
Eric A. Meyer

Padding, Borders,
Outlines, and
Margins in CSS
CSS BOX MODEL DETAILS

Eric A. Meyer

Padding, Borders, Outlines,
and Margins in CSS

978-1-491-92980-3

[LSI]

Padding, Borders, Outlines, and Margins in CSS
by Eric A. Meyer

Copyright © 2016 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Molly Ives Brower
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929803 for release details.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491929803

Table of Contents

Preface. v

Padding, Borders, Outlines, and Margins. 1
Basic Element Boxes 1

Width and Height 2
Padding 4

Replicating Values 6
Single-Side Padding 8
Percentage Values and Padding 10
Padding and Inline Elements 12
Padding and Replaced Elements 14

Borders 15
Borders with Style 16
Border Widths 21
Border Colors 24
Shorthand Border Properties 27
Global Borders 29
Borders and Inline Elements 31
Image Borders 32

Outlines 51
Outline Styles 51
Outline Width 53
Outline Color 54
How They Are Different 56

Margins 57
Length Values and Margins 59
Percentages and Margins 59
Single-Side Margin Properties 61

iii

Margin Collapsing 61
Negative Margins 63
Margins and Inline Elements 65

Summary 67

iv | Table of Contents

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

v

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/padding-borders-outlines-
margins.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

vi | Preface

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/padding-borders-outlines-margins
http://bit.ly/padding-borders-outlines-margins
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Padding, Borders, Outlines, and Margins

Way back in the 1990s, pretty much all web pages were designed using tables for
layout. There were a lot of reasons for this, but one of the most common was the
desire to put a box around a bit of text, like a callout. Of course, this was a ridicu‐
lously complicated way to put a border around a paragraph or sidebar. Shouldn’t it be
easier than that?

The authors of CSS felt it should, indeed, be easier, so they devoted a great deal of
attention to allowing you to define borders for paragraphs, headings, divs, anchors,
images—darned near everything a web page can contain. These borders can set an
element apart from others, accentuate its appearance, mark certain kinds of data as
having been changed, or any number of other things.

CSS also lets you define regions around an element that control how the border is
placed in relation to the content and how close other elements can get to that border.
Between the content of an element and its border, we find the padding of an element,
and beyond the border, there are outlines and then the margins. These properties
affect how the entire document is laid out, of course, but more importantly, they very
deeply affect the appearance of a given element.

Basic Element Boxes
As you’re likely aware, all document elements generate a rectangular box called the
element box, which describes the amount of space that an element occupies in the lay‐
out of the document. Therefore, each box influences the position and size of other
element boxes. For example, if the first element box in the document is an inch tall,
then the next box will begin at least an inch below the top of the document. If the first
element box is changed and made to be two inches tall, every following element box
will shift downward an inch, and the second element box will begin at least two
inches below the top of the document.

1

By default, a visually rendered document is composed of a number of rectangular
boxes that are distributed so that they don’t overlap. Also, within certain constraints,
these boxes take up as little space as possible while still maintaining a sufficient sepa‐
ration to make clear which content belongs to which element.

Boxes can overlap if they have been manually positioned, and visual overlap can
occur if negative margins are used on normal-flow elements.

In order to fully understand how margins, padding, and borders are handled, you
must clearly understand the box model, illustrated in Figure 1.

Figure 1. The CSS box model

Width and Height
It’s fairly common to explicitly define the width of an element, and much less com‐
mon to explicity define the height. By default, the width of an element is defined to be
the distance from the left inner edge to the right inner edge, and the height is the dis‐
tance from the inner top to the inner bottom. The properties that affect these distan‐
ces are, unsurprisingly, called height and width.

One important note about these two properties: they don’t apply to inline nonrep‐
laced elements. For example, if you try to declare a height and width for a hyperlink
that’s in the normal flow and generates an inline box, CSS-conformant browsers must
ignore those declarations. Assume that the following rule applies:

a:link {color: red; background: silver; height: 15px; width: 60px;}

2 | Padding, Borders, Outlines, and Margins

You’ll end up with red unvisited links on silver backgrounds whose height and width
are determined by the content of the links. They will not have content areas that are
15 pixels tall by 60 pixels wide. If, on the other hand, you add a display value, such
as inline-block or block, then height and width will set the height and width of the
links’ content areas.

width

Values: <length> | <percentage> | auto | inherit

Initial value: auto

Applies to: All elements except nonreplaced inline elements, table rows, and row groups

Inherited: No

Percentages: Refer to the width of the containing block

Computed value: For auto and percentage values, as specified; otherwise, an absolute length, unless
the property does not apply to the element (then auto)

height

Values: <length> | auto | inherit

Initial value: auto

Applies to: All elements except nonreplaced inline elements, table rows, and row groups

Inherited: No

Percentages: Calculated with respect to the height of the containing block

Computed value: For auto and percentage values, as specified; otherwise, an absolute length, unless
the property does not apply to the element (then auto)

Basic Element Boxes | 3

It’s possible to change the meaning of height and width using the
property box-sizing. This is not covered in this text, but in short,
you can use either the content box or the border box as the area of
measure. For the purposes of this text, we’ll assume that the default
situation holds: that height and width refer to the height and
width of the content area (box-sizing: content-box).

In the course of this text, we’ll keep the discussion simple by assuming that the height
of an element is always calculated automatically. If an element is eight lines long, and
each line is an eighth of an inch tall, then the height of the element is one inch. If it’s
10 lines tall, then the height is 1.25 inches. In either case, the height is determined by
the content of the element, not by the author. It’s rarely the case that elements in the
normal flow have a set height.

Padding
Just beyond the content area of an element, we find its padding, nestled between
the content and any borders. The simplest way to set padding is by using the property
padding.

padding

Values: [<length> | <percentage>]{1,4} | inherit

Initial value: Not defined for shorthand elements

Applies to: All elements

Inherited: No

Percentages: Refer to the width of the containing block

Computed value: See individual properties (padding-top, etc.)

Note: padding can never be negative

As you can see, this property accepts any length value, or a percentage value. So if you
want all h2 elements to have 1 em of padding on all sides, it’s this easy (see Figure 2):

h2 {padding: 2em; background-color: silver;}

4 | Padding, Borders, Outlines, and Margins

Figure 2. Adding padding to elements

As Figure 2 illustrates, the background of an element extends into the padding by
default. If the background is transparent, this will create some extra transparent space
around the element’s content, but any visible background will extend into the pad‐
ding area (and beyond, as we’ll see in a later section).

Visible backgrounds can be prevented from extending into the
padding by using the property background-clip.

By default, elements have no padding. The separation between paragraphs, for exam‐
ple, has traditionally been enforced with margins alone (as we’ll see later on). It’s also
the case that, without padding, the border of an element will come very close to the
content of the element itself. Thus, when putting a border on an element, it’s usually a
good idea to add some padding as well, as Figure 3 illustrates.

Figure 3. The effect of padding on bordered block-level elements

Any length value is permitted, from ems to inches. The simplest way to set padding is
with a single length value, which is applied equally to all four padding sides. At times,
however, you might desire a different amount of padding on each side of an element.
That’s simple as well. If you want all h1 elements to have a top padding of 10 pixels, a

Padding | 5

right padding of 20 pixels, a bottom padding of 15 pixels, and a left padding of 5 pix‐
els, here’s all you need:

h1 {padding: 10px 20px 15px 5px;}

The order of the values is important, and follows this pattern:

padding: top right bottom left

A good way to remember this pattern is to keep in mind that the four values go clock‐
wise around the element, starting from the top. The values are always applied in this
order, so to get the effect you want, you have to arrange the values correctly.

An easy way to remember the order in which sides must be declared, other than
thinking of it as being clockwise from the top, is to keep in mind that getting the sides
in the correct order helps you avoid “TRouBLe”—that is, TRBL, for “Top Right
Bottom Left.”

It’s also possible to mix up the types of length value you use. You aren’t restricted to
using a single length type in a given rule, as shown here:

h2 {padding: 14px 5em 0.1in 3ex;} /* value variety! */

Figure 4 shows you, with a little extra annotation, the results of this declaration.

Figure 4. Mixed-value padding

Replicating Values
Sometimes, the values you enter get a little repetitive:

p {padding: 0.25em 1em 0.25em 1em;} /* TRBL - Top Right Bottom Left */

You don’t have to keep typing in pairs of numbers like this, though. Instead of the
preceding rule, try this:

p {padding: 0.25em 1em;}

These two values are enough to take the place of four. But how? CSS defines a few
rules to accommodate fewer than four values for padding (and many other shorthand
properties). These are:

• If the value for left is missing, use the value provided for right.

6 | Padding, Borders, Outlines, and Margins

• If the value for bottom is missing, use the value provided for top.
• If the value for right is missing, use the value provided for top.

If you prefer a more visual approach, take a look at the diagram shown in Figure 5.

Figure 5. Value-replication pattern

In other words, if three values are given for padding, the fourth (left) is copied from
the second (right). If two values are given, the fourth is copied from the second, and
the third (bottom) from the first (top). Finally, if only one value is given, all the other
sides copy that value.

This simple mechanism allows authors to supply only as many values as necessary, as
shown here:

h1 {padding: 0.25em 0 0.5em;} /* same as '0.25em 0 0.5em 0' */
h2 {padding: 0.15em 0.2em;} /* same as '0.15em 0.2em 0.15em 0.2em' */
p {padding: 0.5em 10px;} /* same as '0.5em 10px 0.5em 10px' */
p.close {padding: 0.1em;} /* same as '0.1em 0.1em 0.1em 0.1em' */

The method presents a small drawback, which you’re bound to eventually encounter.
Suppose you want to set the top and left padding for h1 elements to be 10 pixels,
and the bottom and right padding to be 20 pixels. In that case, you have to write the
following:

h1 {padding: 10px 20px 20px 10px;} /* can't be any shorter */

You get what you want, but it takes a while to get it all in. Unfortunately, there is no
way to cut down on the number of values needed in such a circumstance. Let’s take
another example, one where you want all of the padding to be zero—except for the
left padding, which should be 3em:

h2 {padding: 0 0 0 3em;}

Using padding to separate the content areas of elements can be trickier than using the
traditional margins, although it’s not without its rewards. For example, to keep para‐
graphs the traditional “one blank line” apart with padding, you’d have to write:

p {margin: 0; padding: 0.5em 0;}

Padding | 7

The half-em top and bottom padding of each paragraph butt up against each other
and total an em of separation. Why would you bother to do this? Because then you
could insert separation borders between the paragraphs, should you so choose, and
side borders will touch to form the appearance of a solid line. Both these effects are
illustrated in Figure 6:

p {margin: 0; padding: 0.5em 0; border-bottom: 1px solid gray;
 border-left: 3px double black;}

Figure 6. Using padding instead of margins

Single-Side Padding
Fortunately, there’s a way to assign a value to the padding on a single side of an
element. Four ways, actually. Let’s say you only want to set the left padding of h2
elements to be 3em. Rather than writing out padding: 0 0 0 3em, you can take this
approach:

h2 {padding-left: 3em;}

padding-left is one of four properties devoted to setting the padding on each of the
four sides of an element box. Their names will come as little surprise.

padding-top, padding-right, padding-bottom, padding-left

Values: <length> | <percentage> | inherit

Initial value: 0

Applies to: All elements

Inherited: No

Percentages: Refer to the width of the containing block

8 | Padding, Borders, Outlines, and Margins

Computed value: For percentage values, as specified; for length values, the absolute length

Note: padding can never be negative

These properties operate as you’d expect. For example, the following two rules will
yield the same amount of padding:

h1 {padding: 0 0 0 0.25in;}
h2 {padding-left: 0.25in;}

Similarly, these rules are will create equal padding:

h1 {padding: 0.25in 0 0;} /* left padding is copied from right padding */
h2 {padding-top: 0.25in;}

For that matter, so will these rules:

h1 {padding: 0 0.25in;}
h2 {padding-right: 0.25in; padding-left: 0.25in;}

It’s possible to use more than one of these single-side properties in a single rule;
for example:

h2 {padding-left: 3em; padding-bottom: 2em;
 padding-right: 0; padding-top: 0;
 background: silver;}

As you can see in Figure 7, the padding is set as we wanted. Of course, in this case, it
might have been easier to use padding after all:

h2 {padding: 0 0 2em 3em;}

Figure 7. More than one single-side padding

In general, once you’re trying to set padding for more than one side, it’s easier to sim‐
ply use padding. From the standpoint of your document’s display, however, it doesn’t
really matter which approach you use, so choose whichever is easiest for you.

Padding | 9

Percentage Values and Padding
As was mentioned, it’s possible to set percentage values for the padding of an element.
Percentages are computed in relation to the width of the parent element’s content
area, so they change if the parent element’s width changes in some way. For example,
assume the following, which is illustrated in Figure 8:

p {padding: 10%; background-color: silver;}

<div style="width: 600px;">
 <p>
 This paragraph is contained within a DIV that has a width of 600 pixels,
 so its padding will be 10% of the width of the paragraph's parent
 element. Given the declared width of 600 pixels, the padding will be 60
 pixels on all sides.
 </p>
</div>
<div style="width: 300px;">
 <p>
 This paragraph is contained within a DIV with a width of 300 pixels,
 so its padding will still be 10% of the width of the paragraph's parent.
 There will, therefore, be half as much padding on this paragraph as that
 on the first paragraph.
 </p>
</div>

By contrast, consider the case of elements without a declared width. In such cases, the
overall width of the element box (including padding) is dependent on the width of
the parent element. This leads to the possibility of “fluid” pages, where the padding
on elements enlarges or reduces to match the actual size of the parent element. If you
style a document so that its elements use percentage padding, then as the user
changes the width of a browser window, the padding will expand or shrink to fit. The
design choice is up to you.

You may have noticed something odd about the paragraphs in Figure 8. Not only did
their side padding change according to the width of their parent elements, but so did
their top and bottom padding. That’s the desired behavior in CSS. Refer back to the
property definition, and you’ll see that percentage values are defined to be relative to
the width of the parent element. This applies to the top and bottom padding as well as
to the left and right. Thus, given the following styles and markup, the top padding of
the paragraph will be 50 px:

div p {padding-top: 10%;}

<div style="width: 500px;">
 <p>
 This is a paragraph, and its top margin is 10% the width of its parent
 element.
 </p>
</div>

10 | Padding, Borders, Outlines, and Margins

Figure 8. Padding, percentages, and the widths of parent elements

If the width of the div changes, the top padding of the paragraph will, too. Seem
strange? Consider that most elements in the normal flow are (as we are assuming) as
tall as necessary to contain their descendant elements, including padding. If an ele‐
ment’s top and bottom padding were a percentage of the parent’s height, an infinite
loop could result where the parent’s height was increased to accommodate the top
and bottom padding, which would then have to increase to match the new height,
and so on. Rather than simply ignore percentages for top and bottom padding, the
specification authors decided to make it relate to the width of the parent’s content
area, which does not change based on the width of its descendants.

The treatment of percentage values for top and bottom padding is
different for most positioned elements, where they are calculated
with respect to the height of the positioned element’s containing
block.

Padding | 11

It’s also possible to mix percentages with length values. Thus, to set h2 elements to
have top and bottom padding of one-half em, and side padding of 10% the width of
their parent elements, you can declare the following, illustrated in Figure 9:

h2 {padding: 0.5em 10%;}

Figure 9. Mixed padding

Here, although the top and bottom padding will stay constant in any situation, the
side padding will change based on the width of the parent element.

Padding and Inline Elements
You may or may not have noticed that the discussion so far has been solely about
padding set for elements that generate block boxes. When padding is applied to inline
nonreplaced elements, things can get a little different.

Let’s say you want to set top and bottom padding on strongly emphasized text:

strong {padding-top: 25px; padding-bottom: 50px;}

This is allowed in the specification, but since you’re applying the padding to an inline
nonreplaced element, it will have absolutely no effect on the line height. Since pad‐
ding is transparent when there’s no visible background, the preceding declaration will
have no visual effect whatsoever. This happens because padding on inline nonrep‐
laced elements doesn’t change the line height of an element.

Of course, an inline nonreplaced element with a background color and padding could
have a background that extends above and below the element, like this:

strong {padding-top: 0.5em; background-color: silver;}

Figure 10 gives you an idea of what this might look like.

Figure 10. Padding on an inline nonreplaced element

12 | Padding, Borders, Outlines, and Margins

The line height isn’t changed, but since the background color does extend into the
padding, each line’s background ends up overlapping the lines that come before it.
That’s the expected result.

The preceding behaviors are true only for the top and bottom sides of inline nonrep‐
laced elements; the left and right sides are a different story. We’ll start by considering
the simple case of a small, inline nonreplaced element within a single line. Here, if
you set values for the left or right padding, they will be visible, as Figure 11 makes
clear (so to speak):

strong {padding-left: 25px; background: silver;}

Figure 11. An inline nonreplaced element with left padding

Note the extra space between the end of the word just before the inline nonreplaced
element and the edge of the inline element’s background. You can add that extra space
to both ends of the inline if you want:

strong {padding-left: 25px; padding-right: 25px; background: silver;}

As expected, Figure 12 shows a little extra space on the right and left sides of the
inline element, and no extra space above or below it.

Figure 12. An inline nonreplaced element with 25-pixel side padding

Now, when an inline nonreplaced element stretches across multiple lines, the situa‐
tion changes a bit. Figure 13 shows what happens when an inline nonreplaced ele‐
ment with a padding is displayed across multiple lines:

strong {padding: 0 25px; background: silver;}

The left padding is applied to the beginning of the element and the right padding to
the end of it. By default, padding is not applied to the right and left side of each line.
Also, you can see that, if not for the padding, the line may have broken after “back‐
ground.” instead of where it did. padding only affects line-breaking by changing the
point at which the element’s content begins within a line.

Padding | 13

Figure 13. An inline nonreplaced element with 25-pixel side padding displayed across
two lines of text

The way padding is (or isn’t) applied to the ends of each line box
can be altered with the property box-decoration-break.

Padding and Replaced Elements
This may come as a surprise, but it is possible to apply padding to replaced elements.
The most surprising case is that you can apply padding to an image, like this:

img {background: silver; padding: 1em;}

Regardless of whether the replaced element is block-level or inline, the padding will
surround its content, and the background color will fill into that padding, as shown
in Figure 14. You can also see in Figure 14 that padding will push a replaced element’s
border away from its content.

Figure 14. Padding replaced elements

Now, remember all that stuff about how padding on inline nonreplaced elements
doesn’t affect the height of the lines of text? You can throw it all out for replaced ele‐
ments, because they have a different set of rules. As you can see in Figure 15, the pad‐
ding of an inline replaced element very much affects the height of the line.

14 | Padding, Borders, Outlines, and Margins

Figure 15. Padding replaced elements

The same goes for borders and margins, as we’ll soon see.

As of late 2015, there was still confusion over what to do about styl‐
ing form elements such as input, which are replaced elements. It is
not entirely clear where the padding of a checkbox resides, for
example. Therefore, as of this writing, some browsers ignore pad‐
ding (and other forms of styling) for form elements. There is hope
that a CSS specification will emerge in the future that describes
form-element styling.

Borders
Beyond the padding of an element are its borders. The border of an element is simply
one or more lines that surround the content and padding of an element. By default,
the background of the element will stop at the outer border edge, since the back‐
ground does not extend into the margins, and the border is just inside the margin.

Every border has three aspects: its width, or thickness; its style, or appearance; and its
color. The default value for the width of a border is medium, which is not an explicitly
defined distance, but usually works out to be two pixels. Despite this, the reason you
don’t usually see borders is that the default style is none, which prevents them from
existing at all. (This lack of existence can also reset the border-width value, but we’ll
get to that in a little while.)

Finally, the default border color is the foreground color of the element itself. If no
color has been declared for the border, then it will be the same color as the text of the
element. If, on the other hand, an element has no text—let’s say it has a table that con‐
tains only images—the border color for that table will be the text color of its parent
element (thanks to the fact that color is inherited). That element is likely to be body,
div, or another table. Thus, if a table has a border, and the body is its parent, given
this rule:

body {color: purple;}

then, by default, the border around the table will be purple (assuming the user agent
doesn’t set a color for tables). Of course, to get that border to appear, you have to do a
little work first.

Borders | 15

The CSS specification defines the background area of an element to extend to the
outside edge of the border, at least by default. This is important because some borders
are “intermittent”—for example, dotted and dashed borders—so the element’s back‐
ground should appear in the spaces between the visible portions of the border.

Visible backgrounds can be prevented from extending into the bor‐
der area by using the property background-clip.

Borders with Style
We’ll start with border styles, which are the most important aspect of a border—not
because they control the appearance of the border (although they certainly do that)
but because without a style, there wouldn’t be any border at all.

border-style

Values: [none | hidden | solid | dotted | dashed | double | groove | ridge |
inset | outset]{1,4} | inherit

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Computed value: See individual properties (border-top-style, etc.)

Note: According to CSS2, HTML user agents are only required to support solid and none;
the rest of the values (except for hidden) may be interpreted as solid. This
restriction was dropped in CSS2.1.

CSS defines 10 distinct non-inherit styles for the property border-style, including
the default value of none. The styles are demonstrated in Figure 16.

The style value hidden is equivalent to none, except when applied to tables, where it
has a slightly different effect on border-conflict resolution.

16 | Padding, Borders, Outlines, and Margins

Figure 16. Border styles

The most unpredictable border style is double. It’s defined such that the width of the
two lines it creates, plus the width of the space between them, is equal to the value of
border-width (discussed in the next section). However, the CSS specification doesn’t
say whether one of the lines should be thicker than the other, or if they should always
be the same width, or if the space should be thicker or thinner than the lines. All of
these things are left up to the user agent to decide, and the author has no reliable way
to influence the final result.

All the borders shown in Figure 16 are based on a color value of gray, which makes
all of the visual effects easier to see. The look of a border style is always based in some
way on the color of the border, although the exact method may vary between user
agents. The way browsers treat colors in the border styles inset, outset, groove, and
ridge can and does vary. For example, Figure 17 illustrates two different ways of ren‐
dering an inset border.

Figure 17. Two valid ways of rendering inset

Borders | 17

Note how one browser takes the gray value for the bottom and right sides, and a
darker gray for the top and left; the other makes the bottom and right lighter than
gray and the top and left darker, but not as dark as the first browser.

Now let’s define a border style for images that are inside any unvisited hyperlink.
We might make them outset, so they have a “raised button” look, as depicted in Fig‐
ure 18:

a:link img {border-style: outset;}

Figure 18. Applying an outset border to a hyperlinked image

By default, the color of the border is based on the element’s value for color, which in
this circumstance is likely to be blue. This is because the image is contained with a
hyperlink, and the foreground color of hyperlinks is usually blue. If you so desired,
you could change that color to silver, like this:

a:link img {border-style: outset; color: silver;}

The border will now be based on the light grayish silver, since that’s now the fore‐
ground color of the image—even though the image doesn’t actually use it, it’s still
passed on to the border. We’ll talk about another way to change border colors in the
section “Border Colors” on page 24.

Remember, though, that the color-shifting in borders is up to the user agent. Let’s go
back to the blue outset border and compare it in two different browsers, as shown in
Figure 19.

Again, notice how one browser shifts the colors to the lighter and darker, while
another just shifts the “shadowed” sides to be darker than blue. This is why, if a spe‐
cific set of colors is desired, authors usually set the exact colors they want instead of
using a border style like outset and leaving the result up to the browser. We’ll soon
see just how to do that.

18 | Padding, Borders, Outlines, and Margins

Figure 19. Two outset borders

Multiple styles
It’s possible to define more than one style for a given border. For example:

p.aside {border-style: solid dashed dotted solid;}

The result is a paragraph with a solid top border, a dashed right border, a dotted bot‐
tom border, and a solid left border.

Again we see the top-right-bottom-left order of values, just as we saw in our discus‐
sion of setting padding with multiple values. All the same rules about value replica‐
tion apply to border styles, just as they did with padding. Thus, the following two
statements would have the same effect, as depicted in Figure 20:

p.new1 {border-style: solid none dashed;}
p.new2 {border-style: solid none dashed none;}

Figure 20. Equivalent style rules

Borders | 19

Single-side styles
There may be times when you want to set border styles for just one side of an element
box, rather than all four. That’s where the single-side border style properties come in.

border-top-style, border-right-style,
border-bottom-style, border-left-style

Values: none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset | inherit

Initial value: none

Applies to: All elements

Inherited: No

Computed value: As specified

Single-side border style properties are fairly self-explanatory. If you want to change
the style for the bottom border, for example, you use border-bottom-style.

It’s not uncommon to see border used in conjunction with a single-side property.
Suppose you want to set a solid border on three sides of a heading, but not have a left
border, as shown in Figure 21.

Figure 21. Removing the left border

There are two ways to accomplish this, each one equivalent to the other:

h1 {border-style: solid solid solid none;}
/* the above is the same as the below */
h1 {border-style: solid; border-left-style: none;}

20 | Padding, Borders, Outlines, and Margins

What’s important to remember is that if you’re going to use the second approach, you
have to place the single-side property after the shorthand, as is usually the case with
shorthands. This is because border-style: solid is actually a declaration of
border-style: solid solid solid solid. If you put border-style-left: none
before the border-style declaration, the shorthand’s value will override the single-
side value of none.

Border Widths
Once you’ve assigned a border a style, the next step is to give it some width, most
simply by using the property border-width or one of its cousin properties.

border-width

Values: [thin | medium | thick | <length>]{1,4} | inherit

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Computed value: See individual properties (border-top-style, etc.)

border-top-width, border-right-width,
border-bottom-width, border-left-width

Values: thin | medium | thick | <length> | inherit

Initial value: medium

Applies to: All elements

Inherited: No

Computed value: An absolute length, or 0 if the style of the border is none or hidden

Borders | 21

Each of these properties is used to set the width on a specific border side, of course,
just as with the margin properties.

As of late 2015, border widths still cannot be given percentage val‐
ues, which is rather a shame.

There are four ways to assign width to a border: you can give it a length value such as
4px or 0.1em, or use one of three keywords. These keywords are thin, medium (the
default value), and thick. These keywords don’t necessarily correspond to any partic‐
ular width, but are simply defined in relation to one another. According to the speci‐
fication, thick is always wider than medium, which is in turn always wider than thin.
Which makes sense.

However, the exact widths are not defined, so one user agent could set them to be
equivalent to 5px, 3px, and 2px, while another sets them to be 3px, 2px, and 1px. No
matter what width the user agent uses for each keyword, it will be the same through‐
out the document, regardless of where the border occurs. So if medium is the same as
2px, then a medium-width border will always be two pixels wide, whether the border
surrounds an h1 or a p element. Figure 22 illustrates one way to handle these three
keywords, as well as how they relate to each other and to the content they surround.

Figure 22. The relation of border-width keywords to each other

Let’s suppose a paragraph has a background color and a border style set:

p {background-color: silver;
 border-style: solid;}

The border’s width is, by default, medium. You can change that easily enough:

p {background-color: silver;
 border-style: solid; border-width: thick;}

22 | Padding, Borders, Outlines, and Margins

Of course, border widths can be taken to fairly ridiculous extremes, such as setting
50-pixel borders, as depicted in Figure 23:

p {background-color: silver; padding: 0.5em;
 border-style: solid; border-width: 50px;}

Figure 23. Really wide borders

It’s also possible to set widths for individual sides, using two familiar methods. The
first is to use any of the specific properties mentioned at the beginning of the section,
such as border-bottom-width. The other way is to use value replication in border-
width, which is illustrated in Figure 24:

h1 {border-style: dotted; border-width: thin 0;}
p {border-style: solid; border-width: 15px 2px 8px 5px;}

Figure 24. Value replication and uneven border widths

No border at all

So far, we’ve talked only about using a visible border style such as solid or outset.
Let’s consider what happens when you set border-style to none:

p {border-style: none; border-width: 20px;}

Even though the border’s width is 20px, the style is set to none. In this case, not only
does the border’s style vanish, so does its width. The border simply ceases to be. Why?

Borders | 23

If you’ll remember, the terminology used earlier in the chapter was that a border with
a style of none does not exist. Those words were chosen very carefully, because they
help explain what’s going on here. Since the border doesn’t exist, it can’t have any
width, so the width is automatically set to 0 (zero), no matter what you try to define.
After all, if a drinking glass is empty, you can’t really describe it as being half-full of
nothing. You can discuss the depth of a glass’s contents only if it has actual contents.
In the same way, talking about the width of a border makes sense only in the context
of a border that exists.

This is important to keep in mind because it’s a common mistake to forget to declare
a border style. This leads to all kinds of author frustration because, at first glance, the
styles appear correct. Given the following rule, though, no h1 element will have a bor‐
der of any kind, let alone one that’s 20 pixels wide:

h1 {border-width: 20px;}

Since the default value of border-style is none, failure to declare a style is exactly the
same as declaring border-style: none. Therefore, if you want a border to appear,
you need to declare a border style.

Border Colors
Compared to the other aspects of borders, setting the color is pretty easy. CSS
uses the single property border-color, which can accept up to four color values at
one time.

border-color

Values: [<color> | transparent]{1,4} | inherit

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Computed value: See individual properties (border-top-color, etc.)

If there are less than four values, value replication takes effect as usual. So if you want
h1 elements to have thin gray top and bottom borders with thick green side borders,

24 | Padding, Borders, Outlines, and Margins

and medium gray borders around p elements, the following styles will suffice, with
the result shown in Figure 25:

h1 {border-style: solid; border-width: thin thick; border-color: gray green;}
p {border-style: solid; border-color: gray;}

Figure 25. Borders have many aspects

A single color value will be applied to all four sides, of course, as with the paragraph
in the previous example. On the other hand, if you supply four color values, you can
get a different color on each side. Any type of color value can be used, from named
colors to hexadecimal and RGBA values:

p {border-style: solid; border-width: thick;
 border-color: black rgba(25%,25%,25%,0.5) #808080 silver;}

As mentioned earlier, if you don’t declare a color, the default color is the foreground
color of the element. Thus, the following declaration will be displayed as shown in
Figure 26:

p.shade1 {border-style: solid; border-width: thick; color: gray;}
p.shade2 {border-style: solid; border-width: thick; color: gray;
 border-color: black;}

Figure 26. Border colors based on the element’s foreground and the value of the border-
color property

Borders | 25

The result is that the first paragraph has a gray border, having taken the value gray
from the foreground color of the paragraph. The second paragraph, however, has a
black border because that color was explicitly assigned using border-color.

There are single-side border color properties as well. They work in much the same
way as the single-side properties for style and width. One way to give headings a solid
black border with a solid gray right border is as follows:

h1 {border-style: solid; border-color: black; border-right-color: gray;}

border-top-color, border-right-color,
border-bottom-color, border-left-color

Values: <color> | transparent | inherit

Initial value: The value of color for the element

Applies to: All elements

Inherited: No

Computed value: If no value is specified, use the computed value of the property color for the same
element; otherwise, as specified

Transparent borders
As you may recall, if a border has no style, then it has no width. There are, however,
situations where you’ll want to create an invisible border that still has width. This is
where the border color value transparent (introduced in CSS2) comes in.

Let’s say we want a set of three links to have borders that are invisible by default, but
look inset when the link is hovered. We can accomplish this by making the borders
transparent in the nonhovered case:

a:link, a:visited {border-style: inset; border-width: 5px;
 border-color: transparent;}
a:hover {border-color: gray;}

This will have the effect shown in Figure 27.

In a sense, transparent lets you use borders as if they were extra padding, with the
additional benefit of being able to make them visible should you so choose. They act
as padding because the background of the element extends into the border area by
default, assuming there is a visible background.

26 | Padding, Borders, Outlines, and Margins

Figure 27. Using transparent borders

Shorthand Border Properties
Unfortunately, shorthand properties such as border-color and border-style aren’t
always as helpful as you’d think. For example, you might want to apply a thick, gray,
solid border to all h1 elements, but only along the bottom. If you limit yourself to the
properties we’ve discussed so far, you’ll have a hard time applying such a border. Here
are two examples:

h1 {border-bottom-width: thick; /* option #1 */
 border-bottom-style: solid;
 border-bottom-color: gray;}
h1 {border-width: 0 0 thick; /* option #2 */
 border-style: none none solid;
 border-color: gray;}

Neither is really convenient, given all the typing involved. Fortunately, a better solu‐
tion is available:

h1 {border-bottom: thick solid rgb(50%,40%,75%);}

This will apply the values to the bottom border alone, as shown in Figure 28, leaving
the others to their defaults. Since the default border style is none, no borders appear
on the other three sides of the element.

Figure 28. Setting a bottom border with a shorthand property

As you may have already guessed, there are a total of four such shorthand properties.

Borders | 27

border-top, border-right, border-bottom, border-left

Values: [<border-width> || <border-style> || <border-color>] | inherit

Initial value: Not defined for shorthand properties

Applies to: All elements

Inherited: No

Computed value: See individual properties (border-width, etc.)

It’s possible to use these properties to create some complex borders, such as those
shown in Figure 29:

h1 {border-left: 3px solid gray;
 border-right: green 0.25em dotted;
 border-top: thick goldenrod inset;
 border-bottom: double rgb(13%,33%,53%) 10px;}

Figure 29. Very complex borders

As you can see, the order of the actual values doesn’t really matter. The following
three rules will yield exactly the same border effect:

h1 {border-bottom: 3px solid gray;}
h2 {border-bottom: solid gray 3px;}
h3 {border-bottom: 3px gray solid;}

You can also leave out some values and let their defaults kick in, like this:

h3 {color: gray; border-bottom: 3px solid;}

Since no border color is declared, the default value (the element’s foreground) is
applied instead. Just remember that if you leave out a border style, the default value of
none will prevent your border from existing.

28 | Padding, Borders, Outlines, and Margins

By contrast, if you set only a style, you will still get a border. Let’s say you simply want
a top border style of dashed and you’re willing to let the width default to medium and
the color be the same as the text of the element itself. All you need in such a case is
the following markup (shown in Figure 30):

p.roof {border-top: dashed;}

Figure 30. Dashing across the top of an element

Also note that since each of these “border-side” properties applies only to a specific
side, there isn’t any possibility of value replication—it wouldn’t make any sense. There
can be only one of each type of value: that is, only one width value, only one color
value, and only one border style. So don’t try to declare more than one value type:

h3 {border-top: thin thick solid purple;} /* two width values--WRONG */

In such a case, the entire statement will be invalid and a user agent would ignore it
altogether.

Global Borders
Now, we come to the shortest shorthand border property of all: border.

border

Values: [<border-width> || <border-style> || <border-color>] | inherit

Initial value: Refer to individual properties

Applies to: All elements

Inherited: No

Borders | 29

Computed value: As specified

This property has the advantage of being very compact, although that brevity intro‐
duces a few limitations. Before we worry about that, let’s see how border works. If
you want all h1 elements to have a thick silver border, it’s very simple. This declara‐
tion would be displayed as shown in Figure 31:

h1 {border: thick silver solid;}

The values are applied to all four sides. This is certainly preferable to the next-best
alternative, which would be:

h1 {border-top: thick silver solid;
 border-bottom: thick silver solid;
 border-right: thick silver solid;
 border-left: thick silver solid;} /* same result as previous example */

Figure 31. A really short border declaration

The drawback with border is that you can define only “global” styles, widths, and col‐
ors. In other words, the values you supply for border will apply to all four sides
equally. If you want the borders to be different for a single element, you’ll need to use
some of the other border properties. Of course, it’s possible to turn the cascade to
your advantage:

h1 {border: thick goldenrod solid;
 border-left-width: 20px;}

The second rule overrides the width value for the left border assigned by the first rule,
thus replacing thick with 20px, as you can see in Figure 32.

Figure 32. Using the cascade to one’s advantage

30 | Padding, Borders, Outlines, and Margins

You still need to take the usual precautions with shorthand properties: if you omit a
value, the default will be filled in automatically. This can have unintended effects.
Consider the following:

h4 {border-style: dashed solid double;}
h4 {border: medium green;}

Here, we’ve failed to assign a border-style in the second rule, which means that the
default value of none will be used, and no h4 elements will have any border at all.

Borders and Inline Elements
Dealing with borders and inline elements should sound pretty familiar, since the rules
are largely the same as those that cover padding and inline elements, as we discussed
earlier. Still, I’ll briefly touch on the topic again.

First, no matter how thick you make your borders on inline elements, the line height
of the element won’t change. Let’s set top and bottom borders on boldfaced text:

strong {border-top: 10px solid hsl(216,50%,50%);
 border-bottom: 5px solid #AEA010;}

Once more, this syntax is allowed in the specification, but it will have absolutely no
effect on the line height. However, since borders are visible, they’ll be drawn—as you
can see for yourself in Figure 33.

Figure 33. Borders on inline nonreplaced elements

The borders have to go somewhere. That’s where they went.

Again, all of this is true only for the top and bottom sides of inline elements; the left
and right sides are a different story. If you apply a left or right border, not only will
they be visible, but they’ll displace the text around them, as you can see in Figure 34:

strong {border-left: 25px double hsl(216,50%,50%); background: silver;}

With borders, just as with padding, the browser’s calculations for line-breaking are
not directly affected by any box properties set for inline nonreplaced elements. The
only effect is that the space taken up by the borders may shift portions of the line over
a bit, which may in turn change which word is at the end of the line.

Borders | 31

Figure 34. An inline nonreplaced element with a left border

The way borders are (or aren’t) drawn at the ends of each line box
can be altered with the property box-decoration-break.

With replaced elements such as images, on the other hand, the effects are very much
like those we saw with padding: a border will affect the height of the lines of text, in
addition to shifting text around to the sides. Thus, assuming the following styles, we
get a result like that seen in Figure 35.

img {border: 1em solid rgb(216,108,54);}

Figure 35. Borders on inline replaced elements

Image Borders
The various border styles are nice enough, but are still fairly limited. What if you
want to create a really complicated, visually rich border around some of your ele‐
ments? Back in the day, we’d create complex multirow tables to achieve that sort of
effect, but thanks to the image borders added to CSS in the recent past, there’s almost
no limit to the kinds of borders you can create.

Loading and slicing a border image
If you’re going to use an image to create the borders of an image, you’ll need to fetch
it from somewhere. border-image-source is how you tell the browser where to look
for it.

32 | Padding, Borders, Outlines, and Margins

border-image-source

Values: none | <image>

Initial value: none

Applies to: All elements, except internal table elements when border-collapse is
collapse

Inherited: No

Computed value: none, or the image with its URL made absolute

Let’s load an image of a single circle to be used as the border image, using the follow‐
ing styles. The result is shown in Figure 36.

border: 25px solid;
border-image-source: url(i/circle.png);

Figure 36. Defining a border image’s source

There are a number of things to note here. First, without the border: 25px solid
declaration, there would have been no border at all. Remember, if the value of
border-style is none, then the width of the border is zero. So in order to make a bor‐
der image appear, you need to declare a border-style value other than none. It
doesn’t have to be solid. Second, the value of border-width determines the actual
width of the border images. Without a declared value, it will default to medium, which
is in the vicinity of 3 pixels. (Actual value may vary.)

Borders | 33

OK, so we set up a border area 25 pixels wide, and then applied an image to it. That
gave us the same circle in each of the four corners. But why did it only appear there,
and not along the sides? The answer to that is found in the way border-image-slice
is defined.

border-image-slice

Values: [<number> | <percentage>]{1,4} && fill?

Initial value: 100%

Applies to: All elements, except internal table elements when border-collapse is
collapse

Inherited: No

Percentages: Refer to size of the border image

Computed value: As four values, each a number or percentage, and optionally the fill keyword

What border-image-slice does is set up a set of four slice-lines that are laid over the
image, and where they fall determines how the image will be sliced up for use in an
image border. It takes up to four values, defining (in order) offsets from the top, right,
bottom, and left edges. Yep, there’s that TRBL pattern again! And value replication is
also in effect here, so one value is used for all four offsets. Figure 37 shows a small
sampling of offset patterns, all based on percentages.

Figure 37. Various slicing patterns

34 | Padding, Borders, Outlines, and Margins

Now let’s take an image that has a 3 x 3 grid of circles, each a different color, and slice
it up for use in an image border. Figure 38 shows a single copy of this image and the
resulting image border:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 33.33%;

Figure 38. An all-around image border

Yikes! That’s…interesting. The stretchiness of the sides is actually the default behav‐
ior, and it makes a fair amount of sense, as we’ll see (and find out how to change) in a
later section. Beyond that effect, you can see in Figure 38 that the slice-lines fall right
between the circles, because the circles are all the same size and so one-third offsets
place the slice-lines right between them. The corner circles go into the corners of the
border, and each side’s circle is stretched out to fill its side.

(Wait, what happened to the gray circle in the middle? you may wonder. It’s an interest‐
ing question! For now, just accept it as one of life’s little mysteries, albeit a mystery
that will be explained later in this section.)

All right, so why did our first border image example, back at the beginning of the sec‐
tion, only place images in the corners of the border area instead of all the way around
it? Because there’s an interesting wrinkle in the way border-image-slice is defined.
Here’s how the relevant bits of the specification read:

…if the sum of the right and left [border-image-slice] widths is equal to or greater
than the width of the image, the images for the top and bottom edge and the middle
part are empty…Analogously for the top and bottom values.

In other words, any time the slice-lines meet or go past each other, the corner images
are created but the side images are made empty. This is easiest to visualize with
border-image-slice: 50%. In that case, the image is sliced into four quadrants, one

Borders | 35

for each corner, with nothing remaining for the sides. However, any value above 50%
has the same basic result, even though the image isn’t sliced into neat quadrants any‐
more. Thus, for border-image-slice: 100%—which is the default value—each cor‐
ner gets the entire image, and the sides are left empty. A few examples of this effect
are shown in Figure 39.

Figure 39. Various patterns that prevent side slices

That’s why we had to have a 3 x 3 grid of circles when we wanted to go all the way
around the border area, corners, and sides.

In addition to percentage offsets, it’s also possible to define the offsets using a num‐
ber. Not a length, as you might assume, but a bare number. In raster images like
PNGs or JPEGs, the number corresponds to pixels in the image on a 1:1 basis. If you
have a raster image where you want to define 25-pixel offsets for the slice-lines, this is
how to do that, as illustrated in Figure 40:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25;

Yikes again! What happened there is that the raster image is 150 x 150 pixels, so each
circle is 50 x 50 pixels. Our offsets, though, were only 25, as in 25 pixels. So the slice-
lines were placed on the image as shown in Figure 41.

This begins to give an idea of why the default behavior for the side images is to
stretch them. Note how the corners flow into the sides, visually speaking.

Number offsets don’t scale when changes are made to an image and its size, whereas
percentages do. The interesting thing about number offsets is that they work just as
well on non-raster images, like SVGs, as they do on rasters. Of course, so do percen‐
tages. In general, it’s probably best to use percentages for your slicing offsets when‐
ever possible, even if means doing a little math to get exactly the right percentages.

36 | Padding, Borders, Outlines, and Margins

Figure 40. Number slicing

Figure 41. Slice-lines at 25 pixels

Borders | 37

Now let’s address the curious case of the image’s center. In the previous examples,
there’s a circle at the center of the 3 x 3 grid of circles, but it disappears when the
image is applied to the border. In the last example, in fact, it wasn’t just the middle
circle that was missing, but the entire center slice. This dropping of the center slice is
the default behavior for image-slicing, but you can override it by adding a fill key‐
word to the end of your border-image-slice value. If we add fill to the previous
example, as shown here, we’ll get the result shown in Figure 42:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25 fill;

Figure 42. Using the fill slice

There’s the center slice, filling up the element’s background area. In fact, it’s drawn
over top of whatever background the element might have, so you can use it as a sub‐
stitute for the background, or as an addition to it.

You may have noticed that all our border areas have been a consistent width (usually
25px). This doesn’t have to be the case, regardless of how the border image is actually
sliced up. Suppose we take the circles border image we’ve been using, slice it by thirds
as we have, but make the border widths different. That would have a result like that
shown in Figure 43:

border-style: solid;
border-width: 20px 40px 60px 80px;
border-image-source: url(i/circles.png);
border-image-slice: 50;

Even though the slice-lines are intrinsically set to 50 pixels (via 50), the resulting sli‐
ces are resized to fit into the border areas they occupy.

38 | Padding, Borders, Outlines, and Margins

Figure 43. Uneven border image widths

Altering the image widths

Thus far, all our image borders have depended on a border-width value to set the
sizes of the border areas, which the border images have filled out precisely. That is, if
the top border side is 25 pixels tall, the border image that fills it will be 25 pixels tall.
In cases where you want to make the images a different size than the area defined by
border-width, there’s border-image-width.

border-image-width

Values: [<length> | <percentage> | <number> | auto]{1,4}

Initial value: 1

Applies to: All elements, except table elements when border-collapse is collapse

Inherited: No

Percentages: Relative to width/height of the entire border image area; that is, the outer edges of
the border box

Computed value: Four values: each a percentage, number, auto keyword, or <length> made
absolute

Note: Values can never be negative

Borders | 39

The basic thing to understand about border-image-width is that it’s very similar to
border-image-slice, except what border-image-width slices up is the border box
itself.

To understand what this means, let’s start with length values. We’ll set up one-em bor‐
der widths like so:

border-image-width: 1em;

What that does is push slice-lines one em inward from each of the border area’s sides,
as shown in Figure 44.

Figure 44. Placing slice-lines for the border image’s width

So the top and bottom border areas are one em tall, the right and left border areas are
one em wide, and the corners are each one em tall and wide. Given that, the border
images created with border-image-slice are filled into those border areas in the
manner prescribed by border-image-repeat (which we’ll get to shortly). Thus, the
following styles give the result shown in Figure 45:

border-image-width: 1em;
border-image-slice: 33.3333%;

Note that these areas are sized independently from the value of border-width. Thus,
in Figure 45, we could have had a border-width of zero and still made the border
images show up, by using border-image-width. This is useful if you want to have a
solid border as a fallback in case the border image doesn’t load, but don’t want to
make it as thick as the image border would be. Something like this:

border: 2px solid;
border-image-source: url(stars.gif);

40 | Padding, Borders, Outlines, and Margins

border-image-width: 12px;
border-image-slice: 33.3333%;

Figure 45. Filling in the border areas

This allows for a 12-pixel star border to be replaced with a 2-pixel solid border if bor‐
der images aren’t available. Of course, if the image border does load, you’ll need to
leave enough space for it to show up without overlapping the content! (By default,
that is. We’ll see how to mitigate this problem in the next section.)

Now that we’ve established how the width slice-lines are placed, the way percentage
values are handled should make sense, as long as you keep in mind that the offsets are
with respect to the overall border box, not each border side. For example, consider
the following declaration, illustrated in Figure 46:

border-image-width: 33%;

Figure 46. Placement of percentage slice-lines

As with length units, the lines are offset from their respective sides of the border box.
The distance they travel is with respect to the border box. A common mistake is to

Borders | 41

assume that a percentage value is with respect to the border area defined by border-
width; that is, given a border-width value of 30px, the result of border-image-
width: 33.333%; will be 10 pixels. But no! It’s one-third the overall border box along
that axis.

One way in which the behavior of border-image-width differs from border-image-
slice is in how it handles situations where the slices pass each other, such as in this
situation:

border-image-width: 75%;

If you recall, for border-image-slice, if the slices passed each other, then the side
areas (top, right, bottom, and/or left) are made empty. With border-image-width,
the values are proportionally reduced until they don’t. So, given the preceding value
of 75%, the browser will treat that as if it were 50%. Similarly, the following two decla‐
rations will have equivalent results:

border-image-width: 25% 80% 25% 40%;
border-image-width: 25% 66.6667% 25% 33.3333%;

Note how in both declarations, the right offset is twice the left value. That’s what’s
meant by proportionally reducing the values until they don’t overlap: in other words,
until they no longer add up to more than 100%. The same would be done with top
and bottom, were they to overlap.

When it comes to number values for border-image-width, things get even more
interesting. If you set border-image-width: 1, then the border image areas will be
determined by the value of border-width. That’s the default behavior. Thus, the fol‐
lowing two declarations will have the same result:

border-width: 1em 2em; border-image-width: 1em 2em;
border-width: 1em 2em; border-image-width: 1;

You can, of course, increase or reduce the number values in order to get some multi‐
ple of the border area that border-width defines. A few examples of this can be seen
in Figure 47.

In each case, the number has been multipled by the border area’s width or height, and
the resulting value is how far in the offset is placed from the relevant side. Thus, for
an element where border-top-width is 3 pixels, border-image-width: 10 will create
a 30-pixel offset from the top of the element. Change border-image-width to 0.333,
and the top offset will be a lone pixel.

42 | Padding, Borders, Outlines, and Margins

Figure 47. Various numeric border image widths

The last value, auto, is interesting in that its resulting values depend on the state of
two other properties. If border-image-slice is defined, then border-image-width:
auto uses the values that result from border-image-slice. Otherwise, it uses the val‐
ues that result from border-width. These two declarations will have the same result:

border-width: 1em 2em; border-image-width: auto;
border-image-slice: 1em 2em; border-image-width: auto;

This differs from border-image-width: 1 because number values like 1 always relate
to the value of border-width, regardless of what border-image-slice might say.

Note that you can mix up the value types for border-image-width. The following are
all valid, and would be quite interesting to try out in live web pages:

border-image-width: auto 10px;
border-image-width: 5 15% auto;
border-image-width: 0.42em 13% 3.14 auto;

Creating a border overhang
Well, now that we can define these great big image slices and widths, what do we do
to keep them from overlapping the content? We could add lots of padding, but that
would leave huge amounts of space if the image fails to load, or if the browser doesn’t
support border images. Handling such scenarios is what border-image-outset is
built to manage.

Borders | 43

border-image-outset

Values: <length> | <number>]{1,4} | inherit

Initial value: 0

Applies to: All elements, except internal table elements when border-collapse is
collapse

Inherited: No

Percentages: N/A

Computed value: Four values, each a number or <length> made absolute

Note: Values can never be negative

Regardless of whether you use a length or a number, border-image-outset pushes
the border image area outward, beyond the border box, in a manner similar to how
slice-lines are offset. The difference is that here, the offsets are outward, not inward.
Just as with border-image-width, number values for border-image-outset are a
multiple of the width defined by border-width—not border-image-width.

To see how this could be helpful, imagine a scenario where we want to use a border
image, but have a fallback of a thin solid border if the image isn’t available. We might
start out like this:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;

In this case, there’s half an em of padding; at default browser settings, that will be
about eight pixels. That plus the 2-pixel solid border make a distance of 10 pixels
from the content edge to the outer border edge. So if the border image is available
and rendered, it will fill not only the border area, but also the padding, bringing it
right up against the content.

44 | Padding, Borders, Outlines, and Margins

We could increase the padding to account for this, but then if the image doesn’t
appear, we’ll have a lot of excess padding between the content and the thin solid bor‐
der. Instead, let’s push the border image outward, like so:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 8px;

This is illustrated in Figure 48, and compared to situation where there’s no outset and
no border image.

Figure 48. Creating an image border overhang

In the first case, the image border has been pushed out far enough that rather than
overlapping the padding area, the images actually overlap the margin area! We can
also split the difference so that the image border is roughly centered on the border
area, like this:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 2; /* twice the `border-width` value */

Of course, what you have to watch out for is pulling the image border too far out‐
ward, to the point that it overlaps other content or gets clipped off by the edges of the
browser window (or both).

Altering the repeat pattern
So far, we’ve seen a lot of stretched-out images along the sides of our examples. The
stretching can be very handy in some situations, but a real eyesore in others. With
border-image-repeat, you can change how those sides are handled.

Borders | 45

border-image-repeat

Values: [stretch | repeat | round | space]{1,2}

Initial value: stretch

Applies to: All elements, except internal table elements when border-collapse is
collapse

Inherited: No

Computed value: Two keywords, one for each axis

Let’s see these values in action and then discuss each in turn.

We’ve already seen stretch, so the effect is familiar. Each side gets a single image,
stretched to match the height and width of the border side area the image is filling.

repeat has the image tile until it fills up all the space in its border side area. The exact
arrangement is to center the image in its side box, and then tile copies of the image
outward from that point, until the border side area is filled. This can lead to some of
the repeated images being clipped at the sides of the border area, as seen in Figure 49.

Figure 49. Various image-repeat patterns

46 | Padding, Borders, Outlines, and Margins

round is a little different. With this value, the browser divides the length of the border
side area by the size of the image being repeated inside it. It then rounds to the near‐
est whole number and repeats that number of images. In addition, it stretches or
squashes the images so that they just touch each other as they repeat.

As an example, suppose the top border side area is 420 pixels wide, and the image
being tiled is 50 pixels wide. 420 divided by 50 is 8.4, so that’s rounded to 8. Thus, 8
images are tiled. However, each is stretched to be 52.5 pixels wide (420 ÷ 8 = 52.5).
Similarly, if the right border side area is 280 pixels tall, a 50-pixel-tall image will be
tiled 6 times (280 ÷ 50 = 5.6, rounded to 6) and each image will be squashed to be
46.6667 pixels tall (280 ÷ 6 = 46.6667). If you look closely at Figure 49, you can see
the top and bottom circles are a stretched a bit, whereas the right and left circles show
some squashing.

The last value, space, starts out similar to round, in that the border side area’s length
is divided by the size of the tiled image and then rounded. The differences are that the
resulting number is always rounded down, and images are not distorted, but instead
distributed evenly throughout the border area.

Thus, given a top border side area 420 pixels wide and a 50-pixel-wide image to be
tiled, there will still be 8 images to repeat (8.4 rounded down is 8). The images will
take up 400 pixels of space, leaving 20 pixels. That 20 pixels is divided by 8, which is
2.5 pixels. Half of that is put to each side of each image, meaning each image gets 1.25
pixels of space to either side. That puts 2.5 pixels of space between each image, and
1.25 pixels of space before the first and after the last image. Figure 50 shows a few
examples of space repeating.

Figure 50. A variety of space repetitions

Borders | 47

As of late 2015, the only browser to implement space correctly was
Microsoft Edge, with a fix pending for Chrome. Other browsers
not only didn’t support space, but used different fallback behaviors
when encountering it. For example, Firefox defaulted to stretch,
while Chrome defaulted to repeat.

Shorthand border image
There is a single shorthand property for border images, which is (unsurprisingly
enough) border-image. It’s a little unusual in how it’s written, but it offers a lot of
power without a lot of typing.

border-image

Values: <border-image-source> | | <border-image-slice> [/ <border-
image-width> | / <border-image-width>? / <border-image-
outset>]? | | <border-image-repeat> | inherit

Initial value: See individual properties

Applies to: See individual properties

Inherited: No

Computed value: See individual properties

This property has, it must be admitted, a somewhat unusual value syntax. In order to
get all the various properties for slices and widths and offsets, and be able to tell
which was which, the decision was made to separate them by solidus symbols (/) and
require them to be listed in a specific order: slice, then width, then offset. The image
source and repeat values can go anywhere outside of that three-value chain. There‐
fore, the following rules are equivalent:

.example {
 border-image-source: url(eagles.png);
 border-image-slice: 40% 30% 20% fill;
 border-image-width: 10px 7px;
 border-image-outset: 5px;
 border-image-repeat: space;
}
.example {border-image: url(eagles.png) 40% 30% 20% fill / 10px 7px / 5px space;}
.example {border-image: url(eagles.png) space 40% 30% 20% fill / 10px 7px / 5px;}
.example {border-image: space 40% 30% 20% fill / 10px 7px / 5px url(eagles.png);}

48 | Padding, Borders, Outlines, and Margins

The shorthand clearly means less typing, but also less clarity at a glance.

As is usually the case with shorthand properties, leaving out any of the individual
pieces means that the defaults will be supplied. For example, if we just supply an
image source, the rest of the properties will get their default values. Thus, the follow‐
ing two declarations will have exactly the same effect:

border-image: url(orbit.svg);
border-image: url(orbit.svg) stretch 100% / 1 / 0;

Some examples
Border images can be tricky to internalize, conceptually speaking, so it’s worth look‐
ing at some examples of ways to use them.

First, let’s look at how to set up a border with scooped-out corners and a raised
appearance, like a plaque, with a fallback to a simple outset border of similar colors.
We might use something like these styles and a simple image, which is shown in Fig‐
ure 51 along with both the final result and the fallback result:

#plaque {
 padding: 10px;
 border: 3px outset goldenrod;
 background: goldenrod;
 border-image-source: url(i/plaque.png);
 border-image-repeat: stretch;
 border-image-slice: 20 fill;
 border-image-width: 12px;
 border-image-outset: 9px;
}

Figure 51. A simple plaque effect and its older-browser fallback

Notice how the side slices are perfectly set up to be stretched—everything about them
is just repeated strips of color along the axis of stretching. They could also be repeated
or rounded, of course, if not rounded, but stretching works just fine. And since
that’s the default value, we could have omitted the border-image-repeat declaration
altogether.

Borders | 49

Next, let’s try to create something oceanic: an image border that has waves marching
all the way around the border. Since we don’t know how wide or tall the element will
be ahead of time, and we want the waves to flow from one to another, we’ll use round
to take advantage of its scaling behavior while getting in as many waves as will rea‐
sonably fit. You can see the result in Figure 52, along with the image that’s used to
create the effect:

#oceanic {
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

Figure 52. A wavy border

There is one thing to be wary of here, which is what happens if you add in an element
background. Just to make the situation clear, we’ll add a red background to this ele‐
ment, with the result shown in Figure 53:

#oceanic {
 background: red;
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

See how the red is visible between the waves? That’s because the wave image is a PNG
with transparent bits, and because of the combination of image-slice widths and out‐
set, some of the background area is visible through the transparent parts of the bor‐
der. This can be a problem, because there will be cases where you want to use a
background color in addition to an image border—for the fallback case where the
image fails to appear, if nothing else. Generally, this is a problem best addressed by
either not needing a background for the fallback case, or else using border-image-
outset to pull the image out far enough that no part of the background area is visible.

As you can see, there is a lot of power in border images. Be sure to use them wisely.

50 | Padding, Borders, Outlines, and Margins

Figure 53. The background area, visible through the image border

Outlines
CSS defines a special sort of element decoration called an outline. In practice, outlines
are often drawn just beyond the borders, though (as we’ll see) this is not the whole
story. As the specification puts it, outlines differ from borders in three basic ways:

1. Outlines do not take up space.
2. Outlines may be nonrectangular.
3. User agents often render outlines on elements in the :focus state.

To which I’ll add a fourth:

4. Outlines are an all-or-nothing proposition: you can’t style one side of a border
independently from the others.

Let’s start finding out exactly what all that means. First, we’ll run through the various
properties, comparing them to their border-related counterparts.

Outline Styles
Much as with border-style, you can set a style for your outlines. In fact, the values
will seem very familiar to anyone who’s styled a border before.

Outlines | 51

outline-style

Values: auto | none | solid | dotted | dashed | double | groove | ridge |
inset | outset | inherit

Initial value: none

Applies to: All elements

Inherited: No

Computed value: As specified

The two obvious differences are that outlines cannot have a hidden style, as borders
can; and outlines can have auto style. This style allows the user agent to get extra-
fancy with the appearance of the outline, as explained in the CSS specification:

The auto value permits the user agent to render a custom outline style, typically a style
which is either a user interface default for the platform, or perhaps a style that is richer
than can be described in detail in CSS, e.g. a rounded edge outline with semi-
translucent outer pixels that appears to glow.

Beyond those two differences, outlines have all the same styles that borders have, as
illustrated in Figure 54.

Figure 54. Various outline styles

52 | Padding, Borders, Outlines, and Margins

The less obvious difference is that unlike border-style, outline-style is not a
shorthand property. You can’t use it to set a different outline style for each side of the
outline, because outlines can’t be styled that way. There is no outline-top-style.
This is true for all the rest of the outline properties, with the exception of outline,
which we’ll get to in a bit.

Outline Width
Once you’ve decided on a style for the outline, assuming the style isn’t none, you can
define a width for the outline.

outline-width

Values: <length> | thin | medium | thick | inherit

Initial value: none

Applies to: All elements

Inherited: No

Computed value: An absolute length, or 0 if the style of the outline is none

There’s very little to say about outline width that we didn’t already say about border
width. If the outline style is none, then the outline’s width is set to 0. thick is wider
than medium, which is wider than thin, but the specification doesn’t define exact
widths for these keywords. Figure 55 shows a few different outline widths.

Figure 55. Various outline widths

As before, the real difference here is that outline-width is not a shorthand property.
You can only set one width for the whole outline, and cannot set different widths for
different sides. (The reasons for this will soon become clear.)

Outlines | 53

Outline Color
Does your outline have a style and a width? Great! Let’s give it some color!

outline-color

Values: <color> | invert | inherit

Initial value: invert

Applies to: All elements

Inherited: No

Computed value: As specified

This is pretty much the same as border-color, with the caveat that it’s an all-or-
nothing proposition—for example, there’s no outline-left-color.

The one major difference is the default value, invert. What invert does is perform a
“color conversion” on all pixels within the visible parts of the outline. This is easier to
show than explain, so see Figure 56 for the expected results of this style:

h1 {outline-style: dashed; outline-width: 10px; outline-color: invert;}

Figure 56. Color inversion

The advantage to color inversion is that it can make the outline stand out in a wide
variety of situations, regardless of what’s behind it. There is an exception: if you invert
the color gray (or rgb(50%,50%,50%) or hsl(0,0%,50%) or any of their equivalents),
you get exactly the same color back. Thus, outline-color: invert will make the
outline invisible on a gray background. The same will be true for background colors
that are very close to gray.

54 | Padding, Borders, Outlines, and Margins

As of late 2015, invert had not been implemented in major web
browsers. Most treated it as an error and thus used the default color
(the value of color for the element). Therefore, an admission: I
faked Figure 56 with a specific outline color.

The only outline shorthand
So far, we’ve seen three outline properties that look like shorthand properties, but
aren’t. Time for the one outline property that is a shorthand: outline.

outline

Values: [<outline-color> || <outline-style> || <outline-width>] |
inherit

Initial value: none

Applies to: All elements

Inherited: No

Computed value: As specified

It probably comes as little surprise that, like border, this is a convenient way to set the
overall style, width, and color of an outline. Figure 57 illustrates a variety of outlines.

Figure 57. Various outlines

Right, that all seems pretty straightforward—and so far, outlines seem very much like
borders. So how are they different?

Outlines | 55

How They Are Different
The first major difference between borders and outlines is that outlines don’t affect
layout at all. In any way. They’re very purely presentational.

To understand what this means, consider the following styles, illustrated in Figure 58:

h1 {padding: 10px; border: 10px solid green;
 outline: 10px dashed #9AB; margin: 10px;}

Figure 58. Outline over margin

Looks normal, right? What you can’t see is that the outline is completely covering up
the margin. If we put in a dotted line to show the margin edges, they’d run right along
the outside edge of the outline. (We’ll deal with margins in the next section.)

This is what’s meant by outlines not affecting layout. Let’s consider another example,
this time with two span elements that are given outlines. You can see the results in
Figure 59:

span {outline: 1em solid rgba(0,128,0,0.5);}
span + span {outline: 0.5em double purple;}

Figure 59. Overlapping outlines

The outlines don’t affect the height of the lines, of course, but they also don’t shove
the spans to one side or another. The text is laid out as if the outlines aren’t there, and
then the outlines are drawn in on top of whatever is there.

This raises an even more interesting feature of outlines: they are not always rectangu‐
lar nor contiguous. Consider this outline applied to a strong element that breaks
across two lines, as illustrated in two different scenarios in Figure 60:

strong {outline: 2px dotted gray;}

56 | Padding, Borders, Outlines, and Margins

Figure 60. Discontinuous and nonrectangular outlines

In the first case, there are two complete outline boxes, one for each fragment of the
strong element. In the second case, with the longer strong element causing the two
fragments to be stacked together, the outline is “fused” into a single polygon that enc‐
loses the fragments. You won’t find a border doing that.

This is why there are no side-specific outline properties like outline-right-style: if
an outline becomes nonrectangular, which sides are the right sides?

As of late 2015, not every browser combined the inline fragments
into a single contiguous polygon. In those which did not support
this behavior, each fragment was still a self-contained rectangle, as
in the first example in Figure 60.

Margins
The separation between most normal-flow elements occurs because of element mar‐
gins. Setting a margin creates extra “blank space” around an element. “Blank space”
generally refers to an area in which other elements cannot also exist and in which the
parent element’s background is visible. Figure 61 shows the difference between two
paragraphs without any margins and the same two paragraphs with some margins.

Figure 61. Paragraphs with, and without, margins

Margins | 57

The simplest way to set a margin is by using the property margin.

margin

Values: [<length> | <percentage> | auto]{1,4} | inherit

Initial value: Not defined

Applies to: All elements

Inherited: No

Percentages: Refer to the width of the containing block

Computed value: See individual properties

Suppose you want to set a quarter-inch margin on h1 elements, as illustrated in Fig‐
ure 62. (A background color has been added so you can clearly see the edges of the
content area.)

h1 {margin: 0.25in; background-color: silver;}

This sets a quarter-inch of blank space on each side of an h1 element. In Figure 62,
dashed lines represent the blank space, but the lines are purely illustrative and would
not actually appear in a web browser.

Figure 62. Setting a margin for h1 elements

margin can accept any length of measure, whether in pixels, inches, millimeters, or
ems. However, the default value for margin is effectively 0 (zero), so if you don’t
declare a value, by default, no margin should appear.

In practice, however, browsers come with preassigned styles for many elements, and
margins are no exception. For example, in CSS-enabled browsers, margins generate
the “blank line” above and below each paragraph element. Therefore, if you don’t

58 | Padding, Borders, Outlines, and Margins

declare margins for the p element, the browser may apply some margins on its own.
Whatever you declare will override the default styles, of course.

Finally, it’s possible to set a percentage value for margin. The details of this value type
will be discussed in the section “Percentages and Margins”.

Length Values and Margins
As stated before, any length value can be used in setting the margins of an element.
It’s simple enough, for example, to apply a 10-pixel whitespace around paragraph ele‐
ments. The following rule gives paragraphs a silver background, 10 pixels of padding,
and a 10-pixel margin:

p {background-color: silver; padding: 10px; margin: 10px;}

In this case, 10 pixels of space have been added to each side of every paragraph, just
beyond the outer border edge. You can just as easily use margin to set extra space
around an image. Let’s say you want one em of space surrounding all images:

img {margin: 1em;}

That’s all it takes.

At times, you might desire a different amount of space on each side of an element.
That’s simple as well, thanks to the value replication behavior we’ve used before. If
you want all h1 elements to have a top margin of 10 pixels, a right margin of 20 pixels,
a bottom margin of 15 pixels, and a left margin of 5 pixels, here’s all you need:

h1 {margin: 10px 20px 15px 5px;}

It’s also possible to mix up the types of length value you use. You aren’t restricted to
using a single length type in a given rule, as shown here:

h2 {margin: 14px 5em 0.1in 3ex;} /* value variety! */

Figure 63 shows you, with a little extra annotation, the results of this declaration.

Figure 63. Mixed-value margins

Percentages and Margins
As mentioned earlier, it’s possible to set percentage values for the margins of an ele‐
ment. As with padding, percentage margins values are computed in relation to the

Margins | 59

width of the parent element’s content area, so they can change if the parent element’s
width changes in some way. For example, assume the following, which is illustrated in
Figure 64:

p {margin: 10%;}

<div style="width: 200px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV that has a width of 200 pixels,
 so its margin will be 10% of the width of the paragraph's parent (the
 DIV). Given the declared width of 200 pixels, the margin will be 20
 pixels on all sides.
 </p>
</div>
<div style="width: 100px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV with a width of 100 pixels,
 so its margin will still be 10% of the width of the paragraph's
 parent. There will, therefore, be half as much margin on this paragraph
 as that on the first paragraph.
 </p>
</div>

Note that the top and bottom margins are consistent with the right and left margins;
in other words, the percentage of top and bottom margins is calculated with respect
to the element’s width, not its height. We’ve seen this before, of course—in “Padding”
on page 4, in case you don’t remember—but it’s worth reviewing again, just to see
how it operates.

Figure 64. Parent widths and percentages

60 | Padding, Borders, Outlines, and Margins

Single-Side Margin Properties
You guessed it: there are properties that let you set the margin on a single side of the
box, without affecting the others.

margin-top, margin-right, margin-bottom, margin-left

Values: <length> | <percentage> | auto | inherit

Initial value: 0

Applies to: All elements

Inherited: No

Percentages: Refer to the width of the containing block

Computed value: For percentages, as specified; otherwise, the absolute length

These properties operate as you’d expect. For example, the following two rules will
give the same amount of margin:

h1 {margin: 0 0 0 0.25in;}
h2 {margin-left: 0.25in;}

Margin Collapsing
An interesting and often overlooked aspect of the top and bottom margins on block
boxes is that they collapse. This is the process by which two (or more) margins that
interact collapse to the largest of the interacting margins.

The canonical example of this is the space between paragraphs. Generally, that space
is set using a rule like this:

p {margin: 1em 0;}

So that sets every paragraph to have top and bottom margins of 1em. If margins didn’t
collapse, then whenever one paragraph followed another, there would be two ems of
space between them. Instead, there’s only one; the two margins collapse together.

To illustrate this a little more clearly, let’s return to the percentage-margin example,
only this time, we’ll add dashed lines to indicate where the margins fall. This is seen
in Figure 65.

Margins | 61

Figure 65. Collapsing margins

The example shows the separation distance between the contents of the two para‐
graphs. It’s 60 pixels, because that’s the larger of the two margins that are interacting.
The 30-pixel top margin of the second paragraph is collapsed, leaving the first para‐
graph’s top margin in charge.

So in a sense, Figure 65 is lying: if you take the CSS specification strictly at its word,
the top margin of the second paragraph is actually reset to zero. It doesn’t stick into
the bottom margin of the first paragraph because when it collapses, it isn’t there any‐
more. The end result is the same, though.

Margin collapsing also explains some oddities that arise when one element is inside
another. Consider the following styles and markup:

header {background: goldenrod;}
h1 {margin: 1em;}

<header>
 <h1>Welcome to ConHugeCo</h1>
</header>

The margin on the h1 will push the edges of the header away from the content of the
h1, right? Well, not entirely. See Figure 66.

What happened? The side margins took effect—we can see that from the way the text
is moved over—but the top and bottom margins are gone!

Only they aren’t gone. They’re just sticking out of the header element, having interac‐
ted with the (zero-width) top margin of the header element. The magic of dashed
lines in Figure 67 show us what’s happening.

62 | Padding, Borders, Outlines, and Margins

Figure 66. Margins collapsing with parents

Figure 67. Margins collapsing with parents, revealed

There they are—pushing away any content that might come before or after the
header element, but not pushing away the edges of the header itself. This is the
intended result, even if it’s often not the desired result. As for why it’s intended, imag‐
ine happens if you put a paragraph in a list item. Without the specified margin-
collapsing behavior, the paragraph’s top margin would shove it downward, where it
would be far out of alignment with the list item’s bullet (or number).

Margin collapsing can be interrupted by factors such as padding
and borders on parent elements. For more details, see the discus‐
sion in Basic Visual Formatting (O’Reilly).

Negative Margins
It’s possible to set negative margins for an element. This can cause the element’s box
to stick out of its parent or to overlap other elements. Consider these rules, which are
illustrated in Figure 68:

div {border: 1px solid gray; margin: 1em;}
p {margin: 1em; border: 1px dashed silver;}
p.one {margin: 0 -1em;}
p.two {margin: -1em 0;}

Margins | 63

http://bit.ly/basic-visual-formatting

Figure 68. Negative margins in action

In the first case, the math works out such that the paragraph’s computed width plus
its right and left margins are exactly equal to the width of the parent div. So the para‐
graph ends up two ems wider than the parent element without actually being “wider”
(from a mathematical point of view). In the second case, the negative top and bottom
margins effectively reduce the computed height of the element and move its top and
bottom outer edges inward, which is how it ends up overlapping the paragraphs
before and after it.

Combining negative and positive margins is actually very useful. For example, you
can make a paragraph “punch out” of a parent element by being creative with positive
and negative margins, or you can create a Mondrian effect with several overlapping
or randomly placed boxes, as shown in Figure 69:

div {background: hsl(42,80%,80%); border: 1px solid;}
p {margin: 1em;}
p.punch {background: white; margin: 1em -1px 1em 25%;
 border: 1px solid; border-right: none; text-align: center;}
p.mond {background: rgba(5,5,5,0.5); color: white; margin: 1em 3em -3em -3em;}

Thanks to the negative bottom margin for the “mond” paragraph, the bottom of its
parent element is pulled upward, allowing the paragraph to stick out of the bottom of
its parent.

64 | Padding, Borders, Outlines, and Margins

Figure 69. Punching out of a parent

Margins and Inline Elements
Margins can also be applied to inline elements. Let’s say you want to set top and bot‐
tom margins on strongly emphasized text:

strong {margin-top: 25px; margin-bottom: 50px;}

This is allowed in the specification, but since you’re applying the margins to an inline
nonreplaced element, and margins are always transparent, they will have absolutely
no effect on the line height. In effect, they’ll have no effect at all.

As with padding, things change a bit when you apply margins to the left and right
sides of an inline nonreplaced element, as illustrated in Figure 70:

strong {margin-left: 25px; background: silver;}

Figure 70. An inline nonreplaced element with a left margin

Margins | 65

Note the extra space between the end of the word just before the inline nonreplaced
element and the edge of the inline element’s background. You can add that extra space
to both ends of the inline element if you want:

strong {margin: 25px; background: silver;}

As expected, Figure 71 shows a little extra space on the right and left sides of the
inline element, and no extra space above or below it.

Figure 71. An inline nonreplaced element with 25-pixel side margins

Now, when an inline nonreplaced element stretches across multiple lines, the situa‐
tion changes. Figure 72 shows what happens when an inline nonreplaced element
with a margin is displayed across multiple lines:

strong {margin: 25px; background: silver;}

Figure 72. An inline nonreplaced element with 25-pixel side margin displayed across two
lines of text

The left margin is applied to the beginning of the element and the right margin to the
end of it. Margins are not applied to the right and left side of each line fragment. Also,
you can see that, if not for the margins, the line may have broken after “text” instead
of after “strongly emphasized.” Margins only affect line-breaking by changing the
point at which the element’s content begins within a line.

The way margins are (or aren’t) applied to the ends of each line box
can be altered with the property box-decoration-break.

The situation gets even more interesting when we apply negative margins to inline
nonreplaced elements. The top and bottom of the element aren’t affected, and neither
are the heights of lines, but the left and right ends of the element can overlap other
content, as depicted in Figure 73:

66 | Padding, Borders, Outlines, and Margins

strong {margin: -25px; background: silver;}

Figure 73. An inline nonreplaced element with a negative margin

Replaced inline elements represent yet another story: margins set for them do affect
the height of a line, either increasing or reducing it depending on the value for the
top and bottom margin. The left and right margins of an inline replaced element act
the same as for a nonreplaced element. Figure 74 shows a series of different effects on
layout from margins set on inline replaced elements.

Figure 74. Inline replaced elements with differing margin values

Summary
The ability to apply margins, borders, and padding to any element is one of the things
that sets CSS so far above traditional web markup. In the past, enclosing a heading in
a colored, bordered box meant wrapping the heading in a table, which is a really bloa‐
ted and awful way to create so simple an effect. It is this sort of power that makes CSS
so compelling.

Summary | 67

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internation‐
ally recognized expert on the subjects of HTML, CSS, and web standards. A widely
read author, he is also the founder of Complex Spiral Consulting, which counts
among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Mac‐
romedia, which described Eric as “a critical partner in our efforts to transform Mac‐
romedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for
the Case Western Reserve University website, where he also authored a widely
acclaimed series of three HTML tutorials and was project coordinator for the online
version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biog‐
raphy, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The
Definitive Guide (O’Reilly), and CSS2.0 Programmer’s Reference (Osborne/McGraw-
Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and
Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated
the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a
wide variety of organizations, including Los Alamos National Laboratory, the New
York Public Library, Cornell University, and the University of Northern Iowa. Eric
has also delivered addresses and technical presentations at numerous conferences,
among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web
Design World, CMP, SXSW, the User Interface conference series, and The Other
Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mail‐
ing list, which he cofounded with John Allsopp of Western Civilisation, and which is
now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city
than you’ve been led to believe. For nine years he was the host of “Your Father’s Old‐
smobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

Colophon
The animals on the cover of Padding, Borders, Outlines, and Margins in CSS are sal‐
mon (salmonidae), which is a family of fish consisting of many different species. Two
of the most common salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal‐
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu‐
ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer‐
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	Padding, Borders, Outlines, and Margins
	Basic Element Boxes
	Width and Height

	Padding
	Replicating Values
	Single-Side Padding
	Percentage Values and Padding
	Padding and Inline Elements
	Padding and Replaced Elements

	Borders
	Borders with Style
	Border Widths
	Border Colors
	Shorthand Border Properties
	Global Borders
	Borders and Inline Elements
	Image Borders

	Outlines
	Outline Styles
	Outline Width
	Outline Color
	How They Are Different

	Margins
	Length Values and Margins
	Percentages and Margins
	Single-Side Margin Properties
	Margin Collapsing
	Negative Margins
	Margins and Inline Elements

	Summary

	About the Author

