Modern
(SS

Master the Key Concepts of CSS
for Modern Web Development

Joe Attardi

ApPress:

Modern CSS

Master the Key Concepts of CSS
for Modern Web Development

Joe Attardi

Apress’

Modern CSS

Joe Attardi
Billerica, MA, USA

ISBN-13 (pbk): 978-1-4842-6293-1 ISBN-13 (electronic): 978-1-4842-6294-8
https://doi.org/10.1007/978-1-4842-6294-8

Copyright © 2020 by Joe Attardi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262931. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6294-8

To Liz and Benjamin - you are my whole world.

Table of Contents

About the AUROFcccciicmmmiimsinn s XV
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas xvii
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns Xix
L1 T LT (1 XXi
Chapter 1: Introduction to CSScccccunsmmmmmmnsmmmmmmmsssmmmmsssssmmmsssssmssssssasmmms. 1
A DIt OF RISTONY....viviceecc e 1
ANALOMY OF @ CSS FUIEeereeeecte et se s s e s e e s ae s a e s p e e e nnen 2
RUIE SYNTAX ... et r e e e e e e ae s e e r e s 2
Property CONTIICESccceviererirririe s e saesn e e nne e 3
1011111 3 3
AL-TUIBS ...ttt s 4

HOW CSS IS USBA......covieeccereririessse e 4
1T] 4= 4

0= 0] (0 5
External Style SREETS ... ——————————— 5

ST LT] 11 o010 S 6
WED FESOUICEScveueerueereeeresesesse e e e e se e ee e s e sre e s s e e e s e e s ae e s s e e s e e e e e se e s ee e ne e e e nre e nrens 7

L0 101 U2 o0 T 7
Mozilla Developer NEtWOrK.........ccoeiiininencninere s s sr e snens 8

CSS PrEPIOCESSOIS. ... ccererueriesisserses e sie st s e s e e s e s s ae e s s b e e e e b e e e e e R e b e e et e b s be e e e e aenne s 8
TSy (=T T 9
L2 10 T 9
IMIIXINS 1.ttt s e e e E e e AR R R e e e AR e e R e 10

TABLE OF CONTENTS

How CSS WOrkS in the DIOWSET ..o s 11
The Document Object Model (DOM)......ccveerrevrerervereresenseresesssseressessssessessessessssessessessssessesses 11
The CSS Object Model (CSSOM)ccvrerrerrererrerseressesessessessessssessessesssssssessesssssssessessessssessesses 12
LT =] 110 =T T 14
Layout and PAINT........ccceeverririere s s s s e se s e ssesaese s e ssesaesaesesnesaesaesesnensesaens 14

£ 11114 7 15

Chapter 2: CSS SeleClOorscccuumrmissmmmsssnsmssansmsssnsssssnsesssnsesssnsesssnsesssnsesssnnssssnnssssanss 17

2T T (Tt o] g 0] o< 17
The UNIVErSAl SEIECIONcovecerceree e e 17
EIEMENT SEIBCLONS.....c.eeceeeceree e 18
1= T (0] 18
[R TS [(0] T 19
ALErIDULE SEIECIONS ... e 19

CoMPOUNG SEIBCIOISceueereir st 20

Multiple independent SEIECIOrS........cccuvi v e 21

Selector COMDBINATOIS........cciicerierir e r e 21
Descendant CoMDINALOLccvveeriennesrrse e 21
Child COMDINALOLccvivieriieriresi e p e nr e 22
General Sibling COMDINALON..........ccouieriierrerr s 22
Adjacent sibling COMDINALON..........ccoveiiciir s ———— 22
Using multiple COMBINATOrS........cccviirisrrrre e 23

PSEUAO-CIASSES......cucereiiririi e 23
ULSEALE . ————————— 23
Document StrUCIUNE.......cvcvii s —————— 24
Negating @ SEIBCIONcveviirirer e e s 25

PSEUAO-CIBMENIESceiirriire s —————— 26
SFIFSE-lING oo —————————————————— 26
FIFSE-IBTEEN .. ———————————————— 26
2DEfOre, AN ... ——————————— 26

TABLE OF CONTENTS

3] L= | R 27
SPECITICITY FANKINGS ...coveireerierere s s s s e sa s ae s ae e e e eaesaesre e e e aennen 28
Calculating SPECITICITY ..vuevrerrrrerrererersersererseserserse s sss s ssesreses e ssesaesesse s e saesaesessesaesaesessensesaens 29
The escape hatch: lmpPortant...........cocvcvevrrrnin e nes 31

£ 11114 7 32

Chapter 3: Basic CSS CONCEPLSccrrrsemrrssansmsssnsmsssnsmsssnsesssnsesssnsssssnsssssnnssssnnssssanss 33

THE DOX MOUEI ... s 33
3 10)] T 36

Block and inling leMENTS..........ccoveernrererenerese s 37
BIOCK BIEBMENTS.......cereeereeeere e s 38
INNE BIEBMENTSceeeeereer s 39
ININE-DIOCK BIEBMENTS........cov e 42

0] TSP S 43
0 S SRS 43
] 1 44
(=T 45
Viewport units: VW and Vh ... s 45
PEICENTAGE: %0 .uvvreeerreerrsesessese e se s e s e s e s e ne e r e e s e nne e nennis 46
T T P 46
L0140 46

11T 10 LSRR 46
[SRS 46

0] 0] £ 47
Predefined COIOrS ..o s 47
RGB COIOTS ...t s 48
Lo RS I 10] £ OSSOSO 49
TrANSPAIENL......cceeececteire e e s s r e e e e re e e e e nnas 49
NEWET COIOF SYNMTAX.....cecereerrerersereresee s e e r e s re e e s ne e e nn e s 49

L0 = 50
HandliNg OVEITIOW........cccverieierierere s sa e sae e s ae e e s nne s 53

vii

TABLE OF CONTENTS

CSS VAADISc.ceririccii iR 54
USING VAMADIESeeeeerir et sr e s a e e 54
Variable iNNEILANCE.........ccv i e 55
Using variables in CSS CalCUIALIONSccecvvverierererreriere e sersese e sese s e e ssessessesessessesaens 57

£ 11114 7 58

Chapter 4: BasiC Stylingccccrrrmmsmnnmmsssssnnsmssssssssssssssssssssssnssssssssnssssssssnnnsssssnnnnsenss 61

o (0] 0T TR L1 61
GIODAI KEYWOIUSceeeeeeeeeeesee e se s se e e s s nre e s ne s 61
Shorthand and MUItiPIe VAIUES........ccccoeriririe e 61

2 T0] £ -] S 64
010 01T o]0 TS 64
DOFAEI-WIAEN ..o 64
010 01T Y3 TSR 64
410 0 TSP 65
DOFARI-COIIAPSE ...ttt e b e e e ne 65
010 01T 2T S 66

2103 Q] T2 10 0 S 69

0] 0 (o OSSOSO 74

o L0 a 10 =Y U111 1T 2O 76
(0TS 012 110 T OO 76
VISIDIlITY: RIAABN.......c e s 77
(0] 7= T OO 78

£ 1§14 7R 78

Chapter 5: Backgrounds and Gradients........ccccecmmusmmmssssnmssssssssssssssssssssssnssssssssssanss 79

Solid DACKGroUNd COIOLScccoeeeeereeriecrerce e s 79

BaCKOroUNG IMAQESccerrrererrinerreseressesessesessssesessesssssssssssesessssessssssssssssssssssssnsssssssssssssssssesssssssnns 79
DaCKGroUNA-IMAGEcceveerrrerererere s e ne s 80
baCKGrouNd-rEPEAL.........ccco e s 80
bacKground-POSItioNc.cccvrirerererese s e 83
DACKGIOUNG-SIZE........coeeeeeeecrereer e n e 85
(07T 010 o B o T o S 90

viii

TABLE OF CONTENTS

LC T 0 =] R 92
Lin@ar gratientsccvcvieniiiiiriersie e e 92
Radial gradientscccvveiiiiniinne e 98

Combining DACKGrOUNAScoviererrrerierrere s s e s s s s s sse e s e ssesaessssessesaesaesessenaesas 104

SUMIMAIY ..ttt e R e e e R e e e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 105

Chapter 6: Text StYliNgcccccccurrrmmmnssssnssssmmmmmmmssssssssssssses s sssssssssssseessssssnsnssnnnnness 107

0 1 SR 107

BasSiC teXT STYIING.....ccerreeerieerinresire e 107
FONE-FAMIIY ... ——————————— 107
FONE=SIZE ..eerreece e r R 108
(0] 0] PSSR 110
FONE-WEIGNT.....ceceeeece s 111
L{0] 01 YA - TSSOSO 111
TEXE-0RCOTALIONcveeeercie et nr e se s nnne s 111
Other teXt BffECES....uuiereerrrerere s 114

TEXE TAYOUL.....cceeeeeecteere e s s r e e s R e e e e nne s 115
TEXE-INUENT......cececeeee e 115
WHITE-SPACE.veerrrerrrreserrese s r e R p e e e b e e rnns 116
TrUNCALING TEXL.....ceevecerrrcsire e sa e ne e 118
NE-NEIGNTveeeeeccere s 119
Horizontal alignment ... s 119
Vertical alignment.........occoieiicr e 120

USING WED TONTS ...ccueieicrcer e s e nae 123
@FONE-TACE. ... —————————— 124
Declaring different web font StyleSccovveeresrns s 124
Flash of unstyled/invisSible teXt...........ccuvrrmierneserns s 125
A WOrd OF CAUTION ..c.veeeircece et sr e nnna s 126

TEXE SNAAOW ... e e 126

£ 1§14 7P 127

ix

TABLE OF CONTENTS

Chapter 7: Layout and PosSitioning.......ccuccurrmssennnmmsssssnnmsssssssssssssssssssssssssssssssssnns 129
1o o 1 T OSSOSO SRS 129
12T 011 OSSOSO 130

Centering with margin: QU0 ..o —————— 132
Margin COIAPSEcovvcerererie e e e e 133
POSItiONING BIEBMENTS.......cccccreeeererer e 135
POSITION: STALICecveercrc e ————————— 136
POSItION: TEIALIVE ... ————————— 136
POSItION: ADSOIULEcvueieieircr e e 138
POSIEION: FIXEU ...cveiiircre e e s 143
POSTEION: SHCKY...veueereeereecreresersese s se e s e e e nne e 143
z-index and StacKing CONTEXISccvveerrrrererenerrnsesrse s ses s 144
B3] 2T T [0] (T 147
FIOAES ...t e r e 151
Clearing flOatScucucererernsesrrese s 154
£ 1] 34 RS 156

Chapter 8: TranSfOrmsccccurceurrmssssnsnmssssssssmssssssssessssnssessssssnsssssssnnssssssnnnssssssnnnnss 157
PEISPECLIVE ... e e e e 157
[310] 72 1T 157

AXISeueueseeseeses s bbb AR E A A A A e e e nan 158
04 1 OSSOSO 158
L0102 1= (0] - L A 160
0] 2 1= T 160
0] e (- (T 161
(0] 221 (= 2 o T 162
T U0 o TSRS 163
LU= U] L TSRS 163
LU= L] APPSR 165
TrANSIALEIA ... e 166

TABLE OF CONTENTS

£ 11 o R 167
172 T 168
1721 [2T 169
1721 (=X T T 169

£ 0o R 169

Applying multiple tranSfOrmS.........ccccvininrr e 170

EXAMPIES. ..ottt R e Rt e nae 174
MaKING @ NEAITccceeeereecrrrerere s nre s 174
MaKING @ CUDE.......cuceeeeereecrescresese e s s e e se s n e sre e nenns 178

£ 10T 7 S 184

Chapter 9: Transitions and Animations.......ccccuueemmmmnsssnmmmsssnmmmssssm——— 185

TrANSIHIONS. ...ccvivcccere s 185
L Tc T 188
o R TR {1 [0] 188

ANIMALIONS ... e s R e 192
ANIMAtioN PrOPEITIESevuererieriee s rre e e s e e e a e e 195
MUltiple anIMALIONSccvevirrrrere e s s sa e e naen 198

Performance impliCatiONScicvvrierierierrir s a e e e e ne e ae e 199
o (00 TCT 4 TS 199
The Will-Change PrOPErtYcccceceririrre e s e e e a e s 201

Avoid Simultaneous aniMatioNsccocoreerricreriere e 201

LT o115 0] 1 202

B30T 1117 S 204

Chapter 10: FIEXDOX....uiccumrmsssnnnnmsssssnnnmsssssnnsssssssnnnsssssnnnsssssssnnnssssssnnssssssnnnnssssnnnnnss 205

50 (i 0] T) OO 205
01T 205
AXIS ... eueaeseesss bbb se e R R R AR nn 206

A DASIC FIEX JAYOUL.....ceeiereece et s 206

xi

TABLE OF CONTENTS

£ 7] 3 P 208
o (0] 0 TC] LTSS 211
Alignment and SPACINGccvcvieriirirre e e e r e nne s 218
The WITtING MOGEc.voveerece e e s s 219

o (0] 0T<] TSR 219
The Order PrOPEILYccccccieiecirere s e e e ae e e e s R e e ne s 223
ACCESSIDIITY TP vvereerreir e ———————— 223

e 110 T OO TPRS SN 223
ADSOIULE CENTEIINGcovrecereeeriee e sr e e s e nne e 224

Lo 10 T= 3 1 | T 225

£ 1117 ST 227
Chapter 11: Responsive DeSIgNccccurrussssnnmmsssssnnsssssssnsnsssssssnnssssssnnsssssssnnssssssnnnnss 229
BN 70 To] o 1 U - TR 229
10 W0 10 TSR 230
BreaKpOiNTS......cccceiciisic st p e nne 231
Responsive layouts With fIEXDOX..........coverrerrerrrrrr e 237
FIUID TYPOGrAPNY ... s 240
The clamp fUNCHION.........cvcrr 242
RESPONSIVE IMAGESeeveuerreuerrresrssesesrese s sesse e e srs e s e e sss e s s s e e s s e nss e nsa s nensssenns 242
Adapting a layout with media QUETIEScccvvrieriernrirere e s se e snens 244
£ 11134 7R 252
Chapter 12: CSS Gridccccussasmssansssnmssansssansssnsssansssassssnssssnsssasssssssssnsssansssnsssansssans 255
BaSIC CONCEPTS.....ciuiirerriircr st b e e p e e e be s p e e nne 255
GFid CONTAINET ... p s 255
60 I (-] TR 255
60 I 1 T 256

L6 0 I U G OO 256
(610 I T OO 257
40 (0T o SR 257

xii

TABLE OF CONTENTS

1] 0] (0L 0 4 T S 257
THE FI UNIE .. e 257
BASIC GrilS c.veverrereresis s e e e e e p e nne 258
LT IS 4 o [OOSR 261
USING The fr UNIT.......occ s 261
The repeat fFUNCLION ... s 263
The MINMAX fUNCHION........cccoeeeeecerc e 264
AULO-Fill AN AUEO-TIL ... 265
LC T T L] (o 41 T S 268
Specifying row and COIUMN ..o e 268
Spanning multiple roWS OF COIUMNS.........cccvciirinnrner e nnens 269
T4 T I o 1T 270
NaMEd grid @rEaScoceeriririire e s 272
LCTgTo =10] T L T 274
JUSTITY=IEBIMS ..t r e e e e nne s 274
AlIGN-ITBIMS ... p e 275
JUSTITY=CONEENT ... e nne s 276
AlIGN-CONTENT ... e 278
Overriding for individual grid iteMS.......ccceeerrerresre s 280
B30T 1117 o SO S 280

Chapter 13: Wrap Up...ccceeeessmmmmmmmmmsssssssmmmmsssmssnsss 28 1

LT 11 L1 (3 T0 0 0] [0 o -TO 281
ULITIEY-TIFST CSS.... ettt e st et e e e 282
o 00T 1 T 282
INAX e eiiriiirnnnnnnnnnnrrsssssssssnnsnn s s e s s nnsnnnr e e e e a s aannRRREEE R R AR R RRRRRRRRREERRRRRRRRRRRRRRRRRRRRRRRRSS 283

xiii

About the Author

Joe Attardi is a software engineer specializing in front-end
development. He has over 15 years’ experience working

with JavaScript, HTML, and CSS and has worked extensively
with front-end technologies such as Angular and React. He
currently works at Salesforce and has worked in the past with
companies such as Dell and Nortel. He is also the author

of Using Gatsby and Netlify CMS, an Apress title. He lives in
the Boston area with his wife and son. You can find him on
Twitter at @JoeAttardi.

About the Technical Reviewer

Alexander Nnakwue has a background in Mechanical
Engineering from the University of Ibadan, Nigeria, and
has been a front-end developer for over 3 years working on
both web and mobile technologies. He also has experience
as a technical author, writer, and reviewer. He enjoys
programming for the Web, and occasionally, you can also
find him playing soccer. He was born in Benin City and is
currently based in Lagos, Nigeria.

xvii

Acknowledgments

I'd like to start by thanking my wonderful wife, Liz, for her constant love and
encouragement throughout the whole writing process - and for understanding when I
locked myself away in solitude to write. And my little toddler, Benjamin, for giving me
much-needed breaks from writing for play time.

Thanks to all my friends and family for always supporting and encouraging my
interest in computers and technology.

This book began its life as a self-published work, and I'd like to thank Apress for
making it what it is today. I'd also like to thank the awesome team at Apress - Louise
Corrigan, Nancy Chen, and Jim Markham - for guiding me through the process every
step of the way. I appreciate their patience with me as a first-time author.

Thanks to Alexander Nnakwue, the technical reviewer for this book, for his time and
excellent feedback, helping make this book even better.

Special thanks also to Stephanie Eckles and Ellie Baker, two extremely talented
CSS experts who reviewed some of the chapters in the previous, self-published
version of this book.

Xix

Introduction

In this book, we will take a tour of modern CSS. Whether you're brand new to CSS or you
have some experience and need a refresher, this book will have something for you.

However, this book will not teach you color theory or good design techniques. The
intent of this book is to give you a strong foundation with the various CSS technologies.

In Chapter 1, we'll start at the very beginning and talk about what CSS is and how it
works. We'll explore the DOM, the CSSOM, and the render tree as well as take a quick
detour to look at CSS preprocessors (though we won’t cover them further in the book).

In Chapter 2, we will tackle CSS selectors. These are critical to understand. Selectors
determine what CSS styles are applied to what elements. We'll also explore the concept
of specificity.

Once we've laid the groundwork, we’ll start to talk about CSS concepts in Chapter 3
like the box model, units, colors, and overflow. We'll also look at CSS custom properties,
better known as variables.

We'll finally start applying styles in Chapter 4, where we'll look at borders, box
shadows, and opacity. We will see several ways to hide an element on the page.

In Chapter 5, we’ll learn all about backgrounds and gradients (which are actually a
type of background image).

Chapter 6 deals with the important topic of styling text. We'll learn about text styles
and layout, as well as how to use web fonts.

We'll see how to lay out and position elements in Chapter 7. This covers the
different positions such as static, relative, absolute, fixed, and sticky. Also, in this
chapter, we'll see the topic of stacking contexts and Z-index, which often trip up even
experienced developers.

In Chapter 8, we'll cover CSS transforms. This allows you to apply transformations
such as rotation, scale, and skew to elements. We'll also see a few examples of creating
shapes with CSS.

Transforms can be combined with transitions, which is one topic of Chapter 9, to
create all kinds of interesting effects. Transitions can be applied to transforms or a slew
of other CSS properties. Chapter 9 also covers animations, which takes the concepts of
transitions to the next level.

xxi

INTRODUCTION

Chapter 10 is dedicated to the flexible box layout, or flexbox, which is a powerful
one-dimensional layout tool that has excellent browser support. With flexbox, we can
finally easily center a div!

Chapter 11 is a gentle introduction to responsive design techniques. While it is not
an exhaustive guide - entire books have been written on the subject - it lays a good
foundation, covering topics such as media queries and fluid typography.

Finally, we save the best for last. Chapter 12 is all about CSS Grid, the latest and
greatest layout tool in the CSS toolbox. It doesn’t have great Internet Explorer support,
but all of the other major browsers have full support for it.

In Chapter 13 we’ll see some other topics for further learning, such as CSS
methodologies like BEM and OOCSS, as well as utility-first CSS and Houdini, the future
of CSS.

Let’s get started!

xxii

CHAPTER 1

Introduction to CSS

Chances are that you already have some idea of what CSS is, or else you probably
wouldn’t have been interested in this book. But let’s start at the beginning, to make sure
we're all on the same page.

CSS stands for Cascading Style Sheets. It’s a language for specifying how an HTML
document is displayed. Without CSS, every website would just be Times New Roman
with tiny buttons. It’s capable of much more than styling text, however. CSS lets us define
entire layouts and position elements and even perform animations.

Style sheets are self-explanatory, but what is a cascading style sheet? Because more
than one style rule could apply to a given HTML element, there needs to be some way to
determine which rule should apply in the event of a conflict. The styles “cascade” from
less specific to more specific selectors, and the most specific rule wins. Specificity is an
important concept in CSS, and we will discuss that in more detail later.

A bit of history

Before CSS, support for styling in HTML was limited. The style information was included
in the HTML markup. For example, the font face, size, and color were specified with the
font tag and several different attributes, as shown in Listing 1-1.

Listing 1-1. Styling HTML with the font tag

<font face="Arial, sans-serif"
color="blue"
size="12">
Hello world!

© Joe Attardi 2020
J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_1

https://doi.org/10.1007/978-1-4842-6294-8_1#DOI

CHAPTER 1 INTRODUCTION TO CSS

This resulted in a tight coupling between the semantics and the presentation of a
document, which made websites harder to maintain. There were some basic layout options,
such as the center tag. For more advanced layouts, the only real option was to use HTML
tables. Tables were meant to display tabular data. One disadvantage of using tables for layout
is that someone using a screen reader will have a very hard time navigating the page.

There were several other proposals for style sheets for HTML documents as well,
but CSS was first proposed at a conference in Chicago in 1994. The following year saw
the birth of the World Wide Web Consortium (W3C), and the initial version of the CSS
standard was published in late 1996. In the years since, CSS has evolved into a powerful
tool for styling HTML documents.

Anatomy of a CSS rule

A CSS style sheet consists of rules. CSS rules target HTML elements by using selectors
that describe the elements to which the styles should be applied. As we will see later,
elements can be selected in many ways.

Rule syntax

A rule consists of a selector followed by a block of CSS properties contained inside
curly braces. The properties consist of a property and value separated by a colon and
are delimited with semicolons. A value may be a single value or a collection of multiple
values, depending on the property.

Every element in the document that is matched by the selector has the properties in
the CSS rule applied to it. An example of a CSS rule is shown in Figure 1-1.

Selector

|

.header {
background-color: red;
border: 1lpx solid blue;

f

Property Value
Figure 1-1. The structure of a CSS rule
2

CHAPTER 1 INTRODUCTION TO CSS

This rule targets any element with the class header (more on classes later). Any
element with this class will have a red background and a 1-pixel solid blue border.

In the previous example, background-color and border are CSS properties. The
border width is specified as 1px. px is a CSS unit. There are many units including em, rem,
and %. We will learn more about the different CSS units later.

Property conflicts

If the same property is used more than once in a given rule, the last definition in the rule
wins. An example of this is shown in Listing 1-2.

Listing 1-2. A CSS rule with conflicting properties

.header {
background-color: red;
background-color: blue;

}

In Listing 1-2, the element with the class header will have a blue background
because it is the last one in the rule. The second background-color property overrides
the first.

Comments

CSS can also contain comments, inside and outside of rules, as shown in Listing 1-3.

Listing 1-3. A CSS style sheet with comments

/* This is a comment outside of a rule */

.header {
/* This is a comment inside of a rule */
background-color: red;

}

CHAPTER 1 INTRODUCTION TO CSS

At-rules

An at-ruleis a special CSS rule that acts as a directive controlling the behavior of CSS. It
is called an at-rule because it starts with the “at” sign (@). Here are some examples of at-

rules:
e (@charset: Defines the character encoding used in the CSS file.
e @import:Imports, or includes, the contents of another style sheet.

e (@media: Defines a media query. We will cover media queries in
Chapter 11.

o @keyframes: Defines a set of keyframes for a CSS animation.
Animations will be covered in Chapter 9.

How CSS is used

There are several ways to use CSS in an HTML document. They all have the end result: a

style sheet that is applied to the document.

Inline styles

Every HTML element supports the style attribute. Inline styles are specified as CSS
properties in the value of the style attribute. An inline style does not contain selectors
or curly braces; it is simply a collection of CSS properties. An example of an inline style is

shown in Listing 1-4.

Listing 1-4. An element with inline styles

<div style="background-color: red;">
Hello world!
</div>

The element in Listing 1-4 will have a red background. The properties specified in
an element’s inline style will apply to that element only. If there are conflicts in the rules
that apply to an element, its inline style always takes precedence. For example, if there
was a CSS rule somewhere that made all div elements have a blue background, this
element’s inline style would override that and give it a red background.

4

CHAPTER 1 INTRODUCTION TO CSS

Style blocks

CSS rules can also be specified inside a style sheet within the HTML document itself.
This is done by adding CSS rules inside of a style element. Style blocks are typically
added to the document’s head element. These are full style sheets with selectors and
rules. Listing 1-5 shows an example HTML document containing a style element.

Listing 1-5. A style block inside an HTML document

<!DOCTYPE html>
<html>
<head>
<style>
div {
background-color: red;
}
</style>
</head>
<body>
<div>Hello world!</div>
</body>
</html>

In the preceding document, all div elements will have a red background.

External style sheets

Lastly, CSS rules can also be listed in a style sheet file with a . css extension. This style
sheet is then referenced in the head of the HTML document using a 1ink element. In the
following example, using the code from Listing 1-6, all div elements in the document
will have a red background. The linked CSS file is shown in Listing 1-7.

Listing 1-6. An HTML document referencing an external style sheet

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="/path/to/file.css">

CHAPTER 1 INTRODUCTION TO CSS

</head>
<body>
<div>Hello world!</div>
</body>
</html>

Listing 1-7. A simple external CSS file

div {

background-color: red;
}
Browser support

The CSS features discussed in this book are well supported in modern browsers: recent
versions of Chrome, Firefox, Edge, and Safari. Some features have limited or no support
in older browsers such as Internet Explorer 11. These compatibility issues will be called
out where applicable.

Some features are supported but only with vendor-specific prefixes, but this is rare
with modern browsers. For example, several years ago, the @keyframes rule (which we'll
explore in Chapter 9) was still somewhat experimental, so in order to support it, prefixes
had to be used. This is shown in Listing 1-8.

Listing 1-8. Using vendor prefixes

@keyframes spin {
from { transform: rotate(0); }
to { transform: rotate(360deg); }

}

@-moz-keyframes spin {
from { -moz-transform: rotate(o); }
to { -moz-transform: rotate(360deg); }

}

CHAPTER 1 INTRODUCTION TO CSS

@-webkit-keyframes spin {
from { -webkit-transform: rotate(0); }
to { -webkit-transform: rotate(360deg); }

}

The main disadvantage of vendor prefixes is that they require duplication, as shown
in Listing 1-8. For each block, the same keyframes have to be specified.

More recent browser versions tend to use experimental feature flags rather than
vendor prefixes. These are special configuration flags that are exposed in an advanced
configuration interface where experimental features can be turned on and off.

If you still need to support older browsers that use prefixes, there are tools such
as Autoprefixer which lets you write prefix-free CSS. The tool then parses the CSS
and generates a new style sheet containing the duplicated vendor-prefixed rules and
properties.

Web resources

There are many resources and references that are useful when using CSS. Here are a few
of the best.

CanlUse.com

The website CanIUse.com (https://caniuse.com)is a great resource for finding out the
browser support of a given feature. This site maintains a database of up-to-date browser
support information for different CSS features. Figure 1-2 shows a screenshot of an
example query.

https://caniuse.com

CHAPTER 1 INTRODUCTION TO CSS

Can | use @keyframes .

found

CSS at-rule: @keyframes Mo alusers

Notes Sub-features (1) Feedback

See full reference on MDN Web Docs.

! @keyfranes s unsupparted in scoped sty In Firefox (bug, 830056).

Support data for this feature provided by:
B MDN browser-compat-data

Figure 1-2. Screenshot of CanlUse.com

Mozilla Developer Network

Another useful resource is the Mozilla Developer Network (https://developer.
mozilla.org), or MDN for short. MDN has a complete reference to HTML, CSS,
JavaScript, and more. It is an exhaustive reference to all CSS properties.

CSS preprocessors

CSS is not without its limitations and pain points. CSS preprocessors, such as Sass, LESS,
and Stylus, provide additional features not found in plain CSS. These tools provide an
extended, or even completely different, syntax for writing CSS rules. When you build the
application, the preprocessor takes your style sheets and converts them to plain CSS,
ready to use in the browser.

We won'’t cover CSS preprocessors in this book beyond this section, but here is a
quick overview if you are interested in using them.

https://developer.mozilla.org
https://developer.mozilla.org

CHAPTER 1 INTRODUCTION TO CSS

Nested rules

CSS rules don't support nesting. This means that a CSS rule with a selector cannot
appear inside another CSS rule. Most preprocessors, however, allow this. For example,
the Sass code in Listing 1-9 has nested rules.

Listing 1-9. Nested selectors in Sass

.header {
background-color: red;
h1 {

font-size: 24px;
}

}

The inner h1 selector will only match h1 elements that are a descendant of an
element that matches the outer rule, which would be an element with the class header.
The equivalent CSS for this nested rule would look like Listing 1-10.

Listing 1-10. The equivalent CSS

.header {
background-color: red;

}

.header h1 {
font-size: 24px;

}

Variables

If you are supporting modern browsers, this is not as compelling of a reason to use a
preprocessor, because recent versions of Edge, Firefox, Chrome, and Safari all support
native CSS variables. However, if you need to support older browsers such as IE11, this
can be a useful feature.

In Sass, for example, variables are declared and referenced starting with a $
character, as shown in Listing 1-11.

CHAPTER 1 INTRODUCTION TO CSS

Listing 1-11. Sass variable syntax

$header-color: red;

.header {
background-color: $header-color;

}

Mixins
A mixin allows you to write a set of CSS properties and values, then apply that entire
set of properties to another CSS rule without having to repeat all the code. If you have
to support older browsers that expect vendor prefixes on some properties, this can be
useful.

For example, the Flexible Box Layout Module, or flexbox, is supported on all modern
browsers. If you need to support older browsers, they may require vendor prefixes. Your
CSS might look something like Listing 1-12.

Listing 1-12. Vendor prefixes for flexbox

.header {
display: -webkit-flex;
display: -ms-flexbox;
display: flex;

}

The given code will need to be repeated for every element using a flexbox layout.
This can be simplified by creating a flexbox mixin in Sass, shown in Listing 1-13.

Listing 1-13. Sass flexbox mixin

@mixin flexbox {
display: -webkit-flex;
display: -ms-flexbox;
display: flex;

}

10

CHAPTER 1 INTRODUCTION TO CSS

.header {
@include flexbox;

}

Mixins are very useful for cutting down on duplicated code. They can even take

arguments to customize the resulting CSS.

How CSS works in the browser

Now, let’s take a look at how the browser renders a page with CSS.

The Document Object Model (DOM)

The Document Object Model, or DOV, is a data structure in the browser. It is a tree of

objects that represent the elements in the document and their structure and hierarchy.

This tree is composed of DOM nodes. The DOM is created by reading the HTML markup,

tokenizing it, parsing it, and finally creating the object hierarchy that makes up the DOM.
Consider the example HTML document shown in Listing 1-14.

Listing 1-14. A simple HTML document

<html>
<body>
<h1>Hello World</h1>
<divy
<h2>Subtitle</h2>
<p>Hello world!</p>
</div>
</body>
</html>

The corresponding DOM tree is shown in Figure 1-3.

11

CHAPTER 1 INTRODUCTION TO CSS

html
body
hl div

(h2 p
Hello World

Subtitle

[I—lello world!

s

Figure 1-3. The DOM tree corresponds to the HTML document

The CSS Object Model (CSSOM)

Similar to the DOM, there is also a CSS Object Model, or CSSOM. This is another tree
structure that represents the hierarchy of styles in the document. While they are both
tree structures, the CSSOM is a separate structure from the DOM.

Listing 1-15 contains a CSS style sheet meant to be applied to the HTML document
in Listing 1-14.

Listing 1-15. CSS style sheet

body {
font-size: 16px;

}

12

h1 {
font-size: 1.5rem;
color: orangered;
}
div {
padding: irem;

}

div h2 {
font-size: 1.2rem;
color: blue;

}

div p {
font-size: 0.9rem;
color: gray;

}

CHAPTER 1

INTRODUCTION TO CSS

The browser parses the CSS (which blocks the rendering of the page) and creates the
CSSOM. Figure 1-4 shows the structure of the CSSOM tree.

body
font-size: 16px;

F S
hl

font-size: l.5rem;
color: orangered;

r

h2

font-size: 1.2rem;

color: blue;

Figure 1-4. The CSSOM tree

- %
div
padding: lrem;

- 3

P
font-size:
color:

0.9rem;

gray;

13

CHAPTER 1 INTRODUCTION TO CSS

The render tree

Once the DOM and CSSOM are complete, they are combined to form the render tree.
The render tree contains all the information the browser needs to render the page. To do
this, the browser calculates which CSS rules apply to which elements in the DOM.

Figure 1-5 shows the render tree resulting from combining the DOM and CSSOM
trees.

html
body font-size: 16px;
font-size: 1.5rem; hi aiv SAdings 1ven:

color: orangered;

font-size: l.Z2rem;
. 1 .
Hello World ekieien LKLY

e et e

Subtitle

font-size: 0.9rem;
h2 P

color: gray;

Lorem
ipsum. ..

Figure 1-5. The render tree

Layout and paint

Once the browser has created the render tree, it can begin laying out the elements on the
page. This stage of the process looks at styles such as width, height, position, margin, and
padding, to determine each element's size and location on the page. At the layout stage,
however, nothing is actually shown on screen yet.

Once layout is complete, the browser can begin painting by applying styles such as
color and font to determine the actual pixels to draw on the screen. Some types of styles,
like gradients, have a higher performance impact than a solid color or image.

14

CHAPTER 1 INTRODUCTION TO CSS

Summary

In this chapter, we learned about
o The syntax and structure of CSS rules
o How conflicts are handled

e The three ways to use CSS in an HTML document - inline styles, style
blocks, and external style sheets

o (CSS preprocessors

e The critical rendering path - the DOM, CSSOM, and render tree

15

CHAPTER 2

CSS Selectors

One of the core concepts in CSS is that of selectors. A selector determines which
element(s) a CSS rule applies to. There are several ways an element can be targeted with
a selector, which we will cover in this chapter.

CSS selectors can target multiple elements on the page. That is, a single CSS rule can
apply to multiple elements. An element or class selector can select multiple different
elements that have that class or element name.

Similarly, a single HTML element can be affected by multiple CSS rules. An element
will have the properties from all applicable CSS rules applied to it.

Basic selector types

The basic types of selectors are
e Universal
e Element
o« ID
e C(lass

e Attribute

The universal selector

The universal selector, specified simply as an asterisk (*), matches all elements. This
can be specified as a single selector, to select all elements in the document, or with
combinators (discussed in the next section). Listing 2-1 shows an example usage of the

universal selector.

17
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_2

https://doi.org/10.1007/978-1-4842-6294-8_2#DOI

CHAPTER2 CSS SELECTORS

Listing 2-1. Removing all margins with the universal selector

*A
margin: O;

}

The CSS rule in Listing 2-1 will apply a margin of 0 to all elements in the document.

Element selectors

An element selector targets an HTML element by its tag name. The syntax of the selector
is simply the name of the element. Listing 2-2 shows an example usage of an element
selector.

Listing 2-2. Applying a margin to all div elements
p{

margin: 25px;
}

The CSS rule in Listing 2-2 will apply a margin of 25px to all p elements in the
document.

ID selectors

An HTML element can have an id attribute. As a general rule, there should only be one
element with a given id. If there are multiple elements with the same id, most browsers
will match the rule with all elements having that id. However, this should be avoided as
it violates the HTML specification.

An ID selector is specified with the # character followed by the id value, as shown in
Listing 2-3.

Listing 2-3. Applying padding to the element with an id of header

#theader {
padding: 25px;
}

18

CHAPTER2 CSS SELECTORS

The element with an id attribute whose value is header will receive 25px of padding.
If there are other elements also having an id of header, they will receive 25px of padding
in most browsers. Again, this should be avoided. If you need to apply a style to more than
one element, you can use class selectors instead of ID selectors.

Class selectors

An HTML element can also have a class attribute. A class can be used to mark all
elements of a related type.

While only a single element is intended to be targeted by an ID selector, any number
of HTML elements can have the same class attribute. Similarly, a single HTML element
can have any number of classes applied to it. Multiple classes are separated by a space in
the value of the class attribute.

A class selector will match every element in the document with the given class. Class
selectors are specified with a dot, followed by the name of the class, as shown in Listing 2-4.

Listing 2-4. Applying a color to all elements with the class nav-1ink

.nav-link {
color: darkcyan;

}

The rule in Listing 2-4 will match every element in the document with a class of nav-
link and give it a color of darkcyan.

Attribute selectors

HTML elements can also be selected by their attribute values or by the presence of an
attribute. The attribute is specified inside square brackets, and the attribute selector can
take several forms.

[name]

Selects all elements that have the given attribute, regardless of its value.

n n
[name="value"]
Selects all elements that have the given attribute, whose value is the string value.

19

CHAPTER2 CSS SELECTORS

[name~="value"]

Selects all elements that have the given attribute, whose value contains the string value
separated by whitespace. Listing 2-5 contains two HTML elements with slightly different
title attributes.

Listing 2-5. Example HTML elements

<div title="Hello World">Hello World</div>
<div title="HelloWorld">HelloWorld</div>

If we wrote a CSS rule with the selector [title~="World"], the first element would
match but not the second. This is because in the second element, the word “World” in
the title attribute is not surrounded by whitespace.

[name*="value"]

Selects all elements that have the given attribute, whose value contains the substring
value. If we wrote another CSS rule, this time with the selector [title*="World"], it
would match both of the preceding elements.

[name”="value"]

Selects all elements that have the given attribute, whose value begins with value.

[name$="value"]

Selects all elements that have the given attribute, whose value ends with value.

Compound selectors

Any of the preceding selectors (with the exception of the universal selector) can be used
alone or in conjunction with other selectors to make the selector more specific. This is
best illustrated with some examples:

div.my-class

20

CHAPTER 2 CSS SELECTORS
Matches all div elements with a class of my-class.
span.class-one.class-two
Matches all span elements with a class of both class-one and class-two.
a.nav-link[href*="example.com"]

Matches all a elements with a class of nav-1ink that have an href attribute that
contains the string example.com.

Multiple independent selectors

A CSS rule can have multiple selectors separated by a comma. The rule will be applied to
any element that is matched by any one of the given selectors.

.class-one, .class-two

Matches all elements with a class of class-one as well as all elements with a class of
class-two.

Selector combinators

There's even more you can do with selectors. Combinators are used to select more
specific elements. Combinators are used in conjunction with the basic selectors
discussed earlier. For a given rule, multiple basic selectors can be used, joined by a
combinator.

Descendant combinator

The descendant combinator matches an element that is a descendant of the element
on the left-hand side. Descendant means that the element exists somewhere within the
child hierarchy - it does not have to be a direct child.

The descendant combinator is specified with a space character:

.header div

21

CHAPTER2 CSS SELECTORS

Matches all div elements that are direct or indirect children of an element with a
class of header. If any of these div elements have children that are also divs, those divs
will also be matched by the selector.

Child combinator

The child combinator matches an element that is a direct child of the element on the left-
hand side. It is specified with a > character:

.header > div

Matches all div elements that are direct children of an element with a class of
header. If those divs have children that are also divs, those divs will not be matched by
the selector.

General sibling combinator

The general sibling combinator matches an element that is a sibling, but not necessarily
an immediate sibling, of the element on the left-hand side. It is specified with a ~
character. Consider the example in Listing 2-6.

Listing 2-6. Example HTML elements

<div>
<div class="header"></div>
<div class="body"></div>
<div class="footer"></div>
</div>

The selector .header ~ div would match two div elements: the one with class body
and the one with class footer. Note that it does not match the div with class header.

Adjacent sibling combinator

The adjacent sibling combinator is similar to the general sibling combinator, except it

only matches elements that are an immediate sibling. It is specified with a + character.
Looking back at the HTML in Listing 2-6, the selector .header + div would only

match the body element, because it is the adjacent sibling of the heading element.

22

CHAPTER2 CSS SELECTORS

Using multiple combinators

Just like basic selectors, combinators can be combined to form even more specific
selectors. For example, this selector will match a button element that is an immediate
sibling of a div element, which in turn is an immediate child of a div with the class
header:

div.header > div + button

Pseudo-classes

Another tool in the CSS selector toolbox is the pseudo-class. A pseudo-class allows you
to select elements based on some special state of the element, in addition to all the
selectors previously discussed.

Pseudo-classes start with a colon and can be used alone or in conjunction with other
selectors.

Some pseudo-classes let you select elements based on Ul state, while others let you
select elements based on their position in the document (with more precision than the
combinators).

There are many pseudo-classes (you can find a complete list at https://developer.
mozilla.org/en-US/docs/Web/CSS/Pseudo-classes), but here are some of the more

commonly used ones.

Ul state

These pseudo-classes are based on some Ul state.

sactive

Matches an element that is currently being activated. For buttons and links, this usually
means the mouse button has been pressed but not yet released.

schecked

Matches a radio button, checkbox, or option inside a select element that is checked or
selected.

23

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

CHAPTER2 CSS SELECTORS

sfocus

Matches an element that currently has the focus. This is typically used for buttons, links,
and text fields.

thover

Matches an element that the mouse cursor is currently hovering over. This is typically
used for buttons and links but can be applied to any type of element.

svalid, :invalid

Used with form elements using HTMLS5 validation. The :valid pseudo-class matches an
element which is currently valid according to the validation rules, and :invalid matches
an element which is not currently valid.

svisited

Matches a link whose URL has already been visited by the user. To protect a user’s
privacy, the browser limits what styling can be done on an element matched by this
pseudo-class.

Document structure

These pseudo-classes are based on an element’s position in the document.

sfirst-child, :last-child

Matches an element that is the first or last child of its parent. Consider the example
unordered list in Listing 2-7.

Listing 2-7. A simple unordered list

<ul class="my-list">
Item one</1i>
Item two</1i>

24

CHAPTER2 CSS SELECTORS

The selector .my-1ist > li:first-child will match the firstlist item only, and the
selector .my-1ist > li:last-child will match the last list item only.

snth-child(n)

This pseudo-class takes an argument. It matches an element that is the nth child of its
parent. The index of the first child is 1. Referring back to Listing 2-7, we could also select
the first item with the selector .my-1ist > 1i:nth-child(1), or the second item with
the selector .my-1ist > 1i:nth-child(2).

The :nth-child pseudo-class can also select children at a given interval. For
example, in a longer list, we could select every other list item with the selector .my-1list
> 1li:nth-child(2n). Or we could select every four items with the selector .my-1ist
> 1li:nth-child(4n). We can even select all odd-numbered children with the selector
.my-list > li:nth-child(odd) or even-numbered children with .my-1list > 1li:nth-
child(even).

:nth-of-type(n)

Similar to :nth-child, except that it only considers children of the same type. For
example, the selector div:nth-of-type(2) matches any div element that is the second
div element among any group of children.

sroot

Matches the root element of the document. This is usually the html element. This
selector can be useful for several reasons, one of which is that it can be used to declare
global variables (we will discuss CSS variables in Chapter 3).

Negating a selector

A selector can also include the :not() pseudo-class. :not accepts a selector as its
argument and will match any element for which the selector does not match. For example,
the selector div:not(.fancy) will match any div that does not have the fancy class.

25

CHAPTER2 CSS SELECTORS

Pseudo-elements

A pseudo-element lets you select only part of a matched element. Pseudo-elements are
specified with a double colon (: :) followed by the pseudo-element name.

We haven'’t discussed block vs. inline elements yet, but it should be noted that some
pseudo-elements only apply to block-level elements.

sefirst-1line

Matches the first line of a block element.

ssfirst-letter

Applies the styles only to the first letter of the first line of an element.

s sbefore, ::after

Two special pseudo-elements are : :before and : :after. These pseudo-elements don’t
select part of the element; rather, they actually create a new element as either the first
child or the last child of the matched element, respectively. These pseudo-elements are
typically used to decorate or add effects to an element.

Suppose we want to add an indicator next to all external links on our website. We can
tag these external links using a class, say, external-1ink.

We can specify an external link as shown in Listing 2-8.

Listing 2-8. An external link

<a class="external-link"
href="https://google.com">
Google

Then we can add the indicator with the CSS rule in Listing 2-9. The content property
defines what the text content of the pseudo-element should be.

26

CHAPTER 2 CSS SELECTORS
Listing 2-9. Adding the external link indicator

.external-link::after {
content: ' (external)';
color: green;

}

Figure 2-1 shows the rendered HTML.

Google (external)

Figure 2-1. The rendered link with an : :after pseudo-element

The : :after pseudo-element added the content (external) and made it green.

Sometimes, you may want to use a : :before or : :after pseudo-element for
decorative purposes. In this case, you must still provide a value for the content property
or else the element will not be displayed. For decorative elements, this can be set to an
empty string.

Specificity

An HTML element can have multiple CSS rules applied to it by matching different
selectors. What happens if two or more of the rules applied to an element contain the
same CSS property? How are such conflicts resolved? Listing 2-10 shows such a conflict.

Listing 2-10. Conflicting CSS rules

<style>
.profile {
background-coloxr: green;
}
div {
background-color: red;
color: white;
}
</style>

<div class="profile">My Profile</div>

27

CHAPTER2 CSS SELECTORS

We have a conflict. Our HTML element matches both selectors - it is indeed a div
element, and it also has the profile class. Each rule specifies a different value for the
background-color property. When the page is rendered, which background color will
this div element have?

You might think that, since the element selector rule comes after the class selector
rule, the element selector rule will win the conflict. After all, this is how conflicting CSS
properties within a rule work. Figure 2-2 shows the output of this code.

My Profile

Figure 2-2. The rendered output

As you can see, the class selector rule’s background color was applied. This is
because the class selector rule has a higher specificity. When there is a conflict of CSS
properties across multiple rules, the rule with the most specific selector will be chosen.
According to the rules of CSS, a class selector is more specific than an element selector.

Note that while the element has the background color from the class selector rule,
it also has the color from the element selector rule. Specificity rules only matter for
conflicting properties across multiple rules. Other properties in these multiple rules will
still be applied.

Specificity rankings
The specificity rankings of CSS rules are as follows, from most specific to least specific:
1. Inline styles in an element’s style attribute
2. ID selectors
3. C(lass selectors, attribute selectors, and pseudo-classes
4. Element selectors and pseudo-elements

Neither the universal selector nor combinators factor into specificity.

28

CHAPTER2 CSS SELECTORS

Calculating specificity

There is a general algorithm for calculating a CSS rule's specificity. To calculate the
specificity of a CSS rule, imagine four boxes, one for each type of style rule in the given
list, as shown in Figure 2-3. Initially, each box has a zero in it.

Class,
pseudo- Element,
Inline D class, pseudo-
style attribute ~ element
0 0 0) 0
More S Less
specific specific

Figure 2-3. Specificity calculator

If the element has an inline style, add a 1 to the first box. In this case, the inline style
automatically wins.

For each ID in the selector, add 1 to the value in the second box. For each class,
pseudo-class, or attribute in the selector, add 1 to the value in the third box. Finally, for
each element or pseudo-element in the selector, add 1 to the value in the last box.

Consider an example, the selector ul#primary-nav li.active. This would resultin

the specificity calculation shown in Figure 2-4.

29

CHAPTER2 CSS SELECTORS

ul#primary-nav li.active

Class,
pseudo- Element,
Inline D class, pseudo-
style attribute element
More N Less

specific specific

Figure 2-4. Calculating the specificity of a selector

Let’s calculate the specificity of the two CSS selectors from Listing 2-10. Figure 2-5
shows the specificity values.

.profile

O O0|/1 O

div
0 00 1

Figure 2-5. Calculating the specificity values of the example selectors

How do we interpret these specificity values? For most selectors, you can think
of each number as the digit of a larger number and strip the leading zeros. The CSS
specification states

Concatenating the four numbers a-b-c-d (in a number system with
a large base) gives the specificity.

30

CHAPTER2 CSS SELECTORS

This would give us values of 10 for the class selector and 1 for the element selector.
Looking at it this way, it is clear that the class selector is more specific.
Figure 2-6 shows a comparison of two very similar selectors.

.profile

O O0|/1 O

div.profile

0 011

Figure 2-6. Specificity calculation for two similar selectors

These selectors are very similar, but the one containing both an element and a class
selector (specificity 11) is more specific than the one containing a class selector alone
(specificity 10).

Lastly, if multiple conflicting rules are calculated to have the same specificity, the
rule that appears last will win.

The escape hatch: !important

Any CSS property can have the keyword ! important after it inside of a rule. This keyword
will cause that property to always win in a conflict, even if the rule that contains it has
lower specificity than another conflicting rule.

However, this is generally considered a bad practice. It can make CSS issues harder
to debug and can make your style sheets less maintainable. In most cases, it’s better to
determine the specificity of the rules you are trying to apply and use a more specific
selector on the rule that you want to apply.

31

CHAPTER2 CSS SELECTORS

Summary

In this chapter, we learned all about CSS selector syntax and specificity rules. Some key
takeaways are

e The most commonly used selectors are element, ID, class, and
attribute selectors.

¢ Combinators can be used to create even more specific selectors.
e Multiple selectors can match an element.
o Conlflicts are resolved by using the rule that is more specific.

o Specificity can be overridden by using ! important, but this should be
avoided.

32

CHAPTER 3

Basic CSS Concepts

Now that we’ve looked in detail at how to select elements, let’s start to explore how to
style them. The next step is to look at some of the basic concepts in CSS.

The box model

Every element in CSS is treated like a rectangular box. This is sometimes referred to as
the box model. The box is made up of four parts. Starting from the outside and moving
toward the center, these are the margin, border, padding, and content.

The margin is the space between an element’s border and its surrounding elements.
It is specified with the margin property.

The border is an outline around the box. Borders can be styled with a thickness,
style, and color. It is specified with several properties: border-style, border-width,
border-color, and border.

The padding is the space between the element’s border and the content itself. It is
specified with the padding property.

Figure 3-1 shows the different parts of the CSS box model.

33
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_3

https://doi.org/10.1007/978-1-4842-6294-8_3#DOI

CHAPTER 3 BASIC CSS CONCEPTS

Figure 3-1. The CSS box model

By default, most elements have no padding, border, or margin. There are some
exceptions, like button elements. Listing 3-1 shows two div elements with some color to
differentiate them but no other styling applied.

Listing 3-1. Two simple div elements

<style>
#divl {
background-color: red;

}

#div2 {

background-color: green;
}
div {

color: white;

}
</style>

34

CHAPTER 3 BASIC CSS CONCEPTS

<div id="div1">Hello world!</div>
<div id="div2">Hello world!</div>

Figure 3-2 shows the rendered result of these two elements.

ello world!
Hello world!

Figure 3-2. The rendered result

Notice how the elements run up against one another and generally look cramped.
By adding padding, border, and margin to these elements, we can make it easier to read.
Listing 3-2 adds these properties.

Listing 3-2. Applying padding, border, and margin

<style>
#divi {
background-color: red;
}
#div2 {
background-color: green;
}
div {
color: white;
padding: 1rem;
margin: 1rem;
border: 2px solid black;
}
</style>

<div id="div1">Hello world!</div>
<div id="div2">Hello world!</div>

35

CHAPTER 3 BASIC CSS CONCEPTS

Figure 3-3 shows the elements with their new styling.

Hello world!

Hello world!

Figure 3-3. The same two elements with padding, border, and margin applied

Box sizing

The size of an element is specified with the width and height properties. How exactly
this is interpreted, however, depends on the value of the box-sizing property. This
property supports two values, content-box and border-box.

content-box

This is the default. With content-box, the width and height properties are treated as the
width and height of the content area of the box only. The actual width and height taken
up by the element’s box is the sum of the specified width and height (the content box),
the padding on each side, and the border width on each side.

Consider the example rule in Listing 3-3.

Listing 3-3. A simple CSS rule

.box {
width: 100px;
height: 100px;
padding: 10px;
border: 2px solid red;

The actual width and height taken up by the rendered box will be 100px + 10px +
10px + 2px + 2px = 124 pixels, as visualized in Figure 3-4.

36

CHAPTER 3 BASIC CSS CONCEPTS

2px E E 2px

< 124px >

Figure 3-4. The full rendered size of the element using content-box

boxrder-box

With border-box, the values of the width and height properties are treated as the size
of the content box plus the padding and border width. Looking back at the example
in Listing 3-3, and setting box-sizing to border-box, the total width and height of
the rendered element is 100 pixels. To compensate for the extra 24 pixels taken up by
the padding and border width, the size of the content box will shrink to 76 pixels, as
visualized in Figure 3-5.

...........................

2px E E 2px

<« 100px >

Figure 3-5. The full rendered size of the element using border-box

Block and inline elements

There are two types of HTML elements: block and inline (or a combination of the two,
inline-block). Both block and inline elements follow the box model but are different in
some important ways.

37

CHAPTER 3 BASIC CSS CONCEPTS

Some HTML elements are block elements (e.g., div) and some are inline elements
(e.g., span). An element’s type can be changed by setting the display property to block,
inline, or inline-block

Block elements

A block element always appears on its own line and takes up the full width of its
containing element, unless an explicit width is set with the width property. The height of
a block element, by default, is just enough to fit the height of its content, but this height
can also explicitly be set with the height property.

The example in Listing 3-4 contains some div elements, which are block elements.

Listing 3-4. Some div elements

<style>
.container {
width: 350px;
border: 2px solid black;

}

.box1 {
background-color: skyblue;

}

.box2 {
background-color: lime;

}
</style>

<div class="container">
<div class="box1">Hello</div>
<div class="box2">World</div>
</div>

38

CHAPTER 3 BASIC CSS CONCEPTS

The rendered result is shown in Figure 3-6.

ello

Figure 3-6. The div elements rendered as block elements

The outer container element has an explicit width of 350px set, so it will be 350 pixels
wide (technically, 354 pixels, since it is using content-box sizing).

The inner elements have no explicit width set, so they take up the full width of the
container element. They also have no explicit height set, so they only take up enough
vertical space to fit the text content.

Inline elements

Unlike block elements, an inline element is rendered inside the normal flow of text. They
only take up enough width and height as necessary to contain their content. Setting the
width or height properties of an inline element will have no effect. Listing 3-5 has an
example of an inline element.

Listing 3-5. An inline span element

<style>
.highlight {
background-color: yellow;

}
</style>

Hello world, I am demonstrating an inline
element.

Figure 3-7 shows the rendered result.

Hello world, I am demonstrating an inline element.

Figure 3-7. The rendered inline element

39

CHAPTER 3 BASIC CSS CONCEPTS

The span is an inline element, so its width and height are only enough to fit its
content. As you can see, it does not appear on its own line. If we were to give the span an
explicit width or height, it would be ignored.

There are some other differences between block and inline elements as well. When
setting padding on the left and right of an inline element, it behaves as expected. The
padding is applied, and the element takes up extra space. Listing 3-6 has an example that
illustrates this.

Listing 3-6. Horizontal padding on an inline element

<style>
.container {
width: 300px;
}

.highlight {
background-color: yellow;
padding-left: 50px;
padding-right: 50px;

}

</style>

<div class="container"»

Hello world, I am demonstrating an inline
element.
</div>

The result is shown in Figure 3-8.

Hello world ,Iam
demonstrating an inline element.
Figure 3-8. The rendered result
As expected, the element’s width increases to accommodate the padding, and the

surrounding content is pushed away to make room. However, an inline element behaves
differently when setting top and bottom padding. Consider Listing 3-7.

40

CHAPTER 3 BASIC CSS CONCEPTS

Listing 3-7. Adding vertical padding to an inline element

<style>
.container {
width: 300px;
}

.highlight {
background-color: yellow;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;

}

</style>

<div class="container">

Hello world, I am demonstrating an inline
element.
</div>

The result, shown in Figure 3-9, may surprise you.

Hello world ,Iam
demonstrating an inline element.

Figure 3-9. The odd behavior of vertical padding on an inline element

The padding was applied to the element, but no extra vertical space was made to
accommodate the top and bottom padding. The background color of the span element
bleeds into the adjacent content.

Inline elements behave similarly when it comes to margins - extra space is made for

the horizontal margins but not the vertical ones.

41

CHAPTER 3 BASIC CSS CONCEPTS

Inline-block elements

The third element type is a combination of the first two. An inline-block element flows
with the text like an inline element, but the width and height properties are respected,
as are the vertical padding and margin.

Listing 3-8 takes the example from Listing 3-5 and makes the element an inline-block
element and gives it an explicit width.

Listing 3-8. Using an inline-block element

<style>
.container {
width: 300px;
}

.highlight {
background-color: yellow;
display: inline-block;
width: 100px;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;

}

</style>

<div class="container"»
Hello world, I am demonstrating an inline-
block element.

</div>

42

CHAPTER 3 BASIC CSS CONCEPTS

The result is shown in Figure 3-10.

Hello world ,Ilam

demonstrating an inline-block element.

Figure 3-10. The rendered inline-block element

The span element does not break onto a new line - it flows with the text like an
inline element. However, its width and height properties are respected, as is the vertical
padding. Extra space is made to account for the padding - it doesn’t bleed over into the
surrounding content like with an inline element.

Units

To give an element a padding of 10 pixels, we would specify a value of 10px for the
padding property. In this expression, we say that px is a unit. CSS units are equivalent to
different units of measurement. In the physical world, measurements have units such as
inches, feet, or meters. Similarly, CSS has units such as px, em, and rem. We will go over
some of these in this section.

px

We've already seen the px unit in several examples. In the past, we could have said

that this corresponds to physical pixels on the screen. However, in the modern age of
ultrahigh-resolution displays, this is no longer exactly accurate. A CSS pixel does not
necessarily have a one-to-one correspondence to a physical device pixel. On a very high-
resolution 4K display, 1 pixel is so tiny that it would be hard to see with the naked eye. If
CSS used device pixels, then a 1-pixel border would barely be visible to the user.

43

CHAPTER 3 BASIC CSS CONCEPTS

Instead, a so-called logical pixel corresponds to a certain number of physical device
pixels. A 1px border looks roughly equivalent on a 4K display as it does on a lower
resolution display, but it may use more physical device pixels.

It is generally not recommended to use px units in CSS. The main reason is that these
pixel-based dimensions don’t always scale well when a user adjusts the browser zoom
level. This can be an accessibility issue.

There is one property that is appropriate to use pixels for - the page’s base font size.
In most browsers, this defaults to 16px. The base font size is set by applying the font-
size property to the root html element.

It’s also appropriate to use pixels in media queries, which we will cover in Chapter 11.

The em unit is a relative unit. It is relative to the font size of the element. Listing 3-9 shows
arule using the em unit for padding.

Listing 3-9. Using the em unit

.header {
font-size: 24px;
padding: 0.5em;

}

The header element has a font size of 24px. The padding is specified as 0.5em, or half
of the element’s font size. Therefore, the padding applied to this element will be 12px.
Listing 3-10 shows another example of using the em unit.

Listing 3-10. Specifying the font size in em units

.header {
font-size: 24px;
padding: 0.5em;

}

.header 1i {
font-size: 0.75em;

}

44

CHAPTER 3 BASIC CSS CONCEPTS

.header 1i a {
font-size: 0.5em;

Because font size is inherited, the 11 elements inside the header also start out with a
font size of 24px. Then in the 11 element’s CSS rule, we set the font size to 0.75em. This is
relative to the element’s current font size of 24px, so the actual font size of the 11 element
would be 24px * 0.75 = 18px. Finally, the a elements inside the 11 elements have a font-
size of 0.5em, which is relative to the 1i element’s font size of 18px, so its font size would
be 18px * 0.5 = 9px.

Due to this cascading effect, sometimes using em units for nested elements can cause
unintended effects to properties such as font size, padding, and margin.

xrem

The rem unit is also a relative unit. It stands for “root em” and is relative to the page’s
base font size. For example, if the base font size is 16px (remember that this usually
doesn’t correspond to physical pixels), a size of 1remis equal to 16px. 1.5rem would be
16px * 1.5 = 24pX.

rem units are a good choice, especially for layout properties, since the size of 1rem
remains constant throughout the document (unlike the em unit). If the browser is
zoomed, everything resizes nicely because it’s all proportional to the base font size.

Because rem units are proportional to the base font size, there is no cascading effect
like there is with em units.

Viewport units: vw and vh

The viewport is the area of the page that is currently visible in your web browser. CSS
also has units that are relative to the viewport size: vw (viewport width) and vh (viewport
height). Each of these units are 1% of the viewport size in that direction, that is, 1vw is 1%
of the viewport width and 1vh is 1% of the viewport height.

If the viewport is resized, then any elements using vw units will have their sizes
adjusted accordingly. Because vw and vh are relative to the viewport size, they are a good
choice when using responsive design techniques.

There are also two related units, vmin and vmax. vmin is defined as whichever is
smaller - the viewport width or the viewport height - and vmax is the larger of the two.

45

CHAPTER 3 BASIC CSS CONCEPTS

Percentage: %

The % unit is relative to the size of another value. What exactly this is relative to depends
on the CSS property. For example, for the font-size property, the % unit is defined as
a percentage of the parent element’s font size. However, for the padding property, % is
defined as a percentage of the element’s width.

Like the viewport units, the percentage unit is very useful for responsive design, as
we will see in Chapter 11.

No units

Some property values take no units at all but rather just a number. For example, the
opacity property expects a number between 0 and 1. Another example of this is some
flexbox properties such as flex-grow and flex-shrink, which expect integer numbers
without units.

Other units

We have seen the most commonly used CSS units, but there are others as well. There are
absolute units such as cm (centimeters), mm (millimeters), in (inches), and pt (points).
These units are sometimes used for print style sheets but are rarely seen in screen style
sheets.

There are also some experimental units that do not yet have wide browser support.
For example, the 1h unit is relative to the element’s line height, but this unit is currently
not supported on any browsers.

Functions

CSS includes some helpful built-in functions.

calc

The calc function lets you combine the different units we saw earlier to calculate an
exact amount. It can be used anywhere a value is expected. The real power of the calc
function is that you can have mixed units in the calculation.

46

CHAPTER 3 BASIC CSS CONCEPTS

For example, suppose you want the height of an element to be 10 pixels short of
1.5rem. This can easily be accomplished with the calc function: calc(1.5rem - 10px).
This is likely easier than doing the size calculations yourself to specify an exact pixel
value.

Another very useful feature of the calc function is that it also works with CSS
custom properties, or variables. We will look at variables in Chapter 6, but Listing 3-11
has an example.

Listing 3-11. Using CSS variables with the calc function

:root {
--spacing: 0.5rem

}

.container {
padding: calc(var(--spacing) * 2);

}

In this example, we establish a standard unit of spacing for the document as a
variable and can reference that later in the call to the calc function. You might also
notice the var function, which as we will see later is used to reference variables.

There are several other functions, which we will cover in the relevant sections. For
example, there are some functions for defining colors, which we will explore in the next

section.

Colors

One of the most common things done with CSS is to change colors. This can include
background color, text color, and border color. There are a multitude of colors, and they
can be expressed in multiple ways.

Predefined colors

CSS has many predefined color values. So far, all of the examples in the book have used
these predefined color values. They range from basics like red and green to other shades
like tomato, orangered, and skyblue. A full list of these colors can be found at https://
developer.mozilla.org/en-US/docs/Web/CSS/color_value.

47

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

CHAPTER 3 BASIC CSS CONCEPTS

RGB colors

One of the ways to define a color is by the values of the color's red, green, and blue
components. Any color can be expressed as a combination of RGB values. Each value of
red, green, and blue is expressed as a number between 0 and 255.

One way that an RGB color can be specified is as a hexadecimal value. The red,
green, and blue values are each converted to two hexadecimal digits. These digits are
used in RGB order, preceded by a pound sign (#). The hex values can be specified with
uppercase or lowercase letters. Table 3-1 shows a few examples of RGB hex notation.

Table 3-1. Example colors and their hex values

Color Hex code
Black #000000
White #FFFFFF
Red #FF0000
Green #00FF00
Blue #0000FF

The other way to specify an RGB color is by using the rgb function. Instead of
hexadecimal digits, the red, green, and blue components of the color are specified as
base-10 numbers between 0 and 255 or a percentage between 0% and 100%. Table 3-2
shows the usage of the rgb function.

Table 3-2. Example colors using the rgb function

Color RGB notation

Black rgb(o, 0, 0)

White rgb(255, 255, 255)
Red rgb(255, 0, 0)
Green rgb(0, 255, 0)
Blue rgb(0, 0, 255)

48

CHAPTER 3 BASIC CSS CONCEPTS

Alpha value

RGB colors can also specify an alpha value, which determines the opacity of the color.
The alpha is a value between 0 (fully transparent) and 1 (fully opaque) or a percentage
between 0% and 100%. To specify an alpha value, the rgba function is used. For example,
for pure red with 50% opacity, the color would be defined as rgbha(255, 0, 0, 0.5).

HSL colors

A color can also be expressed as a combination of hue, saturation, and lightness values.
Hue is specified as a degree of an angle on the color wheel (from 0 to 360 degrees). 0
degrees is red, 120 degrees is green, and 240 degrees is blue.

Saturation is a percentage value of how much color is applied. 0% saturation is a
shade of gray, and 100% saturation is the full color from the color wheel.

Finally, lightness is also a percentage value. 0% lightness is pure black, and 100% is
pure white.

An HSL color is specified using the hs1 function. For the color with a hue of 120 degrees,
a saturation of 50% and a lightness of 50% would be specified as hs1(120, 50%, 50%).

Like RGB colors, HSL colors can also have an alpha value, specified using the hsla
function. As described earlier, the alpha value can be a number between 0 and 1 or a
percentage between 0% and 100%. For the color in the previous example to have 75%
opacity, it would be specified as hsla(120, 50%, 50%, 0.75).

Transparent

Anywhere a color is expected, the transparent keyword can be used. This will apply
no color. This can be useful when an element is positioned on top of another element,
and you want the element underneath to show through. The background color of most
elements defaults to transparent.

Newer color syntax

The usage of the rgb/rgba and hs1/hsla functions as previously described has been
the standard for a long time. There is a newer syntax for these functions that are slightly
different. This newer format is completely optional, and in fact, if you have to support
older browsers, you won’t want to use it.

49

CHAPTER 3 BASIC CSS CONCEPTS

The new syntax makes a few changes:
o There are no commas between the numbers.

o Ifan alpha value is specified, it is separated from the three color
values with a slash character:

o Because of this, the rgba and hsla functions are no longer
necessary. The alpha value can be specified with a slash in the
base rgb and hs1 functions.

o The alpha value can also be specified on a hex color, for example,
#FF00007F for pure red with 50% alpha.

Table 3-3 shows some comparisons between the old and new syntax.

Table 3-3. Comparison of old and new color syntax

Old syntax Equivalent new syntax
rgb(o, 0, 0) rgb(0 0 0)

rgba(255, 0, 0, 0.5) rgh(255 0 0 / 0.5)
hs1(120, 50%, 50%) hs1(120 50% 50%)
hsla(120, 50%, 50%, 0.75) hs1(120 50% 50% / 0.75)

Compatibility note This new color syntax is not supported in Internet Explorer.

Overflow

As discussed earlier, every HTML element is a rectangular box. Normally, the size of an
element expands to fit its content, as we have seen in some earlier examples. However,
what happens when an explicit height is set and the content does not fit inside the
element's dimensions? This is a condition known as overflow. Listing 3-12 contains an
example showing text overflowing its container.

50

CHAPTER 3 BASIC CSS CONCEPTS

Listing 3-12. Demonstrating overflow of an element’s content

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;

}
</style>

<div class="container">
This is some really long text that will overflow the container.
</div>

The overflow can be seen in Figure 3-11.

This is some really long
text that will overflow
the container.

Figure 3-11. Text overflowing the container

We can clearly see that the text content is too long to fit in a 2rem by 10rem container,
so the content overflows the container element. Note that the content only overflows
vertically. This is because the default behavior is to wrap the text to the next line when
it doesn’t fit on one line. This ensures it does not overflow horizontally, but because an
explicit height is set, the container will not grow to fit its content.

If we insert a fixed-width element inside the container, as shown in Listing 3-13, the
content will overflow both horizontally and vertically. We will add some padding to the

container as well, to make the overflow more apparent.

Listing 3-13. Adding a fixed-width element inside the container

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;

51

CHAPTER 3 BASIC CSS CONCEPTS

padding: 1rem;

}

.container .banner {
background-color: #999999;
width: 15rem;

}
</style>

<div class="container">

<div class="banner">This is a banner</div>

This is some really long text that will overflow the container.
</div>

Figure 3-12 shows that there is now horizontal as well as vertical overflow.

This is some really long
text that will overflow
the container.

Figure 3-12. Horizontal and vertical overflow

As we now know, the content inside a block element will wrap to a new line when
it doesn’t fit horizontally. We can change this behavior with the white-space property.
If we set this property to nowrap in the first example from Listing 3-12, as shown in
Listing 3-14, this will also cause horizontal overflow.

Listing 3-14. Settingwhite-space to nowrap

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;
white-space: nowrap;

}
</style>

52

CHAPTER 3 BASIC CSS CONCEPTS

<div class="container"»
This is some really long text that will overflow the container.
</div>

As Figure 3-13 shows, this has caused horizontal overflow.

This is some really long text that will overflow the container.

Figure 3-13. Horizontal overflow of the container’s text content

Handling overflow

We have some control over how overflow is handled with the overflow property. This
property handles both horizontal and vertical overflow together. They can also be
handled independently with the overflow-x and overflow-y properties. The default
value is visible, which results in what we saw in the previous examples. There are a few
other options available.

hidden

When the overflow property is set to hidden, the overflowing content is simply not
displayed. It is clipped by the bounds of the containing element, as shown in Figure 3-14.

This ; some y long

text that will nverflow

Figure 3-14. The overflowing content is clipped with overflow: hidden

scroll

When the overflow property is set to scroll, the overflowing content is initially not visible.
However, there are scrollbars provided so that the user can scroll and view the overflowing
content. The scrollbars are always provided, even if the content does not overflow.

53

CHAPTER 3 BASIC CSS CONCEPTS

auto

This behaves similarly to scroll. The difference is that when overflow is set to auto, the
scrollbars are only provided if the content actually overflows.

CSS variables

Variables are a common feature in all programming languages. A variable is a way to
store a piece of data, under a descriptive name, and that value can be referenced later by
the variable name.

Variables have been available for many years with CSS preprocessing tools like Sass
and Less. CSS variables, officially called CSS custom properties, were introduced later.
Support for CSS variables was not great until more recently. They are now supported in
all modern browsers.

Compatibility note CSS variables are not supported in Internet Explorer.

Why would we want to use variables in CSS? Suppose you're designing a website
for a company. You use their brand color, #3FA2D9, in many places throughout your
CSS. Later, the site is going through a rebranding, and the brand color is changing. You
now have to change the brand color in every place you used #3FA2D9.

Instead, you can define a brand-color variable and reference that variable
everywhere you need to use the brand color. Later, when that color changes, you simply
need to change the color value once - in the variable declaration.

Using variables
CSS variables are declared with two dashes followed by the variable name, such as
--brand-color: #3FA2D9;

To reference a variable’s value later, you need to pass the variable name to the var
function:

background-color: var(--brand-color);

54

CHAPTER 3 BASIC CSS CONCEPTS

The var function also takes an optional second argument, which is a fallback value
to use in case the variable isn't defined:

background-color: var(--brand-color, #3FA2D9);

Variable inheritance

A variable can be declared on any element or pseudo-element. Variables then cascade
down to descendant elements, as demonstrated in Listing 3-15. The result is shown in
Figure 3-15.

Listing 3-15. Inheriting a parent’s variable

<style>
.container {
--heading-color: blue;
font-family: Arial, sans-serif;

}

.container h1 {
color: var(--heading-color);

}
</style>
<div class="container">
<h1>Welcome</h1>
</div>

Welcome

Figure 3-15. The rendered result

To make a variable apply to the entire document (a so-called global variable), you
can set it using the special :Toot selector, as shown in Listing 3-16.

55

CHAPTER 3 BASIC CSS CONCEPTS

Listing 3-16. A global variable

<style>
sroot {
--text-color: red;

}

.container {
color: var(--text-color);
font-family: Arial, sans-serif;
}
</style>

<div class="container">Hello World!</div>

Variables can also reference other variables, as shown in Listing 3-17. The result is
shown in Figure 3-16.

Listing 3-17. Referencing variables inside other variables

<style>
sroot {

--primary-border-color: red;

--primary-border-style: solid;

--primary-bordexr-width: 3px;

--primary-border:
var(--primary-border-width)
var(--primary-border-style)
var(--primary-border-color);

}

.container {
border: var(--primary-border);
width: 10rem;

}
</style>

<div class="container">Hello World!</div>

56

CHAPTER 3 BASIC CSS CONCEPTS

Hello World!

Figure 3-16. The rendered result

Using variables in CSS calculations

Finally, you can even reference variables in the calc function. Consider the example in

Listing 3-18. We have a container with six rows. We want the container to be tall enough
to show three visible rows, and the rest should overflow and be accessed via scroll. The

result is shown in Figure 3-17.

Listing 3-18. Using variables for layout

<style>
:root {
--row-height: 1.5rem;
--visible-rows: 3;

}

.container {
border: 1px solid red;
height: calc(var(--row-height) * var(--visible-rows));
overflow: auto;
width: 10rem;

}

.Tow {
line-height: var(--row-height);
}
</style>

<div class="container">
<div class="row">Row one</div>
<div class="row">Row two</div>
<div class="row">Row three</div>
<div class="row">Row four</div>

57

CHAPTER 3 BASIC CSS CONCEPTS

<div class="row">Row five</div>
<div class="row">Row six</div>
</div>

Row one
Row two
Row three

Figure 3-17. Three visible rows

We set two variables: an explicit row height of 1. 5rem and a visible row count of 3.
The container should be as high as three rows, so in the .container rule, we use calc
to multiply the --row-height variable by the --visible-rows variable, which will yield
exactly the correct height.

We also apply overflow: auto, which as we saw earlier hides the overflow and
makes it scrollable.

Summary

In this chapter, we learned about some of the basic concepts of CSS. Some key
takeaways are

o All elements are represented by a rectangular box with content,
padding, border, and margin.

o There are three main types of elements: block, inline, and inline-
block.

o There are many different units for CSS values:

o pxshould be avoided except when setting the document’s base
font size.

o emisrelative to the element’s font size.

58

CHAPTER 3 BASIC CSS CONCEPTS

e remis relative to the document’s base font size.
e vw, vh, vmin, and vmax are relative to the viewport size.

The calc function is used to compute CSS values by performing
calculations with multiple values, potentially with different units.

Colors can be defined in several ways.

o Named colors: red, blue, and orangered
o Hexadecimal RGB: #FF0000

o 1gb function: rgb(255, 0, 0)

o hsl function: hs1(90, 50%, 25%)

If an element’s content cannot fit inside of it, the content will

overflow.

Overflow handling can be changed with the overflow, overflow-x,
and overflow-y properties.

A variable is declared with two leading slashes: --var-name.
A variable is referenced with the var function: var (--var-name).

Variable values are inherited by descendant elements.

59

CHAPTER 4

Basic Styling

By now, you have a solid grasp of the main underlying concepts of CSS. Now it's time to
dive in and start learning some CSS properties and styling techniques. We'll start with
the basics in this chapter.

Property values

First, a few notes on CSS property values.

Global keywords

Most CSS properties support several global keywords as their values:

e initial: Uses the initial value set by the browser’s built-in style
sheet.

e inherit: Takes the value used by the element’s parent.

e unset: If the property naturally inherits from its parent, such as
font-size, itis set to the inherited value. Otherwise, it is set to the
initial value from the browser’s style sheet.

Shorthand and multiple values

We've seen how many CSS properties, such as border-width, padding, and margin, can
take a single value. These are known as shorthand properties. For these properties, the
single value given will be used for the top, bottom, left, and right.

Each shorthand property has four equivalent properties for each side of the element.
For example, for the padding shorthand element, there are also padding-top, padding-
bottom, padding-left, and padding-right properties.

61
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_4

https://doi.org/10.1007/978-1-4842-6294-8_4#DOI

CHAPTER 4 BASIC STYLING

If you want to specify different values for different sides of the element, you can still
use the shorthand property - just give it multiple values.

If one value is given, as we've seen, it applies to all four sides of the element.
Listing 4-1 shows an example of this using the border-width property.

Listing 4-1. A single value for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px;
}
</style>

<div class="container">Hello world!</div>

You can see in Figure 4-1 that all four borders have the same width.

Hello world!

Figure 4-1. All four borders have the same width

If two values are specified, the first applies to the top and bottom, and the second
applies to the left and right. An example of this is shown in Listing 4-2.

Listing 4-2. Two values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px;
}
</style>

<div class="container">Hello world!</div>

Note the different border widths in Figure 4-2 on the top and bottom compared to
the left and right.

62

CHAPTER 4 BASIC STYLING

IHello world! I

Figure 4-2. The rendered result

If three values are specified, the first applies to the top, the second applies to the left
and right, and the third applies to the bottom. Listing 4-3 has an example of this, and the
result is shown in Figure 4-3.

Listing 4-3. Three values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px 10px;
}
</style>

<div class="container">Hello world!</div>

Eello world! I

Figure 4-3. The rendered result

Finally, if four values are specified, they are applied in clockwise order, starting at the top.

Listing 4-4. Four values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px 10px 20px;
}
</style>

<div class="container">Hello world!</div>

63

CHAPTER 4 BASIC STYLING

ﬁello world! I

Figure 4-4. All borders have different widths

Borders

For most elements, the border is invisible by default. CSS has several properties for
styling a border.

border-color

The border-color property, as its name implies, sets the color of the border.

border-width

The border-width property determines how thick the border is. The value of
border-width can be a value like 3px. There are also some predefined values: thin,
medium, and thick.

border-style

The border-style property determines the visual appearance of the border. In addition to
none (the default), there are several available border styles, as shown in Figure 4-5.

64

CHAPTER 4 BASIC STYLING

Figure 4-5. The different border styles

border

The three preceding properties can be combined into a single property with the border
shorthand property, as shown in Listing 4-5. The properties can be specified in any
order.

Listing 4-5. The border shorthand property

.container {
border: 5px solid red;

}

border-collapse

The border-collapse property only applies to table elements. It controls how borders
are preserved or collapsed between adjoining table cells. The default value is separate.
With this default behavior, a table's borders are not combined. Consider the table in
Figure 4-6, where each cell has a different-colored border.

65

CHAPTER 4 BASIC STYLING

Figure 4-6. Borders are not collapsed

Notice that each cell’s border is seen in its entirety - the borders do not collapse.
Figure 4-7 shows the result if we set border-collapse to collapse.

Figure 4-7. Borders are now collapsed

Any cell borders adjacent to another border have been collapsed into a single border.

border-radius

By default, blocks have 90-degree rectangular corners. That isn't always the most
aesthetically pleasing design, though. To address this, CSS gives us the border-radius
property. This property gives us rounded corners. The corners can be circular or
elliptical. A simple example is shown in Listing 4-6.

Listing 4-6. Setting a border radius

<style>
.rounded-corners {
background-color: red;
border-radius: 10px;
height: 5rem;
width: Srem;
}
</style>

<div class="rounded-corners"></div>

66

CHAPTER 4 BASIC STYLING

This creates rounded corners with a radius of 10px, as shown in Figure 4-8.

Figure 4-8. A box with rounded corners

What does it mean for the corner to have a radius of 10px? Imagine a circle drawn
over each of the corners. That circle’s radius is 10px. This visualization is shown in
Figure 4-9.

Figure 4-9. The meaning of border radius

The border-radius can be elliptical as well as circular. Each of the two radii of the
ellipse is specified, separated by a slash, as shown in Listing 4-7.

Listing 4-7. Using an elliptical border-radius

<style>
.rounded-corners {
background-color: red;
border-radius: 20px / 10px;

67

CHAPTER 4 BASIC STYLING

height: Srem;
width: 5rem;

}
</style>

<div class="rounded-corners"></div>

Figure 4-10 shows the resulting corners.

Figure 4-10. The box with elliptical border radius

Similar to the circular radius, the elliptical radius effect is applied with an ellipse
in each corner. The horizontal radius is given first, followed by the vertical. This is
illustrated in Figure 4-11.

Figure 4-11. Explanation of the elliptical border radius

You can also specify a different border-radius for each corner, as shown in
Listing 4-8, creating some interesting shapes. Note that when you specify border-radius
in this way, an elliptical border-radius does not have a slash separating the horizontal
and vertical radius. The result is shown in Figure 4-12.

68

CHAPTER 4 BASIC STYLING
Listing 4-8. Specifying different border radius properties

<style>
.rounded-corners {

background-color: red;
border-bottom-right-radius: 10px 20px;
border-bottom-left-radius: 5px;
border-top-left-radius: 20px 10px;
border-top-right-radius: 50%;
height: 5rem;
width: 5rem;

}
</style>

<div class="rounded-corners"></div>

Figure 4-12. The resulting shape

Box shadows

Elements can also have a shadow. This is controlled by the box-shadow property. A box
shadow has a color, and its dimensions can be specified with up to four values, which are

o Xoffset
e Y offset
e Blur radius: How far out the shadow is blurred

e Spread radius: How far the shadow extends beyond the element’s
dimensions

At a minimum, the X and Y offsets must be given. By default, the blur and spread radius
are zero. Listing 4-9 has a straightforward example. The result is shown in Figure 4-13.

69

CHAPTER 4 BASIC STYLING

Listing 4-9. A simple box shadow

<style>
.shadow {
box-shadow: 5px 5px black;
background: #CCCCCC;
width: 10rem;
height: Srem;
}
</style>

<div class="shadow"></div>

Figure 4-13. The rendered result

We can also add a blur radius to blur the shadow, as demonstrated in Listing 4-10.
The result is shown in Figure 4-14.

Listing 4-10. Adding a blur radius

<style>
.shadow {
box-shadow: 5px 5px 10px black;
background: #CCCCCC;
width: 10rem;
height: Srem;
}
</style>

<div class="shadow"></div>

70

CHAPTER 4 BASIC STYLING

Figure 4-14. The rendered shadow with a blur radius

If we add a spread radius and set the blur radius to zero, as shown in Listing 4-11,
we can see that the shadow size grows by the spread radius in all directions. The result is
shown in Figure 4-15.

Listing 4-11. Adding a spread radius without a blur radius

<style>
.shadow {
box-shadow: 5px 5px 0 5px black;
background: #CCCCCC;
width: 10rem;
height: Srem;
}
</style>

<div class="shadow"></div>

Figure 4-15. The rendered shadow

Finally, we can apply the blur radius again to see the full result.

71

CHAPTER 4 BASIC STYLING

Listing 4-12. Shadow with a blur and spread radius

<style>
.shadow {
box-shadow: 5px 5px 10px 5px black;
background: #CCCCCC;
width: 10rem;
height: Srem;
}
</style>

<div class="shadow"></div>

Figure 4-16. The full rendered shadow

We could also set the X and Y offsets to zero, as shown in Listing 4-13, and let the
shadow spread and blur evenly in all directions. The result is shown in Figure 4-17.

Listing 4-13. Setting the X and Y offsets to zero

<style>
.shadow {
box-shadow: 0 0 5px 5px black;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow”></div>

72

CHAPTER 4 BASIC STYLING

Figure 4-17. The rendered result

Box shadows can also be inside the element instead of behind it. To do this, specify
the inset keyword, as shown in Listing 4-14. The result is shown in Figure 4-18.

Listing 4-14. An inset box shadow

<style>
.shadow {
box-shadow: 0 0 25px black inset;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

Figure 4-18. The rendered result

73

CHAPTER 4 BASIC STYLING

Finally, you can apply multiple shadows to an element, as shown in Listing 4-15.
This could be used, for example, to apply both an inner and outer shadow. The resulting
shadows are shown in Figure 4-19.

Listing 4-15. Multiple box shadows

<style>
.shadow {
box-shadow: 0 0 10px 0 black, 0 0 25px red inset;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

Figure 4-19. The rendered result, showing two box shadows

Opacity

By default, most elements start out with a transparent background. When a background
color or image is assigned, that element becomes opaque. You cannot see through the
element to what's behind it. Borders and text are also opaque.

You can change this behavior with the opacity property. opacity applies to the
entire element - background, border, text, images, and any other content within that
element or its children.

74

CHAPTER 4 BASIC STYLING

The opacity property takes a number between 0 and 1 or a percentage from 0% to
100%. This sets the level of transparency of the element. An opacity of 0.5, or 50%, is half
transparent. Listing 4-16 shows an example of setting opacity. The result is shown in

Figure 4-20.

Listing 4-16. Demonstration of opacity

<style>
.outer {
background: red;
height: 10rem;
width: 10rem;

}

.inner {
background: blue;
color: white;
height: 8rem;
width: 8rem;
opacity: 0.5;

}

</style>

<div class="outer">
<div class="inner">
Hello World!
</div>
</div>

75

CHAPTER 4 BASIC STYLING

Figure 4-20. The rendered result

Notice that the red background of the outer box partially shows through the inner
box and its text. If we set opacity to 0. 2, the inner box becomes even more transparent
and is barely visible, as shown in Figure 4-21.

Figure 4-21. Decreasing the opacity

Hiding elements

There are a few ways you can hide an element on the page using CSS.

display: none

When the display property is set to none, the element is removed from the flow of the
document as if it was never there. Other elements will move to fill in the space.

76

CHAPTER 4 BASIC STYLING

Consider the example shown in Figure 4-22.

Figure 4-22. Three boxes

If we set the blue middle element’s display property to none, it is removed, and the
other block moves to the left to fill the empty space, as shown in Figure 4-23.

Figure 4-23. The middle element hidden with display: none

visibility: hidden

Another way to hide an element is by setting the visibility property to hidden. This
behaves a little differently than display: none - the flow of the document is not affected.
This means that no elements will move to fill the empty space left by the hidden element.

If we change the middle box from Figure 4-22 to visibility: hidden, it will
disappear, but an empty space will remain, as shown in Figure 4-24.

Figure 4-24. The empty space left by visibility: hidden

To restore the hidden element, we can set the visibility property back to visible.

77

CHAPTER 4 BASIC STYLING

opacity: 0

The last way to hide an element is to set its opacity property to 0. This has the same
net effect as visibility: hidden - the element is effectively hidden, but the layout is
unchanged. To show the element again, just set opacity back to 1.

One reason you may want to use opacity: Oinstead of visibility: hiddenis
while the visibility property will show or hide the element immediately, the opacity
property can be transitioned gradually with a CSS transition, which we'll learn more
about in Chapter 9. This can be used to create a subtle fade-in/fade-out effect.

Summary

In this chapter, we learned about some of the basic styling techniques with CSS:
e Aborder has a style, width, and color.
¢ Rounded corners can be created with the border-radius property.
e Anelement can have an inner and/or outer box shadow.
o The opacity property determines the transparency of an element.

e Anelement can be hidden in three ways: display: none,
visibility: hidden, or opacity: o.

78

CHAPTER 5

Backgrounds and Gradients

Any HTML element can have a background. Backgrounds can be images, solid colors, or
even gradients.

Solid background colors

Solid background colors are applied using the background-color property. This accepts
any valid CSS color expression.

Listing 5-1. A solid background color

<style>
.red-background {
background-colox: #FF0000;

}
</style>

<div class="red-background">Hello world!</div>

Figure 5-1. The rendered result

Background images

Images can also be used as an element’s background. There are several properties that
control the background image.

79
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_5

https://doi.org/10.1007/978-1-4842-6294-8_5#DOI

CHAPTER 5 BACKGROUNDS AND GRADIENTS

background-image

One or more background images can be applied using the background-image property.
This accepts one or more image URLs. The background images will be stacked on top of
each other, with the first image on top.

A background image’s URL is specified with the url function. It takes one argument,
which is a string that can be an absolute or relative URL. Here are a few examples:

o Absolute URL: url('https://imgur.com/my-image.png");
o Relative URL: url('/header.png');

Listing 5-2. Using a background image

<style>
.background-image {
background-image: url('tiles.jpg');
height: Srem;
width: 10rem;

}
</style>

<div class="background-image"></div>

Figure 5-2. The rendered result

background-repeat

If an element is larger than its background image, by default the image will be repeated
to fill the element.

80

https://imgur.com/my-image.png

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Listing 5-3. Using a background image on an element larger than the image itself

<style>
.background-image {
background-image: url(tiles.jpg);
height: 50rem;
width: 100rem;

}
</style>

<div class="background-image"></div>

Figure 5-3. The tiled background image

This behavior can be changed with the background-repeat property. Repeating can
be disabled by setting it to no-repeat. If the background isn't repeated to cover the entire
element, the background colory, if any, will show through.

Listing 5-4. Disabling background repeat

<style>
.background-image {
background-color: #999999;
background-image: url('tiles.jpg');

81

CHAPTER 5 BACKGROUNDS AND GRADIENTS

background-repeat: no-repeat;
height: 50rem;
width: 100rem;

}
</style>

<div class="background-image"></div>

Figure 5-4. The rendered result

The background image can be repeated just horizontally or just vertically by
specifying a background-repeat of repeat-x or repeat-y.

Listing 5-5. Repeating the background vertically only

<style>
.background-image {
background-color: #999999;
background-image: url('tiles.jpg');
background-repeat: repeat-y;
height: 50rem;

82

CHAPTER 5 BACKGROUNDS AND GRADIENTS

width: 100rem;

}
</style>

<div class="background-image"></div>

Figure 5-5. The rendered result

background-position

The position of the background image can be changed with the background-position
property.

Listing 5-6. The background-position property

<style>
.background-image {
background-color: #999999;
background-image: url('tiles.jpg');
background-repeat: no-repeat;
background-position: center;

83

CHAPTER 5 BACKGROUNDS AND GRADIENTS

height: 50rem;
width: 100rem;

}
</style>

<div class="background-image"></div>

Figure 5-6. The rendered result

A single value can be given such as top, bottom, left, right, or center, a length such
as 50px, or a percentage. Two values can also be given. In this case, the first value is the
position along the X-axis, and the second is the position along the Y-axis.

Listing 5-7. Specifying two values for background-position

<style>
.background-image {

background-color: #999999;
background-image: url('tiles.jpg');
background-repeat: no-repeat;
background-position: 50px center;
height: 50rem;
width: 100rem;

84

CHAPTER5 BACKGROUNDS AND GRADIENTS
</style>

<div class="background-image"></div>

Figure 5-7. The background image in the specified position

background-size

By default, the background image will have its original size. This may not always be ideal
and can be changed with the background-size property. Consider this example where
the element is wider than the background image being used.

Listing 5-8. An element wider than its background image

<style>
.header-image {
background-image: url('mountains.jpg');
height: 15rem;
border: 3px solid #000000;

}
</style>

85

CHAPTER 5 BACKGROUNDS AND GRADIENTS

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

Figure 5-8. The background image is tiled

Since the element is wider than its background, the background is tiled, as we saw
before. This doesn’t look good, though. Just like before, we can set background-repeat to
no-repeat.

Listing 5-9. Setting background-repeat to no-repeat

<style>
.header-image {
background-image: url('mountains.jpg');
background-repeat: no-repeat;
height: 15rem;
border: 3px solid #000000;

}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

This fixes the tiling issue but creates a new issue. There is a big white gap inside the
element between the background image and the border.

86

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Figure 5-9. A gap inside the element

We can improve this further by setting the background-size property to cover. This
will resize the background image to make sure that the element is fully covered. If the
aspect ratio of the image doesn’t match that of the element, the image will be cropped.

Listing 5-10. Setting background-size to cover

<style>
.header-image {
background-image: url('mountains.jpg');
background-size: cover;
height: 15rem;
border: 3px solid #000000;

}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

Figure 5-10. The rendered result

87

CHAPTER 5 BACKGROUNDS AND GRADIENTS

This looks better. The background fills the element without tiling or a gap. It’s still not
ideal, though. Most of the image is cut off - we don’t see the mountains, which are the
focal point of the image.

To fix this, we can combine the background-position property with background-
size, setting the position to center to focus on the center of the image.

Listing 5-11. Focusing on the center of the background image

<style>
.header-image {
background-image: url('mountains.jpg');
background-size: cover;
background-position: center;
height: 15rem;
border: 3px solid #000000;

}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

Now, we get a much nicer result. The mountains at the center of the background

image are visible.

Figure 5-11. A better view of the background image

There are some other useful values for background-size as well. One such value is
contain, which will resize the background image so that the entire image fits within the
element.

88

CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-12. Setting background-size to contain

You can also set a specific size in pixels, which can cause strange results if the aspect
ratio is not preserved.

Listing 5-12. Setting a specific background size

<style>
.header-image {
background-image: url('mountains.jpg');
background-size: 100px 300px;
height: 15rem;
border: 3px solid #000000;

}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

Because the given dimensions are not the same aspect ratio as the original image, it
appears squashed in the horizontal direction, as seen in Figure 5-13.

Figure 5-13. The rendered result

89

CHAPTER 5 BACKGROUNDS AND GRADIENTS

background-clip

By default, an element’s background goes behind its border, padding, and content. If we
add some padding to the header image, and change the border, we can see that behavior.

Listing 5-13. Adding padding and changing border

<style>
.header-image {
background-image: url('mountains.jpg');
background-size: cover;
background-position: center;
height: 15rem;
border: 5px dashed #000000;
padding: 2rem;
}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

This behavior can be changed with the background-clip property. It can take the
following values.

boxrder-box

The background will extend all the way to the border, as shown in Figure 5-14. This is the

default behavior.

Welcome to my site i
.),

Figure 5-14. The background is behind the border and padding areas

90

CHAPTER 5 BACKGROUNDS AND GRADIENTS

padding-box

The background will extend to the padding area, but will not appear behind the border,

as shown in Figure 5-15.

Figure 5-15. The background does not extend behind the border

content-box

The background will only be shown behind the content area. It will not extend into the
padding area or the border, as shown in Figure 5-16.

Figure 5-16. The background only extends into the content area

background

Finally, there is also a background shorthand property that lets you set several of these
properties in a single value. A background color can also be included. The values can be
given in any order, with a few exceptions:

o The background-size must come directly after background-
position, separated by a slash.

o Thebackground-color must come last.

91

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Listing 5-14. The background shorthand property

<style>
.header-image {
background: url('mountains.jpg') center / cover;
height: 15rem;
border: 3px solid #000000;

}
</style>

<div class="header-image">
<h1>Welcome to my site</h1>
</div>

Gradients

In addition to solid colors and images, CSS also supports gradient backgrounds. In the
past, this was achieved by creating an image containing the desired gradient and setting
that as a background-image. With modern browsers, and even IE11, this is no longer
needed, as gradients are natively supported.

There are two types of gradients supported in all browsers:

e Linear gradients go along a straight line. They can go left to right, top
to bottom, or at an arbitrary angle.

e Radial gradients start at a central point and radiate outward.

There is no CSS property for gradients; they are treated as background images.
Gradients are specified with the linear-gradient and radial-gradient functions in the
value for the background-image property.

Linear gradients

A linear gradient gradually transitions between colors along a straight line. A gradient
can have multiple "stops" or color transitions. Listing 5-15 shows the simplest possible

linear gradient.

92

CHAPTER5 BACKGROUNDS AND GRADIENTS
Listing 5-15. A simple linear gradient

<style>
.gradient {
background-image: linear-gradient(red, blue);
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

By default, a linear gradient goes from top to bottom, and the stops are evenly
distributed. The gradient in Figure 5-17 has two stops. The first is red, and the second is
blue.

Figure 5-17. The rendered gradient

Adding more stops

You can easily add more stops to a linear gradient.

Listing 5-16. A gradient with three stops

<style>
.gradient {
background-image: linear-gradient(
red,
blue,
green
);

width: 10rem;

93

CHAPTER 5 BACKGROUNDS AND GRADIENTS

height: Srem;

}
</style>

<div class="gradient"></div>

Figure 5-18. The rendered gradient

Using transparency

You can even use transparency in a gradient.

Listing 5-17. Specifying transparent as gradient stops

<style>
.gradient {
background-image: linear-gradient(
transparent,
blue,
transparent
)s
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

94

CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-19. A gradient with transparent stops

Changing the direction

To change the direction of the gradient from its default of top to bottom, add an
argument of the format: to <direction> at the beginning of the linear-gradient
function. This specifies the direction of the gradient.

Listing 5-18. Specifying the gradient direction

<style>
.gradient {
background-image: linear-gradient(
to right,
red,
blue
);
width: 10rem;
height: S5rem;
}
</style>

<div class="gradient"></div>

This results in a horizontal gradient, starting from red on the left and moving to the
right to blue, as shown in Figure 5-20.

95

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Figure 5-20. A horizontal gradient
You can also specify an arbitrary angle for the linear gradient.

Listing 5-19. Specifying an angle for the gradient

<style>
.gradient {
background-image: linear-gradient(
45deg,
red,
blue
);
width: 10rem;
height: Srem;
}
</style>

<div class="gradient"></div>

The code in Listing 5-19 results in a linear gradient that starts at the bottom left
corner, and moves at a 45-degree angle, as shown in Figure 5-21.

Figure 5-21. A 45-degree gradient

96

CHAPTER5 BACKGROUNDS AND GRADIENTS

Customizing stops

So far, the linear gradients we've seen have had an even distribution of colors. The color
stops were spaced equally across the gradient. You can change the position along the
gradient where the color changes happen by specifying a percentage after the color stop.
Listing 5-20 shows an example of this.

Listing 5-20. Customizing gradient stops

<style>
.gradient {
background-image: linear-gradient(
to right,
red 0%,
blue 25%
)s
width: 10rem;
height: Srem;
}
</style>

<div class="gradient"></div>

Figure 5-22. The rendered gradient

Notice how the gradient starts with a solid red color, then gradually transitions to
blue at the 25% mark.
Two adjoining stops with the same color will create a region of solid color.

97

CHAPTER 5 BACKGROUNDS AND GRADIENTS
Listing 5-21. A gradient with two adjacent stops of the same color

<style>
.gradient {
background-image: linear-gradient(
to right,
red 0%,
green 25%,
green 75%,
blue 100%
)s
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

Figure 5-23. A gradient with a solid region in the middle

Note that between 25% and 75%, the color is solid green. Similarly, if the first stop
is after 0%, or the last stop is before 100%, the remaining space before or after will be a
solid color.

In addition to percentages, color stops can be specified with any valid length value in
px, em, rem, or other units.

Radial gradients

A radial gradient starts at a central point and radiates outward. Listing 5-22 has an
example of a simple radial gradient.

98

CHAPTER5 BACKGROUNDS AND GRADIENTS
Listing 5-22. A radial gradient

<style>
.gradient {
background-image: radial-gradient(red, blue);
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

Figure 5-24. The rendered radial gradient

Customizing the shape and position

The shape of a radial gradient can be defined as an ellipse (the default), or a circle.
The shape is defined as the name of the shape and a position such as top, right,
left, center, or specific percentages or values. The shape is defined as <shape> at
<position>. The position can be omitted, in which case it defaults to center.

Listing 5-23. Specifying a circle for the radial gradient shape

<style>
.gradient {
background-image: radial-gradient(
circle,
red,
blue
);

width: 10rem;

99

CHAPTER 5 BACKGROUNDS AND GRADIENTS

height: Srem;

}
</style>

<div class="gradient"></div>

Figure 5-25. The circular gradient

We can move the circle to the left by specifying a position of 25%, as demonstrated in
Listing 5-24.

Listing 5-24. Specifying the position of the gradient shape

<style>
.gradient {
background-image: radial-gradient(
circle at 25%,
red,
blue
);
width: 10rem;
height: Srem;
}
</style>

<div class="gradient"></div>

100

CHAPTER5 BACKGROUNDS AND GRADIENTS

The center of the circle in Figure 5-26 is at the 25% mark along the horizontal axis.

Figure 5-26. The circle gradient at 25%

Two values can also be given for the position, such as top left.

Listing 5-25. Specifying two values for the position

<style>
.gradient {
background-image: radial-gradient(
circle at top left,
red,
blue
)s
width: 10rem;
height: Srem;
}
</style>

<div class="gradient"></div>

Figure 5-27. The circle gradient in the top-left corner

101

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Customizing the size

The size of the gradient can be further influenced by providing modifiers to the shape
that define where the gradient should end. The options that can be set are

o closest-side: The gradient ends at the side closest to the center of
the gradient. For a wide rectangle, this would be the top or bottom.

o farthest-side: The gradient ends at the side farthest from the center
of the gradient. For a wide rectangle, this would be the left or right.

e closest-corner: The gradient ends at the closest corner to its center.

e farthest-corner: The gradient ends at the farthest corner from its
center. This is the default.

Customizing stops

A radial gradient can also have multiple color stops.

Listing 5-26. A radial gradient with multiple color stops

<style>
.gradient {
background-image: radial-gradient(
red,
blue,
green 75%
);
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

102

CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-28. The rendered gradient

Multiple gradients

You can even combine multiple radial gradients applied to an element if you use a
transparent color as one of the stops.

Listing 5-27. Multiple gradients

<style>
.gradient {
background-image: radial-gradient(
ellipse at 25%,
red,transparent
), radial-gradient(
ellipse at 75%,
blue,
transparent
);
width: 10rem;
height: 5rem;
}
</style>

<div class="gradient"></div>

103

CHAPTER 5 BACKGROUNDS AND GRADIENTS

Figure 5-29. The rendered gradients

Combining backgrounds

Gradients and background images can be combined to achieve light and shadow effects.
Listing 5-28 has an example of applying a lighting effect with a gradient that goes from
white to transparent.

Listing 5-28. Applying a lighting effect with a gradient

<style>
.header-image {
background-image:
radial-gradient(
ellipse at top left,
white 25%,
transparent
)s
url('mountains.jpg');
background-size: cover;
background-position: center;
height: 15rem;
}
</style>

<div class="header-image"></div>

Similarly, a shadow effect could be achieved by using a dark color such as gray or
black instead of white.

104

CHAPTER5 BACKGROUNDS AND GRADIENTS

. . . .J.m-‘f-‘. is

Figure 5-30. The rendered result

Summary

In this chapter, we learned

e Anelement’s background can be a solid color, an image, a gradient,
or a combination of the three.

o The display of a background image can be customized with the
background-repeat, background-position, background-size, and
background-clip properties.

¢ Gradients can be linear or radial.

e Gradients can be combined with background images or colors.

105

CHAPTER 6

Text Styling

Now that we’ve covered the basics of styling, let’s explore the styling of text.

Fonts

You can use any font installed on your system for styling your website, but you should
use a web-safe font. These are fonts that are generally considered safe to use because
they are available on most users' systems.

Table 6-1 shows the generally accepted web-safe fonts along with their generic font

family names.
Table 6-1. Web-safe fonts
Font Family
Arial sans-serif
Trebuchet MS
Verdana
Courier New monospace
Georgia serif
Times New Roman

Basic text styling

There are several CSS properties that control basic text styling. We'll discuss a few of
them in this section.

font-family

The font-family property sets the font to use for the element's text. This font is
inherited by descendant elements.

107
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_6

https://doi.org/10.1007/978-1-4842-6294-8_6#DOI

CHAPTER 6 TEXT STYLING

font-family can be specified as a single value, the name of the font to use. More
commonly, a comma-separated list of fonts is given. The browser will try each font,
starting with the first, until a match is found. Generally, the list starts specific and gets
more general. The last font family in the list is typically a generic one like monospace or
sans-serif, where the browser will use a fallback font that approximates the desired
appearance. Font names containing spaces should be enclosed in quotes, as shown in
Listing 6-1.

Listing 6-1. Specifying multiple font names

.hello {
font-family:
Georgia,
'Times New Roman',
serif;

In this example, the browser will try Georgia first. If Georgia is unavailable, it will try
Times New Roman. Lastly, if that is not available, it will fall back to a built-in generic serif
font. Custom web fonts can also be used. We will discuss that a little later.

font-size

An element inherits its parent's font size by default. This behavior can be overridden by
using the font-size property, which sets the font size for the element. Recall that the
document has a base font size - usually 16px. The value of font-size not only controls
the size of the text, but it also determines base sizing for anything specified in em or
other relative units. The em unit is not just for text. Borders, padding, and even width and
height, can all be specified in ems.

In addition, there are several predefined font-size values, ranging from xx-small to
xxx-large. A relative font size can also be specified, with a value of smaller or larger. A
font-size can also be specified as a percentage of its parent's size.

As mentioned in Chapter 3, a font-size specified in em units has a compounding
effect if its children also use em units. Listing 6-2 shows an example of this effect.

108

Listing 6-2. Using em units on the parent and child

<style>
.parent {
font-size: 1.5em;

}

.child {
font-size: 1.5em;

}
</style>

<div class="parent">
I'm the parent
<div class="child">
I'm the child
</div>
</div>

I'm the parent

I'm the child

Figure 6-1. The parent and child have different font sizes

CHAPTER 6 TEXT STYLING

Note that while the parent and child elements both have a font-size of 1.5em, the

child's text is larger. This is the compounding effect. The parent's font size is 1.5em, or 1.5

times its parent's font size, which is the root element's font size of 16px. This comes out

to 24px.

The child element's font size is also 1.5em, 1.5 times of its parent, which we just

calculated to be 24px. 24px * 1.5 = 36pX.

If we used rem units for the parent and child, they would have the same font size

because rem is relative to the root element's font size.

109

CHAPTER 6 TEXT STYLING

color

The color property controls the element's text color (and fext decorations such as
underlines). It also sets the current color. This is a special value called currentColor that
resolves to the text color, which can be referenced from other properties. currentColor
is also the default border color, if one is not specified. Listing 6-3 has an example of
color and currentColor in action.

Listing 6-3. The color value and currentColor property

<style>
div {
border: 3px solid currentColor;

}

.one {
color: red;

}

.two {
color: blue;

}
</style>

<div class="one">0ne</div>
<div class="two">Two</div>

We gave one element a color of red and the other a color of blue. This set the
currentColor value of each element. Then, we also had a rule that selected both div
elements and used the currentColor as the border color. The red div gets a red border,
and the blue div gets a blue border.

One
0

Figure 6-2. The rendered result

110

CHAPTER 6 TEXT STYLING

font-weight

The font-weight property defines how bold the text appears. This can be a simple value
like normal or bold. It can also take numeric values: 100, 200, 300, 400, 500, 600, 700, 800,
and 900. The higher the number, the bolder the font is. The normal value is equivalent
to a weight of 400, and the bold value is equivalent to a weight of 700. Depending on the
font used, not all weights may be available.

font-weight can also be specified as the values 1ighter or bolder. These values are
relative to the weight of the element's parent.

font-style

The font-style property can be used to make text italic. It has three supported values:
normal, italic, and oblique. Italic and oblique are similar but slightly different. Italic
is typically an angled font face, sometimes with a completely different design than the
normal version. On the other hand, oblique is typically just the normal version, slanted.

Not all fonts include both an italic and oblique version. In this case, the italic and
oblique styles look the same.

text-decoration

The text-decoration property can be used to add decorative lines to text. These can be
underlines, strikethrough lines, and even wavy lines (on most browsers).

The basic usage of text-decoration takes a simple value: none, underline, or line-
through.

Listing 6-4. Demonstrating the basic usage of text-decoration

<style>
.underline {
text-decoration: underline;

}

.strikethrough {
text-decoration: line-through;

111

CHAPTER 6 TEXT STYLING

.none {
text-decoration: none;

}
</style>

<div class="underline">Underlined text</div>
<div class="strikethrough">Strikethrough text</div>
<div class="none">No text decoration</div>

Underlined text

Strikethrough-text
No text decoration

Figure 6-3. The different text decoration types

The text-decoration property can also take a color and a style. The available styles are
solid, double, dotted, dashed, and wavy.

Listing 6-5. The different options for text decoration style

<style>
div {
font-size: 2rem;

}

.solid {
text-decoration: underline solid blue;

}

.double {
text-decoration: underline double green;

}

.dotted {
text-decoration: underline dotted;

112

CHAPTER 6 TEXT STYLING

.dashed {
text-decoration: underline dashed purple;

}

.wavy {
text-decoration: underline wavy red;

}
</style>

<div class="solid">Solid blue underline</div>
<div class="double">Double green underline</div>
<div class="dotted">Dotted black underline</div>
<div class="dashed">Dashed purple underline</div>
<div class="wavy">Wavy red underline</div>

The different rendered styles can be seen in Figure 6-4.

Solid blue underline
Double green underline
Dotted black underline

Wavy red underline

Figure 6-4. The various text decoration styles

Some elements, such as links, have an underline by default. This can be removed by
setting text-decoration to none.

Compatibility note In Internet Explorer 11, only the basic usage of text-
decoration is supported. That is, text-decoration can be set to none,
underline, or line-through. Colors and styles are not supported.

113

CHAPTER 6 TEXT STYLING
Other text effects

text-transftorm
The text-transform property can be used to transform the text to all uppercase.

Listing 6-6. Example usage of the text-transform property

<style>
.hello {
text-transform: uppercase;

}
</style>

<div class="hello">Hello world!</div>

HELLO WORLD!

Figure 6-5. The text is transformed to all uppercase letters

Some of the other values for text-transformare none, capitalize, and lowercase.

letter-spacing

The letter-spacing property can be used to adjust the space between each letter. The
specified value is added to the normal spacing between letters.

Listing 6-7. Example usage of the letter-spacing property

<style>
.hello {
letter-spacing: 5px;

}
</style>

<div class="hello">Hello world!</div>

114

CHAPTER 6 TEXT STYLING

Hello world!

Figure 6-6. The letters are spaced an extra 5px apart

font-variant

The font-variant property can be set to small-caps for an interesting effect. All
lowercase letters are transformed into smaller-sized capital letters.

Listing 6-8. Example usage of the font-variant property

<style>
.hello {
font-variant: small-caps;

}
</style>

<div class="hello">Hello world!</div>

HErLLO WORLD!

Figure 6-7. The rendered text with small caps

Text layout

In addition to styling, there are also several useful properties that affect the text layout.

text-indent

The text-indent property is used to specify an indent on the first line of text in a block
element.

Listing 6-9. Example usage of the text-indent property

<style>
.my-text {

115

CHAPTER 6 TEXT STYLING

border: 1px solid red;
text-indent: 50px;
width: 10rem;

}
</style>

<div class="my-text">Here is a brief paragraph that has enough content to
wrap a few lines.</div>

Here is a brief
aragraph that has
nough content to wrap
few lines.

Figure 6-8. The first line of text in the paragraph is indented by 50px

white-space

The white-space property is used to specify how whitespace is handled inside an
element that contains text. The default value is normal. With this value, sequential
whitespace characters are collapsed. If the text content exceeds the width of its
container, it will be wrapped to the next line.

You may have seen this behavior before, when you have multiple consecutive spaces
in your HTML, or line breaks, and they are ignored by the browser.

Listing 6-10. An example with extra whitespace

<style>
.my-text {
border: 1px solid red;
width: 10rem;

}
</style>

<div class="my-text">

116

CHAPTER 6 TEXT STYLING

Here is some text
with
whitespace.
</div>

Here 1s some text with
whitespace.

Figure 6-9. The whitespace is ignored

The extra spaces and line breaks were ignored, and the text only breaks to the next
line when it automatically wraps.
We can make the browser respect the whitespace by setting white-space to pre.

Listing 6-11. Settingwhite-space to pre

<style>
.my-text {
border: 1px solid red;
width: 10rem;
white-space: pre;
}
</style>

<div class="my-text">
Here is some text
with
whitespace.
</div>

117

CHAPTER 6 TEXT STYLING

Here is some text
with
whitespace.

Figure 6-10. The whitespace is preserved

Notice how the whitespace is preserved in the rendered output now. You might also
notice that there is an extra blank line at the top of the element. This represents the first
line break after the opening div tag.

When white-space is set to pre, lines of text are not automatically wrapped.

Some other accepted values for the white-space property are

e normal: The default behavior. Whitespace is collapsed, and text is
automatically wrapped as needed.

e nowrap: Same as normal, except that lines of text do not wrap.
e pre-wrap: Same as pre, except that lines of text are also wrapped.

o pre-line: Same as pre-wrap, except that consecutive whitespace
characters are collapsed. Line breaks are still preserved.

o break-spaces: Same as pre-wrap, except that line wrapping behavior
is slightly different. Not supported in Internet Explorer.

Truncating text

Your design may require that text must fit within its container without overflowing or
wrapping. This can easily be accomplished by using the white-space, overflow, and
text-overflow properties together.

First, white-space is set to nowrap. This ensures the text does not wrap but will in
turn cause the text to overflow the container. By setting overflow to hidden, we can
hide the overflowing content. However, then the text is abruptly cut off at the end of the
container. Finally, we can set text-overflow to ellipsis to truncate the text and add an
ellipsis at the end.

118

CHAPTER 6 TEXT STYLING

Listing 6-12. Truncating text

<style>
.my-text {
border: 1px solid red;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
width: 10rem;

}
</style>

<div class="my-text">Here is a really really long string.</div>

Here is a really really ...

Figure 6-11. The overflowing text is truncated with an ellipsis

line-height

The line-height property controls the height of each line of text. It can be used to add
spacing between lines of text.

Horizontal alignment

Horizontal alignment is controlled by the text-align property. This only has an effect
on block elements with a width greater than that of their content. Valid values are left,
right, center, and justify.

Listing 6-13. Setting the text alignment

<style>
.hello {
border: 2px solid red;
width: 30rem;

119

CHAPTER 6 TEXT STYLING

text-align: center;

}
</style>

<div class="hello">Hello world!</div>

Hello world!

Figure 6-12. The text is horizontally centered

text-align doesn’t just affect text. It sets the horizontal alignment of any inline
element inside the containing element on which text-align is set.

Vertical alignment

If a block element's height is taller than its content, by default the text will be aligned to
the top of the container.

Hello world!

Figure 6-13. The text defaults to top vertical alignment

You might think the vertical-align property would help here but setting vertical-
align: center would have no effect. One way to solve this problem is to set the line-
height to the same as the container height, as shown in Listing 6-14.

Listing 6-14. Vertically centering text with the line-height property

<style>
.hello {
border: 2px solid red;
width: 15rem;

120

CHAPTER 6 TEXT STYLING

height: 5rem;
line-height: Srem;
font-size: 2rem;
text-align: center;

}
</style>

<div class="hello">Hello world!</div>

Hello world!

Figure 6-14. The text is vertically centered

How does the vertical-align property work, then? It controls how inline elements
are aligned vertically with each other. Listing 6-15 contains two span elements side by
side with different heights inside a container element.

Listing 6-15. Two span elements

<style>
.container {
border: 2px dashed blue;
width: 20rem;
text-align: center;

}

.hello {
border: 2px solid red;
font-size: 2rem;

}

.world {

border: 2px solid red;

121

CHAPTER 6 TEXT STYLING

font-size: 4rem;

}
</style>

<div class="container">
Hello
World!
</div>

Hellg WOrld !

Figure 6-15. The rendered result

In Figure 6-15, we can see that the elements are aligned along their baselines. A
baseline is an invisible line along which most letters sit. If we set vertical-align to
middle on both elements, they become vertically aligned with each other.

Listing 6-16. Setting vertical-aligntomiddle

<style>
.container {
border: 2px dashed blue;
width: 20rem;
text-align: center;

}

.hello {
border: 2px solid red;
font-size: 2rem;
vertical-align: middle;

}

.world {
border: 2px solid red;
font-size: 4rem;

122

CHAPTER 6 TEXT STYLING

vertical-align: middle;

}
</style>

<div class="container">
Hello
World!

World!

Figure 6-16. The elements are vertically aligned

:
0,
=)

Using web fonts

If you don't want to use the web-safe fonts (and who wants to see another website in
Arial or Times New Roman!), you are in luck. Web fonts allow the CSS to link to a font
file that the browser can download. By using a web font, you can have a much more
consistent look - plus, there are many beautiful web fonts out there that will enhance the
look of your site or app.

There are several different supported web font formats:

e Web Open Font Format version 1 or 2 (WOFF/WOFF2)
e Embedded Open Type (EOT)

e TrueType Font (TTF)

e Scalable Vector Graphics (SVG)

Modern browsers support WOFF and WOFE2. The other font formats are for support
with older browsers. A web font is typically packaged in several different formats, all of
which can be referenced in the CSS.

123

CHAPTER 6 TEXT STYLING

@font-face

A web font is registered using the @font-face at-rule. A @font-face rule declares a new
font. The desired name of the font is given with the font-family property, and one or
more source URLSs are given with the src property. Each source URL is followed by a
format declaration which tells the browser which font format to expect for that file.

Once you have declared the font in a @font-face rule, you can then use the name
you gave it in any font-family property in a CSS rule.

The example in Listing 6-17 will load the SomeWebFont font in WOFF2 and WOFF
formats and set it as the font for the whole document. You should still provide a list of
fallback fonts in case the font is not supported by the user's browser or could not be
loaded.

Listing 6-17. Using a web font

@font-face {
font-family: 'SomeWebFont';
src:
url('/some-font.woff2"') format('woff2'),
url('/some-font.woff') format('woff');

}

body {
font-family: SomeWebFont, Arial, sans-serif;

}

Declaring different web font styles

Usually, a given web font file is only a single weight or style version of the font. This
means there is one font file for the normal version and another for the bold version. They
both must be registered in a separate @font-face rule under the same font-family. The
font weight and style are specified via the font-weight and font-style properties. This
is shown in Listing 6-18.

124

CHAPTER 6 TEXT STYLING

Listing 6-18. Defining two weights of a web font

@font-face {
font-family: 'SomeWebFont';
src: url('/some-font.woff2') format('woff2');
font-weight: 400;

}

@font-face {
font-family: 'SomeWebFont';
src: url('/some-font-bold.woff2') format('woff2');
font-weight: 700;

}

Flash of unstyled/invisible text

Like any other resource, the browser must download the web font files before they can
be used. If this is not done quickly, the browser may render the site in a fallback font
while the web font is still loading. Once the font is loaded, the text is re-rendered in the
new font. This results in unstyled text briefly appearing before being replaced by the
correctly styled text - the so-called flash of unstyled text.

Some browsers will also hide the text (up to several seconds) until the font is loaded.
This results in a different, but even more annoying, phenomenon - the "flash of invisible
text."

The main issue with this is that the page may reflow once the font is loaded. If the
user had already started reading the text rendered in the system fallback font, they may
lose their place, and it can be jarring.

One way to address this issue is to use a tool like the Web Font Loader (https://
github.com/typekit/webfontloader), a JavaScript library that manages the loading of
web fonts. This tool gives you greater control over how fonts are used during the loading
process. For example, a different fallback font that looks more similar to the actual font
can be used, rather than the fallback used by the browser.

This will still result in a flash of unstyled text, however, which can affect the page
layout. However, with Web Font Loader, you can also tweak the font-size and line-
height of the fallback font. This can result in a smoother experience.

125

https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader

CHAPTER 6 TEXT STYLING

The flash of unstyled text can't be completely solved, but its severity can be greatly
reduced by using a library like Web Font Loader.

A word of caution

Web fonts are great, but don't go overboard. The more fonts that are loaded, the longer
the page takes to load, and the worse the flash of unstyled text can be. You should make
sure to use only the web fonts that you absolutely need.

Text shadow

The text-shadow property allows you to add shadows to text. It works similarly to the
box-shadow property we saw earlier. A text shadow has X and Y offsets, an optional blur
radius, and a color. Unlike box-shadow, text-shadow does not have a spread radius.

Here are some examples of text shadows. Listing 6-19 uses a shadow with an offset
but no blur.

Listing 6-19. A text shadow example

<style>
.container {
font-size: 2rem;
font-family: Arial, sans-serif;
text-shadow: 2px 2px Opx red;

}
</style>

<div class="container">Hello World!</div>

Hello World!

Figure 6-17. The rendered text with shadow

Listing 6-20 has another example of a text shadow, this time with no offset and a blur.

126

CHAPTER 6
Listing 6-20. A second text shadow example

<style>
.container {
font-size: 2rem;
font-family: Arial, sans-serif;
text-shadow: Opx Opx 5px red;

}
</style>

<div class="container">Hello World!</div>

Hello World!

Figure 6-18. The rendered result

Summary

In this chapter, we learned
¢ You can customize the font size, color, weight, and style of text.

e The text-decoration property can add underlines and
strikethroughs.

e There are other text effect properties such as text-transform,
letter-spacing, and font-variant.

o Thewhite-space property controls how the browser renders
whitespace. It can be ignored or respected.

o Thevertical-align property controls how inline elements are
vertically aligned with each other.

o Fonts can be downloaded by the browser and used with a @font-
facerule.

o Text shadows can be applied with the text-shadow property.

TEXT STYLING

127

CHAPTER 7

Layout and Positioning

We've looked a lot at how to style with CSS. Let’s switch gears now and look at how to lay

out and position elements.

Padding

The padding is the spacing between an element’s content and its border. By default,

most elements have zero padding. An element’s padding is not inherited by its children.

Padding can be specified with any size unit or with a percentage. When padding
is specified as a percentage, the value used is the given percentage of the containing
block’s width. Listing 7-1 has a simple example of this.

Listing 7-1. Setting a percentage value for padding

<style>
.container {
border: 1px solid red;
width: 200px;

}

.inner {
padding: 25%;
}
</style>

<div class="container">
<div class="inner">Hello world!</div>
</div>

© Joe Attardi 2020
J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_7

129

https://doi.org/10.1007/978-1-4842-6294-8_7#DOI

CHAPTER 7 LAYOUT AND POSITIONING

Hello world!

Figure 7-1. The rendered result

If we examine the inner element with the browser’s developer tools, we see that the
padding is 50px, or 25% of 200px, as shown in Figure 7-2.

div.iinner 200x 118.29

Color W #000000
Font 16px Times
Padding 50px

Contrast Aa 21V

Figure 7-2. The dimensions of the inner element

Margin

The margin is the space between an element’s border and other elements. The value of
the margin property can be a size value, a percentage, or the keyword auto.
By default, most elements have no margin. An example of this is shown in Listing 7-2.

130

CHAPTER 7

Listing 7-2. Elements with no margin

<style>
.container {
border: 5px solid red;
width: 10rem;

}

.inner {
border: 5px solid green;

}
</style>

<div class="container">
<div class="inner">Hello world!</div>
</div>

Hello world!

Figure 7-3. The rendered result

LAYOUT AND POSITIONING

In Figure 7-3, there is no space between the red and green borders. This is because,

by default, the elements have no margin. In Listing 7-3, we’ll add some margin to the

inner element.

Listing 7-3. Adding margin

<style>
.container {
border: 5px solid red;
width: 10rem;

}

.inner {
border: 5px solid green;
margin: irem;
}
</style>

131

CHAPTER 7 LAYOUT AND POSITIONING

<div class="container">
<div class="inner">Hello world!</div>
</div>

Now there is a margin of 1rem between the inner and outer borders, as shown in
Figure 7-4.

Hello world!

Figure 7-4. Margin between the inner and outer borders

Like padding, using a percentage for the margin property will set the given
percentage of the containing block’s width as the margin.

Centering with margin: auto

The margin property also accepts the auto value. When the horizontal (left and right)
margin is set to auto in a block or inline-block element, the element is centered
horizontally within its containing element. The element takes up the specified width,
and the margin is automatically distributed evenly between the left and right margins.

However, the same is not true for vertical margin. However, as we will see later, there
are several other ways to vertically center a block-level element.

Listing 7-4. Horizontally centering with margin: auto

<style>
.container {
background-color: red;
height: 5rem;
padding: 1rem;
width: 20rem;

}

132

CHAPTER 7 LAYOUT AND POSITIONING

.inner {
background-color: blue;
height: 3rem;
margin: auto;
width: 5rem;

}

</style>

<div class="container">
<div class="inner"></div>
</div>

As Figure 7-5 shows, the blue box is centered horizontally due to the margin of auto
but not vertically.

Figure 7-5. The element centered horizontally

Margin collapse

When two elements with a vertical margin meet vertically, the two margins are collapsed
into a single margin. The size of the collapsed margin depends on the size of the two
margins being collapsed. If they are the same size, then the collapsed margin will be the
same size as the common margin. If they are different sizes, the collapsed margin will
take the size of the larger margin.

Margin collapse applies to vertical margins only.

Another situation where the vertical margins collapse is when there is no border,
padding, or other content between a parent and its child.

133

CHAPTER 7 LAYOUT AND POSITIONING
Listing 7-5. Demonstration of margin collapse

<style>
.container {
background: red;
maxgin: 1rem;

}

.inner {
background: blue;
color: white;
margin: irem;

}

</style>

<div class="container">
<div class="inner">Inner</div>
</div>

As Figure 7-6 shows, the inner element has left and right margin but not top and

bottom margin, because the top and bottom margins have collapsed.

Inner

Figure 7-6. The margins of the inner element collapse

However, if we add padding to the container element, the margin no longer

collapses, and we see that the inner element has a margin now as well.

Listing 7-6. Adding padding

<style>
.container {
background: red;
margin: irem;
padding: 1rem;

}

134

CHAPTER 7 LAYOUT AND POSITIONING

.inner {
background: blue;
color: white;
margin: irem;

}

</style>

<div class="container">
<div class="inner">Inner</div>
</div>

Figure 7-7. The margin no longer collapses
As Figure 7-7 shows, the margin no longer collapses. The numbered regions in the
figure are
1. The margin of the container element
2. The padding of the container element

3. The margin of the inner element

Positioning elements

The CSS position property determines how an element is positioned. The top, right,
bottom, and left properties are used in conjunction with position to determine an
element’s final position. The default position is static.

135

CHAPTER 7 LAYOUT AND POSITIONING

If an element’s position property is set to any value other than static, it is considered
a positioned element. This has important implications about the positioning of
descendant elements.

position: static

static is the default value of the position property. A statically positioned element is
positioned in the normal flow of the document. When positionis set to static, the top,
right, bottom, and left properties have no effect.

position: relative

A relatively positioned element is positioned relative to where it would normally appear
in the flow of the document. If positionis set to relative, but top, right, bottom, or
left are not specified, it essentially has the same effect as if position were set to static.
The one difference would be that the element would now be considered a positioned
element, which can affect child elements with other position values.

When an element has a position of relative, the other elements in the document
flow are not affected, even if the element has an offset. The element’s original position
remains in the document flow.

Listing 7-7 shows an example of a relatively positioned element.

Listing 7-7. An element with positionsetto relative

<style>
.block {
background-color: red;
height: 3rem;
width: 3rem;

}

.green {
background-color: green;

}

.relative {
background-color: blue;

136

CHAPTER 7 LAYOUT AND POSITIONING

position: relative;
left: 10px;
top: 10px;
}
</style>

<div class="block"></div>
<div class="block relative"></div>
<div class="block green"></div>

Figure 7-8. The blue square is offset from its original position

In Figure 7-8, the blue square is offset 10px below the top of its original position and
10px to the right of its original position. Note that the red and green squares remain
in the same place they would be even if the blue square did not have the top and left
offsets - they did not move to fill the space.

When a vertical or horizontal offset is given, the element is moved in the opposite
direction. That is, top moves the element down, left moves the element to the right,
right moves the element to the left, and bottom moves the element up.

What happens if you specify conflicting offsets? For example, an element can’t be 10
pixels below its top position and 10 pixels above its bottom position and have the correct
size. Generally, if both top and bottom are specified, the top value is used, and the

137

CHAPTER 7 LAYOUT AND POSITIONING

bottomvalue is ignored. Similarly, if both left and right are specified, left wins if the
text direction is left to right and right wins if the text direction is right to left.

position: absolute

An absolutely positioned element can also have top, right, bottom, and left offsets that
affect its position. There are two main differences, though.

First, an absolutely positioned element is removed from the document flow and
“floats” above it. The layout of other elements will be adjusted as if the absolutely
positioned element is not there.

The other difference is the interpretation of the offsets. While a relatively positioned
element’s offsets are relative to the element’s original position in the document, an
absolute positioned element’s offsets are relative to the closest ancestor positioned
element. This is not necessarily the element’s direct parent.

Listing 7-8 sets up an example of absolute positioning.

Listing 7-8. Three boxes inside each other

<style>
.outer {
background-color: red;
height: 10rem;
width: 10rem;

}

.inner {
background-color: blue;
height: 7rem;
width: 7rem;

}

.core {
background-color: green;
height: 4rem;
width: 4rem;

}
</style>

138

CHAPTER 7 LAYOUT AND POSITIONING

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

Figure 7-9. The example setup

These elements are currently all statically positioned. Let’s add position: absolute
to the core element and set its right property to 0.

Listing 7-9. Absolutely positioning the core element

<style>
.outer {
background-color: red;
height: 10rem;
width: 10rem;

}

.inner {
background-color: blue;
height: 7rem;
width: 7rem;

}

139

CHAPTER 7 LAYOUT AND POSITIONING

.core {
background-color: green;
position: absolute;
right: o;
height: 4rem;
width: 4rem;

}
</style>

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

Figure 7-10 shows the result of this code.

Figure 7-10. The rendered result

This may not be what you expected. The green box is now all the way on the right-
hand side of the screen. This is because it has no ancestor element that is positioned.
Thus, it becomes positioned relative to the document.

Now let’s add position: relative to the outer boxin Listing 7-10 and see what
happens.

Listing 7-10. Relatively positioning the outer box

<style>
.outer {
background-color: red;
height: 10rem;

140

CHAPTER 7 LAYOUT AND POSITIONING

width: 10rem;
position: relative;

}

.inner {
background-color: blue;
height: 7rem;
width: 7rem;

}

.core {
background-color: green;
position: absolute;
right: o;
height: 4rem;
width: 4rem;

}

</style>

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

Figure 7-11. The green box has changed position
141

CHAPTER 7 LAYOUT AND POSITIONING

Now the green box is absolutely positioned relative to the outer red box, because that
is the closest ancestor that is a positioned element.
Lastly, let’s now relatively position the blue inner box in Listing 7-11.

Listing 7-11. Relatively positioning the inner box

<style>
.outer {
background-color: red;
height: 10rem;
width: 10rem;
position: relative;

}

.inner {
background-color: blue;
position: relative;
height: 7rem;
width: 7rem;

}

.core {
background-color: green;
position: absolute;
right: o;
height: 4rem;
width: 4rem;

}
</style>

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

142

CHAPTER 7 LAYOUT AND POSITIONING

Figure 7-12. The green box has moved again

Now that the blue box is the nearest positioned ancestor of the green box, the green
box is now positioned relative to the blue box.

position: fixed

Like absolute, a position of fixed removes the element from the document’s flow. Its
position is determined by setting top, right, bottom, and left properties. The difference
is that for a fixed element, these offsets are always relative to the viewport. This means
that even if the page is scrolled, a fixed element will remain in the same position. This is
useful, for example, for a fixed header or navigation bar.

A block element with a position of static or relative will, by default, take up
the full width of its container. However, if an element is given a position of absolute
or fixed, this will no longer be the case. It will only be as wide as it needs to be to fit its
content. This can usually be solved by adding awidth: 100% to the element if the full
width behavior is still desired.

position: sticky

A sticky element is a combination of relative and fixed. The element acts as a
relatively positioned element, scrolling with the document. When the element reaches
a specified point, it turns into a fixed element. This point is specified via a top, right,
bottom, or left value.

143

CHAPTER 7 LAYOUT AND POSITIONING

Compatibility note position: sticky is not supported in Internet Explorer.

z-1index and stacking contexts

When elements have a position of fixed, absolute, or sticky, they can obscure other
elements. This may not always behave the way we want. For example, suppose you have
a page with a fixed header. Later, you open a modal dialog with a semitransparent overlay
behind it. However, the header is not obscured by the overlay; rather, it sits on top of it.

Listing 7-12. An example of a z-index issue

<style>

.header {
background-color: red;
color: white;
height: 1rem;
left: 0;
padding: 1irem;
position: fixed;
top: 0;
width: 100%;

}

.body {
margin-top: 3.5rem;

}

.overlay {
background-color: rgba(0, 0, 0, 0.5);
height: 100%;

left: o0;
position: absolute;
top: 0;
width: 100%;
}
</style>

144

CHAPTER 7 LAYOUT AND POSITIONING

<div class="overlay"></div>
<div class="container">
<div class="header">Header</div>
<div class="body">
Some other page content
</div>
</div>

Figure 7-13. The header is above the overlay

The main text content is covered by the overlay, but the header is not. This can be
solved by giving these elements z-index values. z-index determines the stacking order
of elements along the z-axis - which element is on top of which. z-index is a relative
measure that can take any numeric value. Items with a higher z-index will appear on top
of those with a lower one.

In Listing 7-13, we'll give the header a z-index of 100 and the overlay a z-index of 200.

Listing 7-13. Adding z-index properties

<style>

.header {
background-color: red;
color: white;
height: 1rem;
left: o;
padding: irem;
position: fixed;
top: 0;

145

CHAPTER 7 LAYOUT AND POSITIONING

width: 100%;
z-index: 100;

}

.body {
margin-top: 3.5rem;

}

.overlay {
background-color: rgba(o, 0, 0, 0.5);
height: 100%;
left: o;
position: absolute;
top: 0;
width: 100%;
z-index: 200;

}

</style>

<div class="overlay"></div>
<div class="container">
<div class="header">Header</div>
<div class="body">
Some other page content
</div>
</div>

Figure 7-14. The overlay now covers all content

146

CHAPTER 7 LAYOUT AND POSITIONING

Because the overlay has a higher z-index than the header, it now appears on top of
the header.

Stacking contexts

As it turns out, z- index doesn’t control an element’s z-axis ordering globally within the
entire document. It only controls the z-index relative to other elements within a given
stacking context.

Initially, there is one stacking context, formed by the root of the document (the html
element). Within the document, there are certain other elements that will create a new
stacking context:

e Any element that has a position other than static and a z-index
other than auto

e Anyelement with an opacity less than 1

o Any element that is a child of a flex or grid container and a z-index
other than auto

There are others, but these are the most common. If no z-index is given, there are
certain stacking rules that are applied inside a stacking context. These are, from bottom
to top:

o The background and borders of the element that creates the stacking
context

o Descendant elements of the element that creates the stacking context
that are not positioned

o Descendant elements of the element that creates the stacking context
that are positioned

These rules, in conjunction with explicitly set z-index properties, determine the
final stacking order of elements.
Let’s walk through a series of examples that illustrate z- index and stacking contexts.

147

CHAPTER 7 LAYOUT AND POSITIONING
Listing 7-14. A stacking context example

<style>
.container-1 {
background-color: red;
width: 10rem;
height: 10rem;
position: relative;
z-index: 100;

}

.container-2 {
background-color: blue;
width: 10rem;
height: 10rem;
position: relative;
z-index: 100;

}

.inner-1 {
background-color: green;
width: 5rem;
height: 5rem;
position: relative;
top: 7.5rem;

}

.inner-2 {
background-color: orange;
width: 5rem;
height: 5rem;
position: relative;
top: -2.5rem;

}

</style>

<div class="container-1">
<div class="inner-1"></div>

148

CHAPTER 7 LAYOUT AND POSITIONING

</div>

<div class="container-2">
<div class="inner-2"></div>

</div>

Figure 7-15. The rendered result

Note that the two container elements both have position setto relative and a
z-index of 100. This means that each of these elements creates a new stacking context.

The two inner boxes - the green one and the orange one - have been positioned so
that they are on top of each other. The orange one is on top. We can’t see the green one
because it’s directly underneath. Figure 7-16 shows a cross-section view of the elements
(dotted lines indicate stacking contexts):

149

CHAPTER 7 LAYOUT AND POSITIONING

Figure 7-16. A cross-section view

Suppose we want the green box to be on top. We can try adjusting the green box’s
z-index to be 200, which is higher than all the others. Unfortunately, we get the same
result as is shown in Figure 7-15. However, the cross-section has changed slightly, as is
shown in Figure 7-17.

150

CHAPTER 7 LAYOUT AND POSITIONING

Figure 7-17. The changed cross-section

By setting the z-index property on the relatively positioned green box, we've created
a new stacking context rooted at the green box. To demonstrate this further, let’s try
changing the z-index of the green box to 50.

The result, and the cross-section, are the same as before. Even though the green box
has a lower z-index (50) than the red box (100), it’s in a higher stacking context, so it will
still appear above the red box.

Asyou can see, z-index issues can be difficult to debug. Understanding how stacking
contexts work is critical to solving these issues.

Floats

You can use the float property to make an element “float” to the left or the right and text
and other inline elements will flow around it.

151

CHAPTER 7 LAYOUT AND POSITIONING
Listing 7-15. A basic float

<style>
.container {
width: 10rem;

}

.floating {
background-color: red;
float: right;
height: 3rem;
width: 3rem;

}

</style>

<div class="container">
<div class="floating"></div>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec commodo sollicitudin.

</div>

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit. Donec
nec sapien dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-18. The floated red box

The red box is floated to the right, and the text flows around it. The float property
can be set to left or right, or if you need to take text direction into account (left-to-right
vs. right-to-left languages), you can use the more generic inline-start or inline-end.

When the float property is applied to an element, it is removed from the flow of the
document. It then “floats” to the left or right, stopping when it reaches the edge of the

152

CHAPTER 7 LAYOUT AND POSITIONING

containing element, or another floated element. In Figure 7-18, the red box moved to the
edge of the container. Here’s another example with two floated elements.

Listing 7-16. Two floating elements

<style>
.container {
width: 10rem;

}

.floating,

.floating-2 {
float: right;
height: 3rem;
width: 3rem;

}

.floating {
background-color: red;

}

.floating-2 {
background-color: blue;

}
</style>

<div class="container">
<div class="floating"></div>
<div class="floating-2"></div>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec commodo sollicitudin.
</div>

153

CHAPTER 7 LAYOUT AND POSITIONING

Lorem
ipsum
dolor sit
amet, consectetur
adipiscing elit. Donec
nec sapien dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-19. The two floating boxes

First, the red box is floated right, to the edge of the container. Next, the blue box is
floated right, to the edge of the red box.

Clearing floats

The clear property can be used on an element to indicate that it can’t be alongside a
floated element in a given direction. The clear property can be none (the default), left,
right, both, inline-start, or inline-end. If an element is cleared in a given direction,
and there is a floated element there, the element will be moved so that it is below the
floated element. Consider Listing 7-17, where there is a floated element on each side. We
use clear: right on the content.

Listing 7-17. Clearing floats

<style>
.container {
width: 10rem;

}

.floating {
background-color: red;
float: right;
height: 3rem;
width: 3rem;

}

154

CHAPTER 7 LAYOUT AND POSITIONING

.floating-2 {
background-color: blue;
float: left;
height: Srem;
width: 3rem;

}

.content {
clear: right;

}
</style>

<div class="container">
<div class="floating"></div>
<div class="floating-2"></div>
<div class="content">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec commodo sollicitudin.

</div>

</div>
rem ipsum

olor sit amet,
consectetur adipiscing
elit. Donec nec sapien
dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-20. The rendered result

The content has been moved to below the right-floated red box. Since the blue box
on the left is taller, it is allowed to be floated alongside the content.

155

CHAPTER 7 LAYOUT AND POSITIONING

Summary

In this chapter, we looked at basic CSS layout and positioning:
o Padding is the spacing between an element’s content and its border.

e Margin is the spacing between an element’s border and other
elements.

e Anelementis said to be positioned if it has a position other than
static.

o Elements can have a positionvalue of static, relative, absolute,
fixed, or sticky:

o Statically positioned elements flow normally.

o Relatively positioned elements are positioned relative to their

normal position in the document.

o Absolutely positioned elements are positioned relative to their
nearest positioned ancestor.

o Fixed-positioned elements remain fixed to the viewport.

o Sticky-positioned elements are a hybrid between relative and
fixed position.

o The z-index property controls the vertical stacking order of an
element within a given stacking context.

e The float property allows an element to be floated to the left or right

sides of its container.

156

CHAPTER 8

Transforms

CSS transforms take an element and apply one of several possible transformation
functions to it. For example, an element can be rotated in 2D or 3D space, scaled,
skewed, or translated (moved). Transforms can be used to create all kinds of interesting
effects on their own and become more powerful when combined with transitions and
animations.

Transforms are specified with the transform property. Its value is one or more
transform functions. Multiple transforms can be applied by providing a space-separated
list of transform functions. The following sections will go over the most common classes
of transform functions.

Perspective

The perspective transform activates 3D space for an element. It defines how “far away”
the object is from the user, as if the screen had depth. Used by itself, the perspective
transform has no visible effect. But when used in combination with other transforms, it
can greatly affect the final result.

Rotation

The rotation functions rotate elements around a given axis. They take the angle to rotate
as an argument. The angle can be whole or fractional and is given in one of several units:

o deg: Degrees. A full circle is 360deg.
o grad: Gradians. A full circle is 400grad.

e rad: Radians. A full circle is approximately 2z radians, or
approximately 6.28rad.

o turn: Number of turns. A full circle is 1turn.

157
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_8

https://doi.org/10.1007/978-1-4842-6294-8_8#DOI

CHAPTER 8 TRANSFORMS

A positive angle rotates the element clockwise; a negative angle rotates it
counterclockwise. Note that an element can be rotated more than one full circle.

Axis
There are three axes of rotation:
o X-axis: Goes from left to right across the page
e Y-axis: Goes from the top of the page to the bottom
e Z-axis: 3D axis, goes from the “surface” of the page out toward you

These three axes are visualized in Figure 8-1.

y

Figure 8-1. The three axes of rotation

Origin
A rotation also has an origin. The element is rotated around this origin point. By default,
itis the center of the element, as shown in Figure 8-2.

158

CHAPTER 8 TRANSFORMS

e
=/

Figure 8-2. The default rotation origin

However, a different origin may be specified via the transform-origin property.
This will affect the final position of the element.

[y
=/

Figure 8-3. A different rotation origin
transform-origin is specified as one, two, or three values. These values correspond

to the X, Y, and Z offsets of the transform origin point. These can be size values such as
10px or 25% or one of the keywords left, center, right, top, and bottom.

159

CHAPTER 8 TRANSFORMS

rotate/rotateZ

The rotate and rotateZ functions rotate an element around the Z-axis. They both have
the same effect.

Listing 8-1. Rotating around the Z-axis

<style>
.rotate {
width: 10rem;
height: 5rem;
background: skyblue;
margin: 5rem;
transform: rotate(45deg);

}
</style>

<div class="rotate">Hello World!</div>

%,

Figure 8-4. The rotated element

rotateX

The rotateX function rotates an element around the X-axis. It is best illustrated when
used in combination with the perspective transform.

160

CHAPTER 8 TRANSFORMS

Listing 8-2. Rotating around the X-axis

<style>
.rotate {

width: 10rem;

height: 5rem;

background: skyblue;

margin: 5rem;

transform: perspective(200px)

rotateX(45deg);

}
</style>

<div class="rotate">Hello World!</div>

Hello World!

Figure 8-5. The rotated element

rotateY

The rotateY function rotates an element around the y-axis.

Listing 8-3. Rotating an element around the Y-axis

<style>
.rotate {

width: 10rem;

height: S5rem;

background: skyblue;

margin: S5rem;

transform: perspective(200px)

rotateY(45deg);

}
</style>

<div class="rotate">Hello World!</div>
161

CHAPTER 8 TRANSFORMS

Hello wyq)

Figure 8-6. The rotated element

rotate3d

The rotate3d function rotates an element around an arbitrary axis in 3D space. This is
done by defining a direction vector in the 3D coordinate system. The vector is defined by
specifying the component of the vector in each direction as a value between 0 and 1. The
element is rotated around that vector by the given angle.

Listing 8-4. Rotating an element in 3D space

<style>
.rotate {
width: 10rem;
height: 5rem;
background: skyblue;
margin: 5rem;
transform: perspective(200px)
rotate3d(1, 1, 0, 45deg);
}
</style>

<div class="rotate">Hello World!</div>

162

CHAPTER 8 TRANSFORMS

H
Cllo Wﬁﬂm

Figure 8-7. The rotated element

Translation

The next type of transform we’ll look at is translation. Translating an element means
moving it from its original position.

translate

The translate function moves an element in 2D space. It takes one or two arguments,
corresponding to the X-axis and Y-axis, respectively. The flow of the document is not
affected by translating an element; a blank space is left where the element’s original
position was.

Listing 8-5. Translating an element

<style>
div {
width: 5rem;
height: 5rem;
display: inline-block;
}

.one {
background: orangered;

}

163

CHAPTER 8 TRANSFORMS

.two {
background: rebeccapurple;
transform: translate(2rem, 2rem);

}

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

The purple box in Figure 8-8 was translated 2rem to the left and 2rem down, but its
original position leaves a “hole” in the layout. The red and blue boxes do not change
their position to compensate for the translated element.

Figure 8-8. The translated element

The translateX and translateY functions perform translation horizontally
and vertically, respectively. The effect is the same as when using the translate
function. That is, translateX(1rem) is equivalent to translate(1rem, 0), and
translateY(1rem) is equivalent to translate(0, 1rem).

164

CHAPTER 8 TRANSFORMS

translateZ

The translateZ function moves an element along the Z-axis. It has the effect of moving
an element closer to or farther away from the user’s perspective. It only has a visible
effect when used in combination with the perspective function.

Listing 8-6. Translating an element along the Z-axis

<style>
div {
width: 5rem;
height: 5rem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: perspective(200px)

translateZ(2renm);
}
.three {
background: skyblue;
}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

In Figure 8-9, the purple box has the appearance of being moved closer to the user.

165

CHAPTER 8 TRANSFORMS

Figure 8-9. The translated element

translate3d

Like rotate3d, translate3d allows you to specify a vector in 3D space. The element
is then translated along that vector. The three arguments define the X, Y, and Z
components of the vector.

Listing 8-7. Translating an element in 3D space

<style>
div {
width: 5rem;
height: 5rem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: perspective(200px)
translate3d(irem, 2rem, 3rem);

}

.three {
background: skyblue;

}
</style>

166

CHAPTER 8 TRANSFORMS

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

The purple box in Figure 8-10 has been translated along all three axes.

Figure 8-10. The translated element

Scaling

A scaling transform function alters the size of the element, scaling its contents as it grows
or shrinks. Unlike the translation functions, which take a size value, the scaling functions
take multiples of the original size as arguments. For example, scale(1, 1) would
perform no scaling. scale(2, 3) would scale the element to two times as large in the
horizontal direction and three times as large in the vertical direction.

The arguments to scaling functions do not have to be integers. For example, values
such as scale(1.25, 2.6) are also accepted.

By default, the scaling functions perform the transform starting at the center at the
element. This can be changed by giving a value for the transform-origin property. Also,
note that scaling an element will not cause its container to grow to fit the new size. The
flow of the document is not affected.

167

CHAPTER 8 TRANSFORMS

i g
| world!

Figure 8-11. No scale (left), scale with origin at center (middle), and scale with
origin at top (right)

scale

The scale function scales an element along just the X, or the X and Y axes in 2D space. It
takes one or two arguments. When one argument is given, it is treated as the X value, and
when two arguments are given, they are treated as the X and Y values, respectively.

Listing 8-8. Scaling an element

<style>
.scale {
background: skyblue;
text-align: center;
transform: scale(2, 5);
margin: 5rem auto;
width: 10rem;

}
</style>

<div class="scale">Hello world!</div>

Hello world!

Figure 8-12. The scaled element

168

CHAPTER 8 TRANSFORMS

If you only want to scale in one direction, you can also use the scaleX or scaleY
functions.

scaleZ

scaleZ scales along the Z-axis. It has no noticeable effect when used alone. The effect
is best seen when used in combination with perspective and another transform like
rotateX.

Figure 8-13 shows an example of an element with and without the scaleZ transform.

transform: perspective(200px) rotateX(45degqg);

Hello
world!

transform: perspective(200px) scaleZ(5) rotateX(45deg);

Helwa

V200 A\\\R

Figure 8-13. The effect of the scaleZ function

scale3d

Like rotate3d and translate3d, there is also a scale3d function. As with the other
related functions, scale3d scales along a vector with X, Y, and Z components. Different
magnitudes can be given for the different axes, so an element can be scaled at different
rates in all three directions.

Skewing

The last set of transform functions we’ll look at are the skewing functions. These
functions distort an element by a given angle in the X and Y directions. Like the rotation
functions, the angle can be given in one of several different units.

169

CHAPTER 8 TRANSFORMS

Listing 8-9. An example of the skew function

<style>
.skew {
background: skyblue;
transform: skew(45deg, 20deg);
width: 10rem;
font-size: 2rem;
text-align: center;
margin: 5rem;
}
</style>

<div class="skew">Hello world!</div>

Na

\\\\ :

Figure 8-14. The skewed element

There are also skewX and skewY functions as well, if you only want to skew an
element in one direction.

Applying multiple transforms

As we have seen already, you can apply multiple transforms to a single element. The
multiple transforms are passed as a space-separated list to the transform property. One
important thing to note is when an element is rotated, the axes move with the element
as well. This is best illustrated with an example. Listing 8-10 has simple box, rotated 45

degrees. We'll put a container around it so we can see how it moves.

170

CHAPTER 8 TRANSFORMS

Listing 8-10. Rotating an element

<style>
.container {
border: 1px solid black;
width: 15rem;
height: 15rem;
margin: 5rem;

}

.box {
transform: rotate(45deg);
background: skyblue;
width: 10rem;
height: 10rem;

}
</style>

<div class="container">
<div class="box"></div>
</div>

=

Figure 8-15. The rotated box

Now that we have rotated the element, the element’s coordinate system has rotated

as well, as shown in Figure 8-16.

171

CHAPTER 8 TRANSFORMS

Figure 8-16. The rotated box’s coordinate system

To illustrate this, we'll add a translateX(100px) to the transform property:

transform: rotate(45deg) translateX(100px);

Figure 8-17. The element’s resulting position

Note that the box moved along the rotated X-axis rather than the page’s X-axis.

With multiple CSS transforms, the order the transforms are listed in matters. If we
reverse the two transforms in the preceding example, so that the translateX comes first,
the end result looks different, as shown in Figure 8-18.

transform: translateX(100px) rotate(45deg);

172

CHAPTER 8 TRANSFORMS

Figure 8-18. The element’s new position

This time, the order of transformations was different. The box was first translated
along the X-axis, and then it was rotated. Because the box wasn’t rotated when it was
translated, it moved along the page’s X-axis.

You can even specify multiple transforms of the same type. Let’s add another
translateX transform to the previous example.

transform: translateX(100px)
rotate(45deg)
translateX(100px);

Figure 8-19. Applying three transforms to the element

We moved the element 100 pixels along the X-axis then rotated it 45 degrees, as
before. When we rotated the box, its coordinate system changed. When we applied the
second translateX transform, the box moved along its rotated X-axis.

173

CHAPTER 8 TRANSFORMS

Examples
Making a heart

We can utilize CSS transforms to make a heart shape. A heart is really just a rotated
square with two circles, as shown in Figure 8-20.

Figure 8-20. The component parts of the heart shape

All we need to do is take a square, rotate it 45 degrees, and place two circles in the proper
position. We can actually do this with a single div element. The div will make up the square
part of the heart. We'll then use the : :before and : :after pseudo-elements to draw the circles.

Let’s start with the rotated square, in Listing 8-11.

Listing 8-11. The rotated square

<style>
.heart {
border: 5px solid red;
transform: rotate(45deg);
width: 10rem;
height: 10rem;
margin: 10rem auto;

}
</style>

<div class="heart"></div>

174

CHAPTER 8 TRANSFORMS

Figure 8-21. The rotated square

Now we need to create the two circles by adding : :before and : :after pseudo-
elements, which we do in Listing 8-12. A circle can easily be created by setting a square
element’s border-radius property to 50%.

Listing 8-12. Adding the circles as pseudo-elements

<style>
.heart {
border: 5px solid red;
transform: rotate(45deg);
width: 10rem;
height: 10rem;
margin: 10rem auto;

}

.heart::after,
.heart: :before {
border-radius: 50%;
content: '';
width: 10rem;

height: 10rem;

175

CHAPTER 8 TRANSFORMS

position: absolute;
background: red;

}
</style>

<div class="heart"></div>

Figure 8-22. The circle pseudo-elements

The circles are stacked on top of each other in the center of the square. Now we just
need to move them out to either side. Remember that the coordinate system rotated with
the square. The left-hand circle needs to be moved 5rem (half of the size of the square) to
the left along the X-axis, and the right-hand circle needs to be moved 5rem higher along
the Y-axis.

While we're at it, we'll fill in the square with red to complete the shape in Listing 8-13.

Listing 8-13. Completing the code for the heart

<style>
.heart {
background: red;
transform: rotate(45deg);
width: 10rem;
height: 10rem;
margin: 10rem auto;

176

CHAPTER 8 TRANSFORMS

.heart::after,
.heart: :before {
border-radius: 50%;
content: '';
width: 10rem;
height: 10rem;
position: absolute;

background: red;

}

.heart::before {
transform: translateX(-5rem);

}

.heart::after {
transform: translateY(-5rem);

}
</style>

<div class="heart"»></div>

Figure 8-23. The completed heart

177

CHAPTER 8 TRANSFORMS

Making a cube

Now let’s build something three-dimensional. A cube is a simple enough shape to make.
There will be a container element for the cube, the cube itself, and one element for each
of the six faces of the cube. Listing 8-14 has the initial markup and CSS.

Listing 8-14. The initial cube code

<style>
.container {
width: 10rem;
height: 10rem;
perspective: 500pXx;
margin: 5rem;

}

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

}

.face {
width: 10rem;
height: 10rem;
background: skyblue;
border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

}
</style>

<div class="container">
<div class="cube">
<div class="face top">Top</div>

178

CHAPTER 8 TRANSFORMS

<div class="face bottom">Bottom</div>
<div class="face left">Left</div>
<div class="face right">Right</div>
<div class="face front">Front</div>
<div class="face back">Back</div>
</div>
</div>

We've seen everything here except for the transform-style property. By default,
an element’s children are flattened to be on the same plane. This means they are
“squashed” down to 2D space. We want to make a 3D cube, so that won’t work here.
Setting transform-style to preserve-3d will allow the cube’s child elements to exist in
3D space.

Compatibility note transform-style: preserve-3d is not supportedin
Internet Explorer.

Currently, all of the faces of the cube are lying flat, stacked on top of one another
since they are absolutely positioned. What we need to do is rotate the faces, in 3D space,
so that they are facing the correct way, then move them out from the center to form the
cube.

It’s a little difficult to see what’s going on when we’re looking head on at the cube, so
we've rotated the cube element to see it at a 45-degree angle, which will let us better see
its 3D structure. We've also set the opacity to 0.5 to help visualize the cube.

179

CHAPTER 8 TRANSFORMS

Figure 8-24. The cube faces all stacked on top of each other

Now we need to rotate the faces to their proper orientations. The front doesn’t
need to be rotated, as it’s already facing forward. We need to rotate the back around
the Y-axis by 180 degrees, the left and right around the Y-axis by 90 degrees (-90 and
90 respectively), and the top and bottom around the X-axis by 90 degrees (-90 and 90
respectively). Let’s do this in Listing 8-15.

Listing 8-15. Rotating the cube faces

<style>
.container {
width: 10rem;
height: 10rem;
perspective: 500pXx;
margin: 5rem;

}

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

180

.face {
width: 10rem;
height: 10rem;
background: skyblue;
border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

}

.back { transform:
.deft { transform:
.right { transform: rotateY(90deg); }
.top { transform: rotateX(9odeg); }
.bottom { transform: rotateX(-9odeg); }

</style>

CHAPTER 8

rotateY(180deg); }
rotateY(-90deg); }

<div class="container">

<div class="cube">

<div
<div
<div
<div
<div
<div
</div>
</div>

class="face
class="face
class="face
class="face
class="face
class="face

top">Top</div>
bottom">Bottom</div>
left">Left</div>
right">Right</div>
front">Front</div>
back">Back</div>

TRANSFORMS

181

CHAPTER 8 TRANSFORMS

Figure 8-25. The rotated cube faces

Now all the faces are rotated properly, but they are still at the center of the cube.
Since the cube’s size is 10rem, and the faces are in the middle, each face must be moved
out by 5rem in the proper direction: the front and back along the Z-axis, the left and right
along the X-axis, and the top and bottom along the Y-axis.

Listing 8-16. The final cube code

<style>
.container {
width: 10rem;
height: 10rem;
perspective: 500pXx;
margin: 5rem;

}

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

182

.face {

CHAPTER 8

width: 10rem;
height: 10rem;
background: skyblue;

border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

}

«front {
transform:

}

.back {
transform:

}

Jdeft {
transform:

}

.right {
transform:

}

.top {
transform:

}
.bottom {

transform:

}
</style>

translateZ(5rem);

translateZ(-5rem) rotateY(180deg);

translateX(-5rem) rotateY(-90deg);

translateX(5rem) rotateY(90deg);

translateY(-5rem) rotateX(90deg);

translateY(5rem) rotateX(-90deg);

<div class="container">

<div class="cube">
<div class="face top">Top</div>
<div class="face bottom">Bottom</div>
<div class="face left">Left</div>
<div class="face right">Right</div>

TRANSFORMS

183

CHAPTER 8 TRANSFORMS

<div class="face front">Front</div>

<div class="face back">Back</div>
</div>

</div>

Figure 8-26. The completed cube

Summary

In this chapter, we learned about the CSS transform types:

¢ Rotation

e Translation
e Scaling

o Skewing

We also learned about concepts such as perspective, axes, transform origins, and 3D

transformation vectors. Lastly, we saw a few practical examples of making shapes with
CSS transforms.

184

CHAPTER 9

Transitions and
Animations

CSS transforms are useful on their own, but they are even more powerful when used in
combination with transitions and animations.

Transitions

A CSS transition is a way of animating an element from one state to another. They are
similar to, but not quite the same as, CSS animations.

During the lifetime of a page, an element’s CSS properties can change. For example,
the user could hover over an element, triggering the :hover pseudo-class, which could
apply some different styling. Or, maybe, a class is added to or removed from an element
with JavaScript. In both of these cases, any style changes are applied immediately.

Let’s take the example of a hover state. Suppose we have the styles for a button
shown in Listing 9-1.

Listing 9-1. Some button styles

button.fancy-button {
background: blue;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}

185
© Joe Attardi 2020

J. Attardi, Modern CSS, https://doi.org/10.1007/978-1-4842-6294-8_9

https://doi.org/10.1007/978-1-4842-6294-8_9#DOI

CHAPTER9 TRANSITIONS AND ANIMATIONS

When the user hovers over a fancy button with their mouse, two things will happen.
The background color will immediately change from blue to red, and the button will
immediately snap to a scale factor of 1.1. This can be visually jarring. We can improve
this experience with CSS transitions.

It’s easy to add transitions with the transition property, as shown in Listing 9-2.

Listing 9-2. Adding a transition

button.fancy-button {
background: blue;
transition: 500ms;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}

Now, when the user hovers the mouse over a fancy button, it will behave differently.
Instead of immediately snapping to the new background color and size, the element
will gradually transition to the new color and scale over a period of 500 milliseconds.
You can think of these two states (blue background/scale 1, red background/scale 1.1)
as keyframes in an animation. You don’t have to define all the states in between the two
keyframes - the browser will animate the transition between the two states.

The color will gradually change from blue to shades of purple to the f