Mastering HTML5 Forms

Create dynamic and responsive web forms with this in-depth,
hands-on guide

PACKT

Mastering HTMLS Forms

Create dynamic and responsive web forms with this
in- depth, hands-on guide

Gaurav Gupta

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering HTMLS Forms

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013
Production Reference: 1151113

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-466-1
www . packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author Project Coordinator
Gaurav Gupta Joel Goveya
Reviewers Proofreader
Errietta Kostala Paul Hindle
Sulek Shrikrishna Mulay
Indexer
Acquisition Editor Rekha Nair
Nikhil Chinnari
Production Coordinator
Lead Technical Editor Adonia Jones
Shaon Basu
Cover Work
Technical Editors Adonia Jones
Pooja Nair

Harshad Vairat

Copy Editors
Mradula Hegde

Roshni Banerjee
Dipti Kapadia
Aditi Shetty

About the Author

Gaurav Gupta is a budding, young IT professional with a large amount of exposure
working on web and cross-platform application development. He is a versatile
developer and is always keen to learn new technologies that are updated in this
domain. His passion for his work makes him stand apart from other developers.

A graduate in Computer Science, he currently works for a reputed CMMI Level 5
company and has developed several web and mobile applications for internal use.

Gaurav is a native of Chandigarh, India, and he currently lives in Pune, India.

First of all I would like to thank the almighty and my family,

who have always guided me to walk on the right path in life. I
acknowledge, with a deep sense of gratitude and most sincere
appreciation, the valuable guidance and unfailing encouragement
rendered to me by Mr. Arjun Gupta. I would like to thank him for
his proficient, enthusiastic guidance, useful encouragement, and
immense help.

I would also like to thank Miss. Sulek Shrikrishna Mulay for being an
amazing teacher and guide and for taking pains to technically review
this book.

I wish to extend my sincere gratitude to Aurita, Yogesh, and Joel from
Packt Publishing for their guidance and valuable suggestions, which
proved extremely useful and helpful in the completion of this book.
My heartfelt gratitude and indebtedness goes to all those people in
my life who gave me constructive criticism, as it contributed directly
or indirectly in a significant way towards the completion of this book.
My special thanks goes to my friend Raghav and my colleagues,
especially Vikas, Shreshtha, Arup, Abhishek, and Sameer, for their
support and encouragement, which has been a constant source of
assurance, guidance, strength, and inspection to me.

About the Reviewers

Errietta Kostala is a web developer who is currently studying at the University

of Huddersfield in the UK. Having worked on several websites and applications in
the past few years and having been actively contributing to open source software,
Errietta has a vast background in both client-side and server-side web programming
languages.

I would like to thank the author and publishers for giving me the
opportunity to review this book. In addition to this, I would like to
thank my University and the open source community for giving me
the knowledge and experience needed to do this.

Sulek Shrikrishna Mulay is a BE in Information Technology. She has around
8 years of experience in the IT industry. She currently works for a reputed CMMI
Level 5 company.

She has technical expertise in Java/J2EE (Struts Framework) and cross-platform
applications (Android/iOS) with HTML5/jQuery/JavaScript/jQueryMobile/Sencha
Touch/Phonegap (Cordova) technologies.

She has also received many awards for technical expertise and extracurricular activities.

Sulek is a native of Solapur, Maharashtra, India, and currently lives in Pune, India.

I would like to thank my parents, Shrikrishna D Mulay and Nutan
S Mulay, for their immense support. I also want to thank my sister
Sneha Mulay and my brother Harshwardhan Mulay for always
being there for me.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: Forms and Their Significance 7
Understanding web forms 7
Benefits 8
HTML versus HTML5 forms 9
The form <input> types, elements, and attributes 9
The <form> <input> types 10
The <form> elements 14
The <form> attributes 15
Building an HTML5 form 20
Guidelines 29
Summary 30
Chapter 2: Validation of Forms 31
Form validation 31
Client-side form validation 32
Server-side form validation 33
HTMLS5 form validation 34
Code 1 — validating a textbox using JavaScript 34
Code 2 — validating a textbox using HTML5 <form> controls 35
Constraint validations 36
HTMLS5 constraint validation APls 36
The validity object 36

The checkValidity method 37

The setCustomValidity() method 38

The willValidate attribute 40

The validationMessage attribute 41

The patternMismatch property 42

The customError property 43

The rangeOverflow property 44

Table of Contents

The rangeUnderflow property 45
The stepMismatch property 47
The tooLong property 48
The typeMismatch property 49
The valueMissing property 50
The valid property 51
Error messages 54
Summary 55
Chapter 3: Styling the Forms 57
CSS3 for web forms 57
Selectors and pseudo-selectors 58
Backgrounds 60
The background-clip property 60
Syntax 60
Values 60
The background-origin property 61
Syntax 61
Values 61
The background-size property 61
Syntax 61
Values 61
The background-color property 62
The background-repeat property 62
The background-attachment property 62
Borders 63
The border-radius property 63
Syntax 63
Values 63
The box-shadow property 63
Syntax 64
Values 64
The border-image property 64
Syntax 64
Values 64
Text effects 65
The text-shadow property 65
Syntax 65
The word-wrap property 65
Syntax 65
Values 66
Fonts 66
The @font-face rule 66
Syntax 67

Lii]

Table of Contents

Font descriptors 67
The src font descriptor 67
The font-style font descriptor 67
The font-stretch font descriptor 67
The font-family font descriptor 68
The unicode-range font descriptor 68
The font-weight descriptor 68

Gradients 68
Syntax 68
Values 68

Styling the forms 69

Guidelines 78

Summary 78

Chapter 4: Connection with Database 79

PHP 79

Syntax 80

Form handling 80
The GET method 80
The POST method 81

The filter method 82
Validating user input data 84
Sanitizing user input data 85
The FILTER_CALLBACK filter 85
Filter multiple inputs 86

MySQL 87

MySQL for PHP 88

MySQL-PHP connectivity 88
Open a connection to the MySQL server 89
Close a connection 89

Create or select a database 90
Create a database 90
Select a database 90

Create a table 90

Primary keys 91

Spoofing and forging forms 92

Forging HTTP requests 92

Spoofing submissions 93

Shared secrets 94

Setting expectations 95

Linking a form to a server 95

Summary 102

[iii]

Table of Contents

Chapter 5: Responsive Web Forms 103
Responsive design 103
Google's view about responsive design 104
Benefits of using responsive design 104
How responsive design works 105
Screen resolutions 106
Viewport 106
Media queries 107
Media types 107
Internal media query 108
External media query 109
Media features 109
Different screen resolutions 110
Small screen devices 111
High resolution displays of Apple mobile devices 111
Devices in landscape and portrait modes 113
Fluid grids 113
Fluid grid generators 114
960 grid system 115
Bootstrap 115
Adaptive images 116
Features 117
How it works 117
Customization 118
Making our form responsive 118
Limitations 124
Guidelines 125
Summary 126
Index 127

[iv]

Preface

Web viewers may never know about the background of an application, such as
HTMLS5, CSS3, Responsive Web Design, or PHP. What they want to know is whether
your application works on their device or not and how much effort is required.

Even though web development has changed over the years, the core task of creating
a web page has not been changed. We create a document and put it out on the Web
for people to view. To put something on the Web, we need to learn some special
languages that are accepted on the Web. Yes, we are talking about the scripting
languages such as HTML and PHP.

The main objective of this book is to ensure that the user who fills the form built
by you should enjoy and feel satisfied in every possible way. Here, satisfaction
means the look and feel of the forms and minimum adjustments on the page while
navigating, which can be on a desktop computer, mobile device, or mini laptop.

This book has been written keeping in mind that readers should enjoy a step-by-step,
example driven, and visual-based approach to learning. This book will cover many
aspects of web development, such as the language used to develop the web forms as
well as ways to make web forms look good and accept information from visitors.

This book will act as a platform with which you will learn how to create beautiful
and responsive forms and link them to the database where the form information will
be stored.

What this book covers

Chapter 1, Forms and Their Significance, explains what web forms are and how we can
create these using the new HTML5 form elements. It also explains the benefits of web
forms along with the guidelines that must always be kept in mind while designing
and developing a form.

Preface

Chapter 2, Validations of Forms, explains validations and their necessity in forms

as well as the new HTML5 elements and their attributes that reduce the effort of
client-side validations. It gives a brief description of the validation constraints and
supported API's and also briefs us on the customization of error messages on the
browser.

Chapter 3, Styling the Forms, explains the CSS3 properties that can be utilized to make
forms more presentable. It details us about the vendor-specific prefixes that are
utilized in different browsers along with the effective styling guidelines that must be
kept in mind while enhancing the look and feel of a form.

Chapter 4, Connection with Database, explains briefly about linking a form to the server
using PHP and MySQL, which are used by web developers to store user information.

Chapter 5, Responsive Web Forms, explains responsive designing and approaches that
can be used to make our form responsive. It also discusses the guidelines you should
follow to make a responsive form.

What you need for this book

Any text editor such as Notepad++ or Bluefish can be used to write HTML and
JavaScript code. In Windows, Notepad can also be used to create a simple HTML file
and CSS and JavaScript code can be embedded inside it, which can then be opened in
a web browser.

The good news is that almost every web browser comes with a built-in HTML and
JavaScript Interpreter that compiles the code and executes it within the web browser
host environment during run-time.

PHP files can be written in any of the editors used for writing HTML, CSS, or
JavaScript. For linking the form to the server, the Wamp server is used in Windows
and phpMyAdmin tool is used for MySQL databases.

Who this book is for

This book will help anyone who is willing to enhance their skills in building web
forms using HTML5 and related technologies.

This book should be read by those who are interested in learning how HTML5, CSS3,
and PHP can be used to build responsive, beautiful, and dynamic web forms.

Different readers will find different parts of the book interesting.

[2]

Preface

Without worrying much about having in-depth knowledge of previous W3C
specifications and PHP, users who have learned HTML and PHP on a beginner level
can directly learn how to build web forms using HTML5, CSS3, and PHP and collect

customer information.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

<div class="gender">
<label for="gender">Gender</label>

<input type="radio" name="gender"><label>Male</label>
<input type="radio" name="gender"><label>Female</label>
</div>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

font-family: Helvetica, Arial, sans-serif;

color: #000000;

background: rgba(212,228,239,1);

background: -moz-linear-gradient (top, rgba(212,228,239,1) 0%,
rgba (134,174,204,1) 100%) ;

background: -webkit-gradient (left top, left bottom, color-
stop (0%, rgba(212,228,239,1)), color-stop(100%,
rgba (134,174,204,1))) ;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " For
submitting the form to the server, we have created a Submit button".

[31]

Preface

In this book, we have used @ & @ 2 () for Mozilla Firefox, Google Chrome, Safari,
Internet Explorer, and Opera.

[% Warnings or important notes appear in a box like this..]

[Q Tips and tricks appear like this.]

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Forms and Their Significance

Using forms in a web page is the most effective way to gather relevant data from the
user. Forms are how users really interact with the application whether it's a search
form, a login screen, or a multipage registration wizard. Forms can have inputs such
as name, gender, credit card number, password, images, or upload files into the
forms.

In this chapter we will cover the following topics:

e Web forms and their benefits
e The new HTML5 <form> elements
* Building a web form

e Guidelines to build a web form

Understanding web forms

Before we start learning about HTML5 forms, let us understand what a web
form is.

Forms on a web page provide an interface where information can be shared between
a client and a user more easily and securely in comparison to paper-based forms.
They are a collection of various <input> types, such as textbox, radiobutton,

and checkbox, which allow users to perform various actions and simplifies

decision making.

Forms have always been a fundamental part of the Web. Without them, various
web transactions, discussions, and efficient searches would simply not be possible.
Web-based forms are supported in most browsers and can be used to give feedback
after purchasing a product, retrieve search results from a search engine, contact for
any service, and much more.

Forms and Their Significance

With a simple example, let us understand what a web form is. Say you once went to
a hospital and the receptionist gave you a printed form to fill out. You would have
come across many fields that collect information about a patient. Some of them asked
you to write the patient's name and address in what looked like a textbox or a text
area, and other details such as type of room and so on; you were also asked to choose
one or multiple radio buttons or checkboxes from the options. The same concept
follows for HTMLS5 forms. You have to fill out the fields of that form and press a
button to send this information to the server, rather than going to the hospital and
handing the form over to the receptionist.

Benefits

Forms in web pages offer plenty of advantages over paper-based forms. Apart from
being used to gather data online, web forms offer convenience and speed for both the
user and the form owner.

Some advantages of web forms are:

* Online forms help the customers to talk to the companies as they contain
digitally stored data and deduce that data to meaningful information

* The form owners can quickly build and distribute the HTMLS5 interface,
targeting a large audience

* The form owner can easily update and modify forms as needed

* The Cascading Style Sheets (CSS) and JavaScript attributes allow authors to
customize form controls with specific styles and functions

* Web forms are time saving and cost effective as they require no manpower to
gather information

* They provide a visibility for decision making, for example, shopping online
on websites such as eBay

* As the data is entered directly by the customer,it can be easily sorted to get
the required information

Even if forms have many benefits, building them is not the nicest job and can become
a headache as some forms can get very complicated if we talk about validation,

error handling, and styling. We either validate or catch the errors using a server-side
language or we use JavaScript, or even both. Whichever the case, the web forms can
take up a lot of your development time and this can be a problem. With HTMLS5,
however, some of this pain has been taken away by the introduction of the new
<form> types, which we can use.

[8]

Chapter 1

In spite of many enhancements in HTML5, some things are kept the same such as:
* Forms still send the values to the server when the user clicks on the Submit
button

* Forms are still enclosed in the <form> element, as shown in the following
code snippet:

<form action= "#">

<input type= "text" name= "emailaddress">
<input type= "submit" name= "submit">
</form>

* Form controls are still fully scriptable

However, for the HTML5 forms, there is no need to enclose the <form> controls in
the <form> element.

HTML versus HTML5 forms

An HTMLS5 form provides two major advantages over previous versions. They are:

* Tedious scripting and styling of forms that was required in earlier versions
of HTML was removed because HTML5's new <form> types and inbuilt
validations takes semantic markup to the next level

* Even if scripting is disabled in the browser, users can experience the benefits
of HTML5 forms

The form <input> types, elements,
and attributes

The HTML5 forms focus on enhancing the existing simple HTML forms to
encompass more types of controls and address the limitations that web developers
face today. One of the best things about them is that you can use almost all the new
input types, elements, and attributes right now and the HTML5 forms are fully
backward compatible. The browser, which supports the new HTML5 elements,
enhances their features, otherwise the browser, which does not support it, displays
them as a textbox.

In this section, we will learn the new HTML5 <forms> elements, such as the <input>
types, elements, and attributes that are introduced to enhance the capabilities of forms.

[o]

Forms and Their Significance

The <form> <input> types

date: The date type allows the user to select a date with no time zone.
It is supported in) £ @®.

Syntax:

<input type= "date" name= "#">

Attributes:

° value: The initial value. The format is yyyy-mm-dd
° min, max: The range in which the smallest and largest dates can be
selected
datetime: The datetime type allows the user to select a date and a time with
the time zone set to UTC.
The format is yyyy-mm-dd HH:MM.
It is supported in () ™.
Syntax:

<input type= "datetime" name= "#">

datetime-local: The datetime-local type allows the user to select a date
and time with no time zone. The format used is yyyy-mm-dd HH:MM.

It is supported in (J & @,
Syntax:

<input type= "datetime-local" name= "#">

color: The color type results in opening a color chooser pop up and is
used to choose a color of the <input> type #rrggbb (hex value). It could be
represented by a swatch or a wheel picker.

The value chosen must be a valid simple color's hex value such as #££f££££.
It is supported in & ().
Syntax:

<input type= "color" id= "#"name= "#">

[10]

Chapter 1

Attributes:

o

value: The initial value

number: The number type allows the user to input the numbers in either
integer or floating point.

It is also called a spinner.

We can set restrictions on what numbers are accepted.
It is supported in (J & (@

Syntax:

<input type= "number" name= "#">

Attributes:

o

value: The initial value

o

min, max: The range in which the smallest and largest values can be
selected with the up/down arrows

step: This tells us how much to change the values when we scroll the
spinner

range: The range type allows the user to input the numbers in either integer
or floating point from a range of numbers. It is displayed in the form of a
slider.

Using this, the exact value is not shown unless you use JavaScript, so use
<input type="number" /> if you want the user to choose an exact value.

We can set restrictions on what numbers are accepted.
It is supported in @Eee®E0.
Syntax:

<input type= "range" name= "#">

Attributes:

e}

value: The initial value. The default value is the mid of the slider.

o

min, max: The range in which the smallest and largest values can be
selected. The default for min is 0 and max is 100.

step: This tells us how much to change the values when we scroll the
spinner. The default is 1.

[11]

Forms and Their Significance

email: The email type allows the user to enter the text in e-mail address
format email@example.com.

The entered text is automatically validated when clicked on the Submit
button.

If multiple attributes are specified, multiple e-mail addresses can be entered,
separated by commas.

It is supported in @ & 2 ().
Syntax:
<input type= "email" name= "#">
Attributes:
° wvalue: The initial value (a legal e-mail address)

Using multiple attributes, that is, more than one e-mail ID, is accepted and
each attribute is separated by a comma.

search: The <input> type search allows the user to enter text that the user
wants to search for.

A search field behaves like a standard text field and has inbuilt clear text
functionality, such as the cross button in WebKit browsers.

It is supported in @ & @ .
Syntax:

<input type= "search" name= "#">

Attributes:

o

value: The initial value

tel: The tel type allows the user to input a telephone number. tel does not
provide any default syntax, so if you want to ensure a particular format, you
can use pattern to do additional validation.

No browser support till now.
Syntax:
<input type= "tel" name= "#">

Attributes:

° value: The initial value as a phone number

[12]

Chapter 1

* month: The month type allows the user to select a month and a year with no
time zone.

It is supported in @ () & .
Syntax:
<input type= "month" name= "#" >

Attributes:

° value: The initial value. The format is yyyy-mm.

° min, max: The range in which the smallest and largest values can be
selected.

* time: The time type allows the user to select a time value with hour,
minutes, seconds, and fractional seconds with no time zone.

It is supported in @ & ().
Syntax:
<input type= "time" name= "#">
* url: The url type allows the user to input an absolute URL.

The entered text is automatically validated when clicked on the Submit
button.

It is supported in e &0
Syntax:

<input type= "url" name= "#" >
Attributes:

° wvalue: The initial value as an absolute URL

* week: The week type allows the user to select a week and a year with no time
zone.

It is supported in (J @ & @.
Syntax:

<input type= "week" name= "#">
Attributes:
° value: The initial value. The format is yyyy-mmW.

So far we have learned about the various <input> types. Now let's see the new
HTML5 <form> elements.

[13]

Forms and Their Significance

The <form> elements

* <datalist>: The <datalist> element provides a list of predefined options
for form controls to the user as they input data. It is used to provide an
autocomplete feature on the <forms> elements.

For instance, if a user enters some text in a text field, a list would drop down
with prefilled values that they could choose from.

It is supported in @ & = ().
For example:

<input list= "browsers" name= "browser"s

<datalist id= "browsers">

<option value= "Internet Explorer"s
<option value= "Firefox">
</datalist>

* <keygen>: The <keygen> element is used to provide a secure way to
authenticate users.

When the form is submitted, the private key is stored in the local keystore
and the public key is packaged and sent to the server.

It is supported in @ & @ ().
For example:

<form action= "keygen.html" method= "get">
<input type= "text" name= "username">
<keygen name= "security"s>
<input type= "submit">

</form>

* <output>: The <output> element represents the result of a calculation
performed like the one performed by scripts.

It is supported in @ & @ ().
For example:

<form onsubmit="return false"
oninput="o.value=parselnt (a.value) +parselnt (b.value) ">
<input name="a" type="number" step="any">+
<input name="b" type="number" step= "any">

=<output name="o"></output>

</form>

Now let us see the new HTML5 <form> attributes.

[14]

Chapter 1

The <form> attributes

autocomplete: The autocomplete attribute allows users to complete the
forms based on earlier inputs. We can have an autocomplete on option for
the form and an of £ option for specific input fields or vice versa.

It works with both the <form> and <input> types such as textbox,
datepicker, range, color, url, tel, search, and email.

It is supported in @ & 7@ [.
For example:

<input type="text" name="city" autocomplete="on">
autofocus: When the autofocus attribute is added, an <input>type
automatically gets focus when the page loads.

For instance, when we open the Google home page or any search engine,
the focus automatically goes to the textbox where a user enters the text to
perform a search.

It works with the <inputs> types, textbox, search, url, email, tel, and
password.

It is supported in @ & @ 2 ().
For example:

<input type="text" name="city">
<input type="text" name="state" autofocus>

placeholder: The placeholder attribute gives users a hint that describes
the expected value of an <input > field.

It disappears when the control is clicked on or gains focus.

It should be used only for short descriptions or else use the title attribute.

It works with the <inputs> types, textbox, search, url, email, tel, and
password.

It is supported in @ & @ 2 ().
For example:

<input type="text" name="name" placeholder="First Name">

[15]

Forms and Their Significance

min and max: The min and max attributes are used to specify the minimum
and maximum value to an <input> type.

It works with the <input> types, number, range, date, datetime, datetime-
local, month, time, and week.

It is supported in & ™ ().

For example:

<input type="number" min="1" max="5">

list: The 1ist attribute refers to a <datalist> element that contains
predefined options for an <input> element.

It is used to provide an autocomplete feature on the <form>elements.

For instance, if a user enters some text in a text field, a list would drop down
with prefilled values from which they could choose.

It works with the <inputs> types, textbox, search, url, email, tel.
It is supported in @ & () .
For example:

<input list= "browsers" name= "browser"s>
<datalist id= "browsers"s>

<option value= "Internet Explorer"s
<option value= "Firefox">
</datalist>

formnovalidate: The formnovalidate attribute specifies that the form
should not be validated during submission. It overrides the novalidate
attribute of the <form>elements.

It works with the <input> types, submit and image.
It is supported in @ & () .
For example:

<input type="email" name="email"s>
<input type="submit" formnovalidate value="Submit">

[16]

Chapter 1

form: The form attribute specifies one or more forms that an <input> type
belongs to, or in other words, it allows the users to associate any orphaned
form control with any <form> element on the page.

It is supported in @ & o=

For example:

<body>

<form action="form.html" id="forml">
<input type="text" name="fname">

<input type="submit" value="Submit">

</form>

<p>The "Last name" field below is outside the form
element, but it is still a part of the form</p>

<input type="text" name="lname" form="forml"s>

</body>

formaction: The formaction attribute specifies the URL of a file or
application that will submit the form.

It works with the <input> types, submit and image.

Itis supportedin (2 () @ & @.

For example:

<input type="submit" value="Submit" formaction="form.html">
formenctype: The formenctype attribute specifies how the form data is
encoded when submitting to the server.

It works with the post method only.

It works with the <input> types, submit and image.

It is supported in (2 ()@ & ™.

For example:

<input type="submit" value="Submit"
formenctype="multipart/form-data">

[17]

Forms and Their Significance

formmethod: The formmethod attribute specifies which HTTP method such
as GET, POST, PUT, and DELETE will be used to submit the form data.

It works with the <input> types, submit and image.
Itis supported in (2 () @ & @.

For example:

<input type="submit" value="Submit" formmethod="post">

formtarget: The formtarget attribute specifies the target window to
display the response received after submitting the form.

It works with the <input> types, submit and image.

It is supported in (2 () @ & @,

For example:

<input type="submit" value="Submit" formtarget=" self">
Values:

° Dblank

° self

° parent

° top

° framename

multiple: The multiple attribute allows users to enter more than one value
to the <input> types.

It works with the <inputs> types, email and file.
Itis supported in (2 () @ & ™.
For example:

<input type= "file" name= "image"multiple>

[18]

Chapter 1

novalidate: The novalidate attribute specifies that the form should not be
validated when the Submit button is clicked.

It is supported in (2 ()@ & .
For example:

<form action= "form.html" novalidate>

<input type= "text" name= "city">
<input type= "text" name= "state" autofocuss
</form>

step: Let us understand the step attribute with an example. If step= 2, legal
numbers could be 2, o, 2, 4, and &.

It works with the <input> types, number, range, date, datetime, datetime-

local, month, time, and week.
It is supported in (2 {(J & @.

For example:

<input type= "range" name= "#" step= "2">

required: The required attribute, when added, enforces that an input field
must be filled out before submitting the form.

Currently, the error messages are specific to the browsers and cannot be
controlled by the CSS.

It replaces the basic <form> validations that were implemented with
JavaScript, thus saving development time.

It is supported in (= () @ & .
For example:

<input type= "text" name= "city"requireds>

pattern: Using the pattern attribute, you can declare your own
requirements for validation using Regular Expressions (regex).

It works with the <inputs> types, text, search, url, tel, email, and
password.

[19]

Forms and Their Significance

In case, the value entered by a user does not match the pattern, it will display
a browser generic message.

It is supported in (2 () @ €.

For example:

<input type= "text" name= "country code" pattern= " [A-Za-
z] {3}" placeholder= "Three letter country code"s>

Building an HTMLS5 form

So far, what we have learned about HTML5 forms is only theoretical, but now it's
time to take this learning to the next level. Taking it to the next level means that in
this section, we will build a sample form with some understanding of how they are
structured and the new <form> types, which we have already discussed.

Here we will spend less time on styling or functionality such as design and
validations but more on the core of the new <form> types of HTML5. This form is
best supported in browsers that support HTMLS5 features.

In this example, we will build a health survey form.

This example demonstrates a simple form, using basic HTML elements and new
<form> elements, and the code should be self-explanatory.

Now, let us take a look at the code. The following code is the CSS of the form and
is maintained in a separate file with a . css extension (external CSS file), which is
linked to the main HTML page. Having a separate CSS file is also a good practice.

html {
background-color: #333;
margin: 0px;
padding: Opx;

}

body {
font-size:12px;
width: 517px;
padding: 20px;
margin: 10px auto;
background-color: #eee;
font-family: Helvetica, Arial, sans-serif;
color: #333;

[20]

Chapter 1

label(
font-weight:bold;

/* General Form */

.heading{
font-size:20px;

!

.gender(
position:relative;
top:-42px;
left:185px;

!

.selectOption{
width:239px;

!

.textboxAddress
width:474px;

!

.textboxAddressDetail
width:232px;

!

.legend(
font-weight:bold;
font-size:14px;

!

.submit{
text-align:center;

}

The following code is the main HTML page in which we built the structure of the
form. The <fieldset> tags are enclosed within the <form> tag.

The structure is broken into sections for better understanding. Moreover, the <form>
types are highlighted in bold.

The following is a code snippet for displaying a form for personal information:

<fieldsets>
<legend class="legend">Personal Information</legends>
<div>
<label for="name">Name</label>

<input type="text" placeholder="First" autofocus>
<input type="text" placeholder="Last">
</divs>

[21]

Forms and Their Significance

<div>
<label for="dob">Date of Birth</label>

<input type="date" value="">

</div>

<div class="gender"s>
<label for="gender">Gender</label>

<input type="radio" name="gender"><label>Male</label>
<input type="radio" name="gender"><label>Female</label>
</div>

<div>
<label for="address">Address</label><brs>

<input type="text" class="textboxAddress" placeholder="Street
Address">

<input type="text" class="textboxAddress" placeholder="Address
Line 2">

<input type="text" class="textboxAddressDetail"
placeholder="City">

<input type="text" class="textboxAddressDetail"
placeholder="State/Province">

<input type="text" class="textboxAddressDetail"
placeholder="Pincode" >
<select class="selectOption">
<option value="Country">Select Country</options>
</select>
</div>

<div>
<label for="contact">Phone Number</labels>

<input type="tel" class="textboxAddressDetail"
placeholder="Home" >
<input type="tel" class="textboxAddressDetail"
placeholder="Work">
</div>

<div>
<label for="email">Email Address</label>

<input type="email" class="textboxAddressDetail"
placeholder="email@example.com">
</div>
</fieldset>

Downloading the example code

Ky You can download the example code files for all Packt books you have
Q purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

[22]

Chapter 1

The output of the code is as follows:

Health Survey Form
Personal Information
Name

Date of Birth Gender
mm/ dd/ vvyy v Male Female

Address

Select Country E

Phone Number

Email Address

This section asks the respondents about their personal information such as name,
address, and other details. We have used <label> with descriptive text and tied it to
the form control.

We have also used the autofocus attribute on the first textbox so that an <input>
element automatically gets focus when the page loads. The placeholder attribute
is used several times in the first textbox as First to give a hint to the respondents of
what is required as content. For date of birth, we have used the <input> type date,
which opens as a calendar.

The basic HTML elements' <input > types, such as radiobutton, textbox, and the
drop-down list have also been used.

Similarly, for the phone number field, the <input> type tel is used, and for the
e-mail address field the <input> type email is used.

The following is a code snippet for displaying a general information form:

<fieldset>
<legend class="legend">General Information</legends>
<divs>
<label for="info"sWhat is your</label>

<input type="text" placeholder="Age?">
<input type="text" placeholder="Weight?">

[23]

Forms and Their Significance

<input type="text" placeholder="Height?">
</div>

<div>
<label for="exerciceinfo">Do you regularly engage in any of
the following exercises?</label>

<div><input type="checkbox" name="smoke"><label>Walking
</label>

<input type="checkbox" name="smoke"><label>Running</label>
</div>
<div><input type="checkbox" name="smoke"><label>Swimming
</label>

<input type="checkbox" name="smoke"><label>Biking
</label></div>
<div><input type="checkbox" name="smoke"><label>Others
</label>

<input type="checkbox" name="smoke"><label>I don't exercise
</label></div>
</divs>

<div>
<label for="sleep">On average, how many hours a day do you
sleep?</label>

<input type="number" class="textboxAddressDetail">
</div>

<divs>
<label for="smoking">Have you ever smoked cigarettes, pipes or
cigars?</label>

<input type="radio" name="smoke"><label>Yes</label>
<input type="radio" name="smoke"><label>No</label>
</div>

<div>
<label for="drugs"sAre you currently using or do you have a
history of illegal drug use?</label>

<input type="radio" name="drugs"><label>Yes</label>
<input type="radio" name="drugs"><label>No</label>
</div>

<divs>
<label for="alcohol">Do you consume alcohol?</labels>

<input type="radio" name="alcohol"s><label>Yes</label>
<input type="radio" name="alcohol"><label>No</label>
</div>
</fieldset>

[24]

Chapter 1

The output of the code is as follows:

General Information
What is your

Do you regularly engage in any of the following exercises?
Walking
Running
Swimming
Biking
Others
| don't exercise

On average, how many hours a day do you sleep?

Have you ever smoked cigarettes, pipes or cigars?
Yes Mo

Are you currently using or do you have a history of illegal drug use?
Yes Mo

Do you consume alcohol?
Yes Mo

The top section of the form asks the respondents about general information, such as
age, weight, height, and other information about their daily routine.

Here, we have used basic HTML <form> <input> types, such as textbox,
radiobutton, and checkbox along with the new <forms> attributes such as
placeholder, for taking the inputs from the respondent.

The following code snippet displays a form to store medical information:

<fieldset>
<legend class="legend">Medical Information</legends>
<divs>
<label for= "disease">Check all that apply to you or your
immediate family?</label>

<input type="checkbox" name="disease"><label>Asthma
</label>

<input type="checkbox" name="disease"><label>Cancer
</label>

<input type="checkbox" name="disease"><label>HIV and AIDS
</label>

<input type="checkbox" name="disease"><label>Diabetes
</label>

[25]

Forms and Their Significance

<input type="checkbox" name="disease"><label>Hypertension

</label>

<input type="checkbox" name="disease'"><label>Malaria
</label>

<input type="checkbox" name="disease"><label>Seizure Disorder
</label>

<input type="checkbox" name="disease"><label>Psychiatric
Disorders</labels

<input type="checkbox" name="disease"><label>Mental Health

</label>

<input type="checkbox" name="disease"><label>Stroke
</label>

<input type="checkbox" name="disease"><label>Others
</label>

<input type="checkbox" name="disease"><label>Not Applicable
</label>
</divs>

<divs>

<label for= "symptons">Checkall symptoms you are currently
experiencing</label>

<input type="checkbox" name="symptoms"><label>Allergy
</label>

<input type="checkbox" name="symptoms"><label>Eye</label>

<input type="checkbox" name="symptoms"><label>Lymphatic
</label>

<input type="checkbox" name="symptoms"s><label>Fever
</label>

<input type="checkbox" name="symptoms"><label>Eating Disorder
</label>

<input type="checkbox" name="symptoms"><label>Hemtalogical
</label>

<input type="checkbox" name="symptoms"><label>Musculoskeletal
Pain</label>

<input type="checkbox" name="symptoms"><label>Skin</label>

<input type="checkbox" name="symptoms"><label>Gastrointestinal

</label>

<input type="checkbox" name="symptoms"><label>Weight Loss
</label>

<input type="checkbox" name="symptoms"><label>Others
</label>

<input type="checkbox" name="symptoms"><label>Not Applicable
</label>
</div>

<div>

[26]

Chapter 1

<label for="allergy">Please list any medication allergies that
you have</label>

<textarea name="allergy" rows="4" cols="57">
</textareas>
</div>

<div>
<label for="medications">Please list any medications you are
currently taking</label>

<textarea name= "medications" rows="4" cols="57">
</textarea>
</div>

<div>
<label for="pregnancy">If you are a woman, are you currently
pregnant, or is there a possibility that you are pregnant?
</label>

<input type="radio" name="pregnancy"><label>Yes</label>
<input type="radio" name="pregnancy"><label>No</label>
<input type="radio" name="pregnancy'"><label>Not Applicable
</label>
</divs>

<div>
<label for="healthrating">In general, would you say your
health is</labels>

* Taking 1 to be poor and 5 to be excellent<brs>
<input type="number" name="healthrating" min="1" max="5">
</div>

<label for="ratinghealth">When you think about your health
care, how much do you agree or disagree with this statement:
"I receive exactly what I want and need exactly when and how
I want and need it."</label>

* Taking 1 to be strongly dis-agree and 5 to be strongly
agree

l<input type="range" name="ratinghealth" min="1" max="5">5
</div>
</fieldset>

<div class="submit">
<input type="submit" value="Submit"s>

</div>

[27]

Forms and Their Significance

The output of the code is as follows:

Medical Information
Check all that apply to you or your immediate family?
[asthma

[Ceancer

[CIHv and AIDS

[Diabetes
DHyperlensiUn

[malaria

[seizure Disorder

0 Psychiatric Disorders
[Mental Health

[stroke

D others

[ot Applicable

Check all symptoms you are currently experiencing
[T anergy

[Feye

[Ciymphatic

[CIFever

[Eating Disorder

= Hemtalogical

[T musculoskeletal Pain
[skin

[Tl castrointestinal
[Eweight Loss

D others

[TInot Applicanle

Please list any medication allergies that you have

Please list any medications you are currently taking

If you are a woman, are you currently pregnant, or is there a possibility that you are
pregnant?
D¥es 0 Mo O Not Applicable

In general, would you say your health is
*Taking 1 to be poor and 5 to be excellent

When you think about your health care, how much do you agree or disagree with this
statement: "I receive exactly what | want and need exactly when and how | want and

need it."
*Taking 1 to be strongly dis-agree and 5 to be strongly agree
1 U 5

Our final section of the form asks the respondents about their medical information.
To get information about various diseases or symptoms a respondent has, we have
used the basic HTML <form> <input> type checkbox.

[28]

Chapter 1

Textarea is a free text field, which contains detailed text and, in our case, allows the
respondent to enter information, such as medication allergies and medication. The
rows and columns of the textarea determine the displayable size of the textarea
text field in the form. We can also set the limit by setting maxlength to restrict the
respondent from entering lengthy details.

radiobutton is used to restrict the respondent from choosing only one option from
multiple options.

With the <input> type number, we created a spinner, which is a precise control for
selecting the string represented by a number. Here, we have set the limit by setting
the min value to 1 and the max value to s.

With the <input> type range, we created a slider, which is an imprecise control for
setting the value to a string representing a number. Here, we have set the limit by
setting the min value to 1 and the max value to 5.

Finally, the <input> type submit sends the data to the server.

Guidelines

A good practice or guideline is to design and develop a standard approach, which
has always shown better results.

Some of the best practices to create effective forms are as follows:

* Use relevant content groupings to organize forms

* Minimize the amount of help and tips required to fill out a form

* Employ flexible data entry

* For long forms, show progress and save options

* Maintain a consistent approach

* Maintain a clear relationship between the initial selection options

* Use inline validation of inputs that have potentially high error rates
* Provide actionable remedies to correct errors

* Disable the Submit button after a user clicks on it to avoid multiple
submissions

* (Clearly communicate about the submission of data and provide feedback

* Maintain separate files for CSS and JavaScript

[29]

Forms and Their Significance

Using best practices:

* Improves cross-browser compatibility
* Increases performance

* Saves time and reduces cost

* Project understanding becomes easy

* Code maintenance becomes easy

Summary

In this chapter, we learned about forms and the benefits of using them. We have seen
the difference between basic HTML forms and HTML5 forms.

We learned about the new <forms controls, date, week, tel, email, range, numbers,
and many more for which we do not have to rely on JavaScript and how they work
in the modern browsers.

We also built a sample form to get well versed with the forms and at the end of the
chapter we learned the best practices to create effective web forms.

Overall, we've seen ways to reduce the amount of scripting and development time
when users need to create full-featured forms with the help of HTMLS5.

[30]

Validation of Forms

Form validation has always been tricky and painful for developers since the Web
was born. Before HTMLS5, it was a nightmare for developers to write lines of code for
validating forms to get the desired information from the user.

In this chapter, we will cover the following topics:

» Validation, their benefits, and their types
e HTMLS5 <input> and attributes used in validations
* The difference between JavaScript and HTML5 validations with an example

* Validation constraints and supported APIs (Application Programming
interface)

* Default error messages displayed by the browser

Form validation

Validation of a form is a series of checks and notifications that guides a user as to
what is required as an input while submitting information to a server. We can also
say that it is a process of checking the input data against a specific standard or
requirement.

Form validation is a process for detecting invalid control data and displaying those
errors to the end users. The term has several benefits as follows:

* Provides the necessary instructions and hints

* Provides a logical reading and navigation order of the elements

* Users can easily get to know the mistakes they have made while entering
the data

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface

Validation of Forms

* Ensures that the form can be completed and submitted using the keyboard

* Saves users' waiting time on an HTTP request or a network call

* Saves the owner's server time and memory from dealing with bad inputs
Validation ensures that sufficient data has been provided by the user, such as with

online shopping, which typically includes the address, e-mail address, and many
more details which are mandatory for a transaction to be complete.

There are many methods to perform form validations, which can be categorized into
the following;:
* Client-side form validation

e Server-side form validation

Client-side form validation

Client-side validation can be performed using HTML5 attributes on a browser
that supports them or even with the help of JavaScript for other browsers. HTML5
attributes reduce the effort of validation in comparison to cumbersome JavaScript
validations.

The advantages of client-side form validation are as follows:
* It enhances the experience of the user by responding quickly at the client
side itself

* Validation can occur as the <form> controls are filled by the user before
submitting the form to the server

* This approach is quite simple as it ensures that the user has filled the
required fields with valid data and also guides the user while filling up the
form correctly

* It's a fast form of validation as it does not require any server-side scripting
The disadvantages of client-side form validation are as follows:
* It can be disabled in the client's browser and does not provide any security
mechanism

* This approach cannot protect our application from various security concerns
while transmitting the data along the network

* C(lient-side validation provides minimum security as it can be altered or
bypassed very easily

[32]

Chapter 2

Server-side form validation

Various scripting languages, such as PHP, ASP, or Perl are used to screen and filter
the data submitted by the user at server side.

This approach is used when we know that some checks can be performed only on the
server side as security is required, as in the case of online shopping, where the user
enters card details for making a payment.

The advantages of server-side form validation are as follows:

* The valid and complete information can be submitted without any error
recovery messages and warnings.

* Every page that a user sees in the browser is downloaded to the computer,
which includes JavaScript that has validation code. So, a hacker can create a
new version of the page without any validation and can fool our server by
entering invalid data. In such scenarios, server-side validations are helpful.

* Server-side validation is more secure and cannot be altered or bypassed easily.
The disadvantages of server-side form validation are as follows:

* This approach requires more response time leading to poor user experience

* The server-side processing code resubmits the page so as to display the error
messages

* To have the minimum number of request-response life cycles, it validates all
form fields at the same time

More or less, we all have relied on JavaScript to validate forms. Also, we should
always keep in mind that client-side form validation is not a replacement for
foolproof server-side validation and handling errors. It is an efficient means of
providing an instant feedback on the input of the user at the client end. In case of
online shopping, the user selects total number of pieces, but after a certain limit, the
user sees an error that the limit has been exceeded. All these validations demand
high-end server-side validations, which is not possible on the client side. Always
remember, in case of forms, use server-side validations.

[33]

Validation of Forms

HTML5 form validation

The purpose of introducing HTML5 validation is to notify a user that a page contains
some mandatory information that needs to be filled or corrects the users for any
errors using the browser's built-in processing. We should take advantage of all the
capabilities and knowledge that the browser has, to catch errors within a form, before
sending it to the server. Also, we need not bother about the time and expense of a
network round-trip or getting a response from the server about some stupid error.

New <inputs> attributes such as required and pattern used in combination with
CSS pseudo-class selectors make it easier to write the checks and display feedback
to the user. There are also other advanced validation techniques that allow you to
use JavaScript to set custom validity rules and messages or to determine whether an
element is invalid and why.

Before we go deeper into HTMLS5 validations, let us see the difference when the
client-side validation is performed using JavaScript and how we can validate using
HTMLS5 <form> controls. Here, in the following instance, we are validating a simple
textbox which is mandatory to be filled in by the user.

Code 1 - validating a textbox using JavaScript

The following code will validate a textbox using JavaScript:

<head>
<scripts>
function validateField()
{
var x=document.forms["Field"] ["fname"] .value;
if (x==null || x==""){
alert ("Please enter your name") ;
return false;

}
}
</script>
</head>
<body>
<form name="Field" action="#" onsubmit="validateField()"
method= "post">

First name: <input type= "text" name= "fname">
<input type= "submit" value= "Submit"s>

</form>

</body>

[34]

Chapter 2

The output of the preceding code will be as shown in the following screenshot:

First name: Submit

& JavaScript Alert %

Please enter your name

Code 2 - validating a textbox using HTML5

<form> controls
The following code will validate a textbox using HTML5:

<head>

<scripts>

</script>

</head>

<body>
<form name= "Field" action= "#">
First name: <input type= "text" name= "fname" requireds>
<input type= "submit" value= "Submit"s>

</form>

</body>

The output of the preceding code will be as shown in the following screenshot:

First name: | Submit |

[Please fill out this field.

In the preceding two code examples, we saw how the <scripts> part in the first code
was replaced by a single attribute of the HTML5 <form> control in the second code,
which not only reduced the lines of code, but also removed the scope of JavaScript.

[35]

Validation of Forms

Constraint validations

The algorithm that browsers run to determine the validity of a form when it is
submitted is called constraint validation. To constrain data or check validity, the
algorithm utilizes new HTMLS5 attributes such as min, max, step, pattern, and
required, as well as existing attributes such as maxlength and type.

In HTMLYS, basic constraints are declared in two different ways:
* By choosing the most semantically appropriate value for the type attribute of
the <input> element

* By setting values on validation-related attributes and allowing basic
constraints to be described in a simple way without the need for JavaScript

HTML5 constraint validation APIs

Nowadays, an increasing number of browsers are supporting the constraint
validation AP, and it's becoming more and more reliable. However, HTML5
constraint validation doesn't remove the need for validation on the server side.

At a high level, this API covers the following features:

* Form fields have a validity property
* Form fields also have a generic checkvalidity () method

* Finally, there is a setCustomvalidity () method

The validity object

The validity object is a set of keys and Boolean values that represent the validity of a
particular form. In simple terms, we can say that it tells what a particular form lacks.

Let us take the numeric field type as an example to understand this. With the
numeric field type, we can specify that a form field should be numeric and we can
set the limitation; for example, the number should be higher than 0 and less than
25. The validity property would actually be able to tell you if the value wasn't a
number or was too low or too high.

[36]

http://www.whatwg.org/specs/web-apps/current-work/#dom-cva-validity

Chapter 2

The validity object of a DOM node returns a validityState object containing

a number of Boolean properties related to the validity of the data in the node. In a
validityState object, whenever we get a reference to it, we can keep a hold of it,
and the validity checks that we get in return will update as needed when the changes
occur as shown in the following code example:

<head>
<scripts>
function validateInput () {

var booll=
document .getElementById ('handbookl') .validity.customError;

var resultl=document.getElementById('resultl').
innerHTML = booll;

}
</script>
</head>
<body>
<input type= "text" id="handbookl">
<div>
<label>Resultl:</label><output id="resultl" ></outputs>
</divs>
<input type="button" value="Validate" onclick="validateInput () ">
</body>

The checkValidity method

The checkvalidity method is called to check for the value that this method returns
for the successful and unsuccessful validation scenarios. It returns a Boolean value,
and we can use this method when there is no need to know why a field is invalid, or
we can use this method before we sneak into the validity property to know why
the field is not valid.

This method allows us to check validation on the form without any input from
the user.

Validation of form is checked whenever the user or the script code submits the form,
but this method allows validation to be done at any time, as shown in the following
code example:

<head>
<scripts>
function validateInput () {
//false

var bool2=document.getElementById ('handbook2")
.checkvalidity(); //true

[37]

http://www.whatwg.org/specs/web-apps/current-work/#validitystate

Validation of Forms

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}
</scripts>
</head>
<body>
<input type= "text" id="handbookl" requireds
<input type= "text" id="handbook2" value="handbook">
<div>
<label>Resultl:</label><output id="resultl"s></outputs>
</div>
<div>
<label>Result2:</label><output id="result2"></outputs>
</div>
<input type="button" value="Validate" onclick="validateInput () ">
</body>

The output of the preceding code will be as shown in the following screenshot:

handbook
Resultl: false
Result2: true
[Validate |

The setCustomValidity() method

The setCustomvalidity () method lets us decide logically and create a custom
validation error message and display it when an invalid input is submitted to the
form. This lets us use JavaScript code to establish a validation failure other than
those offered by the standard constraint validation APIs. The message is displayed
while reporting the problem.

[38]

Chapter 2

This method also allows us to set a message and sets the field as being in an error
state by default. If the argument is the empty string, the custom error is cleared

or is considered valid. When we do not customize the error message using the
setCustomvalidity () method, the built-in error message is displayed, as shown in
the following code example:

<scripts>
function check (input) {
if (input.value !=
document .getElementById('email addr') .value) {

input.setCustomValidity ('Both the email addresses must
match. ') ;

}
else(
input.setCustomValidity ('"') ;

}
</script>
<body>
<form id="myForm">
<div>
<label>Enter Email Address:</labels>
<input type="email" id="email addr" name="email addr"s>
</divs>
<div>
<label>Repeat Email Address:</label>
<input type="email" id="email addr repeat"
name="email addr repeat">
</divs>
<input type="submit" value="Validate" onclick="check (this) ">
</form>

The output of the preceding code will be as shown in the following screenshot:

Enter Email Address: handbooki@books com
Repeat Email Address: handbook@book com
[Validate |

Both the email addresses must
match.

[39]

Validation of Forms

The willValidate attribute

The willvalidate attribute indicates whether an element will be validated based
on the form's validation rules and constraints. If any of the constraints, such

as the required attribute or the pattern attribute, are set on the control, the
willvValidate field will let you know that validation checking will be enforced.

This attribute returns true if the element will be validated when the form is
submitted; otherwise, it will return false, as shown in the following code example:

<scripts
function validateInput () {

var booll= document.getElementById ('handbookl') .
willvValidate; //true

var bool2=document.getElementById ('handbook2') .
willValidate; //undefined

var bool3= document.getElementById ('handbook3") .
willValidate; //false

var resultl=document.getElementById('resultl') .
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

var result3=document.getElementById('result3') .
innerHTML = bool3;

}
</script>
<body>
<input type= "text" id="handbookl" required value= "handbook">
<div id= "handbook2" type="text">
<input type= "text" id="handbook3" disableds>
<div>
<label>Resultl:</label><output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label><output id="result2" ></outputs>
</div>
<div>
<label>Result3:</label><output id="result3" ></outputs>
</div>
<input type="button" value="Validate" onclick="validateInput () ">
</body>

[40]

Chapter 2

The output of the preceding code will be as shown in the following screenshot:

handbook

Resultl: true
Result2: undefined
Result3: false

| Validate |

The validationMessage attribute

The validationMessage attribute allows us to programmatically query a
localized error message that the control does not satisfy. If the control is not a
candidate for constraint validation, or if the element's value satisfies its constraints,
validationMessage sets to an empty string.

For instance, if a required field has no input, the browser will present its default error
message to the user. Once supported, this is the text string that will be returned by
the validationMessage field as shown in the following code example:

<scripts>
function validateInput () {
var booll=
document .getElementById ('handbookl') .validationMessage;
var bool2=document.getElementById ('handbook2"') .
validationMessage;

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}

</script>

<body>
<input type= "text" id="handbookl" required/>
<input type= "text" id="handbook2" value= "handbook">
<div>
<label>Resultl:</label><output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label><output id="result2" ></outputs>
</div>

[41]

Validation of Forms

<input type="button" value="Validate" onclick="validateInput () ">
</body>

The output of the preceding code will look as shown in the following screenshot:

handbook
Resultl: Please fill out this field.
Result:
| Validate |

HTMLS5 provides us with several ways to enforce correctness on forms; that is,
HTMLS provides several validity constraints on any given <form> control.

As mentioned previously, several validity constraints on any given <form> control
are discussed in this section.

The patternMismatch property

The patternMismatch property is used to set any pattern rule on a <form> control
and returns if the <input> value matches the rules defined by the pattern attribute.

The validity.patternMismatch attribute

If the element's value does not match the provided pattern attribute, it
returns true; otherwise, it returns false

* The element will match the :invalid CSS pseudo-class when it returns true
as shown in the following code example:

<scripts>
function validateInput () {

var booll= document.getElementById ('handbookl') .
validity.patternMismatch; //false

var bool2= document.getElementById ('handbook2') .
validity.patternMismatch; //true

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}
</script>
<body>

<input type= "text" id="handbookl" pattern="[0-9]{5}"
value="123456">

[42]

Chapter 2

<input type= "text" id="handbook2" pattern="[a-z]{3}"
value="xyz">

<div>

<label>Resultl:</label> <output id="resultl"></outputs>

</div>

<div>

<label>Result2:</label> <output id="result2"></outputs>

</div>
<input type="button" value="Validate"
onclick="validateInput ()">
</body>

The output of the preceding code will be as shown in the
following screenshot:

123456 XYZ
Resultl: true

Result2: false

[Validate |

The customError property

The customError property is used to handle the errors that are calculated and set
by the application code. This property validates whether the customized error
message is set or not.

It is used to call the setCustomvalidity () property to put a form control into the
customError state.

The validity.customError property

If the element has a custom error, it returns true; otherwise, it returns false, as shown
in the following code example:

<scripts>
function validateInput () {

Var booll=document.getElementById ('handbookl') .
validity.customError; //false

var bool2= document.getElementById ('handbook2') .
setCustomValidity ('Invalid Message') ;

var bool3= document.getElementById ('handbook2') .
validity.customError; //true

var resultl=document.getElementById('resultl').
innerHTML = booll;

[43]

Validation of Forms

var result2=document.getElementById('result2').
innerHTML = bool2;

var result3=document.getElementById('result3').
innerHTML = bool3;

}
</scripts>
<body>
<input type= "text" id="handbookl">
<input type= "text" id="handbook2">
<div>
<label>Resultl:</label> <output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label> <output id="result2" ></outputs>
</div>
<div>
<label>Result3:</label> <output id="result3" ></outputs>
</div>
<input type="button" value="Validate" onclick="validateInput () ">
</body>

The output of the preceding code will be as shown in the following screenshot:

Result]: false
Result2: indefined
Result3: true

| Validate |

The rangeOverflow property
The rangeoverflow property is used to notify that the input value of the <form>
control is greater than the maximum value or that the input value is out of range.

This property checks the max attribute to a <form> control with the maximum
input value.

The validity.rangeOverflow property

* If the element's value is higher than the provided maximum value, it returns
true; otherwise, it returns false

[44]

Chapter 2

* The element will match the :invalidand :out-of-range CSS pseudo-
classes when it returns true, as shown in the following code example:

<scripts>
function validateInput () {
var booll= document.getElementById ('handbookl') .
validity.rangeOverflow; //false
var bool2=document.getElementById ('handbook2"') .
validity.rangeOverflow; //true
var resultl=document.getElementById('resultl').
innerHTML = booll;
var result2=document.getElementById('result2').
innerHTML = bool2;
}
</scripts>
<body>
<input type= "number" id="handbookl" max="3" value="1">
<input type= "number" id="handbook2" max="3" value="4">
<divs>
<label>Resultl:</label> <output id="resultl" ></output>
</div>
<divs>

<label>Result2:</label> <output id="result2" ></output>

</div>
<input type="button" value="Validate"
onclick="validateInput () ">
</body>

The output of the preceding code will be as shown inthe
following screenshot:

1 = 4 :
Resultl: false
Fesult?: true

| Validate |

The rangeUnderflow property

The rangeUnderflow property is used to notify that the input value of the <form>
control is lower than the minimum value.

This property checks the min attribute to a <form> control with the minimum
input value.

[45]

Validation of Forms

The validity.rangeUnderflow property

If the element's value is lower than the provided minimum value, it returns
true; otherwise, it returns false

* The element will match the :invalid and :out-of-range CSS pseudo-
classes when it returns true, as shown in the following code example:

<scripts
function validateInput () {

var booll= document.getElementById ('handbookl') .
validity.rangeUnderflow; //true

var bool2= document.getElementById ('handbook2") .
validity.rangeUnderflow; //false

var resultl=document.getElementById('resultl') .
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}

</script>

<body>
<input type= "number" id="handbookl" min="3" value="1">
<input type= "number" id="handbook2" min="3" value="4">
<div>
<label>Resultl:</label> <output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label> <output id="result2" ></outputs>

</div>
<input type="button" value="Validate"
onclick="validateInput ()">
</body>

The output of the preceding code will look as shown in the
following screenshot:

1 = 4 =
Resultl: true
Result2: false

| Validate |

[46]

Chapter 2

The stepMismatch property

The stepMismatch property ensures that an <input> value complies with the rules
or standards of the values of min, max, and step. For example, if the step value is five
and the value entered is three, we will have a step mismatch in this case.

The validity.stepMismatch property

If the element's value doesn't fit the rules given by the step attribute, it
returns true; otherwise, it returns false

¢ The element will match the :invalid and :out-of-range
CSS pseudo-classes when it returns true, as shown in the following code
example:

<scripts
function validateInput () {

var booll= document.getElementById ('handbookl') .
validity.stepMismatch; //true

var bool2= document.getElementById ('handbook2') .
validity.stepMismatch; //false

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}

</script>

<body>
<input type= "number" id="handbookl" step="3" value="1">
<input type= "number" id="handbook2" step="3" value="6">
<div>
<label>Resultl:</label> <output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label> <output id="result2" ></outputs>

</div>
<input type="button" value="Validate"
onclick="validateInput ()">
</body>

[47]

https://developer.mozilla.org/en-US/docs/CSS/:out-of-range

Validation of Forms

The output of the preceding code will be as shown in the following screenshot:

1 = |6 -
Eesultl: true
Resultl: false

| Validate |

The tooLong property

This property ensures that an <input > field does not contain too many characters.

We ensure this by adding a maxlength attribute on the <form> control.

The validity.tooLong property

* If the element's value is longer than the provided maximum length, it returns
true; otherwise, it returns false

* The element will match the :invalid and :out-of-range
CSS pseudo-classes when it returns true, as shown in the following
code example:
<scripts>
function validateInput () {
var booll= document.getElementById ('handbookl!') .
validity.tooLong; //false
var bool2= document .getElementById ('handbook2 ') .
validity.tooLong; //true
var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}
</script>
<body>
<input type="text" id="handbookl" maxlength="5"
value="12345678"/>
<input type="text" id="handbook2" maxlength="5"
value="xyz"/>
<div>
<label>Resultl:</label> <output id="resultl" ></outputs>
</div>
<div>
<label>Result2:</label> <output id="result2" ></outputs>
</div>

[48]

https://developer.mozilla.org/en-US/docs/CSS/:out-of-range

Chapter 2

<input type="button" value="Validate"
onclick="validateInput ()">

</body>

The output of the preceding code will be as shown in the following screenshot:

12345678 KYZ
Fesultl: false

Resultl: false

| Validate |

The typeMismatch property

The typeMismatch property is used to notify that the <input> value does not match
with the <form> control in cases such as e-mail, URL, and number, and ensures that
the type of value matches its expected field.

The validity.typeMismatch property

If the element's value is not in the correct syntax, it returns true; otherwise, it
returns false

* The element will match the :invalid CSS pseudo-class when it returns true,
as shown in the following code example:

<scripts>
function validateInput () {

var booll= document.getElementById ('handbookl") .
validity.typeMismatch; //false

var bool2= document.getElementById ('handbook2") .
validity.typeMismatch; //true

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}

</script>

<body>
<input type="email" id="handbookl"

value="handbook@books.com" >

<input type="email" id="handbook2" value="handbook">
<div>
<label>Resultl:</label> <output id="resultl" ></output>
</divs>

[49]

Validation of Forms

<div>
<label>Result2:</label> <output id="result2" ></outputs>

</div>
<input type="button" value="Validate"
onclick="validateInput ()">
</body>

The output of the preceding code will be as shown in the following screenshot:

handbook@books com handbook
Resultl: false

Result2: true

| Validate |

The valueMissing property

The valueMissing property ensures that some value is set on the <forms> control. To
ensure this, set the required attribute on the <form> control to true.

The validity.valueMissing property

* If the element has no value but is a required field, it returns true; otherwise, it
returns false

* The element will match the :invalid CSS pseudo-class when it returns true,
as shown in the following code example:

<scripts>
function validateInput () {

var booll=document.getElementById ('handbookl!') .
validity.valueMissing; //false

var bool2= document.getElementById ('handbook2') .
validity.valueMissing; //true

var resultl=document.getElementById('resultl').
innerHTML = booll;

var result2=document.getElementById('result2').
innerHTML = bool2;

}
</scripts>
<body>
<input type= "text" id="handbookl" required
value="handbook">
<input type= "text" id="handbook2" required value="">
<div>

[50]

Chapter 2

<label>Resultl:</label> <output id="resultl" ></outputs>
</div>

<div>

<label>Result2:</label> <output id="result2" ></outputs>
</div>

<input type="button" value="Validate"

onclick="validateInput ()">
</body>

The output of the preceding code will look as shown in the following screenshot:

handbook
Resultl: false
Result2: true
| Validate |

The valid property

The valid property is used to check whether the field is valid.

The validity.valid property

If the element's value has no validity problems, it returns true; otherwise, it
returns false

The element will match the :invalid CSS pseudo-class when it returns true,
as shown in the following code example:

<scripts>
function validateInput () {

var booll= document.getElementById ('handbookl') .
validity.valid; //true

var bool2= document.getElementById ('handbook2") .
validity.valid; //false

var resultl=document.getElementById('resultl') .
innerHTML = booll;

var result2=document.getElementById('result2') .
innerHTML = bool2;;

}
</script>
<body>

<input type= "text" id="handbookl" required
value="handbook" >

[51]

Validation of Forms

<input type= "text" id="handbook2" required value="">
<div>

<label>Resultl:</label> <output id="resultl" ></outputs>
</div>

<div>

<label>Result2:</label> <output id="result2" ></outputs>

</div>
<input type="button" value="Validate"
onclick="validateInput ()">
</body>

The output of the preceding code will be as shown in the following screenshot:

handbook

Resultl: true
Fesult2: false

Validate

The following table shows the various attributes with their possible values and
associated violations:

< >
. Input . types . Constraint Associated
Attribute supporting the Possible values o . s 1.
: description violation
attribute
required date, month, It returns the Boolean The value is Constraint
week, checkbox, value None; when to be filled violation:
radio button, present, it returns @ue mandatorily Missing
URL, telephone, and when absent, it
e-mail, text, returns false
password,

search, time,
range, number
and tags such
as <select>,
<textarea>,
checkbox, and
radiobutton

[52]

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/select
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea

Chapter 2

< >
. Input .types . Constraint Associated
Attribute supporting the Possible values . e
: description violation
attribute
min number and Must be a valid The filled Constraint
range number parameter violation:
month, date, ~ Must be a valid date ~ Must be greater 5, oy
than or equal
and week
to the value
datetime-local, =~ Must be a valid date defined
time, and and time
datetime
maxlength tags such as Must be an integer The value of Constraint
<textareas> length the attribute violation:
and attributes must not be Too long
are text, greater than
password, the number
search, tel, of characters
url, and email filled
max number and Must be a valid The filled Constraint
range number parameter violation:
month ,date, Must be a valid date must be lesser Overflow
and week than or equal
to the value
datetime-local, Must be a valid date .
: . defined
time, and and time
datetime
pattern text, search, It is a regular The value of Constraint
URL, telephone, expression defined the attribute violation:
e-mail, and using JavaScript must exactly Pattern
password match the mismatch
pattern defined
step month Must be an integer Until the value Constraint
number of months of step is violation:
date Must be an integer settotheany gtep
number of days literal (values 1yigmatch
K Must b . available in the
wee us’; e a? mteli;er step menu),
number of weeks value will be
datetime, Must be an integer min value plus
datetime-local, number of seconds an integral
and time multiple of

number and
range

Must be an integer

step

[53]

Validation of Forms

Error messages

Nowadays, all modern browsers support most of the features of HTML5. The
functionality of the features is the same in all browsers but there are some
differences; one of which is the default error message that the browser, displays.

Some of the default error messages displayed by various browsers are shown in the
following screenshot:

Chrome

1 Please check this box if you want to

W Please fill out this field proceed.

Firefox

A ————— Please check this box if you want to proceed.

Internet Explorer

You must select this checkbox

This is a required field

Opera

@ Please check this box if you want to

H Please fill out this field.
proceed.

However, we can change the default error message of the browser with the help of
setCustomvalidity. Let us understand this with an example.

The following code changes the default error message of a browser to a custom
message:

<scripts>
function check()
{
varhtmlObject=document .getElementById ("input") ;
if (!htmlObject.checkvalidity())
htmlObject.setCustomValidity ('This field is mandatory');

}
}
</script>
<body>

[54]

Chapter 2

<form id="myForm">
<input id="input" type="text" required />
<input type="submit" onclick="check (this) ">
</form>

</body>

The preceding code will give the following output:

| Submit |

This field is mandatory

Summary

In this chapter, we learned about form validation and their types. We also learned
the benefits of the different types of validations. We have also seen the various
<input> types and attributes used in the validation of forms.

We have seen the difference between JavaScript validation and HTML5 validation by
building a sample code.

Next, we learned about constraint validations and the various APIs supported by
HTMLS.

Lastly, we saw the various browser-specific default error messages and learned how
to change the browser's default error message.

[55]

Styling the Forms

In earlier chapters, we learned how to build a form using HTMLS5, but CSS3 is used
by web designers and developers to give web forms a rich and elegant look. With the
basic understanding of CSS3, in this chapter we will learn how to improve the look
and feel of the forms.

In this chapter, we will cover the following topics:

e (CSS3 and its modules
* Styling the forms

* Guidelines for effective styling of the forms

CSS3 for web forms

CSS3 brings us infinite new possibilities and allows styling to make better web forms.
CSS3 gives us a number of new ways to create an impact with our form designs, with
quite a few important changes. HTML5 introduced useful new form elements such
as sliders and spinners and old elements such as textbox and textarea, and we can
make them look really cool with our innovation and CSS3. Using CSS3, we can turn
an old and boring form into a modern, cool, and eye catching one.

CSS3 is completely backwards compatible, so we will not have to change the existing
form designs. Browsers have and will always support CSS2.

CSS3 forms can be split up into modules. Some of the most important CSS3
modules are:

* Selectors (with pseudo-selectors)

* Backgrounds and Borders

* Text (with Text Effects)

Styling the Forms

* Fonts
* Gradients
Styling of forms always varies with requirements and the innovation of the web

designer or developer. In this chapter, we will look at those CSS3 properties with
which we can style our forms and give them a rich and elegant look.

Some of the new properties of CSS3 required vendor prefixes, which were used
frequently as they helped browsers to read the code. In general, it is no longer
needed to use them with CSS3 for some of the properties, such as border-radius,
but they come into action when the browser doesn't interpret the code. A list of all
the vendor prefixes for major browsers is given as follows:

* -moz-: Firefox

* -webkit-: WebKit browsers such as Safari and Chrome
* -o-:0Opera

* -ms-: Internet Explorer

Before we start styling the form, let us have a quick revision of form modules for
better understanding and styling of the forms.

Selectors and pseudo-selectors

Selectors are a pattern used to select the elements which we want to style. A selector
can contain one or more simple selectors separated by combinators. The CSS3
Selectors module introduces three new attribute selectors; they are grouped together
under the heading Substring Matching Attribute Selectors.

These new selectors are as follows:

* [att”=vall: The "begins with" selector
e J[att$=vall: The "ends with" selector

e [att*=vall: The "contains" selector

The first of these new selectors, which we will refer to as the "begins with" selector,
allows the selection of elements where a specified attribute (for example, the href
attribute of a hyperlink) begins with a specified string (for example, http://,
https://,0ormailto:).

In the same way, the additional two new selectors, which we will refer to as the
"ends with" and "contains" selectors, allow the selection of elements where a
specified attribute either ends with or contains a specified string respectively.

[58]

Chapter 3

A CSS pseudo-class is just an additional keyword to selectors that tells a special

state of the element to be selected. For example, :hover will apply a style when the
user hovers over the element specified by the selector. Pseudo-classes, along with
pseudo-elements, apply a style to an element not only in relation to the content of the
document tree, but also in relation to external factors like the history

of the navigator, such as :visited, and the status of its content, such as : checked,
on some form elements.

The new pseudo-classes are as follows:

Type Details

:last-child It is used to match an element that is the last child
element of its parent element.

:first-child It is used to match an element that is the first child

element of its parent element.

:checked It is used to match elements such as radio buttons or
checkboxes which are checked.

:first-of-type It is used to match the first child element of the
specified element type.

:last-of-type It is used to match the last child element of the
specified element type.

:nth-last-of-type (N) Itis used to match the Nth child element from the last
of the specified element type.

:only-child It is used to match an element if it's the only child
element of its parent.

:only-of-type It is used to match an element that is the only child
element of its type.

:root It is used to match the element that is the root element
of the document.

:empty It is used to match elements that have no children.

:target It is used to match the current active element that is
the target of an identifier in the document's URL.

:enabled It is used to match user interface elements that are
enabled.

:nth-child (N) It is used to match every Nth child element of the
parent.

:nth-of-type (N) It is used to match every Nth child element of the
parent counting from the last of the parent .

:disabled It is used to match user interface elements that are
disabled.

[59]

Styling the Forms

Type Details

:not (8) It is used to match elements that aren't matched by the
specified selector.

:nth-last-child(N) Within a parent element's list of child elements, it is
used to match elements on the basis of their positions.

Backgrounds

CSS3 contains several new background attributes; and moreover, in CSS3, some
changes are also made in the previous properties of the background; which allow
greater control on the background element.

The new background properties added are as follows.

The background-clip property

The background-clip property is used to determine the allowable area for the
background image.

If there is no background image, then this property has only visual effects such as
when the border has transparent regions or partially opaque regions; otherwise,
the border covers up the difference.

Syntax

The syntax for the background-clip property are as follows:

background-clip: no-clip / border-box / padding-box / content-box;

Values

The values for the background-clip property is as follows:
* Dborder-box: With this, the background extends to the outside edge of the
border
* padding-box: With this, no background is drawn below the border

* content-box: With this, the background is painted within the content box;
only the area the content covers is painted

* no-clip: This is the default value, same as border-box

[60]

Chapter 3

The background-origin property
The background-origin property specifies the positioning of the background image
or color with respect to the background-position property.

This property has no effect if the background-attachment property for the
background image is fixed.

Syntax

The following is the syntax for the background-attachment property:

background-origin: border-box / padding-box / content-box;

Values

The values for the background-attachment property are as follows:

* border-box: With this, the background extends to the outside edge of the
border

* padding-box: By using this, no background is drawn below the border

* content-box: With this, the background is painted within the content box

The background-size property

The background-size property specifies the size of the background image.

If this property is not specified then the original size of the image will be displayed.

Syntax

The following is the syntax for the background-size property:

background-size: length / percentage / cover / contain;

Values

The values for the background-size property are as follows:
* length: This specifies the height and width of the background image. No
negative values are allowed.

* percentage: This specifies the height and width of the background image in
terms of the percent of the parent element.

[61]

Styling the Forms

* cover: This specifies the background image to be as large as possible so that
the background area is completely covered.

* contain: This specifies the image to the largest size such that its width and
height can fit inside the content area.

Apart from adding new properties, CSS3 has also enhanced some old background
properties, which are as follows.

The background-color property

If the underlying layer of the background image of the element cannot be used, we
can specify a fallback color in addition to specifying a background color.

We can implement this by adding a forward slash before the fallback color.

background-color: red / blue;

The background-repeat property

In CSS2 when an image is repeated at the end, the image often gets cut off. CSS3
introduced new properties with which we can fix this problem:

* space: By using this property between the image tiles, an equal amount of
space is applied until they fill the element

* round: By using this property until the tiles fit the element, the image is
scaled down

The background-attachment property

With the new possible value of 1ocal, we can now set the background to scroll when
the element's content is scrolled.

This comes into action with elements that can scroll. For example:

body{background-image:url ('example.gif') ;background-repeat:no-
repeat ;background-attachment: fixed; }

CSS3 allows web designers and developers to have multiple

* background images, using nothing but just a simple comma-
separated list. For example:

background-image: url (abc.png), url(xyz.png) ;

[62]

Chapter 3

Borders

The border property allows us to specify the style and color of an element's border,
and with the help of CSS3 we have stepped into the next level.

With CSS3, we can create rounded borders, add shadow, and use an image as a
border without using various design programs such as Photoshop.

The new border properties added are as follows.

The border-radius property

Creating rounded borders using CSS was never easy. There were numerous methods
available, but none of the approaches were straightforward. Moreover, it was
necessary to use vendor prefixes for both WebKit and Mozilla, in order to apply the
style correctly.

The border-radius property can be applied to customize buttons. We can also
apply border-radius to individual corners. And with the help of this property, we
can create rounded borders easily.

Syntax

The syntax for the border-radius property is given as follows:

border-radius: 1-4 length / % ;

Values

Following are the values of the border-radius property:

* length: This defines the size of the radius of the circle

* %: This defines the size of the radius of the circle using percentage values

The box-shadow property

The box-shadow property allows designers and developers to create multiple drop
shadows easily. These can be outside or inside the boxes, specifying values for color,
size, blur, and offset.

By simply declaring box-shadow once, we can use both outer and inset versions,
separated by a comma.

[63]

Styling the Forms

Syntax

The syntax for the box-shadow property is as follows:

box-shadow: h-shadow v-shadow blur spread color inset;

Values

The following shows the values of the box-shadow property:

* inset: This changes the outer (outset) shadow to the inner shadow
* <h-shadow>, <v-shadow>: This specifies the position of the shadow
* <blurs>: The larger this value, the bigger the blur

* <spread>: This specifies the size of the shadow

* <colors: This specifies the color of the shadow

The border-image property
The border-image property is a little tricky, but it allows us to create boxes with

custom borders. With this feature, you can define an image to be used as a border
instead of the normal border.

We can create decorative borders beyond simple rounded corners with images or
even with gradients.

This feature is actually split into a couple of properties:

* border-image

* border-corner-image

Syntax

The syntax for the border-image property are as follows:

border-image: <source><slice><width><outset><repeats>;

Values

The values of the border-image property is given as:

* source: This specifies the image to be used for the border.
* slice: This specifies the inward offsets of the border.

* width: This specifies the width of the border.

[64]

Chapter 3

* outset: This specifies how much the border image area extends beyond the
border box.

* repeat: This specifies whether the border should be stretched or not. If yes,
then whether it is rounded or stretched.

Text effects

We have seen many websites with various text effects, and they are rapidly getting
popular as the current and upcoming trend for good form design. With the help of
CSS3, the best thing about these effects is that they can be achieved with pure CSS,
that is, no more image replacements and image-heavy design. In this section, we will
learn some new text effects that CSS3 provides us.

The new text features are as follows.

The text-shadow property

The text-shadow property is used to apply shadow effects to the text content.
We can have one or more effects for a single text by using a simple comma.

These effects consist of a shadow color, x/y offset of the shadow effect, and a
blurring radius for the shadow effect. The effects can overlap each other, but for
clarity they should not overlap the text content.

Syntax

The syntax for the text - shadow property is given as follows:

text-shadow: <color><offset-x><offset-y><blur-radiuss;

The word-wrap property

The word-wrap property is used by the browser to break lines within the words to
prevent the text from exceeding the boundary, or else it will exceed the boundary.
It forces the text to wrap, even if it has to split it in the middle of a word.

Syntax

The syntax for the word-wrap property is given as:

word-wrap:break-word / normal;

[65]

Styling the Forms

Values

The values of the word-wrap property are as follows:

* word-break: This allows unbreakable words to be broken
* normal: This breaks words only at the allowed break points
Some new text properties which CSS3 provides are as follows:
* hanging-punctuation: This specifies whether a punctuation character can
be placed outside the line box or not

* punctuation-trim: This specifies whether a punctuation character should
be trimmed or not

* text-align-last: This describes how the last line of a block or a line right
before a forced line break is aligned

* text-emphasis: This applies emphasis marks to the element's text and the
foreground color to the emphasis marks

* text-justify: This specifies the justification method used when text-
alignis justify

* text-outline: This specifies the outline of the text

* text-overflow: This specifies what action needs to be taken when the text
overflows in the containing element

* text-wrap: This specifies the line-breaking rules for the text

* word-break: For non-CJK scripts, this specifies the line-breaking rules

Fonts

In CSS2, the fonts module is used to define size, line height, and weight of a text,
as well as other properties such as style and family.

In CSS we could use only predefined font families that were available on the
computer, but CSS3 gives us the facility to use user-defined fonts which can be used
to style the web forms.

The @font-face rule

Fonts play a major role in deciding how a page or a particular part of a page looks,
and that's where the web designers and corporates take benefit, such as in the case
of branding.

The efont - face property has taken the usage of fonts to the next level.

[66]

Chapter 3

This rule allows users to specify any real fonts to the text on the web forms or page.
To be more precise, this rule allows downloading a particular font from the server
and using it in the web form or page if the user hasn't got that particular font already
installed.

Syntax
The syntax for the efont -face property is as follows:
@font-face(

font-family: <family-names;
src: <urls>;
unicode-range: <uranges;
font-variant: <font-variants;
font-feature-settings: normal / <feature-tag-values;
font-stretch: <font-stretchs;
font-weight: <weights;
font-style: <style>;

Font descriptors

CSS3 provides new font descriptors that can be defined inside the efont-£face rule.
Various font descriptors that can be used are as follows.

The src font descriptor
The src font descriptor is used to define the URL of the font.

Value: URL.

The font-style font descriptor

The font-style font descriptor is used to define the style of the font that is to be
used. It is an optional field and the default is normal.

Values: normal, italic, and oblique.

The font-stretch font descriptor

The font-stretch font descriptor is used to define how much the font should be
stretched. It is an optional field and the default is normal.

Value: normal, condensed, ultra-condensed, extra-condensed, semi-condensed,
expanded, semi-expanded, extra-expanded, and ultra-expanded.

[67]

Styling the Forms

The font-family font descriptor
The font-family font descriptor is used to define the name or type of the font.

Value: name.

The unicode-range font descriptor

The unicode-range font descriptor is used to define the range of Unicode characters
that the font supports. It is an optional field and by default its value is U+0-10FFFF.

Value: Unicode-range.

The font-weight descriptor

The font-weight font descriptor is used to define how bold the font should be. It is
an optional field and by default it is normal.

Values: normal, bold, 100, 200, 300, 400, 500, 600, 700, 800, and 900.

Gradients

One of CSS3's amazing color feature is gradients. They allow a smooth transition
from one color to another.

They are declared using the background-image property as they have no
special property.

Gradients allow us to create transparency by translating the color hex to rgba mode.

In spite of many enhancements, vendor prefixes are used to make the form browser
compatible so the browser can interpret the styles.

Syntax

The syntax for gradients is as follows:

linear-gradient (<angles><to [left / right || top / bottom]><color
[percentage/length] ><color [percentage/lengthl]>)

Values

The values of gradients include the following:

* angle: This specifies the gradient's angle of direction
* color: This specifies the color value with an optional option of stop position

[68]

Chapter 3

Styling the forms

After a quick revision of the new CSS3 properties, it's time to customize the old and
boring forms.

In Chapter 1, Forms and Their Significance, we built a Health Survey Form. We
will reuse that form example to talk about the new CSS3 as well as the basic CSS
properties and how they work to enhance the creativity in the form.

For styling, we will just take the first part of the form which is Personal
Information. With some minor changes which need no explanation, the
following is the HTML code:

<form id="masteringhtml5 form">
<label for="heading" class="heading">Health Survey Form</label>
<fieldset class="fieldset border">
<legend class="legend">Personal Information</legends>
<div>
<label for="name">Name</label>

<input type="text" class="name txtinput" name="name"
placeholder="First" autofocuss>
<input type="text" class="name txtinput" name="name"
placeholder="Last">
</div>

<div class="div_outer dob">
<div class="div_dob">
<label for="dob"s>Date of Birth</label>

<input type="date" value="date of birth" class="txtinput
dateinput">
</div>
<div class="gender">
<label for="gender">Gender</label>

<input type="radio" name="gender"><label>Male</label>
<input type="radio" name="gender"><label>Female</label>
</div>
</div>

<div class="div_outer address" >

<label for="address">Address</label><brs>

<input type="text" class="txtinput textbox address img"
placeholder="Street Address">

<input type="text" class="txtinput textbox address_ img"
placeholder="Address Line 2">

<input type="text" class="txtinput address img"
placeholder="City">

[69]

Styling the Forms

<input type="text" class="txtinput address img"
placeholder="State/Province" >

<input type="text" class="txtinput address img"
placeholder="Pincode">

<select class="txtinput select address_ img" >

<option value="Country" class="select" >Select
Country</options>
<option value="India" class="select" >India</option>

<option value="Australia" class="select"
>Australia</option>
</select>
</div>

<div>
<label for="contact">Phone Number</labels>

<input type="tel" class="txtinput home tel"
placeholder="Home" >

<input type="tel" class="txtinput work tel"
placeholder="Work">
</div>

<div>
<label for="email">Email Address</label>

<input type="email" class="txtinput email"
placeholder="email@example.com">
</div>
</fieldset>

<div class="submit">
<input type="submit" class="submit btn" value="Submit">
</div>
</form>

Since our main focus is on styling, let us take a look at the CSS of the form. The
following code is maintained in a separate file with a . css extension (external CSS
file), which is linked to the main HTML page. Having a separate CSS file should be
followed as it improves code readability as well as the maintenance of styling is
made easier.

Also, new properties and font types are highlighted in bold:

/* General Form */
html {
margin: O0px;
padding: Opx;
background: #000000;

}

[70]

Chapter 3

@font-face{
font-family: 'Conv azoft-sans-bold-italic';
src: url('fonts/azoft-sans-bold-italic.eot!') ;

src: url('fonts/azoft-sans-bold-italic.woff') format ('woff'),
url ('fonts/azoft-sans-bold-italic.ttf') format ('truetype'),
url ('fonts/azoft-sans-bold-italic.svg') format('svg');

font-weight: normal;
font-style: normal;

}
body
font-size:12px;
height: 100%;
width: 38%;
padding: 20px;
margin: 10px auto;
font-family: Helvetica, Arial, sans-serif;
color: #000000;
background: rgba(212,228,239,1);
background: -moz-linear-gradient (top, rgba(212,228,239,1) 0%,
rgba(134,174,204,1) 100%);
background: -webkit-gradient (left top, left bottom, color-
stop (0%, rgba(212,228,239,1)), color-stop(100%,
rgba (134,174,204,1))) ;
background: -webkit-linear-gradient(top, rgba(212,228,239,1)
%, rgba(134,174,204,1) 100%);
background: -o-linear-gradient (top, rgba(212,228,239,1) 0%,
rgba(134,174,204,1) 100%);
background: -ms-linear-gradient(top, rgba(212,228,239,1) 0%,
rgba(134,174,204,1) 100%);
background: linear-gradient(to bottom, rgba(212,228,239,1) 0%,
rgba(134,174,204,1) 100%) ;
}

input [type="radio"] {
cursor:pointer;

#masteringhtml5 form .fieldset border{
border-color:#ffffff;
border-style: solid;

}

#masteringhtml5 form .txtinput{

[71]

Styling the Forms

font-family: Helvetica, Arial, sans-serif;
border-style: solid;

border-radius: 4px;

border-width: 1px;

border-color: #dedede;

font-size: 18px;

padding-left: 40px;

width: 40%;

color: #777;

cursor:pointer;

#masteringhtml5 form .name({
background: #fff url('images/user.png') no-repeat;

}

#masteringhtml5 form label/{
font-weight:bold;
font-size:17px;

#masteringhtml5 form .legend{
font-size: 18px;
font-family: 'Conv_azoft-sans-bold-italic',6Helvetica, Arial,
sans-serif;

#masteringhtml5 form .heading{
font-size: 24px;
font-family: 'Conv_azoft-sans-bold-italic',6Helvetica, Arial,
sans-serif;

#masteringhtml5 form .txtinput.textbox{
width:89%;

#masteringhtml5 form .address img{
background: #fff url('images/home.png') no-repeat;
background-position-y: -5px;

#masteringhtml5 form .txtinput.select{

[72]

Chapter 3

width:49%;
color:#777777;

#masteringhtml5 form .div outer dob{
width:100%;

#masteringhtml5 form .dateinput
width:79%;
background: #fff url('images/date.png') no-repeat;
background-position-x: 1px;
background-size: 29px 29pXx;

#masteringhtml5 form .home telf{
background: #fff url('images/tel.png') no-repeat;
background-position-x: 1px;
background-size: 29px 29pXx;

#masteringhtml5 form .work telf{
background: #fff url ('images/work.png') no-repeat;
background-size: 27px 25px;

#masteringhtml5 form .email{
background: #fff url('images/email.png') no-repeat;

}

#masteringhtml5 form .div_ dob{
width:50%;
float:left;

#masteringhtml5 form .gender(
width:50%;
float:left;

#masteringhtml5 form .gender span({
font-size:18px;

[73]

Styling the Forms

#masteringhtml5 form .div outer address(
clear:both;

.legend(
font-weight:bold;
font-size:14px;

#masteringhtml5 form .submit{
text-align:center;

#masteringhtml5 form .submit btn{

color:#ffffff;

cursor:pointer;

border-radius:5px;

width: 17%;

height: 100%;

font-size: 21px;

height:100%;

box-shadow: 5px 5px 10px 5px #888888;

background: rgb(149,149,149) ;

background: -moz-linear-gradient (top, rgba(149,149,149,1) %,
rgba(13,13,13,1) 46%, rgba(l,1,1,1) 50%, rgba(10,10,10,1)
53%, rgba(78,78,78,1) 76%, rgba(56,56,56,1) 87%,
rgba(27,27,27,1) 100%) ;

background: -webkit-gradient (linear, left top, left bottom,
color-stop(0%,rgba(149,149,149,1)), color-
stop (46%,rgba (13,13,13,1)), color-stop(50%,rgba(l,1,1,1)),
color-stop(53%,rgba(10,10,10,1)), color-
stop (76%,rgba (78,78,78,1)), color-stop(87%,
rgba (56,56,56,1)), color-stop(100%,rgba(27,27,27,1)));

background: -webkit-linear-gradient(top, rgba(149,149,149,1)
0%,rgba(13,13,13,1) 46%,rgba(l1,1,1,1) 50%,rgba(10,10,10,1)
53%,rgba(78,78,78,1) 76%,rgba(56,56,56,1) 87%,
rgba(27,27,27,1) 100%) ;

background: -o-linear-gradient(top, rgba(149,149,149,1)
0%,rgba(13,13,13,1) 46%,rgba(1,1,1,1) 50%,rgba(10,10,10,1)
53%,rgba(78,78,78,1) 76%,rgba(56,56,56,1) 87%,
rgba(27,27,27,1) 100%) ;

background: -ms-linear-gradient(top, rgba(149,149,149,1)
0%,rgba(13,13,13,1) 46%,rgba(l1,1,1,1) 50%,rgba(10,10,10,1)
53%,rgba(78,78,78,1) 76%,rgba(56,56,56,1) 87%,
rgba(27,27,27,1) 100%) ;

[74]

Chapter 3

background: linear-gradient(to bottom, rgba(149,149,149,1)
0%,rgba(13,13,13,1) 46%,rgba(l1,1,1,1) 50%,rgba(10,10,10,1)
53%,rgba(78,78,78,1) 76%,rgba(56,56,56,1) 87%,
rgba(27,27,27,1) 100%) ;

}
The result of the previous HTML and CSS code is as follows:

HeaLTH SURVEeY FORM
PERSONAL INFORMATION

Name
i B 2

Date of Birth Gender
A I\ 2 Male © Female

aa/yyvyy

Address

Phone Number

ail Address

If we compare the new CSS3 form with the first section of the form which we built in
Chapter 1, Forms and Their Significance, we will see the difference in the look and feel
of both the forms.

[75]

Styling the Forms

For better comparison, the first section of the form in Chapter 1, Forms and Their
Significance, is given as follows:

Health Survey Form
Personal Information
Name

Date of Birth Gender
mm/ dd / vyyvy = Male Female
Address
Select Country |Z|

Phone Number

Email Address

Now, we realize the power of CSS3, using which we have converted a simple and
boring form into something stylish and eye catching very easily.

Let us see the various selectors used in the CSS of the form and their significance:

* <body>: The CSS attributes applied to the <body> tag acts as a fallback or
default attribute as it acts as the parent tag containing several other tags
inside it. The fallback attributes for CSS are font-family, font-size, and
SO on.

An attribute such as background which utilizes the color (in terms of RBG), is set
with the help of 1inear-gradient. The linear-gradient is described with the help
of RBG color value, starting from the top with stop values defined as percentage till
the bottom. They are described for the different browser supports which contain start
values such as -webkit, -0, "and" -ms. It shows the blue background of the form.
Apart from this, various other CSS attributes such as font-size, height, and width
are also used.

[76]

Chapter 3

heading and legend: For our form heading (Health Survey Form) and
legend heading (Personal Information), we have implemented a new font
type, Conv_azoft-sans-bold-italic, which is defined in the font-family
attribute in the heading and legend class using the efont -face property.

We have imported the font type files .eot, .woff, .ttf, and .svg for
supporting different browsers with the help of the @font-face property.

Also, for the 1egend tag we have utilized the fieldset_border class for
changing the border color and style.

dateinput and div_dob: Both these classes are defined for the <input> type
date for the user to pick his/her date of birth from the drop-down calendar.
The div_dob class is defined for the arrangement of the elements on the
screen by utilizing the f1oat attribute one the left-hand side. Along with

it, the dateinput class is used for placing the date icon with the help of the
background, background-position, and background-size properties for
proper rendering.

txtinput: The txtinput class is used for styling the text inputs used in the
form, and apart from using the previous CSS attributes, such as font-family
and border-style, we have used a new attribute named border-radius to
give the text input a rounded border on all sides.

We have also added a property for the cursor type as a pointer that shows a
hand-click icon when we move the mouse pointer over the input field.

The classes name, address_img, home tel, work tel, email, dropdown,
and calendar have been used for setting the background image for the text
inputs fields with their respective icon images depending on the <input>
type. We have utilized various properties of the background, such as
background, background-position, and background-size for proper
rendering of an icon image.

The autofocus attribute is used on the first name text input for the automatic
focus of the cursor during the form load.

radiobutton: The <input> type radio is an old HTML input, which is
used here for the purpose of selecting the gender. We have also used the
float property for aligning the radio buttons on the right-hand side of the
date of birth.

We have also added a property for the cursor type as a pointer that shows a
hand-click icon when we move the mouse pointer over the input field.

[77]

Styling the Forms

submit: For submitting the form to the server, we have created a Submit
button. In the submit_btn class we have performed button customization
using the previous version properties such as color, width, and height, along
with CSS3 properties such as border-radius to round the button from all
sides, box-shadow, and background with a color attribute using
linear-gradients to provide the desired effect.

We have also added a property for the cursor type which is a pointer that
shows a hand-click icon when we move the mouse pointer over the input field.

Guidelines

In this section, we will see the CSS3 guidelines for effective styling of the forms.

Some of the best practices for CSS3 are as follows:

Avoid using inline styling for CSS. External CSS files must be used for styling.

Minified CSS files must be used wherever possible as this a practice for
removing unnecessary characters from the code to reduce the size.

Use combined files for CSS.

Avoid use of multiple declarations wherever possible.

Always think of progressive enhancement.

Vendor prefixes should be organized and well commented.

For background-related properties use fallback.

The readability of the text should not be affected while using typography.
Enable the fallback and test the form in every browser.

Try to use efficient CSS selectors.

Avoid the usage of CSS Expression wherever possible.

Specify image dimensions to improve the rendering speed of the web page.
Use CSS sprites for faster rendering of images.

Summary

In this chapter, we learned about the basics of CSS3 and the modules in which we can
categorize the CSS3 for forms, such as vendor prefixes, gradients, and backgrounds.

Then, with the help of a code example, we learned a practical implementation of
most of the CSS3 properties that can be used for improving the look and feel of the

forms.

Lastly, we learned the best practices for the effective styling of the forms.

[78]

Connection with Database

In the earlier chapters, we learned about forms, such as what forms are, how we can
validate them, and how we can improve the look and feel of them, but what is the
use of forms until they store information? In this chapter, we will learn how to store
the user's input data into a database using PHP and MySQL.

In this chapter, we will cover the following topics:

* Whatis PHP
* Whatis MySQL
* Spoofing and forging forms

* Linking of forms to the database

PHP

PHP, which is also used as a general-purpose programming language, is basically
a server-side scripting language, which is designed for web development. With a
PHP processor module, PHP code is interpreted by a web server resulting in the
generation of a web page.

Rather than calling an external file to process data, PHP commands can be embedded
directly into the HTML code. It can be used for standalone graphical applications
and can be deployed on most of the web servers for almost every operating system
and platform.

All variables in PHP are case-sensitive, but user-defined functions, classes,
and keywords such as if, else, while, echo, and many more are case-insensitive.

On the server, first a PHP script is executed and then the HITML result is sent back
to the browser.

Connection with Database

Through an HTML form, the ability of PHP to easily manipulate the information
submitted by the user is one of the reasons why it is popular.

To use PHP, we have to perform the following steps:

1. Geta web server that supports PHP and MySQL.

2. In this chapter, we will use WAMP (used for Windows operating systems)
software, which automatically installs the Apache server,
configures a MySQL database, and installs PHP-support applications for
easy maintenance and configuration.

3. Then, install PHP and MySQL.

Syntax

The default extension for a PHP file is . php and a PHP script starts with <?php
and ends with 2.

<?php
// PHP script

?>

Including some PHP scripting code, a PHP file normally contains HTML tags.
A semicolon is used to terminate PHP statements, and we do not need to use a
semicolon to terminate the last line of a PHP block.

Form handling

The $_GET and $_posT PHP superglobals (built-in variables that are always
available in all scopes) are used to collect the form data which is submitted by the
user on clicking on the Submit button.

The GET method

In the GET method, the information from a form is visible to everyone; for example,
all the variable names and the values are displayed in the URL. Moreover, using the
GET method has limits on the amount of information that can be sent, which varies
from browser to browser.

This method is useful when we need to bookmark the web page because the
variables are displayed in the URL.

[80]

Chapter 4

We cannot use the GET method for sending sensitive data, such as passwords or
credit card information.

The following code is a simple HTML page:

<html>

<body>

<form action="example.php" method="get">
Name: <input type="text" name="name'">

Age: <input type="text" name="age">

<input type="submit">

</form>

</body>

</html>

When a user fills the preceding form and clicks on the Submit button, the form data
is sent for processing to a PHP file named example.php. The form data is sent with
method="get".

The example. php file will look similar to the following code:

<html>
<body>
Hello! <?php echo $ GET["name"]; ?>!

You are <?php echo $ GET["age"]; ?> years old.
</body>
</html>

The POST method

The information from a form is not visible to everyone in the poST method;

for example, within the body of the HTTP request, all the variable names and the
values are embedded. Moreover, using the POST method has no limitation on the
amount

of information to send.

This method is not useful when we need to bookmark the web page because the
variables are not displayed in the URL.

Moreover, while uploading the files to the server, the PoST method also supports
advanced functionality such as support for multipart binary input.

We can use the PoST method for sending sensitive data, such as passwords or credit
card information.

[81]

Connection with Database

The following code is a simple HTML page:

<html>

<body>

<form action="example.php" method="post">
Name: <input type="text" name="name'">

Age: <input type="text" name="age">

<input type="submit">

</form>

</body>

</html>

When a user fills the preceding form and clicks on the submit button, the form data
is sent for processing to a PHP file named example.php. The form data is sent with
method="post".

The example.php file looks like this:

<html>
<body>
Hello! <?php echo $ POST["name"]; ?>!

You are <?php echo $ POST["age"]; ?> years old.
</body>
</html>

Both the GET and PoST methods populate the $_GET and $_POST arrays respectively.
As these are superglobals, regardless of scope, they are always accessible, and they
can be accessed from any class, function, or file without having to do anything
special. These arrays are described as follows:

* $_GET: This is an array of variable, via the URL parameters is passed to
the current script

* $_posT: This is an array of variable, via the HTTP POST method is passed
to the current script

POST is the most preferred way to send form data
L= because of security concerns.

The filter method

The filter method filters data by either validating or sanitizing the input fields.
It plays a very important role and is useful when the data source contains unknown
data, such as custom input or user supplied input.

[82]

Chapter 4

For example, data entered through an HTML form in cases, such as survey forms,
and new registrations.

There are two main types of filtering:

e Validation

e Sanitization

Filtering of input data is one of the major concerns when it comes to security
issues. External data includes input data from the user, cookies, web service data,
or database query results. As all web forms and applications depend on external
input so with filtering the input data we can be sure that our application gets valid
input from the user.

The following filter functions can be used to filter a variable:

* filter var_array():It gets multiple variables with the same or
different filters

* filter id():Itreturns the ID number of a specified filter
* filter var():ltfilters a single variable with a specified filter

* filter input ():It gets one input variable by the name and optionally
filters it

e filter has_var (): It checks whether a variable of a specified input type
exists or not

* filter input_array(): It gets several input variables and filters them
with the same or different filters

* filter list():Itreturns alist of all the supported filters

In the following example, we are validating an integer using the filter var ()
function:

<?php
$int = 'g819';
if(!filter var(sint, FILTER VALIDATE INT))
{

echo ("Entered integer is invalid");

}

else

{

echo ("Entered integer is valid");

}

?>

[83]

Connection with Database

In the preceding code, the FILTER VALIDATE_INT filter is used to filter the variable.
Since the integer is not valid, the output of the preceding code will be Integer is
invalid, but if we try with a variable that is an integer, such as 819, the output will
be Integer is valid.

Validating user input data

The filter method is used to validate the user input data. It returns the value
true on success and false on failure.

Strict format rules are followed for validating the IP address, URL, variables,
or e-mail type.

Now, in the following example, we will validate an input field of a form. Before we
start, we will first check the presence of the required input data. Then, using the
filter_var () function, we will validate the input data.

<?php
if (Ifilter has var($_GET["url"l))
{

echo ("Input type is not present");

}

else

{

if (!filter var($_GET["url"l, FILTER VALIDATE_URL))

{

echo "Entered URL is invalid";

}

else

{

echo "Entered URL is wvalid";
}
}

?>

In the preceding example, an input url is sent using the GET method. It first checks
if an input email variable of the GET type is present or not. When the input variable
is present, it validates the URL.

[84]

Chapter 4

Sanitizing user input data

The main purpose of sanitizing is to allow or not to allow the specified characters in
the string. It always returns a string value. It does not follow any data format rules.

In the following example, we will validate an input field of a form. Before we start,
we will first check the presence of the required input data. Then, using the
filter_var () function, we will sanitize the input data.

<?php
if (1filter has var(($_POST['string'l))

{

echo ("Input type is not present");

}

else

{

$string = filter var($_POST['string'l,
FILTER SANITI ZE_STRING) ;

}

?>

In the preceding example, an input string is sent using the POST method. It first
checks if an input string variable of the POST type exists. When the input variable
is present, it validates the string.

When the user inputs a bad input string such as Masteringd&HTML5&4Forms,
after sanitizing, the same string will look like MasteringHTML5Form.

The FILTER_CALLBACK filter

Using the FILTER CALLBACK filter, it is possible to call a user-defined function and
use it as a filter. We can get full control of data filtering using this.

In a similar manner as when specifying an option, the function which we want to use
to filter is specified.

We can use an existing PHP function or also create our own user-defined functions.

In the following example, we will create a user-defined function to replace all *
symbols with whitespaces:

<?php
function towhitespace ($string)

{

[85]

Connection with Database

return str replace("*", " ", 6 $string);

}

$string = "Converting*To*Whitespace*Characters";
echo filter var($string, FILTER CALLBACK,
array ("options"=>"towhitespace")) ;

?>

The output of the preceding code is:

Converting To Whitespace Characters

In the preceding example, at any place in a string and no matter how many times,
all the * symbols are replaced with the whitespace characters.

In the preceding code, we first created a function to replace all the * symbols with
whitespaces. Then, the filter var () function is called with the FILTER CALLBACK
filter and an array containing the function.

Filter multiple inputs

Nowadays, almost every web form consists of more than one input field such as
the registration page. When a form consists of more than one input field, calling
filter var() or filter_input () functions for every input field to validate or
sanitize not only increases the size of the code but also the complexity. The remedy
for this is to use the filter var array() or filter input array () functions.

In the following example, we will validate two input fields of a form. We will use the
filter var_array() function to filter these variables and use the POST method.
The input is in the form of age and e-mail address.

<?php
Sfilters = array
(
"age" => array
(
"filter"=>FILTER VALIDATE INT,
"options"=>array
(
"min range"=>1,
"max_range"=>99
)
),
"email"=> FILTER VALIDATE EMAIL

[86]

Chapter 4

Soutput = filter var array($ POST, $filters);

if (!S$output["age"])

{

echo ("Entered age must be between 1 and 99");

}

elseif (! Soutput ["email"])

{

echo ("Entered email is invalid") ;

}

else

{

echo ("Entered inputs are valid");

}

?>

In the preceding example, the input fields are sent using the posT method. Here,
an array is set, which contains the name of the input variables, such as age and
email. We have also used the filters on these input variables.

First, we call the filter var array() function with the POST method input
variables and the array we had set. Then, we validated the age and email
variables in the $output variable for the invalid inputs.

The second parameter of the filter input_array() or filter var_array()
function can be a single filter ID or an array. All the values in the input array are
filtered by the specified filter when the parameter is a single filter ID.

The following rules must be followed if the parameter is an array:

* The array value must be a filter ID or an array specifying the flags, filters,
and options

* There must be an associative array that contains an input variable as an
array key, such as the email or age input variable

MySQL

A database is a structured and organized collection of data. Every frontend
application needs a compatible database which works as a backend for the
application. It is organized for efficient storage and retrieval based on the nature

of the data rather than the collection or retrieval methods. Adding a database to a
website provides the means for dynamic content, flexibility and manageability, and
all kinds of user interactivity, which without this could not be easily accomplished.

[87]

Connection with Database

To work with the corresponding data, database management system applications
interact with the user, other applications, and the database itself. This application
will work as a backend for managing all data. There are many well-known DBMSes,
which include Microsoft SQL Server, Oracle, Sybase, MySQL, PostgreSQL, SQLite,
Microsoft Access, dBASE, FoxPro, IBM's DB2, Libre Office Base, and FileMaker Pro.

MySQL for PHP

When working with PHP, MySQL is the most compatible database system. This
database
is an essential part of almost every open source PHP application.

MySQL is named after My, daughter of Michael Widenius, co-founder of MySQL. It is
developed, distributed, and supported by Oracle Corporation. It is a freely available
and easy-to-download open source database management system. It is very fast,
reliable, and supports standard Structured Query Language (SQL).

SQL is used to access and modify data or information from a storage area called a
database. It is most noted for its quick processing, proven reliability, and ease and
flexibility of use. Developed by IBM, it is an English-like language that processes
data in groups of records rather than one record at a time. The following are a few
of the functions of SQL:

* Storing data
* Modifying data
* Retrieving data
* Deleting data
* Creating tables and other database objects
The data in MySQL is stored in tables. A table is a collection of related data,

and all data is arranged in columns and rows. Databases are useful when storing
information categorically.

MySQL-PHP connectivity

While working with any database, the first question that arises is "How can we
access data from the database?" To access any database, we first have to connect
to that database.

[88]

Chapter 4

Open a connection to the MySQL server

To make a connection, we first have to open a connection to the MySQL server.
In PHP, this is done with the mysgli connect () function. This function returns
a resource which is a pointer to the database connection. It's also called a
database handle.

The syntax for the mysgli_connect () function is:
mysgli connect (server,username, password,dbname) ;
It supports the following values:

e server: Itis either an IP address or a hostname.
* password: It is the password to log in with and is optional.

* username: It is the MySQL username and is optional. Also, MySQL can
have multiple users.

* dbname: It is the default database to be used when performing queries and
is optional.

For example:

<?php
Susername = "your name";
$password = "your password";
Shostname = "localhost";

$dbname = "your db";

$dbconnect = mysqgli connect ($hostname, $username, S$password,
Sdbname)

//Connects to the database

Close a connection

PHP will automatically close the connection when the script ends. But if we want to
close the connection before it ends, we use the mysgli close () function.

For example:

<?php
mysgli close(sdbhandle) ;
//Closes the connection

?>

[89]

Connection with Database

Create or select a database

Once our connection to a database is successfully created, the next step is to create or
select any database that is going to be used with our application.

Create a database

For creating a database, we use the CREATE DATABASE statement to create a database
table in MySQL.

For example:

<?php
$createDB="CREATE DATABASE personal_info";
//Creates a database with name as "personal info"

mysgli query ($createDB)
//Executes the create database query

?>

Select a database
For selecting an already present database, we use the MYSQLI_SELECT_DB statement
to select a database in MySQL.

For example:

<?php
$dbconnect = mysgli connect ("host name", "username',
"password", "dbname")

//Connects to the database

$dbselected = mysqgli select db("personal info", $dbconnect)
//Selects the database to work with

?>

Create a table

Once we create or select a database, the next step is to create a table inside
the database.

CREATE TABLE is used to create a table in MySQL.

[90]

Chapter 4

For example:

<?php
ScreateTB="CREATE TABLE TbDummy (
Firstname VARCHAR (255) NOT NULL,
Lastname VARCHAR (255) NOT NULL) ;
//Creating a table in MySQL with name as "TbDummy"

mysgli query ($createTB)
//Executing the create table query
?>

Primary keys

To increase flexibility and reliability in a table, the primary key field must be present.

A table consists of many records and to uniquely identify each record, a primary
key is used. Each record must have one value that is unique, and that unique value
will act as the primary key. Also, a primary key value cannot be null, as to locate

a record, the database engine requires a value. A primary key is a combination of
columns, which uniquely identifies a record.

For example:

Let's look at the Employee table that contains a record for each employee working in
an organization:

Employee ID Name Designation Location
101 Gaurav Gupta Programmer Analyst Pune
102 Gaurav Gupta Programmer Analyst Pune

The table consists of two records with the same name, designation, and location. The
employee's unique Employee ID number will be a good choice for a primary

key in the Employee table. So, we set the column Employee ID as a primary key

for this table.

The following snippet is a sample code to create a table by defining a column as a
primary key:

<?php
ScreateDB="CREATE DATABASE DBEmployee";
//Creates a database with name as "DBEmployee"

[91]

Connection with Database

mysgli query (ScreateDB)
//Executes the create database query

ScreateTB="CREATE TABLE Employee (
Employee ID INT NOT NULL,
Name VARCHAR (255),
Designation VARCHAR (255),
Location VARCHAR (255),
PRIMARY KEY (Employee ID));

//Creating a table with name as "Employee" and defining
a column "Employee ID" as a primary key

mysgli query (ScreateTB)
//Executing the create table query

?>

Spoofing and forging forms

Nowadays, every website has an HTML form to complete for registration so

that users can have access to that particular website. Since Internet crime is steadily
increasing, how do we validate that the user who completed the form

did so through your website? It is therefore necessary to know that no one has
spoofed our form submission.

Before, we see how we can protect our forms from spoofing, let us see how we can
spoof a form. By following these two ways we can alter the form submission:
* Forging HTTP requests

* Spoofing submissions

Forging HTTP requests

We can type our own requests by using telnet to access port 80. So, botheration of
generating or modifying forms for every type of attack is overcome by this method
as it might just use raw HTTP for alteration of form data. Because of this, we can say
that this method has a higher degree of complexity than others.

Forging HTTP requests is a more advanced form of automating attacks.

In the following example, we are requesting to log in to the example forum:

POST /index.php?act=Login&CODE=01&CookieDate=1 HTTP/1.1
Host: forums.example.com
Connection: close

[92]

Chapter 4

Referrer: http://forums.example.com/

Cookie: session 1d=7819

Content-Type: application/x-www-form-urlencoded
Content-Length: 44

UserName=myname&PassWord=mypass&CookieDate=1

To use the preceding mentioned requests, you will need to change a few items,
which are:

* Change myname to be our username

* Change mypass to be our password

* Change session_id to the necessary value

* Change Content -Length to be the new length of the posT data

Spoofing submissions

Let us assume that the following HTML form is located at
http://sampledomain.com/form.php:

<form action="/example.php" method="post">
<select name="browser">
<option value="chrome">Chrome</option>
<option value="firefox">Firefox</options>
</select>
<input type="submit"s>

</form>

We assume that we will be able to refer to $ POST['browser'] and it will have
a value of either of the two options chrome or £irefox. Now, if the user selects
chrome,

the request will look something similar to the following;:

POST /example.php HTTP/1.1

Host: sampledomain.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 8

browser=chrome

A user can save the form from the browser to the local machine (desktop or laptop)

then open the saved HTML file and make the following changes to it:

* Modify the action tag so that it now has the full URL to the form
* Remove the select tag and replace it with a textarea tag in the form

[93]

Connection with Database

Now our form will look similar to the following code:

<form action=http://sampledomain.com/example.php method="post">
<textarea name="myvar'"s></textareas
<input type="submit">

</form>

The user can now submit any value of $_POST ['myvar'] with these simple changes
to the form. Moreover, there is no way to prevent the user who manipulated our
form from submitting unexpected form variables or anything that can be achieved
with an HTML form.

There are solutions available to prevent forms from spoofing. It is from a strict
protocol perspective; the only thing we know is that HTTP requests and responses
are going back and forth. There is no clear and concise way to determine that a form
submission has not been spoofed.

Using the following two ways, we can prevent forms from spoofing as they reduce
the possibility of unwanted values that are submitted by following a
general architecture for handling data and forms:

* Shared secrets

* Setting expectations

Shared secrets

Shared secrets are also referred to as one-time tokens or hashes. We create a secret
that is only known by the server and the user. In this, the implementations vary
widely but they share the characteristics of being transparent to the users and are
difficult to exploit.

One of the implementation methods is that in the user's session, we will store the
secret as shown in the following code:

$secret = md5 (unigid(rand(), true));
$_SESSION|['secret'] = $secret;

Now, it can be used as a hidden form variable in the form like:

<input type="hidden" name="secret" value="<?
echo $secret; ?>" />

Every time we display the form, we would regenerate this secret so that the user
always has a current and correct secret value. This helps in preventing CSRF
(Cross-Site Request Forgery).

[94]

Chapter 4

The page which will open can check this by comparing the secret sent by the form
with the secret that was stored in the corresponding session variable.

Taking this further, we can even enhance the security of this method by restricting
the timeout window rather than relying on the session timeout, which can be too
large for your needs.

Setting expectations

An application with a best architecture always assumes that:

* We are aware of what we are sending out: It means we should keep track
of the forms we have uploaded on the website and develop a policy for
accepting form submissions, such as time outs, multiple forms per user ID,
multiple submissions, and not accepting forms we don't expect. This can be
implemented using tokens.

* We are aware of what the return values will be: It is important, as the
<select> field contains certain values, we can get back something totally
different, such as PHP code, SQL, or others:

o

To accept the form as valid, we must know the fields we need to
have back

We must restrict exactly what values we would accept as input

We must always minimize taking data from forms or from an
external source and using it directly in our database queries or
other internal parts of the application

Linking a form to a server

The basic purpose of form is to accept user data or store data from the users, which
can be accessed in various ways, such as a survey, a new registration, while making
payments, and much more. So here, in this section, we will learn how to store the
user's input data into the database.

We will reuse our form which we styled in Chapter 3, Styling the Forms.

We will store the form data into a MySQL database using phpMyAdmin
(open sourcetool to handle the administration of MySQL over World Wide Web).

For operating systems such as Linux, we use a XAMPP server.

[95]

Connection with Database

The following is the server-side scripting code written in the same HTML page but
the HTML file extension . htm1 is changed to .php:

<?php
mysgli connect ("localhost", "root", "");

mysgli select db("DBpersonal info");
if (isset ($_REQUEST['submit']))
{
SerrorMessage = "";
SGender ="";
$Firstname=$ POST|['Firstname'];
$Lastname=$_ POST['Lastname'];
$Dob=$ POST['Dob'] ;
$Gender=$ POST['Gender'];
$Saddress=$ POST['Saddress'];
$City=$ POST['City'];
$State=$ POST|['State'];
$Pincode=$ POST['Pincode'];
$Country=$ POST['Country'];
$Home=$ POST['Home'];
SWork=$ POST['Work'];
$Email=$ POST['Email'l];
$Aaddress = $_POST['Aaddress'];

//Field validation

if (empty ($Firstname)) {
SerrorMessage .= "You forgot to enter a first
name!</lis>";

}

if (empty ($Lastname)) {
SerrorMessage .= "You forgot to enter a last
name!</lis>";

}

if (empty ($Dob)) {
SerrorMessage .= "You forgot to select a date of
birth!</1lis>";

}

if (empty ($Gender))
SerrorMessage .= "You forgot to select your
Gender!</1li>";

}

if (empty ($Saddress))
SerrorMessage .= "You forgot to enter street

[96]

Chapter 4

address!";
}
if (empty ($City)) {
SerrorMessage .= "You forgot to enter city!";
}
if (empty ($State)) {
SerrorMessage .= "You forgot to enter statel!";
}
if (empty ($Pincode)) {
SerrorMessage .= "You forgot to enter pincode!";

if (empty ($Country)) {
SerrorMessage .= "<lis>You forgot to select country!";
}
if (empty ($Home)) {
SerrorMessage .= "You forgot to enter home phone
number!</1i>";
}
if (empty ($Work)) {
SerrorMessage .= "You forgot to enter work phone
number!";
}
if (empty ($Email)) {
SerrorMessage .= "You forgot to enter email id!";

//Check if the number field is numeric

if (is numeric(trim($Pincode)) == false) {

SerrorMessage .= "Please enter numeric pincode
value!l</1li>";

}

if (is_numeric (trim(SHome)) == false) ({
SerrorMessage .= "Please enter numeric home phone
number!</1li>";
}
if (is_numeric (trim($Work)) == false) ({
SerrorMessage .= "Please enter numeric work
phone number!";

//Check if the length of field is upto required
if (strlen($Pincode) !=6)
SerrorMessage .= "Pincode should be 6 digits
only!</1li>";

[97]

Connection with Database

if (strlen($Work) !=10)
SerrorMessage .= "Work phone number should be 10 digits
only!</1li>";

}

//Check for valid email format

if (1filter var ($Email, FILTER VALIDATE EMAIL))
SerrorMessage .= "<lis>You did not enter a invalid
email!</1li>";

if ($errorMessage != "") {
echo "<p class='message's>" .$errorMessage. "</p>" ;
}
else(

//Inserting record in table using INSERT query
$insertTB="INSERT INTO “personal info~. personal”

(“Firstname~, ~“Lastname~, "Dob~, ~Gender~, ~Saddress”,
“Aaddress™, "City~, ~State”, “Pincode®, “Country”~, “Home,
“Work™, “Email”) VALUES ('SFirstname', '$Lastname', 'SDob',
'SGender', 'SSaddress', 'S$Aaddress', '$City', 'S$State',
'SPincode', 'S$SCountry', 'SHome', 'S$Work', 'S$SEmail')";

mysgli query($insertTB) ;

}

?>

Before executing the code, our prerequisite is that first we have to create and select
one database and then create a table to store the information. After that, we perform
some validations on the form inputs, and then finally, we implement the Insert
query so as to store the user's input data.

The following screenshot displays the error messages when the user does not enter
any data and submits the form:

[98]

Chapter 4

You forgot to enter a first name!

You forgot to enter a last name!

You forgot to select a date of birth!

You forgot to select your Gender!

You forgot to enter street address!

You forgot to enter city!

You forgot to enter state!

You forgot to enter pincode!

You forgot to enter home phone number!
You forgot to enter work phone number!
You forgot to enter email id!

Please enter numeric values!

Please enter numeric values!

Please enter numeric values!

Pincode should be & digits only!

Work phone number should be 10 digits only!
You did not enter a invalid email!

HeaLTH SURVeY FORM
PERSONAL INFORMATION

Name

L 4 L 4

The following is the HTML code. The code remains the same but we have added
the method= "POST" attribute in the <form> tag and the name attribute in the
<inputs> types:

<form id="masteringhtml5 form" method="POST">
<label for="heading" class="heading">Health Survey Form</label>
<fieldset class="fieldset border">
<legend class="legend">Personal Information</legends>
<divs>
<label for="name">Name</labels>

<input type="text" name="Firstname" class="name txtinput"
placeholder="First" autofocus>
<input type="text" name="Lastname" class="name txtinput"
placeholder="Last">
</div>

<div class="div_outer dob">
<div class="div_dob">
<label for="dob"s>Date of Birth</label>

<input type="date" name="Dob" value="date of birth" class="txtinput
dateinput">
</div>
<div class="gender"s>
<label for="gender">Gender</label>

<input type="radio" name="Gender" value="male"> Male

[99]

Connection with Database

<input type="radio" name="Gender" value="female"> Female</spans>
</div>
</div>
<div class="div_outer address">
<label for="address">Address</label><brs>
<input type="text" name="Saddress" class="txtinput tb address img"
placeholder="Street Address">
 B
<input type="text" name="Aaddress" class="txtinput tb address_ img"
placeholder="Address Line 2">

<input type="text" name="City" class="txtinput tbl address img"
placeholder="City">
<input type="text" name="State" class="txtinput tbl address_ img"
placeholder="State/Province" >

<input type="text" name="Pincode" class="txtinput tbl address_ img"
placeholder="Pincode" >
<select name="Country" class="txtinput select address img" >
<option value="Country" class="select" >Select Country</options>
<option value="India" class="select" >India</option>
<option value="Australia" class="select" >Australia</options>
</select>
</divs><brs>
<div>
<label for="contact"s>Phone Number</labels><brs>
<input type="tel" name ="Home" class="txtinput tbl home tel"
placeholder="Home" >
<input type="tel" name="Work" class="txtinput tbl work tel"
placeholder="Work">
</div>

<div>
<label for="email">Email Address</label>

<input type="email" name="Email" class="txtinput tbl email"
placeholder="email@example.com">
</div>
</fieldset>

<div class="submit">
<input type="submit" name="submit" class="submit btn" value="Submit">
</div>
</form>

By clicking on the Submit button, we can either redirect the user to a new page,
or populate a message on the screen, or simply write a message on the screen
giving confirmation that our form has been submitted successfully.

[100]

Chapter 4

The following screenshot displays the form after the user has entered the values

in the form:

HeaLTH SURVeY FORM
PERSONAL INFORMATION

Name

Date of Birth Gender
15-07-2010 %= v ©Male C Female
Address

Email Address

A v

The following snippet is the MySQL code:

//Creates database
CREATE DATABASE personal info

//Creates table

CREATE TABLE personal (
Firstname VARCHAR (255) NOT NULL,
Lastname VARCHAR (255) NOT NULL,
Dob VARCHAR (255) NOT NULL,
Gender VARCHAR (255) NOT NULL,
Saddress VARCHAR (255) NOT NULL,
Aaddress VARCHAR (255) NOT NULL,
City VARCHAR (255) NOT NULL,
State VARCHAR (255) NOT NULL,
Pincode INT(11) NOT NULL,
Country VARCHAR (255) NOT NULL,

[101]

Connection with Database

Home VARCHAR (255) NOT NULL,
Work VARCHAR (255) NOT NULL,
Email VARCHAR (255) NOT NULL)

In the preceding code, first we created a database and then we created a table to store
the user's input data.

The following screenshot displays the values stored into the database after clicking
on the Submit button:

Show : Startrow: 0 Number of rows: |30 Headers every | 100 rows

+ Options
+—T— ¥ Firstname Lastname Dob Gender Saddress Aaddress City State Pincode Country Home Work

& Edit 3 Copy @ Delete Gaurav Gupta 2010-07-15| male Street 4A | 582 street 20| Pune | Maharastra| 566984 India 0000000000 | 0000000000

t Check All / Uncheck All With selected: ;7 Change @ Delete = Export

Summary

In this chapter, we learned how to store data into a database. We also learned about
the basics of PHP and MySQL used for storing the data that the users input. We also
saw some ways of how we can spoof a form and how we can prevent spoofing of
forms.

Then, with the help of some code, we learned a practical implementation of
storing form data by reusing the example we built in earlier chapters.

[102]

Responsive Web Forms

In the previous chapters, we learned about forms: what forms are, how we can
validate them, how we can improve the look and feel of a form, and how to store

the information collected with the help of forms into a database. But, with the
enhancement of technology, different devices with different screen resolutions require
different layouts. So, in this chapter we will learn how to make our forms responsive.

In this chapter, we will cover the following topics:

* What is responsive design

* What are media queries

* What are fluid grids

* How to make our forms responsive

* Guidelines for making responsive forms more effective

Responsive design

The term responsive design was introduced in May, 2010, by Ethan Marcotte, a
writer and web designer, in an article called Responsive Web Design that was
published on

A List Apart.

Basically, responsive design means how the content is displayed on the various
screens, such as mobiles, tablets, or desktops. An approach by which a website or a
particular page dynamically adjusts itself according to particular screen resolution to
give the best user experience is responsive design. It ensures great user experience as
it works independently across various devices and resolutions.

Using fluid, proportion-based grids, flexible images, and CSS3 media queries, a
site designed with responsive web design automatically adapts the layout to the
particular device resolution.

Responsive Web Forms

Web design once used to be simple. Web designers would design for the most
popular desktop screen size, create a single layout that works for most of the devices,
which allowed us to easily divide our design into a various number of grids so that
we can have a well-laid, cohesive, and harmonic page.

But with the enhancements in technology and the introduction of various devices,
such as smart phones, tablets, or even mini laptops, the whole experience of web
layout and design was changed.

Change in Web has also changed the way people use the Internet. In earlier
approaches to web design, it was difficult to use the Internet in mobile devices as

the particular website, which was designed for desktops, had scrolling and had to
zoom in or out for reading the text and wasting time. For example, pages viewed in
a desktop might have links that are text-based and compact which are difficult to
click on. But with responsive design, we can tackle these problems with the available
features and capabilities of HTML5 and CSS3.

If that website or page were responsive, the text would be larger, all the content
would fit on the screen, and the navigation would be mobile-optimized.

The breakpoints in responsive web design are the browser widths that have a media
query declaration to change the layout of the website or web page once the declared
range is achieved.

Google's view about responsive design

Google recommends building smartphone-optimized sites and it supports the
following three configurations:

* The sites which are designed to be responsive serve all devices on the same
set of URLs, with each URL rendering the same HTML to all devices and just
utilizing CSS to change how the page is rendered on the device

* The sites which dynamically serve all devices with the same set of URLs, but
each URL serves different HTML (and CSS) depending on whether the user
agent is a desktop or a mobile device

* There are sites which have separate mobile and desktop URLs

Benefits of using responsive design

Some benefits of using responsive designed websites are as follows:

* Using a single URL for a particular content makes it easier for users to
interact with, share, and link the content.

[104]

Chapter 5

* Rather than developing and maintaining multiple websites for desktop and
mobile, we just need one website to develop and maintain that works on all
kinds of devices.

* Loading time is reduced as no redirection is needed to get the device-
optimized view. Moreover, user agent based redirection can degrade a
website's user experience and is more error-prone.

* Itis future friendly; this means it allows us to adapt to new technologies and
progressively enhance our website as time goes on.

Apart from changing the layout, there is a lot more to responsive design. We can
go beyond the viewing size of the device and can focus on the functionality or
capabilities of a device. In cases, where our website uses hover functionality but we
need to change it for touch screen devices that do not support hover functionality,
we can serve different images or crop images on changing the screen resolution.
Moreover, we can check whether we can trace the location of the device or whether
the device is working on the Internet, or WIFI, and many more.

How responsive design works

The layout of a web page depends on or we can say is controlled abstractly by the
following web languages:

* HTML
e (55

* JavaScript

HTML describes what the content is, CSS is responsible for how the content looks,
and with JavaScript we can do some really cool things, such as fallback mechanism.
The website is designed to work for various screen sizes and devices which adapts
and changes itself depending on the conditions using content first approach. This

is achieved by using media queries that allow us to have specific CSS, used for
custom fitting of layouts according to our need. We will look into media queries later
in the chapter.

[105]

Responsive Web Forms

Screen resolutions

Different devices have different screen resolutions in landscape and in portrait mode.
Here are some devices and device-supported screen resolutions in landscape as well
as in portrait view:

Devices Portrait View Landscape View
iPhone 3G/3GS 320 x 480 480 x 320
Samsung Galaxy S Duos 480 x 800 800 x 480

iPhone 4 640 x 960 960 x 640

iPad 768 x 1024 1024 x 768
Devices Resolutions

Most Netbooks 1024 x 600

MacBook Air 08 1280 x 800

Some Laptops 1366 x 768

MacBook Pro 15" 1440 x 900

Apart from these resolutions, today's latest devices, such as Samsung Galaxy S4 or
iPhone 5, have very high resolutions in mobile device segment.

Viewport
Metadata is data (information) about data. The <metas> tag provides metadata

about the HTML document. Metadata will not be displayed on the page, but will be
machine parseable.

Meta elements are typically used to specify page description, keywords, author of
the document last modified, and other metadata.

The metadata can be used by browsers (how to display content or reload page),
search engines (keywords), or other web services.

For responsive design, to set the viewport width and initial scale on mobile devices,
the following <meta> tag is generally used. In spite of responsive design, we can use
this tag for non-responsive design too before we finalize our fit or restart approach.
In fact, if we are building a responsive website or any mobile website, we still want
this following tag:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

[106]

Chapter 5

Media queries

Media queries are CSS3 modules which allow content to adapt to various screen
resolutions, such as smartphones, tablets, and high definition screens.

To deliver different styles to different devices, media queries are an excellent way

to achieve this, providing the best experience for each type of user. As a part of the
CSS3 specification, media queries expand the role of the media attribute that controls
how the styles are applied.

A media query comprises of one or more expressions and type of media involving
features that result in true or false. Moreover, relevant style sheet or style rules are
applied, following the regular cascading rules when a media query is true.

The following snippet is a very simple example which applies when the device width
is greater than 500 px:

@media screen and (min-width: 500px)

{

/* some css here */

}

Media types

The device on which the linked document (external CSS) will be applied is specified
by the media attribute's value. Using the media attribute inside a <1ink> element,

a media type can be declared in the head of an HTML document. Within XML
processing instructions, media types can be declared and the @import at-rule and
the @media at-rule can be used.

Other media types defined by CSS2 are:

* projection: This is used for projected presentations such as slides
* embossed: This is used for braille printers

* all: This is used for all media type devices

* aural: This is used for sound and speech synthesizers

* tv: This is used for television type devices

* screen: This is used for computer screens

* Dbraille: This is used for braille tactile feedback devices

* handheld: This is used for handheld or small devices

[107]

Responsive Web Forms

* print: This is used for printers
* tty: This is used for media using a fixed-pitch character grid, such as
teletypes and terminals

An important feature of style sheets is that they specify how a document is to
be presented on different media, such as on paper, on the screen with a speech
synthesizer, or on a braille device.

We can apply different styles to a page view depending on which medium it is being
used. With the help of a media attribute, internal and external style sheets can be
associated with a media type.

Internal media query
These are the queries written within the HTML page inside the <style> tag.

Pros of internal media query are as follows:

* There is no need of extra HTTP requests

* This remains visible and not forgotten when updating the old one
Cons of internal media query are as follows:

¢ There is an increase in the file size in case user needs to download

* To make it work with older versions of the Internet Explorer browser, we
have to use JavaScript

Syntax

The syntax for the internal media query is as follows:

body{
background: blue;

}

@emedia screen and (max-width: 480px) {
body{
background: black;
}
}

Initially, it sets the background color to blue. But up to a maximum width of 480
pixels, it sets the background color to black that is overriding of CSS style.

[108]

Chapter 5

External media query

These are the queries written and maintained in the separated file or in the external
Css file.

Pros of external media query are as follows:

* This is easy to keep and maintain CSS when extensively used

* Using conditional comments, we can use external media query with old
versions of Internet Explorer

* For non-supporting browsers, the file size is smaller
Cons of external media query are as follows:

* Anextra HTTP request is needed to apply it

* This can be easily forgotten in case of updating the old one

Extend the existing media part of the link element or the @import rule:

<link href="example.css" rel="stylesheet" media="only screen and (max-
width:480px) ">
@import url (example.css) only screen and (max-width:480px) ;

Media features

Media features resemble CSS properties syntactically as they have names and
accept certain values, or we can say that they are the conditions with which we can
customize our responsive design.

Some media features are listed in the following table:

Feature Accepts Value Description
min/max
prefix
device-width yes length Irrespective of the browser window's

width, this determines the width of the
device's entire screen.

device- yes length This determines the height of the device's
height screen.
orientation no portrait or This determines the orientation of the

landscape device. The two orientation modes are
landscape and portrait.

[109]

Responsive Web Forms

Feature Accepts Value Description
min/max
prefix
width yes length This determines the width of the
displayable area.

It remains constant in most of the
mobile browsers because of the inability
of resizing the browser size, but with
desktop computers, the width changes
when the user resizes the browser.

height yes length This determines the height of the display
area.
grid no lor0 This detects whether the output device

is bitmap or grid. Grid-based devices
return a value of 1 and all other device
return a value of 0.

device- yes ratio This determines the ratio of value of the
aspect-ratio device-width media to the device-
height media.

resolution yes resolution This determines the density of the pixels
or resolution of the output device.

color yes integer This determines the device's number
of bits per color component. The value
is zero when the device is not a color

device.

color-index yes integer In the color lookup table of the output
device, this determines the number of
entries.

monochrome yes integer This determines the number of bits per

pixel in a monochrome frame buffer. This
value is 0 for non-monochrome devices.

aspect-ratio yes ratio This determines the ratio of value of the
width media to the height media.

scan no progressive Progressive or interlaced, this determines
or interlace the scanning process of TV.

Different screen resolutions

In this particular section, we will focus on the syntax for setting a minimum or
maximum width of general and device-specific screen resolutions. We will also
discuss the orientation of the device.

We cannot set the browser's screen resolution with CSS.

[110]

Chapter 5

Small screen devices

We can use the following code for small screen devices with a maximum device
width of 480 px:

@media screen and (max-device-width: 480px)
{

/* some CSS here */

}

Any CSS written inside the media query will be applied to devices with a width of
480 px or less. The purpose of using max-device-width instead of device-width is
that device-width refers to the width of the device but does not refer to the width
of the display area. In case of browsers where we can change the resolution can be
changed if the user resizes it, so we used max-device-width.

Until and unless, the screen resolution or browser size (in cases where we can change
the browser size) is 480 px or less, the media query does not take effect, which
basically leaves us for mobile devices.

High resolution displays of Apple mobile devices

Apple introduced devices, such as the iPhone 5 and iPad 3. In their earlier devices,
such as the iPhone 4 and 4S, they had introduced an idea of retina display. In
retina display, the screen resolution of the device gets doubled. Apple supports a
proprietary property called -webkit-device-pixel-ratio that returns the pixel
density of the device. So, this device returns a value of 2.

For high resolution devices
We can use the following code for general Apple devices with a high resolution:

@media screen and (-webkit-min-device-pixel-ratio: 1.5)

{

/* some css here */

}

For small screen high resolution devices

We can use the following code for small screen with high resolution devices, such as
the iPhone 4:

@media screen and (-webkit-min-device-pixel-ratio: 2)
and (max-device-width: 480px)

{

/* some css here */

}

[111]

Responsive Web Forms

For large screen high resolution devices

We can use the following code for large screen with high resolution devices, such as
the iPad 3:

@media screen and (-webkit-min-device-pixel-ratio: 2)
and (min-device-width: 768px)

/* some css here */

}

Because of high resolution, images are the most popular choice which can be
optimized for retina displays as depending on the device; we can serve two different
versions of an image. For retina displays, we double the size and resolution of the
original image but when we use this image, we apply a constraint to its dimensions
to be the same as the original one and allow retina devices to show two pixels for
every pixel shown as a result we get a super clear image.

The following code is an example for a background image:

normal background for the browsers:

div#featuredbox
width: 80%;
height: 350px;
background: url (normal background.jpg) center no-repeat;

}

retina devices with larger screens:

@media screen and (-webkit-min-device-pixel-ratio: 2)
and (min-device-width: 768px) {
div#featuredbox
-webkit-background-size: 50% auto;
background: url (highresolution background.jpg)
center no-repeat;

}
}

In the preceding example, -webkit-background-size: 50% auto; shrinks the
image by 50 percent of its actual dimensions, which matches that of the original
Hnage.background: url (highresolution background.jpg) center no-
repeat; is the high resolution image which doubles the size or resolution of the
original image.

[112]

Chapter 5

Devices in landscape and portrait modes

Apart from dealing with screen sizes, tackling the orientation of a device before
media queries was hectic, but the introduction of media queries has eased the life of
developers:

@media screen and (orientation: portrait)

{

/* some CSS here */

}

The preceding code will target all devices whose screen height is longer than its
width. Going further in situations where the user might be using a small screen
device where orientation matters.

Small screen devices in portrait mode only

We can use the following code for screens with a maximum width of 480 px
resolution for portrait mode:

@media screen and (max-device-width: 480px)
and (orientation: portrait)

{

/* some CSS here */

}

Small screen devices in landscape mode only

We can use the following code for screens with a maximum width of 640 px
resolution for landscape mode:

@media screen and (max-device-width: 640px)
and (orientation: landscape)

{

/* some CSS here */

}

Of the technical pillars of responsive web design, media queries are the best
established and supported. Additionally, they offer a solid return on investment
from a design perspective and can be applied to existing applications to great effect.

Fluid grids

A fluid is a substance that continually changes its form and shape accordingly when
applied under a shear stress.

[113]

Responsive Web Forms

In terms of web design, fluid refers to our design that we adapt and shear stress
refers to the screen resolution according to which the fluid components adjust.
Components in fluid designs adapt the environment or the screen resolution and
flow accordingly.

For responsive design, we can say that this is a combination of a number of elements
in which one is fluid grids and another is the use of media queries to load CSS,
depending on the size of the screen along with its types; so we can say that fluid
grids are not exactly responsive designs in themselves.

To keep the layout clean and to easily divide the grid into a specific number of
columns, the maximum layout size is defined in the fluid grids. Instead of pixel-
based dimensions, each element inside the grid is designed with proportional widths
and heights so that they adapt according to the parent container. Elements will adjust
their width and height according to the container in which they reside whenever the
screen size is changed.

As fluid grids flow naturally along with the change in dimensions, we have to
perform limited adjustments for different screen sizes and device types. Whereas

in case of adaptive grids, we have to define definite pixel-based dimensions and
have to manually adjust the height and width of the element in device viewports. In
fluid grids, we can adjust max-width, which has great importance, since nowadays
mobile devices are more powerful, so a person may spend most of the time
performing various tasks using the mobile device itself.

Fluid grid generators

Fluid grids are not easy, and creating them from scratch requires effort and time and
is a tedious task. Since most of the grid frameworks come with advanced built-in
features and have been tested across various major browsers, it is wise to choose an
existing CSS grid framework or a grid generator as the base for our layout creation
and designs. Some CSS grid systems and generators that we can use are:

* Fluid grid system

* Tiny fluid grid

* Fluid grids by calculator

* Fluid grids by bootstrap
Creating a grid with fluid columns is easy when we have a CSS framework, but all
designs are not going to be straightforward. We might need to create columns and

rows inside other columns and rows. Nested columns are columns contained within
a parent column.

[114]

Chapter 5

960 grid system

Starting with desktop as the primary focus, 960 grid system, which was designed by
Nathan Smith, is quite good if you're looking for a desktop solution. Smith has more
recently put in the effort to move the framework so that it adapts to mobile devices
also.

This system provides a tool that includes CSS and JavaScript files for handling

rapid prototyping and publishing, as well as templates for many popular design
environments, such as Omnigraffle, Fireworks, Balsamiq, and Photoshop, in order to
provide a single solution for both desktop and mobile devices.

960 grid system's attention to detail has inspired elastic and fluid variations, themes,
and a system for adapting to our own CSS preferences. So, we can say that with this,
we can set our preferred column number, column width, and gutterwidth —all while
enjoying the benefit of the 960 grid system community.

Pros of 960 grid system are as follows:
e The creators also released other 960-based solutions, which eased its
integration
* It features a custom CSS generator for customizing CSS accordingly
* 960 grid system has a lot of column configurations because it has a lot of
divisors —28 and higher

Cons of 960 grid system are as follows:

* It contains extra markup compared to another solution
* It has extra CSS file size compared to another solution

e [t contains non-semantic class names

Bootstrap

Bootstrap is an HTML, CSS, and JavaScript framework that you can use as

the base for creating websites or web applications. If you are involved in web
development today, you must have heard of Twitter and GitHub, so when you hear
of a framework that started life at Twitter and is the most popular repository on
GitHub — beating even jQuery and Node.js —you'll gain some idea of the viral spread
that has engulfed Bootstrap. In other words, it's a sleek, intuitive, and powerful
frontend framework for faster and easier web development.

In short, it represents the drive behind responsive web design to enable developers
to quickly release applications that hold the user's needs at the forefront.

[115]

Responsive Web Forms

As its responsive features are strong enough to stand alone, Bootstrap and its
component library is one of the best solutions around. We can exploit the fluid
nesting and offsetting that helps to set the framework apart from its peers. And while
we will avoid taking advantage of the component styling for which many developers
adopt Bootstrap, the ease with which the grid comes to life will make you keen to
explore the framework's other features.

Pros of Bootstrap are as follows:

* Itis fully customizable to include the only features we need to use
* It has been rigorously tested by developers
* Bootstrap is popular which means that developers are familiar with it

* It can help to do awesome stuff on the Web in a small amount of time
Cons of Bootstrap are as follows:

* It contains extra markup compared to another solution
* It has extra CSS file size compared to another solution

¢ [t contains non-semantic class names are used in it

But using responsive CSS framework does not make our design responsive and
moreover responsive design is not that simple. Unless we plan the design carefully,
users will always face problems while browsing the content on smaller devices when
we use fluid grids.

For perfect responsive design, we cannot depend on fluid grids, but we can adjust
the fluid grids when necessary according to the design It user with the best browsing
experience.

Adaptive images

Adaptive images load different types of images depending on the client-side adaption.
They detect the user's device screen size and automatically create caches and deliver
the appropriate type of HTML web page's images. Their basic purpose is to be used
with responsive designs and to be combined with fluid image techniques. This is
because our website is being viewed not only in smaller devices, but also devices that
are slower and have lower bandwidth. So, particularly in these devices, our desktop-
based images load slowly, which causes more user bandwidth, increases cost, and
rendering of user interface takes time. All these problems are fixed by adaptive images.

[116]

Chapter 5

Adaptive images follow an identical semantic and structural model for ,
<audios, or <video> elements. Moreover, the <source> element should have the
media attribute that supports CSS3 media queries which add the respective elements
rendered on the given device.

For example:

<imgsrc="header.png" width="480" height="240" alt="head"
media= "handheld and (max-device-width: 480px)">

<source src= "header.png" type="image/png" media= "screen
and (max-device-width: 800px) ">

<source src= "header.png" type="image/png" media="screen
and (max-device-width: 1600px) ">

Features

Some of the features of adaptive images are as follows:

* It requires no mark-up changes

* It can be easily configured or customized

* It works fine with any CMS or works without CMS too
* It works easily on our existing website

* It follows the mobile-first philosophy which means design for mobile devices
is covered first and then the larger screens.

* Itis up and running within minutes

How it works

The steps to use adaptive images are as follows:

1. Addthe .htaccess and adaptive-images.php files to the document -root
folder.

2. We can download these files from https://github.com/mattwilcox/
Adaptive-Images

3. Add JavaScript to the <head> of the web page. Following is the JavaScript
needed to be copied:

<scripts>

document .cookie="'resolution="'+Math.max (screen.width,
screen.height)+'; path=/';

</scripts>

[117]

Responsive Web Forms

4. For retina displays in Apple devices, we can use the following line:

<scripts>

document .cookie="'resolution="'+Math.max (screen.width,
screen.height) + ("devicePixelRatio" in window °?
", "+devicePixelRatio : ",1")+'; path=/"';

</script>

5. Add CSS media query values to $resolutions in the PHP file.

Customization

We can also change the default values by looking in the configuration section at the
top of the PHP file (adaptive-images.php). The following points can be customized
accordingly:

* We can set breakpoints to match CSS media queries

* We can change the name and location of the ai-cache folder

* We can change the quality of any generated JPG images saved

* We can set how long the browser should cache images for

* To help keep detail, we can sharpen rescaled images

Making our form responsive

In earlier chapters, from basics of the form we learned how to style, validate,
and link our form with the database. In this section, we will learn how to make
our form responsive.

We will re-use our form that we styled earlier and will see the new technique with
which we can make our forms responsive.

The HTML code remains the same except that the following links are added to the
<head> tag of the HTML page.

The following first line mentioned is the viewport <meta> tag:

<meta name="viewport" content="width=device-width, initial-
scale=1.0" />

The second line is an external media query (explained for example). The code is
maintained in a separate file but the media query is written in the <head> tag.

The following mentioned CSS file will get included and comes into action when the
device screen resolution width is lower than or exactly 520 px, but as soon as the
device resolution exceeds 520 px in width, the media query is no longer active.

[118]

Chapter 5

In the styling, we have set the widths of the input text element to be 85 percent. We
have also cleared the value of the form element radio button marked with the gender
class to be none. Adjustments have been made in the styling of the Submit button
with the font size set to 15 px and increasing the width to 23 percent. The class for
date of birth, div_dob, is also cleared to none so that it falls under the same line in a
sequential manner.

<link rel='stylesheet' media='screen and
(max-width: 520px)' href='Css/Internal MediaQuery.css' />

Here is the code written in CSS:

#masteringhtml5 form .txtinput.textbox{
width: 85%;

}

#masteringhtml5 form .txtinput({
width: 85%;

}

#masteringhtml5 form .gender(
float:none;

}

#masteringhtml5 form .gender span({
font-size: 14px;

}

#masteringhtml5 form .txtinput.select{
width: 97%;

}

#masteringhtml5 form .submit btn{
font-size:15px;
width:23%;
padding-top: 3px;
padding-bottom: 3px;

}

#masteringhtml5 form .div_dob{
width: 100%;
float :none;

}

The preceding CSS code is already explained in Chapter 3, Styling the Forms, but the
important point here is the internal media query that makes our form responsive for
small screen devices.

The third line is the external media query file linked to the main HTML page:

<link href="Css/External MediaQuery.css" rel="stylesheet" />

[119]

Responsive Web Forms

The following snippet is the CSS code that is maintained in a separate file:

@media screen and (min-width: 1169px) and (max-width: 1255px){
#masteringhtml5 form .txtinput{
width:45.7%;
}
#masteringhtml5 form .dateinput{
width: 90%;

@media screen and (min-width: 957px) and (max-width: 1170px){
#masteringhtml5 form .txtinput({
width:44.7%;
}
#masteringhtml5 form .dateinput{
width: 90%;
}
#masteringhtml5 form .txtinput.textbox{
width: 94%;

@media screen and (min-width: 811lpx) and (max-width: 958px){
#masteringhtml5 form .txtinput({
width:43.7%;
}
#masteringhtml5 form .txtinput.textbox{
width: 93.7%;
}
#masteringhtml5 form .dateinput{
width: 88%;

@media screen and (min-width: 707px) and (max-width: 812px){
#masteringhtml5 form .txtinput({
width:42.7%;
}
#masteringhtml5 form .txtinput.textbox{
width: 92.7%;

[120]

Chapter 5

#masteringhtml5 form .dateinput

width: 88%;

@media screen and (min-width: 624px) and (max-width: 708px) {

#masteringhtml5 form .txtinput{

width:41.7%;

}

#masteringhtml5 form .txtinput.textbox{

width: 92%;

}

#masteringhtml5 form .dateinput{

width: 86%;

@media screen and (min-width: 567px) and (max-width: 625px) {

#masteringhtml5 form .txtinput{

width:40.7%;

}

#masteringhtml5 form .txtinput.textbox{

width: 90%;

}

#masteringhtml5 form .dateinput{

width: 84%;

@media screen and (min-width: 521px) and (max-width: 568px) {

#masteringhtml5 form .txtinput{

width:39.7%;

}

#masteringhtml5 form .txtinput.select{

width: 48.7%;

}

#masteringhtml5 form .txtinput.textbox{

width: 90%;

}

#masteringhtml5 form .dateinput

width: 84%;

[121]

Responsive Web Forms

In the preceding code, the media query is applied to the media type screen having
the specific minimum width of the screen to the specific maximum width of the
screen. We have overwritten the width of the classes txtinput, select, and
dateinput that adjust according to the screen resolution. The elements reflow and
adjust according to the specific screen resolution.

The following screenshots are of our form that we have made responsive. This
responsive form responds for both web browser (changing the browser size) and
various device screen resolutions.

For resolution 480 x 800, our form looks as the following screenshot:

HEaLTH SURVEY FORM
PERSONAL INFORMATION

Name

2

Date of Birth
date of birth
Gender

Male Female
Address

w
o
D
1_1
o
o
=
=
«

[122]

Chapter 5

For resolution 768 x 1024, our form looks as the following screenshot:

HEALTH SURVEY FORM
PERSONAL INFORMATION

Name

) |) |

Date of Birth Gender
Male Female

Address

ne Number

Email Address

I

[123]

Responsive Web Forms

For resolution 1280 x 800, our form looks as the following screenshot:

HeaLTH SURVEY FORM
PERSONAL INFORMATION
Name

2 2

Date of Birth Gender
g Male Female

Address
(]
a
(]
a

Phone Number
=2

Email Address

For each particular resolution, we can notice that we are able to view the full form
without any scrolling from either side.

In the preceding scenarios, for different resolutions, some elements are resized and
have been shifted dynamically from their original position for better user experience.

This way, our form dynamically responds to different resolutions.

Limitations

Mobile web design's new approach is responsive design, but one of the biggest
challenges for web designers and their clients is finalizing the layout or wireframes
as to how the website will look.

Some of the other challenges we need to overcome to build successful websites are:

* Responsive design takes more development time than building other websites

* Scaling images reduces image quality because scaling is based on screen size
and not context

* On smaller devices, using navigation menus becomes a challenge

[124]

Chapter 5

Browser compatibility becomes an issue; because of older browsers, the
support of media queries becomes limited

Building complex websites becomes a tedious task with this technology
Development cost is higher

Response time of the website becomes slower because of the much larger size
of the web page

The loading time in mobile devices is increased while downloading the
desktop content that is not even displayed

Guidelines

In this section, we will look at the guidelines for responsive design so as to make our
forms more effective.

Some responsive design best practices are:

Try to keep the content on the web page as minimum as possible for better
responsive design.

Always prioritize the content as you have a limitation on smaller screens.
Try to use navigation as minimum as possible.
Web pages must be effectively programmed and structured.

Responsive design isn't for mobiles only. The scope of responsive design is
not limited to mobiles or tablets; in fact, we should remember that people
also use large 27-inch desktop screens.

Always keep focus on browser compatibility.

Keep the forms short; if long forms are used, add a Save button and navigate
the user to the next page.

Always maintain separate files for responsive design for easy maintenance
of code.

[125]

Responsive Web Forms

Summary

In this chapter, we learned about responsive design. Along with this, we saw the
advantages and the recommendations for responsive design.

We learned the various techniques with which we can make our forms responsive.

Then, with the help of code, we learned the practical implementation of responsive
web forms by re-using the example we built in earlier chapters.

Lastly, we saw the best practices for making responsive forms more effective.

[126]

Symbols

960 grid system

about 115

cons 115

pros 115
$_GET array 82
$_POST array 82
:ast-of-type class 59
:checked class 59
<datalist> element 14
:disabled class 59
:empty class 59
:enabled class 59
first-child class 59
first-of-type class 59
@font-face rule

about 66

syntax 67
<form>attributes

autocomplete 15

autofocus 15

form 17

formaction 17

formenctype 17

formmethod 18

formnovalidate 16

formtarget 18

list 16

max 16

min 16

multiple 18

novalidate 19

pattern 19

Index

placeholder 15
required 19
step 19
<form> elements
<datalist> 14
<keygen> 14
<output> 14
<form><input> types
color type 10
datetime-local type 10
datetime type 10
date type 10
email type 12
month type 13
number type 11
range type 11
search 12
tel type 12
time type 13
url type 13
week type 13
<keygen> element 14

:last-child class 59

:not(S) class 60
:nth-child(N) class 59
:nth-last-child(N) class 60
:nth-last-of-type(N) class 59
:nth-of-type(N) class 59
:only-child class 59
:only-of-type class 59

<output> element 14

:root class 59
:target class 59

A

adaptive images
about 116
customization 118
features 117
working 117
all, media types 107
angle value, gradients 68
aspect-ratio feature 110
aural, media types 107
autocomplete attribute 15
autofocus attribute 15, 77

B

background-attachment property 62
background-clip property

about 60

border-box value 60

content-box value 60

no-clip value 60

padding-box value 60

syntax 60

values 60
background-color property 62
background-origin property

about 61

border-box value 61

syntax 61
background-repeat property

about 62

content-box value 61

padding-box value 61

round value 62

space value 62
backgrounds

properties 60-62
background-size property

about 61,77

contain value 62

cover value 62

length value 61

percentage value 61

syntax 61

values 61

Bootstrap

about 115
cons 116
pros 116

border-box value 60
border-image property

outset value 65
repeat value 65
slice value 64
source value 64
syntax 64
width value 64

border property

about 63
border-image property 64
border-radius property 63

border-radius property

% values 63
length values 63
syntax 63

box-shadow property

<blur> value 64

<color> value 64

<h-shadow>, <v-shadow> value 64
<spread> value 64

insect value 64

syntax 64

braille, media types 107

C

checkValidity method 37

client-side form validation

about 32
advantages 32

color feature 110
color-index feature 110
color type 10

color value, gradients 68
constraint validations

declaring 36
HTMLS5 APIs 36

content-box value 60
CSRF (Cross-Site Request Forgery) 94
CSS2

media types 107

[128]

CSS3 user input data, validating 84

for web forms 57, 58 validation filtering 83
gradients 68 filter_var_array() function 83, 86, 87
guidelines 78 filter_var() function 83, 86
modules 57 fluid grid generators
CSS3 guidelines Fluid grids by bootstrap 114
best practices 78 Fluid grids by calculator 114
customError property Fluid grid system 114
about 43 Tiny fluid grid 114
validity.customError property 43, 44 fluid grids
960 grid system 115
D about 113
Bootstrap 115, 116
dateinput class 77 generators 114
datetime-local type 10 font descriptors
datetime type 10 about 67
date type 10 font-family font descriptor 68
device-aspect-ratio feature 110 font-stretch font descriptor 67
device-height feature 109 font-style font descriptor 67
device-width feature 109 font-weight descriptor 68
src font descriptor 67
E unicode-range font descriptor 68

font-family font descriptor 68
fonts module

@font-face rule 66

about 66

font descriptors 67
font-stretch font descriptor

email type 12
embossed, media types 107
error messages
about 54
changing, to custom message 54, 55
external media query

about 67
ngz }83 values 67
p font-style font descriptor
F about 67
values 67
filter_has_var() function 83 font-weight descriptor 68
filter_id() function 83 formaction attribute 17
filter_input_array() function 83 form attribute 17
filter_input() function 83 formenctype attribute 17
filter_list() function 83 formmethod attribute 18
filter method formnovalidate attribute 16
about 82 forms
FILTER_CALLBACK filter 85 <body> selectors 76
filter functions 83 about 7
filter_id() function 83 best practices 29
filter_var_array() function 83 best practices, using 30
multiple inputs, filtering 86, 87 linking, to server 95-102
sanitization filtering 83 making, responsive 119-124
user input data, sanitizing 85 styling 69-76

[129]

form spoofing
about 92
expectations, setting 95
HTTP requests, forging 92, 93
one-time tokens 94, 95
submission, spoofing 93, 94
formtarget attribute 18
form validation
about 31
benefits 31
client-side form validation 32
server-side form validation 33

G

GET method 80
gradients
about 68
angle value 68
color value 68
syntax 68
grid feature 110

H

handheld, media types 107
hanging-punctuation property 66
height feature 110
high resolution displays
for high resolution devices 111
for large screen high resolution devices 112
for small screen high resolution devices 111
small screen devices, in landscape mode
only 113
small screen devices, in portrait mode only
113
HTMLS5 constraint validation APIs
about 36
checkValidity method 37, 38
customError property 43
patternMismatch property 42
rangeOverflow property 44
rangeUnderflow property 45
setCustomValidity() method 38, 39
stepMismatch property 47
tooLong property 48
typeMismatch property 49
validationMessage attribute 41, 42

validity object 36
valid property 51
valueMissing property 50
willValidate attribute 40, 41
HTMLS5 form
advantages 9
building 20-29
HTMLS5 form validation
about 34
textbox validation, HTML5 <form> controls
used 35
textbox validation, JavaScript used 34

internal media query
cons 108
pros 108
syntax 108

L

list attribute 16

max attribute 16, 53
maxlength attribute 53
media features
aspect-ratio 110
color 110
color-index 110
device-aspect-ratio 110
device-height 109
device-width 109
grid 110
height 110
monochrome 110
orientation 109
resolution 110
scan 110
width 110
media queries
about 107
media features 109
media types 107
media types
all 107

[130]

aural 107 syntax 80
braille 107 using 80
embossed 107 placeholder attribute 15

external media query 109
handheld 107

internal media query 108
print 108

projection 107

POST method 81, 82

print, media types 108
projection, media types 107
pseudo-classes

:ast-of-type 59

screen 107 :checked 59

tty 108 :disabled 59

tv 107 :empty 59
min attribute 16, 53 :enabled 59

monochrome feature 110
month type 13
multiple attribute 18
MySQL
about 87
database, creating 90
database, selecting 90
for PHP 88
PHP connectivity 88
primary keys 91
table, creating 90

first-child 59
first-of-type 59
:last-child 59
mnot(S) 60
nth-child(N) 59
:nth-last-child(N) 60
:nth-last-of-type(N) 59
:nth-of-type(N) 59
:only-child 59
:only-of-type 59
root 59

mysqli_close() function 89
MySQL-PHP connectivity

:target 59
punctuation-trim property 66

closing 89
opening, to MySQL server 89 R
N radiobutton 77
rangeOverflow property
no-clip value 60 about 44

novalidate attribute 16,19
number type 11

validity.rangeOverflow property 44
range type 11
rangeUnderflow property
O about 45
validity.rangeUnderflow property 46
required attribute 19, 52
resolutio feature 110
P responsive design
about 103, 104
benefits 104, 105
best practices 125

orientation feature 109

pattern attribute 19, 53
patternMismatch property

about 42 P o
validity.patternMismatch attribute 42, 43 J00gle view

PHP limitations 124
about 79 screen resolutions 106

viewport 106

filter method 82 working 105

form handling 80, 81

[131]

S

search type 12
scan feature 110
screen, media types 107
screen resolution

small screen devices 111
selectors

about 58

[att$=val] 58

[att"=val] 58

[att:=val] 58
server

form, linking to 95-102
server-side form validation

about 33

advantages 33

disadvantages 33
setCustomValidity() method 38, 39
src font descriptor 67
step attribute 19, 53
stepMismatch property

about 47

validity.stepMismatch property 47, 48
Structured Query Language (SQL) 88
submit_btn class 78
Submit button 29

T

tel type 12
text-align-last property 66
Textarea 29
text effects
about 65
dateinput class 77
heading class 77
legend class 77
radiobutton 77
submit_btn class 78
text-shadow property 65
txtinput class 77
word-wrap property 65
text-emphasis property 66
text-justify property 66
text-outline property 66
text-overflow property 66
text-shadow property

about 65
syntax 65
text-wrap property 66
time type 13
tooLong property
about 48
validity.tooLong property 48, 49
tty, media types 108
tv, media types 107
txtinput class 77
typeMismatch property
about 49
validity.typeMismatch property 49

U

unicode-range font descriptor 68
url type 13

\'

validationMessage attribute 41, 42
validity.customError property 43
validity object 36
validity.patternMismatch attribute 42,43
validity.rangeOverflow property 45
validity.rangeUnderflow property 46
validity.tooLong property 48
validity.typeMismatch property 49
validity.valid property 51, 53
validity.valueMissing property 50
valid property

about 51

validity.valid property 51, 52, 53
valueMissing property

about 50

validity.valueMissing property 50

w

web forms
about 7, 8
advantages 8
web forms, for CSS3 57, 58
website building
limitations 124, 125
week type 13
width feature 110

[132]

willValidate attribute 40 text-emphasis property 66

word-break property 66 text-justify property 66

word-wrap property text-outline property 66
hanging-punctuation property 66 text-overflow property 66
normal value 66 text-wrap property 66
punctuation-trim property 66 word-break property 66
syntax 65 word-break value 66

text-align-last property 66

[133]

open source

community experience distilled

PUBLISHING

Thank you for buying
Mastering HTMLS5 Forms

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

.| Fast | Focused

Migration to HTMLS
and CSS3 How-to

Dushyant Kanungo

Instant Migration to HTMLS5 and

CSS3 How-to [Instant]
ISBN: 978-1-84969-574-9 Paperback: 68 pages

Discover how to upgrade your existing website to the
latest HTML5 and CSS3 standards

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Learn how to upgrade existing websites to
HTML5 & CSS3 without changing appearance

3. Improve browser and mobile devices support
for websites

4. Reduce the size of web pages by using the latest
HTMLS5 elements and CSS3 features for faster,
more-efficient websites

HTMLS5 Data and
Services Cookbook

HTML5 Data and Services

Cookbook
ISBN: 978-1-78355-928-2 Paperback: 480 pages

Over one hundred website building recipes utilizing
all the modern HTMLS5 features and techniques!

1. Learn to effectively display lists and tables,
draw charts, animate elements, and use modern
techniques, such as templates and data-binding
frameworks through simple and short examples

2. Examples utilizing modern HTMLS5 features,
such as rich text editing, file manipulation,
graphics drawing capabilities, real
time communication

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

HTMLS5 Enterprise
Application Development

HTMLS5 Enterprise Application

Development
ISBN: 978-1-84968-568-9 Paperback: 332 pages

A step-by-step pratical introduction to HTML5
through the building of a real-world application,
including common development practices

1. Learn the most useful HTMLD5 features
by developing a real-world application

2. Detailed solutions to most common
problems presented in an enterprise
application development

3. Discover the most up-to-date development
tips, tendencies, and trending libraries
and tools

Getting Started with HTML5
WebSocket Programming

Getting Started with HTML5
WebSocket Programming
ISBN: 978-1-78216-696-2 Paperback: 110 pages

Develop and deploy your first secure and scalable
real-time web application

1. Start real-time communication in your web
applications

2. Create a feature-rich WebSocket chat
application

3. Learn the step-by-step configuration of the
server and clients

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Forms and their Significance
	Understanding web forms
	Benefits

	HTML versus HTML5 forms
	The form <input> types, elements,
and attributes
	The <form> <input> types
	The <form> elements
	The <form> attributes

	Building an HTML5 form
	Guidelines
	Summary

	Chapter 2: Validation of Forms
	Form validation
	Client-side form validation
	Server-side form validation

	HTML5 form validation
	Code 1 – validating a textbox using JavaScript
	Code 2 – validating a textbox using HTML5 <form> controls

	Constraint validations
	HTML5 constraint validation APIs
	The validity object
	The checkValidity method
	The setCustomValidity() method
	The willValidate attribute
	The validationMessage attribute
	The patternMismatch property
	The customError property
	The rangeOverflow property
	The rangeUnderflow property
	The stepMismatch property
	The tooLong property
	The typeMismatch property
	The valueMissing property
	The valid property

	Error messages
	Summary

	Chapter 3: Styling the Forms
	CSS3 for web forms
	Selectors and pseudo-selectors
	Backgrounds
	The background-clip property
	Syntax
	Values

	The background-origin property
	Syntax
	Values

	The background-size property
	Syntax
	Values

	The background-color property
	The background-repeat property
	The background-attachment property
	Borders
	The border-radius property
	Syntax
	Values

	The box-shadow property
	Syntax
	Values

	The border-image property
	Syntax
	Values

	Text effects
	The text-shadow property
	Syntax

	The word-wrap property
	Syntax
	Values

	Fonts
	The @font-face rule
	Syntax

	Font descriptors
	The src font descriptor
	The font-style font descriptor
	The font-stretch font descriptor
	The font-family font descriptor
	The unicode-range font descriptor
	The font-weight descriptor

	Gradients
	Syntax
	Values

	Styling the forms
	Guidelines
	Summary

	Chapter 4: Connection with Database
	PHP
	Syntax
	Form handling
	The GET method
	The POST method

	The filter method
	Validating user input data
	Sanitizing user input data
	The FILTER_CALLBACK filter
	Filter multiple inputs

	MySQL
	MySQL for PHP
	MySQL-PHP connectivity
	Open a connection to the MySQL server
	Close a connection

	Create or select a database
	Create a database
	Select a database

	Create a table
	Primary keys

	Spoofing and forging forms
	Forging HTTP requests
	Spoofing submission
	Shared secrets
	Setting expectations

	Linking form to a server
	Summary

	Chapter 5: Responsive Web Forms
	Responsive design
	Google's view about responsive design
	Benefits of using responsive design
	How responsive design works
	Screen resolutions
	Viewport

	Media queries
	Media types
	Internal media query
	External media query

	Media features
	Different screen resolutions
	Small screen devices
	High resolution displays of Apple mobile devices
	Devices in landscape and portrait modes

	Fluid grids
	Fluid grid generators
	960 grid system
	Bootstrap

	Adaptive images
	Features
	How it works
	Customization

	Making our form responsive
	Limitations
	Guidelines
	Summary

	Index

