
JUMP START CSS
BY LOUIS LAZARIS

Jump Start CSS
by Louis Lazaris

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Rachel Andrew

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9874674-4-7 (print)

ISBN 978-0-9874674-5-4 (ebook)

Printed and bound in the United States of America

ii

About Louis Lazaris

Louis Lazaris is a web designer and blogger who has been creating and coding websites for

more than a decade. You can find him on Twitter1 or you can read more on CSS on his

website, Impressive Webs2.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

1 https://twitter.com/ ImpressiveWebs
2 http://www.impressivewebs.com/

iii

https://twitter.com/ ImpressiveWebs
http://www.impressivewebs.com/
http://www.sitepoint.com/

Table of Contents

Preface . xi

Who Should Read This Book . xi

Conventions Used . xi

Code Samples . xi

Tips, Notes, and Warnings . xiii

Supplementary Materials . xiii

Want to take your learning further? . xiii

Acknowledgments . xiv

Chapter 1 An Introduction to CSS 1

The Sample Project . 1

How are web pages built? . 2

What Is CSS? . 3

How do I include CSS in a web page? . 4

Using Inline Styles . 4

Using the <style> Element . 4

Using @import inside a <style> element . 5

The Best Way: Using the <link> Element . 5

Introducing CSS Selectors . 6

Universal Selector . 6

Element Type Selector . 6

ID Selector . 7

Class Selector . 8

Descendant Combinator . 9

Child Combinator . 10

General Sibling Combinator . 11

Adjacent Sibling Combinator . 11

Attribute Selector . 12

Pseudo-class . 13

Pseudo-element . 14

Using Multiple Selectors . 14

The Cascade and Specificity . 15

Always Use Standards Mode . 18

A Skeleton for Our Sample Website . 19

Summary . 23

Chapter 2 Layout Techniques . 25

The Box Model . 25

Block versus Inline . 27

Shorthand versus Longhand CSS . 29

Float-based Layouts . 32

Clearing Floats . 36

Positioning in CSS . 39

Absolute and Relative Positioning . 40

What about Responsive Web Design? . 43

Using box-sizing for Intuitive Sizing . 44

Adding More Layout Styles . 46

Floating the “Latest Recipes” Images . 47

Layout Styles for the Header . 50

Laying out the Promo Photo . 52

Laying out the Footer . 54

Laying out the “Most Popular” Recipes . 56

What’s the future of CSS Layouts? . 57

Flexbox . 58

Other New Layout Features . 58

Summary . 59

vi

Chapter 3 Backgrounds, Borders, and
More . 61

Backgrounds . 62

Borders . 65

Rounded Corners . 67

Values and Units . 69

Px Units . 69

Em Units . 70

Rem Units . 71

Percentages . 73

Integers . 74

Keywords . 74

Color Values . 75

Transparency . 76

The Opacity Property . 77

RGBA and HSLA Colors . 78

Opacity versus Color-based Transparency . 81

Other Values . 81

Adding Shadows to Elements . 82

Adding a Shadow to the Header . 82

Adding a Shadow below the Promo Image . 84

Adding Shadows to Small Images . 85

Adding Shadows to Buttons . 85

Adding the Divider Shadow . 88

What about text shadows? . 89

Summary . 90

Chapter 4 Links, Text, and Custom Fonts 91

Styling Links and Text . 92

vii

Changing Link Color . 94

Using Custom Web Fonts . 97

Using @font-face . 99

Including the Different Font Files . 100

Generating the Font Files . 102

@font-face Review . 108

Using Our New Fonts on RecipeFinder . 109

Cleaning Things Up . 112

Styling the Footer Section . 117

The line-height Property . 118

Adding Styles to Text in the Sidebar . 120

Summary . 122

Chapter 5 Getting Fancy . 123

Hover Effects . 124

Transitions . 127

Multiple Transitions on a Single Element . 129

Vendor Prefixes . 130

Transforms . 131

translate . 131

scale . 132

rotate . 132

skew . 132

Multiple Transforms on a Single Element . 133

Defining the Origin of a Transform . 133

Combining Transitions and Transforms . 134

Linear Gradients . 136

Positions for Color Stops . 138

Changing a Linear Gradient's Direction . 139

Adding Multiple Gradients on a Single Element 140

viii

Adding More Linear Gradients . 140

Radial Gradients . 143

More Options for Radial Gradients . 144

Keyframe Animations . 146

Graceful Degradation and Page Performance . 151

Other Cutting-edge Features . 151

Making RecipeFinder Responsive . 152

min- and max- Dimensions . 152

Converting Pixels to Percentages . 153

Fixing the Size of Images . 155

Adding Media Queries . 157

Adding the Viewport Meta Tag . 157

Summary . 160

Chapter 6 Debugging Your CSS 161

Understand How CSS “Errors” Work . 162

CSS Comments . 164

Validating CSS . 166

CSS Hacks . 168

Reduced Test Cases . 168

Get Help Online . 169

Use Online Coding Tools . 170

Test Your Layout Early in Multiple Browsers . 170

Use Developer Tools and a Good Text Editor . 171

Summary . 175

ix

Preface
Do you remember your first educational toy? One of the first that many children

get is the big, chunky puzzle—four to ten easy-to-grip pieces that fit into spaces on

a board.

This is one of the first experiences a child has with matching shapes to corresponding

spaces, helping them develop their shape recognition skills.

My wife thinks I was never given one of these puzzles. Every time I put the dishes

away, the plastic food storage containers stump me. I end up trying to put medium

containers into small containers and square containers into round ones. It's as if,

in her words, I never got the proper training as a child. I pretend she's just joking,

but maybe she's right—I really can't remember.

If you've purchased this little book, in terms of CSS knowledge, you're a lot like an

infant with its first shapes puzzle. I hope to teach you as much as possible, as quickly

as possible, about the fundamentals of CSS. And I hope later in life you'll look back

and be thankful that you took the time to "learn your shapes."

Who Should Read This Book
This book is suitable for beginner level web designers and developers. Some

knowledge of HTML is assumed.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all it, a ⋮ will

be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and that should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

xii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/books/jscss1/

The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/jscss1/code.php

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?53-css

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to take your learning further?
Thanks for buying this book. We appreciate your support. Do you want to continue

learning? You can now get unlimited access to courses and ALL SitePoint books at

xiii

http://www.sitepoint.com/books/jscss1/
http://www.sitepoint.com/books/jscss1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?53-css

Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

Acknowledgments
Thanks to Simon Mackie and Rachel Andrew for their excellent and practical

feedback to help make this book much better than it would have been had I tackled

this on my own.

xiv

http://www.learnable.com

Chapter1
An Introduction to CSS
Welcome to Jump Start CSS! This book is an introduction to CSS that'll teach you

the basics so you can start sprucing up your web pages using Cascading Style Sheets

(CSS), the industry standard technology for formatting web pages.

For the most part, this book will not serve as a theoretical source for the topics we'll

be discussing—there are plenty of other resources for that. In this brief volume,

we'll be focusing on practical information. I'll be showing you, in rapid fashion,

what the various aspects of CSS are, and how you can use them to build web pages.

The Sample Project
In order to give you hands-on experience with CSS, this book is centered around a

sample project that we'll be building together.

The sample project is a phony website called RecipeFinder. You can access a com-

pleted version of that website by visiting http://spbooks.github.io/JSCSS1/ in any

web browser.

We're going to take RecipeFinder from mock-up to development. The sample site's

look is based on a Photoshop design. Figure 1.1 shows you what it looks like.

http://spbooks.github.io/JSCSS1/

Figure 1.1. The website we'll be building in this book

Now, before we get into building our project, let's properly introduce the elements

of CSS and how it's used to style web pages.

How are web pages built?
Let's begin by briefly considering what exactly CSS is, and how it relates to a web

page. Web pages are built on content. Content is what you see when you visit a

page. It might include text, photos, graphics, and video. Content is stored using a

language called HTML. You've probably heard of it, but here's a very quick overview.

Jump Start CSS2

HTML consists of elements, many of which have what are called opening and

closing tags. These instruct web browsers how content (copy, photos, videos, and

so on) should be presented on screen. For example:

<header>
<h1>RecipeFinder</h1>
</header>

In this case, the content that's visible on the page is the text “RecipeFinder.”

Everything else you see there (specifically the information inside the angle brackets)

is HTML, and it's invisible on the page when viewed in a browser. What it does is

to help mark where sections of content begin and end. For this reason HTML is

what's called a markup language. In fact, it stands for Hyper Text Markup Language.

As mentioned, this is not a book on HTML, but if you want to learn more, two

possible resources are SitePoint's online HTML Concepts1 or the Mozilla Developer

Network's Introduction to HTML.2

What Is CSS?
CSS stands for Cascading Style Sheets and is a separate, but complementary, language

to HTML. CSS is what we use to apply styles to the content on our web page.

Let's use the HTML from the example above to give you a first taste of CSS. Don't

worry if this looks foreign to you right now—just become familiar with the look of

the code:

header {
 color: white;
 background-color: #333;
 font-size: 1.5em;
}

What you see above is referred to as a rule set. Notice the curly braces that wrap

three lines of code. Also, notice that each line inside the curly braces has a colon

and a semi-colon. Everything inside the curly braces is called a declaration block.

1 http://reference.sitepoint.com/html/html-concepts
2 https://developer.mozilla.org/en-US/docs/HTML/Introduction

3An Introduction to CSS

http://reference.sitepoint.com/html/html-concepts
https://developer.mozilla.org/en-US/docs/HTML/Introduction
https://developer.mozilla.org/en-US/docs/HTML/Introduction

The portion prior to the first curly brace is what defines which part of the web page

we are styling. This is referred to as the selector. We'll discuss more on selectors

later in this chapter. In this case, our CSS is targeting the <header> HTML element.

Each of the three lines in the declaration block is referred to as a—you guessed

it—declaration. Additionally, each declaration consists of a property (the part before

the colon) and a value (the part after the colon). Finally, each CSS declaration ends

with a semi-colon.

What I've shown you here is a very simple example. Other CSS code examples might

be more complex, but most are fairly easy to figure out through trial and error―so

don't be too intimidated if you come across something you don't recognize.

So what does that code do? Well, we'll get into the specifics on CSS properties later,

so hang tight while we continue discussing some further important basics that'll

serve as a foundation for the rest of this book.

How do I include CSS in a web page?
CSS can be inserted into a web page in four different ways. Let's take a look at each

one, saving the most highly recommended method for last.

Using Inline Styles
Any HTML element on a web page can be styled using inline styles. Here's an ex-

ample, using some of the HTML we've already introduced:

<h1 style="color: blue; background-color:
#333;">RecipeFinder</h1>

In this case, the CSS is contained inside of an HTML attribute called style. The

attribute tells the browser that what follows inside the quotation marks is CSS. In

this example, the styles will only apply to the element to which they're attached

(the <h1> element in this case). This is a very inefficient way of inserting CSS and

should be avoided in almost all circumstances.

Using the <style> Element
You can also include CSS in an HTML page using a <style> tag, which also requires

a closing </style> tag:

Jump Start CSS4

<style>
header {
 color: white;
 background-color: #333;
 font-size: 1.5em;
}
</style>

In this example, the styles will apply only to the element(s) targeted in the selector.

So, in this instance, the styles will apply to all <header> elements on the page where

this <style> element appears.

Using @import inside a <style> element
You also have the option to include CSS in a separate file. It's similar to a text file,

but has a file extension of “.css”. So a chunk of CSS inside a separate file can be

imported into your HTML like this:

<style>
@import url(css/style.css);
</style>

The @importmethod of including CSS has been known to cause some problems—for

example, multiple CSS files loaded via @import will often take longer to down-

load3—so, in general, you'd do well to avoid using it.

The Best Way: Using the <link> Element
The best way to include CSS in a web page is by means of the <link> element:

<link rel="stylesheet" href="css/style.css">

This element, which would be placed in the <head> element of your HTML docu-

ment, is much like @import in that it references an external file. This enables you

to keep all your CSS code separate from the HTML. In addition, this method doesn't

cause some of the issues that can arise when using @import. Also, because the styles

are not “inline,” scattered among the HTML, your CSS will be that much easier to

maintain.

3 http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

5An Introduction to CSS

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

Introducing CSS Selectors
As already alluded to, a CSS selector is the part of a CSS rule set that actually selects

the content you want to style. Let's look at all the different kinds of selectors avail-

able, with a brief description of each.

Universal Selector
The universal selector works like a wild card character, selecting all elements on

a page. You'll recall, from our brief overview earlier, that every HTML page is built

on content placed within HTML tags. Each set of tags represents an element on the

page. Look at the following CSS example, which uses the universal selector:

* {
 color: green;
 font-size: 20px;
 line-height: 25px;
}

The three lines of code inside the curly braces (color, font-size, and line-height)

will apply to all elements on the HTML page. As seen here, the universal selector

is declared using an asterisk. You can also use the universal selector in combination

with other selectors—something we'll discuss a little later in this chapter.

Element Type Selector
Also referred to simply as a “type selector,” this selector must match one or more

HTML elements of the same name. Thus, a selector of nav would match all HTML

<nav> elements, and a selector of ul would match all HTML unordered lists, or

 elements.

The following example uses an element type selector to match all elements:

ul {
 list-style: none;
 border: solid 1px #ccc;
}

To put this in some context, here's a section of HTML to which we'll apply the above

CSS:

Jump Start CSS6

 Fish
 Apples
 Cheese

<div class="example">
 <p>Example paragraph text.</p>
</div>

 Water
 Juice
 Maple Syrup

There are three main elements making up this part of the page: Two elements

and a <div>. The CSS will apply only to the two elements, and not to the

<div>. Were we to change the element type selector to use div instead of ul, then

the styles would apply to the <div> and not to the two elements.

Also note that the styles will not apply to the elements inside the or <div>

elements. That being said, some of the styles may be inherited by those inner ele-

ments—more on this later in the book.

ID Selector
An ID selector is declared using a hash, or pound symbol (#) preceding a string of

characters. The string of characters is defined by the developer. This selector matches

any HTML element that has an ID attribute with the same value as that of the selector,

but minus the hash symbol.

Here's an example:

#container {
 width: 960px;
 margin: 0 auto;
}

This CSS uses an ID selector to match an HTML element such as:

7An Introduction to CSS

<div id="container"></div>

In this case, the fact that this is a <div> element doesn't matter—it could be any

kind of HTML element. As long as it has an ID attribute with a value of container,

the styles will apply.

An ID element on a web page should be unique. That is, there should only be a

single element on any given page with an ID of container. This makes the ID selector

quite inflexible, because the styles used in the ID selector rule set can be used only

once per page.

If there happens to be more than one element on the page with the same ID, the

styles will still apply, but the HTML on such a page would be invalid from a tech-

nical standpoint, so you'll want to avoid doing this.

In addition to the problems of inflexibility, ID selectors also have the problem of

very high specificity—an issue we'll be talking about later in this chapter.

Class Selector
The class selector is the most useful of all CSS selectors. It's declared with a dot

preceding a string of one or more characters. Just as is the case with an ID selector,

this string of characters is defined by the developer. The class selector also matches

all elements on the page that have their class attribute set to the same value as the

class, minus the dot.

Take the following rule set:

.box {
 padding: 20px;
 margin: 10px;
 width: 240px;
}

These styles will apply to the following HTML element:

<div class="box"></div>

The same styles will also apply to any other HTML elements that have a class attrib-

ute with a value of box. Having multiple elements on a single page with the same

Jump Start CSS8

class attribute is beneficial, because it allows you to reuse styles, and avoid needless

repetition. In addition to this, class selectors have very low specificity—again, more

on this later.

Another reason the class selector is a valuable ally is that HTML allows multiple

classes to be added to a single element. This is done by separating the classes in

the HTML class attribute using spaces. Here's an example:

<div class=”box box-more box-extended”></div>

Descendant Combinator
The descendant selector or, more accurately, the descendant combinator lets you

combine two or more selectors so you can be more specific in your selection method.

For example:

#container .box {
 float: left;
 padding-bottom: 15px;
}

This declaration block will apply to all elements that have a class of box that are

inside an element with an ID of container. It's worth noting that the .box element

doesn't have to be an immediate child: there could be another element wrapping

.box, and the styles would still apply.

Look at the following HTML:

<div id="container">
 <div class="box"></div>

 <div class="box-2"></div>
</div>

<div class="box"></div>

If we apply the CSS in the previous example to this section of HTML, the only ele-

ment that'll be affected by those styles is the first <div> element that has a class of

box. The <div> element that has a class of box-2 won't be affected by the styles.

9An Introduction to CSS

Similarly, the second <div> element with a class of box won't be affected because

it's not inside an element with an ID of container.

You should be careful when using the descendant combinator in your CSS. This

kind of selector, while making your CSS a little easier to read, can unnecessarily

restrict your styles to a specific context—in this case, the styles are restricted to

boxes inside of #container—which can make your code inflexible.

Child Combinator
A selector that uses the child combinator is similar to a selector that uses a descend-

ant combinator, except it only targets immediate child elements:

#container > .box {
 float: left;
 padding-bottom: 15px;
}

This is the same code from the descendant combinator example, but instead of a

space character, we're using the greater-than symbol (or right angle bracket.)

In this example, the selector will match all elements that have a class of box and

that are immediate children of the #container element. That means, unlike the

descendant combinator, there can't be another element wrapping .box—it has to

be a direct child element.

Here's an HTML example:

<div id="container">
 <div class="box"></div>

 <div>
 <div class="box"></div>
 </div>
</div>

In this example, the CSS from the previous code example will apply only to the

first <div> element that has a class of box. As you can see, the second <div> element

with a class of box is inside another <div> element. As a result, the styles will not

apply to that element, even though it too has a class of box.

Jump Start CSS10

Again, selectors that use this combinator can be somewhat restricting, but they can

come in handy—for example, when styling nested lists.

General Sibling Combinator
A selector that uses a general sibling combinator matches elements based on sibling

relationships. That is to say, the selected elements are beside each other in the

HTML.

h2 ~ p {
 margin-bottom: 20px;
}

This type of selector is declared using the tilde character (~). In this example, all

paragraph elements (<p>) will be styled with the specified rules, but only if they

are siblings of <h2> elements. There could be other elements in between the <h2>

and <p>, and the styles would still apply.

Let's apply the CSS from above to the following HTML:

<h2>Title</h2>
<p>Paragraph example.</p>
<p>Paragraph example.</p>
<p>Paragraph example.</p>
<div class="box">
 <p>Paragraph example.</p>
</div>

In this example, the styles will apply only to the first three paragraph elements.

The last paragraph element is not a sibling of the <h2> element because it sits inside

the <div> element.

Adjacent Sibling Combinator
A selector that uses the adjacent sibling combinator uses the plus symbol (+), and

is almost the same as the general sibling selector. The difference is that the targeted

element must be an immediate sibling, not just a general sibling. Let's see what the

CSS code for this looks like:

11An Introduction to CSS

p + p {
 text-indent: 1.5em;
 margin-bottom: 0;
}

This example will apply the specified styles only to paragraph elements that imme-

diately follow other paragraph elements. This means the first paragraph element

on a page would not receive these styles. Also, if another element appeared between

two paragraphs, the second paragraph of the two wouldn't have the styles applied.

So, if we apply this selector to the following HTML:

<h2>Title</h2>
<p>Paragraph example.</p>
<p>Paragraph example.</p>
<p>Paragraph example.</p>

<div class="box">
 <p>Paragraph example.</p>
 <p>Paragraph example.</p>
</div>

...the styles will apply only to the second, third, and fifth paragraphs in this section

of HTML.

Attribute Selector
The attribute selector targets elements based on the presence and/or value of HTML

attributes, and is declared using square brackets:

input[type="text"] {
 background-color: #444;
 width: 200px;
}

There should not be a space before the opening square bracket unless you intend

to use it along with a descendant combinator. The above CSS would match the fol-

lowing element:

<input type="text">

Jump Start CSS12

But it wouldn't match this one:

<input type="submit">

The attribute selector can also be declared using just the attribute itself, with no

value, like this:

input[type] {
 background-color: #444;
 width: 200px;
}

This will match all input elements with an attribute of type, regardless of the value.

You can also use attribute selectors without specifying anything outside the square

brackets (thus targeting based on the attribute alone, irrespective of the element).

It's also worth noting that, when using values, you have the option to include quotes

(single or double,) or not.

Pseudo-class
A pseudo-class uses a colon character to identify a pseudo-state that an element

might be in—for example, the state of being hovered, or the state of being activated.

Let's look at a common example:

a:hover {
 color: red;
}

In this case, the pseudo-class portion of the selector is the :hover part. Here we've

attached this pseudo-class to all anchor elements (<a> elements). This means that

when the user hovers their mouse over an <a> element, the color property for that

element will change to red. This type of pseudo-class is a dynamic pseudo-class,

because it occurs only in response to user interaction—in this case, the mouse

moving over the targeted element.

It's important to recognize that these types of selectors do not just select elements;

they select elements that are in a particular state. For the purposes of this example,

13An Introduction to CSS

the state is the “hover” state. We'll look at other examples of pseudo-classes later

in the book.

Pseudo-element
Finally, CSS has a selector referred to as a pseudo-element and, used appropriately,

it can be very useful. The only caveat is that this selector is quite different from the

other examples we've considered. Let's see a pseudo-element in context:

.container:before {
 content: "";
 display: block;
 width: 50px;
 height: 50px;
 background-color: #141414;
}

This example uses one kind of pseudo-element, the :before pseudo-element. As

the name suggests, this selector inserts an imaginary element into the page, inside

the targeted element, before its contents.

Don't worry—we'll cover pseudo-elements in greater detail later in the book.

Using Multiple Selectors
Each of the selectors shown above can be combined with one or more other selectors.

For the most part, you'll want to avoid combining too many selectors together, but

here are a few quick examples to help you grasp the concept:

p.box {
 color: blue;
}

In this example, we're combining the element type selector with a class selector.

As a result, this will target only paragraph elements that have a class of .box. This

is a poor choice of selector, and should be avoided in almost all circumstances. In

normal practice, it's more than enough to specify a selector with a class such as

.box without over-qualifying it with the p portion (or any other element type select-

or).

Jump Start CSS14

#form [type=text] {
 border: solid 1px #ccc;
}

This selector combines the ID selector with the attribute selector. This will target

all elements with a type attribute of text that are inside an element with an ID of

form.

p, div, .box {
 color: black;
}

Here we're using commas to separate our selectors. This is a useful method to use

to combine multiple selectors in a single rule set. In this case, the styles will apply

to all paragraph elements, all <div> elements, and all elements that have a class of

box.

The Cascade and Specificity
At first glance, the following concepts can seem difficult to grasp. But the truth is,

if you're a CSS beginner, there are methods you can employ to ensure that they

don't cause too many problems for you.

First, let's look at what we mean when we refer to style sheets as cascading and

how specificity ties in.

Usually, when a browser interprets a CSS document, it does so from top to bottom,

giving precedence—or overriding abilities—to the declarations that appear lower

down in the document.

Let's look at a simple example so you can understand what I mean when discussing

precedence and overriding abilities. Assume the following two declaration blocks

appear in a single CSS file:

p {
 font-size: 20px;
}

15An Introduction to CSS

p {
 font-size: 30px;
}

Here we're using the exact same selector for both rule sets—the element type selector,

which targets all paragraph elements. The difference between these two rule sets,

however, is the value of the font-size property. Here we're defining the font-size

twice for the same element. So what will the size of the font actually be? Well, since

the rule set that defines the font size at 30px appears after the previous rule set,

then the font will be sized at 30px.

This is a very simple example, but it neatly demonstrates how selectors targeting

styles later in a CSS document have precedence over the same selectors that appear

earlier in the CSS file. Simple, right? Unfortunately, different selectors have different

levels of specificity. Look at the following example:

div p {
 color: blue;
}

p {
 color: red;
}

If all the <p> elements on a web page were nested inside a <div>, the first rule set

(which uses div p,) would always apply, overriding any of the same styles defined

in the second rule set (which uses only p). This is because the descendant selector

(used in the first example) takes precedence over the element type selector (used

in the second example).

In this instance, the color value for paragraph elements inside of <div> elements

will be blue—despite the fact that the second color declaration appears later in the

document. So although the browser does give some importance to the order of these

rule sets, that order is superseded by the specificity of the first rule set.

Here's another example:

Jump Start CSS16

#main {
 color: green;
}

body div.container {
 color: pink;
}

which assumes the following HTML:

<div id="main" class="container"></div>

In this case, it might seem that the second rule set, which uses two type selectors,

a class selector and a descendant selector all in one, would have precedence over

the first rule set, which only uses the ID selector. But this isn't the case. The color

value on the container element would become green because the ID selector (used

in the first example) has very high specificity and thus takes precedence over the

second rule set.

It should be noted here that when we refer to the overriding of selectors and selectors

taking precedence, we're assuming that the same styles are defined on these different

rule sets. So, for example, in the previous code block, if the #main rule set defined

color and the body div.container selector defined a different property, then they

would both apply, because there'd be nothing being overridden. To recap, then:

specificity does not affect all styles, but only the styles that are duplicated across

multiple selectors.

This use of the ID selector—and its strong override abilities—clearly illustrates why

it's important to avoid using it, wherever possible. Traditionally, CSS developers

have encouraged the ID selector's use for unique elements, and, according to

standards, it's a perfectly valid CSS selector. But please keep in mind that overusing

it may cause all sorts of problems in the long run.

In order to avoid being tripped up by specificity, use the class selector widely and

learn what's referred to as "Object Oriented CSS" or "modular CSS".4

4 For more advanced learning on this subject, see SMACSS [http://smacss.com/] and An Introduction

to Object Oriented CSS.

[http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/]

17An Introduction to CSS

http://smacss.com/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/

Selective Treatment

The suggestion to avoid ID selectors only applies to IDs in CSS, not in HTML. ID

attributes are absolutely necessary for local, or same-page, links and can be very

useful when attempting to target elements using JavaScript.

Other selectors will also add certain levels of specificity, but not so much that they'll

cause problems. If, for example, you have to target something with a pseudo-class

or child selector, that's fine. Use those selectors whenever you find them to be

practical.

There are a number of detailed articles online explaining cascade and specificity.

These include a series on SitePoint's CSS Reference,5 which are highly recommend

once you've a good grasp of some of the basics introduced in this book.

Always Use Standards Mode
A basic rule of thumb is that every HTML document you create should use “standards

mode.” For a beginner, this might sound a bit too techy, but it's actually quite simple

to ensure that all your HTML pages comply.

To ensure your CSS is rendered properly by the browser (meaning, it's in standards

mode,) make sure the HTML document to which your styles are applying has the

following tag at the top, before all other content:

<!doctype html>

That's it. This tag is referred to as an HTML5 document type declaration or “doc-

type.” In older documents, you'll occasionally come across other lengthier doctypes,

which are commonly used for XHTML or HTML4 web pages. For example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

5 http://reference.sitepoint.com/css/inheritancecascade

Jump Start CSS18

http://reference.sitepoint.com/css/inheritancecascade

You can do some further reading on doctypes at SitePoint's HTML reference6 but,

for now, all you need to know is that, if you use the simple HTML5 doctype, your

pages will render in standards mode and your CSS will be much easier to code and

debug.

A Skeleton for Our Sample Website
We've covered quite a bit of ground, already, without touching our sample project.

Let's conclude this chapter by using some of the selectors we've learned about to

build a CSS skeleton for the RecipeFinder website.

First, we need to add an external CSS file to our project that'll help us achieve

similar results in almost all browsers and on any device. Of course, not every web

browser supports every CSS feature (more on this later,) but we can make a fairly

normalized cross-browser start to our project by using something called a “CSS reset.”

What do we mean by "normalized cross-browser"? Well, every browser applies

certain styles to elements on a web page by default. For example, if you use an un-

ordered list (the element) the browser will display the list with some existing

formatting styles, including bullets next to the individual list items (the ele-

ments inside the). By using a CSS reset document at the top of your CSS file,

you can reset all these styles to a bare minimum. To put it another way, it clears

the ground before we start building something new.

At this stage, it's not necessary to understand everything in a CSS reset. Most experts

wouldn't be able to speak intelligently on every line of CSS in such a document.

The important thing to understand is that it's a valuable tool in your CSS arsenal,

and it's imperative that you use one on every project to avoid as many cross-browser

problems as possible.

That said, you can't just throw a CSS reset document into a pre-existing site, and

expect it to "fix" everything. That's not how CSS resets work. A reset is designed to

be used as a starting point, not as a quick-fix for existing websites that aren't behaving

in different browsers.

6 http://reference.sitepoint.com/html/doctypes

19An Introduction to CSS

http://reference.sitepoint.com/html/doctypes

Two of the most popular CSS resets are Eric Meyer's Reset7 and Nicolas Gallagher's

Normalize.css.8 Normalize.css is what we'll use as a foundation for our project. So

our base HTML will look like this:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>RecipeFinder</title>

 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/styles.css">

 <!--[if lt IE 9]>
 <script src="http://html5shiv.googlecode.com/
➥svn/trunk/html5.js"></script>
 <![endif]-->
</head>
<body>
</body>
</html>

Notice the two CSS file references. One is Normalize.css and the other is the stylesheet

that we're going to build. Remember what we talked about earlier regarding the

cascade? To ensure that the Normalize.css styles work correctly, this file has to be

referenced first, prior to any other CSS we add. This ensures that any styles we add

later in the CSS will override whatever is in our Normalize.css file.

The HTML5 Shiv

You'll probably notice in our HTML that we've included a <script> tag that

references a file called HTML5shiv. This is necessary to enable older versions of

Internet Explorer to apply CSS to all HTML5 tags. For more information on this,

see this article by Remy Sharp.9

Now that we have that basic foundation in place, let's look at our RecipeFinder

graphic again and decide how we want to divide up our page. Then we'll choose

7 http://meyerweb.com/eric/tools/css/reset/
8 http://necolas.github.com/normalize.css/
9 http://remysharp.com/2009/01/07/html5-enabling-script/

Jump Start CSS20

http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/
http://necolas.github.com/normalize.css/
http://remysharp.com/2009/01/07/html5-enabling-script/

some CSS selectors to attach to declaration blocks that we'll populate throughout

the book.

Notice in Figure 1.2 the different sections of the website have been overlaid with

colors, so you can envision roughly how the HTML structure will be defined.

Figure 1.2. The RecipeFinder website with colors indicating how we'll divide up the layout

We'll introduce the different parts of the HTML as we go along. For now, here's a

bare skeleton CSS framework that we'll use:

21An Introduction to CSS

a:link, a:visited {
}

a:hover {
}

h1 {
}

h2 {
}

body > header {
}

 nav ul {
 }

.promo {
}

.main {
}

 .latest {
 }
 .media {
 }
 .media img {
 }

 .sidebar {
 }

footer {
}

Right now, these are just bare declaration blocks with only selectors present, and

no actual CSS styles. This framework won't affect the document yet, but simply

serves to illustrate how we're going to use some of the selectors I've introduced in

this chapter.

Jump Start CSS22

Here you can see we're making generous use of the class selector (e.g. .promo) and

we've also included use of the element type selector (e.g. h1 and h2) as well as the

descendant selector (e.g. .media img) and the child combinator (e.g. body > header).

You'll also notice another convention we've used here: portions of the CSS have

been indented to match the indenting that will exist in the HTML itself. You don't

have to do this, but it's a nice way to keep the CSS easy to scan when it starts

building up.

If there's anything you don't understand in our CSS skeleton, don't worry too much

about it right now.We'll go into more detail in the coming chapters as we put some

meat on those bones, so to speak.

What about the HTML?

This book is not about HTML, so although there will be some code snippets

showing what HTML we're dealing with when writing the CSS, the HTML will,

for the most part, not be shown or discussed.

If you want to get the most out of the tutorial that runs through this book, I suggest

that you download the code archive and use the HTML file provided in the

download. You can remove the completed CSS file that's included with the archive

and build your own CSS file step-by-step as you progress through the book.

All the code examples in this book, if patched together correctly, will build the

complete CSS file (minus all the extra vendor prefixes for newer CSS fea-

tures—more on this in Chapter 5).

Summary
In this chapter, you've learned about the different components of a CSS rule set,

you've been introduced to the different ways to select elements via CSS, and you've

had a glimpse of some relevant concepts with regards to the cascade and specificity.

I've also introduced the sample project, and we've put together a base CSS file that

is preceded by a set of styles that normalizes some browser differences.

In the next chapter, we'll start putting together the structural foundation for the

RecipeFinder website and, in the process, you'll learn about CSS-based layouts.

23An Introduction to CSS

Chapter2
Layout Techniques
In this chapter, I'm going to introduce you to some layout techniques. You’ll get

hands-on experience with these when we implement some of them into the skeleton

we built for our CSS in Chapter 1.

Before that, there are some additional fundamental concepts that we didn’t cover

in Chapter 1 that you’ll get to know.

The Box Model
The box model refers to the (usually) invisible rectangular area that is created for

each HTML element. This area has four basic components, and it’s much easier to

explain using a diagram, so take a look at Figure 2.1:

Figure 2.1. A graphic representation of the box model

The box model components in this diagram are exaggerated. Normally, the only

large and visible area of any HTML element is the content area. Using this larger-

than-life example, however, we can discuss each component, starting from the inside

and working our way out:

Content The content portion of the box model holds—you guessed it—the actual

content. We introduced this briefly in Chapter 1 when discussing HTML

elements. The content can be text, images, or whatever else is visible on

a web page.

Padding The padding of an element is defined using the padding property. The

padding is the space around the content. It can be defined for an indi-

vidual side (for example, padding-left: 20px) or for all four sides in

one declaration—padding: 20px 10px 30px 20px, for instance. When

declaring all four sides, you’re using a shorthand property. There'll be

more on shorthand later in the chapter. Often when a CSS property takes

multiple values like this, they start at the top and go clockwise in relation

to the element. So, in the example just cited, this would apply 20px of

padding to the top, 10px to the right, 30px to the bottom, and 20px to

the left.

Border The border of an element is defined using the border property. This is

a shorthand property that defines the element's border-width,

border-style, and border-color. For example, border: 4px dashed

orange.

Jump Start CSS26

Margin Finally, the last part of the box model is the element’s margin. Margins

are similar to padding, and are defined using similar syntax (for example,

margin-left: 15px or margin: 10px 20px 10px 20px). However, unlike

padding, the margin portion of an element exists outside the element.

A margin creates space between the targeted element and surrounding

elements.

Every element on a web page has these box model components. Sometimes the de-

fault characteristics of these components differ on certain types of elements. For

example, form elements start out with a certain width and height, even if you don’t

define those properties. Also, as mentioned in Chapter 1, unordered lists (

elements,) will start out with predefined margins and padding due to the browser's

internal stylesheet, even if those are not set in the CSS.

Block versus Inline
Another concept you should be familiar with is that most HTML elements fall under

two categories: block or inline. A block-level element is more of a structural, layout-

related element, while an inline-level element is usually found inside of block-level

elements, flowing in the same context as text.

Block-level elements include elements like <div>, <p>, and <section>, whereas

inline elements include , , and . These are just a few examples.

Using CSS, you can change an element’s default behavior in this regard by using

the display property, like this:

span {
 display: block;
}

The behavior of block-level compared to that of inline-level elements isn’t too tricky

to grasp, and that understanding can be a rewarding “aha!” moment for many begin-

ner CSS developers, so it’s good to learn this concept early. Figure 2.2 visually

demonstrates the difference between block and inline.

27Layout Techniques

Figure 2.2. A visual demonstration of the difference between block and inline

Block elements have certain characteristics. First, unless given a specific width,

they always expand horizontally to fit inside their parent container and will also,

by default, expand vertically to hold their contents. So there is normally no need

to, say, add a specific width to a block element unless you require its width to be

smaller than the available space within its parent element. And there's rarely a need

to give an explicit height to a block element since, in most cases, it will naturally

expand to hold its contents.

As mentioned, block elements are structural-type elements and so will, by default,

start below the elements on the page that appear before them in the HTML. This is

an important part of understanding how they differ from inline elements.

In essence, inline elements behave like words and letters within of a paragraph. As

you can see in Figure 2.2, an inline element will flow naturally with text, and usually

it'll contain nothing but text or other inline elements. It's worth noting that inline

elements are subject to CSS properties that affect text. For example, line-height and

letter-spacing are CSS properties that can be used to style inline elements. However,

those same properties wouldn't affect block elements.

Additionally, inline elements can't have specified width and height values, and

they'll ignore top and bottom margins. That said, they can accept left and right

margin values as well as any padding.

Jump Start CSS28

For reasons concerned with layout, you’ll occasionally want to have something that

somewhat resembles both block and inline. This is possible by setting an element

to a value of inline-block, which you can do as follows:

.example {
 display: inline-block;
}

This gives us the best of both worlds—allowing the element to stay inline with text,

and still be subject to text-based CSS, while at the same time accepting width, height,

and margin values like a block element. Later in this chapter, we’ll use inline-block

to style the main navigation of our example site.

Shorthand versus Longhand CSS
Yet another important concept to understand is the difference between shorthand

and longhand CSS properties. As we’ve already discussed, a single CSS declaration

usually consists of a property followed by a colon, followed by a value, then a semi-

colon.

Shorthand properties work a bit differently. A shorthand property’s value is actually

a set of values, each of which maps to an existing CSS longhand property. Let’s look

at an example that we’ve already introduced—the border property:

.example {
 border: dashed 2px blue;
}

The rule set above, which contains just one declaration, can also be written in

longhand, like this:

.example {
 border-style: dashed;
 border-width: 2px;
 border-color: blue;
}

From this it's easy to see why you’ll rarely come across the longhand version of

border-related properties. It’s simpler to use the shorthand, and it uses less code,

29Layout Techniques

which, in a large CSS file, will make a small impact on page speed and probably a

big impact on future code maintenance.

It should also be noted that if you leave out one of the values of a shorthand property,

it will cause that value to revert to its initial, or default, state. Let’s combine our

previous two code examples so you can see how this works:

.example {
 border-style: dashed;
 border-width: 2px;
 border-color: blue;
}

.example {
 border: solid;
 color: green;
}

Here we’ve used the same selector on two different rule sets. As we learned in

Chapter 1, the second rule set will take precedence over the first, overriding any

styles that are the same in both rule sets.

In the first rule set, we’ve defined all three border-related properties in longhand,

setting the values to display a dashed border that’s 2px wide and colored blue. But

what’s the result of these two rule sets? Well, the border will become 3px wide (the

default border width for a visible border,) and it'll be colored green, not blue. This

happens because the second rule set uses shorthand to define the border-style as

solid, but doesn’t define the other two properties (border-width and border-

color).

This might sound a bit complicated at first, but it’s worth experimenting with to

get the hang of it. Just understand that if you don’t define all the properties repres-

ented in a shorthand property, the missing ones will revert to their defaults, rather

than inheriting from any existing styles.

In most cases, this won’t cause too many problems, but in some instances (for ex-

ample, when using the font shorthand property) it could have undesirable and

confusing results, as described in an article on my site.1

1 http://www.impressivewebs.com/a-primer-on-the-css-font-shorthand-property/

Jump Start CSS30

http://www.impressivewebs.com/a-primer-on-the-css-font-shorthand-property/

Another thing to understand about shorthand is that for certain shorthand properties,

the missing values are inherited based on the existing values. Two good examples,

which you’ll often use in this way, are margin and padding. For example:

.box {
 padding: 20px 10px 15px;
}

Notice there are three values specified. If you recall from Chapter 1, these values

represent padding for the top, right, bottom, and left, in that order. The fourth value

(referencing the left padding) is missing, but it is assumed to be 10px, which matches

the opposite side padding (the second value declared). If we had omitted two values,

then the bottom would inherit from the top in addition to the left inheriting from

the right.

The same principle applies to other shorthand properties like margin, border-

color, and border-width. So the following two lines of code would yield the exact

same results:

.example {
 margin: 10px 20px 10px 20px;
}

.example {
 margin: 10px 20px;
}

In the first declaration, we’re defining all four margin values explicitly (top, right,

bottom, and left). In the second declaration, we’re omitting the bottom and left,

so they'll inherit from the top and right values. In the same way, the following two

examples would also produce the same result:

.example {
 border-width: 10px 10px 10px 10px;
}

.example {
 border-width: 10px;
}

31Layout Techniques

Again, we’re defining all four explicitly in the first declaration, but in the second

declaration, we’re letting the missing values inherit from the only value that’s

defined: the top value for the border width.

Using shorthand in this way is a good habit to pick up early because it'll help you

to omit unnecessary stuff in your code, making it easier to read.

Float-based Layouts
The first layout technique that we’re going to discuss is the only current example

that works in every browser and doesn’t use HTML tables (tables are not good for

layout2). There are a number of new techniques that we’ll touch on later in the

chapter that are supported in some modern browsers, but float-based layouts are

still necessary for websites that need to look good in older browsers like Internet

Explorer versions 7, 8, and 9. Even modern browsers have sketchy support for

newer layout methods so, at the time of writing, float-based layouts are the primary

layout method used in CSS.

In our RecipeFinder website, we have an ideal place to use a float-based layout: the

main content area. This area is divided into two vertical columns, as shown in

Figure 2.3:

2 http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html

Jump Start CSS32

http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html
http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html

Figure 2.3. The two-column area of RecipeFinder

Let’s add some layout styles to that section of code, so we can get things started:

.main {
 width: 1020px;
 margin: 0 auto;
}

 .latest {
 width: 640px;
 float: left;
}

 .sidebar {

33Layout Techniques

 width: 360px;
 float: right;
 }

You’ll recognize these selectors from Chapter 1, where we introduced the bare CSS.

The HTML that this applies to includes the .main element, which wraps both

columns. You’ll notice we’ve applied a margin declaration to .main.

As discussed earlier, this margin declaration is shorthand and would be equivalent

to the following:

.main {
 margin: 0 auto 0 auto;
}

But we’ve omitted the final two values for brevity, as they're inherited from the

existing values. While the zero values are probably easy to figure out (they declare

that no margins should exist on the top and bottom of the .main element), the auto

values will be new to you.

A value of auto set on the left and right margins of an element that has an explicitly

defined width, will automatically center that element horizontally inside its parent.

It won't center the contents of the element; only the element itself. In the case of

the .main element, its parent is the <body> element, which has no set width. So

whatever the horizontal size (or width,) of the browser, the .main element will

center itself horizontally on the page as a result of this margin declaration.

That’s a CSS technique that you’ll want to tattoo on the back of your hand—you’ll

use it often. But it only works with horizontal centering. Vertical centering is a

trickier thing to accomplish in CSS.3

CSS Units

You’ll notice that throughout the examples, numerical values are appended with

"px.” This refers to pixels and is just one kind of CSS unit. Other commonly used

units include percentages (%), ems, and rems. We’ll discuss more CSS units in

the next chapter.

3 http://blog.themeforest.net/tutorials/vertical-centering-with-css/

Jump Start CSS34

http://blog.themeforest.net/tutorials/vertical-centering-with-css/
http://blog.themeforest.net/tutorials/vertical-centering-with-css/

Next in our CSS, we have the two elements inside the .main element. The first is

the left column, which has a class of .latest (referring to the “latest recipes”). The

other column is an <aside> element to which we’ve applied a class of .sidebar.

As discussed earlier in the section covering block and inline elements, since both

of these elements are block-level, they will, by default, appear one after the other,

stacked vertically, rather than side-by-side filling the available horizontal space of

their parent element—which, in this case is the .main element.

To have them appear side by side in a two-column format, we use the float property,

which tells the browser to push the element towards a specified side of the page,

as far as it can go. The float property can accept one of three values: none, left, or

right.

To achieve the effect we want, we apply float: left to the left column, and float:

right to the right column. In addition, the specified widths help balance the columns

so they match how they look in the Photoshop mock-up.

At this stage, with all our content in place, the content inside the .main element

should look like Figure 2.4.

35Layout Techniques

Figure 2.4. Our two columns after adding the float property

Pretty bland, isn't it? We haven’t added many styles yet, so what we see is mostly

what’s left as a result of our Normalize.css file, along with some browser defaults

(like blue text links).

Clearing Floats
This next concept, “clearing floats,” is something you’ll have to deal with in almost

all float-based layouts. To illustrate why we need to do this, let's add two new

temporary declarations to our .main element, which is the element that contains

our “floated” columns:

.main {
 width: 1020px;
 margin: 0 auto 0 auto;

Jump Start CSS36

 outline: solid 1px red;
 background: green;
}

The last two declarations are only temporary styles, to illustrate a point. Figure 2.5

shows what happens when those styles are added to the CSS and the page is re-

freshed.

Figure 2.5. The floated columns cause the container to collapse

What we might normally expect to happen here is that the background appear green

and a full red outline appear around all the contents of the .main element. But all

we see is a 2px horizontal line at the top of the .main element.

This happens because of the floated child elements. When one or more elements

are floated, unless other non-floated elements are present, the parent element of the

floats will effectively collapse, behaving like there's nothing inside it. All that needs

37Layout Techniques

to be done is remove one of the float declarations, and the full green background

and red outline will appear as expected.

So in order to remedy the situation, floats need to be “cleared.” We can do this by

adding a new section of code to our styles.css file:

.cf:before,

.cf:after {
 content: " ";
 display: table;
}

.cf:after {
 clear: both;
}

.cf {
 zoom: 1; / for IE6 and IE7 */
}

This float clearing method (often referred to as a “clearfix,” hence the cf class se-

lector,) comes again via Nicolas Gallagher.4 Don’t be intimidated by what you see

here; you don’t have to understand everything in this chunk of code. Once we have

this in our stylesheet we just need to add a class of cf to any element that collapses

due to floats.

Notice this fix uses pseudo-elements (which we briefly introduced in Chapter 1,)

and a couple of new properties, including the clear property.

The clear property prevents an element from being affected by floated elements

that appear before it. Floats generally cause all other elements to wrap around them,

making them bump up against the side opposite the float direction. But adding the

clear property to subsequent elements causes those elements to drop below the

floated element, just as they would if there were no floats present.

To cause the new styles to apply to our layout, let’s add a new class to our .main

element:

<div class="main cf">

4 http://nicolasgallagher.com/micro-clearfix-hack/

Jump Start CSS38

http://nicolasgallagher.com/micro-clearfix-hack/

Notice the space separating the two classes. This is one of the features briefly

mentioned in Chapter 1 that makes classes a far superior selector in comparison to

other options: the fact that you can use multiple classes on a single HTML element.

With those styles in place, the green background and red outline will appear as

expected, confirming that our floated elements are now “clear.” We can then remove

the background and outline we added.

Another benefit of clearing the floats is that our footer content is now appearing

below the .main content, where it should be (albeit still unstyled) instead of

bumping up against the right side of the left column as it was prior to adding the

clearfix. It’s worth noting that we could have caused the footer to drop below the

.main element’s content simply by adding “clear: both” to the footer element itself.

However, this would not have fixed the float clearing problem where the .main

element was collapsing.

Positioning in CSS
Another useful layout technique involves the use of CSS’s position property. Al-

though it's possible to use this technique for layouts, in most cases you wouldn't

use it for large structural elements the way you would with floats. Positioning,

however, can come in handy to help place or align a specific element in a very

precise manner.

A good candidate for this technique is the bottom half of our sidebar, the section

called “Yummy Tweets,” shown in Figure 2.6.

39Layout Techniques

Figure 2.6. Our Yummy Tweets, as they appear in our original design

We’re going to use the position property to place the Twitter icons that you see

next to each of those tweets. But before we do this, let’s consider exactly what

properties we’ll use and how they work.

Absolute and Relative Positioning
CSS allows us to place an element anywhere on a page using the top, bottom, left,

and right properties along with the position property. Let’s look at an example:

.example {
 position: absolute;
 top: 100px;
 left: 150px;
}

Jump Start CSS40

If there are no other positioning-related styles on our page, the .example element

shown above would be positioned 100px from the top and 100px from the left of

the browser window (also called the viewport).

But this isn’t very practical. It’s not often that you’ll want to position an element

relative to the browser window like this. The real practical value of absolute posi-

tioning comes from combining it with a positioned parent element. Let’s improve

on the code we just wrote and demonstrate what's meant by “positioned parent”:

.wrapper {
 position: relative;
}

.example {
 position: absolute;
 top: 100px;
 left: 150px;
}

Now, instead of positioning the element relative to the full browser window, we're

forcing positioning to occur relative to the .wrapper element. The relative positioning

set on .wrapper creates a positioning context for any positioned child elements.

Now let’s combine this technique with the pseudo-elements we introduced in

Chapter 1, so we can position our Twitter icon next to each tweet in our sidebar.

Here is the HTML for a single “Yummy Tweet”:

<div class="tweet">
 <p>@Peter : Once again, the recipe of the Aussie
➥BBQ was a complete success thx @RecipeFinder

 24 minutes ago</p>
</div>

We’re going to target the outer <div> element that has a class of tweet using the

following CSS:

.tweet {
 padding-left: 55px;
 padding-right: 20px;
 position: relative;
}

41Layout Techniques

 .tweet:before {
 content: url(../images/twitter-icon.png);
 display: block;
 position: absolute;
 left: 15px;
 top: 4px;
 }

A pseudo-element uses the single-colon or double-colon syntax (we’re using single-

colon for better browser support5) in combination with another CSS selector, to add

a phony (i.e. “pseudo”) element inside the targeted element (the .tweet element).

In this example, we’re using a before pseudo-element, so the inserted element will

appear before the .tweet element’s content.

Notice that the .tweet element is positioned relatively. Also notice that there are

55 pixels of padding set on the left side of the .tweet element. Next, in the pseudo-

element selector, we’re using the content property to define what exactly we want

to insert (in this case it’s a transparent PNG Twitter icon,) and then we’re positioning

the pseudo-element absolutely, 4px from the top and 40px from the left.

If we wanted, we could have inserted the Twitter icon inside our HTML using an

 tag. But in this case, since the icons are just decoration, we have the option

to use a pseudo-element or background image. By contrast, the images that appear

in the “Latest Recipes” section are not just decoration but are part of the main con-

tent; so those shouldn't be inserted as background images or pseudo-elements via

CSS, but should be placed into the HTML using tags. We’ll talk more about

backgrounds in the next chapter.

Since our pseudo-element is placed on the page using a class selector of .tweet,

the pseudo-element will appear on every element on the page that has a class of

tweet. After we add these styles and refresh the page, our Yummy Tweets section

will look like Figure 2.7.

5 http://www.impressivewebs.com/before-after-css3/

Jump Start CSS42

http://www.impressivewebs.com/before-after-css3/
http://www.impressivewebs.com/before-after-css3/

Figure 2.7. Our Yummy Tweets after adding the Twitter icons using pseudo-elements

Adding the pseudo-element using absolute positioning is just one step towards

styling this area. Overall, our website still needs a lot of styling, as does the Yummy

Tweets section.

What about Responsive Web Design?
One of the biggest trends in the web design industry right now is Responsive Web

Design (RWD). This book is an introduction to CSS, so we won’t be covering that

particular technique in exhaustive detail; however, I will introduce the topic here,

and in Chapter 5 we’ll use responsive design techniques to complete the coding of

RecipeFinder.

So what exactly is responsive design? Briefly, it involves coding the CSS in such a

way that it ensures the width of the website and its content adapt to the size of the

user’s browser window. This means if the user visits on a desktop PC browser at

1920x1080 resolution or a cellphone at 320x480, the content and layout will adjust

to fit.

43Layout Techniques

RWD is centered on the use of media queries, a CSS feature that we haven’t discussed

yet. Let’s take a quick look at the syntax for media queries so you can see how they

can be used to build a responsive web design:

@media (max-width: 1500px) {

}

@media (max-width: 1200px) {

}

@media (max-width: 900px) {

}

What you see above are referred to in CSS as at-rules. There are other at-rules

(identified by the @ symbol,) such as the @font-face rule, which we’ll talk about

in Chapter 4.

The @media at-rules are used to define different CSS styles depending on certain

media features, such as the width of the browser window. Inside the @media blocks,

(each of which starts and ends with the opening and closing curly braces,) you can

include full rule sets. You can even repeat certain rule sets in separate media query

blocks in order to override existing styles.

In Chapter 5, once we have the bulk of the site done, we’ll add some custom media

queries to make the RecipeFinder website responsive.

Using box-sizing for Intuitive Sizing
Normally, when an element is given a specified width—for example, our .main

element has a width of 1020px—if you add left or right padding to that element,

the width of the element would increase by the amount of left and right padding

that was added. Look at the following example:

Jump Start CSS44

.box {
 width: 400px;
 padding-left: 20px;
 padding-right: 20px;
}

Although the width of the .box element is defined explicitly as 400px, the actual

width of the element will end up being 440px, because the left and right padding

add to the width.

For a long time this has been an irritation that we’ve learned to deal with in CSS

layouts. With the box-sizing property, however, we can tell the browser to render

all of our widths and heights at an exact pixel size, including any borders or padding

settings. That is, if we define an explicit width or height, padding and borders will

not affect that width and height.

We’re going to add this property to the top of our custom styles, using the universal

selector:

* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

The three lines of code you see here are exactly the same, but because some browsers’

support for these properties is “experimental,” we’re forced to use vendor prefixes

(the -webkit- and -moz- prefixes in this example) for maximum browser compatib-

ility. We’ll talk more about vendor prefixes in Chapter 5.

With this declaration in place, we can feel free to add padding and/or borders to

any elements, and we won’t have to recalculate their specified widths for them to

lay out correctly. Let’s do that now by adding some padding to the .latest element

(which is our left column):

.latest {
 width: 640px;
 float: left;
 padding: 0 40px;
}

45Layout Techniques

If we had added this padding prior to adding the box-sizing declarations, the left

column would no longer fit next to the right column inside of .main. But, by using

box-sizing, we prevent the padding from adding to the overall width of the column.

Adding More Layout Styles
We’ve already sized and centered the .main element. If you’ve been following along

with the code examples, you’ll notice, however, that the header, promo (which is

the big photo below the header), and footer sections are not aligned with the .main

element. So, let’s align those now:

.header-inside {
 width: 1020px;
 margin: 0 auto;
}

.promo {
 width: 1020px;
 margin: 0 auto;
}

.footer-inside {
 width: 1020px;
 margin: 0 auto;
}

First, to help with the look we’re trying to achieve, we’ve added an inner element

inside our <header> and <footer> elements. Those two new elements in the HTML

are classed as .header-inside and .footer-inside, respectively. We’re doing this

so we can center the content inside the header and footer, while allowing the

background of those elements to expand horizontally to the edges of the browser

window.

You can see this demonstrated in Figure 2.8.

Jump Start CSS46

Figure 2.8. The footer has a set width, but the background color expands to the full width of the window

Here you can see that, although the width of the footer area has expanded to the

left and right (mimicking what might happen on a wider browser window), the

content itself stays centered. The extra element inside <footer> helps achieve this.

There’s a problem, though. The styles in each of these three declaration blocks

(.header-inside, .promo, and .footer-inside) are exactly the same, and they even

match the styles we added to the .main element. Here’s an opportunity for us to

take these common styles and create a simple reusable class that we can apply to

any element that needs these exact styles.

So instead of four separate rule sets with the same styles, we’ll have one rule set as

follows:

.center-global {
 width: 1020px;
 margin: 0 auto;
}

And then we’ll add that class to every HTML element that needs those styles. Because

of this reusable class we’ve created, we'll no longer need the .header-inside class,

so we’ll remove that from our HTML and CSS. The .promo and .footer-inside

classes will be used later, so we’ll keep those.

Floating the “Latest Recipes” Images
We’ve already used the float property to help build our primary two-column layout.

Next, we’ll use the same property for its intended purpose: to allow text and inline

content to flow around a floated block element. In our HTML, we have a simple

structure for each of the entries added in our “Latest Recipes” section:

47Layout Techniques

<div class="media">

 <h2>Zesty Smoked Haddock Skewers</h2>
 <p>Cooking time: 20 minutes</p>

</div>

Currently, the <h2> and <p> elements in each of these .media sections are appearing

below the image in the .media section. You’ll remember from our discussion of

block versus inline elements that this happens because all block elements will

naturally drop below other elements placed before them in the markup. We can

override this behavior using float and clear:

.media {
 clear: left;
 padding-bottom: 28px;
}

 .media img {
 float: left;
 margin-right: 30px;
 }

Here we’ve floated the image left, which causes the text content to bump up against

it. We also need to clear the .media element to ensure that it doesn’t get affected by

the floated images.

We’ve also added a right margin to the image and bottom padding to the .media

element to match what’s in the design mockup. However, you’ll notice when you

apply these styles that the padding at the bottom of the .media element doesn’t

seem to appear, as shown in Figure 2.9.

Jump Start CSS48

Figure 2.9. Our .media images floated left, but the bottom padding has failed to take effect

This is due to the float property. As discussed earlier in the section on clearing

floats, a parent element will expand vertically to contain only content that is non-

floated. To fix this, we would need to add our cf class to all the .media elements.

Unfortunately, doing this would add a lot of extra HTML that, in this instance, isn’t

necessary. So to clear the floats here, we’re going to use a different method—the

overflow property set to a value of "hidden":

.media {
 clear: left;
 padding-bottom: 28px;
 overflow: hidden;
}

This is a simple float-clearing method that you’ll want to keep in mind for smaller

elements like these. For larger layout-related elements, it’s almost always better to

go with the full-blown clearfix I introduced earlier. But in this case, we’re better off

49Layout Techniques

using overflow: hidden.6 With this declaration in place, the padding at the bottom

of each .media element will take effect.

Layout Styles for the Header
Now that we have our “Latest Recipes” section laid out correctly, we have two final

areas of our site to which we want to add some layout styles: the header and footer.

Let’s start with the header content, along with the navigation links. Here’s the HTML

for our <header> section:

<header>

 <div class="center-global cf">

 <img src="images/logo.png" alt="RecipeFinder
➥logo" class="logo">

 <nav>

 Recipes
 Ingredients
 Contributors

 </nav>

 </div>

</header>

Notice the unordered list () that holds our navigation links. Now let’s add some

CSS:

.logo {
 float: left;
 margin-left: 145px;
 margin-top: -34px;
 position: relative;
 top: 34px;

6 For a discussion of the different methods to clear floats, and why overflow: hidden can cause

problems, see http://www.impressivewebs.com/clearing-floats-why-necessary/.

Jump Start CSS50

http://www.impressivewebs.com/clearing-floats-why-necessary/

}

 nav {
 float: right;
 margin-right: 177px;
 padding-top: 20px;
 }

 nav ul {
 list-style: none;
 margin: 0;
 padding: 0;
 }

 nav ul li {
 display: inline-block;
 display: inline; / for IE7 */
 margin-right: 30px;
 }

There’s a lot going on here, some of which you’ll recognize from earlier in the book,

but let’s break down the new bits of code.

First, we’re using relative positioning along with the top property to push our .logo

element down from its original position. Relative positioning used in this way moves

an element but allows the original space it occupies to remain intact. We’re doing

this so that the bottom edge of the logo will overlap the .promo section, which is

what the design in our Photoshop mockup requires.

We’re also floating the logo left and floating the navigation section to the right and

aligning these using margins and padding. Next we have the element along

with its child elements. The list-style property, which we apply to the ,

is a shorthand property that defines the type of bullet we want to have on the list

(the default value is “disc”), along with the position of the bullet. We’ve added a

value of “none” to the list and we’ve set the margins and padding on the list to zero

values, overriding the browser defaults for these.

Finally, in order to get the list items to align horizontally, we’ve set the list items

to display: inline-block, and we’ve added a hack (the repeated style with the

51Layout Techniques

http://www.impressivewebs.com/ie7-ie8-css-hacks/

asterisk character7) to get this to work in IE7. Figure 2.10 shows how the header

will look after we’ve added these styles.

Figure 2.10. Our header and navigation links after adding some layout styles

Laying out the Promo Photo
For the big promo photo that appears below the logo and navigation, there isn’t too

much to do except get the photo description and “cook it now!” button to appear

overlaid on top of the big image.

Here’s the HTML for our promo section:

<div class="promo center-global">

 <div class="promo-desc">
 <h1>Sweet and Sour Zucchini Puree</h1>
 cook it now!
 </div>

</div>

Take note of the <div> with a class of .promo-desc that wraps our <h1> element

and the link below it. We’re going to add some absolute positioning to the .promo-

desc element to place it over the promo image. Here’s the CSS:

.promo {
 position: relative;
}

 .promo-desc {
 position: absolute;

7 http://www.impressivewebs.com/ie7-ie8-css-hacks/

Jump Start CSS52

http://www.impressivewebs.com/ie7-ie8-css-hacks/

 bottom: 93px;
 right: 75px;
 }

You’ll remember this technique from earlier in the chapter. The.promo element

creates a positioning context when we add relative positioning to it. With that in

place, any absolutely positioned elements inside of it will be positioned relative to

it (that is, to the .promo element). But hold on a second! Figure 2.11 shows what

happens when we add these styles.

Figure 2.11. The logo is partially hidden after adding relative positioning to the promo section

Notice in Figure 2.11 that our text and link are placed roughly where we want them,

but that the bottom of our logo, which we carefully positioned earlier in this chapter,

is now overlapped by the big promo image. We won’t get into all the gory technical

details on what’s causing this, but, to put it briefly, it's happening because of the

relative positioning we’ve added to the elements. But never fear! We can fix this

with a few additions to our .logo and .promo rule sets:

.logo {
 float: left;
 margin-left: 145px;
 margin-top: -34px;
 position: relative;
 top: 34px;
 z-index: 10;
}

.promo {

53Layout Techniques

 position: relative;
 z-index: 5;
}

Here we’ve added the z-index property to help adjust the stacking of these elements.

The z-index property accepts an integer value and will only work on elements that

are explicitly positioned using the position property. z-index adjusts the position

of elements in relation to one another along the z axis. This means instead of moving

elements from left to right or top to bottom, we’re moving them forwards or back-

wards.

And so, if you’re looking directly at a browser window, a higher z-index value

means the element will be (in a manner of speaking,) closer to you; whereas a lower

z-index value will push the element further away from you.

But, as mentioned, this will only happen in relation to other positioned elements,

and will not work for non-positioned elements. This is an important point to keep

in mind when using z-index, as this will often trip up CSS beginners.8

So in our example, we’ve set the z-index property to “10” on the .logo element

and “5” on the .promo element, which fixes the problem, as shown in Figure 2.12.

Figure 2.12. The logo overlap problem corrected using z-index

Laying out the Footer
The next thing we’ll do to our RecipeFinder site in terms of layout is get the contents

of our footer aligned. Our footer is made up of three sections: “Recipes Categories,”

8 http://coding.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/

Jump Start CSS54

http://coding.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/

“Our Contributors,” and “Colophon.” Each of these sections is wrapped in its own

separate <div> element, with its contents in an unordered list ().

We’ll again use our handy float property, this time to create a three-column layout:

.footer-1 {
 float: left;
 width: 422px;
}

.footer-2 {
 float: left;
 width: 326px;
}

.footer-3 {
 float: left;
 width: 232px;
}

We’ll also add a little padding to the left side of the .footer-inside element, which

holds the three footer sections:

.footer-inside {
 padding-left: 40px;
}

This aligns the left side of the footer content with the content above it. Figure 2.13

shows how our footer will look after we add these layout styles.

Figure 2.13. Our footer after adding floats and widths to the three sections inside the footer

55Layout Techniques

Laying out the “Most Popular” Recipes
Finally, we have one more layout-related issue to work out—specifically the section

in our sidebar called “Most Popular.” We’re again going to incorporate floats to deal

with this. Figure 2.14 shows what this section looks like in our original design.

Figure 2.14. Our "Most Popular" sidebar

Below the heading we have recipe ratings in a left column, and the recipe names

in a right column. Here’s what our HTML looks like for an individual recipe/rating

pair:

<div class="rating">4.9/5</div>
<div class="pop-item">Delicious garlic bread</div>

This would be repeated for each recipe, with the content changed to reflect each

one. Now let’s add some CSS to style these elements:

Jump Start CSS56

.rating {
 float: left;
 clear: left;
 padding-top: 4px;
 padding-right: 15px;
 width: 45px;
}

.pop-item {
 padding-bottom: 20px;
 float: left;
 width: 250px;
}

All of the properties here are ones we’ve used or discussed earlier in the book. The

.rating elements are all floated to the left, and each of these is also cleared. This

prevents any of the .rating element from bumping up against the .pop-item ele-

ments. The .pop-item elements are also floated left, but they're not cleared. As we

learned earlier, clearing pushes the cleared element to a new line, which we don’t

want to happen to the .pop-item elements. However, we do want that to happen

to the .rating elements. Both elements are given a set width, and we’ve added

some padding to match what’s in the design.

The last thing we need to add to this section is a wrapper <div> with a class of

popular holding all these ratings and recipes together. We’ll add some padding to

the bottom of this element, to help keep it separate from the Yummy Tweets section

below it:

.popular {
 padding-bottom: 40px;
}

What’s the future of CSS Layouts?
What we’ve done in this chapter is use a tried-and-true, cross-browser method for

laying out pages with CSS—namely, using floats. But, as alluded to earlier, the float

property was not created for this purpose (although we’re certainly thankful that it

works fairly well).

57Layout Techniques

For this reason, the newest browsers have started adding support for CSS layout

features that we hope to be using exclusively in a few years (assuming older browsers

that don’t auto-update, like IE8 and IE9, die out).

We won’t discuss these new layout features in detail here, because those features

are still in flux and browser support isn’t as good as we’d like it to be. But we will

list some of those new layout techniques along with links so you can access articles,

tutorials, and tools to help you learn these new features.

Flexbox
Flexbox has the most browser support of any new CSS layout feature. If you’re going

to study any new layout feature as an alternative to floats, start with this one. Un-

fortunately, the syntax for Flexbox has changed a few times. Below are some re-

sources to help get you up to speed:

Dive into Flexbox http://weblog.bocoup.com/dive-into-flexbox/

An Introduction to the CSS

Flexbox Module

http://net.tutsplus.com/tutorials/html-css-tech-

niques/an-introduction-to-css-flexbox/

“Old” Flexbox and “New”

Flexbox

http://css-tricks.com/old-flexbox-and-new-

flexbox/

CSS Flexbox Please! http://demo.agektmr.com/flexbox/

Other New Layout Features
Other new layout techniques are much further away from common use, but below

are some official specifications for techniques you might want to keep an eye on:

CSS Regions http://dev.w3.org/csswg/css3-regions/

CSS Exclusions and Shapes http://dev.w3.org/csswg/css3-exclusions/

Grid Template Layout and Grid

Layout

http://dev.w3.org/csswg/css3-layout/

http://dev.w3.org/csswg/css3-grid-layout/

Many of these techniques and more are discussed in Peter Gasston’s article for .net

magazine.9 For beginners, the official specifications will probably be too much for

9 http://www.netmagazine.com/features/future-css-layouts

Jump Start CSS58

http://weblog.bocoup.com/dive-into-flexbox/
http://net.tutsplus.com/tutorials/html-css-techniques/an-introduction-to-css-flexbox/
http://net.tutsplus.com/tutorials/html-css-techniques/an-introduction-to-css-flexbox/
http://css-tricks.com/old-flexbox-and-new-flexbox/
http://css-tricks.com/old-flexbox-and-new-flexbox/
http://demo.agektmr.com/flexbox/
http://dev.w3.org/csswg/css3-regions/
http://dev.w3.org/csswg/css3-exclusions/
http://dev.w3.org/csswg/css3-layout/
http://dev.w3.org/csswg/css3-grid-layout/
http://www.netmagazine.com/features/future-css-layouts
http://www.netmagazine.com/features/future-css-layouts

you to handle. But at least take a quick look so you can get familiar with features

that will slowly start gaining wider browser support.

Summary
The layout for each section of our website is now in place. We’ve covered a lot of

ground here, including a quick intro to the box model, the difference between block

and inline elements, float-based layouts, positioning, and a brief look at responsive

design.

By now you'll be keen to see some color and style added to our page. In the next

two chapters we’ll learn a whole slew of CSS features that will really perk up our

sample website.

59Layout Techniques

Chapter3
Backgrounds, Borders, and More
If you’ve started to build the sample website, you’ll have noticed that, although we

have the major sections of our page laid out, it’s not looking much like the original

Photoshop mockup just yet.

Figure 3.1 shows you what our page looks like right now. With our basic layout in

place, let’s learn how we can spruce up our page visually so it'll be more appealing,

and reflect what we have in our original design.

Figure 3.1. RecipeFinder after the layout styles from Chapter 2

Backgrounds
The first thing we want to take care of in this chapter is the primary background

that sits behind a large portion of RecipeFinder. Figure 3.2 shows a close-up of the

area behind the “Latest Recipes” section, as shown in our original Photoshop file.

Jump Start CSS62

Figure 3.2. A close-up view of the RecipeFinder background

This is zoomed in so we can see that not only is the background a light creamy

brown color, but it’s also overlaid with a subtle texture. This texture, along with

the color that it overlays, will be placed onto our page as a background image. Let’s

look at the code we’re going to use to do this:

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
}

The first point to note in this example is the selector we’re using: body. This tells

the browser that the declaration block will apply to the <body> element (which is

the next element down from the <html> element in our HTML hierarchy).

Next, you'll notice that we’re using the background property, which is a shorthand

property. We learned about shorthand in Chapter 2. This particular example helps

us define a number of different background-related properties using a single line

of code. If we didn't use shorthand, this single declaration would look like this:

body {
 background-color: #cab5a3;
 background-image: url(../images/bg-main.gif);
 background-repeat: repeat repeat;
 background-position: 0 0;
}

63Backgrounds, Borders, and More

This would give us exactly the same result as the single-line version. You’ll be using

the properties described here regularly in future projects, so let’s discuss each of

them in detail.

First, we’ve defined a background color for the <body>. This is good practice as it

ensures that the user will see something similar to the background image should it

fail to load quickly enough, or at all. Also, if the background image is dark, say,

with light-colored text, this will ensure readability. In this case, we’re using a color

value of #cab5a3—more on color values later in this chapter. This color was arrived

at simply by sampling part of the textured background in the Photoshop file, and

then copying and pasting the color value from Photoshop into my CSS file.

Next, we have the declaration that tells the browser what background image to use

on the <body> element. The syntax uses the url() notation to reference the back-

ground image. This is the syntax you’ll use most often when including an image in

a web page using CSS. The path to the file needs to be relative to the location of the

CSS file, which is why, in this case, we’re using “../” at the start of the path. This

tells the browser that the background image is located up one level in the folder

structure (represented by “..”) and inside a folder called “images” (represented by

“/images”).

This background image file is a GIF file that has an original size of 129px by 129px.

So how does such a small image fill the background? This brings us to the next

background-related property in our rule set.

The background-repeat property is used to define whether we want the background

to appear only once, or if we want it to repeat vertically, horizontally, or both. For

the <body> element, we want the background to repeat throughout the entire <body>,

so we set the value to repeat repeat. Alternatively, we could write repeat just

once, which would have the same result, because it would assume the missing

second value is the same as the first. I’ve included both values explicitly to

demonstrate that you can have two different values defined. The first value represents

horizontal repeat, and the second value represents vertical.

Other commonly used values for background repeat are no-repeat (meaning we

don’t want it to repeat), repeat-x (which repeats the image horizontally, or along

the x axis,) and repeat-y (which repeats the image vertically, or along the y axis).

Jump Start CSS64

When using the x and y repeat values, you only need to define one, as the other is

assumed to be no-repeat.

Finally, the last line in the code uses the background-position property. This will

accept any pair of unit values, separated by a space. You can use pixels, ems, per-

centages, and more—we’ll discuss values and units in more detail later in this

chapter. This property tells the browser where to position the background image.

In our example, we haven't needed to define this value (the default is "0 0", which

is what we’re using), but it's been included for reference, as it's a property you’ll

employ often.

The background-position property will work only if you’re using no-repeat on

at least one of the directions (horizontal or vertical) in the background-repeat

property. The background position tells the browser where to place the background

when it starts to repeat, relative to the element on which the background is applied.

For example, a non-repeating background with a background-position property set

to “30px 40px” will position the background 30 pixels from the left and 40 pixels

from the top of the element on which it’s applied. You also have the option to use

keywords like top, left, center, right, and bottom.

Some of this might sound confusing on first read, but I encourage you to play around

with the values for all these properties to see the results of different combinations.

Experimenting is the best way to familiarize yourself with the subtleties of each

value combination, and this applies not only to backgrounds, but also to any complex

CSS feature. You’ll often use backgrounds in CSS, so it’s worth taking the time to

get to know this shorthand property and its longhand equivalents.

With this background in place, we now have some color in the RecipeFinder website

(besides the color photos, that is).

Borders
In our Photoshop file, in the “Latest Recipes” section on the left side of our sample

website, each image has a thick border—something that's currently missing in our

coded version.

65Backgrounds, Borders, and More

Figure 3.3. The “Latest Recipes” images in our design have borders

To add the border, we’ll use the border property, appending that to the existing

styles on the elements, which are targeted in our CSS as children of the .media

element:

.media img {
 float: left;
 margin-right: 30px;
 border: solid 9px #ede0d5;
}

Here we’re using the border shorthand property to define the following three

properties on a single line:

■ border-style, which accepts a number of keyword values like dotted, dashed,

and inset

■ border-width, which accepts a unit value
■ border-color, which accepts any valid CSS color value

For many shorthand properties, you can rearrange the values and the result would

be the same. But some shorthand properties require a specific order—for example,

the font property.

Figure 3.4 shows us what our “Latest Recipes” section will look like after adding

the border.

Jump Start CSS66

Figure 3.4. The “Latest Recipes” images with borders added

Rounded Corners
While we’re fixing up the images in the “Latest Recipes” section, let’s discuss how

we can easily add rounded corners to any element on the page. This is a technique

that has, for a long time, been carried out using images, extra HTML, JavaScript,

and other overly complex techniques.

For the RecipeFinder website, we won’t need to add any rounded corners to our

design, so we’ll use this as a temporary demonstration only. If we did want to add

rounded corners to each image, we could do so like this:

.media img {
 float: left;
 margin-right: 30px;

67Backgrounds, Borders, and More

 border: solid 9px #ede0d5;
 border-radius: 20%;
}

And this would have the effect shown in Figure 3.5.

Figure 3.5. It's easy to add rounded corners with CSS

Notice the new property being used: border-radius. The border-radius property

is a shorthand property that can accept up to four values. The values represent (in

order,) the top-left, top-right, bottom-right, and bottom-left corners. As is

the case with any shorthand properties that use unit values, any omitted values are

inherited from existing ones. See the section in Chapter 2 on shorthand for a review

of how this works.

You can explicitly target individual corners of an element using the longhand syntax.

For example, the following would be equivalent to the border-radius declaration

that we just used:

.media img {
 border-top-left-radius: 20%;
 border-top-right-radius: 20%;

Jump Start CSS68

 border-bottom-right-radius: 20%;
 border-bottom-left-radius: 20%;
}

You can see clearly why, in most cases, you’ll use the shorthand syntax. Even if

you want to target a single corner, it’s much more efficient to do this instead:

.media img {
 border-radius: 20% 0 0 0;
}

As mentioned above, our original design doesn’t use any rounded corners, so we

won’t employ this technique here. That said, it’s a good weapon to have in your

arsenal.

Values and Units
So far in the book, we’ve used a number of different types of values and units. Some

have been straightforward while others may have looked confusing at first glance.

Since values and units are an important part of CSS, it’s a good time to pause here

and explore this topic in a little more depth.

Probably the simplest way to understand these concepts is to see some examples

of the most common types of values and units, along with brief description of each.

In these examples, don’t worry too much about the parts of the code you don’t yet

understand; just focus on the parts being discussed.

Px Units
We’ve come across the px, or pixels, unit of measurement many times already. It

represents tiny squares that make up all elements on a web page:

.example {
 width: 200px;
}

To see what I’m referring to, Figure 3.6 shows a screenshot of part of the RecipeFind-

er logo, but zoomed in 1600% in Photoshop.

69Backgrounds, Borders, and More

Figure 3.6. The RecipeFinder logo zoomed in to show the pixels

At this magnification it's easy to see that the logo is made up entirely of those tiny

squares, or pixels. Pixels are the most common type of unit you see in CSS.

Em Units
The em unit is a little complicated to grasp at first, but once you get the hang of it,

it’s very useful:

.example {
 padding: 10em;
}

A single em is always equal to whatever the value is of the font-size property on

the element to which the em unit is applied. The font-size property defines the

size of the font, or text, on the element. Take the following example HTML:

<div class="box">
 <p>Let's em-phasize this point.</p>
</div>

And here’s the accompanying CSS:

Jump Start CSS70

.box {
 font-size: 20px;
 padding: 1.5em;
}

p {
 font-size: 14px;
 padding: 2em;
}

In this example, the 1.5em that’s defined on the .box element will be equal to

30px—remember, a single em is equal to whatever the font size is set to, making it

20px plus half of 20px. But on the child paragraph element (<p>), the value of em

will be 28px. This is because the font size is set on that element at 14px, making

the padding equal to 14px doubled.

Following so far? If you’re still confused, Table 3.1 may help you grasp how ems

are related to font size.

Table 3.1. Ems related to font size in pixels

18px17px16px15px14px

18px17px16px15px14px1em

27px25.5px24px22.5px21px1.5em

36px34px32px30px28px2em

45px42.5px40px37.5px35px2.5em

54px51px48px45px42px3em

The top row represents the font size for any given element. The left column repres-

ents the em units. So, for example, if the font size is 15px and you declare 2.5em

for something on that element, just run your finger across until you find the cell

that intersects 2.5em and 15px. This brings you to the cell that says 37.5px (or, 15px

multiplied by 2.5).

Rem Units
This is a newer CSS unit that’s worth getting to know. As you can see from the em

unit example we just discussed, em units can be a bit tricky to deal with, especially

71Backgrounds, Borders, and More

when their value is inherited from a parent element. The rem unit seeks to solve

this problem by calculating its value based on the font size of the <html> element.

Let’s use the same HTML from the em unit example to demonstrate rem units:

html {
 font-size: 22px;
}

.box {
 font-size: 20px;
 padding: 1.5em;
}

p {
 font-size: 14px;
 padding: 2rem;
}

Notice we’ve defined rem units on the paragraph element’s padding, but we’ve kept

the em unit on the padding of the .box element. So what will the “2rem” value

compute to?

Instead of calculating their value based on the element’s font-size value, rem units

calculate their value based on the font-size value set on the root element (hence

"rem," or "root em"). In all HTML pages, the root element is the <html> element. So

whatever font size is defined on that element (or whatever value the browser assigns

to it by default), will be equal to a single rem unit.

To understand this a little better, refer back to Table 3.1 from the previous section

on em units. All the values in the chart remain the same. In the case of em units,

the top row of pixel values represents the font-size value for the element on which

the ems are applied. But when using rem units, the top row of pixel values would

represent the font-size value for the <html> element of the page on which the rems

are applied.

The last point to mention here is that browser support for rem units is very good,

but not perfect. Older versions of Internet Explorer (versions 6-8) do not support

rem units. So if you are developing a website that has a large number of Internet

Explorer users, you may want to avoid using rems and stick with ems or pixels in-

stead.

Jump Start CSS72

Percentages
A percentage unit is defined using the % character. Percentage values are always

relative to another value on the element itself or on a parent element, which can

sometimes make them appear confusing. For example, in the case of the .box element

in the rule set shown, the 40% value will be 40% of the width of the immediate

parent element:

.box {
 width: 40%;
}

So if this .box element is inside an element that is 500px wide, then the .box ele-

ment’s width will be equal to 200px (which is 40% of 500px). If there is no set width

on the containing element, then the 40% will represent 40% of whatever the width

happens to equal within the browser window. Figure 3.7 might help you understand

this.

Figure 3.7. This box is set to width: 40%, making its width 40% of the available horizontal space in which it sits

The box is set to a width of 40%, and it’s centered inside the available horizontal

space. Notice in Figure 3.8 what happens when we increase the available space.

The width is still set to 40%, but the box is wider, because the available horizontal

space is larger.

73Backgrounds, Borders, and More

Figure 3.8. This box is again set at 40% width, but it’s larger because the available horizontal space it sits in is larger

Integers
Some CSS properties take integers—that is, whole numbers—as values. We’ve

already seen an example of this when we applied a z-index value to our .logo ele-

ment:

.logo {
 z-index: 10;
}

Here we set the z-index property to an integer value. In the case of integers, the

number is an absolute value, rather than being relative to anything else. In other

words, the z-index is equal to 10, with no hidden inherited values, which is different

from percentages or ems.

Keywords
We’ve already seen keyword values used a number of times while building Re-

cipeFinder. For example, you might remember the code we used to center different

elements on the page horizontally:

.center-global {
 width: 1020px;
 margin: 0 auto;
}

Notice the margin property uses a value of auto. This is an example of a keyword

value. Keyword values are basically any predefined word or set of characters that

form a single value for one or more properties.

Jump Start CSS74

One particular keyword that's available as a value for every CSS property is inherit.

This keyword value tells the browser to inherit the value for that property from the

value of the same property on its parent element.

Color Values
You’ve seen color values a number of times in the book so far. One of the most

common types of color values is referred to as hexadecimal notation, or “hex” for

short. We used this for the background color we defined on the <body> element of

RecipeFinder:

body {
 background-color: #cab5a3;
}

If we desired, we could set the exact same color using another type of color value:

RGB, which stands for "Red, Green, Blue." The following RGB color value will

produce the exact same result as the hex color from the previous declaration:

body {
 background-color: rgb(202, 181, 163);
}

Many CSS developers find RGB color values a bit easier to work with than hex,

because you can easily increment or decrement one of the three values (representing

red, green, and blue) to compare colors. Incidentally, RGB values range from 0 to

255 for each of the three values inside the parentheses.

You can also use HSL color values. Let’s use an online RGB to HSL converter1 to

find the HSL equivalent of the RGB color we defined in the previous example. Here’s

the HSL notation:

body {
 background-color: hsl(28, 27%, 72%);
}

HSL stands for Hue, Saturation, and Lightness, which are what the three values

inside the parentheses represent. The first value (the hue,) takes a value from 0 to

1 http://serennu.com/colour/hsltorgb.php

75Backgrounds, Borders, and More

http://serennu.com/colour/hsltorgb.php

359, with each number representing a different hue, or shade. The second value

represents the saturation level of the chosen hue—that is, how strong the hue should

appear—and is defined using a percentage. Finally, the lightness value tells the

browser how much white, or lightness, to add to the hue. A level of 50% is “normal,”

while 100% lightness will make any chosen color white, and 0% lightness will

make any color black.

In other words, each of the following examples will produce a background color of

pure white, even though they have different hue and saturation values:

body {
 background-color: hsl(28, 37%, 100%);
}

p {
 background-color: hsl(156, 40%, 100%);
}

And the following two examples will both produce pure black, even though, again,

the hue and saturation levels are different:

body {
 background-color: hsl(245, 63%, 0%);
}

p {
 background-color: hsl(59, 20%, 0%);
}

Transparency
There are a few different ways to achieve partially transparent or semi-opaque ele-

ments on a web page. The best-known way to do this is by means of images; that

is, using either a transparent GIF image or a transparent PNG image. You can use

Photoshop or virtually any other image editor to create semi-transparent images.

To avoid having to create extra image files, you can achieve transparency on an

HTML page using one of three different CSS features.

Jump Start CSS76

The Opacity Property
The opacity property lets you define how opaque an element should be. Let’s use

the opacity property on our logo, if only temporarily:

.logo {
 opacity: .5;
}

The opacity property takes a number value from 0 to 1, so you’re allowed to use

decimal values. Our example sets the opacity to .5. If we add this declaration to

the existing styles on our .logo element, it'll cause the logo to appear 50% opaque

(or, you could say, 50% transparent). Figure 3.9 displays a comparison of the logo

before and after adding the opacity property at 50% transparency.

Figure 3.9. The RecipeFinder logo with and without CSS transparency using the opacity property

Internet Explorer versions prior to version 9 don't support the opacity property, but

you can mimic the same effect using a special filter that works only in those older

versions of IE. So, if you wanted full browser support for the opacity property, you

would have to do this:

.logo {
 -ms-filter: "progid:DXImageTransform.Microsoft.Alpha(opacity=50)";
 filter: alpha(opacity=50);
 opacity: .5;
}

Don’t worry about the syntax of those first two lines; you can copy and paste those

from a number of sources online.2 The only parts of the code that you need to change

2 For example, http://www.impressivewebs.com/css-opacity-reference/.

77Backgrounds, Borders, and More

http://www.impressivewebs.com/css-opacity-reference/

are the values. On the first two lines, the 50 value represents 50 out of 100, which

is equivalent to the .5 value for the opacity property. In other words, if the opacity

property was set to a value of .34, the code with equivalent, old-IE syntax would

look like this:

.logo {
 -ms-filter: "progid:DXImageTransform.Microsoft.Alpha(opacity=34)";
 filter: alpha(opacity=34);
 opacity: .34;
}

Fortunately, because fewer and fewer people are using older versions of Internet

Explorer, you're unlikely to need to do this very often, if ever. Also, opacity settings

are a decorative feature that isn’t crucial to the functioning and accessibility of a

web page. So you should be okay to leave the IE filter lines out completely and allow

the page to degrade to no transparency on older versions of IE. It should also be

noted that those first two lines of code are not valid CSS, but they do achieve the

desired result.

RGBA and HSLA Colors
The other two ways to achieve transparency levels on elements using CSS are by

means of RGBA and HSLA color values. In this chapter, you’ve already seen the

syntax for RGB and HSL color values. The "A" in RGBA and HSLA stands for “alpha,”

representing a transparency channel as part of the color value. Let’s first use RGBA

on the background color of our footer element.

In our design, the footer element has a background color with a hex value of #42031e.

We haven’t added that color to the footer yet, so it still looks bare. Let’s set the

equivalent RGB value for the footer, and add an alpha (transparency) setting to the

syntax:

footer {
 background-color: rgba(66, 3, 30, .5);
}

Notice two points in this syntax, as compared to the RGB syntax we saw earlier.

Firstly, the notation is rgba() instead of rgb(). Secondly, we’ve added a fourth

comma-separated value, which represents the alpha channel. This fourth value in

Jump Start CSS78

the parentheses is set in the same way we set opacity: Using a decimal-based number

from 0 to 1.

But hold on a second! If we add this declaration to our footer element and refresh

the page, you’ll notice that nothing has happened (assuming you’ve been following

the example code up to this point). The reason we don’t see the background color

on the footer yet is because of the float-clearing problem we talked about in Chapter

2.

Currently there are three elements inside the footer, and each of those elements has

its float property set to a value of left. As we discussed, this means that those ele-

ments are taken out of the flow, causing their parent element to collapse, essentially

ignoring them. To fix this problem, we’ll add the cf class to our .footer-inside

element:

<div class="footer-inside center-global cf">

Now we can see our footer’s background color, and it appears as shown in Fig-

ure 3.10.

Figure 3.10. Our footer with an RGBA background color

Float Clearing 101

The float-clearing problem that sprung up again in this chapter as a result of

floating the elements inside the footer could occur multiple times during a project.

79Backgrounds, Borders, and More

So, if you're trying to figure out why a background color or background image is

not appearing, the first thing you should do is add the clearfix code to that element

(or overflow: hidden, if you prefer that method) and see if that fixes it.

What about HSLA? This works the same way as RGBA. So, if you want to define

an alpha setting on any HSL color, use hsla() notation and add a fourth value:

footer {
 background-color: hsla(334, 91%, 14%, .5);
}

This will achieve the same result, being the equivalent color in HSL, along with the

.5 alpha setting.

Having added this background color to the element, you’ll notice that the shade is

not exactly what we want. As we did with the opacity property on the .logo ele-

ment, we’ll remove the HSLA syntax, and just use plain RGB:

footer {
 background-color: rgb(66, 3, 30);
}

This gives us the background color we want, as shown in Figure 3.11.

Figure 3.11. Our footer with the correct background color

Jump Start CSS80

Opacity versus Color-based Transparency
If you’re going to choose a method to achieve transparency on one or more elements,

it's important to understand that there's a big difference between how transparency

is achieved using the opacity property compared to the transparency channel of the

color values we just discussed.

RGB, HSL, RGBA, and HSLA colors can be used anywhere in a CSS file where a

color value is accepted (such as on backgrounds and borders). But the opacity

property is applied directly on an element itself, rather than as a color value. This

has one major drawback: The opacity property makes, not only, the element itself

semi-transparent, but also everything inside that element. And compounding this

problem is the fact that there's no way to reverse the transparency on the child ele-

ments without removing it from the parent. As you might imagine, this is often an

undesirable result.

In most cases, this can be resolved by simply using a different method of achieving

transparency (such as a PNG image or RGBA color), but it’s good to know that this

occurs, so you can decide from the outset which transparency method is ideal. For

example, the opacity property would be best used on an image inserted via the

 tag whereas RGBA or HSLA transparency would be more suited for a solid

background color or transparency applied to text.

Other Values
There are additional types of values you might come across, or find useful, (for ex-

ample, ex, pt, or deg). We don't have the space to go into all of them in detail here.

Some will be covered to a degree in later chapters, but for the most part, the values

we’ve discussed in this chapter are those you’ll use most often.

Other values are useful in certain circumstances too, so try to become familiar with

some of those as well. If you’re up for it, you can find a full list and explanation of

each value in the official specification.3

3 http://www.w3.org/TR/css3-values/

81Backgrounds, Borders, and More

http://www.w3.org/TR/css3-values/

Adding Shadows to Elements
The RecipeFinder website is starting to show a little bit of color and style, but Fig-

ure 3.12 reveals what else is missing from our design.

Figure 3.12. Our original design has shadows that we haven’t yet added

Notice the red arrows pointing at various elements in Figure 3.12. All of these have

something in common: a subtle shadow attached to them, adding some depth to

the design.

We could achieve that look using images, but it's messy to do, sometimes requiring

extra HTML elements, or some kind of JavaScript trick. We can do it with pure CSS,

and the shadows we add will be flexible and easy to change should we want to

make any adjustments to them in the future.

Adding a Shadow to the Header
First, let’s add a shadow to the <header> element—the one at the top of the website

that sits above the big promo image. For this, we’re going to use the box-shadow

property:

Jump Start CSS82

body > header {
 box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
 position: relative;
 z-index: 10;
}

Before I explain what we’ve done with the box-shadow property, notice that we’ve

also positioned the <header> element relatively and added a z-index value of 10.

This is the same z-index setting we added to the .logo element.

After adding the box shadow without the z-index setting, you’ll see that the shadow

doesn’t overlay the image. This is because the big promo image appears after the

<header> in our HTML, thus overlapping it. Adding the new z-index declaration

fixes this problem. Also, since the .logo element is actually a child of the <header>,

we can remove the z-index declaration from that rule set, since all elements inside

the <header> will have the same z-index value as the <header> itself.

This is the kind of situation that happens often during a project: you’ll add one or

more CSS properties to an element and those new properties will make other existing

properties redundant, or ineffective. So try to keep a mental note of the properties

you’re adding throughout your project, and remove any redundant code.

The box-shadow property accepts up to six values. Here are those values in detail:

■ a color value (RGB, HSLA, hex, etc), which defines the color of the shadow

■ a horizontal offset (set with a length value)

■ a vertical offset (length)

■ Blur (a length value defining how blurry the shadow should appear)

■ Spread (length defining how far the shadow should spread)

■ An optional inset keyword is also allowed, which tells the browser to place the

shadow on the inside of the element, rather than outside it.

■ Multiple shadows can be added to a single element by comma separated sets of

values.

83Backgrounds, Borders, and More

In this case, our box shadow has no horizontal offset and no blur, and does not use

the inset keyword. Also, the color we’re using is pure black (represented by three

zeros in RGB,) and we’ve added an alpha value, setting the transparency level of

the black to 75% transparent (or 25% opaque). After adding these new styles, our

<header> should look like Figure 3.13.

Figure 3.13. A box shadow added to the bottom of the header

We’re still missing the background on the <header>, which is actually a gradi-

ent—that is, a combination of colors, transitioned smoothly. We’ll be discussing

gradients later in the book, so we’ll leave this as-is for now.

Adding a Shadow below the Promo Image
What else requires a drop shadow? Below the promo image, we have something a

little tricky. There’s not only the drop shadow, but just above that there’s a thick

border, which is attached to the bottom of the promo image. If we look closely at

that border, we find that like the header, it’s actually a gradient, as shown in Fig-

ure 3.14.

Figure 3.14. A close-up of the gradient and shadow at the bottom of the big promo section

This gradient border at the bottom of the .promo element is about 8px tall. To make

room for this, we’ll add 8px of padding to the bottom of the .promo element. The

subject of of the gradient will be included later in the book when we cover CSS

Jump Start CSS84

gradients. For now, we’ll include the shadow, adding to the existing styles on that

element:

.promo {
 position: relative;
 z-index: 5;
 padding-bottom: 8px;
 box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
}

This box shadow has the same values as the previous ones, keeping the look of the

two shadows consistent as in our Photoshop file.

Adding Shadows to Small Images
Where else do we need to add shadows? The images in the “Latest Recipes” section

also have drop shadows. Let’s add a shadow to our images, changing the values for

the shadow to accommodate this smaller set of elements:

.media img {
 float: left;
 margin-right: 30px;
 border: solid 9px #ede0d5;
 box-shadow: rgba(0, 0, 0, .25) 2px 2px 2px 0;
}

For this drop shadow, we’ve added a 2px horizontal offset (the first value after the

color) and we’ve reduced the vertical offset by one pixel. This gives us just about

the look we want; very similar to the original Photoshop mock-up.

Adding Shadows to Buttons
Finally, we have one more set of items to which we need to apply a box shadow:

the two big "cook it now!" and "discover more recipes" buttons.

At this point, we haven’t yet added any styles to our button elements, so they look

rather plain, consisting purely of text. Later we’re going to style those buttons with

gradients and add the correct font, but for now, let’s just add a height and width, a

temporary background color as a placeholder, and the necessary box shadows:

85Backgrounds, Borders, and More

.promo-btn {
 display: inline-block;
 width: 208px;
 padding: 13px 0;
 background-color: #6c0733;
 box-shadow: rgba(0, 0, 0, .25) 0 7px 2px 0;
}

Notice we’re using the display property with a value of inline-block. As discussed

in Chapter 2, all inline and inline-block elements are subject to text-based properties.

So, this will help us to center the element later when we start styling our text.

Notice that we've also assigned a set width to the button, but not a height. Instead,

we’re letting the height occur as a result of top and bottom padding, defined here

using padding shorthand. We’ve also added a background color and the necessary

box shadow.

The shadow is basically the same as the others—again using black at 25% opa-

city—but this time the vertical offset is a little larger. Figure 3.15 shows us how the

button looks at this stage.

Figure 3.15. The promo button with the shadow applied

As you can see, there’s still a lot of work to do on the button, not only aesthetically,

but also in terms of position on the page. Let’s fix some of that right now by adding

a set width to the element holding the promo text and button. You’ll recall, the

HTML for that section looks like this:

<div class="promo-desc">
<h1>Sweet and Sour Zucchini Puree</h1>
cook it now!
</div>

Jump Start CSS86

We’ll add the width to the .promo-desc element, like so:

.promo-desc {
 position: absolute;
 bottom: 93px;
 right: 75px;
 width: 316px;
}

Now the promo section looks like what’s shown in Figure 3.16.

Figure 3.16. A width added to the .promo-desc element

The other button on the page appears below the “Latest Recipes” section. We’re

going to use many of the same styles on that button, so let’s save a few lines of code

by doing the following:

discover more recipes

Here we’ve added the .promo-btn class to the Discover more recipes button, in addi-

tion to adding a secondary class. So this button will have all the styles of the original

button, including the shadow, but then we’ll make some modifications via the

.more-btn class:

.more-btn {
 text-align: center;
 float: right;

87Backgrounds, Borders, and More

 margin-right: 50px;
 width: 280px;
}

We’ll finish up the look of those buttons in the next two chapters.

Adding the Divider Shadow
The final shadow we’ll be adding to RecipeFinder is the divider that appears in

between the “Latest Recipes” column and the sidebar. Figure 3.17 shows how it

looks in our original design.

Figure 3.17. The divider shadow between the main columns

We won't be able to reproduce that shadow using just CSS, with no images. So, in

this instance, we’re going to revert to using an image, set as a background. After

getting the image out of our Photoshop design, the image will be added to the

.latest section, on the background, like this:

Jump Start CSS88

.latest {
 width: 640px;
 float: left;
 padding: 0 40px;
 background: url(../images/bg-column.png) no-repeat top right;
}

To position the shadow image (called bg-column.png), we'll use the "top" and "right"

keywords, which you’ll recall from our discussion on backgrounds earlier in this

chapter. This positions the image at the top right of the .latest section, giving us

the look we want.

What about text shadows?
The design for RecipeFinder doesn’t incorporate any shadows on text, but if you

want to apply shadows to text in your projects, you can do this easily using the text-

shadow property. The syntax for text-shadow is very similar to box-shadow.

Let’s add a text shadow to the “Latest Recipes” heading text so we can see how it

would look. Here’s the CSS:

h1 {
 text-shadow: rgba(0, 0, 0, .6) 5px 5px 4px;
}

Figure 3.18 shows us how this shadow will look on our page.

Figure 3.18. A temporary shadow added to heading text

As mentioned, this shadow is not part of the original design, so we won’t be keeping

it. The text-shadow property works exactly the same way as the box-shadow

89Backgrounds, Borders, and More

property, except for two key differences: There is no “spread” value allowed, and

there is no option to add the inset keyword for text-shadow.

With both text shadows and box shadows, you have the ability to use any kind of

color value for the color of the shadow. This is good to keep in mind, because a

shadow can be used to create a number of different effects—such as an outline, or

even a glow.

If you’d like to fiddle around with shadow values, there are a number of tools online

that let you do this, including the CSS3 Text Shadow Generator4 and the CSS3

Generator.5

Go Easy on Shadows

As is the case with anything, you always want to be careful not to overdo it with

special effects that are created in pure CSS. For example, features like shadows,

gradients, and rounded corners don’t use images, so some developers may feel

that it’s okay to add them to many elements.

Shadows in particular, however, have been demonstrated to cause web pages to

slow down considerably when the user is scrolling, or when the page is loading,

or even when some kind of animation is running.

Although you can put a shadow on every element on the page, and you also have

the option to layer multiple shadows on a single element, in many cases this could

be overkill and cause your page to become sluggish.

Summary
This chapter has helped us make the RecipeFinder website a little more visually

enticing, adding some color and depth. Along the way, we’ve learned about CSS

backgrounds, common units and values, different ways to achieve transparency,

and how to add shadows to elements with pure CSS.

In the next chapter, we’re going to cover a number of different text-related CSS

features, including styling links and using custom fonts.

4 http://css3gen.com/text-shadow/
5 http://css3generator.com/

Jump Start CSS90

http://css3gen.com/text-shadow/
http://css3generator.com/
http://css3generator.com/

Chapter4
Links, Text, and Custom Fonts
Our RecipeFinder project is coming along nicely. In this chapter we have a lot of

ground to cover, so let’s start by taking a look at a partial screenshot of RecipeFinder

(shown in Figure 4.1,) after adding all the code we’ve learned about in Chapters 1-

3.

At this stage in the coding of our RecipeFinder website, the biggest discrepancy

between the look of our page and that of the original Photoshop design is the styling

of text elements. Let’s learn a number of new CSS features to help us improve the

text on RecipeFinder so that it looks more like the original Photoshop design.

Figure 4.1. The current state of RecipeFinder

Styling Links and Text
The first thing we’re going to address here is the color of the links on the website.

By default, in all web browsers, text links (that is, elements marked up using HTML’s

<a> tag with the href attribute,) are displayed blue and underlined.

If you recall, the original design of RecipeFinder calls for all links to have a color

other than blue, and with no underline. Let’s add some CSS to our stylesheet to

begin correcting this:

a:link, a:visited {
 text-decoration: none;
}

Jump Start CSS92

You’ll remember that we covered different types of CSS selectors in Chapter 1, and

briefly touched on the fact that selectors can be combined using a comma. That’s

what we’re doing in this example, and it's called selector grouping.

To help you understand what this accomplishes, take a look at the following code:

a:link {
 text-decoration: none;
}

a:visited {
 text-decoration: none;
}

This longhand code would produce the same result as that in the previous code

block. You can easily see why the previous example is the better choice—we avoid

repeating the declaration. In a large CSS file, using selector grouping can save you

hundreds of lines of code.

Now let’s discuss exactly what we’re doing in that comma-separated selector group.

In both of the group's selectors, we’re using the element type selector to target <a>

elements, and we’re also using a pseudo-class for each.

The :link pseudo-class is something you’ll see from time to time, but it's rarely, if

ever, necessary. This pseudo-class targets all <a> elements that have an href attribute

set in the HTML (i.e, they're links). Theoretically, you could have an <a> element

without an href attribute defined, but you’ll only occasionally see that nowadays.

So, technically, we could do this instead:

a, a:visited {
 text-decoration: none;
}

Or even simply this:

a {
 text-decoration: none;
}

Notice that now we’re just targeting all <a> elements directly.

93Links, Text, and Custom Fonts

The :visited pseudo-class targets all links on the page that have been clicked, or

visited, by the user. With this pseudo-class, you can style visited links differently

from other links. For RecipeFinder, we’re going to keep the same styling for both

visited and non-visited links, so there's no need to use a separate :visited rule set.

But in some cases, it could improve the overall usability of a website if visited links

are identified with distinct styling.

Not Using :link

Because :link is somewhat redundant and adds some extra specificity, and be-

cause we won’t be giving any extra styling to :visited links, in the stylesheet

for RecipeFinder we’re going to stick with targeting our links using just the element

type selector, without :link or :visited, for all of our link styles.

Within the declaration block, we’re using the text-decoration property, with a

value of none, which removes any underline. The text-decoration property also ac-

cepts values of underline (the default), overline, and line-through, all of which

should be self-explanatory. It's also worth noting that, although until now text-

decoration has been treated as a single longhand property, it now represents a

shorthand for multiple text-decoration properties, which you can read about in

the official specification.1

Changing Link Color
Now that we’ve removed the underline, let’s change the color of our links. We need

to write more than just one declaration to do this, because different parts of the

website have different colors for links.

Let’s first define a global color for all text links:

a {
 text-decoration: none;
 color: #544a40;
}

And next we’ll target our main navigation links at the top of the page, and our two

buttons:

1 http://www.w3.org/TR/css-text-decor-3/

Jump Start CSS94

http://www.w3.org/TR/css-text-decor-3/

nav a {
 color: #fefefe;
}

As you can see, this example uses the descendant combinator to target the links.

You may recall from Chapter 1 that this is done by means of a space between two

selectors—in this case targeting all <a> tags that are inside of the <nav> element.

These last two rule sets use the color property to change the text color of the links.

Thus far in the book, we’ve used the color property in a few examples. In most

cases, you’ll use it to set the text color of an element, but the color property actually

represents more than just text color.

The color property defines all foreground colors on that element, and this includes

borders, list bullets, and even the text that appears in place of an image when an

image doesn’t load—defined in the HTML using the alt attribute on an tag.

Targeting multiple <nav>, <header>, or <footer> tags

In this book, we’re adding styles to a phony website called RecipeFinder, which

consists of just a single web page. In our HTML for this web page, we’re using one

<nav> element, one <header> element, and one <footer> element.

HTML5, however, allows us to define multiple <nav>, <header>, or <footer>

elements on a single page. Thus, if we were to add more of these elements to the

page, all the styles that we applied to those elements would also apply to the new

elements. This might not be the desired result.

To target multiple <nav>, <header>, or <footer> tags uniquely, we would have

to use a different selector, or use selector grouping. You can also add class names

and use the class selector, or some other type of selector, depending on the context

of the elements.

Another area on the page that needs a change in link styles is the “Yummy Tweets”

section in the sidebar. Let’s fix those and then move on to something else before

we take care of the rest of the link styles on the page:

.tweet a {
 color: #810430;
}

95Links, Text, and Custom Fonts

.tweet .date {
 color: #8f7e6d;
}

We've made two changes here: set the color for all links inside an individual tweet;

and set a unique color for the link that’s at the bottom of each tweet, which tells

the user when the tweet was sent. You’ll recall from Chapter 2 that each tweet’s

date is wrapped in a <div> element that has a class of “date”, so we’ve used that

class in our CSS to apply the unique styles.

Setting Global Styles

The styles we added to all links on the page are what we might term “global”

styles, because they apply to all links on the page that aren’t styled otherwise.

These differ from styles applied to links that are in a certain context (such as links

in a .tweet element). There are other global styles that you’ll want to get in the

habit of adding to your CSS at the start of a project.

One such example is the text color set on the <body> element. The RecipeFinder

design doesn’t have any common text elements—like a paragraph of text—that

we can use to identify a global text color. But we can use something like a dark

gray that’s commonly used for body text:

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat
➥repeat 0 0;
 color: #333;
}

In our case, this won’t be particularly noticeable after we finish styling the rest

of the text on the page. That said, it'll serve as a default text color everywhere that

text color isn’t specifically defined.

Similarly, you might have other generic font styles applied to elements like h1,

h2, h3, p, and so forth. Although we’re not doing this extensively on RecipeFinder,

it’s something you’ll want to do on most projects. This'll help you avoid having

to add too many unnecessary classes on elements that can just be styled by targeting

them using the element type selector.

Jump Start CSS96

Later in this chapter, we’ll fix up the rest of the text styles for all the sections of

RecipeFinder, but for now let’s discover the concept of embedding custom web

fonts, which you’ll be doing often on the websites you build.

Using Custom Web Fonts
At this point, there are a few style changes we want to make to the text on RecipeFind-

er, including changing the size of the text. But before we attempt that, we need to

get the correct fonts to display on our web page. For this design, we’ve used two

custom fonts, shown in Figure 4.2—a screenshot depicting part of the sidebar in

the original Photoshop design.

Figure 4.2. RecipeFinder uses two different fonts, both used in the Most Popular section in the sidebar

The heading that says “Most Popular” is set using a font called “Chelsea Market”

and the other text is set using a font called “Lato.” You’ll notice these are the two

primary fonts used in our design. Let’s define them in our CSS and see what happens.

Of the two fonts, Lato is the most prevalent throughout the page, with Chelsea

Market being used mainly for headings. Here’s what we’ll do:

97Links, Text, and Custom Fonts

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
 color: #333;
 font-family: Lato;
}

You'll see we’ve added a declaration to the rule set defining the styles for the <body>

element on RecipeFinder. This new declaration defines the font-family property,

with the Lato font as the property’s value. font-family accepts one or more font

names, separated by commas. So in this case, we could expand the declaration to

look like this:

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
 color: #333;
 font-family: Lato, Arial, Helvetica, sans-serif;
}

But if we apply this declaration to our website and refresh the page, we won’t see

anything change. This is because, in order to display a font on a web page using the

font-family property, the user who visits the web page needs to have that font in-

stalled on their computer or mobile device’s operating system. Most users are

probably not going to have the Lato font installed, which is why we're not seeing

it displayed. In this situation, we’re seeing the default sans-serif font, which is

specified in Normalize.css (which we added to RecipeFinder in Chapter 2). Without

Normalize.css, you would likely see a serif font like Times New Roman.

Commonly Installed Fonts

If you would like to know the fonts that are commonly installed on most computers,

see http://www.ampsoft.net/webdesign-l/WindowsMacFonts.html.

When separating the font names via commas in the font-family declaration, we’re

defining what’s called a font stack. The browser will read this and then display the

first font that it recognizes. Just in case none of the fonts are defined, the last option

we’ve included is a generic font family. This tells the browser to display the text

using the default sans-serif font that’s installed on the user’s system. Other generic

font families include serif, monospace, and cursive. We've chosen sans-serif because

Jump Start CSS98

http://www.ampsoft.net/webdesign-l/WindowsMacFonts.html

the Lato font is a sans-serif font—that is, it doesn’t have serifs, which are small lines

that trail from the extremities of the font2.

Using @font-face
While it 's good to know how to stack fonts to ensure there’s a back-up plan for

when the original font isn’t available, we want to do whatever we can to make sure

the primary font is loaded. To do this, we have to include the font using @font-

face. You’ll recall, in Chapter 2, we briefly learned about the @media at-rule. @font-

face is another type of at-rule. It enables us to embed custom fonts in our stylesheet

and then use them by name, employing the font-family property.

Here’s how we set the @font-face rule to include the Lato font on RecipeFinder:

@font-face {
 font-family: Lato;
 src: url('lato-regular-webfont.eot');
 src: url('lato-regular-webfont.eot?#iefix') format
➥('embedded-opentype'),
 url('lato-regular-webfont.woff') format('woff'),
 url('lato-regular-webfont.ttf') format('truetype'),
 url('lato-regular-webfont.svg#latoregular') format('svg');
 font-weight: normal;
 font-style: normal;
}

Rest assured that this section of code is not as complicated as it looks. In the majority

of situations where it'll be employed, it won't be necessary to understand much

about it.

What this section does is include the Lato font, using all of the code necessary to

ensure it loads on as many browsers and operating systems as possible. The only

parts of this code that it's useful to be familiar with are: the file names of the different

font files, which should all point to valid files (more on this in a moment); and the

font-family declaration at the top, which is the name of the font we’ll use later in

the CSS (and which we’ve already used in one declaration block example in this

chapter).

2 http://en.wikipedia.org/wiki/Sans-serif

99Links, Text, and Custom Fonts

http://en.wikipedia.org/wiki/Sans-serif
http://en.wikipedia.org/wiki/Sans-serif

To ensure cross-browser compatibility, the syntax for the @font-face at-rule embeds

the font using four different font types (EOT, WOFF, TTF, and SVG). The browser

will load whichever version of the font it can. And it does this without loading any

of the other versions, thus giving the user the fastest (and therefore best,) possible

experience.

There’s much more to this syntax than we have the space to cover here. To read up

on this subject, check out the article “The New Bulletproof @font-face Syntax” on

fontspring.com.3

Including the Different Font Files
If we examine the big @font-face code block above, we see that it references four

different font files that we haven’t yet included in our project’s source files. So how

do we do we go about adding these?

For the RecipeFinder website, we intentionally selected a pair of fonts that are freely

available for embedding as web fonts. That’s to ensure we don’t have to worry about

font licensing issues. Whenever including a font using @font-face, it's important

that the font specifically allows for embedding using @font-face. Some fonts can

be included on web pages using images or another format, but not via @font-

face—even if it's been paid for. So be sure to check the font license before making

your choice.

The safest way to find free fonts that allow @font-face embedding is to use an online

font service that specializes in free web fonts. Two highly recommended services

are Google Web Fonts4 and FontSquirrel.5 Both the Lato and Chelsea Market fonts

are available on Google Web Fonts, so that’s the service we’ve used to obtain these

free fonts.

When choosing a font using Google Web Fonts, it's not required to download the

font and include it in the website’s source files. Instead, simply use Google’s linked

CSS file for that particular font, and Google will do the heavy lifting. Figure 4.3

shows the code for the Lato font as it appears on Google Web Fonts, ready to copy

and paste.

3 http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
4 http://www.google.com/fonts/
5 http://www.fontsquirrel.com/

Jump Start CSS100

http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.google.com/fonts/
http://www.fontsquirrel.com/

Figure 4.3. The code for the <link> tag to include a font from Google Web Fonts

You can find this code for any font on the Google Web Fonts service by searching

for the font, then clicking the Quick Use button for that font.

If we decided to use this method to include Lato, this chunk of code would be placed

in our HTML, above our other CSS file references, like this:

<link href='http://fonts.googleapis.com/css?family=Lato:400,700'
➥ rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/styles.css">

This uses the <link> tag that we learned about in Chapter 1, where we discussed

all the different ways to include CSS in a web page. Once we have that in place, we

just need to define the font-family property in our CSS using the correct name for

the font. We can see the name referenced in the URL, where it says “family=Lato”.

So, in this instance, our font declared for the <body> element would look like this,

with fallbacks listed:

101Links, Text, and Custom Fonts

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
 color: #333;
 font-family: Lato, Arial, Helvetica, sans-serif;
}

RecipeFinder includes the Lato font in two different styles: regular and bold. These

styles are represented by the numbers “400” (for regular) and “700” (for bold), and

these are appended to the file reference in the <link> tag so that Google knows

which font variations to reference in the CSS file. And so, if we want to include the

Lato font in bold, we do the following:

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
 color: #333;
 font-family: Lato, Arial, Helvetica, sans-serif;
 font-weight: 700;
}

This declaration block uses another new property, the font-weight property. This

defines the weight, or heaviness, of the font. The default is “normal”, and it can

also be set to “bold”, “lighter”, “bolder”, or the numbers “100”, “200”, “300”, up

to “900”—but only in increments of 100. It's worth noting, however, that these dif-

ferent values will work only if the font itself allows for the weights specified.

In this example, we could use either a value of “700” or a value of “bold”—they

have exactly the same effect as one another.

Generating the Font Files
In the case of RecipeFinder, we’re not going to use the Google Web Font embedded

<link> tag code. Instead, we’ll use the @font-face declaration directly. We’re taking

this slightly more complicated route so that we can cover the full process of adding

a licensed custom font to a web page. As mentioned earlier, the typical cross-browser

syntax for @font-face includes four different files. Let’s find the Lato and Chelsea

Market fonts on Google Web Fonts so we can generate all the files we’ll need.

Go to Google Web Fonts and type “Chelsea” in the search field on the left side of

the page, as shown in Figure 4.4

Jump Start CSS102

Figure 4.4. Finding the Chelsea Market font on Google Web Fonts

You’ll see the Chelsea Market font appear on the right side in the search results.

Click the button that says Add to Collection, as shown in Figure 4.5.

Figure 4.5. Each font on Google Web Fonts has an Add to Collection option

This adds the font to a temporary collection that we can download at any time. Now

do the same for the Lato font: search for it, and then add it to your collection.

After adding these two fonts, you should see a message at the bottom of the screen

that says “2 font families in your Collection”. You should also see a link at the top

right portion of the window that says “Download your Collection”. Click the

download button, and you’ll see the message shown in Figure 4.6.

103Links, Text, and Custom Fonts

Figure 4.6. A warning about downloading the fonts

Ignore the warning next to the red exclamation mark. That’s just a reminder that

you don’t have to actually download the fonts, since Google hosts them for you,

and lets you embed them with the <link> tag, as shown in the previous section.

However, on this occasion, we’re going to do this manually purely to learn the

process. So ignore the warning and continue to download the file by clicking the

link Download the font families in your Collection as a zip-file.

When prompted, choose a location on your computer to save the zip file, then find

the file and unzip it. Once unzipped, there'll be two different folders: one for Chelsea

Market, and the other for Lato. In the Chelsea Market folder there’s only a single

TTF font file, so let’s start with that.

We want to take that file and use it to produce three additional font files, and we

can do so using another free service, this one provided by FontSquirrel. It’s called

the Webfont Generator,6 and it’s very easy to use.

Go to the Webfont Generator URL and click the button that says Add Fonts.

When we click that button, we'll be prompted with a system file dialog, asking us

to add a font. Navigate to the font collection we downloaded from Google Web

Fonts, find the TTF font for Chelsea Market, and select it to be uploaded.

Now we'll repeat the process for the Lato font, again clicking the Add Fonts button

and then navigating to the Lato folder. This time, there'll be ten different TTF font

6 http://www.fontsquirrel.com/tools/webfont-generator

Jump Start CSS104

http://www.fontsquirrel.com/tools/webfont-generator

files. We don’t need them all, so select only the ones called Lato-Regular.ttf and

Lato-Bold.ttf. Once all three files are added, the Webfont Generator page should look

as shown in Figure 4.7.

Figure 4.7. After adding three fonts to the Webfont Generator

Notice the red text next to the checkbox that says, “Yes, the fonts I’m uploading are

legally eligible for web embedding.” Since we know that these fonts are legally eli-

gible for embedding, we'll go ahead and check that box. A Download Your Kit button

will now appear. Click it to download all the files necessary for embedding the

Chelsea Market and Lato fonts.

Once the zip file that FontSquirrel generates has downloaded, open it to find all

the files we need, including a sample CSS and HTML file to show us how to include

the fonts in our CSS. Open the file called “stylesheet.css” in a text editor to see three

different @font-face declarations. Copy all three of those and put them into the

RecipeFinder CSS file, just before the declaration block that targets the <body> tag.

Our CSS should look something like this:

105Links, Text, and Custom Fonts

@font-face {
 font-family: 'chelsea_marketregular';
 src: url('chelseamarket-regular-webfont.eot');
 src: url('chelseamarket-regular-webfont.eot?#iefix') format
➥('embedded-opentype'),
 url('chelseamarket-regular-webfont.woff') format('woff'),
 url('chelseamarket-regular-webfont.ttf') format('truetype'),
 url('chelseamarket-regular-webfont.svg#chelsea
➥_marketregular') format('svg');
 font-weight: normal;
 font-style: normal;
}

@font-face {
 font-family: 'latobold';
 src: url('lato-bold-webfont.eot');
 src: url('lato-bold-webfont.eot?#iefix') format('embedded-
➥opentype'),
 url('lato-bold-webfont.woff') format('woff'),
 url('lato-bold-webfont.ttf') format('truetype'),
 url('lato-bold-webfont.svg#latobold') format('svg');
 font-weight: normal;
 font-style: normal;
}

@font-face {
 font-family: 'latoregular';
 src: url('lato-regular-webfont.eot');
 src: url('lato-regular-webfont.eot?#iefix') format('embedded-
➥opentype'),
 url('lato-regular-webfont.woff') format('woff'),
 url('lato-regular-webfont.ttf') format('truetype'),
 url('lato-regular-webfont.svg#latoregular') format('svg');
 font-weight: normal;
 font-style: normal;
}

body {
 background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
 color: #333;
 font-family: Lato, Arial, Helvetica, sans-serif;
}

Now we have all three fonts referenced in our CSS, but we have to make sure the

file references are correct. Let’s go back to the zip file of generated fonts we down-

Jump Start CSS106

loaded from FontSquirrel, so we can grab the 12 files we need for this: the EOT,

WOFF, TTF, and SVG versions of each of the three fonts.

Let's create a folder in our website’s main folder called fonts, and copy all 12 of

those files into that new fonts folder. Assuming our CSS file is inside a folder of its

own, the font file references in our @font-face declarations are now incorrect. So,

our next job is to make some changes to our @font-face declarations. Here’s the

one for Chelsea Market, corrected:

@font-face {
 font-family: 'ChelseaMarket';
 src: url('../fonts/chelseamarket-regular-webfont.eot');
 src: url('../fonts/chelseamarket-regular-webfont.eot?#iefix')
➥ format('embedded-opentype'),
 url('../fonts/chelseamarket-regular-webfont.woff') format
➥('woff'),
 url('../fonts/chelseamarket-regular-webfont.ttf') format
➥('truetype'),
 url('../fonts/chelseamarket-regular-webfont.svg#chelsea_
➥marketregular') format('svg');
 font-weight: normal;
 font-style: normal;
}

Notice that a few things have been changed here. ../fonts/ has been added in front

of all the file references, which matches the fact that the files are located up one

level in relation to the CSS file, and inside the fonts folder.

The other change to note is the value for font-family to ChelseaMarket. The pre-

vious value (chelsea_marketregular) would work fine, but was tricky to remember.

This name, as defined in this location, can be anything we want. We just have to

ensure that we use the exact same name when we reference this font in our CSS,

which we’ll do in a moment.

With that in place, we can make similar changes to our two Lato @font-face declar-

ations:

@font-face {
 font-family: 'LatoBold';
 src: url('../fonts/lato-bold-webfont.eot');
 src: url('../fonts/lato-bold-webfont.eot?#iefix') format('

107Links, Text, and Custom Fonts

➥embedded-opentype'),
 url('../fonts/lato-bold-webfont.woff') format('woff'),
 url('../fonts/lato-bold-webfont.ttf') format('truetype'),
 url('../fonts/lato-bold-webfont.svg#latobold') format
➥('svg');
 font-weight: normal;
 font-style: normal;
}

@font-face {
 font-family: 'Lato';
 src: url('../fonts/lato-regular-webfont.eot');
 src: url('../fonts/lato-regular-webfont.eot?#iefix') format('
➥embedded-opentype'),
 url('../fonts/lato-regular-webfont.woff') format('woff'),
 url('../fonts/lato-regular-webfont.ttf') format('truetype'),
 url('../fonts/lato-regular-webfont.svg#latoregular') format
➥('svg');
 font-weight: normal;
 font-style: normal;

With those three declarations ready and using the correct file references, we can

reference any of those fonts on any element on the page, and the browser will render

the font in harmony with the original design.

@font-face Review
So far in this chapter, we’ve covered a lot of ground in regards to @font-face and

embedding web fonts. Just to help you grasp all this info, here are the main points

to take away:

■ Custom web fonts can be included on a web page using any number of web font

services, including free services such as Google Web Fonts and FontSquirrel.

■ If you don’t use @font-face, you may only use fonts that are available on a user’s

operating system.

■ The most effective way to ensure cross-browser support for your custom embed-

ded fonts is to use the @font-face syntax that references four different font files.

Jump Start CSS108

■ After embedding any custom font using @font-face, you need to use the font-

family property in your declaration blocks to specify where that font should be

used on the page.

■ The name of the font defined in the font-family property needs to be the exact

same font-family name defined in the @font-face declaration.

■ To ensure the best experience possible, you can define a font stack on the font-

family property, for those rare instances when the custom font doesn’t load.

■ To use a font with @font-face, you must read the license for that font and ensure

that it allows for @font-face embedding. This is necessary even if you have

paid for the font.

Using Our New Fonts on RecipeFinder
As we've seen from this chapter so far, web fonts are a complex matter to deal with.

Now that we have our fonts embedded on our page, and ready to use, let’s see where

we can identify some further uses for them. We’ll also make some other typograph-

ical adjustments and, in the process, cover a few new CSS properties.

So far, we’ve applied the Lato Regular font (the non-bold version of Lato) on our

<body> element. Fonts defined using font-family are inherited by child elements,

so this applies the Lato font to all the text on the page. Not all CSS properties behave

like this—something you’ll learn from gaining more experience with different CSS

properties. For example, applying 20px of padding to the <body> element would

apply the padding only to the <body>, not to any elements inside the <body>.

In our original design, the main navigation and all the headings use Chelsea Mar-

ket—one of the other fonts we embedded with @font-face. Not only that, but all

the text set in Chelsea Market is in uppercase. Here’s the CSS we’re going to add to

our stylesheet:

h1, h2, nav {
 font-family: ChelseaMarket, Arial, Helvetica, sans-serif;
 text-transform: uppercase;
 font-weight: normal;
}

109Links, Text, and Custom Fonts

The first thing to note is that we’re grouping selectors so we can target multiple

element types at once. It's also worth noting that, although we’ve applied the Chelsea

Market font to all of our <h2> elements, we’ll have to override that behaviour later

in our CSS file for some of our other <h2> elements, which don’t use Chelsea Market.

Next, after we set the Chelsea Market font, with fallbacks in the font stack, we’ve

also added a new CSS property, the text-transform property. In addition to upper-

case (which sets all the text to uppercase for those elements), this property can ac-

cept values of capitalize (which makes the first letter of every word uppercase),

lowercase, and none (which is the default). Lastly, we’ve set the font-weight for

these elements to normal. By default, all browsers add certain levels of styling for

heading elements (<h1>, <h2>, <h3>, etc.), including bold, and we want to ensure

that the Chelsea Market font displays without any browser-added styles.

After adding that rule set, our page should look something like Figure 4.8.

Jump Start CSS110

Figure 4.8. After adding our custom fonts and making the Chelsea Market text uppercase

Before we move on to the Lato font and the headings further down on the page, let’s

address the size and alignment of the text in the main navigation. We already added

the uppercasing, but what else is missing? There are two things we can correct here:

First, we’ll bump the size of the font up to 20px, and then we’ll fix an extra margin

issue.

In our CSS, we already have a selector targeting the list items inside our navigation,

so let’s add one line to that rule set, and add another rule set below it:

nav ul li {
 display: inline-block;
 display: inline; / for IE7 */
 margin-right: 30px;
 font-size: 20px;

111Links, Text, and Custom Fonts

}

nav ul li:last-child {
 margin-right: 0;
}

Here we’ve adjusted the font size to 20px, which adds to the existing styles on our

list items inside the <nav> element. But more importantly, we’ve introduced a new

selector: the :last-child pseudo-class.

In Chapter 2, we added a 30px right margin on all of our list items. This caused the

navigation section to be pushed too far to the left. We also set the <nav> section to

have 177px of right margin, but there’s an extra 30px added to that because of the

30px right margin set on the last list item.

The :last-child pseudo-class used in combination with the “nav ul li” selector

tells the browser to target only the last list item. Here we’ve set the right margin

back to 0, giving us the correct amount of space.

This is a good method to keep in mind because it's often desirable to remove styles

on specific elements—say, the first or last element. CSS offers not only :last-child,

but also :first-child, and a number of other pseudo-classes.7 Using these special-

ized selectors prevents us from having to add extra classes or IDs to elements, which

would be the only other way, using CSS, that we could target a single list item in

an HTML list that has more than one list item.

Cleaning Things Up
Now that we’ve corrected the look of the text in the navigation, let’s see what else

we can improve. The text in the promo area that overlays the big promo photo needs

to be aligned differently, so let’s fix that by adding to the existing styles in our

.promo-desc declaration block:

.promo-desc {
 position: absolute;
 bottom: 93px;
 right: 75px;

7 http://reference.sitepoint.com/css/css3psuedoclasses

Jump Start CSS112

http://reference.sitepoint.com/css/css3psuedoclasses

 width: 316px;
 text-align: center;
}

Here we’ve added the text-align property with a value of center. This property

can take a value of left, right, center, or justify. Using center here, not only

is the text centered, but this also centers the button that appears below the text. As

we learned earlier in the book, the button (which is an <a> element in the HTML)

is an inline element converted to an inline-block element, thus it's subject to typo-

graphic styles. If this were a block-level element such as <div> or <p>, and were

not converted to inline-block, it would not center, because block-level elements are

not in text flow and, as a result, are not subject to typographic styles.

We would also like to set the correct color for the various headings on the page.

Most of these have the same color, so what we’ll do is expand on the grouped selector

rule set we defined a little earlier:

h1, h2, nav {
 font-family: ChelseaMarket, Arial, Helvetica, sans-serif;
 text-transform: uppercase;
 font-weight: normal;
 color: #810430;
}

Here we’ve added the color property set to a value of #810430, which is a burgundy

shade that is sampled from the original Photoshop file. Two of our headings, how-

ever, shouldn’t be this color—they should be a near-white shade. These headings

have been indicated in Figure 4.9.

113Links, Text, and Custom Fonts

Figure 4.9. Some of our headings are the wrong color

Let’s correct the colors on those two headings now, matching what’s in our design

and overriding the burgundy we just set:

.promo-desc h1 {
 color: #fefefe;
}

Once again, we're using the descendant combinator that we learned about in Chapter

1 to target the <h1> element inside the .promo-desc element.

Next we’ll correct the look of the <h2> headings that appear inside the .media blocks

that we defined in our CSS earlier in the book. Here’s the code, targeting all <h2>

elements inside .media blocks:

.media h2 {
 color: #49301a;
 font-family: LatoBold, Arial, Helvetica, sans-serif;
 font-weight: normal;

Jump Start CSS114

 font-size: 26px;
 margin-bottom: 5px;
}

There's something that might seem a bit paradoxical here. After defining the font

as LatoBold (along with the fallback fonts), the next declaration defines the font-

weight property as normal (as opposed to bold), which removes bolding from the

font. So why would we remove the bolding from a font that’s naturally bold?

Well, the font itself has a certain level of bolding already built in. That’s why it’s

called Lato Bold. As we've already noted, heading elements are set as bold by

browsers, as a default. This default setting makes the font bolder than we want, so,

in this case, we’re better off removing it. In addition to this, we’ve defined the correct

font size for these headings.

Next we’ll fix the styles for the text that appears under each of the <h2> headings

inside the .media elements. This text appears inside paragraph tags. And while

we’re at it, we’ll correct the margin spacing between the <h2> and the paragraph so

it's more in line with the original design:

.media p {
 margin: 0;
 font-family: Lato, Arial, Helvetica, sans-serif;
 font-size: 18px;
 color: #7b6047;
 text-transform: uppercase;
}

 .media p span {
 font-size: 25px;
 }

There aren’t any new properties here, but we have added a new rule set, targeting

 elements inside paragraphs in the .media blocks. Why did we include this?

Figure 4.10 shows us how the original design looks for each .media element in the

“Latest Recipes” section.

115Links, Text, and Custom Fonts

Figure 4.10. A single “Latest Recipes” entry from our original design

Notice that the number indicating the minutes for cooking time is bigger than the

rest of the text. With CSS, there's no way to target a specific section of a piece of

text that is in the middle of a block of text, so here’s what we’ve done in our HTML:

<div class="media">

 <h2>Zesty Smoked Haddock Skewers</h2>
 <p>Cooking time: 20 minutes</p>

</div>

Notice the tags wrapped around the number. By doing this, we now can

style that part of the text in any way we want. In this case, increasing the font size

does the trick.

We also want to give the text for our two button elements the correct size and color,

so let’s do that now:

.promo-btn {
 display: inline-block;
 width: 208px;
 padding: 13px 0;
 background-color: #6c0733;
 box-shadow: rgba(0, 0, 0, .25) 0 7px 2px 0;
 font-size: 20px;
 color: #fefefe;
}

Jump Start CSS116

Remember that the .promo-btn class applies to both buttons, working as a base rule

set. The second button also has a class of .more-btn, which allows us to add other

styles that are unique to the second button.

Styling the Footer Section
We have a few other formatting improvements we want to make to our page, in

particular in the footer and the sidebar. You’ll recall that in Chapter 2, we took care

of the layout of both the footer and the section in the sidebar called “Most Popular,”

and we started to fix the styles in the “Yummy Tweets” section earlier in this chapter.

We’ll now clean up the look of the text in those sections.

Let’s run through the additions to the different parts of the footer. First, we want to

remove all the list bullets from the unordered lists in all the footer sections, and fix

some of the margins and padding to match the design. We'll do this by adding to

an existing declaration block, and adding a new declaration block to target the

elements in the footer:

footer {
 background-color: rgb(66, 3, 30);
 padding-top: 10px;
 padding-bottom: 50px;
}

...

 footer ul {
 list-style: none;
 margin: 0;
 padding: 0;
 }

Next, we’ll correct the text styles for the .footer-1 and .footer-2 elements, which

hold the sections called “Recipe Categories” and “Contributors”:

.footer-1 h2 {
 font-size: 36px;
}

.footer-1 ul, .footer-2 ul {
 text-align: center;

117Links, Text, and Custom Fonts

 font-size: 20px;
 line-height: 1.7;
}

 .footer-1 li {
 float: left;
 width: 195px;
 }

 .footer-1 ul a,
 .footer-2 ul a {
 color: #ab97a0;
 }

Notice that, here, we’re taking full advantage of grouped selectors and descendant

combinators. We’ve also added a float to the list items in the .footer-1 section.

This helps get the two-column look that we see in the original Photoshop design.

The line-height Property
The chunk of code in the previous block adds a new property: line-height. This

property defaults to a value of “normal” and is used to define the height of each

line of text in the targeted section of the page. line-height is the web page equival-

ent to the printing industry’s leading.8

With a little bit of experimenting, line-height reveals itself to be a very useful tool

for optimizing the readability of text, and ensuring that it looks just the way we

want it. The line-height property accepts values using most of the units we’ve

discussed already, including a unitless number value, which is what we’re using

here, and is the recommended way to define line-height.

If we use a unitless number value for line-height, the value will compute to the

number multiplied by the current font size of the element to which it’s applied. In

this case, we’ve defined the line-height at 1.7, with no unit. The font size for the

element is set at 20 pixels. Thus, the line-height of 1.7 is equivalent to 34 pixels.

Some of the previous styles included the .footer-2 element as part of a few grouped

selectors, fixing some of the styling issues. Let’s finish up our .footer-2 section,

by adding to our existing styles:

8 http://en.wikipedia.org/wiki/Leading

Jump Start CSS118

http://en.wikipedia.org/wiki/Leading

.footer-2 {
 float: left;
 width: 326px;
 padding-top: 22px;
}

 .footer-2 ul {
 margin: 0 80px 0 0;
 }

There's nothing new here—just some alignment corrections in harmony with what’s

in the design.

And finally, here is the CSS for the last section in our footer, the “Colophon”:

.footer-3 {
 float: left;
 width: 232px;
 color: #801c48;
 padding-top: 22px;
}

 .footer-3 h2, .footer-3 a {
 color: #801c48;
 }

 .footer-3 li {
 line-height: 1.7;
 }

Again, all familiar properties, and we’ve repeated the same line-height value on

the list items.

While we’re in the footer, if you’ve been following along with all the code step by

step, you’ll notice that there needs to be some space between the top of the footer

and the content above it (specifically the Discover More Recipes button). Let’s correct

that now by adding a declaration to our .main rule set:

.main {
 padding-bottom: 33px;
}

119Links, Text, and Custom Fonts

This rule set originally held a margin and width declaration that we later switched

to a .center-global class in Chapter 2.

Adding Styles to Text in the Sidebar
The last change we'll make to RecipeFinder, in this chapter, is to add some styles

to the text on the “Most Popular” and “Yummy Tweets” sections, found in the

sidebar, in line with the original design. Let’s first address the "Most Popular" section,

adding to the layout styles we started to define in Chapter 2:

.rating {
 float: left;
 clear: left;
 padding-top: 4px;
 padding-right: 15px;
 width: 45px;
 color: #810430;
 font-size: 13px;
}

.pop-item {
 padding-bottom: 20px;
 float: left;
 width: 250px;
 text-transform: uppercase;
 font-size: 18px;
}

 .pop-item a {
 color: #544a40;
 }

Once again we’re utilizing the text-transform property, and we’ve defined specific

font sizes. Now this section should look like Figure 4.11.

Jump Start CSS120

Figure 4.11. The “Most Popular” section in our sidebar now has the look we want

And finally, we want to finish off the styling of the “Yummy Tweets” section. First,

we’ll add a line-height declaration to fix the space between lines, in harmony with

the original design:

.tweet {
 padding-left: 55px;
 padding-right: 20px;
 position: relative;
 line-height: 1.4;
}

And next we’ll improve the look of the text in the .date element:

.tweet .date {
 color: #8f7e6d;
 font-faily: Arial, sans-serif;
 color: #8f7e6d;
 font-size: 12px;
 font-style: italic;
}

121Links, Text, and Custom Fonts

In addition to the family, color, and size, this declaration block includes a property

new to us: font-style. The font-style property does exactly what its name sug-

gests, accepting values of normal (the default), italic, and oblique. For all intents

and purposes, italic and oblique are basically the same, causing the text to slant.

The difference can only be seen if the font to which this property is applied has the

capability to differentiate between the two.

Summary
With all these new link and typographic styles in place, the look of RecipeFinder

is very close to what we want to achieve. In fact, visually, it could pass for a pretty

good-looking website—even in this incomplete form!

However, we’re not quite finished. In the next chapter we’re going to look at some

of the fancy new effects that have been added to CSS in the last few years, and see

how to add some to our web pages.

Jump Start CSS122

Chapter5
Getting Fancy
The look of RecipeFinder has now advanced to the latter stages. We have the layout

of all elements in place, along with all the correct fonts and text sizes.

Figure 5.1 shows a screenshot of RecipeFinder after completing all the code from

Chapters 1-4.

It's looking good but, compared to our original Photoshop file, there are still a few

elements missing: the background gradients on the header and button elements. As

mentioned earlier, we intentionally left those unfinished so we could deal with

them in this chapter, which introduces some fancy effects that you’ll want to make

part of your regular CSS arsenal. So let’s get to it!

Figure 5.1. A screenshot showing the current state of RecipeFinder

Hover Effects
In Chapter 4, we styled the various links on RecipeFinder, adding CSS to improve

their static look. However, when visiting web pages, hovering your mouse over a

link or other page element will often alter its appearance. It might be a color change,

a size change, or something else.

We can accomplish this in CSS by using the :hover dynamic pseudo-class. It's

"dynamic" because it doesn't target an existing element; rather it targets an element

in a given state (the hover state). So let’s add this pseudo-class to RecipeFinder,

starting with all the links on the page:

Jump Start CSS124

a {
 text-decoration: none; color: #544a40;
}

a:hover {
 text-decoration: underline;
}

First, we’re placing our :hover styles after the existing global link styles. Although

we didn't opt to use the :link, and :visited pseudo-classes, were we to use them,

we would have to ensure that they were placed before our :hover styles. This is

because all those pseudo-classes have equal specificity. We want the :hover styles

to override the others, so they need to appear after any original :link and :visited

styles targeting the same elements.

The other thing to notice is that we’re changing the value of the text-decoration

property. This is a common technique. So, as depicted in Figure 5.2, whenever a

user hovers over any link on the page, the text in that link will appear with an un-

derline.

Figure 5.2. The :hover pseudo-class in action

Causing an underline to appear on all text links on hover is fine for the footer links

and the sidebar links, but the effect is not as visually pleasing on some of the other

areas of the page, such as the main navigation and the text on the buttons. In order

to target those and change them, we’ll have to add some rule sets using :hover that

are higher in specificity. Let’s start with the main navigation:

125Getting Fancy

nav a {
 color: #fefefe;
}

nav a:hover {
 text-decoration: none;
 color: #cdb8a5;
}

In this new rule set, we’re removing the underline on hover and changing the color

to #cdb8a5 (which is a color sampled from the textured background of RecipeFinder).

Because the header doesn’t yet have a background color, the text will look as though

it disappears on hover. This'll improve later in this chapter when we add the correct

background.

Let’s fix the :hover styles on the two buttons:

.promo-btn:hover {
 text-decoration: none;
}

We’re not adding any color change to the button text on hover. We’ll do something

different for them later on in the chapter. Lastly, let’s correct the underline that

appears below the linked text in all the entries in the “Latest Recipes” section:

.media a {
 text-decoration: none;
}

.media a:hover h2,

.media a:hover p {
 color: #b32c1c;
}

These hover styles are a little different. In this case, we’re targeting elements that

are inside our <a> elements (the <h2> and <p> elements). So the :hover class is part

of a selector that uses the descendant combinator (the space character). The text

color chosen for the hover state is, again, a color sampled from the Photoshop file.

In some cases, the original design may indicate hover states, but in this project we’re

using our own judgment to choose the hover states.

Jump Start CSS126

For now, that should cover some of the simple hover states we’re adding to Re-

cipeFinder. We’ll add a few more later in this chapter when we tackle a few other

techniques.

Transitions
A CSS feature that works nicely with the :hover pseudo-class is the transition

property. The transition property allows you to change the values of CSS properties

over a specified duration, animating the properties as they change from one state

to another.

For example, look at the hover color changes we just added to the main navigation

and the “Latest Recipes” section. Hover the mouse over those links and the color

change happens instantly. With a CSS transition, we can make the color change

occur gradually. Here’s how we’ll do it on the navigation links:

nav a {
 color: #fefefe;
 transition: color .4s ease-out;
}

nav a:hover {
 text-decoration: none;
 color: #cdb8a5;
}

This new declaration we've added is a shorthand property that represents the fol-

lowing longhand properties:

transition-property This is where we identify the property we want

to transition. In our example, we’ve defined the

value as “color,” meaning it will transition the

color property. This value can also be “all,”

which means all properties that have a changed

state (for example, via :hover) will transition.

transition-duration This is the amount of time we want to occur while

the property is changing from one value to anoth-

er. It can be defined in seconds (as in our ex-

ample) or milliseconds (e.g. 400ms).

127Getting Fancy

transition-timing-function This defines how the transition will proceed over

the course of its duration, or, to put it another

way, it defines the style, or manner, of the trans-

ition. This property can take a number of pre-

defined keyword values, such as linear, ease-in,

ease-out, and so on. It also accepts function val-

ues, which are a bit complex, so they are beyond

the scope of this book. In most cases you won’t

need anything more than the simple, predefined

functions.

transition-delay This property defines how much of a delay should

take place before the transition occurs—again

defined in seconds or milliseconds. In our ex-

ample, we did not include a value for transition-

delay, so it just defaulted to a 0s delay, or no

delay.

Looking back at the code we used to write our transition, now that we know all the

longhand properties that make it up, we can alternatively write it like this:

nav a {
 color: #fefefe;
 transition-property: color;
 transition-duration: .4s;
 transition-timing-function: ease-out;
 transition-delay: 0s;
}

So, why are we putting the transition in the rule set that targets the links directly,

rather than on the :hover state? Well, we want the transition to occur when the

user moves their mouse over the links as well as when they move their mouse off.

If we put the transition only on the :hover state, then the transition will occur only

when the user hovers over the links, not when the user moves off. By putting the

transition directly on the element itself, we ensure that the transition occurs in both

directions: hover-on and hover-off.

Let’s continue by adding a transition to the text links in the “Latest Recipes” section:

Jump Start CSS128

.media a h2,

.media a p {
 transition: color .3s linear;
}

.media a:hover h2, .media a:hover p {
 color: #b32c1c;
}

The first declaration block is the example we just added, with two grouped selectors.

The second is included to demonstrate where the first example should be placed

in our CSS file. With this new rule set added, the color change on the text links in

the .media blocks should be gradual, rather than sudden.

Multiple Transitions on a Single Element
If we want to transition more than one property on a single element, we can't define

multiple transition properties like this:

.example {
 transition: color .4s ease-out;
 transition: width .7s linear;
}

When a browser sees the same property defined more than once on a single element,

the first instance of that property is ignored and only the second instance will have

any effect.

So, to transition multiple properties on a single element, we have two choices.

Firstly, we can use the all keyword, mentioned earlier. This will transition all

properties. Secondly, we can define multiple transitions on a single declaration by

separating them using commas, like this:

.example {
 transition: color .4s ease-out, width .7s linear;
}

In this example, both the color and width properties will be transitioned, and they

will do so using different durations and timing functions.

129Getting Fancy

Vendor Prefixes
If we include the code for transitions that we’ve just discussed, depending on the

browser being using to test them, it's possible that the code won't work. Some

browsers currently support CSS transitions using the standard syntax (which I just

introduced), but other browsers require the use of an experimental prefix. To get

this code working in all browsers that have support for transitions, we need to write

it like this:

nav a {
 color: #fefefe;
 -webkit-transition: color .4s ease-out;
 -moz-transition: color .4s ease-out;
 -o-transition: color .4s ease-out;
 transition: color .4s ease-out;
}

Notice that, now, we are including four different lines of code for this single trans-

ition declaration. The -webkit- line is for Chrome and Safari browsers, the -moz-

line is for Firefox, the -o- line is for Opera, and the last line (which has no vendor

prefix, and which should always be included last), is for all browsers that support

the standard syntax, including IE10.

Vendor prefixes are generally safe to use, but be aware that when new CSS features

are still going through the standards process, there could be changes in the way the

syntax works.

We don’t have space in this book to describe all the quirks that could potentially

occur when using vendor prefixes, so to learn more about which browsers support

which features, and with what syntax, refer to Can I use...1, which is an online

searchable reference with support tables for all sorts of HTML, CSS, and JavaScript

features.

It's also worth checking out a website called Prefixr,2 created by Jeffrey Way, which

lets you paste all your CSS into a text field and then generate all the necessary

vendor prefixes to get the code working in as many browsers as possible. Remember

1 http://caniuse.com/
2 http://prefixr.com/

Jump Start CSS130

http://caniuse.com/
http://prefixr.com/

to back up original code before committing to anything that modifies it automatically

like this.

So, for the remainder of this book, we will be using only the standard syntax for all

the code. If something isn’t working, check the Can I use... website to see if it’s a

browser support or vendor prefix issue that's the culprit. Failing that, try putting

the code into Prefixr and then use whatever output it provides instead.

Transforms
In this next section, we’re going to talk about a CSS feature that's quite complement-

ary to transitions: CSS transforms. Transforms use the transform property along

with a number of different transform functions to alter the look and/or position of

elements on the page in various ways. A transform looks like this:

.example {
 transform: rotate(180deg);
}

The function used in that example is the rotate() function. Let’s briefly cover

functions available for use with transforms.

translate
The translate() function works much like the position property. Using it, or the

related translateX() and translateY(), you can move an element along the x and

y axes.

So if we had a box on the page that we wanted to move 20px to the left and 30px

down from its original position, we could enter the following:

.box {
 transform: translate(-20px, 30px)
}

The first value in the translate() function defines the movement on the x axis

(horizontal movement), and the second value defines the movement on the y axis

(vertical movement). The alternative translateX() and translateY() functions

define the x and y movement directly, each accepting a single value.

131Getting Fancy

scale
The scale() function lets you change the size of an element by defining a pair of

unitless numbers for the sizing along the x and y axes. Like translate(), the altern-

atives to scale() are scaleX() and scaleY(). So we could change the size of our

box like this:

.box {
 transform: scale(1.2, 1.5);
}

This will scale the box up 1.2 times its size horizontally, and 1.5 times its original

size vertically. If we were to scale the element by 1 or 1, 1, it'd have no effect be-

cause 1 represents the element’s original size. If we leave out the second unit, it's

assumed that the first unit defines both horizontal and vertical sizing. A value of

less than 1 (such as 0.5) will scale the element down from its original size.

rotate
The rotate() function does exactly what the name implies—it rotates the element

by a value defined in degrees:

.box {
 transform: rotate(45deg);
}

This will rotate the box 45 degrees clockwise. A negative value will rotate the box

counter-clockwise.

skew
The skew() function, along with skewX() and skewY(), lets us distort the shape of

an element along the x or y axes. So, for example, if we had a box that was sized at

200px by 100px, and we applied the following skew:

.box {
 transform: skew(-30deg, 10deg);
}

...then the result would look something like Figure 5.3.

Jump Start CSS132

Figure 5.3. A box skewed with CSS transforms

Multiple Transforms on a Single Element
As is the case with transitions, if we want to apply more than one type of transform

on a single element, we can't define multiple transform properties. Instead, we have

to do the following, which is slightly different from how we accomplished this

earlier with transitions:

.box {
 transform: scale(1.2, 1.5) skew(-30deg, 10deg);
}

This puts two transforms in a single transform declaration, separating the transform

functions using a space (instead of a comma). With this syntax, the scale and skew

transforms will both be applied to the targeted element.

Defining the Origin of a Transform
Whatever transform we’re defining, we have the option to define a starting point

for the transform. So, for example, if we rotate an element, by default the element

will rotate exactly in the center. You can change the point of rotation using the

transform-origin property:

.box {
 transform: rotate(45deg);
 transform-origin: 30px 20px;
}

Here we're rotating the box 45 degrees clockwise, but we’re altering the point of

origin for the rotation so it's 30px from the left of the box’s boundaries and 20px

133Getting Fancy

from the top. So, the element will still rotate 45 degrees, but it will do so from a

different origin point, changing the overall position.

Figure 5.4 demonstrates the same box rotated 45 degrees, but using the default

transform origin (the example on the left), and using a transform origin of “30px

20px” (the example on the right). The black outline shown in each of the rotations

represents the original position of the box before the rotate transform is applied.

Figure 5.4. The black outlines represent the original space occupied by the box; the small black squares represent the

point of rotation

Combining Transitions and Transforms
All the transforms we've discussed so far are static. That is to say, their end result

can be seen, but they won't animate to get there. The real power of transforms comes

when combining them with transitions and animations. For RecipeFinder, let’s in-

corporate a couple of transforms that will occur when the user hovers their mouse

over certain elements.

First, we’ll add to our styles to our two button elements:

Jump Start CSS134

.promo-btn {
 display: inline-block;
 width: 208px;
 padding: 13px 0;
 background-color: #6c0733;
 box-shadow: rgba(0, 0, 0, .25) 0 7px 2px 0;
 font-size: 20px;
 color: #fefefe;
 transition: transform .5s ease-out;
}

.promo-btn:hover {
 text-decoration: none;
 transform: scale(1.05);
}

Here we're applying a transition on the transform property, using a duration of .5s

and a timing function of ease-out. When the user hovers over either of the two

buttons, the specified scale transform occurs, increasing the size of the button

slightly.

Now let’s add a rotation transition to the Twitter icons in our “Yummy Tweets”

section:

.tweet:before {
 content: url(../images/twitter-icon.png);
 display: block;
 position: absolute;
 left: 15px;
 top: 4px;
 transition: transform .5s linear;
}
.tweet:hover:before {
 transform: rotate(360deg);
 }

This expands on our existing .tweet styles, adding a transition declaration to our

:before pseudo-element, along with a new declaration block. The new declaration

block uses something we haven’t yet seen: two pseudo-selectors combined. In this

case, we’re telling the browser to rotate the :before pseudo-element element 360

degrees clockwise when the user hovers their mouse anywhere over a .tweet element

(which contains the :before element).

135Getting Fancy

Linear Gradients
The features described in this section will help us complete the overall look of Re-

cipeFinder. CSS allows us to define graphics called gradients, without using images.

A gradient is a static image that consists of two or more colors, where one is

gradually changing into the other. Figure 5.5 shows what a basic gradient looks like.

Figure 5.5. A simple example of a gradient

Notice that the box in Figure 5.5 is not a solid color, but a combination of blue

shades, with each gradually changing into the next.

With CSS gradients, we can fiddle with our gradients right inside the browser, al-

tering them directly in our CSS, and avoiding the need to edit images in Photoshop

or another image editor every time we have to make a change.

Let’s first introduce linear gradients by adding the missing gradient to the header

of RecipeFinder. Here’s the code:

body > header {
 box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
 position: relative;
 z-index: 10;
 background-image: linear-gradient(#87053e, #560329);
}

Notice the new line we’ve added to this declaration block that we wrote in an

earlier chapter. This is not a new CSS property, but is, instead, a linear gradient

Jump Start CSS136

function included as a value on the background-image property. The first value

inside the parentheses is the top color for the gradient. The second value is the final

color for the gradient. The browser constructs the remaining colors on its own,

gradually changing the color from the first color to the next.

For a linear gradient, you can include as many colors as you want, separated by

commas. The browser will automatically distribute the colors (called color stops),

evenly over the element’s background, and then the in-between transitional colors

will be constructed automatically, creating the "gradient" look. Figure 5.6 shows us

what the header looks like after adding this new line of code.

Figure 5.6. Our header after adding a linear gradient

As we can see, by default, the gradient direction occurs vertically from top to bottom.

For an idea of how different colors in a linear gradient are distributed, here’s another

example, using a rainbow of colors:

.box {
 width: 300px;
 height: 300px;
 background-image: linear-gradient(red, green, blue, yellow,
➥ purple, cyan, magenta, olive, brown);
}

Figure 5.7 shows what this would look like when rendered in the browser.

137Getting Fancy

Figure 5.7. A ridiculous multicolored gradient that demonstrates color stops

That’s a beauty, isn’t it? Seriously, please don’t ever do anything like that on your

web pages! This should, however, demonstrate clearly how multiple color stops

are rendered. But there’s more to linear gradients than just defining colors.

Positions for Color Stops
As mentioned, when including colors in a linear gradient, the browser will distribute

the colors evenly across the element, filling in the transitional colors automatically

by default. With each color defined, however, we have the option to define a location

for the color stop. With no color stop positions defined, the first and last colors

listed will default to positions of 0% and 100%, respectively. Let’s try defining

some custom color stops:

 width: 300px;
 height: 300px;
 background-image: linear-gradient(red 10%, green 70%, blue 84%,
➥ yellow 90%);
}

Here, we’ve defined a percentage for each color. This tells the browser where on

the element to place the color stop. This code would render in the browser as shown

in Figure 5.8.

Jump Start CSS138

Figure 5.8. A linear gradient with custom-positioned color stops

Changing a Linear Gradient's Direction
In addition to color stops, we're also able to define the direction of the gradient,

which, by default, is vertical, from top to bottom. To define a custom direction for

the gradient, just include the direction prior to the set of defined color stops, before

a comma. Here are some other linear gradient examples with alternate directions

specified:

.box-1 {
 background-image: linear-gradient(to top, #87053e, #560329);
}

.box-2 {
 background-image: linear-gradient(to left, #87053e, #560329);
}

.box-3 {
 background-image: linear-gradient(to right, #87053e, #560329);
}

.box-4 {
 background-image: linear-gradient(33deg, #87053e, #560329);
}

If we leave out the direction (like we’re doing on the RecipeFinder header), then

the default is to bottom, which we can also define explicitly. The final example

139Getting Fancy

shown in the previous code block uses an angle unit of 33 degrees to define the

direction. This can also be a negative value. A value of 180deg would be equivalent

to to bottom or leaving out the direction altogether.

Adding Multiple Gradients on a Single Element
Earlier in the book we dealt with adding backgrounds to elements using the back-

ground-image property. In this chapter, we’ve seen that gradients can be added as

backgrounds using a special function that works as a value for the background-image

property. But what if you want to have more than one background on a single ele-

ment?

We can have multiple background images (and therefore multiple gradients) on a

single element by comma-separating backgrounds using either the background

shorthand property, or the background-image property. Here are two examples:

.example {
 background: url(bg-1.png) no-repeat top left,
 url(bg-2.png) repeat-x top left;
}

.example {
 background-image: linear-gradient(black, white),
 linear-gradient(blue, green);
}

If we use the longhand background-image property, we’ll also have to comma-

separate the values on the other longhand properties to match the backgrounds.

This would get lengthy and hard to maintain using longhand, so it's always a good

idea to try to use shorthand for background images, especially to incorporate multiple

background images on a single element.

Adding More Linear Gradients
Now that we’ve covered the syntax for linear gradients, let’s finish off the look of

RecipeFinder. We have three more linear gradients that we need to add. First, we’ll

add the gradient for the promo button. The code will be the same as used for the

header, because they use the same colors:

Jump Start CSS140

.promo-btn {
 display: inline-block;
 width: 208px;
 padding: 13px 0;
 background-color: #560329;
 background-image: linear-gradient(#87053e, #560329);
 box-shadow: rgba(0, 0, 0, .25) 0 7px 2px 0;
 font-size: 20px;
 color: #fefefe;
 transition: transform .5s ease-out;
}

For the promo button, the linear gradient declaration is placed immediately following

the background-color declaration. We don’t have to do this, but it often helps with

code maintenance to group related CSS properties together. The background color

serves as a fallback for browsers that don’t support CSS gradients. It's important to

remember to specify a background color to ensure your design remains readable in

browsers that don't display the gradient. Figure 5.9 displays the promo button after

adding the gradient.

Figure 5.9. Our promo button after adding a linear gradient

Next we have the gradient to add to the button at the bottom of the “Latest Recipes”

section. Here’s the code:

.more-btn {
 text-align: center;
 float: right;
 margin-right: 50px;
 width: 280px;
 background-color: #2d1e10;
 background-image: linear-gradient(#6b5139, #2d1e10);
}

141Getting Fancy

Again we’ve added a fallback background color for non-supporting browsers and

the linear gradient is just a simple top to bottom two-color gradient. Figure 5.10

shows us the button with the gradient.

Figure 5.10. Our second button with a linear gradient

The last gradient for the RecipeFinder website is going to be added to the small area

that appears below the promo image. As discussed earlier in the book, we left that

portion without a background so we could fill it in with a linear gradient in this

chapter! Here’s the code:

.promo {
 position: relative;
 z-index: 5;
 padding-bottom: 8px;
 box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
 background-image: linear-gradient(#4e0324, #4e0324 97%, #851f49);
}

Expanding on the styles for the .promo section, we’ve added a linear gradient to the

background for that element. Recall that the .promo element is a wrapper for the

section containing the big promo image. The eight pixels of bottom padding are

what makes this section appear from behind the promo image.

The linear gradient consists of three color stops, with the second color stop being

the same as the first. Also, the second color stop is positioned at 97%. This means

the same color will appear on the background (behind the image, between 0% and

96%), up until the point where the padding starts, which is about 97% of the height

of the .promo element. With this gradient in place, Figure 5.11 shows us what our

promo section now looks like.

Jump Start CSS142

Figure 5.11. The small gradient below the big promo image

Radial Gradients
All the gradients on ReciperFinder are linear gradients, but CSS lets us create another

kind of gradient―a radial gradient. A radial gradient creates a circular gradient.

The syntax is similar to that of a linear gradient, but has some extra optional para-

meters. Let’s look at a simple example:

.example {
 width: 300px;
 height: 300px;
 background-image: radial-gradient(pink, red);
}

That’s as simple as it gets―a two-color radial gradient. The result in the browser

would look something like Figure 5.12.

143Getting Fancy

Figure 5.12. An example of a radial gradient

As with linear gradients, radial gradients let you specify positions for the color

stops. By default, the first color listed will be at 0% and starts in the center of the

element. Further color stops that don’t have positions will distribute evenly moving

outwards, with the final color stop positioned at 100%. So we could define multiple

colors with custom color stops like this:

.box {
 width: 300px;
 height: 300px;
 background-image: radial-gradient(red 10%, green 70%, blue 84%,
➥ yellow 90%);
}

Again, this would create quite an ugly gradient, but it nicely demonstrates how to

create gradients with color stops and custom positions.

More Options for Radial Gradients
Prior to the defined color stops in a radial gradient, we have the option to include

a size, shape, position, and direction for the radial gradient. There are numerous

options, so we won’t cover them in detail here, but let’s look at an example:

Jump Start CSS144

.example {
 width: 300px;
 height: 300px;
 background-image: radial-gradient(circle 200px at top left,
➥ red, pink);
}

A gradient with those specifications would look something like Figure 5.13.

Figure 5.13. A radial gradient with a custom shape, size, and position

Compare what you see in Figure 5.13 with the code in the previous code block. In

the code, we defined the shape of the gradient as “circle” and sized it at 200px.

We also specified that it should be placed in the top-left corner of the element.

Figure 5.13 shows the circular area of the gradient with its center in the top left of

the element.

As mentioned, we won’t cover all the details for the radial gradient syntax here.

Just recognize that for both linear and radial gradients, we have the ability to include

some of these options prior to the defining of the color stops. Basically, the browser

will look at everything that appears before the first comma and try to interpret it as

a color. If it’s not a valid color (hex, RGB, etc.), then it will try to interpret it as a

direction (for linear gradients), or a direction, position, size, etc. (for radial gradients).

For a more detailed discussion of linear and radial gradient syntax, you can check

out any of the following articles:

145Getting Fancy

■ "CSS3 Radial Gradient Syntax Breakdown" on Impressive Webs3

■ "CSS3 Linear Gradient Syntax Breakdown" on Impressive Webs4

■ "Using Unprefixed CSS3 Gradients in Modern Browsers" on SitePoint5

■ "Unprefixed CSS3 Gradients in IE10" on the IEBlog6

A Word on Gradient Syntax

The syntax for both linear and radial gradients has changed quite a bit over the

years, and it’s now quite complicated to get gradients working in all supporting

browsers.

The resources linked at the end of the gradients section in this chapter describe

both old and new versions of the gradient syntax. You can also find generators

online that use older syntaxes. So if you're having trouble with the code for

gradients, then know that you’re not alone.

If you want to avoid all these headaches, you can stick to using only the new

standard syntax, with no vendor prefixed lines, and provide image-based or single

color fallbacks for non-supporting browsers.

Keyframe Animations
In the past, complex animations on web pages have been achieved using video,

Adobe Flash, or JavaScript. In recent years, the CSS specification has added key-

frame-based animations using pure CSS. A keyframe animation is the final touch

we’re going to add to RecipeFinder, and then the project will be complete.

What we’re going to add to RecipeFinder is just a simple animation to make the

RecipeFinder logo fly in from the left part of the screen and spin into place. Let’s

look at the code we’re going to use, first of all on the .logo element:

3 http://www.impressivewebs.com/css3-radial-gradient-syntax/
4 http://www.impressivewebs.com/css3-linear-gradient-syntax/
5 http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/
6 http://blogs.msdn.com/b/ie/archive/2012/06/25/unprefixed-css3-gradients-in-ie10.aspx

Jump Start CSS146

http://www.impressivewebs.com/css3-radial-gradient-syntax/
http://www.impressivewebs.com/css3-linear-gradient-syntax/
http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/
http://blogs.msdn.com/b/ie/archive/2012/06/25/unprefixed-css3-gradients-in-ie10.aspx

.logo {
 float: left;
 margin-left: 145px;
 margin-top: -34px;
 position: relative;
 top: 34px;
 transform: translateX(-800%);
 animation: logomove 2s ease-out 1s 1 normal forwards;
}

Here we've added two new lines to the .logo rule set. First, we’re using a trans-

lateX() transform to move the logo element off the page. We use a negative percent-

age value to achieve this.

The next line is a new property―the animation property, which is a shorthand

property. Let’s look at what properties this shorthand represents:

animation-name In our example, we’ve defined the animation

name as logomove. This property accepts a custom

name of our choosing. This name will be used

again later in the animation keyframes code.

animation-duration This is the amount of time we want the animation

to take, from beginning to end, for each time that

the animation runs. As with the duration on a

transition, this takes a time value in seconds or

milliseconds.

animation-timing-function This is exactly the same as the timing functions

for transitions, including ease, ease-out, linear,

and so on. We’re using ease-out in this anima-

tion.

animation-delay The delay, which is another time value in seconds

or milliseconds, tells the browser how long to

wait before the first iteration of the animation. In

order to have a delay, we must first define a dur-

ation. So, the second time value that’s seen will

always represent delay, whereas the first will al-

ways represent duration. This animation includes

147Getting Fancy

a small one-second delay to account for the time

it might take for the page to finish loading.

animation-iteration-count This is the number of times we want the anima-

tion to play. The default is 1, and we’ve defined

it explicitly in our example, even though we

didn't have to.

animation-direction The animation-direction property defines whether

we want the animation to play forwards or back-

wards. We’ve chosen normal—the default value,

which means it will only play forwards. You can

also define it with a value of reverse (to play it

backwards), alternate (which alternates forwards

then backwards each time the animation plays),

and alternate-reverse (which starts playing it

backwards on the first iteration, then alternates

from there).

animation-fill-mode The fill mode for the animation can be forwards,

backwards, both, or none (the default). This tells

the browser what styles to apply to the element

after the animation completes. With a value of

none or backwards, for example, our logo would

fly in from the left, then, after it finishes, disap-

pear to get back to where it started. We want it to

finish with the styles that end the animation, so

we define it as forwards.

Knowing all these details, we can choose to write our animation styles using

longhand, like this:

.logo {
 animation-name: logomove;
 animation-duration: 2s
 animation-timing-function: ease-out;
 animation-delay: 1s;
 animation-iteration-count: 1;

Jump Start CSS148

 animation-direction: normal;
 animation-fill-mode: forwards;
}

But as is the case with many CSS features, the shorthand is much easier to maintain

because it uses less code, so we’ll use that. While learning CSS it can be useful to

use longhand for many properties, just to aid familiarity with each property indi-

vidually. But eventually, it’s almost always more practical to use the shorthand.

If we put that code into our CSS and refresh the page, we won’t see anything happen.

This is because we haven’t yet defined any actual keyframes to accompany the an-

imation property. Let’s do that now.

@keyframes logomove {

 0% {
 transform: translateX(-800%) rotate(0);
 }

 100% {
 transform: translateX(0) rotate(-360deg);
 }

}

As shown here, keyframes are defined using the @keyframes at-rule. We learned

about at-rules in Chapter 1. Notice, however, that this at-rule is a little different.

Here are some points to help you understand this syntax:

■ The @keyframes part is followed immediately by the custom animation name

that we chose and included in the animation property.

■ There is one set of curly braces that wraps the entire set of keyframes.

■ Each keyframe block has a selector with another set of curly braces for each

keyframe.

■ Each keyframe selector is defined using a percentage.

149Getting Fancy

A single keyframe represents how the element will look at that point in the anima-

tion. All the in-between keyframes that aren't defined are where the animations

take place. So between keyframes the styles will transition, or animate, until they

reach their state in later keyframes, using the duration we defined in the animation

property to determine how long each phase of the animation takes.

The first and last keyframes are always 0% and 100% respectively, and they can

be alternatively written as from and to respectively. If we don’t include 0% and

100% (or from and to), then the browser will construct the first and last keyframes

automatically.

Additionally, you can specify multiple percentages into a single keyframe selector,

comma-separated, and even write the keyframes out of order. The browser will still

render the animation in the order that is specified by the percentage keyframe se-

lectors, regardless of the order in which they appear in the CSS.

With those keyframes in place, the logo will fly in from the left side of the screen

and rotate as it appears, then settle in to its regular spot in the layout, as shown

Figure 5.14.

Figure 5.14. The RecipeFinder logo animated using CSS keyframe animations

Jump Start CSS150

Graceful Degradation and Page Performance
A lot of the techniques we’ve discussed in this chapter are not supported in older

browsers or, as is the case with gradients, are supported in older browsers using a

different syntax.

If using any of these techniques, remember to test the pages without these features

present, to ensure everything looks acceptable. This is a concept referred to as

graceful degradation, meaning that the page will degrade gracefully, or without

major problems, even if certain features don’t work.

Another word of warning: many of these techniques, if used too liberally, can cause

web pages to become slow and sluggish. For example, it may not be a good choice

to layer multiple gradients on a web page's background. Similarly, too many anim-

ations can not only annoy users, but may also make your page slower than usual.

So use these techniques sparingly, and don't be afraid to resort to images if a CSS

technique is causing the page to become too slow.

Other Cutting-edge Features
Since this is a short book, we can’t possibly include every fancy new CSS technique,

so we chose only the ones that have good browser support and that might be most

practical.

Some other features that are worth looking into include:

■ multiple columns
■ values defined using calc()

■ 3D transforms
■ CSS filters
■ CSS variables

You can get a basic overview and links to many new CSS features by checking out

this page at Can I use...7 or CSS3 Click Chart.8

7 http://caniuse.com/#cats=CSS
8 http://css3clickchart.com/

151Getting Fancy

http://caniuse.com/#cats=CSS
http://css3clickchart.com/

Making RecipeFinder Responsive
In Chapter 2, we touched on the concept of Responsive Web Design (RWD), and the

use of media queries to achieve it. To close out this chapter, we’re going to add

some media queries to RecipeFinder to make it viewable on any size monitor, device,

or screen. We’re also going to change many of the pixel-based units in our existing

CSS to use percentages instead.

With these new styles in place, the layout will adjust depending on whether the

user is visiting the website on a desktop computer, a tablet (like the iPad), or a

smartphone. In all cases, those visiting RecipeFinder will have access to the exact

same information, but with an appropriate layout for each.

Before getting started, it's worth noting that we're going to run through all these

changes and additions pretty quickly. This isn’t a book on RWD, so we don’t have

the space to consider this topic in great detail. For a full discussion of RWD, check

out Jump Start Responsive Web Design, also published by SitePoint.9

min- and max- Dimensions
There are four new CSS properties that we haven’t discussed yet, and which often

come in handy in flexible, responsive layouts. They are min-width, min-height,

max-width, and max-height.

These work very similarly to the width and height properties except, instead of

declaring the width or height explicitly, they set boundaries for them. For example,

the first thing we’re going to change in our styles is the width value declared for

the .center-global elements:

.center-global {
 max-width: 1020px;
 margin: 0 auto;
}

Now, the width of .center-global will still be 1020 pixels, but when the browser

window or device size is smaller, it will shrink to fit. Thus, it doesn’t have a set

width; it can be any width but it cannot be more than 1020 pixels.

9 http://www.sitepoint.com/books/responsive1/

Jump Start CSS152

http://www.sitepoint.com/books/responsive1/

The other min- and max- properties work similarly. We’ll use a few others in this

section, and they'll often prove to be useful in responsive layouts.

Converting Pixels to Percentages
The next step is to convert all of our horizontal layout-based pixel values to percent-

ages. By “horizontal”, I'm referring to elements like left and right margins and

padding, widths, and right and left positioning. The percentages we're going to re-

place them with will be percentage equivalents for the existing values. This means

the layout will not change for standard, wide-screen desktop users.

Percentages in CSS are always relative to something. In the case of widths and left

and right margins, these values are relative to the parent element’s width. So if you

have an element that is 100 pixels wide, and you add 10% of left padding to a child

element, that 10% will compute to 10 pixels.

Let’s begin with our .logo element, which is a child element of one of our .center-

global elements (in this case, the one inside <header>):

.logo {
 float: left;
 margin-left: 14.2156862745098%;
 margin-top: -34px;
 position: relative;
 top: 34px;
 transform: translateX(-800%);
 animation: logomove 2s ease-out 1s 1 normal forwards;
}

Here we’ve changed the value for the margin-left property from 145px to a percentage

value. This percentage is arrived at using the following formula:

target value / context * 100

In the case of the logo’s left margin, the target value is 145 pixels. This was the

amount of left margin we had on the element to begin with. We then divide that

number by the parent element’s width (the “context”). The parent element, as just

mentioned, is 1020 pixels when it’s at its widest. That calculation gives us a value

of 0.142156862745098. The last thing we do is multiply this number by 100 (which

153Getting Fancy

moves the decimal place over two places), giving us our final desired percent-

age―which in this case is about 14.22%.

Too Many Decimal Places?

You’ll notice the decimal-based percentage values we’re using are specified using

an inordinate number of decimal places. There has been some discussion as to

whether this many decimal places is necessary. As it stands, it's probably only

necessary to include about three decimal places. But things could change in the

future, and browsers may require more decimal places to ensure higher-precision

results. Also, some people have noted slight changes in layout when removing

decimal places. It's likely, however, that the only real drawback to using this many

decimal places is the fact that it makes the CSS less readable at a glance. But we’ll

put up with this for the purpose of ensuring that our layouts are as future-proof

as possible.

Let’s continue changing pixel values to percentages. First, the right margin on the

<nav> element, which was 177px:

nav {
 float: right;
 margin-right: 17.35294117647059%;
 padding-top: 20px;
}

Next, the width and right values for the .promo-desc element:

.promo-desc {
 position: absolute;
 bottom: 93px;
 right: 7.35294117647059%;
 width: 30.98039215686275%;
 text-align: center;
}

The width value for the promo button (which is relative to the width of the .promo-

desc element):

.promo-btn {
 display: inline-block;
 width: 65.82278481012658%;

Jump Start CSS154

 padding: 13px 0;
 background-color: #6c0733;
 background-image: linear-gradient(#87053e, #560329);
 box-shadow: rgba(0, 0, 0, .25) 0 7px 2px 0;
 font-size: 20px;
 color: #fefefe;
 transition: transform .5s ease-out;
 }

We won’t change the width of the other button (.more-btn). We’ll leave that at 280

pixels, which works fine since it doesn’t have anything beside it.

Next, we’ll change the width and padding values on the .latest element:

.latest {
 width: 62.74509803921569%;
 float: left;
 padding: 0 3.92156862745098% 0 3.92156862745098%;
 background: url(../images/bg-column.png) no-repeat top right;
}

... and so on. As long as we know the width of the parent element, then we can use

the formula described earlier to get the correct percentage value. In some cases, we

may have to account for inner horizontal padding when using percentages on nested

child elements, but in most cases the calculation is pretty straightforward.

Using percentage values like this will help the layout adjust naturally when the

elements are displayed on a smaller screen. For the remainder of our styles, go

through and change all horizontal-based values (the widths, left padding, right

padding, and any horizontal positioning using the left or right properties), from

pixels to percentages, using the formula we discussed. After that, head on to the

remainder of this chapter.

Fixing the Size of Images
Another thing we want to correct in our layout is the way the images look when

the user is visiting the page with a smaller browser window or device. First, let’s

deal with the big promo image.

Let’s add a line to our .promo styles:

155Getting Fancy

.promo {
 position: relative;
 z-index: 5;
 padding-bottom: 8px;
 box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
 background-image: linear-gradient(#4e0324, #4e0324 97%, #851f49);
 overflow: hidden;
}

Here we’ve added the overflow property with a value of hidden. This is going to

ensure that when the .promo element gets smaller, the big promo image that’s inside

it will not overflow the boundaries of .promo, but instead, any excess parts of the

image will hide from view.

Then we’ll add a new rule set that targets our promo image:

.promo img {
 width: auto;
 height: auto;
}

Here we’re setting the width and height of the image to a value of auto to ensure

the CSS overrides any dimensions set in the HTML using width and height attributes.

If we didn’t define a width and height in the HTML, then these styles wouldn’t be

necessary.

Next, we’ll deal with the images inside the .media elements. Let’s add three lines

to the styles for those, in addition to the percentage value for the right margin:

.media img {
 float: left;
 margin-right: 4.6875%;
 max-width: 241px;
 width: 100%;
 height: auto;
 border: solid 9px #ede0d5;
 box-shadow: rgba(0, 0, 0, .25) 2px 2px 2px 0;
}

Notice we’ve added a max-width value of 241 pixels, combined with a width of

100%. This ensures that the image will fill 100% of its parent block container (the

Jump Start CSS156

.media element), but will not exceed 241 pixels. So when the browser width gets

fairly small, the images will become smaller than 241 pixels, if necessary. We’ve

also set the height to auto, as we did with the big promo image, which helps the

height stay proportional to the width.

Adding Media Queries
In addition to percentages and max/min widths, to get a fully responsive website,

we’ll also need to add some media queries. We’re going to use them to target four

different browser widths. Each of these media queries target what are often referred

to as "breakpoints":

@media (max-width: 930px) { }
@media (max-width: 730px) { }
@media (max-width: 480px) { }
@media (max-width: 340px) { }

Inside of the curly braces for each of these media queries, we’re going to add

whatever selectors and declaration blocks we need to make the layout adjust to the

specified browser width.

Adding the Viewport Meta Tag
For every responsive design, you'll want to add the following HTML tag to the

<head> section of your website:

<meta name="viewport" content="width=device-width,
➥ initial-scale=1.0">

Without this tag, the website will appear at normal width, but scaled down to fit

the screen. This might not be desirable, so include this tag to ensure the media

queries are working as expected. For a full explanation of the viewport meta tag,

see the Mozilla developer site.10

As mentioned, since this is not a full discussion of RWD, we don’t have the space

to describe in detail all the layout changes we’ll be making inside our media queries,

but here is a rundown of what we’ll do for each:

10 https://developer.mozilla.org/en-US/docs/Mobile/Viewport_meta_tag

157Getting Fancy

https://developer.mozilla.org/en-US/docs/Mobile/Viewport_meta_tag

At 930 pixels Center the logo and drop the main navigation links below

the logo.

■

■ Disable the logo animation.

■ Change the two-column layout in the main content area to a

single column, dropping the sidebar below the “Latest Re-

cipes” section.

■ Change the width of each of the two columns to fill the

available space (using width: auto) and remove the back-

ground on the left column.

■ Change the 3-column footer to be a single column, again

changing the three individual footer sections to width: auto.

■ Change some margin, padding, positioning, and font values

for various elements.

■ Add a text shadow to the promo text so it's more readable

when overlaying a light-colored promo image like the one

we're using.

At 730 pixels Shrink the height of the promo image and realign the promo

text and button.

■

■ Add a border below each .media element to clearly delineate

each entry in the “Latest Recipes” section.

At 480 pixels Change the padding on the main navigation items.■

■ Remove the float from the .media images so the accompany-

ing text drops below each image.

At 340 pixels Make the main navigation links block elements (instead of

inline-block), so they align vertically instead of horizontally.

■

The values chosen for these media queries (930, 730, 480, and 340) are not arbitrary,

nor do they represent specific devices or commonly-used browser window sizes.

These values are points at which the layout was breaking, and thus needed adjust-

Jump Start CSS158

ments. These break points were discovered by resizing the browser window until

the layout no longer looked readable or usable.

For each project, find out where the primary break points are, and then work from

there, adding styles to the media queries after some trial and error.

To fiddle with these styles, view the CSS for the final version of RecipeFinder or

download the code from the code archive for this book.

We can test RecipeFinder on a number of different devices to see if it works, or we

can use an online tool that displays a URL in various widths, mimicking what

happens in various devices sizes. One such tool is located at http://mattkers-

ley.com/responsive/. Figure 5.15 shows us how RecipeFinder looks after adding

our responsive styles.

Figure 5.15. RecipeFinder displayed using an online responsive design testing tool

Of course, a tool like this is only a guide and will not look and function the same

as a mobile device. It's much preferable to test your projects on as many real devices

as possible, but if budgets are small and the necessary hardware is hard to come by,

these types of online tools are better than nothing.

159Getting Fancy

http://mattkersley.com/responsive/
http://mattkersley.com/responsive/

Summary
At last, RecipeFinder is complete! We’ve looked at a number of cool techniques

that can help add some life to our pages. With CSS gradients, animations, and

transitions, we no longer have to resort to large unwieldy scripts and other

troublesome techniques.

We’ve also scratched the surface of flexible layouts by making RecipeFinder respons-

ive to different browser windows and device widths.

In the final chapter, you'll learn all about ways to debug and solve problems in code

as quickly and as efficiently as possible.

Jump Start CSS160

Chapter6
Debugging Your CSS
The RecipeFinder project is complete and you now have a good, rounded under-

standing of what CSS is capable of, but there are some areas we haven’t yet covered

that are well worth exploring.

In comparison to other programming languages, CSS is fairly simple, but it's not

without its quirks and inconsistencies. Firstly, as we've already touched on, not all

CSS features are supported in all browsers. Also, even where CSS code is supported

by all browsers, it's often implemented differently in one or several of them. This

is especially true when dealing with differences between older versions of Internet

Explorer and the other browsers (Chrome, Firefox, Safari, and Opera), or when using

very new CSS properties.

This chapter is not going to cover the specific browser compatibility problems that

are bound to arise at one time or another. Instead, we're going to look at how to

avoid and debug virtually all CSS problems, regardless of whether they are browser

issues, coding errors, or something else. These methods are universal, and should

help with many of the puzzling situations that you'll come across while writing

CSS.

Understand How CSS “Errors” Work
Write code that isn't valid, in many programming languages, and the result will be

a syntax error warning, plus the program running the code will stumble at the error

and won't run beyond that point. And so, until the error in the code is corrected,

the program is effectively ruined.

CSS is different. For example, if we were to go to the top of the RecipeFinder

stylesheet and add a bunch of random characters, then refresh the page in the

browser, we’d notice only one change on the page: The box-sizing property that

we added to the top of our stylesheet would no longer have any effect, causing,

among other things, the sidebar to drop out of place.

Here’s how the top of our stylesheet might look after adding some random characters

that aren't valid CSS:

asdfjjlgkljd

* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

.cf:before,

.cf:after {
 content: " "; /* 1 */
 display: table; /* 2 */
}

Here's what's happening. Instead of disabling the entire stylesheet, the random

characters disable only the first rule set, which is the one using box-sizing. The

reason only this first rule set is disabled is because the browser is viewing that first

line with the random characters as a selector. So, what it does is read everything

before the first curly brace, attempting to identify the elements you’re trying to target.

Since it can't identify those characters as a valid selector or selector group—or as

anything else that’s valid in CSS—it proceeds to ignore what’s in that first declaration

block.

Now look at this:

Jump Start CSS162

asdfjjlgkljd {}

* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

.cf:before,

.cf:after {
 content: " "; /* 1 */
 display: table; /* 2 */
}

Here again we've inserted some random characters, but with one difference: we’ve

added a pair of curly braces after the characters. In this example, the random char-

acters will have no effect because the browser will ignore only what’s inside the

first set of curly braces (the empty ones). This is because the browser thinks the

random characters are a CSS selector, so it reads the curly braces in that context.

Let’s try something similar inside of a valid set of curly braces further down in our

stylesheet. We’ll remove the random characters at the top and this time we’ll add

a random group of characters inside the .center-global declaration block:

.center-global {
 asdfasdf
 max-width: 1020px;
 margin: 0 auto;
}

No prizes for guessing that this will cause only the max-width declaration to be

disabled. As there's no semicolon at the end of the line of random characters, the

browser views it as part of the second line, making it produce an internal error and

ignoring the max-width declaration. But the rest of the CSS works just fine, because

it appears after a valid semicolon at the end of the disabled line.

So what do we take from this? The basic principle to keep in mind is that the browser

will ignore any CSS it fails to understand but will continue to try to read the rest.

Of course, there is a possibility, depending on which random characters are included,

that they could disable the whole stylesheet. For example, a single opening curly

163Debugging Your CSS

brace at the top of the stylesheet would nullify the whole thing. The key is to under-

stand that the browser is trying to read what’s in between the curly braces (for de-

claration blocks), what’s before each curly brace (for selectors) and what’s before

and after the colons and semicolons (for properties and values).

CSS Comments
Every programming language lets you add notes and other hints that help you un-

derstand what’s going on. Not all CSS is as understandable at first glance as, say,

something like font-size: 20px, so some sections of code can benefit from adding

notes or other hints in their vicinity. We introduced the syntax for CSS comments

in Chapter 2. You might remember this bit of code from our clearfix:

.cf {
 zoom: 1; / for IE6 and IE7 */
}

The comment in this line of code is the part that says “for IE6 and IE7,” and is

identifiable as such by the preceding backslash followed by an asterisk, and the

asterisk and backslash at the end.

We can add as many of these to our stylesheet as we like, and it’s good practice to

use CSS comments to help identify parts of any stylesheet that might be difficult

to understand from a cursory glance. By using CSS comments to make our stylesheets

more readable, the CSS will be easier to maintain in the future.

A CSS comment can span multiple lines if required. Everything that’s in between

the opening and closing comment characters will be ignored by the browser, and

so will the comment characters themselves. So often you’ll see something like this

in a CSS file:

/***************************

These are the styles for
the header section

***************************/

Jump Start CSS164

Notice that, in this example, not only have I included the opening and closing as-

terisk and backslash characters, but I’ve also added some extra asterisk characters

spanning multiple lines. This makes the comment easy to find when scrolling

through the CSS file. Add section headings like this in CSS to help organize it into

readable, related chunks of code.

Unfortunately, CSS doesn’t have an easy way to present a valid, single-line comment

that uses just an opening comment character combo. For example, in JavaScript,

you can comment out a single line of code like this:

// This is a JavaScript comment

This is helpful in JavaScript because it makes it easy to nullify an entire line of

code, or add a helpful comment, with just two characters (the backslashes). But in

CSS it's necessary to use both the opening and closing characters to specify the

boundaries of any comments.

For quick, temporary fixes, however, it's acceptable to create a sort of faux CSS

comment by applying the principle we discussed in the previous section on CSS

errors. Let’s say we have the following CSS:

.center-global {
 max-width: 1020px;
 margin: 0 auto;
}

And let's say we want to temporarily remove the first line (the max-width declara-

tion). We could do this:

.center-global {
 /* max-width: 1020px; */
 margin: 0 auto;
}

This works fine, but a quicker way to achieve the same result is simply to put some

random characters at the beginning of the line, like so:

165Debugging Your CSS

.center-global {
 AAAAmax-width: 1020px;
 margin: 0 auto;
}

It's quick and effective, but don't ever leave your CSS like this on a live website. It's

not valid CSS and should only be used in development for doing quick debugging.

Validating CSS
When encountering a problem in your CSS, it may help to ensure that your code is

as valid as possible. The World Wide Web Consortium (W3C)1 is a standards body

that decides what is and isn’t valid in CSS. W3C produce an online validation system

that lists all the errors it finds in submitted CSS. This is a good way to ensure that

any problem isn't due to a coding error. The CSS validator2 enables users to validate

their CSS using three options: by a URL (which is a link to the website in question),

by uploading a CSS file, or by copying and pasting CSS into a text box. Use the

latter option for any website you’re working on that’s only available on your local

computer.

Now that we’re done with RecipeFinder, we can use CSS Validator to see if there

are any errors in our code. Figure 6.1 shows the result we achieve.

1 http://www.w3.org/
2 http://jigsaw.w3.org/css-validator/

Jump Start CSS166

http://www.w3.org/
http://jigsaw.w3.org/css-validator/

Figure 6.1. Running RecipeFinder through the validator

In addition to the seven errors that the validator finds, there are also 51 warnings.

None of these errors or warnings has any visible effect on our page, no matter which

browser we use, and with the exception of two examples, they're a result of using

vendor prefixes like -webkit-, -moz-, and -ms-. This is fine. We don’t need to worry

about the validity of our CSS with these types of warnings.

For the most part, the validator is a guide. Don’t expect to get perfect results. In fact,

receive perfect results (no errors, no warnings), and the likelihood is that you’re

doing something out of the ordinary, such as not using any CSS features that have

been introduced in the past few years. Also, remember to use the validator

throughout the coding process, and not just at the end.

What about the other two CSS errors that aren’t related to vendor prefixes? Those

two errors are due to the fact that two of our CSS declarations begin with an asterisk

167Debugging Your CSS

character. Those asterisked declarations are CSS hacks. The first example is part of

our clearfix code and the other helps us to align our navigation elements. Let’s take

a moment to consider these types of hacks.

CSS Hacks
As previously mentioned, this final chapter is not an extensive discussion of browser-

specific issues, but it's important to be familiar with the concept of CSS hacks, as

they've been valuable tools in many a CSS developer's box of tricks over the years.

A CSS hack is basically a line or block of code in a CSS file that only a specific

browser, or browser version, understands. So if we run into a problem that only

happens in one browser, we may have the option to use a CSS hack to target only

that browser in order to fix the problem.

But a word of caution: A CSS hack should not be used unless all other possible

valid solutions have been tried and exhausted. The rest of this chapter outlines

some principles and techniques to help solve problems in CSS without the use of

hacks. But as a last resort, for a list of possible CSS hacks, or to learn different ways

to target older versions of Internet Explorer (which is the browser that's most fre-

quently targeted by hacks), here are three articles to bookmark and refer to:

■ "Conditional Stylesheets vs CSS Hacks? Answer: Neither!" by Paul Irish3

■ "Browser [-specific] CSS Hacks" by Paul Irish4

■ "How Do I Target IE7 or IE8 Using CSS Hacks?" by Louis Lazaris5

Reduced Test Cases
Reduced test cases are invaluable for debugging particularly knotty problems in

CSS. A reduced test case is a bare-bones version that displays the same behaviour

as the problem in question.

For example, perhaps there's an issue in one of several columns in a really complic-

ated layout (where each column contains all sorts of content, such as images, text,

3 http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
4 http://paulirish.com/2009/browser-specific-css-hacks/
5 http://www.impressivewebs.com/ie7-ie8-css-hacks/

Jump Start CSS168

http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://paulirish.com/2009/browser-specific-css-hacks/
http://www.impressivewebs.com/ie7-ie8-css-hacks/

headings, and so on). To figure out what’s wrong, we can try to reduce the content

in that column and see if the problem persists.

Maybe we have a two-column layout and the problem area is in column two. We

can try removing all the CSS or all the HTML inside column two, and leave only

the CSS we’re having the problem with, to see if that fixes it. If it doesn’t, then we

can try removing the HTML and/or CSS in column one, and see if that helps.

CSS comments will often come in handy in a case like that, so instead of deleting

CSS, simply wrap the unwanted CSS in comments, removing it only temporarily,

then adding those styles again once the issue has been chased down.

By systematically removing as much as possible while leaving only the problem

HTML and/or CSS in place, it's easier to identify what causes the problem to go

away. From here it's possible to narrow down even further by reducing single de-

claration blocks and, if necessary, by reducing single declarations.

Get Help Online
Even experienced developers cannot solve every problem immediately and without

help. To resolve CSS issues, first remember that Google, as they say, is your best

friend. Whatever problem you’re having, it’s almost certain that another user has

had the same issue.

Type the problem into Google and see what results come back. Try entering the

problem in the form of a question, or as a statement. For example: “How do I center

multiple divs?” or “Right column falls below left column when using floats.”

One website that'll almost certainly come up in many search results when looking

for solutions to CSS problems is Stack Overflow.6 Stack Overflow is a question-and-

answer website frequented by thousands of experienced developers.

Another excellent source for finding answers to problems you’re encountering in

your CSS is the CSS section of the SitePoint forums.7There are thousands of archived

forum posts to mine for information, and its membership includes a number of ex-

perienced CSS developers who are more than happy to help with problems.

6 http://stackoverflow.com/
7 http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

169Debugging Your CSS

http://stackoverflow.com/
http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

Use Online Coding Tools
We've already talked about debugging problems by systematically reducing the issue

to a bare minimum of code. In order to create real, live, editable, reduced test cases,

there are a number of online tools well worth taking advantage of. A few of the most

useful are JS Bin,8 CodePen,9 and jsFiddle.10

All of these sites make it possible to write code in one panel and view the result in

another, on the same screen. This is great for creating reduced test cases, and then

messing around with the code until the solution reveals itself. Conveniently, most

of these tools update the code automatically as you type, too, so there’s no need to

keep hitting “refresh.”

Ideal for experimenting with new or unfamiliar coding features, these tools are in-

valuable.

Test Your Layout Early in Multiple Browsers
Most developers do almost all their coding on a single project in one browser. Many

choose Firefox or Chrome, both of which are good choices because of the extra tools

they offer for development (see the next section). Be sure to check your layout in

multiple browsers, soon after the basic framework is in place, and prior to adding

lots of extra shadows, gradients, backgrounds, and so forth. It's much easier to fix

problems early on, when you haven't yet committed to a lot of code. It might even

be worth checking your CSS in multiple browsers at regular intervals. For example,

check after finishing the header, then check again after completing one column in

the main content area, and again after the next column, and so on.

If you know that many of your website visitors will be viewing the site in a particu-

larly old browser (like Internet Explorer 7 or 8, or Firefox 3.5), then it’s even more

vital to check for layout differences early. Layout problems are much more difficult

to correct in older browsers after having committed to a lot of HTML and CSS, so

checking the results in those browsers very early in development, and often there-

after, will ensure you minimize problems.

8 http://jsbin.com/
9 http://codepen.io/
10 http://jsfiddle.net/

Jump Start CSS170

http://jsbin.com/
http://codepen.io/
http://jsfiddle.net/

Fortunately, layout issues are not as much of a problem with newer browsers like

IE9 and IE10, and later versions of Firefox, Chrome, Safari, and Opera. But do check

early to reduce the risk of having to rewrite a lot of CSS in later stages. Or, worse

yet, having to rely on browser hacks to get the results you want.

For more info on principles and work flow that can help your CSS be as bug-free

as possible, see the following two articles:

■ "The Principles of Cross-browser CSS Coding"11

■ "Cross-browser CSS Development Workflow"12

Use Developer Tools and a Good Text Editor
Here are two final tips that will help you reduce overall development time. The

catch is that they require the use of some fairly complex tools.

The first tip is to know how to use developer tools in your browser of choice, and

learn to use them to debug issues. If you use Google Chrome as a primary develop-

ment browser, you’ll have a set of developer tools that come pre-installed with the

browser, seen in Figure 6.2. To open those tools, hit the F12 key, enter the alternate

keyboard combination of CTRL-SHIFT-i, or right-click (Command-Click on a Mac)

anywhere on a web page and select Inspect element from the context menu.

11 http://coding.smashingmagazine.com/2010/06/07/the-principles-of-cross-browser-css-coding/
12 http://www.impressivewebs.com/cross-browser-css-workflow/

171Debugging Your CSS

http://coding.smashingmagazine.com/2010/06/07/the-principles-of-cross-browser-css-coding/
http://www.impressivewebs.com/cross-browser-css-workflow/

Figure 6.2. Chrome Developer Tools

Apple’s Safari browser also comes installed with developer tools, as do Internet

Explorer and Opera. For Firefox, you can download two add-ons to help with devel-

opment: the Web Developer toolbar13 and Firebug.14

The Web Developer toolbar appears in Firefox below the address bar, and includes

a number of options, including many CSS-related features. The Firebug add-on,

seen in Figure 6.3, works much like Chrome’s developer tools, opening when you

hit F12 or when you right-click (Command-Click on a Mac) an element on the page

and choose Inspect Element with Firebug.

13 https://addons.mozilla.org/firefox/addon/web-developer/
14 http://getfirebug.com/

Jump Start CSS172

https://addons.mozilla.org/firefox/addon/web-developer/
http://getfirebug.com/

Figure 6.3. Firebug

Chrome's developer tools and Firefox’s Firebug add-on conveniently display all the

styles applied to the selected element, making it easy to change these on the fly

right there in the browser, inside the CSS panel. The changes are applied to the

page immediately and will remain until the page is refreshed.

This can be an excellent way to add small sections of code, and see the changes

take place instantly, saving you the trouble of having to go back and forth between

the text editor and browser, refreshing the page each time. And, as a bonus, after

writing some code, you can then select the section you’ve edited and paste it into

your real CSS file, knowing it will work as expected.

In Figure 6.4, you can see the live editing taking place, where an entire declaration

has been removed (the background on the <body> element), and another has been

edited (the margin value on the <body> element).

173Debugging Your CSS

Figure 6.4. Editing in Firebug

In addition to learning how to use in-browser developer tools, the other tip is to

find a good text editor and become familiar with its many shortcuts and features.

This will boost your productivity and development speed. Some excellent and

popular choices include Sublime Text15 (PC or Mac, not free), Notepad++16 (PC

only, free), and Coda17 (Mac only, not free).

There are others, too―some free, some not. In general, the text editors you have to

pay for are quite good and well worth the relatively small, one-time cost.

Most importantly, these editors have tons of excellent coding features designed for

front-end developers working primarily with HTML, CSS, and JavaScript. These

include auto-complete functionality for typing CSS properties and values, options

for different color schemes, enhanced search-and-replace functionality, and much

more. So do yourself a huge favour by installing one of these editors, and slowly

taking the time to learn about all its features.

In Figure 6.5, you'll see Sublime Text with a custom color scheme for syntax high-

lighting. You’ll notice that Sublime Text recognizes the float: left declaration

as typing begins, meaning all we have to do is hit the tab key and it will auto-com-

plete the declaration. It also adds the trailing semicolon automatically!

15 http://www.sublimetext.com/
16 http://notepad-plus-plus.org/
17 http://panic.com/coda/

Jump Start CSS174

http://www.sublimetext.com/
http://notepad-plus-plus.org/
http://panic.com/coda/

Figure 6.5. Editing in Sublime Text

This book, however, is far too short to describe the true power of these kinds of

applications. Try a good text editor out (even those that cost offer free trials), and

fiddle with the features to really understand how good they are. Don't have the time

for this? Try searching online for tutorials that describe the features of the text editor

you're considering. The bottom line is that learning CSS isn't complete without a

tool to do a lot of the heavy lifting for you. A good text editor will look after this,

and will allow you to focus on getting the job done as quickly and efficiently as

possible.

Summary
CSS debugging and problem solving is a way of life for many front-end developers.

Although it can be a headache at times, view every debugging session as a learning

experience that will make you a better developer in the future.

Learn to do many of the tricks mentioned in this chapter, and you’ll notice your

CSS skills will improve dramatically with every project. Debugging CSS can actually

be fun, especially when you understand why problems occur and start to apply the

most productive and future-proof techniques to solve them.

175Debugging Your CSS

	Jump Start CSS
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to take your learning further?
	Acknowledgments

	An Introduction to CSS
	The Sample Project
	How are web pages built?
	What Is CSS?
	How do I include CSS in a web page?
	Using Inline Styles
	Using the <style> Element
	Using @import inside a <style> element
	The Best Way: Using the <link> Element

	Introducing CSS Selectors
	Universal Selector
	Element Type Selector
	ID Selector
	Class Selector
	Descendant Combinator
	Child Combinator
	General Sibling Combinator
	Adjacent Sibling Combinator
	Attribute Selector
	Pseudo-class
	Pseudo-element

	Using Multiple Selectors
	The Cascade and Specificity
	Always Use Standards Mode
	A Skeleton for Our Sample Website
	Summary

	Layout Techniques
	The Box Model
	Block versus Inline
	Shorthand versus Longhand CSS
	Float-based Layouts
	Clearing Floats
	Positioning in CSS
	Absolute and Relative Positioning

	What about Responsive Web Design?
	Using box-sizing for Intuitive Sizing
	Adding More Layout Styles
	Floating the “Latest Recipes” Images
	Layout Styles for the Header
	Laying out the Promo Photo
	Laying out the Footer
	Laying out the “Most Popular” Recipes
	What’s the future of CSS Layouts?
	Flexbox
	Other New Layout Features

	Summary

	Backgrounds, Borders, and More
	Backgrounds
	Borders
	Rounded Corners
	Values and Units
	Px Units
	Em Units
	Rem Units
	Percentages
	Integers
	Keywords
	Color Values

	Transparency
	The Opacity Property
	RGBA and HSLA Colors

	Opacity versus Color-based Transparency
	Other Values

	Adding Shadows to Elements
	Adding a Shadow to the Header
	Adding a Shadow below the Promo Image
	Adding Shadows to Small Images
	Adding Shadows to Buttons
	Adding the Divider Shadow

	What about text shadows?
	Summary

	Links, Text, and Custom Fonts
	Styling Links and Text
	Changing Link Color
	Using Custom Web Fonts
	Using @font-face
	Including the Different Font Files
	Generating the Font Files
	@font-face Review
	Using Our New Fonts on RecipeFinder
	Cleaning Things Up
	Styling the Footer Section
	The line-height Property

	Adding Styles to Text in the Sidebar
	Summary

	Getting Fancy
	Hover Effects
	Transitions
	Multiple Transitions on a Single Element

	Vendor Prefixes
	Transforms
	translate
	scale
	rotate
	skew
	Multiple Transforms on a Single Element

	Defining the Origin of a Transform
	Combining Transitions and Transforms
	Linear Gradients
	Positions for Color Stops
	Changing a Linear Gradient's Direction
	Adding Multiple Gradients on a Single Element

	Adding More Linear Gradients
	Radial Gradients
	More Options for Radial Gradients

	Keyframe Animations
	Graceful Degradation and Page Performance
	Other Cutting-edge Features
	Making RecipeFinder Responsive
	min- and max- Dimensions
	Converting Pixels to Percentages
	Fixing the Size of Images
	Adding Media Queries
	Adding the Viewport Meta Tag

	Summary

	Debugging Your CSS
	Understand How CSS “Errors” Work
	CSS Comments
	Validating CSS
	CSS Hacks
	Reduced Test Cases
	Get Help Online
	Use Online Coding Tools
	Test Your Layout Early in Multiple Browsers
	Use Developer Tools and a Good Text Editor
	Summary

