
Pro CSS3 Layout
Techniques

Leverage the power of CSS3 to create
sophisticated layouts
—
Sam Hampton-Smith

THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

 Pro CSS3 Layout
Techniques

 Sam Hampton-Smith

Pro CSS3 Layout Techniques

Sam Hampton-Smith
Elgin, Morayshire, United Kingdom

ISBN-13 (pbk): 978-1-4302-6502-3 ISBN-13 (electronic): 978-1-4302-6503-0
DOI 10.1007/978-1-4302-6503-0

Library of Congress Control Number: 2016938679

Copyright © 2016 by Sam Hampton-Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the material contained
herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Ben Renow-Clarke
Developmental Editor: Matthew Moodie
Technical Reviewer: Jeffrey Sambells
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com , or visit
 www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 To my wonderful kids. Remember to strive!

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: Overcoming the Layout Challenges of the Web 1

 ■Chapter 2: Layout Modules in CSS: the Old and the New 15

 ■Chapter 3: Where We’ve Been: Position, Float, and Display................................. 25

 ■Chapter 4: CSS Multi-column Layout ... 43

 ■Chapter 5: CSS Flexible Box Layout ... 73

 ■Chapter 6: CSS Grid Layout .. 103

 ■Chapter 7: CSS Regions Layout ... 129

 ■Chapter 8: Supporting Older Browsers .. 149

 ■Chapter 9: Speeding Up Workfl ow: CSS Libraries and Frameworks 159

 ■Chapter 10: What the Future Holds for CSS Layout ... 177

Index ... 181

v

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: Overcoming the Layout Challenges of the Web 1

HTML Attributes and Tags ... 1

The Arrival of CSS ... 3

CSS Level 1 ... 3

CSS Level 2 ... 4

Browsers .. 5

Firefox ... 6

Internet Explorer ... 7

Chrome ... 7

The CSS Box Model .. 8

CSS Level 3 .. 9

CSS Layout Modules... 9

CSS Multi-Column Layout ... 10

CSS Flexible Box Layout ... 10

CSS Grid Layout .. 11

CSS Regions Layout .. 11

How This Book Will Help You .. 12

Summary .. 13

vii

 ■ CONTENTS

viii

 ■Chapter 2: Layout Modules in CSS: the Old and the New 15

Layout Concepts ... 15
Different Types of Layout .. 17

Layout in CSS1 ... 18

Layout in CSS2 and CSS2.1 .. 20

Layout in CSS3 ... 22

The Importance of Going Modular .. 22
Limitations of CSS Layout ... 23

Summary: Get Ready for the Future! .. 24

 ■Chapter 3: Where We’ve Been: Position, Float, and Display................................. 25

Layout Before CSS3 .. 26
Relative and Absolute Positioning .. 27

Floated Layout .. 30

Block and Inline Display ... 34

Table Layout ... 40

Summary .. 42

 ■Chapter 4: CSS Multi-column Layout ... 43

What Is the CSS Multi-column Layout Module? ... 43

Syntax and Structure .. 44
Basic Concepts ... 44

The HTML Markup .. 49

The Multi-column Model ... 49

The CSS Properties ... 50

How to Use CSS Multi-column Layout .. 60
Browser Support ... 61

Fallback Options and Polyfi lls ... 61

Real-world Example ... 61
The Mockup .. 61

The HTML Markup .. 62

Rendering Columns .. 64

Summary .. 71

 ■ CONTENTS

ix

 ■Chapter 5: CSS Flexible Box Layout ... 73

What Is Flexbox? .. 73

Syntax and Structure .. 74

Basic Concepts and Terminology .. 75

Browser Support .. 75

Direction and Size ... 76

The Flex Container ... 78

The Flex Formatting Context ... 78

Display Models ... 79

fl ex-direction .. 80

fl ex-wrap .. 81

fl ex-fl ow ... 81

Controlling the Order of Items .. 82

Controlling the Flex .. 84

fl ex-grow .. 84

fl ex-shrink .. 84

fl ex-basis .. 84

The fl ex Shorthand Property and Its Special Cases .. 85

An Example of fl ex .. 86

Controlling Alignment of Flex Items ... 87

The Main Axis ... 87

Cross Axis Alignment .. 90

Collapsed Items .. 93

How to Use Flexible Box Layout ... 94

Real-World Example ... 95

The HTML Markup .. 96

Summary .. 101

 ■ CONTENTS

x

 ■Chapter 6: CSS Grid Layout .. 103

What Is CSS Grid Layout? ... 103

Grid Layout on the Web .. 104

Why Use a Grid? ... 104

Understanding the Terminology .. 108

Defi ning Grids in CSS .. 110

The Grid Container .. 112

How to Use CSS Grid Layout... 127

Browser Support ... 127

Fallback Options and Polyfi lls ... 127

Summary .. 128

 ■Chapter 7: CSS Regions Layout ... 129

What Is CSS Regions Layout? .. 129

An Example ... 129

Browser Support .. 132

Syntax and Structure .. 133

fl ow-into ... 133

fl ow-from .. 135

Controlling Break Points ... 136

The New Region Styling Approach.. 140

The Old Region Styling Approach ... 140

Polyfi ll Options ... 142

Real-World Example ... 142

The HTML Markup .. 143

The CSS Shapes and CSS Regions Layout Code .. 144

Summary .. 147

 ■ CONTENTS

xi

 ■Chapter 8: Supporting Older Browsers .. 149

When There’s No Alternative .. 150

Modernizr ... 150

Alternatives to Modernizr ... 152

YepNope .. 153

Example Using Modernizr ... 154

Prebuilt Polyfi lls ... 157

Summary .. 157

 ■Chapter 9: Speeding Up Workfl ow: CSS Libraries and Frameworks 159

Don’t Start from Scratch .. 160

There’s No Right Answer for Libraries and Frameworks .. 161

The Best CSS Frameworks and Libraries ... 162

Flexbox Grid .. 162

ptb/fl exgrid ... 163

Compass ... 163

CSS Regions Polyfi ll .. 164

Responsive Aeon .. 165

Just the Beginning … .. 166

Speeding Up Your Workfl ow: An Example ... 166

A Real-World Example .. 167

The HTML Markup .. 168

Using the Library .. 169

Summary .. 175

 ■Chapter 10: What the Future Holds for CSS Layout ... 177

It’s All Still Being Developed ... 177

Upcoming Modules and Ideas .. 177

And there’s more … ... 179

Summary .. 179

Index ... 181

 About the Author

 Sam Hampton-Smith has worked with the Web since the mid 1990s
and was an early adopter and proponent for CSS, the semantic Web, and
separation of style and substance. He writes regularly for web and graphic
design magazines, has contributed to numerous books, and previously
was a visiting lecturer in multimedia design at the University of the
Highlands and Islands. Sam loves making music, photography, being a
little geeky, and exploring the world. He lives in Scotland with his four
children.

xiii

 About the Technical Reviewer

 Jeffrey Sambells is a graphic designer and self-taught web applications developer best known for his unique
ability to merge the visual world of graphics with the mental realm of code. With a bachelor of technology
degree in graphic communications management along with a minor in multimedia, Jeffrey was originally
trained for the traditional paper-and-ink printing industry, but he soon realized the world of pixels and
code was where his ideas would prosper. In late 1999, he cofounded We-Create, Inc., an Internet software
company based in Waterloo, Ontario, which began many long nights of challenging and creative innovation.
Currently, as director of research and development for We-Create, Jeffrey is responsible for investigating
new and emerging Internet technologies and integrating them using web standards-compliant methods.
In late 2005, he also became a Zend Certified Engineer. When not playing at the office, Jeffrey enjoys a
variety of hobbies from photography to woodworking. When the opportunity arises, he also enjoys floating
in a canoe on the lakes of Algonquin Provincial Park or going on an adventurous, map-free, drive with his
wife. Jeffrey also maintains a personal web site at JeffreySambells.com, where he shares thoughts, ideas, and
opinions about web technologies, photography, design, and more. He lives in Ontario, Canada, with his wife,
Stephanie, his daughter, Addison, and their little dog, Milo.

xv

 Acknowledgments

 This book would never have seen the light of day had it not been for the enormous amount of support I
received from my family. Beatrice, Bethan, Dylan, Finnian, Eliot, Jasper, Linda, and Lorna have all in their
own way provided me with the motivation, belief, and determination to succeed.

 I am indebted to the wonderful people at Apress, without whom you wouldn’t be holding a shiny book
in your hands. It’s been an emotional and difficult journey at times, and it hasn’t always been rosy and
evergreen, but we made it! I couldn’t have gotten here without Louise Corrigan, who originally brought
me to Apress, and Ben Renow-Clarke, who was my guide throughout the process. Both showed enormous
amounts of patience and belief in me. Kevin Shea, Tom Welsh, and Jeffrey Pepper all helped me to hone and
refine my writing and gave me helpful pointers along the way. Christine Ricketts and Rita Fernando both
provided excellent reviews and edits. And to the small army of people who just get on with the job of making
an author’s musings look, read, and feel like a book: I thank you all from the bottom of my heart.

 Finally, thanks to my many friends who have offered me encouragement, kind words, and sage counsel.
You’ve each helped me to overcome obstacles, challenges, and an author’s natural self-doubt. I am an
extremely lucky man, and I shall be forever grateful.

xvii

 Introduction

 In the mid 1990s, I was working for a bank when I heard about a new, exciting, emerging technology: the
World Wide Web. Feeling a sense of great anticipation, I spent my entire month’s salary on a PC so I could
experience it for myself. My partner had a small explosion at my profligacy, but I had a real sense at the time
that the Web was going to blossom into perhaps the most exciting, creative medium we had yet seen.
I wanted to be riding that wave!

 A matter of a few short years later, I was working full-time as a web designer and developer, and the
trend was already starting to move away from table-based design layout toward a new, emerging technology:
CSS. I can remember espousing the benefits of this innovation to my colleagues at the time and feeling
genuinely excited for the future of design on the Web. Of course, the earliest versions of CSS were more
about transferring stylistic control from HTML to a separate document, but the seeds of possibility were
sown and captured my imagination.

 I hope you will enjoy a similar journey while reading this book. CSS has come a long way since those
early days. Yet I continue to be amazed and inspired on an almost daily basis by what can be achieved using
this simple, text-based, human-readable language. Web design remains an exciting field to work in, and the
possibilities keep expanding! I can’t wait to see what you create with the CSS3 layout techniques you’ll find
in this book.

 If you have any suggestions or corrections, I’d love to hear from you. In the meantime, turn the page,
and let’s get started:

 1. Overcoming the Layout Challenges of the Web

 2. Layout Modules in CSS: the Old and the New

 3. Where We’ve Been: Position, Float, and Display

 4. CSS Multi-column Layout

 5. CSS Flexible Box Layout

 6. CSS Grid Layout

 7. CSS Regions Layout

 8. Supporting Older Browsers

 9. Speeding Up Workflow: CSS Libraries and Frameworks

 10. What the Future Holds for CSS Layout

xix

1© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_1

 CHAPTER 1

 Overcoming the Layout
Challenges of the Web

 Welcome to Pro CSS3 Layout Techniques !
 Although it would be unfair to say that style is more important than substance, it’s certainly true that we

all expect web sites to look good, to react responsively to our devices, and to rival other media for engagement.
This means that as web designers, we’ve got the weight of expectation on us to generate ever-more-intuitive
layouts, user-friendly presentations, and device-agnostic code. Although we’re up for the challenge, some of
the core tools we have at our disposal either were never intended for layout or are now over a decade old. The
Web has moved on, but layout tools haven’t—until the arrival and implementation of CSS3, that is.

 This book will cover the following topics:

• Taking advantage of CSS3 layout modules

• Determining what’s viable today

• Discovering what will be available for use in a live environment soon

• Learning the best-practice approaches to layout using the CSS Level 2.1 specification
where CSS3 is not available

 Before we all get too excited about the new toys, it’s well worth understanding why we find ourselves in this
position in the first place. And in order to get a proper grasp, we need to look back at the development of both
HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets). Don’t worry: this review isn’t going to
be an exhaustive trip down memory lane, but it will serve you well when you’re next using CSS to craft a layout.

 HTML Attributes and Tags
 When the Web was in its very early days, HTML was used both for markup and for styling. HTML attributes
and tags defined the way a page looked. Decisions about how to mark up content were as likely to stem
from a tag’s default visual characteristics as from any sense of semantic hierarchy. Consider the following
examples and their uses:

• <h1> tags for big, bold text, but also to signify the most important piece of
information on the page.

• <p> for small text, but also to show paragraph text that provided the meat on the
bones of the headings.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4302-6503-0_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4302-6503-0_1

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

2

• <center> tags to align paragraphs and tables. Originally they were intended as a way
to present tabular data only. These tags came to be used for creating sophisticated
mult-column layouts that simply wouldn’t have been possible with the limited set of
tags and formatting attributes available within the language.

 Although this approach was incredibly resourceful and creative, it led to some dreadful code that was
both difficult to read and awkward to maintain. As layout demands became more complex, so tables came
to be nested within each other—often several layers deep. Visually redundant transparent spacer GIFs were
increasingly used to ensure the correct positioning of elements. It became common for a simple page to
contain hundreds or thousands of lines of unintelligible code like that shown in Listing 1-1 .

 Listing 1-1. Example of a Vast Listing to Create a Basic Two-Column Layout

 <H2><I>WELCOME TO MY WEBSITE</I></H2>
 <CENTER>
 <TABLE WIDTH=720 HEIGHT=480 BORDER=2 BGCOLOR=BLACK>
 <TR>
 <TD BACKGROUND=texture.gif>
 <TABLE WIDTH=360 HEIGHT=480 BORDER=0>
 <TR>
 <TD>

 <H1>ABOUT MY SITE</H1>
 <P>...</P>
 </TD>
 </TR>
 </TABLE>
 </TD>
 <TD BACKGROUND=texture2.gif>
 <TABLE WIDTH=360 HEIGHT=480 BORDER=0>
 <TR>
 <TD>

 <H1>ABOUT ME</H1>
 <P>...</P>
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </CENTER>

 This approach to coding and maintaining web sites raised issues that were obvious to everybody

working with HTML. The Web needed a way to separate content from style, so the World Wide Web
Consortium (W3C) stepped up to the task, developing the CSS Level 1 specification.

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

3

 The Arrival of CSS
 As the Web started to move beyond a simple text-based medium and became a more visual, magazine-style
experience, it quickly became apparent that the limitations imposed by HTML styling were going to be an
issue. The W3C, charged with defining standards for the Web, determined that it would be more sensible to
separate style from content, and started work on a new language that would control the aesthetic treatment
of content separate from the semantic meaning of that content. The solution was Cascading Style Sheets
(CSS), the basis of all design and layout on the modern web page.

 CSS Level 1
 CSS Level 1 (CSS1) wasn’t intended to act as a solution for implementing layout. Instead, the idea was to
replace all the basic visual characteristics, such as color, font, margin, and border, that had been specified
using HTML tags and attributes. The result was the following limited set of properties :

• Width and height of block-level elements

• Float, and clear of floating elements

• Margins and padding

• Background colors and images

• Borders

• Fonts and font styles

• List styles

• Some basic alignment

 CSS1 allowed designs to take the basic styling of individual elements outside the HTML code itself.
For the first time, the way a web site looked could be controlled from a single external file. This had massive
benefits for the maintenance and consistency of page designs, because a single line of CSS code could now
affect an entire web site. Previously, a simple heading color change meant editing every single page within a
web site individually.

 It took web browsers some time to adopt the new CSS specification because of a lack of competition in
the browser market and relatively slow demand from designers. It wasn’t until the late 1990s that designers
could rely on the commonly used browsers, such as Netscape Navigator and Microsoft Internet Explorer, to
parse and render CSS code with anything close to accuracy. Coincidentally, Microsoft and Netscape were
battling for supremacy. Internet Explorer, shown in Figure 1-1 , was the eventual victor.

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

4

 Perhaps you are familiar with the use of floating elements as a system for creating layouts. However, the
 float and clear properties introduced with CSS1 were never intended for this purpose. They were meant
to provide a CSS facsimile of the ALIGN=LEFT and ALIGN=RIGHT properties that had previously been part of
HTML. The plan was to use them on images, allowing text to flow around elements automatically. Chapter 2
discusses how to use floating elements effectively.

 You may have noticed properties for width and height in the specification, which could be used to
define the dimensions of elements. But their purpose was simply to replicate the same properties that were
previously used in HTML as attributes on images, tables, and other block-level elements.

 CSS1 was clearly a landmark for the Web. As it was implemented by browsers in the late 1990s, the W3C
started work on the next iteration of the cascading stylesheet language: CSS Level 2.

 CSS Level 2
 One purpose of the design of CSS Level 2 was to implement some layout control in the stylesheet. This first
attempt at moving layout from HTML to CSS was based on the table model that web designers had become
accustomed to. A key new property introduced was display , and part of the specification provided for a
value of table-cell to be applied. (See Figure 1-2 .) This value, when properly rendered, lets you create a
layout like that achieved using a table, complete with equal-height columns.

 Figure 1-1. Internet Explorer on the Mac was the first CSS-compliant browser

http://dx.doi.org/10.1007/978-1-4302-6503-0_2

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

5

 Figure 1-2. CSS2 introduced the display : table-cell property to mimic the existing tabular layout solution
being used by designers

 Sadly, not every browser supported the CSS2 standard, so it was effectively unusable on the Web.
Although many browsers supported display: table-cell , Internet Explorer 6 did not. Consequently,
reliable layout remained firmly in the realm of HTML tables. Furthermore, browser vendors interpreted the
loosely written CSS2 specification in slightly different ways. Therefore, browsers rendered the same page
inconsistently, frustrating both designers and consumers.

 The W3C had already started working on the next version of CSS—level 3. However, recognizing the
deficiencies in the CSS2 specification, the group shelved CSS3 and instead spent a long time working on
addressing the interoperability problems arising from CSS2, eventually developing a successor in the form of
CSS Level 2.1.

 Because Internet Explorer enjoyed a practical monopoly, the majority of web sites were designed
with its approach to rendering in mind. Eventually, designers adopted the separation of style and content,
but they were forced to use floats and absolute positioning to craft layouts. As you’ve already seen, these
properties were never intended as tools for layout. But the ever-resourceful web design community found
ways to hijack them and generate clever layouts without the use of tables.

 Browsers
 Figure 1-3 shows the balance of power shifting toward Google’s Chrome browser. However, a large
proportion of users rely on Internet Explorer.

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

6

 Let’s take a look at the following examples:

• Firefox

• Internet Explorer

• Chrome

 Firefox
 After America Online (AOL) bought the Netscape browser in 1999, the source code was open sourced ,
allowing the developer community to contribute toward it. This admirable action led to the formation of an
entirely new approach to browser functionality. The result was the Mozilla Foundation and the arrival in
2004 of a new web browser: Firefox.

 Firefox single-handedly kick-started a new browser war. Microsoft remained the dominant browser,
with a market share in the region of 90%, but Firefox slowly chipped away at its dominance. This eventually
forced Microsoft to update the aging Internet Explorer after a six-year hiatus.

 Figure 1-3. Market share statistics from 2013 show browser usage. Image from StatCounter.com

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

7

 Internet Explorer
 Internet Explorer 7 was released in 2007. It brought tabbed browsing to users, but very little in the way of
standards adoption or additional support for CSS to designers.

 Support for display: table-cell was introduced with Internet Explorer 8 in the late 2000s, and with it
a degree of interoperability was ultimately achieved. Frustratingly, there remained the problem of Internet
Explorer 6 being used by more than half the Web’s users.

 ■ Note Even today, Internet Explorer 6 has around 1% market share. Most web designers are now choosing
to ignore this segment of the market, because the time it takes to provide support is disproportionate to the
diminishing benefit returned.

 Chrome
 While Microsoft continued to drag its feet, Firefox gained popularity, and a new contender was introduced
to the market. Search-engine giant Google developed its own branded browser based on the open-source
WebKit project and released it at the very end of 2008. Chrome (see Figure 1-4) soon overtook Firefox as the
Web’s second-most popular browser, and it took great strides toward achieving full CSS2.1 compliance.

 Figure 1-4. Google’s Chrome is now the world’s most widely used browser

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

8

 The CSS Box Model
 In the period between 2000 and 2009, web designers had to contend with the very real headache of vastly
different rendering engines displaying their code in completely distinct manners. The single biggest
issue was the CSS box-model (see Figure 1-5), which was used to determine the width of elements from
the combination of specified width, height, margin, and padding. Thanks to the loosely written CSS2
specification, the box model was interpreted differently by Microsoft than the rest of the browser vendor
community, leading to inconsistent rendering of documents between competing browsers; pages failed to
render as expected in browsers other than Internet Explorer 6. As a result, workarounds, shivs, and hacks
were employed to create layouts that were based in CSS2.1 specification-compliant code but were adapted
to also work in the non-compliant IE6 rendering engine.

 Figure 1-5. An illustration of the different box-model rendering across browsers

 Microsoft is currently inviting users to ditch Internet Explorer 6 and consider it nothing more than a
bad memory. However, a large proportion of the browser market share still uses the Internet Explorer 6
rendering approach thanks to Internet Explorer 7 and 8’s compatibility mode. Consequently, it’s common to
see specialist stylesheets aimed at Microsoft’s browsers. Furthermore, entire JavaScript libraries are included
in a page simply to polyfill compliant rendering of layout.

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

9

 In response to the difficulties in achieving interoperability between different browsers, a series of tests
was developed to help measure different browsers’ performance against the CSS specifications. These ACID
tests were used by standards proponents to pressure browser vendors, including Microsoft, into improving
their software.

 Finally, in the mid-to-late 2000s, Microsoft started the process of developing standards-compliant
versions of Internet Explorer: IE8 arrived in 2008, and IE9 followed in 2011. At the same time, a revolution
was taking place in the mobile sector with the release of devices such as the iPhone. These new Internet-
capable smartphones supported the elements of the freshly developed CSS3 specification, alongside
HTML5, and added further pressure on the incumbent market leader to adopt standards.

 CSS Level 3
 CSS Level 3 is different than the previous iterations in that it’s modular . This allows the CSS Working
Group to release different parts of the specification as they mature, and browser vendors are able to adopt
functionality rapidly. The CSS Level 3 modular approach is broadly split into four elements :

• Selectors and logic

• Decorative effects

• Typography (including support for internationalization)

• Layout

 Most interestingly, the layout aspect encapsulates a series of new modules that offer flexibility and
standardization in page layout that has never before been seen on the Web. Frustratingly, even with
this new specification, we’re continuing to struggle under the shadow of old browsers and incomplete
implementations.

 CSS Layout Modules
 CSS Level 3 adds a range of new layout tools to the designer’s arsenal. Each of these modules provides an
exciting approach to crafting layouts using only CSS. The modules will change the way you author your styles
and, crucially, your HTML markup.

 Rather than a single approach to crafting layout, four principal modules are in development. Each
includes its own concepts, rules, and, most important, browser support. The following chapters look in
depth at each of these modules:

• CSS Multi-column Layout module

• CSS Flexible Box Layout (Flexbox) module

• CSS Grid Layout module

• CSS Regions Layout module

 You get a proper overview of each module in Chapter 2 , before Chapters 4 – 7 dive into full detail in a
dedicated chapter per module. In the meantime, you can whet your appetite by taking a quick look at what
each module can achieve layout-wise.

http://dx.doi.org/10.1007/978-1-4302-6503-0_2
http://dx.doi.org/10.1007/978-1-4302-6503-0_4
http://dx.doi.org/10.1007/978-1-4302-6503-0_7

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

10

 CSS Flexible Box Layout
 CSS Flexible Box Layout (or Flexbox) has been through several different revisions. Thanks to some early
browser implementations, there are many now-defunct examples on the Web. This has led to confusion in
the web design community; but now that the specification has stabilized, there’s reasonably good cross-
browser support for the module.

 Flexbox isn’t designed to provide a complete layout solution for web sites, but it does let you create
elements such as toolbars and tabbed areas that respond to the device being used to view them
(see Figure 1-7). Chapter 5 looks in depth at the Flexbox module.

 CSS Multi-Column Layout
 CSS Multi-column Layout is the easiest of the new layout modules to grasp and implement. It’s also the
module with the most mature browser support, although it’s potentially the least useful of the modules for
advanced layouts.

 The multi-column layout (see Figure 1-6) does exactly what you might expect: it makes it easy to flow
content automatically into multiple columns, which can adapt to the available space so that smaller screens
render fewer columns than larger screens. Chapter 4 examines this module.

 Figure 1-6. CSS Multi-column Layout rendering content into a column-based layout

 Figure 1-7. Flexbox helps solve some common user interface design problems

http://dx.doi.org/10.1007/978-1-4302-6503-0_5
http://dx.doi.org/10.1007/978-1-4302-6503-0_4

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

11

 CSS Grid Layout
 CSS Grid Layout is one of the most exciting layout modules because it allows design to be truly separated
from presentation for the first time. Elements can be reordered using CSS Grid Layout, so it doesn’t matter
to the layout in which order the markup arrives. This is fantastic news for designers striving to create
meaningful, semantic markup, not to mention that the module allows layout control within a defined grid
complete with vertical alignment (see Figure 1-8). Chapter 6 examines all the details and browser support.

 Figure 1-8. The CSS Grid layout brings a flexible and reliable grid layout option to the Web for perhaps
the first time

 CSS Regions Layout
 CSS Regions Layout allow for the complex flow of content from one area to another in a magazine-style
layout. This kind of sophistication in layout is beyond the other layout modules. It can be used to create
dynamic, fluid layouts that are responsive to different devices (see Figure 1-9). CSS Regions Layout is not yet
a fully mature module, but Chapter 7 examines all the details, including current browser support.

http://dx.doi.org/10.1007/978-1-4302-6503-0_6
http://dx.doi.org/10.1007/978-1-4302-6503-0_7

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

12

 ■ Note There are also some emerging layout modules that, although not yet part of the CSS specification,
offer even more layout options. You see some of these toward the end of this book.

 As you might expect, there are a host of potential problems with using CSS3 modules currently: some
are still in development, whereas others are fairly mature. Some browsers have almost fully implemented the
individual modules’ standards, but others continue to work toward incorporating or in some cases defining
them. It can be a minefield, but this book guides you safely through the pitfalls!

 How This Book Will Help You
 Now that you know what you’re up against, let’s quickly look at what you can expect to get out of reading this
book. It’s my intention to help you understand the key CSS layout techniques you can employ in your web
site design approach.

 CSS3 offers a huge range of exciting possibilities, and this book looks at each of the key layout modules.
A word of warning: you’ll change the way you construct web site layouts as a consequence of reading this
book! But with that said, you’ll also see some of the limitations—with the standards themselves or, as often
as not, imposed by the browser software that people are using to access the Web.

 By the end of this book, you’ll have a realistic view of what you can do today, as well as a good idea of
what will be possible in the next year or two. You’ll also see a series of useful examples of polyfill techniques
that can provide a graceful fallback for your layouts.

 Figure 1-9. CSS Regions Layout offers an exciting way to position content in and around elements without
affecting document flow

CHAPTER 1 ■ OVERCOMING THE LAYOUT CHALLENGES OF THE WEB

13

 Of course, no CSS layout book would be useful if it ignored the large percentage of users on the Web
who continue to use older browser software. So, you’ll also see the latest best-practice approach to layout
using only CSS2.1, learning the concepts along the way. Although I assume you’re familiar with CSS2.1, the
next chapter starts with this topic.

 Summary
 CSS3 is still emerging, but much of it can be safely used today. Layout modules such as Flexbox offer a
reliable solution to some very real challenges faced by web designers. CSS has come a long way since
the early days of the Web, and the past few years have seen a huge acceleration in the development of
the language. This book will give you a quick grasp of the core principles behind each of the main layout
modules in development and show you how to use the modules in the real world. Let’s get started!

15© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_2

 CHAPTER 2

 Layout Modules in CSS:
the Old and the New

 This chapter will help you get a firm footing in the core layout concepts associated with CSS. If you’re
familiar with CSS2.1, you know much of this inside out already, but there may be some concepts you didn’t
realize CSS supported (because browser support has been so poor historically).

 The chapter takes a quick tour of all the different layout paradigms that CSS offers, starting with the
original version of CSS: level 1. Note that each of the layout solutions offered by CSS has been implemented
as a module. Until CSS3, the entire CSS specification for each level was contained in an all-encompassing
module, whereas each is now split into its own separate module; but for simplicity, I talk about each
approach as if it were a separate module.

 As I mentioned in the first chapter, pre-CSS there wasn’t much in the way of layout control offered by
HTML. Designers found an ingenious method to craft sophisticated layouts: hacking the HTML specification
by using tables to position elements precisely on the page. Tables were a very useful layout tool because they
offered a controllable solution to the positioning of individual pieces of content. HTML tables, however, were
never intended to be used for layout; so, semantically speaking, the hack was a disaster. Because the entire
approach was a workaround, there were also issues of maintainability and readability of content. It wasn’t
uncommon to find nested tables six or seven levels deep.

 With the arrival of CSS1, the focus started to shift away from rendering everything—meaning both
content and presentation—using HTML. Instead, the idea of separating content from the aesthetic
presentation was established.

 ■ Note This chapter talks about the different CSS levels: 1, 2, and 3. It’s important to note that you don’t
choose which level to use when designing a web site; browsers support different levels, and each level builds
on top of or alongside the existing levels. Although this book is about CSS3, the results seen on screen depend
on the browser you are using—or, more important, the browser the person viewing your web site is using.

 Layout Concepts
 Before the introduction of CSS3, four (official) different layout modes were available via CSS. As already
established, HTML alone doesn’t include any layout-specific capability beyond the default behaviors
applied by the user agent. It’s been a journey of discovery for web designers, starting with layouts based on

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

16

tables as a method for implementing fine control over positioning, moving through the adoption of CSS in
the first years of this century, and finally arriving at a degree of maturity today where issues of presentation
and usability are inherently connected.

 So what is CSS? Well, as designers attempted to create a more visual Web, the limitations of the HTML
language quickly became apparent. As a primarily text-based system, HTML is a great way to communicate
information, but it isn’t a very good tool for making that information beautiful. Various attempts were made
by the body responsible for the development of the HTML language to address basic styling needs, but
fundamentally the original purpose of HTML was being eroded. Cascading Style Sheets (CSS) was introduced
as a first step toward enabling a visual Web. Once established, CSS was rapidly adopted and iterated until it
reached version 2.1 in the early 2000s, when it ground to a halt, caught up in the mire of politics and slow-
moving browser development. Despite this, designers continued to experiment with what was possible with
CSS as it stood, promoting it as a tool through the likes of CSS Zen Garden, which you can see in Figure 2-1 .

 Figure 2-1. CSS Zen Garden spearheaded the CSS revolution in the early years of the 21 st century

 The Web has moved on, but the tools at our disposal haven’t—until the arrival and implementation of
CSS3, that is! CSS handles the appearance and styling of HTML documents, including the presentational
aspects of the following:

• Text , including typeface selection, font size, weight, spacing, direction, and
decoration

• Colors and backgrounds of different elements, including images and gradients

• Borders and border effects , including line style, size, and curved corners, and special
effects such as drop shadows

• Positioning of different elements on the page, either within a document flow or
outside the document flow

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

17

• Margins and padding of different elements on the page

• Distribution and alignment of content across different structural elements, including
 columns and regions

• Transitions and animations , including user-interaction control

• Transformations in 2D and 3D space

 It’s worth quickly highlighting that the latest version of CSS is still in a state of flux. Whereas with
the previous version (CSS2.1), the entire specification was contained in a single module, with CSS3 the
individual components have been modularized. This means the CSS Working Group (CSSWG) can iterate
individual modules more quickly and efficiently, and browser vendors can implement standards without
having to wait for every individual module to reach recommendation status. The downside is that the
specification is split across many different modules and projects. This can make it tricky to keep track of
which browser supports a specific feature and what the latest developments are in a global sense.

 Since the W3C announced the development of CSS3 in 2005, the web design community has watched
with a mixture of excitement and anticipation, waiting for browsers to implement the standards and open up
a range of new possibilities for designs. It’s been nearly a decade since CSS3 development began, but only in
the past year or two has there been universal CSS2.1 support!

 Despite this, CSS3 is making huge waves in the web design world, as browser vendors rapidly
implement support for the new features. All the major browsers already support a sizable range of new CSS3
properties, innovative CSS3 approaches to layout, CSS-based animation, and special visual effects. It’s even
possible to render a 3D scene directly inside some browsers today, without the need for plug-ins or special
reader software.

 The Web has been historically slow to adopt new technologies , because web users needed to
proactively update their browser software before those technologies were supported. Naturally, users have
more interesting things to do than update their software, and as a result entire generations of users (and
computers) are stuck with the original browser installed when purchased. With newer generations of laptops
and desktop computers, not to mention the widespread adoption of smartphones based on the Android and
iOS operating systems, browser software has also developed, and now many popular browsers automatically
update themselves when a new version is available.

 Until a couple of years ago, it wasn’t possible to render a drop shadow on a web page without resorting
to Photoshop, Adobe Flash, or some pretty complex JavaScript. And now? CSS3 makes rendering a drop
shadow as simple as setting one property! Even better, thanks to the widespread adoption of this CSS3
property in today’s browsers, it’s a perfectly safe way to render the effect.

 The CSS3 specification provides a powerful new set of tools that go far beyond simply rendering drop
shadows. This book is concerned with layout options, but don’t forget that CSS3 offers much more than
layout control; CSS3 takes styling your web pages and apps to an entirely new level, far surpassing past
possibilities. It’s not a perfect tool, of course; in this chapter looks at what CSS3 isn’t designed to address as
well as the things it excels at.

 Different Types of Layout
 One of the key things to understand about modern web development is that the structure of content
is independent of the presentation. CSS is specifically designed to let you define visual or auditory
presentations without the need to structure HTML in a particular way, at least for the purposes of how a
page is displayed to a user.

 That’s not to say the two things aren’t explicitly linked to each other! CSS relies on a definite structure in
the HTML it’s applied to; but, increasingly, the layout of a page isn’t dictated by the order or specific markup
of content in the HTML.

 This is hugely beneficial, because it allows for easier repurposing of content at a later stage, either to
a new platform or as part of a design refinement. It also means you can present exactly the same content

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

18

in a different way according to the profile of the device or user accessing it. This is responsive design (the
process of engineering content to render appropriately across different devices) in practice. Another
benefit is that content can be structured and delivered in a semantic order, rather than being tied to the
visual design of the site.

 As the CSS language has developed, the available layout options have also evolved. Each new level of
CSS builds on top of the previous levels, adding functionality and capabilities. As a result, there are many
potential ways to style a page with a seemingly identical layout, but each approach has different behaviors
and characteristics. Let’s have a quick look at what CSS offered up until the introduction of the new CSS
layout modules that form part of the CSS3 specification.

 Layout in CSS1
 When the Web was in its very early days, HTML was used both for markup and for styling. HTML attributes
and tags defined the way a page looked. Decisions about how to mark up content were as likely to stem from
a tag’s default visual characteristics as from any sense of semantic hierarchy. <h1> tags were used where big,
bold text was needed, <p> for small text, <center> tags to align paragraphs, and tables—intended as a way to
present tabular data only—to create sophisticated multi-column layouts that wouldn’t have been possible
with the limited set of tags and formatting attributes available in the language.

 Although this approach was incredibly resourceful and creative, it led to some dreadful code that was
both difficult to read and incredibly awkward to maintain. As layout demands became more complex, so
tables came to be nested within each other—often several layers deep. Visually redundant transparent
spacer GIFs were increasingly used to ensure the correct positioning of elements, and it became common for
a simple page to contain hundreds or thousands of lines of spaghetti soup (unintelligible code). Listing 2-1
shows the same code example as in Chapter 1 : a typical page’s HTML code in practice, including lots of
visual rendering instructions.

 Listing 2-1. Typical HTML Code Before CSS and Modern Web Standards Were Widely Adopted

 <H2><I>WELCOME TO MY WEBSITE</I></H2>
 <CENTER>
 <TABLE WIDTH=720 HEIGHT=480 BORDER=2 BGCOLOR=BLACK>
 <TR>
 <TD BACKGROUND=texture.gif>
 <TABLE WIDTH=360 HEIGHT=480 BORDER=0>
 <TR>
 <TD>

 <H1>ABOUT MY SITE</H1>
 <P>...</P>
 </TD>
 </TR>
 </TABLE>
 </TD>
 <TD BACKGROUND=texture2.gif>
 <TABLE WIDTH=360 HEIGHT=480 BORDER=0>
 <TR>
 <TD>

 <H1>ABOUT ME</H1>
 <P>...</P>

http://dx.doi.org/10.1007/978-1-4302-6503-0_1

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

19

 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </CENTER>

 The issues raised by this approach to coding and maintaining web sites are obvious to everybody
working with HTML. The Web needed a way to separate content from style, so the W3C took up the mantle,
developing the CSS Level 1 specification.

 Chapter 1 talked about the different visual characteristics CSS was designed to address. Recall that CSS
Level 1 wasn’t intended to act as a solution for layout. Instead, the idea was to replace all the basic visual
characteristics that had been specified using HTML tags and attributes. As mentioned in Chapter 1 , the
result was a very limited set of properties covering the following:

• Width and height of block-level elements

• Float, and clear of floating elements

• Margins and padding

• Background colors and images

• Borders

• Fonts and font styles

• List styles

• Some basic alignment

 CSS1 allowed designers to take the basic styling of individual elements outside the HTML code. For
the first time, the way a web site looked could be controlled from a single, external file. This had massive
benefits for the maintenance and consistency of page designs, because a single line of CSS code could now
affect an entire web site. Previously, a simple heading color change meant editing every page of a web site
individually.

 It took web browsers some time to adopt the new CSS specification, and it wasn’t until the late 1990s
that designers could rely on the commonly used browsers to understand and render their CSS code with
anything close to accuracy. For the history buffs, this was also the time when Microsoft and Netscape were
battling for supremacy, with Internet Explorer the eventual victor.

 It’s worth noting that although you may be familiar with the idea of using floating elements as a system
for creating layout, the float and clear properties introduced with CSS1 were never intended for this
purpose. They were introduced to provide a CSS facsimile of the ALIGN=LEFT and ALIGN=RIGHT properties
that were previously part of HTML, and were intended to be used on images, allowing text to flow around
elements automatically.

http://dx.doi.org/10.1007/978-1-4302-6503-0_1

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

20

 Layout in CSS2 and CSS2.1
 CSS2.1 introduced and defined four different layout modes for rendering web pages. These are systems the
browser uses when parsing CSS rules to determine the size and position of elements based on their siblings,
flow in the document, and parent elements. These four modes are as follows:

• Block layout : For laying out or organizing elements within a document

• Inline layout : For laying out text

• Table layout : For presenting and laying out tabular data in a two-dimensional grid

• Positioned layout : For explicitly positioning elements on the page, removing them
from the document flow

 Block Layout
 The W3C’s CSS2.1 specification offers this explanation of block layout :

 In a block formatting context, boxes are laid out one after the other, vertically, beginning at
the top of a containing block. The vertical distance between two sibling boxes is determined
by the ‘margin’ properties. Vertical margins between adjacent block-level boxes in a block
formatting context collapse.

 Block layout creates rectangular boxes around elements, which describe the amount of space occupied
by that element. Many HTML elements automatically assume a block layout, including the likes of the <p> ,
 <h1> , <div> , and elements. Block-level boxes stack vertically, with each occupying the vertical space
immediately after the previous. Block-level boxes do not stack horizontally. Each new block appears in a new
vertical position.

 There are some special rules associated with the layout of block-level boxes, and rules that are applied
to determine how much space each occupies. Briefly, these rules are as follows:

• The background of a block-level element extends fully to the outer edge of the
 border . This means the background fills both the content area and the combination
of padding and border areas. If the border uses any transparency (for example, if it
uses a dashed line), the background is visible in the space between the dashes.

• The width of a block-level element is set to auto by default (filling the available
horizontal space). The only other attributes that can be set to auto are the margin
and height properties.

• Negative values can be applied to the margin properties, but no other attributes can
have a negative value.

• The width and height properties define the content area only. padding , border , and
 margin all add to the width of the box for the purposes of layout.

 This is best illustrated with a diagram, as shown in Figure 2-2 . margin , padding , and border all add
to the displacement size of the block-level element. On a historical note, Internet Explorer’s original
implementation of the box model included the padding within the defined width (and height) of an element,
leading to years of workarounds and browser-specific stylesheet hacks. Fortunately, those days are all but
gone!

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

21

 Inline Layout
 Inline-level elements are those elements of the source document that do not form new blocks of content;
the content is distributed in lines (for example, emphasized pieces of text within a paragraph, inline images,
and so on). Inline-level elements generate inline-level boxes , which are boxes that participate in an inline
formatting context. This means they displace adjacent content in the same reading flow, but they don’t
interfere with block-level rendering.

 An inline box is inline level, and its contents participate in its containing inline formatting context.
A non-replaced element with a display value of inline generates an inline box. Common examples of
elements that assume an inline behavior by default include and .

 Table Layout
 Accessed using the display attribute, table layout allows elements to act as if they form part of a table—
assuming the role of a table cell, and occupying rows and/or columns within a tabular layout. This layout
schema is incredibly powerful for all the same reasons that tables themselves were hijacked by early web
designers, but poor browser support historically meant it never took off as a reliable layout solution.

 Modern browser support is very good. As a result, table layout is a viable and valid layout approach to use.

 Positioned Layout
 Positioned layout lets you place individual elements precisely using coordinates, relative to the page or
another containing element that has a defined position. This allows you to place an element in the top-right
corner of the browser window or have individual elements overlapping each other in arbitrary positions
within the viewport, as well as assuming a place in the document flow as is the default behavior.

 Figure 2-2. The block-level box model. The width property affects only the content area, with padding ,
 border , and margin adding to the overall displacement width and height

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

22

 Several different positioning attribute values are available as part of the CSS2.1 specification:

• Static : The normal flow rules apply, and the top , bottom , left , and right properties
have no effect.

• Relative : The box’s position is determined according to its position within the
document flow. Attributes then offset the box’s position relative to its “normal”
position. Subsequent elements affected by the box’s place in the document flow act
as if there is no offset on the box.

• Absolute : The box’s position (and possibly size) is specified with the top , left ,
 bottom , and right properties. These properties specify offsets from the containing
box (which may be the page itself).

• Fixed : The box is positioned as per absolute, but it’s fixed in a position relative to
some reference. In most cases, the position is fixed relative to the viewport and does
not move in relation to the user scrolling the page.

 Layout in CSS3
 As already discussed, CSS3 handles layout in a new way. Instead of a single monolithic specification, the
individual components are broken out into separate modules. As a result, CSS3 has several different layout
modules, each of which is developed and maintained separately.

 Several modules are already well supported in browsers; others are still being developed and defined.
This book examines all the major layout modules and points out which ones you can use straight away and
which are upcoming or ones to watch for the future. Chapter 1 briefly talked about each of these modules, so
rather than cover each in detail again, here’s a reminder of the modules this book looks at:

• CSS Multi-columns Layout

• CSS Flexible Box Layout (Flexbox)

• CSS Grid Layout

• CSS Regions Layout

 This list isn’t the limit of layout in CSS3, however. As you see toward the end of this book, some exciting
ideas are being discussed and proposed that may change the way you lay out pages by default!

 It’s important to understand that CSS3 doesn’t in any way replace CSS2.1 or CSS1. The new modules
covered in the coming chapters build on top of the existing specification. As a result, you’ll continue to use
the four types of layout CSS2.1 introduced—block, inline, table, and absolute—as the most common, default
layout solution. You can use these original layout paradigms in combination with, and to complement, the
new modules.

 The Importance of Going Modular
 You may wonder why it’s important that CSS3 is constructed in a modular fashion and how this is different
than the way the existing CSS specification works. The quick answer is that by adopting a modular approach ,
each individual module that makes up CSS3 can be tested, evaluated, and adopted by browser vendors
without the need to adopt the entire specification. It also means the CCSWG can focus on different areas of
the specification in different stages in their lifecycle.

http://dx.doi.org/10.1007/978-1-4302-6503-0_1

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

23

 Why is this useful? Well, new layout modules that remain in development (for example, CSS Regions
Layout and CSS Flexbox), can coexist alongside completed modules. Functionality can be released on an
ongoing basis without the requirement that every module be completed, thereby increasing the speed of
implementation and adoption. This is good for everyone!

 I mentioned that different parts of the CSS3 specification are covered by different modules, and each
of these is at a different stage in the development lifecycle. It sounds like the ideal solution, but it doesn’t
mean all the frustrating bits of developing a new specification are automatically removed. There’s still an
inherently slow development cycle, which can be frustrating to web designers and developers keen to move
the Web forward.

 What you can take away from this, however, is that different elements of the overall specification are
available to use today. In contrast, it took CSS2.1 over a decade to become fully supported—and that was
after all the development work had been completed within the CSS team at the W3C!

 An additional benefit is that because each module is separate from the others, as one reaches maturity,
the browser vendors (such as Microsoft, Apple, Google, and Opera) are able to integrate support it in their
browsers. This provides early support for new modules and properties but does tend to come at a cost;
because each new module is incomplete when the engineers are working to create support in the browser,
new properties typically require a vendor-specific prefix before their declaration. This enables browsers
to create early support without causing a problem with backward compatibility later: when the final
specification is agreed on, the vendor prefix is removed, leaving only the completed specification property
name and behavior.

 To summarize, CSS3 is still in a state of flux (I’ll remind you of this throughout this book!). Whereas with
CSS2.1, the entire specification was contained in a single module, with CSS3, the individual components
have been modularized. This means the CSSWG can iterate individual modules more quickly and efficiently,
and browser vendors can implement standards without having to wait for every individual module to reach
recommendation status.

 Limitations of CSS Layout
 As you’ve seen, CSS2.1 provides quite a few very useful layout options, and CSS3 brings a raft of new options
to the toolbox. This is great news for web designers, and you’re at the beginning of an exciting journey of
discovery as new techniques are developed that take full advantage of the opportunities the new modules
provide.

 It’s not all a bed of roses, though! There are still plenty of things that can’t be done easily in CSS alone.
For the majority of these tasks, scripted workarounds provide a solution; but complete layout nirvana is still
a way off. The final chapters of this book take a whistle-stop tour of some upcoming proposals.

 As you’ve seen, CSS is primarily concerned with the aesthetic presentation of a page, whether that’s
through the visual representation of content on screen, the way a page prints on the office laser printer,
or how a screen reader accentuates the content. For this task, CSS is the best solution available to web
designers and will be for the foreseeable future. If all you ever wanted to do was to create static web pages
and render them beautifully, CSS would be exactly the right tool for the job.

 As you may have guessed, there’s a “but” coming! It’s rare in today’s web sites to find a page that doesn’t
require some kind of Document Object Model (DOM) manipulation (where elements in the tree are moved,
added, or deleted) or procedurally generated markup. Sometimes you create pages that are rendered entirely
through a server-side scripting language such as ASP.NET or PHP, using processing logic to generate a page
that is rendered and styled on demand.

 CSS can handle this scenario admirably, offering the flexibility to work with different quantities or
arrangement of markup easily. What it’s not designed for, however, is the case where designers attempt to
reduce or remove the need to post back to the server to conduct data processing .

 Let’s take the example of a page with a search form that returns results as the user starts to type. Instead
of relying on all content being rendered at the point where the page loads for the first time, you must now
consider the idea that content may change at any time in response to new content being loaded dynamically.

CHAPTER 2 ■ LAYOUT MODULES IN CSS: THE OLD AND THE NEW

24

 ■ Note Before going any further, I should point out that these kind of interactive data-reactive user interface
solutions post back to the server just as frequently as (and often more so) than the traditional page load/page
render model. It’s the method for generating and rendering content that has changed.

 Content is normally loaded this way using either JSON or XML, courtesy of JavaScript. The script calls
a server method that either generates additional markup for the page being read or outputs data in a format
that can be interpreted by the script and used to manipulate the contents of the page.

 Whichever way content is loaded, the amount and type of data shown on a page changes in response to
an event. Of course, you can take every possible scenario into consideration when creating your stylesheet,
but some nuances of presentation and demonstrating to the user that new content has been loaded into the
page can’t be achieved with CSS alone.

 For these cases, JavaScript is the best way to manipulate the appearance of a page. Typically, JavaScript
is used to update the CSS being applied to a specific element, but it’s the ability to procedurally generate
values and properties that differentiates a scripted solution from a native CSS-only approach.

 In the cases where a particular layout can’t be achieved with CSS alone, it’s now perfectly acceptable to
use JavaScript to provide a polyfill for the missing behavior. I cover these scenarios toward the end of each
module’s chapter.

 ■ Note Just a reminder: some of the modules this book looks at are in a state of flux. Always check the W3C
web site for the latest specification to ensure that you’re working with the latest syntax.

 Summary: Get Ready for the Future!
 This chapter examined the layout options offered by the various levels of CSS. CSS1 brought primarily styling
options for content, ignoring the need to control the position of those elements. Level 2 brought four distinct
layout approaches for positioning elements relative to the page and each other. CSS3 goes far, far beyond
these four tools.

 Now, let’s get on with learning about the new modules and how they can be used to create new layouts
that weren’t possible previously with CSS alone. The next chapter shows you a high-level overview of the
pre-CSS3 layout modules in action, and after that it’s CSS3 all the way. Let’s get cracking!

25© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_3

 CHAPTER 3

 Where We’ve Been: Position,
Float, and Display

 This chapter introduces the CSS2.1 and CSS1 layout modules. It is intended as both a recap of the existing
layout options and a best-practice tutorial/reference guide for the “old-fashioned” approach to CSS-based
layout. Experienced web designers may choose to skip this chapter, but you’ll potentially miss out on a few
useful techniques and approaches that even the most hardened web designer may not be aware of. The
chapter covers the following:

• Introduction to CSS layouts

• The CSS2.1 layout modules

• How to use them

• Real-world examples

 You take a quick tour of all the layout paradigms that CSS offers, starting with the original version of
CSS: Level 1. Note that each of the layout solutions offered by CSS has been implemented as a module.
Up until CSS3 the entire CSS specification for each level was contained in an all-encompassing module,
whereas each is now split into its own separate module; for simplicity, I talk about each approach as if it were
a separate module.

 As mentioned in Chapter 1 , pre-CSS, HTML didn’t offer much in the way of layout control. Designers
found an ingenious method to craft sophisticated layouts: hacking the HTML specification by using tables
to position elements precisely on the page. Tables were a very useful layout tool, because they offered a
controllable solution to the positioning of individual pieces of content. HTML tables, however, were never
intended to be used for layout; so, semantically speaking, the hack was a disaster. As the entire approach was
a workaround, there were also issues of maintainability and readability of content. It wasn’t uncommon to
find nested tables six or seven levels deep.

 With the arrival of CSS1, the focus started to shift away from rendering everything using HTML. Instead,
the idea of separating content from the aesthetic presentation was established.

 ■ Note If you’re already an expert with CSS2 layout, this chapter won’t offer you any new insights, so feel
free to move straight to Chapter 4 . If you’re new to web design, read on for a whistle-stop tour of the layout
options offered by CSS2 and CSS1.

http://dx.doi.org/10.1007/978-1-4302-6503-0_1
http://dx.doi.org/10.1007/978-1-4302-6503-0_4

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

26

 Layout Before CSS3
 As mentioned in Chapter 2 , HTML wasn’t designed for layout beyond the ability to mark up content
according to semantic hierarchy. The first version of the Web was simply a collection of scientific documents
that linked to each other for easy access and retrieval. The HTML language did develop to incorporate some
limited layout options in the form of alignment, but it was mainly through the misappropriation of the
 <table> tag that layout was achieved in the earliest days.

 Picture the scene: you want to create a layout for the Web that features more than a single run of content
like a Word document. Your design calls for two columns (a sidebar, in modern parlance). This wasn’t
practically possible using straight HTML, until somebody noticed that the <table> tag offered exactly this
degree of layout control. Figure 3-1 shows a layout without any “layout,” alongside a layout that uses tables
to create a “layout.” It’s easy to see which is more visually attractive—it’s little wonder designers pulled out
every trick they could to beautify and push the boundaries of web design.

 Figure 3-1. A linear layout versus a table-based layout , demonstrating the attraction of using tables when
there were no other options available to designers

 By using tables to arrange different bits of content, designers were able to precisely control the position
of elements on the page. This was despite the idea that tables were designed for presenting tabular data sets .
This approach worked for a time, but as designers began to seek out more progressive designs, the <table>
layout revolution turned sour. Incredibly intricate layouts are possible using tables, but the more intricate
the design, the more likely it is to require tables within tables and cells that span multiple columns or rows;
this leads to a terrible case of spaghetti code that is difficult to decipher and horrible to maintain.

 The issue of unintelligible code wasn’t unique to tables, however. As part of a wider strategy to separate
style from content, the W3C worked to design CSS. It wasn’t until CSS2 that any layout- specific features
became available; this chapter introduces these features.

http://dx.doi.org/10.1007/978-1-4302-6503-0_2

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

27

 Chapter 2 listed the layout paradigms. This chapter talks about all the options from a practical use point
of view, so let’s add floated layout to that list. The available CSS layout options before the arrival of CSS3
were as follows:

• Block layout : For controlling boxes when laying out documents

• Inline layout : For laying out text

• Table layout : For presenting and laying out tabular data in a two-dimensional grid

• Relative and positioned layout : Allows elements to be explicitly positioned on
the page, either reacting to the flow of the document and impacting subsequent
elements, or removing them from the document flow and causing them to have no
impact on surrounding elements on the page

• Floated layout : Allows elements to be removed from the document flow at the point
they occur but still impact on relatively positioned elements on the page

 If you’re scratching your head at table layout, that’s understandable. There was never an issue with the
idea behind using tables for layout, but the HTML table implementation wasn’t designed to accommodate
layout. So the CSS 2.1 specification introduced table layout as a layout paradigm. Let’s look at each of these
options for achieving layout, including some basic examples to help you hit the ground running if you’re
new to layout on the Web.

 Relative and Absolute Positioning
 By default, HTML elements on a page adopt relative positioning . This means they push other elements out
the way to make the space they need to occupy their position within the document. If you choose to assign
absolute positioning to an element, you remove that element from the normal document flow, and it no longer
jostles for position with the other elements on the page. Additionally, whereas relatively positioned elements
are placed on the page as a result of the preceding elements on the page, absolutely positioned elements can
be assigned coordinates to occupy. Have a look at the code in Listing 3-1 to see both options in action.

 Listing 3-1. Difference between Relative and Absolute Positioning

 <style>
 .relative {
 position: relative;
 width: 100px;
 height: 100px;
 background: red;
 margin: 10px;
 }
 .absolute {
 position: absolute;
 top: 100px;
 left: 200px;
 width: 100px;
 height: 100px;
 background: yellow;
 margin: 10px;
 }

http://dx.doi.org/10.1007/978-1-4302-6503-0_2

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

28

 </style>
 <div class="relative">Element 1</div>
 <div class="relative">Element 2</div>
 <div class="relative">Element 3</div>
 <div class="absolute">Element 4</div>
 <div class="absolute">Element 5</div>
 <div class="absolute">Element 6</div>

 The result of Listing 3-1 is shown in Figure 3-2 : the relatively positioned elements are neatly stacked
one above the other, with a 10px gap introduced thanks to the margin property. The absolutely positioned
elements, however, are all stacked on top of one another, so you can only see the most recently painted
element (element 6). This is an example of z- index , a property you can set on elements to change the order in
which they appear in the stack of elements on the page and, by extension, the order in which they’re painted.

 Figure 3-2. The result of the code in Listing 3-1

 Absolutely positioned elements offer a great deal of fine control, but they’re not always handy when
you’re dealing with different-sized screens and browser windows. Often you’ll want the document flow to
dictate where elements appear on the page. It’s worth being aware, then, that absolute positioning uses
coordinates relative to its parent element. This means if you place an absolutely positioned element inside
a relatively positioned element, the absolutely positioned element moves to reflect the position of the
parent. Handy!

 Look at the example code shown in Listing 3-2 to see how this works in practice. The result is shown
in Figure 3-3 . Note that absolutely positioned elements can render outside the bounds of their relative
parent. The parent simply provides the anchor point from which the positioning is calculated. It’s also
worth highlighting that the final absolutely positioned element in this example is sitting not within a
relatively positioned <div> , but rather the relatively positioned <body> : it appears to render higher up the
page because the positioning coordinates are calculated from the top left of the page overall, rather than an
element sitting somewhere else on the page.

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

29

 Listing 3-2. An elaboration on the previous example, showing the difference between relative and absolute
positioning

 <style>
 .relative {
 position: relative;
 top: 100px;
 left: 100px;
 width: 100px;
 height: 100px;
 background: red;
 margin: 10px;
 }
 #absolute1 {
 position: absolute;
 top: 100px;
 left: 200px;
 width: 100px;
 height: 100px;
 background: yellow;
 }
 #absolute2 {
 position: absolute;
 top: 100px;
 left: 200px;
 width: 100px;
 height: 100px;
 background: purple;
 }
 #absolute3 {
 position: absolute;
 top: 100px;
 left: 200px;
 width: 100px;
 height: 100px;
 background: yellow;
 }
 </style>
 <div class="relative">
 Element 1
 <div id="absolute1">Element 4</div>
 </div>
 <div class="relative">Element 2</div>
 <div class="relative">
 Element 3
 <div id="absolute2">Element 5</div>
 </div>
 <div id="absolute3">Element 6</div>

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

30

 A combination of both relative and absolute positioning can offer a good solution to many different
layout challenges on the Web, but by no means all of them. Take the earlier example where a designer
wants to incorporate a sidebar into a page. An absolutely positioned element could give the impression
of a sidebar, but because absolute positioning removes an element from the document flow, the sidebar
wouldn’t respect any other content on the page. It would obscure any content that wanted to render beneath
it, and it wouldn’t react to any other content areas around it. In these circumstances, designers turned to
floating elements instead.

 Floated Layout
 Floated elements do exactly that: they float within their parent element, either to the left or to the right.
No content within the parent element can infringe on the space occupied by the floating element. Instead,
content flows around the floating element, allowing it to continue to impact surrounding elements. Note,
however, that floating an element removes it from the sizing flow of the page.

 As with positioning elements absolutely within a relative element, floats don’t need to remain within
the confines of the parent element (although they do remain as such on the horizontal axis). Why is this a
problem? Because floating elements can leak out the bottom of a relatively positioned element, impacting
the positioning of subsequent relatively positioned elements on the page.

 Let’s see an example of this effect in action. Listing 3-3 shows a basic floating element sitting in a
relatively positioned parent. Listing 3-4 expands on the layout, adding additional floating elements such that
they overflow the bottom of the parent element. Figure 3-4 shows the result of Listing 3-3 , and Figure 3-5
shows the result of Listing 3-4 .

 Figure 3-3. The result of the code in Listing 3-2

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

31

 Listing 3-3. Continuing to explore the differences between Relative and Absolute Positioning

 <style>
 .relative {
 position: relative;
 width: 300px;
 background: grey;
 margin: 10px;
 padding: 10px;
 }
 #floater {
 float: right;
 width: 160px;
 height: 160px;
 padding: 10px;
 margin: 10px;
 background: green;
 }
 </style>
 <div class="relative">
 <div id="floater">Floating element</div>
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Etiam porta sem malesuada
magna mollis euismod. Vestibulum id ligula porta felis euismod semper. Fusce dapibus,
tellus ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit
amet risus.</p>

 </div>

 Listing 3-4. Floating Element within a Relative Parent: Content within the Relative Element Flows around
the Floating Element

 <style>
 .relative {
 position: relative;
 width: 300px;
 background: grey;
 margin: 10px;
 padding: 10px;
 }
 .floater {
 float: right;
 width: 160px;
 height: 160px;
 padding: 10px;
 margin: 10px;
 background: green;
 }

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

32

 </style>
 <div class="relative">
 <div class="floater">Floating element 1</div>
 <div class="floater">Floating element 2</div>
 <div class="floater">Floating element 3</div>
 <div class="floater">Floating element 4</div>
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Etiam porta sem malesuada
magna mollis euismod. Vestibulum id ligula porta felis euismod semper. Fusce dapibus, tellus ac
cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit amet risus.</p>
 </div>

 Figure 3-4. The result of Listing 3-3

 Figure 3-5. The result of Listing 3-4 . Note how floating elements do not contribute to the height of the
relatively positioned parent element

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

33

 Floated elements were commonly used to create horizontal navigation bars in the days prior to CSS3.
But as you’ll see, there are new and exciting (and much more reliable) options coming up in CSS3.

 The biggest issue with floats is that they’re unpredictable. There are workarounds, as shown in Listing 3-5 ,
which uses the clear property to instruct an element to appear only after all floated elements have finished
rendering. But these workarounds tend to lead to superfluous code or redundant elements on the page, such
as a
 tag being used solely for the purpose of expanding a relatively positioned element to fully enclose a
floated child. It’s also worth saying again that floated elements don’t impact on structural layout, so a sidebar
created using a floated element can’t be matched for height with its parent element without resorting to
hacks or scripts.

 Listing 3-5. Using the clear Property to Ensure that the Second Floating Element Doesn’t Stack Next
to the First

 <style>
 .relative {
 position: relative;
 width: 300px;
 background: grey;
 margin: 10px;
 padding: 10px;
 }
 .floater {
 float: right;
 width: 60px;
 height: 60px;
 padding: 10px;
 margin: 10px;
 background: green;
 }
 .clearfloat {
 clear: right;
 }
 </style>
 <div class="relative">
 <div class="floater">Floating element 1</div>
 <div class="floater clearfloat">Floating element 2</div>
 <div class="floater">Floating element 3</div>
 <div class="floater ">Floating element 4</div>
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Etiam porta sem malesuada
magna mollis euismod. Vestibulum id ligula porta felis euismod semper. Fusce dapibus,
tellus ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit
amet risus.</p>

 <br class="clearfloat" /> <!-- this isn't necessary on this page, but is commonly used to
ensure the <div> with a class of relative expands to encapsulate the floating elements -->

 </div>

 Figure 3-6 shows the result of Listing 3-5 . The clear property forces the surrounding elements to take
floats into account; but as you can see in the last line of code, this can lead to additional elements being
introduced into the markup solely for the purpose of working around the limitations of floats. This isn’t a
good thing! CSS is, after all, designed to promote the separation of style and content.

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

34

 Caveats aside, floated elements definitely have their uses. Images that appear within blocks of text, pull
quotes, in-section navigation, and asides are all valid uses for the float property, so don’t discount it as a
tool in your layout arsenal.

 Everything this chapter has talked about until this point relies on the element in question having some
size and position on the page. This is known as block display , and that’s what the next section talks about.

 Block and Inline Display
 There are two different types of display for elements on a page, and the default display style for any
particular element depends on its semantic function. Let’s look at what each term means:

• Block display means the element occupies horizontal and vertical space, with an
invisible bounding box enclosing it. Block elements displace other elements on the
page, causing them to shift position to accommodate the space of their bounding
box. Block-level elements always start in a new vertical space and occupy the full
width available, stretching as far as they can.

• Inline display means the element sits within the flow of content, occupying
horizontal space but not impacting vertical layout except any displacement caused
by the element’s proportions.

 The diagram in Figure 3-7 shows the differences between the two types of display.

 Figure 3-6. The output of Listing 3-5

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

35

 ■ Note Keep in mind that when I say vertical and horizontal , I’m assuming you’re working in a Latin left-to-right,
top-to-bottom language. CSS now supports other reading directions, too, but to avoid confusion I’m using the
terms as synonyms for the reading direction in use on the page.

 There’s another type of display you haven’t seen: none . If you set the display property to none , the
element remains on the page but ceases to be painted by the rendering engine or cause any displacement
to surrounding elements. You may wonder when you would want to use display : none , because surely it
would make more sense to exclude the HTML code rather than use CSS to hide the element. Think in terms
of pop-up modal dialogs, “read more” sections of pages, and drop-down menu systems. Setting the display
property to a value of none is an incredibly useful power to be able to wield, and much of the interaction you
encounter on the Web wouldn’t be possible without it! (If you really need to hide an element but still have
it occupy the space it would on the page, use visibility: hidden instead of display: none . When you’re
ready to show it again, use visibility: visible . This continues to render the object but prevents it from
being painted on screen, allowing it to continue to take up space in the layout.)

 Let’s look at some examples of block and inline elements. Table 3-1 shows some common examples
of each.

 Figure 3-7. Differences between block and inline display, and how each impacts layout

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

36

 In addition to display: block , display: inline , and display: none , there is yet another option
that combines the properties of display: block and display: inline. Display: inline-block offers
a compromise between the two, allowing elements to sit inline but occupy a specified width and height.
 Inline-block was a relative latecomer to the CSS party, largely because browsers didn’t reliably support it
in the early days of CSS2.1. As a result, it’s not as common in page designs; but it’s another valuable tool and
an option to help solve layout challenges. Listing 3-6 shows a simple example of display: inline-block in
action. The result is shown in Figure 3-8 .

 Listing 3-6. Using inline-block to Give Inline Elements Structure in the Form of Width and Height

 <style>
 .relative {
 position: relative;
 padding: 10px;
 width: 500px;
 background: red;
 margin: 10px;
 }
 .navitem {
 display: inline-block;
 width: 70px;
 height: 40px;
 line-height: 40px;
 text-align: center;
 background: grey
 }
 </style>

 Table 3-1. Examples of Elements that Are Either display: block or display:
inline by Default (CSS Allows You to Overwrite This Default)

 Examples of Block and Inline Elements

 Block Inline

 <div>

 <h1>

 <h2>

 <h3> <i>

 <p>

 <u>

 <a>

 <article> <abbr>

 <header>

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

37

 <div class="relative">
 <h1>Example of inline-block</h1>
 <p>Here is some content that includes an inline element.</p>
 <p>Here's some more content, and this time the elements have the class
navitem applied to them: Item 1
Item 2 Item 3</p>

 <p>Note that inline-block elements contribute to the layout.</p>
 </div>

 Figure 3-8. The output of Listing 3-6 , where elements have been given structure thanks to display:
inline- block

 How Does the Display Property Impact Layout?
 As you’ve seen, you have a lot of control over the way elements are drawn on the page. The display property
directly affects layout. By default, some elements’ width and height can’t be explicitly set, and thus cannot
they can’t impact surrounding elements or their position on the page. Others have an impact by default.
Naturally, you can override the default property for any element using the display property in CSS.

 Let’s have a quick look at this in action. Listing 3-7 combines relative and absolute positioning; floating
elements; and inline, block, and inline-block elements into a single page. This isn’t uncommon; you’ll
typically find examples of every kind of layout in most complicated layouts. The result of Listing 3-7 is shown
in Figure 3-9 .

 Listing 3-7. Combining relative , absolute , float , inline , block , and inline-block Elements into One
Example Layout

 <style>
 .relative {
 padding: 10px;
 position: relative;
 width: 920px;
 background: #efefef;
 border: 1px solid #ccc;
 margin: 10px auto;
 }

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

38

 #header {
 position: relative;
 padding: 10px;
 height: 80px;
 line-height: 80px;
 background: #999;
 color: #fff
 }
 #header h1 { font-weight: normal;margin:0;padding:0;}
 #search {
 position: absolute;
 top: 10px;
 right:10px;
 }
 #search input {
 padding: 5px;
 }
 #nav {
 position: relative;
 height: 30px;
 background: #ccc;
 }
 #nav ul {
 margin: 0;
 padding: 0;
 }
 #nav ul li {
 float: left;
 list-style:none;
 padding: 0;
 margin: 0 3px;
 width: 70px;
 height: 30px;
 line-height: 30px;
 text-align: center;
 background: #ddd;
 }
 .sidebar {
 float: right;
 width: 200px;
 background: #ebebeb;
 padding: 10px;
 }
 .ib {
 display: inline-block;
 width: 70px;
 line-height: 30px;
 text-align: center;
 background: #ddd;
 border: #ccc;
 margin: 5px;

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

39

 }
 .clearfloat {
 clear: both;
 }
 </style>

 <div class="relative">
 <div id="header">
 <h1>Site Name</h1>
 <form id="search"><input type="text" value="search site" /></form>
 </div>
 <div id="nav">

 Home
 About
 Contact

 </div>
 <div class="sidebar">
 <h3>Popular CSS modules</h3>
 <p>CSS FlexboxCSS Multi-Column<span
class="ib">CSS RegionsCSS Grid LayoutCSS
Shapes</p>

 </div>
 <div id="content">
 <h2>Welcome to our website</h2>
 <p>Praesent commodo cursus magna, vel scelerisque nisl consectetur et. Curabitur blandit
tempus porttitor. Maecenas faucibus mollis interdum. Aenean eu leo quam. Pellentesque
ornare sem lacinia quam venenatis vestibulum.</p>

 <p>Donec id elit non mi porta gravida at eget metus. Vivamus sagittis lacus vel augue
laoreet rutrum faucibus dolor auctor. Curabitur blandit tempus porttitor. Donec sed odio
dui. Maecenas sed diam eget risus varius blandit sit amet non magna.</p>

 <p>Praesent commodo cursus magna, vel scelerisque nisl consectetur et. Donec id elit
non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl
consectetur et. Nulla vitae elit libero, a pharetra augue.</p>

 <p>Sed posuere consectetur est at lobortis. Sed posuere consectetur est at lobortis.
Maecenas sed diam eget risus varius blandit sit amet non magna. Nullam id dolor id nibh
ultricies vehicula ut id elit.</p>

 </div>
 <br class="clearfloat" />
 </div>

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

40

 Table Layout
 The last layout tool this chapter examines is table layout. As you saw in Chapters 1 and 2 , tables have been
used since the earliest days of the Web to achieve layout. Once CSS became available and reliable, there
was a strong anti-table-layout movement on the Web, and as a result table layout has almost become taboo.
This is an opinion formed on the basis of tables in HTML being solely for the use of tabular data, rather than
layout and display of a page.

 It’s important, then, to draw a distinction between HTML tables and CSS tables . The table layout
discussed here is achieved by assigning display: table to a container element. The difference between
applying display: table to an existing page element and using an HTML <table> element is that by
definition, a <table> element is and always will be a table. A <div> with display: table set as a property
can be changed to use a different layout paradigm simply by editing the CSS code or using an @media query.
CSS tables are good for layout!

 CSS table layout offers a style-based solution to rendering content in a manner that’s manner to HTML
tables but not identical. The corresponding property values for each different table element are as follows:

 • table { display: table }

 • tr { display: table-row }

 • thead { display: table-header-group }

 • tbody { display: table-row-group }

 • tfoot { display: table-footer-group }

 • col { display: table-column }

 • colgroup { display: table-column-group }

 • td, th { display: table-cell }

 • caption { display: table-caption }

 Listing 3-8 shows how each of these can be used to achieve a table-based layout, with all the benefits
that approach provides. The result is shown in Figure 3-10 .

 Figure 3-9. The output of Listing 3-7 . Note that different layout paradigms are suited to different solutions, so
it’s common to use a range of tools to achieve a specific part of the overall layout

http://dx.doi.org/10.1007/978-1-4302-6503-0_1
http://dx.doi.org/10.1007/978-1-4302-6503-0_2

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

41

 Listing 3-8. Creating a Layout Using display: table Properties to Achieve Something that’s Very Difficult
Using Alternative CSS2.1 Layout Options

 <style>
 .table {
 display: table;
 border: 1px solid red;
 background: #eee;
 margin: 2px;
 padding: 2px;
 }
 .tr {
 display: table-row;
 border: 1px solid red;
 background: #ddd;
 margin: 2px;
 padding: 2px;
 }
 .td {
 display: table-cell;
 border: 1px solid #red;
 width: 200px;
 background: #ccc;
 margin: 2px;
 padding: 2px;
 }
 </style>
 <div class="table">
 <div class="tr">
 <div class="td"><p>This is a normal div, but displays like a cell in a table!</p></div>
 <div class="td"><p>This is another table cell</p></div>
 </div>
 <div class="tr">
 <div class="td"><p>Here is a third cell, in a second row</p></div>
 <div class="td"><p>And a final cell.</p></div>
 </div>
 </div>

 Figure 3-10. A page layout achieved using display: table . This is practically impossible to achieve without
table layout, unless you use scripts or CSS3! Note that some properties have been ignored and aren’t rendered
in the final page. display: table works just like an HTML table!

CHAPTER 3 ■ WHERE WE’VE BEEN: POSITION, FLOAT, AND DISPLAY

42

 CSS table layout is a very useful layout tool that is the best option in myriad scenarios. Before the
arrival of CSS3, it was a good option to achieve a three-column layout where the individual columns
matched the height of the longest column without the need for scripts or hacks . It’s also a useful way to
vertically align content without having to resort to negative margins and other such workarounds. But
this book is about CSS3—let’s not spend too much more time worrying about display: table . You may
encounter it, and it’s certainly not to be ignored as a potential layout tool, but you’re not reading this book
to find out about table-based layout!

 This chapter’s takeaway is that CSS layout modules don’t exist in isolation. You’re extremely unlikely
to encounter a design that doesn’t incorporate styling born out of the gamut of CSS layout options.
Successful designers use the best tool for the job, so don’t be afraid to call on CSS2.1 layout modules
when designing a page. Find the layout module that works best for your specific requirements in a design
element, and use that.

 Summary
 In this chapter, you’ve seen a high-level overview of the layout options available prior to CSS3. Some basic
examples helped to explain the options, and the chapter also talked about some layout limitations using
these modules. You will use all of these layout modules on a daily basis when designing web sites; so if your
appetite is whetted and you want further reading, check out the Apress store for books that cover CSS2.1.

 Now you’re equipped to create layouts using CSS2.1. Let’s get to the point and begin learning about the
new stuff: it’s time to explore CSS3 Layout!

43© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_4

 CHAPTER 4

 CSS Multi-column Layout

 The CSS Multi-column Layout module provides a solution to one of the fundamental layout issues that
has faced web designers since the very earliest days of the Web: how to arrange content so that it occupies
multiple vertical containers, like a newspaper or magazine. Over the years, ingenious web designers have
developed a variety of workarounds to create multi-column layouts. Initially this involved using tables to
align columns of content as if each element was a value in a cell. More recently, clever combinations of
floating elements, clearing elements, and occasional JavaScript have provided a more semantic solution, but
none of these approaches is particularly well suited to creating multi-column layouts. The new CSS3 module
overcomes many of the problems associated with generating such layouts, automatically handling the flow
and distribution of content; and browser support is already quite good, so it’s relatively safe to start using
this module today!

 ■ Note Although browser support is already good, this module is still being implemented by browser vendors.
All the usual caveats apply!

 What Is the CSS Multi-column Layout Module?
 CSS Multi-column Layout provides a solution for dividing a content area into columns, across which content
is automatically paginated. Unlike some of the other all-new layout modules covered in this book, the Multi-
column Layout module extends the existing CSS box model. Because the new module builds on top of an
existing layout paradigm, fallback is handled automatically. Browsers that don’t understand multi-column
layout properties ignore them, rendering the content area in a single column instead of as multiple columns;
see Figure 4-1 .

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

44

 Syntax and Structure
 The CSS Multi-column Layout module extends the existing CSS box model with a total of ten additional
properties. Each of these provides control over one aspect of the way content is rendered into columns
within the container.

 Because all the properties affect a single container, the module is both very easy to understand and,
importantly, straightforward to implement from a browser point of view. As a result, “in the wild” support for
this module is excellent! If your users are up to date with the latest build of their particular choice of browser,
your content will render in columns—every commonly used browser supports this module.

 ■ Note As with any of the new CSS3 layout modules, it’s always worth thoroughly testing across all browser
and operating system combinations. You can view the latest browser support table for CSS Multi-column at
 http://caniuse.com/ .

 Basic Concepts
 The CSS3 Multi-column Layout module introduces ten new properties that can be applied to block-level
elements. In addition to the new properties that control the number of columns, distribution, width, and
divisions, some new keywords are available to help control how content breaks across columns.

 Creating a multi-column layout is very simple with the Multi-column Layout module. There are no
unnecessarily complicated properties to learn; and because everything happens in a single element, there’s
no need to worry about how content will wrap outside its container, beyond the rules you’re familiar with
from CSS2.1.

 Figure 4-1. CSS Multi-column Layout in action versus a fallback non-columnar layout in the same container

http://caniuse.com/

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

45

 With just the ten properties, you can do the following:

• Convert an existing single-column element into a multi-column element

• Wrap content automatically across columns

• Control how columns fill the available space, either by expanding to fill the
container or by always adhering to a preset size (which is handy for creating
responsive layouts)

• Define the borders that appear between columns, and the gutter width

• Render content so that it spans multiple columns to break out of the columnar
layout when desired

 There are some special rules about how overflowing content is rendered and the way in which content
breaks across columns. You learn about these in detail later in this chapter.

 It’s worth highlighting the third item in the list of things CSS Multi-column Layout lets you do. Right
out of the box, CSS columns can be responsive. This means it’s an ideal layout module to use if you want to
target and paginate content for multiple different device configurations. There are ways you can break this
in-built responsiveness, but the coming pages highlight what to watch out for.

 The responsive nature of CSS columns isn’t limited to text. Images also adhere to the column layout, so
by using typical responsive image techniques, you can also make pictures scale to suit the screen being used
to view a page. This is a great time-saver and another good reason it’s worth your time to familiarize yourself
with the module.

 I hope you’re convinced that CSS Multi-column Layout is a useful tool in your layout arsenal. Let’s get
into the code to see how it works.

 Understanding the Terminology
 Unlike some of the other layout modules covered in this book, the CSS Multi-column Layout module uses an
existing layout paradigm that we’re all familiar with. This makes it very easy to understand and to get started
using the module in your layouts. With that said (and just in case you’re not comfortable with the concept of
what a column is), let’s quickly cover what the word column means in the context of CSS.

 A column is a vertical division in which content is rendered, inside an overall container. One container
can contain one or more columns, with content flowing from one to the next according to the rules of the
language being used. If you’re authoring in English, columns render from left to right. As content overflows
the first column, it starts being rendered at the top of the next column. When all the columns have been
used, the content overflows according to the normal HTML/CSS rules , although this may result in additional
columns—you look at this later.

 One of the benefits of the CSS Multi-column module is that the height of the container is automatically
calculated to accommodate all the content by default. This is useful and one of the major benefits of using
the module over some of the older workaround solutions. Out of the box, content is also automatically
balanced across all columns, resulting in a pleasing block of content delineated into neat columns to match
your specification.

 Figure 4-2 demonstrates the different properties used in the discussion of CSS Multi-column Layout.
You’ll probably pick this up quickly, because it’s intuitive; but if you’re ever unsure about the difference
between column-fill and column-span , this figure will be worth referring back to.

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

46

 Before getting engrossed in theory and property names/values, let’s look at an example. The code for a
basic multi-column layout is shown Listing 4-1 , and you can see an example of the output in Figure 4-3 .
I’ll explain what’s going on in this example over the coming pages. Note that, as with all emerging modules
that are implemented with vendor-prefixed properties, you may need to add -webkit- or -moz- prefixes to
get this to display in your browser.

 Listing 4-1. HTML Markup Being Styled with CSS Multi-column Layout Properties

 <style>
 .multicol {
 position: relative;
 margin: auto;
 max-width: 960px;
 columns: 4 12em;
 column-gap: 2em;
 column-rule: 1px solid red;
 }
 .multicol p {
 padding: 0.25em;
 }
 .multicol figure {
 margin: 0;
 padding: 0;
 width: 100%;
 }

 Figure 4-2. The terms used to talk about multi-column layouts in CSS3

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

47

 .multicol figcaption {
 color: #999;
 font-size: 0.7em;
 }
 .multicol img {
 width: 100%;
 }
 .multicol h1 {
 column-span: all;
 margin: 0.25em 0;
 padding: 0;
 }
 .multicol h2 {
 margin: 0.25em 0;
 padding: 0;
 }
 </style>

 <article class="multicol">
 <h1>Moby Dick; Or the Whale</h1>
 <h2>by Herman Melville</h2>
 <figure>

 <figcaption>Voyage of the Pequod, illustrated by Everett Henry</figcaption>
 </figure>
 <p>Call me Ishmael. Some years ago—never mind how long precisely—having little or no money
in my purse, and nothing particular to interest me on shore, I thought I would sail about
a little ... How then is this? Are the green fields gone? What do they here?</p>

 </article>

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

48

 Figure 4-4. The same rendering shown with a reduced browser window width

 Figure 4-3. The resulting appearance from the combination of HTML and CSS code in Listing 4-1 , shown at
normal desktop resolution of greater than 960px width

 The really useful thing about this example is that it’s immediately responsive, as you can see in
Figures 4-4 and 4-5 , where I’ve reduced my browser window’s width to simulate smaller screens. Let’s look at
the different elements of this example.

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

49

 ■ Note Some additional non-multi-column-layout code is required to define the color, border, and
typographic styles shown in Figures 4-3 , 4-4 , and 4-5 . I’ve also abridged the paragraph content in the markup
shown in Listing 4-1 to save space.

 The HTML Markup
 I don’t need to talk about the HTML, because you’re using a standard semantic element as the container for
the content. There are no special markup requirements to use CSS Multi-column Layout; any block-level
element can have multiple columns applied to it using this module.

 The Multi-column Model
 There are a few things to notice about the example shown in Figure 4-3 and Listing 4-1 , specifically with
regard to how the content renders in the container. In the original CSS box model, the content of an element
flows into the content box of that element. CSS Multi-column Layout introduces a new type of container
that exists between the content box and the actual content . This is referred to by the W3C as the column box
(column for short). Content flows automatically across columns within an element, in the inline (or reading)
direction. This is left-to-right in Latin-based languages such as English.

 Figure 4-5. The result of Listing 4-1 rendered at 320px wide—the most common smartphone resolution

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

50

 Columns are arranged into rows. All columns have a common width and height within a row. Columns
can have space between them, which is referred to as the column gap (or gutter in print-speak). In most
onscreen cases, an element split into columns has only a single row. There are, however, special cases where
an element may contain multiple rows of columns. Printed documents can also consist of multiple rows,
where a content area occupies more than one printed page. You see an example of multiple onscreen rows
in action later in this chapter.

 I use the W3C’s language when explaining CSS3 Multi-column Layout Layout. For that reason, I refer to
 the multicol element when talking about the container that has the multi-column properties applied to it. A
multi-column (multicol) element is any container whose column-width or column-count is not set to auto .
As you’ve seen, in this case I’m using an <article> element. To avoid confusion, I also use multicol as the
name of the class belonging to this element.

 All the individual properties covered in the next section are applied to the multicol element. In CSS3,
it isn’t possible to set properties and values on individual columns. To be clear, this means you can’t assign
 background , padding , or margin for one column specifically.

 ■ Note Padding and margin applied to a multicol element are applied to the container, not its columns

 Although you can’t control individual columns, it’s important to understand that the browser renderer
treats them as separate block-level boxes just like table cells. Each column box acts as the containing block
for its content. This means, for example, margin and padding applied to a paragraph element rendered in a
column are applied against the edge of that column’s containing block.

 The CSS Properties
 Looking at the CSS code for the example shown in Listing 4-1 and Figures 4-3 , 4-4 , and 4-5 , the first bit of
code that looks unfamiliar should be the use of the columns property. This is shorthand to define values for
two CSS properties (see Listing 4-2).

 Listing 4-2. Defining the <article> with a class of multicol as Having Four Columns, Each of Width 12em

 .multicol {
 columns: 4 12em;
 }

 As I just mentioned, the columns property is shorthand for two CSS properties: column-count and
 column-width . In this case, I’ve assigned the .multicol element to have four columns and a width of 12em
for each column. It’s important to note that the browser will not necessarily render exactly what you specify.
If there’s not enough space to create four columns, each 12em width, the rendering engine drops columns to
make the columns fit. As a result, the width may not be 12em , and the number of columns may not be four!

 This means when you’re defining columns using the CSS Multi-column Layout module, you can’t
be certain that a browser will render exactly what you expect intuitively. This may sound like a bad bit of
implementation; but as you’ll see, it’s the basis for one of the most powerful aspects of the module: CSS3
Multi-column Layout is responsive by default.

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

51

 column-count
 column-count defines the number of columns into which a multicol element should be divided. As you’ll
see, rules determine whether the browser respects this property. If it’s unspecified or set to auto , the space is
divided according to the column-width property value.

 column-width
 column-width specified the minimum width each column should occupy within the multicol element. Note
that I said minimum, not definitive! Again, the rendering engine follows a series of logical rules to determine
whether this rule is strictly adhered to. If it’s unspecified or set to auto , the column width is determined by
the number of columns it’s split into—according to the column-count property value.

 columns
 The columns property is an effective shortcut for the combination of the column-count and column-width
properties. Depending on the value(s) you pass into the columns property, the browser interprets your
intentions differently, so it’s important to understand all the possible permutations. I’ve borrowed the W3C’s
example code in code Listing 4-3 to help illustrate.

 A simple way to remember how this works is that if you use a single value with a unit, the browser
interprets this as a column-width value. If you omit a unit, the value is interpreted as a column-count value. If
you’re unsure, specify two values: one with a unit for width, and one without for count.

 Listing 4-3. Effective Longhand Version of Each of Six Property Values Assigned Using the columns
Shorthand Property

 columns: 12em; /* equates to column-width: 12em; column-count: auto */
 columns: auto 12em; /* equates to column-width: 12em; column-count: auto */
 columns: 2; /* equates to column-width: auto; column-count: 2 */
 columns: 2 auto; /* equates to column-width: auto; column-count: 2 */
 columns: auto; /* equates to column-width: auto; column-count: auto */
 columns: auto auto; /* equates to column-width: auto; column-count: auto */

 The Rules for Dropping Columns and Changing Widths
 As mentioned, the browser’s rendering engine does not always adhere strictly to your definition of the width
and total number of columns for a multicol element. The rules for how and when to alter the rendering
intent are defined by the W3C’s CSS3 Multi-column Layout module specification. The W3C offers a
pseudocode listing to show the logic to be applied. I’ve copied this in Listing 4-4 ; you can find my translation
of the rules after the listing, so don’t worry about understanding this code!

 Listing 4-4. W3C’s Pseudocode for Calculating the Width and Number of Columns According to the
Values Set for the column-width and column-count Properties

 if ((column-width = auto) and (column-count = auto)) then
 exit; /* not a multicol element */

 if ((available-width = unknown) and (column-count = auto)) then
 exit; /* no columns */

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

52

 if (available-width = unknown) and (column-count != auto) and (column-width != auto) then
 N := column-count;
 W := column-width;
 exit;

 if (available-width = unknown) then
 available-width := shrink-to-fit;

 if (column-width = auto) and (column-count != auto) then
 N := column-count;
 W := max(0, (available-width - ((N - 1) * column-gap)) / N);
 exit;

 if (column-width != auto) and (column-count = auto) then
 N := max(1, floor((available-width + column-gap) / (column-width + column-gap)));
 W := ((available-width + column-gap) / N) - column-gap;
 exit;

 if (column-width != auto) and (column-count != auto) then
 N := min(column-count, floor((available-width + column-gap) / (column-width + column-gap)))
 W := ((available-width + column-gap) / N) - column-gap;
 Exit

 Following is my translation of the pseudocode in Listing 4-4 . Note that the rules and conditions are
compared and acted on in order:

 1. If the column-count and column-width properties are both either unset or set to
 auto , no columns are rendered. The same is true if column-count is set to auto
and the width of the multicol element is unrestricted.

 2. If the column-count and column-width properties both have values and a width
hasn’t been specified for the multicol element, use the values exactly as they are
specified.

 3. If the column-count property has been set with a value other than auto and the
 column-width property has been set to auto , divide the available width into the
number of columns specified.

 4. If the column-width property has been set with a value other than auto , the
 column-count property has been set to auto , and the container has a specified
width, set the number of columns to match the available space divided by the
specified width of each column. This may mean the columns end up wider than
specified, if the width of the multicol element doesn’t divide perfectly by the
specified width of each column.

 5. If the column-count and column-width properties have both been set with a
value other than auto and the width of the multicol element has been set, look
at whether the combination of width and count will fit inside the container
element. If not, reduce the number of columns to match the number of times the
specified width of each column will fit in the available space, and then expand
the column width to fill the multicol element using the calculated column-count .

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

53

 I hope you can see that this approach not only makes sense but also makes the CSS3 Multi-column
Layout module very flexible. It’s engineered to be responsive automatically while trying to honor the
specified values for the column-count and column-width properties as closely as possible.

 column-gap
 If you were paying attention to the code in Listing 4-4 , you’ll have spotted a new property I haven’t discussed
yet: column-gap. column-gap is used to define the gutter width between columns. The example in Figure 4-3
uses column-gap . You can see the complete definition for the .multicol element again in Listing 4-5 .

 Listing 4-5. Stylesheet Definition for the .multicol Element, Showing the column-gap Property in Use

 .multicol {
 position: relative;
 margin: auto;
 max-width: 960px;
 columns: 4 12em;
 column-gap: 2em;
 column-rule: 1px solid red;
 }

 Unlike the column-width and column-count properties, the column-gap property is absolute. This
means if you specify a value, the browser will respect that setting, even if it means sacrificing columns.

 column-rule
 The column-rule property controls whether a dividing line is drawn between rendered columns. Column-
rule works in much the same way as the border property from CSS 1 and 2.1. In fact, as with the border
property, column-rule is a shorthand property for three different properties:

• Column-rule-width : As with border-width , this property takes an argument with a
unit such as 2px , or the keyword none .

• Column-rule-style : Sets the line style to be rendered. The same options are
available as with border-style , including dotted , dashed , solid , and so on.

• Column-rule-color : This color attribute can be set using any of the color models
supported by the browser, including hex and rgb() .

 ■ Note A column rule is always drawn in the exact center of the column gap (gutter).

 The column rule (see Figure 4-6) renders as if the column is completely filled with content, regardless
of whether this is true. This is useful if your stylesheet definition calls for something other than a
balanced fill to your columns, because it helps to visually define the space a column occupies, even
if it’s empty of content. Think back to how difficult it was to achieve this simple effect using floated
elements to generate columns!

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

54

 Column Breaks
 Normally, the browser’s rendering engine decides how and where to break content across columns within
a multicol element. This works well in many cases, but there may be times when you want to control the
way content breaks. For example, you might want to force content to start rendering in a new column before
each <h3> tag. Three properties are available to provide control over how and when to break content: break-
before , break-after , and break-inside .

 break-before

 This property specifies that a break should be applied before the element it’s applied to. It accepts the
following values: auto | always | avoid | left | right | page | column | avoid-page | avoid-column . Of
particular interest in the case of CSS3 Multi-column Layout are the column and avoid-column options, which
ensure or prevent (where possible) a break in a multicol element.

 break-after

 This property specifies that a break should be applied after the element it’s applied to. It accepts the
following values: auto | always | avoid | left | right | page | column | avoid-page | avoid-column . Of
particular interest in the case of CSS3 Multi-column Layout are the column and avoid-column options, which
ensure or prevent (where possible) a break in a multicol element.

 break-inside

 Unlike the other two options, break-inside controls how content breaks inside the element it’s applied to.
It accepts the following values: auto | always | avoid | avoid-page | avoid-column . Of particular interest in
the case of CSS3 Multi-column Layout are the column and avoid-column options, which ensure or prevent
(where possible) a break in a multicol element .

 Figure 4-6. The column rule in action

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

55

 ■ Note Where a column break splits a box, that box’s margin, border, and padding have no visual effect on
where that split occurs. The margin immediately after the split is honored, however.

 column-span
 The column-span property allows a block-level element within a column to break outside the bounds of
that column. In the future it may be possible to specify a number of columns to span, much like the colspan
attribute that can be applied to a table cell, but in the CSS3 specification there are only two possible values:
 none and all .

 By default, column-span is set to none . This means content renders within the constraints of the column.
If it’s set to all , the column is broken at the point that element is rendered. This creates an effect where a
 multicol element can contain multiple rows of columns.

 Images, Responsiveness, and Cropping in Columns
 Images present a special problem in a layout where you can’t be absolutely certain how much space will be
allocated to their display. There are two ways to approach images in a columnar layout:

• Fill the column width with an image, enlarging or reducing the image to match the
available space.

• Predetermine the size at which an image should be shown, and wrap text around or
crop the image as necessary to fill the space.

 The example in Listing 4-1 , shown in Figures 4-3 , 4-4 , and 4-5 , uses the first option. Using a CSS rule of
width 100% forces the image to render at the full column width. This effectively makes the image responsive,
because it grows and shrinks to match the available space.

 The alternative approach is to render an image at a set size. Just as with any other block-level container,
floated elements work in a multicol element but are restricted to the space within the column in which
they’re rendered. Additionally, if an image is rendered so that it would occupy more horizontal space than
is available in the column, the image is cropped at the edge of the effective content box for that column.
The difference between these two different approaches to rendering images is shown in Figure 4-7 .

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

56

 ■ Note If you want your images to be responsive, use the first approach, because it enables images to resize
according to the available space.

 Controlling How Columns Are Filled with Content
 Columns can be filled with content in two ways using CSS3 Multi-column Layout: they can either have
content balanced across them or be filled sequentially until content runs out. If you use the latter option,
there’s a chance that one or more columns could be rendered without any content.

 The column-fill property provides control over which approach the browser uses. It accepts two
possible values: balance and auto . As you might expect, balance renders content equally across all
available columns, and auto uses the sequential approach. The default (unspecified) value is balance ,
so if you don’t explicitly set column-fill to auto , the browser attempts to render a balanced column fill.
The code in Listing 4-6 and the in-browser result in Figure 4-8 show the same content rendered using the
two options.

 Figure 4-7. Image 1 is set to 100% width, which allows it to scale to fit the column width. Image 2 uses an
absolute size, forcing it to crop to the column width when the column is narrower than the image

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

57

 Listing 4-6. Two Different Column-Fill Approaches

 <style>
 .multicol1 {
 columns: 3 20em;
 column-fill: balance;
 }
 .multicol2 {
 columns: 3 20em;
 column-fill: auto;
 }
 </style>
 <div class="multicol1">
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nullam quis risus eget urna mollis ornare vel eu leo. Nulla
vitae elit libero, a pharetra augue. Sed posuere consectetur est at lobortis.</p>
 <p>....</p>
 </div>
 <div class="multicol2">
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nullam quis risus eget urna mollis ornare vel eu leo. Nulla
vitae elit libero, a pharetra augue. Sed posuere consectetur est at lobortis.</p>
 <p>....</p>
 </div>

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

58

 Figure 4-8. The two different column-fill options. The first balances the content equally across the columns,
and the latter fills columns sequentially

 Controlling How Column Content Overflows
 As you’ve seen with images that extend beyond the bounds of a column, content that extends into the
column gaps is clipped in the middle of the column gap. Have another look at the diagram in Figure 4-7 to
see this in action.

 When content extends beyond the space allocated for a multicol element, the browser can render
this a few different ways depending on what settings you use in your CSS code. Sometimes this can result in
additional columns being rendered outside the multicol block. The best way to understand this is by using
two simple examples.

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

59

 The code in Listing 4-7 creates a simple multicol element with three columns and fills it with content
that includes forced column breaks after each paragraph. When you add a fourth paragraph to the HTML
code, the browser continues to honor the forced breaks and creates a fourth column to accommodate the
additional paragraph. This is rendered outside the content box for the multicol element because there
is enough space to accommodate the three columns specified, and you explicitly declare a column width
(see Figure 4-9).

 Listing 4-7. Example of an Extra Column Rendering Outside the Content Box

 <style>
 .multicol {
 width: 60em;
 columns: 3 18em;
 }
 p {
 break-after: column;
 }
 </style>
 <div class="multicol">
 <p>Cras justo odio, dapibus ac facilisis in, egestas eget quam. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nullam quis risus eget urna mollis ornare vel eu leo. Nulla
vitae elit libero, a pharetra augue. Sed posuere consectetur est at lobortis.</p>

 <p>Donec id elit non mi porta gravida at eget metus. Etiam porta sem malesuada magna mollis
euismod. Cras justo odio, dapibus ac facilisis in, egestas eget quam. Aenean eu leo quam.
Pellentesque ornare sem lacinia quam venenatis vestibulum. Lorem ipsum dolor sit amet,
consectetur adipiscing elit.</p>

 <p>Nulla vitae elit libero, a pharetra augue. Fusce dapibus, tellus ac cursus commodo,
tortor mauris condimentum nibh, ut fermentum massa justo sit amet risus. Vivamus sagittis
lacus vel augue laoreet rutrum faucibus dolor auctor. Curabitur blandit tempus porttitor.
Vivamus sagittis lacus vel augue laoreet rutrum faucibus dolor auctor. Fusce dapibus,
tellus ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit amet
risus. Vivamus sagittis lacus vel augue laoreet rutrum faucibus dolor auctor.</p>

 <p>Maecenas sed diam eget risus varius blandit sit amet non magna. Vestibulum id ligula
porta felis euismod semper. Nullam quis risus eget urna mollis ornare vel eu leo. Cum
sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec
ullamcorper nulla non metus auctor fringilla. Fusce dapibus, tellus ac cursus commodo,
tortor mauris condimentum nibh, ut fermentum massa justo sit amet risus.</p>

 </div>

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

60

 In Figure 4-9 , the content has been forced into an additional column in the inline direction. The same
effect happens if a height is specified explicitly for the multicol element and the amount of content to be
rendered exceeds the available space.

 As with any block-level element, if you specify a value for the overflow property, it is honored,
enabling control over whether additional columns are rendered in the document. The easiest way to avoid
additional columns being generated is to not specify the height of the multicol element and to avoid
forced column breaks.

 There are also special rules for how paged media, such as a printed page, treat overflowing content.
Read the W3C specification for full details.

 How to Use CSS Multi-column Layout
 As you can see, CSS Multi-column Layout provides a sensible and practical solution to the problem of
arranging content into columns akin to a newspaper. Perhaps the biggest benefit of the module is the
workflow improvements it brings to the web design process, making shims and workarounds a thing of the
past. In addition, the module is responsive by default, offering a really useful option for a mobile-first design
methodology, and also reducing the amount of development time required to achieve an effective solution
across all screen resolutions.

 CSS Multi-column Layout is a great overall layout tool, but it can also be used to create smaller in-page
user interface elements such as these:

• Forms where content is arranged into columns on larger screens but falls back to a
single column on mobile devices

• Horizontal navigation menus where it’s important that every element occupies the
same amount of horizontal space (although check out chapter 5 on Flexbox for an
even better option for this purpose!)

 Figure 4-9. If you force a break after the end of each paragraph, adding a fourth paragraph forces an
additional column to render outside the content box

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

61

• Rendering content in areas where you don’t know in advance how much content or
horizontal space you’ll have available

 That said, the primary purpose of CSS Multi-column Layout is as an overall page-layout tool, and this is
where you’ll get the maximum benefit from it.

 Browser Support
 Browser support for CSS Multi-column Layout is already very good. Every major browser has had support
for at least two versions. Internet Explorer currently has the most complete implementation, with the current
version offering full support, and partial support for the specification since version 10. Firefox, Chrome,
Safari, and Opera all also feature working partial support for the specification, with the WebKit-based
browsers offering full support. On mobile platforms, the picture is similar: all the common browsers have
good support, with IE mobile offering the most complete implementation of all.

 The CSS Multi-column Layout module reached Candidate Recommendation status in April 2011,
which effectively means it’s a complete module that you can consider stable. Despite this, work continues
to be conducted by the CSSWG to refine and further develop the module. You can check the latest browser
support for CSS Multi-column Layout at http://caniuse.com/#feat=multicolumn .

 ■ Caution Although While browser support for this module is superb, older implementations of the standard
may contain errors or bugs. As with any new module, to ensure best results, you must test in all possible
browser configurations. Don’t assume that every browser will render your multicol element identically.

 Fallback Options and Polyfills
 Browsers that don’t understand CSS Multi-column Layout properties fall back to their default values for
each element. This means in most cases that elements designed to have multiple columns render in a single
column instead. For many layouts, this isn’t much of an issue and is a reasonable outcome for a progressive
enhancement approach to layout. If you absolutely must have columns in your layout, regardless of browser
support for CSS Multi-column Layout, using the Modernizr framework will allow you to identify and handle
browsers that can’t render CSS columns. You can find out more at http://modernizr.com .

 Real-world Example
 Although multi-column layouts aren’t anything new, the workflow improvements the new module brings are
significant for web designers. As such, it’s well worth exploring a real-world example to see how everything
fits together. You’re not going to be wowed by an entirely new visual paradigm, but if you’ve worked on the
Web for any length of time, you’ll appreciate the beauty in the code!

 The Mockup
 For this example, I’ve created a mockup of a page design for a fictional online newspaper. The rendered
output is shown in Figure 4-10 . This example uses the CSS Multi-column Layout module to render all the
columns shown in the design, including the nested columns at the top of the layout where there are three
callouts in a row. It also uses a number of the features discussed in this chapter, including the column-span
property to create an effective pull-quote.

http://caniuse.com/#feat=multicolumn
http://modernizr.com/

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

62

 The HTML Markup
 The HTML markup for this page is very simple. At its core, there’s a set of elements, each of which contains
a single article. The markup works regardless of whether the user’s browser supports CSS Multi-column
Layout. Listing 4-8 shows the HTML code for the entire page.

 Listing 4-8. HTML Code for the CSS Multi-column Layout Page

 <div id="container">
 <header>
 <hgroup>
 <h1>thenews</h1>
 <h2>Your daily news</h2>
 </hgroup>
 <nav id="primarynav">

 News
 Sport
 Culture
 The Arts
 Business
 Economy
 Lifestyle
 Travel
 Technology
 Comment

 </nav>
 </header>

 Figure 4-10. A mockup for a fictional online newspaper

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

63

 <section id="news">
 <nav id="sectionnav">

 News
 US & Canada
 World
 Politics
 Media
 Education
 Science
 Entertainment
 Weather

 </nav>
 <div id="pagelayout">
 <div id="mainlayout">
 <div id="callouts">
 <div class="callout1">

 <h2>Banks in Recovery</h2>
 </div>
 <div class="callout2">

 <h2>Weekend ideas</h2>
 </div>
 <div class="callout3">

 <h2>New museum set to open</h2>
 </div>
 </div> <!-- End Callouts -->
 <article>
 <h2>Island boat service due to stop in September</h2>
 <figure>

 <figcaption>Above: The service provides a lifeline to the local island community</figcaption>
 </figure>
 <p>Etiam porta sem malesuada magna mollis euismod. Duis mollis, est non commodo luctus,</p>
 <h3> Nullam id dolor id nibh ultricies vehicula ut id elit. Nullam id dolor id nibh ultricies

vehicula ut id elit. Nullam id dolor id nibh ultricies vehicula ut id elit.</h3>
 <p>Etiam porta sem malesuada magna mollis euismod. Duis mollis, est non commodo luctus....</p>
 </article>
 </div> <!-- End Main Layout -->
 <aside>
 <div id="promoted">
 <article>

 <h3>Jobs of the future</h3>
 <p>Susan Hill explains why the jobs market our children will face bears no relation to

today's workplace</p>
 </article>

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

64

 <article>

 <h3>10 amazing getaways</h3>
 <p>Our top pick of summer breaks on a budget, that offer a lot of bang for your bucks</p>
 </article>
 </div> <!-- End Promoted -->
 <div id="features">
 <h4>Features</h4>

 <h5>Rise of the cupcake</h5>
 <p>Inceptos Aenean Dolor Sit Commodo</p>

 ...

 </div> <!-- End Features -->
 </aside>
 </div> <!-- End Page Layout -->
 </section>
 </div>

 Rendering Columns
 This layout is definitely achievable using only CSS2.1, but the new CSS Multi-column Layout module makes
it much easier to maintain the content on the page without having to adjust markup or manually paginate
the content. I’ll show you each section in isolation so you can see just how useful the CSS Multi-column
Layout module can be.

 ■ Note As with many CSS3 properties, during the implementation phase, browser vendors added prefixes to
the properties. I’m showing you code without the prefixes to keep the listings clean. Check with the browsers
you’re targeting to see whether you need to use vendor-prefixed versions of each property.

 The Main Article
 The main headline and article area follow a logical design pattern that’s used throughout the book. The CSS
is shown in Listing 4-9 . This is all the code necessary to achieve the columnar layout shown in Figure 4-10 .

 Listing 4-9. CSS Code Used to Create the Main Article’s Multi-column Layout

 #mainlayout {
 max-width: 560px;
 columns: 2 250px;
 column-rule: 1px solid #999;
 column-gap: 20px;
 }

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

65

 #mainlayout article p {
 font-size: 1.1em;
 line-height: 1.7em;
 }
 #mainlayout article figure {
 width: 100%;
 margin: 0;
 padding: 0;
 }
 #mainlayout article figcaption {
 font-style: italic;
 font-size: 0.8em;
 }
 #mainlayout article figure img {
 width: 100%;
 border: 1px solid #297C21;
 }
 #mainlayout article h2 {
 color: #297C21;
 column-span: all;
 font-size: 2.2em;
 font-weight: normal;
 }
 #mainlayout article h3 {
 column-span: all;
 padding: 10px 0px;
 border-top: 1px solid #999;
 border-bottom: 1px solid #999;
 font-weight: normal;
 color: #333;
 font-size: 1.5em;
 line-height: 1.5em;
 }

 The simple rules in this code create the layout necessary to render two columns in the main article area
and break out of the column structure for a pullquote. The result is a set of columnar rows that render above
and below the pullquote. Note that the code also uses column-span: all for the <h2> tag, which renders the
headline across both columns. You can see the output in Figure 4-11 , which is rendered in Safari.

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

66

 Other Column Content
 The other columns and content on the page are straightforward to render. Using the same principles, but
slightly different values, you can render the top callout section. Because this callout area is a child of the
main container, you first need to span both columns for the callout area and then set a column-count of
 3 for the container, allowing the three callouts to render in three columns. The HTML is shown again in
Listing 4-10 , the relevant CSS in Listing 4-11 , and the resultant render in Figure 4-12 .

 Listing 4-10. HTML for the Callout Area

 <div id="mainlayout">
 <div id="callouts">
 <div class="callout1">

 <h2>Banks in Recovery</h2>
 </div>
 <div class="callout2">

 <h2>Weekend ideas</h2>
 </div>

 Figure 4-11. The primary article rendered in Safari

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

67

 <div class="callout3">

 <h2>New museum set to open</h2>
 </div>
 </div> <!-- End Callouts -->
 ...
 </div>

 Listing 4-11. CSS Applied to the HTML in Listing 4-10 , Spanning the #mainlayout Columns and Setting Up
a Three-Column Layout for the Callout Area

 #callouts {
 column-span: all;
 columns: 3 180px;
 }

 Figure 4-12. The three-column callout area sitting above the two-column article, rendered in Safari

 The remaining bit of interest is the smaller column area to the right. This is rendered in a way similar
to the main content area, but it includes stacking list items and features. The relevant HTML code is shown
in Listing 4-12 .

 Listing 4-12. Sidebar Content Area

 <aside>
 <div id="promoted">
 <article>

 <h3>Jobs of the future</h3>
 <p>Susan Hill explains why the jobs market our children will face bears no relation to

today's workplace</p>
 </article>

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

68

 <article>

 <h3>10 amazing getaways</h3>
 <p>Our top pick of summer breaks on a budget, that offer a lot of bang for your bucks</p>
 </article>
 </div> <!-- End Promoted -->
 <div id="features">
 <h4>Features</h4>

 <h5>Rise of the cupcake</h5>
 <p>Inceptos Aenean Dolor Sit Commodo</p>

 ...

 </div> <!-- End Features -->
 </aside>

 The CSS is actually very simple for this section of the page. The only CSS3 Multi-column Layout code
required forces the second column into a new column and creates the two columns in the first place. The
important bits are shown in Listing 4-13 ; the result appears in Figure 4-13 .

 Listing 4-13. Pertinent Bits of CSS Used to Achieve the Two-Column Layout in the Sidebar

 #pagelayout > aside {
 max-width: 350px;
 columns: 2 160px;
 margin-left: 10px;
 }
 #pagelayout > aside img {
 width: 100%;
 }
 #features {
 break-before: column;
 }
 #features ul li img {
 clear: left;
 width: 35%;
 float: left;
 }

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

69

 Remember that CSS3 Multi-column Layout is responsive by default. This means as the available
horizontal rendering space is reduced, so are the number of columns rendered in the main layout. Recall
that you have a nested set of columns shown in the main article area. Because you haven’t specified a
maximum or fixed width for these columns, they shrink until they reach the minimum width of 220px. Once
they hit that width, they can’t get smaller; instead, the browser renders the content in a single column that
expands to fill the available space. You can see this effect in Figure 4-14 .

 Figure 4-13. The resulting layout shows two columns in the sidebar area. Note that I’ve used a combination
of image techniques in this layout, which is rendered in Safari

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

70

 The same responsive reformatting happens when the content is viewed at smartphone resolution . You
can simulate this effect by dragging the browser window to its smallest possible width. In this case, once the
window is narrower than 500px, the content reformats again, displaying all the principal content in a single
continuous column, as shown in Figure 4-15 .

 Figure 4-14. Notice that when the browser window is pulled in to be narrower than a typical desktop
resolution, the content automatically reformats to reduce the number of columns

CHAPTER 4 ■ CSS MULTI-COLUMN LAYOUT

71

 ■ Note Some additional non-CSS-Multi-column-Layout CSS code is required to define the color, border, and
typographic styles shown in Figures 4-10 through 4-15 .

 Summary
 CSS Multi-column Layout offers an incredibly useful way to render content into reader-friendly columns
that look good and are easy to maintain. This is the principle benefit of the new module, because it simplifies
the creation of these complex layouts, making it significantly quicker to update content in the future and
requiring substantially fewer hacks and workarounds to create the layout in the first place.

 Browser support is extremely good, so this is one of the safest of all the new CSS3 layout modules to
use on the Web. Non-supporting browsers automatically fall back to a single-column layout. And by using
specified widths for individual columns, the layouts are also responsive by default, reformatting to fit smaller
or larger screens automatically without any further code required.

 With the use of a library such as Modernizr, it’s easy to provide a polyfill set of styles using the older CSS
2.1 specification for non-compliant browsers. But in many cases this isn’t strictly necessary, because most
layouts suffer only marginally from a lack of columns to break up content.

 Figure 4-15. On a smartphone, the page automatically responds, rendering content in a single column layout
rather than in columns side by side

73© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_5

 CHAPTER 5

 CSS Flexible Box Layout

 The CSS Flexible Box Layout module solves a positioning problem that web designers have been struggling
with since the first days of CSS: evenly spacing elements along a horizontal or vertical axis, without the
need to resort to complicated floating or script-based hacks. This chapter goes into the Flexible Box Layout
module in much more detail and shows how it can revolutionize the way you design your web pages.

 ■ Note This module is commonly referred to as Flexbox, so throughout this chapter I use the terms Flexible
Box Layout and Flexbox interchangeably to refer to the module.

 What Is Flexbox?
 CSS Flexible Box Layout provides a box model optimized for user interface design. Using the flex layout
model, the child elements of a flex-enabled container can be laid out on an axis (either horizontal or
vertical), and these child elements can automatically grow and shrink to fill the space available without
overflowing the parent container. One particular benefit of the Flexbox module is the ease with which the
alignment of child elements can be set and manipulated. This makes it simple to position content while
retaining the flexibility to introduce additional sibling elements later: the days of using pixel-based layout
are gone.

 It’s also possible to nest individual flex containers within other flex containers. This practice allows you
to build layouts that are flexible across both axes by nesting a vertical container inside a horizontal container,
or vice versa.

 CSS 2.1 introduced and defined the four following layout modes for rendering web pages:

• Block layout for documents

• Inline layout for text

• Table layout for tabular data in a two-dimensional grid

• Positioned layout for explicitly positioning elements on the page, removing them
from the document flow

 The browser uses these systems when parsing CSS rules. These layout modes determine the size and
position of elements based on their siblings, flow in the document, and parent elements.

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

74

 Flexbox introduces a fifth layout mode that the W3C has named flex layout (see Figure 5-1). This mode
is specifically designed for arranging complex user interface elements. Flex-layout mode considers the usage
 scenario of more complicated pages and web apps than CSS2.1 envisaged.

 Syntax and Structure
 The W3C CSSWG has been working on the Flexbox module since 2009, when the first working draft
was published. During this time, the specification and syntax have changed substantially. The current
specification includes a Candidate Recommendation, published in September 2012, and an Editor’s Draft,
which was updated in October 2013.

 A Candidate Recommendation is considered to be stable, and this one forms the basis of the syntax
detailed in this chapter. Although it’s not dramatically different, the Editor’s Draft introduces some
refinements that I also cover. I’ll point out where the syntax shown is derived from the Editor’s Draft rather
than the Candidate Recommendation. In addition, I’ll let you know what support browsers currently offer.

 ■ Note As of October 3, 2013, the latest version of the Flexbox module is an Editor’s Draft, building on the W3C
Candidate Recommendation. An Editor’s Draft is open for discussion and can change over time. As a result, the syntax
can’t be considered stable. To avoid problems, ensure that you’re working with the latest Candidate Recommendation.
You can view the current Editor’s Draft specification at http://dev.w3.org/csswg/css-flexbox/ .

 Figure 5-1. Flexbox in action, rendering a page without the need to use workarounds to achieve the layout.
You build this layout at the end of this chapter

http://dev.w3.org/csswg/css-flexbox/

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

75

 Basic Concepts and Terminology
 In its introduction to Flexbox, the W3C describes flex layout as being superficially similar to block layout
because they follow a similar design pattern. I find it helps to think of flex layout as being a bit like table
layout, because of the way it allows elements to align and resize relative to the axis, much as a table’s cells
squash to fit in a row. As you’ll see, flex layout is actually quite different, although it does share recognizable
features from block, inline, and table layout.

 At its core, flex layout is simple. But don’t be fooled into thinking that Flexbox is less powerful because
it’s easy to pick up. It’s an incredibly versatile layout module that allows you to perform the following tasks:

• Lay out elements in one of four different directions : left-to-right, right-to-left,
top-to-bottom, or bottom-to-top

• Rearrange the order of elements solely using CSS

• Size elements to fit into the available space automatically

• Align elements according to the container or sibling elements, achieving common
cross-axis proportions

• Collapse elements within the container without affecting the offset size of the
container

• Create linear single-axis layouts or wrapped multiline layouts along the cross axis

 Central to the flex layout mode is the idea of the axis. Flexbox is a two-dimensional layout tool, and
there are two possible axes to work with: horizontal, which is referred to as row ; and vertical, which is
referred to as column .

 A Flexbox layout requires an element to act as a flex container and zero or more child elements that are
 flex items . These flex items are laid out using the flex layout model, whereas the parent container can have
other layout models applied to it (such as float). This means you can incorporate a flex container into your
standard CSS 2.1 layout without having to change your entire structural approach.

 Browser Support
 Browser support for Flexible Box Layout is already very good. Internet Explorer has partially supported the
specification since version 10, with full support included in IE11. Firefox, Chrome, Safari, and Opera all also
feature at least partial support for the specification, with the WebKit-based browsers offering full support.

 On mobile platforms , iOS Safari has good support, as does Blackberry’s browser. IE mobile and
Android’s browser both have partial support. Only Opera Mini currently doesn’t support the specification.
You can check the latest browser support for Flexbox at http://caniuse.com/#search=flex .

 ■ Caution During the development of the Flexible Box Layout module, some browsers implemented early
versions of the specification. The syntax has since changed. As a result, many examples on the Web are now
out of date, so be careful when following example code to ensure that you’re using the correct version of the
module.

http://caniuse.com/#search=flex

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

76

 Browsers that don’t understand the Flexbox CSS properties fall back to their default values for each
element. Typically, structural items such as <div> , <section> , and <article> display as block-level
elements, whereas inline elements such as revert to their default inline-level behavior. You can
use this information to your advantage to handle older browsers; or, if you’d like to polyfill Flexbox-like
rendering, the Modernizr JavaScript library allows you to test for browser support. You can find out more at
 http://modernizr.com .

 Direction and Size
 To fully understand what is meant by the direction of a Flexbox container’s flow and where the start and end
are, it helps to have common language defining the relative aspects of the Flexbox module. The W3C has
made a good attempt at this in the Candidate Recommendation draft for Flexible Box Layout, so I use the
same approach when talking about both direction and size .

 The main axis of a flex container is the axis along which individual flex items are positioned. The main
start and main end are defined according to the language of the page and align with the beginning and end
of the main size . The cross axis runs perpendicular to the main axis and has a cross start and a cross end .
Again, these are defined by the cross size .

 Figure 5-2 demonstrates the different axes and naming conventions I use when discussing Flexbox.
You’ll probably want to refer back to this diagram until you feel comfortable with the concept of the two axes.

 Figure 5-2. Terms used when talking about Flexbox dimensions and flow direction

 An example will make this theory easier to understand. Listing 5-1 displays the code for this example.
You can see the sample output in Figure 5-3 . I explain what’s going on in the following pages.

 Listing 5-1. HTML Markup Being Styled with Flexbox CSS Properties

 <section id=library">
 <article class="library-item">
 <h1>The Wonderful Wizard of Oz</h1>
 <h2>by L. Frank Baum</h2>

 <button>Remove from library</button>
 </article>

http://modernizr.com/

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

77

 <article class="library-item">
 <h1>Pride and Prejudice</h1>
 <h2>by Jane Austen</h2>

 <button>Remove from library</button>
 </article>
 <article class="library-item">
 <h1>Adventures of Huckleberry Finn</h1>
 <h2>by Mark Twain</h2>

 <button>Remove from library</button>
 </article>
 </section>

 <style>
 #library {
 position: relative;
 display: flex;
 flex-flow: row wrap;
 }
 .library-item {
 display: flex;
 flex-flow: column;
 }
 .library-item > img {
 order: -1;
 align-self: center;
 }
 .library-item > button {
 margin-top: auto;
 }
 </style>

 Figure 5-3. The result of combining the HTML and CSS code shown in Listing 5-1

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

78

 ■ Note Some additional non-Flexbox code is required to define the color, border, and typographic styles
shown in Figure 5-3 .

 Let’s take a look at the different elements of this example.

 The Flex Container
 The flex container is the element inside which flex items are positioned according to the rules and properties
of flex layout. Flex items are the direct children of a flex container. Each flex container can hold zero or more
flex items, and these can either be explicit elements such as a <div> , , <section> , and <article> , or a
contiguous run of text, which is treated by Flexbox as if it were contained by an element.

 You define an element as a flex container by using the display property, set to a value of either flex or
 inline-flex . The difference between display: flex and display: inline-flex is that display: flex
defines the container as being a CSS 2.1 block-level item, whereas display: inline-flex sets the container
to be an inline-level element. Listing 5-2 shows the code that defines the #library section as a flex container
with its own flex context.

 Listing 5-2. Defining the Library Element as a Flex Container by Assigning display: flex;

 #library {
 display: flex;
 }

 When you define a flex container by using either display: flex or display: inline-flex , you’re
creating a new flex formatting context for the content of that container. This context only affects the flex item
child elements of that container. External elements do not affect the nested flex items. The lack of awareness
of external elements in the rendering of flex means float and clear have no effect on flex items. It’s also
worth noting that the column properties in the Multi-column Layout module have no effect on flex items.

 The Flex Formatting Context
 Each flex formatting context works independently of its counterparts in the layout. Therefore, Flexbox is
not a good choice for creating a perfect grid, as you see later in this book when I discuss a module designed
especially for the purpose of grid layout. This is because individual containers let their flex items expand
or contract according to their size and content, without referring to flex items in an adjacent flex container.
Grid-based layouts, in contrast, stick rigidly to a specified meter and rhythm that accounts for adjacent
elements. Figure 5-4 illustrates three different flex containers, each with its own flex formatting context that
pays no attention to the adjacent containers.

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

79

 Display Models
 Like the flex container, a flex item defines its own formatting context. This can be set using the display
property and any of the CSS 2.1 permissible values. Consequently, you can set flex items to float , to display
 inline , or as a table-cell . If you use a display value of flex , the flex item itself becomes a flex container
and supports additional properties such as visibility: collapse , which is discussed later in this chapter.

 ■ Note If you use position: absolute or position: fixed , the flex item is taken out of the flex
formatting context flow, unless both left and right or top and bottom are set with a value of auto . In this
case, the values of these position properties are calculated from the flex item’s static position in the context of
the flex container.

 In the next example, the primary flex container is a <section> element with an id of library . Each
child—an <article> element with a class of library-item —is also set to use display: flex . Listing 5-3
isolates the relevant CSS.

 Listing 5-3. CSS to Define Each Flex Item in the Context of the #library Flex Container

 .library-item {
 display: flex;
 flex-flow: column;
 }

 Figure 5-4. Flex items are sized and positioned relative to their own flex container, not flex items inside other
 flex containers

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

80

 Each of these flex items is in fact a flex container, as you can see in Figure 5-5 . The contents of each item
are thus also treated as flex items, but only in the context of the parent library-item .

 flex-direction
 flex-direction is used to define the main axis for a flex container. Recall that Flexible Box Layout is a
two-dimensional layout module, so there are only two axes to choose from:

• row : Horizontal in English.

• column : Vertical in English.

 Each axis can run either forward or in reverse. The syntax for defining the reverse version of
 flex-direction: row is flex-direction: row-reverse ; and for flex-direction: column , it’s
 flex-direction: column-reverse .

 ■ Caution The terms row and column may make you think of horizontal and vertical layout, respectively, but
in Flexbox this is only true for horizontal writing modes. In vertical languages, such as Japanese, row lays out
content from top to bottom.

 The default main axis, and thus flex-direction value, is set according to the writing mode being used
on the web page. For English, this is left-to-right, top-to-bottom, defined as ltr . The result is that web pages
created using the ltr writing mode default to row and run from left to right. Setting a value of row-reverse
makes the flex items display from right to left.

 Figure 5-5. Each flex item in the #library flex container acts as its own flex container, following a horizontal
flex direction

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

81

 flex-wrap
 The flex-wrap property controls whether the flex container is single-line or multiline. There are three
possible values:

• nowrap : Defines the flex container as being single-line. All the flex items in the
container fit into one linear run without wrapping onto two or more lines. This is the
default value for flex-wrap .

• wrap : Allows the flex items to be spread across two or more lines along the cross axis.

• wrap-reverse : Works like wrap , but runs in the opposite direction of the default.

 If you allow your flex container to render across multiple lines by using a value of wrap or wrap-reverse ,
the flex items wrap into a second (or third, fourth, or fifth) line when there’s not enough space to display
all the items in a single line. This is a really useful option for responsive design, because it automatically
repaginates the contents according to the container.

 Just as with flex-direction , the default flex-wrap orientation is defined by the writing mode. For
English, this is left-to-right, top-to-bottom. In some languages it may be right-to-left, top-to-bottom, or
top-to-bottom, left-to-right. To avoid doubt, explicitly set the language and writing mode of your page using
the lang and dir properties on your HTML element, as shown here:

 <html lang="en" dir="ltr">

 flex-flow
 flex-flow provides a convenient short-hand for the flex-direction and flex-wrap properties. It allows
you to use a single line to define both properties, but it can also be used without a value for flex-wrap ,
making it work just as flex-direction does. Listing 5-4 uses flex-flow , although because nowrap is the
default value for flex-wrap , I could have omitted this second value. The resulting layout is shown on the left
side of Figure 5-6 ; the right side shows what the layout would look like if I had specified wrap instead.

 Listing 5-4. Flex-flow Shorthand Solution for Defining Both the flex-direction and flex-wrap Properties

 .library-item {
 display: flex;
 flex-flow: column nowrap; /* nowrap is the default value for flex-wrap, so isn't strictly
necessary here */

 }

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

82

 Controlling the Order of Items
 One of the nicest features of Flexbox is the ability to control the order of flex items using pure CSS. This is a
major step forward in allowing web designers to properly separate style from structure, and it brings benefits
in search engine optimization, too.

 By default, flex items are arranged along the main axis. By using the order property , you can override
the default and specify the position of a particular item in the flow. Order takes an integer (whole number)
value, with lower values rendering before higher values. Negative values are also allowed, as you can see in
Listing 5-5 .

 Listing 5-5. Negative Value for the order Property, Forcing the Image to Render at the Beginning of the Flow
Along the Main Axisy

 .library-item > img {
 order: -1;
 align-self: center;
 }

 Let’s change this CSS code to see the order property in action. Listing 5-6 shows the changes in bold.
Figure 5-7 shows the result in order of the individual elements.

 Figure 5-6. Notice the difference between the nowrap and wrap values for flow-wrap

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

83

 Listing 5-6. CSS Applied to the HTML Code in Listing 5-1 , Updated to Include order Properties for the
 library-item Elements

 <style>
 #library {
 position: relative;
 display: flex;
 flex-flow: row wrap;
 }
 .library-item {
 display: flex;
 flex-flow: column;
 }
 .library-item:nth-child(1) {
 order: 3;
 }
 .library-item:nth-child(2) {
 order: 1;
 }
 .library-item:nth-child(3) {
 order: 2;
 }
 .library-item > img {
 order: -1;
 align-self: center;
 }
 .library-item > button {
 margin-top: auto;
 }
 </style>

 Figure 5-7. By adding specific order property values to each library-item , you can reorder them along the
main axis without having to change the markup

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

84

 ■ Note The order property only affects visual media, so screen readers continue to read the content in
the order it appears in the markup. It’s important to understand this when checking the accessibility of
your page layout.

 Controlling the Flex
 Perhaps the single most important part of the Flexbox specification is the ability to define how flex items are
sized and spaced. Traditionally, it’s been very difficult to arrange navigation items across an axis so that they
expand or contract to fit the main size with equal spacing around them. Flexbox provides full control over
both these design aspects through the following flex- properties:

• flex-grow

• flex-shrink

• flex-basis

 The combination of these three properties enables fine control over whether an item grows to fill space
or shrinks to fit when there’s not enough space, and is the basis for the growing and shrinking. You see an
example in a moment, but let’s take a look at each property in turn first.

 flex-grow
 The flex-grow property defines how much the flex item grows, relative to the other flex items in the same
flex container context. The value is specified as an integer and defaults to 1. Because this property is relative
to the other items in the context, if you set a value of 2 for one specific item, any additional space is divided
such that for every 10 pixels of additional space allocated to the other flex items, the item with a flex-grow
value of 2 receives 20px of additional space. A value of 0 for the flex-grow property prevents any available
additional space being given to the flex item.

 flex-shrink
 flex-shrink is similar to flex-grow but determines how space is allocated when flex items are shrinking to
fit inside the flex container. Again, the value is an integer with a default of 1 and is relative to the other flex
items in the container. A value of 0 for the flex-shrink property prevents the flex item from contracting
when there is a lack of available space.

 flex-basis
 flex-basis sets the initial width for a flex item but can also be set to have a value of auto , which lets the
browser calculate the width based on the contents of the item. When flex-basis is set to a positive value
or auto , the basis for both flex-grow and flex-shrink is set to the spacing around the content. (See
Figure 5-8 .) When flex-basis is set with a value of 0 , flex-shrink and flex-grow operate on the total space
occupied by the item. (See Figure 5-9 .)

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

85

 The flex Shorthand Property and Its Special Cases
 You can use the flex property as shorthand for flex-grow , flex-shrink , and flex-basis . There are some
special rules about default values and omitted values for flex to account for the most common ways the
W3C expects designers to use the property. These are shown in a moment for quick reference, but if you’re in
any doubt, be sure to specify each of the three values when using the flex property.

 Listing 5-7 displays the syntax for the flex property. The property setting is equivalent to the individual
properties shown after the listing.

 Listing 5-7. flex-grow , flex-shrink , flex-basis , and the Shorthand flex Properties

 // Syntax flex: <flex-grow> <flex-shrink> <flex-basis>
 flex: 1 1 auto;

 // This is short-hand for each of following property:value pairs
 flex-grow: 1;
 flex-shrink: 1;
 flex-basis: auto;

 Figure 5-8. When flex-basis is set with a value of 0 , all the space is evenly distributed

 Figure 5-9. When flex-basis is set with a value of auto or a width greater than 0 , only the extra space is
distributed

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

86

 There are several common usage scenarios for the combination of the three flex- properties, so the
specification defines some special rules to apply when individual elements of the flex shorthand syntax
are omitted or text values are applied to it. These are broken down directly from the W3C Candidate
Recommendation:

• flex: 0 auto or flex: initial : This is equivalent to flex: 0 1 auto and is also
the default value for the property. It sizes the flex item based on the width and
 height properties defined in CSS. If the item’s main axis size is set to auto , the item
is sized based on its contents. This value prevents the flex item from growing, even
when there’s free space in the flex container, but allows it to shrink down to its
minimum size when there’s inadequate space.

• flex: auto : This is the same as flex: 1 1 auto . This value sizes the flex item based
on the width and height properties defined in CSS but allows it to be fully flexible,
expanding and contracting to accommodate the amount of space available.

• flex: none : This is equivalent to flex: 0 0 auto . This value creates an inflexible
flex item while sizing according to the width and height properties defined in CSS.
It’s similar to flex: initial but doesn’t allow items to shrink.

• flex: <positive-number> : This is the same as flex: <positive-number> 1 0px .
The result is a flexible flex item with a flex-basis of 0, allocating a proportion of the
overall free space according to the flex factor defined on the different flex items in the
container.

 An Example of flex
 The flex property provides one of the most exciting design opportunities of the entire Flexbox module. It’s
now trivial to create flexible layouts that are both responsive and proportional. Listing 5-8 illustrates this
flexibility in action. (You see a more in-depth example at the end of this chapter.)

 Listing 5-8. HTML Markup and CSS to Which the Flexbox Properties Are Being Applied

 <style>
 .layout {
 display: flex;
 flex-flow: row nowrap;
 }
 section > aside {
 flex: auto;
 }
 section > article {
 flex: 2 1 auto;
 }
 aside.level1 {
 order: -1;
 }
 aside.level2 {
 order: 2;
 }
 </style>

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

87

 <section class="layout">
 <article class="maincontent">
 ...
 </article>
 <aside class="level1">...</aside>
 <aside class="level2">...</aside>
 </section>

 The CSS applied to the markup in Listing 5-8 sets the main content <article> to occupy twice the space
of the <aside> elements. All elements grow and shrink to fit the container, and the content is reordered to
provide a typical three-column layout. This common layout approach is shown in diagram form in
Figure 5-10 ; it would have required floating elements and a specific HTML order prior to Flexbox.

 Controlling Alignment of Flex Items
 The ability to expand and contract flex items and also align and size them along both the main axis and cross
axis is one of the most useful aspects of Flexbox. For the first time with CSS, you can define accurately how
items should align in the container and also determine the spacing between items. Although there have
been script workarounds, it’s been impossible to create a flexible, horizontally centered navigation bar until
now. Even more impressive is the ability to align items vertically (or cross axis).

 The Main Axis
 There are two different ways to control alignment along the main axis in Flexbox: via the margin and
 justify-content properties.

 Figure 5-10. The result of the combination of HTML code and CSS shown in Listing 5-8

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

88

 Margin
 Margins work on flex items in a very similar way to how CSS 2.1 margins operate on block-level elements.
If you set an auto margin, any free space inside the flex container is assigned to that margin along that axis.
So, by specifying margin-left: auto to a flex item, you push it to the right of the container (see Figure 5-11),
whereas margin-right: auto pushes the item to the left. Using margin this way also prevents items from
growing to fill the available space, because all the space is consumed by the margin. Listing 5-9 borrows an
example from the W3C Candidate Recommendation specification to illustrate how margins can be used to
push one list item to the right of a navigation bar.

 Figure 5-11. This output is achieved with Listing 5-9

 Listing 5-9. Using margin to Align One Item to the Main End Edge

 <style>
 nav > ul {
 display: flex;
 }
 nav > ul > #login {
 margin-left: auto;
 }
 </style>
 <nav>

 About
 Projects
 Interact
 <li id='login'>Login

 </nav>

 justify-content

 Justify-content provides control over the type of alignment assigned to flex items in the flex container
context along the main axis. The justify-content attribute is applied after any margin or flex has been
calculated. It’s most useful for layouts where a maximum flex item width has been specified or the items are
in some way inflexible. Justify-content distributes the remaining available space.

 There are five different possible values for justify-content :

• flex-start aligns items from the main start edge of the flex container. If your flex
flow runs right to left horizontally, this means the flex items align to the left of the
container.

• flex-end aligns items from the main end edge of the flex container. If your flex
flow runs right to left horizontally, this means the flex items align to the right of the
container.

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

89

• center is particularly exciting, because it allows items to be aligned to the center
of the flex container, automatically taking into account the total main axis space
occupied by all flex items and any spacing between them. This was impossible to
achieve with CSS alone prior to Flexible Box Layout.

• space-between distributes flex items evenly across the main axis, with the first item
aligning to the main start and the final item aligning to the main end edge. Note that
if there’s not enough space to accommodate all the flex items, this value behaves
identically to flex-start .

• space-around is similar to space-between but adds a half-size space before the
first item and after the last item. The remaining items are again distributed evenly
between the first and last items.

 Figure 5-12 illustrates these five options.

 Figure 5-12. These alignment options are available with justify-content

 Working on Multiple Lines
 One of the benefits of enabling a flex container to wrap onto multiple lines is the flexibility it brings to your
layout. If you’re using a Flexbox navigation bar, for example, you can allow individual navigation options to
spill onto a second line if there are too many to fit on one line. This automatically makes your navigation bar
responsive to different screen sizes.

 As Figure 5-13 shows, the net result can be a little aesthetically unpleasant. As you’ve seen, however,
you can use the flex attribute to cause the individual navigation items to pack the space. If you add a
 flex: auto rule to the flex items, the end result shown in Figure 5-14 is much prettier.

 Figure 5-13. A navigation bar with flex-wrap: wrap enabled

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

90

 Cross Axis Alignment
 In addition to the ability to align along the main axis, Flexbox provides control over the alignment of flex
items on the cross axis . Not only can you align, but you can also automatically stretch items so that they all
occupy the same space on the cross axis, solving a problem that float-based layouts have struggled with for
years.

 Three properties are available to control cross axis alignment:

• align-items

• align-self

• align-content

 Each of these properties exercises a different type of control, so let’s look at them in turn.

 align-items and align-self
 align-items and align-self work similarly to justify-content , but they operate along the cross axis rather
than the main axis. align-items is applicable to the flex container, whereas you can use align-self on
individual flex items. As with justify-content , these properties are calculated after any margin has been
applied.

 These are the possible values for align-items and align-self :

• flex-start and flex-end work exactly as you might expect, aligning items either to
the cross start or cross end edge, respectively.

• center aligns the items across the center of the cross axis based on the total
dimension of the flex container along the cross axis. If the container is set to use a
 flex-flow value of wrap or wrap-reverse , allowing for multiple lines, the items are
aligned along the center of the line within which they appear.

• baseline aligns the baselines of each item to the cross start edge.

• stretch expands the items along the cross axis to fill the line. This has the effect of
making every flex item occupy the same space along the cross axis. If your flex items
have a min-height/min-width or max-height/max-width set, these values still apply
to the items, potentially resulting in items that either fail to fill the line or overflow
the line. stretch is the default value for align-items .

• Auto is the default for align-self .

 Figure 5-15 shows all the different options and the resulting layouts.

 Figure 5-14. The same navigation bar with flex: auto applied to the flex items

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

91

 align-content
 The align-content property works just like justify-content but acts on the lines within a wrap or
 wrap-reverse enabled flex container, determining how extra space is distributed across the lines.
As with justify-content , there are several different possible values, which are shown in Figure 5-16 :

• flex-start aligns lines from the cross start edge of the flex container. If your
flex flow runs right to left horizontally, this means the lines align to the top of the
container.

• flex-end aligns items from the cross end edge of the flex container. If your flex
flow runs right to left horizontally, this means the lines align to the bottom of the
container.

• center aligns all lines to the center of the flex container on the cross axis,
automatically taking into account the total space occupied by all lines and any
spacing between them.

• space-between distributes lines evenly along the cross axis, with the first line
aligning to the cross start and the final line aligning to the cross end edge. Note that if
there’s not enough space to accommodate all the lines, this value behaves identically
to flex-start .

 Figure 5-15. These are the alignment options for align-items and align-self

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

92

• space-around adds a half-size space before the first line and after the last line.
The remaining lines are again distributed evenly between the first and last lines.
 space-around is similar to justify-content .

• stretch causes lines to stretch automatically and fill any additional space available.
If there’s not enough space to accommodate all the lines, this value renders
identically to flex-start .

 Figure 5-16. Different align-content options are available for distributing and aligning individual lines in
the flex container

 ■ Note align-content only works on flex containers with multiple lines. This is because a single-line
container’s line automatically fills the entire space allocated to the container.

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

93

 Collapsed Items
 You can collapse the visibility of flex items by specifying a value of collapse for the visibility property.
This has the effect of removing the flex item from the render of a page while keeping it within the formatting
structure. This allows collapsed items to define the overall proportion of a flex container’s cross axis while
being hidden from view.

 This new option is particularly useful for user interface elements such as drop-down navigation menus,
where only the top-level options are shown until the user selects an item and child items are shown. By
continuing to affect the cross axis proportion, you can set menu sizes automatically according to the biggest
option in the menu, even if this is collapsed. Listing 5-10 illustrates the behavior perfectly. Figure 5-17
displays the result.

 Listing 5-10. Example from the W3C Specification, Showing a Dynamic Menu that Collapses the Visibility
of Submenu Items

 <style>
 nav > ul > li {
 display: flex;
 flex-flow: column;
 }
 /* dynamically collapse submenus when not targeted */
 nav > ul > li:not(:target):not(:hover) > ul {
 visibility: collapse;
 }
 </style>
 <nav>

 <li id="nav-about">About
 ...
 <li id="nav-projects">Projects

 Art
 Architecture
 Music

 <li id="nav-interact">Interact
 ...

 </nav>

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

94

 How to Use Flexible Box Layout
 By now you should have a clear idea of just how powerful and useful Flexbox is. It can singlehandedly solve
many common layout issues, so it’s tempting to think of Flexbox as the answer to all your layout needs. I
want to discourage you from succumbing to this temptation. Although Flexible Box Layout is capable of
rendering entire page layouts, other layout modules are designed more specifically for whole-page layouts
(see the chapters before and after this one for some great options!).

 Flexbox is better suited to individual user interface elements than overall page layout. Some common
 usage scenarios include the following:

• Elements you want to have true centering on both axes

• Scenarios where you have an unknown number of items to render, such as a menu
controlled via a content management system

• Areas of a page where you want to reorder content from the markup order (although
some of the other layout modules also allow you to do this)

 Figure 5-17. The navigation menu with the second option opened to reveal the submenu. The widest
submenu item sets the width of the overall menu container, despite being initially hidden

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

95

• Tabs and groups of content where you’re hiding content that isn’t currently selected

• Forms and form element layout

 Of course, there’s nothing to stop you from using Flexbox as your primary layout tool, but it’s worth
considering the most appropriate layout module for the task at hand.

 I couldn’t let a chapter about Flexbox go without providing a real-world example of Flexbox in action.
The following example is just one possible usage scenario that incorporates many of the properties you’ve
seen in the preceding pages. If you weren’t already convinced of the power and flexibility of the Flexible Box
Layout module, I’m pretty sure this example will win you over.

 Real-World Example
 This example creates a mockup of a page design for a fictional real-estate company, shown in Figure 5-18 .
The example uses Flexbox to render several of the layout sections.

 Figure 5-18. A mockup for a fictional real-estate company

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

96

 The HTML Markup
 The HTML markup that this page needs is basic. It follows a pattern similar to the layout designers have used
in the past when using floats to arrange design elements. You could use Flexbox to create the entire page,
but because it’s better to use each module for its intended purpose, this example focuses on the following
sections of the page:

• Navigation bar

• Jumbotron area

• Benefit statements

 Listing 5-11 shows the relevant HTML code for these sections of the page.

 Listing 5-11. HTML Code for Three Parts of the Page Suited to Flexbox Layout

 <!—The navigation section -->
 <nav>

 Home
 Locations
 Financing
 Special Offers
 About us
 Contact Us
 <li class="searchform"><form><input type="text" value="search" /></form>

 </nav>

 <!—The big icons/jumbotron section -->
 <section id="jumbotron">
 <article>
 <h2>Free Advice</h2>
 <p>All our impartial advice is offered completely free of charge</p>

 </article>
 <article>
 <h2>Discounted Removals</h2>
 <p>Once you've found your dream...
 ...</article>
 </section>

 <!—The badge benefits section -->
 <section id="benefits">
 <article>
 <h1> Looking for a beautiful new home that won't break the bank?</h1>
 <p> Nulla vitae elit libero, a pharetra augue. Nulla vitae elit libero, a pharetra augue.
Cras mattis consectetur purus sit amet fermentum.</p>

 </article>

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

97

 <article class="badge">
 <div>
 <h3>Quality without compromise</h3>
 <p>We have homes that suit every budget without compromising on quality</p>
 </div>

 </article>
 <article class="badge">...
 ...</article>
 </section>

 Although this layout would be possible using CSS2.1, with Flexbox it becomes almost trivial to arrange
the items correctly on the page. Let’s look at each section in isolation so you can see just how powerful layout
with Flexbox can be.

 ■ Note As with many CSS3 properties, during the implementation phase, browser vendors add prefixes to the
properties. I’m showing you code without the prefixes to keep the listings clean. Until support is complete, you
need to use vendor-prefixed versions of each property to fully support every browser.

 Navigation
 The navigation area follows the same design pattern you saw in Listing 5-9 , so the code for this section is
almost identical. Listing 5-12 shows all the code necessary to achieve the navigation layout shown in the
mockup!

 Listing 5-12. Flexbox CSS Code to Create the Navigation Layout

 /* The navigation section */
 nav > ul {
 display: flex;
 flex-flow: row wrap;
 }
 nav > ul > .searchform {
 margin-left: auto;
 }

 The two simple rules in this code create the layout necessary to push the search form to the right of the
navigation area. You can see the output in Figure 5-19 , which is rendered in Chrome 30.

 Figure 5-19. The navigation output in Chrome

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

98

 The Jumbotron
 The jumbotron area (with the big icons) is also simple to get into shape. Flexbox can help with several things
that are going on in this area, such as the following:

• Each <article> is evenly sized.

• The content of each element in the jumbotron is aligned centrally on both axes.

• The image renders before the text but appears after the text in the markup.

 In order to reorder this content, you would need to render each article as a flex container within the
overall flex container, with an id of #jumbotron . See Listing 5-13 .

 Listing 5-13. Flexbox Code to Style the Jumbotron Section

 /* The jumbotron section */
 #jumbotron {
 display: flex;
 flex-flow: row wrap;
 align-content: stretch;
 justify-content: center;
 }
 #jumobtron article {
 display: flex;
 flex-flow: column nowrap;
 flex: 1 1 250px;
 align-content: center;
 justify-content: center;
 }
 #jumbotron article * {
 align-self: center;
 }
 #jumbotron article img {
 order: -1;
 flex: none;
 }

 Figure 5-20 shows the result, rendered in Chrome. Notice the base width of 250px for the flex of the
 <article> elements. This ensures that all the <article> s start at the same width and flex uniformly. It also
means when a 960px window is used, three of the articles will fit horizontally into each row.

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

99

 What happens when the window size is collapsed or the page is viewed on a mobile device? One of the
major benefits of Flexbox is that it can be used as a responsive design tool. This code is flexible enough to
deal with different window sizes. When the window gets a little narrower, the content repaginates so that
only two <article> s appear per line, as you can see in Figure 5-21 .

 Figure 5-20. When the window is wider than 960px, three <article> s render per row

 Figure 5-21. When the window narrows, the content automatically reformats onto more lines

 The same thing happens when the content is viewed at smartphone resolution. You can simulate
this effect by dragging the browser window to its smallest possible width. In this case, once the window is
narrower than 500px, the content reformats again, displaying a single <article> per line (see Figure 5-22).

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

100

 The Benefits Area
 The benefits area is a little more complicated, because the section on the left is double the height of the
individual badge areas. This layout contains nested flex containers, but the column serves as the main axis
instead of the row. This makes it possible to set the flex on the left article to be double that of the badges.
See Listing 5-14 and the output in Chrome in Figure 5-23 .

 Listing 5-14. CSS Code for the Benefits Area

 /* The badge benefits section */
 #benefits {
 display: flex;
 flex-flow: column wrap;
 height: 260px;
 }
 #benefits article {
 flex: 2 2 260px;
 width: 318px;
 }

 Figure 5-22. At smartphone resolutions the content renders a single <article> per line

CHAPTER 5 ■ CSS FLEXIBLE BOX LAYOUT

101

 #benefits article.badge {
 display: flex;
 flex-flow: row nowrap;
 flex: 1 1 130px;
 }
 #benefits article.badge img {
 order: -1;
 flex: none;
 }

 Figure 5-23. The output in Chrome

 Notice that the article is set to use flex: 2 2 260px , and article.badge uses flex: 1 1 130px .
The second rule overrides the first and forces all the badges to size uniformly. The remaining article is
exactly double the height of the badges and has a flex-grow and flex-shrink value of 2, versus the badge
values of 1. This enables <article> to occupy twice the height of the badges.

 ■ Note Some additional non-Flexbox CSS code is required to define the color, border, and typographic styles
shown in Figures 5-18 through 5-23 .

 Summary
 CSS Flexible Box Layout offers an extremely versatile layout model that is perfect for creating responsive
user interface elements. The module uses an axis-based paradigm, and its contents can flex along the axis
according to some simple rules defined through the flex- set of properties.

 Flexbox solves many of the layout issues that have required elaborate workarounds up to this point.
Arranging multiple items centrally in a container is now trivial, as is aligning and sizing boxes to match
each other.

 Browser support is largely good, so it’s reasonably safe to use Flexbox on the Web. Non-supporting
browsers automatically fall back to block-level layout in most cases. You can use a library such as Modernizr,
which makes it easy to provide a polyfill set of styles using the older CSS 2.1 specification for these browsers.

103© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_6

 CHAPTER 6

 CSS Grid Layout

 CSS Grid Layout provides a sensible solution to a standard layout paradigm that has been challenging
web designers since the move away from table-based layout and the adoption of CSS for layout.

 ■ Note CSS Grid Layout is perhaps the most difficult of the new modules to use because browser support
is still being developed. At the time of writing, the only render-reliable vendor is Microsoft, although by the time
you are reading this book, this will likely have changed.

 What Is CSS Grid Layout?
 The W3C describes the CSS Grid Layout module as defining a two-dimensional layout system, optimized
for user interface design. Crucially, and most usefully for layout designers, they go on to clarify that “In the
grid layout model, the children of a grid container can be positioned into arbitrary slots in a flexible or fixed
predefined layout grid.” I talk about what this means in the coming pages, but it’s good news!

 Before I get to the technical aspects, it is worth reflecting on the use of a grid in layout design. You are
already familiar with grid systems because you encounter them on a daily basis. Books and magazines use a
grid system to create their layout so that elements on the page seem to have some relationship to one another.
And every data table you have ever seen uses the exact same principles to help ensure that data points are
correctly attributed to their legend. Indeed, it can be argued that grid-based layout was the first major design
step the Web took: HTML <table> elements were used for layout rather than the display of data.

 Unlike tables, however, grids should be able to display content with a layout-based bias rather than a
data bias, and that is exactly what the CSS Grid Layout specification sets out to achieve. In some ways you
can think of it in terms similar to CSS Flexbox; but instead of everything happening across just one axis, with
CSS Grid Layout you use two dimensions: block and inline (or, if you prefer, columns and rows).

 When used for layout, CSS Grid Layout is a really exciting module that makes it trivial to achieve
flexible and fluid layouts that retain a prescribed relationship between elements on the page. This is in sharp
contrast to the sometimes unpredictable and counterintuitive behavior you may encounter when using
floating elements or tables, especially concerning compressed device or window widths. Figure 6-1 shows a
typical usage scenario for a grid layout.

CHAPTER 6 ■ CSS GRID LAYOUT

104

 Grid Layout on the Web
 The W3C CSSWG has been working on the CSS Grid Layout module since 2012, when the first working
draft was published. During this time, the specification and syntax have changed substantially. The current
specification at the time of writing was published in September 2015, and the syntax discussed here is based
on the document found at www.w3.org/TR/css-grid-1/ .

 Be sure to check whether there is a more recent version of the specification at the time you are reading.
Although the overall syntax is moving (slowly) toward stability, it is likely that there will be some changes to
the syntax and structure of the module.

 Just to reiterate, the specification is currently considered a working draft, which means there are a few
stages to go before everything is set in stone for the 1.0 version of CSS3 Grid Layout. You are in the web
design Wild West here, so strap on your cowboy boots!

 ■ Note It is crucial that you understand that CSS Grid Layout is still in development. You can view the current
working draft specification at www.w3.org/TR/css-grid-1/ .

 Why Use a Grid?
 In order to make sense of why you might choose a grid system for your layout, it helps to have a picture in
your mind of what a grid might look like. The W3C uses a pair of scenarios that I am borrowing here to help
illustrate the ideas and concepts behind grids on the Web.

 I have already talked about an inherent familiarity with grids as a layout tool for designers, but it is
useful to understand that the tools of the Web have not offered any purposeful solution to creating a
grid-based layout—until CSS Grid Layout! Designers historically used a combination of tables, scripts,

 Figure 6-1. A grid-based layout in action

http://www.w3.org/TR/css-grid-1/
http://www.w3.org/TR/css-grid-1/

CHAPTER 6 ■ CSS GRID LAYOUT

105

and pixel-perfect floated elements to construct a layout with the appearance of a grid system. This worked
well for fixed-width layouts where the designer could control or dictate the minimum viewport width. Those
days are now gone, however, with the arrival of smartphones, tablets, and other web-connected devices.
Layouts need to be able to adapt to a wide variety of device profiles and screen orientations.

 The Basis of a Grid Layout
 CSS Grid Layout is designed specifically to address this problem. At its basis, it allows you to divide the
available space into a series of areas, each of which can be used for layout. Specific bits of content can then
be positioned and sized to occupy individual columns, rows, and cells within this grid. Figure 6-2 is borrowed
from the W3C’s example layout to show a s basic layout that might be created with CSS Grid Layout.

 Figure 6-2. A typical application layout that could be achieved with CSS Grid Layout

 Built-in Flexibility
 One of the core principles behind CSS Grid Layout is that resizing layouts to fit the available space should
not require additional work. Responsive design benefits are standard with CSS Grid Layout! Let’s look at the
example the W3C uses to explain this concept. (Thereafter I firmly move on to fresh examples!)

 CSS Grid Layout is designed to work responsively . This means as the available viewport space is defined,
elements intelligently reflow within the page. Figure 6-3 shows my interpretation of the W3C’s example: a
 game screen with five different elements in the layout.

CHAPTER 6 ■ CSS GRID LAYOUT

106

 Note the dotted lines in Figure 6-3 that show divisions in the content area. These are grid lines! Some
basic goals for the layout are specified in the imagined design brief:

• The stats area always appears immediately under the game title.

• The game board appears to the right of the stats and title.

• The top of the game title and the game board should always align.

• The bottom of the game board and the stats area align when the game has reached
its minimum height, but otherwise the game board stretches to take advantage of all
the screen real estate available to it.

• The score area should align into the column created by the game and stats area, and
the controls are centered under the board.

 Traditionally, this sort of layout might have used a combination of absolutely positioned elements with
a specified width and height, floated elements and inline. The resulting code would be difficult to decipher
and easy to break. Worse still, it would typically be unreliable across different resolutions.

 By using CSS Grid Layout, you can achieve all of the brief’s requirements! You look in detail at the
properties and syntax in the next section; but first check out Figure 6-4 , which shows the same diagram
as Figure 6-3 , but with the addition of width in the viewport. Listing 6-1 shows one way this layout can be
achieved using CSS Grid Layout. (Don’t worry too much about how the syntax works yet.)

 Figure 6-3. My interpretation of the game screen used in the W3C’s example project

CHAPTER 6 ■ CSS GRID LAYOUT

107

 Listing 6-1. Achieving the Layout Shown in Figures 6-3 and 6-4 Using CSS Grid Layout

 <style>
 #grid {
 display: grid;
 grid-template-columns: auto minmax(min-content, 1fr);
 grid-template-rows: auto minmax(min-content, 1fr) auto
 }

 #title { grid-column: 1; grid-row: 1 }
 #score { grid-column: 1; grid-row: 3 }
 #stats { grid-column: 1; grid-row: 2; align-self: start }
 #board { grid-column: 2; grid-row: 1 / span 2; }
 #controls { grid-column: 2; grid-row: 3; justify-self: center }
 </style>

 <div id="grid">
 <div id="title">Game Title</div>
 <div id="score">Score</div>
 <div id="stats">Stats</div>
 <div id="board">Board</div>
 <div id="controls">Controls</div>
 </div>

 Note that with some additional styling, the design can repaginate to suit portrait screens, as shown in
Figure 6-5 . You see how to use @media queries later in this chapter to achieve this level of responsiveness.

 Figure 6-4. The same layout you saw in Figure 6-3 , but with additional width and height, allowing the board
to grow

CHAPTER 6 ■ CSS GRID LAYOUT

108

 Figure 6-5. The same layout as in Figures 6-3 and 6-4 , orientated to work in portrait

 ■ Note There are many ways to achieve this layout using the CSS Grid Layout specification. This example
is taken from the working draft at www.w3.org/TR/css-grid-1/ to illustrate the power of grids more than to
suggest best practice.

 Understanding the Terminology
 I hope your appetite is whetted. Let’s get on with the nitty gritty of how this module works. As with each CSS
module, there are terms and language that are peculiar to CSS Grid Layout. It is partially defined by the W3C,
but much of it has grown out of traditional graphic design and discussion about grid systems.

 Any element that has a grid layout applied to it is referred to as a grid container . The grid itself is an
intersecting group of horizontal and vertical lines that divide the grid container’s space into a series of rows
and columns . There are, therefore, two types of lines: one set that defines the columns that run along the
 block axis (also known as the column axis) and another set that runs orthogonally along the inline axis
(also known as the row axis).

 The terms block and inline directly refer to the CSS3 Writing Modes module, which means the column
axis is not necessarily vertical top to bottom and the row axis is not necessarily horizontal left to right. For
most work in the Latin-based languages, however, this is the principal experience of columns and rows; so
for the purposes of understanding how the module works, it’s OK to think in those terms. Figure 6-6 shows
an illustration of the terms just defined.

http://www.w3.org/TR/css-grid-1/

CHAPTER 6 ■ CSS GRID LAYOUT

109

 You need to know some additional technical language before you can start exploring the properties
that define and use CSS Grid Layout. A grid track is used to define either a grid column or a grid row. This is
similar to the language used by CSS Flexbox, so if you have already read Chapter 5 , it should sound familiar.

 A grid cell is the space between two adjacent sets of grid lines on each axis. A grid cell is an area into
which you can place content and is the smallest unit in the grid. Again, this is best illustrated with a diagram,
so look at Figure 6-7 , which shows the terms in context.

 Figure 6-6. The key terms used when describing grids in context

 Figure 6-7. The terms grid track and grid cell in context

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 6 ■ CSS GRID LAYOUT

110

 Let’s not forget about the grid lines . These are the lines that divide the grid into grid areas , and as you
have seen, you can describe them in terms of the axis along which they run. In CSS Grid Layout, you can also
refer to individual lines explicitly using a numerical index or by a name specified in your CSS code.

 Grid items are the individual elements that are assigned to a grid area (or grid cell) in the grid. Grid
areas are defined by four grid lines in two pairs and can span more than one grid cell. Every grid container
incorporates zero or more grid items ; every child element of a grid container is automatically a grid item .

 Figure 6-8 shows grid lines , grid areas, grid cells, and grid items in context. You will be pleased to hear
that this is the last of the grid-related terminology you need before you can start getting dirty with code!

 Figure 6-8. Grid lines, grid areas, and grid items

 Defining Grids in CSS
 Now that you know what language to use when talking about grids in CSS; let’s get straight into the
specification and explore how you go about setting up a grid using the module. Listing 6-2 shows a simple
 grid definition in action, along with the HTML elements used as the grid container and a grid item. You see
what each line of code does in a moment, but first look at Figure 6-9 , which is an illustration of how this
should render according to the specification. Note that if you test this in anything other than the last version
of Internet Explorer or the current version of Microsoft Edge, you will be sorely disappointed! This feature
has recently appeared in the WebKit nightlies, but only with a -webkit- prefix.

 Listing 6-2. CSS and HTML Markup Defining a Grid

 <style type="text/css">
 #gridcontainer {
 display: grid;
 grid-template-columns: 150px 1fr; /* two columns */
 grid-template-rows: 50px 1fr 50px; /* three rows */
 }

CHAPTER 6 ■ CSS GRID LAYOUT

111

 #griditem {
 grid-column: 2;
 grid-row-start: 1;
 grid-row-end: 4;
 }
 </style>

 <div id="gridcontainer">
 <!-- begin the grid item -->
 <div id="griditem">
 <p>Some content or other...</p>
 </div>
 <!-- end the grid item -->
 </div>

 Figure 6-9 shows how this looks when rendered in the browser (or at least my illustration of how it
should look). I added some extra shading to make the rows clearer.

 Figure 6-9. An illustration of how the code shown in Listing 6-2 should render in the browser

 ■ Note Some additional non-grid code is required to define the color, border, and typographic styles shown
in Figure 6-9 .

 Let’s look at the different elements of this example.

CHAPTER 6 ■ CSS GRID LAYOUT

112

 The Grid Container
 The grid container is the element inside which grid items are positioned according to the rules and
properties of the grid layout. You define an element as a grid container by using the display property , set to
a value of either grid or inline-grid . Listing 6-3 highlights the code used to define the grid container.

 Listing 6-3. Defining the gridcontainer Element as Being a Grid Container by Assigning display: grid;

 #gridcontainer {
 display: grid;
 }

 When you define a grid container by using either display: grid or display: inline-grid , you create
a new grid-formatting context for the contents of that container. This context only affects the grid item child
elements of that container. External elements do not affect the nested grid items.

 The Two Display Options for a Grid Container
 The difference between display: grid and display: inline-grid is that display: grid defines the
container as being a CSS 2.1 block-level item, whereas display: inline-grid sets the container to be an
 inline-level element. If this sounds familiar, it is because you are familiar with CSS Flexible Box Layout,
which uses a similar approach and syntax concerning containers and their treatment in the page flow.

 Defining Rows and Columns
 When an element is made a grid container using display: grid or display: inline-grid , it has, by
default, one column and one row, which constitute the full size of the grid container. This is not terribly
useful, so you can use the grid-template-columns and grid-template-rows properties to divide a grid
container into columns and rows.

 In Listing 6-4 , you can see how to divide the grid container into two columns and three rows. Each row
or column is defined in turn, with a space separating each row or column definition. Values can be set using
any measurement unit, including the fr unit, which defines a flexible space determined by the amount of
space left after the fixed-size items have been accounted for.

 Listing 6-4. Defining the Number of Rows and Columns in the Grid, Along with Their Proportions

 #gridcontainer {
 display: grid;
 grid-template-columns: 150px 1fr; /* two columns */
 grid-template-rows: 50px 1fr 50px; /* three rows */
 }

 This defines two columns. The first is set to always occupy 150 pixels of space in the inline axis, and the
second is allowed to fill the remaining space available in this axis.

 Three rows are defined. The first and last are both set to occupy 50 pixels of space in the block axis .
The middle row is set to fill the remaining space available in this axis. This means you have effectively created
a fluid layout that always has a 150px × 50px cell at the beginning of the first column, followed by a fluid cell
and then another fixed size cell. The second column is divided into three cells once again, but each is fluid on
the inline axis, with the middle cell being fluid in both axes. Figure 6-10 illustrates this a little more clearly.

CHAPTER 6 ■ CSS GRID LAYOUT

113

 ■ Note The fr unit represents a fraction of the available free space, but because the example uses fr once
in each axis, it equates to all the free space available.

 Figure 6-10. The effect of the CSS definition of rows and columns in Listing 6-4 ; incorporating both fixed and
fluid sizing

 It is worth taking a moment to talk about the fr unit . The fr (or <flex>) unit is defined as a fraction of
the available space. Each column’s or row’s share of the free space can be computed as the column’s or
row’s <flex> * <free space> / <sum of all flex factors>. That is according to the W3C.

 It is easiest to think in terms of adding all the fr units you use along one axis and then dividing the
amount of free space to be allocated among elements using these units. So you could have one element
with 3fr taking up three times the amount of space that a sibling with 1fr unit is assigned. If only
those two elements were defined with the fr unit along that axis, the total available space would be
calculated as being split into four, with three equal parts being assigned to the first element and the
remaining equal part being assigned to the second.

 THE FLEXIBLE-LENGTH FR UNIT

 Positioning Grid Items within the Container
 Listing 6-3 applied some code to the #griditem element that positioned it in the second column, occupying
rows 1 to 4. Listing 6-5 repeats this code so you can see what I’m talking about.

 Listing 6-5. Positioning of the #griditem Element

 #griditem {
 grid-column: 2;
 grid-row-start: 1;
 grid-row-end: 4;
 }

CHAPTER 6 ■ CSS GRID LAYOUT

114

 Listing 6-5 shows three attributes I have not yet discussed. grid-column defines the column a grid item
should occupy. Here, you use a numerical reference to define the column an item should sit in, but as you
see later, you could also use a name.

 Like grid-column , you can also use grid-row to define a single row to occupy. In this case, however, you
are spanning multiple rows, so instead you use grid-row-start and grid-row-end to define the beginning
and end of the space to occupy with the item.

 You may wonder why the code refers to column 4 when it only defines three columns. The answer is in
how you think of columns and rows. For the purpose of CSS Grid Layout, each column is defined by the grid
line that begins that column; rows work in the same way. If you have three columns, there are actually four
column grid lines . Have a look at Figure 6-11 to see this in action.

 Figure 6-11. There are four grid lines to define three columns

 grid-column and grid-row use this same principle, but because each column and row is preceded
by an identically numbered grid line, it is not immediately obvious that this is how the numbering system
works. It is something to be aware of, especially when you start including gutter columns and rows to
separate content areas.

 Listing 6-6 shows an example. It defines a total of five columns and three rows, but the intention is only
to place content into the principal content areas defined as being bigger than 10px in width or height.

 Listing 6-6. CSS Defining Five Columns and Three Rows, Including Gutter Columns and Rows to
Separate Content

 #gridcontainer {
 display: grid;
 grid-template-columns: 150px 10px 150px 10px 150px; /* five columns */
 grid-template-rows: 150px 10px 150px; /* three rows */
 }

 The result of this definition is shown in Figure 6-12 ; the principal content areas are shaded for clarity.
Note that even though there appear to be only three columns and two rows, you have to define the gutters
as columns within the grid container. This is important to understand, because if you start positioning grid
items using the grid-column property, you need to take these extra spacing columns into account. In this
example, positioning a grid item in column 2 will result in it occupying the 10px space between the first two
principal content columns.

CHAPTER 6 ■ CSS GRID LAYOUT

115

 Shorthand Grid Item Positioning
 Typing grid-column-start and grid-column-end can become tiresome quickly; but as ever, CSS has a
shorthand syntax available to speed up development. Simply specify the start and end columns (or row for
 grid-row) using the grid-column property, separating the two values with a forward slash. Listing 6-7 shows
this shorthand applied to the example shown in Figure 6-12 . The resulting element is positioned as shown in
Figure 6-13 .

 Figure 6-12. A total of five columns and three rows, with the second and fourth columns set to be 10px wide,
and the second row similarly set to occupy 10px of height. This creates the effect of a gutter around the content
areas shown shaded

CHAPTER 6 ■ CSS GRID LAYOUT

116

 Listing 6-7. Position and Span of the #griditem Element, Spanning Three Columns and One Row

 #griditem {
 grid-column: 1 / 4;
 grid-row: 1;
 }

 ■ Caution The terms row and column may make you think of horizontal and vertical layouts, respectively.
But in CSS Grid Layout, as with Flexbox, this is only true for horizontal writing modes. In vertical languages such
as Japanese, row lays out content from top to bottom.

 Positioning Using Grid Area
 The grid-area property controls the position of a grid item using the bounding grid lines explicitly, rather
than using the column and row metaphor. The syntax is as follows:

 grid-area: row-start / column-start / row-end / column-end

 This provides an even quicker way to place elements in the grid, by using a coordinate-based approach
to positioning. Let’s change the code from Listing 6-7 to take advantage of the grid-area property instead of
the grid-column and grid-row properties. The resulting code is shown in Listing 6-8 .

 Figure 6-13. The positioning of element #griditem when the code shown in Listing 6-7 is applied to it

CHAPTER 6 ■ CSS GRID LAYOUT

117

 Listing 6-8. Same Effect as in Listing 6-7 , but with Significantly Less Code

 #griditem {
 grid-area: 1 / 1 / 1 / 4;
 }

 Spanning Multiple Columns or Rows
 If you want to treat CSS Grid Layout more like a table-based layout, you can achieve the same effect using
the span property. This works by summing the number of columns or rows and assigning the grid item to
occupy the correct number of rows and/or columns automatically. Continuing with the example, Listing 6-9
uses span instead of explicitly using grid-area or grid-column-start and grid-column-end . The end is
calculated based on the start and span. This is useful when you want to think in terms of spanning multiple
columns visually rather than having to maintain the numbers in your head. You do need to keep in mind
that any gutter columns still count!

 Listing 6-9. Same Result as Listings 6-8 and 6-9 , but Using the span Keyword to Define the Grid Item’s Size
Occupying Three Columns Total

 #griditem {
 grid-column: 1 / span 3;
 grid-row: 1;
 }

 Naming Grid Lines
 If you find yourself frustrated by the need to account for all the superfluous columns and rows introduced
by using gutters for padding and margins, CSS Grid Layout offers a practical solution to this problem by
allowing you to name individual spans to suit your needs. This is incredibly flexible and useful, and once
you are in the habit of using named grid lines , it makes a lot of practical sense for ease of maintenance and
legibility of code. The syntax works as follows:

 grid-template-columns: [name-of-line1] <width> [name-of-line2]

 The easiest way to explain this is to show it in context, so let’s revisit the earlier definition of five
columns and three rows from Listing 6-6 :

 #gridcontainer {
 display: grid;
 grid-template-columns: 150px 10px 150px 10px 150px; /* five columns */
 grid-template-rows: 150px 10px 150px /* three rows */
 }

 You can name each grid line by assigning a name in square brackets. Listing 6-10 shows what this looks
like in practice. The names can be almost anything that suits you (excepting reserved keywords).

CHAPTER 6 ■ CSS GRID LAYOUT

118

 Listing 6-10. CSS from Listing 6-6 , with the Sddition of Named Grid Lines

 #gridcontainer {
 display: grid;
 grid-template-columns: [col1start] 150px [col1end] 10px [col2start] 150px [col2end] 10px
[col3start] 150px [col3end];
 grid-template-rows: [row1start] 150px [row1end] 10px [row2start] 150px [row2end]
 }

 By naming your grid lines, you can now use these names instead of numbers when defining the position
of grid items. Listing 6-11 shows the same grid item from Listings 6-7 , 6-8 , and 6-9 , positioned and defined
using the names from Listing 6-10 .

 Listing 6-11. Size and Positioning from Listings 6-7 , 6-8 , and 6-9 , Using the Named Lines Defined in Listing 6-10

 #griditem {
 grid-column: col1start / col2end;
 grid-row: row1start;
 }

 The result of Listing 6-11 is shown in Figure 6-14 . As you can see from the code, this is far more intuitive
when you use a sensible naming strategy and assign names that relate to how you might think of columns
and rows rather than their position relative to gutter columns and rows.

 Figure 6-14. The same net result as shown in Figure 6-13 , but the underlying code is potentially easier to
understand than earlier listings

 In addition, it is worth pointing out that you can continue to use the span keyword with named grid
lines, allowing for further layout flexibility. span continues to observe every column or row defined, however.

CHAPTER 6 ■ CSS GRID LAYOUT

119

 Defining Grids with Repeat
 The definition of the grid in a grid container can be automated somewhat by using the repeat keyword.
The syntax for this is as follows:

 grid-template-columns: repeat(<number of times to repeat>, <column definitions to repeat>);

 An example of the repeat keyword in use is shown in Listing 6-12 , which defines a grid container with a
total of six columns and six rows.

 Listing 6-12. Defining Six Columns and Six Rows Using the repeat Keyword

 #gridcontainer {
 grid-template-column: repeat(3, 150px 10px);
 grid-template-row: repeat(2, 75px 75px 10px);
 }

 The result of the code in Listing 6-12 is shown in Figure 6-15 . Again, I have shaded the grid cells to
provide clarity.

 Figure 6-15. Six columns and six rows defined using the repeat keyword in combination with
grid-template-column and grid-template-row

 You can also use named grid lines with the repeat keyword, providing further flexibility. An example is
shown in Listing 6-13 , which defines both a grid container and a grid item.

 Listing 6-13. Combining the repeat Keyword with Named Grid Lines to Create a Grid, and Positioning a
Grid Item Within It

 #gridcontainer {
 grid-template-column: repeat(3, [column] 150px [colgutter] 10px);
 grid-template-row: repeat(3, [row] 150px [rowgutter] 10px);
 }

CHAPTER 6 ■ CSS GRID LAYOUT

120

 #griditem {
 grid-column: column 2;
 grid-row: row 1;
 }

 The result of Listing 6-13 is shown in Figure 6-16 . Cool, huh? You can create a grid system and locate an
item within the grid, all in a few short lines of CSS code! And you can still use the span keyword if you want to.

 Figure 6-16. The result of Listing 6-13 , with shading added for emphasis

 And there’s more! The repeat keyword does not have to be the only argument to the
grid-template-column property, so you can add additional columns (or rows for grid-template-row) before
or after the repeated section. This allows you to design a very flexible but precise grid system with minimal
code. An example is shown in Listing 6-14 . Also, note that you do not have to name every single grid line.

 Listing 6-14. Building on the Previous Example to Add a Sidebar Column Before the Repeating Section

 #gridcontainer {
 grid-template-column: [sidebarstart] 200px [sidebarend] 10px repeat(3, [column] 150px
[colgutter] 10px);
 grid-template-row: repeat(3, [row] 150px [rowgutter] 10px);
 }

 The result of Listing 6-14 is shown in Figure 6-17 . Something that has not been explicitly shown, but that
you should be aware of, is that when repeating definitions result in adjacent named gridlines, the two names
are concatenated into a single name. Take the example grid-template-column: repeat(2, [a] 20px [b]) .
This is equivalent to grid-template-column: [a] 20px [b a] 20px [b]; .

CHAPTER 6 ■ CSS GRID LAYOUT

121

 Defining Grid Areas
 I have already touched on the difference between a grid cell and a grid area. An area is defined by four grid
lines: two column lines and two row lines. These lines do not need to be immediately adjacent, so a grid area
can incorporate one or more grid cells. Grid areas are useful for defining the semantic relationship between
different parts of a page layout, allowing you to specify which part of the page incorporates the header,
sidebar, content area, and footer. Areas are defined using the grid-template-area property, which maps
onto an existing set of grid track definitions. Listing 6-15 shows an example of this in action.

 Listing 6-15. grid-template-area Defining a Header, Sidebar, and Content Area in the Grid That’s Already
Defined by the grid-template-columns and grid-template-rows Properties

 <style>
 #gridcontainer {
 display: grid;
 grid-template-areas: "header header"
 "sidebar content"
 "sidebar content";
 grid-template-columns: 150px 1fr;
 grid-template-rows: 50px 1fr 50px;
 }
 </style>

 Once you have created the grid areas, grid items can be assigned directly to occupy those areas by using
the grid-area property; see Listing 6-16 . The result of the combined Listings 6-15 and 6-16 is shown in
Figure 6-18 . Note that the diagram artificially explodes the positioning of the grid cells to make the bounds of
each grid area easy to identify.

 Figure 6-17. The result of Listing 6-14 , incorporating a sidebar defined outside the repeating section of the
column specification

CHAPTER 6 ■ CSS GRID LAYOUT

122

 Listing 6-16. Assigning Three Items to the Three Grid Areas Defined in Listing 6-15

 #item1 { grid-area: header; }
 #item2 { grid-area: sidebar; }
 #item3 { grid-area: content; }

 Figure 6-18. The defined grid areas. Note that I have exploded this diagram, adding extra space between the
grid cells to illustrate the bounds of each area

 Controlling the Order of Grid Items
 As I have shown, you can position grid items arbitrarily within the grid by using the grid-column and grid-row
properties. One of the major benefits of this feature is that it lets you control the visual order of elements on
the page independent of their order in code. Just as with Flexbox, this makes it easy to repaginate content
to suit different device profiles: responsive design is made simple. It also furthers the campaign to separate
style from structure and brings benefits in search engine optimization.

 In addition to being able visually to position grid items, you can control the order in which they are
rendered to the screen. This functionality uses the same order property available in Flexbox. By using the
 order property, you can override the default and specify the position of a specific item in the grid render
flow. order takes an integer (whole number) value, with lower values rendering before higher values.
Negative values are also allowed. order does affect z-index during the painting of elements, so be aware
that unless you specifically declare a z-index value for an element, changing its order property will push it
forward or back in the stack.

 Automatically Flowed Grid Items
 Something I have not yet touched on is what happens to grid items if you do not specify a grid-column and
 grid-row coordinate for every item explicitly. Recall that any child of a grid container is, by default, a grid
item. Grid items that are not explicitly positioned and defined are automatically sited and sized, flowing into
the grid container in a manner similar to the way flex items flow in a Flexbox container .

CHAPTER 6 ■ CSS GRID LAYOUT

123

 By default, the browser adopts the reading direction rules when flowing grid items. In the Latin-based
languages, that means rows fill from left to right across the columns until a row is full, and then a new row is
started. To help illustrate this, the code in Listing 6-17 contains a grid container and nine child elements .

 Listing 6-17. Creating a Grid Container: Child Elements Become Grid Items by Default

 <style>
 #gridcontainer {
 display: grid;
 grid-template-columns: repeat (3, 150px);
 grid-template-rows: auto;
 }
 </style>

 <div id="gridcontainer">
 <div class="item">1</div>
 <div class="item">2</div>
 <div class="item">3</div>
 <div class="item">4</div>
 <div class="item">5</div>
 <div class="item">6</div>
 <div class="item">7</div>
 <div class="item">8</div>
 <div class="item">9</div>
 </div>

 By default, the result of Listing 6-17 is as shown in Figure 6-19 . Note that using the auto keyword allows
the browser to determine how many rows it needs to create in order to accommodate the grid items in the
container. You can explicitly ask the browser to flow items into the row context by using the grid-auto-flow
property on the grid container element. The default is row , so the code to explicitly set this property is
grid-auto-flow : row . The result of changing this property to use a value of column is shown in Figure 6-20 .

 Figure 6-19. The result of Listing 6-17 . Grid items are automatically flowed into the row context, although this
can also be explicitly set using grid-auto-flow: row

CHAPTER 6 ■ CSS GRID LAYOUT

124

 One other nice feature of auto-flow is that it works around any grid items you have explicitly placed on the
grid. This means you can push the important elements into their prescribed positions and then allow all
the other content on your page or in your app to automatically flow into the surrounding space, completing
the layout.

 Subgrids
 As with Flexbox , separately defined grid containers have no rendering effect on each other. This means if you
have two grid containers on the same page, they need not (and will not) refer to each other when rendering
and placing content in each respective grid. This is useful in the majority of cases, but sometimes it’s helpful
to have one grid explicitly refer to and adhere to the grid proportions of the other. For these circumstances,
the subgrid assignment is available in the CSS Grid Layout specification.

 The subgrid keyword assigns a grid container element that is a child of an existing grid container to be
related to the layout of the parent grid. As such, grid tracks in the subgrid observe and conform to the tracks
of the parent grid. This is useful for achieving perfect alignment in forms, as you can see in the example code
shown in Listing 6-18 .

 Listing 6-18. Defining a Grid on the Element and Again on Each within the ; the
Elements Are Defined as Subgrids, Allowing Them to Achieve Coherent Alignment with Each Other as Well
as with the Overall Parent Grid Defined on the

 <label>Name:</label> <input name="fn">
 <label>Address:</label> <input name="address">
 <label>Phone:</label> <input name="phone">

 <style>
 ul {
 display: grid;
 grid-auto-flow: row;
 grid-template-columns: auto 1fr;
 }

 Figure 6-20. The result of Listing 6-17 , but with the grid flow set to a column specifically. grid-auto-flow:
column has been applied to the #gridcontainer element

CHAPTER 6 ■ CSS GRID LAYOUT

125

 Figure 6-21. The result of the subgrid in action in Listing 6-18

 li {
 display: grid;
 grid: subgrid;
 margin: 0.5em;
 border: solid;
 padding: 0.5em;
 }
 label {
 grid-column: 1;
 }
 input {
 grid-column: 2;
 }
 </style>

 The result of Listing 6-18 is shown in Figure 6-21 . I used the auto-flow option to lay out each list item
automatically within the parent grid, along the row-axis flow.

 In this example, the span of the subgrid items is not explicitly set. The rendering engine
automatically notices the use of grid cells in the subgrid and maps this onto the parent grid, adhering to the
grid track definitions defined on the parent grid. It is possible to define track spans the same way you have
explored with regular grid items.

 Explicit vs. Implicit Grids

 Until this point, you have dealt exclusively with explicitly defined grids , assigning grid items into predefined
grid positions. CSS Grid Layout provides the option to define a grid on the fly, however, by simply assigning a
grid item to a position that has not yet been explicitly created.

 Under these circumstances, the additional grid tracks are created automatically. For example, if you
define a grid container as grid-template-columns: 100px 100px 100px 100px and then apply a grid item
to occupy grid-column: 5 , the extra column necessary to position the grid item is created to accommodate
the grid item. Listing 6-17 uses the keyword auto specifically to request that the browser apply this behavior
to grid rows, but, strictly speaking, that is not necessary. Personally, I think it is nice to be specific and even
verbose if it helps avoid doubt, so I tend not to rely on default values or behavior where practical. You can
make up your own mind about what suits you!

CHAPTER 6 ■ CSS GRID LAYOUT

126

 Aligning Items to the Grid
 Grid items can be aligned relative to the grid using the align-items property applied to the grid container.
Possible values for align-items are as follows:

• stretch : The default. Expands the item to fill the space defined by the cell.

• start : Aligns the content to the start of the grid cell relative to the flow context. The
item is sized to accommodate the content.

• end : Just like start , but aligns to the end of the cell rather than the beginning.

• center : Aligns the content to the center of the grid cell, expanding to fill as much of
the cell as necessary to accommodate the content of the grid item.

 In addition to align-items , which works along the flow context, CSS Grid Layout allows for
justify-items , which works across the flow context. The same set of values is acceptable for both
properties, and they work in the exact same manner, either with or perpendicular to the flow.

 Figure 6-22 shows the result of the four alignment options for align-items . Note that in this example,
the flow context is along the column axis, and each grid item occupies five rows. I have sized the individual
items as if they were filled with enough content to effectively take up about half the space afforded by those
five rows.

 Figure 6-22. The four alignment options

 Finally, there is also the option to set alignment on a per-item basis using the justify-self and
align-self properties. These properties support the same four values but are assigned to the grid item
rather than the grid container.

CHAPTER 6 ■ CSS GRID LAYOUT

127

 How to Use CSS Grid Layout
 By now, you should have a clear idea of just how powerful and useful CSS Grid Layout is. It can single-
handedly solve many common layout issues, and in many respects it’s the one CSS module designers have
been crying out for since the first days of the Web. As a result, it is ever so tempting to think of CSS Grid
Layout as offering the ultimate solution to every layout need.

 It is true that CSS Grid Layout will offer a nirvana of sorts for the seasoned web designer. Note my
emphasis on the word will ! Once the issues I’m about to discuss are dealt with, CSS Grid Layout will be a
wonderful and incredibly useful addition to your toolset. Common usage scenarios will include the following:

• Magazine-style layouts

• Pinterest-type web apps

• Areas of a page where you want to reorder content from the markup order (although
note that Flexbox also allows you to do this)

• Apps, especially when using a web view and targeting a range of device profiles

• Forms and form elements layout

 Of course, that is just the beginning of what a grid layout is good for. Much of the design currently
on the Web could be rendered using CSS Grid Layout, if only it were possible to use it reliably across
different browsers.

 Browser Support
 As I mentioned at the beginning of this chapter, browser support for CSS Grid Layout is very poor
currently. Microsoft has helped define the specification and is to date the only vendor to have a partially
working implementation ready and available to test in a consumer-facing browser release, but this will
change rapidly once the specification becomes fully stable. Note that you can access some of the current
specification in the Canary version of Chrome at the time of writing.

 As ever, for the current situation, you should refer to and periodically check http://caniuse.com/
#search=grid . This site is maintained to provide a snapshot of the latest browser support for CSS Grid Layout.

 Fallback Options and Polyfills
 As with all non-supported CSS, browsers that don’t understand the CSS Grid Layout properties fall back to
their default values for each element. This means, typically, that structural items such as <div> , <section> ,
and <article> display as block-level elements, whereas inline elements such as revert to their
default inline-level behavior. You can use this to your advantage to handle older browsers or if you prefer
 to polyfill using one of the numerous grid systems that rely on JavaScript to position and size elements. Be
aware that because there are some crossover properties in common with Flexbox, the fallback options may
be less predictable than you expect. The Modernizr JavaScript library allows you to test for browser support;
you can find out more at http://modernizr.com .

http://caniuse.com/#search=grid
http://caniuse.com/#search=grid
http://modernizr.com/

CHAPTER 6 ■ CSS GRID LAYOUT

128

 Summary
 CSS Grid Layout offers potentially the most exciting layout options of all the new-to-CSS3 modules.
However, it is not yet ready to be used in the wild—unless you are willing to write a lot of JavaScript fallbacks
and/or polyfills.

 Nevertheless, we are on the cusp of the grid revolution. Once the main browsers offer support,
designers will have an extremely flexible layout tool at their disposal that is engineered to work responsively.
CSS Grid Layout will deal with many of the layout headaches that have troubled designers for the past
20 years, ridding us of the laborious and elaborate workarounds that have been necessary in the past.
Unfortunately, browser support just is not there, so it is not safe to use CSS Grid Layout on the Web—yet.

129© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_7

 CHAPTER 7

 CSS Regions Layout

 CSS Regions Layout makes it easy to flow content from one box to another without having to worry about
how the content will fit inside each container.

 ■ Note This module is still in Editor’s Draft status and is subject to change. Be sure to check the latest W3C
documentation at www.w3.org/TR/css3-regions/ for details about the current syntax and specification.
Also check the code for this book in the Source Code tab on the book’s page at Apress.com/9781430265023 .

 What Is CSS Regions Layout?
 CSS Regions Layout provides an advanced solution for controlling content flow across different containers.
The individual containers don’t have to be next to each other in the layout, so it’s easy to create magazine-
style layouts that remain flexible for content changes.

 CSS Regions Layout doesn’t control layout of elements on the page, only the way content flows between
elements. This allows the module to be used with any layout model in the CSS specification.

 That said, with the addition of a useful pseudo-element selector, you can use a number of properties to
style content flowing into a region. I discuss the ::region() selector and the selector method it replaces
later in this chapter.

 The biggest challenge you face if you want to use CSS Regions Layout today is the patchy browser
support. Both Safari and Chrome offer support, but Chrome doesn’t enable CSS Regions Layout by default.
Internet Explorer 10 also supports CSS Regions Layout, but the source content can only come from an
 iframe . Of course, just as with many of the new CSS3 layout modules, you can use polyfill solutions to bring
support to all browsers; I talk about these options later in this chapter.

 An Example
 The easiest way to get an understanding of what CSS Regions Layout can do is to jump straight into
an example. Figure 7-1 shows a simple layout that has three boxes . The content of each of these boxes
is controlled using CSS Regions Layout, but the layout is set using a combination of CSS2.1 absolute
positioning and CSS3 transformations.

http://www.w3.org/TR/css3-regions/

CHAPTER 7 ■ CSS REGIONS LAYOUT

130

 Listing 7-1 shows the HTML markup used to create this example. Notice that there are two distinct areas
in the markup:

• The text content of the page in an <article> element

• Three <div> elements that contain no renderable content

 Listing 7-1. HTML Markup for the Example Shown in Figure 7-1

 <body>
 <article>
 <h1>Lorem Condimentum Fringilla</h1>
 <p>Fusce dapibus, tellus ac cursus commodo, tortor mauris condimentum nibh, ut fermentum
massa justo sit amet risus. Duis mollis, est non commodo luctus, nisi erat porttitor
ligula, eget lacinia odio sem nec elit. Donec id elit non mi porta gravida at eget metus.
Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem nec
elit.</p>

 <p>Nullam id dolor id nibh ultricies vehicula ut id elit. Integer posuere erat a ante
venenatis dapibus posuere velit aliquet. Donec sed odio dui. Integer posuere erat a ante
venenatis dapibus posuere velit aliquet. Curabitur blandit tempus porttitor.</p>

 Figure 7-1. The layout is controlled by CSS2.1 and CSS3 transformations. The content is controlled by CSS
 Regions Layout.

CHAPTER 7 ■ CSS REGIONS LAYOUT

131

 <p>Integer posuere erat a ante venenatis dapibus posuere velit aliquet. Nullam id
dolor id nibh ultricies vehicula ut id elit. Donec ullamcorper nulla non metus auctor
fringilla. Nulla vitae elit libero, a pharetra augue. Maecenas faucibus mollis interdum.
Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem
nec elit. Morbi leo risus, porta ac consectetur ac, vestibulum at eros.</p>

 <p>Maecenas faucibus mollis interdum. Nulla vitae elit libero, a pharetra augue. Praesent
commodo cursus magna, vel scelerisque nisl consectetur et. Cum sociis natoque penatibus
et magnis dis parturient montes, nascetur ridiculus mus. Maecenas sed diam eget risus
varius blandit sit amet non magna.</p>

 <p>Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem
nec elit. Etiam porta sem malesuada magna mollis euismod. Integer posuere erat a ante
venenatis dapibus posuere velit aliquet. Nullam quis risus eget urna mollis ornare vel eu
leo. Nulla vitae elit libero, a pharetra augue.</p>

 </article>
 <div id="box1"><!-- no content --></div>
 <div id="box2"><!-- no content --></div>
 <div id="box3"><!-- no content --></div>
 </body>

 When you use CSS Regions Layout, the content flows from an element (or range of elements) into one
or more regions. The element that provides the content isn’t rendered in the browser, so the <article> in
Listing 7-1 doesn’t appear directly in the render shown in Figure 7-1 .

 Let’s look at the CSS code used to create this layout. Listing 7-2 shows the complete stylesheet to render
this page. You can download the source code for this example, and all the other examples in this book, at
 http://www.apress.com .

 Listing 7-2. CSS Code Used in Conjunction with Listing 7- 1

 body {
 font-family: 'Noto Sans', sans-serif;
 font-size: 62.5%;
 }
 article {
 -webkit-flow-into: article;
 -ms-flow-into: article;
 flow-into: article;
 font-size: 1.2em;
 }
 #box1, #box2, #box3 {
 -webkit-flow-from: article;
 -ms-flow-from: article;
 flow-from: article;
 }
 #box1, #box2, #box3 {
 padding: 4em;
 border: 10px solid #fff;
 position: absolute;
 width: 200px;
 height: 400px;
 background: #fff;
 box-shadow: 0px 0px 10px #999;
 }

http://www.apress.com/

CHAPTER 7 ■ CSS REGIONS LAYOUT

132

 #box1 {
 background: #f9e719;
 top: 100px;
 left: 100px;
 -webkit-transform: rotate(-5deg);
 transform: rotate(-5deg);
 }
 #box2 {
 background: #92f919;
 top: 100px;
 left: 370px;
 }
 #box3 {
 background: #19d2f9;
 top: 120px;
 left: 640px;
 -webkit-transform: rotate(5deg);
 transform: rotate(5deg);
 }

 This example uses the flow-into and flow-from properties to create regions. The three <div> s with
IDs of box1 , box2 , and box3 each become a region, and the <article> element effectively becomes a content
store and isn’t rendered directly on the page.

 The benefit of using CSS Regions Layout here is that if you want to update the content later, you can
simply edit the HTML in the <article> element. The content will reflow across the three defined regions
without the need for any manual formatting.

 ■ Note The first example shows the different vendor-prefixed versions of the flow-into and flow-from
properties. The remaining examples omit these vendor-specific prefixed versions of the properties to avoid clutter.
Until the specification is complete, you need to include prefixed versions of the properties in your own code.

 Browser Support
 CSS Regions Layout is quite a new specification, originally proposed and promoted by Adobe in 2011.
Despite this, there have already been several iterations to the proposal, and some browsers offer reasonably
mature support. Safari version 6.1 and above works with vendor prefixes, as does Chrome (once support is
enabled by entering about:flags into the address bar and enabling Experimental Web Platform Features).
Internet Explorer 10 and above also support CSS Regions Layout, although the source markup must be
contained in an iframe . At the time of publication, Firefox doesn’t have any support for CSS Regions Layout,
and some engineers who work on Firefox have gone on record saying they have no plans to implement the
proposal. This is because the team of developers behind Firefox believe there are problems with the CSS
Regions Layout specification, specifically as the proposed CSS Overflow module deals with some similar
layout issues. So, at this point there is reason to believe this may be an issue for future development.

 ■ Tip Check http://caniuse.com/#feat=css-regions to view a table showing the latest level of browser
support.

http://caniuse.com/#feat=css-regions

CHAPTER 7 ■ CSS REGIONS LAYOUT

133

 Syntax and Structure
 The syntax for CSS Regions Layout is very simple. There are only two primary properties:

• flow-into

• flow-from

 Each of these properties takes a named argument that defines, in the case of flow-into , or calls on, in
the case of flow-from , a flow context. A flow context can be given any name, as long as it starts with a letter
and contains valid CSS characters.

 flow-into
 Once a flow context is defined, all elements assigned with a flow-into property matching that assignment
contribute their contents to the flow. They are also removed from the visual layout of the page.

 The order in which content is assigned into the flow is determined by the order of the HTML markup,
chronologically. This is shown in Listing 7-3 , where three different content areas are assigned to the same
flow context in a different order than their position in the markup.

 Listing 7-3. Order of Content in the Flow Is Determined by the Markup Alone

 <article id="article1"> <h1>Article 1</h1>
 <p>...</p>
 </article>
 <article id="article2"><h1>Article 2</h1>
 <p>...</p>
 </article>
 <article id="article3"><h1>Article 3</h1>
 <p>...</p>
 </article>
 <div id="layout"><!-- single content container --></div>
 <style>
 #article1, #article3 {
 flow-into: reorderedcontent;
 }
 #article2 {
 flow-into: reorderedcontent;
 }
 #layout {
 flow-from: reorderedcontent;
 }
 </style>

 The result of Listing 7-3 is shown in Figure 7-2 . Note that the articles have not been reordered in the
output, even though they are defined in the order #article1 , #article3 , #article2 when assigning the
 flow-into property.

CHAPTER 7 ■ CSS REGIONS LAYOUT

134

 It’s important to take care when assigning elements into a flow to avoid unintended consequences. Take
the example of a table, which could be assigned to a flow using the code shown in Listing 7-4 .

 Listing 7-4. Moving a Table and Its Contents into a Flow Named table-content

 table {flow-into: table-content}

 As you might expect, this rule takes all tables in the document and moves them into a flow named
 table-content . The tables themselves, in addition to all contents are moved into the flow, retain their
separation from other elements. The code shown in Listing 7-5 only selects direct child elements in tables to
be moved into the flow.

 Listing 7-5. Moving All Direct Children of the Table Element(s) into the Flow

 table > * {flow-into: table-content}

 This allows all table rows in the document, sourced from across multiple source tables, to be rendered
together in a single table. That’s a really useful capability. Note, however, that it leaves behind the <table> as
an empty element that is still rendered in the document; so if you have styles applied, they still appear.

 Consider Listing 7-6 , though, and you’ll see that this power can be accidentally used with unintended
consequences.

 Listing 7-6. Moving All Descendants of the Table Element(s) into the Flow at the Same Level

 table * {flow-into: table-content}

 Figure 7-2. The order of content is defined by the HTML markup, not the CSS assignment to a named flow.

CHAPTER 7 ■ CSS REGIONS LAYOUT

135

 The net effect of the code in Listing 7-6 would be to render the contents of all tables in a flat list, rather
than a nested tree as a table would usually render. This is almost certainly not what you would expect.

 The lesson to take away is that specificity is especially important when dealing with CSS Regions
Layout. Be as specific as you can be to avoid unexpected results.

 ■ Note Another potentially unexpected consequence of CSS Regions Layout is that any white space
surrounding an element is not moved into the flow, causing inline elements added to the flow to render
adjacent to each other.

 flow-from
 The flow-from property allows arbitrarily positioned containers to form a chain of regions through which a
flow of content is rendered. Figure 7-3 shows how this can be used to create magazine-style layouts without
the need to render content into individual containers.

 Figure 7-3. Two named flows forming a magazine-style layout

 The flow-from property has only two limitations:

• The named flow must exist, having been defined using the flow-into property on
one or more elements in the document.

• The container the flow-from property is applied to cannot already be a region.

 A page can contain an unlimited number of named flows and an unlimited number of regions. If
a named flow is defined but empty, the element does not render visually. It’s worth noting that cyclical
assignments of named flows can’t be used either; an element cannot contain a flow-into and flow-from
property with the same named flow.

CHAPTER 7 ■ CSS REGIONS LAYOUT

136

 Controlling Break Points
 When content is moved from the document flow into a CSS Regions Layout flow context, the point at
which content breaks between different container regions is determined by the size of those regions. This
can produce potentially undesirable breaks as the content flows across multiple regions. To help deal
with this problem, the specification defines three additional properties that are supported in conjunction
with flow-from :

• break-before

• break-after

• break-inside

 Each of these properties can be applied to any HTML element that is rendered in a CSS region,
controlling breaks in rendering across different regions. There are a number of different potential values :

• auto

• always

• avoid

• left

• right

• page

• column

• region

• avoid-page

• avoid-column

• avoid-region

 The properties and possible values for break-before , break-after , and break-inside have been
extended from the CSS3 Multi-columns Layout module, which is discussed in Chapter 4 . Rather than
exhaustively repeat the explanation provided in Chapter 4 , I summarize here and highlight the additional
options introduced with CSS Regions Layout.

 Each of the break options , with the exception of auto , defines a specific point at which the content
can or cannot break before continuing to render in the next region in the chain. The left , right , page , and
 avoid-page values only apply to printed pages, forcing contents to render when printed so that content falls
on a left page, for example.

 The column , region , avoid-column , and avoid-region values each allow for an element to break before,
after, or inside a column or region, or to avoid doing so. The region option is peculiar to CSS Regions Layout.
Figure 7-4 shows the effect of the break-before:region option when applied to a heading tag.

http://dx.doi.org/10.1007/978-1-4302-6503-0_4
http://dx.doi.org/10.1007/978-1-4302-6503-0_4

CHAPTER 7 ■ CSS REGIONS LAYOUT

137

 Choosing when and how to break content between regions on the page can provide fine control over a
page’s appearance while retaining the benefits of abstracted content. By default, all CSS layout containers
expand to fit their contents, just as with normal inline HTML contents. This is useful when you’re dealing
with an unknown amount of content but less practical when you’re aiming for a pixel-based layout. Figure 7-5
shows the effect of applying a height attribute to a region in combination with the break-after property. The
source code for this example is shown in Listing 7-7 .

 Figure 7-5. The second region does not expand to fit its contents

 Figure 7-4. <h1>s are forced to break before a region

CHAPTER 7 ■ CSS REGIONS LAYOUT

138

 Listing 7-7. Applying a Fixed Height to the Second Region <div>

 <article>
 <h2>This is the first heading</h2>
 <h2>This is the second heading</h2>
 </article>
 <div id="region1"><!-- empty --></div>
 <div id="region2"><!-- empty --></div>
 <style>
 article h2 {
 flow-into: overfloweg;
 break-after: always;
 }
 #region1, #region2 {
 flow-from: overfloweg;
 float: left;
 width: 10em;
 margin-right: 1em;
 }
 #region1 { border: 1px solid #333; }
 #region2 {
 border: 1px solid #ccc;
 height: 2em;
 }
 </style>

 ■ Note This example doesn’t render properly in WebKit browsers due to a problem with break-after: always .

 region-fragment and Overflow
 The region-fragment property provides control over how the final region of a named flow behaves. Suppose
you have a flow running across the regions shown in Figure 7-6 .

CHAPTER 7 ■ CSS REGIONS LAYOUT

139

 The region-fragment property defines how content should be rendered if it occupies more space than
will fit in the final region, marked as region 4 in Figure 7-6 . There are two possible values for region-fragment :

• auto

• break

 auto allows the overflowing content to render as part of the final region. break removes the overflowing
content from the final region as if there were another region to flow into.

 This is not the same as overflow: hidden , which retains the content in the region but hides the overflowing
content. Figure 7-7 shows the differences between the two possible values, combined with overflow: hidden .
Note that region-fragment does not affect the size of the final region, so it does not have any affect on a region
that resizes to accommodate content (that is, with no set height property in this example).

 Figure 7-6. A simple CSS Regions Layout flow example

 Figure 7-7. Examples of how different region-fragment options render in the browser

CHAPTER 7 ■ CSS REGIONS LAYOUT

140

 Because CSS Regions Layout doesn’t deal with the position or layout of the elements being used to
render content, it’s important to understand that regions render region fragments according to the layout
properties applied. If you use CSS Flexible Box Layout in conjunction with CSS Regions Layout, for example,
you may have content overflowing on the horizontal axis rather than the vertical.

 The New Region Styling Approach
 If you remember the introduction to this chapter, I said that CSS Regions Layout doesn’t deal with the way
content looks—only how it flows. This is true, but it’s not the whole truth.

 The new ::region() pseudo-selector allows visual characteristics to be set on content in a flow that
renders in a particular region. These visual properties are largely inline and do not affect the document flow,
but some can impact on block-level rendering. The syntax for using the ::region() selector is shown in
Listing 7-8 .

 Listing 7-8. Syntax to Assign Rules to Content Rendering in a Specific Region Element

 <region-element>::region(selector) {
 // styles
 }

 An example of a real-world usage scenario is shown in Listing 7-9 , which selects all paragraphs
rendered from the flow in #region1 and applies a margin-right of 2em .

 Listing 7-9. Applies a Right Margin of 2em to All <p> Elements Rendered from the Flow in #region1

 #region1::region(p) {
 margin-right: 2em;
 }

 Unfortunately, there’s currently very little browser support for this part of the CSS Regions Layout
specification.

 The Old Region Styling Approach
 When the original specification for CSS Regions Layout was drawn up in 2011, it called for a selector
method to allow for styling content in a region similar to the way @media queries work. Although this has
been replaced by ::region() , many of the examples on the Web continue to use this syntax, and the three
browsers with good support (Safari, Chrome, and Internet Explorer) all support the older approach.

 Just as with @media , @region takes an argument to select the region to which a set of styles is applied.
Listing 7-10 shows the basic syntax.

 Listing 7-10. Example Syntax for the Now-Deprecated @region Selector Method

 @region #region1 {
 p {
 margin-right: 2em;
 }
 }

CHAPTER 7 ■ CSS REGIONS LAYOUT

141

 This example re-creates the example from Listing 7-9 using the old syntax. The CSS selects the region
with an ID of region1 and applies a margin-right of 2em to any paragraphs rendered in it.

 I recommend that you avoid using this syntax for production web sites; but at the time of publication,
browser support for ::region() is nonexistent. In contrast, support for @region is good in both Safari and
Chrome. You need to decide for yourself whether you want to use the old or the new syntax or avoid using it
altogether.

 Available Selectors
 Not every CSS property can be applied to elements selected with ::region() or @region . The properties that
can be assigned are as follows:

• font properties

• color

• opacity

• background

• word-spacing

• letter-spacing

• text-decoration

• text-transform

• line-height

• alignment and justification properties

• border

• border-radius

• border-image

• margin

• padding

• text-shadow

• box-shadow

• box-decoration-break

• width

CHAPTER 7 ■ CSS REGIONS LAYOUT

142

 Visual Characteristics of CSS Regions Layout
 No limitations are imposed by CSS Regions Layout regarding how you style or position regions on the page.
The module works well in conjunction with all CSS2.1 and CSS3 layout approaches, so you can combine CSS
Regions Layout with CSS Multi-columns Layout, CSS Grids Layout, CSS Flexible Box Layout, and floating
and absolutely positioned elements.

 Polyfill Options
 As you’ve seen, browser support for CSS Regions Layout isn’t anything like universal, and it’s unlikely that
this will change in the near future. As a web designer, this is one of the most frustrating aspects of seeing
new CSS modules being developed; we’re all desperate to try the new features, but they’re not ready for
prime time.

 As the primary proponents of CSS Regions Layout, Adobe has developed a polyfill that provides support
for much of the specification in browsers that haven’t adopted the proposals yet. You can download the
polyfill source code from http://adobe-webplatform.github.io/css-regions-polyfill/ . And other than
using –adobe- as a prefix to your CSS Regions Layout code, you can use the code examples shown in this
chapter exactly as printed.

 Real-World Example
 As discussed, CSS Regions Layout doesn’t have an impact on the layout of elements in a page design. It can
be used with any of the other CSS layout modules discussed in this book. So, rather than provide an example
of one of those modules, I’ve incorporated another new module proposed by Adobe for this brief example:
CSS Shapes.

 The CSS Shapes module is discussed further in Chapter 10 , so I don’t go into detail here, but it makes
for a fun, if slightly whimsical, example of how CSS Regions Layout can help solve particular layout
problems. Figure 7-8 shows a mockup created in Adobe Illustrator: a simple magazine-style layout where
two text areas wrap perfectly around an image of a guitar. This example uses CSS Regions Layout to render
the content so that it automatically flows across the two text boxes and CSS Shapes to create the boxes that
contain the text.

http://adobe-webplatform.github.io/css-regions-polyfill/
http://dx.doi.org/10.1007/978-1-4302-6503-0_10

CHAPTER 7 ■ CSS REGIONS LAYOUT

143

 The HTML Markup
 The HTML markup needed for this page is extremely simple. You have a container for the page, which itself
has two text boxes. Listing 7-11 shows the HTML code for the page and includes text content taken from
Wikipedia’s article on the subject matter.

 Listing 7-11. HTML Code for the Magazine-Style Layout Page (Content from Wikipedia)

 <div id="container">
 <div id="title"><h1>the development of
The Gibson Les Paul</h1></div>
 <div id="box1"><!-- left side of the guitar --></div>
 <div id="box2"><!-- right side of the guitar --></div>
 </div>
 <article id="content">

 Figure 7-8. A mockup of a magazine-style layout, created in Adobe Illustrator

CHAPTER 7 ■ CSS REGIONS LAYOUT

144

 <p> The Gibson Les Paul was the result of a design collaboration between Gibson Guitar
Corporation and the late jazz guitarist and electronics inventor Les Paul. In 1950, with
the introduction of the radically innovative Fender Telecaster to the musical market,
solid-body electric guitars became a public craze (hollow-body electric guitars have more
acoustic resonance but are, therefore, more prone to amplifier feedback and have less
natural note duration "sustain".) In reaction, Gibson Guitar president Ted McCarty brought
guitarist Les Paul into the company as a consultant. Les Paul was a respected innovator
who had been experimenting with guitar design for years to benefit his own music. In fact,
he had hand-built a solid-body prototype called "The Log", a design widely considered the
first solid-body Spanish guitar ever built, as opposed to the "Hawaiian", or lap-steel
guitar. This guitar is known as "The Log" because the solid core is a pine block whose
width and depth are a little more than the width of the fretboard; conventional hollow
guitar sides were added for shape (Image 2), a design similar to the popular Gibson
ES-335 semi-hollowbody guitar introduced in 1958. Although numerous other prototypes and
limited-production solid-body models by other makers have since surfaced, it is known that
in 1945–1946, Les Paul had approached Gibson with "The Log" prototype, but his solid body
design was rejected.[8][9]</p>
 <p>In 1951, this initial rejection became a design collaboration between the Gibson
Guitar Corporation and Les Paul. It was agreed that the new Les Paul guitar was to be an
expensive, well-made instrument in Gibson's tradition.[10] Although recollections differ
regarding who contributed what to the Les Paul design, it was far from a market replica of
Fender models. Founded in 1902, Gibson began offering electric hollow-body guitars in the
1930s, such as the ES-150; at minimum, these hollow-body electric models provided a set of
basic design cues for the new Gibson solid-body, including a more traditionally curved body
shape than offered by competitor Fender, and a glued-in ("set-in") neck, in contrast to
Fender's bolt-on neck.</p>
 <p>The significance of Les Paul's contributions to his Gibson guitar design remains
controversial. The book "50 Years of the Gibson Les Paul" limits Paul's contributions
to two: advice on the trapeze tailpiece, and a preference for color (stating that Paul
preferred gold as "it looks expensive", and a second choice of black because "it makes your
fingers appear to move faster on the box", and "looks classy―like a tuxedo").[11]</p>
 <p>Additionally, Gibson's president Ted McCarty states that the Gibson Guitar Corporation
merely approached Les Paul for the right to imprint the musician's name on the headstock to
increase model sales, and that in 1951, Gibson showed Paul a nearly finished instrument.
McCarty also claims that design discussions with Les Paul were limited to the tailpiece and
the fitting of a maple cap over the mahogany body for increased density and sustain, which
Les Paul had requested reversed.</p>
 </article>

 The CSS Shapes and CSS Regions Layout Code
 As mentioned, I’m not going to explain the CSS Shapes code in this example; you can read more about the
proposal later in the book. Listing 7-12 shows the CSS code that creates both the shapes and the regions. Like
the text, the guitar image is from Wikipedia.

 Listing 7-12. CSS Used to Render Both CSS Regions Layout and CSS Shapes

 #container {
 position: relative;
 margin: auto;
 width: 960px;

CHAPTER 7 ■ CSS REGIONS LAYOUT

145

 height: 1200px;
 background: transparent url(guitar.jpg) no-repeat bottom left;
 }
 #container h1 {
 position: absolute;
 top: 300px;
 left: 50px;
 font-weight: 100;
 font-size: 2.2em;
 text-transform: uppercase;
 margin: 0;
 padding: 0;
 }
 #container h1 span {
 font-size: 0.5em;
 text-transform: none;
 }
 article {
 -webkit-flow-into: article;
 flow-into: article;
 }
 #box1, #box2 {
 -webkit-flow-from: article;
 flow-from: article;
 }

 #box1 {
 position: absolute;
 top: 385px;
 left: 50px;
 width: 390px;
 height: 600px;
 overflow: hidden;
 -webkit-shape-inside: polygon(0% 0%, 100% 0%, 100% 36%, 70% 50%, 80% 70%, 50% 100%, 0%
100%, 0% 0%);
 }

 #box2 {
 position: absolute;
 top: 400px;
 right: 50px;
 width: 420px;
 height: 600px;
 overflow: hidden;
 -webkit-shape-inside: polygon(3% 0%, 5% 50%, 28% 50%, 20% 68%, 35% 85%, 45% 100%, 100%
100%, 100% 0%, 0% 0%);
 }

 ■ Note This example only renders correctly in Chrome (with experimental features enabled) or the nightly
build of WebKit.

CHAPTER 7 ■ CSS REGIONS LAYOUT

146

 The Result
 Figure 7-9 shows the result of the HTML in Listing 7-11 and the CSS in Listing 7-12 , as rendered in Chrome
with experimental features enabled. This isn’t a perfect re-creation of my original mockup, but with some
additional region-specific content styling, it would be a very close match.

 Figure 7-9. The result of the code in Listings 7-11 and 7-12 , rendered in Chrome

CHAPTER 7 ■ CSS REGIONS LAYOUT

147

 Summary
 CSS Regions Layout offers a leap forward in the way designers can position content boxes on a page,
abstracting the content of an element from its presentation. This opens up a range of potentially exciting
new layout possibilities.

 Unfortunately, universal browser support is still a long way off, especially given that Firefox appears
unlikely to implement the proposal in the near future. Polyfill options can provide the functionality in
browsers that don’t have native support, but as with any workaround, these rely on scripting (which can be
disabled by the user). At some point in the future, CSS Regions Layout may play a large part in the toolkit of
the web designer, but currently it’s more an exciting glimpse of what’s to come.

149© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_8

 CHAPTER 8

 Supporting Older Browsers

 One of the basic tenets of the Web is that there are many different device profiles, including bleeding-edge,
bang-up-to-date smartphones, tablets, and laptops, and older corporate desktop systems. This is great for
the democracy of the Internet as a whole, but it creates headaches for web designers, especially when we’re
all keen to adopt the latest standards and make full use of them in our pages.

 When you’re crafting a new layout for a web site and want to adopt one of the CSS3 layout modules,
where does this problem leave you? How can you use the new modules while avoiding making your page
render in an unreadable manner for users of older browsers?

 Fortunately, in most cases it’s possible to adopt a progressive enhancement approach (see Figure 8-1) to
supporting these older, out-of-date browsers; by applying a core basic layout that works without any of the new
layout modules, you can then layer the good stuff on top. Browsers that understand the new modules will adhere
to the enhanced rules, and those that don’t will simply ignore them, sticking with the core fallback layout.

 ■ Tip It’s well worth regularly checking your visitor statistics and making an informed decision about how
much effort to put into supporting older browsers. If you only get five visits per year from someone still running
Internet Explorer 8, it may be time to stop expending energy on making your site work for that browser!

 Figure 8-1. A useful article on the A List Apart web site, found at http://alistapart.com/article/
understandingprogressiveenhancement , that explains the concept of progressive enhancement in detail

http://alistapart.com/article/understandingprogressiveenhancement
http://alistapart.com/article/understandingprogressiveenhancement

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

150

 When There’s No Alternative
 Although progressive enhancement works in many cases, it isn’t always a satisfactory solution to the
problem of supporting older browsers. Sometimes the project dictates that you must adopt a layout that isn’t
possible without some level of support for a particular CSS module or paradigm.

 Under these circumstances, there’s an alternative approach that works hand in hand with progressive
enhancement to either programmatically build support for modules into an older browser or work around
the lack of support using scripts or hacks. This method of dealing with the inadequacies of older software is
 called polyfilling .

 Wikipedia describes a polyfill as “downloadable code which provides facilities that are not built into a
web browser. It implements technology that a developer expects the browser to provide natively, providing
a more uniform API landscape. For example, many features of HTML5 are not supported by versions of
Internet Explorer older than version 8 or 9, but can be used by web pages if those pages install a polyfill.”
Related terms that are used to describe a similar approach to dealing with nonsupporting browsers
include shiv and shim . The basic premise is the same, however, regardless of what you name the approach.
JavaScript is typically used to interrogate the browser for support for a particular feature, and if support isn’t
present, it either provides CSS hooks to allow for alternative styling (in the case of progressive enhancement)
or provides workaround support in the form of pseudo-native adherence to the standard.

 Modernizr
 As you’ll see during the course of this chapter, many different polyfill solutions and approaches to polyfilling
are available, but all of them rely on using some method of detecting browser support for a specific feature
and, assuming lack of support is found, providing an alternative. The basis for this approach is feature
detection, and perhaps the best-known tool for this purpose is the Modernizr library (see Figure 8-2).

 Figure 8-2. The Modernizr web page: http://modernizr.com

http://modernizr.com/

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

151

 Modernizr is a JavaScript library that allows you to use feature-detection to determine whether the
browser being used to access your web site can render specific types of content or support particular
features. The library works by checking for support in the browser against a series of tests. For example,
if you’re using CSS transitions, you can test the browser’s ability to render these and, if the browser doesn’t
handle animations, provide a fallback or alternative.

 Modernizr lets you write conditional CSS and JavaScript to tailor the experience of your web site
according to the capabilities of the user’s web browser. This is a useful technique for the whole of the CSS
specification, but in this case it’s handy specifically because you can test for support of new layout modules.

 The library is quick to install and simple to use. When a page with Modernizr loads, a JavaScript object
is created that contains the results of the tests, and CSS classes are added to the <html> element, allowing
you to check via either script or CSS whether a specific feature is supported.

 As I mentioned, you can conduct tests for feature support. That may leave you wondering what tests
specifically can be run, and which features are supported by Modernizr. What makes the library so useful
and popular is that it’s almost a one-stop shop for browser functionality-support testing. Modernizr allows
you to test for more than 40 next-generation features including font-face , rgba , CSS animations, gradients,
canvas, HTML5 audio and video, local storage, and WebGL. And, most crucially, it can be used to test for the
CSS3 layout modules discussed in this book!

 The library doesn’t force you to run tests for every single feature; a great strength of Modernizr is
its modular nature. You only need to test the features you require, rather than having to conduct every
individual feature test (see Figure 8-3).

 Figure 8-3. Customizing the Modernizr library to suit the specific tests required for a given project

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

152

THREE ALTERNATIVE METHODS TO TEST FEATURE

SUPPORT IN BROWSERS

 On the Server

 If you’re concerned about relying on JavaScript to identify browser features, you can use server-side
sniffing instead. This approach uses the browser’s user agent property to inject a browser-specific
class into the html element before the page is sent to the browser. Note that this has the same potential
problems as browser-sniffing of any kind: it doesn’t scale well.

 Conditional Comments

 Another potential solution to addressing deficient browsers is to use conditional comments to selectively
load stylesheets and scripts. This method is commonly used to target IE6 and IE7 and allows for loading
according to version number as well as vendor, although support is limited to Internet Explorer.

 @supports

 One of the proposed new features of CSS3 is the @supports method. This lets you code a conditional
test of the browser’s ability to render a specific CSS property, and it works in a manner similar to
 @media queries. Ironically, the biggest issue with @supports is a lack of browser support.

 Alternatives to Modernizr
 It’s important to highlight that Modernizr isn’t the only solution available to polyfilling missing support in
browsers. Indeed, Modernizr itself only really interrogates the browser to test for support for specific features
and updates the DOM accordingly to signpost what is and is not available in terms of support.

 As with any library on the Web, it pays to do a little research in your favorite search engine, because
the landscape is changing rapidly (see Figure 8-4). One advantage of using Modernizr is that because it’s so
widely adopted, bug fixes tend to be released regularly.

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

153

 ■ Note I can’t stress enough the importance of checking the Web for the latest and greatest polyfill solutions
at the time of authoring your page. The landscape is fluid enough that by the time you read this book, there
could be many new solutions that improve on what’s available today.

 YepNope
 YepNope hooks into the results of specific Modernizr tests and uses them to load resources into the browser
(see Figure 8-5). This is incredibly useful: if you’re able to split out your code into separate sections, the
addition of YepNope allows you to conditionally load scripts and stylesheets.

 Figure 8-4. More than 20,000 results when searching for a polyfill for CSS Multi-columns Layout

 Figure 8-5. The YepNope download page at http://yepnopejs.com

http://yepnopejs.com/

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

154

 Because it’s only called into action after the Modernizr tests have run, you gain the major benefit of
conditionally loading scripts and styles according to browser feature support and avoid having to load all
your workaround options into every browser. Only those that need the polyfills get them. When combined
with the prebuilt polyfill solutions described later in this chapter, Modernizr with YepNope almost offers a
drag-and-drop solution to many compatibility issues you face when implementing CSS3 layout modules in
production web sites.

 Note that at the time of writing, YepNope is being discontinued because Modernizr has been updated to
incorporate sufficient functionality to make the YepNope loader unnecessary. If you’re using the most up-to-
date version of Modernizr, you almost certainly no longer need YepNope, but I’ve mentioned it here in case
you’re stuck using older releases in a corporate environment.

 ■ Tip Check http://caniuse.com to view a table showing the latest level of browser support for individual
CSS layout modules.

 Example Using Modernizr
 Let’s take a quick look at an example of a polyfill that uses Modernizr to provide CSS3-like support to older
browsers that don’t natively support the module you’re using. This example styles a simple unordered list
using the CSS3 Multi-column Layout module to spread the content of a list across a series of columns.
In most modern browsers, this works without any need for either vendor prefixes or special workarounds.
Check out http://caniuse.com/#feat=multicolumn for the latest on browser support. Note that Internet
Explorer 8 and 9 don’t offer any support for this module.

 The Project
 First, you generate an HTML document with some very basic styles to create a simple multicolumn layout.
You can see the code for this in Listing 8-1 and the output in Safari in Figure 8-6 .

 Listing 8-1. Code to Achieve a Three-Column Layout with the CSS Multi-column Layout module

 <!DOCTYPE HTML>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Multicol Polyfill Example</title>
 <style>
 body {
 font-family: arial, helvetica, sans-serif;
 font-size: 62.5%;
 background: #fff;
 color:#333;
 }
 article {
 background: #eee;
 position: relative;
 padding: 20px;
 width: 920px;
 margin: auto;
 }

http://caniuse.com/
http://caniuse.com/#feat=multicolumn

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

155

 article h1 {
 font-size: 2em;
 }
 article ul {
 columns: 3;
 }
 article ul li {
 list-style: none;
 font-size: 1.2em;
 padding: 5px;
 }

 </style>
 </head>
 <body>
 <article>
 <h1>Things that I like</h1>

 Coffee
 Tea
 The Java Jive
 Lazy Sunday mornings
 A good book
 Nights at the movies
 The smell of baking bread
 Smiling
 Old-fashioned jazz and blues
 A freshly-made bed
 Hugs

 </article>
 </body>
 </html>

 Figure 8-6. Output of Listing 8-1 in Safari on a Mac

 As you can see, the code creates a basic three-column layout by adding the CSS code columns: 3 to
the stylesheet, applying the rule to the ul element. This works in every browser in common use, with the
exception of Internet Explorer 8 and Internet Explorer 9. You can’t absolutely guarantee that users will be
limited to the browsers in common use, however. To ensure that users of browsers that do not support CSS
Multi-column Layout also see the list rendered into three columns, you can use Modernizr to test for support
and, if no support is found, use a polyfill to render the columns.

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

156

 The Polyfill
 This is a very basic layout, so you don’t need anything fancy or spectacular to work around lack of browser
support. You can use a polyfill built specifically for the purpose of rendering content in multiple columns:
Multicolumn-Polyfill, which you can find and download at https://github.com/hamsterbacke23/
multicolumn-polyfill .

 Before you can use the script, you need to ensure that Modernizr is installed and active on your page.
Add a single line of code to the <head> section of the page to call in a CDN-hosted version of the Modernizr
library, as shown in Listing 8-2 .

 Listing 8-2. Adding a CDN-Hosted Version of the Modernizr Library

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Multicol Polyfill Example</title>
 <script src="jquery.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/modernizr/2.8.3/modernizr.min.js">
</script>
 <style>
 body {
 font-family: arial, helvetica, sans-serif;
 font-size: 62.5%;
 background: #fff;
 color: #333;
 }

 Now that you have both jQuery and the Modernizr library installed on the page, you can use a simple
test in JavaScript to check whether the browser supports the CSS Multi-column Layout module. Add this to
the code immediately before the closing </body> tag, as shown in Listing 8-3 .

 Listing 8-3. Test and Polyfill in Action

 Hugs

 </article>
 <script src="polyfill/multicolumn.js"></script>
 <script>
 if (!Modernizr.csscolumns) {
 $('article ul').multicolumn();
 }
 </script>
 </body>
 </html>

 The result of this additional code is that if the browser fails the Modernizr test for multicolumn support,
the polyfill is loaded. The polyfill renders the content across columns using floated elements and hides the
original container. It’s as straightforward and simple as that.

 This specific example addresses a very simple layout issue with a polyfill, but the same principle applies
no matter how complicated your requirements become. Breaking down each element and polyfilling is a
case of identifying features, testing for support, and then providing a fallback alternative for those layout
elements. Note that support for specific browsers isn’t guaranteed. It’s down to the specific polyfill you
choose, as illustrated by IE9 not rendering columns using the earlier example.

https://github.com/hamsterbacke23/multicolumn-polyfill
https://github.com/hamsterbacke23/multicolumn-polyfill

CHAPTER 8 ■ SUPPORTING OLDER BROWSERS

157

 ■ Note Modernizr is undergoing a big new release at the time of writing. Rather than downloading or
installing an entire library, you can copy and paste specific test code that’s specific to the features you want to
check against. Be sure to visit the Modernizr web site to get the latest version of the library.

 Prebuilt Polyfills
 Sometimes, an off-the-shelf polyfill solution won’t work for your specific needs, in which case you may find
yourself building your own script that provides functionality to substitute in place of the missing support.
In most cases, however, simply using Modernizr, YepNope, and a prebuilt polyfill script is enough to get by.
Also note that other options are available that don’t use Modernizr.

 To give you an idea of the range of existing polyfills that cover layout modules, following is a slightly
curated list borrowed from the Modernizr blog (which has an extensive list of options). To see the full list,
visit the link in the Note:

• CSS Multi-column Layout : Multicolumn polyfill by Cédric Savarese, http://
alistapart.com/article/css3multicolumn

• CSS Flexible Box Layout : Flexie by Richard Herrera, http://flexiejs.com

• CSS Grid Layout : Grid layout polyfill by François Remy, https://github.com/
FremyCompany/css-grid-polyfill

• CSS Template Layout : CSS Template Layout jQuery plug-in by Alexis Deveria,
 https://code.google.com/p/css-template-layout/

• CSS Regions Layout : Regions polyfill by François Remy, https://github.com/
FremyCompany/css-regions-polyfill

 ■ Note For a full list of polyfills specific to each of the layout modules you’ve seen in this book, refer to the
Modernizr blog post on the subject at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-
Browser-Polyfills .

 Summary
 Although it’s easy to get carried away when new functionality becomes available, especially on the Web
where standards are historically very slow to be implemented, it’s important not to lose sight of the need
to support older browsers, which can make up a substantial proportion of the users visiting your web sites.
Polyfills offer a practical solution to providing support in many cases. Where this isn’t practical or possible,
for technical or resource reasons, taking a progressive enhancement approach can offer a useful alternative
that ensures your content is accessible and user-friendly.

 As browser support improves and users update their systems to utilize the latest software, polyfills
should become less prevalent. But for the time being, they’re worth using any time you want to use one of
the layout modules discussed in this book and can’t control the audience’s operating system and device
profiles.

 Don’t forget to regularly check for new and improved polyfills via your favorite search engine. Talented
web developers the world over are constantly constructing solutions to the issue of modules not yet being
implemented in common browsers.

http://alistapart.com/article/css3multicolumn
http://alistapart.com/article/css3multicolumn
http://flexiejs.com/
https://github.com/FremyCompany/css-grid-polyfill
https://github.com/FremyCompany/css-grid-polyfill
https://code.google.com/p/css-template-layout/
https://github.com/FremyCompany/css-regions-polyfill
https://github.com/FremyCompany/css-regions-polyfill
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

159© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_9

 CHAPTER 9

 Speeding Up Workflow: CSS
Libraries and Frameworks

 Working in web design involves a lot of repetition: although every page is unique, much of the underlying
code relies on the same core principles and building blocks. The layout modules that CSS3 introduces offer
a tidy solution for lots of different layout paradigms, but they can be unnecessarily complex when you’re
crafting essentially the same layout over and over. How do you reduce the time and complexity overhead
when working with core building blocks? By using CSS libraries and frameworks, you can simplify the layout
process, abstracting some of the complications and providing a consistent, rapid development platform.

 You are most likely familiar with many such frameworks and libraries; they’re not new or limited to
CSS3 layout modules. Some of the Web’s most popular web sites are built on top of frameworks made open
source by the developer teams behind Twitter, Microsoft, Apple, and Facebook. Examples include the likes
of Bootstrap, which provides a simple solution to creating many elements of a layout in a responsive fashion
that works well for almost every possible device. These frameworks all tend to remove the direct connection
with the underpinning CSS code, making development a case of applying the appropriate structure and CSS
classes to individual elements in the page structure.

 Many libraries and frameworks deal with much more than just layout. Much of the functionality baked
in also allows you to craft widgets and buttons and style copy and headlines in a consistent manner. This
can have benefits, but if you only wanted to be able to design using a predefined set of styles, you wouldn’t
have this book in your hands! This chapter introduces you to some of the best CSS3 layout libraries and
frameworks, with a specific focus on keeping the job of styling in your control. Inevitably you’ll find one that
you prefer, and you’ll stick with that. It’s worth regularly checking the Web to see what new frameworks have
been developed by the online community (see, for example, Figure 9-1), because the environment is so fluid
that things can change very quickly.

 ■ Tip Once you’ve found a library that you like, spending time getting to know its nuances can pay big
rewards later. But don’t ever sit back and accept that you’ve found the pinnacle of the library/framework
options. It pays to shop around!

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

160

 Don’t Start from Scratch
 Libraries and frameworks come in a variety of forms. Some are full-on web site development tools that act
as a scaffold for page layouts, design implementation, and content styling. Others take a more structural
approach, providing building blocks and getting out the way of the business of aesthetically treating the
elements on the page.

 Both approaches have their plusses and minuses, but they share a common goal : speeding up the
development of pages and making it easier to achieve consistency in your code. You don’t need to start from
scratch with each new page that you design: instead, by calling on a suitable library, you can use the work of
others to reduce repeated effort.

 Developers and designers tend to find a tool they like and stick with it. This can yield benefits when
you’re using a particular library or framework, because as you become more comfortable and familiar with
the methodology of a specific code base, you can take best advantage of what it offers. Being loyal to one
tool can have its downsides, too, not least because without seeing what else is available, you may miss out
on enhanced functionality and capabilities offered elsewhere. So I encourage you to try your finger in many
different library and framework pies and to keep sampling on an ongoing basis.

 An argument that is often leveled against the use of other developers’ code is that you may become
dependent on that vendor’s willingness and ability to squash bugs and provide updates and revisions.
There’s also the time investment required to learn the nuances of each specific codebase. I would like to
convince you that a bit of investment up front can bring great benefits in time (and money) down the line.

 Another issue worth talking about, and one that libraries and frameworks tend to alleviate without
you having to worry much about it, is cross-browser operability. Although some of the worst CSS-
implementation differences are (fortunately) now in the past, there continue to be different interpretations
of how individual modules from the specification should be integrated. This is especially true with emerging
modules such as those you’ve seen in this book. By using a library, an example of which you can see in

 Figure 9-1. There are many web sites dedicated to showcasing CSS3 libraries and frameworks, such as
SpeckyBoy (http://speckyboy.com/2014/06/02/css-libraries-frameworks-tools/)

http://speckyboy.com/2014/06/02/css-libraries-frameworks-tools/

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

161

Figure 9-2 , you can eliminate much of the uncertainty in providing vendor-prefixed versions of selectors.
This means you have more time to spend on the overall layout, rather than wasting time figuring out why a
particular browser isn’t implementing your design the same way every other browser does.

 Figure 9-2. The YAML webpage, found at http://www.yaml.de

 Again, countering this benefit is the fact that libraries can sometimes be bloated and cumbersome,
which means they may impact the performance of your web site. Additional code to support every device
under the Sun, when you’re only interested in targeting your company’s corporate devices, may outweigh
some of the positives of using a library.

 There’s No Right Answer for Libraries and Frameworks
 As you can see, there’s are arguments in favor of and against using CSS libraries and frameworks. The
question of whether it’s appropriate for your specific project can only be answered by your own analysis and,
often, a judgment call on your part.

 Recognizing that there are occasions when it’s beneficial to use them, however, the rest of this chapter is
dedicated to examining a few options that are available at the time of writing. Toward the end of the chapter,
you also revisit a project completed in Chapter 5 and see how it might be interpreted and implemented
differently if you were using a library instead of raw CSS code.

 ■ Note Some libraries and frameworks use a hybrid approach of employing CSS3 layout modules and
non-CSS3 layout tricks. Unless you’re a purist, this can offer a good, robust solution to the problem of achieving
a specific layout.

http://www.yaml.de/
http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

162

 The Best CSS Frameworks and Libraries
 Given that you’re working in a very fluid time for CSS3 layout modules, this section’s heading is bold, but
I’ve picked out some of the best CSS frameworks and libraries currently available. How do I know they’re the
best? I’ve conducted an entirely unscientific study of search-engine results to determine popular opinion. I’ll
keep saying this: it’s imperative that you check out what the online community has to say when you embark
on a search for a library.

 As discussed earlier, two basic types of libraries and frameworks are available. The difference is a little
like that between a basic motel room and a five-star hotel room. Sometimes you want nothing more than
four walls and a bed, with the ability to cook your own food and use your room as you see fit; other times,
you want the luxury of letting someone else worry about the details, and to have everything brought to you
on a silver platter!

 At its most basic level, a CSS3 layout library only provides the hooks to allow you to create a grid layout ,
render a flexbox, or call on a multicolumn layout, without having to do anything more than apply the
appropriate classnames to a series of <div> s, <section> s, or <article> s. These are akin to a basic motel
room. They do one thing, and that’s it. The rest is up to you! At the other end are solutions that do all the
layout and that also offer widgets, styles, and skins that can essentially provide every facility you might need
to achieve a page design and layout, including all the aesthetics.

 I err on the side of the motel room. But don’t let that stop you from pursuing the full-service option if it
suits your needs more effectively for a particular project.

 Flexbox Grid
 The Flexbox Grid system is a straightforward library designed to allow you to use classes on elements to
assign different Flexbox attributes to the layout without having to dig into CSS directly (see Figure 9-3).
Created by Kristopher Joseph, it’s an extremely lightweight solution, barely abstracting the source CSS3
Flexbox code; but because of this, it is also really easy to learn how to use. Later in this chapter, you use this
library to re-create the original Flexbox project.

 Figure 9-3. Flexbox Grid, found at http://flexboxgrid.com

http://flexboxgrid.com/

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

163

 ptb/flexgrid
 This framework is also based on the Flexbox module, but rather than offer the bare bones, it attempts to
re-create the same layout paradigm that Bootstrap uses (see Figure 9-4). The resulting grid layout is far
more rigid than with other options, but if you’re already familiar with the Bootstrap 12-column grid, you’ll
immediately feel right at home.

 Figure 9-4. ptb/flexbox, found at http://ptb2.me/flexgrid /

 ptb/flexgrid is designed solely for the purpose of laying out content in a grid system—there’s no fancy
user-control styling or additional widgets. The result is that the entire framework occupies less than 2 KB,
excluding the Modernizr library, which is required to ensure that the layout works across all browsers.

 Compass
 Compass differs from the other libraries and frameworks highlighted in this section in that it doesn’t simply
use a single CSS3 layout module, but rather provides a solution to make it easier to use any and all of the
tools available in CSS3, and CSS in general (see Figure 9-5). The premise is simple: reduce the amount of
code clutter associated with crafting a specific design, and provide easy access to reusable design patterns
that are popular across the Web. This means you can use the framework to rapidly prototype and deploy
a layout using building blocks you’re familiar with. There are also a host of extensions available that cover
everything from typographic control to sprite generation.

http://ptb2.me/flexgrid/

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

164

 CSS Regions Polyfill
 Although Francois Remy’s CSS Regions Polyfill isn’t technically a framework, I’ve included it here because
it offers a really useful solution for using the CSS Regions Layout specification immediately (see Figure 9-6).
The particular benefit of using Francois’ JavaScript library is that it allows you to implement regions without
browser vendor prefixes, enabling you to write code today that still needs direct access and understanding
of the CSS Regions Layout module but that is future-proofed while remaining accessible to older browsers,
thanks to JavaScript.

 Figure 9-5. Compass, found at http://compass-style.org

http://compass-style.org/

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

165

 Because the library uses the original specification, you don’t need to know anything other than what’s
covered in this book. This won’t simplify your code, but it removes a headache in providing cross-browser
support and fallback.

 Responsive Aeon
 This grid-based library uses an approach similar to some of the other libraries highlighted here, but the
layout engineering is completely abstracted, so it’s not immediately obvious which modules are being used
to create the layout (see Figure 9-7). In fact, the latest update uses a lot of CSS2.1 to produce the layout, while
using an approach similar to that of CSS3 Grid Layout. Remember that when you’re using a CSS layout,
you’re calling on a combination of decades of work; so if you need something a little more stable than the
fluid “in-development” CSS3 modules, this may be a good stepping stone toward a fully CSS3 solution. The
code is very simple, so it’s also ripe for customization to form the basis of a library you can reuse in future
projects.

 Figure 9-6. CSS Regions Polyfill, found at https://github.com/FremyCompany/css-regions-polyfill

https://github.com/FremyCompany/css-regions-polyfill

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

166

 Just the Beginning …
 Keep in mind that the libraries and frameworks highlighted in this chapter are just the beginning of the
options available on the Web. To speed up your workflow, it’s crucial that you invest time early on examining
and exploring the options available to you.

 ■ Note Here I am, saying again that I can’t stress enough the importance of checking the Web for the latest
and greatest libraries and frameworks available when you author your page. By the time you read this book,
there will almost certainly be a host of options that add to the mix available at the time of writing.

 Speeding Up Your Workflow: An Example
 Now that you’ve seen a few of the options currently available for speeding up page development using CSS
libraries and frameworks, let’s dig into one in more detail and see what it might look like to use one of these
libraries. For the purposes of this exploration, let’s return to an example projects you saw earlier in the book.
This is useful because it allows you to see how code crafted earlier can be simplified through the use of a
framework.

 Figure 9-7. Responsive Aeon, found at http://newaeonweb.com.br/responsiveaeon/

http://newaeonweb.com.br/responsiveaeon/

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

167

 A Real-World Example
 If you haven’t already checked out Chapter 5 , take a quick look now to familiarize yourself with CSS Flexbox
and how it works to fill space. This example re-creates the project featured in that chapter; but instead of
using raw CSS Flexbox code, it takes advantage of the Flexbox Grid library and shows the effect the library
has on the code.

 Let’s recall the layout you’re seeking to create. Figure 9-8 shows the mockup from Chapter 5 ; this
example uses the exact same elements to craft another version of this project, but it should be significantly
easier once you’re familiar with the Flexbox Grid library.

 Figure 9-8. The project to be re-created from Chapter 5 using a library instead of raw CSS flexbox code

 If you’ve been paying attention, you realize that Flexbox was used to create the layout in Figure 9-9 .
For the purpose of providing a fair comparison, you’ll use the same module to render the layout of the
library-powered layout. This means calling on the Flexbox Grid library highlighted earlier in this chapter.
I’m not endorsing that particular library; but as you’ll see, it does provide an effective and functional
solution to crafting the layout. Just as in the previous layout attempt, let’s focus exclusively on three sections
of the page: the navigation bar, jumbotron area, and benefit statements.

http://dx.doi.org/10.1007/978-1-4302-6503-0_5
http://dx.doi.org/10.1007/978-1-4302-6503-0_5
http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

168

 The HTML Markup
 Let’s begin by looking at the HTML markup used in Chapter 5 , shown in Listing 9-1 . The code for this page is
straightforward and follows a pattern similar to layouts used in the past when using floats to arrange design
elements.

 Listing 9-1. HTML Code for Three Parts of the Page Suited to Flexbox Layout

 <!—The navigation section -->
 <nav>

 Home
 Locations
 Financing
 Special Offers
 About us
 Contact Us
 <li class="searchform"><form><input type="text" value="search" /></form>

 </nav>

 <!—The big icons/jumbotron section -->
 <section id="jumbotron">
 <article>
 <h2>Free Advice</h2>
 <p>All our impartial advice is offered completely free of charge</p>

 </article>
 <article>
 <h2>Discounted Removals</h2>
 <p>Once you've found your dream…
 ...</article>
 </section>

 <!—The badge benefits section -->
 <section id="benefits">
 <article>
 <h1> Looking for a beautiful new home that won't break the bank?</h1>
 <p> Nulla vitae elit libero, a pharetra augue. Nulla vitae elit libero, a pharetra augue.

Cras mattis consectetur purus sit amet fermentum.</p>
 </article>
 <article class="badge">
 <div>
 <h3>Quality without compromise</h3>
 <p>We have homes that suit every budget without compromising on quality</p>
 </div>

 </article>
 <article class="badge">...
 ...</article>
 </section>

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

169

 Using the Library
 Different libraries have different solutions for implementation. This example uses the Flexbox Grid library,
so you download the library and follow the instructions for inserting it into my page. This is as simple as
creating a <link> in the <head> section, as shown in Listing 9-2 .

 Listing 9-2. Installing the Library by Copying Files into the Web Site Folders and Using a <link> Statement

 <head>
 ...
 <link rel="stylesheet" href="css/flexboxgrid.min.css" type="text/css">
 ...
 </head>

 ■ Tip Recall that as new CSS3 modules are implemented by browser vendors, they tend to start with
vendor-specific prefixes in their implementation. Libraries and frameworks remove the need for you to concern
yourself with these nuances.

 The Navigation
 The first section of the page you need to deal with is the navigation that runs across the top of the design.
This, as you see if you refer back to Chapter 5 , is pretty simple using Flexbox directly. Listing 9-3 repeats the
CSS code used in Chapter 5 , to illustrate just how simple! Using the Flexbox Grid library is equally
straightforward, as shown in Listing 9-4 .

 Listing 9-3. Native Flexbox CSS Code to Create the Navigation Layout

 /* The navigation section */
 nav > ul {
 display: flex;
 flex-flow: row wrap;
 }
 nav > ul > .searchform {
 margin-left: auto;
 }

 Listing 9-4. Using the Flexbox Grid Library and Altering the HTML Code to Apply Specific Classes to
Elements

 <!—The navigation section -->
 <nav>
 <ul class="row start-xs">
 <li class="col-xs">Home
 <li class="col-xs">Locations
 <li class="col-xs">Financing
 <li class="col-xs">Special Offers
 <li class="col-xs">About us
 <li class="col-xs">Contact Us

http://dx.doi.org/10.1007/978-1-4302-6503-0_5
http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

170

 <li class="col-xs-offset-2 col-xs searchform"><form><input type="text" value="search" />
</form>

 </nav>

 As you can see, the primary difference between the two approaches is that when you handle the
implementation by writing CSS Flexbox code directly, you use CSS to create the layout. In the case of
the Flexbox Grid library, you instead apply class names to the HTML. In this example, the difference is
trivial; but as things get more complex, the second approach is more agile if you wish to make changes
to the number of items that appear in the layout. Figure 9-9 shows the navigation output in Chrome after
implementing the Flexbox Grid library.

 Figure 9-9. If you’re eagle-eyed, you’ll notice that this is practically the same as the render in Chapter 5
following the native CSS attempt. The primary difference is that this version aligns to a grid

 The Jumbotron
 Using straight CSS, the jumbotron was pretty straightforward to craft. Recall the following about the design
mockup that can help when turning this into a functioning layout:

• Each <article> is evenly sized.

• The content of each element in the jumbotron is aligned centrally on both axes.

• The image renders before the text but appears after the text in the markup.

 Check back to the HTML code, and notice that the last point requires you to reorder the content during
presentation. Flexbox makes this straightforward, and so does the Flexbox Grid library. Again, everything is
handled by applying specific classes to the elements in the markup. The code using the library is shown in
Listing 9-5 .

 Listing 9-5. Flexbox Grid Classes Applied to the HTML Markup, Assigning Layout Attributes to the Elements
on the Page

 <!—The big icons/jumbotron section -->
 <section id="jumbotron" class="row">
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">
 <h2 class="col-xs-12">Free Advice</h2>
 <p class="col-xs-12">All our impartial advice is offered completely free of charge</p>
 < div class="col-xs-12 first-xs"><img src="images/bigicon-freeadvice.png" width="52"

height="41" /></div>
 </div>
 </article>
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

171

 <h2 class="col-xs-12">Discounted Removals</h2>
 <p class="col-xs-12">Once you've found your dream home we can help get you moved in</p>
 <div class="col-xs-12 first-xs"><img src="images/bigicon-removals.png" width="50"

height="41" /></div>
 </div>
 </article>
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">
 <h2 class="col-xs-12">Buying Incentives</h2>
 <p class="col-xs-12">Many of our homes offer additional benefits such as rebates</p>
 <div class="col-xs-12 first-xs"><img src="images/bigicon-incentives.png" width="24"

height="41" /></div>
 </div>
 </article>
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">
 <h2 class="col-xs-12">Locations nationwide</h2>
 <p class="col-xs-12">We have agents and properties across all 50 States</p>
 <div class="col-xs-12 first-xs"><img src="images/bigicon-locations.png" width="41"

height="41" /></div>
 </div>
 </article>
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">
 <h2 class="col-xs-12">Highest Quality Homes</h2>
 <p class="col-xs-12">Every single home we offer is guaranteed for quality</p>
 <div class="col-xs-12 first-xs"><img src="images/bigicon-quality.png" width="51"

height="41" /></div>
 </div>
 </article>
 <article class="col-lg-4 col-xs-12">
 <div class="marginbox row">
 <h2 class="col-xs-12">No obligation</h2>
 <p class="col-xs-12">You can withdraw from the process at any time without penalty</p>
 <div class="col-xs-12 first-xs"><img src="images/bigicon-noobligation.png" width="45"

height="41" /></div>
 </div>
 </article>
 </section>

 Changing the HTML also means the original CSS is no longer relevant. You can remove all the Flexbox
code, as shown in Listing 9-6 , leaving the classes assigned in Listing 9-5 .

 Listing 9-6. Removing the Flexbox Code from the CSS Used in Chapter 5 , and Thus Simplifying the Code

 /* The jumbotron section */
 #jumbotron {
 background: #38CEB1;
 max-width: 960px;
 min-height: 380px;

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

172

 justify-content: center;
 padding-left: 1px;
 }
 #jumbotron article {
 /* Vertical align */
 justify-content: center;
 text-align: center;
 }
 .marginbox {
 /* Vertical align */
 justify-content: center;
 text-align: center;
 min-height: 190px;
 background: #EAEAEA;
 margin: 0 1px 1px 0;
 }

 #jumbotron article .marginbox * {
 align-self: center;
 }

 #jumbotron article .marginbox:hover {
 background: #efefef;
 }

 The result, rendered in Safari, is shown in Figure 9-10 . Note that this alternative approach requires
that you add an additional <div> element around the content of each article. This is to allow for the
margin between articles, which would otherwise cause only two articles to render per row. I’ve also set this
additional <div> to work as a nested Flexbox grid row, ensuring that the three elements flex as the design
calls for. Every other aspect of the rendering is identical.

 Figure 9-10. The output from Listing 9-6 is identical to the original version created in Chapter 5

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

173

 In case you were wondering what happens when the browser window is narrower than 960px, the
benefits of Flexbox continue to apply here. When the window gets a little narrower, the content repaginates.
This is thanks to the ability to assign multiple classes to each element. In this case, I assigned an extra-small
screen to show each <article> at 12-column width (which fills the entire row), meaning only one <article>
is rendered per row.

 The Benefits Area
 The remaining section of the page originally rendered using Flexbox was the benefits section at the bottom.
This, you may recall, was the most complicated of the three parts to craft.

 The benefits section is more complicated because the column on the left is double the height of the
sections on the right. In order to handle this, the HTML nests elements. You can see the required code when
implementing the Flexbox Grid library in Listing 9-7 . Again, some extra CSS code is required in addition to
the layout hooks handled by the library, as shown in Listing 9-8 . The resulting amount of code is broadly
similar to the original version created in Chapter 5 , but layout control has been migrated to the use of classes
on the HTML elements rather than purely in CSS. This means changing the layout by introducing additional
elements can be controlled directly from the HTML.

 Listing 9-7. Required HTML Alterations

 <!—The badge benefits section -->
 <section id="benefits" class="row">
 <article class="col-lg-4">
 <h1>Looking for a beautiful new home that won't break the bank?</h1>
 <p>Nulla vitae elit libero, a pharetra augue. Nulla vitae elit libero, a pharetra augue.
Cras mattis consectetur purus sit amet fermentum.</p>

 <p>Curabitur blandit tempus porttitor. Aenean eu leo quam.
 </article>
 <div class="col-lg-8 row">
 <article class="badge col-lg-6 row">
 <div class="col-lg-9 row">
 <h3 class="col-lg-12">Quality without compromise</h3>
 <p class="col-lg-12">We have homes that suit every budget without compromising on

quality</p>
 </div>
 <div class="col-lg-3 first-xs"><img src="images/badge-quality.png" width="38"

height="38" /></div>
 </article>
 <article class="badge col-lg-6 row">
 <div class="col-lg-9 row">
 <h3 class="col-lg-12">Trade-up facilities</h3>
 <p class="col-lg-12">If you have a home to sell, we can help market it, and arrange

bridging finance</p>
 </div>
 <div class="col-lg-3 first-xs"><img src="images/badge-tradeup.png" width="38"

height="38" /></div>
 </article>
 <article class="badge col-lg-6 row">
 <div class="col-lg-9 row">
 <h3 class="col-lg-12">Wonderful locations</h3>

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

174

 <p class="col-lg-12">Don't settle for a nice home in a bad location. All our locations
are carefully chosen</p>

 </div>
 <div class="col-lg-3 first-xs"><img src="images/badge-locations.png" width="38"

height="38" /></div>
 </article>
 <article class="badge col-lg-6 row">
 <div class="col-lg-9 row">
 <h3 class="col-lg-12">Value-added service</h3>
 <p class="col-lg-12">We offer a range of packages that can add value to your home-buying

experience, </p>
 </div>
 <div class="col-lg-3 first-xs"><img src="images/badge-valueadd.png" width="38"

height="38" /></div>
 </article>
 </div>
 </section>

 Listing 9-8. CSS to Size Elements on the Page

 /* The badge benefits section */
 #benefits {
 width: 960px;
 max-width: 960px;
 margin-top: 50px;
 height: 260px;
 }
 #benefits article.badge img {
 margin: 0.5em 0;
 margin-right: 10px;
 }
 #benefits article h1 {
 font-size: 2em;
 padding-right: 1em;
 font-weight: normal;
 margin-bottom: 0.5em;
 }
 #benefits article h3 {
 font-size: 1.6em;
 font-weight: normal;
 margin: 0;
 padding-left: 0;
 text-align: left;
 }
 #benefits article p {
 text-align: left;
 padding: 0;
 font-size: 1.2em;
 margin-bottom: 1em;
 }

CHAPTER 9 ■ SPEEDING UP WORKFLOW: CSS LIBRARIES AND FRAMEWORKS

175

 The output from this implementation is shown in Figure 9-11 . Notice that once again the result is nearly
identical to the original version from Chapter 5 . This is to be expected, because fundamentally the code is
the same between the two implementations; the difference is in how you assign the attributes to the markup.
Which methodology you prefer is up to you, but it can be useful to have prebuilt libraries that create the
layout along common design patterns without the need to create your own solution each time.

 Figure 9-11. The output in Safari

 ■ Note Just to reiterate, some additional non-Flexbox CSS code is required to define the color, border, and
typographic styles shown in this example. I’ve intentionally trimmed the code snippets to only show the relevant
CSS code for layout.

 Summary
 This chapter looked at ways you can use CSS libraries and frameworks to speed up page development.
Although it’s tempting to reinvent the wheel each time you embark on a page layout, fundamentally the
same core elements underpin almost every page you’ll ever design. By recognizing this fact and using a
library to hasten layout, you can focus on getting the details of the design right.

 Naturally, there will be times when a library or framework won’t work for your project, so don’t be
scared to admit that you need to roll your own solution from time to time. It’s much better to recognize
this early in the development process, rather than have a horrible lightbulb moment after you’ve invested
hours and hours shoehorning a design into a framework. For this reason, a little time invested up front to
investigate all the options and choose the one that’s best suited to your specific project is well spent—even if
it results in you not using a library!

http://dx.doi.org/10.1007/978-1-4302-6503-0_5

177© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0_10

 CHAPTER 10

 What the Future Holds for
CSS Layout

 Congratulations! You’ve reached the end of this book on the current layout options offered as part of CSS3.
But don’t think this is the end of the story!

 Along the way to this chapter, you’ve delved into CSS Flexbox, CSS Multi-column Layout, CSS Regions
Layout, and CSS Grid Layout, and you even took a quick look back what the past offered in terms of
alternatives. It’s my hope that you’ve also picked up some ideas for how to polyfill missing functionality and
use the principles of progressive enhancement to offer new and improved layouts for the increasing majority
of users with the latest browsers while not excluding those stuck on older browsers.

 It’s All Still Being Developed
 CSS3 is very much in active development, as you’ve seen by the transient nature of some of the
modules discussed in this book. And it’s not just the modules I’ve talked about that are still undergoing
development—more goodies are in the works that may bring entirely new paradigms to the layout you use
on a daily basis.

 During the process of writing and researching this book, there have been numerous whispers about
exciting new developments going on in the likes of Adobe, Microsoft, Apple, and Mozilla. The years in the
2000s that saw stagnation in the development of CSS are firmly at an end; and as more and more consumers
embrace new technologies and demand more from their online experiences, the companies responsible for
delivering the framework to support those experiences are listening and reacting!

 One example is Adobe. Adobe, famous for its desktop-publishing and creative tools, is intent on
embracing the digital future—and what better platform than the open Web? In addition to cosponsoring
many of the modules you’ve already seen, numerous others are being discussed in development rooms at
the software giant.

 Upcoming Modules and Ideas
 I hope you’ve picked up on the fact that we’re in a really exciting phase of development in CSS. The language
is developing rapidly, and ideas are being thrown around without much fear. This means there is a lot of
engagement, and designers and technicians are buying into the idea of further development. Let’s have a
quick look at a pair of future modules that may make the cut.

CHAPTER 10 ■ WHAT THE FUTURE HOLDS FOR CSS LAYOUT

178

 CSS Exclusions
 CSS Exclusions has developed beyond a behind-closed-doors discussion and is now in development via
the W3C. It’s currently in Working Draft form, cosponsored by Adobe and Microsoft; it builds on the idea of
floating elements introduced in CSS2.1.

 Similar in some ways to CSS Regions Layout, CSS Exclusions describe the way content can flow around
elements, effectively adding another layout formatting tool to the designer’s arsenal (see Figure 10-1). It’s
important to note that the specification is still at its earliest stages, so you won’t be able to reliably use it in
the very near future, but you can find out more at www.w3.org/TR/css3-exclusions/ , where the current
specification is available. Not much implementation is available at the time of writing, but this is potentially
a small but significant improvement to the way you can control content in a more magazine-style manner.

 Figure 10-1. The effect of CSS Exclusions on content, determining how wrapping should occur

 CSS Shapes
 Although not exclusively about layout, CSS Shapes is another example of an upcoming specification; you can
find out more at www.w3.org/TR/css-shapes/ . Again, it builds on the idea of achieving a more magazine-
like layout on the Web; in this case, it determines non-box-shaped boxes for content. This is a pretty big
thing, because until now you’ve had to use smoke and mirrors to give the impression of dealing with
something other than box-shaped content areas.

 Again, this module is being co-sponsored by Adobe and Microsoft and is still in active development.
Keep an eye on the web site to get the latest information about when you may be able to use this in earnest
(without the current crop of script-based polyfills!). Figure 10-2 gives you an idea how significant this could
be for formatting copy around images (or other content) on the Web.

http://www.w3.org/TR/css3-exclusions/
http://www.w3.org/TR/css-shapes/

CHAPTER 10 ■ WHAT THE FUTURE HOLDS FOR CSS LAYOUT

179

 And there’s more …
 The ideas being explored aren’t limited to these two modules. Check out the CSS Working Group web site
for more, including a Presentations Level module that determines styling according to content level—useful
for PowerPoint-style presentations—and upgrades to the way paged media is dealt with on the Web. There’s
a lot more than I’ve had space to cover here, so it’s well worth browsing to see what might be in the next
edition of this book!

 ■ Caution Things change over time! Don’t forget to check back regularly with the authority on all things
CSS3—the W3C—for revisions and enhancements to the specifications outlined in this book. There have been
numerous developments over the time it’s taken to write this book, and there will doubtless be many more
before the complete set of modules are at release candidate stage. But then, that’s part of the fun of working on
the Web, isn’t it?

 Summary
 This chapter has looked at how far we’ve come and the current state of affairs for CSS3 layout. I also took a
sneaky glimpse at the future and what exciting new modules may be developed in the coming years. It’s a
fantastic time to be involved in web design; and with the improvements being made to the languages and
technologies that power the Web and to the browsers that allow users to view and enjoy it, the future can
only be bright for us as web designers. Go forth, and lay out!

 Figure 10-2. A CSS shape acting based on the alpha channel of an image, wrapping content automatically
around the image subject

181© Sam Hampton-Smith 2016
S. Hampton-Smith, Pro CSS3 Layout Techniques, DOI 10.1007/978-1-4302-6503-0

 A, B
 Browsers

 Chrome , 7
 Firefox , 6
 Internet Explorer 7
 StatCounter.com , 6

 Browser supporting devices
 polyfi lling , 150
 shiv and shim , 150

 C
 Column breaks

 break-after , 54
 break-before , 54
 break-inside , 54
 column-fi ll approach , 56–57
 column-span , 55
 content box , 58
 images, responsiveness, and cropping , 55–56

 Conditional comments , 152
 CSS box-model , 8
 CSS exclusions , 178
 CSS layout

 block and inline display
 combine inline-block element , 37
 elements , 36
 HTML code , 35
 structure , 36–37

 block layout , 20, 27
 CSS3 layout , 22
 CSS Zen Garden , 16
 data processing , 23
 exclusions , 178
 features , 26
 fl oating elements , 30

 clear property , 33
 hacks/scripts , 33
 height of, relative position , 32
 relative parent , 31
 style and content , 33

 fl oating layout , 27
 inline layout , 21, 27
 JavaScript , 24
 linear vs . table-based layout , 26
 modular approach , 22
 modules

 Flexbox layout , 10
 Grid layout , 11
 multi-column layout , 10
 regions layout , 11–12

 positioned layout , 21
 positioning attribute , 22
 presentations , 179
 properties , 19
 relative and absolute positioning , 27–30
 relative and positioned layout , 27
 server method , 24
 shapes , 178–179
 table layout , 21, 27

 HTML vs . CSS , 40
 properties , 40–41
 scripts/hacks , 42

 tabular data sets , 26
 visual characteristics , 19
 web design , 17–18

 CSS Level 1 (CSS1)
 Internet Explorer , 3–4
 properties , 3
 web designers , 4

 CSS Level 2 (CSS2) , 5
 CSS Level 3 (CSS3) , 9
 CSS libraries and frameworks

 Aeon , 165–166
 benefi ts , 160
 Compass , 163–164
 CSS Regions Polyfi ll , 164
 fl exbox grid system , 162
 goal , 160
 grid layout , 162
 HTML alterations , 173
 HTML markup code , 168
 installation , 169

 Index

■ INDEX

182

 jumbotron , 170
 navigation code , 169
 output , 175
 ptb/fl exgrid , 163
 raw CSS fl exbox code , 167
 search-engine , 162
 size elements , 174
 SpeckyBoy , 160
 styles , 159
 types , 162
 uses , 161
 web sites , 159
 YAML webpage , 161

 CSS multi-column Layout
 actual content , 49
 benefi ts , 45
 browser support , 61
 browser window width , 48
 column gap , 50
 content box , 49
 vs . fallback non-columnar , 44
 fallback options and polyfi lls , 61
 HTML and CSS code , 48
 HTML/CSS rules , 45
 HTML markup code , 46, 62
 image techniques , 45
 logical design (see Logical design)
 markup requirements , 49
 mockup page , 61
 multicol element , 50
 properties , 44–45

 column breaks (see Column breaks)
 column-count , 51
 column-gap , 53
 column-rule , 53
 columns property , 51
 column-width , 51
 dropping columns and changing widths , 51

 rendering columns , 64
 smartphone resolution , 49
 syntax and structure , 44

 CSS Working Group (CSSWG) , 17

 D, E
 Document Object Model (DOM) , 23

 F
 Flexbox CSS properties , 76
 Flexbox dimensions , 76
 Flexbox layout

 alignment
 align-content , 91–92
 align-items , 90

 align-self , 90
 collapsed items , 93
 cross axis , 90
 justify-content , 88–89
 margins , 88
 multiple lines , 89
 navigation menu , 94
 options , 91

 benefi t statement , 96, 100
 block layout , 73
 CSS code , 100
 defi nition , 73
 direction and size , 75–76
 fi ctional real-estate company , 95
 HTML markup , 96
 inline layout , 73
 Internet Explorer , 75
 jumbotron , 96, 98
 mobile platforms , 75
 navigation bar , 96–97
 order property , 82–83
 positioned layout , 73
 properties

 fl ex-basis , 84–85
 fl ex-grow , 84
 fl ex-shrink , 84
 HTML markup and CSS , 86
 rules , 86
 shorthand , 85
 syntax , 85

 smartphone resolutions , 100
 syntax , 74
 table layout , 73
 update CSS , 83
 uses , 74, 94
 window size , 99

 Flex container
 direction

 column , 80
 row , 80

 display property , 78–79
 fl ex-fl ow , 81
 fl ex-wrap property , 81
 formatting context , 78
 items , 78
 library item , 79
 nowrap and wrap , 82
 size and relative position , 79

 G
 Grid areas , 110
 Grid container , 110

 align-items property , 126
 auto keyword , 122
 content areas , 115–116

CSS libraries and frameworks (cont.)

■ INDEX

183

 explicit vs . implicit grids , 125
 fi ve column grid lines , 114
 fl exible-length , 113
 four column grid lines , 114
 grid-area property , 116, 121
 grid-auto-fl ow , 123
 #griditem element , 113–114, 116
 grid-template-columns , 112
 grid-template-rows , 112
 inline-level element , 112
 multiple columns and rows , 117
 naming grid lines , 117–118
 nine child elements , 123
 order property , 122
 property , 112
 repeat keyword , 119
 rows and columns , 112–113
 subgrid assignment , 124

 Grid layout module
 action , 104
 block and inline , 103
 books and magazines , 103
 browser , 127
 fall back options , 127
 polyfi ll , 127
 usage scenarios , 127
 W3C , 104

 addition of, width , 107
 basic layout , 105
 block axis , 108–109
 CSS and HTML , 110
 game screen , 105–106
 goals , 106
 grid cell , 109
 grid container (see Grid container)
 grid defi nition , 110
 inline axis , 108
 key terms , 109
 uses , 104, 107–108

 Grid lines , 110

 H, I, J, K
 HTML attributes and tags , 1–2

 L
 Logical design

 callout area , 66
 column content , 66
 sidebar content area , 67

 smartphone resolution , 70–71
 three-column layout , 67
 two-column layout , 68

 M, N, O
 Modernizr , 150

 advantages , 152–153
 alternatives , 152
 CSS and JavaScript , 151
 CSS multi-column layout , 154
 features , 151–152
 library , 156
 output , 155
 prebuilt polyfi ll script , 157
 styles , 154
 test and polyfi ll , 156
 web page , 150
 YepNope , 153–154

 P, Q
 Polyfi ll options , 142
 Pre-built polyfi ll script , 157

 R, S, T, U, V, W, X, Y
 Regions Layout

 Chrome , 146
 using CSS , 131–132
 CSS shapes and code , 144
 Firefox , 132
 HTML markup , 130
 magazine-style , 142–143
 property

 break-after region , 138
 break before region , 137
 break option , 136
 fl ow-from property , 135
 fl ow-into property , 133
 old style approach , 140
 region-fragment , 138–139
 selector , 141
 style approach , 140
 values , 136
 visual characteristics , 142

 three box layout , 129–130

 Z
 z-index property , 28

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Overcoming the Layout Challenges of the Web
	HTML Attributes and Tags
	The Arrival of CSS
	CSS Level 1
	CSS Level 2

	Browsers
	Firefox
	Internet Explorer
	Chrome

	The CSS Box Model
	CSS Level 3
	CSS Layout Modules
	CSS Multi-Column Layout
	CSS Flexible Box Layout
	CSS Grid Layout
	CSS Regions Layout

	How This Book Will Help You
	Summary

	Chapter 2: Layout Modules in CSS: the Old and the New
	Layout Concepts
	Different Types of Layout
	Layout in CSS1
	Layout in CSS2 and CSS2.1
	Block Layout
	Inline Layout
	Table Layout
	Positioned Layout

	Layout in CSS3

	The Importance of Going Modular
	Limitations of CSS Layout
	Summary: Get Ready for the Future!

	Chapter 3: Where We’ve Been: Position, Float, and Display
	Layout Before CSS3
	Relative and Absolute Positioning
	Floated Layout
	Block and Inline Display
	How Does the Display Property Impact Layout?

	Table Layout

	Summary

	Chapter 4: CSS Multi-column Layout
	What Is the CSS Multi-column Layout Module?
	Syntax and Structure
	Basic Concepts
	Understanding the Terminology

	The HTML Markup
	The Multi-column Model
	The CSS Properties
	column-count
	column-width
	columns
	The Rules for Dropping Columns and Changing Widths
	column-gap
	column-rule
	Column Breaks
	break-before
	break-after
	break-inside

	column-span
	Images, Responsiveness, and Cropping in Columns
	Controlling How Columns Are Filled with Content
	Controlling How Column Content Overflows

	How to Use CSS Multi-column Layout
	Browser Support
	Fallback Options and Polyfills

	Real-world Example
	The Mockup
	The HTML Markup
	Rendering Columns
	The Main Article
	Other Column Content

	Summary

	Chapter 5: CSS Flexible Box Layout
	What Is Flexbox?
	Syntax and Structure
	Basic Concepts and Terminology

	Browser Support
	Direction and Size

	The Flex Container
	The Flex Formatting Context
	Display Models
	flex-direction
	flex-wrap
	flex-flow

	Controlling the Order of Items
	Controlling the Flex
	flex-grow
	flex-shrink
	flex-basis
	The flex Shorthand Property and Its Special Cases
	An Example of flex

	Controlling Alignment of Flex Items
	The Main Axis
	Margin
	justify-content

	Working on Multiple Lines

	Cross Axis Alignment
	align-items and align-self
	align-content

	Collapsed Items

	How to Use Flexible Box Layout
	Real-World Example
	The HTML Markup
	Navigation
	The Jumbotron
	The Benefits Area

	Summary

	Chapter 6: CSS Grid Layout
	What Is CSS Grid Layout?
	Grid Layout on the Web
	Why Use a Grid?
	The Basis of a Grid Layout
	Built-in Flexibility

	Understanding the Terminology
	Defining Grids in CSS
	The Grid Container
	The Two Display Options for a Grid Container
	Defining Rows and Columns
	Positioning Grid Items within the Container
	Shorthand Grid Item Positioning
	Positioning Using Grid Area
	Spanning Multiple Columns or Rows
	Naming Grid Lines
	Defining Grids with Repeat
	Defining Grid Areas
	Controlling the Order of Grid Items
	Automatically Flowed Grid Items
	Subgrids
	Explicit vs. Implicit Grids

	Aligning Items to the Grid

	How to Use CSS Grid Layout
	Browser Support
	Fallback Options and Polyfills

	Summary

	Chapter 7: CSS Regions Layout
	What Is CSS Regions Layout?
	An Example

	Browser Support
	Syntax and Structure
	flow-into
	flow-from
	Controlling Break Points
	region-fragment and Overflow

	The New Region Styling Approach
	The Old Region Styling Approach
	Available Selectors
	Visual Characteristics of CSS Regions Layout

	Polyfill Options
	Real-World Example
	The HTML Markup
	The CSS Shapes and CSS Regions Layout Code
	The Result

	Summary

	Chapter 8: Supporting Older Browsers
	When There’s No Alternative
	Modernizr
	Alternatives to Modernizr
	YepNope
	Example Using Modernizr
	The Project
	The Polyfill

	Prebuilt Polyfills
	Summary

	Chapter 9: Speeding Up Workflow: CSS Libraries and Frameworks
	Don’t Start from Scratch
	There’s No Right Answer for Libraries and Frameworks

	The Best CSS Frameworks and Libraries
	Flexbox Grid
	ptb/flexgrid
	Compass
	CSS Regions Polyfill
	Responsive Aeon
	Just the Beginning …

	Speeding Up Your Workflow: An Example
	A Real-World Example
	The HTML Markup
	Using the Library
	The Navigation
	The Jumbotron
	The Benefits Area

	Summary

	Chapter 10: What the Future Holds for CSS Layout
	It’s All Still Being Developed
	Upcoming Modules and Ideas
	CSS Exclusions
	CSS Shapes

	And there’s more …
	Summary

	Index

