal Block Elements

%3 Terminal Elock Elements - Mozilla Firefox El @'EJ
Eie Erit Yew History Bookmarks Tools Heb

Terminal Block Elements

Headings. parasraphs. blockquores. definftion tenms._ addresses. and table captons are rerminal block glements. Thev
mayv contain onty content. An HTMWL validacor will declare a document imvalid if vou atternpt to put block glements inside
terminzl Bloecks.

A blockquote is a terinal block.

NOTE:
The cortent of terminal blacks is always inline

An address is a terminal block.
Table
caphon
is a
termunzl
block

HTML

<h1yTerminal Block Elements</h1>

<p>
Headings, paragraphs, blockquotes, definition terms, addresses,
and table captions are terminal block elements. They may contain only content.
An HTML validator will declare a document invalid if you attempt
to put block elements inside terminal blocks.
</p>

<blockquote> A blockquote is a terminal block. </blockquote>

<d1>

<dt>NOTE:</dt>

<dd>The content of terminal blocks is always inline.</dd>
</d1>

<address> An address is a terminal block. </address>

<table>

<caption>Table caption is a terminal block.</captions
<troctds></tds></tr>

</table>

CHAPTER 2 HTML DESIGN PATTERNS

Terminal Block Elements

Problem

You want to transition from document structure to content.

Solution

You can use one of the following terminal blocks to terminate document structure so you
can insert content: <h1>, <p>, <blockquote>, <dt>, <address>, and <caption>. These
elements are the primary containers of content. The multi-purpose block elements
discussed in the next design pattern may also contain content. Paragraphs contain most of a
document’s content followed by headings, blockquotes, list items, and table cells.

Terminal blocks are terminal nodes in the block structure of a document. They cannot
contain blocks. They contain text and inline elements. Structurally, they are siblings to other
terminal and structural blocks, which implies they all have subtopics related to their parent
block’s topic.

Terminal blocks mainly have semantic meaning. HTML supplies six elements you can use to
identify the purpose of content: heading, paragraph, blockquote, definition term, address,
and caption.

Details

<h1y, <h2>, <h3», <h4», <h5>, and <h6» create headings from most important to least.
Headings are relational. They imply the following sibling elements (typically paragraphs)
have a subtopic that supports the topic of the heading. They also imply a relationship to
each other. For example, <h2> implies that it is a subtopic of the previous <h1> element.
Headings placed at lower levels of document structure typically have higher heading
numbers. You can reinforce the structure of a document by making a heading the first
element of each document division.

<p» creates a paragraph. Semantically, a paragraph contains one or more sentences. The
first sentence defines the topic of the paragraph, and subsequent sentences support that
topic. The topic of a paragraph is typically a subtopic of the previous heading and relates to
sibling elements.

<blockquotes creates a blockquote. Semantically, a blockquote contains a quote from an
external source that relates to the topic of its siblings.

<dt> creates a definition term. Semantically, a definition term is a term that is being
defined directly in the document by one or more definitions. The Structural Block Elements
design pattern includes <dt> because it is a part of the <d1> structure. When you use <d1> as
an associative entity, <dt> changes its semantic meaning to being a key that is associated
with one or more values. Like a term, a key can be looked up to find its associated items.

<address» creates a contact record for the document itself. It is not for identifying other
types of addresses, such as your favorite restaurants. The HTML specification allows an
address to contain any type of content such as a street address, e-mail address, phone
number, etc.

<caption> creates a table caption. Semantically, it labels a table. <captiony is referred to
in the Structural Block Elements design pattern because it is a part of the <table> structure.

Related to

HTML Structure, Structural Block Elements, Multi-purpose Block Elements

53

CHAPTER 2 HTML DESIGN PATTERNS

Multi-purpose Block Elements

3} Multi- purposs: BMock Flesments - Morilla Firefox

Fl= BEdt Vew Hsory Bockmarks Took Help

Multi-purpose Block Elements

This content is maide a st bart is not nside a lst item bk it should be
1. Thiz coatent is propey pested in a list fam.
Thi= content outside a list ttem imalidates and destroys the stroctare of & st
Compare the mived copteat i this dnision with that of the preceding st
Thiz content is inside a nested stoctural division
This mived contens iz not imvalid, bue it destroys the block stmcture and requires a browser to create anommmons
Blocks in which to render it.
[Cheekbox1

* |_Submit

HTML

<noscript>Show this text when script cannot run.</noscript>

<div>
<div>
<h1>Multi-purpose Block Elements</h1>
</div>
</div>

<!-- The following code is invalid HTML and broken structure. -->

This content is inside a list but is not inside a list item like it should be.
 This content is properly nested in a list item. </l1i»

This content outside a list item invalidates and destroys the structure of a list.

</ol»

<!-- The following code is _valid_HTML due to a loophole in HTML's DTD,
but is still broken structure. -->
<div>
Compare the mixed content in this division with that of the preceding list.
<div> This content is inside a nested structural division. </div»
This mixed content is not invalid, but it destroys the block structure

and requires a browser to create anonymous blocks in which to render it.

</divy

<!-- The following form contains blocks, which in turn contain controls. -->
<form id="form1" method="post" action="http://www.apress.com/cgi-bin/test" >

<1i> <input type="checkbox" id="xboxi" name="xbox1" value="xbox1" />

<label for="xbox1">Checkbox1i</label></1i>

<1i> <input type="submit" id="submiti" name="submiti" value="Submit" /> </l1i>

</form>

54

http://www.apress.com/cgi-bin/test

CHAPTER 2 HTML DESIGN PATTERNS

Multi-purpose Block Elements

Problem

You want the flexibility of extending the document structure by nesting structures within
structures or terminating the current structure.

Solution

HTML provides seven elements—<divy, <11, <dd>, <td>, <th>, <form>, and <noscript>—
that can extend the structure or terminate it. For this reason, I call them multi-purpose
block elements, as they are the most versatile elements. You can use them to identify
document divisions, list items, dictionary definitions, table data cells, table header cells,
forms, and alternate content to display when scripting is unavailable.

When a multi-purpose block is used structurally, it has structural meaning. When it is used
terminally, it has semantic meaning. For example, when a list item is terminal, it identifies
its content as an item in a list. When a list item contains a structural block, such as a table or
another list, it functions structurally as a node in a larger nested structure.

Multi-purpose blocks may contain blocks or content, but not both. Content is defined as
text intermingled with inline elements (images, objects, controls, and semantic markup).
Block elements should not be siblings with inline elements and text. This is called mixed
content. Content should always be contained within a block—not placed in between blocks.
Because of limitations in HTML’s Document Type Definition language, HTML validators do
not always invalidate a document containing mixed content, but this does not mean you
should allow it. When a browser encounters mixed content, it wraps the content in an
anonymous block. This is because a browser cannot render blocks and content at the same
time, as blocks flow down the page and content flows across. CSS selectors cannot select
anonymous blocks, which prevents you from being able to style anonymous blocks.

Details

<divy is a division. It is normally structural, but it can contain content. As shown in the
example, the block structure created by divisions is invisible unless you style each division’s
margins, border, and/or padding.

<11 is a list item. Typically, it is a terminal block containing content, but it may contain
structural blocks such as tables and lists, or terminal blocks such as headings and
paragraphs.

<ddy is a definition in a definition list. Typically, it is a terminal block containing content,
but it may contain structural or terminal blocks.

<td> and <thy are table cells. <td> is a data cell and <th> is a header cell. Typically, cells
are terminal blocks containing content, but they may contain structural or terminal blocks.

<form is a data-entry form. It may contain structural blocks that organize form controls
(as shown in this example), or it may directly contain inline form controls (as shown in the
HTML Structure example). It may also contain terminal blocks such as headings and
paragraphs.

<noscripts is displayed when a browser does not support scripting. It may contain
simple inline content, or it may contain a fully structured document.

Related to

HTML Structure, Structural Block Elements, Terminal Block Elements

See also

www.cssdesignpatterns.com/multi-purpose-block-elements

55

http://www.cssdesignpatterns.com/multi-purpose-block-elements

CHAPTER 2 HTML DESIGN PATTERNS

56

Inline Elements

3 Inline Flements - Morilla Firefox

Fle Edit VYiew Hitory Eoohraks Took Hep

Inline Elements

Italicized

cems emphasized

coitey citation

vars computer varfable
cafor definition

Bold

cacrangr Strondgly emphasized
Monospace

<oode=> computers code

<kbd> key prass

<I3nmpr sample Computer oUTpUn
Underfined

TET a

Vertical-aligned

caups superscriptl
£aunr subscripty
HTML
<h1>Inline Elements</h1>
<h2>Italicized</h2>
<code>&1t;emdgt; </code> emphasized</em»

<code>81t;citedgt; </code> <citeycitation</cites

<code>81t;vardgt; </code> <var>computer variable</var»

<code>81t;dfnégt; </code> <dfnydefinition</dfny

<h2>Bold</h2>
<code>81t;strongdgt; </code> strongly emphasized</strong»

<h2>Monospace</h2>
<code>81t; codedgt; </code> <codeycomputer code</code»

<code>8&1t;kbdégt; </code> <kbdskey press</kbd> <bxr />
<code>< samplgt; </code> <sampysample computer output</samp>

<h2>Underlined</h2>
<code><adgt; </code> <a href="#"sa</ay

<code><abbrigt; </code> <abbr title="a" sabbreviation</abbry

<h2>Vertical-aligned</h2>
<code>81t;supdgt; </code> superscriptⁱ

<code>81t;subdgt; </code> subscript<sub>i</sub»

CHAPTER 2 HTML DESIGN PATTERNS

Inline Elements

Problem

You want to add explicit meaning to text, and you want to style text to reflect this meaning.

Solution

HTML provides inline elements to identify the meaning of text, to control the flow of text,
and to insert external content into the document, such as images and controls. Inline
elements are content.

Intermingling inline elements and text is desirable. Some call this mixed content, butI prefer
to define mixed content narrowly as blocks, text, and inlines being mixed together, which is
undesirable. I define content as text mixed with inline elements, which is desirable. This
clearly separates structure from content and emphasizes that inline elements and text
should always be contained within blocks—not in between blocks.

I organize inline elements into four types: semantic, flow, replaced, and controls. Semantic
elements identify the meaning of their content. Flow elements control the flow, such as
inserting a line break. Replaced elements are replaced with an object, such as an image.
Controls are objects used for data entry, such as a text box.

HTML assigns each semantic inline element to a default style to emphasize that its text has a
particular meaning. For example, <code> is rendered in a monospace font. You can use CSS
to override these default styles.

Details

Three semantic inline elements specify the relative importance of their content; they are
listed in order of increasing importance as follows: , , and . is
generic and has neutral importance. Search engines use and to rank content.

I have organized the remaining semantic inline elements by how much content they typically
contain, such as a phrase, a word, or a character. Phrase inlines include <a», <cite>, <code>,
<kbd>, <samp>, and <var>. Word inlines include <abbr>, and <dfn>. Character inlines include
<sub> and <sup>.

Flow-control elements control the flow of content, such as <br /3, which inserts a line
break, and <bdo>, which changes the direction of the flow.

Replaced elements are replaced by external content, such as , which is replaced by an
image or <object>, which can be replaced by a video, a Flash movie, a sound file, etc.

Controls are inline elements used for data entry in forms, such as <input», <textarea,
<select>, and <button>.

Default Styles

HTML assigns default styles to each semantic inline element. has no default style and
meaning, so you can use it for any purpose. is bold by default. The following are
italicized by default: , <dfn>, <cite>, and <var>. The following are monospace by
default: <code, <kbdy, and <samp>. The following are underlined by default: <a> and <abbr>.
Internet Explorer 6 does not support <abbr>.

Related to

HTML Structure; all design patterns in Chapters 10 through 12 and 14

See also

www. cssdesignpatterns.com/inline-elements

57

http://www.cssdesignpatterns.com/inline-elements

CHAPTER 2 HTML DESIGN PATTERNS

Class and ID Attributes

& Class and (D Attributes - Mozilla Flrefox
Fle Edit VYiew Hitory Eookmaks Took Help

Class and ID Attributes

Calendar Event Summary
Calendar Event Descnption

From 01 May 2007 from &;30am EST o 9:30am ES
Location: Mesting Location
Booked by: globelly-unigque-id.hest.zem N Jan 1, 2007 at &:00pm
See microformats.arg for more information about microformats.

<h1>Class and ID Attributes</hi1>

<div id="hcalendari" class="vevent">
<h3 class="summary">Calendar Event Summary</h3>

<p class="description">Calendar Event Description</p>

<p>From

<span class="dtstart" title="2007-05-01T08:30:00-05:00"
>01 May 2007 from 8:30am EST to

<span class="dtend" title="2007-05-01T09:30:00-05:00"
>9:30am EST</p>

<p>Location: Meeting Location</p>
<p>Booked by: globally-unique-id.host.com
on <span class="dtstamp" title="20070101T231000Z"
>Jan 1, 2007 at 6:00pm</p>
</div>

<p>See microformats.org
for more information about microformats.</p>

CSS

*,vevent p { margin:o0 o 5px 0; font-size:0.9em; }
*,vevent h3 { margin:o o 5px o; }

* vevent *.location { font-style:italic; }

*_vevent *.uid { font-family:monospace; }

* vevent *.dtstart,

* vevent *.dtend,

*

.vevent *.dtstamp { color:green; }

#hcalendara { margin:5px; border:ipx solid black; padding:1opx; }

58

http://microformats.org/wiki/hcalendar

Download from Wow! eBook <www.wowebook.com>

CHAPTER 2 HTML DESIGN PATTERNS

Class and ID Attributes

Problem

You want to identify some elements as being in the same class as other elements. You want
to apply additional semantic and relational meaning to a class of elements. You want to style
a class of elements in the same way. You want to identify some elements uniquely in a
document so you can style them uniquely and directly access them through JavaScript.

Solution

HTML supplies the class and id attributes for these purposes. You can assign a class and
an id to any element.
An ID and class name cannot include a space. It must start with a letter and may contain

letters, numbers, the underscore (), and the dash (-). Since CSS selectors are case-sensitive
when using XHTML, it is a common practice to use lowercase class and ID names.

Class

class assigns a user-defined semantic meaning to an element. class is the primary
mechanism for extending the semantic meaning of HTML elements. Elements with the
same class are related and can be manipulated as a group. You can use CSS selectors to
apply a style to a class of elements. You can use a document processor, such as XSLT, to
manipulate a class of elements.

You can assign multiple classes to an element by putting multiple class names in an
element’s class attribute. A space separates each class name.

Classes should have semantic names, such as copyright, date, price, back-to-top, example,
figure, listing, illustration, note, result, tip, warning, etc.

An ID should be unique within a document. If it is not, a CSS ID selector will match all
elements with the same ID—just like the class attribute.

You can use a unique ID as a CSS selector to style one element. You can use it as an anchor
that can be targeted by other links. You can use it to access and manipulate a specific
element from JavaScript or a document processor.

IDs should have semantic names, such as skip-to-main-content, page, preheader, header,
title, search, postheader, body, nav, site-map, links, main, sectionl, section2, news, about-
us, services, products, etc.

Patterns
HTML

CSS

<ELEMENT id="id" class="class1 class2 etc" ></ELEMENT>

#id { STYLES }
* class { SYTLES }

Tip

Since <div> and elements have no semantic meaning, you can assign classes to them
without conflicting with any predefined meaning. You can assign classes to <div> to create
custom document structures with custom semantic meaning. You can assign classes to
 to customize the meaning of text. There are currently no standard class names with
precise predefined meanings, although the microformats movement is making progress
toward that goal by mapping HTML structure and class names to common standards, such
as hCard and hCalendar.

Related to

Type, Class, and ID Selectors, Subclass Selector (Chapter 3)

59

CHAPTER 2 HTML DESIGN PATTERNS

HTML Whitespace

L 3 5 S
=) HTML Whitespace - Mozilla Firefox
Fl= Edt Wvew Hstory Boskmarks Took Help

HTML Whitespace

start middle end

Controlling Where Whitespace Collapses
atart.l middle Iend —insids element

start Imiddle-l end —outside element

Embedding Whitespace Inside Tags

startmiddleend

Embedding Space Entities

BEwh] ; I sthinspr | I Enb=pr || E=nap; I | Eemspy I I

HTML

<h1>HTML Whitespace</h1>
<p> start middle 	

  end </p>

<h2>Controlling Where Whitespace Collapses</h2>
<p>start¢span class="border"»> middle end—inside element</p>
<p>start middle» end—outside element</p>

<h2>Embedding Whitespace Inside Tags</h2>
<p>start<span
class

"spaced"
>middle</span
send</p>

<h2>Embedding Space Entities</h2>

<code>&zwnj; </code>‌
<code>& thinsp; </code> 
<code>8amp;nbsp; </code>
<code>&ensp; </code> 
<code>&emsp; </code> 

CSS

em { padding-left:5opx; }
p { font-family:monospace; font-size:18px; }

* . border { font-weight:bold;
border-left:2px solid black; border-right:2px solid black; }

60

CHAPTER 2 HTML DESIGN PATTERNS

HTML Whitespace

Problem

You want to use whitespace in markup to make the code more readable without the
whitespace affecting the rendering of the document.

Solution

A browser collapses repeated whitespace into a single space. This allows you to insert extra
spaces, tabs, newlines, and returns into the markup to make it more readable without it
showing up in the rendered document.

A browser interprets only the following characters as whitespace: space (), tab
(), newline (
), and return ().

Empty elements and elements containing only whitespace do not interrupt a contiguous
sequence of whitespace. Notice in the first paragraph of the example how a browser renders
only one space between the words “start,” “middle,” and “end”—even though there are
many characters between these words including spaces, tabs, newlines, returns, whitespace
entities, an empty span, and a span containing whitespace.

The first whitespace character in a series of contiguous whitespace characters determines
the position and style of the collapsed space. In other words, a browser renders collapsed
space using the font-family, font-size, font-weight, line-height, and letter-spacing
assigned to the first whitespace character of the series. Larger fonts, wider letter-spacing,
and taller 1ine-height create wider and taller whitespace. Thus, the location of whitespace
in an HTML document determines how wide and tall it is.

The second and third paragraphs of the example show how the location of whitespace
determines whether it collapses inside an element or outside. If it collapses inside, it is
styled by the element’s rules. Since whitespace collapses to the left, you can collapse
whitespace in front of an element by simply putting whitespace before it. If you want
whitespace to collapse inside an element, you need to remove all whitespace before the
element and put at least one whitespace inside it. If you want whitespace to be inside an
element and to be placed after its content, simply follow the content with whitespace. If you
want whitespace to collapse outside the closing tag of an element, you need to remove all
whitespace following the element’s content and insert whitespace after the element.

You can put extra whitespace inside an element’s start and end tags without putting
undesired whitespace in the content. You can insert extra whitespace between the start
tag’s name and its attributes; surrounding an attribute’s name, equal sign, and value; and
before the start tag’s greater-than sign. You can insert extra whitespace between the end
tag’s name and its greater-than sign. The fourth paragraph of the example is an extreme
example that has much whitespace inside the tags but none inside the content.

Space Entities

HTML provides five space entities that have different widths. These are not whitespace! The
nonbreaking space, , is the width of a normal space and works in all major browsers;
the widths of the other spaces (§zwnj;,  ,  , and  ) vary in different
browsers.

Preserved

The <pre> element preserves all the whitespace that is inside it.

Related to

Spacing, Nowrap, Preserved, Padded Content, Inline Spacer, Linebreak (Chapter 11)

61

CHAPTER 3

CSS Selectors and Inheritance /

This chapter presents design patterns that select elements for styling.

Because selector design patterns are simple, I discuss selector design patterns in groups rather than
one at a time. This makes it easy to compare and contrast related forms of selectors. Thus, even though
this chapter has only six examples, it contains thirteen different design patterns.

Inheritance is included in this chapter because it is simply a built-in way to select descendant
elements. Inheritance is very closely related to the descendant selector. The Visual Inheritance pattern is
included in this chapter because it is a form of inheritance that is visual by nature.

Chapter Outline

¢ Type, Class, and ID Selectors shows how to select elements by tag, class, and ID.

e Position and Group Selectors shows how to select elements by how they are
nested in the document. It also shows how to apply multiple selectors to the same
set of rules.

e Attribute Selectors shows how to select elements based on their attributes.

e Pseudo-element Selectors shows how to select the first letter or first line of
terminal block elements.

e Pseudo-class Selectors shows how to style a hyperlink when it is unvisited,
visited, being hovered over by the mouse, or has the focus because the user
tabbed to it or clicked it with the mouse.

e Subclass Selector shows how to apply multiple styles to the same element using
classes and subclasses.

e Inheritance shows how to style elements through rules assigned to their
ancestors.

e Visual Inheritance shows how elements visually inherit their parent’s
background.

CHAPTER 3 CSS SELECTORS AND INHERITANCE

64

Type, Class, and ID Selectors

‘R) Type, Class, and ID Selectors - Mozilla Firefox

Fie Erit Yew Higtory Hookmarks Tools Hep

Type, Class, and ID Selectors

|'|'he type selector, p, adds a border to all paragraphs.

The class selector, * .my-class1, adds padding.

The class selector, * .my-class2, adds letter-spacing.

The ID selector, #my-1d, adds a background color.

HTML
<h1>Type, Class, and ID Selectors</hi>

<p>The type selector, <code>p</code>, adds a border to all paragraphs.</p>

<p class="my-class1i"»
The class selector, <code>*.my-classi</code>, adds padding.</p>

<p class="my-class1 my-class2"»
The class selector, <code>*.my-class2</code>, adds letter-spacing.</p>

<p class="my-classi my-class2" id="my-id"»>
The ID selector, <code>#my-id</code>, adds a background color. </p>

CSS
p { border:2px solid black; }

*.my-class1 { padding:10px; }
*.my-class2 { letter-spacing:0.11em; }

#my-id { background-color:gold; }

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Type, Class, and ID Selectors

Problem You want to select elements by type, class, and/or ID so you can style them.

Solution Apply styles to your chosen class or ID as follows:

Use the type selector to select all elements of a particular type. The type selector is the element’s name
without the less-than and greater-than signs.

Use the class selector to select all elements that you have assigned to a class. The class selector is the
period followed by the name of a class. The class selector is added to the end of a type selector. You can add
it onto the end of the universal selector, *, to select all elements in the document that have a matching
class, such as *.my-class1. You can also use the class selector all by itself, such as .my-class1, which is a
shortcut for * .my-class1.

Use the ID selector to select all elements in the document assigned to that ID. Each element has one ID,
which should be unique in a document.

Patterns HTML CSS
<ELEMENT>
<ELEMENT class="class class class etc"> type { STYLES }

*_class { STYLES }

<ELEMENT id="id"> #id { STYLES }

<ELEMENT id="id" class="class">

Location These design patterns apply to all elements.

You can assign multiple classes to an element, by separating them with a space. The class operator selects
all elements with matching classes. For example, I assigned my-class1 and my-class2 to the second and
third paragraphs of the example.

Tips

Names of classes and IDs are case-sensitive. They must start with a letter and may contain letters, numbers,
and the hyphen. I recommend always using lowercase names for classes and IDs because a browser cannot
select a class or an element if the case of each letter in the selector does not perfectly match a class name.
For example, the browser will not select <div class="SelectMe"> usingdiv.selectme.

If multiple selectors select the same element, each style from each selector is applied to the element.
Selectors with higher cascade order override the values applied by selectors with a lower cascade order. IDs
override classes, and classes override types. If you apply multiple style sheets to a document, ID selectors
override all classes and types in all style sheets.

In CSS3 type selectors are allowed to have an optional namespace prefix that has been previously
declared. This may be prepended to the element name separated by the namespace separator with a
vertical bar. Here is an example:

@namespace foo url(http://www.example.com); /* declaring a namespace */
foo|hl { color: blue } /* matches hi in the "http://www.example.com" namespace */

foo|* { color: yellow } /* matches all elements in the "http://www.example.com"
namespace */

|[h1 { color: red } /* matches all hi elements, no namespace */

|h1 { color: green } / matches all hi elements, with or without a namespace */

hi { color: green } /* similar as above*/

CSS3 also specifies a “universal selector” in the form of an asterisk, which represents the qualified name of
any element type. It represents any single element in the document tree in any namespace (including those
without a namespace) if no default namespace has been specified for selectors. If a universal selector is not
the only component of a sequence of simple selectors or is immediately followed by a pseudo-element,
then the * may be omitted and the universal selector’s presence implied.

*[hreflang|=en] and [hreflang|=en] are equivalent,

*.warning and .warning are equivalent,

*#myid and #myid are equivalent

65

http://www.example.com
http://www.example.com
http://www.example.com

CHAPTER 3 CSS SELECTORS AND INHERITANCE

66

Type, Class, and ID Selectors cont.

Related to Position and Group Selectors, Pseudo-element Selectors, Pseudo-class Selectors

See also Www.cssdesignpatterns.com/type-selectors
www.cssdesignpatterns.com/class-selectors
www.cssdesignpatterns.com/id-selectors

Position and Group Selectors

3 Position and Group Selectors - Mozilla Firefox

Eie @t Yew Go Cookmarks Tools Help

Position and Group Selectors

[p.my—class |

1. [div o1 1i |

2. [div ol 11 |

3. |div ol 1i p.my-class |

HTML

<h1>Position and Group Selectors</hi»

<p class="my-class"»p.my-class</p>
<div id="my-id"»
<ol
<lisdiv ol li</1i>
<lisdiv ol 1li</1i>
<lis
<p class="my-class"»div ol 1li p.my-class </p>
</11>

</div>
css
/* Group Selectors */
p,ol,1i { border:1ipx solid black; padding-left:10px; font-family:monospace;
margin:10px; margin-left:opx; }
ol { margin-left:opx; padding-left:40px; margin-top:20px; }
/* Position Selectors */
div *.my-class { font-size:1.2em; font-weight:bold; } /* Descendant Selector */

#my-id p { background-color:gold; } /* Descendant Selector */
#my-id » * { border:3px solid black; } /* Child Selector */

sroot {background: white;} /* Root Selector */

li:nth-child(2n+1) /* Nth-child Selector */
li:nth-last-child(-n+2) /* Nth-last-child Selector */
li:nth-of-type(2n+1) { float: right; } /* Nth-of-type Selector */

li:nth-last-of-type(2n+1) { float: right; } /* Nth-last-of-type Selector */

http://www.cssdesignpatterns.com/type-selectors
http://www.cssdesignpatterns.com/class-selectors
http://www.cssdesignpatterns.com/id-selectors

CHAPTER 3 CSS SELECTORS AND INHERITANCE

li:first-child { font-weight:bold; color:red; } /* First-child Selector */
li:last-child { font-weight:bold; color:red; } /* Last-child Selector */
ul li:first-of-type {color: red} /* First-of-type Selector */

tr » td:last-of-type /* Last-of-type Selector */

li:zonly-child /* Only-child Selector */

div:only-of-type /* Only-of-type Selector */

p:empty {display: hidden} /* Empty Selector */

1i + 1i { font-style:italic; color:blue; } /* Sibling Selector */

Position and Group Selectors

You want to combine selectors to narrow a selection based on element position. In other words, you want
Problem to select elements based on whether they are descendants, children, or siblings of other elements. You also
want to apply different selectors to the same set of rules.

Combine selectors as follows:

To apply different selectors to the same group of rules, chain together multiple selectors using a
comma. This is the group selector. Each selector in the chain is independently assigned to the same set of
styles.

To select descendant elements, chain together multiple selectors using whitespace. Whitespace is the

descendant selector. Each descendant selector narrows the selection to descendants of the previous
selector. A descendant can be a child, a grandchild, a great-grandchild, and so forth.

Solution To select child elements, chain together multiple selectors using the greater-than sign. This is the child
selector. Each child selector narrows the selection to elements that are children of the previous selector.

To select the first child element, append : first-child to any selector. This is the first-child selector.
This limits the selector only to elements that are the first child of their parents. Similarly you can use rules
like :nth-child, :nth-last-child, etc. to specify the exact position of the element.

To select sibling elements, chain together multiple selectors using the plus sign. This is the sibling
selector. Each sibling selector narrows the selection to elements that are siblings to the elements chosen
by the previous selector.

Patterns CSS
selector, selector, etc { STYLES }
or selector selector etc { STYLES }
or selector > selector » etc { STYLES }
or selector + selector + etc { STYLES }
or selector:first-child { STYLES }
Similar with the rest of the pseudo-classes

Location These design patterns apply to all elements.

Limitations Only the group and descendant selectors work in Internet Explorer 6. All these selectors work in Internet

Explorer 7 and the other major browsers.

The group selector p, 01,11 applies the same set of styles to all paragraphs, ordered lists, and list items.
The selector div *.my-class selects all elements assigned to my-class that descend from a division.
Only the paragraph in the third list item matches this selector. The selector #my-id p selects all
paragraphs descending from <div id="my-id">. Only the paragraph in the third list item matches this
selector. The selector #my-id > p selects all child elements descending from <div id="my-id">.Only
the ordered list matches this selector. The selector 1i:first-child selects the first list item in each list.
The selector 11 + 11 selects all list items that are siblings to list items. This selects all but the first list item.

Example

Related to Inheritance

67

CHAPTER 3 CSS SELECTORS AND INHERITANCE

68

Attribute Selectors

eanNnm Mozilla Firefox

Attribute Selectors

This is a paragraph without the tit1le attribute.

‘ pltitle] selects all paragraphs containing a title attribute.

‘ pltitle~="paragraph"] selects all paragraphs with a title attribute containing the word, paragraph.

p[title="#4 paragraph"] selects all paragraphs with a title attribute containing the exact text,
#4 paragraph. Matches are case sensitive and must match letter-for-letter including whitespace.

hello

HTML

<h1>Attribute Selectors</hi>
<p>This is a paragraph without the <code>title</code> attribute.</p>

<p title="Second"»
<code>p[title]</code> selects all paragraphs containing a title attribute.</p>

<p title="Third paragraph”s>
<code>p[title~="paragraph"]</code> selects all paragraphs with a
title attribute containing the word, <code>paragraph</code>.</p>

<p title="#4 paragraph"s

<code>p[title="#4 paragraph"]</code> selects all paragraphs with a

title attribute containing the exact text, <code>#4 paragraph</code>. Matches
are case-sensitive and must match letter-for-letter including whitespace.</p>

hello
CSS

code { white-space:pre; }

pltitle] { padding:5px 10px; border:ipx solid gray; }
p[title~="paragraph"] { background-color:gold; }

p[title="#4 test paragraph"] { font-weight:bold; }
a[href="http://www.example.com"][target="_blank"] { font-weight:bold; }
pltype*="#4"] {color: grey }

a[href$=".com"] { font-weight:bold; }

p[title*="test"] { font-weight:bold; }

http://www.example.com%E2%80%9Dtarget=%22_

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Attribute Selectors

Problem

You want to select elements depending on whether they contain a specific attribute, contain a specific
word within a specific attribute, or contain a specific value within a specific attribute.

Solution CSS provides three attribute selectors for this purpose. CSS does not name them individually. I call them
the Attribute Existence Selector, the Attribute Word Selector, and the Attribute Value Selector. You can
append these attribute selectors to the end of any selector.

You can use the Attribute Existence Selector to select elements that contain a specific attribute. The
Attribute Existence Selector is the name of the attribute enclosed in straight brackets. For example,
p[title] selects all paragraphs containing the title attribute. If an element contains the attribute and
the attribute is assigned to a value, the Attribute Existence Selector matches it. The attribute may contain
any value, but some browsers will nof match an empty attribute, such as<p title="">.

You can use the Attribute Word Selector to select elements that contain a specific word within a
specific attribute. The Attribute Word Selector is the opening straight bracket, the name of the attribute, a
tilde, an equal sign, the word in double quotes, and the closing straight bracket. For example,
p[title~="paragraph"] selects all paragraphs containing the word paragraph inside their title
attribute, such as<p title="Third paragraph">.The attribute may contain other words in addition to
the matching word. A word is separated from other words using spaces. The match is case-sensitive.

You can use the Attribute Value Selector to select elements that contain a specific value within a
specific attribute. The Attribute Value Selector is the opening straight bracket, the name of the attribute,
an equal sign, the value in double quotes, and the closing straight bracket. For example,

p[title="#4 paragraph"] selects all paragraphs containing the exact value #4 paragraph inside
their title attribute, such as p[title="#4 paragraph"]. The match is case-sensitive and must match
the entire attribute value including whitespace.

You can use any of the substring matching attribute selectors, like [attr*=val], [attr$=val], and
[attr*=val], in order to specify an element with the attr attribute whose value begins, ends, or just
contains "val".

You can also use multiple chained attribute selectors, e.g.,
a[href="http://www.example.com"][target="_blank"] to represent several attributes of an
element, or several conditions on the same attribute. Similar to type selectors, attribute selectors also
support namespacing.

Patterns SELECTOR[attr] { STYLES } or SELECTOR[attr~="WORD"] { STYLES }

CSS o
SELECTOR[attr="EXACT_MATCH_OF_ENTIRE_VALUE"] { STYLES }
or
SELECTOR[attx”="ATTRIBUTE_BEGINGS_WITH VALUE"] { STYLES }
or
SELECTOR[attr$="ATTRIBUTE_ENDS WITH VALUE"] { STYLES }
or
SELECTOR[attr*="ATTRIBUTE_CONTAINS VALUE"] { STYLES }
or
SELECTOR[“ATTRIBUTE_SELECTOR 1”][“ATTRIBUTE_SELECTOR 2”] { STYLES }

Location These design patterns apply to all elements.

Limitations Attribute selectors do not work in Internet Explorer 6. They work in Internet Explorer 7 and other major
browsers. CSS defines another selector that I call the Attribute Language Selector (e.g., [lang=en]),
but it is not well supported.

Related to Inheritance

69

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3 CSS SELECTORS AND INHERITANCE

70

Pseudo-element Selectors

) pseudo-element Selectors - Mozilla Firefox

Fie Edt Yew Go Cooktmarks Tools Help

Pseudo-element Selectors

firat—letter selects the first letter, and first-line selects
the first line of a terminal block element, like this paragraph.

Pssudo-element selectors do not work on inline elements.

Pseudo-element selectors do not work on structural block elements.

HTML

<h1>Pseudo-element Selectors</hi>

<pr<code>first-letter</code> selects the first letter, and
<code>first-line</code> selects the first line of a terminal block element,
like this paragraph.</p>

<div>Pseudo-element selectors do not work on inline elements.</div>

<dly
<dt>Pseudo-element selectors do not work on structural block elements.</dt>
</dl>

CSS

p:first-line { font-weight:bold; word-spacing:2px; letter-spacing:1ipx; }
p:first-letter { font-size:48px; }

span:first-line { font-weight:bold; word-spacing:2px; letter-spacing:1px; }
span:first-letter { font-size:48px; }

dl:first-line { font-weight:bold; word-spacing:2px; letter-spacing:ipx; }
dl:first-letter { font-size:48px; }

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Pseudo-element Selectors

Problem

You want to select the first letter or first line of an element.

Solution

HTML CSS

No markup is required. Combine the first-letter and first-line
pseudo-selector with classes, IDs, and types of
your choosing.

Patterns

CSS

ELEMENT:first-letter { STYLES }
or *.CLASS:first-letter { STYLES }
or #ID:first-letter { STYLES }
or ELEMENT:first-line { STYLES }
or *.CLASS:first-line { STYLES }
or #ID:first-line { STYLES }

Location

first-letter and first-1line work only on terminal block elements. They do not work on
inline elements or structural block elements.

Notes

first-letter and first-1line are called pseudo-element selectors because they select a
subset of content in an element rather than all the content in an element. In other words,
they create a pseudo-element.

Limitations

Internet Explorer 6 ignores a pseudo-element selector unless it is the last selector in a chain
of selectors. Newer versions fix this problem.

The first-letter selector works best with font and text properties. Browsers cannot
position pseudo-elements and have trouble aligning them. In other words, position, left,
right, top, and bottom have no effect on pseudo-elements. Also, vertical-align works
inconsistently on pseudo-elements.

Browsers have exceptional cases where they may not select the first letter or may select more
than the first letter. For example, no major browser selects the first letter when an image or
object precedes it. For example, Opera 9 does not select the first letter of table cells, and
Internet Explorer 6 selects the list marker along with the first letter of a list item, and no
matter how much we want them to go away, old browsers are still around to haunt us.
Finally, pseudo-element selectors bring out bugs in browsers, so be sure to test your use of
them in all major browsers.

Example

In the example, I set three different pseudo-element selectors to the same set of styles. I did
not use a grouping selector because Internet Explorer 6 does not recognize pseudo-selectors
when they are part of a grouping selector.

Related to

Class Selector, Pseudo-class Selectors

71

CHAPTER 3 CSS SELECTORS AND INHERITANCE

72

Pseudo-class Selectors

Ble Edit WYimw Fagvorites Tools Help

A Peeudo-class Salactors - Microsoft Internet Explorer E| EWE
1
oy

Pseudo-class Selectors

a:link -- unvisited link

arvisited -- visited link

a:hover -- mouse hovering 4

a:active -- visiting a link

HTML

<h1>Pseudo-class Selectors</hi>

<p>
a:link -- unvisited link
a:visited -- visited link
a:hover -- mouse hovering
a:active -- visiting a link
</p>

CSS

a { padding:3px 10px; margin:20px 10px; text-decoration:none;
display:block; width:260px;
border-left:1px solid dimgray; border-right:2px solid black;
border-top:1px solid dimgray; border-bottom:2px solid black; }

a:link { color:black; background-color:white; }

asvisited { color:gray; background-color:white; }
azhover { color:white; background-color:green; }
a:active, a:focus { color:green; background-color:gold; }

http://www.cssdesignpatterns.com
http://www.htmldesignpatterns.com
http://www.cssdesignpatterns.com
http://www.cssdesignpatterns.com

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Pseudo-class Selectors

Problem

You want to style a hyperlink depending on whether it is unvisited, visited, being hovered over by
the mouse, or in the process of being visited.

Solution

HTML CSS

Insert hyperlinks using<a>. Select hyperlinks based on their state:
Use a:1link to select a hyperlink when it has not been visited.
Use a:visited to select a hyperlink when it has been visited.
Use a:hover to select a hyperlink when the mouse hovers over it.

Use a:focus to select a hyperlink when it receives focus in other
browsers.

Use a:active to select a hyperlink when it receives focus in IE.

Patterns

HTML CSS

<a> a:link { STYLES }
a:visited { STYLES }
a:hover { STYLES }
a:active, a:focus { STYLES }

Location

Pseudo-class selectors work on hyperlinks (<a>).

Limitations

Internet Explorer 6 supports the hover pseudo-class only on hyperlinks. IE7 and all other major
browsers support hover on all elements.

CSS 2.1 defines two additional pseudo-classes: first-child and lang().

first-child selects an element when it is the first child of another element. 1lang() selects an
element when it has been assigned to the specified human language. These pseudo-classes are not
supported in Internet Explorer 6. Internet Explorer 7 supports first-child, but not lang. I do not
recommend using them until the majority of users use a browser that supports them.

Tips

The underline is the standard visual indicator of a hyperlink. If you remove an underline from a
hyperlink, you should style it to look like it should be clicked. In the example, I styled the
hyperlinks to look like simple buttons.

Pseudo-class selectors should be placed in your style sheet in the order listed previously (1ink,
visited, hover, active, and focus). You can remember the order using the mnemonic Las Vegas
Hells Angels Fight.

A browser displays the active state when a user tabs to a hyperlink. It is also displayed for less than
a second when a user clicks a hyperlink. You can apply a contrasting style to the active pseudo-
class to make the hyperlink “flash” when the user clicks it. This gives the user immediate feedback
that the browser recognized the click.

Variations

You can use any combination of CSS styles to style hyperlinks.

Related to

Class Selector, Pseudo-element Selectors

73

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Subclass Selector

3 Subclass Selector - Mozilla Firefox

Bie Edt Yew Go Cookmarks Tools Help

Subclass Selector

Square |

o

Rounded

o

HTML

<h1>Subclass Selector</hi>

<div>

<p class="button square">Square</p>
<p class="button rounded">Rounded</p>
<p class="button go">Go</p>

</div>

CSS

* button { width:175px; padding:3px 10px; margin:20px 0; text-align:center;
font-weight:bold; margin-left:50px; line-height:normal; }

* . button.square { color:darkblue; background-color:gold;
border-left:1px solid dimgray; border-right:2px solid black;
border-top:1px solid dimgray; border-bottom:2px solid black; }

* button.rounded { color:darkblue; background-color:white;
line-height:45px; margin-top:30px;
background:url("oval.gif") no-repeat center center; }

* .button.go { background-color:white; line-height:26px;

text-indent:-9999px; font-size:10px;
background: url("go.jpg") no-repeat center center; }

74

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Subclass Selector

You want a class of elements to be styled with common rules. You also want these elements to be

Problem divided into subclasses and styled with specialized rules that may override the base rules.

Solution HTML CSS
You can assign classes to elements in your To select all elements assigned to a base class,
HTML code using the class attribute. A use the universal selector followed by the dot
class attribute can contain an unlimited operator, followed by the name of the base class,

number of space-delimited classes. The order ~ followed by the dot operator, followed by the

of the classes in the attribute is not important. ~name of the subclass. I call this chaining

For readability, I recommend listing the base together classes. There is no limit to the number

class first followed by its subclasses. The of chained classes. The order of the classes in

classes assigned to an element do nothave to the selector is not important. For readability, I

be related, but the code is more logical if you recommend listing the base class first followed

organize them into classes and subclasses. by its subclasses. The classes you chain together
do not have to be related, but the code is more
logical if they are organized into base classes
and subclasses.

Pattern HTML CSS

<ELEMENT class="class subclass etc"> *.class { SHARED_BASE_STYLES }
*,class.subclass.etc { SUBCLASS_STYLES }

Location You can apply this design pattern to any element.

Advantages You can use this design pattern to build a hierarchy of rules based on classes and subclasses.
As in object-oriented programming, subclassed elements “inherit” the rules from their base
class and their subclass. CSS cascading order ensures rules from the subclass override the
rules in the base class.

Example In the example, all paragraphs are assigned to the button class. Each one is also assigned to
the square, rounded, and go subclasses. All paragraphs assigned to the button class share the
same base rules assigned by *.button, such as width:175px. Each subclassed paragraph is
assigned to specialized rules through *.button.square, *.button.rounded, or *.button.go.
For example, each subclass assigns a different background to its type of button. Some
specialized rules, like margin and 1ine-height, override base rules.

Relatedto Class Selector

75

CHAPTER 3 CSS SELECTORS AND INHERITANCE

76

Inheritance

9 Inheritance - Mazilla Firefox EI@I@

Ele Edit Vew Go Bookmarks Tool Hep

Inheritance

- This span inherits font from its ancastor, <body>.

- It inherits line-height from its ancestor, <div>,

- It inherits letter-spacing from its ancestor, <p>.

- It inherits italics from its ancestor, <=m>, but it is also directly

assigned to font-style:normsl which overrides its inherited italics.

HTML

<body>
<h1>Inheritance</h1>

<divy
<p>

- This span inherits font from its ancestor, <code><body8gt;</code>.

- It inherits line-height from its ancestor, <code><divégt;</code>.

- It inherits letter-spacing from its ancestor, <code><pdgt;</code>.

- It inherits italics from its ancestor, <code><emdgt;</code>,
but it is also directly assigned to <code>font-style:normal </code>, which
overrides its inherited italics.

</p>
</div>
</body>

CSS

body { font-family:verdana,arial,sans-serif; font-size:18px; }
div { line-height:2em; }

p { letter-spacing:0.8px; }

em { font-style:italic; }

span { font-style:normal; }

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Inheritance
Problem You want to style an element and have all its descendants be styled the same.
CSS is designed so that many properties are inherited by default. This means you can
Soluti assign one of these inherited properties to any element, and any descendants will
olution inherit the property. Most inline properties are inherited by default. A list of all
properties and how they are inherited follows.
Inheritance is a type of selector that is built into the CSS language. You do not have to
Pattern do anything to use inheritance. When a browser encounters an inherited property, it

automatically selects descendant inline elements and applies its rule to them. When
you assign a property directly to an element, it overrides any inherited value.

Inherited properties

The following properties are inherited by all elements:
visibility and cursor
The following properties are inherited by inline elements:

letter-spacing, word-spacing, white-space, line-height, color, font, font-family,
font-size, font-style, font-variant, font-weight,

text-decoration, text-transform, and direction

The following properties are inherited by terminal block elements:
text-indent and text-align

The following properties are inherited by list elements:

list-style, list-style-type, list-style-position, and 1ist-style-image
The following property is inherited by table elements:

border-collapse

Noninherited

The following properties are not inherited:

display, margin, border, padding, background, height, min-height, max-height,
width, min-width, max-width, overflow, position, left, right, top, bottom, z-index,
float, clear, table-layout, vertical-align, page-break-after, page-break-before,
and unicode-bidi

Limitations

CSS provides a constant value named inherited that you can assign to any property.
When you assign inherited to a property, that property inherits its value from its
parent element. This allows you to force properties to inherit. Internet Explorer
versions 7 and earlier do not implement inherit. The following tip shows how you can
simulate inheritance for any property.

Tip

You can simulate inheritance for properties that cannot inherit. You first select a
starting element using any selector. You then follow the selector by the descendant
operator and the universal selector. The pattern is SELECTOR *. For example, you can
put a border around all elements descended from <html> by using html * {
border:1px solid black; }.I often use this code to see the nesting of all elements in
a document.

Related to

Position and Group Selectors

77

CHAPTER 3 CSS SELECTORS AND INHERITANCE

78

Visual Inheritance

) Vizual Inheritance - Mazilla Firetox

Fle Edt les G0 Bookwaks Toos Help

Visual Inheritance

- This span is nested inside a label, a paragraph, and a division,

- The division is assigned a background color, padding and a border.
- Since the span, label, and paragraph default to a transparent
background color and have no border, thay “visually inherit" tha
background, padding, and border of the division.

- Once you assign a background te an elemant, it no longer visually
inherits the background of its parent—like this element,

HTML

<h1>Visual Inheritance</h1>
<divy
<p>
<label>

- This span is nested inside a label, a paragraph, and a division.

- The division is assigned a background color, padding, and a border.

- Since the span, label, and paragraph default to a transparent background
color and have no border, they "visually inherit" the
background, padding, and border of the division.

- Once you assign a background to an element, it no longer visually inherits
the background of its parent-like this <code><code8gt;</code> element.

</label>
</p>
</div>

CSS

div { background-color:gold; color:black; padding:10px 20px;
border-left:ipx solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

p { background-color:transparent; background-image:none; }
label { background-color:transparent; background-image:none; }
span { background-color:transparent; background-image:none; }

code { background-color:firebrick; colox:white; }

CHAPTER 3 CSS SELECTORS AND INHERITANCE

Visual Inheritance

Problem

You want the background of a child element to be the same as its parent.

Solution

CSS automatically layers elements transparently. Child elements are layered on top of parent
elements. If margins or positioning cause sibling elements to overlap, following siblings
overlap previous siblings. For floated and positioned elements, you can set the layering
explicitly using the z-index property. This is a design pattern built into CSS. You do not need
to do anything to take advantage of it.

The background-color property defaults to transparent, and the background-image property
defaults to none. This allows the background of an element’s ancestors to show through. In
other words, a browser renders child elements in transparent layers above parent elements
unless you set a child’s background-color to a color, or you set its background-image to an
image.

Since child elements are nested within parent elements, each child element visually inherits
the borders and padding of its parent. In other words, a parent’s borders and padding
surround its children. If a child has a transparent background and no borders, it appears as if
the parent’s borders and padding are the child’s borders and padding. Without borders
around a child, you cannot tell where the parent’s padding area ends and the child’s padding
area begins. Once you add borders to a child element, it no longer visually inherits the borders
and padding of its parent because you can see precisely where the parent ends and the child
begins.

Pattern

You do not need to do anything to use visual inheritance because background-color defaults
to transparent and background-image defaults to none. When you want a child element not
to visually inherit the background of its parent, you can set the element to its own background
color or image as follows:

SELECTOR { background-color:COLOR;
background-image:url("FILE.EXT"); }

Location

This design pattern applies to all elements.

Example

In the example, the division has a gold background, and all its descendant elements visually
inherit the background—except for the code element, which is assigned to the firebrick
background color. Notice that I assigned background-color: transparent and background-
image:none to the paragraph, label, and span. I did this to show these rules in action. You do
not typically need to assign these rules in your code because background-color:transparent
and background-image:none are the default for all elements. On the other hand, you can use
these rules whenever you want to reset an element to a transparent background after another
rule assigned it to a background color or image.

Related to

Inheritance

79

CHAPTER 4

Box Models

Download from Wow! eBook <www.wowebook.com>

The fundamental design pattern in CSS is the Box Model. The Box Model defines how elements are
rendered as boxes. There are six main types of boxes: inline, inline-block, block, table, absolute, and
floated. A browser renders each element as one of these boxes. Some elements are rendered in a
variation of one of these boxes, such as a list item or table cell. For example, 1ist-itemis a block box
with an inline marker automatically created by the browser, and table-cell is a block box that does not
support margins.

You can use the display property to render an element as a different type of box. You can use
position:absolute or position:fixed to render any element as an absolute box. You can use the
float:left or float:right rules to render any element as a floated box.

This is the first of three chapters on the Box Model. This chapter explains the six main types of
boxes. Chapter 5 introduces extents, which are controlled by width and height. Extents control whether
a box is shrinkwrapped to its content, sized, or stretched to the sides of its container. Chapter 6
introduces the Box Model properties: margin, border, padding, background, overflow, visibility, page-

break-before, and page-break-after. Background, visibility, and page breaks work the same in all boxes.

Borders, padding, and overflow work the same in all boxes except for inline. Width, height, and margins
work differently in each type of box.

Chapter Outline

e Display shows how to render an element as an inline box, a block box, an inline-
block box, a list-item box, a table box, or not at all.

e Box Model introduces the general box model underlying all types of boxes.
e Inline Box shows how inline boxes work.

¢ Inline-Block Box shows how inline-block and replaced inline boxes work.
e Block Box shows how block boxes work.

e Table Box shows how table boxes work.

e Absolute Box shows how absolute and fixed boxes work.

¢ Floated Box shows how floated boxes work.

81

CHAPTER 4 I BOX MODELS

82

Display

1J Display - Dpera

Fil= Edit View Bookmarks Widgets Tools Help
Display
display:inline EIIEHE IEHEHEI

strong
display:inline-bhlack

em display:block

cm

dfn display:list-iten

dfn

display:none

HTML

<h1>Display</h1>

<code>display:inline</code>
<pIp</p> <p>p</p> <p>p</p>
<oly<1i>li¢/1i><1i>li</1i><1i>1li</1i></0l>

<tabley<tr><td>td</td><td>td</td></tr><tr><td>td</td><td>td</td></tr></table>

<strongsstrong
<code>display:inline-block</code>

<em»em <code>display:block</code> em

<div class="ul"»<dfn>dfn <code>display:list-item</code></dfn><dfn>dfn</dfn></div>

 <code>display:none</code>

CSS

p,ol,1li,table { display:inline; }

strong { display:inline-block; width:250px; }
em { display:block; }

dfn { display:list-item; list-style-type:square; }

img {

display:none; }

*.ul { padding-left:15px; }

Display

CHAPTER 4 = BOX MODELS

Problem

You want to fundamentally change how the browser renders an element. For example, you
want a block element rendered inline, as a list item, or as a table; or you do not want it to be
rendered at all—as if it never existed.

Solution

You can use the display property to change how an element is rendered. You can use
display:none to prevent an element from being rendered. You can use display:inline to
render an element inline. You can use display:block or display:1ist-item to render an
element as a block or list item. You can use display:inline-block to render an inline
element as a block nested in a line.

Pattern

SELECTOR { display:inline; }
SELECTOR { display:inline-block; }
SELECTOR { display:block; }
SELECTOR { display:list-item; }
SELECTOR { display:none; }

Location

This design pattern applies to all elements.

Limitations

There are additional display types, but they are not well supported. Internet Explorer 7 does
not support run-in and inline-table. Internet Explorer 7 also does not support table,
table-cell, table-row, table-header-group, table-footer-group, table-row-group,
table-column-group, table-column, and table-caption.

Tips

When you display an element as a list item, its parent needs to be rendered as a block and
needs to provide left padding or left margin for the marker. This is required because a list is
a two-part structure: an outer block, such as <ol», , or <d1>, and an inner block, such as
<1li», <dd>, or <dt>. You can assign a marker to it using 1ist-style-type.

A browser renders a 1ist-item as a block with an inline marker. When you want a 1ist-
item to look like a block, you can simply turn off the marker using 1ist-style-type:none—
you do not need to change the display type because a list is already a block. You may also
want to remove its parent’s padding and margin.

Example

The example uses display:inline to render the blocks <p> and <1i> as inline boxes. It uses
display:inline-block to render the inline <strong» as an inline block. It uses
display:block to display the inline <em» as a block. It uses display:1list-item to render
the inline <dfn> elements as list items. It assigns a marker to them using list-style-type.
It also assigns left padding to their parent to make room for the marker. Lastly, it uses
display:none to hide an image.

Related to

Visibility (Chapter 6); Blocked (Chapter 11); Inlined, Run-in (Chapter 13); Tabled, Rowed,
and Celled (Chapter 15)

83

CHAPTER 4 " BOX MODELS

84

Box Model

2 Block Box Model - Mozilla Firefox
File Edit Wew Go Bookmaks Toos Hep

Box Model

Quter Bax

é Margin

Padding
. Inner Box :

1
To

P
= Left Right -

Bottom

-

HTML

<h1>Box Model</h1>
<div class="box"»</divy

<!-- The HTML code that creates the labels and extra borders is not shown. -->
CSS

*,box { display:static;
overflow:visible;
visibility:visible;
width:160px;
height:150px;
padding:30px;
border-top: 30px solid gray; border-bottom:30px solid black;
border-left:30px solid gray; border-right: 30px solid black;
margin-left:230px; margin-top:80px;
background-color:gold; }

/* Nonessential rules are not shown. */

Box Model

CHAPTER 4 = BOX MODELS

Problem

You want to style the box of an element.

Solution

The Box Model design pattern is built into CSS. This model defines the relationship between
the following properties: display, width, height, padding, border, maxgin, background,
overflow, and visibility.

width normally sets the width of an element’s inner box.
height normally sets the height of an element’s inner box.

padding sets the size of the padding surrounding the inner box. The padding is transparent
to the element’s background.

border sets the size, pattern, and color of the border surrounding the padding.

margin sets the size of the margin surrounding the border. The margin is transparent to the
background of the element’s parent. The outside of the margin is the element’s outer box.

background assigns the padding area inside the box to a background color and/or image.

overflow determines what happens when an element’s content is larger than its inner box.
The default is to show the overflowing content.

visibility can make the element visible or hidden.

Pattern

SELECTOR { display:CONSTANT;
overflow:VALUE;
visibility:VALUE;
width:+VALUE;

height:+VALUE;
padding:+VALUE;
border:+WIDTH STYLE COLOR;
margin:+VALUE;
background:VALUES; }

Location

This design pattern applies to all elements.

Example

The example contains additional HTML markup and CSS rules that are not shown. This
extra code renders a label over each part of the box and draws the outer box and inner box
borders.

Notes

CSS defines six main types of boxes: inline, inline-block, block, table, absolute, and floated.
The type of box is determined by the combination of the following properties: display,
position, and float. Box Model properties work differently and produce different layouts
depending on the type of box. Certain types of boxes have additional functionality provided
by additional properties, such as 1ine-height, border-collapse, and table-layout.

Related to

All Box Model design patterns

85

CHAPTER 4 I BOX MODELS

86

Inline Box

€2 Inline Box - Mozilla Firefox
Fle Edit WVew Go Bookmerks Toos Hep

Inline Box

BEFORE +— Left 1 Top Bottom |
Right — AFTER
HTML

<h1>Inline Box</h1>

<div class="container">

BEFORE

<span class="box"»← Left ↑ Top
Bottom ↓ Right →

AFTER

</div>

CSS

*.box { display:inline; visibility:visible;

line-height:100px;
margin:0 100px;
padding:20px 120px;

border-top: 5px solid gray;
border-bottom:5px solid black;
border-left: 5px solid gray;
border-right: 5px solid black;

background-color:gold; }

/* Nonessential rules are not shown. */

Inline Box

CHAPTER 4 = BOX MODELS

Aliases

Inline, inline element, and static inline box are synonyms with inline box.

Problem

You want to style the box of an inline element.

Solution

Inline boxes are rendered in the inline flow. They flow horizontally from left to right (or right
to left in some languages) and are wrapped to new lines when they exceed the width of their
closest terminal block ancestor. This is called the inline formatting context. CSS provides
the following properties for styling inline boxes:

width, height, and overflow do norwork on inline elements, because they always
shrinkwrap to fit the width and height of their content.

margin and line-height are applied to inline elements in unique ways. Horizontal margins
change the position of inline elements in the flow. A positive value in margin-left moves
the element away from the previous element, and a negative value moves it closer. A
positive value in margin-right moves the next element further away, and a negative value
moves it closer. margin-top and margin-bottom are ignored by inline elements. Instead,
inline elements use line-height to size the height of a line.

border is applied to inline elements in unique ways. Horizontal borders change the position
of inline elements in the flow. The left border moves the element to the left, and the right
border moves the next element to the right. The top and bottom borders are rendered above
and below the padding area without expanding the height of the line or changing the
vertical position of the inline element. Because borders do not affect the height of the line,
borders can overlap neighboring lines unless you increase 1ine-height. When a bordered
element is wrapped across lines, the browser does not render the right border at the end of
the line, and it does not render the left border at the beginning of the wrapped line. The left
and right borders occur only at the beginning and end of the element.

padding is applied to inline elements in exactly the same way as borders.

Pattern

INLINE_SELECTOR { display:inline; visibility:VALUE;
line-height:+VALUE;

margin:+VALUE;

padding:+VALUE;

border:+WIDTH STYLE COLOR;

background:VALUES; }

Location

This design pattern applies to inline elements and any element displayed inline.

Related to

Display, Box Model; Shrinkwrapped (Chapter 5); Margin, Border, Padding, Background,
Visibility (Chapter 6)

87

CHAPTER 4 I BOX MODELS

Inline-Block Box

<A Inline-block Box - Microseft Internet Explorer g@g|
m
N

: Fl= Edt Yiew Favertes Taocls Help

Inline-block Box

A

34

BEFORE AFTER

Inline element displayed as
an inline block,

BEFORE AFTER

HTML

<h1>Inline-block Box</h1>

<div class="container">
BEFORE

AFTER

BEFORE
Inline element displayed as an inline block.</span»
AFTER

</div>

CSS

* replaced-box { display:inline-block;
overflow:visible; visibility:visible;
width:51px; height:52px;
margin:10px 100px; padding:10px 120px; }

*,inline-box { display:inline-block;
overflow:visible; visibility:visible;
width:275px; height:52px;
margin:10px 100px; padding:10px 10px; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

88

CHAPTER 4 = BOX MODELS

Inline-Block Box

Problem

You want to style the box of an inline-block element. Inline-block elements include
replaced elements and inline elements displayed as inline blocks. For example, an image is
areplaced element because the browser replaces the element with an image. Also, you can
use display:inline-block to display any inline element as a block rendered within an
inline context.

Solution

Inline-block boxes participate in the inline flow like inline boxes but have margins, borders,
padding, width, and height like block boxes. An inline-block box cannot be wrapped across
lines. An inline-block box grows the height of a line to fit its height, padding, borders, and
margins. An inline-block box can be shrinkwrapped, sized, or stretched. CSS provides the
following properties for styling inline-block boxes:

width and height set the width and height of the element. You can enlarge or shrink a
replaced element, such as an image, by settingwidth and/or height to a measurement. You
can set a replaced element to its natural size usingwidth:auto and height:auto. You can
size an inline-block element, such as a span assigned to display:inline-block, by setting
width and/or height to a measurement. You can shrinkwrap an inline-block element using
width:auto and height:auto. You can stretch an inline block using width:100%. Note that a
stretched inline block is the same as a block.

margin has unique inline-block features. A positive value in margin-top expands the height
of the line and a negative value shrinks it. A positive value in margin-bottom raises the
element and a negative value lowers it. margin-bottom may also expand or shrink the height
of a line. A positive value in margin-left moves the element away from the previous
element, and a negative value moves it closer. A positive value in margin-right moves the
next element further away, and a negative value moves it closer.

border and padding expand the outer size of the inline element. This moves it to the right
and moves following content to the right. It also moves it up and increases the height of the
line containing it.

Pattern

SELECTOR { display:inline-block; line-height:+VALUE;
overflow:VALUE; visibility:VALUE;

width: +VALUE; height: +VALUE;

margin:+VALUE; padding:+VALUE;

border:+WIDTH STYLE COLOR; background:VALUES; }

Location

This design pattern applies to inline elements.

Example

The example shows an image and a span displayed as inline blocks. Note that you do not
need to assign display:inline-block to replaced elements because a browser
automatically displays them as inline blocks.

Related to

Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5); Margin,
Border, Padding, Background, Overflow, Visibility (Chapter 6)

89

CHAPTER 4 " BOX MODELS

Block Box

) Block Box - Mozilla Firefox
File Edit Vew Go Bookmarks Toos Hep

Block Box

BEFORE
T N
Top
— Left Right —
Bottom
| 3

AFTER

HTML

<h1>Block Box</h1>

<div class="container">
<div class="default">BEFORE</div>

<div class="box"» ↑
 Top
 ← Left
Right →
 Bottom
 ↓ </div>

<div class="default">AFTER</div>
</div>

CSS

*.box { display:block;
overflow:auto; visibility:visible;
width:220px; height:100px;
margin:10px auto; padding:10px; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

90

Download from Wow! eBook <www.wowebook.com>

Block Box

CHAPTER 4 = BOX MODELS

Aliases

Block, block element, and static block box are synonyms with block box.

Problem

You want to style the box of a block element.

Solution

Block boxes flow vertically from top to bottom in a block formatting context. This is called
the normal flow of blocks. Block boxes can contain other block boxes, or they can
terminate the block formatting context and start an inline formatting context containing
inline boxes. A terminal block creates an inline formatting context inside its inner box, but
occurs within a block formatting context on the outside of its outer box.

A block can be stretched to the width and height of its parent or sized smaller or larger than
its parent. When sized larger, it overflows its parent. The overflow property controls how
the browser handles overflow.

width sets the width of the element. width:auto is the default value and stretches the
element to fill the width of its parent.

height sets the height of the element. height:auto is the default value and shrinkwraps the
element to the height of all its child blocks or lines.

margin-left and margin-right indent or outdent the sides of a stretched block, and they
offset the sides of a sized block. You cannot horizontally shrinkwrap a block box.

margin-top and maxgin-bottom push blocks further apart with positive values, but negative
values bring them closer together, and can even overlap them. A browser collapses top and
bottom margins of neighboring blocks.

margin-left:auto and margin-right:auto control the horizontal alignment of a sized
block. When you size a block by setting width to a measurement, margin-right:auto aligns
the block to the left side of its parent, and margin-left:auto aligns the block to the right
side. When you set both margin-left and margin-right to auto, the block is aligned to the
center of its parent (as shown in the example).

border and padding expand the outer width and height of the box. This pushes down a
block and its following blocks. On stretched blocks, horizontal borders and padding shrink
the size of the inner box. On sized blocks, they offset the inner box.

Pattern

SELECTOR { display:block; overflow:VALUE; visibility:VALUE;
width: +VALUE; height: +VALUE;

margin:+VALUE; padding:+VALUE;

border:+WIDTH STYLE COLOR;

background:VALUES; }

Location

This design pattern applies to block elements.

Related to

Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);Margin,
Border, Padding, Background, Overflow, Visibility (Chapter 6)

91

CHAPTER 4 I BOX MODELS

92

Table Box

%2 Table Box - Mozilla Firefox
File Edit Vew Go Bookmarks Tools Hep

Table Box
BEEFORE
AFTER

HTML

<h1>Table Box Model</h1>
<div class="container">
<table class="default"><tr><td>BEFORE</td></tr></table>

<table class="table"»
<tr><td class="cell">Table Cell </tdy><td class="cell">Table Cell </td></tr>
</table>

<table class="default"><tr><td>AFTER</td></tr></table>
</div>

CSS

*,table {
border-collapse:separate; table-layout:auto; visibility:visible;
width:auto; height:auto; margin:30px 50px; }

*.cell { width:auto; height:auto; padding:20px 50px; overflow:hidden; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

Table Box

CHAPTER 4 = BOX MODELS

Problem

You want to style the box of a table and the boxes of its cells.

Solution

A table is a block box on the outside containing rows of cells on the inside. A table
participates in the block flow, and its cells participate in the table flow of rows and columns.
A table has margins but does not have padding. A cell has padding but does not have
margins. Two additional properties affect the Table Box model: border-collapse and
table-layout. There are many design patterns for laying out cells inside a table. These are
found in Chapters 15 and 16, which discuss tables and cells in detail. This design pattern
focuses on the outside of the table, and how the table interacts with the position of
surrounding elements.

width sets the width of a table. Unlike other boxes, width refers to the outside of the borders
rather than to the inside of its padding.

height sets the height of the table. Unlike other boxes, height refers to the outside of the
borders rather than to the inside of its padding.

margin works differently depending on whether the table is sized, shrink-wrapped, or
stretched. When sized or shrinkwrapped, margins offset the table and offset following
elements. Negative margins can overlap the table with neighboring elements. When a table
is stretched, margins indent the table, which decreases its internal size and shrinks its cells.

border decreases the size of a table’s inner box when a table is sized or stretched. No other
sized box works like this. This unusual behavior occurs because table borders are inside the
box specified by width and height. When the table is shrinkwrapped, border works like
other boxes and increases the size of a table’s outer box.r

overflow does not apply to tables because a table cannot overflow. Only a table’s cells can
overflow. overflow:hidden should be applied to cells to ensure consistent behavior in all
browsers when fixed cells overflow.

border-collapse determines whether adjacent borders combine into a single border. See
Chapters 15 and 16 for details.

table-layout determines whether the table is fixed sized or auto sized based on its
content. See Chapters 15 and 16 for details.

Pattern

SELECTOR { display:table; visibility:VALUE;
width:+VALUE; height:+VALUE;

margin:+VALUE; border:+WIDTH STYLE COLOR;
background:VALUES;

border-collapse:VALUE; table-layout:VALUE; }

Location

This design pattern applies to table elements.

Related to

Table, Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5);
Margin, Border, Padding, Background, Overflow, Visibility (Chapter 6)

See also

Chapter 15 explains tables in much more detail.

93

CHAPTER 4 I BOX MODELS

94

Absolute Box

3 Absolute Rax - Mozilla Firefox

Fle Edit Wew Go ESookmarks Toale Hep

Absolute Box

ABSOLUTE
- BEFORE AFTER —‘

f AFTER

TOFI
— Left Right —
Bottom
: - ABSOLUTE
BEFORE

HTML

<h1>Absolute Box</h1>

<div class="container" »
<div class="default">BEFORE</div>
<div class="box befoxre"»ABSOLUTE BEFORE</div>

<div class="box">↑
 Top
 ← Left
 Right →
 Bottom
 ↓ </div>

<div class="box aftex"»>ABSOLUTE AFTER</div>
<div class="default">AFTER</div>
</div>

CSS

*_.container { position:relative; }

*.,box { position:absolute; overflow:auto; visibility:visible;
z-index:auto; left:0; right:auto; top:0; bottom:auto;
width:220px; height:100px;
maxgin:10px; padding:10px;}

* before {width:100px; height:auto; left:400px; right:auto; top:100px; bottom:auto;}
*,after {width:100px; height:auto; left:auto; right:opx; top:auto; bottom:opx; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

CHAPTER 4 = BOX MODELS

Absolute Box

Problem

You want to style the box of an absolute or fixed element.

Solution

An absolute element is removed from the normal flow and put in a layer above or below it.
It is positioned in relation to its closest positioned ancestor or fixed to the viewport. It can
be sized, shrinkwrapped, or stretched to its closest positioned ancestor. Any element can be
positioned absolutely. Unlike other boxes, the position of an absolute box does not affect
the position of other boxes. Absolute boxes may overlap freely.

z-index controls the stacking order of positioned elements. A negative value places them
below the normal flow, and a positive value places them above the flow. Larger values move
them closer to the user in the stacking order.

left, right, top, and bottom apply to absolute boxes. When set to a measurement, left
aligns the left side of an absolute element to the left side of its container and offsets it by a
positive or negative value. right, top, and bottom work analogously. When left, right, top,
and bottom are all set to auto, a browser renders the absolute box in the same position it
would have had if it were rendered in the normal flow.

width sets the width of the element. width:auto is the default value. When width is auto
and both left and right are auto, the box is shrinkwrapped. When width is auto and both
left and right are 0 or some other value, the box is stretched. When width is a value, left
is a value, and right is auto, the box is sized and offset from the left. When width is a value,
left is auto, and right is a value, the box is sized and offset from the right.

height sets the height of the element. height, top, and bottom work analogously to width,
left, and right.

margin assigned to a positive value moves a side of an absolute box toward the center of its
container, and a negative value moves it away from center.

border and padding shrink the inner box of stretched absolute boxes. border and padding
expand the outer box of sized and shrinkwrapped absolute boxes and move them toward
the center of their container.

Pattern

SELECTOR { position:ABSOLUTE_FIXED; z-index:+VALUE;
overflow:VALUE; visibility:VALUE;

left:1VALUE; right:+VALUE; top:iVALUE; bottom:+tVALUE;
width: +VALUE; height: +VALUE;

margin:+VALUE; padding:+VALUE;

border:+WIDTH STYLE COLOR; background:VALUES; }

Location

This design pattern applies to all elements.

Tip

Chapters 7 through 9 show how to position absolute boxes.

Example

Notice how all three absolute boxes are removed from the flow, which brings together the
static BEFORE and AFTER blocks.

Related to

Positioned (Chapter 7); Display, Box Model (Chapter 4); Width, Height, Sized,
Shrinkwrapped, Stretched (Chapter 5); Margin, Border, Padding, Background, Overflow,
Visibility (Chapter 6)

95

CHAPTER 4 I BOX MODELS

Floated Box

& Floatod Box - Mozilla Flrefox

Fie Edt Yew Higtoy Eookmarks Tools Heb
Floated Box
BEFORE
- AFTER
FLOAT it FLOAT
BEFORE Top AFTER
«— Left Right —
Bottom
| ~
HTML

<h1>Floated Box</h1>

<div class="containexr"»
<div class="default">BEFORE</div>
<div class="box small"»>FLOAT BEFORE</div>

<div class="box">↑
 Top
 ← Left
 Right →
 Bottom
 ↓ </div>

<div class="box small"»FLOAT AFTER</div>
<div class="default">AFTER</div>
</div>

CSS

*.box { float:left; overflow:auto; visibility:visible;
width:220px; height:100px;
margin:10px; padding:10px; }

*,small { width:75px; height:auto; }

/* Nonessential rules are not shown.
See Inline Box for border and background properties. */

96

Floated Box

CHAPTER 4 = BOX MODELS

Problem

You want to style the box of a float.

Solution

You can float any element using float:left or float:right. A float is removed from the
normal flow and placed above the borders and backgrounds of adjacent blocks. This shrinks
the float’s parent and collapses it completely when all its children are floated. Even though a
float is removed from the flow, it indents adjacent content in the flow. Left floats indent
adjacent content to the right, and right floats indent content to the left. A float is positioned
vertically at the location in which it would have been rendered in the normal flow. It is
positioned horizontally inside its parent’s padding area on the left or right. A float stacks
next to other floats in the same general vertical location. When a float cannot fit next to
another float, it moves down below it. A float’s position, size, padding, borders, and margins
affect the position of adjacent floats and adjacent inline content. The precise location of a
float cannot be predetermined.

width sets the width of the float. width:auto is the default value and shrinkwraps the float
to fit the width of its widest line.

height sets the height of the float. height:auto is the default value and shrinkwraps the
float to the height of all its child blocks or lines.

margin has unique float features. A positive margin pushes the float away from its point of

alignment and pushes other floats and inline content away from it. A negative margin pulls
the float to the other side of its point of alignment and pulls other floats and inline content
closer. Margins around floats do not collapse.

border and padding expand the outer size of a float. The left border and padding of a left
float move the float to the right, and its right border and padding move other floats and
inline content on the right further to the right. This applies vice versa for right floats. Top
border and padding move the float down. The bottom border and padding move down any
floats below the float, and extend the float’s effect on adjacent content in the normal flow.

Pattern

SELECTOR { float:LEFT_RIGHT; width:+VALUE; height:+VALUE;
z-index:+VALUE; margin:+VALUE; padding:+VALUE;
border:+WIDTH STYLE COLOR; background:VALUES;
overflow:VALUE; visibility:VALUE; }

Location

This design pattern applies to all elements.

Example

The three floats in the example are removed from the flow, which brings together the static
BEFORE and AFTER boxes and shrinks the height of the floats’ parent. The three floats stack
next to each other from left to right. The AFTER text is moved to the right by the last float.
Margins, borders, and padding expand the floats’ outer boxes and push away other floats.

Related to

Display, Box Model; Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5); Margin,
Border, Padding, Background, Overflow, Visibility (Chapter 6)

97

CHAPTER S

Box Model Extents

This is the second of three chapters on the Box Model. It shows how boxes can be sized, shrinkwrapped,
and stretched. The previous chapter discusses the six main types of boxes: inline, inline-block, block,
table, absolute, and floated. The next chapter discusses properties that style the box.

Each type of box works differently. The design patterns in this chapter show how to apply width and
height to each type of box to size, shrinkwrap, or stretch it. Horizontal and vertical dimensions are
independent. You can freely combine different vertical and horizontal design patterns. For example, you
can stretch horizontally and shrinkwrap vertically.

Chapter Outline

Width contrasts how width can size, shrinkwrap, or stretch each type of box.
Height contrasts how height can size, shrinkwrap, or stretch each type of box.

Sized shows how to set the height or width of an element. An element is sized
when you manually assign it a height and/or a width. For example, you can use
height:50% to size an element’s height to 50% of the height of its container.

Shrinkwrapped shows how to shrink the width or height of an element to the size
of its content. For example, height:auto causes the height of a static block
element to expand automatically to fit the total height of its lines, and width:auto
causes the width of an absolute element to shrink to fit to the width of its widest
line.

Stretched shows how to stretch the width or height of an element to the sides of
its container. For example, width:auto causes the width of a static block element
to expand automatically to fit the width of its container. For example, top:0,
bottom:0, and height:auto cause an absolute element to expand automatically to
fit the height of its container. A stretched element’s left side aligns to the left side
of its container, and its right side aligns to the right side of the container. Similarly,
its top and bottom sides align to the top and bottom sides of its container.

99

CHAPTER 5 ' BOX MODELS EXTENTS

Width

3 Width - Mozilla Firefox M=
Be Edc Yew Go Eockmarks Toals Hep

Width

Static Inline Shrinkwrapped

Element

Static Block Sized |
Static Block Stretched Auto

Table 5hrlnkwrapped|
Table Sized |
Table Stretched 100%

Float Shrinkwrapped
Float Sized
Float Stretched 100%

Absolute Shrinkwrapped|
Absolute Sized
Absolute Stretched Aute

CSS

.static-inline-shrinkwrapped { width:auto; }
.replaced-inline-shrinkwrapped { width:auto; }
.replaced-inline-sized { width:35px; }
.replaced-inline-stretched { width:100%; }

* ¥ ¥ *

*,static-block-sized { width:300px; }
*,static-block-stretched { width:auto; }

*.table-shrinkwrapped { width:auto; }
*.table-sized { width:300px; }
*.table-stretched { width:100%; }

*.float-shrinkwrapped { width:auto; float:left; }
*.float-sized { width:300px; float:left; clear:both; }
*,float-stretched { width:100%; float:left; clear:both; }

*,absolute-shrinkwrapped { width:auto; left:0; right:auto; position:absolute; }

* . absolute-sized { width:300px; left:0; right:auto; position:absolute; }
* . absolute-stretched { width:auto; left:0; right:0; position:absolute; }

100

Width

CHAPTER 5 " BOX MODELS EXTENTS

Problem

You want to set the width of an element to size it, shrinkwrap it, or stretch it.

Solution

width:auto

width:+VALUE

width:100%

CSS provides the width property for this purpose.

This design pattern is an introduction to the Sized, Shrinkwrapped, and Stretched design
patterns. The purpose of this design pattern is to compare how width applies to all six main
types of boxes: inline, inline-block, block, table, absolute, and floated. This comparison
makes it easy to choose the proper combination of width, element, and display box to create
the layout you want.

width works on all types of elements except for inline elements. width works differently
depending on the type of element and whether it is positioned or floated. width is
completely independent from height. width:auto is the default.

width:auto horizontally shrinkwraps the following boxes: inline, inline-block, floated, table,
and absolute (when both left and right are auto).

width:auto horizontally stretches block boxes and absolute boxes (when left and right are
both set to a value, such as 0).

You can size an element by assigning pixels, ems, a percentage, or another fixed
measurement to width. Fixed-width elements may not be user-friendly when the viewport is
much larger or much smaller than expected. Percentages are more flexible because they can
scale to the viewport.

width:100% stretches an element to the width of its parent, but unlike auto, width:100% has
limitations. A browser does not automatically adjust the width to keep the element
stretched. An element’s horizontal margins, borders, or padding can expand its width
beyond the width of the parent.

Pattern

SELECTOR { width:+VALUE; }

Location

width applies to all elements except for inline elements.

Tips

A browser ignores width on a static inline element because font and font-size determine
the width of its text, which sets the element’s width.

Tables stretched using width:100% work almost as well as horizontally stretched absolute
elements. When you assign borders or padding to a table, the outer box of a table does not
expand, and the table does not overflow its parent. This is because borders and padding are
rendered on the inside of the table and do not expand its outer box. On the other hand, a
margin assigned to a table will reposition the table, and it will overflow its parent.

Example

The example illustrates all ways of usingwidth to create horizontally shrinkwrapped,
stretched, and sized elements. I omitted nonessential CSS rules and the HTML code to fit the
example on one page. The text in the element is the name of its class. The replaced element
is an image of a star.

Related to

Sized, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7); Table (Chapter 15)

101

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5 ' BOX MODELS EXTENTS

102

Height

) Height - Mazilla Firefox E|E|E|

Bie Edit Wew Higlory Hookmarks Iook Help
Height
A A
I {LIII .ﬁil |--
P ""l.ll
Block Block Block
Shrinkwrapped Sized Stretched
100%0
Table Tabla Table
Shrinkwrapped Sized Stretched
100%
Float Float Sized Float
Shrinkwrapped Stretchad
100%
Absolute Absclute Absolute
Shrinkwrapped Sized Stretched
Auto

CSS

* . replaced-inline-shrinkwrapped { height:auto; }
* ,replaced-inline-sized { height:65px; }
*.replaced-inline-stretched { height:100%; }

*,block-shrinkwrapped { height:auto; }
* block-sized { height:65px; }
*.block-stretched { height:100%; }

*.table-shrinkwrapped { height:auto; }
*,table-sized { height:65px; }
* table-stretched { height:100%; }

* . float-shrinkwrapped { height:auto; float:left; }
*,float-sized { height:65px; float:left; }
* float-stretched { height:100%; float:left; }

*_ absolute-shrinkwrapped { height:auto; top:0; bottom:auto; position:absolute; }
*_ absolute-sized { height:65px; top:0; bottom:auto; position:absolute; }
*,absolute-stretched { height:auto; top:0; bottom:0; position:absolute; }

Height

CHAPTER 5 " BOX MODELS EXTENTS

Problem

You want to set the height of an element to size it, shrinkwrap it, or stretch it.

Solution

height:auto

height:+VALUE

height:100%

CSS provides the height property for this purpose. This design pattern is an introduction to
the Sized, Shrinkwrapped, and Stretched design patterns. The purpose of this design pattern is
to compare how height applies to all six main types of boxes: inline, inline-block, block, table,
absolute, and floated. This comparison makes it easy to choose the proper combination of
height, element, and display box to create the layout you want.

height works on all types of elements except for inline elements. height works differently
depending on the type of element and whether it is positioned or floated. height is completely
independent from width. height:auto is the default.

height:auto vertically shrinkwraps the following boxes: inline, inline-block, block, floated,
table, and absolute (when both top and bottom are auto). height:auto also vertically stretches
an absolute box when top and bottom are both set to a value, such as 0. This is the best way to
vertically stretch a box because height:100% has limitations, but it is available only for
absolute boxes.

You can size an element by assigning pixels, ems, a percentage, or another fixed measurement
to height. Fixed heights may not be user-friendly when the viewport is much larger or much
smaller than expected. Percentages are more flexible because they can scale to the viewport.

height:100% stretches an element to the height of its parent, but unlike auto, height:100% has
limitations. A browser does not automatically adjust the height to keep the element stretched.

An element’s vertical margins, borders, or padding can expand its height beyond the height of
the parent.

Pattern

SELECTOR { height:+VALUE; }

Location

height applies to all elements except for inline elements.

Tips

A browser ignores height on a static inline element because font and font-size determine
the height of its text, which sets the element’s height.

Tables stretched using height:100% work almost as well as vertically stretched absolute
elements. When you assign borders or padding to a table, the outer box of a table does not
expand, and the table does not overflow its parent. This is because borders and padding are
rendered on the inside of the table and do not expand its outer box. On the other hand, a
margin assigned to a table will reposition the stretched table and overflow its parent.

Example

The example illustrates all ways of using height to create vertically shrinkwrapped, stretched,
and sized elements. I omitted nonessential CSS rules and the HTML code to fit the example on
one page. The text in the element is the name of its class. The replaced element is an image of
astar.

Related to

Sized, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7); Table (Chapter 15)

103

CHAPTER 5 ' BOX MODELS EXTENTS

104

Sized

) Sized - Mozilla Firefox

Fie Edt Yew Go Cookmarks Tools telp

Sized

Positioned Grandparent
Non-positioned Parent
Sized Static Sized Absolute Sized Float
e
Sized Tahle
HTML
<h1»>Sized</h1>

<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="float" class="z">Sized Float</div>
<div id="static" class="z">Sized Static</div>
<table id="table" class="z"><tr><td>Sized Table</td></tr></table>
Sized Absolute

</div>
</div>

CSS
*.z { padding:5px; border:5px solid black; }

#float { width:150px; height:50px; }
#static { width:150px; height:50px; }
#table { width:150px; height:50px; }
#abs { width:150px; height:50px; }
#star { width:26px; height:26px; }

/* Nonessential rules are not shown. */

Sized

CHAPTER 5 " BOX MODELS EXTENTS

Problem

You want to set the height and/or width of an element to a measurement or a percentage of
its containing block’s height and width.

Solution

Apply styles to your chosen class or ID as follows:

Use height to set the height of an element to a measurement or a percentage of the
height of its container.

Use width to set the width of an element to a measurement or a percentage of the width
of its container.

You can assign width and height independently. In other words, you can size the height
only, the width only, or both height and width.

If you do not want to size the height or width, you can set width or height to auto. auto
is the default value for width and height.

Pattern

SELECTOR { width:+VALUE; height:+VALUE; }

Location

This pattern applies to all elements except for static inline elements.

Explanation

Sized elements require width and height to be set to a measurement or percentage. A
percentage of 100% is used to stretch an element, but any other percentage sizes the
element smaller or larger than its container.

height and width specify the inner box of an element. Padding surrounds the inner box.
Borders surround the padding. Margins surround the borders. The box surrounding the
margins is the outer box. Padding, borders, and margin expand the outer box and have no
effect on the height and width of the inner box. Negative margins may cause adjacent
elements to overlap an element, but they do not change its height and width.

Tables are an exception where height and width specify the outside of the table’s border.
This causes borders and padding to be placed inside the specified height and width. This is
why the table in the example is smaller than the other elements.

When a float is sized, it changes the flow. width changes the left and right boundaries in
which the float’s content is flowed, affecting the location of adjacent content and floats.
height pushes down or pulls up adjacent floats.

When a static block element is sized, it changes the flow. height pushes down or pulls
up the following block element. height also shrinks or grows the height of its parent
(unless the parent is also sized). width changes the left and right boundaries in which
content is flowed.

When an absolute element is sized, it does not change the flow and it does not change
the position of other elements. Percentages in width and height refer to its closest
positioned ancestor’s width and height.

When sizing a replaced element, such as an image, the browser scales it to the specified
size. To use the intrinsic size, set height and width to auto.

Related to

Width, Height, Shrinkwrapped, Stretched; Static, Absolute, Float (Chapter 7)

105

CHAPTER 5 ' BOX MODELS EXTENTS

Shrinkwrapped

|anno Mozilla Firefox

Shrinkwrapped

Positioned Grandparent

Non-positioned Parent | Shrinkwrapped Static Inline
A

Shrinkwrapped Float “,"x",,{'

Shrinkwrapped Absolute

Vertically Shrinkwrapped Static Block

Shrinkwrapped Table

HTML

<h1>Shrinkwrapped</h1>

<div class="gp">Positioned Grandparent

<div class="parent">Non-positioned Parent
Shrinkwrapped Float
Shrinkwrapped Static Inline

<div id="block" class="z"»>Vertically Shrinkwrapped Static Block</div>
<table id="table" class="z"><tr><td>Shrinkwrapped Table</td></tr></table>
Shrinkwrapped Absolute

</div>

</div>

CSS

#float { width:auto; height:auto; float:left; }

#inline { width:auto; height:auto; }

#star { width:auto; height:auto; }

#block { width:auto; height:auto; }

#table { width:auto; height:auto; }

#abs { width:auto; height:auto; left:auto; bottom:auto; position:absolute; }

/* Nonessential rules are not shown. */

106

CHAPTER 5 " BOX MODELS EXTENTS

Shrinkwrapped

Problem You want to shrinkwrap the width and/or height of an element to fit the width or height of its
content.

Solution Apply styles to your chosen class or ID as follows:

Use height:auto to shrink the height to the height of all its lines.
Use width:auto to shrink the width to the width of its widest line.
width and height are independent. For example, you can shrinkwrap one and size theother.

Patterns Shrinkwrapped Float
SELECTOR { width:auto; height:auto; float:LEFT_RIGHT; }

Shrinkwrapped Static Inline Element
INLINE-SELECTOR { width:auto; height:auto; }

Shrinkwrapped Static Inline-block Element
INLINE-BLOCK-SELECTOR { width:auto; height:auto; }

Vertically Shrinkwrapped Static Block Element
BLOCK-SELECTOR { height:auto; }

Shrinkwrapped Table Element
TABLE-SELECTOR { width:auto; height:auto; }

Horizontally Shrinkwrapped Absolute Element

SELECTOR { position:absolute; width:auto;
left:0; right:auto; }

or

SELECTOR { position:absolute; width:auto;
left:auto; right:o; }

Vertically Shrinkwrapped Absolute Element

SELECTOR { position:absolute; height:auto;
top:0; bottom:auto; }

or

SELECTOR { position:absolute; height:auto;
top:auto; bottom:0; }

This pattern applies to all elements.

Location

Limitations You cannot horizontally shrinkwrap a static block.

Explanation Shrinkwrapped elements require width and height to be set to auto so that the browser can
automatically size the box based on the width and height of its content. Absolute elements also
require left or right, and top or bottom to be set to auto to prevent them from being stretched.

Tip Because a shrinkwrapped table is sized based on its content, its behavior is the same as any other

shrinkwrapped element. Contrast this to a sized table where the height and width are assigned to
the outside of the table’s border, causing it to be sized differently from other elements.

Another way to constrain the size of a block is using the max-height or max-width CSS properties.

107

CHAPTER 5 ' BOX MODELS EXTENTS

Shrinkwrapped cont.

Tip cont. These properties allow authors to constrain content widths and heights to a certain range, which
can either be a specific number of pixels, or a percentage of the corresponding dimension of the
containing block. Browser support for max-height and max-width varies—for example, they are
not supported in IE6 but are in IE7 and above.

Relatedto Width, Height, Sized, Stretched; Static, Absolute, Float (Chapter 7)

Stretched

3 Stretched - Mozilla Firefox

Fl= Edit Wew Go Dockraks Took Help

Stretched

Positioned Grandparent vertically

Mon-positioned Parent iCElnnl:lt stretch a static inIineI Stretched
Absolute

Horizontally Stretched Static Block

Haoriz. Stretched Table

Horizentally Stretched Absolute

Almest Stretched Float I

HTML

<h1>Stretched</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
Cannot stretch a static inline
<div id="sized"></div>
<div id="block" class="s">Horizontally Stretched Static Block</div>
<table id="table" class="s"><tr><td>Horiz. Stretched Table</td></tr></table>
<div id="abs-v" class="s">Vertically Stretched Absolute</div>
Horizontally Stretched Absolute
Almost Stretched Float
</div>
</div>

CSS

#star { width:100%; height:100%; }

#block { width:auto; }

#table { width:100%; }

#abs-v { height:auto; top:0; bottom:0; position:absolute; }
#abs-h { width:auto; left:0; right:0; position:absolute; }
#float { width:100%; float:left; }

/¥ Nonessential rules are not shown. */

108

Stretched

CHAPTER 5 " BOX MODELS EXTENTS

Problem

You want to stretch the width or height of an element to fill the width or height of its
container. In other words, you want to stretch the outer box of an element to the
sides of its container.

Solution

You can stretch a box by applying width:auto, width:100%, height:auto, or
height:100% to different types of boxes.

When using width:auto or height:auto, a browser calculates the width and height
of stretched elements from the outside in. A browser starts with the inner box of the
parent, and subtracts the stretched element’s margins, borders, and padding to
calculate its inner box. Contrast this with sized and shrinkwrapped elements, which
are sized from the inside out.

Use width:auto to stretch the width of a block to the sides of its parent.

Use width:auto, left:0, and right:0 to stretch an absolute element to the left and
right sides of its closest positioned ancestor.

Use height:auto, top:0, and bottom:0 to stretch an absolute element to the top
and bottom of its closest positioned ancestor.

Use width:100% to stretch a table, a float, or an inline block. This works as long as
the box does not have horizontal margins. Otherwise, it overflows its parent, and the
stretch effect is lost. Stretched floats and inline blocks also overflow their parent
when they have horizontal borders or padding.

Use height:100% to stretch the height of inline blocks, blocks, tables, and floats to
the height of their containers. If the stretched element is not the first and only child
in its container, this technique will overflow the container.

Patterns

Stretched Inline-block Element

INLINE-BLOCK-SELECTOR { width:100%; height:100%; }

Stretched Static Block Element

BLOCK-SELECTOR { width:auto; height:100%; }

Stretched Table

TABLE-SELECTOR { width:100%; height:100%; }

Vertically Stretched Absolute Element

SELECTOR { height:auto; top:0; bottom:0; position:absolute; }
Horizontally Stretched Absolute Element

SELECTOR { width:auto; left:0; right:0; position:absolute; }
Stretched Float

SELECTOR { width:100%; height:100%; float:LEFT_RIGHT; }

109

CHAPTER 5 ' BOX MODELS EXTENTS

Stretched cont.

Location This pattern works on all elements except for inline elements.

Limitations Internet Explorer 6 cannot stretch absolute elements, but version 7 can. An
absolutely positioned fableis stretched usingwidth:100% and height:100%.

Example The star image is the only child inside a 50-pixel centered division, and is stretched
to all four sides of its parent. Notice how the float is not stretched perfectly because
its padding and border cause it to overflow its parent.

Tip Another way to stretch the width or height of an element is using the min-height or
min-width CSS properties. These properties allow authors to constrain content
widths and heights to a certain range, which can either be a specific number of
pixels, or a percentage of the corresponding dimension of the containing block.
Browser support for min-height and min-width varies—for example, they are not
supported in IE6 and buggy in IE7, but fixed in IE8 and above.

Related to Width, Height, Sized, Shrinkwrapped; Static, Absolute, Float (Chapter 7)

110

CHAPTER 6

Box Model Properties

This chapter shows how box model properties style the various types of boxes. These are basic design

patterns.

The Margin, Border, and Padding design patterns contain examples contrasting how each property
works in each type of box. Their main purpose is to contrast in one place how the same property means
different things in different contexts. When using this book as a reference, you may also want to refer to
the Margin, Border, and Padding design patterns to determine which type of element, box, and property
will do what you want.

Chapter Outline

Margin contrasts how margins work differently for different types of boxes. It
shows how margins change the position of an element in relation to its container
and siblings.

Border contrasts how borders work differently for different types of boxes. It
shows how borders change the position of an element in ways similar to margins,
and in some ways different from margins.

Padding contrasts how padding works differently for different types of boxes. It
shows how padding works almost identically to borders and margins.

Background shows how to assign a color to the background of an element. It also
shows how to use a tiled image for the background. You can tile the image across
and down, across only, or down only, or show the image only once. You can
position the image at a specific location in the background. You can also direct
whether the image scrolls with the content or remains in a fixed location.

Overflow shows how to hide overflowing content, display it, or display scrollbars.

Visibility shows how to hide an element while leaving a placeholder for it in the
flow.

Page Break shows how to insert a page break into your document before an
element or after an element. It also shows how to print blank pages.

111

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 ' BOX MODELS PROPERTIES

112

Margin

3 Margin - Mozilla Firefox

Fie Edt Yew Go [Cookmarks Tools Help

Margin

Before After

Static Inline Shrinkwrapped

[static Inline Shrinkwrapped

- L 2l
Wi
Static Block Sized |
Static Block Stretched Auto

Table Shrinkwrapped|
Table Sized |
Table Stretched 100%

Float Shrinkwrapped
Float Sized |
Float Stretched 100%

bsolute Shrinkwrapped|
Absolute Sized |
bsolute Stretched Auto

Elemenﬂ Elemengl

5 =5

[static Block Sized |
[Static Block Stretched Auto |

|Table Shrinkwrapped|

[Table Sized |

|Table Stretched 100%

[Float Shrinkwrapped|
Float Sized |

Float Stretched 100%

[Absolute Shrinkwrapped
[absolute Sized |
|Absolute Stretched Auto |

CSS

* before { margin:o; }

*,after { margin-top:10px; margin-bottom:0;
margin-left:30px; margin-right:10px; }

/* Nonessential rules are not shown.

HTML code is omitted to allow the example to fit on one page. */

Margin

CHAPTER 6 " BOX MODELS PROPERTIES

Problem

You want to put a margin on one or more of the sides of an element. You want the margin to
be transparent to the background of the element’s parent.

Solution

margin:+VALUE

margin:auto

You can use a selector to assign the margin property to an element. You can independently
setmargin-left, margin-right, margin-top, and margin-bottom. Margin can be positive or
negative. Negative values may overlap elements. margin works differently depending on the
type of element.

You can assign a measurement or percentage to margin. A percentage refers to a percentage
of the containing block’s width. margin:0 is the default CSS value, but browsers assign
different default margins to specific elements.

On an inline element, margin-top and margin-bottom are ignored.

On an inline or inline-block element, a positive value in margin-left moves the element
away from the previous element, and a negative value moves it closer. A positive value in
margin-right moves the next element further away, and a negative value moves it closer.

On an inline-block element, such as an image, a positive value in margin-top expands the
height of the line, and a negative value shrinks it. A positive value in margin-bottom raises
the element, and a negative value lowers it.

On a sized block element, a positive or negative value inmargin-left and margin-right
offsets it from its point of alignment. A positive value in margin-top and margin-bottom
pushes neighboring blocks further apart, and a negative value brings them closer together.
A browser collapses top and bottom margins of neighboring block elements.

On a stretched block or stretched absolute element, a positive margin indents the sides
of the element, and a negative value outdents them. Indents shrink an element’s inner box,
pushing borders and padding inward.

On a table or a sized or shrinkwrapped absolute element, a positive or negative margin
value offsets it from its point of alignment. Margins on a stretched table don’t indent the
table but cause it to overflow its container.

On a float, a positive margin pushes the float away from its point of alignment and pushes
other floats and inline content away from it. A negative margin pulls the float to the other
side of its point of alignment and pulls other floats and inline content closer. Margins on a
stretched float don’t indent the float but cause it to overflow its container.

On most elements, margin:auto is the same as margin:0 (that is, no margin).

On a static block element and a stretched absolute element, auto automatically expands
the margin. For example, margin-left:auto and margin-right:0 align a sized element to
the right.

Pattern

SELECTOR { margin:#VALUE; }

Location

margin works on most elements. It doesn’t work on internal table elements, such as table
cells. Vertical margins don’t work on inline elements.

Related to

Border, Padding; all patterns in Chapters 4, 7, 8, and 9; Spacing, Inline Spacer, Linebreak,
Inline Horizontal Rule (Chapter 11); Text Indent, Hanging Indent (Chapter 12); Lists,
Background Bulleted, Collapsed Margins, Horizontal Rule, Block Spacer, Block Spacer
Remover, Left Marginal, Right Marginal (Chapter 13); Outside-in Box, Float Divider
(Chapter 17)

113

CHAPTER 6 " BOX MODELS PROPERTIES

Border

3 Border - Mozilla Firefox
Eie [Cdit Yew Go Cookmarks Tools Help

Border

Before

Static Inline Shrinkwrapped
Elemeng]

1 [t Jh__
| O] == s

Y

Static Block Sized |

Static Block Stretched Auto Static Block Sized

Static Block Stretched Auto

Table Shr'lnlr:wrapped|

IBble Sized |
Table Stretched 100% "

Float Shrinkwrapped|

Float Sized | Table Stretched 100%
Float Stretched 100%

Float Shrinkwrapped
Float Sized

Float Stretched 100%

bsolute Shrinkwrapped|
bsolute Sized |
bsolute Stretched Auto

Absclute Stretched Auto

CSS

* . before { border:1px solid black; }

*,after { border-top:10px solid dimgray; border-bottom:1px solid black;
border-left:30px solid black; border-right:5px solid black; }

/* Nonessential rules are not shown.
HTML code is omitted to allow the example to fit on one page. */

114

CHAPTER 6 " BOX MODELS PROPERTIES

Border
Problem You want to put a border on one or more of the sides of an element.
Solution You can use a selector to assign the border property to an element. You can independently

set border-left, border-right, border-top, and border-bottom. border affects an element
differently depending on the type of element and its alignment. You can set the style and
color of the border. border :none is the default.

Borders work almost identically to margins. Borders work like margins in the way they
change the position of an element and the position of its neighbors.

The descriptions in the Margin design pattern apply to borders except as follows:

Borders are visible instead of transparent, but you can set the color of a border to
transparent if you want. (Note that Internet Explorer 6 doesn’t support transparent as a
color, but all current browsers do.)

Borders can’t be negative because they’re inside the margin.
Borders between static block elements don’t collapse like margins.

Left and right borders around inline text elements are only visible at the start of the element
and at the end of the element. Right and left borders aren’t drawn where a browser wraps an
inline element across lines.

Top and bottom borders on inline elements overlap neighboring lines unless you increase
the line height to make room for them. In other words, vertical inline borders don’t
automatically increase the height of the line. Notice in the example how the border above
the text Static Inline Shrinkwrapped overlaps the top of its container, and how the word
Element overlaps the previous line.

Because a table’s width and height refer to the outside of its borders (rather than to the
inside of its padding), borders are drawn inside the box specified by width and height. This
means borders don’t add to the size of shrinkwrapped or sized tables. This also means
borders on a stretched table don’t cause it to overflow its container; instead, they indent the
table like a stretched block or a stretched absolute element. Notice in the example how the
width of the sized table’s outer box doesn’t change when borders are enlarged; instead, the
inner box shrinks. Also notice how borders indent the stretched table instead of causing it to
overflow its container as it did in the Margin design pattern and as the stretched float does
in this example.

115

CHAPTER 6 ' BOX MODELS PROPERTIES

116

Border cont.

Solution cont.

The border can have either a predefined style (solid line, double line, dotted line, pseudo-3D
border, and so on) or an image for background. The border-style property can have a value
of none, hidden, dotted, dashed, solid, double, groove, ridge, inset, or outset.

With CSS3, borders can now have rounded corners with the use of the border-radius
property: for example, border-top-left-radius: 2em 0.5em. The two length or percentage
values of these properties define the radii of a quarter ellipse that defines the shape of the
corner of the outer border edge. The first value is the horizontal radius, and the second is the
vertical radius. If the second value is omitted, it’s copied from the first. Browser support for
these properties varies, and some vendors may support their own prefixes like -moz-border-
radius or -webkit-border-radius.

border-top-left-radius: 55pt 25pt

The box-shadow property attaches one or more drop-shadows to a box. The property is a
comma-separated list of shadows, each specified by two to four length values, an optional
color, and an optional inset keyword: for example, box-shadow: rgba(0,0,0,0.4) 10px
10px inset. The Safari browser requires -webkit for box-shadow: for example, -webkit-box-
shadow: rgba(0,0,0,0.4) 10px 10px inset.

The CSS3 spec defines a way to add images to borders and specify their style with properties
like border-image-source, border-image-slice, border-image-width, border-image-
outset, and border-image-repeat, but these aren’t yet widely supported by major
browsers.

CHAPTER 6 " BOX MODELS PROPERTIES

Border cont.
Pattern SELECTOR { border: WIDTH STYLE COLOR;
border: none;
border-left: WIDTH STYLE COLOR;
border-right: WIDTH STYLE COLOR;
border-top: WIDTH STYLE COLOR;
border-bottom: WIDTH STYLE COLOR; }
Location This design pattern applies to all elements.
Related to Margin, Padding; all Box Model patterns in Chapter 4; Absolute (Chapter 7); Text Decoration

(Chapter 10); Inline Decoration, Inline Horizontal Rule (Chapter 11); Horizontal Rule
(Chapter 13); Table, Separated Borders, Collapsed Borders, Styled Collapsed Borders,
Hidden and Removed Cells (Chapter 15); Outside-in Box, Float Divider, Tab Menu (Chapter
17)

117

CHAPTER 6 ' BOX MODELS PROPERTIES

118

Padding

3 padding - Mozilla Firefox

Fie Edt Yew Go [Cookmarks Tools Help

Padding

Before

Static Inline Shrinkwrapped

Elemen;]

Static Block Sized |

Static Block Stretched Auto

Table Shrinkwrapped|
Table Sized |

Table Stretched 100%

Float Shrinkwrappaed
Float Sized |

Float Stretched 100%

bsolute Shrinkwrapped|
Absolute Sized |

After

l—=t=tio Inling Shrinkwrapped []
Element
<,

l\
A — e
b)5 =5

i F —

Static Block Sized
Static Block Stretched Auto

Table Shrinkwrapped
Table Sized
Table Stretched 100%

Float Shrinkwrapped |
Float Sized

Float Stretched 100%

Abh=nlute Sized

bsolute Stretched Auto

Absolute Stretched Auto

CSS
* before { padding:0; }

* after { padding-top:10px; padding-bottom:0;
padding-left:30px; padding-right:1o0px; }

/* Nonessential rules are not shown.

HTML code is omitted to allow the example to fit on one page. */

CHAPTER 6 " BOX MODELS PROPERTIES

Padding

Problem You want to use padding on one or more of the sides of an element.

Solution Use a selector to assign the padding property to an element. You can independently set
padding-left, padding-right, padding-top, and padding-bottom. padding affects the
position of an element differently depending on the type of element and its alignment.
The element’s background is displayed in the padding area. padding:0 is the default.

Padding works almost identically to borders:

Padding works like margins and borders in the way it changes the position of an
element and the position of its neighbors.

Like borders, top and bottom padding on inline elements overlap neighboring lines
unless you increase the line height to make room for them.

Like borders, padding doesn’t add to the size of shrinkwrapped or sized tables, and
applying padding to the cells of a stretched table doesn’t cause the table to overflow its
container.

The remaining descriptions in the Border and Margin design patterns apply to Padding
except as follows:

Borders are transparent to the element’s background. Contrast this with margins,
which are transparent to the parent’s background, and borders, which are styled.

Padding can’t be negative because it’s inside the border.

Padding doesn’t apply to tables, but it does apply to table cells. The example applies
padding to the cells in the table rather than to the table.

Padding defaults to 0, which is no padding.

Pattern -SELECTOR { padding: +WIDTH;
padding: 0;
padding: +VERTICAL +HORIZONTAL;
padding: +TOP +RIGHT +BOTTOM +LEFT;
padding-left: +WIDTH;
padding-right: +WIDTH;
padding-top: +WIDTH;
padding-bottom: +WIDTH; }

Location This design pattern applies to all elements.

Tips Margins and borders share the same shortcut notation. You can set all four margins and
borders using one width; you can set the vertical and horizontal using two widths; or
you can set the four individual sides using four widths. The four sides start with the top
and move clockwise around the box to the right, bottom, and left.

Related to Margin, Border; all Box Model patterns in Chapter 4; Highlight, Text Decoration
(Chapter 10); Spacing, Padded Content, Inline Decoration (Chapter 11); Hanging
Indent (Chapter 12); Lists, Background Bulleted (Chapter 13); Basic Shadowed Image
(Chapter 14); Outside-in Box (Chapter 17)

119

CHAPTER 6 ' BOX MODELS PROPERTIES

120

Background

3 Background - Mozilla Firefox

Fle Edt View Go Eookmarks Took Hep

Background

I
x |
1. 0.0.0.8.0.1

L6660 0.6

Mo background
Background colar

Background image not tiled
L. Background image tiled
XK

Background image repeat-x
Background image repeat-y —
Background image center bottom

3 2 2 6 2 2 - 4 2 4

Background image right bottom

HTML

<h1>Background</h1>

<p> No background</p>

<p><span class="bg-color"» Background color</p>

<p> Background image not tiled</p>
<p> Background image tiled</p>
<p> Background image repeat-x</p>

<p><span class="bg-ry"»8 Background image repeat-y →</p>
<p><span class="bg-pos-1t"»8 Background image center bottom</p>
<p> Background image right bottom</p>

CSS

P
s

¥ K K K X X ¥ %

{ margin-left:240px; margin-top:0px; margin-bottom:10px; }
pan { margin-left:-230px; margin-right:30px; padding-left:195px; font-size:19px;
background-position:left bottom; background-repeat:no-repeat;
background-color:black; background-image:url("star.gif"); }

.no-bg { background-image:none; background-color:transparent; }
.bg-color { background-image:none; background-color:black; }
.bg-image { background-repeat:no-repeat; }

.bg-repeat { background-repeat:repeat; }

.bg-rx { background-repeat:repeat-x; }

.bg-pos-1t { background-position:center bottom; }

.bg-pos-rb { background-position:right bottom; }

.bg-ry { background-repeat:repeat-y; background-position:center top;
padding-left:22px; float:right; height:263px; margin:opx;
position:relative; top:-170px; }

CHAPTER 6 " BOX MODELS PROPERTIES

Background

Problem You want to put a background color or image behind an element.

Solution Apply styles as follows:

Use background-color to set the background color of an element.

Use background-color :transparent for a transparent background color.

Use background-image :none to show no background image.

Use background-image:url("file.jpg") to display an image behind the contents of an element. The
image fills the padding area of the element.

Use background-repeat:repeat to tile a background image across and down to fill the entire padding
area. This is the default value.

Use background-repeat:repeat-x to tile the image across one row.

Use background-repeat:repeat-y to tile the image down one column.

Use background-repeat:no-repeat to not tile the image.

Use background-position to set the horizontal and vertical starting location of the image. This applies
whether or not the image is tiled.

Use background-attachment:scroll to scroll a background image when the user scrolls the content.
This is the default value.

Use background-attachment:fixed to prevent the image from scrolling.

The background property is a composite of all these properties. The property values can be presented in
any order. Each property value is separated by a space. background:none transparent repeat left
top scroll; is the default.

Pattern SELECTOR { background-color: COLOR;

background-image: url("file.jpg");
background-repeat: CONSTANT;
background-position: HORIZONTAL VERTICAL;
background-attachment: SCROLL_FIXED; }

Location This design pattern applies to all elements.

Tips background-position requires two values: the first for the horizontal position and the second for
vertical. Percentages position an image at a percentage of an element’s width and height. Pixels position it
at an offset. Ems position it proportional to the element’s font-size. Whenever you assign a
background-image to an element, you should also assign a background-color and a contrasting color.
This provides a fallback in case the image doesn’t load, and it ensures that text doesn’t become invisible or
hard to see, such as white text on a white background.

You can scale a background image with the use of the background-size property: for example,
background-size:80px 60px. The first value gives the width of the corresponding image, and the second
value gives its height. If only one value is given, the second is assumed to be auto. The background-size
property is supported in Internet Explorer 9+, Firefox, Opera, Chrome, and Safari.

Example All the spans in the example are assigned to display a transparent GIF of a star on a black background,
starting at lower left in each span. Specific spans override these settings to demonstrate various
background settings.

Related to Box Model (Chapter 4); Stacking Context, Atomic (Chapter 7); Font, Highlight, Text Decoration, Text

Replacement, Invisible Text (Chapter 10); Inline Decoration, Inline Horizontal Rule (Chapter 11);
Background Bulleted, Horizontal Rule (Chapter 13); Fade-out, Semi-transparent, Replaced Text, Content-
over Background Image, CSS Sprite, Shadowed Image, Rounded Corners (Chapter 14); Striped Tables,
Table Selectors (Chapter 15); Undersized Columns (Chapter 16); Padded Graphic Dropcap, Floating
Graphic Dropcap, Marginal Graphic Dropcap (Chapter 18); Block Quote, Inline Block Quote (Chapter 19);
Graphical Alert (Chapter 20)

121

Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 " BOX MODELS PROPERTIES

Overflow

) Overflow - Mozilla Firefos

Fle Edit View Gc Bookrarks Tesk Hep

OVERFLOW OVERFL

The text in this span does not wrap! The text in this span doe
selectme salactme
selectme

—VEFEIEEI-J—EHEFH-EIW.—‘ Ndeebie ol Mo flen

overflow:scroll overflow:auto

OVERFL"

The text in this span d:

is span does not wrapl

selaci ma

Vertical Overflow. L
4 >

overflow:visible overflow:hidden

HTML

<div id="ex1">
<h1s<code>overflow:visible</code></h1>
<p class="ex1" >
OVERFLOW

The text in this span does not wrap!
<select size="2"»
<option>select me</option>
<option selected="selected">select me</option>
</select>

Vertical Overflow.
</p>
</div>

CSS

*,ex1 { overflow:visible; }
*,ex2 { overflow:hidden; }
*,ex3 { overflow:scroll; }
*.exq4 { overflow:auto; }

/* Nonessential rules are not shown. */

122

Overflow

CHAPTER 6 " BOX MODELS PROPERTIES

Problem

You want to control how a block handles the situation when its content overflows its
bounds horizontally and vertically.

Solution

CSS provides the overflow property to control how overflowing content is handled.
You can set overflow to one of four constant values: visible, hidden, scroll, or
auto. The default value is visible. visible allows overflowing content to be
rendered outside the containing block. hidden hides the overflowing content and
does not provide scrollbars. This prevents a user from scrolling overflowed content
into view. scroll clips the overflowing content and provides scrollbars so the user
can scroll the overflowed content into view. auto works like scroll except that it
shows scrollbars only as needed.

Pattern

SIZED BLOCK SELECTOR { overflow:visible; }
or

SIZED BLOCK SELECTOR { overflow:hidden; }
or

SIZED BLOCK SELECTOR { overflow:scroll; }
or

SIZED BLOCK SELECTOR { overflow:auto; }

Location

This design pattern applies to sized block elements that have width and/or height
set to a measurement or percentage.

Exceptions

Internet Explorer 6 implements overflow:visible incorrectly. Instead of allowing
content to overflow the block, it expands the width and/or height of the block to
accommodate the content. Internet Explorer 7 fixes this flaw.

Tips

It’s usually best to avoid using overflow:hidden, overflow:scroll, or
overflow:auto because users get frustrated when you truncate content or require
them to scroll.

This property is needed only when you size a block smaller than its content. If you
use shrinkwrapped and stretched blocks, you don’t need to use this property, and
your layouts will dynamically expand as needed to display their content.

CSS 3 defines two properties, overflow-x and overflow-y, that can be used in place
of overflow. They separately direct how horizontal and vertical overflow should be
handled. All major browsers support them. For example, you can always display one
scrollbar and let the other scrollbar appear as needed using overflow-x:scroll and
overflow-y:auto. You can also hide overflow in one dimension and scroll overflow
in the other using overflow-x:hidden and overflow-y:scroll.

Example

To fit the example on one page, some code is omitted. The example shows enough
HTML to create one of the overflow divisions, and it contains the four CSS overflow
rules.

Related to

Box Model, Inline Box, Table Box (Chapter 4); Width, Height, Stretched (Chapter 5);
Atomic (Chapter 6); Screenreader Only (Chapter 10); Nowrap (Chapter 11); Replaced
Text (Chapter 14); Sized Columns, Undersized Columns (Chapter 16); Tabs (Chapter
17)

123

CHAPTER 6 ' BOX MODELS PROPERTIES

Visibility

Fie Edt ¥Yew Go Eootmarks Toos telp
Visibility

There ig hidden content hare: You can't see it,
because it is styled with visibility:hidden, but you can see where it
would have been rendered,

There Is visible cantent hera! | CAN YOU SEE ME NOW? | You can see It,
because it is styled with visibility:visible,

HTML

<h1>Visibility</h1>

<p>There is hidden content here: CAN YOU SEE ME NOW?
You can't see it, because it’s styled with <code>visibility:hidden</code>,
but you can see where it would have been rendered. </p>

<p>There is visible content here: CAN YOU SEE ME NOW? You can see
it, because it’s styled with <code>visibility:visible</code>. </p>

CSS
span { padding:4px; background-color:white;
border-left:1px solid gray; border-right:2px solid black;

border-top:1px solid gray; border-bottom:2px solid black; }
p { background-color:gold; padding:10px; line-height:1.5em; }

* hidden { visibility:hidden; }
*,visible { visibility:visible; }

span:hover { visibility:hidden; }

124

Visibility

CHAPTER 6 " BOX MODELS PROPERTIES

Problem

You want to hide an element and leave a blank spot where the element would have
been rendered.

Solution

CSS provides the visibility property for hiding an element without affecting the
position of other elements in the inline flow, block flow, or float flow. Contrast this
with display:none, which doesn’t render an element by completely removing it from
all flows—as if it never existed. Because absolute elements are already removed from
all flows, there is no functional difference in applying visibility:hidden and
display:none to absolute elements.

Apply styles to your chosen class or ID as follows:
Use visibility:hidden to hide an element without removing it.
Use visibility:visible to show an element. This is the default.

Pattern

CSS

SELECTOR { visibility:hidden; }
SELECTOR { visibility:visible; }

Location

This design pattern applies to all elements. visibility is inherited by all elements.

Tips

The main advantage of visibility:hidden is that you can hide content using
JavaScript without forcing the browser to reflow the entire page. This could be useful
when you want to hide selected content while the user drags and drops it to a new
location. Note that hover is not supported by mobile devices and can be an issue
when you're doing web development for iOS or Android devices.

A document-management system can mark text for removal and let the user toggle
the display of such text between visibility:visible, visibility:hidden,
display:none, and text-decoration:1ine-through. This toggles through showing
the text, hiding it, removing it, and running a line through it.

You can create an unpleasant flickering effect when a user mouses over an element by
selecting an element using the hover pseudo class and styling it with
visibility:hidden as shown in the example.

display:none is more commonly used than visibility:hidden because it not only
hides an element—it completely removes it from the flow.

Related to

Page Break; Box Model, Display (Chapter 4); Row and Column Groups, Hidden and
Removed Cells, Removed and Hidden Rows and Columns (Chapter 15); Popup Alert
(Chapter 20)

125

CHAPTER 6 " BOX MODELS PROPERTIES

126

Page Break

Y Pape Broak - Mozilla Firefox

Fle Edt Wew Go Eockmarks Toos Heb &

Page Break

Page break after this element.
Page break after this element.
Page break befaore this element.

HTML

<div class="page-break-after">Page break after this element. </div>
<div class="page-break-after"sPage break after this element. </div>
<div class="page-break-before"sPage break before this element.</divy

CSS

*_page-break-before { page-break-before:always; }
*_page-break-after { page-break-after:always; }

Print Preview

5 Print Prevwicew

Bk, @] * = page[t we = 4 |G A RN | ber | Do

CHAPTER 6 " BOX MODELS PROPERTIES

Page Break
Problem You want to insert a page break in the document for printing purposes.
Solution CSS provides two properties for inserting page breaks: page-break-before and page-break-

after. You can insert a page break before an element by using page-break-before:always.
You can insert a page break after an element by using page-break-after:always.

The default values are page-break-before:auto and page-break-after:auto. These default
values direct the browser to use its default algorithm to automatically determine the
location of page breaks. You can override a previously set page break using page-break-
before:auto and page-break-after:auto.

Pattern -SELECTOR { page-break-before:always; }
or
SELECTOR { page-break-after:always; }
or
SELECTOR { page-break-before:auto; }
or

SELECTOR { page-break-after:auto; }

Location This design pattern applies to all elements.

Limitations Internet Explorer 6 and Opera 9 always insert a page break whenever they encounter an
element set to page-break-before:always or page-break-after:always. This inserts an
extra blank page whenever one element is set to page-break-after:always and the next
element is set to page-break-before:always. The example demonstrates this “feature”: it
shows a screenshot of print preview in Internet Explorer 6 containing four printed pages.
The third printed page is blank. Firefox 2 doesn’t insert this extra blank page. An easy way to
avoid inserting blank pages is not to use both page-break-after and page-break-before in
the same document.

Tips If you want to print a blank page, insert an element into the document and style it with
page-break-before and visibility:hidden.
CSS provides other values for these properties and other page-break properties, but only

page-break-before:always and page-break-after:always work reliably in the major
browsers.

127

CHAPTER 7

Positioning Models

This is the first of three chapters on positioning. This chapter presents the CSS positioning models.
Chapter 8 shows how to indent, offset, and align elements. Chapter 9 combines these techniques to
create advanced positioning design patterns.

Chapter Outline

Positioning Models introduces and demonstrates the six positioning models.

Positioned explains, demonstrates, and contrasts the four values of the position
property: static, absolute, fixed, and relative.

Closest Positioned Ancestor shows how absolute boxes can be positioned
relative to any ancestor element rather than just the element’s parent.

Stacking Context shows how positioned boxes can be stacked behind or in front
of static elements and each other.

Atomic explains how to render inline content iz a block rather than on a block.
Static explains the basics of normal flow.

Absolute shows how to remove any element from the normal flow and position it
absolutely with respect to the inside of the border of its closest positioned ancestor.

Fixed shows how to remove any element from the normal flow and position it
absolutely with respect to the viewport.

Relative shows how to use relative positioning to control stacking order, or offset
an element without affecting its shape or the position of other elements.

Float and Clear shows how you can remove an element from the normal flow and
float it to the left or right side of its parent. It also shows how to clear elements so
that they’re positioned below floats on the left, right, or both sides.

Relative Float shows how you can relatively position a float.

129

CHAPTER 7 I POSITIONING MODELS

130

Positioning Models

%3 positioning Models - Mozilla Firefox

Fle Edt Yew Go Cookmarks Tods Help
Positioning Models i
Before
‘Staticl ‘Absolutel ‘Frxedl |Re|ative| Flaatl |Re|ative Float| |
After
|| Absalute |
Ii!aﬂ!l Relative | - t'l
Relative HoathE—
Fixed
HTML

<h1>Positioning Models</h1>
<div class="section"><h2»Before</h2>
<p>StaticAbsolute
FixedRelative
FloatRelative Float</p></div>

<div class="section"><h2>After</h2s
<p class="static centered" >
Static
Absolute
Fixed
Relative
Float
Relative Float</p></div>

CSS

*.centered { width:380px; margin-left:auto; margin-right:auto; }
*.static { position:static; }

*,absolute { position:absolute; top:20px; left:215px; }

*.fixed { position:fixed; bottom:20px; right:spx; }

*.relative { position:relative; top:20px; left:30px; }

*.float { float:right; }

CHAPTER 7 ' POSITIONING MODELS

Positioning Models

Introduction

This isn’t a design pattern, but an introduction to positioning.

CSS provides six positioning models for positioning an element: static, absolute, fixed,
relative, float, and relative float. The six positioning models are related to the six box models,
but they aren’t the same. The static positioning model can position inline, inline-block,
block, and table boxes. The absolute and fixed positioning models can position absolute
boxes, which can be any type of element. The float positioning model can position float
boxes, which can be any type of element. The relative positioning model can relatively
position any type of box except for absolute boxes. The relative-float positioning model
can relatively position float boxes.

Each positioning model controls positioning using the same basic properties of display,
width, height, and margin. Even though these properties are the same, their values have
different functions in each model. For example, width:auto stretches a static block, whereas
width:auto shrinkwraps an absolute element. You can see this in the example where the
first paragraph is stretched and the absolute span is shrinkwrapped.

Positioning models also use additional properties in ways that are unique to the model.
Absolute and fixed positioning use left, right, top, bottom, and z-index to control the
alignment of the absolute box. Relative positioning uses left, top, and z-index to control
the offset of the box. Float positioning uses float and clear.

Because these models use the same basic properties, different positioning layouts are
triggered using unique combinations of element type, display box, and property values.
Each design pattern exposes the exact combination of rules and elements that triggers each
type of layout. For example, setting width to a value, margin-left to auto, and margin-
right to auto centers a static block, but it doesn’t center a static inline. For example, to
center an absolute element, you must also set left and right to 0.

There are over 50 combinations of design patterns that produce unique layouts. These
patterns are presented in these three chapters on positioning (Chapters 7 through 9). These
patterns are easy to learn because they’re combinations of box models, extents, margins,
and positioning. In other words, the six box models (inline, inline-block, block, table,
absolute, and float) can be combined with the three extents (sized, shrinkwrapped, and
stretched) and the three types of margins (indented, offset, and aligned). In addition, any
type of box except absolute can be relatively positioned.

Box models, extents, and margins are discussed in Chapters 4 through 6. The positioning
models are discussed in this chapter. Indents, offsets, and alignment are discussed in
Chapter 8. Chapter 9 systematically combines the design patterns in these chapters to create
over 50 unique layouts.

Related to

Positioned, Static, Absolute, Fixed, Relative, Float and Clear, Relative Float

131

CHAPTER 7 I POSITIONING MODELS

132

Positioned

3 positioned - Mozilla Firefox

Eie ©Edt Yew Go EBookmarks Tools Helo

Positioned

Absolutely Positioned

Static Positioned

This text contains a relatively positioned span that is frem its | ‘
normal position. offset

Fixed “:'%f!.{'
Positioned
HTML
<h1>Positioned</h1>

<div class="relative" id="canvas">

<p class="static">Static Positioned</p>

<p class="static">This text contains a relatively positioned span that is

offset from its normal position.</p>

<em class="absolute">Absolutely Positioned

<p class="fixed2">Fixed Positioned</p>

</div>

CSS

div,p,em { margin:10px; padding:10px; background-color:white;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

.static { position:static; }

.relative { position:relative; left:auto; top:auto; bottom:auto; right:auto; }
.absolute { position:absolute; left:35%; top:-40px; }

.fixed1 { position:fixed; z-index:20; right:5px; bottom:35px; }

.fixed2 { position:fixed; z-index:10; right:opx; bottom:0;

width:100px; margin:0;}

LR R)

*,offset { bottom:-15px; left:-20px; }
#canvas { background-color:gold; }

/* Nonessential rules are not shown. */

Download from Wow! eBook <www.wowebook.com>

Positioned

CHAPTER 7 ' POSITIONING MODELS

Problem

You want to turn an element into a positioned element so that its descendants can be
positioned relative to it. You may also want to offset the element from its current
location, its nearest positioned ancestor, or the viewport; move the element into its own
layer; remove the element from the flow; or change the stacking order of the element to
control when it overlaps other elements or is overlapped.

Solution

You can use position:static to unposition an element so that it’s rendered normally in
the flow. static is the default value for position. You can use position:relative to
position an element at an offset from its location in the normal flow. You can use
position:absolute to position an element at an offset from its location in the normal
flow or from its nearest positioned ancestor. You can use position:fixed to position an
element at an offset from the viewport.

You can use left to offset the left side of an element from the left side of its reference
position. Positive values offset to the right and negative to the left. You can use right to
offset the right side of an element from the right side of its reference position. Positive
values offset to the left and negative to the right. You can use top to offset the top of an
element from the top of its reference position. Positive values offset down and negative
offset up. You can use bottom to offset the bottom of an element from the bottom of its
reference position. Positive values offset up and negative offset down. You can use z-
index to position an element in a specific layer of the stacking order. Larger numbers
bring the item closer to the front. You can use margin to offset elements from their
position.

Pattern

SELECTOR { position:ABSOLUTE_FIXED_RELATIVE;
z-index:+VALUE;
left:+*VALUE,; right:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
top:xVALUE; bottom:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE; }

Location

This design pattern applies to all elements.

Limitations

Fixed position doesn’t work in Internet Explorer 6, but it works fine in all newer versions.

Example

I assigned position:relative to the division to make it positioned.

An element is positioned when it has been assigned to position:relative,
position:absolute, or position:fixed. Floats can be positioned using
position:relative. Being positioned makes an element the reference point to which its
closest absolutely positioned descendants are positioned.

The image of the star comes before the final paragraph in document order. This would
normally cause the final paragraph to be rendered on top of the star, but I assigned a
higher z-index to the image to place it on top.

Related to

Closest Positioned Ancestor, Static, Absolute, Fixed, Relative, Float and Clear

133

CHAPTER 7 I POSITIONING MODELS

134

Closest Positioned Ancestor

%3 Closest Positoned Ancestor - Mozilla Firefox

Fie [t Yew Go Cookmarks Tools Help

Closest Positioned Ancestor

Non-positioned Great-grandparent

Positioned Grandparent

Non-positioned Parent .

Absolute #2 Bottom Right

Nested Absolute

Absolute #1 Bottom Right

Nested Ahsolute

HTML

<body>
<h1>Closest Positioned Ancestor</hi>

<div class="static ggp">Non-positioned Great-grandparent
<div class="absolute sized bottom-right box1">Absolute #1 Bottom Right
<em class="absolute offset box2"»Nested Absolute</div>
<div class="relative gp">Positioned Grandparent
<div class="static parent">Non-positioned Parent
Absolute #2 Bottom Right
<em class="absolute offset box2"sNested Absolute
</div></divy></div>
</body>

CSS

*,static { position:static; }
.relative { position:relative; }
.absolute { position:absolute; }

* *

*

.sized { width:230px; height:70px; }
.bottom-right { bottom:0; right:o0; }
.offset { left:45px; top:30px; }

* *

/¥ Nonessential rules are not shown. */

CHAPTER 7 ' POSITIONING MODELS

Closest Positioned Ancestor

Problem You want to position an element so you can position other elements in relation to
it. Such an element is the closest positioned ancestor to its descendants.

Solution You can position an element by assigning position:relative,
position:absolute, or position:fixed to it. Positioned elements are positioned
relative to their closest positioned ancestor. This allows you to remove elements
from the normal flow and position them far away from their original position in
the flow. Notice in the example how the absolute span (Absolute #2) is removed
from its non-positioned parent and aligned to the bottom right of its positioned
grandparent, which is its closest positioned ancestor.

When a positioned element has no positioned ancestor, <body> is the positioned
ancestor. In other words, <body> is positioned by default. Notice in the example
how the absolute division (Absolute #1) is removed from its non-positioned
parent and aligned to the bottom right of <body>.

The main purpose for aligning positioned elements to their closest positioned
ancestors is to create self-contained layouts. You can reposition a self-contained
layout, and all its descendants will move along with it—both positioned and non-
positioned. Notice in the example how the absolute elements are positioned
relative to their closest positioned ancestors, as these ancestors are moved to the
bottom right of their closest positioned ancestors.

Pattern SELECTOR { position:relative; }
or
SELECTOR { position:absolute; }
or
SELECTOR { position:fixed; }

Location This pattern applies to all elements.

Limitations A closest positioned ancestor has to be an actual ancestor. CSS doesn’t provide a
way to position elements relative to any element in a document. That would be a
very welcome feature, but as it is, you must choose an ancestor to be the
reference for positioned elements.

Advantages There is no limit on how deep you can nest self-contained positioned layouts.
This is a very powerful feature for creating reusable layouts.

Disadvantages Positioning is very powerful, but its biggest weakness is that it ultimately requires
elements to be sized, and sized layouts don’t scale well on devices with displays
or fonts that are smaller or larger than designed for.

Tip position:relative is a great way to create a positioned ancestor because it
doesn’t remove it from the normal flow. This allows you to create layouts that
combine normal flow and absolute position.

Related to Positioned, Stacking Context, Atomic, Absolute, Fixed, Relative, Relative Float

135

CHAPTER 7 I POSITIONING MODELS

136

Stacking Context

74 Stacking Context - Opera

Fie Edit Yew Bookmarks ‘Widgets Tools Help

Stacking Context
|

2, Absolute z-index: 399 |

3. Static Block
1. Background

|
. -599
and Borders of 4. Static Float | > Static SDam| I
Stacking — 6. Relative Span z-index:0

5. Static Span

Context #1 _——————— 7. Absolute z-index: EEE t
z-index:2 ISpan z-index:0
Context #2 __————— 7. Absolute z-index: 933

z—index:1

HTML

<h1>Stacking Context</h1>
<div class="stacking-context1 box">
<div class="caption">1. Background and Borders of Stacking Context #1

<code>z-index:2</code></div>
2. Absolute <code>z-index:-999</code>
<div class="level3 box">3. Static Block

4. Static Float
5. Static Span

<p class="clear"></p>
6. Relative Span <code>z-index:0</code>
7. Absolute <code>z-index:999</code>
</div>
</div>
<div class="stacking-context2 box"><!-- ...Same exact code as previous... --></div>

CSS

*_ stacking-contextl { z-index:2; position:absolute; left:10px; top:70px; }
* stacking-context2 { z-index:1; position:absolute; left:223px; top:120px; }

.level2 { z-index:-999; position:absolute; }
.level3 { position:static; }

.levels { float:left; }

.levels { position:static; }

.level6 { z-index:0; position:relative; }
.level7 { z-index:999; position:absolute; }

* X X ¥ ¥ ¥

/¥ Nonessential rules are not shown. */

CHAPTER 7 ' POSITIONING MODELS

Stacking Context

Aliases

Stacking Order, Stacking Level, Z-index, Layering, Painting Order

Problem

You want to control how positioned elements are stacked from front to back.

Solution

CSS provides z-order to control the stacking of elements. Static elements are stacked from
back to front in document order. Positioned elements are stacked from back to front from
smallest to largest z- index with document order breaking ties. Positioned elements with a
negative z-index are placed behind static elements and non-positioned floats. z-index
values don’t have to be contiguous. The default value for z-index is auto.

A positioned element with a numeric z- index creates a local, self-contained, stacking
context, in which allits descendants are rendered—static, float, and positioned. A stacking
context is not created when z-index is set to auto or when z-index is assigned to a non-
positioned element. The following values create stacking contexts: z-index:0, z-index:-1,
and z-index:9999.

Each stacking context is atomic and doesn’t allow ancestors or siblings to be layered in
between its children. Each local stacking context is assigned to an internal stacking level of
0, and its descendants are stacked relative to it. This is an important point. z-index isn’t
global. It’s relative to the closest positioned ancestor that has been assigned to a numeric z-
index. The root element, <html», creates the root stacking context.

A stacking context is rendered in layers from back to front as follows:

. Background color, image, and borders of the stacking context element

—

2. Descendant positioned elements with a negative z-index

3. Descendant non-positioned block elements

4. Descendant non-positioned floats

5. Descendant non-positioned inline elements

6. Descendant positioned elements with z-index:auto and z-index:0
7. Descendant positioned elements with a positive z-index

Steps 2, 6, and 7 each recursively render stacking contexts because each positioned element
with a numeric z-index creates a local stacking context.

Before a browser renders an element’s content, it renders its box starting with its
background color, then its background image, and then its borders. A browser then renders
abox’s contents on top of the box.

Pattern

SELECTOR { z-index:#VALUE; position:ABSOLUTE_FIXED RELATIVE; }

Location

This pattern applies to all elements.

Limitations

Firefox 2 incorrectly switches steps 1 and 2, which puts negative child-stacking contexts
behind the background and borders of the parent context! This has been fixed in newer
versions of Firefox.

Example

The example shows all seven stacking levels repeated in two stacking contexts. Notice how
stacking levels are relative to each stacking context.

Related to

Positioned, Closest Positioned Ancestor, Absolute, Relative, Relative Float

137

CHAPTER 7 I POSITIONING MODELS

138

Atomic

3 Atomibc - Mozilla Firefox

FEie [t Yew Higtory Bookmarks Tools Heb
Atomic
Layered
[T TP T R TR) e |
E=d =L L=y = A — IUPPIIIB S LSLS oN
Static Overlapping Black
Qverlapping Takle
Atomic
Dalzkhus Auarlasmnins Blasl
Fivad Mwaoarlannina Blacls
B Absolute Overlapping Block —
HTML
<h1>Atomic</h1>
<div>Layered

<p class="static">Static Overlapping Block</p>
<p class="static overlap">Static Overlapping Block</p>
<table class="static owverlap"><tr><td>Overlapping Table</td></tr></table></div>

<div>Atomic
<p class="relative">Relative Overlapping Block</p>
<p class="fixed">Fixed Overlapping Block</p>
<p class="absolute">Absolute Overlapping Block</p></div>

CSS

*, static { position:static; }

* overlap { margin-top:-22px; }

*.relative { position:relative; }

*.fixed { position:fixed; margin-top:-16px; }
*,absolute { position:absolute; top:65px; }

/* Nonessential rules are not shown. */

Atomic

CHAPTER 7 ' POSITIONING MODELS

Aliases

hasLayout, Grouped

Problem

You want content to be rendered in a block, not on it. In other words, you want text and
inline content to be rendered atomically with its block so that when the block is overlapped
by another block, its content is overlapped too.

The problem is that a browser renders static inline content in a separate layer above the
backgrounds of static blocks. When static blocks overlap each other, their backgrounds
overlap, but their inline content doesn’t! Notice in the example how the borders and
backgrounds of the blocks in the first division overlap, but their text doesn’t. All the major
browsers work this way because a stacking context renders all block backgrounds and
borders first, then all floats, and then all inline elements and content. This places the
backgrounds and borders of blocks in a layer below floats and inline content.

This may seem unusual because you tend to think of inline content as being in the blocks
that contain them, not on them. But it makes sense that inline elements are rendered on
blocks because inline content overflows by default.

Solution

A positioned element is atomic, which means no external elements can be layered in
between its static descendants, its inline content, and its background. Notice in the second
division of the example how neighboring blocks overlap each other, including their inline
text. This is because they’re positioned, and the stacking context requires positioned
elements to be rendered atomically. You can use relative, absolute, and fixed positioning to
make an element atomic. Blocks set to overflow:scroll are also atomic because their
content is literally contained in the block’s scrollable area.

Pattern

SELECTOR { position:RELATIVE_ABSOLUTE FIXED; }

Location

This pattern applies to all elements.

Limitations

overflow doesn’t consistently create atomicity in older browsers. Blocks set to
overflow:hidden are atomic in Firefox 2.0 and Internet Explorer 7, but not in Internet
Explorer 6 and other major browsers. Blocks set to overflow:scroll are atomic except for in
Internet Explorer 6. overflow consistently creates atomicity in newer browsers.

All tables and sized blocks are atomic in Internet Explorer 7, but not in other major
browsers. This is because Internet Explorer 7 and earlier versions use an internal feature and
a proprietary DOM property called hasLayout, which is true when an element has layout.
When an element has layout, it’s rendered in its own window with its own layout context. All
of its children are rendered atomically inside its rectangular box. It can’t shrinkwrap, and
external floats don’t affect the position of its inline content.

Tip

Internet Explorer 6 has bugs that are sometimes fixed by triggering hasLayout. You can use
its proprietary property zoom: 1 to trigger layout, but be aware that zoom causes your style
sheet not to validate.

Related to

Positioned, Static, Absolute, Fixed, Relative, Float and Clear

139

CHAPTER 7 I POSITIONING MODELS

140

Static

%3 Static - Mozilla Firefox

Fie [t Yew Go [Fookmarks Tools Help

Static

Positioned Grandparent

Mon-positioned Parent

Sized Static
Block

Stretched Static Block

|5hrinkwrapped Static Inlinel |5hrinkwrapped Static Inlinel
|Shrinkwra|:|:ed Static]nline| |Shrinkwrapped Static Inline|
HTML
<h1>Static</h1>

<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent

<div id="zs" class="box">Sized Static Block </div>

<div id="ss" class="box">Stretched Static Block</div>

<div class="box"> Shrinkwrapped Static Inline
Shrinkwrapped Static Inline
Shrinkwrapped Static Inline
Shrinkwrapped Static Inline

</div></divy</divy

CSS

span { position:static; margin:40px; line-height:32px;
padding:3px; border:2px solid black; background-color:yellow; }

#zs { position:static; width:120px; height:100px; margin:10px auto; }

#ss { position:static; width:auto; height:auto; margin:1o0px 50px; }

Static

CHAPTER 7 ' POSITIONING MODELS

Problem

You want elements to flow automatically one after the other in lines and blocks so
they fluidly adapt to the size of the user’s display.

Solution

You can apply position:static to an element to position an element in the normal
flow. Because this is the default, elements are automatically rendered in the normal
flow. The normal flow consists of nested blocks rendered vertically down the
viewport. Inside a block, one or more blocks or lines are rendered vertically down the
block. Inside a line, text and objects are rendered horizontally across the line. The
starting position of a static element is determined by the previous static element. The
size, padding, borders, and margins of a static element determine the starting
position of the next element.

Patterns

Inline Static Element

INLINE-SELECTOR { position:static; line-height:+VALUE;
margin-left:+VALUE; margin-right:+VALUE; }

Block Static Element

BLOCK-SELECTOR { position:static; width:+VALUE; height:+VALUE;
margin-left:+*VALUE; margin-right:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE; }

Location

This pattern applies to all elements.

Example

All elements in the example are static. Block elements are rendered in blocks that
flow down from the top. Each block, except for the sized block, is automatically
stretched to the width of its container minus its left and right margins and the
parent’s padding.

The top margin pushes the selected static block element down, and the bottom
margin pushes down the following static block element. Adjacent vertical margins
collapse into each other. The resulting margin is the larger of the two adjacent
margins. In the example, each block has a top and bottom margin of 10 pixels. These
margins collapse so that only a 10-pixel margin exists between them.

You can assign height and width to a static block to create a sized block. Left and/or
right margins assigned to auto expand to compensate for the specified width. You
can center a sized static block element by setting both left and right margins to auto,
as shown in the first block in the example.

The static inline elements in the example have left and right margins of 40 pixels. Left
and right margins push inline elements apart, and they don’t collapse. When the
content of an inline element exceeds the width of its container, a browser wraps it
into a new line. Top and bottom margins are ignored on inline elements because
line-height directs the height of lines.

Related to

Absolute, Fixed, Relative; Sized, Stretched, Shrinkwrapped (Chapter 5)

141

CHAPTER 7 I POSITIONING MODELS

Absolute

3 Absolute - Mozilla Firefox g@@
Fie Edt Yew Go Cookmarks Tools Help

Absolute

Positioned Grandparent Stretched Ahsalute

Mon-positioned Parent

Absolute elements are positioned in their own layer in front pf or behind the
normal flow.

In-place Absolute

Sized Absalute

Shrinkwrapped Absolute

HTML

<h1>Absolute</h1>
<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
Absolute elements are positioned in their own layer in front of or behind the
normal flow.
In-place Absolute
Sized Absolute
<p id="stretched" class="box">Stretched Absolute</p>
<p id="shrinkwrapped" class="box">Shrinkwrapped Absolute</p></div></div>

CSS

#in-place { position:absolute; z-index:1; }

#shrinkwrapped { position:absolute; z-index:0;
width:auto; left:0; bottom:0; margin:o; }

#sized { position:absolute; z-index:auto;
width:170px; height:115px; bottom:0; left:270px; margin:o; }

#stretched { position:absolute; z-index:-1;
height:auto; right:0; top:0; bottom:0; margin:o; }

/* Nonessential rules are not shown. */

142

Download from Wow! eBook <www.wowebook.com>

Absolute

CHAPTER 7 ' POSITIONING MODELS

Problem

You want to remove an element from the normal flow and move it into its own
layer. You also want to position it relative to the inner border of its closest
positioned ancestor, or you want it to be positioned at the same position it would
have had in the normal flow. You don’t want its position to have any effect on the
position of other elements.

Solution

You can use position:absolute to render any element as an absolute box. You
can use width and height to size it. Percentages refer to its closest positioned
ancestor rather than its parent. You can assign a value, such as 0, to left, right,
top, and bottom to align it to the sides of its closest position ancestor. Or you can
assign auto to left, right, top, and bottom to render it at the same position it
would have had in the normal flow. You can use margin-left, margin-right,
margin-top, and margin-bottom to offset its sides from the sides of its closest
positioned ancestor. You can use z-index to control the stacking order of the
element. Elements with a larger z-index are rendered in a layer closer to the user.
You can assign position:relative, position:absolute, or position:fixed to
an ancestor element to make it positioned. If you don’t have any positioned
ancestors, a browser uses <body> as the closest positioned ancestor.

Patterns

SELECTOR { position:absolute; z-index:VALUE;
width:+VALUE,; left:+VALUE; margin-left:+VALUE;
right:+VALUE; margin-right:+VALUE;
height:+VALUE; top:+VALUE; margin-top:+VALUE;
bottom:+VALUE; margin-bottom:+VALUE; }

plus

ANCESTOR-SELECTOR { position:relative; }
or ANCESTOR-SELECTOR { position:absolute; }

or ANCESTOR-SELECTOR { position:fixed; }

Location

You can absolutely position any type of element.

Limitations

Internet Explorer 6 shrinkwraps stretched absolute elements. Internet Explorer 7
and earlier versions can’t center absolute elements.

Advantages

Absolute elements give you precise control over their placement in relation to
their closest positioned ancestor. Absolute elements can be sized, shrinkwrapped,
and stretched. An absolute element is rendered in a layer above the normal flow
as an absolute box, which is much like a block box. Unlike floats, absolutes don’t
flow. Their position is unaffected by and doesn’t affect the position of other
elements and content. This may cause them to overlap or be overlapped. If all
children are positioned absolutely, the parent collapses to a height of zero (unless
you set the height to a value) because its children have been removed from the
normal flow.

Disadvantages

Layouts created using absolute positioning don’t scale well on devices with
displays or fonts that are much smaller or larger than you designed for.

Related to

Offset Absolute (Chapter 8); Fixed; Sized, Shrinkwrapped, Stretched (Chapter 5)

143

CHAPTER 7 I POSITIONING MODELS

144

Fixed

) Fixed - Mazilla Firefox CIEX
Fie it Yew Go [Fookmarks Tools Help
Non-positioned Parent Stretched Absolute |~
Absolute elements are positioned in their own layer in front §f or behind the
normal flow,

In-place Absolute

Sized Ahsalute

IShrinkwrapped Absolutel -

HTML

<h1>Fixed</h1>
<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
Absolute elements are positioned in their own layer in front of or behind the
normal flow.
In-place Absolute
Sized Absolute
<p id="stretched" class="box">Stretched Absolute</p>
<p id="shrinkwrapped" class="box">Shrinkwrapped Absolute</p></div></div>

CSS

*.gp { position:relative; z-index:1; }

#in-place { position:fixed; z-index:1; }

#shrinkwrapped { position:fixed; z-index:0;
width:auto; left:0; bottom:0; margin:0; }

#sized { position:fixed; z-index:auto;
width:170px; height:115px; bottom:0; left:270px; margin:o; }

#stretched { position:fixed; z-index:-1;
height:auto; right:0; top:0; bottom:0; margin:o; }

/* Nonessential rules are not shown. */

Fixed

CHAPTER 7 ' POSITIONING MODELS

Problem

You want to move an element into its own layer and fix its position to the viewport, or
you want it to be positioned at the same position it would have had in the normal
flow. You also don’t want the element to scroll when the viewport scrolls. This is
called a fixed-position element or a fixed element.

Solution

You can use position:fixed to turn any element into a fixed-positioned element.
Fixed works identically to Absolute except that an element is positioned relative to
the viewport rather than its closest positioned ancestor, and the element doesn’t
scroll when the viewport scrolls. If you have positioned the fixed element at the same
position it would have had in the normal flow, it still doesn’t scroll when the viewport
scrolls.

Pattern

SELECTOR { position:fixed; z-index:-VALUE;
width:+VALUE,; left:+VALUE; margin-left:+VALUE;
right:+*VALUE; margin-right:+VALUE;
height:+VALUE; top:+VALUE; margin-top:+VALUE;
bottom:+VALUE; margin-bottom:VALUE; }

Location

This pattern applies to all elements.

Limitations

Internet Explorer 6 renders fixed-position elements as absolute. Internet Explorer 7
and above render fixed elements properly.

Advantages

Fixed elements give you precise control over their placement in relation to the
viewport. They don’t scroll with the viewport. They’re well suited for holding
controls, such as menus, toolbars, buttons, and so on.

Disadvantages

Layouts created using fixed positioning don’t scale well on devices with displays or
fonts that are much smaller than you designed for.

Example

This example contains the same positioned elements as the Absolute design pattern
example. The only difference is the elements are fixed instead of absolute. Notice
how the browser window is scrolled down in the example, and the position of the
fixed elements remains the same. Notice how the fixed elements are positioned
relative to the viewport instead of their grandparent, which is the closest positioned
ancestor. Notice how the in-place absolute is initially positioned where it would have
been in the normal flow but remains fixed at that position and doesn’t scroll when
the viewport scrolls. If the in-place absolute is initially rendered offscreen, it won’t be
visible even when the viewport is scrolled.

Notice how the fixed elements in the example are layered exactly the same as the
absolute elements in the Absolute design pattern example. The in-place absolute is in
front of the sized absolute because it has a z-index of 1 and the sized absolute has a
z-index of auto. The stretched absolute is layered behind the positioned
grandparent because it has a z-index of -1 and the positioned grandparent has a z-
index of 1. Because the positioned grandparent has a transparent background, you
can see the stretched absolute element behind it.

Related to

Absolute; Sized, Shrinkwrapped, Stretched (Chapter 5)

145

CHAPTER 7 I POSITIONING MODELS

146

Relative
2 Relative - Mozilla Firefox
Eie Edit Yew Go Cookmarks Tools Help
Relative
Before Relative Positicning [
Static Block Static Inline on t
Static Block on top
After Relative Positioning [n—
Relative Block |Relative Inline on top|

Relative Elock on top

I

HTML

<h1>Relative</h1>
<div class="relative">Before Relative Positioning
<p class="static">Static Block
Static Inline on top</p>
<p class="static ontop">Static Block on top</p>
<p class="absolute">Absolute</p></div>

<div class="relative">After Relative Positioning
<p class="relative">Relative Block
Relative Inline on top</p>
<p class="relative ontop">Relative Block on top</p>
<p class="absolute">Absolute</p></div>

CSS

.ontop { z-index:1; }

.static { position:static; }

.relative { position:relative; }

.absolute { position:absolute; z-index:auto; }
.offset { left:20px; top:auto; }

* X ¥ X ¥

/* Nonessential rules are not shown. */

Relative

CHAPTER 7 ' POSITIONING MODELS

Problems

You want to control the stacking order of a float or an element in the normal flow. The
problem is that z-index doesn’t apply to floats or static-positioned elements. Controlling
the stacking order is important when you have positioned elements overlapping floats
and static elements.

You want to position an element so it can be a closest positioned ancestor.

You want to offset an element without removing its place in the normal flow. You don’t
want to change the shape it has in the normal flow. And you don’t want the offset to
change the position of other elements.

Solutions

To control the stacking order of an element in the normal flow, you can position it
relatively using position:relative. You can use z-index to set its stacking order in
relation to other positioned elements.

A relative element is positioned without leaving the normal flow and without changing
the shape that it has in the normal flow. For example, if an inline element is wrapped
across one or more lines, it retains this unique layout when relatively positioned. Contrast
this with absolute positioning, which changes an inline element into an absolute box and
reflows the content into the absolute block box, which may change its layout.

You can optionally offset a relatively positioned element from its position in the flow
using left and top. This doesn’t change the position of other elements in the flow. left
and top default to auto, and auto keeps relatively positioned elements in their normal
position in the normal flow.

You can assign position:relative to any element so that absolute descendants can be
positioned relative to it—for details, see Closest Positioned Ancestor in this chapter. You
can use position:relative, left, and top to offset any element—for details, see Offset
Relative in Chapter 8. You can use position: relative to offset and control the stacking
order of floats—for details, see Relative Float in this chapter.

Pattern

SELECTOR { position:relative; z-index:+VALUE;
left:auto; top:auto; }

Location

This pattern applies to all elements.

Limitations

Because of the way Internet Explorer 7 and earlier versions implement hasLayout, relative
inline elements in a positioned block can’t be stacked on top of elements outside the
block. Because of this, Internet Explorer 7 can’t render the relative inline span in the
example in front of the absolute paragraph. This happens because the inline span is
literally contained within the paragraph because the paragraph has layout. This problem
doesn’t occur in other major browsers, and it doesn’t occur in Internet Explorer when the
parent block doesn’t have layout, such as when it’s a static block. This problem has been
resolved in Internet Explorer 8 and 9.

Related to

Positioned, Closest Positioned Ancestor, Stacking Context, Atomic, Relative Float; Offset
Relative (Chapter 8)

147

CHAPTER 7 I POSITIONING MODELS

148

Float and Clear

&3 Flpat and Clear - Mozilla Firefox

Fle Edit VYiew Go EBookmaks Took Hep

Float and Clear

Eloat Left This paragraph does not clear floats. Float Right
This paragraph clears floats on its left Float Right - Float Right -
side. NOT cleared cleared right

Float Left - Float Left -
cleared loft NOT cleared ;’i}'éles paragraph clears floats on Its right
Float Left Float Right

This paragraph clears floats on both sides.

HTML

<h1>Float</h1>
<div>
<div class="float left clear-left" >Float Left </div>
<div class="float right clear-right">Float Right</div>
<p class="clear-none">This paragraph does not clear floats.
Float Right - cleared right
Float Right - NOT cleared</span»</p>

<p class="clear-left">This paragraph clears floats on its left side.</p>
<div class="float left clear-left">Float Left - cleared left</div>
<div class="float left clear-none">Float Left - NOT cleared</div>

<p class="clear-right">This paragraph clears floats on its right side.
Float Left
Float Right</p>

<p class="clear-both">This paragraph clears floats on both sides.</p> </div>

CSS

* float { margin:Opx 10px; width:120px; background-color:yellow; color:black; }
*.left { float:left; }

*.right { float:right; }

*.clear-left { clear:left; }

*,clear-right { clear:right; }

*.clear-both { clear:both; }

*.clear-none { clear:none; }

/* Nonessential rules are not shown. */

CHAPTER 7 ' POSITIONING MODELS

Float and Clear

Problem

You want to remove an element from the normal flow and display it on the left or right
side of its parent. You want it rendered as a block aligned to the inside of its parent’s
padding. You also want its top to align with the line from which it was extracted. You also
want to control when other floats and nonfloated content flows next to floats or is moved
below them on one or both sides.

Solution

You can use float:left or float:right to remove an element from the normal flow and
place it on the left or right inner edge of its parent’s padding area. You can use float:none
to override another rule that floats an element. Floats exist in their own layer above the
backgrounds of block elements and next to inline content in the normal flow. A left float
indents content on its right side, and a right float indents content on its left. A float doesn’t
affect the position of block boxes—just their inline content. Floats affect the position of
other floats and may be stacked next to each other on the left or right. Floats also may
push down other floats and inline content. A float’s vertical and horizontal margins offset
it from its parent and from other floats. Floats don’t overlap other floats or content (unless
a float has a negative margin).

You can use clear:left to move a block or float below any floats on its left side. You can
use clear:right to move a block or float below any floats on its right side. You can use
clear:both to move a block or float below floats on its right or left.

Patterns

SELECTOR { float:none; }
SELECTOR { float:left; }
SELECTOR { float:right; }
SELECTOR { clear:none; }
SELECTOR { clear:left; }
SELECTOR { clear:right; }
SELECTOR { clear:both; }

Location

Any element can be floated. clear works on tables, blocks, and floats. clear has no effect
on inline, absolutely positioned, or fixed-position elements.

Tips

When you need to predict the vertical location of a float, it’s best to float a block element. A
browser places the top of a floated block exactly where it would have been rendered if it
were not floated. A browser places the top of a floated inline element depending on where
it would have been rendered in a lineif it were not floated. If at the beginning of a line, its
top is aligned to the fop of the line; otherwise, its top is aligned to the bottom of the line.

Example

The example contains eight floats: four spans and four divisions. The four paragraphs
demonstrate each setting of clear. When a float isn’t cleared on the side that it’s floated, it
stacks next to other floats on that side. When cleared on a side, a float or block element
moves below floats on that side.

Related to

Static, Absolute, Fixed

149

CHAPTER 7 I POSITIONING MODELS

150

Relative Float
%2 Relative Float - Mozilla Firefox @@@

Eie Edit Yew Go Cookmarks Tools Help

Relative Float

This text is next to a relative float. A
relative float works just like a static
float except that it is relatively
positionad. This allows it to be offset
using left and right without affecting
the position of other elements. It alsa
allows z-index to contral the stacking order of floats.

Relative
Float 1

Relative
Float 2

absolute

HTML

<h1>Relative Float</hi»

<div class="parent">
<div class="relative1l float">Relative Float 1</div>
<div class="relative2 float"s>Relative Float 2</div>

<p>This text is next to a relative float. A relative float works just like a
static float except that it is relatively positioned. This allows it to be
offset using <code>left</code> and <code>right</code> without affecting
the position of other elements. It also allows <code>z-index</code> to
control the stacking order of floats.

absolute</p></div>

CSS
* parent { position:relative; padding:20px; }

*.relativel { position:relative; z-index:3; top:10px; left:1o0px; }
* relative2 { position:relative; z-index:2; top:20px; left:-30px; }

* . float { float:left; width:100px; height:50px;
margin-right:25px; margin-bottom:40px; }

*.absolute { position:absolute; z-index:1; top:102px; left:215px; }

/* Nonessential rules are not shown. */

CHAPTER 7 ' POSITIONING MODELS

Relative Float

Problem You want to offset a float from its current position without affecting the position of any
other element, including other floats and inline content. You also want to control the
stacking order of floats in relation to each other and in relation to positioned elements.

Solution You can use position:relative to relatively position a float. A relative float remains in
the normal flow of floats and can be offset from its position in the flow using left and
top. A relative float is rendered in a positioned layer, which allows you to use z-index to
control its stacking order in relation to floats and other positioned elements. Because a
relative float is positioned, absolute descendants can be positioned relative to it.

Pattern SELECTOR { position:relative;
left:+VALUE;
right:+VALUE;
z-index:+VALUE;
float:LEFT_RIGHT;

width:+VALUE;
height:+VALUE;
margin:+VALUE; }
Location This pattern applies to all elements.
Advantages This design pattern allows you to use margin to adjust the position of inline content in

relation to the float. You can then use left and top to adjust the position of the float
without changing the location of the inline content. This gives you great flexibility in
positioning floats.

Without this design pattern, you could not control the stacking order of floats and other
positioned elements—other than controlling their order in the document.

Tip Only position:relative and position:static are compatible with floats. If you assign
position:absolute or position:fixed to a float, the results are undefined, and each
browser handles the situation differently. For example, some versions of Firefox set float
to none and render the element as an absolute element, and Internet Explorer 7 partly
floats and partly positions it.

Example The example contains two relative floats, a static paragraph, and an absolutely positioned
span. Using left and top, you relatively offset each float from its floated position without
affecting the location of the neighboring inline content in the paragraph. Using z-index,
you stack each float and the absolute element in reverse order in comparison to
document order.

Related to Positioned, Static, Absolute, Fixed, Relative, Float and Clear

151

CHAPTER 8

Positioning:
Indented, Offset, and Aligned

This chapter shows how margins can offset and align elements.

A stretched element is indented or outdented when one or more of its sides is displaced into or out of
its container, changing the width or height of the element.

A sized or shrinkwrapped element is offset when the entire element is shifted from its normal
position without changing the height or width of the element.

A sized or shrinkwrapped element is aligned when it’s relocated to one of the sides of its container
without changing its size and optionally offset from that side.

Chapter Outline

Indented shows how to indent an element from the sides of its container.
Offset Static shows how to offset an element from surrounding elements.
Offset or Indented Static Table shows how to offset a table from its container.
Offset Float shows how to offset a float from surrounding floats and content.

Offset Absolute and Offset Fixed shows how to offset an absolute element from
the position it would have had in the normal flow.

Offset Relative shows how to offset any element without affecting other elements.

Aligned Static Inline shows how to align inline elements horizontally and
vertically.

Aligned and Offset Static Block shows how to align and offset static block
elements.

Aligned and Offset Static Table shows how to align and offset tables.
Aligned and Offset Absolute shows how to align and offset absolute elements.
Aligned-center Absolute shows how to center absolute elements.

Aligned Outside shows how to align elements to the outside of their container.

/

153

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

Indented

(&N Mozilla Firefox
Indented
Vertically
Positioned Grandparent Stretched
Absolute
Non-positioned Parent
‘ Horizontally Stretched Static :l

‘ Horizontally Stretched Absolute

|

HTML

<h1>Indented</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="hss" class="s">Horizontally Stretched Static</div>
<div id="wsa" class="s">Vertically Stretched Absolute</div>
Horizontally Stretched Absolute
</div>
</div>

CSS
.gp { position:relative; z-index:10; }
#hss { position:static;
width:auto; margin-left:30px; margin-right:3o0px;
height:auto; margin-top:auto; margin-bottom:20px; }
#vsa { position:absolute;
width:120px; left:auto; margin-left:auto; right:0; margin-right:70px;
height:auto; top:0; margin-top:-30px; bottom:0; margin-bottom:-30px; }
#hsa { position:absolute;
width:auto; left:0; margin-left:-30px; right:0; margin-right:-30px;

height:auto; top:auto; margin-top:30px; bottom:auto; margin-bottom:auto; }

/* Nonessential rules are not shown. */

154

Indented

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Problem

You want to indent the left and right sides of a static element, or you want to
indent the left, right, top, and bottom sides of a stretched absolute element. You
also want to outdent these elements.

Solution

Indenting is a combination of stretching an element to the sides of its container
and then offsetting its sides. Indenting to the inside shrinks the size of an
element. Indenting to the outside (or outdenting) expands the size of an
element. Each side may be indented or outdented independently. Margins
expand or shrink the height and width of a stretched element. Contrast this with
the offset design patterns, where margins move a sized or shrinkwrapped
element without changing its size.

Positive margins indent, and negative margins outdent. In other words, positive
margins move sides toward the center, and negative margins move them away
from the center. You can use left:0, right:0, top:0, and bottom:0 to align the
sides of the absolute element to the sides of its closest positioned ancestor.
Once opposite sides of an element are aligned to its container (in other words,
the element is stretched), margins can indent or outdent each side
independently.

Patterns

Horizontally Indented Static Block Element

BLOCK-SELECTOR { position:static; width:auto; margin-left:+VALUE;
margin-right:+VALUE; }

Horizontally Indented Absolute Element

SELECTOR { position:absolute; width:auto; left:0; margin-left:+VALUE;
right:0; margin-right:+VALUE; }
Vertically Indented Absolute Element

SELECTOR { position:absolute; height:auto; top:0; margin-top:+VALUE;
bottom:0; margin-bottom:+VALUE; }

Location

This pattern works on static block elements and absolute elements.

Limitations

You can'’t vertically stretch and indent a static element. You can’t stretch and
indent a float. You can’t stretch and indent an inline-text element. You can’t
indent or outdent an element that is stretched using width:100% or height:100%.

Related to

Sized, Shrinkwrapped (Chapter 5); Margin (Chapter 6); Static, Absolute (Chapter
7); Text Indent, Hanging Indent (Chapter 12); Lists, Left Marginal, Right
Marginal (Chapter 13); Padded Graphic Dropcap, Floating Dropcap, Floating
Graphic Dropcap, Marginal Dropcap, Marginal Graphic Dropcap (Chapter 18);
Left Marginal Callout, Right Marginal Callout (Chapter 19); Hanging Alert, Left
Marginal Alert, Right Marginal Alert (Chapter 20)

155

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

Offset Static

(&N Mozilla Firefox

Offset Static

— Moved-left — Moved-right | Push-right — Pull-left ~—
L
d
Moved-down Static Block
T

Moved-up Static Block

Push-down Static Block
1

Pull-up Static Block

Y

|
None

HTML

<h1>0ffset Static</h1>
<div>
← Moved-left
8rarr; Moved-right
Push-right →
Pull-left ←
None
</div>
<div class="moved-down center">↓
Moved-down Static Block </div>
<div class="moved-up center">8uarr;
Moved-up Static Block</div>
<div class="push-down center">Push-down Static Block
↓</div>
<div class="pull-up center">Pull-up Static Block
↑</div>
<div class="center">None</div>

CSS

.moved-left { margin-left:-26px; } .push-right { margin-right:50px; } .moved-right { margin-
left:50px; } .pull-left { margin-right:-20px; } .moved-down { margin-top:20px; } .push-down {
margin-bottom:20px; } .moved-up { margin-top:-13px; } .pull-up { margin-bottom:-16px; }

/* Nonessential rules are not shown. */

156

Offset Static

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Problem

You want to control the spacing between static elements in the normal flow by moving
them closer together or further apart.

Solution

Margins offset sized and shrinkwrapped elements. Left and top margins offset an element
from the ending position set by the previous element. Right and bottom margins define
the starting position of the following element. Negative margins move an element closer to
surrounding elements, and positive margins move an element farther away. In other
words, margins extend or retract the starting and ending positions of sized and
shrinkwrapped elements.

For example, you can use a positive value in margin-left to move an inline element to the
right, and a negative value to move it to the left. A negative left margin can cause an inline
element to overlap or precede the previous inline element, or overlap the left side of its
containing block. margin-right doesn’t affect an inline element’s position,; it affects the
following element’s position. A positive value in margin-right pushes the next element to
the right, and a negative value pulls it to the left. A negative right margin can cause the
following inline element to overlap or precede an element.

margin-top and margin-bottom work similarly with block elements except that they pull
and push blocks up and down. margin-top moves a block up or down, and margin-bottom
moves the following block up or down. Negative margins can move blocks on top of
neighboring blocks.

Inline Patterns

Left-extended Static Inline Element (Moved-right)

INLINE-SELECTOR { position:static; margin-left:+VALUE; }
Left-retracted Static Inline Element (Moved-left)
INLINE-SELECTOR { position:static; margin-left:-VALUE; }
Right-extended Static Inline Element (Push-right)
INLINE-SELECTOR { position:static; margin-right:+VALUE; }

Right-retracted Static Inline Element (Pull-left)
INLINE-SELECTOR { position:static; margin-right:-VALUE; }

Block Patterns

Top-extended Static Block Element (Moved-down)
BLOCK-SELECTOR { position:static; margin-top:+VALUE; }

Top-retracted Static Block Element (Moved-up)
BLOCK-SELECTOR { position:static; margin-top:-VALUE; }
Bottom-extended Static Block Element (Push-down)

BLOCK-SELECTOR { position:static; margin-bottom:+VALUE; }
Bottom-retracted Static Block Element (Pull-up)
BLOCK-SELECTOR { position:static; margin-bottom:-VALUE; }

157

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

158

OffsetStatic cont.
Location This pattern applies to all static elements.
Related to Offset Relative, Aligned Static Inline, Aligned and Offset Static Block; Sized, Shrinkwrapped

(Chapter 5); Static (Chapter 7); all offset design patterns in Chapter 9; Spacing, Inline
Spacer, Inline Decoration, Linebreak, Inline Horizontal Rule (Chapter 11); Vertical-offset
Content (Chapter 12); Block Horizontal Rule, Block Spacer, Block Space Remover (Chapter
13)

Offset or Indented Static Table

800

HTML

Mozilla Firefox

Offset or Indented Static Table

‘ Left-offset Shrinkwrapped Table |

‘ Right-offset Shrinkwrapped Table |

‘ Indented Stretched Table |

| Right-offset Sized Tablel

Left-offset Sized Table

<h1>0ffset or Indented Static Table</hi1>
<div class="parent">

<table
<table
<table
<table
<table
</div>

CSS

class="1-wrap"><tr><td>Left-offset Shrinkwrapped Table</td></tr></table>
class="r-wrap"><tr><td>Right-offset Shrinkwrapped Table</td></tr></table>
class="stretched"><tr><td>Indented Stretched Table</td></tr></table>
class="r-sized"><tr><td>Right-offset Sized Table</td></tr></table>
class="1-sized"y<tr><td>Left-offset Sized Table</td></tr></table>

.l-wrap { width:auto; margin-left:60px; margin-right:auto; } .r-wrap { width:auto; margin-
left:auto; margin-right:60px;}

.stretched { width:80%; margin-left:auto; margin-right:auto; }

.x-sized

{ width:300px; margin-left:auto; margin-right:60px; text-align:right; } .l-sized {

width:300px; margin-left:60px; margin-right:auto; text-align:left; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Offset or Indented Static Table

Problem

You want to offset a shrinkwrapped or sized table in the normal flow, or you want to
indent a stretched table in the normal flow.

Solution

You can offset a sized or shrinkwrapped table using left and right margins. You can
use a negative margin to move the table away from the center of its container, and
you can use a positive margin to move the table toward the center of its container.
When you assign a value to margin-left, you need to assign margin-right to auto,
and vice versa.

You can indent a stretched table equally on both sides by reducing its width to a
percentage less than 100% and setting the left and right margins to auto. This
creates a centered effect where both sides are indented equally. Because of browser
incompatibilities, and because you have to use width:100% to stretch a table to the
width of its container, there is no automatic way to indent left and right sides
unequally and keep the table stretched. On the other hand, because block elements
stretch automatically to the width of their container, you can indent the left and
right sides of a block unequally.

Unlike positioned elements, you can’t center a table and then offset it.

HTML Pattern

<table><tr><td>CONTENT</td></tr> </table>

CSS Patterns

Left-offset Shrinkwrapped Static Table

SELECTOR { position:static; width:auto; margin-left:+VALUE; margin-
right:auto; }

Right-offset Shrinkwrapped Static Table

SELECTOR { position:static; width:auto; margin-left:auto; margin-
right:+VALUE; }

Offset Stretched Static Table

SELECTOR { position:static; width:100%; margin-left:auto; margin-
right:auto; }

Left-offset Sized Static Table

SELECTOR { position:static; width:+VALUE; margin-left:+VALUE; margin-
right:auto; }

Right-offset Sized Static Table

SELECTOR { position:static; width:+VALUE; margin-left:auto; margin-
right:+VALUE; }

Location

This pattern applies to table elements.

Limitations

Internet Explorer versions 6 and 7 have a bug that ignores margin-left whena
shrinkwrapped table is a child of any element besides <body>.

Tips

Margins apply to the table element, but they do not apply to cells, rows, row groups,
columns, or column groups.

Related to

Sized, Shrinkwrapped, Stretched (Chapter 5); Left Aligned, Right Aligned, Centered
Aligned (Chapter 9); Table (Chapter 15)

159

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

Offset Float

s Hélle) Mozilla Firefox
Offset Float
Sized Right-retractedFloat| Left-retracted |Float Sized
Float Float
Right-extended &
Top-extended Float
Float
Float|
HTML
<h1>0ffset Float</h1>

<div>
<p class="float-left sized">Sized Float</p>
<p class="float-left right-retracted">Right-retracted Float</p>
<p class="float-left shrunk">Float</p>

<p class="float-right sized">Sized Float</p>

<p class="float-right left-retracted">Left-retracted Float</p>

<p class="float-right shrunk">Float</p>

<p class="float-right widened right-extended top-extended">
Right-extended & Top-extended Float</p>

<p class="float-left clear-left shrunk">Float</p>

<p class="float-right clear-right shrunk">Float</p>

</div>

CSS

.sized { width:70px; height:60px; margin:iopx; }
.widened { width:175px; } .shrunk { margin:3px; padding:ipx; background-color:white; }

.right-extended { margin-right:120px; } .right-retracted { margin-right:-55px; } .left-
retracted { margin-left:-185px; } .top-extended { margin-top:20px; }

.float-left { float:left; } .float-right { float:right; }
.clear-left { clear:left; } .clear-right { clear:right; }

/* Nonessential rules are not shown. */

160

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Offset Float

Problem You want to control the spacing between floats by moving them closer
together or further apart.

Solution A float’s margins work just like static inline elements and blocks. Positive

margins push content and other floats away, and negative margins bring them
closer. Large enough negative margins can cause floats to overlap with each
other and with neighboring inline content.

Thus, floats exist in their own flow where the position of one float affects the
position of neighboring floats and inline content. Contrast this with absolute
and fixed elements, where each one is positioned independently.

Margins offset floats rather than indent them because they don’t change their

size, they change their position.

Horizontal Patterns

Left-extended Float
SELECTOR { float:LEFT_OR_RIGHT;

Left-retracted Float
SELECTOR { float:LEFT_OR_RIGHT;

Right-extended Float
SELECTOR { float:LEFT_OR_RIGHT;

Right-retracted Float
SELECTOR { float:LEFT_OR_RIGHT;

margin-left:+VALUE; }

margin-left:-VALUE; }

margin-right:+VALUE; }

margin-right:-VALUE; }

Vertical Patterns

Top-extended Float
SELECTOR { float:LEFT_OR_RIGHT;

Top-retracted Float
SELECTOR { float:LEFT_OR_RIGHT;

Bottom-extended Float
SELECTOR { float:LEFT OR RIGHT;

Bottom-retracted Float
SELECTOR { float:LEFT_OR_RIGHT;

margin-top:+VALUE; }

margin-top:-VALUE; }

maxgin-bottom:+VALUE; }

margin-bottom: -VALUE; }

Location

This pattern applies to all elements.

Advantages

Floats can create versatile layouts. These layouts easily reflow to fit displays of

all sizes.

Disadvantages

Floats tend to trigger browser bugs in all browsers.

Tips Stacking floats to the left or right aligns floats, and extending or retracting
margins fine-tunes their position.
Related to Float and Clear (Chapter 7); Outside-in Box, Floating Section, Float Divider,

Fluid Layout, Opposing Floats (Chapter 17); Floating Dropcap, Floating
Graphic Dropcap (Chapter 18); Left Floating Callout, Right Floating Callout
(Chapter 19); Floating Alert (Chapter 20)

161

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

162

Offset Absolute and Offset Fixed

enNnOm Mozilla Firefox

Offset Absolute and Offset Fixed

Positioned Grandparent

Non-positioned Parent

The default position of an offset absolute element is where it would have been
rendered if it were not absolutely positioned: Absoliite

You can use left and top margins to offset it from its default position: 7
Fixe

HTML
<h1>0ffset Absolute and Offset Fixed</h1>

<div class="gp"><h2>Positioned Grandparent</h2>
<div class="parent"><h2>Non-positioned Parent</h2>
The default position of an offset absolute element is where it would have
been rendered if it were not absolutely positioned:
<span id="absolute" class="border"sAbsolute</spany

<p>You can use left and top margins to offset it from its
default position: <span id="fixed" class="border"sFixed</p>
</div>
</div>

CSS

#absolute { position:absolute; width:140px; height:auto; }
#fixed { position:fixed;

height:50px; margin-top:10px;

width:auto; margin-left:1opx; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Offset Absolute and Offset Fixed

Problem

You want to remove an element from the normal flow and offset it from the
position it would have had in the flow. Unlike the Offset Relative design pattern,
you don’t want the element to retain the exact shape it would have had in the
normal flow. Instead, you want it to be rendered as a block that can be sized or
shrinkwrapped. You optionally want the element to be fixed to the viewport so it
doesn’t scroll when the document scrolls.

Solution

Use position:absolute to position the element absolutely or
position:fixed tolockits position so it doesn’t scroll with the document.
Don't set left, right, top, or bottom to a value other than auto, or you’ll align
the element to its closest positioned ancestor. Because auto is their default
value, you can omit left, right, top, and bottom.

Use margin-top and margin-left to offset the element from the position it
would have had in the normal flow. Positive values move it down and right, and
negative values move it up and left. You can use width:auto or height:auto to
shrinkwrap the element, or you can use width:+VALUE or height:+VALUE to size
it.

Patterns

Shrinkwrapped-offset Absolute Element

SELECTOR { position:ABSOLUTE_FIXED;
height:auto; width:auto;
maxgin-top:+VALUE; margin-left::VALUE; }

Sized-offset Absolute Element

SELECTOR { position:ABSOLUTE FIXED;
height:+VALUE; width:+VALUE;
maxgin-top:+VALUE; margin-left::VALUE; }

Location

This pattern applies to all elements.

Advantages

This pattern allows you to remove an element from the normal flow, shrinkwrap
or size it, and then offset it from the position it would have had in the normal
flow. Contrast this with the Aligned and Offset Absolute design pattern, where
an absolute element is aligned and offset from an edge of its closest positioned
ancestor.

Tips

The horizontal and vertical dimensions are independent. You can shrinkwrap
one dimension and size the other. You can also align one dimension to an edge
of the closest positioned ancestor and offset the other dimension from the
position it would have had in the normal flow.

Example

Notice how both the absolute and the fixed spans are located in the flow where
they would have been located if they were not positioned. Margins vertically and
horizontally offset the fixed span by 10 pixels.

Related to

Aligned and Offset Absolute; Sized, Shrinkwrapped (Chapter 5); Margin (Chapter
6); Positioned, Closest Positioned Ancestor, Absolute, Fixed (Chapter 7)

163

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

164

Offset Relative

eanOm Mozilla Firefox

Offset Relative

When inline content is relatively offset, it retains its

including line breaks.

rendered shape

Hlaot Indented Static Block S;ze.d
Static
HTML
<h1>0ffset Relative</h1>

<div>
<p class="relative offset-none">

When inline content is relatively offset, it retains its
 rendered shape-including

line breaks.</p>
<p class="relative offset2 float">Float </p>
<p class="relative offset3 sized">Sized Static </p>

<p class="relative offset4 indented">Indented Static Block </p>

</div>

CSS

.float { float:left; width:90px; height:40px; } .sized { width:90px; height:40px; margin-

left:auto; margin-right:0; } .indented { margin-left:60px; margin-right:60px; }

.relative { position:relative; }

.offset1 { left:opx; top:-12px; } .offset2 { left:-50px; top:10px; } .offset3 { left:50px;

top:10px; } .offsetq { left:opx; top:-32px; }

/* Nonessential rules are not shown. */

Offset Relative

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Problem

You want to offset an element up, down, left, or right from its position in the normal
flow or floating flow. You want the offset to have no effect on the position of other
elements. And unlike the Offset Absolute and Offset Fixed design patterns, you
want the element to retain the exact shape (size, line breaks, line spacing, and so
on) that it would have had in the normal flow.

Solution

A relative element is a float or static element that is set to position:relative. It's
initially positioned by the normal or floating flow.

You can use top and left to offset it from this position. Positive values move it
down and right, and negative values move it up and left. Unlike an element’s
margins, relative offsets have absolutely no effect on the position of other elements.

A relative element is rendered in a layer without leaving the flow. This allows you to
overlap elements and control their stacking order using z-index. A relative element
is positioned, which allows absolute descendants to be positioned relative to it. A
relative element is atomic, which means external elements can’t be layered in
between its static descendants, inline content, and its background. If z-index is set
to a nonzero value, a relative element creates its own stacking context, which
means no external elements can be layered between any of its descendants even if
they’re positioned.

Patterns

SELECTOR { position:relative; top:+VALUE; left:+VALUE; z-index:+VALUE }

Location

This pattern applies to all elements.

Limitations

A relative element can’t be absolute or fixed at the same time.

Example

Notice in the example how the inline span retains its shape when offset relatively.
Also notice how the left float is relatively offset to the left by 50 pixels, the sized
static block is offset to the right by 50 pixels, and both are lowered 10 pixels. The
indented static block is raised 32 pixels to fit between the float and the sized static
block.

Related to

Positioned, Closest Positioned Ancestor, Static, Absolute, Fixed, Relative, Relative
Float (Chapter 7); Nested Alignment (Chapter 12); Floating Dropcap, Floating
Graphic Dropcap (Chapter 18); Left Floating Callout, Right Floating Callout, Center
Callout, Block Quote (Chapter 19)

165

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

166

Aligned Static Inline

(& N&) Mozilla Firefox

Aligned Static Inline

|Left-aligned content

Horizontally and Vertically Center-aligned Content

Right-aligned content

Justify-aligned works on all but the last line. This line is justified but the last
line is not.

Raised relative to...

e Lowered relative to the baseline.

HTML

<h1>Aligned Static Inline</h1>
<div>
<p id="1">Left-aligned content</p>
<p id="c">Horizontally and Vertically Center-aligned Content</p>
<p id="r">Right-aligned content</p>
<p id="j">Justify-aligned works on all but the last line. This line is
justified but the last line is not.</p>
<p>Aligned to baseline.
Lowered relative to the baseline.

Raised relative to... </p></div>

CSS

.baseline { vertical-align:baseline; } .raised { wertical-align:10px; } .lowered { wvertical-
align:-10px; }

#1 { position:static; text-align:left; } #c { position:static; text-align:center; line-
height:48px; } #r { position:static; text-align:right; } #j { position:static; text-
align:justify; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned Static Inline

Problem

You want to align static inline elements horizontally and/or vertically, and you want
to offset them from their alignment.

Solution

To horizontally align content to the sides of its terminal block container, you
can use text-align. text-align:1left aligns content to the left side. text-
align:right aligns content to the right side. text-align:center centers content.
text-align:justify aligns content to the left and right sides of its container. For
content to be justified, there must be more than one line, because the browser
doesn’t justify the last line.

To align inline content to the vertical center of a line, you can set 1ine-height
to a value larger than the height of the content. This works because a browser
vertically centers the content of each line. This effect doesn’t work when you have
more than one line.

To align inline content vertically, you can use vertical-align:CONSTANT or
vertical-align:+VALUE. The only time you can see the vertical alignment is when
items in the same line have different heights or different vertical alignment. Vertical
alignment doesn’t persist between lines because a browser shrinkwraps and
vertically centers the content of each line. Thus, inline vertical alignment is relative
to the content actually present in a line.

Horizontal Patterns

Left-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:left; }

Center-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:center; }

Right-aligned Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:right; }

Justified Static Inline Element
TERMINAL-BLOCK-SELECTOR { position:static; text-align:justify; }

Vertical Patterns

Middle-aligned Static Inline Element
SELECTOR { position:static; line-height:+VALUE; }

Relative-aligned Static Inline Element
SELECTOR { position:static; vertical-align:+VALUE; }

Location

These patterns work on inline elements.

Related to

Aligned and Offset Static Block; Left Aligned, Left Offset, Right Aligned, Right Offset,
Center Aligned, Center Offset (Chapter 9); Invisible Text (Chapter 10); Spacing,
Blocked (Chapter 11); Horizontal-aligned Content (Chapter 12); Table (Chapter 15)

167

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

168

Aligned and Offset Static Block

|NO Mozilla Firefox

Aligned and Offset Static Block

Left Aligned |

‘ Left Aligned & Offset |

Center Aligned

‘ Right Aligned & Offset |

Right Aligned

HTML

<h1>Aligned and Offset Static Block</h1>

<div class="gp">
<p id="left">Left Aligned</p>
<p id="left-off">Left Aligned & Offset</p>
<p id="center">Center Aligned</p>
<p id="right-off">Right Aligned & Offset</p>
<p id="right">Right Aligned</p>

</div>

CSS

#left { position:static; width:120px; margin-left:0; margin-right:auto; }
#left-off { position:static; width:200px; margin-left:50px; margin-right:auto; }
#center { position:static; width:120px; margin-left:auto; margin-right:auto; }
#right { position:static; width:120px; margin-left:auto; margin-right:o; }
#right-off { position:static; width:200px; margin-left:auto; margin-right:5opx; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned and Offset Static Block

Problem

You want to align a static block element to the left side, right side, or center of its
parent, and you want to offset it from its alignment.

Solution

Sized blocks can be aligned and offset from their container. Static blocks can’t
be horizontally shrinkwrapped, and thus are either sized or stretched. If a block
is stretched, it can’t be aligned and offset because it’s indented. Use
width:+VALUE to specify an element’s width. You can’t align a static block unless
you set its width to a measurement or percentage.

To align to the left side, use margin-right:auto to align the element to the left
side. Use margin-left:+VALUE to offset the element to the right of the left side.
Use margin-left:-VALUE to offset the element to the left of the left side.

To align to the center, use both margin-left:auto and margin-right:autoto
horizontally center the element within its container.

To align to the right side, use margin-left:auto to align the element to the
right side. Use margin-right:+VALUE to offset the element to the right of the
right side. Use margin-right:-VALUE to offset the element to the left of the right
side.

Patterns

Left-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;
margin-left:+VALUE; margin-right:auto; }
Center-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;
margin-left:auto; margin-right:auto; }
Right-aligned Sized Static Block Element
BLOCK-SELECTOR { position:static; width:+VALUE;
margin-left:auto; margin-right:+VALUE; }

Location

This pattern works on static block elements.

Explanation

A static element expands to fill the width of its container. When you set the
width of a static element, its width no longer fills the container. Instead, its
margins expand to fill the container. You can use the auto value to control
which margins expand. margin-left:auto automatically expands the left
margin to let the element align to the right. Conversely, margin-right:auto
expands the right margin to let the element align to the left. margin-left:auto
and margin-right:auto automatically expand both margins equally to center
the element.

Limitations

You can’t vertically align a static block element because it’s always aligned to
the top of its parent block or below its previous sibling.

Related to

Aligned Static Inline; Sized (Chapter 5); Left Aligned, Left Offset, Right Aligned,
Right Offset, Center Aligned, Center Offset (Chapter 9); Left Marginal, Right
Marginal (Chapter 13); Marginal Dropcap, Marginal Graphic Dropcap (Chapter
18); Left Marginal Callout, Right Marginal Callout (Chapter 19); Left Marginal
Alert, Right Marginal Alert (Chapter 20)

169

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

170

Aligned and Offset Static Table

|a0n

HTML

Mozilla Firefox

Aligned and Offset Static Table

‘ Left-aligned Shrinkwrapped Table |

‘ Centered Shrinkwrapped Table |

|Right-oﬁset Shrinkwrapped Table |

Stretched Table |

‘ Right-aligned Sized Table |

Centered Sized Table

‘ Left-offset Sized Table |

<h1>Aligned Static Table</h1>
<div class="parent">

<table
<table
<table
<table
<table
<table
<table
</div>

CSS

class="1-wrap"s><tr><td>Left-aligned Shrinkwrapped Table</td></tr></table>
class="c-wrap"s><tr><td>Centered Shrinkwrapped Table</td></tr></table>
class="r-wrap"s><tr><td>Right-offset Shrinkwrapped Table</td></tr></table>
class="stretched"s<tr><td>Stretched Table</td></tr></table>
class="r-sized"><tr><td>Right-aligned Sized Table</td></tr></table>
class="c-sized"s<tr><td>Centered Sized Table</td></tr></table>
class="1-sized"s<tr><td>Left-offset Sized Table</td></tr></table>

.l-wrap { width:auto; margin-left:0; margin-right:auto; } .c-wrap { width:auto; margin-
left:auto; margin-right:auto;} .r-wrap { width:auto; margin-left:auto; margin-right:20px; }

.stretched { width:100%; margin-left:0; margin-right:o; }

.r-sized

{ width:350px; margin-left:auto; margin-right:0; text-align:right; } .c-sized {

width:350px; margin-left:auto; margin-right:auto; text-align:center; } .l-sized { width:350px;
margin-left:20px; margin-right:auto; text-align:left; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned and Offset Static Table

Problem

You want to align a shrinkwrapped, stretched, or sized table without removing it from the
normal flow.

Solution

The table is the only element in the normal flow that can shrinkwrap to fit the width of its
content or be sized to a specific width. Block elements can’t be shrinkwrapped to their width
unless they're positioned or floated. Inline elements can’t be sized unless they’re positioned
or floated.

Because a table can be shrinkwrapped, sized, and stretched, it’s the most versatile element. It
can also be aligned to the left, right, or center while it’s shrinkwrapped or sized.

To align a table to the left, use margin-left:0 and margin-right:auto.
To align a table to the right, use margin-left:auto and margin-right:o.
To align a table to the center, use margin-left:auto and margin-right:auto.

To offset a table, change the margin to a nonzero value. A positive value offsets toward the
center, and a negative offsets away from the center.

HTML Pattern

<table><tr><td>CONTENT</td></tr></table>

CSS Patterns

Left-aligned Shrinkwrapped Static Table
SELECTOR { position:static; width:auto; margin-left:0; margin-right:auto; }

Centered Shrinkwrapped Static Table

SELECTOR { position:static; width:auto; margin-left:auto; margin-right:auto; }
Right-aligned Shrinkwrapped Static Table

SELECTOR { position:static; width:auto; margin-left:auto; margin-right:0; }
Stretched Static Table

SELECTOR { position:static; width:100%; margin-left:0; margin-right:o0; }
Left-aligned Sized Static Table

SELECTOR { position:static; width:+VALUE; margin-left:0; margin-right:auto; }
Centered Sized Static Table

SELECTOR { position:static; width:+VALUE; margin-left:auto; margin-right:auto; }

Right-aligned Sized Static Table
SELECTOR { position:static; width:+VALUE; margin-left:auto; margin-right:0; }

Location

This pattern applies to table elements.

Related to

Sized, Shrinkwrapped, Stretched (Chapter 5); Left Aligned, Left Offset, Right Aligned, Right
Offset, Center Aligned, Center Offset (Chapter 9); Table (Chapter 15)

171

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned and Offset Absolute

|enNe Mozilla Firefox

Aligned and Offset Absolute

‘mwmpmmmd&oma| \mmmmpmmmdﬁoma|

|Cmbmedemed|

‘ Left-bottom Aligned & Offset | ‘ Right-bottom Aligned & OffSEtl

HTML

<h1>Aligned and Offset Absolute</h1>
<div>
<p id="1t">Left-top Aligned & Offset</p>
<p id="1b">Left-bottom Aligned & Offset</p>
<p id="em">Center-middle Aligned</p>
<p id="rt">Right-top Aligned & Offset</p>
<p id="rb">Right-bottom Aligned & Offset</p>
</div>

CSS

div { position:relative; }

#1t { position:absolute;
width:auto; left:0; margin-left:8px; right:auto; margin-right:auto;
height:auto; top:0; margin-top:8px; bottom:auto; margin-bottom:auto; }
#1b { position:absolute;
width:240px; left:0; margin-left:8px; right:auto; margin-right:auto;
height:18px; top:auto; margin-top:auto; bottom:0; margin-bottom:8px; }
#cm { position:absolute;
width:200px; left:0; margin-left:auto; right:0; margin-right:auto;
height:18px; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }
#rt { position:absolute;
width:220px; left:auto; margin-left:auto; right:0; margin-right:8px;
height:18px; top:0; margin-top:8px; bottom:auto; margin-bottom:auto; }
#rb { position:absolute;
width:auto; left:auto; margin-left:auto; right:0; margin-right:8px;
height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:8px; }

/* Nonessential rules are not shown. */

172

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned and Offset Absolute

Problem

You want to align an absolutely positioned element to the left, right, top, or bottom of its
closest positioned ancestor. You also want to offset it from its alignment. You also want to
size or shrinkwrap the element.

Solution

Apply styles to your chosen class or ID as follows:

Use width:+VALUE and height:+VALUE to size the element.
Use width:auto and height:auto to shrinkwrap the element.

To offset from the left side:

Use left:0 and right:auto to align an element to the left.

Use margin-left:+VALUE to offset the element to the right of the left side.
Use maxrgin-left: -VALUE to offset the element to the left of the left side.

To offset from the right side:

Use right:0 and left:auto to align an element to the right.

Use margin-right:+VALUE to offset the element to the left of the right side.
Use margin-right:-VALUE to offset the element to the right of the right side.

To offset from the top:

Use top:0 and bottom:auto to align an element to the top.
Use margin-top:+VALUE to offset the element below the top.
Use margin-top:-VALUE to offset the element above the top.

To offset from the bottom:

Use bottom:0 and top:auto to align an element to the bottom.

Use margin-bottom:+VALUE to offset the element above the bottom.
Use margin-bottom:-VALUE to offset the element below the bottom.

Patterns

Left-offset Absolute Element

SELECTOR { position:absolute; left:0; right:auto;
margin-left:#VALUE; margin-right:auto; }

Right-offset Absolute Element

SELECTOR { position:absolute; left:auto; right:o;
margin-left:auto; margin-right::*VALUE; }

Top-offset Absolute Element

SELECTOR { position:absolute; top:0; bottom:auto;
margin-top:+VALUE; margin-bottom:auto; }

Bottom-offset Absolute Element

SELECTOR { position:absolute; top:auto; bottom:0;
margin-top:auto; margin-bottom:+VALUE; }

Location

This pattern applies to all elements.

173

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

174

Aligned and OffsetAbsolute cont.

Example Each absolute element in the example is shrinkwrapped. Each could be sized without
affecting the alignment or the offset. The centered element is discussed in the next design
pattern—Aligned-center Absolute. I included it in the example because it’s a combination
of all four of these design patterns.

Related to Sized, Shrinkwrapped (Chapter 5); Margin (Chapter 6); Positioned, Closest Positioned

Ancestor, Absolute, Fixed (Chapter 7); all design patterns in Chapter 9; Text Replacement,
Screenreader Only (Chapter 10); Left Marginal, Right Marginal (Chapter 13); Content-over
Image, Content-over Background Image (Chapter 14); Flyout Menu (Chapter 17); Marginal
Dropcap, Marginal Graphic Dropcap (Chapter 18); Left Marginal Callout, Right Marginal
Callout (Chapter 19); Popup Alert, Graphical Alert, Left Marginal Alert, Right Marginal Alert
(Chapter 20)

Aligned-center Absolute

800o

Mozilla Firefox

Aligned-center Absolute

Horizontally & Vertically
Centered

HTML

<h1>Aligned-center Absolute</h1>

<divy>

<p id="em" class="hc vc">Horizontally & Vertically Centered</p>

</div>

CSS

div { position:relative; }
#cm { position:absolute; }

.hc { width:200px; left:0; margin-left:auto; right:0; margin-right:auto; } .vc { height:40px;
top:0; margin-top:auto; bottom:0; margin-bottom:auto; }

/* Nonessential rules are not shown. */

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned-center Absolute

Problem

You want to align an absolutely positioned element to the horizontal and/or
vertical center of its closest positioned ancestor.

Solution

Apply styles to your chosen class or ID as follows:
To horizontally center:

Use width:+VALUE to specify the element’s width.
Use left:0 and right:0 to align the element to the left and right sides.
Use margin-left:auto and margin-right:auto to center the element.

To vertically center:

Use height :+VALUE to specify the element’s height.

Use top:0 and bottom:0 to align the element to the top and bottom.
Use margin-top:auto and margin-bottom:auto to center the element.

Patterns

Vertically Aligned-center Absolute Element
SELECTOR { position:absolute; left:0; right:o;
margin-left:auto; margin-right:auto; }

Horizontally Aligned-center Absolute Element
SELECTOR { position:absolute; left:0; right:o;
margin-left:auto; margin-right:auto; }

Location

This pattern applies to all elements.

Limitations

This pattern doesn’t work in Internet Explorer 7 (and earlier versions) because it
doesn’t support aligning to the left and right sides at the same time, and it doesn’t
support aligning to the top and bottom sides at the same time.

Explanation

This is an extension of the Aligned and Offset Absolute design pattern. It aligns an
element to the sides of its closest positioned ancestor and then uses automatic
margins to center it. The element must be sized for automatic margins to work.

Related to

Indented; Positioned, Closest Positioned Ancestor, Absolute, Fixed (Chapter 7);
Center Aligned, Center Offset, Middle Aligned, Middle Offset (Chapter 9)

175

CHAPTER 8 I POSITIONING: INDENTED, OFFSET, AND ALIGNED

Aligned Outside

enNne Mozilla Firefox

Aligned Outside =
solute
Absolute Outside
QOutside Top
Top Left Right
Parent

‘ Sized Block Outside Left

Sized Block Outside Right

‘ Sized Float Outside Left Sized Float Outside Right
Absolute Absolute
Qutside Outside
Bottom Bottom
Left Right
HTML

<h1>Aligned Outside</h1>

<div class="parent">Parent
<p class="sized-block-outside-left">Sized Block Outside Left</p>
<p class="sized-block-outside-right">Sized Block Outside Right</p>
<p class="sized-float-outside-left">Sized Float Outside Left</p>
<p class="sized-float-outside-right">Sized Float Outside Right</p>
<p class="top left">Absolute Outside Top Left</p>
<p class="top right">Absolute Outside Top Right</p>
<p class="bottom left">Absolute Outside Bottom Left</p>
<p class="bottom right">Absolute Outside Bottom Right</p>

</div>

CSS

.parent { position:relative; height:140px; width:200px; }

.sized-block-outside-left { width:220px; margin-left:-234px; } .sized-block-outside-right {
width:220px; margin-left:100%; } .sized-float-outside-left { width:220px; margin-left:-234px;
float:left; } .sized-float-outside-right { width:220px; margin-left:100%; float:left; }

.left { position:absolute; right:100%; margin-right:5px; } .right { position:absolute;
left:100%; margin-left:5px; } .top { position:absolute; bottom:100%; margin-bottom:5px; }
.bottom { position:absolute; top:100%; margin-top:5px; }

/* Nonessential rules are not shown. */

176

Aligned Outside

CHAPTER 8 ' POSITIONING: INDENTED, OFFSET, AND ALIGNED

Problem

You want to align an element to the outside of its container. For example, you
want to align the left side of an element to the right side of its container, or vice
versa. Or you want to align the bottom of an element to the top of its container,
or vice versa.

Solution

You can align an absolute element to the outside of any of the four sides of its
closest positioned ancestor. Because 100% is the width of an element’s
container, offsetting an element 100% from one side aligns it to the outside of
the other side. In addition, you can use margin to offset the element further. An
aligned-outside absolute element can be sized or shrinkwrapped.

You can align static blocks and floats to the outside left or right sides of their
parent, but not to the top or bottom. They must be sized. The technique
described previously can align blocks and floats to the outside right, but not to
the outside left. To align blocks and floats to the outside left, you need to put the
negative of the element’s outer width in margin-left. The outer width is the
inner width plus left and right padding and borders.

Patterns

Sized Block Aligned Outside Left

SELECTOR { width:INNER; margin-left:-OUTER; }

Sized Block Aligned Outside Right

SELECTOR { width:INNER; margin-left:100%; }

Sized Float Aligned Outside Left

SELECTOR { width:INNER; margin-left:-OUTER; float:left; }

Sized Float Aligned Outside Right

SELECTOR { width:INNER; margin-left:100%; float:left; }

Absolute Aligned Outside Left

SELECTOR { right:100%; margin-right:+OFFSET; position:absolute; }
Absolute Aligned Outside Right

SELECTOR { left:100%; margin-left:+OFFSET; position:absolute; }
Absolute Aligned Outside Top

SELECTOR { bottom:100%; margin-bottom:+OFFSET; position:absolute; }
Absolute Aligned Outside Bottom

SELECTOR { top:100%; margin-top:+OFFSET; position:absolute; }

Location

This pattern applies to all elements when positioned absolutely.

Limitations

You can’t align inline elements to the outside of their containers. You can’t align
static blocks or floats to the outside top or bottom of their containers. Internet
Explorer 6 can’t outside-align static blocks and floats, but later versions can.

Related to

Aligned and Offset Absolute; Sized, Shrinkwrapped (Chapter 5); Flyout Menu
(Chapter 17)

177

CHAPTER 9

Positioning: Advanced

This is the third of three chapters on positioning. It combines the positioning techniques of the previous
2 chapters into 12 design patterns that align and offset static and positioned elements to the left, center,
right, top, middle, or bottom of their container while stretching, sizing, or shrinkwrapping them. This
chapter focuses on static and absolute positioned elements.

This chapter combines design patterns from Chapter 8 to align and offset elements from their
containers. It also introduces new patterns to align and offset elements from the top, middle, and
bottom of their containers. If you aren’t already familiar with the design patterns in Chapters 5-8, you
may want to review them. Because aligning and offsetting from the left and right sides are similar, you
may want to skim over Right Aligned and Right Offset.

Chapter Outline

e Left Aligned shows how to align an element to the left side of its container.

o Left Offset shows how to offset a left-aligned element.

e Right Aligned shows how to align an element to the right side of its container.
e Right Offset shows how to offset a right-aligned element.

e Center Aligned shows how to align an element to the center of its container.
e Center Offset shows how to offset a center-aligned element.

e Top Aligned shows how to align an element to the top of its container.

¢ Top Offset shows how to offset a top-aligned element.

e Bottom Aligned shows how to align an element to the bottom of its container.
¢ Bottom Offset shows how to offset a bottom-aligned element.

e Middle Aligned shows how to align an element to the middle of its container.

e Middle Offset shows how to offset a middle-aligned element.

179

CHAPTER 9 I POSITIONING: ADVANCED

180

Left Aligned

3 Left Allgned - Mozilla Firefox

Bk Edit Yew Go bookmarks Took Help

Left Aligned

Positioned Grandparent

Mon-positioned Parent

|5|zec| Static Block

| stretched static Block

Slzed Absclute

Shrinkwrapped Absolute

Stretched Absolute l

HTML

<h1>Left Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent

<div 1id="zs" class="example">Sized Static Block </div>
<div id="ss" class="example">Stretched Static Block</div>
Sized Absolute
Shrinkwrapped Absolute
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }
.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:left; margin-top:5px;
width:400px; margin-left:0; margin-right:auto; }

#ss { position:static; text-align:left; margin-top:5px;
width:auto; margin-left:0; margin-right:0; }

#za { position:absolute; text-align:left; top:0; margin-top:155px;
width:400px; left:0; margin-left:0; right:auto; margin-right:auto; }

#wa { position:absolute; text-align:left; top:0; margin-top:200px;
width:auto; left:0; margin-left:0; right:auto; margin-right:auto; }

#sa { position:absolute; text-align:left; top:0; margin-top:245px;
width:auto;left:0; margin-left:0; right:0; margin-right:0;

CHAPTER 9 " POSITIONING: ADVANCED

Left Aligned
Problem You want to align an element and its content to the left side of its parent or closest
positioned ancestor.
Solution To left-align content, assign text-align:1left to the containing block.
To create a left-aligned sized element, you can use width:+VALUE to size it. You can use
margin-left:0 to align it to the left side. You can use margin-right:auto to prevent it
from aligning to the right side. For an absolute element, you can also use left:0 to align
the element to the left side and right:auto to prevent it from aligning to the right side.
To create a left-aligned stretched element, you can use width:auto, margin-left:o,
and margin-right:o0 to stretch its width to the sides of its container. For an absolute
element, you can also use left:0 and right:0 to stretch it to the left and right sides.
To create a left-aligned shrinkwrapped element, you can use width:auto, right:auto,
and margin-right:auto to shrinkwrap the width. You can use left:0 and margin-left:0
to align it to the left side.
Patterns Left-aligned sized static block
BLOCK-SELECTOR { position:static; text-align:left;
width:+VALUE; margin-left:o0;
margin-right:auto; }
Left-aligned stretched static block
BLOCK-SELECTOR { position:static; text-align:left;
width:auto; margin-left:o0;
margin-right:o; }
Left-aligned sized absolute element
SELECTOR { position:absolute; text-align:left;
width:+VALUE; left:o0; margin-left:o0;
right:auto; margin-right:auto; }
Left-aligned shrinkwrapped absolute element
SELECTOR { position:absolute; text-align:left;
width:auto; left:o0; margin-left:o0;
right:auto; margin-right:auto; }
Left-aligned stretched absolute element
SELECTOR { position:absolute; text-align:left;
width:auto; left:o0; margin-left:o0;
right:o; margin-right:o; }
Location This pattern applies to all elements.
Limitations Stretched Absolute patterns don’t work in Internet Explorer prior to version 7.
Related to Left Offset, Right Aligned, Center Aligned; Static, Absolute (Chapter 7); Sized,

Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

181

CHAPTER 9 I POSITIONING: ADVANCED

182

Left Offset

&3 Left OHfset - Mozilla Firefox

Fle Edit Yew Go Eoohrarks Took Hep

Left Offset

Positioned Grandparent

Non-positioned Parent

Sized Btatic Block: +50px

iStretched Static Block: +50px

I Sized Absolute: -30px

Shrinkwrapped Absolute: -50px

Stretched Absolute: -50px

HTML
<h1>Left Offset</h1>

<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block: +50px</div>
<div id="ss" class="ex">Stretched Static Block: +50px</div>
Sized Absolute: -50px
Shrinkwrapped Absolute: -50px

Stretched Absolute:-50px</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }
.ex { padding:5px; border:5px solid black;
div.ex span { margin-left:-60px; border:ipx dotted black; }

span.ex span { margin-left:30px;

#zs { position:static;
width:400px;

#ss { position:static;
width:auto;

#za { position:absolute;
width:400px; 1left:o;

#wa { position:absolute;
width:auto; left:o;

#sa { position:absolute;
width:auto; left:o0;

border:none;

text-align:left;
margin-left:50px;
text-align:left;
margin-left:50px;
text-align:left;
margin-left:-50px;
text-align:left;
margin-left:-50px;
text-align:left;
margin-left:-50px;

}

top:0;
right:auto;

top:0;
right:auto;

top:0;
right:o0;

background-color:gold; }

margin-top:5px;

margin-right:auto; }

margin-top:5px;
margin-right:0;
margin-top:155px;

}

margin-right:auto;}

margin-top:200px;

margin-right:auto;}

margin-top:245px;
margin-right:0;

}

CHAPTER 9 " POSITIONING: ADVANCED

Left Offset
Probl You want to offset an element and its content from the left side of its parent or closest
roblem positioned ancestor.
To offset a left-aligned element from its left side, you can assign a value other than zero
to margin-left. A positive value in margin-1left offsets to the right (toward the inside),
Solution and a negative value offsets to the left (toward the outside). This design pattern is
symmetrical to the Right Offset pattern in every way.
See the Left Aligned design pattern for details on how to left-align an element.
Patterns Left-offset sized static block
BLOCK-SELECTOR { position:static; text-align:left;
width:+VALUE; margin-left:+VALUE; margin-right:auto; }
Left-offset stretched static block
BLOCK-SELECTOR { position:static; text-align:left;
width:auto; margin-left:+VALUE; margin-right:0; }
Left-offset sized absolute element
SELECTOR { position:absolute; text-align:left;
width:+VALUE; left:o0; margin-left:+VALUE;
right:auto; margin-right:auto; }
Left-offset shrinkwrapped absolute element
SELECTOR { position:absolute; text-align:left;
width:auto; left:o0; margin-left:+VALUE;
right:auto; margin-right:auto; }
Left-offset stretched absolute element
SELECTOR { position:absolute; text-align:left;
width:auto; left:o0; margin-left:+VALUE;
right:o; margin-right:o; }
Location This pattern applies to all elements.
Limitati Stretched Absolute patterns don’t work in Internet Explorer for versions prior to 7. Inline
Imftations text can’t extend outside a sized block in Internet Explorer version 6 or 7.
Related to Left Aligned, Right Offset, Center Offset; Offset and Aligned design patterns in Chapter 8

183

CHAPTER 9 I POSITIONING: ADVANCED

Right Aligned

¥ Right Aligned - Mozilla Firefox

Fle Edt Vew Go EBoshmaks Took Help

Right Aligned

Positioned Grandparent

Mon-positioned Parent

Sized Static Blﬂr:kl

Stretched Static Block |

I Sized Absolute

Shrinkwrapped Absolute

l sStretched Absolute

HTML

<h1>Right Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent

<div id="zs" class="example">Sized Static Block </div>
<div id="ss" class="example">Stretched Static Block</div>
Sized Absolute
Shrinkwrapped Absolute
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }
.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:right; margin-top:5px;
width:400px; margin-left:auto; margin-right:0;

#ss { position:static; text-align:right; margin-top:5px;
width:auto; margin-left:0; margin-right:0; }

#za { position:absolute; text-align:right; top:0; margin-top:155px;
width:400px; left:auto; margin-left:auto; right:0; margin-right:0;

#wa { position:absolute; text-align:right; top:0; margin-top:200px;
width:auto; left:auto; margin-left:auto; right:0; margin-right:0; }

#sa { position:absolute; text-align:right; top:0; margin-top:245px;
width:auto; left:0; margin-left:o; right:0; margin-right:o0; }

184

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 " POSITIONING: ADVANCED

Right Aligned
Problem You want to align an element and its content to the right side of its parent or closest
positioned ancestor.
Solution This design pattern is symmetrical to Left Aligned in every way.
To right-align content, assign text-align:right to the containing block.
To create a right-aligned sized element, you can use width:+VALUE to size it. You can
use margin-right:0 to align it to the right side. You can use margin-left:auto to
prevent it from aligning to the left side. For an absolute element, you can also use
right:0 to align the element to the right side and left:auto to prevent it from aligning
to the left side.
To create a right-aligned stretched element, you can use width:auto, margin-left:o,
and margin-right:o0 to stretch its width to the sides of its container. For an absolute
element, you can also use left:0 and right:0 to stretch it to the left and right sides.
To create a right-aligned shrinkwrapped element, you can use width:auto,
left:auto, and margin-left:auto to shrinkwrap the width. You can use right:0 and
margin-right:o0 to align it to the right side.
Patterns Right-aligned sized static block
BLOCK-SELECTOR { position:static; text-align:right;
width:+VALUE; margin-left:auto;
margin-right:o; }
Right-aligned stretched static block
BLOCK-SELECTOR { position:static; text-align:right;
width:auto; margin-left:o0;
margin-right:o; }
Right-aligned sized absolute element
SELECTOR { position:absolute; text-align:right;
width:+VALUE; left:auto; margin-left:auto;
right:0; margin-right:o; }
Right-aligned shrinkwrapped absolute element
SELECTOR { position:absolute; text-align:right;
width:auto; left:auto; margin-left:auto;
right:0; margin-right:o; }
Right-aligned stretched absolute element
SELECTOR { position:absolute; text-align:right;
width:auto; left:o0; margin-left:o0;
right:0; margin-right:o; }
Location This pattern applies to all elements.
Limitations Stretched Absolute doesn’t work in Internet Explorer 6, but it does work in version 7.
Related to Left Aligned, Right Offset, Center Aligned; Static, Absolute (Chapter 7); Sized,

Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

185

CHAPTER 9 I POSITIONING: ADVANCED

Right Offset

&3 Right Offset - Mozilla Firefox

Pl Edit Yew ©Go Bockmaks Took Hep

Right Offset

Positioned Grandparent

Mon-positioned Parent

iSized Static Block: | 50px

Strefched Static Block: I 50p%

Slzed Absolute: -50px

Shrinkwrapped Absolute: -50px
Stretched Absolute: -50px
|

HTML

<h1>Right Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block: +50px</div>
<div id="ss" class="ex">Stretched Static Block: +50px</div>
Sized Absolute: -50px
Shrinkwrapped Absolute: -50px
Stretched Absolute:-50px</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }

.ex { padding:5px; border:5px solid black; background-color:gold; }

div.ex span { margin-right:-60px; border:ipx dotted black; }

span.ex span { margin-right:30px; border:none; }

#zs { position:static; text-align:right; margin-top:5px;
width:400px; margin-left:auto; margin-right:50px; }

#ss { position:static; text-align:right; margin-top:5px;
width:auto; margin-left:o0; margin-right:50px; }

#za { position:absolute; text-align:right; top:0; margin-top:155px;
width:400px; left:auto; margin-left:auto; right:o; margin-right:-s50px; }

#wa { position:absolute; text-align:right; top:0; margin-top:200px;
width:auto; left:auto; margin-left:auto; right:o; margin-right:-50px; }

#sa { position:absolute; text-align:right; top:0; margin-top:245px;
width:auto; left:o; margin-left:0; right:o0; margin-right:-50px;

186

CHAPTER 9 " POSITIONING: ADVANCED

Right Offset

Problem You want to align an element and its content to the right side of its parent or closest
positioned ancestor.

Solution To offset a right-aligned element from its right side, you can assign a value other than
zero to margin-right. A positive value in margin-right offsets to the left (toward the
inside), and a negative value offsets to the right (toward the outside). This design
pattern is symmetrical to the Left Offset pattern in every way.

See the Right Aligned design pattern for details on how to right-align an element.

Patterns Right-offset sized static block
BLOCK-SELECTOR { position:static; text-align:right;

width:+VALUE; margin-left:auto;
margin-right:+VALUE; }
Right-offset stretched static block
BLOCK-SELECTOR { position:static; text-align:right;
width:auto; margin-left:o0;
margin-right:+VALUE; }
Right-offset sized absolute element
SELECTOR { position:absolute; text-align:right;
width:+VALUE; left:auto; margin-left:auto;
right:o; margin-right:+VALUE; }
Right-offset shrinkwrapped absolute element
SELECTOR { position:absolute; text-align:right;
width:auto; left:auto; margin-left:auto;
right:o; margin-right:+VALUE; }
Right-offset stretched absolute element
SELECTOR { position:absolute; text-align:right;
width:auto; left:o0; margin-left:o0;
right:o; margin-right:+VALUE; }

Location This pattern applies to all elements.

Limitations Stretched Absolute doesn’t work in Internet Explorer for versions prior to 7.

Related to Left Offset, Right Aligned, Center Offset; Offset and Aligned design patterns in

(Chapter 8)

187

CHAPTER 9 I POSITIONING: ADVANCED

Center Aligned

&3 Center Aligned - Mozilla Firefox

Fle Edit View Go EBookmarks Toak Help

Center Aligned

Positionad Grandparent

hWon-positioned Parent

Slzed Static Block

Stretched Static Block |

Sized Absolute

An element can't be shrinkwrapped if it is centered.

Stretched Absolute

HTML

<h1>Center Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent

<div id="zs" class="example">Sized Static Block </div>
<div 1id="ss" class="example">Stretched Static Block</div>
Sized Absolute
An element can't be shrinkwrapped if it is centered.
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }
.example { padding:5px; border:5px solid black; background-color:gold; }

#zs { position:static; text-align:center; margin-top:5px;
width:400px; margin-left:auto; margin-right:auto; }
#ss { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:70px; margin-right:70px; }
#za { position:absolute; text-align:center; top:0; margin-top:155px;
width:67%; left:0; margin-left:auto; right:o0; margin-right:auto; }
#wa { position:absolute; text-align:center; top:0; margin-top:200px;
width:auto; left:o; margin-left:0; right:0; margin-right:0; }
#sa { position:absolute; text-align:center; top:0; margin-top:245px;
width:auto; left:0; margin-left:15%; right:0; margin-right:15%; }

188

CHAPTER 9 " POSITIONING: ADVANCED

Center Aligned

Problem

You want to align an element and its content to the horizontal center of its parent or
closest positioned ancestor.

Solution To center-align content, assign text-align:center to its containing block.

To create a center-aligned sized element, you can use margin-left:auto; and
margin-right:auto; and set width:+VALUE to size it. For absolute elements, you can
also use right:0 and left:0 to align the element to the left and right sides.

To create a center-aligned stretched element, set margin-left and margin-right to
the same value. A larger value shrinks the element, and a smaller value grows it. For
absolute stretched elements, you can also use left:0 and right:o.

Patterns Center-aligned sized static block
BLOCK-SELECTOR { position:static; text-align:center;

width:+VALUE; margin-left:auto;
margin-right:auto; }
Center-aligned stretched static block
BLOCK-SELECTOR { position:static; text-align:center;
width:auto; margin-left:+VALUE;
margin-right:+VALUE; }
Center-aligned sized absolute element
SELECTOR { position:absolute; text-align:center;
width:+VALUE; left:o; margin-left:auto;
right:o0; margin-right:auto; }
Center-aligned stretched absolute element
SELECTOR { position:absolute; text-align:center;
width:auto; left:o; margin-left:+VALUE;
right:o; margin-right:+VALUE; }

Location This pattern applies to all elements.

Limitations A horizontally shrinkwrapped element can’t be center aligned.

Internet Explorer 6 can’t center absolute elements; version 7 can center stretched
absolute elements but still can’t center sized absolute elements. Versions 8 and forward
do center sized absolute elements.

Tips A center-aligned sized pattern keeps the width constant and grows the margins
dynamically. A center-aligned stretched pattern grows the width dynamically and keeps
the margins constant. You can use percentages for widths and margins. A percentage
sizes the width or margin proportional to the width of the containing block.

Related to Left Aligned, Right Aligned, Center Offset; Static, Absolute (Chapter 7); Sized,

Shrinkwrapped, Stretched (Chapter 5); Aligned design patterns in Chapter 8

189

CHAPTER 9 I POSITIONING: ADVANCED

190

Center Offset

3 Center Dffset - Mozilla Firefox

Fl=e Edit View Go Bookmaks Took He=p

Center Offset

Positioned Grandparent

Mon-positionad Parent

A Sized Static Block can't be center offset.,
Stretched Static Block —> 40px

Sized Absolute —-> 40px

An element can't be shrinkwrapped if it is centered.

Stretched Absolute --> 40px

HTML

<h1>Center Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" >
A sized static block can't be center offset.</div>
<div id="ss" class="ex">Stretched Static Block → 40px</div>
Sized Absolute → 40px
An element can't be shrinkwrapped if it is centered.
Stretched Absolute → 40px
</div></div>

CSS

.gp { position:relative; height:295px; width:600px; border:2px solid black; }

.parent { margin:10px; padding:10px; padding-top:0; border:1px solid black; }

.ex { padding:5px; border:5px solid black; background-color:gold; }

.ex span { margin-left:-4o0px; }

#zs { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:90px; margin-right:10px;

#ss { position:static; text-align:center; margin-top:5px;
width:auto; margin-left:90px; margin-right:10px; }

#za { position:absolute; text-align:center; top:0; margin-top:155px;
width:440px; left:80px; margin-left:auto; right:0; margin-right:auto; }

#wa { position:absolute; text-align:center; top:0; margin-top:200px;
width:auto; left:o; margin-left:110px; right:0; margin-right:30px;

#sa { position:absolute; text-align:center; top:0; margin-top:245px;
width:auto; left:o0; margin-left:110px; right:0; margin-right:30px;

}

}
}

CHAPTER 9 " POSITIONING: ADVANCED

Center Offset

Problem

You want to align an element and its content to the center of its parent or closest
positioned ancestor and then offset it from the center.

Solution

To create a center-offset inline element, you can use margin-left:+VALUE to offset the
element to the right and margin-left:-VALUE to offset it to the left. Also assign text-
align:center to the containing block element.

To create a center-offset sized absolute element, you can use a positive value in left to
offset to the right and a negative value to offset to the left. You can also assign the following
to the element: margin-left:auto;, margin-right:auto;, and right:0;, and set
width:+VALUE to size the element.

To create a center-offset stretched element, set margin-left and margin-right to the
same value. A larger value shrinks the element, and a smaller value grows it. To offset it to
the left, subtract the desired offset from margin-left and add it to margin-right. To offset
it to the right, add the desired offset to margin-left and subtract it from margin-right.
For absolute stretched elements, you can also use left:0 and right:o.

A sized static block element can’t be center offset.
A shrinkwrapped absolute element can’t be center offset.

Patterns

Center-offset inline element

INLINE-SELECTOR { margin-left:+VALUE; }
BLOCK-SELECTOR { text-align:center; }

Center-offset stretched static block
BLOCK-SELECTOR { position:static; text-align:center;

width:auto; margin-left:+VALUE;
margin-right:+VALUE; }

Center-offset sized absolute element
SELECTOR { position:absolute; text-align:center;

width:+VALUE; left:+VALUE; margin-left:auto;
right:o; margin-right:o0; }

Center-offset stretched absolute element
SELECTOR { position:absolute; text-align:center;

width:auto; left:o; margin-left:+VALUE;
right:o; margin-right:+VALUE; }

Location

This pattern applies to all elements.

Limitations

Same as Center Aligned.

Example

Notice how each block is centered and then offset to the right by 80 pixels. Also notice how
the text in each block is centered and then offset to the left by 40 pixels.

Related to

Left Offset, Right Offset, Center Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5); Offset and Aligned design patterns in Chapter 8

191

CHAPTER 9 I POSITIONING: ADVANCED

192

Top Aligned

3 Top Aligned - Mozilla Firefox
Fle Edit View History EBoobmaks Took Help

Top Aligned
Positioned Grandparent Sized

I Shrinkwrapped Stretched |
Non-positioned Parent Abzolute Absolute Abszolute

Sized Static
Block

Shrinkwrapped
Static Block

HTML

<h1>Top Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }

.ex { padding:5px; border:5px solid black; background-color:gold;
width:120px; text-align:center; position:relative; }

.ex span { left:0; width:130px; height:auto; }

#zs { height:100px; margin-top:0; margin-bottom:auto;
position:static;

#ws { height:auto; margin-top:0; margin-bottom:auto;
position:static;

#za { height:100px; top:0; margin-top:0; bottom:auto; margin-bottom:auto;
position:absolute; margin-left:200px; }

#wa { height:auto; top:0; margin-top:0; bottom:auto; margin-bottom:auto;
position:absolute; margin-left:355px; }

#sa { height:auto; top:0; margin-top:0; bottom:0; margin-bottom:0;
position:absolute; margin-left:510px; }

CHAPTER 9 " POSITIONING: ADVANCED

Top Aligned

You want to align an element and its content to the top of its parent or closest positioned

Problem ancestor.

To create a top-aligned sized element, you can use height:+VALUE to size it. You can use
margin-top:0 to align it to the top. You can use margin-bottom:auto to prevent it from
aligning to the bottom. For an absolute element, you can also use top:0 to align the
element to the top and bottom:auto to prevent it from aligning to the bottom.

To create a top-aligned shrinkwrapped element, you can use height:auto,

Solution bottom:auto, and margin-bottom:auto to shrinkwrap the height. You can use top:0 and
margin-top:0 to align it to the top.
To create a top-aligned stretched element, you can use height:auto, margin-top:0, and
margin-bottom:0 to stretch its height to the top and bottom of its container. For an
absolute element, you can also use top:0 and bottom:0 to stretch it to the top and bottom.
Patterns Top-aligned sized static block
BLOCK-SELECTOR { position:static; height:+VALUE;
margin-top:0; margin-bottom:auto; }
Top-aligned shrinkwrapped static block
BLOCK-SELECTOR { position:static; height:auto;
margin-top:0; margin-bottom:0; }
Top-aligned sized absolute element
SELECTOR { position:absolute; height:+VALUE;
margin-top:0; margin-bottom:auto;
top:0; bottom:auto; }
Top-aligned shrinkwrapped absolute element
SELECTOR { position:absolute; height:auto;
margin-top:0; margin-bottom:auto;
top:0; bottom:auto; }
Top-aligned stretched absolute element
SELECTOR { position:absolute; height:auto;
margin-top:0; margin-bottom:0;
top:0; bottom:0; }
Location This pattern applies to all elements.
s Stretched Absolute doesn’t work in Internet Explorer 6, but it does work in more recent
Limitations

versions.

A browser renders blocks and content starting at the top of their containers and flows them
Tip down. This automatically aligns the first item to the top of its container and the top of the
next item to the bottom of the previous item.

Top Offset, Bottom Aligned, Middle Aligned; Static, Absolute (Chapter 7); Sized,

Related to Shrinkwrapped, Stretched (Chapter 5)

193

CHAPTER 9 I POSITIONING: ADVANCED

194

Top Offset

&3 Top Offset - Mozilla Firefox

Fl Edit WYWew Ge Goohnaks Took Hep

Top Offset

Positioned Grandparant
MNon-positioned Parent
Sized Static Sized Shrinkwrapped Stretched
Block Absolute Absolute Absolute
Shrinkwrapped
Static Block
——— |
HTML

<h1>Top Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent

<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>

Sized Absolute

<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black; }
.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }
.ex { padding:5px; border:5px solid black; background-color:gold;

width:120px; text-align:center; position:relative;
.ex span { left:0; width:130px; height:auto; }

#zs { height:100px; margin-top:25px;
position:static;
#ws { height:auto; margin-top:-70px;
position:static;

#za { height:100px; top:0; margin-top:70px; bottom:auto;
position:absolute;

#wa { height:auto; top:0; margin-top:70px; bottom:auto;
position:absolute;

#sa { height:auto; top:0; margin-top:70px; bottom:0;
position:absolute;

}

margin-bottom:0;

margin-bottom:0;
background-color:yellow; }
margin-bottom:auto;
margin-left:200px; }
margin-bottom:0;
margin-left:355px; }
margin-bottom:0;
margin-left:510px; }

Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 " POSITIONING: ADVANCED

Top Offset

Problem You want to offset an element and its content from the top of its parent or closest
positioned ancestor.

Solution To offset a top-aligned element from the top, you can assign a value other than zero to
margin-top. A positive value in margin-top offsets down (toward the inside), and a
negative value offsets up (toward the outside).

This design pattern is symmetrical to the Bottom Offset pattern, except content inside
bottom-offset elements can’t be automatically aligned to the bottom.
See the Top Aligned design pattern for details on how to top-align an element.
Patterns Top-offset sized static block
BLOCK-SELECTOR { position:static; height:+VALUE;
margin-top:+VALUE; margin-bottom:auto; }
Top-offset shrinkwrapped static block
BLOCK-SELECTOR { position:static; height:auto;
margin-top:+VALUE; margin-bottom:0; }
Top-offset sized absolute element
SELECTOR { position:absolute; height:+VALUE;
margin-top:+VALUE; margin-bottom:auto;
top:0; bottom:auto; }
Top-offset shrinkwrapped absolute element
SELECTOR { position:absolute; height:auto;
margin-top:+VALUE; margin-bottom:auto;
top:0; bottom:auto; }
Top-offset stretched absolute element
SELECTOR { position:absolute; height:auto;
margin-top:+VALUE; margin-bottom:0;
top:0; bottom:0; }

Location This pattern applies to all elements.

Limitations Stretched Absolute doesn’t work in Internet Explorer 6, but it does work in all newer
versions.

Example The shrinkwrapped static block has a negative top margin that moves it up and over the
previous sized static block.

Related to Top Aligned, Bottom Offset, Middle Offset

195

CHAPTER 9 I POSITIONING: ADVANCED

196

Bottom Aligned

&3 Rottom Alipned - Mozilla Firefox
Fle Edit Vew Hitory Eookmaks Took Help

Bottom Aligned

Positioned Grandparent

Non-positionad Parent

Sized Static
Block

Shrinkwrapped
Static Block

Shrinkwrapped Stretched
Sized Absolute Absolute Absolute

HTML

<h1>Bottom Aligned</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black; }

.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }

.ex { padding:5px; border:5px solid black; background-color:gold;
width:120px; text-align:center; position:relative; }

.ex span { height:auto; left:0; width:130px; }

span.ex span {position:absolute;top:auto;margin-top:auto;bottom:0;maxgin-bottom:0;
#zs { height:100px; margin-top:auto; margin-bottom:0;
position:static; margin-left:opx;
#ws { height:auto; margin-top:auto; margin-bottom:0;
position:static;
#za { height:100px; top:auto; margin-top:auto; bottom:0; margin-bottom:0;
position:absolute; margin-left:200px;
#wa { height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:0;
position:absolute; margin-left:355px;
#sa { height:auto; top:0; margin-top:0; bottom:0; margin-bottom:0;
position:absolute; margin-left:510px;

L S N " W)

CHAPTER 9 " POSITIONING: ADVANCED

Bottom Aligned

Problem

You want to align an element and its content to the bottom of its parent or closest
positioned ancestor.

Solution

This design pattern is symmetrical to Top Aligned except that it applies this pattern twice:
once to the element and once to the element’s content.

To create a bottom-aligned sized element, you can use height :+VALUE to size it. You
can use margin-bottom:0 to align it to the bottom. You can use margin-top:auto to
prevent it from aligning to the top. For an absolute element, you can also use bottom:0 to
align the element to the bottom and top:auto to prevent it from aligning to the top.

You can’t bottom-align a static shrinkwrapped element because normal flow
determines its position.

To create a bottom-aligned skrinkwrapped absolute element, you can use bottom:0
and margin-bottom:0 to align it to the bottom. You can use height:auto, top:auto, and
margin-top:auto to shrinkwrap the height.

To create a bottom-aligned stretched element, you can use height:auto, margin-
bottom:0, and margin-top:0 to stretch its height to the bottom and top of its container.
For an absolute element, you can also use bottom:0 and top:0 to stretch it.

Patterns

Bottom-aligned sized static block
BLOCK-SELECTOR { position:static; height:+VALUE;
margin-top:auto; margin-bottom:0; }

Bottom-aligned sized absolute element

SELECTOR { position:absolute; height:+VALUE;
margin-top:auto; margin-bottom:0;
top:auto; bottom:0; }

Bottom-aligned shrinkwrapped absolute element

SELECTOR { position:absolute; height:auto;
margin-top:auto; margin-bottom:0;
top:auto; bottom:0; }

Bottom-aligned stretched absolute element
SELECTOR { position:absolute; height:auto;

margin-top:0; margin-bottom:0;
top:0; bottom:0; }

Location

This pattern applies to all elements.

Limitations

Stretched Absolute doesn’t work in Internet Explorer 6, but it does work in newer
versions.

Tip

There is no property to align content to the bottom of its container. Instead, you need to
use this design pattern to align content to the bottom of its parent. See the absolutely
positioned spans in the example. Note that when a parent is shrinkwrapped, positioning
its content collapses its height.

Related to

Top Aligned, Bottom Offset, Middle Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

197

CHAPTER 9 I POSITIONING: ADVANCED

198

Bottom Offset

&3 Bottom Offset - Mozilla Firefox

File Edit View Go CGoohmarks Took Hep

Bottom Offset

Positioned Grandparent

Mon-positioned Parent]
Sized Static
Block
Shrinkwrapped
Static Block
Shrinkwrapped Stretched
Sized Absolute Absolute Absclute
HTML

<h1>Bottom Offset</h1>
<div class="gp">Positioned Grandparent
<div class="parent">Non-positioned Parent
<div id="zs" class="ex">Sized Static Block</div>
<div id="ws" class="ex">Shrinkwrapped Static Block</div>
<span»Sized Absolute
<div id="wa" class="ex">Shrinkwrapped Absolute</div>
<span»Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black; }

.parent { margin:10px; padding:10px; padding-top:0; border:ipx solid black; }

.ex { padding:5px; border:5px solid black; background-color:gold;
width:120px; text-align:center; position:relative; }

.ex span { height:auto; left:0; width:130px; }

span.ex span{position:absolute;top:auto;margin-top:auto;bottom:5px;margin-bottom:0;}

#zs { height:100px; margin-top:auto; margin-bottom:-70px;
position:static; }
#ws { height:auto; margin-top:auto; margin-bottom:120px;
position:static; background-color:yellow; }
#za { height:100px; top:auto; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:200px; }
#wa { height:auto; top:auto; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:355px; }
#sa { height:auto; top:0; margin-top:auto; bottom:0; margin-bottom:50px;
position:absolute; margin-left:510px; }

CHAPTER 9 " POSITIONING: ADVANCED

Bottom Offset

You want to offset an element and its content from the bottom of its parent or closest

Problem positioned ancestor.

To offset a bottom-aligned element from the bottom, you can assign a value other
than zero to margin-bottom. A positive value in margin-bottom offsets up (toward the
inside), and a negative value offsets down (toward the outside).

Solution This design pattern is symmetrical to Top Offset except that it applies this pattern twice:
once to the element and once to the element’s content.
See the Bottom Aligned design pattern for details on how to top-align an element.
Patterns Bottom-offset sized static block
BLOCK-SELECTOR { position:static; height:+VALUE;
margin-top:auto; margin-bottom:+VALUE; }
Bottom-offset sized absolute element
SELECTOR { position:absolute; height:+VALUE;
margin-top:auto; margin-bottom:+VALUE;
top:auto; bottom:0; }
Bottom-offset shrinkwrapped absolute element
SELECTOR { position:absolute; height:auto;
margin-top:auto; margin-bottom:+VALUE;
top:auto; bottom:0; }
Bottom-offset stretched absolute element
SELECTOR { position:absolute; height:auto;
margin-top:0; margin-bottom:+VALUE;
top:0; bottom:0; }
Location This pattern applies to all elements.
Limitati Stretched Absolute doesn’t work in Internet Explorer 6, but it does work in newer
Imftations versions.
There is no property to align content to the bottom of its container. Instead, you need to
Ti apply this design pattern to the content to align it to the bottom of its parent. See the
P absolutely positioned spans in the example. Note that when a parent is shrinkwrapped,
positioning its content collapses its height.
The sized static block has a negative bottom margin that moves the shrinkwrapped
E | static block up and over it. The shrinkwrapped static block has a large bottom margin
Xample that lowers the bottom of its parent. Notice how the example applies this pattern to the
sized and stretched absolute elements and to the spans within them.
Related to Top Offset, Bottom Aligned, Middle Offset

199

CHAPTER 9 I POSITIONING: ADVANCED

200

Middle Aligned

£ Middle Aligned - Mozilla Firefox

Eie Edt Yew History Gookmarks

Tools Helb

Middle Aligned

INLINE

Sized Absolute

Can't

middle-align a
static elementg

ora

shrinkwrapped

element.

Stretched
Absolute

HTML

<h1>Middle Aligned</h1>
<div class="gp">

<div id="ia" class="ex1 ex2">INLINE</div>

<div id="za" class="ex1 ex2">Sized Absolute</div>
<div id="wa" class="ex1">Can't middle-align a static element
or a shrinkwrapped element.</div>

<div id="sa" class="ex1 ex2">Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black;
.ex1 { width:120px; padding:5px; text-align:center; border:ipx dotted black;

.ex2 { position:relative; border:5px solid black;
.ex1 span { height:36px; left:0; width:130px;

}
}
background-color:gold; left:0; }
}

position:absolute; top:0; margin-top:auto; bottom:0; margin-bottom:auto;

#ia { height:100px; top:0;

position:absolute;

#za { height:100px; top:0;

position:absolute;

#wa { height:auto; top:0;

position:absolute;

#sa { height:auto; top:0;

position:absolute;

margin-top:auto; bottom:0;

line-height:100px;

margin-top:auto; bottom:0;
margin-top:90px; bottom:0;

margin-top:90px; bottom:0;

margin-bottom:auto;

margin-left:40px; }

maxgin-bottom:auto;

margin-left:200px; }

margin-bottom:90px;

margin-left:355px; }

margin-bottom:90px;

margin-left:510px; }

CHAPTER 9 " POSITIONING: ADVANCED

Middle Aligned

Problem

You want to align an element and its content to the vertical middle of its closest
positioned ancestor.

Solution

To create a middle-aligned inline element, assign line-height:+VALUE to the same
measurement or percentage assigned to the height of its parent. This pattern requires the
element’s parent to be sized.

To create a middle-aligned sized absolute element, set height to size it. You can use
top:0 and bottom:0 to align the element to the top and bottom. You can use margin-
top:auto and margin-bottom:auto to realign the element to the middle.

To create a middle-aligned stretched absolute element, set margin-top and margin-
bottom to the same value. A larger value shrinks the element, and a smaller value grows it.
A negative value expands the element beyond the height of its container. You can use
top:0 and bottom:0 to align the element to the top and bottom.

A static element can’t be middle aligned.
A shrinkwrapped element can’t be middle aligned.

Patterns

Middle-aligned inline element
SELECTOR { line-height:+VALUE; }

Middle-aligned sized absolute element

SELECTOR { position:absolute; height:+VALUE;
margin-top:auto; margin-bottom:0;
top:0; bottom:0; }

Middle-aligned stretched absolute element
SELECTOR { position:absolute; height:auto;

margin-top:+VALUE; margin-bottom:+VALUE;
top:0; bottom:0; }

Location

This pattern works only on absolute elements.

Limitations

Internet Explorer 6 can’t middle-align absolute elements. Version 7 can middle-align
stretched absolute elements but not sized absolute elements. These problems are resolved
in versions 8 and 9.

Tip

There is no text-align property to align content to the middle. Instead, you need to wrap
content in an inline element, absolutely position it, and align it to the middle. This
technique only works with elements that are inside stretched or sized absolute elements.

Example

In the example, this pattern aligns the content in each division to the middle of its parent
division. The inline content is middle aligned. The elements are middle aligned.
The divisions are middle aligned.

Related to

Center Offset, Top Aligned, Bottom Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

201

CHAPTER 9 I POSITIONING: ADVANCED

202

Middle Offset

3 Middle Offset - Mozilla Firefox

File Edit View Go Coohmarks Took Help

Middle Offset

INLINE Sized Absolute] a static

: Can't :
i middle-offset |

i element ora |
i shrinkwrapped |
i element.

Stretched
Absolute

HTML

<h1>Middle Offset</h1>
<div class="gp">

<div id="ia" class="ex1 ex2">INLINE</div>
<div id="za" class="ex1 ex2">Sized Absolute</div>
<div id="wa" class="ex1"s>Can't middle-offset a static element

or a shrinkwrapped element.</div>

<div id="sa" class="ex1 ex2">Stretched Absolute</div></div>

CSS

.gp { position:relative; height:300px; width:700px; border:2px solid black;
.ex1 { width:120px; padding:5px; text-align:center; border:ipx dotted black;

.ex2 { position:relative; border:5px solid black;

.ex1 span { height:36px; left:0; width:130px;
position:absolute; top:0; margin-top:auto; bottom:0; margin-bottom:auto; }

#ia { height:100px; top:60px; margin-top:auto;

position:absolute;

#za { height:100px; top:60px; margin-top:auto;

position:absolute;
#wa { height:auto; top:0;

position:absolute;
#sa { height:auto; top:0;

position:absolute;

line-height:100px;

margin-top:150px; bottom:0;

margin-top:150px; bottom:0;

background-color:gold; left:0; }

bottom:-60px; margin-bottom:auto;

margin-left:4o0px; }

bottom:-60px; margin-bottom:auto;

margin-left:200px; }
margin-bottom:30px;
margin-left:355px; }
margin-bottom:30px;
margin-left:510px; }

Middle Offset

CHAPTER 9 " POSITIONING: ADVANCED

Problem

You want to align an element and its content to an offset from the vertical middle of its
closest positioned ancestor.

Solution

To create a middle-offset sized absolute element, you can use the Middle-aligned
Sized Absolute Element pattern and set top to the desired offset and set bottom to the
inverse of the desired offset.

To create a middle-offset stretched absolute element, you can use the Middle-
aligned Stretched Absolute Element pattern and add the desired offset to margin-top
and subtract the desired offset from margin-bottom.

An inline element can’t be middle-offset.
A static element can’t be middle-offset.
A shrinkwrapped element can’t be middle-offset.

Patterns

Middle-offset sized absolute element

SELECTOR { position:absolute; height:+VALUE;
margin-top:auto; margin-bottom:0;
top:+VALUE; bottom:+VALUE; }

where top = top + OFFSET and bottom = bottom - OFFSET

Middle-offset stretched absolute element

SELECTOR { position:absolute; height:auto;
margin-top:+VALUE; margin-bottom:+VALUE;
top:0; bottom:0; }
wheremargin-top = margin-top + OFFSET
andmargin-bottom =margin-bottom — OFFSET

Location

This pattern works only on absolute elements.

Limitations

Internet Explorer 6 can’t middle-align absolute elements. Version 7 can middle-align
stretched absolute elements but not sized absolute elements. Both issues have been
resolved in versions 8 and 9.

Example

This example is the same as the middle-aligned example, except it’s offset by 60 pixels.
The first two divisions are sized absolute elements. I offset them from the middle by
setting top to an offset of 60 pixels and bottom to the inverse offset of 60 pixels. The
last two divisions are stretched absolute elements. I vertically centered them by
assigning them to a margin-top and margin-bottom of 90 pixels. I then offset them
from the middle by adding 60 pixels to margin-top to create a value of 150px, and
subtracting 60 pixels from margin-bottom to create a value of 30px.

Related to

Center Offset, Top Aligned, Bottom Aligned; Static, Absolute (Chapter 7); Sized,
Shrinkwrapped, Stretched (Chapter 5)

203

CHAPTER 10

Styling Text

This is the first of three chapters containing design patterns that style text. The next chapter discusses
how to put space around text. Chapter 12 discusses how to align text. Strictly speaking, this is the only
chapter that actually styles text. The following two chapters style inline elements, which can contain text
or be replaced by images, objects, controls, movies, and so on.

Chapter Outline

Font shows how to style text using fonts.
Highlight shows how to highlight text using color and tiled background images.

Text Decoration shows how to create custom styles for underlines, overlines, and
line-throughs.

Text Shadow shows how to automatically generate shadows behind text in
Internet Explorer 6 and Safari.

Text Replacement with Image shows how to replace text with an image. The text
is readable by screen readers and degrades nicely when the image is unavailable.
This is an essential tool for making sites beautiful and accessible.

Text Replacement with canvas and VML (Vector Markup Language) consists of
two separate parts: a font generator, which converts fonts to a proprietary format
using VML, and a rendering engine. An advantage of this technique is that users
can select and copy the text, whereas this is impossible with the image-
replacement method.

Font Embedding is a CSS3 alternative to the text-replacement techniques, which
uses the @font-face attribute to directly download a font file from the server
before applying it to an element.

Invisible Text shows how to hide text without adding markup. It isn’t as useful as
Text Replacement but requires no additional markup.

Screenreader-only shows how to make text readable by screen readers while
completely hiding it from sighted users. This is an essential tool for making sites
accessible for nonsighted users while keeping them uncluttered for sighted users.

205

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10 * STYLING TEXT

206

Font

= Font - Mozllla Firefox

Fle Edit Uiew Go Eoolrmerks Took Hep

Font

font-family: sans sarif serif monosSpace
font-size: small medium large

color: black

font-style: normal italic

font-weight: normal bold

font-variant: narmal SMALLCAPS

text-transform: none lowercase UPPERCASE Capitalize

HTML

<h1>Font</h1>

<p><code>font-family:</code>sans serif
serif monospace</p>

<p><code>font-size:</code>small
mediumlarge</p>

<p><code>color:</code>black

gold</p>
<p><code>font-style:</code>normal
italic</p>
<p><code>font-weight:</code>normal
bold</p>
<p><code>font-variant:</code>normal
smallcaps</p>
<p><code>text-transform:</code>none
lowercaseuppercase
capitalize</p>

CSS

.family1 { font-family:sans-serif; }
.family3 { font-family:monospace; }
.size1 { font-size:small; }

.size3 { font-size:large; }

.style1 { font-style:normal; }
.weight1 { font-weight:normal; }
.variant1 { font-variant:normal; }
.colorl { color:black; }

.trans1 { text-transform:none; }
.trans3 { text-transform:uppercase; }

.family2 { font-family:serif; }
.size2 { font-size:medium; }

.style2 { font-style:italic; }
.weight2 { font-weight:bold; }
.variant2 { font-variant:small-caps; }
.color2 { color:gold; }

.trans2 { text-transform:lowercase; }
.trans4 { text-transform:capitalize; }

Font

CHAPTER 10 I STYLING TEXT

Problem

You want to style text using a font and various font attributes.

Solution

What we call a “font” is actually a set of fonts designed to work together to create normal,
bold, italic, and small-cap effects. CSS calls this a font family. When you set font properties,
the browser and the operating system choose a font from the font family that most closely
matches your request. If your requested font is unavailable, such as a small-cap serif font,
the operating system chooses the closest font and simulates the requested font.

A font has two other important attributes: color and case. A font can be rendered in any
color, but some fonts can’t render certain cases. For example, some fonts have only
uppercase characters, and most fonts don’t have small-cap characters, which are small
uppercase characters.

CSS has seven properties that style the font in which text is rendered.

Use font-family to direct the browser to select a font from a comma-delimited list of
fonts. If a browser can’t find your first choice, it attempts to find your second choice, and so
forth. The last font in the list should be one of the standard font-name constants: sans-
serif, serif, ormonospace. You should place the font name in quotes if it contains spaces.

Use font-size to size a font. You can use ems or a percentage when you want a size
relative to the font size of an element’s parent. You can use one of the built-in constants
such as xx-small, x-small, small, medium, large, x-1arge, or xx-large. You can use pixels
when you want a specific size, but you can’t count on this size in your layouts because a
browser increases or decreases font sizes when zooming in or out for a user. Also be aware
that Internet Explorer 6 can’t enlarge fixed-size fonts when zooming in, which causes
accessibility problems.

Use color to set the color of the font, which should contrast with the background-color;
otherwise, text will be hard to read or invisible. You can use font-style:italic to make the
text italic. You can use font-weight:bold to make the text bold. You can use text-
transform to change the text’s case to lowercase, uppercase, or capitalize. You can use
font-variant:smallcaps to render the text in small caps. You can simulate small caps by
shrinking the font size to 0.8em and using text-transform: uppercase.

Pattern

SELECTOR { font-family:FONT,FONT,etc; color:COLOR; font-size:+VALUE; font-
style:NORMAL_ITALIC; font-weight:NORMAL BOLD; font-variant:NORMAL_SMALLCAPS;
font-transform: LONERCASE_UPPERCASE_CAPITALIZE; }

Location

This pattern applies to any type of element.

Tip

Because font-size is inherited, you can assign font-size:small to <body> and use
percents or ems to scale the font-size as needed.

Related to

Inline Decoration (Chapter 11); Vertical-aligned Content, Subscript and Superscript, Nested
Alignment (Chapter 12); Dropcap design patterns (Chapter 18)

207

CHAPTER 10 © STYLING TEXT

208

Highlight

=3 Highlight - Mozilla Firefox

Flke Edit Yew Go CGookmarks Toak Help

Highlight

You can insert a highlight in any inline context. gllllil-ls+1gE

il ERGEEE A highlight is a QilE LMLl W 1004 and a [2EEE el R

applied to an inline element. [EEEElgEl 2round a highlight can improve its
visual appeal. You can Increase the line height to make room for extra

padding.

HTML

<p>You can insert a

highlight
in any inline context.
Highlights can span multiple
lines. A highlight is a
foreground color</span» and a
<span class="highlight cyan-on-royalblue"sbackground coloxr
applied to an inline element.
<span class="highlight palegreen-on-darkgreen"»Padding</span»
around a highlight can improve its visual appeal. You can increase the
<span class="highlight textured"sline height
to make room for extra padding.
</p>

CSS

p { margin-top:20px; letter-spacing:0.5px; line-height:1.9em; }

-highlight { color:white; background-color:black;
padding-left:0.25em; padding-right:0.25em;
padding-top:0.05em; padding-bottom:0.13em;
background-image:none; }

.black-on-gold { color:black; background-color:gold; }
.white-on-firebrick { color:white; background-color:firebrick; }
.cyan-on-royalblue { color:lightcyan; background-color:royalblue; }
.palegreen-on-darkgreen { color:palegreen; background-color:darkgreen; }
.textured { color:black; background-color:white;
background-image:url("paper.jpg"); }

CHAPTER 10 I STYLING TEXT

Highlight

Problem You want to highlight text with a background color and a forecolor. You optionally want to
highlight text with a background image.

Solution A highlight is colored text superimposed on a contrasting background color or tiled image.
To create a highlight, apply the following styles:
color sets the foreground color of the text.
background-color sets the background color of the text.
padding-left:+VALUE sets the padding distance on the left side.
padding-right:+VALUE sets the padding distance on the right side.
padding-top:+VALUE sets the padding distance on the top.
padding-bottom:+VALUE sets the padding distance on the bottom.
background-image uses a tiled image as the highlight. This can be omitted or set to none if
you don’t want to use a background image.
background-position sets the location of the highlight. This can be omitted if the default
value of left top is what you want.
background-repeat:repeat tiles the image. This can be omitted because it’s the default
value.

Pattern INLINE-SELECTOR { color:COLOR; background-color:COLOR; padding-left:+VALUE;
padding-right:+VALUE; padding-top:+VALUE; padding-bottom:+VALUE; background-
image:url("FILE.EXT"); }

BLOCK-SELECTOR { line-height:+VALUE; }

Location This pattern applies to any type of element.

Tips You can use em measurements to scale the padding to match the size of the font. I find that
0.25em on the left and right, 0.05em on the top, and 0.13em on the bottom creates a well-
proportioned box around text of all sizes.

A browser doesn’t expand the height of a line to fit the vertical padding of its content. Thus,
vertical padding overlaps content in neighboring lines unless you increase the height of a
line using 1ine-height.

Use contrasting colors for color and background-color to ensure the text is readable. When
using background images, be sure to assign contrasting background and foreground colors
in case the browser can’t load the background image.

Example In the example, I named classes descriptively to make it easier to match the code to the
screenshot. In a real document, I would name classes functionally because that makes it
easier to restyle the document later. For example, the class highlight white-on-firebrick
is better named highlight-alert. Functional classes enhance the meaning of a document
and don’t require changes to the HTML markup when you change style rules.

Related to Background (Chapter 6)

209

CHAPTER 10 © STYLING TEXT

210

Text Decoration

3 et Decoration - Mazilla Firefox [|E|E|
Fl= Edt vew Go Bodkmarls Took Help

Text Decoration

text-decoration: underline overline Hiwe—through

HTML

<h1>Text Decoration</hi>

<p>
<code>text-decoration:
underline overline
line-through</code>

<code>border</code>:

Under 4 Under 5
Under 6 Over 7
0ver 8 0Over 9

<code>background</code>:

Under 10 Under 11

Under 12 Over 13

0ver 14 Thru 15¢
</p>

CSS

.t1 { text-decoration:underline; } * t2 { text-decoration:overline; }
.t3 { text-decoration:line-through; }

.t4 { border-bottom:1px solid black; } *.t5 { border-bottom:1px dotted black; }
.16 { border-bottom:2px dashed gray; } *.t7 { border-top:3px double red; }
.t8 { border-top:4px groove blue; } *,t9 { border-top:6px ridge green; }

.t10 { background:repeat-x left bottom url("tight-dot.gif"); padding-bottom:opx; }
.t11 { background:repeat-x left bottom url("dotted.gif"); padding-bottom:opx; }
.t12 { background:repeat-x left bottom url("wavy-green.gif"); padding-bottom:2px; }
.t13 { background:repeat-x left top url(“diamond-blue.gif"); padding-top:3px; }
.t14 { background:repeat-x left top url("gradient3.gif"); padding-top:2px; }

.t15 { background:repeat-x left center url("wavy-red3.gif"); padding:5px; }

CHAPTER 10 I STYLING TEXT

Text Decoration

Problem

You want to use a custom style for underlines, overlines, and line-throughs.

Solution

Use text-decoration to put aline under, over, or through text. The line’s color is the text’s
color, and the browser determines its thickness.

You can also use the border property to create an underline or an overline.
Use border to control the thickness, style, and color of the line.

You can also use the background-image property to create an unlimited variety of
underlines, overlines, and line-throughs. By tiling images, you can create any pattern in any
thickness in multiple colors.

Use background-image to specify an image for the text decoration.
Use background-position to set the location of the text decoration.
Use background-repeat:repeat-x to tile the image horizontally.

Use padding-top or padding-bottom to insert vertical space between the text decoration
and the text.

Patterns

Text Decoration

INLINE-SELECTOR { text-decoration:underline; }INLINE-SELECTOR { text-
decoration:overline; }INLINE-SELECTOR { text-decoration:line-through; }

Border Underline

INLINE-SELECTOR { border-bottom:WIDTH STYLE COLOR; }
Border Overline

INLINE-SELECTOR { border-top:WIDTH STYLE COLOR; }
Background Underline

INLINE-SELECTOR { background-repeat:repeat-x; background-position:left
bottom; background-image:url("FILE.EXT"); padding-bottom:+VALUE; }

Background Overline

INLINE-SELECTOR { background-repeat:repeat-x; background-position:left top;
background-image:url("FILE.EXT"); padding-top:+VALUE; }

Background Line-through

INLINE-SELECTOR { background-repeat:repeat-x; background-position:left
center; background-image:url("FILE.EXT"); padding-bottom:+VALUE; }

Location

This pattern applies to inline elements.

Tip

Transparent GIFs as background images integrate well with different background colors.

Related to

Border, Background (Chapter 6)

211

CHAPTER 10 © STYLING TEXT

212

Text Shadow

& Texct Shadow - Microsoft Internet Explorer Q @@
fle Edit ‘iew Favortes Took Help 11'

Text Shadow

Text Shadow applies to all text in a block. This design pattem does not apply
to inline elements in Internat Explorer 6. This design patten does not work
in Opera 9, Firefox 2, and cther Mezilla Browsers,

HTML

<h1 class="shadow">Text Shadow</h1>

<p class="shadow">Text Shadow applies to all text in a block.
This design pattern does not apply to inline elements in Internet Explorer 6.
This design pattern does not work in Opera 9, Firefox 2,
and other Mozilla Browsers</p>

CSS All Browsers
.shadow { text-shadow:#999999 5px 5px 5px; }

CSS Internet Explorer 6
.shadow { filter:shadow(color=#999999, direction=135, strength=4); zoom:1; }

CHAPTER 10 I STYLING TEXT

Text Shadow

Problem

You want to place a shadow behind text.

Solution

All major browsers support the CSS property text-shadow, except Internet Explorer, which
provides a proprietary property called filter:shadow that causes your CSS not to validate.

In Safari, use text-shadow to add a shadow to text:

COLOR is the color of the shadow.

X-OFFSET is the horizontal offset of the shadow.

Y-OFFSET is the vertical offset of the shadow.

DIFFUSION is the amount of blur. Greater values make greater blur.

In Internet Explorer 6, use filter:shadow to add a shadow to text:
COLOR is the color of the shadow.

DIRECTION is the direction of the shadow: 0 = top, 45 = top right, 90 = right, 135 = bottom
right, 180 = bottom, 225 = bottom left, 270 = left, 315 = top left.

SIZE is the size of the shadow in pixels.
Use zoom: 1 to trigger the shadow effect in Internet Explorer. Internet Explorer 6 requires a
block to have layout before it applies filter effects to it. zoom: 1 triggers layout. Layout is a

proprietary feature specific to Internet Explorer. Layout is discussed in the Atomic design
pattern in Chapter 7.

Pattern

SELECTOR { text-shadow:COLOR X-OFFSET Y-OFFSET DIFFUSION;
filter:shadow(color=COLOR, direction=DIRECTION,
strength=SIZE); zoom:1; }

Location

This pattern applies to block elements. Specifically, text-shadow applies to all elements,
and filter:shadow applies only to block elements.

Limitations

With both text-shadow and filter:shadow, this pattern works in all recent browser
versions.

Iinclude this design pattern because it doesn’t hurt to use text shadows when a browser
doesn’t support it. The shadow effect is nonessential.

Avoid using shadows to create special effects (such as an eclipse) where color and
background-color are the same, because this makes for invisible text in browsers that don’t
support shadows.

If you assign a border to the shadowed block element, Internet Explorer 6 puts a shadow
around the border and the text inside it.

Tips

A shadow effect around text makes the text bolder and causes it to stand out from its
background. Shadows work best for headings and for text overlaying background images. A
subtle shadow enhances readability, and a strong shadow makes text harder to read.

Related to

Font

213

CHAPTER 10 © STYLING TEXT

Text Replacement with Image

|00 Mozilla Firefox

Text Replacement with Image

q‘[éﬂdﬁﬂg 2

Example shown with text replaced by an image

ann Mozilla Firefox

Text Replacement with Image

Heading 2

Example shown when browser could not display the image

HTML

<h1>Text Replacement with Image</h1>

<h2 id="h2">Heading 2<span»</h2>

CSS

#h2 { position:relative; width:250px; height:76px; padding:0; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px; left:0; top:0; margin:o;
background-image:url("heading2.jpg"); background-repeat:no-repeat; }

214

CHAPTER 10 I STYLING TEXT

Text Replacement with Image

Problem

You want to replace text with an image, and you want the text to be read by a screen reader. You also
want the text to be visible when the image is unavailable.

Solution

Insert an empty into the block element that contains the text you want to replace with an
image. Assign the image as the span’s background image. Relatively position the block, and
absolutely position the span. This displays the span in front of the block. Size both the block and the
span to fit the image. Because the block and the span are the same size and the span is in front of
the block, the span’s background image covers the text in the block. If the image is unavailable, the
browser renders the span’s background as transparent, and this lets the text show through.

Assign a unique ID to the block containing the text you want to replace, and style it as follows:

position:relative; positions the block so the background image of the can be positioned
on top of the text.

width and height size the block to fit the image.

padding:0; removes padding that could allow text to show through.
overflow:hidden; ensures that long text doesn’t show through, but be aware that if the
image isn’t displayed, long text could be truncated.

Insert an empty into the block, and style it as follows:

position:absolute;, left:0;, and top:0; position the image over the text in the block.
width and height size the to fit the image.

margin:0; removes margins that could allow text to show through.
background-image:url("FILE.EXT") loads the image.

background-repeat:no-repeat ensures that the image doesn’t repeat.

Pattern

HTML

CSS

<BLOCK id="UNIQUE-ID"> TEXT <spany</span»</BLOCK>

#UNIQUE-ID { position:relative; padding:0; overflow:hidden;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT; }

#UNIQUE-ID span { position:absolute; left:0; top:0; margin:o;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

Location

This pattern applies to any block, float, absolute, or fixed element.

Tip

Text replacement works well with links and buttons that use rollover effects.

Related to

Text Replacement with canvas and VML, Invisible Text, Screenreader-only; Background (Chapter 6);
Marginal Graphic Dropcap (Chapter 18)

215

Download from Wow! eBook <www.wowebook.com>

CHAPTER 10 * STYLING TEXT

Text Replacement with Canvas and VML

(N N&) Mozilla Firefox

Text Replacement with canvas and VML

Heading 2

4

Example shown with text replaced

HTML

<ldoctype html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script src="cufon-yui.js" type="text/javascript"></script>
<script src="Myriad Pro_400.font.js" type="text/javascript"></script>
<script type="text/javascript">
Cufon.replace('h2’, { fontFamily: 'Myriad Pro' });
</script>
</head>
<body>
<h1>Test Replacement with VML and canvas</h1>
<h2>Heading 2</h2>
</body>
</html>

216

CHAPTER 10 I STYLING TEXT

Text Replacement with Canvas and VML

Problem You want to replace text with canvas and VML.

Solution This technique, also know as Cufén, converts font paths to vector graphics stored in JSON data
format and then renders the fonts to canvas elements or VML (depending on availability) using a
JavaScript rendering engine.

The example uses https://github.com/sorccu/cufon.

Font {.TTF, .OTF, etc.)

v

SVG Font

v

VML Paths

v

JavaScript/JSON

3

4

HTMLS Canvas or
VML Renderer

Follow these setup steps:

1. Download cufon-yui. js from the Cufén web site (http://cufon.shoqolate.com/generate/)
and upload it to your own server.

2. Use the font converter (http://cufon.shoqolate.com/generate/) to generate your . font. js
file, which you also have to upload to your server.

3. Include cufon-yui. js and .font. js in your HTML code.
4. Set the element to be replaced: for example, Cufon.replace('#content > hi:first-
child");.

Pattern JavaScript

<script type="text/javascript"> Cufon.replace('ELEMENT', { fontFamily:
"FONT_FAMILY' });</script>

Location This pattern applies to any block, float, absolute, or fixed element.

Tips This technique works well even with large amounts of text.
Text can be selected and copied, unlike the case of Text Replacement with Image.

All Cufén-enabled pages must be UTF-8 encoded. Compatible encodings, such as US-ASCII,
should work fine.

A significant disadvantage of using Cufén is the requirement that the embedded font's license
allow its distribution in unencrypted form, which many commercial fonts expressly forbid.

Related to Text Replacement with Image

217

https://github.com/sorccu/cufon
http://cufon.shoqolate.com/generate/
http://cufon.shoqolate.com/generate/

CHAPTER 10 © STYLING TEXT

218

Font Embedding

Embedding Font

Heading 2

(N N&) Mozilla Firefox

4

Example shown with font rendered

HTML
<h1>Embedding Font</h1>

<h2 id="h2">Heading 2</h2>

CSS

@font-face {
font-family: Chunkfive;
src: url('chunkfive.otf') format ("opentype");

}
#h2 {

}

font-family: Chunkfive, Arial, sans-serif;

CHAPTER 10 I STYLING TEXT

Font Embedding

Problem

You want the web page to directly download a font file from the server to the user’s
computer and use it to render some text.

Solution

Upload your font file to your server, assign a unique ID to the block containing the text you
want to style, and use the @font-face attribute:

position:relative; positions the block so the background image of the <span» can be
positioned on top of the text.

width and height size the block to fit the image.
padding:0; removes padding that could allow text to show through.

overflow:hidden; ensures that long text doesn’t show through, but be aware that if the
image isn’t displayed, long text could be truncated.

Insert an empty into the block, and style it as follows:

position:absolute;, left:0;, and top:0; position the image over the text in the block.
width and height size the to fit the image.

margin:0; removes margins that could allow text to show through.
background-image:url("FILE.EXT") loads the image.

background-repeat:no-repeat ensures that the image doesn’t repeat.

Pattern

HTML

CSS

<BLOCK id="ID"> TEXT </BLOCK>

@font-face { font-family: FONT-NAME; src: url(URL) format (FORMAT);}
#ID { font-family: FONT-NAME }

Location

This pattern applies to any block, float, absolute, or fixed element.

Tips

The embedded font's license must allow it to be embedded using @font-face.

Limitations

Internet Explorer only works with EOT font files.

Related to

Text Replacement with Image, Text Replacement with canvas and VML

219

CHAPTER 10 I STYLING TEXT

220

Invisible Text

&) Invisible Text - Mozillz Flrafox

Fle Edt Vew Go Cootmaks Todls el

Invisible Text

U

HTML

<h1>Invisible Text</h1>

<p class="invisible-text">Invisible Text</p>

CSS

.invisible-text {
text-indent:-9999px;
text-align:left;
width:75px;
height:35px;
background-image:url("go.jpg");
background-repeat:no-repeat;
background-position:center center; }

CHAPTER 10 I STYLING TEXT

Invisible Text

Problem You want to hide the text in a terminal block element without hiding the element itself. You
don’t want to insert any extra markup into the document. You want the text to be read by a
screen reader. You want to set the height and width so you can display a background image
instead of the text.

Solution Use text-indent:-9999px to move the text off the screen so it isn’t visible.

Use text-align:left to ensure that the block doesn’t inherit another value for text-align.
This is important because text-indent works properly only when text is aligned to the left.
Use width and height to size the element to display the background image.

Use text-align to move the text to the left or right side—further out of the way of a
background image.

Pattern TERMINAL_BLOCK_SELECTOR { text-indent:-9999px; text-align:left; width:+VALUE;
height:+VALUE; background-image:url("FILE.EXT"); background-repeat:VALUE;
background-position:H V; }

Location This pattern applies to any terminal block element.

Limitations This design pattern only works on terminal block elements, like the paragraph. It doesn’t work
on inline elements. If the browser can’t display the background image, the user doesn’t see
anything.

Tip If you can insert a tiny bit of extra markup, the Text Replacement design pattern is much better.

Related to Text Replacement; Text Indent, Hanging Indent (Chapter 12)

221

CHAPTER 10 © STYLING TEXT

222

Screenreader-only

&3 Screenreader-only - Mozilla Firefox

fie Gt Yew Hitey Booomarks Tools Heb

Screenreader-only

Text before scresnreader-only text.

Text after screenreader-only text.

HTML

<h1>Screenreader-only</h1>
<p>Text before screenreader-only text.</p>

<p class="screenreader-only"»
This text is hidden to sighted users, but is read by screen readers.</p>

<span class="screenreader-only"»
You can make any type of element a screenreader-only element.

<p>Text after screenreader-only text.</p>

CSS

.screenreader-only {
position:absolute;
left:-9999px;
top:-9999px;
width:1px;
height:1px;
overflow:hidden; }

CHAPTER 10 I STYLING TEXT

Screenreader-only

Problem

You want text to be read by a screenreader program, and you don’t want sighted users to see
the text. This design pattern is useful when you want to provide instructions to nonsighted
users that you don’t want to give to sighted users.

Solution

Remove the element from the flow. Shrink the element to one pixel. Hide the text when it
overflows its one-pixel size. Move the element offscreen.

Use position:absolute to remove the element from the flow.

Use left:-9999px to move the element off the left side of the viewport.
Use top:-9999px to move the element above the top of the viewport.
Use width:1px to shrink the element to one pixel wide.

Use height:1px to shrink the element to one pixel tall.

Use overflow:hidden to hide any text that overflows the one pixel height and width.

Pattern

SELECTOR { position:absolute; left:-9999px; top:-9999px; width:1px;
height:1px; overflow:hidden; }

Location

This pattern applies to any element.

Tips

Occasionally, you may want to give instructions to nonsighted users that you don’t want to
give to sighted users. For example, when filling out a form, the layout, graphics, and colors
may make something obvious to a sighted user that is unknowable to a nonsighted user.
You can use this design pattern to create instructions for nonsighted users without
cluttering the screen seen by sighted users. Such instructions should be brief like headings,
captions, and tooltips.

You may want to include a screenreader-only link at the beginning of the document that
skips to the main content, such as “skip to main content.” This keeps the visual interface
uncluttered and makes the document easier for nonsighted users to navigate. On the other
hand, visually impaired users, mobile users, and others benefit from seeing such a link, so
you may not want to hide it.

Disadvantages

Screenreader-only text is visible in non-CSS browsers and browsers that don’t support
absolute positioning.

Related to

Text Replacement, Invisible Text; Absolute (Chapter 7); Left-aligned Sized Absolute Element
(Chapter 9); Tabs, Flyout (Chapter 17)

223

CHAPTER 11

Spacing Content

This chapter discusses design patterns that put horizontal and vertical space around inline elements,
which may contain text, images, objects, controls, and so on. This chapter contains the following design
patterns:

e Spacing shows how to space text and content. It simply groups together the many
properties built into CSS that put space around and between blocks, text, and
content.

¢ Blocked shows how to render an inline element as a block element. This is a very
important design pattern that is often combined with other patterns.

e Nowrap shows how to prevent the browser from wrapping text across lines.
e Preserved shows how to render whitespace in a document instead of collapsing it.

e Code shows how to mark up computer code, render it inline, display it as a block,
preserve whitespace, and prevent it from being wrapped across lines.

e Padded Content shows how to put space around inline content to emphasize it.

e Inline Spacer shows how to insert a horizontal spacer into a line to put a precise
amount of distance between content.

e Inline Decoration shows how to insert a decoration into a line. A decoration is
style—not content. It lets you insert a colored background, a textured background,
or a background image into the flow. You can put borders around it. You can use it
to push content apart, to overlap prior content, and to underlap following content.

e Line Break shows how to insert four different types of line breaks into your
document that can add extra space between lines or shrink the distance between
lines.

e Inline Horizontal Rule shows how to insert a horizontal rule using an inline
element. You can style the horizontal rule with images, borders, margins, and so
on. This allows you to put extra space between lines, to overlap prior lines, and to
underlap following lines. An inline horizontal rule is particularly useful because
you can use an inline element anywhere. HTML’s horizontal rule is a block
element and has limited styling options.

225

CHAPTER 11 ©" SPACING CONTENT

Spacing

D Spacing - Moarilla Firefox r'__lﬂlgl

Fi= Edt Vew Go Eockmarks Took Hep

Spacing

This paragraph is nermal. It has no indentation, margins, padding, letter
spacing, word spacing, text justification, or line spacing.

This paragraph has many forms of spacing. The first
line of text is indented. Margins indent the paragraph
on zll sides. Padding puts space between the paragraph
and its borders. Letters have 1 extra pixel of space
between them. Wards have 2 extra pixels of szpace
between them. Text is justified, which adds extra space
between words to align text to the left and right edges.
And lines have extra spacing between them,

HTML

<h1>Spacing</h1>

<p>This paragraph is normal. It has no indentation, margins, padding,
letter spacing, word spacing, text justification, or line spacing.</p>

<p class="elegant">This paragraph has many forms of spacing. The first line of text
is indented. Margins indent the paragraph on all sides. Padding puts space

between the paragraph and its borders. Letters have 1 extra pixel of space between
them. Words have 2 extra pixels of space between them. Text is justified, which
adds extra space between words to align text to the left and right edges. And
lines have extra spacing between them.</p>

CSS

.elegant { margin-left:40px; margin-right:8opx;
margin-top:30px; margin-bottom:30px;
padding-top:25px; padding-bottom:25px;
letter-spacing:1px;
word-spacing:2px;
line-height:1.7em;
text-indent:40px;
text-align:justify;
border-top:1px solid black; border-bottom:1px solid black; }

226

Download from Wow! eBook <www.wowebook.com>

Spacing

CHAPTER 11 I/ SPACING CONTENT

Problem

You want to control the spacing around content.

Solution
HTML
CSS

Tag a terminal block element with a class or ID of your choosing.

Apply styles to your chosen class or ID as follows:

Use margin-left to indent the left side of any element.
Usemargin-right to indent the right side of any element.
Usemargin-top to indent the top of a block element.

Use margin-bottom to indent the bottom of a block element.

Use padding-left to pad the left side of any element.

Use padding-right to pad the right side of any element.

Use padding-top to pad the top of any element.

Use padding-bottom to pad the bottom of any element.

Use letter-spacing to add space between letters.

Use word-spacing to add space between words.

Use line-height to increase the spacing between lines.

Use text-indent to indent the first line of a terminal block element.
Use text-align:justify to justify text, which adds space between words.

Pattern

HTML
CSS

<TERMINAL-BLOCK class="elegant">text</TERMINAL-BLOCK>

.elegant {
margin-left:+VALUE; margin-right:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
padding-left:+VALUE; padding-right:+VALUE;
padding-top:1VALUE; padding-bottom:+VALUE;
letter-spacing:+VALUE;
word-spacing:+VALUE;
line-height:VALUE;
text-indent:+VALUE;
text-align:justify; }

Location

This pattern works on all elements, with the exception that margin-top, margin-bottom, text-
indent, and text-align work only on block elements. It is most common to apply spacing to
terminal block elements.

Limitations

text-indent works only on terminal block elements. It does not work on inline elements. You
can assign text-indent to structural block elements, and it will be inherited by descendant
terminal block elements.

Tips

You can use negative values in margin, letter-spacing, and word-spacing to shrink spacing.
You can assign a value smaller than 1em to 1ine-height to shrink spacing between lines. You
can assign an em measurement to text-indent to indent by an approximate number of letters.
Since a letter is typically twice the height of its width, 2em equals four letters.

Related to

Code, Inline Spacer; Invisible Text (Chapter 10); Text Indent, Hanging Indent (Chapter 12);
First-Letter Dropcap, Hanging Dropcap (Chapter 18); Hanging Alert (Chapter 20)

227

CHAPTER 11 ©" SPACING CONTENT

228

Blocked

) Blockad - Mozilla Firefox
Fl= Edt Wiew Go EBockmarks Took Hab

Blocked

The Blocked design pattern dizplays an inline element as a block element
that can be styled in every way as a block element

This is an inline element displayed as a block. Its first line is indented and
it haz callapsing vertical margins.

Name
Streat
City, State Zip Country
email

HTML

<h1>Blocked</h1>

<p>The Blocked design pattern displays an inline element as a block element
that can be styled in every way as a block element.
This is an inline element displayed as a block.
Its first line is indented and it has collapsing vertical margins.</p>

<div class="vcard”>
Name
<p class="adr”>
Street
City,
State,
Zip Code
Country
</p>
email@email.com
</div>

CSS

.blocked { display:block; text-indent:2em; margin-top:5px; }

.vcard { border:4px solid green; padding:10px; font-style:italic;}
.vcard .org { display:block; }

.vcard .street-address { display:block; }

.vcard .adr { display:block; }

.vcard .email { display:block; }

mailto:email@email.com%E2%80%9D

CHAPTER 11 I SPACING CONTENT

Blocked

Problem You want to style text as a block. For example, you want to move an inline element to the
next line, give it vertical margins, and indent its first line. Or, you want to use an element in
your markup, such as <code>, <samp>, or <address>, that can contain only inline elements,
and you want to display some or all of these inline elements as blocks.

Solution You can display any inline element as a block. This moves the element to a new line and
makes it possible for block properties to work properly. This means text-indent, text-
align, margin, border, padding, width, and height work like they do on block elements. If
an inline element were not displayed as a block, these properties would have no effect, or
they would work differently. This design pattern is the converse of Inlined, which displays
block elements as inline elements.

HTML Wrap the text that you want to be indented in a span or other inline element and assign it to
a class or ID of your choosing.

css Apply styles to your chosen class or ID as follows:

Use display:block to display the inline element as a block.
Optionally apply text-indent, text-align, margin, border, padding, width, and height to
format the inline element as if it were a block element.

Pattern

HTML <INLINE class="indent"></INLINE>

CSS .indent { display:block;

text-indent:+VALUE;
text-align: LEFT_CENTER_RIGHT;
margin: +VALUE;

border: WIDTH STYLE COLOR;
padding: +VALUE;

width: +VALUE;

height: +VALUE; }

Location This pattern works anywhere you can use an inline element.

Tip In spite of its simplicity, this is one of the most powerful design patterns. It allows you to
combine the semantic meaning of inline elements with the styling features of block
elements. In other words, you can feel free to tag elements based on their semantic meaning
without sacrificing style.

Related to Code, Padded Content, Line Break, Inline Horizontal Rule; Block Box, Display (Chapter 4);

Inlined (Chapter 13); Image, Image Map, Content Over Image (Chapter 14); Tabled, Rowed,
and Celled (Chapter 15); Outside-In Box, Opposing Floats, Tab Menu, Layout Links (Chapter
17); Center Callout, Block Quote, Inline Block Quote (Chapter 19)

229

CHAPTER 11 ©" SPACING CONTENT

230

Nowrap

&3 Nowrap - Mozilla Firefox

Flke EBdt WVew Go EBobraks Took Hep

Nowrap

You can keep 2 phrase together using nowrap, such as
DO NOT BREAK THIS ACROSS TWO LINES!

You can use nowrap to keep some browsers from breaking a hyphenated
ward across twa linas, such as the following word:
super-cali-fragilistic-expi-ali-docious!

ou can keep together 2 small cede snippet containing a2 space, such as
Fhr (=,

MNotice how it breals across two lines when nowrap is not applied to it: <br
e

Be aware that nowrapped text can averflow its container. This does not affect th

HTML

<h1>Nowrap</h1>

<div>
<p>You can keep a phrase together using <code>nowrap</code>, such as
DO NOT BREAK THIS ACROSS TWO LINES!</p>

<p>You can use nowrap to keep some browsers from breaking a hyphenated word
across two lines, such as the following word:

super-cali-fragilistic-expi-ali-docious!</p>

<p>You can keep together a small code snippet containing a space, such as
<code class="nowrap"><br /8gt;</code>.</p>

<p>Notice how it breaks across two lines when <code>nowrap</code>
is not applied to it: <code><br /8gt;</code>.</p>

<p class="nowrap">Be aware that nowrapped text can overflow its container. This
does not affect the width of other elements, but it may cause a browser to

display a horizontal scrollbar requiring users to scroll to see the text.</p>
</div>

CSS

.nowrap { white-space:nowrap; background-color:gold; }

CHAPTER 11 I SPACING CONTENT

Nowrap

Problem You want to prevent the browser from wrapping text to a new line. For example, you want to
keep together a phrase, a hyphenated word, or a small code snippet containing a
whitespace, such as
.

Solution The rule white-space:nowrap prevents text from wrapping. You can apply white-
space:nowrap to any inline element that you do not want wrapped.

Pattern SELECTOR { white-space:nowrap; }

Location This pattern applies to any inline element. If you assign white-space:nowrap; to a block

element, it will be inherited by its child inline elements.

Disadvantages

When the browser viewport is smaller than the nonwrapped text, the browser viewport
overflows, and the browser creates a horizontal scrollbar so the user can scroll to see all the
unwrapped text. Even though it looks like the viewport has been resized, it has not. It is still
the same width and height. All static, absolute, fixed, and floated elements are aligned and
positioned as if the unwrapped text had never overflowed. Since users do not like to scroll
horizontally, it is best to keep nowrapped text as short as possible.

Example

The example prevents the text in four elements from wrapping. The first unwrapped
element contains a phrase that I wanted to stay in one line. The second unwrapped element
contains a hyphenated word that I did not want broken across two lines. Most major
browsers do not break at hyphens. The third unwrapped element is a code fragment that
contains whitespace that I did not want to break across two lines. The fourth unwrapped
element contains a large amount of unwrapped text that overflows the browser’s viewport.
This causes the browser to display horizontal scrollbars so the user can scroll to read the
unwrapped text.

Related to

Preserved, Code; Overflow (Chapter 6); Flyout Menu, Layout Links (Chapter 17); Inline Alert
(Chapter 20)

231

CHAPTER 11 ©" SPACING CONTENT

Preserved

%2 Preserved - Mozilla Firefox

Fie Erfit Yew Go [Fookmarks Tools Help

Preserved
Tou Can PreEserve whitespace using <prei.

You can use white-space:pre to insert linebreaks and spaces,
Preserved moves this sentence to a new line and indents it five spaces.
A better approach is to insert
 and snbap;

You can prassrve
whitespace in blocks,

You can preserve
whitespace in inline elements.

You can turn white-space:pre
on and off at any time,

HTML

<h1>Preserved</h1>
<pre>You can preserve whitespace using <code><predgt;</code>.</pre>

<p>You can use <code>white-space:pre</code> to insert line breaks and spaces.

</spansPreserved moves this sentence to a new line and indents it five spaces.

8nbsp; A better approach is to insert
<code><bxr /></code> and <code>&nbsp;</code></p>

<p class="presexrved"s>You can preserve
whitespace in blocks.</p>

<p>You can preserve <span class="preserved" »
whitespace in inline elements.</p>

<p class="preserved"sYou can turn <code>white-space:pre</code>
on and off
at any time.</p>

CSS

.preserved { white-space:pre; }
.not-preserved { white-space:normal; }

232

Preserved

CHAPTER 11 I SPACING CONTENT

Problem

You want to selectively preserve whitespace around text and objects that you insert into
the HTML document. For example, you want to preserve whitespace in code. You also
may want to insert specific amounts of whitespace into your document without having to
track the number of
 elements and entities you need to insert to achieve
the desired effect.

Solution

When whitespace is an intrinsic part of the content, you can mark up the content with
<pre> to preserve the whitespace. This identifies whitespace as part of the content and
preserves it. <pre> also works in non-CSS browsers.

When whitespace is decorative or when you cannot use <pre», you can use white-
space: pre to prevent whitespace from being collapsed.

You can assign white-space:pre to a span containing nothing but whitespace to direct
the browser to render that whitespace—although this is probably not a good idea, as
explained under “Disadvantages.”

Pattern

HTML

CSS

<pre> CONTENT </pre>

SELECTOR { white-space:pre; }
SELECTOR { white-space:normal; }

Location

white-space:pre applies equally well to any type of element.

Advantages

white-space:pre has several advantages over <pre>. It can preserve whitespace in
existing markup that you cannot modify to include <pre>. It allows preserved whitespace
to intermingle with images, objects, and any other type of element. (The HTML
specification prevents <pre> from containing , <object>, <sub>, <sup>, <big>, and
<small>.) It does not automatically style the content with a monospace font like <pre>. It
can preserve whitespace in an inline element. (Since <pre» is a block element, <pre>
cannot be embedded in paragraphs, headings, and other terminal block elements.)
Lastly, it can turn whitespace on and off selectively.

Disadvantages

Since it is unusual for whitespace to be preserved in HTML markup, it is easy to
accidentally change the layout of the document just by rearranging a little whitespace in
a preserved element.

Most HTML authoring software and utilities automatically rearrange whitespace to make
code more readable or to remove whitespace to reduce document size. These programs
break preserved whitespace in elements styled with white-space:pre, but most retain
whitespace in <pre>.

Tip You can use white-space:normal to override a rule that applies white-space:pre to an
element. white-space:normal is the default.
Related to Nowrap, Code; Inline Elements (Chapter 2)

233

CHAPTER 11 ©" SPACING CONTENT

234

Code

3 Code - Mozilla Firefox

Fie Cdt Yew Go Cookmarks Tools Help

Code

The follewing code is blocked and preserved:

* _blocked { displawv:block;
* _preserved { white-space:pre; |
* ocode { font-family:monospace; }

The following inline code uses the Nowrap design pattern:

a2 = x(y® + z°) + 1. This prevents it from being wrapped across linss.

HTML

<h1>Code</h1>
<p>The following code is blocked and preserved:

<code class="blocked preserved"»
.blocked { display:block; }
.preserved { white-space:pre; }
.code { font-family:monospace; }
</code>
</p>

<p>The following inline code uses the Nowrap design pattern:
<code class="nowrap preserved"sa = x(y² + z³) + 1</code>.
This prevents it from being wrapped across lines.</p>

CSS

.blocked { display:block; }
.preserved { white-space:pre;
.nowrap { white-space:nowrap;

e

Code

CHAPTER 11 I SPACING CONTENT

Problem

You want to identify an element as containing code, and you want to control when it
preserves whitespace, when it breaks across lines, and when it is displayed as a block.

Solution

HTML

CSS

You can use <code> to identify text as computer code. The meaning of this element is well
understood by search engines and document processors. By default, <code> is displayed
inline, does not preserve whitespace, and can be wrapped across lines. When you want to
display a block of code, add the Blocked design pattern. When you want to preserve
whitespace in <code>, add the Preserved design pattern. When you do not want code to
wrap across lines, add the Nowrap design pattern. Note that you cannot use Preserved and
Nowrap at the same time.

Use the <code> element to tag text as code.

Assign blocked, presexved, or nowrap classes to <code, or assign classes or IDs with names
of your choosing.

Apply styles to your chosen class or ID as follows:

Usewhite-space:preserve to preserve whitespace in <code>.

Use white-space:nowrap to prevent text in the <code> from wrapping.

Use display:block to display <code> as a block.

Pattern

HTML

CSS

<code class="BLOCKED PRESERVED NOWRAP"> CODE </code>

.blocked { display:block; }
.preserved { white-space:pre; }
.nowrap { white-space:nowrap; }

Location

This pattern works everywhere inline elements can be used.

Variations

HTML provides four additional inline elements that are similar to <code>. They are <var>,
<samp>, <cite>, and <kbd>. <var» identifies its contents as a computer variable. <samp>
identifies its contents as sample output from a computer program. <cite> identifies a title of
work (e.g., abook, a song, a poem, a film, etc.). <kbd> identifies its contents as keypresses
that a user should type on a keyboard to accomplish a specific task. This design pattern can
easily be applied to these elements to fine-tune how they are rendered.

Related to

Blocked, Nowrap, Preserved; Inline Elements (Chapter 2)

235

CHAPTER 11 ©" SPACING CONTENT

236

Padded Content

& padded Content - Mozilla Firefox

Fle Edit WYew Go EBoohmarks Took Hep

Padded Content

Padding sets apart text to emphasize it. Left and right padding inserts
horizontal space before and after content. Padded content can be
a letter... —

a word... —

@ phrase... —

a paragraph... — etc.

This multi-line text is padded as an entire block rather
than padded on each line,

HTML
<h1>Padded Content</h1>

<p>Padding sets apart text to emphasize it.

Left and right padding inserts horizontal space before and after content.
Padded content can be

<span class="padded-mild"sa letter...8→

<span class="padded-emphasized"»a word...→

a phrase...→

<span class="padded-extreme"sa paragraph...→ etc.
This multi-line text is padded as an

entire block rather than padded on each line.

</p>

CSS

.padded-mild { padding-left:1em; padding-right:1em; line-height:1em; }
.padded-emphasized { padding-left:2em; padding-right:2em; line-height:2em; }
.padded-strong { padding-left:3em; padding-right:3em; line-height:3em; }
.padded-extreme { padding-left:4em; padding-right:4em; line-height:4em; }

.padded-strong-BA { display:block; padding:2em 5em; }

Download from Wow! eBook <www.wowebook.com>

CHAPTER 11 I/ SPACING CONTENT

Padded Content

Problem

You want to put extra space around content to emphasize it and set it apart.

Solutions

Inline Padded Content

You can use padding-left and padding-right to pad the left and right of an inline element.
This pads the beginning and end of the element—not each line spanned by the element.
Padding the top and bottom does not affect the height of an inline element, but you can use
line-height to change the height of each line spanned by the element. You cannot add
space above just the first line and below just the last line spanned by the element.

Blocked Padded Content

You can use display:block to display an inline element as a block. This lets you use
padding-left and padding-right to indent the left and right sides of all lines—not just the
beginning of the first line and the end of the last. This lets you use padding-top and
padding-bottom to add space above the top of the element and below the bottom of the
element. You can also use 1ine-height to change the height of each line in the element.

Patterns

Inline Padded Content

INLINE-SELECTOR { padding-left:+VALUE;
padding-right:+VALUE;
line-height:+VALUE; }

Blocked Padded Content

INLINE-SELECTOR { display:block;
padding-left:+VALUE;
padding-right:+VALUE;
padding-top:+VALUE;
padding-bottom:+VALUE;
line-height:+VALUE; }

Location

This pattern applies to any inline element.

Limitations

line-height is used to pad the height of lines because padding-top and padding-bottom
have no effect on the height of a line.

Tips

Padding is colored using the background-color or background-image. If you want
transparent space around the element, use margin instead. If you want a different color or
pattern than the background, use border instead.

Related to

Inline Spacer

237

CHAPTER 11 ©" SPACING CONTENT

238

Inline Spacer

3 Inline Spacer - Mozllla Firefox

Fle Edit Yiew History GBookmaks Took Help

Inline Spacer

Just like you can use
 to insert vertical space into content,

you can use an inline spacer to insert and contral horizontal space. The
inline spacer 15 @ marker element that emphasizes the space in between
content. You use it when you do not want to mark up content, but you still
want to control the amount of space in between content.

For example, if your page design requires extra space before sentences, it is
not & good idea to mark up sentences, because that would prevent you from
cutting across sentence boundaries with additional markup. Marking up the
first word of a sentence would not be semantically accurates because the
extra space saparates santences not words., The inline spacer solves this
problem because it does not interfere with other markup. Itis alzo
semantically correct because its purpese is to mark up and emphasize space.

HTML

<h1>Inline Spacer</hi1>

<p>Just like you can use <code><br /8gt;</code> to insert vertical space
into content, <br /» you can use an inline spacer to insert and control
horizontal space.
<span class="space"» The inline spacer is a marker element
that emphasizes the space in between content.
<span class="space"» You use it when you do not want to
mark up content, but you still want to control the amount of space
in between content.</p>

<p>For example, if your page design requires extra space before sentences,
it is not a good idea to mark up sentences, because that would prevent you from
cutting across sentence boundaries with additional markup.
<span class="space"» </spansMarking up the first word of a sentence would not
be semantically accurate because the extra space separates sentences not words.
<span class="space"» The inline spacer solves this problem
because it does not interfere with other markup.
<span class="space"» It is also semantically correct
because its purpose is to mark up and emphasize space.</p>

CSS

.space { margin-left:0.5em; }

CHAPTER 11 I SPACING CONTENT

Inline Spacer

Problem

You want to insert a precise amount of horizontal space into inline content.

Solution

To create an inline spacer, you can insert a span with a class or ID of your choosing and set
the amount of space usingmargin-left. A negative value in margin-left causes
neighboring elements to overlap. Because you are styling space, it is a good idea to put
whitespace in between the span’s start and end tags, although this is not required for this
design pattern to work.

Pattern

HTML

CSS

.space { margin-left::VALUE; }

Location

This pattern works anywhere you can use an inline element.

Usage

In general, the best way to space content is to embed it within an element and style the
element with margin. This begs the question, why would you ever need to use an inline
spacer?

Because the inline spacer is an empty element, it can be placed anywhere without
interfering with the nesting of other elements. In those rare cases when the current markup
does not align with where you need to control space, you can insert an inline spacer without
compromising or complicating the nesting. This is why
 and <hr /> are empty
marker elements.

The inline spacer has the same purpose as
 and <hxr />. It inserts space without
marking up content. In other words, it marks and emphasizes the presence of space. It has
semantic meaning: it indicates that the following content is set apart from the previous
content—because that is what space does. The larger the space, the stronger the meaning.

 and <hr /> insert vertical space, and an inline spacer inserts horizontal space.

If emphasizing or deemphasizing space is the point, it is semantically correct to mark up
space, because marking up content would emphasize the content—not the space in
between.

In the past, spacer GIFs were improperly used for this purpose. Images are content—not
spacing. Screenreaders announce the presence of these images, and the latency involved in
downloading them slows the rendering of the document. The inline spacer has none of
these problems.

Variations

You can use pixels or a fixed measurement to size the space. You can use a percentage to
scale the size proportional to the width of the containing block.

Tips

This design pattern also works with an empty span, , or an XML-style empty
span, .Like
, works in all major browsers, and validates as valid
XHTML, but not as valid HTML.

Related to

Inline Decoration, Line Break; Block Spacer (Chapter 13)

239

CHAPTER 11 ©" SPACING CONTENT

240

Inline Decoration

%7 Inline Decoration - Mozilla Firefox

Fie Erfit Yew Go Cookmarks Tools Help

Inline Decoration

You can use Inline Decoration to do the following:

s Insert colored decoration.

o Insert patterned m= »m decoration.

o Insert imaged ﬂoﬁa decoration.

HTML

<h1>Inline Decoration</h1>

<div>You can use Inline Decoration to do the following:

Insert colored </span» decoration.
Insert patterned </span» decoration.</1i>
<1li>Insert imaged decoration.

</div>

CSS

div { font-size:18px; }

.deco-solid { padding-left:40px;
font-size:0.4em; vertical-align:middle; line-height:24px;
margin-left:3px; margin-right:-15px;
background-color:gold; }

.deco-groove { padding-left:10px;
font-size:0.4em; vertical-align:middle; line-height:24px;
border-left:20px groove black; border-right:20px ridge black;
margin-left:3px; margin-right:3px;
background-color:lightgray; }

.deco-spear { padding-left:100px;
font-size:1em; vertical-align:-3px; line-height:24px;
margin-left:3px; margin-right:3px;
background-image:url("spear.jpg"); background-position:top right; }

CHAPTER 11 I SPACING CONTENT

Inline Decoration

Problem

You want to insert a decoration into the content, such as a block of color, a styled border, or
a background image. You want to move the decoration closer or further away from previous
and following content. You do not want to insert an image because you want pure
decoration—not content.

Solution

HTML

CSS

Insert a span containing nonbreaking space into the content. Assign to it a class or ID of
your choosing.

Apply styles to your chosen class or ID as follows:

Use padding-left to set the width of the decoration.

Use font-size to set the height of the decoration.

Use vertical-align to move the decoration up or down.

Use line-height to size the height of the line to fit the decoration.

Use a positive value in margin-left to move the decoration to the right.

Use a negative value in margin-left to move the decoration to the left. A large enough value
will cause the decoration to overlap previous content.

Use a positive value in margin-right to move the following content to the right and farther
away from the decoration.

Use a negative value in margin-right to move the following content to the left and closer to
the decoration. A large enough value will cause the content to overlap the decoration.

Use border to insert a border on the left, right, top, or bottom.

Use background-color to display a background color in the padding area.
Use background-image to display an image in the padding area.

Use background-position to position the background image.

Pattern

HTML

CSS

.decoration { padding-left:+VALUE;
font-size:+VALUE;
vertical-align:+VALUE;
line-height:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
border-left:+W S C; border-right:+W S C;
background-color:COLOR;
background-image:url("FILE.EXT"); }

Location

This pattern works anywhere you can use an inline element.

Trade-offs

Unlike the Inline Spacer, the Inline Decoration requires the span to contain a nonbreaking
space and to have a closing tag. Without the closing tag, a browser renders the background
color or image underneath the following text. Without a nonbreaking space, a browser
ignores padding and borders.

Related to

Inline Spacer; Hanging Alert, Run-In Alert, Floating Alert, Left Marginal Alert, Right Marginal
Alert (Chapter 20)

241

CHAPTER 11 ©" SPACING CONTENT

242

Line Break

&3 | inebreak - Mozilla Firefox
Fle Edt Yew Go EBochrarks Took Hep

Linebreak

[e RrL g dagbresk snyvhers.
1 Normal linebreak.

1 Linebreak plus 10 pixels.

t One-and-a-half linebreak.

t Double linebreak.

T Triple linebreak,

t Quadruple linebreak.

HTML

<h1>Line Break</h1>

<p>You can insert a line break anywhere.
<span class="1b-half"»</span»↑ One-half line break.
<span class="1b-single"»8uarr; Normal line break.

<br class="briopx" /> ↑ Line break plus 10 pixels.
<span class="1b-one-and-a-half"s</spans8uarr; One-and-a-half line break.
<span class="1b-double"»</spany8uarr; Double line break.
<bx /s<br class="br3" /> ↑ Triple line break.
<span class="1b-quad"»↑ Quadruple line break.
</p>

CSS

.1b-half { display:block; margin-top:-0.5em; }
.1b-single { display:block; margin-top:0; }
.1b-one-and-a-half { display:block; margin-top:1.5em; }
.1b-double { display:block; margin-top:2em; }

.1b-quad { display:block; margin-top:4em; }

.briopx { line-height:10px; }
.br3 { line-height:3em; }

Line Break

CHAPTER 11 I SPACING CONTENT

Problem

You want to insert a line break. You also want to add or reduce the amount of vertical space
between the lines.

Solutions

Break

You can use HTML'’s break element,
, to move content to a new line. The height of the
line following the break is determined by the line’s content.

Double Break

You can move content to a new line and add extra space between the lines by inserting two

 elements in a row with nothing in between them. You can use line-height to style
the second
 to control the amount of extra space inserted.

Line Break

You can move content to a new line and add extra space between lines or even shrink the
space between the lines by inserting an empty and using display:block to display it
as a block. You can use margin-top:+VALUE to insert additional space between the lines. You
can use margin-top: -VALUE to shrink the space between the lines.

Blocked

You can apply the Blocked design pattern to an existing inline element to move the element
onto anew line.

Patterns

Break

Double Break

<br class="br" />

.br { line-height:+VALUE; }

Line Break

.1b { display:block; margin-top:+VALUE; }
Blocked

<ELEMENT class="1b"></ELEMENT>
.1b { display:block; margin-top:+VALUE; }

Location

This pattern can be used in any inline context.

Trade-offs

Two
 elements can add extra space between lines, but they cannot reduce space
between lines. A displayed as a block can insert or reduce space between lines and
requires only a single element.

Example

In the example, I named classes descriptively to make it easier to match the code to the
screenshot. In a real document, I would name classes functionally because it makes it easier
to restyle the document later.

Related to

Inline Horizontal Rule; Block Horizontal Rule, Block Spacer, Block Space Remover (Chapter
13)

243

CHAPTER 11 ©" SPACING CONTENT

244

Inline Horizontal Rule

&3 Inline Horlzontal Rule - Mozilla Firefox

Fle Edit WYew Go Goohmarks Took Help

Inline Horizontal Rule

You can insert an inline horizontal rule anywhere.
1 Invisible inline horizontal rule — a line-break.

t Double-border inline horizontal rule.

IR R AR R R]

1 Background inline herizontal rule.

o N
1 Combination Inline horizontal rule.

HTML

<h1>Inline Horizontal Rule</hi>

<p>You can insert an inline horizontal rule anywhere.
8uarr; Invisible inline horizontal rule - a line-break.
↑ Double-border inline horizontal rule.
↑ Background inline horizontal rule.
↑ Combination Inline horizontal rule.

</p>

CSS
.hr { display:block; margin:o; }

.border { padding-top:1px; margin-top:25px; margin-bottom:0;
width:auto; margin-left:0; margin-right:o;
border-top:4px ridge blue; border-bottom:4px groove blue;
background:none; background-color:yellow; }

.background { padding-top:5px; margin-top:25px; margin-bottom:0;
width:auto; margin-left:76px; margin-right:76px; border:none;
background:repeat-x left center url(“diamond-blue.gif");
background-color:transparent; }

.combo { padding-top:5px; margin-top:25px; margin-bottom:o0;
width:400px; margin-left:auto; margin-right:auto;
border-top:4px ridge blue; border-bottom:4px groove blue;
background:repeat-x left center url("diamond-blue.gif");
background-coloxr:white; }

CHAPTER 11 I SPACING CONTENT

Inline Horizontal Rule

Problem

You want to insert a styled line break in between inline elements. You cannot use the horizontal rule
because that works only between block elements.

Solution

Apply styles to your chosen class or ID as follows:

Use display:block to display the inline element as a block element. This puts the horizontal rule on its
own line and stretches it across the width of its containing block.

Use padding-top to make space for the background color and image.
Usemargin-top:+VALUE to insert space above the horizontal rule.

Use margin-top: -VALUE to overlap the rule with the previous line.
Usemargin-bottom:+VALUE to insert space below the rule.

Usemargin-bottom: -VALUE to overlap the rule with the next line.

Usewidth:auto, margin-left:0, and margin-right:0 to stretch the rule to the left and right sides of
the containing block.

Usewidth:auto, margin-left:+VALUE, and margin-right:+VALUE to stretch the rule to the left and
right margins of the containing block.

Use width:+VALUE, maxgin-left:auto, and margin-right:auto to size and center the rule.
Use border-top to display a border above the rule.

Use border-bottom to display a border below the rule.

Use background- image to display a background image in the rule.

Use background-repeat: repeat-x to tile an image across the rule.

Use background-position:left center to position the background image in the vertical middle of
the rule.

Use background-color to display a background color in the rule.

Pattern

HTML CSS

 .hr { display:block;
padding-top:+VALUE; width:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
border-top:WIDTH STYLE COLOR;
border-bottom:WIDTH STYLE COLOR;
background-image:url("FILE.EXT");
background-position:left center;
background-repeat:repeat-x;
background-color:COLOR; }

Location

This pattern applies to inline elements.

Tip

display:block; is the only required rule. The rest are optional and can be used in any combination.
This design pattern is much more versatile than the line break, which cannot be styled.

Relatedto Line Break; Block Horizontal Rule, Block Spacer, Block Space Remover (Chapter 13)

245

CHAPTER 12

Aligning Content

This chapter discusses design patterns that align text and content horizontally and vertically to their
containing blocks. These alignment patterns work in the normal flow without using absolute or relative
positioning.

The first three design patterns align content horizontally. The next three design patterns align
content vertically. The last design pattern and the example at the end of the chapter are quite esoteric
and have little practical application. I have included them to demonstrate the powerful capabilities built
into the inline formatting context.

Text Indent shows how to indent the first line of text.
Hanging Indent shows how to create a hanging indent.

Horizontal-Aligned Content shows how to align text and inline content to the
left, right, or center. It also shows how to justify text and inline content.

Vertical-Aligned Content shows how to vertically align an inline element to its
parent’s fontlines. These fontlines define an alignment context.

Vertical-Offset Content shows how to vertically offset an inline element from its
parent’s baseline.

Subscript and Superscript shows how to create subscript and superscript text,
and how to make it look consistent across all browsers.

Nested Alignment shows how to nest alignment contexts.

Advanced Alignment Example is not a design pattern, but a fun example
showing off how alignment and relative positioning can create sophisticated
inline layouts.

247

Download from Wow! eBook <www.wowebook.com>

CHAPTER 12 ©" ALIGNING CONTENT

248

Text Indent

%3 Text Indent - Mozilla Firefox

FEie Edit Yew Higtory Bookmarks Tools Heb

Text Indent

text-indent indents the first line of a terminal block element, such
as a paragraph, division, heading, list item, or this table cell.

text-indent does not work on inline elements, such as this span.
text-indent does work on inline-bloeck elements, such as this span.

HTML

<h1>Text Indent</h1>

<table><tr><td class="text-indent"><code>text-indent</code>
indents the first line of a terminal block element, such as a paragraph,
division, heading, list item, or this table cell.

</tds</tr></table>

<p><span class="text-indent"»<code>text-indent</code> does
not work on inline elements, such as this span.
<code>text-indent</code>
does work on inline-block elements, such as this span.</p>

CSS

.text-indent { text-indent:60px; }
.inline-block { display:inline-block; }

/* Nonessential rules are not shown. */

CHAPTER 12 I ALIGNING CONTENT

Text Indent

Problem You want to indent the first line of a terminal block element, such as a paragraph.

Solution You can use a positive value in text-indent to indent the first line of text.

Pattern

HTML <TERMINAL-BLOCK class="text-indent"> content </TERMINAL-BLOCK>

CSS .text-indent { text-indent:+VALUE; }

Location text-indent works only on terminal block elements. It does not work on structural block
elements or inline elements. By default, text-indent is inherited by child elements. This
means you can assign text-indent to a structural block element, and all descendant
terminal block elements will inherit the value you assigned to text-indent.

Furthermore, this design pattern works only on content. If an element contains no content,
there is nothing to indent, and this property will have no visual impact. Even though the
name of the property is text-indent, it indents all content, regardless of whether it is text.

Tip Normally you want indentation and margins to be consistent. All major browsers set the

indents of their list items at 40 pixels.

Variation You could create a first-line indent using first-letter to select the first letter of a terminal
block element and then style it with a positive margin-1left. This is more work and is less
reliable than text-indent.

Related to Hanging Indent; Invisible Text (Chapter 10); Blocked, Spacing (Chapter 11); First-Letter
Dropcap, Hanging Dropcap (Chapter 18); Hanging Alert (Chapter 20)

249

CHAPTER 12 " ALIGNING CONTENT

250

Hanging Indent

2 Hanging Indent - Moz/lla Firefox

Fle Edt Yew Go FCookmarks Tools Help

Hanging Indent

A hanging indent uses a negative value for cext-indent and a positive
value for padding-left. Hanging indents only work in terminal block
elements like this paragraph.

If you do not want the hanging indent to go all the way to the left, make
the positive value in padding-1e£t larger than the abselute value
of text-indent.

HTML

<h1>Hanging Indent</h1>

<p class="hanging-indent">A hanging indent uses a negative value for
<code>text-indent</code> and a positive value for <code>padding-left</code>.
Hanging indents work only in terminal block elements like this paragraph.</p>

<p class="hanging-indent2">If you do not want the hanging indent to
go all the way to the left, make the positive value in <code>padding-left</code>
larger than the absolute value of <code>text-indent</code>.</p>

CSS

.hanging-indent { text-indent:-50px; padding-left:50px; }
-hanging-indent2 { text-indent:-50px; padding-left:70px; }

/* Nonessential rules are not shown. */

CHAPTER 12 I ALIGNING CONTENT

Hanging Indent

Problem

You want to insert a hanging indent on the first line in a terminal block element, such as a
paragraph.

Solution You can use a negative value in text-indent to extend the first line of text into the left
padding area of a terminal block element so that it hangs over the left side of the element.
You can use a positive value in padding-left to make room for the hanging indent.

Pattern

HTML <TERMINAL-BLOCK class="hanging-indent">content</TERMINAL-BLOCK>

CSS .hanging-indent { text-indent:-VALUE; padding-left:+VALUE; }

Location text-indent works only on terminal block elements that contain content. It does not work
on structural block elements or inline elements. By default, text-indent is inherited by
child elements. You will notice the hanging indent only if the element contains more than
one line.

Advantages Because this design pattern uses padding-1left to indent the block, the border surrounds

the entire block. If you use margin-left to indent the block, the negative indent will stick
outside of the border.

Disadvantages

This design pattern does not apply to inline elements. You can use the Padded Content or
Inline Spacer design patterns to achieve this same effect using inline elements.

Tips

A hanging indent is normally used to create list items. HTML provides the unordered list
 and the ordered list <0l> for this purpose.

Normally, you want indentation and margins to be consistent. The default indentation for a
list item is 40 pixels. You may also want to use —40 pixels for text-indent and 40 pixels for
padding-left.

Variation

You could create a first-line indent using first-1letter to select the first letter of a terminal
block element and then style it with a negative maxgin-left. This is more work and is less
reliable than text-indent.

Related to

Text Indent; Blocked, Spacing (Chapter 11); Hanging Dropcap (Chapter 18); Hanging Alert
(Chapter 20)

251

CHAPTER 12 " ALIGNING CONTENT

252

Horizontal-Aligned Content

2 Horlzontal-aligned Content - Mozilla Firefox

Eie FEdt Yew Go Cookmarks Tools Help

Horizontal-aligned Content

text-align:left |

text-align:center |

text-align:right |

text-align:justify justifies the content so that it is aligned to the left

side and the right side. Most browsers adjust the space between the words
and objects to justify the text.

HTML

<h1>Horizontal-Aligned Content</h1>

<p class="align-left"><code>text-align:left</code></p>

<p class="align-center"><code>text-align:center</code></p>

<p class="align-right"><code>text-align:right</code></p>

<p class="align-justify"><code>text-align:justify</code> justifies the content so
that it is aligned to the left side and the right side. Most browsers adjust
the space between the words and objects to justify the text.</p>

CSS

.align-left { text-align:left; }
.align-center { text-align:center; }
.align-right { text-align:right; }
.align-justify { text-align:justify; }

/* Nonessential rules are not shown. */

CHAPTER 12 I ALIGNING CONTENT

Horizontal-Aligned Content

Problem You want to left-align, center-align, right-align, or justify the content in a terminal block
element, such as a paragraph. For example, you may want to center-align text in a heading,
right-align a label assigned to a control, or left-align data in one table column and right-
align data in another.

Solution You can use text-align to align the text within its terminal block.
Use text-align:left to align the text to the left of the block.
Use text-align:center to align the text to the center of the block.
Use text-align:right to align the text to the right of the block.

Use text-align: justify to justify the text to both sides of the block. Browsers typically
justify text by increasing space between words to stretch the text to the sides of the block.

Patterns

HTML <TERMINAL-BLOCK class="align-left">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-center">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-right">content</TERMINAL-BLOCK>
<TERMINAL-BLOCK class="align-justify">content</TERMINAL-BLOCK>

CSS .align-left { text-align:left; }
.align-center { text-align:center; }
.align-right { text-align:right; }
.align-justify { text-align:justify; }

Location This design pattern works only on terminal block elements containing content. Without
content, there is nothing to align. It does not work on inline elements. It does not work
directly on structural block elements, but you can assign text-align to a structural block
element, and it can be inherited by child elements.

Tips When justifying text, it is important to size the block large enough to prevent a browser from
putting unpleasant amounts of extra whitespace between words. The justification algorithm
is not sophisticated. It only adds space between words. It does not automatically hyphenate
words, and it does not put extra space between letters.

In spite of the name, text-align aligns all types of content including text, images, objects,
controls, and so on.

Related to Aligned Static Inline (Chapter 8); Left Aligned, Left Offset, Right Aligned, Right Offset, Center
Aligned, Center Offset (Chapter 9); Spacing (Chapter 11); Opposing Floats, Tab Menu, Tabs,
Layout Links (Chapter 17); Center Callout (Chapter 19)

253

CHAPTER 12 " ALIGNING CONTENT

254

Vertical-Aligned Content

& Vertical-aligned Content - Mozilla Firefox
Fle Edit View Go Sookmarks Took Help

Vertical-aligned Content

Jtexttop

’ n
AM X I micdle [pasel
aseline Itaxt-bnttnm
A\

<\ R.i .

T
baseline — /% text-top — _-1__ middle — \TT"I‘\" text-bottom — f Wy
9 F4
e

HTML

<h1>Vertical-Aligned Content</h1>

<div>AMjx
<img class="text-top" src="bar.gif" alt="bar"
/> text-top
<img class="middle" src="bar.gif" alt="bar"
/>¢span class="middle text"> middle
<img class="baseline" src="bar.gif" alt="bar"
/> baseline
<img class="text-bottom" src="bar.gif" alt="bar"
/>¢ text-bottom</div>

<p class="text">

baseline 8rarr;

text-top →

middle →

text-bottom → </p>

CSS

div { font-size:60px; line-height:normal; border:1ipx solid black; }
.main { background-color:gold; padding:0 10px; }

.text { font-size:18px; }

.text-top { vertical-align:text-top; }
.middle { vertical-align:middle; }

.baseline { vertical-align:baseline; }
.text-bottom { vertical-align:text-bottom; }

CHAPTER 12 I ALIGNING CONTENT

Vertical-Aligned Content

Problem

You have different sizes of inline elements that you want to align to a common set of
reference points. For example, when you have images and text on the same line, you want
to align the images to the top, middle, baseline, or bottom of text.

Solution

You can use vertical-align to align an inline element to one of its parent’s four fontlines:
text-top, middle, baseline, and text-bottom. By default, inline content is aligned to the
baseline.

Fontlines provide four reference points to which you can align inline content. They define
what I call an alignment context. Notice how the star image in the example is aligned to
each of the four fontlines established by its paragraph, and its neighboring text is aligned to
the paragraph’s baseline. This is a key point. The star and text are not aligned to each other.
They are aligned to the fontlines established by their parent, the paragraph.

A terminal block establishes the initial alignment context for its inline children and text. The
font and font-size of a block defines the location of the four font lines. The text-top is
located at the top of characters with accents, like the letter “A.” The baseline is located at
the bottom of characters that do not have descenders, like the letter “M.” The text-bottom

is located at the bottom of characters that have descenders, like the letter “j.” The middle is
located in the middle of the ex height, which is the middle of the letter “x.”

You can use vertical-align:top or bottom to align an inline element to the top or bottom
of a line. top and bottom are typically the same as text-top and text-bottom—unless the
height of a line is taller than its content. A line can be taller than its content when it contains
images, objects, different font sizes, different vertical alignment, or a larger 1ine-height.

If a parent and child share the same font and font-size, their fontlines are located in the
same vertical positions. Aligning to the same fontlines produces no change in alignment. To
see changes, elements need to have different font sizes, or in the case of images and objects,
their height needs to be larger or smaller than the font-size of the alignment context.

Pattern

HTML

CSS

<TERMINAL_BLOCK> <INLINE> content </INLINE> </TERMINAL_BLOCK>

TERMINAL_BLOCK_SELECTOR { font-size:+em; }
INLINE_SELECTOR { vertical-align:FONTLINE; }

Example

The division in the example defines an alignment context with a font-size of 60 pixels. The
letters “AMjx” show the font size rendered at its full height from the accent on top of the “A”
to the bottom of the “j.” The height of the letter “M” is the em height. The height of the letter
“x” is the ex height. The images and spans inside the division are aligned to each of the
division’s fontlines.

Notice how the closing /> of each element is placed on the next line with no spaces
between it and the following . This prevents the whitespace from collapsing out of
the span into the division. Since the division has a font-size of 60 pixels and the span has a
font-size of 18 pixels, whitespace in the division is much wider than whitespace in the
spans.

Related to

Vertical-Offset Content, Subscript and Superscript, Nested Alignment; HTML Whitespace
(Chapter 2); Table, Vertical-Aligned Data (Chapter 15); Layout Links (Chapter 17)

255

CHAPTER 12 " ALIGNING CONTENT

Vertical-Offset Content

3 Vertical-offset Content - Mozilla Firefox

Fie Edt Yew Go Cookmarks Tools Help

Vertical-offset Content
A

raised 1em / 4
| baseline__ __baseline__

-

7 __baseline_
lowerad lem /

HTML
<h1>Vertical-Offset Content</h1>

<div>
_baseline__

raised lem

__baseline__

lowered 1em

_ baseline_
</div>

CSS
div { border:1px solid black; }

.baseline { vertical-align:baseline; }

.raised { vertical-align:iem; }
.lowered { vertical-align:-iem; }

256

CHAPTER 12 I ALIGNING CONTENT

Vertical-Offset Content

Problem

You want to vertically offset two or more inline elements that are on the same line. For
example, you want to vertically position an image in relation to neighboring text, or you
want to position two or more images in relation to each other, or you want to position a
drop cap in relation to the following text, or you want to offset text to create a subscript or
superscript effect.

Solution

You can use vertical-align to offset a child inline element from the baseline of its parent.
Positive values raise an element above the baseline, and negative values lower it below the
baseline. A line automatically expands to accommodate the offset element.

You can use ems in vertical-align. One em is equal to the element’s font-size. For
example, 1em raises text above where its top is normally located, and -1em lowers text below
where its bottom is normally located. Ems have the advantage of scaling along with the text.
Thus, if a browser zooms in or out, ems scale proportionally.

You can use pixels in vertical-align. Pixels do not change when a browser zooms in or
out, and the offset does not change. This is usually not desirable when offsetting text, but it
may be exactly what you want when you are offsetting images.

vertical-align:0 is the same as aligning to the baseline.

Pattern

HTML

CSS

<INLINE> content </INLINE>

INLINE_SELECTOR { vertical-align:VALUE; }

Location

This pattern works on inline text elements.

Limitations

Vertical offsets are for contrasting the position of two or more inline elements that are on
the same line. Since a browser always centers content in a line, if you vertically offset only
one element on a line, you will not see the offset because it is centered away.

Tip

I do not recommend using percentages to vertically offset inline elements because the
results are hard to predict. The percentage is a proportion of the element’s 1ine-height.
This would be useful if percentages offset an element from the bottom of a line, but they
offset it from the baseline. Since a browser centers content within a line, the location of the
baseline within a line is not easy to predict.

Example

The division in the example defines an alignment context with a font-size of 60 pixels. The
letters “AMjx” show the rendered font size. The images and spans inside the division are
offset from the baseline of the division’s alighment context.

Related to

Vertical-Aligned Content, Subscript and Superscript, Nested Alignment; Inline Decoration
(Chapter 11); Button (Chapter 17); Aligned Dropcap, First-Letter Dropcap, Padded Dropcap
(Chapter 18)

257

Download from Wow! eBook <www.wowebook.com>

CHAPTER 12 I/ ALIGNING CONTENT

Subscript and Superscript

waa
B Di Pr= s Oedeodn Teb Hoe

sub; super: M'®

Fir [di (re Juesaes Neiges Temn Hels

sub, super: M'E

Bin B = Farertm Do Helo

sub, super? M'®

B Db o= s Oedeodn Teb oo

Subscript and Superscript
sub, super® M''®

HTML

<h1>Subscript and Superscript</hi>

<p class="large">sub₁ super² M^{lle}</p>

CSS

sub { vertical-align:-0.5em; font-size:0.75em; }
sup { vertical-align:0.5em; font-size:0.75em; }

.large { font-size:32px; }
CSS Internet Explorer

sub { font-size:0.9em; }
sup { font-size:0.9em; }

258

CHAPTER 12 I ALIGNING CONTENT

Subscript and Superscript

Problems

You want to use subscripts and superscripts.

Since each browser uses different vertical offsets and font sizes for subscripts and
superscripts, you may also want to standardize their styles to fit your tastes. For example,
Firefox 2 lowers subscripts just a little, and Opera 9 uses a larger font size for subscripts and
superscripts. The first three screenshots in the example show how subscripts and
superscripts look in Firefox 2, Internet Explorer 7, and Opera 9. The fourth screenshot
shows subscripts and superscripts styled to look the same in all browsers.

Solutions

You can mark up inline content with <sub> for subscripts and <sup> for superscripts.
Subscripts and superscripts are semantic elements. In foreign languages, such as French,
certain characters must be superscripts to be correct, such as the “lle” in the abbreviation
for “mademoiselle.” In math, subscripts and superscripts change the meaning of a number.

If you want to ensure all browsers render subscripts and superscripts the same, you can
assign vertical-align and font-size to <sub> and <sup>. You can use em values so the
location and size of the subscript always remain proportional to the font size.

You can assign a negative em to vertical-align to lower a subscript. For example, -0.5em
lowers the text by half its font-size.

You can assign a positive em to vertical-align to raise a superscript. For example, 0.5em
raises the text by half its font-size.

You can assign a positive em to font-size to size the subscript or superscript to be
proportional to the font size of its parent. For example, 0.75em shrinks the subscript or
superscript to 75% of its parent’s size.

Since Internet Explorer 7 and earlier versions have a “feature” that sizes subscripts and
superscripts 75% smaller than the value you specify with font-size, you can compensate
by assigning a positive value to font-size that is 120% larger than the em value you assign to
other browsers. You can use the Conditional Style Sheet design pattern to load a style sheet
specific to Internet Explorer to assign these values. For example, if you assign 0.75em to all
browsers, you can assign 0.9em to Internet Explorer.

Patterns

HTML

CSS

_{text}
^{text}

sub { vertical-align:-em; font-size:+em; }
sup { vertical-align:+em; font-size:+em; }

Location

This pattern works only on inline text elements.

Related to

Vertical-Offset Content; Inline Elements, Conditional Style Sheet (Chapter 2)

259

CHAPTER 12 " ALIGNING CONTENT

260

Nested Alignment

2 Mested Alianment - Mozilla Firefox

fie Erdt Yew Histey Bockmarks Tools Heb

Nested Alignment

4
AMJX _2npx T = baseline text-hottom

-20px

HTML

<h1>Nested Alignment</h1>

<div class="ac1"»
AMjx</spans>
 -20px
+35px
text-top
middle
baseline
text-bottom
-20px

</div>

CSS

.ac1 { font-size:50px; }
.ac2 { font-size:30px; }
.ac3 { font-size:12px; }

.raise35px { vertical-align:35px; }
.lower20px { vertical-align:-20px; }
.text-top { vertical-align:text-top; }
.middle { vertical-align:middle; }

.baseline { vertical-align:baseline; }
.text-bottom { vertical-align:text-bottom; }

/*¥ Nonessential rules are not shown. */

CHAPTER 12 I ALIGNING CONTENT

Nested Alignment

You want to nest alignment contexts. Nested alignment contexts are a unique layout feature
Problem built into CSS. You will probably never need to use it. I have included this design pattern
mainly for completeness.

You can nest alignment contexts by nesting inline elements and assigning them to different
font-size values. Each nested inline element defines its own independent alignment
Solution context based on the size of the font assigned to the element.

Fontlines define two alignment contexts for each element: the alignment context in which an
element is rendered, and the alignment context an element supplies for its children.

Pattern

HTML <INLINE class="ac1"> content
<INLINE class="ac2"> content </INLINE>
</INLINE>

CSS .CLASS { font-size:+em;
white-space:nowrap;
vertical-align:zem;
left:+em;
position:relative; }

Location This pattern works only on inline elements.

Nested alignment contexts work well as long as they stay on the same line. When a nested
alignment context is wrapped to another line, the results vary depending on the browser. In
Opera 11, there is a rendering error when vertical-align: text-bottomis used with
multiple different font sizes. The text can display outside the container.

Limitations

Tip You can nest inline elements indefinitely to create as many alignment contexts as you want.

In the example, I have three alignment contexts: <div class="ac1"», <span class="ac2"»,
and . Each is set to three different font sizes: 60px, 30px, and 12px,
respectively. Each font-size defines a different set of fontlines to which child elements can
align. There are six elements using the third alignment context, , and
each one is aligned to a fontline or offset from the baseline of . is offset from the baseline of <div class="ac1">.

Notice how ac2’s alignment context is preserved internally while it is aligned to ac1’s
alignment context externally. Internally, each inline element defines its own alignment
context to which its children can be aligned. Externally, each inline element is aligned to the
alignment context of its parent.

Example

Vertical-Aligned Content, Vertical-Offset Content, Advanced Alignment Example; Positioned,

Related to Relative (Chapter 7); Offset Relative (Chapter 8); Nowrap (Chapter 11)

261

CHAPTER 12 " ALIGNING CONTENT

262

Advanced Alignment Example

3 Advanced Allgnment Fxample - Mozlla Firefox
Fle Edit View History Eoohmaks Took Hep

Advanced Alignment Example

=0

HTML

<h1>Advanced Alignment Example</h1>

<p class="large">
<span class="ac1"
ƒ(x) =
∑
n=0
∞
a_nx
<span class="ac2"»
(n-12
)
</p>

CSS

sub { vertical-align:-0.3em; font-size:0.75em; }

.ac1 {font-size:4em; font-family:"Times New Roman" serif; white-space:nowrap; }

.ac1-func{vertical-align:0.6em; font-size:0.3em; font-style:italic; }

.acil-sum {vertical-align:0.2em; font-size:0.6em; position:relative; left:-0.1em; }

.aci-max {vertical-align:3em; font-size:0.2em; position:relative; left:-6em; }

.aci-min {vertical-align:-1em; font-size:0.2em; position:relative; left:-3.3em; }

.acil-formula { vertical-align:0.6em; font-size:0.3em; font-style:italic;
position:relative; left:-4em; letter-spacing:0.1em; }

.ac2 {vertical-align:0.4em; font-size:1.5em; position:relative; left:-0.3em; }
.ac2-num {vertical-align:0.7em; font-size:0.4em; border-bottom:1px solid black; }
.ac2-dnm {vertical-align:-0.4em; font-size:0.4em; position:relative; left:-1.4em; }
.ac2-close { position:relative; left:-0.65em; }

CHAPTER 12 I ALIGNING CONTENT

Advanced Alignment Example

Example

I have included this example for fun. It uses advanced alignment techniques and relative
offsets. This is not an actual design pattern. Something this complex is probably better
rendered as an image or as MathML. This is simply an example of how powerful CSS can be.

This example is sizable. You can use the zoom feature in your browser to enlarge or shrink
it. Everything remains aligned properly as it changes size.

This example works the same in all major browsers, which shows how consistently browsers
have implemented alignment contexts.

The example uses font-size to set the size of each alignment context. The two alignment
contexts in the example are defined by the elements assigned to the classes ac1 and ac2. I
assigned a large enough font-size to acl to make room for all its vertically aligned
children. The second alignment context is the (n-1)/2 part of the formula. Notice how all
its children are aligned relative to the second alignment context.

I used white-space:nowrap to prevent the example from wrapping to another line. I used
vertical-align to align elements to various parts of the example. I used
position:relative and left to move elements into horizontal position. I used em
measurements for vertical-align and left so they would scale proportionally to the
font-size. This allows them to grow or shrink as the font-size grows and shrinks. You can
assign different font sizes to the paragraph in the example to see this in action.

Features

HTML

CSS

<INLINE class="ac1"» content
<INLINE class="ac2"> content </INLINE>
</INLINE>

.CLASS { font-size:tem;
white-space:nowrap;
vertical-align:tem;
position:relative;
left:tem; }

Location

These features work only on inline elements.

Related to

Vertical-Aligned Content, Vertical-Offset Content, Nested Alignment; Positioned, Relative
(Chapter 7); Offset Relative (Chapter 8); Nowrap (Chapter 11)

263

CHAPTER 13

Blocks

The main purpose of this chapter is to show various ways you can emphasize document structure by
styling blocks. Many design patterns in other chapters apply to blocks, but this chapter contains patterns
specific to styling block elements to reveal document structure.

Chapter Outline

e Structural Meaning shows how blocks create hierarchical and sequential
structure.

e Visual Structure shows how to style blocks to bring out the document structure.

e Section shows how to organize your document into sections for easy styling and
for better structural meaning for search engines and document processors.

e Lists shows many ways to create lists and list markers.
e Background Bulleted shows how to add bullets to a list using background images.

e Inlined shows how to render a block element as if it were an inline element. This
allows blocks to be rendered from left to right and to wrap across lines.

e Collapsed Margins shows how to collapse and uncollapse vertical margins
between block elements.

¢ Run-In shows how to run a block into the following sibling block as if it were an
inline element within the following block. Run-in headings save space and are
very attractive.

e Horizontal Rule shows how to use and style a horizontal rule in spite of the
problems caused by Internet Explorer 7, which refuses to remove its built-in styles
from <hr /5.

e Block Spacer shows how to insert a precise amount of vertical space between
selective blocks without having to adjust margins individually.

e Block Space Remover shows how to remove a precise amount of vertical space
between selective blocks without having to adjust margins individually.

e Left Marginal shows how to extract headings, notes, alerts, and images from the
normal flow and move them into a wide left margin.

e Right Marginal works like Left Marginal except items are moved to the right.

265

CHAPTER 13 I BLOCKS

266

Structural Meaning

Strw Mea

Structural Meanisg L+

Structural Meaning
* A Navigation Item |

An Example of Structual Meaning
This heading identifies the topic of its
section.

This paragraph introduces the topic of the heading.

This paragraph continues the topic of the heading.

Everything in a document ks related. The block structure identifies the crder and
intensity of the relationships. The more elements you wrap around content, the
more tightly connected it becomes to ancestors and siblings.

* This Is an uncrdered list.
« List items are more closely related than items in divisions.
= There Is no significance to the sequence of unordered list ltems.

New Structual Elements

A article or other complete plece of

article contant

aside Secondary content, such as a sidebar
footer | Foater region
header | Header region
v | Navigation region
section A logical region of a page

A footer typically contalns information about Its section such as who wrote it.
An aside indicates content that is tangentially related to the content around it. Can
be used as an sidebar.

HTML

<body>
<div id="wrapper">
<header><h1sStructural Meaning</h1></header>

<nav><lisA Navigation Item</nav>

<article»
<headers><h1sAn Example of Structural Meaning</h1></header>
<section»
<header><hgroup>
<h1>This heading identifies the topic of its section.</h1>
<p>This paragraph introduces the topic of the heading.</p>
<p>This paragraph continues the topic of the heading.</p> </hgroup></header>

<p>Everything in a document is related. The block structure identifies the
order and intensity of the relationships. The more elements you wrap around
content, the more tightly connected it becomes to ancestors and siblings.</p>

This is an unordered list.
<lislist items are more closely related than items in divisions.</1i>
<lisThere is no significance to the sequence of unordered list items.</1i>

<h3sNew Structural Elements</h3>

<tables<tbody>
<trsctdrarticle</td><td>An article or other complete piece of content</td></tr>
<trs<tdraside</td><td>Secondary content, such as a sidebar</td></tr>
<try<td>footer</td><td>Footer region</td></tr>
<trs<tdsheader</td><td>Header region</td></tr>
<trs<tdrnav</td><td>Navigation region</tds</tr>
<trsctdrsection</td><td>A logical region of a page</td></tr> </tbody></table>

CHAPTER 13 I BLOCKS

</sectiony

<footer>
<p>A footer typically contains information about its section such as who wrote it.</p>
</footer>
</article>

<aside id="sidebar">
<p>An aside indicates content that is tangentially related to the content around it. Can
be used as a sidebar.</p> </aside>
</div></body>

Structural Meaning

Problem You want to identify the structure of a document using blocks.

Solution Blocks define the structure of a document, and the structure of a document helps readers and computers
understand the meaning of a document. Everything in a document is related. The block structure
identifies the order and intensity of the relationships. The more elements you wrap around content, the
more closely it relates to ancestors and siblings.

HTML makes four assumptions about the meaning of document structure:

1) A parent element defines the topic of its children.

2) Siblings are ordered unless the parent element specifies otherwise.

3) As the hierarchy deepens, meaning becomes more focused and connected.

4) All content in the document body is related. Content in a division or a form is more closely related.
Content in lists is even more closely related. Content in tables is the most closely related.

Two types of structures exist in HTML: hierarchies and sets. You create hierarchies by nesting elements.
You create sets by placing multiple elements inside a parent. There are two types of sets: ordered and
unordered.

Each structure in HTML starts out as a hierarchy and ends in a set.

For example, a table creates a hierarchy of nested rows and cells. Within that hierarchy, a table contains an
ordered set of rows, and each row contains an ordered set of cells. Cells in the same column are related,
and cells in the same row are related. Because a cell is the intersection of a row and a column, it ties
together the meaning of both. As a result, content in tables is most strongly related (that is why it is called
relational data).

Take another example: a list starts out as a hierarchy where a parent list element contains a set of list
items. An ordered list contains an ordered set of related list items. An unordered list contains an
unordered set of related list items. A dictionary list is an associative entity containing an unordered set of
related terms and definitions. Lists can be nested within each other to create a hierarchy of lists. You can
put content in lists when you want it to be more strongly related than content in the document body, a
division, or a form.

As a final example, a division organizes headings and paragraphs into a series of related topics where each
heading introduces an ordered series of related paragraphs. Divisions can be nested to create a hierarchy
of subtopics.

Pattern <PARENT_BLOCK>

<CHILD_BLOCK_1> related content </CHILD_BLOCK_1>
HTML <CHILD BLOCK 2> related content </CHILD BLOCK 2>
<CHILD BLOCK_N> related content </CHILD_BLOCK_N>
</PARENT_BLOCK>
Location This pattern applies to block elements.
Related to Visual Structure; HTML Structure, Structural Block Elements, Terminal Block Elements, Multi-purpose

Block Elements (Chapter 2)

267

CHAPTER 13 I BLOCKS

268

Visual Structure

See the Structural Meaning design pattern for the example.

CSS (for the Structural Meaning Design Pattern)

hi { margin:o; font-size:1.9em; }
h2 { margin:0; margin-top:3px; font-size:1.2em; }

header,nav, section,aside, footer,article{ display:block; }

ul,div,td,th { border:ipx solid black; background-color:gold; margin-top:20px; }
div { padding:0 10px; }

table { border-collapse:collapse; margin:5px 0; }

td,th { background-color:white; width:20%; text-align:center; padding:2px; }

ul { margin-left:0; padding:0 40px; }

p,1li { margin:0; padding:2px 0; }

STYLING EXCEPTIONS

A style sheet works well when you style classes of items, but it quickly becomes cumbersome when you
style exceptions. To style one element, you typically add an ID to it and style the ID in the style sheet. This
is a minor inconvenience in a single document, but this inconvenience turns into a maintenance problem
over time as documents change, styles change, and hundreds of documents share common style sheets.
For example, since an ID used for exceptional styling is part of an element, when the element moves, the
exceptional styling moves with it. This will likely cause unexpected results when you modify a document
and will send you on a wild goose chase looking for the cause of the problem.

The Horizontal Rule, Block Spacer, or Block Space Remover design patterns are good solutions for styling
exceptional cases because they insert an element into the document. The element has structural
meaning, is self-documenting, and is easy to reposition. You can style these spacer elements using
standard classes so you are no longer styling exceptions. Spacer elements are only for exceptional cases.

POSITIONAL STYLING

At times you may want to style an element because it is in a certain position. For example, you may want
to change the amount of margin before the first child and after the last child of a block because collapsed
margins work differently for the first and last child elements. If you apply an exceptional margin directly to
the first child element, and then you move the first child so that it becomes a middle child, its exceptional
margin moves with it. This is not the result you want because you want to style the position—not the
element.

One way to style a position is to use the Horizontal Rule, Block Spacer, or Block Space Remover design
patterns. This works because it is easy to keep a spacer element in the right position—especially if you
name its class intuitively, such as "first-child" and "last-child". CSS 3 positional selectors are
powerful enough for positional styling and are almost completely supported by modern browsers.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 13 I BLOCKS

Visual Structure

Problem

You want to reveal the structure of a document visually.

Solution

CSS provides a number of ways you can style blocks to reveal document structure. You can
put vertical margins between blocks or use first-line indents to visually separate content
into blocks. You can put bullets or numbers in a block’s margin to enumerate blocks. You
can use margins, borders, and padding to put boxes around blocks to reveal how they are
nested inside each other. You can also assign font sizes to heading levels so that headings
with a larger scope have a larger font size—this can reveal the nesting of blocks without
having to put them inside boxes.

You can help the user see the structural meaning of a document by visually styling the
structure. To emphasize a close structural relationship, you can position elements closer
together and give them a similar look. For example, elements inside lists and tables have a
similar look to show they belong together. To set elements apart, you can position them
further apart and style them differently. For example, lists, tables, and blocks have different
default styles to emphasize the different meanings of their structures. Also, unordered lists
use bullets to point out that their items are unordered.

To create a consistent look and feel, it is a common practice to apply a standard set of styles
to all blocks of the same type. For example, you may want all paragraphs and list items to
have a 2-pixel vertical padding. In your style sheet, you can select all elements of a certain
type or all elements of a certain class and style them as desired. This is demonstrated in the
example.

Occasionally, you may want to change the space between two specific blocks. You can bring
them closer together to emphasize the closeness of their relationship or push them further
apart to emphasize their differences. Structurally, you are styling the space between the
blocks. Since the relationship is not part of either block, but is between the blocks, it is more
structurally accurate and simpler to insert a spacer block than it is to style the margin of one
of the two blocks as an exception to its normal styling.

HTML provides the <hr /> element for the purpose of inserting a structural break between
blocks (and
 to insert a line break between inlines). The Horizontal Rule design
pattern shows how to use and style <hr />.

When you want to insert a structural break that is not as strong as a horizontal rule or you
want to bring two blocks closer together, you can use the Block Spacer and Block Space
Remover design patterns.

Using a horizontal rule, a block spacer, or a block space remover should be the exception,
not the norm. The structural meaning of breaks and links between elements is not as strong
as nested structures.

You may want to merge two blocks to emphasize a very close relationship between them.
This is explored in the Inlined and Run-In design patterns.

Related to

Structural Meaning, Horizontal Rule, Block Spacer, Block Space Remover

269

CHAPTER 13 I BLOCKS

270

Section

£ Section - Mozilla Firefox
Fle Edit WVew Hitory EBookmarks Took Hep

Section

Introduction
This paragraph Is about the introduction,

Content
This paragraph is about the content.
Subsection Example

+ This list item relates to the subsection example.
+ This list ikem relates to the subsection example.

HTML

<h1>Section</h1>

<section class="introduction”»
<h2>Introduction</h2>
<p>This paragraph is about the introduction.</p>
</sectiony

<section class="content"»
<h2>Content</h2>
<p>This paragraph is about the content.</p>

<section class="section example"»
<h3>Subsection Example</h3>
This list item relates to the subsection example.</1li>
This list item relates to the subsection example.
</section>
</section>

CSS

section { padding:10px; margin:10px 0; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; display:block; }

section p { margin:0; margin-top:5px; }

section h2 { margin:0; margin-bottom:10px; }

section h3 { margin:0; margin-bottom:10px; }

section.example { background-color:white; }

section section { margin-bottom:0; }

CHAPTER 13 I BLOCKS

Section

Problem You want to organize your document into sections, and you want to style various sections
differently.

Solution HTML provides the section element to identify sections of a document. A section is generic
and has no meaning by itself. A section is a part of a document that contains content
relating to a specific theme or purpose. A section normally contains a heading followed by
blocks of supporting statements that are logically related to each other. Subsections are
often nested within sections to identify subthemes relating to the theme of the parent
section.

Any heading element can be used, such as <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. The
heading level identifies the relative importance of the section. <h1> is the most important
heading in a document. Following the heading are blocks of content and subsections.

This design pattern imposes no constraints on the structure of sections and subsections,
other than each section should contain a heading as its first content-containing child
element. I use the phrase “content-containing child element” because a section may
contain any number of decorative child elements, such as divisions and spans, prior to the
heading. Such decorative child elements could be used to layer background images behind
the section, for example.

Pattern HTML CSS

<section class="TYPE"> section { STYLES }
<HEADING> content </HEADING> section.TYPE { STYLES }
<BLOCK> content </BLOCK> section.TYPE HEADING { STYLES }
section.TYPE BLOCK { STYLES }
</section> section section { STYLES }

Location This pattern applies to block elements.

Tips There are no limits to the names you can use to classify your sections. Here are a few
examples: callout, caution, content, example, figure, introduction, listing, note, quote,
summary, table, tip, and warning. For 200 more examples, see the file Common Section
Names. txt in the example folder.

Related to Structural Meaning, Run-In; Floating Section (Chapter 17)

271

CHAPTER 13 I BLOCKS

272

Lists

=¥ Lists - Mozilla Firefox

fle Ot ¥em Hgltoy Doobmarks Took Hep
Lists
Normal Lists Faux Lists
" List item with custom bullak » display:list-itam
= Ligt item with circla bullet 1:8-5 faux marker
3. List item with numbared bullet - Emiddot;
» List itern with disc bullet e Bbull;
displayed inside the margin ¢ Bloz;
- faux marker * Brsaguo;
= Andash; # Bragquo;
— —
HTML
<h1>Lists</h1>

<section id="section1"><h2>Normal Lists</h2>
<li class="custom">List item with custom bullet</1i>

<li
<li
<li
<li
<1li
<1i

class="circle">List item with circle bullet

class="decimal">List item with numbered bullet</1i>

class="inside">List item with disc bullet displayed inside the margin
class="none">-faux marker</1is»

class="none">–&ndash;</1i>
class="none">8mdash;&mdash;</1i></section>

<section id="section2"><h2>Faux Lists</h2>

<span

class="listed">display:1list-item

<p class="list">1:8-5¢/span>faux marker</p>

<p class="list">8middot;&middot;</p>

<p class="list">8bull;&bull;</p>

<p class="list">8loz;&loz;</p>

<p class="list">›&rsaquo;</p>

<p class="list">»&raquo;</p></section>

CSS

ul { margin-left:0; padding-left:0; } /* Normalized list */

ul 1i {
disted

Jdist {
.maxrker

.custom
.circle

.decimal

.inside
.hone

margin-left:60px; }
{ margin-left:60px; display:list-item; list-style:square; }

margin-left:60px; }
{ float:left; margin-left:-60px; width:60px; text-align:center; }

{ list-style-image:url("check.gif"); }
{ list-style-type:circle; }

{ list-style-type:decimal; }

{ list-style-position:inside; }

{ list-style-type:none; }

/* Nonessential rules are not shown. */

Lists

CHAPTER 13

Problem

You want to lay out a block as a bulleted or numbered list.

Solution

You can embed content in list items (<11%). You can embed list items in unordered
(bulleted) lists () or ordered (numbered) lists (<01).

You can use the 1ist-style-type property to assign the type of marker displayed to the
left of a list item. The bullet markers include disc (the default), circle, and square. The
numbered markers that work in all major browsers include decimal (the default), Lower-
alpha, upper-alpha, lower-roman, and upper-roman. Using list-style-type, you can even
force numbered list items to display bullets and vice versa! You can hide the marker using
list-style-type:none.

You can use list-style-image to display an image in place of the marker. In the example,
the marker-custom class uses the rule list-style-image:url("check.gif") to display a
check-mark image as the marker.

You can use list-style-position:inside to place the marker inside the list's margin,
which allows subsequent lines to wrap under the marker.

You can use display:1list-item to render any block or inline element as a list item, and a
browser will display a marker in its left margin. You can apply any list-style rule to the
element to style the marker. This can be useful when you have inline elements in
MicroFormats that you want to style as lists (see http://microformats.org for more
information on using MicroFormats).

All major browsers indent lists by 40 pixels, but they differ in how they do it. Some set
margins to 40 pixels, and others set padding. For consistent results, you can assign margin-
left:0; and padding-left:0; to and , and you can assign margin-left:WIDTH to
list items (<11>). You can increase the left margin to make more room for markers, as I did
in the example.

You can create a faux marker by wrapping any content you want in a span. This allows you
to use any text as a marker, and you can style it in any way! You can use float:1left to float
the span to the left. You can use margin-left:-WIDTH to move it into the left margin the
same distance as its width and its parent’s left margin. You can also align its content to
center.

Patterns

HTML

CSS

<1i> CONTENT
or <1i> CONTENT </1i>
or MARKER </1i>
or <ELEMENT class="1isted"> CONTENT </ELEMENT>

or <PARENT class="list">
<CHILD class="marker"> MARKER </CHILD> CONTENT </PARENT>

ul { margin-left:0; padding-left:0; }

ul 1i { margin-left:WIDTH; }

.listed { margin-left:WIDTH; display:list-item; list-style:disc; }
.list { margin-left:WIDTH; }

.marker { float:left; margin-left:-WIDTH; width:WIDTH; }

Related to

Structural Meaning, Visual Structure, Background Bulleted, Inlined; Structural Block

Elements, Multi-purpose Block Elements (Chapter 2); Display, Block Box (Chapter 4);
Margin, Padding (Chapter 6); Float and Clear, Relative Float (Chapter 7); Offset Float

(Chapter 8); Rollup, Tab Menu, Tabs, Flyout Menu, Layout Links (Chapter 17)

BLOCKS

273

http://microformats.org

CHAPTER 13 I BLOCKS

274

Background Bulleted

%3 Background Bulleted - Mozilla Firafox

Eie Edit Yew Higtory fookmarks Tools Hel

Background Bulleted

Unordered list item with a background bullet
Ordered list item with a background bullet

v Definition term with & backgreund bullet
Definition data with 2 background bullet

Faux list with a background bullet
Faux list with a background bullet

HTML
<h1>Background Bulleted</h1>

<ul class="bb-list">
<1i class="bb1">Unordered list item with a background bullet

<0l class="bb-list">
<li class="bb2">Ordered list item with a background bullet

<dl class="bb-list">
<dt class="bb1">Definition term with a background bullet</dt>
<dd class="bb2">Definition data with a background bullet</dd></dl>

<div class="bb-list">
<p class="bb1">Faux list with a background bullet</p>
<p class="bb2">Faux list with a background bullet</p></div>

CSS

.bb-1ist { padding-left:40px; margin-left:0; margin-top:20px; }

.bb-list 1i,

.bb-list dt,

.bb-list dd,

.bb-list p { padding-left:40px; margin-left:-40px; list-style-type:none;
margin-top:0; margin-bottom:0; }

.bba { background:url("check.gif") no-repeat 10px 1px; }
.bb2 { background:url("star.gif") no-repeat 10px 1px; }

CHAPTER 13 I BLOCKS

Background Bulleted
Problem You want to control the precise placement of a list item’s bullet.
Solution Since CSS does not provide properties for controlling the position of a bullet, you can use a

background image as the bullet of each list item, and you can use background-position to
position it precisely.

You can assign a positive left padding to a list element (, , or <d1>) to make room
for bullets on its list items. You should also remove the default left margin that some
browsers add to lists. In the example, I assigned padding-left:40px and margin-left:0 to
each list.

You can assign a negative left margin to each list item to move it into the padding area of its
parent list. The negative left margin should be the exact inverse of the amount assigned to
the left padding of its parent. In the example, I assigned margin-left:-40px to each list
item.

You can assign the exact amount of left padding to each list item that you assigned to its
parent list. This moves a list item’s content away from the bullet. In the example, I assigned
padding-left:40px to each list item. You should also hide each list item’s built-in marker
using list-style-type:none.

You can assign a nonrepeating background image to each list item and use background-
position to offset its position. In the example, I used a left offset of 10 pixels and a top offset
of 1 pixel. You can use different classes as needed to assign and position different
background images to individual list items.

You can assign the bb-1ist class to each list. This distinguishes between normal lists and
background-bulleted lists, which is important because they each have different values for
margin and padding. You can combine *.bb-1ist with the descendant operator and a list-
item element to select background-bulleted list items. Since there are three different types
of list-item elements, you can use the grouping operator to assign multiple selectors to this
pattern’s rules.

Since a list item is a block element, this pattern applies to all block elements. Nonetheless, it
is better to mark up items as a list when they function as a list. In the example, I applied this
pattern to a division and its child paragraphs, but only to show how it can be done—not to
recommend that you do it.

Pattern <LIST class="bb-list">

<LIST_ITEM class="BULLET_STYLE"> list content </LIST_ITEM>
HTML </LIST>
CSS .bb-1ist { padding-left:+INDENT; margin-left:0; }

.bb-1ist 1i, .bb-list dt, .bb-list dd,.bb-list p
{ padding-left:+INDENT; margin-left:-INDENT; list-style-type:none; }

.BULLET_STYLE { background:url("FILE.EXT") LEFT_OFFSET
TOP_OFFSET no-repeat; }

Related to Lists; Block Box (Chapter 4); Margin, Padding, Background (Chapter 6)

275

CHAPTER 13 I BLOCKS

Inlined

3 pnfined - Mozilla Firefox
Fi= Edt WVvew Go Bockmarks Took Heb

Inlined

|N1:|rmal Paragraph

MNormal Table |r1c2 |r1-:3|
rowa |r2|:2 | r2c3 |

+ Normal List |

+ Normal List |

|Inllned Table ||r1|:2 | r1c3|

= Paragraphl row?2 JF2c2] r2c3] e Listl el List”

HTML

<h1>Inlined</h1>
<div>
<p>Normal Paragraph</p>
<table><tr><td>Normal Table</td><td>ric2</td><td>ric3</td></tr>
<tr><td>row2</td><td>r2c2</td><td>rac3</td></tr></table>
Normal List</1li>Normal List</div>

<div>
<p class="inlined">Inlined Paragraph</p>
<table class="inlined"»
<tr><td>Inlined Table</td><td>ric2</td><td>ric3</td></tr>
<tr><td>row2</td><td>r2c2</td><td>r2c3</td></tr></table>
<ul class="inlined"»><li class="inlined"»Inlined List</1i>
<li class="inlined"»Inlined List</1i></div>

CSS

div { padding:10px; margin-bottom:15px; border:2px solid black; }
table, p, td, ul, 1i { margin-top:0px; margin-bottom:10px; padding-right:5px; }
p, td, ul, 1i { background-color:gold; padding-top:5px; padding-bottom:5px;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

.inlined { display:inline; line-height:normal; padding:5px; margin:5px; vertical-align:bottom;

}
table.inlined{ display:inline-table; }

276

Inlined

CHAPTER 13 I BLOCKS

Problem

You want the browser to render a block element as if it were an inline element. In other
words, you want a block element to be displayed inline.

Solution

CSS provides display:inline for this purpose. You can assign this rule to any element to
display it inline. Since margin and padding work differently inline, you often need to adjust
the margin and padding to work inline. This is particularly true for lists displayed inline.
Since height does not work inline, you can use line-height in its place.

Pattern

SELECTOR { display:inline; line-height:+VALUE;
margin:+VALUE; padding:+VALUE; }

Location

This pattern applies to any type of element.

Limitations

List items lose their bullets and numbers when inlined. Version 8+ of Google Chrome
requires tables use inline-table to render a table inline.

Advantages

Inlining a block element allows it to be rendered from left to right (or right to left in some
languages) and wrapped to additional lines as needed. This is the most compact way to
display elements.

Tips

Rendering a table inline can be useful when you have a few rows of tabular data that you
want to flow along with other inline content. The table retains its internal structure of rows
and columns, but is located in the inline formatting context. A table rendered inline is very
similar to an inline block: both are rendered as blocks within an inline formatting context.

When a parent block is inlined, its child blocks must be inlined too, or they will break out of
the inline formatting context and create new block formatting contexts. For example, list
elements need to be inlined along with their list container. (This does not apply to rows and
cells of inlined tables.)

Example

The first division in the example contains a paragraph, a table containing two rows of cells,
and a list containing two list items. The second division contains the same elements, but
each element is inlined.

Related to

Run-In; Display, Inline Box, Inline-Block Box (Chapter 4); Blocked (Chapter 11); Tabled,
Rowed, and Celled (Chapter 15); Flyout Menu (Chapter 17); Hanging Alert, Run-In Alert
(Chapter 20)

277

CHAPTER 13 I BLOCKS

278

Collapsed Margins

&3 Collapsed Margins - Mozilla Firefox

File Edit View Go Eoohraks Took Hep

Collapsed Margins

E Margins collapsed into parent's 7|

Margins nok collapsed into parent's 1

i

ollapsed sibling marains |

[

= Collapsed sibling margins 1

= Uncollapsed (transparent padding) 1)

Uncallapsed (transparent border) +

HTML

<h1>Collapsed Margins</h1>
<div>¢p class="collapsed"sMargins collapsed into parent's ↑↓</p></div>
<div class="border"»

<p class="collapsed">Margins not collapsed into parent's ↑↓</p></div>

<div class="border">
<p class="collapsed"sCollapsed sibling margins ↓</p>
<p class="collapsed"»Collapsed sibling margins ↑</p>
<p class="uncollapsed1"sUncollapsed (transparent padding) ↑↓</p>
<p class="uncollapsed2"sUncollapsed (transparent border) ↑</p></div>

CSS

div { margin:10px; padding-left:30px; background-color:gold;
background-image: url("ruler.gif"); background-repeat:repeat-y; }
.border { border:2px solid black; }

.collapsed { margin-top:20px; margin-bottom:20px; }

.uncollapsed1 { margin-top:0; margin-bottom:0;
padding-top:20px; padding-bottom:20px;
background-color:transparent; }

.uncollapsed2 { margin-top:0; margin-bottom:0;
border-top:20px solid transparent;
border-bottom:20px solid transparent; }

Download from Wow! eBook <www.wowebook.com>

CHAPTER 13

Collapsed Margins
Problem You want to collapse or uncollapse vertical margins between blocks.
Solution Browsers collapse vertical margins into the larger of the bottom and top margins between
sibling blocks. For example, if the bottom margin of one block is 15 pixels and the top
margin of the next sibling block is 10 pixels, the collapsed margin is 15 pixels (the
uncollapsed margin is 25 pixels).
You can literally prevent the collapsing of the first child’s top margin into its parent’s top
margin by assigning a top padding or a top border to the parent. Likewise, you can prevent
the collapsing of the last child’s bottom margin into its parent’s bottom margin by assigning
bottom padding or a bottom border to the parent. You can hide the padding or border by
making it transparent and as small as one pixel. In the example, the vertical margins of the
second paragraph do not collapse into its parent because its parent has top and bottom
borders.
You cannot prevent vertical margins from collapsing between sibling blocks. If you want to
avoid the collapsing effect between siblings, you can set margins to zero and use
transparent borders or transparent padding instead. Borders and padding do not collapse.
When a parent block does not have a border, the top margin of its first child collapses into
its top margin. Likewise, the bottom margin of the last child collapses into the parent’s
bottom margin.
Patterns Uncollapsed Margins Between Parent and Child Blocks
PARENT SELECTOR { border-top: WIDTH STYLE COLOR;
border-bottom: WIDTH STYLE COLOR;
padding-top:+VALUE; padding-bottom:+VALUE; }

Uncollapsed Margins Between Sibling Blocks

SIBLING_SELECTOR { padding-top:+VALUE; margin-top:0;
padding-bottom:+VALUE; margin-bottom:0;
background-color:transparent; }

or

SIBLING_SELECTOR { margin-top:0; margin-bottom:0;
border-top:+VALUE solid transparent;
border-bottom:+VALUE solid transparent;
background-color:transparent; }

Location This pattern applies to block elements and elements displayed as blocks.

Disadvantage

Using padding or borders to prevent collapsing margins prevents you from using padding
and borders for what they were intended.

Related to

Horizontal Rule, Block Spacer, Block Space Remover; Margin, Border, Padding (Chapter 6);
Spacing, Blocked (Chapter 11), Collapsed Borders (Chapter 15)

BLOCKS

279

CHAPTER 13 I BLOCKS

280

Run-In

&3 Run-in - Mezilla Firefox

File Edit View Go Eookmaks Took Hep

Run-in

Normal Heading

This is a paragraph following the heading. Notice how the previous heading
and this paragraph are separate blocks.

This is another paragraph following the first paragraph.

Run-in Heading This (s @ paragraph following the heading.
Notice how the heading runs into the first line of this paragraph, and notice
how its styles are transferred to the run-in container.

This is another paragraph following the first paragraph.

HTML

<h1>Run-In</h1>
<section>
<h2>Normal Heading</h2>
<p class="indent">This is a paragraph following the heading. Notice
how the previous heading and this paragraph are separate blocks.</p>
<p>This is another paragraph following the first paragraph.</p></section>

<section>
<div class="run-in-container indent"»
<h2 class="run-in">Run-In Heading</h2>
<p class="run-in">This is a paragraph following the heading. Notice how
the heading runs into the first line of this paragraph, and notice how
its styles are transferred to the run-in container.</p>
</div>
<p>This is another paragraph following the first paragraph.</p></section>

CSS

section { padding:10px; margin-bottom:20px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; display: block; }
.indent { margin-left:20px; border-left:4px solid black; padding-left:20px; }

.run-in { display:inline; }
.xun-in-container h2 { padding-right:20px; }
.xun-in-container p { font-style:italic; }

Run-In

CHAPTER 13 I BLOCKS

Problem

You want to run a block into the following sibling block as if it were an inline element within
the following block. For example, you may want to run a heading into the following
paragraph for a more compact presentation. You may also want to run a series of blocks
into another block.

Solution

CSS provides the rule display:run-in for this purpose, but only Opera, Safari, and
Konquerer support it. You can implement a run-in by wrapping the run-in block and the
destination block inside a container block. You can then assign display:inline to these
two blocks to render them inline. Displaying them inline causes the run-in block to merge
into the first line of the destination block. By wrapping both blocks in a container block, you
can transfer any block styles to the container block that you would have applied to the
destination block, such as margins, borders, padding, or a background.

If you want to run multiple blocks into a final block, you can assign the entire series of
blocks to display:inline and wrap them all in one block.

Of course, it would be much better if Internet Explorer and Firefox simply implemented
run-ins.

Pattern

HTML

CSS

<RUN_IN_CONTAINER BLOCK>
<RUN_IN_BLOCK> content </RUN_IN_BLOCK>
<DESTINATION BLOCK> content </DESTINATION BLOCK>
</RUN_IN_CONTAINER BLOCK>

RUN_IN_BLOCK SELECTOR { display:inline; }
DESTINATION_BLOCK_SELECTOR { display:inline; }

Location

This pattern applies to block elements.

Tips

Because the run-in container encloses the run-in and destination blocks, you can take
advantage of descendant selectors to apply additional styles to the run-in block and the
destination block.

This design pattern works even if you do not wrap the run-in and destination blocks in a
container block. Since the run-in and destination blocks are displayed inline, the browser
creates an anonymous block box to hold them. The problem with the anonymous block box
is that you cannot transfer any block styles from the destination block to the anonymous
block box. This is a problem only if you have block styles you need to transfer, such as
margins, borders, padding, or a background.

Example

In the example, I transferred the indent class from the destination paragraph to the run-in
container. I also used a descendant selector to insert extra padding between the run-in
heading and the destination paragraph. Using another descendant selector, I styled the
destination paragraph as italic.

Related to

Section, Inlined; Run-In Alert (Chapter 20)

281

CHAPTER 13 I BLOCKS

282

Horizontal Rule

ﬁ Horizontal Rule - Microsoft Intermet Explorer
Bl Edit Wew Fgworites Tools Hep

Horizontal Rule

| This paragraph is fellowed by a standard horizontal rule. |

| This paragraph is followed by an embedded and styled harizontal rule. |

| This paragraph is preceded by an embedded and styled horizontal rule. |

HTML

<h1>Horizontal Rule</h1>

<p>This paragraph is followed by a standard horizontal rule.</p>

<hxr />

<p>This paragraph is followed by an embedded and styled horizontal rule.</p>
<div class="hx"s><hr /></div>

<p>This paragraph is preceded by an embedded and styled horizontal rule.</p>

CSS

.hr { height:40px; width:200px;
margin:0 auto 0 auto;
border:o;
background:url("hr.gif") repeat-x left center;
line-height:1px; font-size:1px; }

.hr hr { display:none; }

/* Nonessential rules are not shown. */

CHAPTER 13 I BLOCKS

Horizontal Rule

Problem You want to insert a horizontal rule between block elements to indicate the beginning of a
new section. You want the horizontal rule to insert styled vertical space between blocks in
the normal flow. You want to style the horizontal rule with margins, borders, background
colors, and tiled images.

Solution HTML provides the <hr /> element for this purpose. Browsers render it as a gray, 2-pixel
tall, 3D stretched line. Each browser uses a different shade of gray and a slightly different
amount for the vertical margins.

You can style its margins, borders, padding, and background color just like you would style
any block. If you give it a nonzero height, you can even assign it a background image.
Unfortunately, Internet Explorer 7 and earlier versions do not properly apply box model
rules to the horizontal rule, such as padding. And worse, Internet Explorer adds extra
vertical margins and interior borders that you cannot remove. This makes styling the
horizontal rule the same in all major browsers impossible.

If you want to style a horizontal rule and have it work in Internet Explorer, it is best to
embed the horizontal rule within a division, hide the rule, and style the division instead.
You can use display:none to hide the embedded horizontal rule. Because the horizontal
rule is still present, a browser that does not use CSS will still display a horizontal rule, and
the semantic meaning of the horizontal rule is preserved.

You can use width and horizontal margins to align, indent, and offset the parent division.
You can use height to set its height. You can use maxgin-top and margin-bottom to insert
transparent space above and below the division. You can render a styled line across the
width of the division using border-top and border-bottom. You can also use the
background properties to show or tile an image across the division.

Patterns <hr />
HTML or
<div class="hr"><hr /></div>
CSS .hr { width:+VALUE;
height:+VALUE;
margin::VALUE; border: WIDTH STYLE COLOR;
background:COLOR IMAGE REPEAT H_POSITION V_POSITION; }
.hr hr { display:none; }
Location This pattern applies to horizontal rules.
Related to Block Spacer; Linebreak, Inline Horizontal Rule (Chapter 11)

283

CHAPTER 13 I BLOCKS

284

Block Spacer

%3 Block Spacer - Mozilla Firefox

Eie Edit Yew Go Gookmarks Tools Help
Block Spacer

This paragraph is not followed by & block spacer,

This paragraph is followed by & block spacer,

This paragraph is preceded by the same block spacer.

This paragraph is not preceded by a block spacer.

HTML

<h1>Block Spacer</h1>

<p>This paragraph is not followed by a block spacer.</p>
<p>This paragraph is followed by a block spacer.</p>

<div class="spacer-large"></div>

<p>This paragraph is preceded by the same block spacer.</p>
<p>This paragraph is not preceded by a block spacer.</p>

CSS

p { margin:0; padding:5px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

.spacer-large { padding-bottom:32px; }

CHAPTER 13 I BLOCKS

Block Spacer

Problem

You want to put space between two blocks to show that they do not belong together. You
want the separation to imply that a new series of thoughts follows, but unlike the horizontal
rule, you do not want to imply that a whole new section follows. You want the structure of
the markup to mirror the structure of the content, which has a slight separation of thought.
You also want to control the amount of vertical space inserted—the more space, the
stronger the structural separation of content.

Solution You can insert an empty division between the blocks. You can assign a specific amount of
bottom or top padding to the division to insert the desired amount of space.
Since the purpose of this design pattern is to separate two blocks, the class name you assign
to the block spacer element should reflect this purpose.
Pattern HTML CSS
<div class="CLASS"></div> .CLASS { padding-bottom:+VALUE; }
Location This pattern applies to block elements.
Advantages The block spacer is best used when you want the markup to communicate a separation

between blocks because this reflects the meaning of the content. It is a simple, reliable, and
semantic way to insert extra vertical space between any two blocks.

Disadvantages

This design pattern requires an extra element to be inserted into the markup. You may be
tempted to use this for visual effects rather than for its structural purpose. In that case, you
should assign a margin to one of the blocks.

Tips

Because a block spacer is inserted between two elements, it has the side effect of stopping
the previous block’s bottom margin from collapsing into the following block’s top margin.
Thus, you can insert a 1-pixel block spacer between blocks to uncollapse their margins (and
add one extra pixel of space). Note that a zero-pixel block spacer does not uncollapse
margins.

You could insert the padding-bottom rule directly inside the style attribute of the spacer
division. I recommend against this because you will likely need to change this value as
margins in the style sheet change. I find it speeds software development to keep all style
rules in style sheets. I also avoid using class names that imply specific measurements, such
as spacer32px, because the amount of space removed is likely to change.

Related to

Visual Structure, Block Space Remover, Horizontal Rule; Padding (Chapter 6); Spacing,
Inline Spacer, Linebreak, Inline Horizontal Rule (Chapter 11)

285

CHAPTER 13 I BLOCKS

286

Block Space Remover

3 Rlack Space Remover - Mozilla Firefox

Fl Edit Yew Go Eoohnaks Took Hep

Block Space Remover

This paragraph has 32-pixel top and bottoem margins.

This paragraph has 32-pixel top and bottom margins.

This paragraph has 32-pixel top and bottom margins, but it is preceded and
followed by a block space remover.

This paragraph has 32-pixel top and bottom margins, but it is preceded and
followed by a block space remover.

HTML

<h1>Block Space Remover</hi>
<div class="section">
<p>This paragraph has 32-pixel top and bottom margins.</p>
<p>This paragraph has 32-pixel top and bottom margins.</p>
</div>

<section>
<div class="space-remover-large"></div>
<p>This paragraph has 32-pixel top and bottom margins,
but it is preceded and followed by a block space remover.</p>
<div class="space-remover-large"s</divy
<p>This paragraph has 32-pixel top and bottom margins,
but it is preceded and followed by a block space remover.</p>
<div class="space-remover-large"s</div>
</section>

CSS

section { border:2px solid black; margin-bottom:32px; display:block; }

p { margin-top:32px; margin-bottom:32px; padding:5px; background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

.space-remover-large { margin-top:-32px; }

CHAPTER 13 I BLOCKS

Block Space Remover

Problem

You want to bring two blocks closer together because they are closely related. You also want
to remove a precise amount of space between blocks based on their location in the markup.
For example, you want to remove some or all of the top margin before the first child
element in a block; or you want to remove some or all of the bottom margin after the last
child element in a block; or you want to remove some or all of the margin between two
specific blocks.

Solution

To remove vertical space between any two blocks, you can insert an empty division between
the blocks. You can assign a negative top margin to the division to remove the desired
amount of space. For example, if you want to remove 32 pixels of space, you can insert a
division assigned to the rule margin-top:-32px.

Pattern

HTML CSS

<div class="CLASS"></div> .CLASS { margin-top:-VALUE; }

Location

This pattern applies to block elements.

Explanation

This pattern is the opposite of the Block Spacer design pattern and has the exact opposite
structural meaning. By drawing two blocks closer together, the markup indicates they are
more closely related. The class name you assign to the block space remover element should
reflect this purpose.

Furthermore, the structural relationship created by a block space remover or block spacer
element does not belong to either block. It belongs in between the blocks because it links or
separates them. It is best to use structural markup to create structural meaning because it is
easiest to maintain—you can see it and manipulate it directly in the HTML.

Advantages

Unlike the block spacer, the block space remover does not uncollapse margins. This makes
using the block spacer remover simpler and more predictable.

Disadvantages

This design pattern requires an extra element to be inserted into the markup for each space
you want to remove. If you remove too much space, you can cause blocks to overlap.

Example

In the example, each paragraph has been assigned to top and bottom margins of 32 pixels.
The two paragraphs in the second section are preceded and followed by block space
removers, which remove the space before, between, and after these paragraphs.

Related to

Visual Structure, Collapsed Margins, Block Spacer; Margin (Chapter 6)

287

CHAPTER 13 I BLOCKS

Left Marginal

&3 Left Marginal - Mozl lla Firefox

Fle Edit Yiew Hitory Eoohraks Took Hep
Left Marginal
Problem You want to excarpt an element and move it into the
:Eg;;f;;f;'ég ; left margin. You want it to align vertically with
wmages and n n
the margin. where it would have been placed in the flow.
Solution You can create & large |eft margin and use absolute
positioning to move content into it.
Disadvantages Mathing prevents marginal elements from vertically
OVERLAP! overlapping sach other. However, you can prevent
marginal elements from overlapping with content on
the right by creating a wide enough left margin.
Advantages %0 You can render inline markup like tables,
HTML

<h1>Left Marginal</h1>

<p class="left-marginal">ProblemYou want to
excerpt an element and move it into the left margin.
You want to put images and notes in the margin. You want it to align
vertically with where it would have been placed in the flow.</p>

<p class="left-marginal">SolutionYou can
create a large left margin and use absolute positioning to move content
into it.

 Disadvantages
Nothing prevents marginal elements from vertically overlapping each other.
OVERLAP!
However, you can prevent marginal elements from overlapping with content on
the right by creating a wide enough left margin.

Advantages<img class="marginal-flag"
src="star.gif" alt="star"/>You can render inline markup like tables.</p>

CSS

.left-marginal { position:relative; width:480px;

maxrgin-left:230px; margin-right:auto; }
.marginal-header { position:absolute; left:-220px; width:160px; font-weight:bold; }
.marginal-note { position:absolute; left:-180px; width:150px;

font-style:italic; font-size:14px; font-weight:normal; }
.marginal-alert { position:absolute; left:-180px; font-style:italic; }
.marginal-flag { position:absolute; left:-40px; margin-top:-5px; }

288

Download from Wow! eBook <www.wowebook.com>

CHAPTER 13 I BLOCKS

Left Marginal

You want to excerpt elements out of the normal flow and move them into the left margin.
These elements could contain headers, notes, tips, alerts, comments, images, and so on.

Problem You want elements in the margin to be positioned vertically where they would have been in
the flow. You do not mind using fixed widths.
You can indent a block to create a margin on the left and then use absolute positioning to
remove elements from the normal flow into the margin.
You can mark up a block element with the left-marginal class to make it easy to select.
You can indent it using margin-left. You can set it to position:relative,
position:absolute, or position:fixed so its children can be positioned relative to its
margin. You can use margin-right:auto and width to fix the width of the block so that
Solution content does not reflow when the viewport resizes. Reflow may change the vertical location
of marginal elements, which could cause them to overlap.
You can mark up a marginal element with a class that describes its purpose, such as
marginal-header, marginal-note, and so forth. You can use position:absolute to remove
the element from the flow, and you can use a negative value in left to move it into the left
margin. You can use margin-top to move the element up or down. You can use width to size
the element to fit into the width of the margin.
Pattern
HTML <TERMINAL-BLOCK class="left-marginal™>
<INLINE-TEXT class="marginal-TYPE"> text </INLINE-TEXT>

</TERMINAL-BLOCK>
CSS .left-marginal { position:relative;
width:+VALUE;
margin-left:+VALUE; margin-right:auto; }
.marginal-TYPE { position: absolute;
left: -VALUE;
width: +VALUE;
margin-top: *VALUE; }
Location This pattern works on any element.
The layout created by this pattern does not protect elements from overlapping in the
Cauti margin. It is easy to move an element into the margin and have it overlap other elements in
aution the margin. Also, a browser that does not support absolute positioning renders marginal
text inline where it occurs.
You can combine this pattern with Right Marginal.
Tips This pattern is visually similar to HTML tables, but the markup is more flexible. You can pull
out any element and move it into the margin.
Right Marginal; Box Model (Chapter 4); Margin (Chapter 6); Positioning Models, Positioned,
Related to Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Offset Absolute and Offset Fixed

(Chapter 8); Marginal Dropcap, Marginal Graphic Dropcap (Chapter 18); Left Marginal
Callout (Chapter 19); Left Marginal Alert (Chapter 20)

289

CHAPTER 13 I BLOCKS

Right Marginal

&3 Right Marginal - Mozilla Firefox
Fle Edit VYiew Hiitoy Gookmarks Took Hep

Right Marginal

You want to excerpt an element and move it to the Problem

right margin. You want it to align vertically with You Wﬂ-'w?put)
: Imageas an natas in

where it would have been placed in the normal flow. the rmargin.

You can create a large right margin and use absolute Solution

pasitioning to move content into it.

Nothing prevents marginal elements fram vertically Disadvantages
overlapping sach other. However, you can prevent OVERLAP!
marginal elements from overlapping with content on

the |eft by creating a wide enough right margin.

You can render inling markup like tables, 7. Advantages

HTML

<h1>Right Marginal</h1>

<p class="right-marginal”>ProblemYou want to
excerpt an element and move it to the right margin.
You want to put images and notes in the margin. You want it to align
vertically with where it would have been placed in the normal flow.</p>

<p class="right-marginal”>SolutionYou can
create a large right margin and use absolute positioning to move content
into it.

 Disadvantages
Nothing prevents marginal elements from vertically overlapping each other.
OVERLAP!
However, you can prevent marginal elements from overlapping with content on
the left by creating a wide enough right margin.

Advantages<img class="marginal-flag"
src="star.gif" alt="star"/>You can render inline markup like tables.</p>

CSS

body { width:702px; }
.right-marginal { position:relative; width:480px;
maxrgin-right:210px; margin-left:auto; }

.marginal-header {position:absolute; right:-230px; width:170px; font-weight:bold; }
.marginal-note { position:absolute; right:-230px; width:150px;

font-style:italic; font-size:14px; font-weight:normal; }
.marginal-alert {position:absolute; right:-230px; width:150px; font-style:italic; }
.marginal-flag { position:absolute; right:-30px; margin-top:-5px; }

290

CHAPTER 13 I BLOCKS

Right Marginal

Problem

You want to excerpt elements out of the normal flow and move them into the right margin.
These elements could contain headers, notes, tips, alerts, comments, images, and so on.
You want elements in the margin to be positioned vertically where they would have been in
the flow. You do not mind using fixed widths.

Solution You can indent a block to create a margin on the right and then use absolute positioning to
remove elements from the normal flow into the margin.
You can mark up a terminal block element with the right-marginal class to make it easy to
select. You can indent it usingmargin-right. You can set it to position:relative,
position:absolute, or position:fixed so its inline children can be positioned relative to
its margin. You can use margin-left:auto and width to fix the width of the terminal block
so that the content does not reflow when the viewport resizes. Reflow may change the
vertical location of marginal elements, which could cause them to overlap. You can set the
width of <body> or the width of one of the terminal block’s ancestors to a fixed
measurement to prevent the block from moving to the right as the viewport grows larger.
You can mark up a marginal element with a class that describes its purpose, such as
marginal-header, marginal-note, and so forth. You can use position:absolute to remove
the inline element from the flow, and you can use a negative value in right to move it into
the right margin. You can use margin-top to move the inline element up or down. You can
use width to size the inline element to fit into the width of the margin.
Pattern ns s
<TERMINAL-BLOCK class="right-marginal">
HTML <INLINE-TEXT class="marginal-TYPE"> text </INLINE-TEXT>

</TERMINAL-BLOCK>
CSS .right-marginal { position:relative; width:+VALUE;
margin-right:+VALUE; margin-left:auto; }
.marginal-TYPE { position: absolute;
right: -VALUE;
width: +VALUE;
margin-top: *VALUE; }
Location This pattern works on any element.
Caution The layout created by this pattern does not protect elements from vertically overlapping in
the margin. You need to plan carefully to avoid this problem.
Tips You can combine this pattern with Left Marginal.
This pattern is visually similar to HTML tables, but the markup is more flexible. You can pull
out any element and move it into the margin.
Related to Left Marginal; Box Model (Chapter 4); Margin (Chapter 6); Positioning Models, Positioned,

Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Offset Absolute and Offset Fixed
(Chapter 8); Marginal Dropcap, Marginal Graphic Dropcap (Chapter 18); Right Marginal
Callout (Chapter 19); Right Marginal Alert (Chapter 20)

291

CHAPTER 14

Images

This chapter shows how to use images to create beautiful and functional documents that remain

accessible and download quickly.

Chapter Outline

Image shows how to use the element. It also contrasts the advantages and
disadvantages of the GIF, JPG, and PNG image formats.

Image Map shows how to overlay an image with clickable areas that link to other
pages.

Fade-Out shows how to use gradient images to add subtle shading behind
content. It also shows how to create chameleon gradients that adapt to the current
background.

Semi-transparent shows how to put a partially transparent background behind
an element so that it stands out from the background below it without obscuring
it.

Replaced Text shows how to replace text with an image while remaining

accessible to nonsighted users. This technique also shows the text when the image
is unavailable.

Content over Image shows how to overlay text and other images on top of an
image.

Content over Background Image shows how to overlay text and other images on
top of a background image.

CSS Sprite shows how to embed multiple images into one file and display them
independently as the background of different elements of a document.

Basic Shadowed Image shows how to create and apply a simple shadow to an
image without modifying the image itself.

Shadowed Image shows a generic way of applying a shadow to an image of any
size.

Rounded Corners shows how to round the corners of an element’s borders and
how to create custom borders of any style imaginable.

Image Example showcases these patterns in one document.

293

CHAPTER 14 I IMAGES

294

Image

-‘ Imape - Mozslla Firefox
Be it vew Hgry [ookmaks Tool Hep £t

jpg 90% jpg 75% jpg 50%
BOKB 41KE 15KB

ok sk

gif dithered png greyscale png color
205KB 219KE 264KE

ik o b

HTML

<!-- Nonessential markup is not shown. --»

CSS
img { display:block; width:auto; height:auto; }
/* Nonessential rules are not shown. */

Example

The example contains eight different versions of a picture that I took of Crater Lake on August 4, 2003.
The source image is 742 x 556 pixels with a file size of 1,238,822 bytes. I processed the image to create
eight separate files—each with a different image type and quality.

The first image is a JPG image at maximum quality, which reduces the file size to 275,798 bytes. This
is a reduction of five times. At a JPG’s highest quality, it is difficult to see any loss of quality. The second
image is a JPG at 90% quality, which reduces the file size to 81,248 bytes. This is a reduction of 15 times.
At 90% quality, you can barely see a difference with a magnifying glass. You can see a difference in the
third and fourth images, which are JPGs at 75% and 50% quality and 41,290 and 14,841 bytes. This is a
reduction of 30 and 84 times.

The fifth and sixth images are GIFs. These images have less quality and larger sizes than the JPG
images. This is not a fair test of GIFs because they are not designed for real-world images containing
thousands of colors. GIFs produce smaller files and have better quality when used for computer-
generated images containing 256 or fewer colors.

The seventh and eighth images are PNGs. These images have the best quality with slightly smaller
file sizes than the best-quality JPG, but there is no way to increase the compression to shrink the file size.

Image

CHAPTER 14

Problem

You want to insert an image into the document because it is part of the content.

Solution

You can insert an image into your document using . You can use the sxc attribute to
specify the URL containing the image.

You should put a brief description of the image in the alt attribute. This alternative
description should be written specifically for screen readers to read and for displaying when
the image fails to download. Decorative images are best displayed as background images,
but if you must use a decorative element, include the alt attribute, but leave it empty.

Because a browser downloads each image separately, it needs to know the image’s height
and width so it can create a placeholder for the image while the image downloads.
Otherwise, after each image is downloaded and its real size becomes known, a browser has
to reflow the page. This slows the rendering and annoys the user. To set an image’s size, you
can use the width and height attributes of or the width and height CSS properties.
There is no need to use both. CSS properties override HTML attributes.

Pattern
HTML

<img src="FILE.EXT" width="IMAGE_WIDTH" height="IMAGE_HEIGHT"
alt="BRIEF_IMAGE DESCRIPTION" />

Location

This pattern applies to images.

Tips

An image is an inline element. It vertically aligns to the baseline of the line in which it
occurs. You can use vertical-align to adjust the alignment.

When you want to treat an image as a block, you should use display:block to display it as a
block. This removes a small amount of extra space that a browser places below an image
when it is inline, and it preserves the image’s size when it fails to download.

JPG, GIF, and PNG are the most common types of images on the Internet.

JPG is the best image format for photographs. JPG supports up to 16 million colors and
lossy compression. You control the amount of lossy compression from none to extreme.
More compression produces smaller files and poorer quality. JPG does not support
transparency.

GIF is the best image format for line art and computer-generated images. GIF supports a
transparent background, but it does not support an alpha channel. GIF supports up to 256
colors in the palette. To get more colors, a graphics program may use dithering to simulate
them. GIF uses lossless compression. You cannot control the amount of compression. The
main problem with GIF is its limit of 256 colors and its lack of an alpha channel.

PNG is an improvement over GIF. It supports alpha channel transparency, 16 million
colors, grayscale, and palette-based colors. PNG uses lossless compression, which you
cannot control. Internet Explorer 7 and other major browsers support PNG transparency.
Internet Explorer 6 does not.

Related to

Image Map; Inline-Block Box (Chapter 4); Width, Height, Sized, Shrinkwrapped, Stretched
(Chapter 5); Margin, Border, Padding (Chapter 6); Vertical-Aligned Content, Vertical-Offset
Content (Chapter 12); Left Marginal, Right Marginal (Chapter 13); Flyout Menu (Chapter 17);
JavaScript Alert, Tooltip Alert, Pop-Up Alert (Chapter 20)

IMAGES

295

CHAPTER 14 I IMAGES

Image Map

A Image Map - Microsoft Internet Explorer

Bl= Edit Yen Favortes Took Help L]
Image Map
Northwest USA

Washington |

HTML

<h1>Image Map</h1>

<h2>Northwest USA</h2>

<map id="nw-map" name="nw-map"»

<area href="washington.html" alt="Washington"
shape="poly" coords="176,8, 164,89, 75,89, 40,72, 45,8" />

<area href="oregon.html" alt="Oregon"
shape="rect" coords="9,90, 155,180" />

<area href="idaho.html" alt="Idaho"

shape="circle" coords="212, 134,55" />
</map>

CSS

/* There are no CSS properties for styling image maps. */

296

Image Map

CHAPTER 14 I IMAGES

Problem

You want to overlay an image with clickable areas that link to other pages.

Solution

You can link an image to a map element that defines clickable areas and associates each area
with a URL. When a user clicks an area, a browser jumps to its associated link. You can add a
usemap attribute to an image to link the image to the map element with the same value in its
name attribute. Multiple images can be linked to the same map element. For easy access to
the element through JavaScript, it is a good practice for map elements to have an id attribute
with the same value as its name attribute.

Amap element contains one or more area elements. Each area defines a region of an image
that can be clicked. Areas should not overlap, but if they do, the document order of area
elements determines the stacking order.

Each area has four required attributes: href, alt, shape, and coords. href is the URL of the
link that a browser jumps to when a user clicks the area. alt is read by screenreaders to
describe the link—it is not visible. shape is the shape of the area, which is one of three
shapes: rect, circle, and poly. coords define the location and extent of the shape.

The number and meaning of coordinates in coords vary with each type of shape. Rectangles
require four comma-delimited numbers. The first two are x, y coordinates of the upper-left
corner of the rectangle, and the second two are x, y coordinates of the lower-right corner.
Circles require three comma-delimited numbers. The first two are X, y coordinates of the
circle’s center, and the third is its radius. Polygons require a series of comma-delimited
numbers in pairs of x, y coordinates that define the points of the polygon.

This design pattern does not use any CSS styles.

Pattern
HTML

<img usemap="MAP_NAME" src="FILE.EXT"
width="WIDTH" height="HEIGHT" alt="DESCRIPTION" />

<map name="MAP_NAME" id="MAP_NAME">
<area href="URL" shape="RECT_CIRCLE_POLY" coords="x,y..."
alt="SCREENREADER_DESCRIPTION" />
</map>

Location

This pattern applies to images and image maps.

Tip

Image maps work well when you want a user to explore something visual, such as a real-
world map. The problem is that image maps are invisible. Other than the mouse pointer
changing shape when it is over a clickable area, a user cannot tell where areas are located,
how many areas there are, and which areas have already been visited. For this reason, image
maps are often paired with redundant links that are absolutely positioned over the image.
These links make it clear what is clickable and what has already been visited. The example
at the end of the chapter shows how this works.

Related to

Image, Content over Image, Content over Background Image

297

CHAPTER 14 ' IMAGES

298

Fade-Out

J L] Fade-out "_+ L

Fade-out

Fade-out

gl Horizontal
Fade-out of GIF
image to gold
background color.

! Horizontal
e-out of any
ground color to

g3 Vertical Fade-out of GIF image to
white background color.

g4 Vertical Fade-out of JPG image to
white background color.

g5 Vertical Fade-out of any
background color to PNG image.

g6 Vertical Fade-out of PNG image to

g6 Vertical Fade-out of PNG image to any background color.

HTML

<h1>Fade-Out</h1>

<h2 class="g1">g1 Horizontal Fade-Out of GIF image to gold background color.</h2»
<h2 class="g2">g2 Horizontal Fade-Out of any background color to PNG image.</h2>

<h2 class="g3">g3 Vertical Fade-Out of GIF image to white background color.</h2>

<h2 class="g4">g4 Vertical Fade-Out of JPG image to white background color.</h2>

<h2 class="g5">g5 Vertical Fade-Out of any background color to PNG image.</h2>

<h2 class="g6">g6 Vertical Fade-Out of PNG image to any background color.</h2>

<p class="g7">g7 Vertical Fade-Out of PNG image to any background color from top and

bottom.</p>

CSS

.g1 { background:url("h-white2gold.gif") repeat-y left top gold; }
.g2 { background:url("h-trans2white.png") repeat-y right top royalblue; }

.83 { background:url("v-gold2white.gif") repeat-x left top white; }

.g4 { background:url("v-lightning.jpg") repeat-x left top white; }

.g5 { background:url("v-trans2white.png") repeat-x left bottom red; }

.g6 { background:url("v-white2trans.png") repeat-x left top green; }

.g7 {background:url("v-white2trans.png") repeat-x left top, url("v-trans2white.png") repeat-x

left bottom green; }

/* Nonessential rules are not shown. */

CHAPTER 14 I IMAGES

Fade-Out

Problem

You want to create a gradient background behind an element. You want the gradient to work well
regardless of how wide or tall the element grows.

Solution

There are two keys to creating a scalable background gradient: (1) fading the gradient into the
background color, and (2) tiling it in the opposite direction of the gradient. For example, when the
gradient is horizontal, you can tile the image vertically, and vice versa. This allows the element to
grow in any direction while preserving the gradient effect. As an element grows, the background
color fills in where the background image ends, and the image tiles to fill in the opposite
direction.

Using a graphics program, you can create a gradient image, such as a JPG, GIF, or PNG, that
transitions from the forecolor and backcolor of your choosing. For example, if your document’s
background color is white and you want your forecolor to be gold, you could create a gradient
image that transitions from white to gold or vice versa.

Using a graphics program, you can use a gradient mask to fade any image, illustration, or
graphical text into the background color. In the example, the fourth heading has a background
image created from a texture that fades out to the white background color.

You can also create a generic PNG image that fades from a predefined forecolor to whatever
background color is currently assigned to the element. In the example, the second, fifth, and sixth
headings use PNG images that fade from white to transparent. You can change the background
color, and the image fades from white to that color. It just takes one of these chameleon PNG
gradients to transition to any background color!

Using multiple background images, you could also have a gradient that fades from a predefined
foreground color to a background color and back to a predefined foreground color. In the
example, the paragraph uses PNG images used in the fifth and sixth headers to accomplish this.

The following design patterns show how to align and tile gradients in all four directions.

Patterns

Horizontal Left-to-Right Fade-Out

SELECT { background:url("FILE.EXT") repeat-y left top COLOR; }
Horizontal Right-to-Left Fade-Out

SELECT { background:url("FILE.EXT") repeat-y right top COLOR; }
Horizontal Top-to-Bottom Fade-Out

SELECT { background:url("FILE.EXT") repeat-x left top COLOR; }
Horizontal Bottom-to-Top Fade-Out

SELECT { background:url("FILE.EXT") repeat-x left bottom COLOR; }

Location

This pattern applies to all elements.

Limitations

Internet Explorer 6 does not support PNG transparency, but Internet Explorer 7 and the other
major browsers do. In the example, the PNG images show up in Internet Explorer 6 as gray
gradients, which is not a bad effect in and of itself.

Modern browsers support multiple backgrounds, but earlier browsers, such as Firefox 2 and
versions of IE before 9, do not.

Related to

Semi-transparent; Background (Chapter 6)

299

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 I IMAGES

300

Semi-transparent

3 Semi-transparent - Mozilla Firefox

Fiz Gt ¥ew Higtory Bookmarks Tools Hel

Semi-transparent
¥]

f_ Washington

Oragon

i-transparent backgrounds ara gray in
. Internet Explorer 6, but they &re
semi-transparent in Internet Explorer 7 and
all ether major browsers.

HTML

<h1>Semi-transparent</h1>

<div id="nw">

Washington
Oregon
Idaho

<p id="note1">

Semi-transparent backgrounds are gray in Internet Explorer 6, but they are
semi-transparent in Internet Explorer 7 and all other major browsers.</p>

</div>

CSS

.overlay { background:url("semi-transparent.png") repeat; }
#note1 { background:url("trans2white.png") bottom left repeat-x; }

/* Nonessential rules are not shown. */

CHAPTER 14 I IMAGES

Semi-transparent

Alias

Translucent

Problem

You want an element to have a partially transparent background so that it stands out from
the background below it without obscuring it.

Solution

You can use a graphics program to create a semi-transparent PNG image. You can set the
transparency of its background to some value less than 100% to make it partially
transparent. You can also use a gradient mask to fade into transparency. The color or colors
you use in this image are important. Semi-transparent grayscale colors are color-neutral
when they overlay a background. Nongrayscale semi-transparent colors colorize.

If the image has the same transparency throughout, it needs to have a height and width of
only about 10 pixels so a browser can efficiently tile it to fill the background of its container.
For example, the semi-trnsparent.png image in the example is 10 pixels square, and [use
background:repeat to tile it throughout the background. If the image contains a vertical
transparent gradient, it needs to be about 10 pixels wide and as tall as the gradient. For
example, the trans2white.png in the example is 10 pixels wide and 100 pixels tall to fit the
gradient. I use background:repeat-x to tile it horizontally across the background. If the
image contains a horizontal gradient, it needs to be about 10 pixels tall and as wide as the
gradient, and you can tile it vertically down the background.

Pattern

CSS

SELECT { background:url("SEMI_TRANSPARENT FILE.png") repeat; }

Location

This pattern applies to all elements.

Limitations

Internet Explorer 6 does not support PNG transparency, but Internet Explorer 7 and the
other major browsers do. In the example, the PNG images show up in Internet Explorer 6 as
gray gradients, which is a nice way for the effect to degrade.

Advantages

Semi-transparency is practical and looks great as long as the color of the text contrasts well
with the background. I expect to see more demand for this technique now that Windows
Vista has joined the other major operating systems in building transparency effects into the
desktop.

Example

In the example, the four spans positioned over the image have semi-transparent gray
backgrounds. I created this effect by tiling semi-transparent.png across their background.
Since this image is semi-transparent, you can partially see the image of the map behind
them.

In the example, paragraph #note1 has a semi-transparent gradient that starts out
transparent at the top and transitions to white at the bottom. This allows the background
image to show through at the top of its background and gradually fade out to white at the
bottom. This is the same trans2white.png image that I used in the Fade-Out design pattern.

Related to

Fade-Out; Background (Chapter 6)

301

CHAPTER 14 ' IMAGES

302

Replaced Text

"} Replaced Text - Mozilla Firafox
Eie Edt Yew Higtory Bockmarks Tools Heb

Replaced Text
t%ac:ﬁnéw.?

HTML

<h1>Replaced Text</h1>

<h2 id="h2">Heading 2<span»</spans</h2>

CSS

#h2 { position:relative; width:250px; height:76px;
padding:0; overflow:hidden; }

#h2 span { position:absolute; width:250px; height:76px;
left:0; top:0; margin:o;
background:url("heading2.jpg") no-repeat; }

CHAPTER 14 I IMAGES

Replaced Text

Problem

You want to replace text with an image. You also want the text to be read by a screenreader.
You also want the text to be visible if the image is unavailable.

Solution You can insert an empty into the block element that contains text that you want to
replace with an image. You can assign the image to be the span’s background image. You
can relatively position the block element and absolutely position the span at the top left of
the block. This displays the span in front of the block. You can size both the block and the
span to fit the image exactly. Since the block and the span are the same size and the span is
in front of the block, the background image of the span covers the text in the block. If the
span’s image is unavailable, the text behind it is visible because the span’s background is
transparent.

You can assign a unique ID to the block containing the text you want to replace. Using a
unique ID is important when text you are replacing with the image is unique in the
document. If you repeatedly replace the same text with the same image, you may want to
use a class instead.

It is important that the block has no padding and the span has no margin. Otherwise, the
hidden text might be visible. In addition, you can use overflow:hidden to ensure text does
not overflow from behind the image. Also make sure the text fits within the area of the image
so that if a user turns off images, the text does not overflow and get cut off.

Pattern

HTML <BLOCK id="UNIQUE-ID"> TEXT <span»</spans</BLOCK>

CSS #UNIQUE-ID { position:relative; padding:0; overflow:hidden;

width:IMAGE_WIDTH;
height: IMAGE_HEIGHT; }

#UNIQUE-ID span { position:absolute; margin:o;
left:0; top:0;
width:IMAGE_WIDTH;
height: IMAGE_HEIGHT;
background:url("FILE.EXT") no-repeat; }

Location This pattern applies to any block element.

Limitations When a user zooms in on a document in Firefox 2 and Internet Explorer 6, images do not
enlarge along with the text. This does not apply to modern browsers such as versions of [E
greater than 6 and Opera 8, which properly zoom images and text. Users typically zoom in
because they need to see everything larger. When replaced images do not enlarge, the
document is less accessible. This is usually not an issue because replaced text is typically a
heading, and the text in the image is large to begin with.

Tips Text replacement works well with links and buttons that use rollover effects.

Related to Width, Height, Sized (Chapter 5); Background (Chapter 6); Positioning Models, Positioned,

Closest Positioned Ancestor, Absolute (Chapter 7); Left Aligned, Top Aligned (Chapter 9)

303

CHAPTER 14 I IMAGES

304

Content over Image

B Coptent ower Imagps

Fle Edt View Helory h Help
Content over Image

Crater Lake North Rim

August 4

HTML

<h1>Content over Image</h1>

<div class="figure">
<h3 class="caption">Crater Lake North Rim</h3>
<p id="crater-date"> August 4, 2003
</p>
<img class="framed" width="518" height="389"
src="crater-lake.jpg" alt="Crater Lake North Rim August 4, 2003" /></div>

CSS

.figure { float:left; position:relative;
color:white; background-color:black; }

.figure .caption { position:absolute; margin:15px; left:0; top:0;
font-size:1.05em; }

.framed { display:block;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#crater-date { position:absolute; left:0; bottom:10px; width:518px;
text-align:center; color:white; font-size:0.8em; }

CHAPTER 14 I IMAGES

Content over Image

Problem

You want to place text on top of an image. You want to position the text relative to the
image. You want the text to be visible if the image does not load. You want search engines to
give the text a high priority and to index the image because it is part of the content.

Solution

You can embed a heading, an image, and any other type of object in a block element. You
can shrinkwrap the block around the image by floating it or absolutely positioning it. This
makes this design pattern work with any size of image. You can relatively position the block
so it is the closest positioned ancestor of the image. This allows you to position text elements
at any location over the image.

You can absolutely position the heading and use the alignment design patterns in Chapter 9
to position it within the image. Aligning the heading to the block is the same as aligning to
the image because the block is shrinkwrapped to the image and is the closest positioned
ancestor.

Pattern

HTML

CSS

<BLOCK class="figure">
<HEADING class="caption"> TEXT_OVER_TEXT </HEADING>
<p 1id="UNIQUE_ID"> TEXT_OVER_TEXT </p>
<img src="FILE.EXT" alt="IMAGE_DESCRIPTION"
width="IMAGE_WIDTH" height="IMAGE_HEIGHT" />
</BLOCK>

.figure { float:LEFT_OR_RIGHT; position:relative;
color:COLOR; background-color:COLOR; }

.figure .caption { position:absolute; POSITIONING_STYLES; }

.framed { display:block; border:WIDTH STYLE COLOR; }

#UNIQUE ID { position:absolute; POSITIONING STYLES; }

Location

This pattern can be used anywhere a block element can be used.

Tips

You can use any type of element for text-over effects. I use a heading because search engines
prioritize headings, and speech readers use headings to create an aural table of contents for
the page.

You can include any number and type of child elements in the figure. You can assign each to
aunique ID so that you can position it within the image.

In case a down-level browser does not shrinkwrap the block around the image, you should
put borders around the image instead of the block.

Example

The example assigns text in the block to a white color over a black background. This ensures
the text is visible if the image does not load. Also, the alt text is purposefully omitted from
the two star images because they are meant to be decorative—the Inline Decoration design
pattern is a better choice for displaying decorative images, but I wanted to keep the example
simple.

Related to

Content over Background Image; Display, Block Box (Chapter 4); Border, Background
(Chapter 6); Positioning Models, Positioned, Closest Positioned Ancestor, Absolute, Float
and Clear, Relative Float (Chapter 7); Aligned and Offset Absolute (Chapter 8); Inline
Decoration (Chapter 11)

305

CHAPTER 14 ' IMAGES

306

Content over Background Image

¥ Content over Background Image - Mozilla Firefos
Fi= Edrt Wew Hstory Bookmarks Took Help

Content over Background Image

Crater Lake North Rim

* August 4, 2003 ®

HTML

<h1>Content over Background Image</h1>

<div id="crater-lake">
<h3 class="caption">Crater Lake North Rim</h3>
<p id="crater-date"> August 4, 2003
</p></div>

CSS

#crater-lake { position:relative; padding:0; width:700px; height:500px;
background:black url("crater-lake.jpg") no-repeat center center; }

#crater-lake .caption { position:absolute; margin:15px; left:0; top:0;
font-size:1.05em; color:white; }

#crater-date { position:absolute; left:0; bottom:10px; width:700px;
text-align:center; color:white; font-size:0.8em; }

/* Nonessential rules are not shown. */

CHAPTER 14

Content over Background Image

Problem

Like the Content over Image design pattern, you want to place text and objects on top of an
image, but you do not want the image to be part of the document’s content, and you do not
want search engines to index the image. You want to position the text relative to the image.
You want the text to be visible when the image does not load. You want search engines to
give the text priority.

Solution

You can assign a background image to a sized block element. Unique IDs work well for
linking unique background images to these blocks. If you use the same image multiple
times, you may want to use a class instead.

You can use background to center a nontiled background image in the block. You can size
the block to the exact size of the image or to an arbitrary size. If you size it larger than the
image, the background color of the block becomes visible and creates a picture-frame effect
around the image. The same thing happens if you apply padding to the block. If you size the
block smaller than the image, it crops the image.

You can relatively position the block so you can absolutely position its child elements
relative to it. You can use the alignment design patterns in Chapter 9 to position child
elements within the image.

Pattern

HTML

CSS

<BLOCK id="IMAGE-NAME">
<HEADING class="caption"» TEXT_OVER_TEXT </HEADING>
<p id="UNIQUE_ID"> TEXT_OVER_TEXT </p>

</BLOCK>

#IMAGE-NAME {

position:relative;

width:IMAGE-WIDTH; height:IMAGE-HEIGHT;

padding:VALUE;

background:url("FILE.EXT") COLOR center center no-repeat; }
#IMAGE-NAME .caption { position:absolute; POSITIONING_STYLES; }
#UNIQUE ID { position:absolute; POSITIONING STYLES; }

Location

This pattern can be used anywhere a block element can be used.

Advantages

There is less HTML markup than the Content over Image pattern because there is no image
element. There is no need for alt text because a text-over caption serves the same purpose.
This works better when the image fails to download because a browser does not try to
display alt text in its place, which might get in the way of the content rendered on top of the
image.

Tip

GIF and PNG images with transparent backgrounds overlay background images nicely.
PNGs can even blend their edges into the background.

Example

In the example, I increase the height and width of the block to create a picture frame around
the image.

Related to

Content over Image; Width, Height (Chapter 5); Padding, Background (Chapter 6);
Positioning Models, Positioned, Closest Positioned Ancestor, Absolute (Chapter 7); Aligned
and Offset Absolute (Chapter 8); Inline Decoration (Chapter 11)

IMAGES

307

CHAPTER 14 ' IMAGES

CSS Sprite

"j (C55 Sprite - Mozilla Firefox.

Fi= Edit Yew History Gockmarks Tools Heb

CSS Sprite]

L
Washington

<" Oregon
EX1

HTML
<h1>CSS Sprite</h1>

<div id="nw">

0lympia

Salem

Boise
</div>

CSS

.bang-bg { background:url("bt.gif") -48px -16px; width:16px; height:16px; }
.flag-bg { background:url("bt.gif") -64px -16px; width:16px; height:16px; }
.star-bg { background:url("bt.gif") -64px -32px; width:16px; height:16px; }
.star-bg:hover { background-image:url("wt.gif"); background-color:black; }
.flag-bg:hover { background-image:url("wt.gif"); background-color:black; }
.bang-bg:hover { background-image:url("wt.gif"); background-color:black; }

.screenreader-only { position:absolute; left:-9999px; top:-9999px;
width:1px; height:1px; overflow:hidden; }

/* Nonessential rules are not shown. */

308

CSS Sprite

CHAPTER 14 I IMAGES

Problem

You want to use many images on a page, but you do not want the performance penalty
caused by downloading multiple image files. Even on a broadband connection, it is not
unusual for latency alone to slow the rendering of a page by 100 milliseconds per image. In
other words, the latency of downloading ten images will likely delay the rendering of a page
by one second—no matter how small the image files. Of course, delays caused by latency
vary depending on web server proximity and how busy it is.

Solution

You can combine multiple background images into one image file. This file is called a CSS
sprite. For example, you could include most, if not all, of a page’s background images in one
file. You could also embed a library of list bullets, icons, and text decorations in a CSS sprite
that is shared across your web site.

The key to using a sprite is to display it as the background image of a sized element and to
position the background image at the exact horizontal and vertical offset of the embedded
image. The element must be the exact width and height of the desired embedded image;
otherwise, parts of several embedded images may be visible in its background. The element
must be set to the proper horizontal and vertical offset, or the background will show the
wrong embedded image or will show parts of several embedded images. The measurements
used in width, height, and background-position must all be in pixels because embedded
images are measured in pixels. The values in background-position are negative because
they move the composite background image up and to the left to position it.

You can replace elements with CSS sprites by displaying them as background images
within sized spans or divisions, but unless content images cause performance problems, it is
more natural to use elements. When replacing an image with a CSS sprite, you can use
the Screenreader-Only design pattern to embed hidden alternate text that will be read only
by screenreaders. This makes the CSS sprite accessible.

Pattern

HTML

CSS

<ELEMENT>
 ALTERNATE_TEXT
</ELEMENT>

SELECTOR { width:SPRITE_WIDTH; height:SPRITE_HEIGHT;
background-image:url("SPRITE_FILE.EXT");
background-position:-HORIZONTAL_OFFSETpx -VERTICAL_OFFSETpx; }

SELECTOR:hover { background-image:url("HOVER_SPRITE_FILE.EXT");
background-color:COLOR; }

Location

This pattern applies to any type of element.

Limitations

Background images using CSS sprites cannot be tiled because the entire composite image
would be tiled rather than just the embedded image.

309

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 ' IMAGES

310

CSS Sprite cont.

0 -16-32-48-64 -80-96 -112
e xz@aaad

5 =+ 1t FrHT L
RN AT A DD

48 | w i O oo
64 BB ms 00O

S PAINVE €K
IR LK A%
-112 - 1T p 4 w = A4 F

-128 =R I R
i | Q2 EBAaxE AN
60 | EEE & 5 ¥ ¥
A7 M EDEHEESE
-192 Héiiiiiav

E
208 | S 4 &€& T
224 | P oW AHJ,
=240 | RSE TR TGP 40 101 € F

Offsets for 16 x16 sprites as used inbt.gif

Example

I use two CSS sprite files in the example: bt.gif (see Figure 14-1) and wt.gif. These file names stand for
a black image on a transparent background and a white image on a transparent background. When the
user mouses over the image, the hover selector switches out the bt.gif and replaces it with wt.gif,
which inverts the color from black to white. The background is also changed to black, which shows
through the transparent parts of the image.

Iinclude two other sprite files in the example directory that are not used in the example. They are
named tb.gif and tw.gif. These file names stand for transparent images in black boxes and transparent
images in white boxes. These embedded images are little black and white boxes with transparent images
in the center, which change color to match the background.

I created these four CSS sprites from an icon set called bitcons. I made all the embedded images
exactly 16 x 16 pixels, like the originals. These icons are freely licensed and are available at
http://somerandomdude.net/srd-projects/bitcons. Likewise, you are free to use these four CSS sprite
files in your projects.

When making your own CSS sprite images, you can embed any image of any size into the sprite.
Embedded images do not need to be the same size. All you need to know is the offset and size of each
embedded image.

http://somerandomdude.net/srd-projects/bitcons

CHAPTER 14 I IMAGES

CSS Sprite cont.

Advantages

By reducing the number of files that are downloaded, you can dramatically speed the
loading of a page. Embedding multiple images in a single file typically results in a smaller
overall file size than the combined file sizes of separate images.

Disadvantages

Combining images to create sprites and tracking their offsets can be time-consuming and
error-prone. This makes managing images harder. It works best when you create a sprite
containing a library of images that work together to skin a document. Whenever you want
to change the look and feel of a document, you change the sprite.

Tip

Managing sprite offsets is easier if all embedded images are the same size.

Latency

Over a broadband connection to the Internet, downloading data in a small file is very
quick, but the communication latency involved in requesting a small file can often take
several times longer than actually downloading the file! HTTP and TCP/IP
communications protocols require handshake messages to be sent back and forth before
content can be downloaded, messages traveling across the Internet compete for
bandwidth, and servers queue requests until they can get to them. My measurements
show latency delays the rendering of a page by approximately 100 milliseconds plus the
time it takes to download the data.

Using Google Load Time Analyzer for Firefox, I tracked web page download times on my
high-speed broadband connection. For example, the home page of MSN.com took 5
seconds to download 41 files: 1 HTML document, 3 CSS stylesheets, 4 JavaScript files, 15
GIFs, 10 JPGs, and 8 ad callbacks. The total download size was 136K, which took 1,742 ms
to download. The time it took to send messages to the server and to wait for replies was
15,960 ms! In other words, for each millisecond that data was downloaded, 9 milliseconds
were spent waiting: 3 milliseconds were lost waiting for messages to travel back and forth
across the Internet, and 6 milliseconds were lost due to server latency. I have
documented the results in an Excel spreadsheet included in this design pattern’s
example directory.

If all 25 images in the MSN home page were merged into one composite file, latency
would be reduced from 9,000 ms to 500 ms. This would save 8,500 ms! Since a browser
downloads using three connections simultaneously, the actual savings are one-third of
8,500 ms, or 2,800 ms. This one change alone would reduce the download time of the
MSN home page from 5.2 seconds to 2.4 seconds—more than doubling its download
speed!

Sprite history

A sprite gets its name from a technique used in two-dimensional video games of
compositing multiple images into one file where each image is a frame of animation. You
can animate a sprite simply by rotating the display through offsets in the composite
image. Animated GIFs use this technique, and you can use this technique to create
rollover effects.

Related to

Image; Width, Height (Chapter 5); Background (Chapter 6)

311

CHAPTER 14 I IMAGES

Basic Shadowed Image

3 Basic Shadowed Image - Mozilla Firefox
Eie Coit Yew Go Cookmarks Tools Gelp i:}

Basic Shadowed Image

HTML

<h1>Basic Shadowed Image</h1>

<img class="shadowed"
src="crater-lake.jpg"
alt="Crater Lake"

width="518"
height="389" />
CSS

img.shadowed { padding-right:20px;
padding-bottom:20px;
background-image:url("shadow.jpg");
background-position:right bottom;
background-repeat:no-repeat; }

312

CHAPTER 14 I IMAGES

Basic Shadowed Image

Problem You want to place a shadow behind an image without having to modify the original
image. You also want to control the distance the shadow is offset from behind the image.
Solution - .
You can create a shadow image that is the same size as the image it is shadowing. You can
assign the shadow as the nontiled background of the image. You can use background-
position to move the background shadow to the bottom right of the padding area. You
can use padding-right:+VALUE and padding-bottom:+VALUE to control how much the
shadow extends below the bottom right of the image.
Shadows are traditionally displayed in the bottom-right corner, but if you want to display
them in a different corner, you can extend the padding into that corner and position the
shadow there.
Pattern
HTML <img class="shadowed"
src="FILE.EXT" alt="DESCRIPTION"
width="WIDTH" height="HEIGHT" />
css .shadowed { padding-right:+VALUE;
padding-bottom:+VALUE;
background-image:url("FILE.EXT");
background-position:right bottom;
background-repeat:no-repeat; }
Location This pattern applies to images.
Advantages Because the shadow is an image, there is no limit to what you can do with the shadow.

You can use any color, blur, and texture to fit the style of your document.

This pattern is simple and does not require you to process images to embed shadows in
them. You can also change the look and feel of all shadows on a web site by simply
changing the shadow image.

Disadvantages

This pattern requires you to create a shadow image for each size of image. If all your
images are the same size or have a limited number of sizes, this pattern works well. If
your images come in unpredictable sizes, you may want to use the more complicated, yet
more versatile, Shadowed Image pattern.

The latency caused by a browser checking to see whether the shadowed image has
already been downloaded slows the rendering of a page—even on broadband
connections.

Related to

Image, Shadowed Image; Padding, Background (Chapter 6)

313

CHAPTER 14 I IMAGES

Shadowed Image

Shadow. jpg

|

I

shadow-1t. jpg and shadow-1b. jpg are created by extracting them from shadow. jpg.

S

shadow-1t. jpg indents and closes off the top-right edge of the shadow.

A

shadow-1b. jpg indents and closes off the left-bottom edge of the shadow.

314

CHAPTER 14 I IMAGES

Shadowed Image

Problem

You want to place a shadow behind an image without having to modify the original image.
You also want to control how much the shadow is offset from the image. You also want the
shadow to work automatically with any size of image.

Solution

You can use three image files to create a shadow that will automatically fit any image. This
can be a great timesaver because you do not need to embed shadows within images, and it
makes it easy to change the style of the shadows on the fly.

Like the Basic Shadowed Image pattern, the first step is to create a shadowed image, as
shown in Figure 14-2, or reuse one previously created like the one in the example. | name
this file shadow. jpg. Unlike the Basic Shadowed Image pattern, shadow. jpg should be as
large as the largestimage it will shadow.

In addition, you need to create two additional images by extracting them from the shadowed
image (see Figure 14-3). One indents and closes off the right-top edge of the shadow (see
Figure 14-4), and one indents and closes off the left-bottom edge of the shadow (see Figure
14-5). These images are the key to creating an automatically sized shadow because they
create the illusion that the shadow is indented on the right-top and the left-bottom, as
shown in Figure 14-6. I call these the indentor images.

In the example, I created the two indentor images as follows. I extracted the right-top corner
of the shadow image and saved it as shadow-rt. jpg (see Figure 14-4). I also extracted the
left-bottom corner of the shadow image and saved it as shadow-1b. jpg (see Figure 14-5). 1
made shadow-rt. jpg 100 pixels wide and only as tall as needed to capture the shadow’s
blur. I made shadow-1b. jpg 100 pixels tall and only as wide as needed to capture the
shadow’s blur. I then expanded the canvas of each of these two images to make them 100
pixels square. I put the background color in the expanded part of these images. This allows
the indentors to indent up to 100 pixels of the shadow by covering it with the background
color (see Figure 14-6).

You need to stack the images in the following order from bottom to top: shadow. jpg,
shadow-rt. jpg, and shadow-1b.jpg. The image receiving the shadow gets stacked on top of
them all, as shown in Figure 14-6. You can stack these three background images by assigning
them to three nested block elements. I typically use divisions. The order is important. You
can assign shadow. jpg to the outermost block element. You can assign shadow-rt. jpg to
the second nested element. You can assign shadow-1b. jpg to the third nested element. You
can place the element inside the third nested block.

To shrinkwrap these three elements to the size of the image, you need to float them or
absolutely position them.

315

CHAPTER 14 I IMAGES

Shadowed Image cont.

Composite view of the shadowed image

316

CHAPTER 14

Shadowed Image cont.

Solution cont.

Apply styles to your chosen class or ID as follows:

You can use background-image to load the shadow images into the backgrounds of their
respective elements.

You can use background-position:right bottom; to position the shadow image in the
right-bottom corner of the image.

You can use background-position:right TOP_OFFSET; to position shadow-rt.jpg at an
offset from the right-top corner of the image. You can calculate the value of TOP_OFFSET by
adding BOTTOM_OFFSET to the negative of the height of shadow-rt. jpg. For example, if the
height of shadow-rt.jpg is 100 pixels and BOTTOM_OFFSET is 20 pixels, you would add 20 to -
100 to get a TOP_OFFSET of -80px. By offsetting shadow-rt. jpg by the inverse of its height,
you are aligning its bottom to the top of the background. By adding back in the
BOTTOM_OFFSET, you move it down the same amount that you move down the shadow.

You can use background-position:LEFT_OFFSET bottom; to position shadow-1b.jpg at
an offset from the left-bottom corner of the image. You can calculate the value of
LEFT_OFFSET by adding RIGHT_OFFSET to the negative of the width of shadow-1b. jpg. For
example, if the width of shadow-1b. jpg is 100 pixels and RIGHT_OFFSET is 20 pixels, you
would add 20 to -100 to get a LEFT_OFFSET of -80px. By offsetting shadow-1b. jpg by the
inverse of its width, you are aligning its right side to the left side of the background. By
adding back in the LEFT_OFFSET, you move it to the right by the same amount that you move
the shadow to the right.

You can use background-repeat:no-repeat to prevent each background image from being
tiled.

You can use padding-right :RIGHT_OFFSET to move the shadow image past the right side of
the image.

You can use padding-bottom:BOTTOM_OFFSET to move the shadow image below the bottom
of the image.

IMAGES

317

CHAPTER 14 I IMAGES

Shadowed Image cont.

.’; Shadowed [mage - Mozilla Firefox

Fle Edit WYew Histery EBochrarks Took Hep

Shadowed Image

HTML

<h1>Shadowed Image</h1>

<div class="shrinkwrapped”>
<div class="shadowed">
<div class="shadowed-rt">
<div class="shadowed-1b">

</div></divy</div></div>

CSS
.shrinkwrapped { float:left; }

.shadowed { background-image:url("shadow.jpg");
background-position:right bottom; background-repeat:no-repeat; }

.shadowed-rt { background-image:url(“shadow-rt.jpg");
background-position:right -80px; background-repeat:no-repeat; }

.shadowed-1b { padding-right:20px; padding-bottom:20px;

background-image:url("shadow-1b.jpg");
background-position:-80px bottom; background-repeat:no-repeat; }

318

CHAPTER 14

Shadowed Image cont.

Pattern

HTML

CSS

<div class="shrinkwrapped">
<div class="shadowed">
<div class="shadowed-rt">
<div class="shadowed-1b">

</divy</divy</divy</div>

.shrinkwrapped { float:LEFT_OR_RIGHT; }

.shadowed { background-image:url("FILE.EXT");
background-position:right bottom;
background-repeat:no-repeat; }

.shadowed-rt { background-image:url("FILE-rt.EXT");
background-position:right TOP_OFFSET,;
background-repeat:no-repeat; }

.shadowed-1b {
padding-right:RIGHT OFFSET;
padding-bottom:BOTTOM_OFFSET;
background-image:url("FILE-1b.EXT");
background-position:LEFT_OFFSET bottom;
background-repeat:no-repeat; }

Location

This pattern applies to images. Because this pattern wraps the image in block elements, it
cannot be used inline.

Advantages

Because the shadow is an image, there is no limit to what you can do with the shadow.
You can use any color, amount of blur, and texture to fit the style of your document.
Because this pattern automatically fits the shadow to the size of the image, you need to
create only three images to put a shadow behind any image of any size. The browser has
to download only three image files to create an unlimited number of shadows.

Disadvantages

This pattern requires you to insert extra divisions into the markup to create this shadow
effect.

This pattern requires you to shrinkwrap the parent division to the image. Otherwise, it
will be stretched to the width of its container, and the nested background images will
extend beyond the image to fill the width of the container. This breaks the shadow effect.
In the pattern, I floated the element to shrinkwrap it. You could also position it to
shrinkwrap it. The only block element that shrinkwraps naturally is the table.

Related to

Image, Basic Shadowed Image, Rounded-Corners; Padding, Background (Chapter 6);
Float and Clear (Chapter 7)

IMAGES

319

Download from Wow! eBook <www.wowebook.com>

CHAPTER 14 ' IMAGES

320

Rounded Corners

Rounded Corners

J] Rounded Corners -- =

Rounded Corners

You can nest two divisions to create two opposite rounded corners.

You can nest two divisions to create two opposite rounded corners.

You can nest four divisions to create four rounded corners.

You can have a single division with multiple backgrounds.

HTML

<div class="bg"><div class="t1"><div class="br pad">
You can nest two divisions to create two opposite rounded corners.
</div></div></div>

<div class="bg"><div class="tr"><div class="bl pad">
You can nest two divisions to create two opposite rounded corners.
</divs</divy></div>

<div class="bg">

<div class="t1"><div class="bx"><div class="trc"><div class="blc pad">

You can nest four divisions to create four rounded corners.
</div></divy</divs</divo</divy
<div class="mbg pad”>You can have a single division with multiple backgrounds</div>

CSS
.bg { background:url("bg.gif") bottom left repeat-x white; margin-top:20px; }

.tl { background:url("rc.gif") top left no-repeat; }
.br { background:url("rc.gif") bottom right no-repeat; }
.tr { background:url("rc.gif") top right no-repeat; }
.bl { background:url("rc.gif") bottom left no-repeat; }

.trc { background:url("rc-trc.gif") top right no-repeat; }
.blc { background:url("rc-blc.gif") bottom left no-repeat; }

.pad { padding:10px; }

.mbg{ background: url("rc-trc.gif") top right no-repeat, url("rc-blc.gif") bottom left no-
repeat, url("rc.gif") top left no-repeat, url("rc.gif") bottom right no-repeat, url(“bg.gif")
bottom left repeat-x white; margin-top:20px; }

CHAPTER 14

Rounded Corners

You want to round the corners of an element’s box. You want the corners to expand and shrink with

Problem e box so it will work with any amount of content.
You can create rounded corners by embedding background images of rounded corners inside an
element. These images also include the borders that connect the rounded corners to each other.
Because these are images, you can create any style of corner and border you can imagine. In
Chapter 6, you learned that with CSS3 you can implement rounded corners with only CSS. The
solution for implementing rounded corners with images is still applicable where support for
rounded corners in CSS is not available, such as older browsers, mobile browsers, and modern
browsers that don’t fully support CSS rounded corners.
. Since versions of CSS before 3 allowed for only one background image per element, you can insert
Solution ex(ra divisions inside the element you want to have rounded corners—one division for each
rounded corner. Embedded divisions with no margins and padding are located in exactly the same
position as their parent. This allows you to layer background images on top of each other. Note that
when a parent element has a fixed height, its child divisions must also have the same fixed height.
The first two boxes in the example have two rounded corners and two nested divisions. The third
box has four rounded corners and four nested divisions. A detailed explanation follows.
Support for CSS3 multiple backgrounds has been widely adopted by modern browsers and has been
implemented for Firefox 3.6+, Chrome/Safari 1.3+/1.0, Opera 10.5+, and Internet Explorer 9.0+.
Patterns <div class="bg"><div class="t1"><div class="br">
CONTENT
HTML </div></div></div>
or
<div class="bg"><div class="tr"><div class="bl">
CONTENT
</divs</div></div>
or
<div class="bg"><div class="t1">«<div class="br">
<div class="trc"><div class="blc">
CONTENT
</div></divy</div></divy</div>
or
<div class="mbg”>CONTENT</div>
CSS .bg { background:BACKGROUND STYLES; margin-top:20px; }
.t1 { background:url("RC_FILE.EXT") top left no-repeat; }
.tr { background:url("RC_FILE.EXT") top right no-repeat; }
.br { background:url("RC_FILE.EXT") bottom right no-repeat; }
.bl { background:url("RC_FILE.EXT") bottom left no-repeat; }
.trc { background:url("TRC FILE.EXT") top right no-repeat; }
.blc { background:url("BLC_FILE.EXT") bottom left no-repeat; }
.mbg { background:url("TRC FILE.EXT") top right no-repeat, url("TLC FILE.EXT") top
left no-repeat, url("BRC_FILE.EXT") bottom right no-repeat, url("BLC_FILE.EXT")
bottom left no-repeat; }
Location This pattern applies to block elements and inline elements that are positioned, floated, or displayed

as blocks.

IMAGES

321

CHAPTER 14 ' IMAGES

Rounded Corners cont.

- ~ - ~ - ~
\
(1 N - ™ ™
\ J \ Y \ \ i J

Creating rounded corners from rounded rectangle images

Creating the Three Rounded Rectangle Images

In the example, I started with a 1600x 1600 transparent canvas. I added a rounded rectangle that hugged
the edges of the canvas. The rounded rectangle had a transparent interior. I filled in the exterior pixels of
each rounded corner with the external background color, which is white in my example. This makes
them opaque so the outside of each corner overlays the interior background with the background color.
Notice in Figure 14-7 how the outside of the top-left corner of the first rounded rectangle and the outside
of the bottom-right corner of the second rounded rectangle would display the internal background if
they were not opaque. Lastly, I saved the image as rc.gif.

To create the cutout images, I cut out the bottom-left corner and the top-right corner of the
rounded rectangle image and saved them as separate GIF images named tr.gif and bl.gif. I made sure
the exterior part of the corner remained opaque and the interior remained transparent. Otherwise, they
would not do their job of hiding the external square borders on the outside and letting the background
show through on the inside. I sized each cutout just large enough to cover the square corner with a
rounded corner.

Creating the three rounded rectangle images is simple: create a transparent rounded rectangle; fill
in the exterior of its rounded corners; and save the bottom-left and top-right corners as separate images.

322

CHAPTER 14 I IMAGES

Rounded Corners cont.

Detailed Solution

You can assign a background image to each nested division. I use six classes for that
purpose: t1, bx, tr, trc, bl, and blc, which stand for top left, bottom right, top right, top-
right corner, bottom left, and bottom-left corner.

To create two opposite rounded corners, you can apply the same background image to two
child divisions. The image should be a large rounded rectangle with a transparent interior
so the background image or color will show through. The exterior of its rounded corners
should be opaque and should be the same color as the exterior background color.

The key is to position the same rounded rectangle image in the top-left corner and in the
bottom-right corner (see Figure 14-7). This creates two overlapping rounded rectangles. As
the element expands or contracts, so do the rounded rectangles. The content of the
element can grow as large as the size of the rounded rectangle before the illusion breaks.
This is not a problem because you can make this rectangle as large as you want. In the
example, I made the rounded rectangle image 1600 x 1600 pixels, and yet it has a file size of
only 8,278 bytes because most of it is transparent.

To create four rounded corners, you can position the same rounded rectangle image in the
top-left corner and in the bottom-right corner. You then assign two additional background
images to two additional nested divisions: one is positioned in the top-right corner, and
the other in the bottom-left. These new images are tiny rounded corners that cover up the
square intersections of the two overlapping rounded rectangles, as shown in Figure 14-7. It
is important that these two corner divisions are placed after the first two rounded
rectangle divisions. This allows the corner divisions to be stacked on top of the others.

You can set the interior background by assigning a background color or image to the
parent of the rounded corner box. In the example and the pattern, I use the bg class to
assign this background. Likewise, the best place to set the margin is the parent. The best
place to set the padding is the last embedded division. In the example, I assign the pad
class to the last embedded division to set the padding for the interior of the rounded
corner box. You should not apply a border to any of these elements because it would
conflict with the rounded corners.

Limitations

The exterior of the cutout corner images must not be transparent. When they are
transparent, they show the intersection of the rounded rectangle borders. This breaks the
illusion. Since the exterior of the cutout corner images must be opaque, the opaque
exterior needs to match the background color that surrounds the outside of the rounded
rectangle. This requires that you create a different set of cutout corner images for each
different external background color you intend to use.

There is a bug in Internet Explorer 6 that sometimes causes the background to leak out
from behind the element. You can assign zoom: 1 to the parent element to give it “layout,”
which prevents the background from leaking out. See the Atomic pattern in Chapter 7 for
more details on “layout.”

Related to

Image, Basic Shadowed Image, Shadowed Image; Margin, Background (Chapter 6)

323

CHAPTER 14 I IMAGES

324

Image Example

£ Northwest USA - Mozilla Firefox
Fie Edit Yew Histoy Boodmarks Tools Hel

Northwest USA

0

Washington
! Wyoming

Maontana

Click on a state to load information
abaout that state.

Click on a symbol to load
information about that location.

Representative Excerpts from the HTML
<h1>Northwest USA</h1>

<div id="states">
<img src="nw.gif" width="437" height="328"
alt="Northwest" usemap="#nw-map" class="shadowed" />

Washington
Oregon
Idaho

0lympia

Salem

<div id="info" class="bg">
<div class="t1"><div class="br"><div class="trc"><div class="blc pad">
<p>Click a state to load information about that state.</p>
<p>Click a symbol to load information about that location.</p>
</div></diva</divy</diva</div>
</div>

CHAPTER 14 I IMAGES

Image Example

Example This is not a design pattern but an example that illustrates how the design patterns in the
chapter can work together.

Explanation The main image in the example is a map of the Pacific Northwest. I used the Basic Shadowed
Image design pattern to put a shadow behind it. The image is linked to the nw-map element
to make areas on the map clickable. I used the Content over Image design pattern to put
links on top of the map. When the user hovers over these links, the background displays a
semi-transparent PNG image, which partially hides the content under the image. I also use
the CSS Sprite design pattern to put clickable rollover images on top of the map. I also use
the Rounded Corners and Fade-Out design patterns to style the message below the map.

Representative Excerpts from the CSS

.shadowed { padding-right:12px; padding-bottom:12px;
background:url("shadow.jpg") right bottom no-repeat; }

.screenreader-only { position:absolute; left:-9999px; top:-9999px;
width:1px; height:1px; overflow:hidden; }

a { text-decoration:none; color:black; }

a:hover { border-left:ipx solid silver; border-right:1px solid gray; color:white;
border-top:1px solid silver; border-bottom:1px solid gray;
background-image:url("semi-transparent.png"); background-repeat:repeat-x; }

.overlay { padding:2px 4px; }

.bg { background:url("white2trans.png") top left repeat-x yellow;
margin-top:20px; }

.t1l { background:url("rc.gif") top left no-repeat; }

.br { background:url("rc.gif") bottom right no-repeat; }

.trc { background:url("rc-trc.gif") top right no-repeat; }

.blc { background:url("rc-blc.gif") bottom left no-repeat; }

.pad { padding:10px; }

.bang-bg { background:url("bt.gif") -48px -16px; width:16px; height:16px; }
.flag-bg { background:url("bt.gif") -64px -16px; width:16px; height:16px;

}
.star-bg { background:url("bt.gif") -64px -32px; width:16px; height:16px; }

.bang-bg:hover { background-image:url("wt.gif"); background-color:black; }
.star-bg:hover { background-image:url("wt.gif"); background-color:black; }
.flag-bg:hover { background-image:url("wt.gif"); background-color:black; }

#states { position:relative; float:left; }
#washington { position:absolute; top:35px; left:80px; }
#oregon { position:absolute; top:135px; left:85px; }
#idaho { position:absolute; top:150px; left:210px; }

325

CHAPTER 15

Tables

Tables are one of the most useful and complex structures in HTML. This is the first of two chapters on
tables. This chapter explores the HTML structure of tables and how you can style them. The next chapter
explores the many ways you can automatically lay out columns in tables. The purpose of tables is to

identify and style tabular data.

Chapter Outline

Table shows how to create and style the fundamental structure of a table.

Row and Column Groups shows how to create and style row headers, row
footers, row groups, column groups, and columns.

Table Selectors shows how to select cells from columns, rows, and row groups.
Separated Borders shows how to separate table borders from cell borders.
Collapsed Borders shows how to combine table and cell borders.

Styled Collapsed Borders shows how to style collapsed borders.

Hidden and Removed Cells shows how to hide or remove cells.

Removed and Hidden Rows and Columns shows how to remove or hide rows,
row groups, and columns of cells.

Vertical-Aligned Data shows how to vertically align data to the top, middle,
bottom, or baseline of a cell.

Striped Tables shows how to assign alternating backgrounds to rows.
Accessible Tables shows how to create a table that is friendly to nonsighted users.

Tabled, Rowed, and Celled shows how to turn any element into a table, row, or
cell.

Table Layout shows how to create the four types of tables: shrinkwrapped, sized,
stretched, and fixed.

327

CHAPTER 15 ' TABLES

328

Table

Table

J M Table T_+_L
Table
Simple Table

1 2 3 4 5 6
7 8 9 10 11 12

Table with Spanned Rows and Cells
2-6
8 9 12

HTML

<h1>Table</h1>

<h2>Simple Table</h2>
<table>
<try <thya¢/thy <th>2</th> <th>3</th> <th>4 </th> <th>5 </th> <th>6 </th> </tr>
<try <th>7</th> <td»8</tdy <td>9</td> <td>10</td> <td>11</td> <td>12</td> </tr>
</table>

<h2>Table with Spanned Rows and Cells</h2>
<table>
<tr> <td rowspan="2"»1</td> <td colspan="5"»2-6</td> </tr>
<try> <td>8</td> <td>9</td> <td> </td> <td> </td> <td>12</td> </tr>
</table>

CSS

table { width:auto; height:1px; table-layout:auto; border-collapse:collapse;
margin-left:20px; border:ipx solid black; }

td, th { width:50px; height:1px; overflow:hidden; visibility:visible;
border:1px solid black; padding:5px; background:gold;
text-align:center; vertical-align:middle; text-indent:5px; }

CHAPTER 15 ' TABLES

Table

Problem You want to create a table to present data in rows and columns.

Solution At its simplest, a table consists of a <table» element containing one or more row <tr>
elements, which contain one or more cells. Cells can be header cells, <th», or data cells,
<td>.

Header cells contain text describing the purpose of the columns and rows that they head.
You may have zero or more rows of header cells to describe each column. You may have
zero or more columns of header cells in each row to describe each row. Header cells and
data cells may contain any content including nested tables, blocks, text, and objects. It is a
common practice to restrict data cells to tabular data and header cells to text.

You can add the colspan and rowspan attributes to a cell to have it span one or more
columns and/or one or more rows. To prevent missing cells, you need to use the same
number of cells in each row or to use colspan to span cells across multiple columns. In the
second table of the example, the first cell spans two rows, the second cell spans two
columns, and the first row is missing three cells.

The major browsers apply box model properties in limited ways to tables, cells, rows, row
groups, columns, and column groups. background is the only property that applies to all
these elements. margin applies only to tables. border applies only to tables and cells.
padding, overflow, and vertical-align apply to cells. text-indent, text-align, and other
text-styling properties apply only to cells but can be inherited from row, row group, and
table elements. width applies to tables, cells, and columns. width is important enough for
the next chapter to be devoted to showing how it creates column layouts.

height applies to tables, rows, and cells, and specifies the minimum height of a table, row,
or cell. It is a minimum height because content can always expand the height of a cell, row,
or table. Contrast this with block elements where content overflows a fixed-height block
instead of expanding it. A percentage-height block assigned to a table is a percentage of the
height of the table’s container. A percentage-height block is ignored when assigned to rows
and cells. In the example, height:1px is applied to cells, but is overridden by the height of
cell content and padding.

There are several unique table properties including border-collapse and table-layout.
border-collapse is discussed in this chapter. table-layout is discussed in the next chapter.
Additional unique table properties exist, but are implemented inconsistently by the major
browsers: table-layout, border-collapse, border-spacing, caption-side, and empty-
cells.

Pattern

HTML <table>
<tr>
<td colspan="NUMBER" rowspan="NUMBER"> CONTENT </td>
</tr>
</table>

Location Tables can be used anywhere blocks can be used.

Related to Structural Block Elements, Terminal Block Elements (Chapter 2); Display, Table Box
(Chapter 4); Width, Height, Sized, Shrinkwrapped, Stretched (Chapter 5); Margin, Border,
Padding (Chapter 6); Atomic (Chapter 7); Offset or Indented Static Table, Aligned and Offset
Static Table (Chapter 8); Structural Meaning, Visual Structure, Inlined (Chapter 13); all
design patterns in Chapters 15 and 16

329

CHAPTER 15 " TABLES

Row and Column Groups

Row and Column Groups

J L] Row and Column Groups u_+ L ¥

Row and Column Groups

Row Groups
thead 2 3 4
tbody 6 7 8
tfoot 10 11 12
Columns
2-6
1
8 9
HTML

<h1>Row and Column Groups</hi>

<h2>Row Groups</h2>

<table class="examplei"»
<theady <tr> <ths>thead</th> <th»2 </th> <th»3 </th> <th»4 </th> </tr> </thead>
<tfooty <tr> <th>tfoot</th> <td»10</td> <tdsy11</td> <tdr12</td> </tr> </tfoot>
<tbody> <tr> <th>tbody</th> <td»6 </td> <td>7 </td> <td»8 </td> </tr> </tbody>

</table>

<h2>Columns</h2>
<table class="example2"s
<colgroup><col class="col1" /s<col class="col2" /><col class="col3" />
<col class="col4" /><col class="col5" /><col class="col6" /></colgroup>

<tr> <td rowspan="2">1</td> <td colspan="5">2-6</td> </tr>
<tr> <td>8¢/td> <td>9</td> <td> </td> <td> </td> <tdr12¢/td> </tr>
</table>
CSS

table.examplel thead { background:orange; color:black; }
table.example1 tbody { background:gold; color:black; }
table.example1 tfoot { background:firebrick; color:white; }
.col1 { background:wheat; }

.col2 { background:gold; }

.col3 { background:orange; }

.col4 { background:tomato; }

.col5 { background:firebrick; }

.colé { background:black; color:white; }

/* Nonessential styles are not shown */

330

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15 ' TABLES

Row and Column Groups

Problem

You want to group together rows and columns to make it easy to style groups of rows and
columns.

Solution

You can optionally use the following elements to group together rows and columns: <thead>
(table header row group), <tfoot> (table footer row group), <tbody> (table body row group),
<colgroup> (column group), and <col> (column).

Row groups are useful for styling groups of rows and cells with background, visibility,
display:none, and text properties. You can also use descendant selectors to select rows and
cells in row groups. On the other hand, column groups and columns are limited to styling
with background and width.

Row groups may surround any number of rows. You can use data cells or header cells in any
row of any row group. You may include any number of <tbody> elements in a table, but you
should include at most only one <thead> and one <tfoot>. This is because a browser
renders table header and footer groups once per table. Table header groups are placed at the
beginning of the table, and the footer groups are placed at the end (even though footer rows
are placed before body rows in HTML code). When a document is printed, table headers and
footers are supposed to be repeated at the top and bottom of each page, but only Firefox 2
does this. Because of this, <tfoot> is unsuitable for containing summary data.

Because of inheritance, cells inherit text styles assigned to tables, row groups, and rows.
Cells cannot inherit from column groups and columns. visibility:hidden and
display:none apply to tables, rows, row groups, and cells, but not to column groups and
columns. background applies to all.

Table backgrounds are layered from back to front as follows: table, column groups, columns,
row groups, rows, and cells. Since there is no padding between these elements, you can see
the background of an element only when its children have a transparent background. For
example, to see a row group’s background, its rows and cells must have a transparent
background.

A table may contain one or more column groups (<colgroup»), which may contain one or
more columns (<col>). Browsers can reliably style column groups and columns with only
two properties: background and width. This is a problem and a severe limitation. In the
second table of the example, I select column elements to apply different background colors
to each column. Notice how you cannot see the text in cell 12, for it is black on black because
browsers apply background:black to column elements but not color:white.

Pattern

HTML

<table>
<colgroup> <col /> </colgroup>
<thead> <tr> <th> CONTENT </th> </tr> </thead>
<tfoot> <tr> <th> CONTENT </th> </tr> </tfoot>
<tbody> <tr> <td> CONTENT </td> </tr> </tbody>
</table>

Location

This pattern applies to tables.

Related to

Table

331

CHAPTER 15 " TABLES

332

Table Selectors

’3 Table Selectors - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

T

Table Selectors

rici c2 d cS cb

R2cl| c2 c4 cs5 | CO

r3cil c2 4 c5 c6
HTML

<h1>Table Selectors</hi>
<table id="t1"»
<thead»

<tr class="r1"» <td class="c1">r1 ci</td> <td class="c2">c2¢/td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5</td> <td class="c6">c6</td> </tr></thead>

<tfooty

<tr class="r3"» <td class="c1">r3 ci1</td> <td class="c2">c2¢/td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5¢</td> <td class="c6">c6</td> </tr></tfoot>

<tbody class="b1"»>

<tr class="r2"» <td class="c1">r2 ci</td> <td class="c2">c2</td>
<td class="c3">c3</td> <td class="c4">c4</td>
<td class="c5">c5¢</td> <td class="c6">c6</td> </tr></tbody>

</table>

CSS

table,td,th { border:1px solid black; } /* Selecting all tables and cells */
td,th { background-color:white; } /* Selecting all cells */

#t1 { border-collapse:collapse; } /* Selecting table */

#t1 thead td { font-weight:bold; } /* Selecting cells in head */

#t1 tfoot td { font-style:italic; } /* Selecting cells in foot */

#t1 tbody td { font-variant:small-caps; } /* Selecting cells in body */

#t1 .b1 td { font-size:1.2em; } /* Selecting cells in body */

#t1 .c3 { display:none; } /* Selecting cells in column */
#t1 .c4 { background-color:firebrick; color:white; }

#t1 .r1 { background-color:gold; color:black; } /* Selecting row-no effect*/
#t1 .r2 td { background-color:gold; color:black; } /* Selecting cells in row */

#t1

.12 .c6 { font-size:1.8em; font-weight:bold; } /* Selecting cell */

/* Nonessential styles are not shown */

CHAPTER 15 ' TABLES

Table Selectors

Problem You want a simple, flexible, and generic way to select a column, a row, or a cell for styling.
Solution You can assign a unique ID to each table, such as t1. This allows you to select each table
individually. You can label each row with a class that is unique within the table, such as r1, r2,
and so on. You can label each cell with a class that is unique within each row, such as c1, €2, and
so on. Because each table has a unique ID, you can reuse the same class names for rows and
columns. By using the table ID with descendant selectors, you can select the table, any row in the
table, any cell in any row, and any cell in any column.
You can also enclose rows within <thead>, <tfoot>, and <tbody> elements. If you have multiple
<tbody> elements, you can also label each one with a unique class, such as b1, b2, and so on. You
can use descendant selectors following the table’s ID to select and style the cells in a table header,
footer, or one of the row groups defined by <tbody>. This makes it easy to style cells in groups of
rOWS.
Selecting a row, table header, table footer, or table body is of little use because you can style only
its background, and even then you cannot see the background unless cell backgrounds are
transparent. In the example, I style all cells with a white background. I also style the first row
element with a gold background, but you cannot see its gold background because it is covered by
the white cell backgrounds. On the other hand, I style cells in the second row with a gold
background, which you can see because the selector styles cells, not the row. Thus, selecting cells
within a row or row group is very useful. All of the following selector design patterns select cells.
Patterns All Table and Cells Selector
table,td,th { STYLES }
All Cells Selector
td,th { STYLES }
Table Selector
#tx { STYLES }
Column Cells Selector
#tx .cx { STYLES }
Row Cells Selector
#tx .rx td { STYLES } or #tx .rx th { STYLES }
Cell Selector
#tx .rx .cx { STYLES }
Row Group Selector
#tx thead td { STYLES } or #tx thead th { STYLES }
Location This pattern applies to cells, rows, row groups, and tables.
Relatedto Table

333

CHAPTER 15 " TABLES

Separated Borders

Separated Borders

J ™ Separated Borders uLL =
Separated Borders

Boxed Table
2-3
7 8 11

Boxed Cells

2-3

Lz el L J'n

Boxed Table and Cells

2-3

HTML

<h1>Separated Borders</hi1>

<h2>Boxed Table</h2>

<table class="boxed-table" cellspacing="5"»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Cells</h2>

<table class="boxed-cells" cellspacing="5"»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Table and Cells</h2>

<table class="boxed-table boxed-cells" cellspacing="5"»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td></tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

CSS

table { border-collapse:separate; }
.boxed-table { border:ipx solid black; }
.boxed-cells td { border:1px solid black; }
.boxed-cells td.x { border:none; }

/* Nonessential styles are not shown */

334

CHAPTER 15 ' TABLES

Separated Borders

Problem

You want to put independent borders around tables and cells.

Solution

You can apply the border-collapse:separate property to a table to separate table borders
from cell borders. You can use the border property to put a border around a table or around
a cell. When borders are separate, borders around tables are distinct from borders around
cells. You can use the cellspacing attribute to control the amount of spacing around cell
borders.

Pattern

HTML

CSS

<table cellspacing="WIDTH">
<tr> <td> CONTENT </td> </tr>
</table>

TABLE_SELECTOR { border-collapse:separate;
border:WIDTH STYLE COLOR; }

CELL_SELECTOR { border:WIDTH STYLE COLOR; }

Location

This pattern applies to tables and cells.

Limitations

Internet Explorer 7 does not render a border around empty cells. An empty cell does not
contain content. Whitespace is not content. In IE7 the example will display differently; cell 9
will have no border because it is empty. In contrast, cell 10 will have a border because it
contains a nonbreaking space—even though it looks empty. You can prevent this problem
by always putting a nonbreaking space in empty cells.

No major browser renders borders or backgrounds for missing cells. Missing cells occur
when a row has fewer cells than the table has columns and existing cells do not span
enough columns to compensate. In the example, cells 4, 5, and 6 are missing.

Browsers ignore borders applied to rows, columns, column groups, and row groups. This
means the only way to put borders around columns or rows is to put them around each cell
in the column or row.

Advantages

Unlike collapsed borders, separated borders do not have border conflicts between adjacent
cells and between the table and its cells.

Disadvantages

Separated borders require an HTML attribute, cellspacing, to control the distance
between cells because Internet Explorer 7 and earlier versions do not implement the
border-spacing property.

Tips

You can use border: none to remove a border applied by another rule. Notice in the example
how border :none removes the border from cell 11.

You can use border-1left, border-right, border-top, and border-bottom to apply borders
independently to each side of a cell or table. In other words, any side of a table or cell can
have a different border width, style, and color.

Related to

Collapsed Borders; Border (Chapter 6)

335

CHAPTER 15 ' TABLES

Collapsed Borders

Collapsed Borders
J ™ Collapsed Borders + =

Collapsed Borders

Boxed Table

2-6
1
7 8 11
Boxed Cells
ul |
Lz Jlsdl [| u

HTML

<h1>Collapsed Borders</hi>

<h2>Boxed Table</h2>

<table class="boxed-table" cellspacing="0"»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td> </tr>
<tr><td>7</td><td>8</td><td> </td><td>8nbsp;</td><td class="x">11</td></tr></table>

<h2>Boxed Cells</h2>

<table class="boxed-cells" cellspacing="0">»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td> </tr>
<tr><td>7</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

<h2>Boxed Table and Cells</h2>

<table class="boxed-table boxed-cells" cellspacing="0"»

<tr><td rowspan="2">1</td><td colspan="5">2-6</td> </tr>
<trs><td>7¢</td><td>8</td><td> </td><td> </td><td class="x">11</td></tr></table>

CSS

table { border-collapse:collapse; }
.boxed-table { border:ipx solid black; }
.boxed-cells td { border:1px solid black; }
.boxed-cells td.x { border:none; }

/* Nonessential styles are not shown */

336

CHAPTER 15 ' TABLES

Collapsed Borders
Problem You want to merge table and cell borders.
Solution You can apply the border-collapse:collapse property to a table to merge its borders with
its cell borders. You can use the border property to put borders around a table and its cells.
When borders are collapsed, you must omit the cellspacing attribute from the table
element or set it to 0 to avoid problems in Internet Explorer 7 and earlier versions.
Pattern
HTML <table cellspacing="0">
<tr> <td> CONTENT </td> </tr>
</table>
CSS TABLE_SELECTOR { border-collapse:collapse;
border:WIDTH STYLE COLOR; }
CELL_SELECTOR { border:WIDTH STYLE COLOR; }
Location This pattern applies to tables and cells.
Advantages In contrast to separated borders, all major browsers render collapsed borders around empty

cells. Notice in the example how cell 9 is empty and has a border; in the Separated Borders
design pattern, it does not have a border.

Disadvantages

Unlike separated borders, collapsed borders have border conflicts between adjacent cells
and between the table and its cells.

Tips

If adjacent borders have different styles, width, or color, the most visible border wins. Wider
borders override narrower ones. Border styles override each other in the following order
from most prominent to least: double, solid, dashed, dotted, ridge, outset, groove, and
inset. When colors conflict, cell border color overrides table border color. Also, left border
color overrides right, and top overrides bottom.

Related to

Separated Borders; Border (Chapter 6)

337

CHAPTER 15 " TABLES

338

Styled Collapsed Borders

'&J Styled Collapsed Borders - Mozilla Firefox
File Edit Wew Go Bookmarks Tools Hep

Styled Collapsed Borders

1 2
1 2
HTML

<h1>Styled Collapsed Borders</hi>

<table id="t1"»
<tr class="r1"» <td class="c1">1</td> <td class="c2">2<¢/td> </tr>
<tr class="r2"» <td class="c1">1</td> <td class="c2">2</td> </tr> </table>

CSS

table { border-collapse:collapse; } /* Table and cells borders */
table,td,th { border:5px solid red; }

#t1 { border-left:1px solid black; } /* Left table border */
#t1 .c1 { border-left:1px solid black; }

#t1 { border-right:2px solid black; } /* Right table border */
#t1 .c2 { border-right:2px solid black; }

#t1 .c1 { border-right:1px dotted black; } /* Interior column border */
#t1 .c2 { border-left:1px dotted black; }

#t1 { border-top:1px solid black; } /* Top table border */
#t1 .11 td { border-top:1px solid black; }

#t1 { border-bottom:2px solid black; } /* Bottom table border */
#t1 .12 td { border-bottom:2px solid black; }

#t1 .r1 td { border-bottom:1px dotted black; } /* Interior row border */
#t1 .12 td { border-top:1px dotted black; }

/* Nonessential styles are not shown */

CHAPTER 15 ' TABLES

Styled Collapsed Borders

Problem

You want to assign borders to rows and columns in a table with collapsed borders. The problem
is that the table shares borders with its cells, and cells share borders with each other. Thus, each
visible border is actually two borders that have been merged, such as the left table border and
the left border of each cell in the first column. If you do not style merged borders the same, a
browser decides which of the merged borders to display, which may not be the border you want.

Solution

You can use the Table Selectors design pattern to mark up the table to make it easy to select
columns and rows of cells.

A table with collapsed borders has six types of borders: left table border, interior column border,
right table border, top border, interior row border, and bottom border. The design patterns that
follow show how to style these six types of merged borders.

Patterns

Left Table Border

#t1 { border-left: WIDTH 1 STYLE_1 COLOR_1; }
#t1 .cx_FIRST { border-left: WIDTH 1 STYLE_1 COLOR_1; }

Right Table Border

#t1 { border-right: WIDTH 2 STYLE_2 COLOR_2; }
#t1 .cx_LAST { border-right: WIDTH_2 STYLE_2 COLOR_2; }

Interior Column Border

#t1 .cx { border-right: WIDTH_3 STYLE_3 COLOR_3; }
#t1 .cx+1 { border-left: WIDTH_3 STYLE_3 COLOR_3; }

Top Table Border

#t1 { border-top: WIDTH_4 STYLE_4 COLOR 4; }
#t1 .rx_FIRST td { border-top: WIDTH_4 STYLE_4 COLOR_4; }

Bottom Table Border

#t1 { border-bottom: WIDTH 5 STYLE_ 5 COLOR 5; }
#t1 .rx_LAST td { border-bottom: WIDTH_ 5 STYLE_5 COLOR_5; }

Interior Row Border

#t1 .rx td { border-bottom: WIDTH_6 STYLE_6 COLOR 6; }
#t1 .rx+1 td { border-top: WIDTH_6 STYLE_6 COLOR_6; }

Location

This pattern applies to cells and tables.
<colgroup> and <col /> cannot be used to style borders.

Tip

When a table uses separated borders, you do not need this design pattern because separated
borders are not shared.

Example

In the example, I use the table,td,td {} selector to set all table and cell borders to be 5 pixels
wide and solid red. If you want all borders to be the same, this selector is all you need. The
example overrides these red borders with a variety of smaller black borders assigned to each row
and column.

Related to

Table Selectors, Collapsed Borders; Border (Chapter 6)

339

CHAPTER 15 " TABLES

340

Hidden and Removed Cells

&) Hidden and Removed Calls - Mozilla Firefox

Fle Edt ew ©Go Bochnaks Took Help

Hidden and Removed Cells

Cell 1 is hidden and Cell 3 is removed.
This moves cell 4 inkto cell 3's place and creates a mlssing cell at the and.

Collapsed Borders 1 2 3 4
2 | 4
Separated Borders | 1 ” 2 ” 3 H 4 |
[2][]

HTML

<h1>Hidden and Removed Cells</h1>

<h3>Cell 1 is hidden and Cell 3 is removed.
 This moves cell 4
into cell 3's place and creates a missing cell at the end.</h3>

<div>Collapsed Borders</div>

<table class="collapsed" cellspacing="0"»
<tr><td>i</tdr<td>2</td><td>3</td><td>4</td></tr>

<tr><td class="h">1</td><td>2</td><td class="x">3</td><td>4</td></tr></table>

<div>Separated Borders</div>

<table class="separated" cellspacing="5"»
<tro<td>ic/td><td>2</td><td>3</td><td>a</td></tr>

<tr><td class="h">1</td><td>2</td><td class="x">3</td><td>4</td></tr></table>

<!-- Many additional examples are not shown -->

CSS
table, td, th { border:ipx solid black; }

.separated { border-collapse:separate; }
.collapsed { border-collapse:collapse; }

.x { display:none; }
-h { visibility:hidden; }

/* Nonessential styles are not shown */

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15 ' TABLES

Hidden and Removed Cells

Problem

You want to hide or remove one or more cells.

Solution

You can use visibility:hidden to hide cells. Hidden cells are not rendered, but their
location and the space they would have occupied is preserved. This is the most common
way to hide a cell because it keeps cells in their proper locations. Notice in the example how
the first cell in the second row is hidden without changing the location of the following cells.

When a table has collapsed borders, the borders around hidden cells are still rendered.
Thus, when you hide a cell in a table with collapsed borders, its contents are hidden, but its
borders are not. Notice in the first table of the example how borders surround the hidden
cell in the first column of the second row. On the other hand, borders are not rendered
around hidden cells in a table with separate borders. In the second table in the example,
there are no borders around the hidden cell in the first column of the second row.

You can use display:none to remove cells. Removed cells are not rendered. It is as if they
never existed. This means that cells to the right of removed cells slide over to take the place
of removed cells! In the example, cell 3 is removed. Notice how cell 4 slides into its place.
Because cell 3 is removed, there are fewer cells in the second row than in the first row,
which creates a missing cell at the end. Thus, if you do not want cells to be shuffled around,
you should hide cells instead of removing them. On the other hand, it is common to remove
columns, rows, row groups, and tables because you typically do not want these items to
leave behind empty space. This is explored further in the Removed and Hidden Rows and
Columns design pattern.

Pattern

Hidden Tables, Rows, and Cells
SELECTOR { visibility:hidden; }
Removed Tables, Rows, and Cells

SELECTOR { display:none; }

Location

This pattern applies to cells.

Limitations

In Opera and Internet Explorer, when you use visibility:hidden or display:none to hide
cells, it will also hide the borders that don’t touch other cells. There are a few solutions for
this problem. Hide the content by using text-indent: -9999px to shift the content off the
page or wrap the content in a div and set visibility:hidden on the div instead.

This should be fixed when empty-cell:show is properly implemented, which tells the
browser to render the background and border of an empty table cell as if it were there.
However, at this time, it is extremely buggy and considered not supported.

Tip

When you hide a table with collapsed borders, the table’s outer borders are hidden and its
contents are hidden, but its internal borders remain visible. To completely hide the table,
you can assign visibility:hidden to the table and border : none to its cells. This is not
necessary for tables with separate borders.

Example

The code and the screenshot shown here are a small part of the full example, which includes
many more examples of hidden columns, hidden rows, hidden row groups, and hidden
tables.

Related to

Removed and Hidden Rows and Columns; Display (Chapter 4); Border, Visibility (Chapter 6)

341

CHAPTER 15 " TABLES

342

Removed and Hidden Rows and Columns

F-':J Removed and Hidden Rows and Columns - Mozilla Firefox

Flke Edit YWew Go Goohrarks Took Hep

Removed & Hidden Rows & Columns

rict 4
4
=
HTML

<h1>Removed & Hidden

<table id="t1"»
<tbody class="b1"»
<tr class="r1"s <td
<td

<tr class="r2"y> <td
<td

<tbody class="b2"»>
<tr class="r3"> <td
<td

<tr class="rg"> <td
<td

<tbody class="b3"»>
<tr class="r5"> <td
<td
</table>

Rows & Columns</h1>

class="c1">r1 ci1</td> <td class="c2">2</td>
class="c3">r1 c3</td> <td class="c4">4</td> </tr>

class="c1">1r2 ci1</td> <td class="c2">2</td>

class="c3">12 c3</td> <td class="c4">4</td> </tr></tbody>
class="c1">1r3 ci1</td> <td class="c2">2</td>

class="c3">r3 c3</td> <td class="c4">4</td> </tr>
class="c1">r4 ci1</td> <td class="c2">2</td>

class="c3">14 c3</td> <td class="c4">4</td> </tr></tbody>

class="c1">15 c1</td> <td class="c2">2</td>
class="c3">15 c3</td> <td class="c4">4</td> </tr></tbody>

<!-- Second identical table with separated borders is not shown -->

CSS

#t1 .c2 { display:none; }

/* Removing column */

#t1 .c3 { visibility:hidden; } /* Hiding column */
#t1 .r2 { visibility:hidden; } /* Hiding row */

#t1 .b2 { display:none; }

/* Removing row group */

/* Nonessential styles are not shown */

CHAPTER 15 ' TABLES

Removed and Hidden Rows and Columns

Problem

You want to remove a column, a row, or a group of rows so that following columns slide over
and following rows slide up to take the place of the removed row or column. You want to
hide a row or column when you want to leave behind empty space where the row, row
group, or column would have been rendered.

Solution

You can use the Table Selectors design pattern to mark up a table to make it easy to select
any row or column. You can use display:none to remove rows, row groups, and columns.
To remove a column, you can assign display:none to each cell in the column. To remove a
row or a row group, you can assign display:none to <tr>, <thead>, <tfoot>, or <tbody>
elements. Removed elements are not rendered. It is as if they never existed. Columns on the
right slide over into the place of removed columns. This causes a shrinkwrapped table to
shrink because there is one less column. Rows slide up into the place of removed rows. This
causes the height of a shrinkwrapped table to shrink. In the example, the cells in the second
column are removed, which causes the third and fourth columns to slide over. Also, the
third and fourth rows in the third row group are removed, which causes the fifth row to slide
up into their place.

You can use visibility:hidden instead of display:none to hide rows and columns instead
of removing them. This is less common than removing rows and columns because it leaves
blank space behind. In the example, I hide the third column and the second row. The space
where the rows and columns would have been rendered remains behind.

When columns and rows are removed, a browser does not render their borders. On the other
hand, when columns and rows are hidden, a browser renders borders when borders are
collapsed, but not when separated. In the first table of the example, borders are collapsed,
and you can see the borders around hidden rows and columns. In the second table, borders
are separated, and you cannot see the borders around the hidden rows and columns.

Patterns

Hidden Rows, Row Groups, and Cells
SELECTOR { visibility:hidden; }
Removed Rows, Row Groups, and Cells

SELECTOR { display:none; }

Location

This pattern applies to cells, rows, and row groups.

Limitations

You may be tempted to remove or hide columns using the two column elements:
<colgroup> and <col /».Internet Explorer has a proprietary feature that allows this, but
other major browsers do not. You may also want to apply visibility: collapse to these
elements, but this does not work in Internet Explorer 7 or Opera 9. This design pattern is the
best way to hide or remove columns.

The limitations mentioned in Hidden and Removed Cells apply here as well.

Related to

Hidden and Removed Cells; Display (Chapter 4); Border, Visibility (Chapter 6)

343

CHAPTER 15 " TABLES

344

Vertical-Aligned Data

':J Vertical-aligned Data - Mozilla Firefox

Fie Edt Yew Go Cookmarks Tools telp

Vertical-aligned Data

These lines of text are
vertically aligned to the
top of the cell.

These lines of text are
vertically aligned to the
middle of the call.

These lines of text are
vartically aligned to the
bottom of the cell.

HTML
<h1>Vertical-Aligned Data</h1>

<table>
<tr>

<td class="align-top" >These lines of text are vertically aligned

to the top of the cell.</td>

<td class="align-middle">These lines of text are
to the middle of the cell.</td>

<td class="align-bottom">These lines of text are
to the bottom of the cell.</td></tr></table>

CSS

.align-top { height:200px; vertical-align:top; }
.align-middle { height:200px; vertical-align:middle;
.align-bottom { height:200px; vertical-align:bottom;

/* Nonessential styles are not shown */

vertically aligned

vertically aligned

gt gt

CHAPTER 15 ' TABLES

Vertical-Aligned Data

Problem

You want to align multiple lines of data as a group to the top, middle, or bottom of a cell.

Solution

You can place multiple lines of data in a cell and use vertical-align to automatically align
it to the top, middle, or bottom of the cell. For this to work, the cell needs to have a height
greater than the height of the data; otherwise, there is no space for the data to move up or
down within the cell.

vertical-align applies to cells and to inline elements. Just as you can use vertical-align
to offset inline elements from the baseline, you can do the same to the contents of a cell.

There are three vertical-align settings that apply in unique ways to cells. These are top,
middle, and bottom. top is the top of the cell, middle is the middle of the cell, and bottom is
the bottom of the cell. When top, middle, and bottom are applied to inline elements, top is
the top of the line, bottom is the bottom of the line, and middle is roughly the middle of the
line.

What is unique and useful about top, middle, and bottom when applied to a cell is that they
align the entire contents of a cell including multiple lines of content to the top, middle, or
bottom of the cell. In contrast, when you apply vertical-align to an inline element, it
aligns an inline element to another inline element within a line. In other words, vertical-
align positions inline elements in relation to each other within a single line, whereas
vertical-align applied to a cell vertically positions its content within the cell—including
multiple lines of content.

There is no other mechanism in CSS and HTML that can vertically align multiple lines of
content. The closest approximations are the absolute design patterns that vertically align an
element (not its content) to the top, middle, or bottom of its closest positioned ancestor.
These design patterns include Align Top, Align Middle, and Align Bottom. The main
problem with absolute design patterns is that they remove elements from the flow. A cell can
align its contents without leaving the normal flow.

Patterns

HTML

CSS

<table><tr><td class="ALIGNMENT"> CONTENT </td></tr></table>

.align-top { height:+VALUE; vertical-align:top; }
.align-middle { height:+VALUE; vertical-align:middle; }
.align-bottom { height:+VALUE; vertical-align:bottom; }

Location

This design pattern works on any cell.

Related to

Vertical-Aligned Content, Vertical-Offset Content (Chapter 12)

345

CHAPTER 15 " TABLES

Striped Tables

%3 Striped Tables - Mozilla Firefox

Fie Edit Yew History Bookmarks Tools Heb
Striped Tables
rlicil c2 c
r2 ci ce c4
r3cl c2 c4
r4 ci c2 c4
rscl c2 c4
HTML

<h1>Striped Tables</h1>
<table id="t1">

<tr class="r1 odd"> <td class="c1">r1 ci</td> <td class="c2">c2</td>
<td class="c3"> c¢3</td> <td class="c4">ca</td> </tr>

<tr class="r2"> <td class="c1">r2 ci1</td> <td class="c2">c2</td>
<td class="c3"> c¢3</td> <td class="c4">ca</td> </tr>

<tr class="r3 odd"> <td class="c1">r3 ci</td> <td class="c2">c2</td>
<td class="c3"> c¢3</td> <td class="c4">ca</td> </tr>

<tr class="r4"> <td class="c1">r4 ci</td> <td class="c2">c2</td>
<td class="c3"> c3</td> <td class="c4">c4</td> </tr>

<tr class="r5 odd"> <td class="c1">r5 ci</td> <td class="c2">c2</td>
<td class="c3"> c¢3</td> <td class="c4">ca</td> </tr>

</table>

CSS

#ts td { background:white; } /* Background of all cells */
#t1 .odd td { background:palegreen; } /* Alternating Row Background */

#t1 td.c3 { background:darkgreen; color:white; } /* Column Background */

/* Nonessential styles are not shown */

346

CHAPTER 15 ' TABLES

Striped Tables

Aliases Greenbar, Zebra Stripes

Problem You want to style alternating rows with different background colors—much like reports
printed on greenbar paper.

Solution You can optionally assign a standard background color to all cells or leave them all
transparent. You can add a class to odd rows, even rows (or any arbitrary row for that
matter), and you can use this class to select and style the background of cells in these
rows. You can optionally style the backgrounds of cells in columns as well.

Pattern

HTML <table><tr><td class="ALIGNMENT"> CONTENT </td></tr></table>

CSS #TABLE_ID .odd td { background:COLOR; }
or
#TABLE_ID .odd th { background:COLOR; }

Location This pattern applies to cells in a row.

Advantages Styling alternate rows in alternating background colors makes it easier to read extra wide

tables. It also enables the user to read data in rows.

Disadvantages

When styling the backgrounds of columns, it takes careful planning and color
coordination to make the background of columns blend well with the alternating
backgrounds of rows. Furthermore, if you want a column background to override an
alternating row background, you need to make sure the column selector has a higher
priority in the cascade order than the row selector. In the example, I made the column
selector equal priority to the alternating selector by using #t1 td.c3 instead of #t1 .c3,
and I made it a higher priority by placing it after the alternating row selector in the style
sheet.

Tips

The most important point of this simple design pattern is selecting and styling cells
within rows. If you style the background of a row element, you will not see the
background unless the background of each cell in the row is transparent. This is because
the background of each cell overlays the background of its row. Even when you use
separated borders, the spacing between cells does not reveal a row’s background—it
reveals the table’s background. Thus, this design pattern uses the descendant operator to
select and style the cells in a row rather than the row itself.

In addition to background, you may also want to style border and padding differently for
alternating cells. You may also want to style text properties differently, such as font-
size, font-style, font-variant, font-weight, text-decoration, text-transform,
line-height, letter-spacing, and word-spacing.

Related to

Border, Padding, Background (Chapter 6); Font (Chapter 10); Spacing (Chapter 11)

347

CHAPTER 15 " TABLES

348

Tabled, Rowed, and Celled

'J Tabled, Rowed, and Celled - Mogilla Firefox

Fle Edit YWew Go Gookrarks Took Hep

Tabled, Rowed, and Celled

Before

divisian

division

5pan||5pan|i

After being rendered as a table with rows and cells
division | division

span span

HTML
<h1>Tabled, Rowed, and Celled</h1>

<h2>Before</h2>
<div>
<div>
<div>division</div>
<div>division</div></div>

<span»span
span</div>

<h2>After being rendered as a table with rows and cells</h2>
<div class="tabled">
<div class="rowed">
<div class="celled">division</div>
<div class="celled">division</div></div>

span
span</div>

CSS

div,span { border:ipx solid black; background-color:gold; padding:5px; }

.tabled { display:table; border-collapse:collapse; }
.rowed { display:table-row; }
.celled { display:table-cell; }

CHAPTER 15 ' TABLES

Tabled, Rowed, and Celled

Problem

You want to render ordinary inline and block elements as tables, rows, and cells.

Solution

You can use the display:table, display:table-row, and display:table-cell rules to
transform elements into tables, rows, and cells.

Typically you nest an element rendered as a cell within an element rendered as a row. In
turn, you nest an element rendered as a row within an element that is rendered as a table. It
does not matter what type of element is used as long as it is valid XHTML. A table can be
created completely out of inline elements, block elements, or a mixture of both.

You can also render an element as a stand-alone cell, and a browser will automatically
create a row box and table box. Since tables shrinkwrap by default and since blocks stretch
by default, rendering a block as a cell is a good way to shrinkwrap it without having to leave
the normal flow.

Patterns

HTML

CSS

<ELEMENT class="tabled">
<ELEMENT class="rowed">
<ELEMENT class="celled"> CONTENT </ELEMENT>
<ELEMENT class="rowed">
</ELEMENT>

.tabled { display:table; border-collapse:collapse; }
.rowed { display:table-row; }
.celled { display:table-cell; }

Location

This pattern applies to block and inline elements.

Limitations

This pattern does not work in Internet Explorer 7 or earlier versions. This is unfortunate
because this is a very useful design pattern. If Internet Explorer supported this part of the
CSS standard, you could take advantage of all the unique features offered only by tables. For
example, an element displayed as a table automatically shrinkwraps instead of stretches—
without leaving the normal flow. This is very useful when you want to create shrinkwrapped
buttons, menus, boxes around images, and so on. Displaying an element as a table also
allows you to lay out its child elements using the many powerful and automatic layouts
presented in Chapter 16. In short, you can take nontabular elements and lay them out in
rows and columns for pure presentational pleasure without guilt.

Example

In the example, I transform four divisions and three spans into a table with two rows and
two columns. Notice how block elements and inline elements can be combined to create a
table.

Related to

Table; Display, Table Box (Chapter 4); Blocked (Chapter 11); Inlined (Chapter 13)

349

CHAPTER 15 " TABLES

350

Table Layout

3 Table Layout - Mozilla Firefox

Fle Edit View Go Gochrarks Took Hep
Table Layout
Shrinkwrapped Table
T
auto) aut;|
Sized Table
100 (1] 300
auto auto
Stretched Table
AL ML LR LY LA | IIIi‘UIUIIIII I II|'I'|'|'|'|Z'UI'EII'|II T IIIIIIIIIIIIIEIUEI” LAl BN I'|'|Iq‘lj:l'u|'I LA R A M I5|'D|D'I LAt LR A b | IE|I|!|I|JI UL LR L R B
aukto auto
Fixed Table
100 (ai] 300
auto auto
HTML

<h1>Table Layout</h1>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr><td>auto</td><td>auto</td></tr></table>

<h2>Sized Table</h2>
<table class="auto-layout sized"> <tr><td>auto</td><td>auto</td></tr></table>

<h2>Stretched Table</h2>
<table class="auto-layout stretched"> <tr><td>auto</td><td>auto</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout sized"> <tr><td>auto</td><td>auto</td></tr></table>

CSS

.auto-layout { table-layout:auto; }
.fixed-layout { table-layout:fixed; }
.shrinkwrapped { width:auto; }

.sized { width:350px; }

.stretched { width:100%; }

/* Nonessential styles are not shown */

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15 ' TABLES

Table Layout

Problem

You want to create shrinkwrapped, sized, stretched, or fixed tables.

Solution

There are four types of tables: shrinkwrapped, sized, stretched, and fixed. Each has unique
capabilities for laying out columns. These layouts are explored in detail in the next chapter.

A shrinkwrapped table shrinks to the width of its columns and will not expand beyond the
width of its container. A sized or stretched table can lay out its columns in proportion to
the table’s width, and can expand beyond the width of its container. A fixed table is a
variation of a sized or stretched table, except it ignores the width of its content when laying
out columns. This greatly speeds the rendering and prevents content from expanding a
column’s width.

The following two properties assigned to a table determine the type of table: table-layout
and width.

There are two values for table-layout: auto and fixed. The default value is auto. An auto-
layout table lays out columns based on the minimum and maximum widths of cell contents
and on the width assigned to its cells. A fixed-layout table ignores content and lays out
columns based only on the width assigned to the cells in its first row.

The type of width assigned to the table determines whether a table is shrinkwrapped, sized,
or stretched. There are three types of width: auto, fixed, and percentage. An auto width is
created using width:auto. A fixed width is created using width:VALUE, such as width:100px.
A percentage width is created using width:PERCENT%, such as width:100%.

A shrinkwrapped table is auto layout and auto width. A stretched table is auto layout and has
a percentage width of 100%. A sized table is auto layout and fixed width, or has a percentage
width other than 100%. A fixed table is fixed layout and has a fixed width or percentage
width.

Patterns

Shrinkwrapped Table

TABLE_SELECTOR { table-layout:auto; width:auto; }

Sized Table

TABLE_SELECTOR { table-layout:auto; width:VALUE_OR_PERCENT; }
Stretched Table

TABLE_SELECTOR { table-layout:auto; width:100%; }

Fixed Table

TABLE_SELECTOR { table-layout:fixed; width:VALUE_OR_PERCENT; }

Location

This pattern applies to table elements.

Tip

A good way to set the width of columns is to assign width to each cell in the first row of the
table. This works in fixed-layout and auto-layout tables, and it does not require <colgroup>
and <col> elements.

Related to

Table; Sized, Shrinkwrapped, Stretched (Chapter 5); Offset or Indented Static Table, Aligned
and Offset Static Table (Chapter 8); all design patterns in Chapter 16

351

CHAPTER 16

Table Column Layout

Browsers have many built-in capabilities for automatically sizing columns in tables. This chapter shows
how to harness these automatic features to shrinkwrap columns, size them to specific widths, size them
proportionally to each other, size them proportionally to their content, size them equally, size them
flexibly, and undersize or oversize them.

Table Layout Models

There are four types of tables: shrinkwrapped, sized, stretched, and fixed. Each type of table has unique
column layouts that only it can create.

The main purpose of a shrinkwrapped table is shrinking columns to fit their content. The main
purpose of a sized or stretched table is proportionally dividing its width among its columns. The main
purpose of a fixed table is setting its columns to fixed widths and speeding the rendering of the table.

Shrinkwrapped tables shrink to fit their content. This gives them the unique capability to shrink
columns to fit the width of their content. A shrinkwrapped table can be narrower than its container and
will not expand beyond the width of its container. Shrinkwrapped tables are the best choice when you
want flexible layouts that adapt to different devices, screen resolutions, and viewport sizes. The
following unique layouts apply to shrinkwrapped tables: Shrinkwrapped Columns, Sized Columns,
Equal Content-Sized Columns, and Inverse-Proportioned Columns.

Sized and stretched tables divide their width proportionally among their columns while ensuring
no column is narrower than its content. Sized and stretched tables work exactly the same when laying
out columns. The only difference is that a sized table can be narrower or wider than its container, and a
stretched table stretches to the width of its container. The following layouts apply to stretched tables:
Content-Proportioned Columns, Size-Proportioned Columns, Percentage-Proportioned Columns,
Equal-Sized Columns, and Flex Columns.

Fixed tables are a variation of sized or stretched tables. They can be sized or stretched, but not
shrinkwrapped. They are different from sized and stretched tables in that they ignore the width of their
content when laying out columns. This prevents a cell’s content from having any influence over a
column’s width. Because fixed tables ignore content, they render much faster than the other types of
tables. For shrinkwrapped, sized, and stretched tables, a browser must wait for the entire table to
download so it can calculate the minimum and maximum width of the content in each cell before it can
even begin rendering the table. Fixed tables can be rendered progressively as soon as the first row
downloads. Fixed tables can size columns smaller than their content and wider than the table width.
Fixed tables have unique support for Sized Columns and Undersized Columns. Fixed tables support all
the layouts of sized and stretched tables except for Content-Proportioned Columns. These layouts
include Size-Proportioned Columns, Percentage-Proportioned Columns, Equal-Sized Columns, and Flex
Columns.

The type of layout algorithm chosen by the browser depends on the type of table and on the type of
width assigned to its cells. In other words, it makes a big difference whether you assign a value of auto,
100px, or 20% to a cell. Not only are these different widths, but they are also different fypes of width: auto,

353

CHAPTER 16 " TABLE COLUMN LAYOUT

354

fixed, or percentage. These different types of width combined with the type of table cause the browser to
use different algorithms for sizing columns.

Avalue of auto assigned to width creates an auto width. A measurement assigned to width, such as
pixels or ems, creates a fixed width. A percentage assigned to width, such as 50%, creates a percentage
width.

Finally, a browser examines the width assigned to all cells in the same column in all rows to
determine the column width and the type of column width. How a browser reconciles different cell
widths in the same column is explained in the Column Width design pattern. Also, assigning different
types of width to different columns causes the browser to use multiple layout algorithms in the same
table. How a browser combines column layouts is explained in the Mixed Column Layouts design
pattern.

Even though a browser examines the width of all cells in nonfixed tables to determine the column
width, you only need to assign a width to the cells in the first row.

The following design patterns are created by combining the four types of tables with the three types
of widths.

Using Column Layouts

For many years, designers and developers have used the many automatic and powerful layout features
of columns to lay out nontabular content. In fact, this extensive use has promoted browser vendors to
enhance these capabilities more than any other feature. It has also caused the major browser vendors to
ensure column layouts work consistently and are bug-free.

Even though you can use column layouts to lay out nontabular data, I do not recommend it because
it leads to less-accessible content.

The purpose of this chapter is to show you how to lay out tabular data. Tabular data needs to be
styled and laid out. Each example in this chapter shows how you can automatically lay out columns
using the many powerful and automatic algorithms built into browsers.

Chapter Outline

e Column Width shows how a browser calculates the column width when cells in
the same column in different rows have different widths, different types of widths,
different minimum content widths, and different maximum content widths. This
pattern applies to shrinkwrapped, sized, and stretched tables.

e Shrinkwrapped Columns shows how to shrinkwrap columns to fit the width of
their content. This pattern applies to shrinkwrapped tables.

e Sized Columns shows how to assign fixed widths to columns while keeping the
table’s width within a minimum or maximum value. This pattern applies to
shrinkwrapped or fixed tables.

¢ Content-Proportioned Columns shows how to automatically distribute a table’s
width among its columns proportionally to the width of the content in each
column. Columns with wider content are assigned to a wider width than columns
with narrower content. This pattern applies to sized and stretched tables. It also
applies to shrinkwrapped tables when their content stretches them to the width of
their containers.

e Size-Proportioned Columns shows how to automatically distribute a table’s
width among its columns proportionally to the width assigned to each column. In
this design pattern, a browser does not necessarily render a column at its assigned
width. Instead, it renders a column proportionally to the widths assigned to other
columns. This pattern applies to sized, stretched, and fixed tables. It also applies

CHAPTER 16 " TABLE COLUMN LAYOUT

to shrinkwrapped tables when assigned cell widths stretch them to the width of
their containers.

Percentage-Proportioned Columns shows how to distribute a table’s width
among its columns proportionally to the percentage assigned to the width of each
column. In this design pattern, a browser does not necessarily render a column at
its assigned percentage of the table’s width. Instead, it renders a column
proportionally to the percentages assigned to other columns. This pattern applies
to sized, stretched, and fixed tables.

Inverse-Proportioned Columns shows how to size columns in proportion to
their content. For example, a cell can be sized to be double the width of its
content. This pattern applies to shrinkwrapped tables.

Equal Content-Sized Columns shows how to automatically shrink a table to its
smallest possible width while sizing all columns equally. In other words, it sets all
columns to the same width while using the smallest possible width that will
display each cell’s content. It creates compact tables with uniform columns. It
works best with tables containing numbers and short text. This pattern applies to
shrinkwrapped tables.

Equal-Sized Columns shows how to automatically divide a table’s width into
equal proportions for each cell. This pattern applies to sized, stretched, and fixed
tables.

Undersized Columns shows how to create columns that are narrower than their
content. This pattern applies to fixed tables.

Flex Columns shows how to create dynamically sized columns alongside fixed-
width or percentage-width columns. These columns fill in the space not taken by
sized or percentage cells. As a table’s container grows or shrinks, so do flex
columns. This pattern is most useful when applied to stretched and fixed tables,
but also applies to sized tables.

Mixed Column Layouts shows how to combine fixed-width, percentage-width,
and auto-width columns to create additional layouts. It shows how browsers
assign different priorities to fixed-width, percentage-width, and auto-width
columns depending on whether a table is shrinkwrapped, sized, stretched, or
fixed.

355

CHAPTER 16 " TABLE COLUMN LAYOUT

Column Width

¥ Column Width - Mowilla Firafox

Fle Edt Vew Hstmry Bekmers Took He

Column Width

Percentage widths trump fixed widths, which trump auto widths.
;;L;'"'ﬁ&d"“"r;;ggh"' ;:é;'&ﬁ&""""'EnH"'"""h&d""""“
7opx 7opx 7opx

auto|auto 150px

autojauto auto 10%

auto|auto auto

HTML

<h1>Column Width</h1>
<h2>Percentage widths trump fixed widths

<table class="auto-layout sized">
<tr> <td class="a i"»auto</td><td
<td class="a">auto</td> <td
<tr> <td class="a">auto</td> <td
<td class="b">75px</td> <td
<tr> <td class="a">auto</td> <td
<td class="c">150px</td> <td
<tr> <td class="a"»auto</td> <td
<td class="d i"»10%</td> <td
<tr> <td class="a">auto</td> <td
<td class="a">auto</td>
</table>

CSS

class
class

class
class
class
class
class
class

class="b i"»75px</td> <td

, Which trump auto widths.</h2>

="a"s>auto</td> <td
="a">auto</td></tr>

="b">75px</td></tr>
="a"s>auto</td> <td
="c">150px</td></tr>
="a"»auto</td> <td
="d">10%</td></tr>
="a">auto</td> «<td

<td class="e i"»50%</td></tr>

.i { background-color:black; color:white; font-weight:bold; }

.auto-layout { table-layout:auto; }
.sized { width:700px; }

.a { width:auto; }
.b { width:75px; }
.c { width:150px; }
.d { width:10%; }
.e { width:50%; }

/* Nonessential styles are not shown */

356

class="a">auto</td>
class="b">75px</td>
class="c i"»150px</td>
class="a">auto</td>

class="a">auto</td>

CHAPTER 16 " TABLE COLUMN LAYOUT

Column Width

Problem

You want to know how a browser chooses the width of a column when you assign different
widths to cells in the same column in different rows.

Solution

This design pattern is the algorithm built into each browser that determines the width of a
column. You do not have to do anything to use this pattern.

It is simplest to assign widths only to cells in the first row. However, you may want to assign
different styles with different widths to arbitrary cells in a table, and let a browser figure out
the width of a column.

This design pattern does not apply to fixed tables, because a browser determines column
widths using only the widths of cells in the first row. Content in subsequent rows is
truncated when it exceeds the column width. The following discussion applies only to
nonfixed tables.

A browser assigns a minimum content width to each cell. This is the minimum width
needed to display cell content. On nonfixed tables, a browser will not shrink a column
smaller than this width. For text, the minimum content width is the width of the widest
word in the cell. For a replaced element, such as an image, it is the width of the replaced
element.

A browser assigns a maximum content width to each cell. This is the width of a cell’s content
up to the width of the table’s container. Some design patterns use this width to size or
proportion columns.

A browser downloads the entire table and scans all its rows to determine the following for
each column: width fype, maximum width value, minimum content width, and maximum
content width.

A browser uses the following rules to reconcile different types and values:
1. A column defaults to auto width.

2. A fixed width changes the column’s type to fixed width.

3. A percentage width changes the column’s type to percentage width.

4. A larger fixed width replaces a smaller one.

5. A larger percentage width replaces a smaller one.

6. A larger minimum content width replaces a smaller one.

7. A larger maximum content width replaces a smaller one.

A browser chooses a layout design pattern based on the type of table and the type of each
column (auto, fixed, or percentage width). The column is sized using the largest width value
in the column that matches its type.

Location

This pattern applies to shrinkwrapped, sized, and stretched tables.

Example

The table is 700 pixels wide. The second column in the example is 75 pixels wide, showing
how a fixed-width cell overrides an auto cell in the same column. The third column is 150
pixels wide, showing how a larger fixed-width value (150px) overrides a smaller one (75pXx).
The fourth column is 70 pixels wide, showing how a percentage-width cell (10%) overrides a
fixed-width cell (150px) in the same column. The fifth column is 350 pixels wide, showing
how a larger percentage width (50%) overrides a smaller one (10%).

Related to

All the design patterns in this chapter

357

CHAPTER 16 " TABLE COLUMN LAYOUT

358

Shrinkwrapped Columns

2 Shrinkwrapped Columns - Mozilla Firefox

Eie Edit Yew Go Cookmarks Tpols Help
Shrinkwrapped Columns
autolauto

auto (less content - |auto (extra content turns shrinkwrapped columns into
less width) content-proportioned columns)

HTML

<h1>Shrinkwrapped Columns</h1>

<table class="auto-layout shrinkwrap">
<tr>
<td class="shrinkwrap">auto</td>
<td class="shrinkwrap">auto</td>
</tr>
</table>

<table class="auto-layout shrinkwrap">
<tr> <td class="shrinkwrap">auto (less content - less width)</td>
<td class="shrinkwrap">auto (extra content turns shrinkwrapped columns
into content-proportioned columns)</td></tr></table>

CSS

table { border-collapse:collapse; }
td { overflow:hidden; }

.auto-layout { table-layout:auto; }
.shrinkwrap { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Shrinkwrapped Columns

Problem You want to shrinkwrap columns to fit the width of their content.
Solution You can shrinkwrap columns by applying table-layout:auto and width:auto to the table
and width:auto to its cells. Since these rules are the default, this happens by default.
The width of each cell expands to its maximum content width, which is the width of a cell’s
content up to the width of the table’s container. The content can expand a table up to the
width of the table’s container. If this happens, the cells are laid out using the Content-
Proportioned Columns design pattern.
Pattern
HTML <table>
<tr>
<td> CONTENT </td>
</tr>
</table>
CSS TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:auto; }
Location This pattern applies to shrinkwrapped tables.
Advantages Browsers use this design pattern by default because it is the most adaptable and natural. It

automatically sizes columns and tables to fit their content. It adapts automatically to any
device and display size. This is a very powerful feature that requires a lot of code to
implement in other graphical user interfaces.

Disadvantages

A browser determines the layout of columns. Other design patterns allow you to control
column width, to size columns equally, or to size them proportionally.

Tips

The only time shrinkwrapped columns can expand a table beyond the width of its container
is when the combined minimum content width of each column is greater than the width of
the container. For example, replaced elements, such as images, tables nested in cells, or text
set to white-space:nowrap can easily expand a shrinkwrapped table beyond the width of
its container. This causes the table to overflow its container.

Example

The first table in the example shows how cells can shrinkwrap to fit their content. The
second table shows how wider content expands a table up to the width of its container and
automatically uses the Content-Proportioned Columns design pattern to lay out columns.

Related to

Content-Proportioned Columns

359

CHAPTER 16 " TABLE COLUMN LAYOUT

360

Sized Columns

3 Sized Columns - Morilla Firefo
Fi= Edt WVew Go Boockmarks Took Hep

Sized Columns
Shrinkwrapped Table

bl el o ot ol il o i i el ol s o e i Ll o o e e e ol
10D 2po 300 400 50

200px 300
Fixed Table

A il el o ol o o el il o b b b i e bl sl R L L LA L L L b L Ly
100 Z2pn 300 400 50

200px 300px

Maximum-width Sized Columns

RTATATRTEATATIATAY (i o L o
1DD’| 200

200px 300px
Minimum-width Sized Columns
-;,{-'.';-.-|-.-|-|-|-|-|;lnl-:l||:-lu|-|-|-|-|-|||-|-u|2-||:||t=-|-|-|-|-|-u|- I;éi_:lﬁlI"II"IIIII“IIIIIJI|:|;|::||IIIIIIIII"I“II“IIIEIIEI!:IIIIIIIIII"II"I“IIIEI:IIII:IIIII“I”III"II"I'|
X px
HTML

<h1>Sized Columns</h1>
<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout min-width1">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

<h2>Maximum-width Sized Columns</h2>
<div class="sized2">
<table class="auto-layout shrinkwrapped">
<tr> <td class="sized1">200px</td><td class="sized2">300px</td></tr></table></div>

<h2>Minimum-width Sized Columns</h2>
<table class="fixed-layout min-width2">
<tr> <td class="sized1">200px</td> <td class="sized2">300px</td></tr></table>

CSS

.auto-layout { table-layout:auto; }

.fixed-layout { table-layout:fixed; }

.shrinkwrapped { width:auto; }

.min-widthl { width:1px; } .min-width2 { width:700px; }
.sized1 { width:200px; } .sized2 { width:300px; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Sized Columns

Problem

You want to assign fixed widths to columns while keeping the table’s width within a minimum or
maximum value.

Solution

You can size columns by applying table-layout:auto and width:auto to the table and
width:VALUE to its cells. If the total width of the columns is greater than the width of the
container, the layout changes to the Sized-Proportioned Columns design pattern. I call this the
Maximum-Width Sized Columns design pattern because columns are rendered at the width
you assigned only as long as their total width is less than or equal to the width of the table’s
container. In other words, the container’s width sets the maximum width of the table. Finally,
regardless of the assigned width, columns cannot be smaller than their minimum content width.

You can also size columns by applying table-layout:fixed and width:MIN_WIDTH to the table
and width:VALUE to cells in the first row. If you assign a 1-pixel width to the table, a browser will
expand the table as necessary to fit the fixed width of its cells. There is no maximum width—the
table overflows its container as needed to ensure its columns are sized to their assigned width. If
you assign a larger width to the table than the total width of the columns, the layout changes to
the Sized-Proportioned Columns design pattern. I call this the Minimum-Width Sized
Columns design pattern because columns are rendered at the width you assigned only as long
as their total width is greater than or equal to the width assigned to the table. Finally, minimum
content width has no effect on column width.

Limitations

In select versions of webkit browsers (Chrome, Safari), there is a documented bug associated
with table-layout:fixed where the browser will not render padding assigned to the width of a
table cell.

Patterns

HTML

CSS

HTML

CSS

Maximum-Width Sized Columns

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:VALUE; }

Minimum-Width Sized Columns

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:MIN_WIDTH; table-layout:fixed; }
CELL_SELECTOR { width:VALUE; }

Location

This pattern applies to shrinkwrapped or fixed tables.

Example

The columns in all four tables are sized the same. The first column is 200 pixels, and the second
is 300 pixels. The difference is the type of table (fixed or shrinkwrapped) and the table’s width or
its container’s width.

Related to

Sized-Proportioned Columns

361

Download from Wow! eBook <www.wowebook.com>

CHAPTER 16 " TABLE COLUMN LAYOUT

362

Content-Proportioned Columns

) Content-proportioned Columns - Mozilla Firefox
Pk Edit Yew Hitory EBoohmaks Teook Hep

Content-proportioned Columns

Sized Table
A L 0 L L 01 Ll L L 00 L LA 0 L L L LR L
auto auto (more content - more width)

Stretched Table

AL bl b Ll sl ol R ol o)l ol R bl L R L
400 5ID

auto (same content - same width) auto (same content - same width)

Shrinkwrapped Table
S L i 0 L L A L) L A L i i

auko (less content - |auto (extra content tumns shrinkwrapped columns into
less width) content-proportioned columns)

HTML

<h1>Content-Proportioned Columns</h1>

<h2>Sized Table</h2>
<table class="auto-layout sized">
<tr> <td class="auto-width">auto</td>
<td class="auto-width">auto (more content - more width)</td></tr></tables

<h2>Stretched Table</h2>
<table class="auto-layout stretched">
<tr> <td class="auto-width">auto (same content - same width)</td>
<td class="auto-width">auto (same content - same width)</td></tr></table>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="auto-width">auto (less content - less width)</td>
<td class="auto-width">auto (extra content turns shrinkwrapped columns
into content-proportioned columns)</td></tr></table>

CSS

.auto-layout { table-layout:auto; }
.fixed-layout { table-layout:fixed; }
.sized { width:700px; }

.stretched { width:100%; }
.shrinkwrapped { width:auto; }
.auto-width { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Content-Proportioned Columns

Problem

You want columns to fill the specified width of a table, and you want columns with wider
content to have a wider width than columns with narrower content. In other words, you
want to distribute a table’s width automatically among its columns while keeping the table
stretched or sized, and you want columns to be sized proportionally to the width of their
content.

Solution

You can size columns proportionally to the width of their content by applying table-
layout:auto and width:VALUE_OR_PERCENT to the table and width:auto to its cells. In other
words, you size or stretch the table and make cells auto width. A browser automatically
calculates the maximum content width of each column and totals the maximum content
widths of all columns. It then sizes each column based on the percentage of its maximum
content width divided by the total maximum content width of all columns. Thus, it gives
columns with a larger maximum content width a proportionally larger width compared to
cells with a smaller maximum content width.

A shrinkwrapped table cannot expand beyond the width of its container. When content
expands a shrinkwrapped table to the full width of its container, the table behaves as if it
were stretched and turns shrinkwrapped columns into content-proportioned columns.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:auto; }
CELL_SELECTOR { width:auto; }

Location

This pattern applies to sized and stretched tables. It also applies to shrinkwrapped tables
when their content stretches them to the width of their containers. It does not apply to fixed
tables.

Advantages

Sized and stretched tables are particularly useful when you have multiple tables that you
want to be the same size. This gives a document a consistent look and feel. Stretched tables
have an advantage over sized tables in that they automatically resize to fit smaller displays.

Disadvantages

Sized tables do not adapt to small displays, such as mobile devices.

Example

In the example, the first table is sized, and its first column is smaller than its second column
because it has less content. Notice that both columns are wider than they would have been
if they were shrinkwrapped. In the second table, both columns have identical content, and
the browser makes them the same size. The third table is shrinkwrapped, but its content
stretches the table to the width of its container. This makes its columns content-
proportioned. Notice how the second column is twice as wide as the first column because
its content is twice as wide.

Related to

Shrinkwrapped Columns

363

CHAPTER 16 " TABLE COLUMN LAYOUT

Size-Proportioned Columns

Size-Proportioned Columns

J || Size-Proportioned Columns +

Size-Proportioned Columns

Sized or Stretched Table

L e e e 0 0 M 0 A R L
100 200 300 400 500 600
100px 300px
Shrinkwrapped Table
0 L 4 WA L
1000px 3000px
Fixed Table
0 e e 4 WA L
100px 300px
HTML

<h1>Size-Proportioned Columns</h1>
<h2>Sized or Stretched Table</h2>
<table class="auto-layout stretched">
<tr> <td class="size3">100px</td>
<td class="size4">300px</td></tr></table>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="size1">1000px</td>
<td class="size2">3000px</td></tr></table>

<h2>Fixed Table</h2>
<table class="fixed-layout sized">
<tr> <td class="size3">100px</td>
<td class="size4">300px</td></tr></table>

CSS

.auto-layout { table-layout:auto; }

.fixed-layout { table-layout:fixed; }

.sized { width:700px; }

.stretched { width:100%; }

.shrinkwrapped { width:auto; }

.size1 { width:1000px; } .size2 { width:3000px; }
.size3 { width:100px; } .size4 { width:300px; }

/* Nonessential styles are not shown */

364

CHAPTER 16 " TABLE COLUMN LAYOUT

Size-Proportioned Columns

Problem

You want columns to fill the specified width of a table, and you want columns with larger
width to be proportionally wider than columns with smaller width. In other words, you
want to distribute a table’s width among its columns proportionally to each column’s
assigned width.

Solution

You can size columns proportionally to their width by applying table-layout:auto and
width:VALUE_OR_PERCENT to the table and width:VALUE to its cells. In other words, you size
or stretch the table and assign fixed widths to cells.

When all column widths, padding, borders, and cell spacing add up to the width you assign
to the table, a browser renders each column at the exact width you assigned. Since this is
tedious to calculate and error-prone, it is easy for column widths to add up to more or less
than the table’s width. When this happens, a browser renders a column proportionally to
the widths you assigned to other columns.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:auto; }
CELL_SELECTOR { width:VALUE; }

Location

This pattern applies to sized and stretched tables.

This pattern applies to a shrinkwrapped table when the total width of all its columns is
greater than the width of its container. This stretches it to the sides of its container, causing
it to behave like a stretched table.

This pattern applies to a fixed table when the total width of all its columns is less than the
width assigned to the table. In contrast, if the total width of the columns is greater than the
width of a fixed table, the width of the table expands, and the columns are not size-
proportioned.

Advantages

Size-proportioned columns give you the ability to specify the relative size of each column in
relation to the other columns while preserving the width you assigned to the table. Size-
proportioned columns are most common in stretched and sized tables where you want
multiple tables to have a uniform width and you want to tweak the width of individual
columns.

Tips

Since the widths you assign to columns are proportional, you can make widths huge or tiny
because only the ratio between widths matters.

Example

Notice how the columns in the shrinkwrapped table had to be set to a width large enough to
stretch the table to the width of its container. This allows the columns to be size-
proportioned. Notice how the total width of the columns in the fixed table is much smaller
than the width of the table. This allows the fixed table to be size-proportioned.

Related to

Sized Columns

365

CHAPTER 16 " TABLE COLUMN LAYOUT

366

Percentage-Proportioned Columns

") Percentapge-proportioned Columns - Mozilla Firefox
Fle Edit Yew Hifory Bookmaks Took Hep

Percentage-proportioned Columns

Sized or Stretched Table

LD L L) L L L) G L R () LA A L) L D L L L

P e zag’ 0 amn Mape 0 spn o ggn

S50% 50%

GRG0 ke ekl Lk S) R G R (R LS A LGRS k) G GRS LR G L
'_ P g zaa’ 3o aoe ' ' son | gon

20% 20%

i el L) el il LR LR b L bt LR L Ll L | L b} L L b} L b} L) L b} T 1 L b) () L LR
T gy L T = I

80% B80%

AR L0 L A L L0 kR U R L S) 0 AR AR UL L) LR LA L)) R0 LAY UL L U L)
) 100 2a0 300 a0t 500 500

80% 20%

U A ke il Ak) A 4 AR A Gl L A L Ly L) A Ll L L B
P g 7 17! R) D TR

a0% 20% 0%

<h1>Percentage-Proportioned Columns</h1>
<h2>Sized or Stretched Table</h2>
<table class="auto-layout sized">
<tr> <td class="p3">50%</td> <td class="p3">50%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p1">20%</td> <td class="p1">20%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p2">80%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p1">20%</td></tr></table>

<table class="auto-layout sized">
<tr> <td class="p2">80%</td> <td class="p1">20%</td>
<td class="p3">50%</td></tr></table>

CSS

.auto-layout { table-layout:auto; }

.fixed-layout { table-layout:fixed; }

.sized { width:700px; }

.stretched { width:100%; }

.p1 { width:20%; } .p2 { width:80%; } .p3 { width:50%; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Percentage-Proportioned Columns

Problem

You want to size columns as a percentage of a table’s width. In other words, you want
columns to fill the specified width of a table, and you want to distribute a table’s width
among its columns using percentages. When the total column percentage falls short of
100%, you want a browser to scale the percentages to equal 100%.

Solution

You can size columns as a percentage of a table’s width by applying
width:VALUE_OR_PERCENT to the table and width:PERCENT to its cells. In other words, you
size or stretch the table and assign percentages to cells. The table can be fixed layout or auto
layout.

When the total percentage of all columns is less than 100%, a browser scales percents to
equal 100%. In the example, the two columns in the second table are both assigned to 20%,
which totals 40%. These percents are scaled to 100%, laying out the table as if each column
were assigned to 50%.

A browser works from left to right when sizing percentage-width columns. When a browser
encounters a percentage that increases the total beyond 100%, it truncates the percentage
assigned to that column so the total equals 100% and it treats any remaining columns as
width:auto. In the example, the two columns of the third table are both set to 80%, which
totals 160%. The percentage assigned to the second table is reduced to 20% so that the
columns total 100%. In the last table of the example, the third column occurs after the
percentage totals 100%. This causes a browser to shrinkwrap the third column and to scale
the previous columns to fit in the remaining space.

In fixed tables, when percentages total 100% or less, percentages work the same as they
work in sized and shrinkwrapped tables. When they exceed 100%, the results vary from
browser to browser.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
CELL_SELECTOR { width:PERCENT; }

Location

This pattern applies to sized, stretched, and fixed tables.

Advantages

Percentages are an intuitive, self-documenting way to proportion columns.

Disadvantages

Size-proportioned columns are more forgiving because they do not have to add up to 100%.

Tip

It is best not to allow column percentages to exceed 100% for any type of table. If you want
some cells to be shrinkwrapped and others to be percentage proportioned, your intention is
clearer and the result more reliable when you assign width:auto to shrinkwrapped cells and
width:PERCENT to percentage-proportioned cells.

Related to

Size-Proportioned Columns

367

CHAPTER 16 " TABLE COLUMN LAYOUT

368

Inverse-Proportioned Columns

a} Inverse-proportioned Columns - Mozilla Firefox

Fie Edt Yew Higtory Hookmarks Tools Heb

Inverse-proportioned Columns

Shrinkwrapped Table

LA L A R A W R
ipa plaly

20%
L | M b I:llllltll g L IHE(IJI
20%)] 20%[20%{20%]| 20%
'I'I'I'I'I'I:I.'chl'l'I'II'I'klrl:I
20% |50%

HTML

<h1>Inverse-proportioned Columns</h1>

<h2>Shrinkwrapped Table</h2>

<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td></tr></table>

<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td>
<td class="p1">20%</td>
<td class="p1">20%</td>
<td class="p1">20%</td>
<td class="p1">20%</td></tr></table>

<table class="auto-layout shrinkwrapped">
<tr> <td class="p1">20%</td>
<td class="p2">50%</td></tr></table>

CSS

.auto-layout { table-layout:auto; }
.shrinkwrapped { width:auto; }

.p1 { width:20%; }
.p2 { width:50%; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Inverse-Proportioned Columns

Problem

You want to size a table in proportion to its column with the widest content, and you want
its columns to be percentage-proportioned within this width. For example, you want a table
to be automatically sized at twice the width of the column containing the widest content.

Solution

You can size a table in proportion to the column with the widest content by assigning
table-layout:auto and width:auto to the table and width:PERCENT to its cells. In other
words, you shrinkwrap the table and assign percentages to cells.

A browser calculates the table width by multiplying the maximum content width by the
inverse of the percentage assigned to each column. The largest resulting width becomes the
width of the table. Once the table width is calculated, a browser percentage-proportions
each column to fit into the table’s width.

This design pattern provided by browsers is too unintuitive to be useful as it stands. But it
can be used to create equal-sized columns based on the content width, which is the basis of
the next design pattern, Equal Content-Sized Columns. And this is a very useful design
pattern.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:PERCENT; }

Location

This pattern applies to shrinkwrapped tables.

Limitations

This pattern works only when the total of all columns is less than or equal to 100%.

Example

In the example, the first table has one column assigned to width:20%. A browser multiplies
the content’s width, which is 40 pixels, by the inverse of 20%, which is 5. This sizes the table
at 200 pixels plus cell spacing, padding, and borders around each cell. The second table
shows that the table width is wide enough to hold five equal-sized columns shrinkwrapped
to their content. The third table shows that columns with different percentages are
percentage-proportioned within the calculated width of the table.

Also notice in the example how smaller percentages and wider content make wider tables.
For example, given a content width of 40 pixels, the first column of the third table with a
width of 20% suggests a table width of 200 pixels (5% 40). The second column with a width of
50% suggests a table width of 80 pixels (2x40). The first column wins because it suggests a
larger table width. If the content width of the second column were wider, say 150 pixels, it
would win and size the table at 300 pixels (2 x150).

Related to

Equal Content-Sized Columns

369

CHAPTER 16 " TABLE COLUMN LAYOUT

Equal Content-Sized Columns

"-J Equal Content-sized Columns - Mozilla Firefox |'-__|E|£|
Fi= Edt Wew Hsory Bookmarks Took Help

Equal Content-sized Columns

Shrinkwrapped Table

|3=33%| 33% |33% |

|4=25%|25% |25% |25% |

ls—200el200% |20% o096 |ooos |

l6-17%/17% 179 [179% [i796 1796 |

|7=14%|14% |14% |14% |14% |14% |14% |

|8=12%|12% |12% |12% |12% |12% |12% |12% |

|9=11%|11% |11% |11% |11% |11% |11% |11% |11% |

|10=li}%|ll'.'l% |1'I]% |1GI% |10% |10% |1U% |ll'.'l% |10% |.1.I'_'I% |

HTML

<h1>Equal Content-Sized Columns</hi>

<h2>Shrinkwrapped Table</h2>
<table class="auto-layout shrinkwrapped">
<tr> <td class="p2">2=50%</td> <td class="p2">50%</td></tr></table>

<!-- Additional tables are not shown -->

CSS

.auto-layout { table-layout:auto; }
.shrinkwrapped { width:auto; }

.p2 { width:50%; } /* 2 columns */
.p3 { width:33.5%; } /* 3 columns */
.p4 { width:25%; } /* 4 columns */
.p5 { width:20%; } /* 5 columns */
.p6 { width:16.5%; } /* 6 columns */
.p7 { width:14.1%; } /* 7 columns */
.p8 { width:12.3%; } /* 8 columns */
.p9 { width:11%; } /* 9 columns */
.p10 { width:10%; } /* 10 columns */

/* Nonessential styles are not shown */

370

CHAPTER 16 " TABLE COLUMN LAYOUT

Equal Content-Sized Columns

Problem

You want to create a compact table with uniformly sized columns. In other words, you want
to automatically shrink a table to its smallest possible width while sizing all columns
equally.

Solution

You can use a variation of the Inverse-Proportioned Columns design pattern to set all
columns to the same width while ensuring the width is no larger than necessary to display
the table’s content.

You can do this by assigning table-layout:auto and width:auto to the table and
width:PERCENT to its cells. In other words, you shrinkwrap the table and assign percentages
to cells. The key is to apply the same percentage to all cells and to use a percentage that is
the inverse of the number of columns in the table.

A two-column table requires each column to be sized at 50%.

A three-column table requires each column to be sized at 33.5%.
A four-column table requires each column to be sized at 25%.

A five-column table requires each column to be sized at 20%.

A six-column table requires each column to be sized at 16.5%.

A seven-column table requires each column to be sized at 14.1%.
An eight-column table requires each column to be sized at 12.3%.
A nine-column table requires each column to be sized at 11%.

A ten-column table requires each column to be sized at 10%.

Note that some percentages are not exact inverses of the number of columns because the
inexact value works better in some browsers.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:auto; table-layout:auto; }
CELL_SELECTOR { width:PERCENT; }

Location

This pattern applies to shrinkwrapped tables.

Advantages

You can automatically shrinkwrap a table and its columns, and at the same time have all
columns be equal width. This scales nicely on all devices, and when a small display shrinks
atable’s container to the width of the table or smaller, a browser automatically switches the
table to the Equal-Sized Columns design pattern.

Disadvantages

This design pattern works best only when you have columns containing numbers and short
text. When content is wide enough to stretch a table to the width of its container, a browser
automatically switches to the Equal-Sized Columns design pattern.

Related to

Inverse-Proportioned Columns, Equal-Sized Columns

371

Download from Wow! eBook <www.wowebook.com>

CHAPTER 16 " TABLE COLUMN LAYOUT

Equal-Sized Columns

- -
T2 Equal-sized Columns - Mozilla Firefos
Fle Edit VYiew Hiiory Eoohmaks Took Hep

Equal-sized Columns

Sized, Stretched, or Fixed Table

|2=50% |5n% |

|3-330 [3300 |330% |
l4=252% |25% |252% |252% |
|5=200 |20% 200 200 |20% |
6= 172 l17% l179% 172 l17% |l17% |
l7=149 |14 |14 149 | 149 149 1496 |
I I T T T P T
T P T O T T e e e

|1u% |1n% |1u% |1u% |10% |1n% |1u% |10% |1n% |m% |

HTML

<h2>Sized, Stretched, or Fixed Table</h2>
<table class="auto-layout sized">
<tr> <td class="p2">2=50%</td> <td class="p2">50%</td></tr></table>

<!-- Additional tables are not shown -->

CSS

.auto-layout { table-layout:auto; } .fixed-layout { table-layout:fixed; }
.sized { width:700px; } .stretched { width:100%; }

.p2 { width:50%; } /* 2 columns */
.p3 { width:33.5%; } /* 3 columns */
.p4 { width:25%; } /* 4 columns */
.p5 { width:20%; } /* 5 columns */
.p6 { width:16.5%; } /* 6 columns */
.p7 { width:14.1%; } /* 7 columns */
.p8 { width:12.3%; } /* 8 columns */
.p9 { width:11%; } /* 9 columns */
.p10 { width:10%; } /* 10 columns */

/* Nonessential styles are not shown */

372

CHAPTER 16 " TABLE COLUMN LAYOUT

Equal-Sized Columns

Problem

You want to automatically divide a table’s width into equal proportions for each cell. In
other words, you want to size all columns equally as a percentage of a table’s width.

Solution

You can size columns equally as a percentage of a table’s width by applying
width:VALUE_OR_PERCENT to the table and width:PERCENT to its cells. In other words, you
size or stretch the table and assign percentages to cells. The table can be fixed layout or auto
layout. The key is to apply the same percentage to all cells.

The same percentages that work for the Equal Content-Sized Columns design pattern work
for this design pattern:

A two-column table requires each column to be sized at 50%.

A three-column table requires each column to be sized at 33.5%.
A four-column table requires each column to be sized at 25%.

A five-column table requires each column to be sized at 20%.

A six-column table requires each column to be sized at 16.5%.

A seven-column table requires each column to be sized at 14.1%.
An eight-column table requires each column to be sized at 12.3%.
A nine-column table requires each column to be sized at 11%.

A ten-column table requires each column to be sized at 10%.

Note that some percentages are not exact inverses of the number of columns because the
inexact value works better in some browsers. It does not matter if the total percentage
exceeds 100%, because a browser compensates by proportionately shrinking the width of all
columns to fit into its width.

The difference between this design pattern and the Equal Content-Sized Columns design
pattern is that this pattern divides columns equally into the table’s width, and the Equal
Content-Sized Columns pattern shrinkwraps columns to create the narrowest possible table
with equal-width columns.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
CELL_SELECTOR { width:PERCENT; }

Location

This pattern applies to sized, stretched, and fixed tables.

Advantages

Equal-sized columns are most common in stretched and sized tables where you want
multiple tables to have a uniform width and you want their columns to have a uniform
width.

Disadvantages

Sized tables do not adapt to small displays, such as mobile devices.

Tips Fixed tables automatically create equal-sized columns by default because assigning
width:auto to cells triggers this unique behavior of fixed tables.
Related to Equal Content-Sized Columns, Percentage-Proportioned Columns

373

CHAPTER 16 " TABLE COLUMN LAYOUT

374

Undersized Columns

%2 Undersized Columns - Mozilla Firefox

Eie Edt Yew Go Cookmarks Tools Help

Undersized Columns

Fixed Table

L o ol N i W A
1&|auto

Sized Table — cannot be undersized
I[I'|I l||II[1II:;IDI|'|II[IH'|'I"£'6'E|Y|I[I]'I'I‘1Y|I3[EID'||Ir|1II[IL&&TII[I'II|f|5'|n|nlfl'|llf|lllﬁ'|nolll|lll[I'II
18px|auto

HTML

<h1>Undersized Columns</hi>

<h2>Fixed Table</h2>
<table class="fixed-layout sized">
<tr> <td class="undersized">18px</td> <td class="flex">auto</td></tr></table>

<h2>Sized Table — cannot be undersized</h2>

<table class="auto-layout sized">
<tr> <td class="undersized">18px</td> <td class="flex">auto</td></tr></table>

CSS

td { overflow:hidden; }

.fixed-layout { table-layout:fixed; }
.auto-layout { table-layout:auto; }

.sized { width:700px; }
.stretched { width:100%; }

.undersized { width:18px; }
.flex { width:auto; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Undersized Columns

Problem

You want to create columns that will be the exact width assigned to them. They may
even be undersized, which means a column may be narrower than its content, and its
content may be truncated.

Solution

You can fix the size of columns by applying table-layout:fixed and
width:VALUE_OR_PERCENT to the table and width:VALUE_OR_PERCENT to its cells. In other
words, you can size or stretch a fixed table, and assign fixed widths to cells.

A fixed-layout table truncates content in a cell if the content cannot fit within the
column’s assigned width. Contrast this with auto-layout tables, where a browser always
increases the width of a cell to fit its minimum content width. To ensure consistent
behavior in browsers, you can assign overflow:hidden to all table cells.
overflow:hidden is the only overflow setting that is consistently applied by major
browsers to tables.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; table-layout:fixed; }
CELL_SELECTOR { width:VALUE_OR_PERCENT; overflow:hidden; }

Location

This pattern applies only to fixed tables.

Advantages

This design pattern works best when you need to ensure pixel-perfect precision that
cannot be broken by content. For example, you need to align tabular data with a
background image.

Fixed tables render much faster than auto-layout tables because a browser reads only
the widths assigned to the first row of cells, and it completely ignores the width of
content. This means a browser does not have to wait for the entire table to download,
and it does not have to calculate minimum and maximum content widths.

Disadvantages

Fixed tables do not adapt to small displays, such as mobile devices.

Example The example contains two tables. The first is a fixed table showing how it can create
undersized columns. The second is an auto-layout table showing how it cannot create
undersized columns.

Related to Column Width

375

CHAPTER 16 " TABLE COLUMN LAYOUT

376

Flex Columns

&3 Flex Columns - Mozilla Firefox

Flke Edit Vew Go Boolmaks Took Help

Flex Columns
Sized, Stretched, or Fixed Table

IIIIIllﬂlﬂlllllléﬂllllllﬂlﬂﬂll IIJlDI!lII IISDIII IEI!IEIIIIIII
200px 20% 100px auto flex auto flex
Sized or Stretched — Oversized
A Ll A R 0 A L A) LA L i

auto]auto
200px 20% 500px flex |flex
Fixed — Oversized
100 Zpo F00 400 50| 600 70
200px S00px
HTML

<h1>Flex Columns</h1>
<h2>Sized, Stretched, or Fixed Table</h2>
<table class="fixed-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized2">100px</td>
<td class="flex">auto flex</td> <td class="flex">auto flex</td></tr></table>

<h2>Sized or Stretched — Oversized</h2>
<table class="auto-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized3">500px</td>
<td class="flex">auto flex</td> <td class="flex">auto flex</td></tr></table>

<h2>Fixed — Oversized</h2>
<table class="fixed-layout sized"><tr><td class="sized1">200px</td>
<td class="p1">20%</td> <td class="sized3">500px</td>
<td class="flex">auto flex</td> <td class="flex"»>auto flex</td></tr»></table>

CSS

.fixed-layout { table-layout:fixed; }
.auto-layout { table-layout:auto; }
.sized { width:700px; }

.stretched { width:100%; }

.flex { width:auto; }

.sized1 { width:200px; }

.sized2 { width:100px; }

.sized3 { width:500px; }

.p1 { width:20%; }

.fixed-layout .p1{ padding:0; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Flex Columns

Problem

You want to create dynamically sized columns alongside fixed-width or percentage-width
columns. You want these columns to fill in space that is not used by sized or percentage
cells. As a table’s container grows or shrinks, you want flex columns to grow or shrink (i.e.,
to flex with the table).

Solution

You can flex the size of one or more columns by applying width:VALUE_OR_PERCENT to the
table and width:auto to its cells. In other words, you can size or stretch a table, assign fixed
widths and percentage width to most cells, and apply auto width to those cells you want to
flex.

When there are multiple flex columns in fixed tables, each one is sized equally. In auto-
layout tables, flex columns are content-proportioned.

Flex columns stretch to fill any space left over after fixed-width and percentage-width
columns are calculated. If there is no remaining width, flex columns collapse or shrinkwrap.
In auto-layout tables, flex columns shrinkwrap to their minimum content width. In fixed
tables, flex columns completely disappear—with the exception of Firefox 6, which will
render the padding of a flex column if allowed to.

Pattern

HTML

CSS

<table> <tr> <td> CONTENT </td> </tr> </table>

TABLE_SELECTOR { width:VALUE_OR_PERCENT; }
FLEX_CELL_SELECTOR { width:auto; }

FIXED CELL_SELECTOR { width:VALUE; }
PERCENTAGE_CELL_SELECTOR { width:PERCENT; }

Location

This pattern applies to stretched and fixed tables. It does not apply to shrinkwrapped tables
because their auto-width columns shrinkwrap rather than flex. It applies to sized tables, but
this serves no purpose since a sized table does not flex.

Example

The first table in the example is 700 pixels wide and has two flex columns, two fixed-width
columns, and one percentage-width column. The fixed-width columns take up 300 pixels,
and the percentage-width column takes up 140 pixels. This leaves 260 pixels for the flex
columns. Since this is a fixed table, both flex columns are sized equally to fit in the
remaining 260 pixels.

The second table shows how flex columns shrink to their minimum content width in auto-
layout tables when the total width of nonflex columns (840 pixels in the example) is larger
than or equal to the table’s width.

The third table shows how flex columns disappear in fixed tables when the total width of
nonflex columns (700 pixels in the example) is larger than or equal to the table’s width.

Related to

Mixed Column Layouts

377

CHAPTER 16 " TABLE COLUMN LAYOUT

378

Mixed Column Layouts

Y L = . -
5 Mimeel Codumn Layouts - Mozilla Firefos

Fl= Edt Wew Hstory Bookmarks Took Hep
Mixed Column Layouts
Shrinkwrapped, Stretched, or Sized Tables

ion on 300 40] A00

S00px 10% auko
S e '“"1563' ""'”"1£uh""" f 17 L L Y L
200px 200px 40% 10% auko
i LA 0 LA 1 A bl L) R M G
500px| 200px| B0% 20% auko
Fixed Table
G A 1 A A A A
S00px 200px

HTML

<h1>Mixed Column Layouts</h1>

<h2>Shrinkwrapped, Stretched, or Sized Tables</h2>
<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="p1">10%</td> <td class="flex">auto</td></tr></table>

<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p3">40%</td>
<td class="p1">10%</td> <td class="flex">auto</td></tr></table>

<table class="auto-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p4">80%</td>
<td class="p2">20%</td> <td class="flex">auto</td></tr></table>

<h2>Fixed Table</h2>

<table class="fixed-layout stretched"> <tr> <td class="sized1">500px</td>
<td class="sized2">200px</td> <td class="p4">80%</td>
<td class="p2">20%</td> <td class="flex">auto</td></tr></table>

CSS

.fixed-layout { table-layout:fixed; } .auto-layout { table-layout:auto; }
.shrinkwrapped { width:auto; }

.stretched { width:100%; }

.flex { width:auto; }

.sized1 { width:500px; } .sized2 { width:200px; }

.p1 { width:10%; } .p2 { width:20%; }

.p3 { width:40%; } .p4 { width:80%; }

.fixed-layout .p2 { padding:o0; }

/* Nonessential styles are not shown */

CHAPTER 16 " TABLE COLUMN LAYOUT

Mixed Column Layouts

Problem

You want to use a mixture of columns in a table. For example, you want some columns to
have a fixed width, some to be a percentage of the table’s width, and some to fill in the
remaining space.

Solution

This design pattern is the algorithm built into each browser that prioritizes how much width
to give different types of columns when the table is not wide enough for all its columns to
fit.

In a shrinkwrapped, sized, or stretched table, percentage-width columns have highest
priority followed by fixed-width and auto-width columns. In other words, auto-width
columns are shrunk to the minimum width of their content to make room for other
columns. If there is still not enough room, fixed-width columns are shrunk to the minimum
width of their content. Percentage-width columns are percentage-proportioned in the
remaining space. If there is space left over for fixed-width columns, they are size-
proportioned to fill the remaining space.

In a fixed table, fixed-width columns have highest priority followed by percentage-width
and auto-width columns. In other words, auto-width columns are collapsed as needed to
make room for other columns—they completely disappear. If there is still not enough room
for all the columns, percentage-width columns are collapsed to make room—they
completely disappear. Fixed-width cells are displayed at their assigned width—even if it
increases the width of the table beyond its specified width. If there is space left over for
percentage-width columns, they are percentage-proportioned to fill the remaining space.

Location

This pattern applies to shrinkwrapped, stretched, and fixed tables that are stretched. This is
because a browser resizes them automatically to fit their content and to fit large or small
displays. In this situation, you may want some columns to be a fixed width, some to be a
percentage of the table’s width, some to shrinkwrap, or some to flex to fill in the remaining
width.

There is no need to mix columns in sized tables, because you already know their width, and
you can simply use fixed-width columns.

Firefox 6 will render the padding of flex columns on fixed tables.

Example

The first table in the example is a stretched table with mixed columns that do not exceed the
width of the table. Notice how the auto-width column flexes to take up the extra space. The
remaining tables have columns with a combined width that exceeds the width of the table.
Notice in the second table how the percentage-width columns are fully sized to their
assigned percentages, the auto-width column is forced down to the minimum width of its
content, and the fixed-width columns are size-proportioned to fit the remaining space. The
third table shows how large percentage-width columns can force fixed-width and auto-
width columns to shrink to their minimum content width. The fourth table is identical to
the third table, except it is fixed. Notice how the fixed-width columns in this fixed table have
completely removed the percentage-width and auto-width columns!

Related to

Flex Columns

379

CHAPTER 17

Layouts

This chapter shows how to create fluid layouts, which automatically adapt to different devices, fonts,
widths, and zoom factors. These design patterns are accessible, modular, and easily customized. The
dynamic patterns use open source JavaScript libraries to attach event handlers to elements. This allows
you to create dynamic effects without putting a single line of JavaScript in your document! The libraries
use CSS selectors to determine which elements to process in response to events, and they can modify the
class attribute of elements so your stylesheet has complete control over how events dynamically style an

element.

Chapter Outline

Fluid Layout Overview explores problems and solutions in creating fluid layouts.

Outside-in Box shows how to size the outer width of a box instead of the inner
width.

Floating Section shows how to render sections in columns using a fluid layout.

Float Divider shows how to separate and integrate floats and content predictably.

Fluid Layout shows how to create layouts that automatically adapt to any display.
Opposing Floats shows how to move content to opposite sides of its container.

Event Styling shows how to assign events to elements without putting code in
your document. It shows how events can modify classes to change how elements
are styled.

Rollup shows how to collapse and open sections with a mouse click.

Tab Menu shows how to create a tabbed interface that loads new pages when
clicked.

Tabs shows how to create a tabbed interface that dynamically switches content in
and out of the display when the user clicks a tab—without loading a new page.

Flyout Menu shows how to create a menu that opens when clicked or hovered
over.

Button shows how to create buttons and process their events using JavaScript.
Layout Links shows how to use links as part of the layout, such as breadcrumbs.

Multi-column shows how to distribute content over multiple columns.

381

CHAPTER 17 ' LAYOUTS

382

¢ Template shows how to define positions using an alphabetical character and the

position property.

e Layout Example shows how these design patterns can be combined and
extended.

Fluid Layout Overview

3 Fluid Layout Overview - Mozilla Firefox

Eie Gt Yew Higtory fookmarks Tools Heb

Fluid Layout Overview

Navigation Main News
20% of container's | | 40% of container's width. 20% of container's
width. width.

HTML

<body>

<h1>Fluid Layout Overview</h1>

<div id="nav">
<h2>Navigation</h2>
<p>20% of container's width.</p></div>

<div id="main">
<h2>Main</h2>
<p>40% of container's width.</p></div>

<div id="news">
<h2>News</h2>
<p>20% of container's width.</p></div>

</body>

CSS

body { max-width:1000px; margin-left:auto; margin-right:auto; }
div { background-color:gold; margin-right:10px; padding:5px;

border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#nav { float:left; width:20%; min-width:170px; }
#main { float:left; width:40%; min-width:170px; }
#news { float:left; width:20%; min-width:170px; }

/¥ Nonessential rules are not shown. */

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I LAYOUTS

Fluid Layout Overview

Problems

You want to create fluid layouts that automatically adapt to different devices, fonts, widths,
and zoom factors.

You want to lay out content in columns and rows that dynamically expand and contract to
fit the width of the viewport. You want to use columns even for nontabular data, but you
can’t use tables for nontabular content because this is less accessible. (Content is tabular
only when the content of each cell is related to all cells in its row and all cells in its column.)

You want columns automatically to reflow into rows when the width of the viewport is
narrow, such as on a handheld device. You can’t use tables because they can’t render
columns as rows.

You want the width of columns to expand automatically to take advantage of a wide
viewport, but only to a certain point because extremely wide columns aren’t very readable.
You want the width of columns to shrink automatically when the width of the viewport is
narrow, but not so much that content becomes unreadable.

You want to lay out columns proportionally so that some columns have a greater
percentage of their parent’s width and some have less.

You want some columns to be aligned to the left side and others to the right—see the
Opposing Floats design pattern.

Solutions

Each of these problems is solved by the design patterns in this chapter. The Fluid Layout
design pattern shows how to lay out content in rows and columns without using tables. In
turn, it relies on the Outside-in Box, Float Divider, and Floating Section design patterns.

Example

The example shows only the minimum markup and styles needed to create fluid layouts. As
the chapter progresses, additional markup and styles are added to implement additional
capabilities and better reliability when combined with other markup.

The example illustrates several key capabilities of the Fluid Layout design pattern. A
maximum width is assigned to the body element so that the width doesn’t get too wide to be
usable. (For fun, I have also centered the body in the viewport.) In addition, I floated the
divisions to the left to display them as columns, but when the viewport is too narrow for all
of them to be displayed side by side, a browser automatically wraps one or more of them to
the next row. I assigned a minimum width to each division so that it doesn’t shrink too
small to be readable. Finally, I assigned a percentage to the width of each division so that it
scales proportionately to the width of the viewport.

You may want to resize the example in a browser to see how it responds to different widths.

Related to

Outside-in Box, Floating Section, Float Divider, Fluid Layout

383

CHAPTER 17 ' LAYOUTS

384

Outside-in Box

E3 Qurside-in Pox - Mozilla Firefox

Fl= Edit Wew Go Eookmarks Toak Help

Outside-in Box

Before
After

HTML

<h1>0Outside-in Box</h1>

<h2>Before</h2>

<div class="container"><div class="before float"> Float </div></div>

<div class="container"> Absolute </div>
<div class="container"><div class="before static"> Static </div></div>

<div class="float-divider"></div><h2>Aftexr</h2>

<div class="container">
<div class="after float"><div class="0i"> Float </div></div></div>

<div class="container">
 Absolute </div>

<div class="container">
<div class="after static"><div class="0i"> Static </div></div></div>

CSS

.before { width:100%; margin:5px; padding:5px; border:5px solid black; }
.after { width:100%; }
.after .oi { margin:5px; padding:5px; border:5px solid black; display:block; }

.float { float:left; }
.absolute { position:absolute; }
.static { position:static; }

/* Nonessential rules are not shown. */

CHAPTER 17 I LAYOUTS

Outside-in Box

Alias

Outer Width

Problem

You want to set the outer width of a float, an absolute, or a static element to a specific
measurement or percentage. You don’t want margins, borders, and padding to increase the
outer width. This is a problem because CSS doesn’t provide an outer-width property. The
width property is the inner width of an element; and margins, borders, and padding expand
the outer width.

Solution

Instead of assigning margins, borders, and padding to an element, you can assign them to
an embedded element. Because the outer element doesn’t have margins, borders, and
padding, its outer width is its inner width. This lets you set its outer width using width.

I call the embedded element the outside-in box because it moves the margins, borders, and
padding from the outside of the box to the inside. In the example, I identify outside-in boxes
using a class named oi.

The outside-in box must be stretched to fill the width and height of its parent so its margins,
borders, and padding are indented inside its container. (You could also use negative
margins to outdent the outside-in box.) A block element or an inline element displayed as a
block makes a great outside-in box because a browser automatically stretches it.

Application

When creating layouts, you often need to set the outer width of child elements to a
percentage of the width of their parent. For example, you may want each of two floats in a
container to be set to 50% of the container’s width. If you apply margins, borders, or
padding directly to these floats, their outer width expands to more than 50%. This causes the
second float to move below the first float instead of beside it. You can solve this problem by
applying margins, borders, and padding to embedded outside-in boxes.

This pattern is essential when using percentages to lay out elements in fluid layouts because
it’s impossible to anticipate in advance what percentage assigned to width will compensate
for fixed margins, borders, and padding.

Pattern

HTML

CSS

<BLOCK><div class="o0i"> CONTENT </div></BLOCK>
or
<INLINE> CONTENT </INLINE>

SELECTOR { width:PERCENT; min-width:+VALUE; }
SELECTOR .oi { margin:+VALUE; border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES; display:block; }

Location

This pattern works anywhere.

Limitations

This pattern doesn’t apply to tables. It also doesn’t apply to outer height because a static
block box’s height shrinkwraps instead of stretches.

Related to

Fluid Layout; Display, Box Model, Block Box (Chapter 4); Width, Stretched (Chapter 5);
Margin, Border, Padding, Background (Chapter 6); Blocked (Chapter 11)

385

CHAPTER 17 ' LAYOUTS

386

=3 Qutshde-in ws. Inslde-out Desipn - Mozilla Firefos
File Edit Uiew History Bookmarks Took Hep

Outside-in vs. Inside-out Design

Two floats with 50% width and no margins, borders, or padding
Float1l Float2

Twao floats with 50% width and 1px border
Floatl
Float2

Twao floats with 45% width and 5% left margin
Float1 Float2

Twa floats with 49 5% width and 5px left margin
Floatl
Float?

HTML

<h1>Outside-in vs. Inside-out Design</h1>

<h2>Two floats with 50% width and no margins, borders, or padding</h2>
<div class="ex1"» Floati </div> <div class="ex1"» Float2 </div><hr />

<h2>Two floats with 50% width and 1px border</h2>
<div class="ex2"> Float1 </div> <div class="ex2"»> Float2 </div><hr />

<h2>Two floats with 45% width and 5% left margin</h2>
<div class="ex3"> Float1 </div> <div class="ex3"»> Float2 </div><hr />

<h2>Two floats with 49.5% width and 5px left margin</h2>
<div class="ex4"> Floatl </div> <div class="ex4"> Float2 </div>

CSS

body { max-width:1200px; }
div { min-width:100px; }

.ex1 { float:left; width:50%; }

.ex2 { float:left; width:50%; border:1px solid; }
.ex3 { float:left; width:45%; margin-left:5%; }
.ex4 { float:left; width:49.5%; margin-left:5px; }

/* Nonessential rules are not shown. */

CHAPTER 17

LAYOUTS

OUTSIDE-IN VS. INSIDE-OUT DESIGN

Fluid layouts are designed from the outside to the inside. This is because you start with the width of the
viewport and divide its width among elements using percentages, minimum widths, and maximum widths.

The problem is that the width property sets the inner width of an element. Padding, borders, and margins
surround the inner width of an element and thus increase its outer width. Because CSS doesn’t have an
outer-width property, CSS requires you to design from the inside to the outside. The result is that margins,
borders, and padding can break fluid layout designs.

For example, you may want to float two elements to the left and assign each to width:50% so they’re
positioned side by side and evenly divide the width of the viewport. The first two divisions in the example
show how this works. No matter how you resize the viewport, these elements stay positioned side by side
(until their minimum width no longer allows them to fit within the width of the viewport).

If you assign any margins, borders, and padding to these two side-by-side floats, the floats no longer fit
within the width of the viewport. For example, if you assign a 1-pixel border around each of them, their
total outer width exceeds the width of the viewport by 4 pixels (1 pixel for the left and right sides of each
element). When floats don’t fit side by side within their container, they wrap to the next line. This isn’t what
you want! The second set of divisions in the example shows how a tiny 1-pixel border can break the fluid
layout. No matter how you resize the viewport, the floats will not fit side by side.

To fit two elements with margins, borders, and padding within their container, you have to reduce the
percentage width of each element, but by how much? If you assign percentages to margins and padding,
you can simply subtract each of their percentages from the percentage you assign to the width. For
example, if you assign a 5% left margin to each of two elements, you can assign a width of 45% to each
element. This is demonstrated by the third set of divisions in the example. No matter how you resize the
viewport, these elements stay positioned side by side (until their minimum width prevents them from fitting
in the viewport).

Per the CSS specification, browsers ignore percentages assigned to borders, which means you must use a
fixed measurement to create borders. It’s also unusual to assign percentages to margins and padding
because margins and padding typically look better when they don’t resize with the viewport. You can
resize the example to contrast the behavior of percentage margins and fixed margins.

In fluid layouts, assigning fixed margins, borders, and padding to an element isn’t compatible with a
percentage assigned to its width. As the viewport shrinks, percentages shrink the width of an element, but
its fixed margins, borders, and padding don’t shrink. For example, given a viewport width of 1000 pixels
containing two side-by-side child elements where each has 5-pixel left margins, the available width is 990
pixels, or 99%—that is, (1000px — 5px — 5px) / 1000px. If you were to divide this equally among the two
elements, you would assign width:49.5% to each. Given a viewport width of 100 pixels, the available
width is 90 pixels, or 90%—that is, (100px — 5px — 5px) / 100px. To divide that equally among the two
elements, you would assign width:45% to each. Thus, mixing fixed margins, borders, and padding with
percentage widths doesn’t work in fluid layouts. In the example, the fourth set of divisions is set to 49.5%,
with left margins set to 5 pixels. The screenshot is taken at 750 pixels wide, which isn’t wide enough for
them to fit side by side; but if you enlarge the browser window to 1000 pixels or more, they fit.

Note that Internet Explorer 7 and earlier versions don’t quite play by the rules. When floating two elements
set to width:50%, Internet Explorer guesses you want them to be side by side, so it breaks the rules and
puts them side by side. All other major browsers behave properly. Furthermore, Internet Explorer 6 has

387

CHAPTER 17 ' LAYOUTS

388

bugs that sometimes cause floats not to be placed side by side when they should be. For example, in the
third set of divisions, Internet Explorer 6 moves the second float below the first. Internet Explorer 7 fixes
these bugs.

The Outside-in design pattern solves all these problems (including the ones with Internet Explorer). Thus,
it's an essential design pattern for creating fluid layouts. The alternative is to hack away at percentages
until you find something that works in most browsers and looks close to what you want most of the time.

Floating Section

3 Floating Section - Mozilla Firefox

Eie Gt Yew Higtory Hookmarks Tools Heb

Floating Section

Navigation Main Section
Section

75% of container's width minus
25% of 80-pixel left margin, 1-pixel lsft
container's width. border, 2-pixel left berder, and

80-pixel left padding.

HTML

<h1>Floating Section</h1>

<div id="nav" class="section"»
<div class="oi"»
<h2>Navigation Section</h2>
<p>25% of container's width.</p>
</div>
</div>

<div id="main" class="section"»
<div class="oi"»
<h2>Main Section</h2>
<p>75% of container's width minus 80-pixel left margin, 1-pixel left border,
2-pixel left border, and 80-pixel left padding.</p>
</div>
</div>

CSS

.0i { background-color:gold;
border-left:1px solid gray; border-right:2px solid black;
border-top:1px solid gray; border-bottom:2px solid black; }

#nav { float:left; width:25%; min-width:170px; }

#nav .oi { min-height:150px; margin:0; padding:5px; }

#main { float:left; width:75%; min-width:170px; }

#main .oi { min-height:150px; margin-left:80px; padding:5px; padding-left:80px; }
/* Nonessential rules are not shown. */

CHAPTER 17 I LAYOUTS

Floating Section

Problem

You want sections to be rendered in columns instead of rows. You want a browser to reflow
sections automatically into rows to fit small displays. You also want sections to be sized
proportionally to the width of their parent while controlling spacing between sections. And
you want to set minimum and maximum heights and widths to ensure that a browser
doesn’t automatically size sections too small or too large.

Solution

You can use the Section design pattern to create a section, and you can float it to the left to
render it as a column instead of a row. You can assign a unique ID to it so you can select it,
style it, and target it with hyperlinks.

You can embed an outside-in box within each float and style its margins, borders, padding,
and background instead of the float’s. This makes it easy and reliable to size floats
proportional to their container.

You can assign min-width to a section to prevent it from shrinking too small. You can assign
max-width to a section to prevent it from growing too wide. You can also assign min-height
to the outside-in box to ensure that floats with less content have the same minimum height
as those with more content.

Pattern

HTML

CSS

<div id="SECTION_ID" class="section">
<div class="oi">
<h2> HEADING </h2>
<p> CONTENT </p> </divy</div>

#SECTION_ID { float:left; width:PERCENT;
min-width:VALUE; max-width:VALUE; }

#SECTION_ID .oi { min-height:+VALUE;
margin:+VALUE; border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES; }

Location

This pattern works anywhere sections can be used.

Limitations

Internet Explorer 6 doesn’t implement min-width and max-width, but Internet Explorer 7
and higher versions do. These properties aren’t essential to this design.

Example

In the example, the first float’s width is 25% of its container’s width, and the second float’s is
75%. Notice how the percentages add up to 100%. Without the outside-in box, you would
have to play around with percentages to find values that compensate for margins, borders,
and padding around floats.

Notice how the floats in the example have no margin, border, padding, or background.
What you see is the border and background of the outside-in box inside each float. For
example, the outside-in box in the second float has an 80-pixel left margin, which creates
the illusion of space between the floats when it’s actually inside the second float. It also has
an 80-pixel left padding, which indents the content without changing the float’s outer
width.

Related to

Outside-in Box, Fluid Layout; Floated Box (Chapter 4); Width (Chapter 5); Margin, Border,
Padding, Background (Chapter 6); Float and Clear (Chapter 7); Section (Chapter 13)

389

CHAPTER 17 ' LAYOUTS

390

Float Divider

".J Float Divider - Mozilla Firefos

Eie= [==1 Yiemw G Eookmarks Tools telp
Float Divider

First Row of Floats

Float 1| | Float 2| Float 3 |

Second Row of Floats

Floata| | Floats| Float 6 |

HTML

<h1>Float Divider</hi1>
<h2>First Row of Floats</h2>

<div class="float box"»><h3>Float 1</h3></div>
<div class="float box"»><h3>Float 2</h3></div>
<div class="float box"»><h3>Float 3</h3></div>

<div class="float-dividex"></div»

<h2>Second Row of Floats</h2>

<div class="float box"><h3>Float 4</h3></div>
<div class="float box"»><h3>Float 5</h3></div>
<div class="float box"»><h3>Float 6</h3></div>

CSS
.float { float:left; }

.float-divider { clear:both;
height:20px;
margin-bottom:20px;
border-bottom:5px solid black;
font-size:1px; line-height:1px; }

/* Nonessential rules are not shown. */

CHAPTER 17 I LAYOUTS

Float Divider

Problem

You want to put a divider between two sets of floats or between floats and content—much
like how you would put a line break or a horizontal rule in the normal flow. You want to
control how much space the divider inserts, and you want to style it with borders and
background.

Solution You can add clear:both to the Horizontal Rule design pattern, which is an empty division
styled with width, height, and margin to control how much space it inserts. You can use
font-size:1px and line-height:1px to ensure that Internet Explorer 6 doesn’t expand its
height beyond the height you specify. You can also use border and/or background to style
the divider’s line.

Instead of inserting a float divider, you may want to add a unique ID to an existing element
and style it with clear:both.

Pattern

HTML <div class="float-divider"></div>

CSS .float-divider { clear:both; font-size:1px; line-height:1px;

height:+VALUE; width:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
border-top:WIDTH STYLE COLOR;
border-bottom:WIDTH STYLE COLOR;
background-color:COLOR;
background-image:url("FILE.EXT");
background-repeat:REPEAT_OPTIONS; }

Location This pattern works anywhere a division can be located.

Advantages A float divider is modular and self-documenting. Its borders, background, and margins are
self-contained, which simplifies the stylesheet and avoids styles being overridden by the
cascade order. You can quickly and easily reposition a float divider between any two
elements to change the layout.

When a block is collapsed because all its children are floated, you can use a float divider to
expand the block to encompass its floated children. This is an essential technique explored
in the Fluid Layout design pattern.

Tip A float divider can be an inline element as long as you display it as a block (display:block).

Related to Fluid Layout; Floated Box (Chapter 4); Margin, Border, Padding, Background (Chapter 6);

Float and Clear (Chapter 7); Spacing, Inline Spacer, Linebreak, Inline Horizontal Rule
(Chapter 11); Horizontal Rule, Block Spacer (Chapter 13)

391

CHAPTER 17 ' LAYOUTS

392

Fluid Layout

3 Fluid Layout - Mazilla Firefos

Fle Edit WView Go CSoohmarks Took Hep

Fluid Layout

main - 100%
nav - 20%0 content - 60% news -

‘head - 3504 | detail - 85% 2l

HTML
<h1>Fluid Layout</h1>

<div id="main"><div class="0i1"> <h2»main - 100%</h2>
<div id="nav"><div class="0i2"> <h3>nav - 20%</h3> </div></div>

<div id="content"><div class="0i2"> <h3>content - 60%</h3>

 head - 35%
 detail - 65%
</div></div>

<div id="news"><div class="0i2"> <h3>news - 20%</h3> </div></div>

<div class="float-divider"»</divy></div></div>

CSS

.float-divider { clear:both; display:block;

height:1px; font-size:1px; line-height:1px; }
.0i1 { background-color:white; margin:0; padding:5px; }
.0i2 { background-color:gold; margin:5px; padding:5px; }
.0i3 { background-color:yellow; margin:5px; padding:5px; }

#main { max-width:700px; }

#nav { float:left; width:20%; min-width:75px; }
#content { float:left; width:60%; min-width:150px; }
#news { float:left; width:20%; min-width:115px; }
#nav .oi2 { min-height:43px; }

#content .0i3 { display:block; }

#head { float:left; width:35%; min-width:75px; }
#detail { float:left; width:65%; min-width:75px; }

/* Nonessential rules are not shown. */

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I LAYOUTS

Fluid Layout

Problem

You want to lay out sections in rows and columns that dynamically and fluidly adapt to the
width of the viewport, available fonts, and zoom level. You want the layout to grow and
shrink with the width of the viewport, but you also want to limit how much it can grow and
shrink. You want columns to revert automatically to rows when the viewport isn’t wide
enough for side-by-side display. You want to nest layouts within layouts, and you want to
predictably intermingle them with content in the normal flow.

Solution You can nest sections within sections to create multilevel layouts in rows and columns. A
parent section can be floated or nonfloated! The initial section is the <body> element, which
by default stretches to the width of the viewport. You can set the widths of all other sections
to width:PERCENT or width:auto to scale the entire layout to the width of the viewport.

You can lay out sections in columns by floating them left. Their parent becomes a row, and
you can divide the row’s width among its columns by assigning a percentage to each
column’s width. Column widths in a row normally total 100%. When a row grows or shrinks,
so do its columns.

You can embed an outside-in box within each section so you can size it without interference
from margins, borders, and padding. To reliably select outside-in boxes at different levels of
nested floats, you can assign a class to them that is unique to each level. In the example, I
use three classes, 011, 012, and 0i3, to identify outside-in boxes at specific nesting levels.
This lets me select level 2 boxes without also selecting descendant level 3 boxes.

You can ensure that a section always expands vertically to encompass all its content by
inserting a float divider after the last float in the section. A float divider also starts the
following section in a new row.

Pattern

HTML <div id="SECTION_ID">

<div class="oilEVEL">
NESTED_SECTIONS_AND_OR_SECTION_CONTENT
<div class="float-divider"></div></div></div>
CSS #SECTION_ID { float:left; width:PERCENT;
max-width:VALUE; min-width:VALUE; }
#SECTION_ID .0iLEVEL { min-height:+VALUE; margin:+VALUE;
border:WIDTH STYLE COLOR;
padding:+VALUE; background:STYLES;
display:block; }
.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }
Location This pattern works anywhere.
Related to Outside-in Box, Floating Section, Float Divider; Floated Box (Chapter 4); Margin, Border,

Padding, Background (Chapter 6); Float and Clear (Chapter 7); Offset Float (Chapter 8);
Blocked (Chapter 11)

393

CHAPTER 17 ' LAYOUTS

394

Opposing Floats

3 Oppesing Floats - Mozilla Fircfox

File Edit Wew Go Cookmarks Took Hep
H Search:
Opposing Floats —_—
This nght float shrinks no smaller than its minimum
width and grows no larger than its mazimum width.
lome = Floabng Leyout Postheader message 1
lome = Floabng Layout Postheader message 2

<div id="header">
<h1 id="title">Opposing Floats</h1>
<div id="search"> <h3>Search:</h3>
<form method="post" action="http://www.tipjar.com/cgi-bin/test">
<input type="text" value="" name="searchtext" id="searchtext" size="32" />
<input type="submit" value="Search” name="find" id="find" /></form>
<p class="message">This right float shrinks no smaller than its minimum width
and grows no larger than its maximum width.</p>
</div>
<div class="float-divider"s</div>
</div>

<div id="postheader">
<p class="breadcrumbs"sHome » Floating Layout</p>
<p class="post-msg">Postheader message 1</p>

<div class="float-divider"></div»

<p class="breadcrumbs"sHome » Floating Layout</p>
<p class="post-msg">Postheader message 2</p>
<div class="float-divider"s</divy

</div>

CSS

.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

.breadcrumbs { float:left; max-width:350px; margin-left:10px; }
.post-msg { float:right; max-width:350px; margin-right:10px; }

#title { float:left; min-width:280px; max-width:350px; margin-left:0; }
#search { float:right; min-width:280px; max-width:350px; margin-right:o; }

/* Nonessential rules are not shown. */

http://www.tipjar.com/cgi-bin/test

CHAPTER 17 I LAYOUTS

Opposing Floats

Problem

You want two elements to be positioned at opposite sides of a container. You want a
browser to shrinkwrap each one to fit its content. You want to put minimum and maximum
limits on the width of each one.

Solution You can assign float:left to one sibling element and float:right to the next. This moves
both elements to opposite sides of their parent. It doesn’t matter which element comes first
in document order. This pattern applies only to pairs of adjacent sibling elements.

The parent of the opposing floats can be floated or nonfloated. You can follow the floats
with a float divider to ensure that no subsequent content comes in between the floats and to
ensure that the parent expands vertically to encompass the opposing floats. If you want to
float multiple pairs of opposing floats within the same parent, you can insert a float divider
between each pair to prevent them from stacking next to each other.

You can assign min-width and max-width to each float to set its minimum width and
maximum width. You can assign margin-1left to the left float and margin-right to the right
float to adjust their positions.

Pattern

HTML <div id="SECTION_ID">

<ELEMENT id="ID1"> ANY_CONTENT </ELEMENT>
<ELEMENT id="ID2"> ANY_CONTENT </ELEMENT>
<div class="float-divider"></div>

</div>

CSS #ID1 { float:left; min-width:VALUE; max-width:VALUE;

margin-left:+VALUE; }

#ID2 { float:right; min-width:VALUE; max-width:VALUE;
margin-right:+VALUE; }

.float-divider { clear:both; display:block;
height:1px; font-size:1px; line-height:1px; }

Location This pattern works anywhere because you can float inline or block elements.

Limitations Internet Explorer 6 doesn’t implement min-width and max-width, but Internet Explorer 7
and higher versions do. These properties aren’t essential to this design.

Tips When floating text to the right, it’s often better to omit min-width. This allows a browser to
shrinkwrap the float to the minimum width of the text, which keeps the text aligned to the
right side of the parent. If you want multiple lines of text to be aligned to the right, you can
assign text-align:right to the float.

Related to Fluid Layout, Float Divider; Floated Box (Chapter 4); Margin (Chapter 6); Float and Clear

(Chapter 7); Offset Float (Chapter 8); Blocked (Chapter 11)

395

CHAPTER 17 ' LAYOUTS

Event Styling

3 Fvent Styling (Rollup) - Mozilla Firefox

Fil= Edit View History EBookmarks Took Help
Event Styling (Rollup)

Main

FAQ Info

Don't roell me up. -IList

QUEST[ON:chw do rollups work? » list iterm 1

7 = list iterm 2
= Rolf me up

<head>

<!-- only script elements are shown -->

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.3 /jquery.min.js"></script>

</head>

page.js

$(document) .ready(function(e){
$('.rollup-trigger').click(function(e){
$(this).closest('.rollup').children().not('.rollup-trigger').toggleClass(hidden');

E
};

$(this).parent().removeClass('hidden');

Event Styling

Problem

You want to attach events to HTML elements without putting JavaScript in the body of the document.
You want to attach events to elements using CSS selectors so there is a direct connection between how
elements are styled and how they respond to events. You want events to modify element classes so you
can use stylesheets to control how dynamic HTML styles a document. In other words, you want to
completely separate content, style, and JavaScript. You don’t want to put JavaScript or styles in the
content, and you don’t want to put styles or content in the JavaScript code.

Solution

You can use JavaScript libraries to attach events to elements at runtime. All you need are a few
<script> tags in the document head to load the JavaScript libraries. This technique completely
removes the need to put code in event attributes, such as <div onclick="someFunction();">.
To attach events to elements at runtime, you can use one of many different JavaScript libraries.
jQuery is used for this example; you can find documentation at http://docs. jquery.com/.

You can use this library by attaching its JavaScript files to your document. A browser downloads and

executes each JavaScript file in the order it occurs in the document. The last JavaScript file is typically
unique to the current page. It initializes the libraries, and it assigns event handlers to elements.

In the example, I name this file page. js. The code doesn’t slow down the rendering of the document,
and it ensures that events are added to elements after they exist.

396

http://docs.jquery.com/

CHAPTER 17 I LAYOUTS

Event Styling cont.

Solution cont. The first $('document").ready() function in page. js executes a generic function when the

document’s DOM is ready and assigns events to elements.

Overall
pattern

JavaScript in page.js
$("document').ready()
The purpose of the $() function is to select DOM elements using CSS selectors. This allows you to use

the same CSS selectors to style elements and to attach events to elements! This conceptually ties the
stylesheet into the dynamic HTML.

Detailed
pattern

JavaScript in page.js
$("CSS_SELECTOR").click(function(e){
$(this).closest('PARENT_CSS_SELECTOR').children().not('CSS_SELECTOR').toggleClass(
"TOGGLE_CSS_SELCTOR');

$(this).parent().removeClass('TOGGLE_CSS_SELECTOR');

b

Using click(), you can assign an event listener that waits for a click event. By chaining together
generic event handlers, you can create powerful event handlers while writing very little code.

The name of the event is the function name c1ick(). The name doesn’t include the “on” prefix. In the
example, I used click instead of onclick.

A CSS selector is used in the function $(). It’s a string that determines which elements get assigned to
the event. You can use any CSS selector, including child and attribute selectors.

$(this) refers to the element that has been clicked.

closest() selects the next first parent DOM element of the element that has been clicked that has the
parent CSS selector.

children() selects all the children of the node that is returned by closest().
not() filters out any results that match the CSS selector.
toggleClass() adds a CSS selector to or removes it from elements.

$(this).parent().removeClass("TOGGLE_CSS_SELECTOR"); removes the hidden CSS class from
the parent of the clicked element. This is done so that the clicked element can’t be hidden.

Explanation

By using event handlers to modify the classes assigned to elements, you can control how your
document responds to events by using a stylesheet. This keeps content, code, and styles separate,
which improves productivity and reduces maintenance. By simply toggling classes, swapping them in
and out, and adding, removing, or replacing them, you can create just about any effect.

Tips

This design pattern is extensible. You can create your own event handler and helper functions. To
make it easy to extend, jQuery contains additional utility functions to manipulate strings and
elements, and to aid in debugging.

The most commonly used events are onclick, onmouseover, and onmouseout. Forms often use
onsubmit and onreset. Any event handler can affect accessibility, but the following events require
much more effort and testing to keep a document accessible. Form elements can use onchange,
onfocus, onblur, and onselect. Advanced techniques can use onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, and onmouseup. With the availability of touch devices such as smart
phones and tablets, you should also listen for touchstart, touchmove, and touchend events.

Example

In the example, when the user clicks a rollup-trigger element, the hidden class is applied to all
children of the rollup element except for the child containing the rollup trigger. When the user clicks
the rollup trigger again, the hidden class is removed. You can create a rollup effect by styling the
hidden class to hide elements, or you could create some other effect.

Related to

Rollup, Tabs, Flyout Menu; Popup Alert (Chapter 20)

397

CHAPTER 17 ' LAYOUTS

398

Rollup

£ Rallup - Mozl Firefo:

Fa Edt Vew Go Ecolwads Tesk Help
Rollup
Main
FAQ Info
Don't roll me up. List
QUESTION: How do rollups work? « list itam 1
- s list item 2
-Roll me up
HTML
<h1>Rollup</h1>

<div id="main" class="rollup">
<h2 class="rollup-trigger">Main</h2>

<div id="faq"><div class="oi rollup">
<h3 class="rollup-trigger">FAQ</h3> Don't roll me up.
<dl class="rollup">
<dt class="rollup-triggexr">QUESTION: How do rollups work?</dt>
<dd class="hidden">ANSWER: When the user clicks on a heading or button,
the content rolls up or down. </dd></dl></div></div>

<div id="info"><div class="oi rollup">
<h3 class="rollup-trigger">Info</h3>
<div class="rollup">
<p> List</p>
 list item 1</1i> list item 2</1i></div>
8 Roll me up</div></div>
<div class="float-divider"></divy></div>

CSS

.rollup-trigger { cursor:pointer; }
.rollup-trigger:hover { color:firebrick; }

span.rollup-trigger { font-size:0.65em; padding-left:8px;
background:url("hide.gif") no-repeat left top; }

span.rolledup { background:url("show.gif") no-repeat left top; }

.hidden { position:absolute; top:-99999px; left:-99999px;
width:1px; height:1px; overflow:hidden; }

/* Nonessential rules are not shown. */

CHAPTER 17 I LAYOUTS

Rollup

Problem You want the user to dynamically interact with sections, FAQs, lists, and so forth by rolling
them up to hide information and rolling them down to show information. You want to do
this without adding code to the HTML document. You want to use styles to control the
dynamic behavior.

Solution You can add the rollup class to any parent element. This identifies it as a container that
can roll up its content. You can add the rollup-trigger class to any child in the rollup
container. When the user clicks the rollup-trigger element, all content in the rollup
element rolls up except for the rollup-trigger element. When the user clicks the rollup-
trigger element again, the content rolls down.

The rollup class is typically assigned to a section’s container, and the rollup-trigger
class is typically assigned to a section’s heading. In the example, I assigned the rollup class
to each section and the rollup-trigger class to each section heading. You can click a
heading to roll up or roll down each section.

The rollup-trigger class can be assigned to any descendant of the rollup container. In
the example, I assign it to the dictionary term, <dt>. Its parent, <d1, is its rollup container.
You can click the dictionary term to roll up and roll down the dictionary definition, <dd>.
When you want a child of a rollup container to start out rolled up, you can set it to the
hidden class. In the example, the dictionary definition element is set to hidden so it starts
out rolled up when the page loads.

This design pattern rolls up elements by setting them to hidden. It rolls them down by
removing hidden from their class. The hidden class is styled using the Screenreader-only
design pattern (Chapter 10), which hides elements on the screen without hiding them from
screen readers.

Pattern

HTML <ELEMENT class="rollup">

<ELEMENT class="rollup-trigger">CONTENT</ELEMENT>
<ELEMENT class="hidden"></ELEMENT>
</ELEMENT>

CSS .rollup-trigger { cursor:pointer; }
.rollup-trigger:hover { STYLES }
span.rollup-trigger { font-size:VALUE; padding-left:VALUE;

background:url("FILE.EXT") no-repeat; }
span.rolledup { background:url("FILE.EXT") no-repeat; }
.hidden { position:absolute;
top:-99999px; left:-99999px;
width:1px; height:1px; overflow:hidden; }
Location This pattern works anywhere.

399

CHAPTER 17 ' LAYOUTS

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript"
src=" https://ajax.googleapis.com/ajax/libs/jquexry/1.6.3/jquery.min.js"></script>
</head>

page.js
$(document) .ready(function(e){
$('.rollup-trigger').click(function(e){
$(this).closest('.rollup').children().not('.rollup-trigger').toggleClass(hidden');
$(this).parent().removeClass('hidden');

)

1

400

Rollup cont.

CHAPTER 17

LAYOUTS

Limitations

Text placed directly inside the rollup container isn’t rolled up. In the example, the text
“Don’t roll me up.” doesn’t get rolled up with the rest of the FAQ. If you want text to be
rolled up, place it inside any element. It doesn’t matter whether the element is block or
inline. Also, this design pattern fails to roll up text when JavaScript isn’t available.

Tips

You can insert an element specifically to be the rollup trigger, and you can place it
anywhere inside the rollup parent. In the example, I insert two spans and assign them to
the rollup-trigger class. Because these are inline elements, I use font-size and padding
to size their height and width large enough to allow a background image to show through.
This turns the span into a rollup button. Using this technique, you can put a rollup button
in front of any element. (You can also float it to the right if you want.) When the user clicks
arollup button, everything in the rollup container rolls up except for the button and its
ancestors.

When the user clicks a rollup trigger, the JavaScript code dynamically adds or removes the
rolledup class to the element. In the example, I use the span.rolledup selector to change
the background image when the parent is rolled up. This creates a dynamic button effect.

Pattern

JavaScript

$('.rollup-trigger').click(function(e){
$(this).closest(".rollup')children().not(".rollup-

trigger').toggleClass('hidden');
$(this).parent().removeClass(‘hidden");

)

Related to

Event Styling; Margin, Padding, Background (Chapter 6); Positioned, Absolute (Chapter 7);
Offset Absolute and Offset Fixed (Chapter 8); Font, Screenreader only (Chapter 10)

401

CHAPTER 17 ' LAYOUTS

Tab Menu

I Tah Menu - Mozilla Firefox EIBI®
Fle Edit Uew Hisiory Eookraks Took Hep
Tab Menu
Tab 1 Tab 2 Tab 3 Tab 4

Tab 1 content: A click on oneof these tabs loads & new page.

HTML

<h1>Tab Menu</h1>

<div id="main"»>
<ul class="tabs"»>
<li class="selected">
<h3 class="tab-label">Tab 1</h3></1i>
<1i><h3 class="tab-label">Tab 2</h3></1i>
<h3 class="tab-label">Tab 3</h3></1li>
<h3 class="tab-label">Tab 4</h3></1li>

<p>Tab 1 content: A click on one of these tabs loads a new page.</p>
</div>

CSS

ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active
{ text-decoration:none; color:maroon; }
ul.tabs a:hover { text-decoration:underline; color:black; }
ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:0;
border-bottom:1px solid gold; margin-bottom:10px; }

ul.tabs 1i { float:left; width:25%; list-style-type:none; }

ul.tabs .tab-label { border:1px solid gold; margin:0; cursor:pointer;
padding-bottom:2px; padding-top:2px;
background:white url("g1.jpg") repeat-x left bottom;
font-weight:normal; text-align:center; font-size:1.1em; }

ul.tabs li.selected .tab-label { position:relative; border-bottom:none;
top:1px; padding-bottom:4px;
padding-top:5px; border-top:2px solid gold; margin-top:-5px;
background:white url("g2.jpg") repeat-x left top; font-weight:bold; }

#main { border:1px solid gold; border-top:none; }

402

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17 I LAYOUTS

Tab Menu

Problem

You want to create a menu of links that works like a tabbed user interface. You want it to adapt
reliably and fluidly to different environments.

Solution

You can place the list of links in an unordered list () and assign the list to the tabs class. You can
place a hyperlink inside each list item (<11>). Because each link functions as a tab heading, you can
embed the link within a heading element. This gives the link a higher importance to search engines
and makes it easier for nonsighted users to navigate with screen readers. The heading is also an
outside-in box. This allows you to style the box of each tab without affecting the outer width of the
tab.

When the user clicks a link, you want a browser to replace the current page with the page referenced
by the link. If the new page also contains the same tabbed menu with the new tab selected, you can
create the illusion of switching tabs. To change the look of selected tabs, you can assign the selected
class to the list item containing the link of the currently displayed page. In the example, the first tab is
selected. Moving the selected class to another list item makes it appear selected.

Pattern

HTML

CSS

<ul class="tabs">
<1i class="selected">
<h3 class="tab-label">
Tab 1</a»</h3></1i>

ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active { STYLES }
ul.tabs a:hover, ul.tabs a:focus { STYLES }
ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:o;
margin-bottom:+VALUE; border-bottom: TAB_BOTTOM STYLE COLOR; }

ul.tabsli { float:left; width:PERCENT; list-style-type:none; }

ul.tabs .tab-label { border:BORDER_WIDTH STYLE COLOR;
padding-bottom: PADDING_BOTTOM;
padding-top:PADDING_TOP;
margin:0; cursor:pointer;
background:COLOR IMAGE REPEAT OPTIONS POSITION;
font-weight:normal; text-align:center; }

ul.tabs li.selected .tab-label

{ position:relative; border-bottom:none; font-weight:bold;
top: TAB_LBOTTOM; cursor:auto;
padding-bottom: TAB_BOTTOM+PADDING_BOTTOM+BORDER _WIDTH;
border-top: BORDER_WIDTH+EXTRA_BORDER STYLE COLOR;
padding-top:PADDING_TOP+EXTRA_PADDING;
margin-top:- (TAB_BOTTOM+EXTRA_BORDER+EXTRA_PADDING);
background:COLOR IMAGE REPEAT OPTIONS POSITION; }

#SECTION { border:WIDTH STYLE COLOR; border-top:none; }

403

CHAPTER 17 ' LAYOUTS

HTML (Same Code Shown Again for Convenience)
<h1>Tab Menu</h1>

<div id="main">
<ul class="tabs"»
<li class="selected"»
<h3 class="tab-label">Tab 1</h3></1i>
<h3 class="tab-label">Tab 2</h3></1i>
<h3 class="tab-label">Tab 3</h3></1li>
<h3 class="tab-label">Tab 4</h3></1li>

<p>Tab 1 content: A click on one of these tabs loads a new page.</p>
</div>

CSS (Same Code Shown Again for Convenience)

ul.tabs a:link, ul.tabs a:visited, ul.tabs a:active
{ text-decoration:none; color:maroon; }
ul.tabs a:hover, ul.tabs a:focus
{ text-decoration:underline; color:black; }
ul.tabs a { display:block; }

ul.tabs { float:left; width:100%; padding:0; margin:o;
border-bottom:1px solid gold; margin-bottom:10px; }

ul.tabs 1i { float:left; width:25%; list-style-type:none; }

ul.tabs .tab-label { border: 1px solid gold; margin:0; cursor:pointer;
padding-bottom:2px; padding-top:2px;
background:white url("g1.jpg") repeat-x left bottom;
font-weight:normal; text-align:center; font-size:1.1em; }

ul.tabs li.selected .tab-label { position:relative; border-bottom:none;
top:1px; padding-bottom:4px; cursor:auto;
padding-top:5px; border-top:2px solid gold; margin-top:-5px;
background:white url("g2.jpg") repeat-x left top; font-weight:bold; }

#main { border:1px solid gold; border-top:none; }

404

Tab Menu cont.

CHAPTER 17 I LAYOUTS

Location

This pattern works anywhere a list can be used.

Styles

You can style tab links to interact dynamically with the user. The selectors are ul.tabs
a:link,ul.tabs a:visited,ul.tabs a:active,ul.tabs a:hover, andul.tabs a:focus.
In the example, I hide a tab link’s underline until the user mouses over it. This keeps the user
interface uncluttered. You can render links as blocks so they will stretch to the width of their
tab. This allows the user to click anywhere inside a tab to activate the link.

You can float the tab menu container so it encompasses its floated tabs. The selector is
ul.tabs. You can make the layout more flexible by setting its width to 100% so it stretches to
the width of its container. When using an unordered list, you need to remove its default
margins and padding so they don’t interfere with the position of the tabs. You can use
margin-bottom to put distance between the tab menu and subsequent content. You can also
set the bottom border. In the example, I use a 1-pixel, solid, gold bottom border.

To make list items look like tabs, you can float them to the left. The selector is ul.tabs 1i.
You can assign a percentage to their width that is the inverse of the number of tabs, such as
16.66% for six tabs, 14.28% for seven, 12.5% for eight, 11.11% for nine, 10% for ten, and so
forth. For percentages to work, the list item must have no left or right margins, borders, or
padding. You can assign list items to 1ist-style-type:none to hide their bullets.

To style the tab’s box, you can select the element that has the tab-label class. You can put
a border around it, pad its content, and add a background image. In the example, [use a
gradient image that transitions from white to gold going from top to bottom. Moving from a
lighter color at the top to a darker color at the bottom supports the illusion that the tab isn’t
selected. The reverse makes the tab look selected. You should set its margins to zero;
otherwise, they will break the tab effect. You can set the cursor to the hand pointer to signal
that the tab can be clicked. You can set font-weight to normal when not selected and bold
when selected. You can align text in the tab label to the center.

To make a tab look selected, you can assign the selected class to it and style that class.
The selector isul.tabs li.selected .tab-label. You can use border-bottom:none to remove
its bottom border, and you can increase its bottom padding to compensate. The selected tab
also needs to cover the bottom border of the tab container ul.tabs. To do so, you can
increase its bottom padding to cover the tab container’s bottom border, and you can
position it relatively to move it over the border. You can add extra thickness to the selected
tab’s top border to make it stand out. You can add extra top padding to raise it above
nonselected tabs. You can use a negative value in margin-top to compensate for the extra
padding and border.

You can put a border around the left, right, and bottom of the section containing the tab
menu to connect the tab menu with the section’s content.

Related to

Floated Box (Chapter 4); Width, Sized, Stretched (Chapter 5); Margin, Border, Padding,
Background, Overflow (Chapter 6); Positioned, Relative, Float and Clear, Relative Float
(Chapter 7); Offset Float, Aligned Static Inline (Chapter 8); Font (Chapter 10); Blocked
(Chapter 11); Lists (Chapter 13)

405

CHAPTER 17 ' LAYOUTS

Tabs

&) Tabs. - Mozilla Firefox

File Edit View Go Eookmaks Took Hep
Tabs
Tab1 Tab 2

Tab 1 Content

This Is the message of tab 1. More message... I added more to this message
to show how the tab automatically displays scrollbars when it excesds the
height and/or width of the tab container. Most of this text is not shown in v

HTML

<h1>Tabs</h1>

<ul class="tabs"»

<li class="selected"»<h3 class="tab-label"sTab 1</a»</h3>
<div id="section1" class="tab-content"><div class="0i2">
<h4>Tab 1 Content</h4><p>This is the message of tab 1. More message...
</p></divy</divs</1i>

<lis<h3 class="tab-label">Tab 2</a»</h3>
<div id="section2" class="tab-content"><div class="o0i2"»

<h4>Tab 2 Content</h4><p>This is the message of tab 2.
</p></div></div></1i>

CSS

/* A1l rules from the Tab Menu design pattern apply to Tabs.
Only additional rules that apply to this design pattern are shown here. */

ul.tabs { position:relative; }

ul.tabs .tab-content { position:absolute; width:100%; height:6em;
border:1px solid gold; border-top:none;
left:-99999px; overflow:auto; }

ul.tabs li.selected .tab-content { left:0; }

ul.tabs 1i .oi2 { margin:10px; padding:10px; }

ul.tabs .tab-label a { display:block; text-decoration:none; color:black; }

ul.tabs .hover,
ul.tabs .tab-label:hover { text-decoration:underline; }

/¥ Nonessential rules are not shown. */

406

Tabs

CHAPTER 17 I LAYOUTS

Problem

You want to create a tabbed user interface that displays the contents of tabs without loading
new pages. You want it to adapt reliably and fluidly to different environments.

Solution

You can use the Tab Menu design pattern to turn a list into tabs. Inside each list item, you
can insert a tab-1abel heading and a tab-content section. You can use a variation of the
Screenreader-only design pattern to remove the section from the normal flow and hide it
offscreen to the left.

The key to this design pattern is relatively positioning the tabs list in place and absolutely
positioning each tab-content element in relation to it. This makes the tabs list the closest
positioned ancestor of each tab-content element. Because of this, you can use width:100%
to stretch the tab content to the width of the tabs list. Otherwise, the tab-content element
would expand to the width of its parent list item, which has been floated left.

You should leave the tab-content element’s top property set to its default value of auto so
the tab-content element is automatically positioned at the same location it would have
been if it weren’t absolutely positioned. This keeps tabs and their content positioned
properly—even if tabs become wrapped.

If you want the height to remain the same for all tabs, you can assign a height to the tab-
content element, or you can leave it at its default value of auto and let a browser
shrinkwrap the height of each tab to its content. If you size it, you can use overflow:auto to
display scrollbars when content overflows.

You can assign the selected class to the list item you want to be displayed when the page
loads.

You can insert a link around each tab-label element to load a fallback page when the user
clicks a tab and JavaScript isn’t available to switch tabs.

Pattern

HTML

CSS

<ul class="tabs"»
<1i class="selected">
<h3 class="tab-label">
 TAB_LABEL </h3>
<div id="SECTION_ID" class="tab-content"><div class="0i2">
TAB CONTENT </div></div>
</1i>

ul.tabs { position:relative; }
ul.tabs .tab-content { position:absolute;
width:100%; height:VALUE;
border:WIDTH STYLE COLOR; border-top:none;
left:-99999px; overflow:auto; }
ul.tabs li.selected .tab-content { left:0; }
ul.tabs 1i .0i2 { margin:VALUE; padding:VALUE; }
ul.tabs .tab-label a { display:block; text-decoration:none; }
ul.tabs .hover,
ul.tabs .tab-label:hover { text-decoration:underline; }

407

CHAPTER 17 ' LAYOUTS

HTML Header

<head>
<!-- only script elements are shown -->

<script language="javascript" type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.3 /jquery.min.js"></script>
</head>

page.js
$(document) .ready(function(e){
$('ul.tabs 1i').click(function(e){
$('ul.tabs li.selected').removeClass('selected');
$(this).addClass('selected');

ul.tabs 1i .tab-label').mouseover(function(e){
$(this).addClass("hover');

};

$('

1)s

$('ul.tabs 1i .tab-label').mouseout(function(e){
$(this).removeClass("hover');

};

$('

ul.tabs .tab-label a').click(function(e){
e.preventDefault();
$(this).blur();

5

};

408

Tabs cont.

CHAPTER 17 I LAYOUTS

JavaScript

The first line in the first c1ick() function applies the onclick event to all list items in the
tabs list. When onclick fires, the generic function applies removeClass() to each child of
the ancestor element that has the tabs class, except the child that contains the element that
fired the event. In this case, the removeClass () function removes the selected class from
the element. By removing this class, the left rule in the ul.tabs .tab-content selector
applies to the element (instead of the left rule in ul.tabs li.selected .tab-content)
and moves it far off the left side of the screen where it can’t be seen but can still be read by
screen readers.

The second line in the first click() function adds the selected class to the element. In the
example, I styled the selected class to override the left rule in the ul.tabs *.tab-
content so that it moves the tab-content element into the display area so the user can see
it.

The mouseover () function applies the onmouseover event to all tab-label elements inside
tab list items. When onmouseover fires, the addClass() function adds the hover class to the
element that fired the event. In the example, I styled the hover class and the hover pseudo
class to underline the element’s text.

The mouseout () function works like the mouseover, except it applies removeClass() to the
element that fired the event to remove the hover class from the element so it’s no longer
styled as being hovered over.

The second click() function captures clicks on links inside tab-1abel elements, hides the
focus rectangle around the link, and cancels the jump. When JavaScript is available, clicks
display tab content without loading new pages; and when JavaScript isn’t available, clicks
load pages just like the Tab Menu design pattern.

Pattern

JavaScript

$('ul.tabs 1i').click(function(e){
$('ul.tabs li.selected').removeClass('selected');
$(this).addClass('selected');

1)
$({u1.tabs 1i .tab-label').mouseover(function(e){
$(this).addClass("hover');

1;
$({u1.tabs 1i .tab-label').mouseout(function(e){
$(this).removeClass("hover');

$({u1.tabs .tab-label a').click(function(e){
e.preventDefault();
$(this).blur();

2

Tip

The tab-content element can contain any content: blocks, inlines, tables, images, objects,
and so on. This makes the Tabs design pattern a very powerful technique to make large
amounts of information in a document easy and fast to navigate without compromising
accessibility for nonsighted users.

Related to

Tab Menu, Event Styling; Absolute Box (Chapter 4); Width, Height, Stretched (Chapter 5);
Margin, Border, Padding, Background, Overflow (Chapter 6); Positioned, Absolute, Relative
(Chapter 7); Offset Absolute and Offset Fixed (Chapter 8); Left Aligned (Chapter 9);
Screenreader-only (Chapter 10); Blocked, Inline Decoration (Chapter 11); Section (Chapter
13)

409

CHAPTER 17 ' LAYOUTS

Flyout Menu

£ Flyout Menu - Mozilla Firefox

Be Edt M¥ew Go Bookmarks Toss Help

Flyout Menu

Dropdown

mern 1berm

menuy 1tem

submanu ¢ [T

HTML

<div class="menu"><h3»>Dropdown</h3>
<ul class="dropdown hidden"»
<a href="#"smenu item<¢/a»</1is
<li class="separator"»>menu item</a»</1i»
<li class="flyout-trigger"s<h4ssubmenu</h4>
<ul class="submenu hidden"»>
menu item
menu item</1i»</1i></div>

CSS

.menu { float:left; position:relative; z-index:1; cursor:pointer;
font-size:0.8em; white-space:nowrap; }
.menu a { text-decoration:none; color:black; }

.menu h3 { float:left; margin:0; padding:1px 5px;
background:url("g1.jpg") repeat-x left bottom white; }

.menu h4 { display:inline; margin:o; }

.menu ul { position:absolute; margin:0; padding:0; padding-bottom:5px;
background:url(“g3.jpg") repeat-x left bottom white; }

.menu 1li { margin:0; padding:2px 25px; list-style-type:none; color:black; }
.menu 1i img { margin-left:-22px; padding-right:Spx; }
.menu li.separator { margin-top:5px; border-top:ipx solid gray; padding-top:5px; }
.menu li.flyout-trigger { background:url("flyouti.gif") no-repeat right center; }
.menu 1i.flyout-trigger.hover
{ background:url("flyout2.gif") no-repeat right center firebrick; }
.menu h3.hover { background:url("g2.jpg") repeat-x left top white; }
.menu li.hover { background-color:firebrick; color:white; }
.menu li.hover > a { color:white; }
.menu ul.dropdown { top:100%; clear:left; }
.menu ul.submenu { left:100%; margin-top:-1.5em; margin-left:-o0.3em; }
.menu .hidden { left:-99999px; top:-99999px; }
.menu h3,.menu ul { border-left:1px solid yellow; border-right:1px solid orange;
border-top:1px solid yellow; border-bottom:1px solid orange; }

/¥ Nonessential rules are not shown. */

410

CHAPTER 17 I LAYOUTS

Flyout Menu
Problem You want to create a flyout menu that can contain nested menus.
Solution You can use a division assigned to the menu class as the overall container for the menu. You

can insert a heading, such as <h3>, as the first child of the division to be the menu title. You
can insert an unordered list assigned to the dropdown class to be the container for the drop-
down menu. You can insert list items to create menu items. For the content of a menu item,
you can insert an image followed by a link containing the menu item’s text.

To create a nested flyout menu, you can embed another unordered list assigned to the
submenu class inside a menu item assigned to the flyout-trigger class. When the user
mouses over the flyout-trigger menu item, it triggers the display of the flyout menu. You
can use a heading instead of a link to mark up the text of the flyout-trigger menu item.

To hide menus until the user activates them, you can assign unordered lists to the hidden
class. To put a separator between list items, assign the separator class to them.

Pattern
HTML <div class="menu">
<h3> MENU_TTTLE_CONTENT </h3>
<ul class="dropdown hidden">

 MENU_ITEM_CONTENT </div>
CSS .menu { float:left; position:relative; z-index:VALUE;

cursor:pointer; white-space:nowrap; }
.menu a { LINK_STYLES; }
.menu h3 { MENU_TITLE_BOX_STYLES; float:left; margin:0; }
.menu h3.hover { MENU TITLE HOVER BOX STYLES; }
.menu ul { MENU CONTAINER BOX STYLES; position:absolute;
margin:0; padding:0; padding-bottom:BUFFER; }

.menu 1i { MENU_ITEM_BOX_STYLES; margin:0;

list-style-type:none; padding-left:LEFT_MENU_ITEM_PADDING; }

.menu 1i.hover { MENU ITEM HOVER BOX_ STYLES; }

.menu li.hover > a { MENU_ITEM_HOVER_LINK_ STYLES; }

.menu 1i img { margin-left:-LEFT_MENU_ITEM_PADDING; }

.menu 1i.separator { margin-top:+VALUE; padding-top:+VALUE;
border-top:WIDTH STYLE COLOR; }

.menu 1i.flyout-trigger { background:FLYOUT_ARROW; }

.menu 1li.flyout-trigger.hover { background:HOVER_FLYOUT ARROW; }

.menu ul.dropdown { top:100%; clear:left; }

.menu ul.submenu { left:100%;
margin-top:-1.5em; margin-left:-0.3em; }

.menu .hidden { left:-99999px; top:-99999px; }

411

CHAPTER 17 ' LAYOUTS

HTML Header

<head>
<!-- only script elements are shown -->

<script type="text/javascript"
sxrc="https://ajax.googleapis.com/ajax/libs/jquexry/1.6.3/jquery.min.js"></script>
</head>

page.js

$(document) .ready(function(e){
$(".menu").click(function(e){
$('.dropdown’, $(this)).toggleClass('hidden');

-

.menu') .mouseover (function(e){
$('.dropdown’, $(this)).removeClass('hidden');

e

.menu').mouseout (function(e){
$('.dropdown', $(this)).addClass('hidden');

e

.menu 1i, .menu h3').mouseover(function(e){
$(this).addClass("hover');

e

.menu 1i, .menu h3").mouseout(function(e){
$(this).removeClass('hover');

-

.menu li.flyout-trigger").mouseover(function(e){
$('> .submenu', $(this)).removeClass('hidden');

e

- A - A - A - A
—~ —~~— —~~— —~— —~— —~~—

.menu 1li.flyout-trigger").mouseout(function(e){
$('> .submenu', $(this)).addClass('hidden');

-
p—
-

};

412

Download from Wow! eBook <www.wowebook.com>

Flyout Menu cont.

CHAPTER 17

LAYOUTS

Location

This pattern works anywhere a list can be used.

Styles

You can float the drop-down menu and its title to the left to shrinkwrap the menu and to
stack multiple drop-down menus next to each other. You can assign position:relative to
the drop-down menu so the unordered list can be absolutely positioned in relation to it. If
you have other relatively positioned content, you can set z-index to a high-enough value to
move the menu to the front. You can use white-space:nowrap to ensure that list items
aren’t wrapped across multiple lines.

You can remove all the default margins and padding on headings, lists, and list items. You
can use list-style-type:none to remove all bullets from list items. You can create extra
left padding inside each list item so you can move images into this area with a negative left
margin. This keeps images and text aligned in two columns when there is no image in a
menu item.

You can position a drop-down menu below its title by setting top to 100%. You can position
a flyout menu to the right of its flyout-trigger element by setting left to 100%. You can
compensate for a flyout menu being positioned lower than its flyout-trigger by using
margin-top:1.5em to raise it. You can use margin-left:-0.3em to overlap the flyout menu
over its parent menu; use em measurements because they scale with the text when the user
zooms in. You can hide menus by moving them off screen.

You can apply box styles to the following menu elements: h3, ul, and 1i.

JavaScript

The first three functions add, remove, or toggle the presence of the hidden class, which
determines whether the drop-down menu is visible or not. Because the hidden class simply
moves the menu off the screen, it’s completely accessible to screen readers.

The next two functions add or remove the hover class from menu items and the menu title.
The hover class can be used to create hover effects. This is more reliable than the hover
pseudo class, which isn’t fully implemented in Internet Explorer 6.

The last two functions add or remove the hidden class of submenus when the user hovers
over a menu item assigned to the flyout-trigger class. Notice that the
applyToDescendants selector, '> *.submenu', contains a child selector to limit the scope to
just the child submenu rather than all descendant submenus. Even though Internet
Explorer 6 doesn’t support the child selector, it works in this code because the jQuery
library supports all CSS selectors.

Limitations

Single-level menus work fine, but nested menus have limitations. Nested menus don’t work
well on touchscreen devices because they require a mouseover to work, and touchscreens
don’t have a hover state. Because nested menus are absolutely positioned, they don’t adapt
to narrow displays. Finally, menus don’t fly out when JavaScript isn’t available.

Related to

Event Styling; Absolute Box, Floated Box (Chapter 4); Width, Height, Shrinkwrapped,
Stretched (Chapter 5); Margin, Border, Padding, Background, Overflow (Chapter 6);
Positioned, Atomic, Absolute, Relative, Float and Clear, Relative Float (Chapter 7); Offset
Absolute and Offset Fixed, Aligned Outside (Chapter 8); Left Aligned (Chapter 9);
Screenreader-only (Chapter 10); Blocked, Nowrap, Inline Decoration (Chapter 11); Section,
Lists (Chapter 13)

413

CHAPTER 17 ' LAYOUTS

414

Button

3 Button - Mozilla Firefox
Gle Edit Yew History Eookmaks Took Hep

Button
Ssarch [swbmit | @) Submit | Resel

Message J-Submit J-Reset Change Me! Link

HTML

<h1>Button</h1>

<form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test">
<input type="text" id="search" name="search" class="search" value="Search" />
<input type="submit" id="submiti" name="submiti" value="Submit" />
<input type="submit" id="submit2" name="submit3" value="" />
<input type="submit" id="submit3" name="submit2" class="button" value="Submit" />
<input type="reset" id="reset1" name="reset1" class="button" value="Reset" />
</form>
<input type="button" id="message" name="message" class="button" value="Message" />
<input type="button" id="submit4" name="submit4" class="button" value="3J-Submit"/>
<input type="button" id="reset2" name="reset2" class="button" value="J-Reset" />

<button id="change" name="change" class="button">Change Me!</button>
Link

CSS

form { margin:20px 0; }

.button { margin:0; padding:3px 10px; font-size:iem; color:black;
cursor:pointer; background:url(“gi.jpg") repeat-x left bottom;
border-left:1px solid yellow; border-right:1ipx solid orange;
border-top:1px solid yellow; border-bottom:1px solid orange; }

.button:hover, .button.hover
{ background:url("g2.jpg") repeat-x left top;
border-left:1px solid orange; border-right:1px solid yellow;
border-top:1px solid orange; border-bottom:1px solid yellow; }

a.button { padding:5px 10px; line-height:2em; text-decoration:none; }
#submit2 { width:32px; height:32px; border:none; cursor:pointer;

background:url("go.jpg") no-repeat left top; }
#submit2:hover, #submit2.hover { background-position:1px 1px; }

http://www.tipjar.com/cgi-bin/test
http://cssdesignpatterns.com

CHAPTER 17 I LAYOUTS

Button

Problem You want to use buttons to submit forms and run JavaScript. You want to style the buttons
to fit the look and feel of the document. You want all actions to be accessible.

Solution You can use the <input type="submit">, <input type="reset">, <input
type="button">, <button>, and <a> elements to create buttons.

To submit form values to a server or to reset form elements to their initial values, you
can use one or more <input type="submit"> and <input type="reset"> buttons inside a
<form> element. These buttons are designed to be used inside forms. The text displayed in
them comes from their value attribute. When a submit button is clicked, the text in its
value attribute is submitted along with the rest of the form data.

To trigger JavaScript events, you can use <input type="button"> and <button> elements
outside a form. The <button> element allows you to put any content (including images,
inline elements, and block elements) inside the button. Whatever content you put in the
button is displayed inside the button. In the example, you can click the Change Me! button
and literally enter any valid HTML to change the content it displays.

To trigger JavaScript events, you can use a link, <a>. For example, when a user clicks an
external link, you may want to ask the user whether they want to submit the form before
leaving the page. In the example, I styled the link to look like a button to make the point
that links can look and function like buttons. From an accessibility point of view, it’s better
to use button elements for buttons rather than links, because a screen reader says “button”
when it encounters a button and says “link” for a link.

Pattern
HTML <form id="ID" method="post" action="URL">

<input type="submit" id="NAME" name="NAME" value="TEXT" />
<input type="reset" id="NAME" name="NAME" value="TEXT" />
</form>
<input type="button" id="NAME" name="NAME" value="TEXT" />
<button id="NAME" name="NAME"> TEXT </button>
 TEXT

Location This pattern works anywhere inline elements work.

Styling You can apply styles to the various types of button elements to replace proprietary styles
supplied by the browser, but your results may vary in different browsers and operating
systems. The example embeds three submit buttons and one reset button in a form. The
first submit button is left unstyled, which renders it as a button, but the exact look varies in
different browsers and operating systems. The second submit button, #submit2, displays a
background image. I removed all text in the value attribute to prevent it from being
displayed over the image. When this button is clicked, the form data is submitted, but there
is no button value to submit. This is only a problem when you have multiple submit
buttons in a form and want to take different actions depending on which one is clicked.

415

CHAPTER 17 ' LAYOUTS

HTML Header

<head>
<!-- only script elements are shown -->

<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquexry/1.6.3/jquery.min.js"></script>
</head>

page.js
$(document) .ready(function(e){

$('#form1").submit(function(e){
if(!confirm('Are you sure?')){e.preventDefault();}

$({#message').click(function(e){
alert('Hi There');

1);
$({#button').click(function(e){
alert('Hi There');

1);
$('#1link"').click(function(e){
if(!confirm('Jump here?’)){e.preventDefault();}

1);
$('#change").click(function(e){
try{
var result = prompt('Enter content:', $(this).text());
if (result) $(this).text(result);
}catch(ex){ e.preventDefault(); }

1)s
$('#submit4').click(function(e){
$('#form1').submit();
1);
$('#reset2").click(function(e){
$('#form1').reset();
D;

N;
5
Button (Continued)

416

CHAPTER 17 I LAYOUTS

Styling cont.

I further styled the second submit button by removing its border and setting it to the exact
height and width of its background image. When the button is hovered over, the
#submit2:hover rule moves the background image down and right by 1 pixel to make it look
like it’s being depressed. The remaining buttons in the example are styled by the button
class.

I use the button class to normalize the display of all buttons by setting margin, padding, and
font-size. This is important because browsers use different default values. I set the mouse
pointer to cursor:pointer to further signal that the button is clickable.

You can use any box styles to style a button. In the example, I set the background to a
horizontally tiled gradient image that is lighter at the top and darker at the bottom to create
araised button effect. When the mouse hovers over the button, I change the background to
a gradient image that is darker at the top and lighter at the bottom to create a depressed
button effect. Likewise, I use lighter top-left borders and darker bottom-right borders when
not hovered over and the reverse when hovered over.

Limitations

<input type="image"> submits the coordinates of where its image is clicked. I don’t
recommend using it to process coordinates because nonsighted users can'’t see to click
different areas of its image. A client-side image map is an accessible solution (see Image
Map in Chapter 14).

Because Internet Explorer 6 only responds to a:hover, I also use the .hover class and
JavaScript to simulate :hover. Internet Explorer 7 and the other major browsers don’t need
this JavaScript workaround.

If you omit the name attribute of a submit button, its value isn’t submitted along with the
rest of the form. For consistency, you can set a button’s id attribute to the same value as its
name attribute.

The name and id attribute must not be the same name as a DOM element method, because
this prevents you from executing the method. For example, if you give a submit button a
name or id of “submit”, you can’t execute document.getElementById("submit"™).submit(),
which prevents you from submitting the form using JavaScript. The same applies to “reset”.

JavaScript

In the example, I use each button’s unique ID to assign event handlers.

This example shows how easy it is to extend the Event Styling framework with your own
custom functions.

Related to

Event Styling; Inline Elements (Chapter 2)

417

CHAPTER 17 ' LAYOUTS

Layout Links

Layout Links
J L] Layout Links u_+ L =
Layout Links
Skip to main content
‘header
Home » Layout Links » Breadcrumbs « Previous | Next »
body

Main content goes here. External Link™
» More Info

footer Tor
Last Updated on... Copyright © 2007 License
Privacy Policy About Us Disclaimers

<h1>Layout Links</h1>

<div id="preheader">Skip to main content</div>
<div id="header"><h2>header</h2></div>

<div id="postheader">

<div class="breadcrumbs">Home » Layout Links
» Breadcrumbs <span class="sequential"s
« Previous | Next »</div></div>

<div id="body"><h2>body</h2>
<p>Main content goes here. External Link</p>
<p class="morelink"»<a href="#"»» More Info </p></div»

<div id="footer"><h2>footer Top"</h2>
last Updated on... </1i> Copyright © 2007</1i>
License </1i> Privacy Policy
About Us</1i> Disclaimers</1i>
<div class="float-divider"></div></div>

CSS

a:link, a:visited, a:active { text-decoration:none; color:maroon; }
a:hover { color:black; text-decoration:underline; }

.morelink { font-size:0.8em; font-weight:bold; text-align:right; }

.toplink { font-size:0.7em; font-weight:normal; vertical-align:top; }

-outlink { padding-right:15px; font-style:italic;
background:url("external.gif") no-repeat top right; }

/¥ Nonessential rules are not shown. */

418

CHAPTER 17 I LAYOUTS

Layout Links

Problem You want to enhance navigation within a document and to other documents using
specially styled links including skip-to-main-content, breadcrumb, sequential, more-info,
top, external, and footer links.

Solutions Section links allow you to link to any section in a document. You can assign each section
to aunique ID. The ID is an anchor that can be linked to by internal and external links.
Using the section ID as a selector, you can uniquely style the section and its elements.
There are five common sections: preheader, header, postheader, body, and footer. (The
terms preheader and postheader are my own.) Different types of links occur in each of these
sections.

Skip-to-main-content links allow users to jump directly to the main content of a
document. This link is useful for nonsighted users and users reading the document on
small devices. It occurs in the preheader and should be the first item in the document
other than perhaps the document heading.

Breadcrumb links are a series of links that lead back to the home page. They typically
occur in the postheader or header. To identify them as breadcrumbs, you can separate
them with a right-pointing arrow symbol.

Sequential links link to previous and next documents in a series. They typically have
names like Previous and Next, the former often preceded by a left-pointing arrow and the
latter followed by a right-pointing arrow.

More-info links allow content in a section to be abbreviated to make it easier to read
online. If users want more information, they can click a link to read more about it. The link
is often labeled some variation of More Info. You can visually set apart more-info links by
making them the last item in a section, embedding them in their own paragraph, aligning
them to the right, and preceding them with a right-pointing arrow symbol.

Top links allow users to jump to the top of a section or document. They typically occur in
the header of a section when they link back to the top of the document. They also occur as
the last item in a section when they link back to the top of the section. They’re often raised
above the baseline and are followed by an up-pointing arrow symbol.

External links are styled to show that they lead to an external web site. This helps users
decide whether they want to go to another web site. You can create a rule that adds right
padding to a link and displays a background image of an up-right-pointing arrow in this
padding.

Footer links occur in the footer section and link to information about the copyright,
licensing, privacy, company, disclaimers, affiliates, and so forth.

Pattern

HTML LINK CONTENT
CSS .LINK_TYPE { STYLES }

Related to Inline Elements (Chapter 2); Lists (Chapter 13)

Location This pattern works anywhere.

419

CHAPTER 17 ' LAYOUTS

420

Multi-column Layout

o

Multi-column Lavout

Multl-column Layout

kil

Multi-column Layout

Lorem ipsum dclor sit
amet, consectetur

ad piscing elit. Morbi
sollicitudin posuers mauris
sed interdum. Ut nen justo
val valit placerat pharetra
agat nec metus. Mauris mi
massa, viverra sit amet
consequat in, convallis ut

_purus. Integer fermentum

HTML

<h1>Multi-column Layout</h1>

<div class="multi">
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Morbi sollicitudin posuere mauris sed in ...

<!-- Additional code can be found in sample -->
</div>

CSS

.multi { column-count:3; -moz-column-count:3;
-webkit-column-count:3; -ms-column-count:3; }

ipsum. Duis eu crci ligula.
Vestibulum anta ipsum
primis in faucibus orci
luctus et ultrices posuere
cubilia Curae; Ut nisi est,
ultrices quis vehicula quis,
condimentum vel tallus.
Morbi ac nibh malesuada
guam tincidunt al'quet.
Vivamus egestas, odio ac

/¥ Nonessential rules are not shown. */

vitae leo. Ut eget tellus ut
enim ornare alicuam et
gravida sem. In congue
saqittis pretium, Ut licula
turpis, pharetra id socales
vel, euismod er lacus.
Mauris egestas orci sit
amet arcu malesuada ac
blandit sapien tincidunt.
Etiam wvel augue nisi. Ut

CHAPTER 17 I LAYOUTS

Multi-column Layout

Problem You want to distribute your content across multiple columns similar to a newspaper layout
to save vertical screen space.

Solutions The Multi-column module allows content to flow into multiple columns inside an element.
It offers CSS properties that let you define the number of columns, column width, column
gaps, and rules governing overflow.

There is no specific markup for this solution. You use CSS to modify a given element and
turn it into a multicol element, which occurs automatically when certain column styles are
applied to an element.

This also means that if a browser such as IE9 doesn’t support the Multi-column layout
module, the content remains in normal flow without any extra unused markup.

Pattern

HTML <div>CONTENT </div>

Css div { column-count: 4; }

div { column-width: 100px; }
Limitations A table element can’t be made into a multicol element.
IE9 and eatrlier versions don’t support Multi-column Layouts.
A vendor prefix, -webkit, -ms, and -moz for all browsers, is required.
Location This pattern works anywhere.

421

CHAPTER 17 ' LAYOUTS

Template Layout

Template Layout

L] Temolate Layout J + |

Template Layout

Deer Castle
Bear Apple
HTML

<h1>Template Layout</h1>

<div id="template">
<div id="a">Apple</div>
<div id="b">Bear</div>
<div id="c">Castle</div>
<div id="d">Deer</div»
</div>

CSS

#template { display: “ab” “cd” 20% * 20%; }
#d { position: a; }
#c { position: b; }
#b { position: c; }

#a { position: d; }

/* Nonessential rules are not shown. */

422

Download from Wow! eBook <www.wowebook.com>

CHAPTER 17

Template Layout

LAYOUTS

Problem

You want to position elements based on templates with easy source arrangement for
different media types (print, mobile, Web, and so on).

Solutions

The Template Layout module works like a grid. Each element is assigned a position using
an alphabetical character and the position property. Once positions have been assigned,
you can make layouts using a string of characters; each string equals a row, and each
character in that string equals a column. This provides a method of implementing a table-
like template without tables.

Limitations

At the time of writing, the Template Layout module hasn’t been implemented in any
browsers. A jQuery plugin called jQuery polyfill exists that implements it in modern
browsers. Because jQuery is JavaScript based, any browser that doesn’t support JavaScript
isn’t positioned correctly. It's important to lay out your content with this in mind.

Pattern

HTML

CSS

<container>
<element> HEADER_CONTENT </element>
<element> NAV_CONTENT </element>
</container>

container { STYLES }

Location

This pattern works anywhere.

423

CHAPTER 17 ' LAYOUTS

424

Layout Example

Layout Example

J ™ Layout Example ” + L

P

Skip te main content

Layout Example

Menu 1 | Menu 2

Home » Layouts » Layout Example

Site Map

cssDesignPatterns
apress.com
» More Links

Product 1

Product 1 Content

This is the message of tab
1. More message... [
added more to this

Links message to show how the
. Link1 tab automatically displays
. Link2 scrollbars when it exceeds
. Link3 the height and/or width of
. Link4 the tab container. Most of

this text is not shown in

tha hanle ta caua roam in

» More Products

Product 2

Search:

Search message

Product 3

Internet Explorer 6 has a
bug that requires you to
fix the width of this
content. Also note that
you add margins, border,
and padding to the
outside-in box rather than
the tab so that the tab's
scrollbar is located in the

nranar nlaca

apress.com

Copyright © 2011 Michael Bowers All rights reserved.

Preheader message

Search

« Previous | Next »

News

Content: This is a good
place for press releases
and news.

» More News

About us

Content: This is a good
place for company
information.

» More About Us

HTML Structural Elements

<div id="preheader"></div>
<div id="header">

<div id="title"><hi>Layout Example</h1></div>
<div id="search"><h3>Search:</h3></div></div>

<div id="postheader"></div>
<div id="body">
<div id="nav">

<div id="site-map"><h3>Site Map</h3></div>
<div id="Llinks"><h3>Links</h3></div></div>

<div id="main"></div>
<div id="extras">

<div id="news"><h3>News</h3></div>
<div id="about-us"><h3>About us</h3></div></div></div>

<div id="footer"></div>

CSS Structural Styles
#preheader .part1 { float:left;

margin-left:10px; }

#preheader .part2 { float:right; margin-right:10px; }

#header { float:left; width:100%; }

#title { float:left; width:50%; margin-top:7px; }
#search { float:right; margin-top:2px; }

#postheader .breadcrumbs { float:left; margin-left:10px; }
#postheader .sequential { float:right; margin-right:10px; }

#body { float:left; width:100%; }

#nav { float:left; width:25%; min-width:160px; }
#main { float:left; width:50%; min-width:300px; }
#extras { float:left; width:25%; min-width:160px; }
#footer { clear:both; padding-top:40px; }

CHAPTER 17 I LAYOUTS

Layout Example

Example This example combines the design patterns in this chapter. It shows how these design
patterns can be nested and combined to create an unlimited variety of layouts.

There are five layout rows in the example corresponding to five typical sections: preheader,
header, postheader, body, and footer. I created these sections using the Fluid Layout
design pattern. This makes each section modular so its layout can be easily reorganized
with confidence when floated or positioned.

The preheader section uses the Opposing Floats design pattern to move the skip-to-main-
content link and the preheader message to opposite sides of the document. Placing
information on opposite sides puts put more information in half the vertical space without
overwhelming the reader. A user automatically separates content aligned to the left from
content aligned to the right. Being floated allows the position of the breadcrumbs and
preheader message to be adjusted automatically and dynamically to different viewport
widths and zoom factors.

The header section contains two subsections, title and search, which are also floated to
opposite sides using the Opposing Floats design pattern. This keeps the search section
aligned to the right. The search button is styled with a custom background image using the
Button design pattern.

The title section contains a heading and two flyout menus. A float divider moves the
menus below the heading. You can create each menu using the Flyout Menu design
pattern. You can stack together and nest as many menus as you like by adding more
unordered lists and list items to the document. A float divider occurs before the end of the
header to expand the section around its floated children—as specified in the Fluid Layout
design pattern.

The postheader section (like the preheader and header) floats breadcrumbs and
sequential links to opposite sides. This organizes the entire heading area into three rows
and two columns aligned to opposite sides.

The body section contains three subsections: nav, main, and extras. Each is floated left
using the Fluid Layout design pattern. This divides the body section into three columns.

The main section contains three tabs created using the Tabs design pattern. By using tabs,
you can put more information in a smaller space. This is called information hiding. It hides
information in the page and displays it as needed. Because the information is downloaded
with the page, it can be displayed without having to fetch another page from the server.

The nav and extra sections each contain two subsections, which are rendered in normal
flow. I applied the Rollup design pattern to them so that they roll up and down when you
click their headings. Each of these sections also contains a more-info link. These are all
additional information-hiding techniques.

The footer section contains standard footer links.

This example demonstrates how layout design patterns are modular, reusable,
customizable, fluid, interactive, and accessible.

These layouts are modular and reusable. This example is created entirely using layout
design patterns. I copied each design pattern’s HTML structure into example.html and
changed its content as desired. For each instance of the design pattern, I repeated this
process. I then copied and pasted the CSS rules for each design pattern into page.css, and
copied and pasted the JavaScript for each design pattern into page.js. The CSS styles and
JavaScript code of a design pattern need to be copied only once into a page’s stylesheet
and script. For maximum reusability, you can place all layout design patterns in a site’s
stylesheet and script file to make them available to all pages. This works because HTML,
CSS, and JavaScript are located in separate files, which makes them more reusable and
interchangeable. On the other hand, for maximum performance, you may want to include
only those styles and JavaScript that apply to the current page.

425

CHAPTER 17 ' LAYOUTS

426

T Layout Example - Opera

Product 1

N TS

Somparmy
informaoon.

Copyright

cort=r

Layout Example

Product 2
FProduct 1 Content

is the message of tab 1. Mocs
1 added H
= "

Content: This i= a
gcod placs Tor

- PMore Abost Us

csSsDesignPatisrns.co
2007 mMichsel Bowers All rights

wecaets

Tools

[
Slkip o main comtent

Preheader message
T.ayout Example
™nTenanx 1

menu itesn
menu item

Product 3

Saarch
more to this
Search messase

Home » Lavouts » Lavour Example

s Dresdons | Mexnt «
= ™Wawvigation

Site Wlap

m | apress.com

reserved.

Layout example displayed in a narrow viewport and displayed without a stylesheet

Layout Example cont.

These layouts are customizable. If you want to tweak the styles of a design pattern for all
instances of the pattern, you can directly change the pattern’s rules. If you want to tweak
the styles of a design pattern for a specific section, you can copy the rule and prefix the
copied selector with a section selector. For example, to change what a selected tab looks like
in the nav section, you can copy the selector, ul.tabs 1li.selected .tab-label, and create
anew one prefixed with #nav, as in #nav ul.tabs 1i.selected .tab-label.Because
selectors containing an ID override those that don’t, this selector overrides the standard
selector. To change just one instance of a design pattern, you can wrap it in a division set to
a unique ID, copy the desired rule, and prefix its selector with the unique ID.

These layouts are fluid. They adapt nicely to devices with different widths and zoom
factors. Figure 17-1 shows the same page rendered in a narrow viewport. Notice how side-
by-side columns automatically reflow into a single column to fit the viewport. This allows
the page to work well on handheld devices. Furthermore, if a browser doesn’t support
stylesheets, each section renders as nicely structured HTML.

These layouts are interactive, allowing a user to collapse and expand sections, drop-down
menus, and select tabs. Notice in Figure 17-1 how the News section is rolled up, which
makes room to show other sections.

These layouts are accessible. Interactive elements such as rollups and drop-down menus
play nicely with screen readers because content is never set to visibility:hidden or
display:none; instead, hidden content is positioned offscreen and moved onscreen when
it’s made visible. Because all content is present in the document, search engines can index
it. For browsers that don’t support JavaScript or have disabled JavaScript, you should
include an alternative version that doesn’t rely on JavaScript.

Related to

All design patterns in this chapter and the majority of design patterns in the book

CHAPTER 18

Drop Caps

This chapter discusses design patterns that create drop caps. A drop cap dramatically styles the first
letter of a document to signal that it is the beginning of a document. Sometimes it is used at the
beginning of a major section of a longer document. Sometimes it styles a word instead of just the first

letter.

Typically, the drop cap enlarges the first letter and lowers it so that the top of the letter is aligned to

the top of the following text, but there is no limit to how the drop cap can be styled.
The design patterns in this chapter are organized from simplest to most complex.

Chapter Outline

Aligned Drop Cap shows how to create a simple drop cap by enlarging it and
vertically aligning it.

First-letter Drop Cap shows how to create a drop cap without inserting extra
markup.

Hanging Drop Cap shows how to use a hanging indent to create a drop cap.

Padded Graphical Drop Cap shows how to add left padding to the drop cap to
make room for a background image showing a banner, a grabber, or a decoration.

Floating Drop Cap shows how to float the drop cap to the left so that text below
the drop cap wraps back under the drop cap.

Floating Graphical Drop Cap shows how to display a graphic on top of the
dropcap text. It works great for screen readers, and it shows a styled text version of
the drop cap when the image is unavailable. This is the best Graphical Drop Cap
design pattern for allowing text below the drop cap to wrap back under the drop
cap.

Marginal Drop Cap shows how to use absolute positioning to move the drop cap
into the left margin of a block. All lines of the block are indented.

Marginal Graphical Drop Cap shows how to display a graphic on top of the
dropcap text. It works great for screen readers, and it shows a styled text version of
the drop cap when the image is unavailable. This is the best Graphical Drop Cap
design pattern for preventing text below the drop cap from wrapping back under
the drop cap.

427

CHAPTER 18 " DROP CAPS

428

Aligned Drop Cap

3 Aligned Drop Cap - Mozilla Firefox

Eie [Erit Yew History Bookmarks Tools Help

Aligned Drop Cap

Allgned Drop Cap Variation 1. Text is large, bold, and aligned at the
baselina. Subsequent linas are not indentad.

Aligned Drop Cap Variation 2. The drop cap is aligned to the middle of the

text. Subsequent lines are not indented. The drop cap pushes down the
sacond line a little bit.

ligned Drop Cap Variation 3. The drop cap Is offset to the top of the text.

Subsequent lines are not indented. The drop cap pushes down the second line
guite a bit.

HTML

<p>A</spansligned Drop Cap Variation 1. Text is
large, bold, and aligned at the baseline. Subsequent lines are not indented.</p>

<p><span class="aligned-dropcap2"»Aligned Drop Cap Variation 2. The
drop cap is aligned to the middle of the text. Subsequent lines are not indented.
The drop cap pushes down the second line a little bit.</p>

<p>Aligned Drop Cap Variation 3. The
drop cap is offset to the top of the text. Subsequent lines are not indented.
The drop cap pushes down the second line quite a bit.</p>

CSS

.aligned-dropcap1l { font-size:40px; line-height:normal; font-weight:bold;
vertical-align:baseline; }

.aligned-dropcap2 { font-size:40px; line-height:0.8em; font-weight:bold;
vertical-align:middle; background-color:gold; padding:0 2px; }

.aligned-dropcap3 { font-size:40px; line-height:normal; font-weight:bold;
font-style:italic; vertical-align:-0.45em; color:white;
background-color:black; background-image:url("maxrble.jpg");
padding:0 4px; border:ipx solid black; }

CHAPTER 18 I DROP CAPS

Aligned Drop Cap

Problem

You want to display the first letter of a block as a drop cap. An aligned drop cap is a letter
that has a larger font size than the following text. Its baseline is typically dropped lower than
the baseline of the following text. It may also be styled with a different font, weight, case, and
So on.

In general terms, you want to style a section of text and align it to other text.

Solution

You can mark up the first letter or letters of a terminal block element using an inline
element. Assigning this element to a class, such as "aligned-dropcap", makes it easy to
style. You can use font-size to increase the height of the text. You can use a negative value
in vertical-align to lower the text below the baseline. You can use a positive value in
vertical-align to raise the text above the baseline. You can use 1ine-height to fine-tune
how all this affects the height of the line. You can use 1ine-height:normal to ensure the
drop cap does not overlap neighboring lines. You can use a value slightly smaller than 1em in
line-height to tighten up the space between the lines.

Pattern

HTML

CSS

<INLINE class="aligned-dropcap"> CONTENT </INLINE>

.aligned-dropcap { vertical-align:+VALUE;
font-size:+VALUE;
line-height:VALUE; }

Location

This pattern works anywhere you can use an inline element.

Limitations

Using text with different fonts and font sizes increases the height of a line. Furthermore,
offset text increases the height of a line. Thus, an aligned drop cap puts extra space between
the first and second lines. The lower you place the drop cap, the more space you put
between the lines.

Related to

Hanging Drop Cap, Floating Drop Cap; Vertical-Aligned Content, Vertical-Offset Content
(Chapter 12); Font (Chapter 10); Spacing (Chapter 11)

429

CHAPTER 18 " DROP CAPS

First-Letter Drop Cap

%3 First-letter Drop Cap - Mozilla Firafox

Fie Edt VYew Higtory Hookmarks Tools Hep

First-letter Drop Cap

first—letter can create an aligned drop cap. The problem is that
browsers have a hard time aligning pseudo elements.

first—letter can be used to create a floating drop cap. The problem is
that the drop cap cannot be positioned up or down.

irst-letter can be used to create a hanging drop cap in the
fimargin. The drop cap can even be replaced by a background
Mimage. The problem is that the drop cap cannot be positicned up
or down,

HTML

<p class="dropcap1"s<code>first-letter</code> can create an aligned drop cap.
The problem is that browsers have a hard time aligning pseudo elements.</p>

<p class="dropcap2"><code>first-letter</code> can be used to create a floating
drop cap. The problem is that the drop cap cannot be positioned up or down.</p>

<p class="dropcap3">first-letter can be used to create a hanging drop cap in the
margin. The drop cap can even be replaced by a background image.
The problem is that the drop cap cannot be positioned up or down.</p>

CSS
.dropcap1:first-letter { font-size:60px; vertical-align:0px; font-weight:bold; }
.dropcap2:first-letter { float:left; margin-left:-3px; margin-right:3px;
position:relative; top:-2000px; /* DOES NOT WORK */
font-size:60px; line-height:normal; font-weight:bold; }
.dropcap3 { padding-left:105px; text-indent:-104px; margin-top:50px; }
.dropcap3:first-letter { padding:40px 50px; font-size:1px; line-height:1px;

color:white; background-image:url("f.jpg");
background-position:center center; }

430

CHAPTER 18 I DROP CAPS

First-Letter Drop Cap

Problem

You want to display the first letter of a block as a drop cap without adding elements to the
HTML document.

In general terms, you want to style the first letter of a terminal block element, such as a
paragraph.

Solution

first-letter is a design pattern built into the CSS language. first-letter is called a
pseudo-element selector because it selects a subset of content in an element rather than all
the content in an element.

You can tag a terminal block element with a class or ID of your choosing. You can combine
the first-1line pseudo-selector with classes, IDs, and types of your choosing. Make sure
the first-1line selector is the last item in the selector.

Pattern

CSS

.CLASS:first-letter { STYLES }
or
#ID: first-letter { STYLES }
or
ELEMENT:first-letter { STYLES }

Location

first-letter works just like first-1line. It works only on terminal block elements. It does
not work on structural block elements or inline elements. first-letter is not inherited by
child elements.

Limitations

The first-letter selector works best with font and text properties. Browsers cannot
position pseudo-elements and have trouble aligning them. This means you may not be able
to control the vertical placement of the drop cap. Notice that the second drop cap in the
example has been relatively positioned and offset 2000 pixels. This should move the drop
cap off the screen, but as the example demonstrates, the text selected by first-letter does
not respond to positioning.

This solution displays correctly in all modern browsers. Be aware of the following for older
browsers. Opera 9 does not select the first letter of table cells, and in a list item Internet
Explorer 7 selects the list marker along with the first letter. Internet Explorer 6 positions a
first-letter background image differently from Internet Explorer 7, and both position it
differently from the other major browsers. As shown in the source code for the example, you
can solve this problem by loading different style sheets for Internet Explorer versions 6 and
7 and using background-position to adjust the position of the background.

Related to

Pseudo-element Selectors (Chapter 3)

431

CHAPTER 18 " DROP CAPS

432

Hanging Drop Cap

2 Hanging Drop Cap - Mozilla Firefox

Eie Edt Yew Higtory Boowmarks Toals Heb
Hanging Drop Cap

anging Drop Cap. This drop cap hangs in the margin. No text flows back
under the backdrop when it flows past the bottom of the drop cap. The
drop cap can be lowered and raised without affecting the line height.
Using tep and 1=7t, you can adjust the position of the drop cap and the
position of the text next to the drop cap.

HTML

<p class="hanging-indent"><span class="hanging-dropcap"sH</spansanging
Drop Cap. This drop cap hangs in the margin. No text flows back under
the backdrop when it flows past the bottom of the drop cap.
The drop cap can be lowered and raised without affecting the line height.
Using <code>top</code> and <code>left</code>,
you can adjust the position of the drop cap and the position of the text
next to the drop cap.</p>

CSS

.hanging-indent { padding-left:50px;
text-indent:-50px;
margin-top:-25px; }

.hanging-dropcap { position:relative;
top:0.55em;
left:-3px;
font-size:60px;
line-height:60px;
font-weight:bold; }

Download from Wow! eBook <www.wowebook.com>

CHAPTER 18 I DROP CAPS

Hanging Drop Cap

Problem

You want to display the first letter of a block as a drop cap without increasing the height of
the first line. You also want to position the drop cap higher or lower and control its distance
from neighboring text. You also want all text in all lines in a block element to stay to the
right of the drop cap.

In general terms, you want to move text or an image to the left and to move text to the right
while controlling the position of both.

Solution

Mark up the first letter or letters of a terminal block element using an inline element
assigned to the "hanging-dropcap"” class. Also tag the terminal block element with the
"hanging-indent" class.

Style the "hanging-dropcap"” class as follows:

Use position:relative to prepare the drop cap for positioning.

Use top to move the drop cap up or down.

Assign a negative value to left to put space between drop cap and text.

Assign 1ine-height to the same value as font-size to prevent the large font-size of the
drop cap from expanding the height of the first line.

Style the "hanging-indent" class as follows:

Assign a positive value to padding-left to move text to the right of the drop cap. The value
should be larger than the width of the drop cap.

Assign a negative value to text-indent to move the drop cap to the left of the text. The
value should be equal to or less than the width of the drop cap.

Assign a positive value to margin-top to make room for a drop cap that extends above the
line, or a negative value when a drop cap is lowered.

Pattern

HTML

CSS

<BLOCK class="hanging-indent">
<INLINE class="hanging-dropcap"> TEXT </INLINE>
</BLOCK>

.hanging-indent { padding-left:+VALUE;
text-indent:-VALUE;
margin-top:+VALUE; }

-hanging-dropcap { position:relative;
top:+VALUE; left:-VALUE;
font-size:+SIZE; line-height:+SIZE; }

Location

The drop cap must be the first item in a terminal block element.

Limitations

Modern browsers all render this solution correctly.

Internet Explorer 6 and Opera 9 position background images differently behind text that has
been moved using text-indent. For this reason, if you must support older browsers, a
graphical hanging drop cap is unfeasible.

Variations

You can style the "hanging-dropcap” class using properties such as font, color,
background-color, background-image, padding, border, and so forth.

Related to

Aligned Drop Cap, Floating Drop Cap; Margin, Padding (Chapter 6); Relative (Chapter 7);
Offset Relative (Chapter 8); Font (Chapter 10); Spacing (Chapter 11)

433

CHAPTER 18 " DROP CAPS

434

Padded Graphical Drop Cap

%3 Padded Graphical Drop Cap - Mozilla Firefox

Eie Erfit Yew Higtory Hookmarks Tools Heb

Padded Graphical Drop Cap

\78
\ dded Aligned Graphical Drop Cap.
T o 1'- adde igned Graphical Drop Cap

Text is large, bold, and aligned at the baseline, Subsequent lines are not
indented.

and then offset to the right using

padding-left. It has a background
image rendered in the padding area. Subsequent lines are indented for as
long as the drop cap is on their left.

- S M added Floating Graphical Drop Cap.
m lt ‘f The drop cap is floated to the left

HTML
<h1>Padded Drop Cap</h1>

<p>Padded Aligned Drop Cap. Text is
large, bold, and aligned at the baseline. Subsequent lines are not indented.</p>

<p>Padded Floating Drop Cap. The
drop cap is floated to the left and then offset to the right using
<code>padding-left</code>. It has a background image rendered in the
padding area. Subsequent lines are indented for as long as the drop cap is on
their left.</p>

CSS

.padded-dropcap1 { padding-left:39%; font-size:80px; line-height:normal;
font-weight:bold; vertical-align:middle;
background:url("rose.jpg") no-repeat -65px 0 white; }

.padded-dropcap2 { padding-left:275px; padding-right:10px; float:left;
position:relative; top:-0.25em; margin-bottom:-0.2em;
margin-left:-3px; margin-right:3px; color:black;
background:url("grabber.jpg") no-repeat 5px 20px white;
font-size:84px; line-height:normal; font-weight:bold; }

CHAPTER 18 I DROP CAPS

Padded Graphical Drop Cap

Problem

You want to indent or center a drop cap and style its background from the beginning of the
line through the drop cap. Behind the padding, you want to put a background image, such
as a banner, an ad, or a grabber, to draw the reader into the text.

In general terms, you want to pad the starting position of an inline element.

Solution

A padded drop cap is indented using padding. You can use padding to center a drop cap or
to indent it by a fixed amount. The background color or background image shows through
the padding.

To create a padded drop cap, you can mark up the first letter or letters of a terminal block
element using an inline element. Assigning this element to a class, such as "padded-
dropcap", makes it easy to style. You can use padding-1left to move the drop cap to the
right. You can center the drop cap by using a value for padding-1left that is slightly less
than 50%. Lower the percentage as needed to compensate for the width of the content in the
drop cap. You can use margin-left to put transparent space on the left of the drop cap. You
can use padding-right to put padding between the drop cap and the following text. You
can also use margin-right to put transparent space between the drop cap and the following
text.

Limitations

In Internet Explorer 8 and 9, the background of padded-dropcapl is raised by 25px. This is
addressed by a CSS rule for IE 8 and 9 that lowers the background image by 25px.

Pattern

HTML

CSS

<INLINE class="padded-dropcap"> CONTENT </INLINE>

.padded-dropcap { padding-left:+VALUE;
padding-right:+VALUE;
margin-left:+VALUE;
margin-right:+VALUE;
background:url("FILE.EXT") REPEAT HORIZONTAL VERTICAL COLOR; }

Location

This pattern works anywhere you can use an inline element.

Limitations

If you are centering the drop cap and the width of the drop cap’s parent is variable, the
position of the drop cap will be close to center, but may not always remain perfectly
centered as the parent’s width changes. If you need it to be precisely centered, you need to
set the width of the drop cap’s parent to a fixed value.

As you extend the padding on the left, you extend the background on the left. This is part of
the design of this type of drop cap. If you have a background behind the drop cap, but you
do not want to show the background on the left, you can use margin-left instead of
padding-1left to indent the drop cap.

Tip

You can combine this pattern with other Drop Cap design patterns.

Related to

Aligned Drop Cap, First-Letter Drop Cap, Hanging Drop Cap, Floating Graphical Drop Cap;
Margin, Padding, Background (Chapter 6)

435

CHAPTER 18 " DROP CAPS

436

Floating Drop Cap

%3 Floating Drop Cap - Mozilla Firefox

Fie Edt VYew Higtoy Bookmorks Tools Heb

Floating Drop Cap

the height of the line. Using top, margin-left, margin-right, and
margin-bottom, you can adjust the positien of the drep cap and the
position of the text next to the drop cap.

F loating Drop Cap Variation 1. This drop cap is lowered withaut affecting

B |loating Drop Cap Variation 2. Netice how the drop cap has been
moved up and to the right, and the text has moved to the right.

HTML

<h1>Floating Drop Cap</h1>

<p>Floated Drop Cap Variation 1. This
drop cap is lowered without affecting the height of the line.
Using <code>top</code>, <code>margin-left</code>, <code>margin-right</code>,
and <code>margin-bottom</code>, you can adjust the position of the drop cap
and the position of the text next to the drop cap.</p>

<p><span class="floating-dropcap2"sF</spansloated Drop Cap Variation 2.
Notice how the drop cap has been moved up and to the right, and the text
has moved to the right.</p>

CSS

.floating-dropcap1r { float:left; position:relative; top:-0.25em;
margin-left:-3px; margin-right:3px; margin-bottom:-0.6em;
font-size:80px; line-height:normal; font-weight:bold; }

.floating-dropcap2 { float:left; position:relative; top:-0.35em;
margin-left:20px; margin-right:5px; margin-bottom:-0.7em;
font-size:80px; line-height:normal; font-weight:bold;
color:white; background-color:black; padding:0 20px;
background-image:url("marble. jpg");
border-left:2px groove black; border-right:2px ridge black;
border-top:2px groove black; border-bottom:2px ridge black; }

CHAPTER 18 I DROP CAPS

Floating Drop Cap

Problem

You want to display the first letter of a block as a drop cap without increasing the height of
the first line. You also need to position the drop cap higher or lower and control its distance
from neighboring text.

Solution

In general, you can float a drop cap to the left and use margins and relative positioning to
fine-tune its position. Specifically, you can mark up the first letter or letters of a terminal
block element using an inline element. Assigning this element to a class, such as
"floating-dropcap"”, makes it easy to style. You can use float:left to float the drop cap to
the left. You can use position:relative to prepare the drop cap for positioning. You can
use top to move the drop cap up or down—negative values move it up, and positive values
move it down. You can use margin-left to move the drop cap left or right—negative values
move it to the left, and positive values move it to the right. You can use margin-right to
change the space between the drop cap and text—positive values increase the space, and
negative values shrink it. You can use margin-bottom to extend or shrink the transparent
area below the drop cap. By using positive values in margin-bottom, you can extend down
the influence of the float so that text continues to indent on its right.

Pattern

HTML

CSS

<INLINE class="floating-dropcap"> TEXT </INLINE>

.floating-dropcap { float:left;
position:relative;
top:+VALUE;
margin-left:+VALUE;
margin-right:tVALUE;
margin-bottom:+VALUE; }

Location

This pattern works anywhere you can use an inline element.

Limitations

If other elements in the same line are also floated left, they will be stacked between the drop
cap and the text. This breaks the dropcap effect. Floats sometimes trigger bugs in browsers.

Advantages

The floating drop cap is simple to position, and is one of the most flexible to position and
style. It allows text to wrap around the bottom of the float, which is the most common
dropcap style.

Tips

To compensate for the extra empty space that occurs on the left of large fonts, you can shift
the drop cap to the left by assigning a negative value to margin-left.

To compensate for the extra empty space below a drop cap that is created by a negative
value in top, you can assign a negative value to margin-bottom.

Related to

Floating Graphical Drop Cap; Margin (Chapter 6); Relative, Float and Clear (Chapter 7);
Offset Float, Offset Relative (Chapter 8)

437

CHAPTER 18 " DROP CAPS

438

Floating Graphical Drop Cap

3 Floating Graphical Drop Cap - Mozilla Firefox

Eie Erfit Yew Higtory Hookmarks Tools Heb

Floating Graphical Drop Cap

loating Graphical Drop Cap. The letter F has been
C i il covered by the dropcap image. Screen readers read the
J text and visual users see the image. If the browser
cannot display the dropcap image, the text becomes
visible. The text can be styled so that it looks good if it
ever becomes visible. Because the drop cap is floated, the text wraps around
the battom of the drop cap when it clears the drop cap's battem margin.

HTML
<h1>Floating Graphical Drop Cap</hi>

<p><span class="floating-dropcap"sF<span»loating
Graphical Drop Cap. The letter F has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image, the text becomes visible.
The text can be styled so that it looks good if it ever becomes visible.

Because the drop cap is floated, the text wraps around the bottom of the drop cap

when it clears the drop cap's bottom margin.</p>

CSS

.floating-dropcap { float:left; position:relative; top:5px;
margin-left:80px; margin-right:12px; margin-bottom:0px;
width:100px; height:90px;
line-height:80px; text-align:right;
font-size:100px; font-weight:bold;
color:black; background-color:white; }

.floating-dropcap span { position:absolute;
width:100px; height:90px; left:0; top:0; margin:o;
background-image:url("f.jpg");
background-repeat:no-repeat; }

CHAPTER 18 I DROP CAPS

Floating Graphical Drop Cap

Problem You want to create a floating drop cap where the dropcap text is replaced by a graphic.

Solution Combine the Floating Drop Cap pattern with the Text Replacement pattern.

To use the Floating Drop Cap design pattern, tag the dropcap text in a terminal block
element with an inline element assigned to the "floating-dropcap" class. Position the
drop cap using float:left, position:relative, top, margin-left, margin-right, and
margin-bottom. See Floating Drop Cap for details.

To add in the Text Replacement design pattern, you can use width and height to size the

float to the exact size of the dropcap image. You can also embed an empty span inside the
float and use background-image to display the dropcap image as its background. You can
style the embedded span to cover the text in the dropcap span using position:absolute,
left:0, top:0, and margin:0. See Text Replacement in Chapter 10 for details.

Pattern

HTML <INLINE class="floating-dropcap"> TEXT </INLINE>

CSS .floating-dropcap { float:left;
position:relative; top:-VALUE;
margin-left:+VALUE; margin-right:+VALUE;
margin-bottom:VALUE;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT; }

.floating-dropcap span { position:absolute;
width: IMAGE_WIDTH; height: IMAGE_HEIGHT;
left:0; top:0; margin:0;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

Location This pattern works anywhere you can use an inline element.

Advantages The graphical floating drop cap is simple to position. It degrades gracefully when the
graphic cannot be displayed because the dropcap text is displayed in its place. You can style
the dropcap text so that it looks good whenever the browser cannot display the background
image. Lastly, screen readers can read the dropcap text without any problem, while sighted
users see the image in its place. A border around the terminal block containing the drop cap
includes the drop cap.

Disadvantages It has the disadvantages of a float, such as triggering browser bugs and interacting with
other floats.

Related to Padded Graphical Drop Cap, Floating Drop Cap, Marginal Graphical Drop Cap; Width,
Height, Sized (Chapter 5); Margin, Background (Chapter 6); Positioned, Closest Positioned
Ancestor, Absolute, Relative, Float and Clear (Chapter 7); Offset Float, Offset Relative,
Aligned and Offset Absolute (Chapter 8); Text Replacement (Chapter 10)

439

CHAPTER 18 " DROP CAPS

440

Marginal Drop Cap

3 Warginal Drop Cap - Mozilla Firefox

Fie Edt Yew Hitory Boomerks Tools Heb

Marginal Drop Cap

arginal Drop Cap. The marginal drop cap indents the text to the right
and uses absolute positioning to move the drop cap into the margin
craated by the indent. All taxt stays to the right of the drop cap. In
other words, text does not wrap back under the drop cap when it
extends below the drop cap.

HTML

<h1>Marginal Drop Cap</h1>

<p class="indent"><span class="marginal-dropcap"»M</spanyarginal Drop Cap.
The marginal drop cap indents the text to the right and uses absolute
positioning to move the drop cap into the margin created by the indent. All
text stays to the right of the drop cap. In other words, text does not wrap
back under the drop cap when it extends below the drop cap.</p>

CSS
.indent { position:relative; margin-left:72px; margin-top:20px; }
.marginal-dropcap { position:absolute; left:-77px; top:-16px;

font-size:80px; font-weight:bold;
color:black; background-color:white; }

CHAPTER 18 I DROP CAPS

Marginal Drop Cap

Problem You want to display the first letter of a block as a drop cap in the block’s margin. You do not
want the text to wrap back under the drop cap when it flows below the drop cap.

Solution Use the Indented design pattern (Chapter 8) to create a left margin in the block and use
absolute positioning to move the drop cap into the left margin. Use margin-left to indent
the block element to make room for the drop cap in the left margin. Optionally, use margin-
top:+VALUE to insert additional space above the block to make room for the drop cap.
Assign position: relative, position:absolute, or position:fixed to the block so that
the drop cap can be absolutely positioned relative to it. Tag the dropcap text with a span
assigned to the marginal-dropcap class (or another class of your choosing). Use
position:absolute and left:-INDENT to move the drop cap into the block’s margin. The
negative indent assigned to the drop cap is typically the negative of the indent assigned to
the block. Occasionally, you may want to make it a few pixels larger than the block’s indent
because larger fonts have extra whitespace on their left. Use top:+VALUE to move the drop
cap up or down.

Pattern
HTML <BLOCK class="indent">
<INLINE class="marginal-dropcap"> TEXT </INLINE>
</BLOCK>
css .indent { position:relative;
margin-left:+INDENT;
margin-top:+VALUE; }
.marginal-dropcap { position:absolute;
left:-INDENT,;
top:+VALUE; }
Location This pattern works anywhere you can have a terminal block element.
Advantages The marginal drop cap is simple to position, but it requires manually playing with the size

of the margin and the size of the indent to accommodate the size of the drop cap’s font.

Disadvantages A border around the block containing the drop cap will not include the drop cap. This
happens because the pattern uses margin-left instead of padding-left to create the
indent. This avoids a positioning bug in Internet Explorer 6, but excludes the drop cap from
being within the border around the block.

Related to Margin (Chapter 6); Indented (Chapter 8); Positioned, Closest Positioned Ancestor,
Absolute, Relative (Chapter 7); Indented, Offset Absolute, Aligned and Offset Absolute
(Chapter 8); Left Marginal (Chapter 13)

441

CHAPTER 18 " DROP CAPS

442

Marginal Graphical Drop Cap

3 Warginal Graphical Drop Cap - Nozilla Firefa

fie Gt Yew Hstry Bockmaks Tools Heb

Marginal Graphical Drop Cap

arginal Graphical Drop Cap. The lstter M has bean covered by
the dropcap Image. Scraen readers read the text and visual
users see the image. If the browser cannot display the dropcap

image, the text becomes visible,

HTML

<h1>Marginal Graphical Drop Cap</hi>
<p class="indent">M<spansarginal
Graphical Drop Cap. The letter M has been covered by the dropcap image.
Screen readers read the text and visual users see the image.
If the browser cannot display the dropcap image,
the text becomes visible.</p>

CSS

.indent { position:relative; margin-left:120px; margin-top:20px; }

.graphic-dropcap { position:absolute; left:-120px; top:6px;
width:100px; height:90px;
line-height:70px; padding-left:16px; text-align:right;
font-size:80px; font-weight:bold;
color:black; background-color:white; }

.graphic-dropcap span { position:absolute;
width:100px; height:90px; left:0; top:0; marxgin:0;
background-image:url("g.jpg");
background-repeat:no-repeat; }

Download from Wow! eBook <www.wowebook.com>

CHAPTER 18 I DROP CAPS

Marginal Graphical Drop Cap

Problem

You want to display the first letter of a paragraph as an image in a marginal drop cap. If the
browser cannot display the image, you want the dropcap text to be visible. You want
screenreader software to read the drop cap properly.

Solution

Combine the Marginal Drop Cap design pattern, the Text Replacement design pattern
(Chapter 10), and the Top-Offset Sized Absolute Element design pattern.

Indent a terminal block element to make room for the drop cap. Make the block positioned
so the drop cap can be absolutely positioned relative to it. Tag the dropcap text with a span,
and use absolute positioning to move it into the block’s indent. Embed a span into the drop
cap to display the dropcap graphic as its background image. Absolutely position the
embedded span to cover the dropcap text so that it is hidden behind it.

Pattern

HTML

CSS

<BLOCK class="indent">

<INLINE class="graphic-dropcap"> TEXT <spany</span»</INLINE>
</BLOCK>

.indent { position:relative;
margin-left:+INDENT;
margin-top:+VALUE; }

.graphic-dropcap { position:absolute;
left: -INDENT;
top:1VALUE;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
line-height:+VALUE;
padding-left:+VALUE;
text-align:right; }

.graphic-dropcap span { position:absolute;
width:IMAGE_WIDTH;
height:IMAGE_HEIGHT;
margin:o;
left:o;
top:0;
background-image:url("FILE.EXT");
background-repeat:no-repeat; }

Solution details

To make room for the drop cap, you can indent the terminal block element containing
the drop cap using margin-left:+VALUE. The indent should be as large as or larger than
the width of the dropcap image. The larger the indent, the more space you can put
between the drop cap and the text. To move the drop cap above the block, you can use
margin-top: +VALUE to make room for it. Because the drop cap is positioned relative to
the block, you need to position the block using position:relative. You could also use
position:absolute or position:fixed to make the block positioned.

443

CHAPTER 18 " DROP CAPS

5] Marginal Graphical Drop Cap - Mozilla Firefee

Bie Edt Yew Histoey Boowmaks Toos Heb

Marginal Graphical Drop Cap

arginal Graphical Drop Cap. The letter M has baen coverad by
the dropcap image. Scraen readers read the text and visual
users see the image. If the browser cannot display the dropcap
Image, the text bacomes visible,

What the Marginal Graphical Drop Cap example looks like when the browser cannot load or display the image

Marginal Graphical Drop Cap cont.

Solution details You can tag the dropcap text with a span and assign it to the graphic-dropcap class. To

cont. move the drop cap into the space created by the indent, you can use
position:absolute, and you can set left to the negative of the indent you assigned to
margin-left. You can use top to move the drop cap up or down in relation to the block.
You need to use width and height to size the drop cap to the exact size of the image.
This ensures the dropcap text will be completely covered by the dropcap image.

In case the image cannot be displayed (see Figure 18-1), you can use font properties to
style the dropcap text. You can use 1ine-height to move the dropcap text up or down.
You can use text-align:right to move the dropcap text next to the block and padding-
left:+VALUE to move it even closer to the block.

To display the dropcap image over the top of the dropcap text, you can embed a span in the
graphical dropcap span and use background-image to display the dropcap image in it. To
hide the dropcap text behind the image, the image should not have a transparent
background. To position the dropcap image over the dropcap text, you can use
position:absolute, left:0, top:0, and margin:0. You need to use width and height to size
the span to the image.

Location This pattern works anywhere you can have a terminal block element.

Advantages The graphical drop cap is simple to position. It degrades gracefully when the graphic
cannot be displayed because the dropcap text is displayed in its place. You can style the
dropcap text so that it looks good whenever the browser cannot display the background
image. Lastly, screen readers can read the dropcap text without any problem, while
sighted users see the image in its place.

444

CHAPTER 18 I DROP CAPS

Marginal Graphical Drop Cap cont.

Disadvantages

Like all marginal design patterns, a border around the terminal block containing the
drop cap will not include the drop cap.

Related to

Floating Graphical Drop Cap, Padded Graphical Drop Cap; Margin (Chapter 6);
Positioned, Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Indented,
Offset Absolute, Aligned and Offset Absolute (Chapter 8); Top-Offset Sized Absolute
Element (Chapter 9); Text Replacement (Chapter 10), Horizontal-Aligned Content
(Chapter 12); Left Marginal (Chapter 13)

445

CHAPTER 19

Callouts and Quotes

This chapter discusses design patterns that create callouts and quotes.

A callout is a key point pulled out of the document to grab a reader’s attention so he or she will read
the document and remember the point after having read it. A callout is repeated twice in a document:
once as part of the body of the document and once again for display as a callout. A callout is displayed
prominently so the reader cannot miss it. Because a callout is extracted from a document’s text, it is
often an inline element, although it could be a block element.

I'have grouped callouts and quotes together because they are closely related. Callouts are also
known as pull quotes because they are quotes pulled from the document. There are differences between
pull quotes and quotes. A pull quote (or callout) requires the same text to be repeated twice within a
document, whereas a quote occurs only once. Also, a quote typically includes a citation, whereas a pull
quote does not. Lastly, quotes belong visually and semantically as part of the content, whereas callouts
are visually and semantically set apart from the content and are often moved to the left or right sides or
margins of a document. In the rest of this chapter, I will refer to pull quotes as callouts to avoid
confusing them with regular quotes.

Chapter Outline

e Left Floating Callout shows how to create a callout and float it to the left.
e Right Floating Callout shows how to create a callout and float it to the right.
e Center Callout shows how to create a callout and center it.

¢ Left Marginal Callout shows how to create a callout in the left margin using the
left marginal design pattern.

e Right Marginal Callout shows how to create a callout in the right margin using
the right marginal design pattern.

¢ Block Quote shows how to create a block quote with a citation that is
automatically centered and styled with graphical background quotes.

¢ Inline Block Quote shows how to render an inline quote as a block quote.

¢ Inline Quote shows how to create an inline quote with a citation.

447

CHAPTER 19 ' CALLOUTS AND QUOTES

448

Left Floating Callout

%2 Loft Floating Callout - Mozilla Firefox

Eie Edit Yew Histoy HBookmarks Tools Hep

Left Floating Callout

A callout makes the key point stand out to the reader. You can float 2

callout to the left using ficat:1eft. You
can use widch to set the callout's width,
Makes the key Yau ¢an use margin to put distance
between the callout and text cutside the
callout. You can use padding to put space
betweaen the callout's Internal text and its bordars. You can use
positicn:relative and top to adjust the vertical position of the callout.

point stand out

HTML
<h1>Left Floating Callout</h1>

<p>A callout makes the key point stand out to the reader.
<span class="callout"sMakes the key point stand out</span»

You can float a callout to the left using <code>float:left</code>.

You can use <code>width</code> to set the callout's width.

You can use <code>margin</code> to put distance between the callout and
text outside the callout. You can use <code>padding</code> to put space
between the callout's internal text and its borders. You can use
<code>position:relative</code> and <code>top</code> to adjust the vertical
position of the callout.</p>

CSS

.callout-left { float:left; width:200px; padding:6px;
margin:10px 40px 10px 30px;
position:relative; top:10px;
font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 I CALLOUTS AND QUOTES

Left Floating Callout
Problem You want to remove content from the flow and display it prominently to the reader on the
left side.

In general terms, you want to pull content out of the flow to emphasize it.

Solution A callout is removed from the normal flow and styled to make its content stand out to the
user. It usually has a larger font, margins, borders, and background around the outside to
set it apart from surrounding content. Callouts can include all kinds of content, such as
quotes, key phrases, attention getters, and so on.

You can assign an inline element to the callout class. You can use float:left to float the
callout to the left. You can use padding to put distance between the callout’s content and its
border. You can use position:relative to position the callout so you can move it. You can
use top to move the callout up or down. You can use maxrgin-left to move the callout to the
right. You can use margin-right to put distance between the callout’s right border and
external text. You can use margin-top and margin-bottom to put distance between the
callout’s top and bottom borders and external text.

Pattern

HTML <INLINE class="callout"»> CONTENT </INLINE>

CSS .callout { float:left; position:relative;

width:+VALUE;

padding:+VALUE;

margin-top:+VALUE; margin-bottom:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
top:+VALUE; }

Location This pattern works on any element.

Limitations If you left-float any other elements close to where the callout is floated, they may stack next
to each other. This would likely detract from the callout effect. Floats tend to bring out bugs
in browsers.

Tips A callout should be positioned in the text where it makes sense if it were read as part of the
text. A screen reader will read it where it occurs, and a browser that does not support
absolute positioning will display it inline where it occurs. I recommend placing the callout’s
markup immediately after the text it is quoting. Screen readers will read it twice, which
emphasizes the callout aurally through repetition just like it is emphasized visually.

Related to Right Floating Callout, Center Callout; Floated Box (Chapter 4); Width (Chapter 5); Margin,

Padding (Chapter 6); Float and Clear, Relative Float (Chapter 7); Offset Float (Chapter 8)

449

CHAPTER 19 ' CALLOUTS AND QUOTES

450

Right Floating Callout

) Right Floating Callout - Mozilla Firefox

Fie Edt Yew Hstoy Bookmerks Tools Heb

Right Floating Callout

The main feature of the floating callout is that text can wrap under and over
it because it is a float. You can float a callout to the right using float:right.
You can use width to sef the callout's width.
You can use margin to put distance between
the callout and text outside the callout. You
€an use padding to put space between the and over
callout's internal text and its borders. You can

use position:relative and top to adjust the vertical position of the callout,

Wraps under

HTML
<h1>Right Floating Callout</h1>

<p>The main feature of the floating callout is that text can wrap
under and over it because it is a float.

<span class="callout"sWraps under and over</span»

You can float a callout to the right using <code>float:right</code>.

You can use <code>width</code> to set the callout's width.

You can use <code>margin</code> to put distance between the callout and
text outside the callout. You can use <code>padding</code> to put space
between the callout's internal text and its borders. You can use
<code>position:relative</code> and <code>top</code> to adjust the vertical
position of the callout.</p>

CSS

.callout { float:right; width:200px; padding:6px;
maxgin:10px 30px 10px 40px;
position:relative; top:10px;
font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 I CALLOUTS AND QUOTES

Right Floating Callout

Problem You want to remove content from the flow and display it prominently to the reader on the
right side.

In general terms, you want to pull content out of the flow to emphasize it.

Solution A callout is removed from the normal flow and styled to make its content stand out to the
user. It usually has a larger font, margins, borders, and background around the outside to
set it apart from surrounding content. Callouts can include all kinds of content, such as
quotes, key phrases, attention getters, and so on.

You can assign an inline element to the callout class. You can use float:right to float the
inline element to the right content edge of its parent terminal block element. You can use
padding to put distance between the callout’s content and its border. You can use
position:relative to position the callout so you can move it. You can use top to move the
callout up or down. You can use margin-left to put distance between the callout’s left
border and external text. You can use margin-right to move the callout to the left. You can
use margin-top and margin-bottom to put distance between the callout’s top and bottom
borders and external text.

Pattern

HTML <INLINE class="callout"> CONTENT </INLINE>

CSS .callout { float:right; position:relative;

width:+VALUE;

padding:+VALUE;

margin-top:+VALUE; margin-bottom:+VALUE;
margin-left:+VALUE; margin-right:+VALUE;
top:+VALUE; }

Location This pattern works on any element.

Limitations If you right-float any other elements close to where the callout is floated, they may stack
next to each other. This would likely detract from the callout effect. Floats tend to bring out
bugs in browsers.

Tip A callout should be positioned in the text where it makes sense if it were read as part of the
text.

Related to Left Floating Callout, Center Callout; Floated Box (Chapter 4); Width (Chapter 5); Margin,

Padding (Chapter 6); Float and Clear, Relative Float (Chapter 7); Offset Float (Chapter 8)

451

CHAPTER 19 ' CALLOUTS AND QUOTES

452

Center Callout

%3 Center Callout - Mozilla Firefox

Fie Edt Yew Go Eookmarks Todls Help

Center Callout

display:block clears text an each side of the callout. width sets the
callout's width, margin-top and margin-bettom set the distance above
and below the center callout.

Center Callout!

margin-left:aute and margin-right:auto center the callout in its
parent terminal block element.position: relative and left adjust the
harizontal position of the callout away from center.

HTML

<h1>Center Callout</h1>

<p><code>display:block</code> clears text on each side of the callout. <code>

width</code> sets the callout's width. <code>margin-top</code> and <code>
margin-bottom</code> set the distance above and below the center callout.

Centered Callout!

<code>margin-left:auto</code> and <code>margin-right:auto</code> center the
callout in its parent terminal block element.<code>position:relative</code>
and <code>left</code> adjust the horizontal position of the callout

away from center.</p>

CSS

.callout { display:block; width:300px; margin:20px auto; padding:6px;

position:relative; left:0%;

font-size:22px; line-height:normal; font-weight:bold;
text-align:center; color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 I CALLOUTS AND QUOTES

Center Callout

Problem You want to remove content from the flow and display it prominently to the reader in the
center of the text with no content flowing to its left or right.

In general terms, you want an inline element to be rendered like a block element.

Solution A callout is removed from the normal flow and styled to make its content stand out to the
user. It usually has a larger font, margins, borders, and background to set it apart from
surrounding content. Callouts can include all kinds of content, such as quotes, key phrases,
attention getters, and so forth.

You can assign an inline element to the callout class. You can use display:block to
display the inline element as a block element. You can use width to set the callout’s width. If
content is wider than the width, a browser wraps the content and extends the height of the
callout. You can use margin-left:auto and margin-right:auto to center the callout. You
can use margin-top and margin-bottom to put space above the callout’s top border and
below its bottom border. You can use padding to put distance between the callout’s content
and its border. You can use position:relative and left to move it to the left or right of
center. Using a percentage in 1left is convenient because it is a percentage of the callout
container’s width.

Pattern
HTML <INLINE class="callout"> CONTENT </INLINE>
CSS .callout { display:block; position:relative;
width:+VALUE;
margin-top:+VALUE; margin-bottom:+VALUE;
left:+VALUE%; padding:+VALUE;
margin-left:auto; margin-right:auto; }
Location This pattern works on any element.
Limitations CSS 3 provides no automatic way to flow content on the left or right of a centered callout.
Thus, a centered callout extends across the entire width of its parent.
Tips A callout should be positioned in the text where it makes sense if it were read as part of the
text.
Related to Left Floating Callout, Right Floating Callout; Display, Block Box (Chapter 4); Width (Chapter

5); Margin, Padding (Chapter 6); Relative (Chapter 7); Offset Relative (Chapter 8); Center
Aligned (Chapter 9); Blocked (Chapter 11)

453

Download from Wow! eBook <www.wowebook.com>

CHAPTER 19 ' CALLOUTS AND QUOTES

454

Left Marginal Callout

%3 Loft Marginal Callout - Mozilla Firaefox

Fie Erit Yew Go Cookmarks Tools Help

Left Marginal Callout

The main feature of the marginal callout is that text
Text does does not wrap under or over the callout because
not wrap the callout is in the margin. You can indent the
under... block to make room for the callout an the left. You
can use absolute positioning to pull the callout out

of the text and move it into the left margin.

HTML
<h1>Left Marginal Callout</h1>

<p class="left-marginal"s
Text does not wrap under...
The main feature of the marginal callout is that text does not wrap
under or over the callout because the callout is in the margin.
You can indent the block to make room for the callout on the left.
You can use absolute positioning to pull the callout out of the text
and move it into the left margin.</p>

CSS

.left-marginal { position:relative; width:470px; margin-left:230px; }

.callout { position:absolute; left:-220px; width:160px; margin-top:5px;
line-height:normal; text-align:center; padding:5px 0;
font-size:22px; font-weight:bold;
color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 I CALLOUTS AND QUOTES

Left Marginal Callout

You want to excerpt text out of the normal flow and move it into the left margin as a callout.
You want items in the margin to be positioned vertically where they would have been in the
flow. You do not mind using fixed widths. You do not use many callouts, so the risk of
overlap is minimal.

Problem

You can indent text to create a margin on the left and then use absolute positioning to
remove content from the normal flow into the margin.

You can use margin-left to indent the terminal block. You can use position:relative to
position the block so its inline children can be positioned relative to its margin. You can use
margin-right:auto and width to fix the width of the terminal block so that the content does

Solution not reflow. Without a fixed width, content reflows when the viewport resizes, and reflow
may change the vertical location of callouts, causing them to overlap.

You can assign an inline element to the callout class. You can use position:absolute to
remove the inline element from the flow. You can use width to size the inline element to fit
into the margin. You can assign a negative value to left to move the inline element into the
left margin. You can use margin-top to move the inline element up or down.

Pattern
HTML <TERMINAL_BLOCK class="left-marginal">
TEXT
<INLINE_TEXT class="callout"> CALLOUT TEXT </INLINE_TEXT>
TEXT
</TERMINAL_BLOCK>
css .left-marginal { position:relative; width:+VALUE;
margin-left:+VALUE; margin-right:auto; }
.callout { position:absolute;
left:-VALUE;
width:+VALUE;
margin-top:+VALUE; }
Location This pattern works only on inline elements inside terminal block elements.

The layout created by this pattern does not protect content from overlapping. It is very easy
Caution to move callouts into the margin and to have them overlap each other and other content
moved into the margin.

A callout should be positioned in the text where it makes sense if it were read as part of the
text.

Tips You can combine this pattern with Right Marginal Callout.

This pattern is visually similar to HTML tables, but the markup is more flexible. You can pull
out any inline content and move it into the margin.

Related to Right Marginal Callout; Left Marginal (Chapter 13)

455

CHAPTER 19 ' CALLOUTS AND QUOTES

456

Right Marginal Callout

3 Right Marginal Callout - Mozilla Firefox (=13

Fie Edt Yew Go Cookmarks Tools Help

Right Marginal Callout

The main feature of the marginal callout is that text

does not wrap under or over the callout because the Text does
callout Is in the margin. You can indent the block to not wrap
make room for the callout on the right. You can use under...
absolute positioning to pull the callout out of the text

and move it into the right margin.

HTML
<h1>Right Marginal Callout</h1>

<p class="right-marginal”s
<span class="callout"»Text does not wrap under...

The main feature of the marginal callout is that text does not wrap

under or over the callout because the callout is in the margin.

You can indent the block to make room for the callout on the right.

You can use absolute positioning to pull the callout out of the text
and move it into the right margin.</p>

CSS

.right-marginal { position:relative; width:490px; margin-right:230px; }

.callout { position:absolute; right:-200px; width:160px; margin-top:5px;
line-height:normal; text-align:center; padding:5px 0;
font-size:22px; font-weight:bold;
color:black; background-color:gold;
border-left:1px solid black; border-right:1px solid black;
border-top:6px solid black; border-bottom:6px solid black; }

CHAPTER 19 I CALLOUTS AND QUOTES

Right Marginal Callout

Problem You want to excerpt text out of the normal flow and move it into the right margin as a
callout. You want items in the margin to be positioned vertically where they would have
been in the flow. You do not mind using fixed widths. You do not use many callouts, so the
risk of overlap is minimal.

Solution You can indent text to create a margin on the right and then use absolute positioning to
remove content from the normal flow into the margin.

You can use margin-right to indent the terminal block. You can use position: relative
to position the block so its inline children can be positioned relative to its margin. You can
use margin-left:auto and width to fix the width of the terminal block so that the content
does not reflow. Without a fixed width, content reflows when the viewport resizes, and
reflow may change the vertical location of callouts, causing them to overlap.

You can assign an inline element to the callout class. You can use position: absolute to
remove the inline element from the flow. You can use width to size the inline element to fit
into the margin. You can assign a negative value to left to move the inline element into the
left margin. You can use margin-top to move the inline element up or down.

Pattern

HTML <TERMINAL_BLOCK class="right-marginal">
TEXT
<INLINE_TEXT class="callout"> CALLOUT TEXT </INLINE_TEXT>
TEXT
</TERMINAL_BLOCK>

CSS .right-marginal { position:relative; width:+VALUE;
margin-right:+VALUE; margin-left:auto; }
.callout { position:absolute;
right:-VALUE;
width:+VALUE;
margin-top:+VALUE; }

Location This pattern works only on inline elements inside terminal block elements.

Caution The layout created by this pattern does not protect content from overlapping. It is very easy
to move callouts into the margin and to have them overlap each other and other content
moved into the margin.

Tips A callout should be positioned in the text where it makes sense if it were read as part of the
text.

You can combine this pattern with Left Marginal Callout.

This pattern is visually similar to HTML tables, but the markup is more flexible. You can pull
out any inline content and move it into the margin.

Related to Left Marginal Callout; Right Marginal (Chapter 13)

457

CHAPTER 19 ' CALLOUTS AND QUOTES

Block Quote

|00 Mozilla Firefox

Block Quote

A block quote contains one or more paragraphs,
and a citation. A block quote is not repeated twice
in the document like a callout.

This example includes an embedded, decorative
division so it can display a graphical closing quote.

Pro HTML5 and CSS3 Design Patterns

HTML

<h1>Block Quote</hi1>

<blockquotes<divy
<p>A block quote contains one or more paragraphs, and a citation.
A block quote is not repeated twice in the document like a callout.</p>

<p>This example includes an embedded, decorative division so it can display
a graphical closing quote.</p>

<cite>Pro HTML5 and CSS3 Design Patterns<cite>

</div></blockquote>

CSS

blockquote { width:500px; margin:10px auto;
position:relative; left:0%; text-align:justify;
line-height:1.3em; color:black;
padding-top:40px; padding-left:40px;
background:url("dq1.jpg") no-repeat top left; }

blockquote div { padding-bottom:10px; padding-right:40px;
background:url(“dq2.jpg") no-repeat bottom right; }

blockquote p { margin:0; margin-bottom:10px; }

blockquote cite { display:block; text-align:right; font-size:0.9em; }

458

CHAPTER 19 I CALLOUTS AND QUOTES

Block Quote

Problem You want to create a block quote. You want to set a quote apart from the rest of the content
and make it easily recognizable as a block quote. You want the block quote to include one or
more paragraphs and a citation. You want it to be styled with graphical opening and closing
quotes.

Solution Like a center callout, a block quote usually has a different font, margins, borders, and
background to set it apart from surrounding content.

You can embed the block quote in the <blockquote> element. You can use width to set its
width. You can use margin-left:auto and margin-right:auto to center it. You can use
margin-top and margin-bottom to put space above and below it. You can use
position:relative and left to move it to the left or right of center.

You can use background to apply a background image to the block quote. You can use
padding-top and padding-left to put space between the image and the block quote’s text.
You can also embed a division immediately inside the block quote to display a second
background image. You can use padding-bottom and padding-right to put space between
its image and the block quote’s text.

You can use the <cite> element to place a citation following the block quote. You can place
any inline content in <cite>. A citation represents the title of a work, e.g., a song, a paper,
an essay, a script, etc.

Pattern

HTML <blockquote><div>
<p> QUOTE </p> <p> MORE QUOTE </p>
<cite> CITATION </cite>
</div></blockquote>

CSS blockquote { width:+VALUE; margin:+VALUE;
position:relative; left:iVALUE%;
padding-top:+VALUE; padding-left:+VALUE;
background:url("FILE.EXT") no-repeat top left; }

blockquote div { padding-bottom:+VALUE; padding-right:+VALUE;
background:url("FILE.EXT") no-repeat bottom right; }

blockquote p { STYLING_PARAGRAPHS_IN_A BLOCKQUOTE }

blockquote cite { STYLING_CITATIONS IN A_BLOCKQUOTE }

Location This pattern works only inside block containers because <blockquote> is a block. See Inline
Block Quote when you need the block quote to be inline.

Tip A block quote can contain any inline content, including images and objects.

Related to Center Callout, Inline Block Quote, Inline Quote; Display, Block Box (Chapter 4); Width
(Chapter 5); Margin, Padding, Background (Chapter 6); Relative (Chapter 7); Offset Relative
(Chapter 8)

459

CHAPTER 19 ' CALLOUTS AND QUOTES

Inline Block Quote

[NaNd) Mozilla Firefox

Inline Block Quote

This quote is embedded in a paragraph, but looks like a block quote.

An inline block quote is marked up with inline
elements, but looks like a block quote because its
elements are rendered using display:block.

I embedded a decorative span in this example to
display a graphical closing quote.
Pro HTML5 and CSS3 Design Patterns

HTML

<h1>Inline Block Quote</h1>
<p>This quote is embedded in a paragraph, but looks like a block quote.

<span»
An inline block quote is marked up with inline elements, but looks like a
block quote because its elements are rendered using <code>display:block</code>.
<bx />
I embedded a decorative span in this example to display
a graphical closing quote.

<citesPro HTML5 and CSS3 Design Patterns</cite> </p>
CSS

.blockquote { display:block; width:500px; margin:10px auto;
position:relative; left:0%; text-align:justify;
line-height:1.3em; color:black;
padding-top:40px; padding-left:40px;
background:url("dq1i.jpg") no-repeat top left white; }

.blockquote span { display:block;
padding-bottom:20px; padding-right:40px;
background:url("dq2.jpg") no-repeat bottom right; }

.blockquote cite { display:block; text-align:right; font-size:0.9em; }

460

CHAPTER 19 I CALLOUTS AND QUOTES

Inline Block Quote

Problem

You want to create a block quote inside a paragraph.

You cannot use <blockquote> because it cannot be embedded in a paragraph since it is a
block element. You should not use the <q> element, for the reasons cited in the discussion
of the Inline Quote design pattern.

Solution

You can embed the block quote in instead of <blockquote> or
<@>. You can use display:block on the span and all child elements to display them as
blocks. This is the key ingredient of this design pattern. Once all the elements are displayed
as blocks, the rest of the rules work like the Block Quote design pattern.

Pattern

HTML

CSS

QUOTE

 MORE QUOTE

<cite> CITATION </cite>

.blockquote { display:block;
width:+VALUE; margin:+VALUE;
position:relative; left:+VALUE%;
padding-top:+VALUE; padding-left:+VALUE;
background:url("FILE.EXT") no-repeat top left; }

.blockquote span { display:block;
padding-bottom:+VALUE; padding-right:+VALUE;
background:url("FILE.EXT") no-repeat bottom right; }

.blockquote cite { display:block; }

Location

This pattern works in any inline context.

Tips

You can insert line breaks to simulate separate paragraphs within the quote.

It is better to use <blockquote> for block quotes because search engines and document
processors understand the meaning of <blockquote>. Search engines give greater
importance to content in <blockquote> and <cite>.

Related to

Center Callout, Block Quote, Inline Quote; Display, Block Box (Chapter 4); Width (Chapter
5); Margin, Padding, Background (Chapter 6); Relative (Chapter 7); Offset Relative (Chapter
8); Blocked (Chapter 11)

461

CHAPTER 19 ' CALLOUTS AND QUOTES

462

Inline Quote

eSnon Mozilla Firefox

Inline Quote

"A quote should be followed by a citation." (Pro HTML5 and CSS3 Design
Patterns)

" "If you embed a quote inside <g> most browsers will automatically insert double quotes
— whether or not you want them!" (Pro HTML5 and CSS3 Design Patterns)”

HTML

<h1>Inline Quote</h1>

<p><span class="quote"»
"A quote should be followed by a citation.”
(<cite>Pro HTML5 and CSS3 Design Patterns</cites)</spans</p>

<p><q> <!-- Do not use <q>. -->
"If you embed a quote inside <code>81t;q8gt;</code> most browsers
will automatically insert double quotes — whether or not you want them!"
(<cite» Pro HTMLS and CSS3 Design Patterns</cites)</q></p>

CSS

.quote { letter-spacing:0.07em; }
.quote cite { font-size:0.9em; }

CHAPTER 19 I CALLOUTS AND QUOTES

Inline Quote

Problem You want to create an inline quote.
You cannot use <blockquote> because it is a block element.

You should not use the <q> element, even though it was designed for inline quotes, because
most browsers automatically insert English-style double quotes around the contents of <g>.
This is a problem because there are over 23 different types of international quotation marks
and many ways these can be combined to indicate quotes in different languages, dialects,
and writing styles. Because of this complexity, only an author can make the choice of
quotation marks. It is unfortunate that the HTML specification requires browsers to
automatically insert quotes around the contents of <>. Internet Explorer does not insert
quotes, and other browsers should follow its lead.

Solution You can enclose an inline quote in to identify it as a quote. You can
include a citation following the text of the quote and before the end tag of the . A
citation is typically placed within parentheses and is enclosed in the <cite> element. You
can place any inline content in <cite>. A citation commonly contains a description of the
source of the quote, which is commonly embedded in a hyperlink to the actual source.

The double quote marks shown in the following pattern can be replaced by any type of
quote marks.

Pattern
HTML
"QUOTE" (<cite> SOURCE </cite>)

CSS .quote { STYLES }
.quote cite { STYLES }

Location This pattern works on any element.

Tips Because it is natural to put line breaks between elements like <cite> and <a», it is easy to
introduce undesirable whitespace between the parentheses and the contents of the citation.
The obvious solution is not to put whitespace between these elements. If that is not an
option, you can put a line break inside a tag instead of between tags. In my example, I put a
line break inside the <a> tags just before the closing greater-than sign.

Example Notice how Firefox added quotation marks around the second example because it was
embedded in <q> instead of .

Related to Inline Block Quote; Inline Elements (Chapter 2)

463

CHAPTER 20

Alerts

Download from Wow! eBook <www.wowebook.com>

This chapter discusses design patterns that create an alert. An alert points out important information to
the reader by separating it from the content. There are two basic types of alerts: dynamic and static. The
first three design patterns in this chapter are dynamic alerts, which dynamically display information as a
user interacts with the document. The remaining alerts in this chapter are static alerts, which are always
displayed in a document. The Alert design pattern is an HTML pattern, which is basically a heading
followed by the alert’s message. The design patterns following Alert combine it with other design
patterns, demonstrating how you can combine existing design patterns to create new design patterns.

Chapter Outline

JavaScript Alert shows how to dynamically pop up an alert based on an event.
Tooltip Alert shows how to create a tooltip to show the user extra information.
Pop-Up Alert shows how to pop up an alert to show the user extra information.
Alert shows the basic HTML structure of an alert.

Inline Alert shows how to make an alert using an inline element.

Hanging Alert shows how to move the alert’s heading to the left side and the
content to the right side by using a hanging indent that does not require extra
markup.

Graphical Alert shows how to move the alert’s heading to the left side and the
content to the right side and replace the heading with an image.

Run-In Alert shows how to run the alert’s heading into the first line of the
content.

Floating Alert shows how to float an alert to the left or the right of the content
with its heading on the left and its content on the right.

Left Marginal Alert shows how to move an alert into the left margin using
absolute positioning.

Right Marginal Alert shows how to move an alert into the right margin using
absolute positioning.

Form Validation shows how to natively validate HTML5 forms and alert the user
for wrong input.

465

CHAPTER 20 I ALERTS

JavaScript Alert

3 JavaScript Alert - Mozilla Firefox
Ele ESdit Wew Hstory Bookmarks Toolkk Help

JavaScript Alert

A JavaScript alert pops up a dialog box when the user clicks on it. Its
presence can be signalled by a small image %or specially styled text, such as
a dotted underline.

.-"F.: alert text goes here.

HTML

<h1>JavaScript Alert</h1>

<p>A JavaScript alert pops up a dialog box when the user clicks it.
Its presence can be signalled by a small image<img class="alert-image"
onclick="alert('Alert text goes here.');" src="help.gif" alt="alert" /»

or specially styled text, such as a
<em class="alert" onclick="alert('Alert text goes here.');"s

dotted underline.</emy
</p>

CSS

*.alert-image { cursor:pointer; margin-left:3px; }

*.alert { cursor:pointer; border-bottom:1px dotted;
font-style:normal; font-size:0.8em; }

466

CHAPTER 20

JavaScript Alert

Problem

You want to insert helpful, yet nonessential messages into your document, such as tips or
help. You do not want the alert to be visible unless the reader clicks it. You want an
unobtrusive way to show the reader that the alert is present. You also want the alert to be
accessible to nonsighted users.

Solution

To signal the presence of the alert, you can insert a small image following the text for which
you want to supply extra information, or you can style the text. A dotted underline is the
traditional signal that text has extra information associated with it. The image or styled text
signals the presence of an alert. You can put the text of the alert in the JavaScript alert()
function and put the alert function in the image’s onclick attribute. A browser displays the
alert in a pop-up dialog box when the user clicks the image. Screen readers recognize the
onclick attribute and read its contents to the user.

Patterns
HTML

CSS

<img class="alert-image" src="FILE.EXT"
onclick="alert('ALERT TEXT');" alt="alert" />

or
<em class="alert" onclick="alert('ALERT TEXT');"> TEXT

* alert-image { cursor:pointer; }
* . alert { cursor:pointer; border-bottom:1px dotted; }

Location

This pattern works on any element.

Limitations

onclick is the only event that all major screen readers recognize and handle properly. Other
events require testing for compatibility with screen readers.

Advantages

JavaScript alerts can contain several paragraphs of text and stay open as long as the user
wants. This is a significant advantage over the Tooltip Alert design pattern.

Disadvantages

Normally putting JavaScript directly in markup is a poor practice. This case is an exception,
because the script is content (a message to the user) and belongs in the content. For this
reason, screen readers are designed to read the contents of onclick attributes.

Pop-up dialog boxes annoy users because they interrupt the workflow. For example, the dialog
box usually opens in the middle of the browser window, taking the user’s eyes away from
where he or she was reading. After having to click the OK button to close the dialog box, the
user has to rescan the text to find the place where he or she was reading.

The dialog box is unpleasant to look at. Its contents cannot be styled, and the dialog box
cannot be styled. And unlike a web page, a user cannot zoom in to make the dialog box’s small
text easier to read.

Tip

Most popular JavaScript frameworks and toolkits have ways to create alerts. Since these
usually have much more control over the styling of the alert box, they are more appropriate
than simply using alert(). You can have a look at http://plugins. jquery.com/plugin-
tags/alert for examples of alert plug-ins that work with the jQuery JavaScript toolkit.

The W3C has been working on a new specification called “Web Notifications,” which provides
an API to display simple alerts to users outside of the web page. This spec does not specify
exactly how a user agent should display these notifications, so presentation depends on the
browser, e.g., it might appear at a corner of the user's display, or an area within the chrome of
the user agent, etc. Although this functionality is supported at this time only in Google
Chrome, it will probably become mainstream in the future.

Related to

Alert, Inline Alert; Image, Replaced Text (Chapter 14); Event Styling (Chapter 17)

ALERTS

467

http://plugins.jquery.com/plugin-tags/alert
http://plugins.jquery.com/plugin-tags/alert
http://plugins.jquery.com/plugin-tags/alert

CHAPTER 20 I ALERTS

468

Tooltip Alert

Fie Gt Yew Histoy Bookmarks Tools Heb

Tooltip Alert

A tooltip alert slips right into the flow of text. Its presence is signalled by a
small image 'C-[%ar specially styled text, such as & dotted underline.

. [Toolin text goes here | .
The tooltip alrly useful when you want to give the reader some

extra help @ in understanding or using something.

HTML
<h1>Tooltip Alert</h1>

<p>A tooltip alert slips right into the flow of text. It is usually signalled

by a small image<img class="imagetip" src="alert.gif"
title="Tooltip text goes here."
alt="Tooltip text goes here." />

or some type of text decoration, such as a
<em class="texttip" title="Tooltip text goes here."»
dotted underline<img src="invisible.gif" alt="Tooltip text goes here." /».</em»

</p>
CSS
* ,tooltip-image { cursor:help; margin-left:3px; }

*.tooltip { cursor:help; border-bottom:ipx dotted;

font-style:normal; font-size:0.8em; }

CHAPTER 20 © ALERTS

Tooltip Alert

Problem

You want to insert brief, helpful, nonessential tips into your document. You do not want it
to be visible unless the reader moves the mouse over it. You want an unobtrusive way to
show the reader that the tip is present. You also want it to be accessible to nonsighted users.
You do not want to use JavaScript in any way.

Solution

You can insert a small image following the text for which you want to supply extra
information. This image signals the presence of a tip. You can put the tip in its title and
alt attributes. A browser automatically displays the title text when the user mouses over
the image, and a screen reader automatically reads the alt text of the image.

If you do not want to use an image, you can style text to signal the presence of a tip. A dotted
underline is the traditional signal that text has extra information. To make the tip
accessible, you can insert a transparent, 1-pixel image with an alt tag set to the tip’s text.

Patterns

HTML

CSS

<img class="tooltip-image" src="FILE.EXT"
title="TOOLTIP TEXT" alt="TOOLTIP TEXT" />

or

<em class="tooltip" title="TOOLTIP TEXT">
 TEXT

* tooltip-image { cursor:help; }
*,tooltip { cursor:help; border-bottom:1px dotted; }

Location

This pattern works inline.

Limitations

Screen readers do not read title attributes, but they do read the alt attributes of images.
That is why this design pattern requires the use of an image, even if you do not want sighted
users to see it.

Tooltips cannot be styled and displayed in tiny text, which can be hard to read. Tooltips are
displayed after a one-second delay, which annoys users in a hurry, but appropriately
prevents tips from popping up when the user unintentionally passes over them with the
mouse. Lastly, tooltips disappear after six seconds, which limits the readable length to a
brief sentence.

Firefox 2 displays only the first 75 characters of the title in a tooltip. Other browsers display
all the text in a title. Newer versions display beyond 75 characters.

Tips

The most natural and accessible place to put a tooltip image is after the text for which it
provides help. Screen readers always read the image’s alt text, and if the image cannot be
displayed, a browser displays the alt text. It makes the most sense for the user to read or
hear a tip after reading or hearing the text for which it provides extra information.

Related to

Alert, Inline Alert; Inline Elements (Chapter 2); Border (Chapter 6); Image, Replaced Text
(Chapter 14)

469

CHAPTER 20 I ALERTS

470

Pop-Up Alert
3 popup Alert - Mozilla Firefox E@@

Eie Edit Yew Go Fookmarks Tools Help

Popup Alert

A popup can show tips and help. @
A popup can show the definition of a word.
A popup can preview the target of a link .
¥ pro
CSS and HTML
Design Patterns

by Michael Bowers

HTML

<h1>Popup Alert</h1>
<div>
<p>A pop-up can show tips and help.

Pop-up help goes here.

A pop-up can show the definition of a
<dfn class="popup-trigger" id="pt2">word.
Pop-up definition goes here.</dfn>

A pop-up can preview the target of a
<a class="popup-trigger" id="pt3"
href="http://www.cssdesignpatterns.com">link
<img class="popup border" src="css-design-patterns-preview.jpg"
alt="cssDesignPatterns.com preview" />.</p></div>

CSS
*_ popup-trigger { position:relative; }

*.popup { position:absolute; left:0; top:iem; z-index:1;
padding:5px; text-align:center; }

* popup-trigger *.popup { visibility:hidden; }

/* Nonessential rules are not shown */

http://www.cssdesignpatterns.com

CHAPTER 20 © ALERTS

Pop-Up Alert

Problem You want to insert a pop-up to show helpful information to the reader. You want the pop-
up to be hidden until the reader moves the mouse over it or clicks it. You want the browser
to show the pop-up automatically like a tooltip, and you want it to remain showing until the
user clicks it or moves the mouse away from it. You want an unobtrusive way to show the
reader that the pop-up is present. You also want it to be accessible to nonsighted users. You
want complete control over the style of the pop-up box, the position of the pop-up box, and
the style of its contents. You do not want to insert any JavaScript into the document body.

Solution You can insert an inline element with the popup-trigger class into your document. In the
example, I used , <dfn>, and <a> elements. When the user mouses over or clicks the
contents of the pop-up-trigger element, this triggers the browser to display the pop-up. You
can style the pop-up trigger with position:relative so you can position the pop-up
relative to it.

Inside the pop-up-trigger element you can insert an inline element to hold the pop-up
content. In the example, I use and elements. You can assign this element to
the popup class. You can absolutely position the pop-up element to remove it out of the
normal flow. You can use left:0 and top:1em to position the pop-up immediately below
the pop-up trigger. You can use z-index:1 to make sure pop-ups are displayed in front of
pop-up triggers.

You can use JavaScript libraries to dynamically assign events to pop-up-trigger elements.
This keeps the markup in the body completely free from JavaScript, as described in the

following sections.
Pattern
HTML <INLINE class="popup-trigger"> TRIGGER CONTENTS

<INLINE class="popup"> POPUP CONTENT </INLINE>

</INLINE>
CSS * popup-trigger { position:relative; }

* popup { position:absolute; left:0; top:lem; z-index:1; }
Location This pattern works inline.
Limitations Internet Explorer 7 (and earlier versions) display pop-up triggers in front of pop-ups. You

can solve this problem by laying out your page so that pop-up triggers are displayed on one
side and pop-ups are displayed on the other. You can also solve this problem by assigning a
unique ID to each pop-up trigger and styling each one so that it displays behind the
previous one. In the example, I conditionally loaded a style sheet just for Internet Explorer,
containing the following:

#pt1 { z-index:3; }

#pt2 { z-index:2; }

#pt3 { z-index:1; }

471

CHAPTER 20 I ALERTS

472

Pop-Up Alert
HTML Header

<head>
<!-- only script elements are shown -->
<script language="javascript" type="text/javascript"
<script language="javascript" type="text/javascript"
<script language="javascript" type="text/javascript"
<script language="javascript" type="text/javascript"
<script language="javascript" type="text/javascript"
</head>

page.js
function initPage() {
assignEvent('click', '*.popup-trigger’,
applyToDescendants, '*.popup', togglevisibility);

assignEvent('mouseover', '*.popup-trigger’,
applyToDescendants, '*.popup’, showElement);

assignEvent('mouseout', '*.popup-trigger’,

applyToDescendants, '*.popup’, hideElement);

addEvent(window, 'unload', purgeAllEvents);
addEvent(window, 'load', initPage);

src="yahoo.js"></script>
sxrc="event.js"></script>
src="chdp.js"></script>
src="cssQuexy-p.js"></script>
src="page.js"></script>

//The functions addEvent() and assignEvents() are in chdp.js.
//Full documentation for each function is found in the source code.

CHAPTER 20 © ALERTS

Pop-Up Alert

Problem

To implement pop-ups, you need a way to attach events to HTML elements without coding
them into the markup.

Solution

Using open source JavaScript libraries, you can dynamically attach events to elements. This
eliminates event code within markup.

There are several open source JavaScript libraries that you can use for this purpose. I chose
two free libraries from Yahoo! that are licensed under a BSD license: yahoo. js and
event. js. They are available at http://developer.yahoo.com/yui/.

I also use an open source JavaScript library called cssQuery. js from Dean Edwards located
athttp://dean.edwards.name/. It is freely licensed under LGPL 2.1. It allows you to select
elements in JavaScript using CSS selectors.

I also provide an open source library called chdp. js freely licensed under a BSD license. It
provides functions that integrate these other libraries.

You can use these libraries by attaching each one to your document in the order shown in
the example.

You can attach your own JavaScript file to execute code specific to your document. The
example names this file page. js and shows its code. The browser executes the two
addevent () functions first. The first addEvent () function attaches a generic function called
purgeAllEvents() to the page’s unload event. When the page unloads, purgeAllEvents()
purges all attached events from memory. The second addEvent () function attaches
initPage() to the page’s load event. After the page loads, initPage() assigns events to
elements using assignEvent().

It is easy to use assignEvent() to assign an event to elements. The name of the event goes
in the first argument (without the “on” prefix). A CSS selector in the second argument
determines which elements get assigned to the event. You can use any CSS 2.1 selector.
applyToDescendants() goes in the third argument. The CSS selector in the fourth argument
selects which descendants of the element that generated the event are affected by the
helper function in the fifth argument. In the example, I use showELlement (), hideElement(),
and toggleVisibility() from chdp.js as helper functions to show, hide, and toggle the
display of pop-up elements.

Tips

This is a flexible framework. You can use CSS selectors to apply any event to any element,
and you can supply your own functions to handle events.

You could use the Event Styling design pattern in Chapter 17 to change class names
instead of using showElement (), hideElement(), and toggleVisibility(). Unfortunately,
Opera 9 has trouble rendering absolute elements when you add and remove class names. To
avoid this problem, this design pattern directly modifies an element’s visibility using the
DOM.

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

You can combine this pattern with Transitions, Animations, and Transformations, as
described in Chapter 1, to deliver a more stunning visual effect.

Example

The first assignEvents () function in the example assigns the onclick event to all pop-up-
trigger elements. When the onclick event fires, applyToDescendants() applies
toggleVvisibility() to each pop-up descendant of the element that fired the event.
toggleVisibility() hides an element when it is visible and shows it when it is hidden.

Related to

Alert, Inline Alert; Positioned, Closest Positioned Ancestor, Atomic, Absolute, Relative
(Chapter 7); Left Offset, Top Offset (Chapter 9); Image, Replaced Text (Chapter 14); Event
Styling, Rollup, Flyout Menu (Chapter 17)

473

http://developer.yahoo.com/yui/
http://dean.edwards.name/

CHAPTER 20 I ALERTS

474

Alert

%3 Alert - Mozllla Firefox

Fie Gt Yew Go Cookmarks Tools Help

Alert

Text above the alert.

ALERT HEADING

This is the content of the alert. It contains important
information you want to point out to the reader.

Text below the alert.

HTML

<h1>Alert</h1>
<p>Text above the alert.</p>

<div class="alert tip"»
<h3>Alert Heading</h3>
<p>This is the content of the alert. It contains important information
you want to point out to the reader.
</p>
</div>

<p>Text below the alert.</p>

CSS

*,alert { margin:4opx;
padding-left:20px; padding-right:20px;
border-top:1px solid black; border-bottom:1px solid black;
background-color:gold; }
*.alert h3 { font-size:1.3em; }
.alert p { letter-spacing:1.5px; line-height:1.5em; }
*,alert.tip h3 { text-transform:uppercase; }

*

Download from Wow! eBook <www.wowebook.com>

Alert

CHAPTER 20 © ALERTS

Problem

You want to insert an alert into your document to point out important information to the
reader. You want to separate the alert from surrounding text to make it stand out. You want
to identify the purpose of the alert to the user and make the alert’s purpose stand out in
contrast to its content.

Solution

An alert consists of a heading and content packaged inside of a division. The heading
identifies the purpose of the alert as a tip, note, caution, warning, and so forth. The content
contains the alert’s message. You can make the alert stand out by using whitespace,
borders, backgrounds, and fonts.

You can use <div class="alert TYPE"> to identify the division as an alert and to identify
the type of alert. For example, <div class="alert tip"> identifies the division as an alert
and identifies the type of alert as a tip. You can use any type of block element instead of the
division. You can use *.alert to select the entire alert for styling. You can chain together
class selectors to style specific types of alerts, such as *.alert.tip{}.

You can use <h3> to identify the alert’s heading. Since alerts are not as important as a main
heading or topic headings, you may want to give them a low-level heading, such as <h3>.
The heading signals to search engines that the alert’s content is important. The heading
typically contains one word, such as “Note,” “Tip,” or “Caution.” You can use *.alert h3{}
to select the heading for styling.

You can use <p> to identify the alert’s content. You can use *.alert p{} to select the
content for styling.

Pattern

HTML

CSS

<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>

* alert { STYLES }
*,alert h3 { STYLES }
* alert p { STYLES }
*_ alert.TYPE { STYLES }
*.alert.TYPE h3 { STYLES }
*,alert.TYPE p { STYLES }

Location

This pattern works anywhere you can use a block element.

Options

You can use other types of block elements to mark up the alert.

Tips

If you want to add even more emphasis to the alert, you can embed or
inside the paragraph or heading.

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to

All design patterns in this chapter; Terminal Block Elements, Multi-purpose Block Elements
(Chapter 2); Subclass Selector (Chapter 3); Margin, Border, Padding, Background (Chapter
6); Font (Chapter 10); Spacing, Inline Decoration (Chapter 11); Section (Chapter 13)

475

CHAPTER 20 I ALERTS

476

Inline Alert

2 Inline Alert - Mozilla Firefox

Fie Eft Yew Go Cookmarks Tools Help

Inline Alert

An inline alert slips right into the flow of text. As such it can be broken across

lines. ALERT: brief message. You can keep the alert's message

brief and you can use white-space:nowzap to prevent it from breaking
across lines, It is also important to make the line height large enough to
prevent the alert's padding and border from cverlapping neighboring lines.

HTML

<h1>Inline Alert</h1>

<p>An inline alert slips right into the flow of text.
As such it can be broken across lines.

<span class="alert tip"»
<strong class="heading"sAlert:
<em class="content"sbrief message.

You can keep the alert's message brief and you can use
<code>white-space:nowrap</code> to prevent it from breaking across lines.
It is also important to make the line height large enough to prevent the
alert's padding and border from overlapping neighboring lines. </p>

CSS

*_ alert { white-space:nowrap; line-height:2.3em;
margin:0 20px; padding:8px 20px 5px 20px;
border-top:1px solid black; border-bottom:1px solid black;
background-color:gold; }
*,alert *.heading { font-weight:bold; font-size:1.3em; }
*.alert *.content { letter-spacing:1.5px; font-style:normal; }

*,alert.tip *.heading { text-transform:uppercase; }

Inline Alert

CHAPTER 20 © ALERTS

Problem

You want to insert an alert into the inline flow of your document. You also want the inline
alert to work just like a block alert.

Solution

An inline alert consists of an inline heading and inline content packaged inside a span. The
inline heading identifies the purpose of the alert as a tip, note, caution, warning, and so on.
The inline content contains the alert’s message. The inline alert works just like the Alert
design pattern; the only difference is elements are inline. You can make the alert stand out
by displaying it as a block, and using whitespace, borders, backgrounds, and fonts.

You can use to identify the span element as an alert and to
identify the type of alert. For example, identifies the span as an
alert and identifies the type of alert as a tip. This works just like the Alert design pattern
except we are using a span instead of a division. You can use *.alert to select the entire
alert for styling. You can chain together class selectors to style specific types of alerts, such
as *,alert.tip{}.

You can use <strong class="heading"> to identify the alert’s heading. Heading elements
cannot be used inline because they are block elements. is a good substitute
because it indicates strongly emphasized text. The heading text is typically one word, such
as “Note,” “Tip,” or “Caution.” You can use *.alert *.heading{} to select the heading for
styling.

You can use <em class="content"> to identify the alert’s content. You can use *.alert

*_ content{} to select the heading for styling.

Pattern

HTML

CSS

<strong class="heading"> ALERT HEADING:
<em class="content"> ALERT TEXT

*.,alert { white-space:nowrap; line-height:+VALUE; }
* alert *.heading { STYLES }

*_ alert *.content { STYLES }

*, alert.TYPE { STYLES }

*,alert.TYPE *.heading { STYLES }

*_ alert.TYPE *.content { STYLES }

Location

This pattern works anywhere you can use an inline element, and it can be reliably floated
and positioned.

Options

You can use display:block to render an inline alert exactly as if it were a block alert. This is
useful when you have to mark up an alert within an inline context, but want it to look like a
block alert.

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to

Alert, JavaScript Alert, Tooltip Alert, Pop-Up Alert; Inline Elements (Chapter 2); Subclass
Selector (Chapter 3); Inline Box (Chapter 4); Spacing, Nowrap (Chapter 11)

477

CHAPTER 20 I ALERTS

478

Hanging Alert

3 Hanging Alert - Mozilla Firefox
Fl Edt Uiew Go Sockraks Took Hep

Hanging Alert

Text above the alert,

TIP The Hanging Alert uses the Hanaing Indent design
pattern to hang the heading to the left and pad the
content to the right. The Inline Decoration design pattern
optionally decorates the Alert's heading.

Text below the alert,

HTML

<h1>Hanging Alert</h1>
<p>Text above the alert.</p>

<div class="alert tip"»>
<h3> Tip</h3>
<p>The Hanging Alert uses the Hanging Indent design pattern to hang the
heading to the left and pad the content to the right. The Inline Decoration
design pattern optionally decorates the Alert's heading.</p>
</div>
<p>Text below the alert.</p>

CSS

*.alert { padding-right:20px; padding-top:10px; padding-bottom:10px;
border-top:1px solid black; border-bottom:1px solid black; margin:40px; }

*,alert h3 { display:inline; font-size:1.3em; text-transform:uppercase; }

*,alert.tip { text-indent:-80px; padding-left:80px; }
*.alert.note { text-indent:-110px; padding-left:110px; }
*,alert.caution { text-indent:-160px; padding-left:160px; }

*,alert.tip p { display:inline; margin-left:18px; }
*.alert.note p { display:inline; margin-left:20px; }
*,alert.caution p { display:inline; margin-left:20px; }

*.alert *.decoration { border-left:15px solid gold; margin-right:-10px;
font-size:0.7em; vertical-align:2px; }

CHAPTER 20 © ALERTS

Hanging Alert

Problem

You want to insert a hanging alert into your document. You want its heading to be moved to
the left and its content to the right. You want to adjust the indent to fit different types of
alerts. You do not want to insert extra markup.

Solution

You can use the Alert design pattern to mark up the alert. You can style the alert using the
Hanging Indent design pattern (Chapter 12). You can optionally use the Inline Decoration
design pattern (Chapter 11) to decorate the alert’s heading.

To create a hanging indent, the alert’s heading and paragraph need to be displayed as inline
blocks. This puts them in the same inline formatting context. You can then use a positive
value in padding-left to indent all the text in the heading and the paragraph to the right.
You can use a negative value in text-indent to move the first line into the left padding area
by an equal amount. For example, if you use padding-1left:100px, you should use text-
indent:-100px. Lastly, the first line of the paragraph needs to be moved to the right so that
it lines up with the left indentation of the rest of its lines. You can select the paragraph and
use margin-left to move the first line into alignment. Because the paragraph is displayed
inline, margin-left affects only the beginning of the paragraph'’s first line.

Pattern

HTML

CSS

<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>

*,alert { ANY STYLES }
*,alert h3 { display:inline; }
* alert.TYPE { display:inline;
text-indent: -INDENT;
padding-left:+INDENT; }
* alert.TYPE p { display:inline; margin-left:+VALUE; }

Location

This pattern works anywhere you can use a block element, and it can be reliably floated and
positioned.

Advantages

Because the properties used by this pattern are simple, they are well supported by every
major browser.

Disadvantages

You have to play with margin-left until you are satisfied it aligns the paragraph’s text. The
exact value depends mainly on the heading’s font.

Example The example shows how you can use different selectors to adjust the hanging indent for
different types of alerts. When you change the type of alert, the hanging indent changes too.

Tip You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to Alert; Offset Static (Chapter 8); Inline Decoration (Chapter 11); Hanging Indent (Chapter

12); Inlined (Chapter 13)

479

CHAPTER 20 I ALERTS

Graphical Alert

%3 Graphical Alert - Mozllla Firefox

Fie Gt Yew Histoy Bodkmarks Tools Heb

Graphical Alert

Text above the alert.

The Graphical Alert design pattern combines the Left
Marginal design pattern and the Text Replacement design
pattern to display a graphic on top of the heading.

Text below the alert.

HTML

<h1>Graphical Alert</hi1>
<p>Text above the alert.</p>

<div class="alert tip"»
<h3>Tip<spany</span»</h3>
<p>The Graphical Alert design pattern combines the Left Marginal design pattern
and the Text Replacement design pattern to display a graphic
on top of the heading.</p></div>

<p>Text below the alert.</p>

CSS

*.alert { position:relative; margin:20px 0 20px 120px; }

*.alert h3 { margin:10px 0; font-weight:bold; font-size:1.3em;
text-transform:uppercase; }

*,alert p { margin:10px 0; }

*.alert.tip p { color:green; border:4px ridge green; padding:20px; }

*,alert.tip h3 { position:absolute; left:-100px; top:-15px;
width:71px; height:117px; padding:0; overflow:hidden; }

*,alert.tip h3 em { position:absolute; left:20px; top:25px; }

*,alert.tip span { position:absolute; left:0; top:0; margin:o;
width:71px; height:117px; background:url("tip.jpg") no-repeat; }

480

CHAPTER 20 © ALERTS

Graphical Alert

Problem

You want to insert an alert into your document with a graphical heading on the left and
content on the right. You want the heading text to be shown in case the browser cannot
display the image. You want screen readers to read the heading text. You do not want to
embed an image in the HTML because the image is style, not content.

Solution

You can combine the Left Marginal design pattern with the Text Replacement design
pattern (Chapter 10) to create the graphical alert.

You can insert an empty span into the alert’s heading. You can add the rules from the Text
Replacement design pattern using the selectors shown in the pattern that follows. You can
replace TYPE in the pattern with the class name that identifies the type of alert, such as tip,
note, or caution. This allows you to use different images for different types of alerts. For
example, you could use a star image for a tip and an exclamation image for a caution. You
can replace IMAGE_WIDTH and IMAGE_HEIGHT in the pattern with the width and height of the
image. You can replace FILE.EXT in the pattern with the file name of the image.

You can optionally select the embedded to position the heading. This allows you to
control exactly where the heading is positioned independent from the graphic. If the
graphic cannot be displayed, the heading will be right where you want it. You can choose
any position as long as the graphic is large enough to cover up the heading in this position.

Pattern

HTML

CSS

<div class="alert TYPE">
<h3> ALERT HEADING <spans</span»</h3>
<p> ALERT TEXT </p>

</div>

Use the same selectors and styles as the Alert design pattern plus the following:

* alert.TYPE h3 em { position:absolute; left:20px; top:25px; }

* . alert.TYPE h3 { position:absolute; left:-VALUE; top:+VALUE;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT;
padding:0; overflow:hidden; }

* alert.TYPE span { position:absolute; left:0; top:0; margin:o;
width:IMAGE_WIDTH; height:IMAGE_HEIGHT;
background:url("FILE.EXT") no-repeat; }

Location

This pattern works anywhere you can use a block element.

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to

Width, Height, Sized (Chapter 5); Margin, Border, Padding, Background, Overflow (Chapter
6); Positioned, Closest Positioned Ancestor, Absolute, Relative (Chapter 7); Text
Replacement (Chapter 10); Left Marginal (Chapter 13)

481

CHAPTER 20 I ALERTS

482

Run-In Alert

&3 Run-in Alert - Mozllla Firefox

Eie Erit Yew Go Cookmarks Tpols Help

Run-in Alert

Text ahove the alert.

CAUTION The Run-in Alert runs the alert's heading into the text
using display:inline on both the heading and the paragraph.

Text below the alert.

HTML

<h1>Run-In Alert</h1>
<p>Text above the alert.</p>

<div class="alert caution"s
<h3> Caution</h3>
<p>The Run-In Alert runs the alert's heading into the text using
<code>display:inline</code> on both the heading and the paragraph.</p>
</div>

<p>Text below the alert.</p>

CSS

*.alert { padding-right:20px; padding-top:10px; padding-bottom:10px;
border-top:1px solid black; border-bottom:1px solid black; margin:40px; }

*,alert h3 { display:inline; font-size:1.3em; text-transform:uppercase; }
*,alert p { display:inline; margin-left:10px; letter-spacing:-0.8px }

*.alert.caution { color:red;
border-top:3px double red; border-bottom:3px double red; }

*.alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

CHAPTER 20 © ALERTS

Run-In Alert

Problem

You want to insert an alert into your document where the alert’s heading runs into the
alert’s paragraph.

Solution

You can use the Alert design pattern to mark up the alert. You can use the Run-In design
pattern to get the heading to run into the paragraph by styling the heading and the
paragraph with display:inline. As pointed out in the Run-In design pattern discussion in
Chapter 13, CSS provides the rule display:run-in for this purpose, but only Opera, Safari,
and Konquerer support it. Thus, we have to use the Run-In design pattern instead. Lastly,
you can optionally use the Inline Decoration design pattern (Chapter 11) to decorate the
alert’s heading.

Pattern
HTML

CSS

<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>

* alert { ANY_STYLES }
*,alert h3 { display:inline; }
*,alert p { display:inline; }

Location

This pattern works anywhere you can use a block element, and it can be reliably floated and
positioned.

Advantages

Because the properties used by this pattern are simple, they are well supported by every
major browser.

This pattern is closely related to the Inline Alert design pattern because it displays the
heading and paragraph inline. If you want the Inline Alert design pattern to be styled like
the Run-In pattern, simply do not assign display:block to its
and elements. The main advantage of the Run-In Alert over the
Inline Alert design pattern is that <h3> and <p> have more semantic meaning than spans.

Example

In the example, I used the selector *.alert.caution to turn the text and borders red when
the class of the alert is caution. I also inserted the Inline Decoration design pattern into the
heading to give it more emphasis. In this case, the Inline Decoration consists of the styled with a gold left border.

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to

Inline Alert; Inline Decoration (Chapter 11); Inlined, Run-In (Chapter 13)

483

CHAPTER 20 I ALERTS

Floating Alert

©J Floating Alert - Mozilla Firefox

File Edit Wew Go Gochnaks Took He=p

Floating Alert

Text above the alert.

Text below the alert. NOTE The Floating Alert design

pattern floats the entire

MNatice how the alert is removed ,
glert. Internally it also

fram the flow. Also notice haw the
browser automatically shrinks the floats the alert’s heading to
right margin of this text so that it the left and its paragraph
does not collide with the left margin to the right.

of the floated alert,

HTML

<h1>Floating Alert</hi1>
<p>Text above the alert.</p>

<div class="alert note"»
<h3> Note</h3>
<p>The Floating Alert design pattern floats the entire alert. Internally it also
floats the alert's heading to the left and its paragraph to the right.</p>
</div>
<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow. Also notice how the browser
automatically shrinks the right margin of this text so that it does not
collide with the left margin of the floated alert.</p>

CSS

*,alert { float:right; width:350px; margin-left:20px;
border-top:1px solid black; border-bottom:1px solid black; }

*,alert h3 { float:left; width:50px; margin:iopx 0;
font-size:1.3em; text-transform:uppercase; }

*,alert p { float:right; width:250px; margin:10px 0; }

*.alert.note { color:blue;
border-top:2px groove blue; border-bottom:2px ridge blue; }

*,alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

484

Download from Wow! eBook <www.wowebook.com>

CHAPTER 20 © ALERTS

Floating Alert

Problem

You want to insert a floating alert into your document.

Solution

You can use the Alert design pattern to mark up the alert. You can use the Float and Clear
design pattern (Chapter 7) to float the alert. You can use the Opposing Floats design pattern
(Chapter 17) to float the alert’s heading to the left and its paragraph to the right.

Pattern

HTML

CSS

<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>

* alert { float:LEFT_OR_RIGHT; width:+VALUE; margin:+VALUE; }
* alert h3 { float:left; width:+VALUE; margin:+VALUE; }
* alert p { float:right; width:+VALUE; margin:+VALUE; }

Location

This pattern works anywhere you can float a block element.

Advantages

The browser automatically calculates the positions of floats, dynamically sizes their height,
and dynamically moves text and other floats out of the way. When the display is narrow,
floats get pushed down. This makes the layout very flexible and adaptive to the user’s
environment. It is easy to control the general position of a float by floating it left or right and
by placing margins around it. If you need finer control, you can also relatively position a
float and offset it using left, right, bottom, and top.

Disadvantages

The main disadvantage to this design pattern is that you cannot float the heading and
paragraph without floating the division as well. The browser removes floats from the normal
flow. If you float a child, you also have to float its parent if you want to keep them together.

Floats trigger bugs in browsers and are not well supported in minor browsers. It is difficult
to control the precise position of a float. Its vertical position is roughly located at its
nonfloated vertical position in the flow. Its horizontal position is the inner-left or inner-
right side of its parent’s container, or stacked next to or below a previously floated element.

Example

In the example, I used the selector *.alert.note to turn the text and borders blue when the
class of the alert is note. I also inserted the Inline Decoration design pattern (Chapter 11)
into the heading to give it more emphasis. In this case, the inline decoration consists of the
 styled with a gold left border.

Options

You can easily float an inline alert following these same techniques.

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow
effects, as described in Chapter 6.

Related to

Alert; Inline Alert; Float and Clear (Chapter 7); Offset Float (Chapter 8); Inline Decoration
(Chapter 11); Opposing Floats (Chapter 17)

485

CHAPTER 20 I ALERTS

Left Marginal Alert

&3 | eft Marginal Alert - Mazilla Firefox

Fle Edit Wew Hitory Bodkmarke Took Hep

Left Marginal Alert

Text above the alert.

TIP The Left Marginal Alert design Text below the alert.
pattern moves the entire
alert into the left margin. Motice how the alert is removed
Inside the alart itsalf, ite from the flow and moves into the
heading is absolutely margin. Unlike the Floating Alert,
positioned to the left and its you have to size the right or left
paragraph to the right. margin to make room for the

marginal alert.

HTML
<h1>Left Marginal Alert</hi1>

<div class="main"»
<p>Text above the alert.</p>
<div class="alert tip"»
<h3> Tip</h3>
<p>The Left Marginal Alert design pattern moves the entire alert into the
left margin. Inside the alert itself, its heading is absolutely positioned

to the left and its paragraph to the right.</p>
</div>

<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow and moves into the margin.
Unlike the Floating Alert, you have to size the right or left margin
to make room for the marginal alert.</p>
</div>

CSS

*.main { position:relative; margin-left:400px; }
*,alert { position:absolute; width:350px; left:-400px; height:190px;
border-top:1px solid black; border-bottom:1px solid black; }
*,alert h3 { position:absolute; left:0; top:15px; margin:0;
font-size:1.3em; text-transform:uppercase; }
*,alert p { position:absolute; left:80px; top:15px; margin:o0; }
*.alert.tip { color:green;
border-top:4px groove green; border-bottom:4px ridge green; }
*,alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

486

CHAPTER 20

Left Marginal Alert

Problem

You want to insert an alert into the left margin of your document.

Solution

You need to create a wide margin on the left in which to put the alert. You can use the Alert design
pattern to mark up the alert. You can use the Left Marginal design pattern (Chapter 13) to move the
alert into the margin. You can use the Offset Absolute and Offset Fixed design pattern (Chapter 8) to
vertically position the alert and the Left Aligned design pattern (Chapter 9) to horizontally position
the alert. You can use the Left Offset and Top Offset design patterns (Chapter 9) to position the
heading and the paragraph.

Pattern
HTML

CSS

<div class="main">
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>
</div>

*.main { position:relative; margin-left:MARGIN; }

*.alert { position:absolute; width:+A_WIDTH; left:-A_WIDTH;
height:+VALUE; }

*.alert h3 { position:absolute; left:0; top:TOP_OFFSET;
margin:o; }

*.alert p { position:absolute; left:+VALUE top:TOP_OFFSET;
margin:o; }

Use margin-left:MARGIN to create a left margin in the main block element that contains the alert,

and use position relative to position it.

Set the alert, its heading, and its paragraph to position:absolute.

Set width:A_WIDTH to less than MARGIN so the alert will fit in the margin.

Optionally set height:+VALUE to the height you want the alert to be. This is necessary only if you are

using border-bottom to render a bottom border.

Move the alert into the margin by setting left to the negative of A_WIDTH.

Use left:0 to move the heading to the left side of the alert.

Use left:+VALUE to offset the paragraph to the right of the heading.

Use top:TOP_OFFSET to offset the top of the heading and paragraph from the top of the alert.
Use margin:0 to clear the default heading and paragraph margins.

Note that the paragraph defaults to width:auto, which automatically sizes the paragraph to fit
within the width of the alert.

Location

This pattern works anywhere you have a wide left margin.

Advantages

You have complete control over the positioning of the alert. Also, the alert is placed outside the
border of its parent. See Right Marginal Alert to place the alert inside the border.

Disadvantages

You need to ensure there is enough vertical space between marginal elements to prevent them from
overlapping. Absolute positioning does not adapt as well to various devices as does the Fluid Layout
design pattern (Chapter 17).

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow effects, as
described in Chapter 6.

Related to

Alert, Inline Alert, Right Marginal Alert; Offset Absolute and Offset Fixed (Chapter 8); Left Aligned, Left

Offset, Top Offset (Chapter 9); Inline Decoration (Chapter 11); Left Marginal (Chapter 13)

ALERTS

487

CHAPTER 20 I ALERTS

Right Marginal Alert

3 Right Marginal Alert - Mozilla Firefox
Fle Edt View Htery Ecokmaks Took Hep

Right Marginal Alert

Text above the alert,

Text below the alert. TIP The Right Marginal Alert

design pattern moves the
Motice how the alert is removed entire alert into the right

from the flow and moves into the margin. Inside the alert
marqin. Unlike the Floating .&lﬁl’t.. itself. its heaci-1g is

you have to size the right or left absolutely positioned to the
margin te make room for the left and Its paragraph to the
marginal alert. right,

HTML

<div class="main"»
<p>Text above the alert.</p>

<div class="alert tip"»
<h3> Tip</h3>
<p>The Right Marginal Alert design pattern moves the entire alert into the
right margin. Inside the alert itself, its heading is absolutely positioned
to the left and its paragraph to the right.</p>
</div>

<p>Text below the alert.</p>
<p>Notice how the alert is removed from the flow and moves into the margin.
Unlike the Floating Alert, you have to size the right or left margin
to make room for the marginal alert.</p>
</div>

CSS

*.main { position:relative; padding-right:4o00px; }

*,alert { position:absolute; width:350px; right:0; height:190px;
border-top:1px solid black; border-bottom:1px solid black; }

*,alert h3 { position:absolute; left:0; top:15px; margin:0;
font-size:1.3em; text-transform:uppercase; }

*,alert p { position:absolute; left:80px; top:15px; margin:o; }
*,alert.tip { color:green;
border-top:4px groove green; border-bottom:4px ridge green; }
*,alert *.decoration { border-left:15px solid gold;
margin-right:-11px; font-size:0.7em; vertical-align:2px; }

488

CHAPTER 20 © ALERTS

Right Marginal Alert

Problem

You want to insert an alert into the right margin of your document.

Solution

You need to create a wide margin on the right in which to put the alert. You can use the Alert design
pattern to mark up the alert. You can use the Right Marginal design pattern to move the alert into
the right margin. You can use the Offset Absolute and Offset Fixed design pattern (Chapter 8) to
vertically position the alert and the Right Aligned design pattern (Chapter 9) to horizontally position
the alert. You can use the Left Offset and Top Offset design patterns (Chapter 9) to position the
heading and the paragraph.

Pattern
HTML

CSS

<div class="main">
<div class="alert TYPE">
<h3> ALERT HEADING </h3>
<p> ALERT TEXT </p>
</div>
</div>

*.main { position:relative; padding-right:MARGIN; }

* alert { position:absolute; width:A_WIDTH; right:o;
height:+VALUE; }

*.alert h3 { position:absolute; left:0; top:TOP_OFFSET;
margin:0; }

* alert p { position:absolute; left:+VALUE top:TOP_OFFSET;
margin:0; }

Use padding-right:MARGIN to create a right “margin” in the main block element that contains the

alert, and use position relative to position it.

Set the alert, its heading, and its paragraph to position:absolute.

Set width:A_WIDTH to less than MARGIN so the alert will fit in the “margin.”

Optionally set height:+VALUE to the height you want the alert to be. This is necessary only if you
are using border-bottom to render a bottom border.

Use right:0 to move the alert into the “margin” of the main block.

Use left:0 to move the heading to the left side of the alert.

Use left:+VALUE to offset the paragraph to the right of the heading.

Use top:TOP_OFFSET to offset the top of the heading and paragraph from the top of the alert.
Use maxgin:0 to clear the default heading and paragraph margins.

Note that the paragraph defaults to width:auto, which automatically sizes the paragraph to fit
within the width of the alert.

Location

This pattern works anywhere you have a wide right padding.

Advantages

You have complete control over the positioning of the alert. Also, the alert is placed within the
border of its parent. See Left Marginal Alert to place the alert outside the border.

Disadvantages

You need to ensure there is enough vertical space between marginal elements to prevent them from
overlapping. Absolute positioning does not adapt as well to various devices as does the Fluid Layout
design pattern (Chapter 17).

Tip

You can build prettier alerts by using rounded corners with border-radius or shadow effects, as
described in Chapter 6.

Related to

Alert, Inline Alert, Left Marginal Alert; Offset Absolute and Offset Fixed (Chapter 8); Left Offset, Right
Aligned, Top Offset (Chapter 9); Inline Decoration (Chapter 11); Right Marginal (Chapter 13)

489

CHAPTER 20 I ALERTS

490

Form Validation

(. Ha &) Mozilla Firefox
Form Validation

Please fill in form:

Email: | support@apress.com URL: | FF validates URLs| Number: |...but not numbers (Submit)

Please enter a URL.

HTML

<h1>Form Validation</h1>
<p>Please fill in form:</p>
<form method="post">
<label>Email: <input type="email" required></label>
<label>URL: <input type="url" required></label>
<label>Number: <input type="number" max="100" min="0" step="2" required></label>
<input type="submit" value="Submit"></form>
</form>

CSS

input {margin-right: 1opx;}

CHAPTER 20 © ALERTS

Form Validation

Problem

You want to validate user input in forms and display the necessary alerts.

Solution

Form validation has traditionally been done using JavaScript, e.g., there are several jQuery
plug-ins that offer form validation at
http://plugins.jquery.com/projects/plugins?type=20. HTMLS5 offers native validation
for forms and also adds a number of useful input types like e-mail, web addresses, date
pickers, and more. You can use this native validation mechanism to check user input and
print alerts.

Pattern

HTML

<input id="INPUT ID" type="TYPE FOR VALIDATION" required>

Use type="email" to validate e-mail addresses, type="url" to validate web addresses,
type="number" to validate for e-mail addresses, etc.

Add the required string inside the input element to make it a required field.
Add the novalidate string inside the form element to avoid native form validation.
Use attributes min, max, step to fine-tune type="number".

Advantages

Form validation is hard and error-prone, so having it performed natively by the browser and
being RFC-compliant in cases like e-mail, etc., is very helpful.

Tips

Some mobile devices that don’t have a physical keyboard can recognize several of the
new HTMLS5 input types, and dynamically change the onscreen keyboard to optimize for
that kind of input. For example, when you use an iPhone and focus an input type="email"
element, you get an onscreen keyboard that contains a smaller-than-usual space bar, plus
dedicated keys for the “@” and “.” characters. Similarly for input type="number" you get a
number scroller, etc.

There are several more input types that the HTMLS5 specification defines, but browser
support varies. Unless you are developing for a specific platform (e.g., iOS devices), it is
probably wiser to continue using JavaScript validation and input widgets that are known to
work with older browsers.

Some forms of validations are notoriously hard to perform correctly even for browsers.
For example, Chrome validates the string foo@bar as a correct e-mail address.

Default validation alerts are ugly, but in the future it will be easy to add CSS style to them.
Chrome and Safari have recently added support for pseudo-selectors like : : -webkit-
validation-bubble{}, : :-webkit-validation-bubble-top-outer-arrow{}, ::-webkit-
validation-bubble-top-inner-arrow{}, and ::-webkit-validation-bubble-message{}.
At the time of this writing, Firefox has no way to style the error messages.

Similarly you might want to change the text of the error messages. Firefox has support
for the attribute x-moz-errormessage, which enables you to change the text of the error
message. The same can be accomplished in Chrome using CSS and the webkit-
validation-bubble-message.

491

http://plugins.jquery.com/projects/plugins?type=20

INDEX

A
Alerts, 465 explanation, 169
dynamic alerts, 465 HTML, 168
JavaScript Alert, 466-467 left-aligned sized static block
Pop-Up Alert, 470-473 element, 169
Tooltip Alert, 468-469 limitations, 169
form validation, 490-491 location, 169
static alerts, 465 margin-left:auto, 169
Floating Alert, 484-485 margin-right:auto, 169
Graphical Alert, 480-481 right-aligned sized static block
Hanging Alert, 478-479 element, 169
Inline Alert, 476-477 Offset Static Table
Left Marginal Alert, 486-487 block elements, 171
Right Marginal Alert, 488-489 CSS, 170,171
Run-In Alert, 482-483 HTML, 170, 171
Aligned inline elements, 171

Aligned-center Absolute

CSS, 174

explanation, 175
horizontal/vertical center, 175
HTML, 174

limitations, 175

location, 175

patterns, 175

Offset Absolute

bottom-offset absolute element, 173
CSS, 172

HTML, 172

left-offset absolute element, 173
location, 173

right-offset absolute element, 173
styles, class/ID, 173

top-offset absolute element, 173

Offset Static Block

center-aligned sized static block
element, 169
CSS, 168

location, 171
Outside
absolute element, 177
CSS, 176
HTML, 176
limitations, 177
location, 177
patterns, 177
static blocks and floats, 177
Static Inline
CSS, 166
horizontal patterns, 167
HTML, 166
terminal block container, 167
vertical alignment, 167
vertical center, 167
Aligned drop cap, 428-429

B
Block Quote, 458-459

493

INDEX

494

Blocks, 265

Background Bulleted, 274-275
Block Spacer, 284-285
Block Space Remover, 286-287
Collapsed Margins
CSS, 278
HTML, 278
padding and borders, 279
sibling blocks, 279
Horizontal Rule, 282-283
Inlined, 276-277
Left Marginal, 288-289
Lists
CSS, 272
faux marker, 273
HTML, 272-273
indent lists, 273
list-style-type property, 273
Right Marginal, 290-291
Run-in, 280-281
Section, 270-271
Structural Meaning, 266-267
Visual Structure
CSS, 268
horizontal rule design pattern, 269
positional styling, 268
styling exceptions, 268

Box Models, 81

Absolute Box
absolute element, 95
CSS, 94
HTML coding, 94
location, 95
margin and border, 95
Mozilla Firefox, 94
selector, 95
style, 95
width, 95

Block Box
border and padding, 91
CSS, 90
HTML coding, 90
location, 91
margin-left and-right, 91
margin-top and bottom push

blocks, 91

Mozilla Firefox, 90
normal flow, 91

overflow property, 91
selector, 91
styling, 91
terminal block, 91
Display
block element, 83
blocks, 83
CSS, 82
HTML coding, 82
list item, 83
Opera, 82
property, 83
types, 83
division class HTML code, 84
extents, 99
Height, 102-103
Shrinkwrapped, 106-108
Sized, 104-105
Stretched, 108-110
Width, 100-101
Floated Box, 96-97
Inline Box
border, 87
CSS, 86
inline formatting context, 87
margin and line-height, 87
Mozilla Firefox, 86
padding, 87
selector, 87
span class coding, 86
Inline-Block Box
border and padding, 89
image class, 88
location, 89
margin, 89
Microsoft Internet Explorer, 88
replaced-box, 88
selector, 89
span class, 88
styling, 89
width and height, 89
properties, 85, 111
background, 120-121
border, 114-117
margin, 112-113
overflow, 122-123
padding, 118-119

C

page break, 126-127
visibility, 124-125
selector, 85

Table Box

border, 93
border-collapse, 93
CSS, 92

flow, table, 93
HTML coding, 92
location, 93
margin, 93
properties, 93
style, 93

table cell, 92

width and height, 93

Callouts and Quotes, 447

Block Quote, 458-459

Center Callout, 452-453

Inline Block Quote, 460-461
Inline Quote, 462-463

Left Floating Callout, 448-449
Left Marginal Callout, 454-455
Right Floating Callout, 450-451
Right Marginal Callout, 456-457

Cascade order

competing rules, 14-15
guiding principles, 14
location groups, 15
rules sorted, 17
selector groups, 14

Center Callout, 452-453
Content alignment

Advanced Alignment Example
acl and ac2 classes, 263
CSS, 262
em measurements, 263
features, 263
font-size, 263
HTML, 262
inline elements, 263
MathML, 263
white-space:nowrap, 263

Hanging Indent
advantages, 251
CSS, 250

disadvantages, 251

HTML, 250

inline elements, 251

negative margin-left, 251
negative value, 251
padding-left, 251

pattern, 251

positive value, 251

structural block elements, 251
terminal block element, 251

Horizontal-aligned Content

CSS, 252

HTML, 252

inline elements, 253
justification algorithm, 253
patterns, 253

structural block elements, 253
terminal block elements, 253
text-align:center, 253
text-align:justify, 253
text-align:left, 253
text-align:right, 253

Nested Alignment

acl, ac2, and ac3 classes, 261
CSS, 260

font-size values, 261

HTML, 260

inline elements, 261

Opera 11, 261

pattern, 261

Subscript and Superscript

Conditional Style Sheet design
pattern, 259

CSS, 258

em values, 259

Firefox 2, 259

HTML, 258

inline text elements, 259

Internet Explorer 7, 259

lle, 259

mademoiselle, 259

Opera 9, 259

patterns, 259

Text Indent

CSS, 248

HTML, 248

inline elements, 249
pattern, 249

INDEX

495

Download from Wow! eBook <www.wowebook.com>

INDEX

positive margin-left, 249 Alerts (see Alerts)
positive value, 249 background property, 2-3
structural block elements, 249 baseline style sheets, 30-31
terminal block elements, 249 CSS

Vertical-aligned Content Animations, 27
AMijx, 255 and HTML links, 18
baseline, 255 properties and values, 19, 21-23
CSS, 254 Transitions, 27
em height, 255 96 dpi
ex height, 255 font-size values, 26
fontlines, 255 ratios between units of measure, 26
HTML, 254 2D Transformations, 27
inline content, 255 fixed units of measure, 25
inline elements, 255 flexible units of measure, 25
paragraph, 255 Left Marginal design pattern, 6
pattern, 255 Marginal Graphic Dropcap design
span, 255 pattern, 6

Vertical-offset Content media queries, 24
AMjx, 257 pattern name, 2
baseline, 257 problems, 2
CSS, 256 selectors, 23
ems, 257 simplicity and power, 2
HTML, 256 solutions, 2
inline ele_rnents, 257 Text Replacement design pattern, 5
pattern, 257 trade-offs, 2
pixels, 257 troubleshooting CSS, 28-29
positive values, 257 using Cascade Order (see Cascade
subscript/superscript effect, 257 order)

CSS syntax, 8 using CSS syntax (see CSS syntax)
backslash, 9 using HTML (see HTML design
case-sensitive, 8 patterns)
constant values, 9 using style sheets, 7-8
CSS comment, 9 Drop Caps, 427
element names, classes and IDs, 9 Aligned, 428-429
multiple classes, 9 First-letter, 430-431
property values, 10-13 Floating
right curly brace (}), 9 CSS, 436
rulesets, 9 HTML, 436
semicolon, 9 negative and positive values, 437
string, 9 trigger bugs, 437
Unicode UTF-8, 8 Floating Graphical
whitespaces, 10 CSS, 438

Cufén, 217 HTML, 438

text dropcap style, 439
text replacement design pattern, 439

D, E Hanging, 432-433
Design patterns, 2 Marginal, 440-441
Absolute design patterns, 4 Marginal Graphical

496

CSS, 442
HTML, 442
image cannot be displayed, 444

text replacement design pattern, 443

top-offset sized absolute element
design pattern, 443
+VALUE, 444
Padded Graphical
background color/image, 435
CSS, 434
HTML, 434
inline element, 435

F

First-letter Drop Cap, 430-431
Floating Alert, 484-85

Floating Drop Cap, 436-437

Floating Graphical Drop Cap, 438-439
Fluid Layout Overview, 382-383

G

Graphical Alert, 480-481

H

Hanging Alert, 478-479
Hanging Drop Cap, 432-433
Highlight white-on-firebrick, 209
Horizontal-aligned Content, 252-253
HTML design patterns, 33
block elements, 35, 41
Class and ID Attributes, 58-59
Conditional Style Sheet, 48-49
DOCTYPE, 44
almost-standards mode, 45
vs. content type, 44
quirks and standards mode, 45
strict and transitional, 45
Header Elements, 46-47
HTML Whitespace, 60-61
Inline Elements, 35, 41, 56-57
Multi-purpose Block Elements, 54-55
Structural Block Elements, 50-51
structural elements, 41
Terminal Block Elements, 52-53
XHTML, 41-43

HTML structure, design patterns
block elements, 35, 41
inline elements, 41
structural elements, 41

Images, 293
Basic Shadowed Image, 312-313
Content over Background Image, 306—
307
Content over Image
block element, 305
CSS, 304
HTML, 304
inline decoration design pattern,
305
Crater Lake pictures, 294
CSS Sprite
bitcons, 310
CSS, 308
Google Load Time Analyzer, 311
history, 311
HTML, 308
HTTP and TCP/IP communications
protocol, 311
MSN home page, 311
multiple background images, 309
16216 sprites offsets, 310
decorative images, 295
Fade-out
CSS, 298
gradient image and mask, 299
gray gradients, Internet explorer 6,
299
HTML, 298
GIF format, 295
Image Map
HTML, 296
map element, 297
real-world map, 297
JPG format, 295
Northwest USA, 324-325
PNG format, 295
Replaced Text, 302-303
Rounded Corners
block and inline elements, 321
CSS, 320

INDEX

497

INDEX

498

CSS3 multiple backgrounds, 321
HTML, 320
pad class, 323

rounded rectangle images, 322-323

Semi-transparent, 300-301
Shadowed

background-position, 317

block elements, 319

CSS, 318

HTML, 318

image creation, 314, 315

nested block elements, 315, 316

shadow-1b.jpg indents, 314, 315
shadow-rt.jpg and shadow-1b.jpg,
314,315
shadow-rt.jpg indents, 314, 315
src attribute, 295

Inline Alert, 476-477

Inline Block Quote, 460-461

Inline Quote, 462-463

J, K
JavaScript Alert, 466-467

L

Layouts, 381

Button

client-side image map, 417

CSS, 414

HTML, 414, 416

JavaScript events, 415

page.js, 416

server/reset form elements, 415
Event Styling, 397

CSS selector, 397

HTML, 396

jQuery, 397

page.js, 396-397

runtime elements, 396
Float Divider, 390-391
Floating Section

CSS, 388

HTML, 388

Internet Explorer 7, 389

section design pattern, 389
Fluid Layout, 393

columns and rows, 383, 393
CSS, 382, 392
HTML, 382, 392
Flyout Menu
add, remove and toggle functions,
413
CSS, 410
drop-down menu, 413
flyout-trigger class, 411
HTML, 410, 412
list-style-type, 413
page.js, 412
Layout Example
body and main section, 425
CSS structural styles, 424
design patterns, 425-426
footer section, 425
header section, 425
HTML structural elements, 424
nav and extra sections, 425
postheader section, 425
preheader section, 425
title section, 425
Links, 418-419
Multi-column Layout, 420-421
Opposing Floats, 394-395
Outside-in Box
CSS, 384
HTML, 384
vs. inside-out design, 386-388
outer width, 385
Rollup
CSS, 398
HTML, 398, 400
JavaScript, 401
page.js, 400
rollup-trigger class, 399
screenreader-only design pattern,
399
Tab Menu
CSS, 402-404
HTML, 402, 404
list items, 405
tab’s box style, 405
Tabs, 409
CSS, 406
first click() function, 409
HTML, 406, 408

mouseout() function, 409
mouseover() function, 409
page.js, 408
second click() function, 409
tab-content element, 407
Template Layout, 422-423
Left Floating Callout, 448-449
Left Marginal Alert, 486-487
Left Marginal Callout, 454-455

M

Marginal Drop Cap, 440-441

Marginal Graphical Drop Cap, 442-445

Multipart Internet Mail Extensions
(MIME), 44

N

Negative margins outdent, 155
Nested Alignment, 260-261

0

Offset

Absolute And Fixed
advantages, 163
CSS, 162
HTML, 162
margin-top and margin-left, 163
shrinkwrapped-offset absolute

element, 163

sized-offset absolute element, 163
tips, 163

Float
absolute and fixed elements, 161
advantages, 161
CSS, 160
disadvantages, 161
horizontal patterns, 161
HTML, 160
location, 161
positive and negative margins, 161
tips, 161
vertical patterns, 161

Indented Static Table
CSS, 158, 159
HTML, 158, 159

INDEX

limitations, 159
location, 159
negative margin, 159
positive margin, 159
Relative
atomic, 165
CSS, 164
HTML, 164
limitations, 165
location, 165
normal/floating flow, 165
patterns, 165
z-index, 165
Static
block elements, 157
block patterns, 157
CSS, 156
HTML, 156
inline element, 157
inline patterns, 157
location, 158
Ordered and unordered sets, 267

P,Q

Padded Graphical Drop Cap, 434-435
Pop-Up Alert, 470-473
Positioning, 153
Aligned (see Aligned)
Bottom Aligned
CSS, 196
HTML, 196
limitations, 197
location, 197
patterns, 197
shrinkwrapped absolute element,
197
sized element, 197
static shrinkwrapped element, 197
stretched element, 197
Bottom Offset
bottom-aligned element, 199
CSS, 198
HTML, 198
limitations, 199
location, 199
margin-bottom, 199
patterns, 199

499

Center Aligned

CSS, 188

horizontal center, 189
HTML, 188

limitations, 189
location, 189

patterns, 189

sized element, 189
stretched element, 189
text-align:center, 189
widths and margins, 189

Center Offset

CSS, 190

HTML, 190

inline element, 191
limitations, 191

location, 191

patterns, 191

sized absolute element, 191

stretched element, 191

Indented

CSS, 154

horizontally indented absolute
element, 155

horizontally indented static block
element, 155

HTML, 154

limitations, 155

location, 155

margins, 155

outdent, 155

stretched absolute element, 155

vertically indented absolute
element, 155

Left Aligned

CSS, 180

HTML, 180

limitations, 181

location, 181

patterns, 181
shrinkwrapped element, 181
sized element, 181

stretched element, 181
text-align:left, 181

Left Offset

CSS, 182
HTML, 182
limitations, 183

location, 183
margin-left, 183
patterns, 183
Middle Aligned
CSS, 200
HTML, 200
inline element, 201
limitations, 201
location, 201
patterns, 201
sized absolute element, 201
stretched absolute element, 201
Middle Offset
CSS, 202
HTML, 202
limitations, 203
location, 203
patterns, 203
sized absolute element, 203
stretched absolute element, 203
Offset (see Offset)
Right Aligned
CSS, 184
HTML, 184
limitations, 185
location, 185
patterns, 185
shrinkwrapped element, 185
sized element, 185
stretched element, 185
text-align:right, 185
Right Offset
CSS, 186
HTML, 186
limitations, 187
location, 187
margin-right, 187
patterns, 187
Top Aligned
CSS, 192
HTML, 192
limitations, 193
location, 193
patterns, 193
shrinkwrapped element, 193
sized element, 193
stretched element, 193
Top Offset

INDEX

CSS, 194 viewport, 145

HTML, 194 Float and Clear, 148-149

limitations, 195 HTML coding, 130

location, 195 layouts, 131

margin-top, 195 Mozilla Firefox, 130

patterns, 195 Positioned type, 132

top-aligned element, 195 ancestor, 133

Positioning Models, 129 CSS, 132

Absolute, 142 HTML coding, 132

advantages, 143 left and right side element, 133

CSS, 142 limitations, 133

disadvantages, 143 location, 133

HTML coding, 142 positive values, 133

limitations, 143 selector, 133

Mozilla Firefox, 142 Relative, 146

normal flow, 143 CSS, 146

position ancestor, 143 float, 147

selector, 143 HTML coding, 146
Atomic Internet Explorer 7, 147

automatic rendering, 139 Mozilla Firefox, 146

CSS, 138 normal flow, 147

HTML coding, 138 offset, 147

inline content, 139 selector, 147

Internet Explorer 6, 139 Relative Float

limitations, 139 advantages, 151

Mozilla Firefox, 138 CSS, 150

selector, 139 HTML coding, 150

static blocks, 139 inline content, 151
basic properties, 131 Mozilla Firefox, 150
Closest Positioned Ancestor, 134 six types, 131

advantages, 135 Stacking Context, 136

CSS, 134 browser, 137

HTML coding, 134 control, z-order, 137

limitaions and disadvantages, 135 CSS, 136

location, 135 elements control, 137

Mozilla Firefox, 134 Firefox, 137

pattern, 135 HTML coding, 136

self-contained layout, 135 layer rendering, 137
CSS, 130 numeric z-index, 137
Fixed Opera, 136

absolute size, 145 Static

advantages and disadvantages, 145 block element, 141

CSS, 144 CSS, 140

fixed elements, 145 HTML coding, 140

HTML coding, 144 inline element, 141

Internet Explorer 6, 145 Mozilla Firefox, 140

Mozilla Firefox, 144 normal flow, 141

selector, 145 top and bottom margin, 141

501

INDEX

Positive margins indent, 155
Pull quotes, 447

R

Right Floating Callout, 450-451
Right Marginal Alert, 488-489
Right Marginal Callout, 456-457
Run-In Alert, 482-483

S

Selectors design patterns, 63

Attribute Selectors

case-sensitive match, 69

CSS, 68

element selection, 69

existence selector, 69

HTML, 68

language, 69

Mozilla Firefox, 68

name spacing, 69

value selector, 69

word selector, 69
Inheritance, 76

CSS, 76

HTML, 76

limitations, 77

not inherited properties, 77

properties, 77

visual (see Visual inheritance)
Position and Group Selectors

child elements, 67

CSS, 66

descendant elements, 67

element position, 67

first-child elements, 67

HTML, 66

Internet Explorer 7, 67

list item, 67

multiple selectors, 67

sibling elements, 67
Pseudo-class Selector, 72

browser, 73

CSS, 72

HTML, 72

hyperlink, 73

Internet Explorer 6, 73

502

visual indicator, underline, 73
Pseudo-element Selector

bugs, browsers, 71

CSS, 70

element selection, 71

first-letter and-line, 71

font and text properties, 71

HTML, 70

Mozilla Firefox, 70
Subclass Selector, 74

base class, 75

class attribute, 75

class of elements styling, 75

CSS, 74

HTML, 74

paragraphs, 75
Type, Class and ID

case-sensitive, 65

CSS, 64

HTML, 64

namespace, 65

override, 65

style, 65

Spacing content, 225-227

Blocked
CSS, 228
HTML, 228
inline element, 229
Code
CSS, 234
HTML, 234
inline elements, 235
search engines and document
processor, 235
Inline Decoration, 240-241
Inline Horizontal Rule, 244-245
Inline Spacer
CSS, 238
emphasizing/deemphasizing space,
239
HTML, 238
Line Break, 242-243
Nowrap, 230-231
Padded Content
background-color/-image, 237
blocked, 237
CSS, 236
HTML, 236

inline, 237
Preserved
CSS, 232
HTML, 232
white-space:pre assignment, 233
terminal block element, 227
text-indent, 227
Style sheet, 7
Styling text
Decoration
background-image property, 211
border property, 211
CSS, 210
HTML, 210
line-throughs, 211
location, 211
overlines, 211
padding-top/-bottom, 211
patterns, 211
transparent GIFs, 211
underlines, 211
Font
color and case, 207
CSS, 206
embedding, 218-19
family, 207
HTML, 206
location, 207
pattern, 207
size, 207
Highlight
background color, 209
CSS, 208
em measurements, 209
forecolor, 209
highlight-alert, 209
HTML, 208
location, 209
padding distance, 209
pattern, 209
tiled image, 209
Invisible Text
CSS, 220
HTML, 220
limitations, 221
pattern, 221
terminal block element, 221
text-align, 221

INDEX

text-indent, 221
width and height, 221

Replacement with Canvas and VML

Cuf6n, 217
cufon-yui.js, 217

font converter, 217
HTML, 216
JavaScript, 217

JSON data format, 217
location, 217

UTF-8 encoded, 217

Replacement with Image

absolute element, 215
block element, 215
CSS, 214

fixed element, 215
float element, 215
HTML, 214

pattern, 215

span, 215

Screenreader-only

CSS, 222

disadvantages, 223

HTML, 222

location, 223

nonsighted users, 223
pattern, 223

pixel height and width, 223
sighted users, 223

Shadow

T,U

background-color, 213
block elements, 213

CSS, 212

filter:shadow, 213

HTML, 212

Internet Explorer 6, 212, 213
pattern, 213

Safari, 213

zoom:] triggers, 213

Table column layout, 353
auto width, 354
Column Width

CSS, 356
fixed-width cell, 357
HTML, 356

503

INDEX

minimum and maximum content
width, 357
types and values, 357
Content-proportioned Columns
CSS, 362
HTML, 362
sized and stretched tables, 363
VALUE_OR_PERCENT, 363
Equal Content-sized Columns
CSS, 370
design pattern, 371
HTML, 370
PERCENT, 371
Equal-sized Columns, 372-373
fixed tables, 353
fixed width, 354
Flex Columns
auto-layout tables, 377
CSS, 376
fixed-width and percentage-width
column, 377
HTML, 376
Inverse-proportioned Columns, 368—
369
Mixed Column Layouts
CSS, 378
design pattern, 379
HTML, 378
percentage width, 354
Percentage-proportioned Columns,
366-367
Shrinkwrapped Columns
content-proportioned columns
design pattern, 359
CSS, 358
HTML, 358
shrinkwrapped tables, 353
sized and stretched tables, 353
Sized Columns, 360-361
Size-Proportioned Columns, 364-365
Undersized Columns, 374-375
Tables, 327-329
border-collapse and table-layout, 329
Collapsed Borders, 336-337
Hidden and Removed Cells
CSS, 340
hidden tables and rows, 341
HTML, 340

504

removed tables and rows, 341
text-indent, 341
Layout, 350-351
Removed and Hidden Rows and
Columns, 342-343
Row and Column Groups, 331
CSS, 330
HTML, 330
table headers and footers, 331
Separated Borders
border-collapse:separate property,
335
CSS, 334
HTML, 334
nonbreaking space, 335
Striped Tables
background colors, 347
CSS, 346
HTML, 346
style border and padding, 347
Styled Collapsed Borders, 338-339
Table Selectors
column cells selector, 333
CSS, 332
HTML, 332
row cells selector, 333
row group selector, 333
style cells, 333
Tabled, Rowed And Celled, 348-349
Vertical-aligned Data, 344-345
TEXT DECORATION, 210-211
TEXT SHADOW, 212-213
Tooltip Alert, 468-469
Vertical-aligned Content, 254-255
Vertical-offset Content, 256-257
Visual Inheritance, 78
background property, 79
CSS, 78
design patterns, 79
HTML, 78
Mozilla Firefox, 78

Pro HTML5 and CSS3
Design Patterns

Michael Bowers
Dionysios Synodinos and

Victor Sumner
Apress-

Download from Wow! eBook <www.wowebook.com>

Pro HTMLS5 and CSS3 Design Patterns
Copyright © 2011 by Michael Bowers, Dionysios Synodinos, and Victor Sumner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3780-8
ISBN-13 (electronic): 978-1-4302-3781-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Ben Renow-Clarke

Technical Reviewer: Andrew Zack

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James
Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-
Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell

Copy Editors: Mary Ann Fugate and Tiffany Taylor

Compositor: Apress Production (Christine Ricketts)

Indexer: BiM Proofreading & Indexing Services

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media NY., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit waw. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW . apress . com/source-code/.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

1 dedicate this book to my wonderful family.
To my loving mother, Aggeliki
To my beautiful wife, Elisa
To my precious daughter, Aggeliki
You make me feel like the luckiest person alive.

—Dionysios Synodinos

This book is dedicated to my wife, Alicia, with love.

—Victor Sumner

Contents

Contents at @ GlaNCe..........ccvcerimmimmsmmmsnn s ———— iv
Contents.......ccmimmmmmm e ———————————————— Vi
About the AUtROFS........ccuiemimsmnmssnnmmssssssss s e anna s annn s nnnnnnan xiv
About the Technical REVIEWETcusmmssessssmmsssnsssansssssssassssassssnsssasssssssssnsssassssnsssansas XV
AcCKNOWIedgmentsccuuvesmismmsssmmsssmsssmsassssssssssnsnssss s snn s snsm s san s s n s s e Xvi
11T LT (1 XVi
T 1T L XVi
INNOVALIONS ... e Xvii
0] 11T 0] T XX
USING ThiS BOOKcccruieiriicirisci s s s XXii
How This BOOK IS STrUCUIEd ... Xxiii
Downloading the COde........c.oeereierererecrre e XXiv
USING the COOE........ccoereieiriscirinee s XXV
Contacting the AULNOLSccocceieiecerere e XXV
Chapter 1: Design Patterns: Making CSS Easy!.........ccousmmmssnmmmssanmsssanssssanssssanssssnnsanss 1
Design Patterns—Structured RECIPES.........ccorvirrerrnenersser e 2
USing Design Patterns.........ccuvevererirenrre s sse e ssssss s ssesssssssssssssssssssassssssssssssssassnnns 2
USING StYIE SNEELS......coeeeeeeer e sr e r e r e sr e nnennens 7
CSS SYNTAX ..ot 8
USING CaSCAUE OFUENccceveeerreecrereeresseese e e e se s nens 14
Simplifying the CaSCaUEcccceeerrerceeerrer e sr s 17
CSS aNd HTML LINKS......ccrtieirerseesssssesssssesssssss s sssss s ssssssssssssssssssssssssssssssssssssesas 18
CommMON CSS PropPerties.......cccvrrvererrnererrsesessesssessesesessesesesssessssesessssssesssssssssssssssssssssssnns 19
CSS Properties and Values: COMMON ..o 20
CSS Properties and Values: Content...........cccoverernerenssesnscss s sssssssessesessessssessens 21
CSS Properties and Values: LayOUL...........cccucceeeerernienesessessssessesessessssesessssessssessessssessens 22

CSS Properties and Values: Specialized ..o 23

CONTENTS

SBIBCIONS ...t ————————————————————— 23
Media QUEKIES........coureerereirereere s 24
Flexible UnitS Of MEASUIEccocrerierrircsise s s 25
Fixed Units of MEASUIEccccerieirineisinsissssss s 25
Ratios Between Units of Measure at 96 dpi..........ccceevvernnmresnscsssssesssese s sesssse e sessens 26
Typical font-size Values at 96 dpi........cccceereererererereresesesesessessessesse e ssessessesssssssssssnns 26
Transitions, Animations, and 2D Transformations.........c..cceccvverienreninsenses e sses e ssesseenns 27
Troubleshooting CSS.........cueieenicre e sa s ene e 28
Normalized Style SHEEt ... s 30
Chapter 2: HTML Design Patterns........cccccummmmsssmmmsssnsmsssssssssssssssssssssssssssssesssnssssnnnes 33
Chapter OULHNE.cccocereri 33
HTML STUCIUIE ...ttt sn s s ne s s 34
T 11T (1 37
XHTIVIL...s ettt sa e sa s se e p e e s a e e sa s e s e s e e nansnnn s 42
00 I =R 44
Header EIBMENTS..........ccoiirre s s 46
Conditional Style SNEEL..........ccoivniiirr e ———— 48
Structural BIOCK EIBMENLScccceveeerriierisesesssesese e ss s sse s s s e ssessssesnsnsnnens 50
Terminal BIOCK EIBMENTS..........ccoivcricirii s 52
Multi-purpose BIock EIBMENTS..........ccocevevririrrrcr e e 54
INNE EIBMENTS ...t en s s ae s sn e s n s 56
Class and ID ALFIDULEScccorererniniri e 58
T] - T 60
Chapter 3: CSS Selectors and Inheritance...........commmmmmnmemmemsme——————— 63
Chapter QUEINEccceeeeceeer e n e s nn s snennnnens 63
Type, Class, and ID SEIECIOrScccceceeererererr e sr e snesnenns 64
Position and Group SEIECIOrS.........ccccvrcirresrrr s 66
ALLribULE SEIBCIOIS......cueceecrecer e 68
Pseudo-element SEIECLOrS..........cucrrrenirir 70
PSEUAO-CIass SEIBCLONS ... s 72
SUDCIASS SEIBCIONvecereecerre e 74
INNEIIANCE......cvieie i ———— 76
ViSU@l INNEIILANCEccveuicereccirisei e 78
Chapter 4: BoX MOUElS.....corumememmmmmmmsssssssnnssnmmsssssssssssssssssssssssssssssssnssssssssssssnnnnssssssssss 81
Chapter QUEING.ccccceeeiecer e a e s e snenrnnens 81
D170 - SRS 82

vii

CONTENTS

BOX MO ...ttt 84
INTNEG BOX ..t 86
ININE-BIOCK BOX......cccruiirmiiieninisesesssss st s s 88
3] 0T G =T N 90
TADIE BOX...eeeeeeereereersersessessessessessessesssssesssssssssssessssssssesassssssssssssssssssssssssnssessnssnsssnsnssnssnssnns 92
ADSOIULE BOX....coueeruceririeise s s s s 94
L 0 LT N 0 N 96
Chapter 5: Box Model Extents.......ccccccmmmnsmmmmmmmsssnnnmmssssssnmssssssssmsssssssssssssssssssssssnnnssans 99
Chapter QUINEoeeeeeeee s e 99
Lo 111 100
HEIGNT ... s r e r e r e s r e sn e r e r e n e n e n e nnnnens 102
SIZEUvieeeeerrerre e a e AR R e Enaenn e e 104
SHINKWIAPPEM ..ot sr e s 106
SHEICNEM ... ——————————— 108
Chapter 6: Box Model Properties.....cuuseeeessmmmrssnsnss 111
081 P T (= 0 1 T 111
T 0] SRS 112
BOFOEK ... ———————————— 114
PAAUING.....cieeerereei e a e e ne R e 118
372 T (0 011 L 120
OVEITIOW....eecc s 122
ViISIDIITY v.uvveeeeecieecissc et r e n s sn e ne s nn e nnn 124
PAGE BrEakKcoeceieerireiririsi s e e s 126
Chapter 7: Positioning Models.......c.cccuusmmmmssmnmsssansssssnsssssnsesssssesssssesssssesssnsesssnssssnas 129
Chapter OUEHNEcco i 129
POSItioNiNg MOEIS.........ccccerrirerrrerre e r e 130
POSIHIONEd ... s 132
Closest PoSIitioned ANCESTONccvveveerrerrerrir e n e 134
R3] £ Lo T J 0] - O 136
(0] 0 1SS 138
SHALIC. ..ttt ————————————————— 140
0L 142
o SRS RSSO SRS 144
REIALIVE ... a e e a e s a e n e n e na e n e n e n e n e nn e nnnn e 146
FIOAt and CIEaAr..........ccoeeeeereer e n s sr e e 148
Relative FIOAL ..ot 150

viii

CONTENTS

Chapter 8: Positioning: Indented, Offset, and Aligned...........ccoussaermsssnsssssnsssssassssnns 153
Chapter QUEINGcccoeeeeerecer e e sr s s 153
INdENTEA.......cir e ————————— 154
OFfSEE STALC ... —————————— 156
Offset or Indented Static TADIEccovrererrerrree s 158
OFfSEE FIOAL ...t ———— 160
Offset Absolute and OffSet FiXed ... 162
OFfSEE REIALIVEceeeereerer e 164
Aligned Static INlINE.........covccvrirr s ——————— 166
Aligned and Offset Static BIOCKc.ccorvrerernieresire e 168
Aligned and Offset Static TabIEccovveerricnrnrcrrr e 170
Aligned and OffSet ADSOIULEccecerererimrnnernsirerse s 172
Aligned-center ADSOIULEccoovieeeerrseresrness s sa s sr e sne e nnes 174
AlGNEA OQULSIHE........cceereeererecre s e s a s srs e nnnan e 176

Chapter 9: Positioning: Advancedc..cccusemmmmssmmmmssssmsssssmsssssmsssssssssssssssssssssansessans 179
Chapter OUEHNE.........ccoieirrir 179
Left AIGNEU......cccceeeecererir e r e r e nn e s re e e 180
[0S 03 182
RIgNt AlIgNEA ...t sr e sae s r e e sr e s n s sr e sr s sn e sn e sn e n e sn s nnenn e nnnnnnnan 184
Right OffSEL......cieeiecercre e r e e s re s e 186
(005 01 (=T 1T T 188
Center OffSEL........cccirrecrr e 190
TOP AlIGNEU ... e a s n s r e n e aeen e nenr s e nnennns 192
(o]0 T3 PP R 194
BOHOM AlIGNEd ... s 196
BOHOM OffSEL.....cccceiecercrcc e 198
MiddIe AlIGNEMcoveerircirirei - 200
Middle OFfSEL ..o ————————— 202

Chapter 10: Styling Textccuuccmmmmmsnnnmmmmsssnnmmmssssssmmmsssssnmsssssssnessssssnesssssnsessssnnnns 205
Chapter QUEINEccccceerereer e s sr s s 205
FONL...coe e ————————————— 206
31 o SRS 208
TeXt DECOTAtioN........ccccecereerrriresr e r e nn e nnas 210
TEXt SHAAOW ...t 212
Text Replacement With IMagec.cccccvirrnncnrncr s 214
Text Replacement with Canvas and VML............coooerrennnncnnnnesssssesessssesessssesesssseens 216

ix

CONTENTS

Font EMDedding.........cocoinmmnnsss s 218
INVISIDIE TEXL... .ttt 220
SCrEENIRAURI-0NIYccveeeerereeresee e e nesre e ne e nnnnis 222
Chapter 11: Spacing Content.........c.ccccvusmmmisemmmssnmmsssssmsssssmssssmsssssesssssssssssessnsssssnns 225
R3] 0 T o SRS 226
BIOCKEA ...ttt ———————— 228
T T 230
PrESEIVEM.....c.eeiiciericcri et e 232
0oL 234
Padded CONTENtcccoveeerrcerseer e 236
INIING SPACET ...t ————————— 238
INNE DECOIALION.......coveereeeercrre e a e s r e sr s s r s 240
LiNG Bre@K.......coieiuereriririricese s s s s 242
Inline Horizontal Rul@............oociriiniriir s 244
Chapter 12: Aligning Content............ccccimmmnemmmmmisssmmmmmssssmmmssssnmmssssmmsssssnsssnns 247
L= B0 =T 248
Hanging INAENT.........coeeeeeeeee e r e resr e sr e e r e nn e nn e n e nnnnens 250
Horizontal-Aligned Content............ccovmnnn s 252
Vertical-Aligned CONENt..........cccoceeeeiienne e 254
Vertical-0ffSet CONTENTccocveceeerccrree e 256
Subscript and SUPEISCHPL........cco e 258
Nested AlIGNMENT ..o r e s nn s 260
Advanced Alignment EXAMPIEcoeeeeeeererc e sse e e sse s s s snesnssnssnnnns 262
Chapter 13: BIOCKSccuisssesmssssssssasssassssssssssssssssssnsssnssssssssssnsssnsssnsssnssnsssnsnsnsnsnsnnnsns 265
Chapter OUEHNEcco i 265
Structural Meaningcccoeevceresiresre e er e e 266
ViSUAI STIUCTUNE ...t 268
SBCHION.....cuccer e 270
LSS 1uverruerresrssersssesse e s s e e s a s n e R e R E R R R R e e Rennn e 272
Background BUlleted ... 274
INHNA ... ——————— 276
CollapSed MArginSccccceveerriereneserssse s e sr s s e srs e saesn s srs e sae s nnenns 278
RUN=IN oo 280
Horizontal RUl..........ccooouicicce s 282
BIOCK SPACEcueceieeericeeercrre e n e s a s nn s s nen s e 284

BIOCK SPace REMOVETc.coeeriieireneise s s s s 286

CONTENTS

Left Marginal...........ccovnnin s 288
Right Marginalccoceeeienmiieneriesense s sss s sn s s s sns s s e sss e sassssnsens 290
Chapter 14: IMAQESuicusemmsmmmssmismsssmssmmssss s s s s s s s snssnnenn 293
Chapter QUEINGcccoeeeeerecer e e sr s s 293
IMAGR ... ——————————————————— 294
IMAGE MAP ...t ———————————————— 296
210 11 T 298
SeMI-TranSParent.........ccovirnn s —————————— 300
Replaced TeXt ... ———— 302
Content OVEr IMAGE........cccceurererererre e sa e s n s e 304
Content over Background IMAQEc.ccocrcercerrerrrre s 306
(T TN 0 1 | (- TSSOSO 308
CSS SPIItE CONL. ...t 310
Basic Shadowed IMAge ... s 312
ShAdOWEd IMAGEcoeeeeerreerrere e sr e r s ae e er e nn e 314
Shadowed IMage CONL. ..o e 316
Shadowed Image CoNt. ... s 318
ROUNAEU COMMEISeceveereeercrre s s sse e sas e sse s s e s ss s s sn s sne e sns e sne s nnenns 320
Rounded COrners CONt. ... s 322
IMAGE EXAMPIE ...t 324
Chapter 15: Tables.......cccusmmismmimmmmmmmmsmsms s ———————— 327
Chapter QUEINGccoceeererecr e s sr s s 327
TADIE .. —————————————————————— 328
Row and Column GrOUPSccoererermrnenmrnsese s s s s s s 330
TabDI@ SEIECIONSccueeeeerererere e r s nn e e ne e nn e nnin 332
Separated BOrders..........ocurninsnins s 334
(0] 1o LT 0] (0T £ 336
Styled CollapsSed BOFUENS.........ccoeerreemrierresrsessssesse e sesssse e ssssesssssssessssesssssssessssessssssnens 338
Hidden and Removed CellS............ccorninieninicsiss s 340
Removed and Hidden Rows and COIUMNS ... s 342
Vertical-Aligned Data............coccevirinennin s 344
Striped TaDIES......ccccc e ——————————— 346
Tabled, Rowed, and Celledcceeerveeriirieerereererree s s sne e ssnessesnesaes 348
Table Layoul ... s 350
Chapter 16: Table Column Layoul........c.ccccusemmmmssmmmmssmnmsssssmsssssmsssssssssssssssasssssnnssssnns 353
Table Layout MOEIS..........cocorimniri s 353

CONTENTS

USIiNg ColUMN LAYOULScoceeeererceeceser s se s sn s e e e sn s sn s 354
Chapter OULHNEcco e 354
(00 T3 0T o 356
Shrinkwrapped COIUMNS..........coe i snesr e r e resr e nesr e srennennan 358
SiZEU COIUMNS ...ttt sr s s r e r e p e e nen e nn s 360
Content-Proportioned COIUMNS...........cccvrererneserne e ssssenes 362
Size-Proportioned COlUMNS ... 364
Percentage-Proportioned COIUMNS.........cccceveerennrenesese e sre e 366
Inverse-Proportioned COIUMNSccocceerenienerssesers s s sesnnnes 368
Equal Content-Sized COIUMNScoveirreiniisne e 370
EQUal-Sized COIUMNS........covereeirccre et 372
UNAErsized COIUMNScccoceereecrerssererse s ss s a s snnns 374
FIBX COIUMINS ...t 376
Mixed COlUMN LAYOULS........courueererecrerecrese s ses e e s s 378
Chapter 17: LayoulS......cuuummmmmmmsssmmmmmmmmssssssssssmsssssssssssssssssssssssssssnssssssssssssssssnnnnnnnnns 381
Chapter QULINEcccvuieererceres e 381
Fluid LAYOUt OVEIVIBW.......cccruicerercirnsesssssse s s ss s s ss s sesasaes 382
OUESIAE=IN BOXueeeercrresircess e ss s n s e s n s sr s r s n s n e nn s s 384
Floating SECHON ... ———— 388
0 L LT 390
FIUIA LAYOUL ...ttt sn s s e 392
0pPOSING FIOALS ...t sr e r e sr e n e r e n s 394
ST 0 S T o ST 396
30} 1 398
TAD MBNU ... 402
TADS .. ——————————————————————— 406
0T LT 410
BUHON ..o ———————— 414
LAYOUL LINKS....cccieirecrerirerre e se e sse s sse e s s se s sns e s sn s sae s sns e sas s s ns 418
Multi-columN LaYOUL.........ccoieree s s s 420
Template LayOULccoeeeceeece e sn e r e s nesa e s n e r e s resr e resnesnenne s 422
(I LT T] 424
Chapter 18: Drop CapsSuuussesesessmmmmssssssssssnsssssssssssssssssssnssssssssssssnnsnssssssssssssssnnnnnnnns 427
Chapter QULINEcccvuieererceres e 427
AlIgNEd Drop Capccceeeeeerreresrerre e sse s sssssesssssessssssssssnssnssnssnsssssessnssnssnssnssnssnssessnssnnnes 428
First-Letter Drop Capcccceveevierreriesieriesrsessssssessssssessssssesssssssssssssssssssssassssessssssessssssnns 430

xii

CONTENTS

Hanging Drop Capcccccceeeeierereresesesesse e ssessessessessessessesssssssssssssssssssssssssssssessessessens 432
Padded Graphical Drop Capccoeeererrerrerersessessessessessessnns 434
FIOAtiNg DroOP Cap ...c.coveererercresire st sas s s ns s sn s s sn s s sn s e 436
Floating Graphical Drop Capcccceeeerrerressersessessessessessssssssssssssesssssssssssssssssssssssssssssansans 438
Marginal Drop Capccccveerererereresessesessessessessessesssssssssssssssssssssssssssssssasssssassassassassanns 440
Marginal Graphical Drop Cap.........ccccevererrsernsesesiness s se e sssens 442
Chapter 19: Callouts and QUOLESccussrsesssesssnssssssasssnsssnsssssasssnsssnsssnsnanssnsnsnnnns 447
Chapter OUEHNEccvieerrr s 447
Left Floating Callout.............cocorieninnccrrscsesss s 448
Right Floating Callout............ccoeeererrrreere e sn s s 450
Center Callout ... ——————— 452
Left Marginal CalloUL.............cocceeeieenicrese e 454
Right Marginal Callout ... s 456
BIOCK QUOLE.......cocireicirirci s 458
INliNe BIOCK QUOTE........covreerercerisce s s 460
INNNE QUOTE.......ceceeeceer s e 462
Chapter 20: AlertS......cccuremmrmmssssnnmmmsssssnmssssssnnmssssssssessssssssssssssnssssssssnnssssssnnnssssssnnnnss 465
Chapter OUEHNE.........ccoieirrir 465
JAVASCHIPL AIBIT ... e 466
L0012 o 468
POP-UP ARt n e n e n e n e nne 470
0] o T A 1< o 472
] o TP 474
INNNE AR e 476
10T YL o S 478
GraphiCal AR ... ——————————— 480
RUN-IN AIBM..... e 482
a0 LT o A o OSSR 484
Left Marginal Alert ... 486
Right Marginal Alcovceeereierresesesssse e s s sse s sas s snsneens 488
FOrm Validation.........cccoirincsss s 490
INO X ceuussssansssnnnnsssssssssssssnnnssssssssssssssnnnssssssssssssssnnnnssssssssssssnnnnnssssssssssssnnnnnnnnssssnnsnnnnnnn 493

xiii

About the Authors

Download from Wow! eBook <www.wowebook.com>

Xiv

Michael Bowers has been writing software professionally for over 22 years. He taught himself to
program when he was 14 and hasn’t stopped since.

He is currently a principal engineer and enterprise information architect. He has been a software
developer, architect, and modeler for many projects, ranging from web sites to application frameworks
to database systems. He has built web applications, integrated enterprise systems, automated factories
with robotics, developed a language, interpreter, and compiler, and managed teams. His favorite
languages include CSS, HTML, XML, C#, C++, Visual Basic, Java, JavaScript, SQL, and XQuery.

Michael is also an accomplished pianist, with a bachelor’s degree in music composition, a master’s
degree in music theory, and an ABD PhD in music theory. In his spare time, he loves to improvise,
arrange, and compose music.

Dionysios Synodinos the research platform team lead at C4Media and a freelance consultant,
focusing on rich Internet applications, web application security, mobile web, and web services.

He's also the lead editor for HTML5 and JavaScript for InfoQ, where he also regularly writes about the
JVM platform.

Going back and forth between server-side programming and Ul design for more than a decade, he has
been involved in diverse software projects and contributed to different technical publications.

Victor Sumner is a senior software engineer at LookSmart, LTD. As a self-taught web applications
developer, he has had many roles in the web application life cycle, from database administrator to web
designer, and all aspects in between. He enjoys working on and solving problems that are outside his
comfort zone.

When not at the office, Victor has a number of hobbies, including photography, horseback riding, and
gaming. He lives in Ontario, Canada with his wife, Alicia.

About the Technical Reviewer

Andrew Zack is the CEO of ZTMC, Inc. (ztmc. com), specializing in search engine optimization (SEO) and
Internet marketing strategies. His project background includes almost 20 years of site development and
project management experience and over 15 years as an SEO and Internet marketing expert.

He has also been very active in the publishing industry, having co-authored Flash 5 studio and served as
a technical reviewer on over ten books and industry publications.

Having started working on the Internet close to its inception, Andrew continually focuses on the cutting
edge and beyond, focusing on new platforms and technology to continually stay in the forefront of the
industry.

Acknowledgments

I feel blessed having had friends, mentors, and colleagues like Panagiotis Astithas, Christos Stathis,
Kostas Troulos, Fotis Stamatelopoulos, Floyd Marinescu, Ryan Slobojan, Werner Schuster, Panagiotis
Christias, and Georgia Rouni.

Also I would like to thank the Apress team for all their great work and especially our coordinating editor,
Jennifer L. Blackwell, and our editor, Ben Renow-Clarke, for making this a fun experience!

Dionysios Synodinos

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Audience
	Innovations
	Six Box Models
	Box Model Extents
	Box Model Placement
	Column Layouts
	Fluid Layouts
	Event Styling
	Combining HTML5 and CSS3 to Create Design Patterns

	Conventions
	Using This Book
	How This Book Is Structured
	Downloading the Code
	Using the Code
	Contacting the Authors

	Design Patterns: Making CSS Easy!
	Design Patterns—Structured Recipes
	Using Design Patterns
	Example 1-1. Background Image
	Example 1-2. Absolute
	Example 1-3. Text Replacement
	Example 1-4. Left Marginal
	Example 1-5. Marginal Graphic Dropcap

	Using Style Sheets
	CSS Syntax
	CSS Syntax Details
	Using Whitespace in CSS
	Using Property Values

	Using Cascade Order
	Example 1-7. Cascade Order

	Simplifying the Cascade
	CSS and HTML Links
	Common CSS Properties
	CSS Properties and Values: Common
	CSS Properties and Values: Content
	CSS Properties and Values: Layout
	CSS Properties and Values: Specialized
	Selectors
	Media Queries
	Flexible Units of Measure
	Fixed Units of Measure
	Ratios Between Units of Measure at 96 dpi
	Typical font-size Values at 96 dpi
	Transitions, Animations, and 2D Transformations
	Troubleshooting CSS
	Normalized Style Sheet

	HTML Design Patterns
	Chapter Outline
	HTML Structure
	HTML
	CSS
	HTML Structure

	XHTML
	Valid XHTML
	Valid HTML
	XHTML

	DOCTYPE
	HTML
	DOCTYPE

	Header Elements
	HTML
	Header Elements

	Conditional Style Sheet
	HTML
	CSS page.css
	CSS ie6.css
	Conditional Style Sheet

	Structural Block Elements
	HTML Pattern
	Structural Block Elements

	Terminal Block Elements
	HTML
	Terminal Block Elements

	Multi-purpose Block Elements
	HTML
	Multi-purpose Block Elements

	Inline Elements
	HTML
	Inline Elements

	Class and ID Attributes
	HTML
	CSS
	Class and ID Attributes

	HTML Whitespace
	HTML
	CSS
	HTML Whitespace

	CSS Selectors and Inheritance
	Chapter Outline
	Type, Class, and ID Selectors
	HTML
	CSS
	Type, Class, and ID Selectors

	Position and Group Selectors
	HTML
	Position and Group Selectors

	Attribute Selectors
	HTML
	CSS
	Attribute Selectors

	Pseudo-element Selectors
	HTML
	CSS
	Pseudo-element Selectors

	Pseudo-class Selectors
	HTML
	CSS
	Pseudo-class Selectors

	Subclass Selector
	HTML
	CSS
	Subclass Selector

	Inheritance
	HTML
	CSS
	Inheritance

	Visual Inheritance
	HTML
	CSS
	Visual Inheritance

	Box Models
	Chapter Outline
	Display
	HTML
	CSS
	Display

	Box Model
	HTML
	CSS
	Box Model

	Inline Box
	HTML
	CSS
	Inline Box

	Inline-Block Box
	HTML
	CSS
	Inline-Block Box

	Block Box
	HTML
	CSS
	Block Box

	Table Box
	HTML
	CSS
	Table Box

	Absolute Box
	HTML
	CSS
	Absolute Box

	Floated Box
	HTML
	CSS
	Floated Box

	Box Model Extents
	Chapter Outline
	Width
	CSS
	Width

	Height
	CSS
	Height

	Sized
	HTML
	CSS
	Sized

	Shrinkwrapped
	HTML
	CSS
	Shrinkwrapped

	Stretched
	HTML
	CSS
	Stretched

	Box Model Properties
	Chapter Outline
	Margin
	CSS
	Margin

	Border
	CSS
	Border

	Padding
	CSS
	Padding

	Background
	HTML
	CSS

	Overflow
	HTML
	CSS
	Overflow

	Visibility
	HTML
	CSS
	Visibility

	Page Break
	HTML
	CSS
	Print Preview
	Page Break

	Positioning Models
	Chapter Outline
	Positioning Models
	HTML
	CSS
	Positioning Models

	Positioned
	HTML
	CSS
	Positioned

	Closest Positioned Ancestor
	HTML
	CSS
	Closest Positioned Ancestor

	Stacking Context
	HTML
	CSS
	Stacking Context

	Atomic
	HTML
	CSS
	Atomic

	Static
	HTML
	CSS
	Static

	Absolute
	HTML
	CSS
	Absolute

	Fixed
	HTML
	CSS
	Fixed

	Relative
	HTML
	CSS
	Relative

	Float and Clear
	HTML
	CSS
	Float and Clear

	Relative Float
	HTML
	CSS
	Relative Float

	Positioning: Indented, Offset, and Aligned
	Chapter Outline
	Indented
	HTML
	CSS
	Indented

	Offset Static
	HTML
	CSS
	Offset Static

	Offset or Indented Static Table
	HTML
	CSS
	Offset or Indented Static Table

	Offset Float
	HTML
	CSS
	Offset Float

	Offset Absolute and Offset Fixed
	HTML
	CSS
	Offset Absolute and Offset Fixed

	Offset Relative
	HTML
	CSS
	Offset Relative

	Aligned Static Inline
	HTML
	CSS
	Aligned Static Inline

	Aligned and Offset Static Block
	HTML
	CSS
	Aligned and Offset Static Block

	Aligned and Offset Static Table
	HTML
	CSS
	Aligned and Offset Static Table

	Aligned and Offset Absolute
	HTML
	CSS
	Aligned and Offset Absolute

	Aligned-center Absolute
	HTML
	CSS
	Aligned-center Absolute

	Aligned Outside
	HTML
	CSS
	Aligned Outside

	Positioning: Advanced
	Chapter Outline
	Left Aligned
	HTML
	CSS
	Left Aligned

	Left Offset
	HTML
	CSS
	Left Offset

	Right Aligned
	HTML
	CSS
	Right Aligned

	Right Offset
	HTML
	CSS
	Right Offset

	Center Aligned
	HTML
	CSS
	Center Aligned

	Center Offset
	HTML
	CSS
	Center Offset

	Top Aligned
	HTML
	CSS
	Top Aligned

	Top Offset
	HTML
	CSS
	Top Offset

	Bottom Aligned
	HTML
	CSS
	Bottom Aligned

	Bottom Offset
	HTML
	CSS
	Bottom Offset

	Middle Aligned
	HTML
	CSS
	Middle Aligned

	Middle Offset
	HTML
	CSS
	Middle Offset

	Styling Text
	Chapter Outline
	Font
	HTML
	CSS
	Font

	Highlight
	HTML
	CSS
	Highlight

	Text Decoration
	HTML
	CSS
	Text Decoration

	Text Shadow
	HTML
	CSS All Browsers
	CSS Internet Explorer 6
	Text Shadow

	Text Replacement with Image
	HTML
	CSS
	Text Replacement with Image

	Text Replacement with Canvas and VML
	HTML
	Text Replacement with Canvas and VML

	Font Embedding
	HTML
	CSS
	Font Embedding

	Invisible Text
	HTML
	CSS
	Invisible Text

	Screenreader-only
	HTML
	CSS
	Screenreader-only

	Spacing Content
	Spacing
	HTML
	CSS
	Spacing

	Blocked
	HTML
	CSS
	Blocked

	Nowrap
	HTML
	CSS
	Nowrap

	Preserved
	HTML
	CSS
	Preserved

	Code
	HTML
	CSS
	Code

	Padded Content
	HTML
	CSS
	Padded Content

	Inline Spacer
	HTML
	CSS
	Inline Spacer

	Inline Decoration
	HTML
	CSS
	Inline Decoration

	Line Break
	HTML
	CSS
	Line Break

	Inline Horizontal Rule
	HTML
	CSS
	Inline Horizontal Rule

	Aligning Content
	Text Indent
	HTML
	CSS
	Text Indent

	Hanging Indent
	HTML
	CSS
	Hanging Indent

	Horizontal-Aligned Content
	HTML
	CSS
	Horizontal-Aligned Content

	Vertical-Aligned Content
	HTML
	CSS
	Vertical-Aligned Content

	Vertical-Offset Content
	HTML
	CSS
	Vertical-Offset Content

	Subscript and Superscript
	HTML
	CSS
	CSS Internet Explorer
	Subscript and Superscript

	Nested Alignment
	HTML
	CSS
	Nested Alignment

	Advanced Alignment Example
	HTML
	CSS
	Advanced Alignment Example

	Blocks
	Chapter Outline
	Structural Meaning
	HTML
	Structural Meaning

	Visual Structure
	CSS (for the Structural Meaning Design Pattern)
	Visual Structure

	Section
	HTML
	CSS
	Section

	Lists
	HTML
	CSS
	Lists

	Background Bulleted
	HTML
	CSS
	Background Bulleted

	Inlined
	HTML
	CSS
	Inlined

	Collapsed Margins
	HTML
	CSS
	Collapsed Margins

	Run-In
	HTML
	CSS
	Run-In

	Horizontal Rule
	HTML
	CSS
	Horizontal Rule

	Block Spacer
	HTML
	CSS
	Block Spacer

	Block Space Remover
	HTML
	CSS
	Block Space Remover

	Left Marginal
	HTML
	CSS
	Left Marginal

	Right Marginal
	HTML
	CSS
	Right Marginal

	Images
	Chapter Outline
	Image
	HTML
	CSS
	Example
	Image

	Image Map
	HTML
	CSS
	Image Map

	Fade-Out
	HTML
	CSS
	Fade-Out

	Semi-transparent
	HTML
	CSS
	Semi-transparent

	Replaced Text
	HTML
	CSS
	Replaced Text

	Content over Image
	HTML
	CSS
	Content over Image

	Content over Background Image
	HTML
	CSS
	Content over Background Image

	CSS Sprite
	HTML
	CSS
	CSS Sprite

	CSS Sprite cont.
	Example
	CSS Sprite cont.

	Basic Shadowed Image
	HTML
	CSS
	Basic Shadowed Image

	Shadowed Image
	Shadowed Image

	Shadowed Image cont.
	Shadowed Image cont.

	Shadowed Image cont.
	HTML
	CSS
	Shadowed Image cont.

	Rounded Corners
	HTML
	CSS
	Rounded Corners

	Rounded Corners cont.
	Creating the Three Rounded Rectangle Images
	Rounded Corners cont.

	Image Example
	Representative Excerpts from the HTML
	Image Example
	Representative Excerpts from the CSS

	Tables
	Chapter Outline
	Table
	HTML
	CSS
	Table

	Row and Column Groups
	HTML
	CSS
	Row and Column Groups

	Table Selectors
	HTML
	CSS
	Table Selectors

	Separated Borders
	HTML
	CSS
	Separated Borders

	Collapsed Borders
	HTML
	CSS
	Collapsed Borders

	Styled Collapsed Borders
	HTML
	CSS
	Styled Collapsed Borders

	Hidden and Removed Cells
	HTML
	CSS
	Hidden and Removed Cells

	Removed and Hidden Rows and Columns
	HTML
	CSS
	Removed and Hidden Rows and Columns

	Vertical-Aligned Data
	HTML
	CSS
	Vertical-Aligned Data

	Striped Tables
	HTML
	CSS
	Striped Tables

	Tabled, Rowed, and Celled
	HTML
	CSS
	Tabled, Rowed, and Celled

	Table Layout
	HTML
	CSS
	Table Layout

	Table Column Layout
	Table Layout Models
	Using Column Layouts
	Chapter Outline
	Column Width
	HTML
	CSS
	Column Width

	Shrinkwrapped Columns
	HTML
	CSS
	Shrinkwrapped Columns

	Sized Columns
	HTML
	CSS
	Sized Columns

	Content-Proportioned Columns
	HTML
	CSS
	Content-Proportioned Columns

	Size-Proportioned Columns
	HTML
	CSS
	Size-Proportioned Columns

	Percentage-Proportioned Columns
	HTML
	CSS
	Percentage-Proportioned Columns

	Inverse-Proportioned Columns
	HTML
	CSS
	Inverse-Proportioned Columns

	Equal Content-Sized Columns
	HTML
	CSS
	Equal Content-Sized Columns

	Equal-Sized Columns
	HTML
	CSS
	Equal-Sized Columns

	Undersized Columns
	HTML
	CSS
	Undersized Columns

	Flex Columns
	HTML
	CSS
	Flex Columns

	Mixed Column Layouts
	HTML
	CSS
	Mixed Column Layouts

	Layouts
	Chapter Outline
	Fluid Layout Overview
	HTML
	CSS
	Fluid Layout Overview

	Outside-in Box
	HTML
	CSS
	Outside-in Box
	HTML
	CSS

	Floating Section
	HTML
	CSS
	Floating Section

	Float Divider
	HTML
	CSS
	Float Divider

	Fluid Layout
	HTML
	CSS
	Fluid Layout

	Opposing Floats
	HTML
	CSS
	Opposing Floats

	Event Styling
	HTML
	page.js
	Event Styling

	Rollup
	HTML
	CSS
	Rollup
	HTML Header
	page.js

	Tab Menu
	HTML
	CSS
	Tab Menu
	HTML (Same Code Shown Again for Convenience)
	CSS (Same Code Shown Again for Convenience)

	Tabs
	HTML
	CSS
	Tabs
	HTML Header
	page.js

	Flyout Menu
	HTML
	CSS
	Flyout Menu
	HTML Header
	page.js

	Button
	HTML
	CSS
	Button
	HTML Header
	page.js

	Layout Links
	HTML
	CSS
	Layout Links

	Multi-column Layout
	HTML
	CSS
	Multi-column Layout

	Template Layout
	HTML
	CSS
	Template Layout

	Layout Example
	HTML Structural Elements
	CSS Structural Styles
	Layout Example

	Drop Caps
	Chapter Outline
	Aligned Drop Cap
	HTML
	CSS
	Aligned Drop Cap

	First-Letter Drop Cap
	HTML
	CSS
	First-Letter Drop Cap

	Hanging Drop Cap
	HTML
	CSS
	Hanging Drop Cap

	Padded Graphical Drop Cap
	HTML
	CSS
	Padded Graphical Drop Cap

	Floating Drop Cap
	HTML
	CSS
	Floating Drop Cap

	Floating Graphical Drop Cap
	HTML
	CSS
	Floating Graphical Drop Cap

	Marginal Drop Cap
	HTML
	CSS
	Marginal Drop Cap

	Marginal Graphical Drop Cap
	HTML
	CSS
	Marginal Graphical Drop Cap

	Callouts and Quotes
	Chapter Outline
	Left Floating Callout
	HTML
	CSS
	Left Floating Callout

	Right Floating Callout
	HTML
	CSS
	Right Floating Callout

	Center Callout
	HTML
	CSS
	Center Callout

	Left Marginal Callout
	HTML
	CSS
	Left Marginal Callout

	Right Marginal Callout
	HTML
	CSS
	Right Marginal Callout

	Block Quote
	HTML
	CSS
	Block Quote

	Inline Block Quote
	HTML
	CSS
	Inline Block Quote

	Inline Quote
	HTML
	CSS
	Inline Quote

	Alerts
	Chapter Outline
	JavaScript Alert
	HTML
	CSS
	JavaScript Alert

	Tooltip Alert
	HTML
	CSS
	Tooltip Alert

	Pop-Up Alert
	HTML
	CSS
	Pop-Up Alert

	Pop-Up Alert
	HTML Header
	page.js
	Pop-Up Alert

	Alert
	HTML
	CSS
	Alert

	Inline Alert
	HTML
	CSS
	Inline Alert

	Hanging Alert
	HTML
	CSS
	Hanging Alert

	Graphical Alert
	HTML
	CSS
	Graphical Alert

	Run-In Alert
	HTML
	CSS
	Run-In Alert

	Floating Alert
	HTML
	CSS
	Floating Alert

	Left Marginal Alert
	HTML
	CSS
	Left Marginal Alert

	Right Marginal Alert
	HTML
	CSS
	Right Marginal Alert

	Form Validation
	HTML
	CSS
	Form Validation

	Index
	A
	B
	C
	D, E
	F
	G
	H
	I
	J, K
	L
	M
	N
	O
	P, Q
	R
	S
	T, U, V, W, X, Y, Z

