¢ sitepoint

JUMP START CSS

BY LOUIS LAZARIS

Jump Start CSS

by Louis Lazaris
Copyright © 2013 SitePoint Pty. Ltd.

Product Manager: Simon Mackie English Editor: Paul Fitzpatrick
Technical Editor: Rachel Andrew Cover Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by the
software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names only
in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of
the trademark.

¢ sitepoint
Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066
Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 978-0-9874674-4-7 (print)

ISBN 978-0-9874674-5-4 (ebook)
Printed and bound in the United States of America

About Louis Lazaris

Louis Lazaris is a web designer and blogger who has been creating and coding websites for
more than a decade. You can find him on Twitter' or you can read more on CSS on his
website, Impressive Webs.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,
and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile
development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development
languages and technologies. Typically around 150 pages in length, they can be read in a
weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

! https://twitter.com/ ImpressiveWebs
2 http://www.impressivewebs.com/

https://twitter.com/ ImpressiveWebs
http://www.impressivewebs.com/
http://www.sitepoint.com/

Table of Contents

Preface................ xi
Who Should Read This Booko i Xi
Conventions Usedcouiiiin i et Xi

Code Samples Xi
Tips, Notes, and Warnings, xiii
Supplementary Materials......... ... Xili
Want to take your learning further? Xili
Acknowledgmentso e Xiv

Chapter 1 An Introductionto CSS................. 1
The Sample Project oo e 1
How are web pages built? i 2
What Is CSS7 . . o 3
How do | include CSSinawebpage?.............ccooiviiniinnn.. 4

Using Inline Styles ... i 4
Using the <style> Element..........ot 4
Using @import inside a <style>element.................... 5
The Best Way: Using the <link> Element..................... 5
Introducing CSS Selectors. ... 6
Universal Selector 6
Element Type Selector 6
ID Selector .. .o 7
Class Selectorovvu it e 8
Descendant Combinator......... ... 9
Child Combinator....... ..o e 10
General Sibling Combinator oo, 11

Adjacent Sibling Combinator........... 11

Vi

Attribute Selector..... ... 12
Pseudo-classo 13
Pseudo-element 14
Using Multiple Selectors 14
The Cascade and Specificity ... 15
Always Use Standards Mode 18
A Skeleton for Our Sample Websitet 19
UMM L. 23
Chapter 2 Layout Techniques...................... 25
The Box Modelo 25
Block versus Inline 27
Shorthand versus Longhand CSS....... oo, 29
Float-based Layouts.......... ..o i 32
Clearing Floatso e 36
Positioning in CSS 39
Absolute and Relative Positioning 40
What about Responsive Web Design?........... ..., 43
Using box-sizing for Intuitive Sizing.......................... 44
Adding More Layout Styles. 46
Floating the “Latest Recipes” Images............ it 47
Layout Styles for the Header 50
Laying out the Promo Photo o i 52
Laying out the Footer 54
Laying out the "Most Popular” Recipes........... ...t 56
What's the future of CSS Layouts? s, 57
FleXbOX . . oo 58
Other New Layout Features............... ..., 58

UMM L. 59

vii

Chapter 3 Backgrounds, Borders, and

More.................... 61
Backgrounds 62
BOrders . oo 65
Rounded Corners. e 67
Values and Units 69

Px Units ..o 69

Em Units . .. 70
Rem Units 71
Percentages o 73
INtegerS . 74
Keywords 74
Color Values 75
TranNSPaArENCY . o o v et et e e e 76
The Opacity Property ... 77
RGBA and HSLA Colorso 78
Opacity versus Color-based Transparency 81
Other Values e 81
Adding Shadows to Elements............ L. 82
Adding a Shadow to the Header............................ 82
Adding a Shadow below the Promo Image 84
Adding Shadows to Small Images........................... 85
Adding Shadows to Buttons............. oL 85
Adding the Divider Shadowt 88
What about text shadows? i 89
SUMMATY . 90
Chapter 4 Links, Text, and Custom Fonts...... 91

Styling Links and Text....... ... o ot 92

viii

Changing Link Coloro 94
Using Custom Web Fonts.......... . i 97
Using @font-faceo e 99
Including the Different Font Files....... 100
Generating the Font Files..... i, 102
@font-face Review i 108
Using Our New Fonts on RecipeFinder........................... 109
Cleaning Things Upo oo oo e e 112
Styling the Footer Section i 117
The line-height Property....... o i, 118
Adding Styles to Text in the Sidebar............................ 120
UMM L. e 122
Chapter 5 Getting Fancy............................ 123
Hover Effectso 124
Transitions . .. oo e 127
Multiple Transitions on a Single Element.................... 129
Vendor Prefixes 130
Transtorms . ..o e 131
translate 131
SCAlE L 132
rotate 132
QKW L e 132
Multiple Transforms on a Single Element.................... 133
Defining the Origin of a Transform 133
Combining Transitions and Transforms 134
Linear Gradientsot 136
Positions for Color Stops . ..+« 138
Changing a Linear Gradient's Direction 139

Adding Multiple Gradients on a Single Element.............. 140

Adding More Linear Gradients..............ccoiiiiiiiinnn. 140
Radial Gradients. 143
More Options for Radial Gradients......................... 144
Keyframe Animations i 146
Graceful Degradation and Page Performance..................... 151
Other Cutting-edge Features............. ... i, 151
Making RecipeFinder Responsive oo, 152
min- and max- DImensions, 152
Converting Pixels to Percentages........................... 153
Fixing the Size of Images.......... i i 155
Adding Media QUErieS oot 157
Adding the Viewport MetaTagt 157
UMM L. 160
Chapter 6 Debugging Your CSS................... 161
Understand How CSS “Errors" Workt 162
CSS Comments . ..o 164
Validating CSS 166
CSS Hacks ..ot 168
Reduced Test Casesot i e 168
Get Help Onlineo o e 169
Use Online Coding Tools 170
Test Your Layout Early in Multiple Browsers 170
Use Developer Tools and a Good Text Editor 171

UMM L 175

Preface

Do you remember your first educational toy? One of the first that many children
get is the big, chunky puzzle—four to ten easy-to-grip pieces that fit into spaces on
a board.

This is one of the first experiences a child has with matching shapes to corresponding
spaces, helping them develop their shape recognition skills.

My wife thinks I was never given one of these puzzles. Every time I put the dishes
away, the plastic food storage containers stump me. I end up trying to put medium
containers into small containers and square containers into round ones. It's as if,
in her words, I never got the proper training as a child. I pretend she's just joking,
but maybe she's right—I really can't remember.

If you've purchased this little book, in terms of CSS knowledge, you're a lot like an
infant with its first shapes puzzle. I hope to teach you as much as possible, as quickly
as possible, about the fundamentals of CSS. And I hope later in life you'll look back
and be thankful that you took the time to "learn your shapes."

Who Should Read This Book

This book is suitable for beginner level web designers and developers. Some
knowledge of HTML is assumed.

Conventions Used

You’ll notice that we’ve used certain typographic and layout styles throughout this
book to signify different types of information. Look out for the following items.

Code Samples

Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

Xii

If the code is to be found in the book’s code archive, the name of the file will appear
at the top of the program listing, like this:
example.css

.footer {
background-color: #CCC;
border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be
displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all it, a : will
be displayed:

function animate() {

return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap
them because of page constraints. A = indicates a line break that exists for formatting

purposes only, and that should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
wtesting/?responsivel");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

@ Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

0 Make Sure You Always ...

... pay attention to these important points.

@ Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials

http://www.sitepoint.com/books/jscss1/
The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/jscss1/code.php
The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?53-css

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com
Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to take your learning further?

Thanks for buying this book. We appreciate your support. Do you want to continue
learning? You can now get unlimited access to courses and ALL SitePoint books at

Xiii

http://www.sitepoint.com/books/jscss1/
http://www.sitepoint.com/books/jscss1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?53-css

Xiv

Learnable for one low price. Enroll now and start learning today! Join Learnable
and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

Acknowledgments

Thanks to Simon Mackie and Rachel Andrew for their excellent and practical
feedback to help make this book much better than it would have been had I tackled
this on my own.

http://www.learnable.com

Chapter

An Introduction to CSS

Welcome to Jump Start CSS! This book is an introduction to CSS that'll teach you
the basics so you can start sprucing up your web pages using Cascading Style Sheets
(CSS), the industry standard technology for formatting web pages.

For the most part, this book will not serve as a theoretical source for the topics we'll
be discussing—there are plenty of other resources for that. In this brief volume,
we'll be focusing on practical information. I'll be showing you, in rapid fashion,

what the various aspects of CSS are, and how you can use them to build web pages.

The Sample Project

In order to give you hands-on experience with CSS, this book is centered around a
sample project that we'll be building together.

The sample project is a phony website called RecipeFinder. You can access a com-
pleted version of that website by visiting http://spbooks.github.io/JSCSS1/ in any
web browser.

We're going to take RecipeFinder from mock-up to development. The sample site's
look is based on a Photoshop design. Figure 1.1 shows you what it looks like.

http://spbooks.github.io/JSCSS1/

2 Jump Start CSS

RECIPES INGREDIENTS CONTRIBUTORS

SWEET AND SOUR

ZUCCHINI PUREE

cook it now!

MOST POPULAR

4915 DELICIOUS BAKED GARLIC
ZESTY SMOKED HADDOCK BRECD
SKEWERS 485 CHOCOLATE CLOUD CAKE
COOKING TIME: 20 MINUTES 485 FIERY THAI CURRY
475 SENSATIONAL PORTOBELLO
MUSHROOMS STUFFED
WITH STILTON
CREAMY BLUEBERRY 445 CRAB, CORN AND POTATO
CAKE
BAGEL
CoORING TIME: 7 MINGTES 43/5 PERSIAN STYLE LAMB PILAF
YUMMY TWEETS
TRADITIONNAL ROAST @Peter: Once again, the recipe
>
BEEF WITH YORKSHIRE ofthe aussie BBQwas a complete.
success thx @RecipeFinder
SAUCE 24 minutes ago
COOKING TIME: 50 MINUTES
‘ @xavier_mathieu: | love the recipe

“Cuisses de grenouilles” so much
1hour ago

STEAMED CRAB WITH > @Uni:?gns;iahsyto cook and

s0good to eat: the creamy
clielan e gelild el raspberry bagel via @RecipeFinder
COOKING TIME: 40 MINUTES 2days ago

oy @RecipeFinder: Thanks folks for
all the love in your messages
2days 30

discover more recipes

Figure 1.1. The website we'll be building in this book

Now, before we get into building our project, let's properly introduce the elements
of CSS and how it's used to style web pages.

How are web pages built?

Let's begin by briefly considering what exactly CSS is, and how it relates to a web
page. Web pages are built on content. Content is what you see when you visit a
page. It might include text, photos, graphics, and video. Content is stored using a

language called HTML. You've probably heard of it, but here's a very quick overview.

An Introduction to CSS

HTML consists of elements, many of which have what are called opening and
closing tags. These instruct web browsers how content (copy, photos, videos, and
so on) should be presented on screen. For example:

<header>
<h1>RecipeFinder</hi>
</header>

In this case, the content that's visible on the page is the text “RecipeFinder.”
Everything else you see there (specifically the information inside the angle brackets)
is HTML, and it's invisible on the page when viewed in a browser. What it does is
to help mark where sections of content begin and end. For this reason HTML is
what's called a markup language. In fact, it stands for Hyper Text Markup Language.

As mentioned, this is not a book on HTML, but if you want to learn more, two
possible resources are SitePoint's online HTML Concepts' or the Mozilla Developer
Network's Introduction to HTML.?

What Is CSS?

CSS stands for Cascading Style Sheets and is a separate, but complementary, language
to HTML. CSS is what we use to apply styles to the content on our web page.

Let's use the HTML from the example above to give you a first taste of CSS. Don't
worry if this looks foreign to you right now—just become familiar with the look of
the code:

header {
color: white;
background-color: #333;
font-size: 1.5em;

What you see above is referred to as a rule set. Notice the curly braces that wrap
three lines of code. Also, notice that each line inside the curly braces has a colon
and a semi-colon. Everything inside the curly braces is called a declaration block.

! http://reference.sitepoint.com/html/html-concepts
2 https://developer.mozilla.org/en-US/docs/HTML/Introduction

http://reference.sitepoint.com/html/html-concepts
https://developer.mozilla.org/en-US/docs/HTML/Introduction
https://developer.mozilla.org/en-US/docs/HTML/Introduction

Jump Start CSS

The portion prior to the first curly brace is what defines which part of the web page
we are styling. This is referred to as the selector. We'll discuss more on selectors
later in this chapter. In this case, our CSS is targeting the <header> HTML element.

Each of the three lines in the declaration block is referred to as a—you guessed
it—declaration. Additionally, each declaration consists of a property (the part before
the colon) and a value (the part after the colon). Finally, each CSS declaration ends
with a semi-colon.

What I've shown you here is a very simple example. Other CSS code examples might
be more complex, but most are fairly easy to figure out through trial and error—so
don't be too intimidated if you come across something you don't recognize.

So what does that code do? Well, we'll get into the specifics on CSS properties later,
so hang tight while we continue discussing some further important basics that'll
serve as a foundation for the rest of this book.

How do | include CSS in a web page?

CSS can be inserted into a web page in four different ways. Let's take a look at each

one, saving the most highly recommended method for last.

Using Inline Styles

Any HTML element on a web page can be styled using inline styles. Here's an ex-
ample, using some of the HTML we've already introduced:

<h1 style="color: blue; background-color:
#333; ">RecipeFinder</h1>

In this case, the CSS is contained inside of an HTML attribute called style. The
attribute tells the browser that what follows inside the quotation marks is CSS. In
this example, the styles will only apply to the element to which they're attached
(the <h1> element in this case). This is a very inefficient way of inserting CSS and
should be avoided in almost all circumstances.

Using the <style> Element

You can also include CSS in an HTML page using a <style> tag, which also requires
a closing </style> tag:

An Introduction to CSS

<style>

header {
color: white;
background-color: #333;
font-size: 1.5em;

}
</style>

In this example, the styles will apply only to the element(s) targeted in the selector.
So, in this instance, the styles will apply to all <header> elements on the page where
this <style> element appears.

Using @import inside a <style> element

You also have the option to include CSS in a separate file. It's similar to a text file,
but has a file extension of “.css”. So a chunk of CSS inside a separate file can be
imported into your HTML like this:

<style>
@import url(css/style.css);
</style>

The @import method of including CSS has been known to cause some problems—for
example, multiple CSS files loaded via @import will often take longer to down-

load®>—so, in general, you'd do well to avoid using it.

The Best Way: Using the <1ink> Element

The best way to include CSS in a web page is by means of the <link> element:
<link rel="stylesheet" href="css/style.css">

This element, which would be placed in the <head> element of your HTML docu-
ment, is much like @import in that it references an external file. This enables you

to keep all your CSS code separate from the HTML. In addition, this method doesn't
cause some of the issues that can arise when using @import. Also, because the styles
are not “inline,” scattered among the HTML, your CSS will be that much easier to

maintain.

3 http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

http://www.stevesouders.com/blog/2009/04/09/dont-use-import/
http://www.stevesouders.com/blog/2009/04/09/dont-use-import/

Jump Start CSS

Introducing CSS Selectors

As already alluded to, a CSS selector is the part of a CSS rule set that actually selects
the content you want to style. Let's look at all the different kinds of selectors avail-
able, with a brief description of each.

Universal Selector

The universal selector works like a wild card character, selecting all elements on
a page. You'll recall, from our brief overview earlier, that every HTML page is built
on content placed within HTML tags. Each set of tags represents an element on the

page. Look at the following CSS example, which uses the universal selector:

* A
color: green;
font-size: 20px;
line-height: 25px;

The three lines of code inside the curly braces (color, font-size, and line-height)
will apply to all elements on the HTML page. As seen here, the universal selector
is declared using an asterisk. You can also use the universal selector in combination
with other selectors—something we'll discuss a little later in this chapter.

Element Type Selector

Also referred to simply as a “type selector,” this selector must match one or more
HTML elements of the same name. Thus, a selector of nav would match all HTML
<nav> elements, and a selector of ul would match all HTML unordered lists, or
 elements.

The following example uses an element type selector to match all elements:

ul {
list-style: none;
border: solid 1px #ccc;

To put this in some context, here's a section of HTML to which we'll apply the above
CSS:

An Introduction to CSS

Fish</1i>
Apples</1li>
Cheese</1li>

<div class="example">
<p>Example paragraph text.</p>
</div>

Water</1li>
Juice</1li>
Maple Syrup</1li>

There are three main elements making up this part of the page: Two elements
and a <div>. The CSS will apply only to the two elements, and not to the
<div>. Were we to change the element type selector to use div instead of ul, then
the styles would apply to the <div> and not to the two elements.

Also note that the styles will not apply to the elements inside the or <div>
elements. That being said, some of the styles may be inherited by those inner ele-
ments—more on this later in the book.

ID Selector

An ID selector is declared using a hash, or pound symbol (#) preceding a string of
characters. The string of characters is defined by the developer. This selector matches
any HTML element that has an ID attribute with the same value as that of the selector,
but minus the hash symbol.

Here's an example:

#container {
width: 960px;
margin: 0 auto;

This CSS uses an ID selector to match an HTML element such as:

7

Jump Start CSS

<div id="container"></div>

In this case, the fact that this is a <div> element doesn't matter—it could be any
kind of HTML element. As long as it has an ID attribute with a value of container,
the styles will apply.

An ID element on a web page should be unique. That is, there should only be a
single element on any given page with an ID of container. This makes the ID selector
quite inflexible, because the styles used in the ID selector rule set can be used only
once per page.

If there happens to be more than one element on the page with the same ID, the
styles will still apply, but the HTML on such a page would be invalid from a tech-
nical standpoint, so you'll want to avoid doing this.

In addition to the problems of inflexibility, ID selectors also have the problem of
very high specificity—an issue we'll be talking about later in this chapter.

Class Selector

The class selector is the most useful of all CSS selectors. It's declared with a dot
preceding a string of one or more characters. Just as is the case with an ID selector,
this string of characters is defined by the developer. The class selector also matches
all elements on the page that have their class attribute set to the same value as the
class, minus the dot.

Take the following rule set:

.box {
padding: 20px;
margin: 10px;
width: 240px;

These styles will apply to the following HTML element:

<div class="box"></div>

The same styles will also apply to any other HTML elements that have a class attrib-
ute with a value of box. Having multiple elements on a single page with the same

An Introduction to CSS

class attribute is beneficial, because it allows you to reuse styles, and avoid needless
repetition. In addition to this, class selectors have very low specificity—again, more

on this later.

Another reason the class selector is a valuable ally is that HTML allows multiple
classes to be added to a single element. This is done by separating the classes in

the HTML class attribute using spaces. Here's an example:

<div class="”box box-more box-extended”></div>

Descendant Combinator

The descendant selector or, more accurately, the descendant combinator lets you
combine two or more selectors so you can be more specific in your selection method.
For example:

#container .box {
float: left;
padding-bottom: 15px;

This declaration block will apply to all elements that have a class of box that are
inside an element with an ID of container. It's worth noting that the .box element
doesn't have to be an immediate child: there could be another element wrapping
.box, and the styles would still apply.

Look at the following HTML:

<div id="container">
<div class="box"></div>

<div class="box-2"></div>
</div>

<div class="box"></div>
If we apply the CSS in the previous example to this section of HTML, the only ele-

ment that'll be affected by those styles is the first <div> element that has a class of
box. The <div> element that has a class of box-2 won't be affected by the styles.

10

Jump Start CSS

Similarly, the second <div> element with a class of box won't be affected because
it's not inside an element with an ID of container.

You should be careful when using the descendant combinator in your CSS. This
kind of selector, while making your CSS a little easier to read, can unnecessarily
restrict your styles to a specific context—in this case, the styles are restricted to

boxes inside of #container—which can make your code inflexible.

Child Combinator

A selector that uses the child combinator is similar to a selector that uses a descend-
ant combinator, except it only targets immediate child elements:

f#fcontainer > .box {
float: left;
padding-bottom: 15px;

This is the same code from the descendant combinator example, but instead of a

space character, we're using the greater-than symbol (or right angle bracket.)

In this example, the selector will match all elements that have a class of box and
that are immediate children of the #container element. That means, unlike the
descendant combinator, there can't be another element wrapping . box—it has to
be a direct child element.

Here's an HTML example:

<div id="container">
<div class="box"></div>

<div>
<div class="box"></div>
</div>
</div>

In this example, the CSS from the previous code example will apply only to the
first <div> element that has a class of box. As you can see, the second <div> element
with a class of box is inside another <div> element. As a result, the styles will not
apply to that element, even though it too has a class of box.

An Introduction to CSS

Again, selectors that use this combinator can be somewhat restricting, but they can
come in handy—for example, when styling nested lists.

General Sibling Combinator

A selector that uses a general sibling combinator matches elements based on sibling
relationships. That is to say, the selected elements are beside each other in the
HTML.

h2 ~ p {
margin-bottom: 20px;

}

This type of selector is declared using the tilde character (~). In this example, all

paragraph elements (<p>) will be styled with the specified rules, but only if they

are siblings of <h2> elements. There could be other elements in between the <h2>
and <p>, and the styles would still apply.

Let's apply the CSS from above to the following HTML:

<h2>Title</h2>

<p>Paragraph example.</p>

<p>Paragraph example.</p>

<p>Paragraph example.</p>

<div class="box">
<p>Paragraph example.</p>

</div>

In this example, the styles will apply only to the first three paragraph elements.
The last paragraph element is not a sibling of the <h2> element because it sits inside
the <div> element.

Adjacent Sibling Combinator

A selector that uses the adjacent sibling combinator uses the plus symbol (+), and
is almost the same as the general sibling selector. The difference is that the targeted
element must be an immediate sibling, not just a general sibling. Let's see what the
CSS code for this looks like:

11

12

Jump Start CSS

p+p{
text-indent: 1.5em;
margin-bottom: O;

This example will apply the specified styles only to paragraph elements that imme-
diately follow other paragraph elements. This means the first paragraph element

on a page would not receive these styles. Also, if another element appeared between
two paragraphs, the second paragraph of the two wouldn't have the styles applied.

So, if we apply this selector to the following HTML.:

<h2>Title</h2>

<p>Paragraph example.</p>
<p>Paragraph example.</p>
<p>Paragraph example.</p>

<div class="box">
<p>Paragraph example.</p>
<p>Paragraph example.</p>
</div>

...the styles will apply only to the second, third, and fifth paragraphs in this section
of HTML.

Attribute Selector

The attribute selector targets elements based on the presence and/or value of HTML
attributes, and is declared using square brackets:

input[type="text"] {
background-color: #444;
width: 200px;

There should not be a space before the opening square bracket unless you intend
to use it along with a descendant combinator. The above CSS would match the fol-
lowing element:

<input type="text">

An Introduction to CSS

But it wouldn't match this one:
<input type="submit">

The attribute selector can also be declared using just the attribute itself, with no
value, like this:

input[type] {
background-color: #444;
width: 200px;

This will match all input elements with an attribute of type, regardless of the value.

You can also use attribute selectors without specifying anything outside the square
brackets (thus targeting based on the attribute alone, irrespective of the element).
It's also worth noting that, when using values, you have the option to include quotes
(single or double,) or not.

Pseudo-class

A pseudo-class uses a colon character to identify a pseudo-state that an element
might be in—for example, the state of being hovered, or the state of being activated.
Let's look at a common example:

a:hover {
color: red;

}

In this case, the pseudo-class portion of the selector is the :hover part. Here we've
attached this pseudo-class to all anchor elements (<a> elements). This means that
when the user hovers their mouse over an <a> element, the color property for that
element will change to red. This type of pseudo-class is a dynamic pseudo-class,
because it occurs only in response to user interaction—in this case, the mouse

moving over the targeted element.

It's important to recognize that these types of selectors do not just select elements;

they select elements that are in a particular state. For the purposes of this example,

13

14

Jump Start CSS

the state is the “hover” state. We'll look at other examples of pseudo-classes later
in the book.

Pseudo-element

Finally, CSS has a selector referred to as a pseudo-element and, used appropriately,
it can be very useful. The only caveat is that this selector is quite different from the
other examples we've considered. Let's see a pseudo-element in context:

.container:before {

content: "";
display: block;
width: 50px;

height: 50px;
background-color: #141414;

This example uses one kind of pseudo-element, the :before pseudo-element. As
the name suggests, this selector inserts an imaginary element into the page, inside
the targeted element, before its contents.

Don't worry—we'll cover pseudo-elements in greater detail later in the book.

Using Multiple Selectors

Each of the selectors shown above can be combined with one or more other selectors.
For the most part, you'll want to avoid combining too many selectors together, but
here are a few quick examples to help you grasp the concept:

p.box {
color: blue;

}

In this example, we're combining the element type selector with a class selector.
As aresult, this will target only paragraph elements that have a class of .box. This
is a poor choice of selector, and should be avoided in almost all circumstances. In
normal practice, it's more than enough to specify a selector with a class such as
.box without over-qualifying it with the p portion (or any other element type select-

or).

An Introduction to CSS

#form [type=text] {
border: solid 1px #ccc;

}

This selector combines the ID selector with the attribute selector. This will target
all elements with a type attribute of text that are inside an element with an ID of
form.

p, div, .box {
color: black;

}

Here we're using commas to separate our selectors. This is a useful method to use
to combine multiple selectors in a single rule set. In this case, the styles will apply
to all paragraph elements, all <div> elements, and all elements that have a class of
box.

The Cascade and Specificity

At first glance, the following concepts can seem difficult to grasp. But the truth is,
if you're a CSS beginner, there are methods you can employ to ensure that they

don't cause too many problems for you.

First, let's look at what we mean when we refer to style sheets as cascading and

how specificity ties in.

Usually, when a browser interprets a CSS document, it does so from top to bottom,
giving precedence—or overriding abilities—to the declarations that appear lower

down in the document.

Let's look at a simple example so you can understand what I mean when discussing
precedence and overriding abilities. Assume the following two declaration blocks
appear in a single CSS file:

p {
font-size: 20px;

}

15

16

Jump Start CSS

p {
font-size: 30px;

}

Here we're using the exact same selector for both rule sets—the element type selector,
which targets all paragraph elements. The difference between these two rule sets,
however, is the value of the font-size property. Here we're defining the font-size
twice for the same element. So what will the size of the font actually be? Well, since
the rule set that defines the font size at 30px appears after the previous rule set,
then the font will be sized at 30px.

This is a very simple example, but it neatly demonstrates how selectors targeting
styles later in a CSS document have precedence over the same selectors that appear
earlier in the CSS file. Simple, right? Unfortunately, different selectors have different

levels of specificity. Look at the following example:

div p {

color: blue;
}
p {

color: red;
}

If all the <p> elements on a web page were nested inside a <div>, the first rule set
(which uses div p,) would always apply, overriding any of the same styles defined
in the second rule set (which uses only p). This is because the descendant selector
(used in the first example) takes precedence over the element type selector (used
in the second example).

In this instance, the color value for paragraph elements inside of <div> elements
will be blue—despite the fact that the second color declaration appears later in the
document. So although the browser does give some importance to the order of these
rule sets, that order is superseded by the specificity of the first rule set.

Here's another example:

An Introduction to CSS

#main {
color: green;

}

body div.container {
color: pink;

}
which assumes the following HTML:
<div id="main" class="container"></div>

In this case, it might seem that the second rule set, which uses two type selectors,
a class selector and a descendant selector all in one, would have precedence over
the first rule set, which only uses the ID selector. But this isn't the case. The color
value on the container element would become green because the ID selector (used
in the first example) has very high specificity and thus takes precedence over the

second rule set.

It should be noted here that when we refer to the overriding of selectors and selectors
taking precedence, we're assuming that the same styles are defined on these different
rule sets. So, for example, in the previous code block, if the #main rule set defined
color and the body div.container selector defined a different property, then they
would both apply, because there'd be nothing being overridden. To recap, then:
specificity does not affect all styles, but only the styles that are duplicated across
multiple selectors.

This use of the ID selector—and its strong override abilities—clearly illustrates why
it's important to avoid using it, wherever possible. Traditionally, CSS developers
have encouraged the ID selector's use for unique elements, and, according to
standards, it's a perfectly valid CSS selector. But please keep in mind that overusing
it may cause all sorts of problems in the long run.

In order to avoid being tripped up by specificity, use the class selector widely and
learn what's referred to as "Object Oriented CSS" or "modular CSS".*

4 For more advanced learning on this subject, see SMACSS [http://smacss.com/] and An Introduction
to Object Oriented CSS.

[http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/]

17

http://smacss.com/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://coding.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/

18

Jump Start CSS

@ Selective Treatment

The suggestion to avoid ID selectors only applies to IDs in CSS, not in HTML. ID
attributes are absolutely necessary for local, or same-page, links and can be very

useful when attempting to target elements using JavaScript.

Other selectors will also add certain levels of specificity, but not so much that they'll
cause problems. If, for example, you have to target something with a pseudo-class
or child selector, that's fine. Use those selectors whenever you find them to be

practical.

There are a number of detailed articles online explaining cascade and specificity.
These include a series on SitePoint's CSS Reference,” which are highly recommend

once you've a good grasp of some of the basics introduced in this book.

Always Use Standards Mode

A basic rule of thumb is that every HTML document you create should use “standards
mode.” For a beginner, this might sound a bit too techy, but it's actually quite simple

to ensure that all your HTML pages comply.

To ensure your CSS is rendered properly by the browser (meaning, it's in standards
mode,) make sure the HTML document to which your styles are applying has the
following tag at the top, before all other content:

<!doctype html>

That's it. This tag is referred to as an HTML5 document type declaration or “doc-
type.” In older documents, you'll occasionally come across other lengthier doctypes,
which are commonly used for XHTML or HTML4 web pages. For example:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"
“http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

> http://reference.sitepoint.com/css/inheritancecascade

http://reference.sitepoint.com/css/inheritancecascade

An Introduction to CSS

You can do some further reading on doctypes at SitePoint's HTML reference® but,
for now, all you need to know is that, if you use the simple HTML5 doctype, your
pages will render in standards mode and your CSS will be much easier to code and
debug.

A Skeleton for Our Sample Website

We've covered quite a bit of ground, already, without touching our sample project.
Let's conclude this chapter by using some of the selectors we've learned about to
build a CSS skeleton for the RecipeFinder website.

First, we need to add an external CSS file to our project that'll help us achieve
similar results in almost all browsers and on any device. Of course, not every web
browser supports every CSS feature (more on this later,) but we can make a fairly

normalized cross-browser start to our project by using something called a “CSS reset.”

What do we mean by "normalized cross-browser"? Well, every browser applies
certain styles to elements on a web page by default. For example, if you use an un-
ordered list (the element) the browser will display the list with some existing
formatting styles, including bullets next to the individual list items (the <1i> ele-
ments inside the). By using a CSS reset document at the top of your CSS file,
you can reset all these styles to a bare minimum. To put it another way, it clears
the ground before we start building something new.

At this stage, it's not necessary to understand everything in a CSS reset. Most experts
wouldn't be able to speak intelligently on every line of CSS in such a document.
The important thing to understand is that it's a valuable tool in your CSS arsenal,
and it's imperative that you use one on every project to avoid as many cross-browser
problems as possible.

That said, you can't just throw a CSS reset document into a pre-existing site, and
expect it to "fix" everything. That's not how CSS resets work. A reset is designed to
be used as a starting point, not as a quick-fix for existing websites that aren't behaving
in different browsers.

® http://reference.sitepoint.com/html/doctypes

19

http://reference.sitepoint.com/html/doctypes

20

Jump Start CSS

Two of the most popular CSS resets are Eric Meyer's Reset’ and Nicolas Gallagher's
Normalize.css.® Normalize.css is what we'll use as a foundation for our project. So
our base HTML will look like this:

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>RecipeFinder</title>

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/styles.css">

<!--[if 1t IE 9]>
<script src="http://html5shiv.googlecode.com/
wsvn/trunk/html5. js"></script>
<![endif]-->
</head>
<body>
</body>
</html>

Notice the two CSS file references. One is Normalize.css and the other is the stylesheet
that we're going to build. Remember what we talked about earlier regarding the

cascade? To ensure that the Normalize.css styles work correctly, this file has to be
referenced first, prior to any other CSS we add. This ensures that any styles we add

later in the CSS will override whatever is in our Normalize.css file.

@ The HTML5 Shiv

You'll probably notice in our HTML that we've included a <script> tag that
references a file called HTML5shiv. This is necessary to enable older versions of
Internet Explorer to apply CSS to all HTMLS5 tags. For more information on this,
see this article by Remy Sharp.’

Now that we have that basic foundation in place, let's look at our RecipeFinder

graphic again and decide how we want to divide up our page. Then we'll choose

7 http://meyerweb.com/eric/tools/css/reset/
8 http://necolas.github.com/normalize.css/
o http://remysharp.com/2009/01/07/html5-enabling-script/

http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/
http://necolas.github.com/normalize.css/
http://remysharp.com/2009/01/07/html5-enabling-script/

An Introduction to CSS 21
some CSS selectors to attach to declaration blocks that we'll populate throughout
the book.

Notice in Figure 1.2 the different sections of the website have been overlaid with
colors, so you can envision roughly how the HTML structure will be defined.

Figure 1.2. The RecipeFinder website with colors indicating how we'll divide up the layout

We'll introduce the different parts of the HTML as we go along. For now, here's a
bare skeleton CSS framework that we'll use:

22 Jump Start CSS

a:link, a:visited {

}

a:hover {

h2 {
}

body > header {
}

nav ul {

}

.promo {

}

.main {

}

.latest {
}

.media {

}

.media img {

}

.sidebar {

}

footer {

}

Right now, these are just bare declaration blocks with only selectors present, and
no actual CSS styles. This framework won't affect the document yet, but simply
serves to illustrate how we're going to use some of the selectors I've introduced in
this chapter.

An Introduction to CSS

Here you can see we're making generous use of the class selector (e.g. .promo) and
we've also included use of the element type selector (e.g. h1 and h2) as well as the
descendant selector (e.g. .media img) and the child combinator (e.g. body > header).

You'll also notice another convention we've used here: portions of the CSS have
been indented to match the indenting that will exist in the HTML itself. You don't
have to do this, but it's a nice way to keep the CSS easy to scan when it starts
building up.

If there's anything you don't understand in our CSS skeleton, don't worry too much
about it right now.We'll go into more detail in the coming chapters as we put some
meat on those bones, so to speak.

@ What about the HTML?

This book is not about HTML, so although there will be some code snippets
showing what HTML we're dealing with when writing the CSS, the HTML will,

for the most part, not be shown or discussed.

If you want to get the most out of the tutorial that runs through this book, I suggest
that you download the code archive and use the HTML file provided in the
download. You can remove the completed CSS file that's included with the archive
and build your own CSS file step-by-step as you progress through the book.

All the code examples in this book, if patched together correctly, will build the
complete CSS file (minus all the extra vendor prefixes for newer CSS fea-

tures—more on this in Chapter 5).

Summary

In this chapter, you've learned about the different components of a CSS rule set,
you've been introduced to the different ways to select elements via CSS, and you've
had a glimpse of some relevant concepts with regards to the cascade and specificity.

I've also introduced the sample project, and we've put together a base CSS file that
is preceded by a set of styles that normalizes some browser differences.

In the next chapter, we'll start putting together the structural foundation for the

RecipeFinder website and, in the process, you'll learn about CSS-based layouts.

23

Chapter

Layout Techniques

In this chapter, I'm going to introduce you to some layout techniques. You’ll get
hands-on experience with these when we implement some of them into the skeleton
we built for our CSS in Chapter 1.

Before that, there are some additional fundamental concepts that we didn’t cover

in Chapter 1 that you’ll get to know.

The Box Model

The box model refers to the (usually) invisible rectangular area that is created for
each HTML element. This area has four basic components, and it’s much easier to

explain using a diagram, so take a look at Figure 2.1:

26

Jump Start CSS

margin
border
padding

Figure 2.1. A graphic representation of the box model

The box model components in this diagram are exaggerated. Normally, the only

large and visible area of any HTML element is the content area. Using this larger-

than-life example, however, we can discuss each component, starting from the inside

and working our way out:

Content

Padding

Border

The content portion of the box model holds—you guessed it—the actual
content. We introduced this briefly in Chapter 1 when discussing HTML
elements. The content can be text, images, or whatever else is visible on
a web page.

The padding of an element is defined using the padding property. The
padding is the space around the content. It can be defined for an indi-
vidual side (for example, padding-left: 20px) or for all four sides in
one declaration—padding: 20px 10px 30px 20px, for instance. When
declaring all four sides, you're using a shorthand property. There'll be
more on shorthand later in the chapter. Often when a CSS property takes
multiple values like this, they start at the top and go clockwise in relation
to the element. So, in the example just cited, this would apply 20px of
padding to the top, 10px to the right, 30px to the bottom, and 20px to
the left.

The border of an element is defined using the border property. This is
a shorthand property that defines the element's border-width,
border-style, and border-color. For example, border: 4px dashed
orange.

Layout Techniques 27

Margin Finally, the last part of the box model is the element’s margin. Margins
are similar to padding, and are defined using similar syntax (for example,
margin-left: 15px ormargin: 10px 20px 10px 20px). However, unlike
padding, the margin portion of an element exists outside the element.
A margin creates space between the targeted element and surrounding
elements.

Every element on a web page has these box model components. Sometimes the de-
fault characteristics of these components differ on certain types of elements. For
example, form elements start out with a certain width and height, even if you don’t
define those properties. Also, as mentioned in Chapter 1, unordered lists (
elements,) will start out with predefined margins and padding due to the browser's

internal stylesheet, even if those are not set in the CSS.

Block versus Inline

Another concept you should be familiar with is that most HTML elements fall under
two categories: block or inline. A block-level element is more of a structural, layout-
related element, while an inline-level element is usually found inside of block-level

elements, flowing in the same context as text.

Block-level elements include elements like <div>, <p>, and <section>, whereas
inline elements include , , and . These are just a few examples.

Using CSS, you can change an element’s default behavior in this regard by using
the display property, like this:

span {
display: block;
}

The behavior of block-level compared to that of inline-level elements isn’t too tricky

to grasp, and that understanding can be a rewarding “aha!” moment for many begin-
ner CSS developers, so it’s good to learn this concept early. Figure 2.2 visually

demonstrates the difference between block and inline.

28 Jump Start CSS

This is a block-level element

The rectangle that appears behind
the word [ifllifi€ in this paragraph is
an inline-level element.

Figure 2.2. A visual demonstration of the difference between block and inline

Block elements have certain characteristics. First, unless given a specific width,
they always expand horizontally to fit inside their parent container and will also,
by default, expand vertically to hold their contents. So there is normally no need
to, say, add a specific width to a block element unless you require its width to be
smaller than the available space within its parent element. And there's rarely a need
to give an explicit height to a block element since, in most cases, it will naturally

expand to hold its contents.

As mentioned, block elements are structural-type elements and so will, by default,
start below the elements on the page that appear before them in the HTML. This is

an important part of understanding how they differ from inline elements.

In essence, inline elements behave like words and letters within of a paragraph. As
you can see in Figure 2.2, an inline element will flow naturally with text, and usually
it'll contain nothing but text or other inline elements. It's worth noting that inline

elements are subject to CSS properties that affect text. For example, line-height and
letter-spacing are CSS properties that can be used to style inline elements. However,

those same properties wouldn't affect block elements.

Additionally, inline elements can't have specified width and height values, and
they'll ignore top and bottom margins. That said, they can accept left and right

margin values as well as any padding.

Layout Techniques

For reasons concerned with layout, you’ll occasionally want to have something that
somewhat resembles both block and inline. This is possible by setting an element
to a value of inline-block, which you can do as follows:

.example {
display: inline-block;

}

This gives us the best of both worlds—allowing the element to stay inline with text,
and still be subject to text-based CSS, while at the same time accepting width, height,
and margin values like a block element. Later in this chapter, we’ll use inline-block
to style the main navigation of our example site.

Shorthand versus Longhand CSS

Yet another important concept to understand is the difference between shorthand
and longhand CSS properties. As we’ve already discussed, a single CSS declaration
usually consists of a property followed by a colon, followed by a value, then a semi-
colon.

Shorthand properties work a bit differently. A shorthand property’s value is actually
a set of values, each of which maps to an existing CSS longhand property. Let’s look

at an example that we’ve already introduced—the border property:

.example {
border: dashed 2px blue;
}

The rule set above, which contains just one declaration, can also be written in
longhand, like this:

.example {
border-style: dashed;
border-width: 2px;
border-color: blue;

From this it's easy to see why you’ll rarely come across the longhand version of
border-related properties. It’s simpler to use the shorthand, and it uses less code,

29

30

Jump Start CSS

which, in a large CSS file, will make a small impact on page speed and probably a
big impact on future code maintenance.

It should also be noted that if you leave out one of the values of a shorthand property,
it will cause that value to revert to its initial, or default, state. Let’s combine our
previous two code examples so you can see how this works:

.example {
border-style: dashed;
border-width: 2px;
border-color: blue;

}

.example {
border: solid;
color: green;

Here we’ve used the same selector on two different rule sets. As we learned in
Chapter 1, the second rule set will take precedence over the first, overriding any
styles that are the same in both rule sets.

In the first rule set, we’ve defined all three border-related properties in longhand,
setting the values to display a dashed border that’s 2px wide and colored blue. But
what’s the result of these two rule sets? Well, the border will become 3px wide (the
default border width for a visible border,) and it'll be colored green, not blue. This
happens because the second rule set uses shorthand to define the border-style as
solid, but doesn’t define the other two properties (border-width and border-
color).

This might sound a bit complicated at first, but it’s worth experimenting with to
get the hang of it. Just understand that if you don’t define all the properties repres-
ented in a shorthand property, the missing ones will revert to their defaults, rather
than inheriting from any existing styles.

In most cases, this won’t cause too many problems, but in some instances (for ex-
ample, when using the font shorthand property) it could have undesirable and

. . . .]
confusing results, as described in an article on my site.

! http://www.impressivewebs.com/a-primer-on-the-css-font-shorthand-property/

http://www.impressivewebs.com/a-primer-on-the-css-font-shorthand-property/

Layout Techniques

Another thing to understand about shorthand is that for certain shorthand properties,
the missing values are inherited based on the existing values. Two good examples,
which you’ll often use in this way, are margin and padding. For example:

.box {
padding: 20px 10px 15px;
}

Notice there are three values specified. If you recall from Chapter 1, these values
represent padding for the top, right, bottom, and left, in that order. The fourth value
(referencing the left padding) is missing, but it is assumed to be 10px, which matches
the opposite side padding (the second value declared). If we had omitted two values,
then the bottom would inherit from the top in addition to the left inheriting from
the right.

The same principle applies to other shorthand properties like margin, border-
color, and border-width. So the following two lines of code would yield the exact
same results:

.example {
margin: 10px 20px 10px 20px;
}

.example {
margin: 10px 20px;
}

In the first declaration, we’re defining all four margin values explicitly (top, right,
bottom, and left). In the second declaration, we’re omitting the bottom and left,
so they'll inherit from the top and right values. In the same way, the following two
examples would also produce the same result:

.example {
border-width: 10px 10px 10px 10px;
}

.example {
border-width: 10px;
}

31

32

Jump Start CSS

Again, we’re defining all four explicitly in the first declaration, but in the second
declaration, we're letting the missing values inherit from the only value that’s
defined: the top value for the border width.

Using shorthand in this way is a good habit to pick up early because it'll help you
to omit unnecessary stuff in your code, making it easier to read.

Float-based Layouts

The first layout technique that we’re going to discuss is the only current example
that works in every browser and doesn’t use HTML tables (tables are not good for
layout?). There are a number of new techniques that we’ll touch on later in the
chapter that are supported in some modern browsers, but float-based layouts are
still necessary for websites that need to look good in older browsers like Internet
Explorer versions 7, 8, and 9. Even modern browsers have sketchy support for
newer layout methods so, at the time of writing, float-based layouts are the primary
layout method used in CSS.

In our RecipeFinder website, we have an ideal place to use a float-based layout: the
main content area. This area is divided into two vertical columns, as shown in

Figure 2.3:

2 http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html

http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html
http://stackoverflow.com/questions/83073/why-not-use-tables-for-layout-in-html

Layout Techniques 33

discover more recipes

Figure 2.3. The two-column area of RecipeFinder

Let’s add some layout styles to that section of code, so we can get things started:

.main {
width: 1020px;
margin: 0 auto;

}

.latest {
width: 640px;
float: left;

}

.sidebar {

34

Jump Start CSS

width: 360px;
float: right;

You'll recognize these selectors from Chapter 1, where we introduced the bare CSS.
The HTML that this applies to includes the .main element, which wraps both

columns. You’ll notice we’ve applied a margin declaration to .main.

As discussed earlier, this margin declaration is shorthand and would be equivalent
to the following:

.main {
margin: 0 auto O auto;

}

But we’ve omitted the final two values for brevity, as they're inherited from the
existing values. While the zero values are probably easy to figure out (they declare
that no margins should exist on the top and bottom of the .main element), the auto
values will be new to you.

A value of auto set on the left and right margins of an element that has an explicitly
defined width, will automatically center that element horizontally inside its parent.
It won't center the contents of the element; only the element itself. In the case of
the .main element, its parent is the <body> element, which has no set width. So
whatever the horizontal size (or width,) of the browser, the .main element will
center itself horizontally on the page as a result of this margin declaration.

That’s a CSS technique that you’ll want to tattoo on the back of your hand—you’ll
use it often. But it only works with horizontal centering. Vertical centering is a
trickier thing to accomplish in GSS.’

CSS Units

You’ll notice that throughout the examples, numerical values are appended with
"px.” This refers to pixels and is just one kind of CSS unit. Other commonly used
units include percentages (%), ems, and rems. We’ll discuss more CSS units in
the next chapter.

3 http://blog.themeforest.net/tutorials/vertical-centering-with-css/

http://blog.themeforest.net/tutorials/vertical-centering-with-css/
http://blog.themeforest.net/tutorials/vertical-centering-with-css/

Layout Techniques

Next in our CSS, we have the two elements inside the .main element. The first is
the left column, which has a class of . 1atest (referring to the “latest recipes”). The
other column is an <aside> element to which we’ve applied a class of .sidebar.

As discussed earlier in the section covering block and inline elements, since both

of these elements are block-level, they will, by default, appear one after the other,

stacked vertically, rather than side-by-side filling the available horizontal space of
their parent element—which, in this case is the .main element.

To have them appear side by side in a two-column format, we use the float property,
which tells the browser to push the element towards a specified side of the page,
as far as it can go. The float property can accept one of three values: none, left, or
right.

To achieve the effect we want, we apply float: left tothe left column, and float:
right to the right column. In addition, the specified widths help balance the columns
so they match how they look in the Photoshop mock-up.

At this stage, with all our content in place, the content inside the .main element
should look like Figure 2.4.

35

36 Jump Start CSS

Latest Recipes Most Popular

4.9/5

Delicious baked garlic bread

4.8/5

Chocolate cloud cake

4.8/5

Fiery Thai curry

4715

Sensational portobello mushrooms stuffed with

stilton

4.6/5

Crab, corn and potato cake
Zesty Smoked Haddock Skewers 435

Persian style lamb pilaf
Cooking time: 20 minutes
Yummy Tweets

(@Peter : Once again, the recipe of the aussie BBQ
was a complete success thx @RecipeFinder
24 minutes ago

@xavier_mathieu - | love the recipe "Cuisses de
grenouilles" so much
1 hour ago

@UncleBens : Easy to cook and so good to eat: the
Creamy Blueberry Bagel creamy raspberry bagel via @RecipeFinder
2 days ago

Cooking time: 7 minutes
(@RecipeFinder : Thanks folks for all the love in your

messages
2 days ago

Recipe Categories

Meat free recipes
Thai recipes

Dairy free recipes
Erench recipes
Vegan recipes
Aussie recipes
Shelffish-free recipes
Children recipes

Traditional Roast Beef with Yorkshire Sauce

e o s 000 0

Cooking time: 50 minutes

) Qur Contributors
Figure 2.4. Our two columns after adding the float property

Pretty bland, isn't it? We haven’t added many styles yet, so what we see is mostly

what’s left as a result of our Normalize.css file, along with some browser defaults

(like blue text links).

Clearing Floats

This next concept, “clearing floats,” is something you’ll have to deal with in almost
all float-based layouts. To illustrate why we need to do this, let's add two new
temporary declarations to our .main element, which is the element that contains

our “floated” columns:

.main {
width: 1020px;
margin: 0 auto O auto;

outline: solid 1px red;

background: green;

Layout Techniques

The last two declarations are only temporary styles, to illustrate a point. Figure 2.5

shows what happens when those styles are added to the CSS and the page is re-

freshed.

Latest Recipes

Zesty Smoked Haddock Skewers

Cooking time: 20 minutes

Creamy Blueberry Bagel

Cooking fime: 7 minutes

Traditional Roast Beef with Yorkshire Sauce

Cooking time: 50 minutes

D A I B Y

Most Popular

4955

Delicious baked garlic bread
4.8/5

Chocolate cloud cake

4.8/5

Fiery Thai curry

4715

Sensational portobello mushrooms stuffed with
stilton

4.6/5

Crab, corn and potato cake
4.3/5

Persian style lamb pilaf

Yummy Tweets

@Peter : Once again, the recipe of the aussie BBQ
was a complete success thx @RecipeFinder
24 minutes ago

(@xavier_mathieu : | love the recipe "Cuisses de
grenouilles" so much

1 hour ago

@UncleBens - Easy to cook and 50 good to eat the
creamy raspberry bagel via @RecipeFinder
2 days ago

(@RecipeFinder : Thanks folks for all the love in your
messages
2 days aqo

Recipe Categories

Meat free recipes
Thai recipes

Dairy free recipes
French recipes
Veqgan recipes
Aussie recipes
Shellfish-free recipes
Children recipes

Figure 2.5. The floated columns cause the container to collapse

What we might normally expect to happen here is that the background appear green

and a full red outline appear around all the contents of the .main element. But all

we see is a 2px horizontal line at the top of the .main element.

This happens because of the floated child elements. When one or more elements

are floated, unless other non-floated elements are present, the parent element of the

floats will effectively collapse, behaving like there's nothing inside it. All that needs

37

38

Jump Start CSS

to be done is remove one of the float declarations, and the full green background
and red outline will appear as expected.

So in order to remedy the situation, floats need to be “cleared.” We can do this by

adding a new section of code to our styles.css file:

.cf:before,
.cf:after {
content: " ";
display: table;
}

.cf:after {
clear: both;

}

.cf {
zoom: 1; / for IE6 and IE7 */

}

This float clearing method (often referred to as a “clearfix,” hence the cf class se-
lector,) comes again via Nicolas Gallagher.* Don’t be intimidated by what you see
here; you don’t have to understand everything in this chunk of code. Once we have
this in our stylesheet we just need to add a class of cf to any element that collapses

due to floats.

Notice this fix uses pseudo-elements (which we briefly introduced in Chapter 1,)

and a couple of new properties, including the clear property.

The clear property prevents an element from being affected by floated elements
that appear before it. Floats generally cause all other elements to wrap around them,
making them bump up against the side opposite the float direction. But adding the
clear property to subsequent elements causes those elements to drop below the

floated element, just as they would if there were no floats present.

To cause the new styles to apply to our layout, let’s add a new class to our .main
element:

<div class="main cf">

4 http://nicolasgallagher.com/micro-clearfix-hack/

http://nicolasgallagher.com/micro-clearfix-hack/

Layout Techniques

Notice the space separating the two classes. This is one of the features briefly
mentioned in Chapter 1 that makes classes a far superior selector in comparison to
other options: the fact that you can use multiple classes on a single HTML element.

With those styles in place, the green background and red outline will appear as
expected, confirming that our floated elements are now “clear.” We can then remove

the background and outline we added.

Another benefit of clearing the floats is that our footer content is now appearing
below the .main content, where it should be (albeit still unstyled) instead of
bumping up against the right side of the left column as it was prior to adding the
clearfix. It’s worth noting that we could have caused the footer to drop below the
.main element’s content simply by adding “clear: both” to the footer element itself.
However, this would not have fixed the float clearing problem where the .main
element was collapsing.

Positioning in CSS

Another useful layout technique involves the use of CSS’s position property. Al-
though it's possible to use this technique for layouts, in most cases you wouldn't
use it for large structural elements the way you would with floats. Positioning,
however, can come in handy to help place or align a specific element in a very
precise manner.

A good candidate for this technique is the bottom half of our sidebar, the section
called “Yummy Tweets,” shown in Figure 2.6.

39

40 Jump Start CSS

Figure 2.6. Our Yummy Tweets, as they appear in our original design

We’re going to use the position property to place the Twitter icons that you see
next to each of those tweets. But before we do this, let’s consider exactly what
properties we’ll use and how they work.

Absolute and Relative Positioning

CSS allows us to place an element anywhere on a page using the top, bottom, left,
and right properties along with the position property. Let’s look at an example:

.example {
position: absolute;
top: 100px;
left: 150px;

}

Layout Techniques

If there are no other positioning-related styles on our page, the .example element
shown above would be positioned 100px from the top and 100px from the left of
the browser window (also called the viewport).

But this isn’t very practical. It’s not often that you’ll want to position an element
relative to the browser window like this. The real practical value of absolute posi-
tioning comes from combining it with a positioned parent element. Let’s improve
on the code we just wrote and demonstrate what's meant by “positioned parent”:

.wrapper {
position: relative;
}
.example {
position: absolute;
top: 100px;
left: 150px;
}

Now, instead of positioning the element relative to the full browser window, we're
forcing positioning to occur relative to the .wrapper element. The relative positioning

set on .wrapper creates a positioning context for any positioned child elements.

Now let’s combine this technique with the pseudo-elements we introduced in
Chapter 1, so we can position our Twitter icon next to each tweet in our sidebar.
Here is the HTML for a single “Yummy Tweet”:

<div class="tweet">
<p>@Peter : Once again, the recipe of the Aussie
=BBQ was a complete success thx @RecipeFinder

24 minutes ago</p>
</div>

We’re going to target the outer <div> element that has a class of tweet using the
following CSS:

.tweet {

padding-left: 55px;
padding-right: 20px;
position: relative;

41

42

Jump Start CSS

.tweet:before {
content: url(../images/twitter-icon.png);
display: block;
position: absolute;
left: 15px;
top: 4px;

A pseudo-element uses the single-colon or double-colon syntax (we’re using single-
colon for better browser support) in combination with another CSS selector, to add
a phony (i.e. “pseudo”) element inside the targeted element (the .tweet element).
In this example, we’re using a before pseudo-element, so the inserted element will
appear before the .tweet element’s content.

Notice that the .tweet element is positioned relatively. Also notice that there are
55 pixels of padding set on the left side of the . tweet element. Next, in the pseudo-
element selector, we’re using the content property to define what exactly we want
to insert (in this case it’s a transparent PNG Twitter icon,) and then we’re positioning

the pseudo-element absolutely, 4px from the top and 40px from the left.

If we wanted, we could have inserted the Twitter icon inside our HTML using an

 tag. But in this case, since the icons are just decoration, we have the option
to use a pseudo-element or background image. By contrast, the images that appear
in the “Latest Recipes” section are not just decoration but are part of the main con-
tent; so those shouldn't be inserted as background images or pseudo-elements via

CSS, but should be placed into the HTML using tags. We’ll talk more about
backgrounds in the next chapter.

Since our pseudo-element is placed on the page using a class selector of . tweet,
the pseudo-element will appear on every element on the page that has a class of
tweet. After we add these styles and refresh the page, our Yummy Tweets section
will look like Figure 2.7.

> http://www.impressivewebs.com/before-after-css3/

http://www.impressivewebs.com/before-after-css3/
http://www.impressivewebs.com/before-after-css3/

Layout Techniques

Yummy Tweets

’. @Peter - Once again, the recipe of the
Aussie BBQ was a complete success thx

{@RecipeFinder
24 minutes ago

’- @xavier_mathieu : | love the recipe
"Cuisses de grenouilles"” so much

1 hour ago

’. @UncleBens : Easy to cook and so good
to eat: the creamy raspberry bagel via

@RecipeFinder
2 days ago

’. {@RecipeFinder : Thanks folks for all the

love in your messages
2 days ago

Figure 2.7. Our Yummy Tweets after adding the Twitter icons using pseudo-elements

Adding the pseudo-element using absolute positioning is just one step towards
styling this area. Overall, our website still needs a lot of styling, as does the Yummy
Tweets section.

What about Responsive Web Design?

One of the biggest trends in the web design industry right now is Responsive Web
Design (RWD). This book is an introduction to CSS, so we won’t be covering that
particular technique in exhaustive detail; however, I will introduce the topic here,
and in Chapter 5 we’ll use responsive design techniques to complete the coding of
RecipeFinder.

So what exactly is responsive design? Briefly, it involves coding the CSS in such a
way that it ensures the width of the website and its content adapt to the size of the
user’s browser window. This means if the user visits on a desktop PC browser at
1920x1080 resolution or a cellphone at 320x480, the content and layout will adjust
to fit.

43

44

Jump Start CSS

RWD is centered on the use of media queries, a CSS feature that we haven’t discussed
yet. Let’s take a quick look at the syntax for media queries so you can see how they
can be used to build a responsive web design:

@media (max-width: 1500px) {
}
@media (max-width: 1200px) {
}

@media (max-width: 900px) {

}

What you see above are referred to in CSS as at-rules. There are other at-rules
(identified by the @ symbol,) such as the @font-face rule, which we’ll talk about
in Chapter 4.

The @media at-rules are used to define different CSS styles depending on certain

media features, such as the width of the browser window. Inside the @media blocks,
(each of which starts and ends with the opening and closing curly braces,) you can
include full rule sets. You can even repeat certain rule sets in separate media query

blocks in order to override existing styles.

In Chapter 5, once we have the bulk of the site done, we’ll add some custom media

queries to make the RecipeFinder website responsive.

Using box-sizing for Intuitive Sizing

Normally, when an element is given a specified width—for example, our .main
element has a width of 1020px—if you add left or right padding to that element,
the width of the element would increase by the amount of left and right padding
that was added. Look at the following example:

Layout Techniques

.box {
width: 400px;
padding-left: 20px;
padding-right: 20px;

Although the width of the .box element is defined explicitly as 400px, the actual
width of the element will end up being 440px, because the left and right padding
add to the width.

For a long time this has been an irritation that we’ve learned to deal with in CSS
layouts. With the box-sizing property, however, we can tell the browser to render
all of our widths and heights at an exact pixel size, including any borders or padding
settings. That is, if we define an explicit width or height, padding and borders will
not affect that width and height.

We’re going to add this property to the top of our custom styles, using the universal
selector:

*{

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

The three lines of code you see here are exactly the same, but because some browsers’
support for these properties is “experimental,” we’re forced to use vendor prefixes
(the -webkit- and -moz- prefixes in this example) for maximum browser compatib-

ility. We’ll talk more about vendor prefixes in Chapter 5.

With this declaration in place, we can feel free to add padding and/or borders to
any elements, and we won'’t have to recalculate their specified widths for them to
lay out correctly. Let’s do that now by adding some padding to the .latest element
(which is our left column):

.latest {
width: 640px;
float: left;

padding: 0 40px;
}

45

46

Jump Start CSS

If we had added this padding prior to adding the box-sizing declarations, the left
column would no longer fit next to the right column inside of .main. But, by using
box-sizing, we prevent the padding from adding to the overall width of the column.

Adding More Layout Styles

We’ve already sized and centered the .main element. If you’ve been following along
with the code examples, you’ll notice, however, that the header, promo (which is
the big photo below the header), and footer sections are not aligned with the .main
element. So, let’s align those now:

.header-inside {
width: 1020px;
margin: 0 auto;

}

.promo {
width: 1020px;
margin: 0 auto;

}

.footer-inside {
width: 1020px;
margin: 0 auto;

}

First, to help with the look we’re trying to achieve, we’ve added an inner element
inside our <header> and <footer> elements. Those two new elements in the HTML
are classed as .header-inside and .footer-inside, respectively. We’re doing this
so we can center the content inside the header and footer, while allowing the
background of those elements to expand horizontally to the edges of the browser

window.

You can see this demonstrated in Figure 2.8.

Layout Techniques

Figure 2.8. The footer has a set width, but the background color expands to the full width of the window

Here you can see that, although the width of the footer area has expanded to the
left and right (mimicking what might happen on a wider browser window), the

content itself stays centered. The extra element inside <footer> helps achieve this.

There’s a problem, though. The styles in each of these three declaration blocks
(.header-inside,.promo, and .footer-inside) are exactly the same, and they even
match the styles we added to the .main element. Here’s an opportunity for us to
take these common styles and create a simple reusable class that we can apply to
any element that needs these exact styles.

So instead of four separate rule sets with the same styles, we’ll have one rule set as
follows:

.center-global {
width: 1020px;
margin: 0 auto;

}

And then we’ll add that class to every HTML element that needs those styles. Because
of this reusable class we’ve created, we'll no longer need the .header-inside class,
so we’ll remove that from our HTML and CSS. The .promo and .footer-inside
classes will be used later, so we’ll keep those.

Floating the "Latest Recipes” Images

We’ve already used the float property to help build our primary two-column layout.
Next, we’ll use the same property for its intended purpose: to allow text and inline
content to flow around a floated block element. In our HTML, we have a simple
structure for each of the entries added in our “Latest Recipes” section:

47

48 Jump Start CSS

<div class="media">

<h2>Zesty Smoked Haddock Skewers</h2>
<p>Cooking time: 20 minutes</p>

</div>

Currently, the <h2> and <p> elements in each of these .media sections are appearing
below the image in the .media section. You’ll remember from our discussion of
block versus inline elements that this happens because all block elements will
naturally drop below other elements placed before them in the markup. We can
override this behavior using float and clear:

.media {
clear: left;
padding-bottom: 28px;
}

.media img {
float: left;
margin-right: 30px;
}

Here we’ve floated the image left, which causes the text content to bump up against
it. We also need to clear the .media element to ensure that it doesn’t get affected by

the floated images.

We’ve also added a right margin to the image and bottom padding to the .media
element to match what’s in the design mockup. However, you’ll notice when you
apply these styles that the padding at the bottom of the .media element doesn’t
seem to appear, as shown in Figure 2.9.

Layout Techniques

Latest Recipes

Zesty Smoked Haddock Skewers

Cooking time: 20 minutes

Creamy Blueberry Bagel

Cooking time: 7 minutes

Traditional Roast Beef with
Yorkshire Sauce

Cooking time: 50 minutes

Figure 2.9. Our .media images floated left, but the bottom padding has failed to take effect

This is due to the float property. As discussed earlier in the section on clearing
floats, a parent element will expand vertically to contain only content that is non-
floated. To fix this, we would need to add our cf class to all the .media elements.

Unfortunately, doing this would add a lot of extra HTML that, in this instance, isn’t
necessary. So to clear the floats here, we’re going to use a different method—the
overflow property set to a value of "hidden":

.media {
clear: left;
padding-bottom: 28px;
overflow: hidden;

}

This is a simple float-clearing method that you’ll want to keep in mind for smaller
elements like these. For larger layout-related elements, it’s almost always better to
go with the full-blown clearfix I introduced earlier. But in this case, we’re better off

49

50 Jump Start CSS

using overflow: hidden.® With this declaration in place, the padding at the bottom
of each .media element will take effect.

Layout Styles for the Header

Now that we have our “Latest Recipes” section laid out correctly, we have two final
areas of our site to which we want to add some layout styles: the header and footer.

Let’s start with the header content, along with the navigation links. Here’s the HTML
for our <header> section:

<header>
<div class="center-global cf">

<img src="images/logo.png" alt="RecipeFinder
=]ogo" class="logo">

<nav>

Recipes</1li>
Ingredients</1li>
Contributors</1li>

</nav>
</div>
</header>

Notice the unordered list () that holds our navigation links. Now let’s add some
CSS:

.logo {
float: left;
margin-left: 145px;
margin-top: -34px;
position: relative;
top: 34px;

6 For a discussion of the different methods to clear floats, and why overflow: hidden can cause

problems, see http://www.impressivewebs.com/clearing-floats-why-necessary/.

http://www.impressivewebs.com/clearing-floats-why-necessary/

Layout Techniques

nav {
float: right;
margin-right: 177px;
padding-top: 20px;

}

nav ul {
list-style: none;
margin: 0;
padding: O;

}

nav ul 1i {
display: inline-block;
display: inline; / for IE7 */
margin-right: 30px;

}

There’s a lot going on here, some of which you’ll recognize from earlier in the book,
but let’s break down the new bits of code.

First, we’re using relative positioning along with the top property to push our . logo
element down from its original position. Relative positioning used in this way moves
an element but allows the original space it occupies to remain intact. We’re doing
this so that the bottom edge of the logo will overlap the .promo section, which is
what the design in our Photoshop mockup requires.

We’re also floating the logo left and floating the navigation section to the right and
aligning these using margins and padding. Next we have the element along
with its child <1i> elements. The list-style property, which we apply to the ,
is a shorthand property that defines the type of bullet we want to have on the list
(the default value is “disc”), along with the position of the bullet. We’ve added a
value of “none” to the list and we’ve set the margins and padding on the list to zero
values, overriding the browser defaults for these.

Finally, in order to get the list items to align horizontally, we’ve set the list items
to display: inline-block, and we’'ve added a hack (the repeated style with the

51

http://www.impressivewebs.com/ie7-ie8-css-hacks/

52 Jump Start CSS

asterisk character’) to get this to work in IE7. Figure 2.10 shows how the header

will look after we’ve added these styles.

Recipes Ingredients Contributors

Figure 2.10. Our header and navigation links after adding some layout styles

Laying out the Promo Photo

For the big promo photo that appears below the logo and navigation, there isn’t too
much to do except get the photo description and “cook it now!” button to appear

overlaid on top of the big image.

Here’s the HTML for our promo section:

<div class="promo center-global">

<div class="promo-desc">

<h1>Sweet and Sour Zucchini Puree</h1>

cook it now!
</div>

</div>

Take note of the <div> with a class of .promo-desc that wraps our <h1> element
and the link below it. We’re going to add some absolute positioning to the .promo-

desc element to place it over the promo image. Here’s the CSS:

.promo {
position: relative;

}

.promo-desc {
position: absolute;

7 http://www.impressivewebs.com/ie7-ie8-css-hacks/

http://www.impressivewebs.com/ie7-ie8-css-hacks/

Layout Techniques

bottom: 93px;
right: 75px;
}

You’ll remember this technique from earlier in the chapter. The.promo element
creates a positioning context when we add relative positioning to it. With that in
place, any absolutely positioned elements inside of it will be positioned relative to
it (that is, to the .promo element). But hold on a second! Figure 2.11 shows what
happens when we add these styles.

Recipes Ingredients Contributors

Figure 2.11. The logo is partially hidden after adding relative positioning to the promo section

Notice in Figure 2.11 that our text and link are placed roughly where we want them,
but that the bottom of our logo, which we carefully positioned earlier in this chapter,
is now overlapped by the big promo image. We won’t get into all the gory technical
details on what’s causing this, but, to put it briefly, it's happening because of the
relative positioning we’ve added to the elements. But never fear! We can fix this
with a few additions to our .1logo and .promo rule sets:

.logo {
float: left;
margin-left: 145px;
margin-top: -34px;
position: relative;
top: 34px;
z-index: 10;

}

.promo {

53

54

Jump Start CSS

position: relative;
z-index: 5;

}

Here we’ve added the z-index property to help adjust the stacking of these elements.
The z- index property accepts an integer value and will only work on elements that
are explicitly positioned using the position property. z- index adjusts the position
of elements in relation to one another along the z axis. This means instead of moving
elements from left to right or top to bottom, we’re moving them forwards or back-
wards.

And so, if you’re looking directly at a browser window, a higher z-index value
means the element will be (in a manner of speaking,) closer to you; whereas a lower
z-index value will push the element further away from you.

But, as mentioned, this will only happen in relation to other positioned elements,
and will not work for non-positioned elements. This is an important point to keep
in mind when using z-index, as this will often trip up CSS beginners.8

So in our example, we’ve set the z-index property to “10” on the .logo element

and “5” on the .promo element, which fixes the problem, as shown in Figure 2.12.

RECI-%E Recipes Ingredients Confributors

FINDER

Figure 2.12. The logo overlap problem corrected using z-index

Laying out the Footer

The next thing we’ll do to our RecipeFinder site in terms of layout is get the contents
of our footer aligned. Our footer is made up of three sections: “Recipes Categories,”

8 http://coding.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/

http://coding.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/

Layout Techniques 55

“Our Contributors,” and “Colophon.” Each of these sections is wrapped in its own
separate <div> element, with its contents in an unordered list ().

We’ll again use our handy float property, this time to create a three-column layout:

.footer-1 {
float: left;
width: 422px;

}

.footer-2 {
float: left;
width: 326px;

}

.footer-3 {
float: left;
width: 232px;

}

We’ll also add a little padding to the left side of the . footer-inside element, which
holds the three footer sections:

.footer-inside {
padding-left: 40px;
}

This aligns the left side of the footer content with the content above it. Figure 2.13
shows how our footer will look after we add these layout styles.

discover more recipes

Recipe Categories Our Contributors Colophon
¢ Meat free recipes * Xavier Mathieu ¢ Contact details
¢ Thai recipes « Simon Mackie o Adverfiser details
¢ Dairy free recipes + Kate Smith * RSSfeed
o Frenchrecipes
* Vegan recipes Copyright 2013

¢ Aussie recipes © RecipeFinder
¢ Shelfish-free recipes
o Children recipes

Figure 2.13. Our footer after adding floats and widths to the three sections inside the footer

56

Jump Start CSS

Laying out the "Most Popular” Recipes

Finally, we have one more layout-related issue to work out—specifically the section
in our sidebar called “Most Popular.” We’re again going to incorporate floats to deal
with this. Figure 2.14 shows what this section looks like in our original design.

Figure 2.14. Our "Most Popular" sidebar

Below the heading we have recipe ratings in a left column, and the recipe names
in a right column. Here’s what our HTML looks like for an individual recipe/rating
pair:

<div class="rating">4.9/5</div>
<div class="pop-item">Delicious garlic bread</div>

This would be repeated for each recipe, with the content changed to reflect each
one. Now let’s add some CSS to style these elements:

Layout Techniques

.rating {
float: left;
clear: left;

padding-top: 4px;
padding-right: 15px;
width: 45px;

}

.pop-item {
padding-bottom: 20px;
float: left;
width: 250px;

}

All of the properties here are ones we’ve used or discussed earlier in the book. The
.rating elements are all floated to the left, and each of these is also cleared. This
prevents any of the .rating element from bumping up against the .pop-item ele-
ments. The .pop-item elements are also floated left, but they're not cleared. As we
learned earlier, clearing pushes the cleared element to a new line, which we don’t
want to happen to the .pop-item elements. However, we do want that to happen
to the .rating elements. Both elements are given a set width, and we’ve added

some padding to match what’s in the design.

The last thing we need to add to this section is a wrapper <div> with a class of
popular holding all these ratings and recipes together. We’ll add some padding to
the bottom of this element, to help keep it separate from the Yummy Tweets section

below it:

.popular {
padding-bottom: 40px;
}

What's the future of CSS Layouts?

What we’ve done in this chapter is use a tried-and-true, cross-browser method for
laying out pages with CSS—namely, using floats. But, as alluded to earlier, the float
property was not created for this purpose (although we’re certainly thankful that it

works fairly well).

57

58

Jump Start CSS

For this reason, the newest browsers have started adding support for CSS layout
features that we hope to be using exclusively in a few years (assuming older browsers
that don’t auto-update, like IE8 and IE9, die out).

We won’t discuss these new layout features in detail here, because those features
are still in flux and browser support isn’t as good as we’d like it to be. But we will
list some of those new layout techniques along with links so you can access articles,
tutorials, and tools to help you learn these new features.

Flexbox

Flexbox has the most browser support of any new CSS layout feature. If you’re going
to study any new layout feature as an alternative to floats, start with this one. Un-
fortunately, the syntax for Flexbox has changed a few times. Below are some re-

sources to help get you up to speed:

Dive into Flexbox http://weblog.bocoup.com/dive-into-flexbox/
An Introduction to the CSS http://net.tutsplus.com/tutorials/html-css-tech-
Flexbox Module niques/an-introduction-to-css-flexbox/

“0ld” Flexbox and “New” http://css-tricks.com/old-flexbox-and-new-
Flexbox flexbox/

CSS Flexbox Please! http://demo.agektmr.com/flexbox/

Other New Layout Features

Other new layout techniques are much further away from common use, but below
are some official specifications for techniques you might want to keep an eye on:

CSS Regions http://dev.w3.org/csswg/css3-regions/
CSS Exclusions and Shapes http://dev.w3.org/csswg/css3-exclusions/
Grid Template Layout and Grid http://dev.w3.org/csswg/css3-layout/

Layout
http://dev.w3.org/csswg/css3-grid-layout/

Many of these techniques and more are discussed in Peter Gasston’s article for .net
magazine.9 For beginners, the official specifications will probably be too much for

o http://www.netmagazine.com/features/future-css-layouts

http://weblog.bocoup.com/dive-into-flexbox/
http://net.tutsplus.com/tutorials/html-css-techniques/an-introduction-to-css-flexbox/
http://net.tutsplus.com/tutorials/html-css-techniques/an-introduction-to-css-flexbox/
http://css-tricks.com/old-flexbox-and-new-flexbox/
http://css-tricks.com/old-flexbox-and-new-flexbox/
http://demo.agektmr.com/flexbox/
http://dev.w3.org/csswg/css3-regions/
http://dev.w3.org/csswg/css3-exclusions/
http://dev.w3.org/csswg/css3-layout/
http://dev.w3.org/csswg/css3-grid-layout/
http://www.netmagazine.com/features/future-css-layouts
http://www.netmagazine.com/features/future-css-layouts

Layout Techniques

you to handle. But at least take a quick look so you can get familiar with features
that will slowly start gaining wider browser support.

Summary

The layout for each section of our website is now in place. We’ve covered a lot of
ground here, including a quick intro to the box model, the difference between block
and inline elements, float-based layouts, positioning, and a brief look at responsive
design.

By now you'll be keen to see some color and style added to our page. In the next
two chapters we’ll learn a whole slew of CSS features that will really perk up our
sample website.

59

Chapter

Backgrounds, Borders, and More

If you’ve started to build the sample website, you’ll have noticed that, although we
have the major sections of our page laid out, it’s not looking much like the original
Photoshop mockup just yet.

Figure 3.1 shows you what our page looks like right now. With our basic layout in
place, let’s learn how we can spruce up our page visually so it'll be more appealing,

and reflect what we have in our original design.

62 Jump Start CSS

RECI-SE Recpes Ingredierts Contribufors

FINDER

Most Popular

4.9/5 Delicious baked garlic bread

Zesty Smoked Haddock 4.8/5 Chocolate cloud cake
Skewers

== 485 Eiery Thai curry

Cooking time: 20 minutes 47/5 Sensational portobello mushrooms

stuffed with stitton
46/5 Crab.corn and potato cake

43/5 Persian style lamb pilaf

Cooking time: 7 minutes
Yummy Tweets
(@Peter - Once again, the recipe of the

Aussie BBQ was a complete success thx
(@RecipeFinder

Traditional Roast Beef 24 minutes ago

with Yorkshire Sauce o @avier_mathieu | love the recipe
"Cuisses de grenouilles” so much

Cooking time: 50 minutes 1 hour ago

o @UncleBens Easy to cook and so good
to eat the creamy raspberry bagel via
@RecipeFinder

20ays ago
Steamed Crab with o @RecipeFinder Thanks folks for allthe
Ginger and Coriander love in your messages
20ays ago
Cooking time: 40 minutes
discover more recipes
Recipe Categories Our Contributors Colophon
* Meatfree recipes « Xavier Mathiey « Contact details
« Thai recipes « Simon Mackie « Advertiser details
+ Dairy free recipes * Kate Smith + RSSfeed
. h e
« Veganrecipes Copyright 2013
« Aussie recipes © RecipeFinder

+ Shelfish-ree recipes
Children recipes

Figure 3.1. RecipeFinder after the layout styles from Chapter 2

Backgrounds

The first thing we want to take care of in this chapter is the primary background
that sits behind a large portion of RecipeFinder. Figure 3.2 shows a close-up of the
area behind the “Latest Recipes” section, as shown in our original Photoshop file.

Backgrounds, Borders, and More

s (L ESTN

Figure 3.2. A close-up view of the RecipeFinder background

This is zoomed in so we can see that not only is the background a light creamy
brown color, but it’s also overlaid with a subtle texture. This texture, along with
the color that it overlays, will be placed onto our page as a background image. Let’s
look at the code we're going to use to do this:

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 O;

}

The first point to note in this example is the selector we’re using: body. This tells
the browser that the declaration block will apply to the <body> element (which is
the next element down from the <html> element in our HTML hierarchy).

Next, you'll notice that we’re using the background property, which is a shorthand
property. We learned about shorthand in Chapter 2. This particular example helps
us define a number of different background-related properties using a single line
of code. If we didn't use shorthand, this single declaration would look like this:

body {
background-color: #cab5a3;
background-image: url(../images/bg-main.gif);
background-repeat: repeat repeat;
background-position: 0 O;

}

63

64

Jump Start CSS

This would give us exactly the same result as the single-line version. You’ll be using
the properties described here regularly in future projects, so let’s discuss each of
them in detail.

First, we've defined a background color for the <body>. This is good practice as it
ensures that the user will see something similar to the background image should it
fail to load quickly enough, or at all. Also, if the background image is dark, say,
with light-colored text, this will ensure readability. In this case, we’re using a color
value of #cab5a3—more on color values later in this chapter. This color was arrived
at simply by sampling part of the textured background in the Photoshop file, and
then copying and pasting the color value from Photoshop into my CSS file.

Next, we have the declaration that tells the browser what background image to use
on the <body> element. The syntax uses the url() notation to reference the back-
ground image. This is the syntax you’ll use most often when including an image in
a web page using CSS. The path to the file needs to be relative to the location of the
CSS file, which is why, in this case, we’re using “. ./” at the start of the path. This
tells the browser that the background image is located up one level in the folder
structure (represented by “. .”) and inside a folder called “images” (represented by
“/images”).

This background image file is a GIF file that has an original size of 129px by 129px.
So how does such a small image fill the background? This brings us to the next
background-related property in our rule set.

The background-repeat property is used to define whether we want the background
to appear only once, or if we want it to repeat vertically, horizontally, or both. For
the <body> element, we want the background to repeat throughout the entire <body>,
so we set the value to repeat repeat. Alternatively, we could write repeat just
once, which would have the same result, because it would assume the missing
second value is the same as the first. I've included both values explicitly to
demonstrate that you can have two different values defined. The first value represents

horizontal repeat, and the second value represents vertical.

Other commonly used values for background repeat are no-repeat (meaning we
don’t want it to repeat), repeat-x (which repeats the image horizontally, or along
the x axis,) and repeat-y (which repeats the image vertically, or along the y axis).

Backgrounds, Borders, and More

When using the x and y repeat values, you only need to define one, as the other is
assumed to be no-repeat.

Finally, the last line in the code uses the background-position property. This will
accept any pair of unit values, separated by a space. You can use pixels, ems, per-
centages, and more—we’ll discuss values and units in more detail later in this
chapter. This property tells the browser where to position the background image.
In our example, we haven't needed to define this value (the default is "0 0", which
is what we’re using), but it's been included for reference, as it's a property you’ll

employ often.

The background-position property will work only if you’re using no-repeat on
at least one of the directions (horizontal or vertical) in the background-repeat
property. The background position tells the browser where to place the background
when it starts to repeat, relative to the element on which the background is applied.
For example, a non-repeating background with a background-position property set
to “30px 40px” will position the background 30 pixels from the left and 40 pixels
from the top of the element on which it’s applied. You also have the option to use
keywords like top, left, center, right, and bottom.

Some of this might sound confusing on first read, but I encourage you to play around
with the values for all these properties to see the results of different combinations.
Experimenting is the best way to familiarize yourself with the subtleties of each
value combination, and this applies not only to backgrounds, but also to any complex
CSS feature. You'll often use backgrounds in CSS, so it’s worth taking the time to
get to know this shorthand property and its longhand equivalents.

With this background in place, we now have some color in the RecipeFinder website
(besides the color photos, that is).

Borders

In our Photoshop file, in the “Latest Recipes” section on the left side of our sample
website, each image has a thick border—something that's currently missing in our

coded version.

65

66 Jump Start CSS

LATEST RECIPES

ZESTY SMOKED HADDOCK
SKEWERS
COOKING TIME: 20 MINUTES

Figure 3.3. The "Latest Recipes” images in our design have borders

To add the border, we’ll use the border property, appending that to the existing
styles on the elements, which are targeted in our CSS as children of the .media
element:

.media img {
float: left;
margin-right: 30px;
border: solid 9px #ede0d5;
}

Here we’re using the border shorthand property to define the following three
properties on a single line:

border-style, which accepts a number of keyword values like dotted, dashed,
and inset
border-width, which accepts a unit value

border-color, which accepts any valid CSS color value

For many shorthand properties, you can rearrange the values and the result would
be the same. But some shorthand properties require a specific order—for example,

the font property.

Figure 3.4 shows us what our “Latest Recipes” section will look like after adding
the border.

Backgrounds, Borders, and More

Figure 3.4. The "Latest Recipes” images with borders added

Rounded Corners

While we’re fixing up the images in the “Latest Recipes” section, let’s discuss how
we can easily add rounded corners to any element on the page. This is a technique
that has, for a long time, been carried out using images, extra HTML, JavaScript,
and other overly complex techniques.

For the RecipeFinder website, we won’t need to add any rounded corners to our
design, so we’ll use this as a temporary demonstration only. If we did want to add
rounded corners to each image, we could do so like this:

.media img {
float: left;
margin-right: 30px;

67

68 Jump Start CSS

border: solid 9px #ede0d5;
border-radius: 20%;

}
And this would have the effect shown in Figure 3.5.
Latest Recipes

Zesty Smoked Haddock
Skewers

Cooking time: 20 minutes

Creamy Blueberry Bagel

Cooking fime: 7 minutes

Figure 3.5. It's easy to add rounded corners with CSS

Notice the new property being used: border-radius. The border-radius property
is a shorthand property that can accept up to four values. The values represent (in
order,) the top-left, top-right, bottom-right, and bottom-1left corners. As is

the case with any shorthand properties that use unit values, any omitted values are
inherited from existing ones. See the section in Chapter 2 on shorthand for a review

of how this works.

You can explicitly target individual corners of an element using the longhand syntax.
For example, the following would be equivalent to the border-radius declaration

that we just used:

.media img {
border-top-left-radius: 20%;
border-top-right-radius: 20%;

Backgrounds, Borders, and More

border-bottom-right-radius: 20%;
border-bottom-left-radius: 20%;

}

You can see clearly why, in most cases, you’ll use the shorthand syntax. Even if

you want to target a single corner, it’s much more efficient to do this instead:

.media img {
border-radius: 20% 0 0 0;

}

As mentioned above, our original design doesn’t use any rounded corners, so we
won’t employ this technique here. That said, it’s a good weapon to have in your
arsenal.

Values and Units

So far in the book, we’ve used a number of different types of values and units. Some
have been straightforward while others may have looked confusing at first glance.
Since values and units are an important part of CSS, it’s a good time to pause here
and explore this topic in a little more depth.

Probably the simplest way to understand these concepts is to see some examples
of the most common types of values and units, along with brief description of each.
In these examples, don’t worry too much about the parts of the code you don’t yet

understand; just focus on the parts being discussed.

Px Units

We’ve come across the px, or pixels, unit of measurement many times already. It
represents tiny squares that make up all elements on a web page:

.example {
width: 200px;
}

To see what I'm referring to, Figure 3.6 shows a screenshot of part of the RecipeFind-
er logo, but zoomed in 1600% in Photoshop.

69

70

Jump Start CSS

Figure 3.6. The RecipeFinder logo zoomed in to show the pixels

At this magnification it's easy to see that the logo is made up entirely of those tiny
squares, or pixels. Pixels are the most common type of unit you see in CSS.

Em Units

The em unit is a little complicated to grasp at first, but once you get the hang of it,
it’s very useful:

.example {
padding: 10em;
}

A single em is always equal to whatever the value is of the font-size property on
the element to which the em unit is applied. The font-size property defines the
size of the font, or text, on the element. Take the following example HTML:

<div class="box">
<p>Let's em-phasize this point.</p>
</div>

And here’s the accompanying CSS:

Backgrounds, Borders, and More 71

.box {
font-size: 20px;
padding: 1.5em;
}

p {
font-size: 14px;
padding: 2em;

}

In this example, the 1.5em that’s defined on the .box element will be equal to
30px—remember, a single em is equal to whatever the font size is set to, making it
20px plus half of 20px. But on the child paragraph element (<p>), the value of em
will be 28px. This is because the font size is set on that element at 14px, making

the padding equal to 14px doubled.

Following so far? If you're still confused, Table 3.1 may help you grasp how ems

are related to font size.

Table 3.1. Ems related to font size in pixels

14px 15px 16px 17px 18px
Tem 14px 15px 16px 17px 18px
1.5em 21px 22.5px 24px 25.5px 27px
2em 28px 30px 32px 34px 36px
2.5em 35px 37.5px 40px 42.5px 45px
3em 42px 45px 48px 51px 54px

The top row represents the font size for any given element. The left column repres-
ents the em units. So, for example, if the font size is 15px and you declare 2.5em
for something on that element, just run your finger across until you find the cell
that intersects 2.5em and 15px. This brings you to the cell that says 37.5px (or, 15px
multiplied by 2.5).

Rem Units

This is a newer CSS unit that’s worth getting to know. As you can see from the em

unit example we just discussed, em units can be a bit tricky to deal with, especially

72

Jump Start CSS

when their value is inherited from a parent element. The rem unit seeks to solve
this problem by calculating its value based on the font size of the <html> element.

Let’s use the same HTML from the em unit example to demonstrate rem units:

html {
font-size: 22px;
}
.box {
font-size: 20px;
padding: 1.5em;
}
p{
font-size: 14px;
padding: 2rem;
}

Notice we’ve defined rem units on the paragraph element’s padding, but we’ve kept
the em unit on the padding of the .box element. So what will the “2rem” value
compute to?

Instead of calculating their value based on the element’s font-size value, rem units
calculate their value based on the font-size value set on the root element (hence
"rem," or "root em"). In all HTML pages, the root element is the <html> element. So
whatever font size is defined on that element (or whatever value the browser assigns
to it by default), will be equal to a single rem unit.

To understand this a little better, refer back to Table 3.1 from the previous section
on em units. All the values in the chart remain the same. In the case of em units,
the top row of pixel values represents the font-size value for the element on which
the ems are applied. But when using rem units, the top row of pixel values would
represent the font-size value for the <html> element of the page on which the rems
are applied.

The last point to mention here is that browser support for rem units is very good,
but not perfect. Older versions of Internet Explorer (versions 6-8) do not support
rem units. So if you are developing a website that has a large number of Internet
Explorer users, you may want to avoid using rems and stick with ems or pixels in-
stead.

Backgrounds, Borders, and More

Percentages

A percentage unit is defined using the % character. Percentage values are always
relative to another value on the element itself or on a parent element, which can
sometimes make them appear confusing. For example, in the case of the . box element
in the rule set shown, the 40% value will be 40% of the width of the immediate

parent element:

.box {
width: 40%;
}

So if this .box element is inside an element that is 500px wide, then the .box ele-
ment’s width will be equal to 200px (which is 40% of 500px). If there is no set width
on the containing element, then the 40% will represent 40% of whatever the width
happens to equal within the browser window. Figure 3.7 might help you understand
this.

This box is set to width: 40%

Figure 3.7. This box is set to width: 40%, making its width 40% of the available horizontal space in which it sits

The box is set to a width of 40%, and it’s centered inside the available horizontal
space. Notice in Figure 3.8 what happens when we increase the available space.
The width is still set to 40%, but the box is wider, because the available horizontal
space is larger.

73

74

Jump Start CSS

This box is set to widih: 40%

Figure 3.8. This box is again set at 40% width, but it's larger because the available horizontal space it sits in is larger

Integers

Some CSS properties take integers—that is, whole numbers—as values. We’ve
already seen an example of this when we applied a z-index value to our .1logo ele-

ment:

.logo {
z-index: 10;

}

Here we set the z-index property to an integer value. In the case of integers, the
number is an absolute value, rather than being relative to anything else. In other
words, the z-index is equal to 10, with no hidden inherited values, which is different

from percentages or ems.

Keywords

We’ve already seen keyword values used a number of times while building Re-
cipeFinder. For example, you might remember the code we used to center different

elements on the page horizontally:

.center-global {
width: 1020px;
margin: 0 auto;

}

Notice the margin property uses a value of auto. This is an example of a keyword
value. Keyword values are basically any predefined word or set of characters that

form a single value for one or more properties.

Backgrounds, Borders, and More

One particular keyword that's available as a value for every CSS property is inherit.
This keyword value tells the browser to inherit the value for that property from the
value of the same property on its parent element.

Color Values

You’ve seen color values a number of times in the book so far. One of the most
common types of color values is referred to as hexadecimal notation, or “hex” for
short. We used this for the background color we defined on the <body> element of
RecipeFinder:

body {
background-color: #cab5a3;

}

If we desired, we could set the exact same color using another type of color value:
RGB, which stands for "Red, Green, Blue." The following RGB color value will

produce the exact same result as the hex color from the previous declaration:

body {
background-color: rgb(202, 181, 163);

}

Many CSS developers find RGB color values a bit easier to work with than hex,
because you can easily increment or decrement one of the three values (representing
red, green, and blue) to compare colors. Incidentally, RGB values range from 0 to
255 for each of the three values inside the parentheses.

You can also use HSL color values. Let’s use an online RGB to HSL converter' to
find the HSL equivalent of the RGB color we defined in the previous example. Here’s
the HSL notation:

body {
background-color: hsl(28, 27%, 72%);
}

HSL stands for Hue, Saturation, and Lightness, which are what the three values
inside the parentheses represent. The first value (the hue,) takes a value from 0 to

! http://serennu.com/colour/hsltorgb.php

75

http://serennu.com/colour/hsltorgb.php

76

Jump Start CSS

359, with each number representing a different hue, or shade. The second value
represents the saturation level of the chosen hue—that is, how strong the hue should
appear—and is defined using a percentage. Finally, the lightness value tells the
browser how much white, or lightness, to add to the hue. A level of 50% is “normal,”
while 100% lightness will make any chosen color white, and 0% lightness will
make any color black.

In other words, each of the following examples will produce a background color of

pure white, even though they have different hue and saturation values:

body {

background-color: hsl(28, 37%, 100%);
}
p {

background-color: hsl(156, 40%, 100%);
}

And the following two examples will both produce pure black, even though, again,
the hue and saturation levels are different:

body {

background-color: hsl(245, 63%, 0%);
}
p {

background-color: hsl(59, 20%, 0%);
}

Transparency

There are a few different ways to achieve partially transparent or semi-opaque ele-
ments on a web page. The best-known way to do this is by means of images; that
is, using either a transparent GIF image or a transparent PNG image. You can use

Photoshop or virtually any other image editor to create semi-transparent images.

To avoid having to create extra image files, you can achieve transparency on an
HTML page using one of three different CSS features.

Backgrounds, Borders, and More

The Opacity Property

The opacity property lets you define how opaque an element should be. Let’s use
the opacity property on our logo, if only temporarily:

.logo {
opacity: .5;
}

The opacity property takes a number value from 0 to 1, so you're allowed to use
decimal values. Our example sets the opacity to .5. If we add this declaration to
the existing styles on our .1logo element, it'll cause the logo to appear 50% opaque
(or, you could say, 50% transparent). Figure 3.9 displays a comparison of the logo
before and after adding the opacity property at 50% transparency.

REC|-0

FINDER
~

Figure 3.9. The RecipeFinder logo with and without CSS transparency using the opacity property

Internet Explorer versions prior to version 9 don't support the opacity property, but
you can mimic the same effect using a special filter that works only in those older
versions of IE. So, if you wanted full browser support for the opacity property, you
would have to do this:

.logo {
-ms-filter: "progid:DXImageTransform.Microsoft.Alpha(opacity=50)";
filter: alpha(opacity=50);
opacity: .5;

}

Don’t worry about the syntax of those first two lines; you can copy and paste those
from a number of sources online. The only parts of the code that you need to change

2 For example, http://www.impressivewebs.com/css-opacity-reference/.

77

http://www.impressivewebs.com/css-opacity-reference/

78

Jump Start CSS

are the values. On the first two lines, the 50 value represents 50 out of 100, which
is equivalent to the .5 value for the opacity property. In other words, if the opacity
property was set to a value of .34, the code with equivalent, old-IE syntax would
look like this:

.logo {
-ms-filter: "progid:DXImageTransform.Microsoft.Alpha(opacity=34)";
filter: alpha(opacity=34);
opacity: .34;

}

Fortunately, because fewer and fewer people are using older versions of Internet
Explorer, you're unlikely to need to do this very often, if ever. Also, opacity settings
are a decorative feature that isn’t crucial to the functioning and accessibility of a
web page. So you should be okay to leave the IE filter lines out completely and allow
the page to degrade to no transparency on older versions of IE. It should also be
noted that those first two lines of code are not valid CSS, but they do achieve the
desired result.

RGBA and HSLA Colors

The other two ways to achieve transparency levels on elements using CSS are by
means of RGBA and HSLA color values. In this chapter, you’ve already seen the
syntax for RGB and HSL color values. The "A" in RGBA and HSLA stands for “alpha,”
representing a transparency channel as part of the color value. Let’s first use RGBA

on the background color of our footer element.

In our design, the footer element has a background color with a hex value of #42031e.
We haven’t added that color to the footer yet, so it still looks bare. Let’s set the
equivalent RGB value for the footer, and add an alpha (transparency) setting to the

syntax:

footer {
background-color: rgba(66, 3, 30, .5);
}

Notice two points in this syntax, as compared to the RGB syntax we saw earlier.
Firstly, the notation is rgba() instead of rgb (). Secondly, we’ve added a fourth
comma-separated value, which represents the alpha channel. This fourth value in

Backgrounds, Borders, and More

the parentheses is set in the same way we set opacity: Using a decimal-based number
from 0 to 1.

But hold on a second! If we add this declaration to our footer element and refresh
the page, you’ll notice that nothing has happened (assuming you’ve been following
the example code up to this point). The reason we don’t see the background color
on the footer yet is because of the float-clearing problem we talked about in Chapter
2.

Currently there are three elements inside the footer, and each of those elements has
its float property set to a value of 1eft. As we discussed, this means that those ele-
ments are taken out of the flow, causing their parent element to collapse, essentially
ignoring them. To fix this problem, we’ll add the cf class to our .footer-inside
element:

<div class="footer-inside center-global cf">

Now we can see our footer’s background color, and it appears as shown in Fig-
ure 3.10.

@RecipeFinder : Thanks folks for all the
love in your messages

Steamed Crab with 2 days ago
Ginger and Coriander

Cooking time: 40 minutes

discover more recipes

Figure 3.10. Our footer with an RGBA background color

@ Float Clearing 101

The float-clearing problem that sprung up again in this chapter as a result of
floating the elements inside the footer could occur multiple times during a project.

79

80

Jump Start CSS

So, if you're trying to figure out why a background color or background image is
not appearing, the first thing you should do is add the clearfix code to that element
(or overflow: hidden, if you prefer that method) and see if that fixes it.

What about HSLA? This works the same way as RGBA. So, if you want to define

an alpha setting on any HSL color, use hsla() notation and add a fourth value:

footer {
background-color: hsla(334, 91%, 14%, .5);
}

This will achieve the same result, being the equivalent color in HSL, along with the
.5 alpha setting.

Having added this background color to the element, you’ll notice that the shade is
not exactly what we want. As we did with the opacity property on the .1logo ele-
ment, we’ll remove the HSLA syntax, and just use plain RGB:

footer {
background-color: rgb(66, 3, 30);
}

This gives us the background color we want, as shown in Figure 3.11.

E 2 (@RecipeFinder : Thanks folks for all the
love in your messages

Steamed Crab with 2days ago
Ginger and Coriander

Cooking time: 40 minutes

discover more recipes

Figure 3.11. Our footer with the correct background color

Backgrounds, Borders, and More

Opacity versus Color-based Transparency

If you’re going to choose a method to achieve transparency on one or more elements,
it's important to understand that there's a big difference between how transparency
is achieved using the opacity property compared to the transparency channel of the
color values we just discussed.

RGB, HSL, RGBA, and HSLA colors can be used anywhere in a CSS file where a
color value is accepted (such as on backgrounds and borders). But the opacity
property is applied directly on an element itself, rather than as a color value. This
has one major drawback: The opacity property makes, not only, the element itself
semi-transparent, but also everything inside that element. And compounding this
problem is the fact that there's no way to reverse the transparency on the child ele-
ments without removing it from the parent. As you might imagine, this is often an
undesirable result.

In most cases, this can be resolved by simply using a different method of achieving
transparency (such as a PNG image or RGBA color), but it’s good to know that this
occurs, so you can decide from the outset which transparency method is ideal. For
example, the opacity property would be best used on an image inserted via the
 tag whereas RGBA or HSLA transparency would be more suited for a solid
background color or transparency applied to text.

Other Values

There are additional types of values you might come across, or find useful, (for ex-
ample, ex, pt, or deg). We don't have the space to go into all of them in detail here.
Some will be covered to a degree in later chapters, but for the most part, the values

we’ve discussed in this chapter are those you’ll use most often.

Other values are useful in certain circumstances too, so try to become familiar with
some of those as well. If you’re up for it, you can find a full list and explanation of
each value in the official specification.3

3 http://www.w3.org/TR/css3-values/

81

http://www.w3.org/TR/css3-values/

82

Jump Start CSS

Adding Shadows to Elements

The RecipeFinder website is starting to show a little bit of color and style, but Fig-

ure 3.12 reveals what else is missing from our design.

RECIPES INGREDIENTS CONTRIBUTORS

SWEET AND SOUR

ZUCCHINI PUREE

cook it now!

LATEST RECIPES 1' MOST POPULAR
495 DELICIOUS BAKED GARLIC
ZESTY SMOKED HADDOCK BREAD
SKEWERS ass CHOCOLATE CLOUD CAKE

COOKING TIME: 20 MINUTES 485 FIERY THAI CURRY

h : 47/5 SENSATIONAL PORTOBELLO
MUSHROOMS STUFFED

Figure 3.12. Our original design has shadows that we haven't yet added

Notice the red arrows pointing at various elements in Figure 3.12. All of these have
something in common: a subtle shadow attached to them, adding some depth to
the design.

We could achieve that look using images, but it's messy to do, sometimes requiring
extra HTML elements, or some kind of JavaScript trick. We can do it with pure CSS,
and the shadows we add will be flexible and easy to change should we want to

make any adjustments to them in the future.

Adding a Shadow to the Header

First, let’s add a shadow to the <header> element—the one at the top of the website
that sits above the big promo image. For this, we’re going to use the box-shadow

property:

Backgrounds, Borders, and More

body > header {
box-shadow: rgba(0, 0, 0, .25) O 3px 2px 0;
position: relative;
z-index: 10;

Before I explain what we’ve done with the box-shadow property, notice that we’ve
also positioned the <header> element relatively and added a z-index value of 10.
This is the same z-index setting we added to the .1logo element.

After adding the box shadow without the z-index setting, you’ll see that the shadow
doesn’t overlay the image. This is because the big promo image appears after the
<header> in our HTML, thus overlapping it. Adding the new z-index declaration
fixes this problem. Also, since the .1logo element is actually a child of the <header>,
we can remove the z-index declaration from that rule set, since all elements inside

the <header> will have the same z-index value as the <header> itself.

This is the kind of situation that happens often during a project: you’ll add one or
more CSS properties to an element and those new properties will make other existing
properties redundant, or ineffective. So try to keep a mental note of the properties

you’re adding throughout your project, and remove any redundant code.
The box-shadow property accepts up to six values. Here are those values in detail:
a color value (RGB, HSLA, hex, etc), which defines the color of the shadow
a horizontal offset (set with a length value)
a vertical offset (length)
Blur (a length value defining how blurry the shadow should appear)
Spread (length defining how far the shadow should spread)

An optional inset keyword is also allowed, which tells the browser to place the
shadow on the inside of the element, rather than outside it.

Multiple shadows can be added to a single element by comma separated sets of
values.

83

84

Jump Start CSS

In this case, our box shadow has no horizontal offset and no blur, and does not use
the inset keyword. Also, the color we’re using is pure black (represented by three
zeros in RGB,) and we’ve added an alpha value, setting the transparency level of
the black to 75% transparent (or 25% opaque). After adding these new styles, our
<header> should look like Figure 3.13.

Recipes Ingredients Contributors

Figure 3.13. A box shadow added to the bottom of the header

We’re still missing the background on the <header>, which is actually a gradi-
ent—that is, a combination of colors, transitioned smoothly. We’ll be discussing
gradients later in the book, so we’ll leave this as-is for now.

Adding a Shadow below the Promo Image

What else requires a drop shadow? Below the promo image, we have something a
little tricky. There’s not only the drop shadow, but just above that there’s a thick
border, which is attached to the bottom of the promo image. If we look closely at
that border, we find that like the header, it’s actually a gradient, as shown in Fig-
ure 3.14.

Figure 3.14. A close-up of the gradient and shadow at the bottom of the big promo section

This gradient border at the bottom of the . promo element is about 8px tall. To make
room for this, we’ll add 8px of padding to the bottom of the .promo element. The
subject of of the gradient will be included later in the book when we cover CSS

Backgrounds, Borders, and More

gradients. For now, we’ll include the shadow, adding to the existing styles on that

element:

.promo {
position: relative;
z-index: 5;
padding-bottom: 8px;
box-shadow: rgba(0, 0, 0, .25) 0 3px 2px O;

This box shadow has the same values as the previous ones, keeping the look of the

two shadows consistent as in our Photoshop file.

Adding Shadows to Small Images

Where else do we need to add shadows? The images in the “Latest Recipes” section
also have drop shadows. Let’s add a shadow to our images, changing the values for

the shadow to accommodate this smaller set of elements:

.media img {
float: left;
margin-right: 30px;
border: solid 9px #ede0d5;
box-shadow: rgba(0, 0, 0, .25) 2px 2px 2px O;

For this drop shadow, we’ve added a 2px horizontal offset (the first value after the
color) and we’ve reduced the vertical offset by one pixel. This gives us just about
the look we want; very similar to the original Photoshop mock-up.

Adding Shadows to Buttons

Finally, we have one more set of items to which we need to apply a box shadow:
the two big "cook it now!" and "discover more recipes" buttons.

At this point, we haven’t yet added any styles to our button elements, so they look
rather plain, consisting purely of text. Later we’re going to style those buttons with
gradients and add the correct font, but for now, let’s just add a height and width, a
temporary background color as a placeholder, and the necessary box shadows:

85

86

Jump Start CSS

.promo-btn {
display: inline-block;
width: 208px;
padding: 13px 0;
background-color: #6c0733;
box-shadow: rgba(0, 0, 0, .25) 0 7px 2px O0;

Notice we’re using the display property with a value of inline-block. As discussed
in Chapter 2, all inline and inline-block elements are subject to text-based properties.
So, this will help us to center the element later when we start styling our text.

Notice that we've also assigned a set width to the button, but not a height. Instead,
we’re letting the height occur as a result of top and bottom padding, defined here
using padding shorthand. We’ve also added a background color and the necessary
box shadow.

The shadow is basically the same as the others—again using black at 25% opa-
city—but this time the vertical offset is a little larger. Figure 3.15 shows us how the
button looks at this stage.

Figure 3.15. The promo button with the shadow applied

As you can see, there’s still a lot of work to do on the button, not only aesthetically,
but also in terms of position on the page. Let’s fix some of that right now by adding
a set width to the element holding the promo text and button. You’ll recall, the
HTML for that section looks like this:

<div class="promo-desc">

<h1>Sweet and Sour Zucchini Puree</h1>

cook it now!
</div>

Backgrounds, Borders, and More

We’ll add the width to the .promo-desc element, like so:

.promo-desc {
position: absolute;
bottom: 93px;
right: 75px;
width: 316px;

Now the promo section looks like what’s shown in Figure 3.186.

RECI -% E Recipes Ingredients Contributors

FINDER

Figure 3.16. A width added to the .promo-desc element

The other button on the page appears below the “Latest Recipes” section. We're
going to use many of the same styles on that button, so let’s save a few lines of code

by doing the following:

discover more recipes

Here we’ve added the .promo-btn class to the Discover more recipes button, in addi-
tion to adding a secondary class. So this button will have all the styles of the original
button, including the shadow, but then we’ll make some modifications via the

.more-btn class:

.more-btn {
text-align: center;
float: right;

87

88 Jump Start CSS

margin-right: 50px;
width: 280px;
}

We’ll finish up the look of those buttons in the next two chapters.

Adding the Divider Shadow

The final shadow we’ll be adding to RecipeFinder is the divider that appears in
between the “Latest Recipes” column and the sidebar. Figure 3.17 shows how it
looks in our original design.

Figure 3.17. The divider shadow between the main columns

We won't be able to reproduce that shadow using just CSS, with no images. So, in
this instance, we’re going to revert to using an image, set as a background. After
getting the image out of our Photoshop design, the image will be added to the
.latest section, on the background, like this:

Backgrounds, Borders, and More

.latest {
width: 640px;
float: left;

padding: 0 40px;
background: url(../images/bg-column.png) no-repeat top right;

}

To position the shadow image (called bg-column.png), we'll use the "top" and "right"
keywords, which you’ll recall from our discussion on backgrounds earlier in this
chapter. This positions the image at the top right of the .latest section, giving us

the look we want.

What about text shadows?

The design for RecipeFinder doesn’t incorporate any shadows on text, but if you
want to apply shadows to text in your projects, you can do this easily using the text-

shadow property. The syntax for text-shadow is very similar to box-shadow.

Let’s add a text shadow to the “Latest Recipes” heading text so we can see how it
would look. Here’s the CSS:

h1 {
text-shadow: rgba(0, 0, 0, .6) 5px 5px 4px;
}

Figure 3.18 shows us how this shadow will look on our page.

Latest Recipes

|

| Zesty Smoked Haddock
! Skewers
|

Cooking time- 20 minutes

Figure 3.18. A temporary shadow added to heading text

As mentioned, this shadow is not part of the original design, so we won’t be keeping
it. The text-shadow property works exactly the same way as the box-shadow

89

90

Jump Start CSS

property, except for two key differences: There is no “spread” value allowed, and
there is no option to add the inset keyword for text-shadow.

With both text shadows and box shadows, you have the ability to use any kind of
color value for the color of the shadow. This is good to keep in mind, because a
shadow can be used to create a number of different effects—such as an outline, or

even a glow.

If you’d like to fiddle around with shadow values, there are a number of tools online
that let you do this, including the CSS3 Text Shadow Generator® and the CSS3
Generator.”

@ Go Easy on Shadows

As is the case with anything, you always want to be careful not to overdo it with
special effects that are created in pure CSS. For example, features like shadows,
gradients, and rounded corners don’t use images, so some developers may feel
that it’s okay to add them to many elements.

Shadows in particular, however, have been demonstrated to cause web pages to
slow down considerably when the user is scrolling, or when the page is loading,
or even when some kind of animation is running.

Although you can put a shadow on every element on the page, and you also have
the option to layer multiple shadows on a single element, in many cases this could
be overkill and cause your page to become sluggish.

Summary

This chapter has helped us make the RecipeFinder website a little more visually
enticing, adding some color and depth. Along the way, we’ve learned about CSS
backgrounds, common units and values, different ways to achieve transparency,
and how to add shadows to elements with pure CSS.

In the next chapter, we’re going to cover a number of different text-related CSS
features, including styling links and using custom fonts.

4 http://css3gen.com/text-shadow/
> http://css3generator.com/

http://css3gen.com/text-shadow/
http://css3generator.com/
http://css3generator.com/

Chapter

Links, Text, and Custom Fonts

Our RecipeFinder project is coming along nicely. In this chapter we have a lot of
ground to cover, so let’s start by taking a look at a partial screenshot of RecipeFinder
(shown in Figure 4.1,) after adding all the code we’ve learned about in Chapters 1-
3.

At this stage in the coding of our RecipeFinder website, the biggest discrepancy
between the look of our page and that of the original Photoshop design is the styling
of text elements. Let’s learn a number of new CSS features to help us improve the
text on RecipeFinder so that it looks more like the original Photoshop design.

92 Jump Start CSS

Recipes Ingredients Contributors

Latest Recipes Most Popular
4.9/5 Delicious baked garlic bread
Zesty Smoked Haddock 485 Chocolate cloud cake
Skewers |

| 4.g/5 Eiery Thai curry

Cooking time: 20 minutes | 47/5 Sensational portobello mushrooms
" stuffed with sfilton

~ 4¢/5 Crab._com and potato cake

4 3/5 Persian style lamb pilaf

Creamy Blueberry
Bagel

Cooking time: 7 minutes Yummyv Tweets

Figure 4.1. The current state of RecipeFinder

Styling Links and Text

The first thing we’re going to address here is the color of the links on the website.
By default, in all web browsers, text links (that is, elements marked up using HTML'’s
<a> tag with the href attribute,) are displayed blue and underlined.

If you recall, the original design of RecipeFinder calls for all links to have a color
other than blue, and with no underline. Let’s add some CSS to our stylesheet to
begin correcting this:

a:link, a:visited {
text-decoration: none;

}

Links, Text, and Custom Fonts

You’ll remember that we covered different types of CSS selectors in Chapter 1, and
briefly touched on the fact that selectors can be combined using a comma. That’s

what we’re doing in this example, and it's called selector grouping.

To help you understand what this accomplishes, take a look at the following code:

a:link {
text-decoration: none;

}

a:visited {
text-decoration: none;

}

This longhand code would produce the same result as that in the previous code
block. You can easily see why the previous example is the better choice—we avoid
repeating the declaration. In a large CSS file, using selector grouping can save you
hundreds of lines of code.

Now let’s discuss exactly what we’re doing in that comma-separated selector group.
In both of the group's selectors, we’re using the element type selector to target <a>
elements, and we’re also using a pseudo-class for each.

The :1ink pseudo-class is something you’ll see from time to time, but it's rarely, if
ever, necessary. This pseudo-class targets all <a> elements that have an href attribute
set in the HTML (i.e, they're links). Theoretically, you could have an <a> element
without an href attribute defined, but you’ll only occasionally see that nowadays.
So, technically, we could do this instead:

a, a:visited {
text-decoration: none;

}
Or even simply this:

a {
text-decoration: none;

}

Notice that now we’re just targeting all <a> elements directly.

93

94

Jump Start CSS

The :visited pseudo-class targets all links on the page that have been clicked, or
visited, by the user. With this pseudo-class, you can style visited links differently
from other links. For RecipeFinder, we’re going to keep the same styling for both
visited and non-visited links, so there's no need to use a separate : visited rule set.
But in some cases, it could improve the overall usability of a website if visited links
are identified with distinct styling.

@ Not Using :link

Because :1ink is somewhat redundant and adds some extra specificity, and be-
cause we won’t be giving any extra styling to : visited links, in the stylesheet
for RecipeFinder we’re going to stick with targeting our links using just the element
type selector, without :1ink or :visited, for all of our link styles.

Within the declaration block, we’re using the text-decoration property, with a
value of none, which removes any underline. The text-decoration property also ac-
cepts values of underline (the default), overline, and line-through, all of which
should be self-explanatory. It's also worth noting that, although until now text-
decoration has been treated as a single longhand property, it now represents a
shorthand for multiple text-decoration properties, which you can read about in
the official specification.'

Changing Link Color

Now that we’ve removed the underline, let’s change the color of our links. We need
to write more than just one declaration to do this, because different parts of the
website have different colors for links.

Let’s first define a global color for all text links:

a {
text-decoration: none;
color: #544a40;

}

And next we’ll target our main navigation links at the top of the page, and our two
buttons:

! http://www.w3.org/TR/css-text-decor-3/

http://www.w3.org/TR/css-text-decor-3/

Links, Text, and Custom Fonts

nav a {
color: #fefefe;

}

As you can see, this example uses the descendant combinator to target the links.
You may recall from Chapter 1 that this is done by means of a space between two
selectors—in this case targeting all <a> tags that are inside of the <nav> element.

These last two rule sets use the color property to change the text color of the links.
Thus far in the book, we’ve used the color property in a few examples. In most
cases, you’ll use it to set the text color of an element, but the color property actually
represents more than just text color.

The color property defines all foreground colors on that element, and this includes
borders, list bullets, and even the text that appears in place of an image when an
image doesn’t load—defined in the HTML using the alt attribute on an tag.

@ Targeting multiple <nav>, <header>, or <footer> tags

In this book, we're adding styles to a phony website called RecipeFinder, which
consists of just a single web page. In our HTML for this web page, we’re using one
<nav> element, one <header> element, and one <footer> element.

HTMLS5, however, allows us to define multiple <nav>, <header>, or <footer>
elements on a single page. Thus, if we were to add more of these elements to the
page, all the styles that we applied to those elements would also apply to the new
elements. This might not be the desired result.

To target multiple <nav>, <header>, or <footer> tags uniquely, we would have
to use a different selector, or use selector grouping. You can also add class names
and use the class selector, or some other type of selector, depending on the context
of the elements.

Another area on the page that needs a change in link styles is the “Yummy Tweets”
section in the sidebar. Let’s fix those and then move on to something else before
we take care of the rest of the link styles on the page:

.tweet a {
color: #810430;
}

95

96

Jump Start CSS

.tweet .date {
color: #8f7e6d;

}

We've made two changes here: set the color for all links inside an individual tweet;
and set a unique color for the link that’s at the bottom of each tweet, which tells
the user when the tweet was sent. You’ll recall from Chapter 2 that each tweet’s
date is wrapped in a <div> element that has a class of “date”, so we’ve used that
class in our CSS to apply the unique styles.

@ Setting Global Styles

The styles we added to all links on the page are what we might term “global”
styles, because they apply to all links on the page that aren’t styled otherwise.
These differ from styles applied to links that are in a certain context (such as links
in a .tweet element). There are other global styles that you’ll want to get in the
habit of adding to your CSS at the start of a project.

One such example is the text color set on the <body> element. The RecipeFinder
design doesn’t have any common text elements—like a paragraph of text—that
we can use to identify a global text color. But we can use something like a dark
gray that’s commonly used for body text:

body {

background: #cab5a3 url(../images/bg-main.gif) repeat
wrepeat 0 O;

color: #333;
}

In our case, this won’t be particularly noticeable after we finish styling the rest
of the text on the page. That said, it'll serve as a default text color everywhere that
text color isn’t specifically defined.

Similarly, you might have other generic font styles applied to elements like h1,
h2, h3, p, and so forth. Although we’re not doing this extensively on RecipeFinder,
it’s something you’ll want to do on most projects. This'll help you avoid having
to add too many unnecessary classes on elements that can just be styled by targeting
them using the element type selector.

Links, Text, and Custom Fonts

Later in this chapter, we’ll fix up the rest of the text styles for all the sections of
RecipeFinder, but for now let’s discover the concept of embedding custom web

fonts, which you’ll be doing often on the websites you build.

Using Custom Web Fonts

At this point, there are a few style changes we want to make to the text on RecipeFind-
er, including changing the size of the text. But before we attempt that, we need to
get the correct fonts to display on our web page. For this design, we’ve used two
custom fonts, shown in Figure 4.2—a screenshot depicting part of the sidebar in
the original Photoshop design.

MOST POPULAR

49/5 DELICIOUS BAKED GARLIC
BREAD

48/5 CHOCOLATE CLOUD CAKE
48/5 FIERY THAI CURRY

47/5 SENSATIONAL PORTOBELLO
MUSHROOMS STUFFED
WITH STILTON

Figure 4.2. RecipeFinder uses two different fonts, both used in the Most Popular section in the sidebar

The heading that says “Most Popular” is set using a font called “Chelsea Market”
and the other text is set using a font called “Lato.” You'll notice these are the two
primary fonts used in our design. Let’s define them in our CSS and see what happens.

Of the two fonts, Lato is the most prevalent throughout the page, with Chelsea
Market being used mainly for headings. Here’s what we’ll do:

97

98

Jump Start CSS

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 O;
color: #333;

font-family: Lato;
}

You'll see we've added a declaration to the rule set defining the styles for the <body>
element on RecipeFinder. This new declaration defines the font-family property,
with the Lato font as the property’s value. font-family accepts one or more font
names, separated by commas. So in this case, we could expand the declaration to
look like this:

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 0;
color: #333;

font-family: Lato, Arial, Helvetica, sans-serif;

}

But if we apply this declaration to our website and refresh the page, we won’t see
anything change. This is because, in order to display a font on a web page using the
font-family property, the user who visits the web page needs to have that font in-
stalled on their computer or mobile device’s operating system. Most users are
probably not going to have the Lato font installed, which is why we're not seeing
it displayed. In this situation, we’re seeing the default sans-serif font, which is
specified in Normalize.css (which we added to RecipeFinder in Chapter 2). Without
Normalize.css, you would likely see a serif font like Times New Roman.

@ Commonly Installed Fonts

If you would like to know the fonts that are commonly installed on most computers,
see http://www.ampsoft.net/webdesign-1/WindowsMacFonts.html.

When separating the font names via commas in the font-family declaration, we're
defining what’s called a font stack. The browser will read this and then display the
first font that it recognizes. Just in case none of the fonts are defined, the last option
we’ve included is a generic font family. This tells the browser to display the text

using the default sans-serif font that’s installed on the user’s system. Other generic

font families include serif, monospace, and cursive. We've chosen sans-serif because

http://www.ampsoft.net/webdesign-l/WindowsMacFonts.html

Links, Text, and Custom Fonts 99

the Lato font is a sans-serif font—that is, it doesn’t have serifs, which are small lines
that trail from the extremities of the font’.

Using @font-face

While it 's good to know how to stack fonts to ensure there’s a back-up plan for
when the original font isn’t available, we want to do whatever we can to make sure
the primary font is loaded. To do this, we have to include the font using @font-
face. You'll recall, in Chapter 2, we briefly learned about the @media at-rule. @font-
face is another type of at-rule. It enables us to embed custom fonts in our stylesheet
and then use them by name, employing the font-family property.

Here’s how we set the @font-face rule to include the Lato font on RecipeFinder:

@font-face {
font-family: Lato;
src: url('lato-regular-webfont.eot');
src: url('lato-regular-webfont.eot?#iefix') format
= ('embedded-opentype'),
url('lato-regular-webfont.woff') format('woff'),
url('lato-regular-webfont.ttf') format('truetype'),
url('lato-regular-webfont.svg#latoregular') format('svg');
font-weight: normal;
font-style: normal;

Rest assured that this section of code is not as complicated as it looks. In the majority
of situations where it'll be employed, it won't be necessary to understand much
about it.

What this section does is include the Lato font, using all of the code necessary to
ensure it loads on as many browsers and operating systems as possible. The only
parts of this code that it's useful to be familiar with are: the file names of the different
font files, which should all point to valid files (more on this in a moment); and the
font-family declaration at the top, which is the name of the font we’ll use later in
the CSS (and which we’ve already used in one declaration block example in this
chapter).

2 http://en.wikipedia.org/wiki/Sans-serif

http://en.wikipedia.org/wiki/Sans-serif
http://en.wikipedia.org/wiki/Sans-serif

100

Jump Start CSS

To ensure cross-browser compatibility, the syntax for the @font-face at-rule embeds
the font using four different font types (EOT, WOFF, TTF, and SVG). The browser

will load whichever version of the font it can. And it does this without loading any
of the other versions, thus giving the user the fastest (and therefore best,) possible

experience.

There’s much more to this syntax than we have the space to cover here. To read up
on this subject, check out the article “The New Bulletproof @font-face Syntax” on

fontspring.com.>

Including the Different Font Files

If we examine the big @font-face code block above, we see that it references four
different font files that we haven’t yet included in our project’s source files. So how

do we do we go about adding these?

For the RecipeFinder website, we intentionally selected a pair of fonts that are freely
available for embedding as web fonts. That’s to ensure we don’t have to worry about
font licensing issues. Whenever including a font using @font-face, it's important
that the font specifically allows for embedding using @font-face. Some fonts can
be included on web pages using images or another format, but not via @font-

face—even if it's been paid for. So be sure to check the font license before making

your choice.

The safest way to find free fonts that allow @font - face embedding is to use an online
font service that specializes in free web fonts. Two highly recommended services
are Google Web Fonts* and FontSquirrel.” Both the Lato and Chelsea Market fonts
are available on Google Web Fonts, so that’s the service we’ve used to obtain these
free fonts.

When choosing a font using Google Web Fonts, it's not required to download the
font and include it in the website’s source files. Instead, simply use Google’s linked
CSS file for that particular font, and Google will do the heavy lifting. Figure 4.3
shows the code for the Lato font as it appears on Google Web Fonts, ready to copy
and paste.

3 http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
4 http://www.google.com/fonts/
> http://www.fontsquirrel.com/

http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
http://www.google.com/fonts/
http://www.fontsquirrel.com/

Links, Text, and Custom Fonts

GOLJSIQ Web fOﬂtS @ More scripts (experimental)

2. Choose the character sets you want:

Latin {latin}

Standard Javascript

3. Add this code to your website:

<link href='http://fonts.googleapis.com/css?family=Lato:400,700' rel='stylesheet' type='text/css'>

Figure 4.3. The code for the <link> tag to include a font from Google Web Fonts

You can find this code for any font on the Google Web Fonts service by searching
for the font, then clicking the Quick Use button for that font.

If we decided to use this method to include Lato, this chunk of code would be placed
in our HTML, above our other CSS file references, like this:

<link href='http://fonts.googleapis.com/css?family=Lato:400,700"'
w rel='stylesheet' type='text/css'>

<link rel="stylesheet" href="css/normalize.css">

<link rel="stylesheet" href="css/styles.css">

This uses the <link> tag that we learned about in Chapter 1, where we discussed

all the different ways to include CSS in a web page. Once we have that in place, we
just need to define the font-family property in our CSS using the correct name for
the font. We can see the name referenced in the URL, where it says “family=Lato”.
So, in this instance, our font declared for the <body> element would look like this,
with fallbacks listed:

101

102

Jump Start CSS

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 O;
color: #333;
font-family: Lato, Arial, Helvetica, sans-serif;

}

RecipeFinder includes the Lato font in two different styles: regular and bold. These
styles are represented by the numbers “400” (for regular) and “700” (for bold), and
these are appended to the file reference in the <link> tag so that Google knows
which font variations to reference in the CSS file. And so, if we want to include the
Lato font in bold, we do the following:

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 O;
color: #333;
font-family: Lato, Arial, Helvetica, sans-serif;
font-weight: 700;

This declaration block uses another new property, the font-weight property. This
defines the weight, or heaviness, of the font. The default is “normal”, and it can
also be set to “bold”, “lighter”, “bolder”, or the numbers “100”, “200”, “300”, up
to “900”—but only in increments of 100. It's worth noting, however, that these dif-
ferent values will work only if the font itself allows for the weights specified.

In this example, we could use either a value of “700” or a value of “bold”—they

have exactly the same effect as one another.

Generating the Font Files

In the case of RecipeFinder, we’re not going to use the Google Web Font embedded
<link> tag code. Instead, we’ll use the @font-face declaration directly. We're taking
this slightly more complicated route so that we can cover the full process of adding
a licensed custom font to a web page. As mentioned earlier, the typical cross-browser
syntax for @font-face includes four different files. Let’s find the Lato and Chelsea
Market fonts on Google Web Fonts so we can generate all the files we’ll need.

Go to Google Web Fonts and type “Chelsea” in the search field on the left side of

the page, as shown in Figure 4.4

Links, Text, and Custom Fonts 103

GO; .lgle Web fOﬂtS 3;; Maore scripts (exper

] Word Sentence Paragraph Poster
Showing) _)
1 Preview Text: | Grumpy wizards make to; ~ Size: | 28 | = |1
font family

mal 400

Search: G Umpy Wizqrds mqke fOJ

chelsea

Filters: Chelsea Market, 1 Style by Tart Workshop

All categories -

Thickness
Slant
Width

[¥] Reset all filters/search
Figure 4.4. Finding the Chelsea Market font on Google Web Fonts

You’ll see the Chelsea Market font appear on the right side in the search results.
Click the button that says Add to Collection, as shown in Figure 4.5.

Grumpy wizards make toxic brew for the evil Queen

Chelsea Market. 1 Style by Tart Workshop B DO

Figure 4.5. Each font on Google Web Fonts has an Add to Collection option

This adds the font to a temporary collection that we can download at any time. Now
do the same for the Lato font: search for it, and then add it to your collection.

After adding these two fonts, you should see a message at the bottom of the screen
that says “2 font families in your Collection”. You should also see a link at the top
right portion of the window that says “Download your Collection”. Click the
download button, and you’ll see the message shown in Figure 4.6.

104

Jump Start CSS

Download the fonts in your Collection

© You do not need to download the font to use it on your webpages. Instead, refer to the "Use” section.

#1 Download the font families in your Collection as a zip-file

Note: If you want to download all Google web fonts you can do that at the Google Code Project.

close

Figure 4.6. A warning about downloading the fonts

Ignore the warning next to the red exclamation mark. That’s just a reminder that
you don’t have to actually download the fonts, since Google hosts them for you,
and lets you embed them with the <1ink> tag, as shown in the previous section.
However, on this occasion, we’re going to do this manually purely to learn the
process. So ignore the warning and continue to download the file by clicking the

link Download the font families in your Collection as a zip-file.

When prompted, choose a location on your computer to save the zip file, then find
the file and unzip it. Once unzipped, there'll be two different folders: one for Chelsea
Market, and the other for Lato. In the Chelsea Market folder there’s only a single
TTF font file, so let’s start with that.

We want to take that file and use it to produce three additional font files, and we
can do so using another free service, this one provided by FontSquirrel. It’s called
the Webfont Generator,® and it’s very easy to use.

Go to the Webfont Generator URL and click the button that says Add Fonts.

When we click that button, we'll be prompted with a system file dialog, asking us
to add a font. Navigate to the font collection we downloaded from Google Web
Fonts, find the TTF font for Chelsea Market, and select it to be uploaded.

Now we'll repeat the process for the Lato font, again clicking the Add Fonts button
and then navigating to the Lato folder. This time, there'll be ten different TTF font

® http://www.fontsquirrel.com/tools/webfont-generator

http://www.fontsquirrel.com/tools/webfont-generator

Links, Text, and Custom Fonts

files. We don’t need them all, so select only the ones called Lato-Regular.ttf and
Lato-Bold.ttf. Once all three files are added, the Webfont Generator page should look
as shown in Figure 4.7.

Usage: Click the "Add Fonts" button, check the agreement and download your fonts. If you need more fine-grain control, choose the
Expert option.

Chelsea Market Regular TTF 228 glyphs 169 KB a

Lato Bold TTF 277 glyphs 119 KB a

Lato Regular TTF 277 glyphs 117 KB a
!/ BASIC @ OPTIMAL _/ EXPERT...

Agresment: D‘r’es,the fonts I'muploading are legally eligible for web embedding.

Figure 4.7. After adding three fonts to the Webfont Generator

Notice the red text next to the checkbox that says, “Yes, the fonts I'm uploading are
legally eligible for web embedding.” Since we know that these fonts are legally eli-
gible for embedding, we'll go ahead and check that box. A Download Your Kit button
will now appear. Click it to download all the files necessary for embedding the
Chelsea Market and Lato fonts.

Once the zip file that FontSquirrel generates has downloaded, open it to find all
the files we need, including a sample CSS and HTML file to show us how to include
the fonts in our CSS. Open the file called “stylesheet.css” in a text editor to see three
different @font - face declarations. Copy all three of those and put them into the
RecipeFinder CSS file, just before the declaration block that targets the <body> tag.
Our CSS should look something like this:

105

106

Jump Start CSS

@font-face {
font-family: 'chelsea_marketregular';
src: url('chelseamarket-regular-webfont.eot');
src: url('chelseamarket-regular-webfont.eot?#iefix') format
= ('embedded-opentype'),
url('chelseamarket-regular-webfont.woff') format('woff'),
url('chelseamarket-regular-webfont.ttf') format('truetype'),
url('chelseamarket-regular-webfont.svg#chelsea
= marketregular') format('svg');
font-weight: normal;
font-style: normal;

}

@font-face {
font-family: 'latobold’;
src: url('lato-bold-webfont.eot');
src: url('lato-bold-webfont.eot?#iefix') format('embedded-
=opentype'),
url('lato-bold-webfont.woff') format('woff'),
url('lato-bold-webfont.ttf') format('truetype'),
url('lato-bold-webfont.svg#latobold') format('svg');
font-weight: normal;
font-style: normal;

}

@font-face {
font-family: 'latoregular';
src: url('lato-regular-webfont.eot');
src: url('lato-regular-webfont.eot?#iefix') format('embedded-
=opentype'),
url('lato-regular-webfont.woff') format('woff'),
url('lato-regular-webfont.ttf') format('truetype'),
url('lato-regular-webfont.svg#latoregular') format('svg');
font-weight: normal;
font-style: normal;

}

body {
background: #cab5a3 url(../images/bg-main.gif) repeat repeat 0 O;
color: #333;
font-family: Lato, Arial, Helvetica, sans-serif;

}

Now we have all three fonts referenced in our CSS, but we have to make sure the
file references are correct. Let’s go back to the zip file of generated fonts we down-

Links, Text, and Custom Fonts

loaded from FontSquirrel, so we can grab the 12 files we need for this: the EOT,
WOFF, TTF, and SVG versions of each of the three fonts.

Let's create a folder in our website’s main folder called fonts, and copy all 12 of
those files into that new fonts folder. Assuming our CSS file is inside a folder of its
own, the font file references in our @font-face declarations are now incorrect. So,
our next job is to make some changes to our @font-face declarations. Here’s the
one for Chelsea Market, corrected:

@font-face {
font-family: 'ChelseaMarket';
src: url('../fonts/chelseamarket-regular-webfont.eot');
src: url('../fonts/chelseamarket-regular-webfont.eot?#iefix"')
= format('embedded-opentype'),
url('../fonts/chelseamarket-regular-webfont.woff') format
- ('woff'),
url('../fonts/chelseamarket-regular-webfont.ttf') format
= ('truetype'),
url('../fonts/chelseamarket-regular-webfont.svg#chelsea_
wmarketregular') format('svg');
font-weight: normal;
font-style: normal;

Notice that a few things have been changed here. . ./fonts/ has been added in front
of all the file references, which matches the fact that the files are located up one
level in relation to the CSS file, and inside the fonts folder.

The other change to note is the value for font-family to ChelseaMarket. The pre-
vious value (chelsea_marketregular) would work fine, but was tricky to remember.
This name, as defined in this location, can be anything we want. We just have to
ensure that we use the exact same name when we reference this font in our CSS,
which we’ll do in a moment.

With that in place, we can make similar changes to our two Lato @font - face declar-
ations:

@font-face {
font-family: 'LatoBold';
src: url('../fonts/lato-bold-webfont.eot');
src: url('../fonts/lato-bold-webfont.eot?#iefix') format('

107

108 Jump Start CSS

wembedded-opentype'),
url('../fonts/lato-bold-webfont.woff') format('woff'),
url('../fonts/lato-bold-webfont.ttf') format('truetype'),
url('../fonts/lato-bold-webfont.svg#latobold') format
=('svg');
font-weight: normal;
font-style: normal;

}

@font-face {
font-family: 'Lato’;
src: url('../fonts/lato-regular-webfont.eot');
src: url('../fonts/lato-regular-webfont.eot?#iefix"') format('
wembedded-opentype'),
url('../fonts/lato-regular-webfont.woff') format('woff'),
url('../fonts/lato-regular-webfont.ttf') format('truetype'),
url('../fonts/lato-regular-webfont.svg#latoregular') format
=('svg');
font-weight: normal;
font-style: normal;

With those three declarations ready and using the correct file references, we can
reference any of those fonts on any element on the page, and the browser will render
the font in harmony with the original design.

@font-face Review

So far in this chapter, we’ve covered a lot of ground in regards to @font-face and
embedding web fonts. Just to help you grasp all this info, here are the main points
to take away:

Custom web fonts can be included on a web page using any number of web font
services, including free services such as Google Web Fonts and FontSquirrel.

If you don’t use @font-face, you may only use fonts that are available on a user’s
operating system.

The most effective way to ensure cross-browser support for your custom embed-
ded fonts is to use the @font - face syntax that references four different font files.

Links, Text, and Custom Fonts

After embedding any custom font using @font-face, you need to use the font-
family property in your declaration blocks to specify where that font should be
used on the page.

The name of the font defined in the font-family property needs to be the exact
same font-family name defined in the @font-face declaration.

To ensure the best experience possible, you can define a font stack on the font-
family property, for those rare instances when the custom font doesn’t load.

To use a font with @font-face, you must read the license for that font and ensure
that it allows for @font-face embedding. This is necessary even if you have
paid for the font.

Using Our New Fonts on RecipeFinder

As we've seen from this chapter so far, web fonts are a complex matter to deal with.
Now that we have our fonts embedded on our page, and ready to use, let’s see where
we can identify some further uses for them. We’ll also make some other typograph-
ical adjustments and, in the process, cover a few new CSS properties.

So far, we’ve applied the Lato Regular font (the non-bold version of Lato) on our
<body> element. Fonts defined using font-family are inherited by child elements,
so this applies the Lato font to all the text on the page. Not all CSS properties behave
like this—something you’ll learn from gaining more experience with different CSS
properties. For example, applying 20px of padding to the <body> element would
apply the padding only to the <body>, not to any elements inside the <body>.

In our original design, the main navigation and all the headings use Chelsea Mar-
ket—one of the other fonts we embedded with @font-face. Not only that, but all
the text set in Chelsea Market is in uppercase. Here’s the CSS we’re going to add to
our stylesheet:

h1, h2, nav {
font-family: ChelseaMarket, Arial, Helvetica, sans-serif;
text-transform: uppercase;
font-weight: normal;

}

109

110

Jump Start CSS

The first thing to note is that we’re grouping selectors so we can target multiple
element types at once. It's also worth noting that, although we’ve applied the Chelsea
Market font to all of our <h2> elements, we’ll have to override that behaviour later

in our CSS file for some of our other <h2> elements, which don’t use Chelsea Market.

Next, after we set the Chelsea Market font, with fallbacks in the font stack, we’ve

also added a new CSS property, the text-transform property. In addition to upper-
case (which sets all the text to uppercase for those elements), this property can ac-
cept values of capitalize (which makes the first letter of every word uppercase),
lowercase, and none (which is the default). Lastly, we’ve set the font-weight for
these elements to normal. By default, all browsers add certain levels of styling for
heading elements (<h1>, <h2>, <h3>, etc.), including bold, and we want to ensure

that the Chelsea Market font displays without any browser-added styles.

After adding that rule set, our page should look something like Figure 4.8.

Links, Text, and Custom Fonts

LATEST RECIPES

ZESTY SMOKED
HADDOCK SKEWERS

Cooking time: 20 minutes

CREAMY BLUEBERRY
BAGEL

Cooking time: 7 minutes

MOST POPULAR

4.9/5 Delicious baked garlic bread

~ 48/5 Chocolate cloud cake
! 4.8/5 Fiery Thai curry

 47/5 Sensational portobello mushrooms

stuffed with stilton
4.6/5 Crab, cornand potato cake

4.3/5 Persian style lamb pilaf

YUMMY TWEETS

@Peter : Once again, the recipe of the
Aussie BBQ was a complete success thx

Figure 4.8. After adding our custom fonts and making the Chelsea Market text uppercase

Before we move on to the Lato font and the headings further down on the page, let’s

address the size and alignment of the text in the main navigation. We already added

the uppercasing, but what else is missing? There are two things we can correct here:

First, we’ll bump the size of the font up to 20px, and then we’ll fix an extra margin

issue.

In our CSS, we already have a selector targeting the list items inside our navigation,

so let’s add one line to that rule set, and add another rule set below it:

nav ul 1i {
display: inline-block;
display: inline; / for IE7 */
margin-right: 30px;
font-size: 20px;

m

12

Jump Start CSS

}

nav ul li:last-child {
margin-right: O0;

}

Here we’ve adjusted the font size to 20px, which adds to the existing styles on our
list items inside the <nav> element. But more importantly, we’ve introduced a new
selector: the :last-child pseudo-class.

In Chapter 2, we added a 30px right margin on all of our list items. This caused the
navigation section to be pushed too far to the left. We also set the <nav> section to
have 177px of right margin, but there’s an extra 30px added to that because of the
30px right margin set on the last list item.

The :1last-child pseudo-class used in combination with the “nav ul 1i” selector
tells the browser to target only the last list item. Here we’ve set the right margin
back to 0, giving us the correct amount of space.

This is a good method to keep in mind because it's often desirable to remove styles
on specific elements—say, the first or last element. CSS offers not only :1last-child,
butalso : first-child, and a number of other pseudo-classes.” Using these special-
ized selectors prevents us from having to add extra classes or IDs to elements, which
would be the only other way, using CSS, that we could target a single list item in
an HTML list that has more than one list item.

Cleaning Things Up

Now that we’ve corrected the look of the text in the navigation, let’s see what else
we can improve. The text in the promo area that overlays the big promo photo needs
to be aligned differently, so let’s fix that by adding to the existing styles in our
.promo-desc declaration block:

.promo-desc {
position: absolute;
bottom: 93px;
right: 75px;

7 http://reference.sitepoint.com/css/css3psuedoclasses

http://reference.sitepoint.com/css/css3psuedoclasses

Links, Text, and Custom Fonts

width: 316px;
text-align: center;

}

Here we’ve added the text-align property with a value of center. This property
can take a value of 1eft, right, center, or justify. Using center here, not only
is the text centered, but this also centers the button that appears below the text. As
we learned earlier in the book, the button (which is an <a> element in the HTML)
is an inline element converted to an inline-block element, thus it's subject to typo-
graphic styles. If this were a block-level element such as <div> or <p>, and were
not converted to inline-block, it would not center, because block-level elements are

not in text flow and, as a result, are not subject to typographic styles.

We would also like to set the correct color for the various headings on the page.
Most of these have the same color, so what we’ll do is expand on the grouped selector

rule set we defined a little earlier:

h1, h2, nav {
font-family: ChelseaMarket, Arial, Helvetica, sans-serif;
text-transform: uppercase;
font-weight: normal;
color: #810430;

Here we’ve added the color property set to a value of #810430, which is a burgundy
shade that is sampled from the original Photoshop file. Two of our headings, how-
ever, shouldn’t be this color—they should be a near-white shade. These headings
have been indicated in Figure 4.9.

13

114 Jump Start CSS

LATEST RECIPES MOST POPULAR
4.9/5 Delicious baked garlic bread
ZESTY SMOKED , 4.8/5 Chocolate cloud cake
HADDOCK SKEWERS | 4.8/5 Fiery Thai curry
Cooking time: 20 minutes a7/ Sensational portobello mushrooms

. stuffed with stilton

~ 44/5 Crab, cornand potato cake

Figure 4.9. Some of our headings are the wrong color

Let’s correct the colors on those two headings now, matching what’s in our design
and overriding the burgundy we just set:

.promo-desc h1 {
color: #fefefe;

}

Once again, we're using the descendant combinator that we learned about in Chapter
1 to target the <h1> element inside the .promo-desc element.

Next we’ll correct the look of the <h2> headings that appear inside the .media blocks
that we defined in our CSS earlier in the book. Here’s the code, targeting all <h2>
elements inside .media blocks:

.media h2 {
color: #49301a;
font-family: LatoBold, Arial, Helvetica, sans-serif;
font-weight: normal;

Links, Text, and Custom Fonts

font-size: 26px;
margin-bottom: 5px;

}

There's something that might seem a bit paradoxical here. After defining the font
as LatoBold (along with the fallback fonts), the next declaration defines the font-
weight property as normal (as opposed to bold), which removes bolding from the
font. So why would we remove the bolding from a font that’s naturally bold?

Well, the font itself has a certain level of bolding already built in. That’s why it’s
called Lato Bold. As we've already noted, heading elements are set as bold by
browsers, as a default. This default setting makes the font bolder than we want, so,
in this case, we’re better off removing it. In addition to this, we’ve defined the correct

font size for these headings.

Next we’ll fix the styles for the text that appears under each of the <h2> headings
inside the .media elements. This text appears inside paragraph tags. And while
we're at it, we’ll correct the margin spacing between the <h2> and the paragraph so

it's more in line with the original design:

.media p {
margin: 0;
font-family: Lato, Arial, Helvetica, sans-serif;
font-size: 18px;
color: #7b6047;
text-transform: uppercase;

.media p span {
font-size: 25px;

}

There aren’t any new properties here, but we have added a new rule set, targeting
 elements inside paragraphs in the .media blocks. Why did we include this?
Figure 4.10 shows us how the original design looks for each .media element in the

“Latest Recipes” section.

115

116 Jump Start CSS

- ZESTY SMOKED HADDOCK
-~ SKEWERS
COOKING TIME: 20 MINUTES

Figure 4.10. A single "Latest Recipes" entry from our original design

Notice that the number indicating the minutes for cooking time is bigger than the
rest of the text. With CSS, there's no way to target a specific section of a piece of
text that is in the middle of a block of text, so here’s what we’ve done in our HTML:

<div class="media">

<h2>Zesty Smoked Haddock Skewers</h2>
<p>Cooking time: 20 minutes</p>

</div>

Notice the tags wrapped around the number. By doing this, we now can
style that part of the text in any way we want. In this case, increasing the font size
does the trick.

We also want to give the text for our two button elements the correct size and color,
so let’s do that now:

.promo-btn {
display: inline-block;
width: 208px;
padding: 13px 0;
background-color: #6c0733;
box-shadow: rgba(0, 0, 0, .25) 0 7px 2px O0;
font-size: 20px;
color: #fefefe;

Links, Text, and Custom Fonts

Remember that the . promo-btn class applies to both buttons, working as a base rule
set. The second button also has a class of .more-btn, which allows us to add other
styles that are unique to the second button.

Styling the Footer Section

We have a few other formatting improvements we want to make to our page, in
particular in the footer and the sidebar. You’ll recall that in Chapter 2, we took care
of the layout of both the footer and the section in the sidebar called “Most Popular,”
and we started to fix the styles in the “Yummy Tweets” section earlier in this chapter.
We’ll now clean up the look of the text in those sections.

Let’s run through the additions to the different parts of the footer. First, we want to
remove all the list bullets from the unordered lists in all the footer sections, and fix
some of the margins and padding to match the design. We'll do this by adding to

an existing declaration block, and adding a new declaration block to target the

elements in the footer:

footer {
background-color: rgb(66, 3, 30);
padding-top: 10px;
padding-bottom: 50px;

}

footer ul {
list-style: none;
margin: 0;
padding: O;

}

Next, we’ll correct the text styles for the . footer-1and . footer-2 elements, which
hold the sections called “Recipe Categories” and “Contributors”:

.footer-1 h2 {
font-size: 36px;

}

.footer-1 ul, .footer-2 ul {
text-align: center;

17

118

Jump Start CSS

font-size: 20px;
line-height: 1.7;
}

.footer-1 1i {
float: left;
width: 195px;

}

.footer-1 ul a,
.footer-2 ul a {

color: #ab97a0;
}

Notice that, here, we’re taking full advantage of grouped selectors and descendant
combinators. We’ve also added a float to the list items in the .footer-1 section.
This helps get the two-column look that we see in the original Photoshop design.

The 1line-height Property

The chunk of code in the previous block adds a new property: 1ine-height. This
property defaults to a value of “normal” and is used to define the height of each
line of text in the targeted section of the page. 1ine-height is the web page equival-
ent to the printing industry’s leading.8

With a little bit of experimenting, 1ine-height reveals itself to be a very useful tool
for optimizing the readability of text, and ensuring that it looks just the way we
want it. The 1ine-height property accepts values using most of the units we’ve
discussed already, including a unitless number value, which is what we’re using
here, and is the recommended way to define 1ine-height.

If we use a unitless number value for line-height, the value will compute to the
number multiplied by the current font size of the element to which it’s applied. In
this case, we’ve defined the line-height at 1.7, with no unit. The font size for the
element is set at 20 pixels. Thus, the line-height of 1.7 is equivalent to 34 pixels.

Some of the previous styles included the . footer-2 element as part of a few grouped
selectors, fixing some of the styling issues. Let’s finish up our .footer-2 section,
by adding to our existing styles:

8 http://en.wikipedia.org/wiki/Leading

http://en.wikipedia.org/wiki/Leading

Links, Text, and Custom Fonts 119

.footer-2 {
float: left;
width: 326px;
padding-top: 22px;
}

.footer-2 ul {
margin: O 80px 0 O;
}

There's nothing new here—just some alignment corrections in harmony with what’s
in the design.

And finally, here is the CSS for the last section in our footer, the “Colophon”:

.footer-3 {
float: left;
width: 232px;
color: #801c48;
padding-top: 22px;

.footer-3 h2, .footer-3 a {
color: #801c48;
}

.footer-3 1i {
line-height: 1.7;
}

Again, all familiar properties, and we’ve repeated the same line-height value on
the list items.

While we’re in the footer, if you’ve been following along with all the code step by
step, you’ll notice that there needs to be some space between the top of the footer
and the content above it (specifically the Discover More Recipes button). Let’s correct
that now by adding a declaration to our .main rule set:

.main {
padding-bottom: 33px;
}

120 Jump Start CSS

This rule set originally held a margin and width declaration that we later switched
toa .center-global class in Chapter 2.

Adding Styles to Text in the Sidebar

The last change we'll make to RecipeFinder, in this chapter, is to add some styles
to the text on the “Most Popular” and “Yummy Tweets” sections, found in the
sidebar, in line with the original design. Let’s first address the "Most Popular" section,
adding to the layout styles we started to define in Chapter 2:

.rating {
float: left;
clear: left;
padding-top: 4px;
padding-right: 15px;
width: 45px;
color: #810430;
font-size: 13px;

}

.pop-item {
padding-bottom: 20px;
float: left;
width: 250px;
text-transform: uppercase;
font-size: 18px;

.pop-item a {
color: #544a40;
}

Once again we're utilizing the text-transform property, and we’ve defined specific

font sizes. Now this section should look like Figure 4.11.

Links, Text, and Custom Fonts

Figure 4.11. The "Most Popular” section in our sidebar now has the look we want

And finally, we want to finish off the styling of the “Yummy Tweets” section. First,
we’ll add a line-height declaration to fix the space between lines, in harmony with
the original design:

.tweet {
padding-left: 55px;
padding-right: 20px;
position: relative;
line-height: 1.4;

And next we’ll improve the look of the text in the .date element:

.tweet .date {
color: #8f7e6d;
font-faily: Arial, sans-serif;
color: #8f7e6d;
font-size: 12px;
font-style: italic;

121

122

Jump Start CSS

In addition to the family, color, and size, this declaration block includes a property
new to us: font-style. The font-style property does exactly what its name sug-
gests, accepting values of normal (the default), italic, and oblique. For all intents
and purposes, italic and oblique are basically the same, causing the text to slant.
The difference can only be seen if the font to which this property is applied has the
capability to differentiate between the two.

Summary

With all these new link and typographic styles in place, the look of RecipeFinder
is very close to what we want to achieve. In fact, visually, it could pass for a pretty
good-looking website—even in this incomplete form!

However, we're not quite finished. In the next chapter we’re going to look at some
of the fancy new effects that have been added to CSS in the last few years, and see
how to add some to our web pages.

Chapter

Getting Fancy

The look of RecipeFinder has now advanced to the latter stages. We have the layout
of all elements in place, along with all the correct fonts and text sizes.

Figure 5.1 shows a screenshot of RecipeFinder after completing all the code from
Chapters 1-4.

It's looking good but, compared to our original Photoshop file, there are still a few
elements missing: the background gradients on the header and button elements. As
mentioned earlier, we intentionally left those unfinished so we could deal with

them in this chapter, which introduces some fancy effects that you’ll want to make

part of your regular CSS arsenal. So let’s get to it!

124

Jump Start CSS

RECIPES INGREDIENTS CONTRIBUTORS

SWEET AND SOUR
ZUCCHINI PUREE

cook it now!

Figure 5.1. A screenshot showing the current state of RecipeFinder

Hover Effects

In Chapter 4, we styled the various links on RecipeFinder, adding CSS to improve
their static look. However, when visiting web pages, hovering your mouse over a
link or other page element will often alter its appearance. It might be a color change,
a size change, or something else.

We can accomplish this in CSS by using the :hover dynamic pseudo-class. It's
"dynamic" because it doesn't target an existing element; rather it targets an element
in a given state (the hover state). So let’s add this pseudo-class to RecipeFinder,
starting with all the links on the page:

Getting Fancy 125

a {
text-decoration: none; color: #544a40;
}
a:hover {
text-decoration: underline;
}

First, we're placing our :hover styles after the existing global link styles. Although
we didn't opt to use the :1ink, and :visited pseudo-classes, were we to use them,
we would have to ensure that they were placed before our :hover styles. This is

because all those pseudo-classes have equal specificity. We want the :hover styles
to override the others, so they need to appear after any original :link and :visited

styles targeting the same elements.

The other thing to notice is that we’re changing the value of the text-decoration
property. This is a common technique. So, as depicted in Figure 5.2, whenever a
user hovers over any link on the page, the text in that link will appear with an un-

derline.

Figure 5.2. The :hover pseudo-class in action

Causing an underline to appear on all text links on hover is fine for the footer links
and the sidebar links, but the effect is not as visually pleasing on some of the other
areas of the page, such as the main navigation and the text on the buttons. In order
to target those and change them, we’ll have to add some rule sets using :hover that

are higher in specificity. Let’s start with the main navigation:

126

Jump Start CSS

nav a {
color: #fefefe;

}

nav a:hover {
text-decoration: none;
color: #cdb8a5;

}

In this new rule set, we’re removing the underline on hover and changing the color
to #cdb8a5 (which is a color sampled from the textured background of RecipeFinder).
Because the header doesn’t yet have a background color, the text will look as though
it disappears on hover. This'll improve later in this chapter when we add the correct

background.

Let’s fix the :hover styles on the two buttons:

.promo-btn:hover {
text-decoration: none;

}

We’re not adding any color change to the button text on hover. We’ll do something
different for them later on in the chapter. Lastly, let’s correct the underline that
appears below the linked text in all the entries in the “Latest Recipes” section:

.media a {
text-decoration: none;

}

.media a:hover h2,
.media a:hover p {
color: #b32cic;

}

These hover styles are a little different. In this case, we’re targeting elements that
are inside our <a> elements (the <h2> and <p> elements). So the :hover class is part
of a selector that uses the descendant combinator (the space character). The text
color chosen for the hover state is, again, a color sampled from the Photoshop file.
In some cases, the original design may indicate hover states, but in this project we’re
using our own judgment to choose the hover states.

Getting Fancy

For now, that should cover some of the simple hover states we’re adding to Re-
cipeFinder. We’ll add a few more later in this chapter when we tackle a few other
techniques.

Transitions

A GSS feature that works nicely with the :hover pseudo-class is the transition
property. The transition property allows you to change the values of CSS properties
over a specified duration, animating the properties as they change from one state
to another.

For example, look at the hover color changes we just added to the main navigation
and the “Latest Recipes” section. Hover the mouse over those links and the color
change happens instantly. With a CSS transition, we can make the color change

occur gradually. Here’s how we’ll do it on the navigation links:

nav a {
color: #fefefe;
transition: color .4s ease-out;

}

nav a:hover {
text-decoration: none;
color: #cdb8a5;

}

This new declaration we've added is a shorthand property that represents the fol-
lowing longhand properties:

transition-property This is where we identify the property we want
to transition. In our example, we’ve defined the
value as “color,” meaning it will transition the
color property. This value can also be “all,”
which means all properties that have a changed

state (for example, via :hover) will transition.

transition-duration This is the amount of time we want to occur while
the property is changing from one value to anoth-
er. It can be defined in seconds (as in our ex-
ample) or milliseconds (e.g. 400ms).

127

128

Jump Start CSS

transition-timing-function

transition-delay

This defines how the transition will proceed over
the course of its duration, or, to put it another
way, it defines the style, or manner, of the trans-
ition. This property can take a number of pre-
defined keyword values, such as linear, ease-in,
ease-out, and so on. It also accepts function val-
ues, which are a bit complex, so they are beyond
the scope of this book. In most cases you won'’t
need anything more than the simple, predefined
functions.

This property defines how much of a delay should
take place before the transition occurs—again
defined in seconds or milliseconds. In our ex-
ample, we did not include a value for transition-
delay, so it just defaulted to a 0s delay, or no
delay.

Looking back at the code we used to write our transition, now that we know all the

longhand properties that make it up, we can alternatively write it like this:

nav a {
color: #fefefe;

transition-property: color;

transition-duration:

transition-timing-function: ease-out;

transition-delay: Os;

So, why are we putting the transition in the rule set that targets the links directly,

rather than on the :hover state? Well, we want the transition to occur when the

user moves their mouse over the links as well as when they move their mouse off.

If we put the transition only on the :hover state, then the transition will occur only

when the user hovers over the links, not when the user moves off. By putting the

transition directly on the element itself, we ensure that the transition occurs in both

directions: hover-on and hover-off.

Let’s continue by adding a transition to the text links in the “Latest Recipes” section:

Getting Fancy

.media a h2,
.media a p {
transition: color .3s linear;

}

.media a:hover h2, .media a:hover p {
color: #b32cic;
}

The first declaration block is the example we just added, with two grouped selectors.
The second is included to demonstrate where the first example should be placed
in our CSS file. With this new rule set added, the color change on the text links in
the .media blocks should be gradual, rather than sudden.

Multiple Transitions on a Single Element

If we want to transition more than one property on a single element, we can't define
multiple transition properties like this:

.example {
transition: color .4s ease-out;
transition: width .7s linear;

When a browser sees the same property defined more than once on a single element,
the first instance of that property is ignored and only the second instance will have
any effect.

So, to transition multiple properties on a single element, we have two choices.
Firstly, we can use the all keyword, mentioned earlier. This will transition all
properties. Secondly, we can define multiple transitions on a single declaration by

separating them using commas, like this:

.example {
transition: color .4s ease-out, width .7s linear;

}

In this example, both the color and width properties will be transitioned, and they
will do so using different durations and timing functions.

129

130

Jump Start CSS

Vendor Prefixes

If we include the code for transitions that we’ve just discussed, depending on the
browser being using to test them, it's possible that the code won't work. Some
browsers currently support CSS transitions using the standard syntax (which I just
introduced), but other browsers require the use of an experimental prefix. To get
this code working in all browsers that have support for transitions, we need to write
it like this:

nav a {
color: #fefefe;
-webkit-transition: color .4s ease-out;
-moz-transition: color .4s ease-out;
-o-transition: color .4s ease-out;
transition: color .4s ease-out;

Notice that, now, we are including four different lines of code for this single trans-
ition declaration. The -webkit- line is for Chrome and Safari browsers, the -moz-
line is for Firefox, the -o- line is for Opera, and the last line (which has no vendor
prefix, and which should always be included last), is for all browsers that support
the standard syntax, including IE10.

Vendor prefixes are generally safe to use, but be aware that when new CSS features
are still going through the standards process, there could be changes in the way the
syntax works.

We don’t have space in this book to describe all the quirks that could potentially
occur when using vendor prefixes, so to learn more about which browsers support
which features, and with what syntax, refer to Can I use...1, which is an online
searchable reference with support tables for all sorts of HTML, CSS, and JavaScript
features.

It's also worth checking out a website called Prefixr,” created by Jeffrey Way, which
lets you paste all your CSS into a text field and then generate all the necessary
vendor prefixes to get the code working in as many browsers as possible. Remember

! http://caniuse.com/
2 http://prefixr.com/

http://caniuse.com/
http://prefixr.com/

Getting Fancy 131

to back up original code before committing to anything that modifies it automatically
like this.

So, for the remainder of this book, we will be using only the standard syntax for all
the code. If something isn’t working, check the Can I use... website to see if it’s a
browser support or vendor prefix issue that's the culprit. Failing that, try putting

the code into Prefixr and then use whatever output it provides instead.

Transforms

In this next section, we’re going to talk about a CSS feature that's quite complement-
ary to transitions: CSS transforms. Transforms use the transform property along
with a number of different transform functions to alter the look and/or position of
elements on the page in various ways. A transform looks like this:

.example {
transform: rotate(180degq);

}

The function used in that example is the rotate() function. Let’s briefly cover

functions available for use with transforms.

translate

The translate() function works much like the position property. Using it, or the
related translateX() and translateY(), you can move an element along the x and
y axes.

So if we had a box on the page that we wanted to move 20px to the left and 30px
down from its original position, we could enter the following:

.box {
transform: translate(-20px, 30px)
}

The first value in the translate() function defines the movement on the x axis
(horizontal movement), and the second value defines the movement on the y axis
(vertical movement). The alternative translateX() and translateY() functions

define the x and y movement directly, each accepting a single value.

132

Jump Start CSS

scale

The scale() function lets you change the size of an element by defining a pair of
unitless numbers for the sizing along the x and y axes. Like translate(), the altern-
atives to scale() are scaleX() and scaleY(). So we could change the size of our
box like this:

.box {
transform: scale(1.2, 1.5);

}

This will scale the box up 1.2 times its size horizontally, and 1.5 times its original
size vertically. If we were to scale the element by 1 or 1, 1, it'd have no effect be-
cause 1 represents the element’s original size. If we leave out the second unit, it's
assumed that the first unit defines both horizontal and vertical sizing. A value of

less than 1 (such as 0.5) will scale the element down from its original size.

rotate

The rotate () function does exactly what the name implies—it rotates the element
by a value defined in degrees:

.box {
transform: rotate(45deg);

}

This will rotate the box 45 degrees clockwise. A negative value will rotate the box

counter-clockwise.

skew

The skew() function, along with skewX() and skewY (), lets us distort the shape of
an element along the x or y axes. So, for example, if we had a box that was sized at

200px by 100px, and we applied the following skew:

.box {
transform: skew(-30deg, 10deg);
}

...then the result would look something like Figure 5.3.

Getting Fancy

Figure 5.3. A box skewed with CSS transforms

Multiple Transforms on a Single Element

As is the case with transitions, if we want to apply more than one type of transform
on a single element, we can't define multiple transform properties. Instead, we have
to do the following, which is slightly different from how we accomplished this
earlier with transitions:

.box {
transform: scale(1.2, 1.5) skew(-30deg, 10deg);

}

This puts two transforms in a single transform declaration, separating the transform
functions using a space (instead of a comma). With this syntax, the scale and skew
transforms will both be applied to the targeted element.

Defining the Origin of a Transform

Whatever transform we’re defining, we have the option to define a starting point
for the transform. So, for example, if we rotate an element, by default the element
will rotate exactly in the center. You can change the point of rotation using the
transform-origin property:

.box {
transform: rotate(45deg);
transform-origin: 30px 20px;

}

Here we're rotating the box 45 degrees clockwise, but we’re altering the point of
origin for the rotation so it's 30px from the left of the box’s boundaries and 20px

133

134

Jump Start CSS

from the top. So, the element will still rotate 45 degrees, but it will do so from a

different origin point, changing the overall position.

Figure 5.4 demonstrates the same box rotated 45 degrees, but using the default
transform origin (the example on the left), and using a transform origin of “30px
20px” (the example on the right). The black outline shown in each of the rotations

represents the original position of the box before the rotate transform is applied.

Default "30px 20px"
Transform Origin Transform Origin

Figure 5.4. The black outlines represent the original space occupied by the box; the small black squares represent the
point of rotation

Combining Transitions and Transforms

All the transforms we've discussed so far are static. That is to say, their end result
can be seen, but they won't animate to get there. The real power of transforms comes
when combining them with transitions and animations. For RecipeFinder, let’s in-
corporate a couple of transforms that will occur when the user hovers their mouse

over certain elements.

First, we’ll add to our styles to our two button elements:

Getting Fancy

.promo-btn {
display: inline-block;
width: 208px;
padding: 13px O0;
background-color: #6c0733;
box-shadow: rgba(0, 0, 0, .25) 0 7px 2px O0;
font-size: 20px;
color: #fefefe;
transition: transform .5s ease-out;

}

.promo-btn:hover {
text-decoration: none;
transform: scale(1.05);

}

Here we're applying a transition on the transform property, using a duration of .5s
and a timing function of ease-out. When the user hovers over either of the two
buttons, the specified scale transform occurs, increasing the size of the button
slightly.

Now let’s add a rotation transition to the Twitter icons in our “Yummy Tweets”
section:

.tweet:before {
content: url(../images/twitter-icon.png);
display: block;
position: absolute;
left: 15px;
top: 4px;
transition: transform .5s linear;
}
.tweet:hover:before {
transform: rotate(360deg);
}

This expands on our existing . tweet styles, adding a transition declaration to our
:before pseudo-element, along with a new declaration block. The new declaration
block uses something we haven’t yet seen: two pseudo-selectors combined. In this
case, we're telling the browser to rotate the :before pseudo-element element 360
degrees clockwise when the user hovers their mouse anywhere over a . tweet element
(which contains the :before element).

135

136

Jump Start CSS

Linear Gradients

The features described in this section will help us complete the overall look of Re-
cipeFinder. CSS allows us to define graphics called gradients, without using images.
A gradient is a static image that consists of two or more colors, where one is

gradually changing into the other. Figure 5.5 shows what a basic gradient looks like.

Figure 5.5. A simple example of a gradient

Notice that the box in Figure 5.5 is not a solid color, but a combination of blue
shades, with each gradually changing into the next.

With CSS gradients, we can fiddle with our gradients right inside the browser, al-
tering them directly in our CSS, and avoiding the need to edit images in Photoshop

or another image editor every time we have to make a change.

Let’s first introduce linear gradients by adding the missing gradient to the header
of RecipeFinder. Here’s the code:

body > header {
box-shadow: rgba(0, 0, 0, .25) 0 3px 2px O;
position: relative;
z-index: 10;
background-image: linear-gradient(#87053e, #560329);

Notice the new line we’ve added to this declaration block that we wrote in an

earlier chapter. This is not a new CSS property, but is, instead, a linear gradient

Getting Fancy 137

function included as a value on the background-image property. The first value
inside the parentheses is the top color for the gradient. The second value is the final
color for the gradient. The browser constructs the remaining colors on its own,
gradually changing the color from the first color to the next.

For a linear gradient, you can include as many colors as you want, separated by
commas. The browser will automatically distribute the colors (called color stops),
evenly over the element’s background, and then the in-between transitional colors
will be constructed automatically, creating the "gradient" look. Figure 5.6 shows us
what the header looks like after adding this new line of code.

RECIPES INGREDIENTS CONTRIBUTORS

SWEET AND SOUR

Figure 5.6. Our header after adding a linear gradient

As we can see, by default, the gradient direction occurs vertically from top to bottom.
For an idea of how different colors in a linear gradient are distributed, here’s another

example, using a rainbow of colors:

.box {

width: 300px;

height: 300px;

background-image: linear-gradient(red, green, blue, yellow,
= purple, cyan, magenta, olive, brown);

}

Figure 5.7 shows what this would look like when rendered in the browser.

138

Jump Start CSS

Figure 5.7. A ridiculous multicolored gradient that demonstrates color stops

That’s a beauty, isn’t it? Seriously, please don’t ever do anything like that on your
web pages! This should, however, demonstrate clearly how multiple color stops
are rendered. But there’s more to linear gradients than just defining colors.

Positions for Color Stops

Asmentioned, when including colors in a linear gradient, the browser will distribute
the colors evenly across the element, filling in the transitional colors automatically
by default. With each color defined, however, we have the option to define a location
for the color stop. With no color stop positions defined, the first and last colors
listed will default to positions of 0% and 100%, respectively. Let’s try defining
some custom color stops:

width: 300px;

height: 300px;

background-image: linear-gradient(red 10%, green 70%, blue 84%,
= yellow 90%);
}

Here, we’ve defined a percentage for each color. This tells the browser where on
the element to place the color stop. This code would render in the browser as shown
in Figure 5.8.

Getting Fancy

Figure 5.8. A linear gradient with custom-positioned color stops

Changing a Linear Gradient's Direction

In addition to color stops, we're also able to define the direction of the gradient,
which, by default, is vertical, from top to bottom. To define a custom direction for
the gradient, just include the direction prior to the set of defined color stops, before
a comma. Here are some other linear gradient examples with alternate directions

specified:

.box-1 {
background-image: linear-gradient(to top, #87053e, #560329);

}

.box-2 {
background-image: linear-gradient(to left, #87053e, #560329);

}

.box-3 {
background-image: linear-gradient(to right, #87053e, #560329);

}

.box-4 {
background-image: linear-gradient(33deg, #87053e, #560329);

}

If we leave out the direction (like we’re doing on the RecipeFinder header), then
the default is to bottom, which we can also define explicitly. The final example

139

140

Jump Start CSS

shown in the previous code block uses an angle unit of 33 degrees to define the
direction. This can also be a negative value. A value of 180deg would be equivalent
to to bottom or leaving out the direction altogether.

Adding Multiple Gradients on a Single Element

Earlier in the book we dealt with adding backgrounds to elements using the back-
ground-image property. In this chapter, we’ve seen that gradients can be added as
backgrounds using a special function that works as a value for the background-image
property. But what if you want to have more than one background on a single ele-
ment?

We can have multiple background images (and therefore multiple gradients) on a
single element by comma-separating backgrounds using either the background

shorthand property, or the background-image property. Here are two examples:

.example {
background: url(bg-1.png) no-repeat top left,
url(bg-2.png) repeat-x top left;
}

.example {
background-image: linear-gradient(black, white),
linear-gradient(blue, green);

If we use the longhand background-image property, we’ll also have to comma-
separate the values on the other longhand properties to match the backgrounds.
This would get lengthy and hard to maintain using longhand, so it's always a good
idea to try to use shorthand for background images, especially to incorporate multiple

background images on a single element.

Adding More Linear Gradients

Now that we’ve covered the syntax for linear gradients, let’s finish off the look of
RecipeFinder. We have three more linear gradients that we need to add. First, we’ll
add the gradient for the promo button. The code will be the same as used for the
header, because they use the same colors:

Getting Fancy

.promo-btn {
display: inline-block;
width: 208px;
padding: 13px O0;
background-color: #560329;
background-image: linear-gradient (#87053e, #560329);
box-shadow: rgba(0, 0, 0, .25) O 7px 2px O0;
font-size: 20px;
color: #fefefe;
transition: transform .5s ease-out;

For the promo button, the linear gradient declaration is placed immediately following
the background-color declaration. We don’t have to do this, but it often helps with
code maintenance to group related CSS properties together. The background color
serves as a fallback for browsers that don’t support CSS gradients. It's important to
remember to specify a background color to ensure your design remains readable in
browsers that don't display the gradient. Figure 5.9 displays the promo button after
adding the gradient.

SWEET AND SOUR
ZUCCHINI PUREE

cook it now!

Figure 5.9. Our promo button after adding a linear gradient

Next we have the gradient to add to the button at the bottom of the “Latest Recipes”
section. Here’s the code:

.more-btn {
text-align: center;
float: right;
margin-right: 50px;
width: 280px;
background-color: #2d1e10;
background-image: linear-gradient(#6b5139, #2d1e10);

141

142

Jump Start CSS

Again we’ve added a fallback background color for non-supporting browsers and
the linear gradient is just a simple top to bottom two-color gradient. Figure 5.10
shows us the button with the gradient.

STEAMED CRAB WITH
GINGER AND CORIANDER

COOKING TIME: 40 MINUTES

discover more recipes

Figure 5.10. Our second button with a linear gradient

The last gradient for the RecipeFinder website is going to be added to the small area
that appears below the promo image. As discussed earlier in the book, we left that
portion without a background so we could fill it in with a linear gradient in this
chapter! Here’s the code:

.promo {
position: relative;
z-index: 5;
padding-bottom: 8px;
box-shadow: rgba(0, 0, 0, .25) 0 3px 2px 0;
background-image: linear-gradient(#4e0324, #4e0324 97%, #851f49);

Expanding on the styles for the . promo section, we’ve added a linear gradient to the
background for that element. Recall that the .promo element is a wrapper for the
section containing the big promo image. The eight pixels of bottom padding are
what makes this section appear from behind the promo image.

The linear gradient consists of three color stops, with the second color stop being

the same as the first. Also, the second color stop is positioned at 97%. This means
the same color will appear on the background (behind the image, between 0% and
96%), up until the point where the padding starts, which is about 97% of the height
of the .promo element. With this gradient in place, Figure 5.11 shows us what our
promo section now looks like.

Getting Fancy

SWEET AND SOUR
ZUCCHINI PUREE

cook it now!

LATEST RECIPES - MOsT POPULAR
; 4.9/5 DELICIOUS BAKED GARLIC
& BREAD
W sty smokep]

Figure 5.11. The small gradient below the big promo image

Radial Gradients

All the gradients on ReciperFinder are linear gradients, but CSS lets us create another
kind of gradient—a radial gradient. A radial gradient creates a circular gradient.
The syntax is similar to that of a linear gradient, but has some extra optional para-

meters. Let’s look at a simple example:

.example {
width: 300px;
height: 300px;
background-image: radial-gradient(pink, red);

}

That’s as simple as it gets—a two-color radial gradient. The result in the browser

would look something like Figure 5.12.

143

144

Jump Start CSS

Figure 5.12. An example of a radial gradient

As with linear gradients, radial gradients let you specify positions for the color
stops. By default, the first color listed will be at 0% and starts in the center of the
element. Further color stops that don’t have positions will distribute evenly moving
outwards, with the final color stop positioned at 100%. So we could define multiple
colors with custom color stops like this:

.box {

width: 300px;

height: 300px;

background-image: radial-gradient(red 10%, green 70%, blue 84%,
= yellow 90%);
}

Again, this would create quite an ugly gradient, but it nicely demonstrates how to
create gradients with color stops and custom positions.

More Options for Radial Gradients

Prior to the defined color stops in a radial gradient, we have the option to include
a size, shape, position, and direction for the radial gradient. There are numerous

options, so we won’t cover them in detail here, but let’s look at an example:

Getting Fancy

.example {

width: 300px;

height: 300px;

background-image: radial-gradient(circle 200px at top left,
= red, pink);

}

A gradient with those specifications would look something like Figure 5.13.

Figure 5.13. A radial gradient with a custom shape, size, and position

Compare what you see in Figure 5.13 with the code in the previous code block. In
the code, we defined the shape of the gradient as “circle” and sized it at 200px.
We also specified that it should be placed in the top-left corner of the element.
Figure 5.13 shows the circular area of the gradient with its center in the top left of
the element.

As mentioned, we won’t cover all the details for the radial gradient syntax here.
Just recognize that for both linear and radial gradients, we have the ability to include
some of these options prior to the defining of the color stops. Basically, the browser
will look at everything that appears before the first comma and try to interpret it as
a color. If it’s not a valid color (hex, RGB, etc.), then it will try to interpret it as a

direction (for linear gradients), or a direction, position, size, etc. (for radial gradients).

For a more detailed discussion of linear and radial gradient syntax, you can check

out any of the following articles:

145

146

Jump Start CSS

"CSS3 Radial Gradient Syntax Breakdown" on Impressive Webs>
"CSS3 Linear Gradient Syntax Breakdown" on Impressive Webs®
"Using Unprefixed CSS3 Gradients in Modern Browsers" on SitePoint’

"Unprefixed CSS3 Gradients in IE10" on the IEBlog®

%\ A Word on Gradient Syntax
- Y

The syntax for both linear and radial gradients has changed quite a bit over the
years, and it’s now quite complicated to get gradients working in all supporting
browsers.

The resources linked at the end of the gradients section in this chapter describe
both old and new versions of the gradient syntax. You can also find generators
online that use older syntaxes. So if you're having trouble with the code for
gradients, then know that you’re not alone.

If you want to avoid all these headaches, you can stick to using only the new
standard syntax, with no vendor prefixed lines, and provide image-based or single
color fallbacks for non-supporting browsers.

Keyframe Animations

In the past, complex animations on web pages have been achieved using video,
Adobe Flash, or JavaScript. In recent years, the CSS specification has added key-
frame-based animations using pure CSS. A keyframe animation is the final touch
we’re going to add to RecipeFinder, and then the project will be complete.

What we’re going to add to RecipeFinder is just a simple animation to make the
RecipeFinder logo fly in from the left part of the screen and spin into place. Let’s
look at the code we’re going to use, first of all on the .logo element:

3 http://www.impressivewebs.com/css3-radial-gradient-syntax/

4 http://www.impressivewebs.com/css3-linear-gradient-syntax/

> http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/

® http://blogs.msdn.com/b/ie/archive/2012/06/25/unprefixed-css3-gradients-in-ie10.aspx

http://www.impressivewebs.com/css3-radial-gradient-syntax/
http://www.impressivewebs.com/css3-linear-gradient-syntax/
http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/
http://blogs.msdn.com/b/ie/archive/2012/06/25/unprefixed-css3-gradients-in-ie10.aspx

.logo {
float: left;
margin-left: 145px;
margin-top: -34px;
position: relative;
top: 34px;

Getting Fancy

transform: translateX(-800%);
animation: logomove 2s ease-out 1s 1 normal forwards;

Here we've added two new lines to the .1logo rule set. First, we’re using a trans-

lateX() transform to move the logo element off the page. We use a negative percent-

age value to achieve this.

The next line is a new property—the animation property, which is a shorthand

property. Let’s look at what properties this shorthand represents:

animation-name

animation-duration

animation-timing-function

animation-delay

In our example, we’ve defined the animation
name as logomove. This property accepts a custom
name of our choosing. This name will be used

again later in the animation keyframes code.

This is the amount of time we want the animation
to take, from beginning to end, for each time that
the animation runs. As with the duration on a
transition, this takes a time value in seconds or
milliseconds.

This is exactly the same as the timing functions
for transitions, including ease, ease-out, linear,
and so on. We’re using ease-out in this anima-

tion.

The delay, which is another time value in seconds
or milliseconds, tells the browser how long to
wait before the first iteration of the animation. In
order to have a delay, we must first define a dur-
ation. So, the second time value that’s seen will
always represent delay, whereas the first will al-

ways represent duration. This animation includes

147

148 Jump Start CSS

animation-iteration-count

animation-direction

animation-fill-mode

a small one-second delay to account for the time
it might take for the page to finish loading.

This is the number of times we want the anima-
tion to play. The default is 1, and we’ve defined
it explicitly in our example, even though we
didn't have to.

The animation-direction property defines whether
we want the animation to play forwards or back-
wards. We’ve chosen normal—the default value,
which means it will only play forwards. You can
also define it with a value of reverse (to play it
backwards), alternate (which alternates forwards
then backwards each time the animation plays),
and alternate-reverse (which starts playing it
backwards on the first iteration, then alternates
from there).

The fill mode for the animation can be forwards,
backwards, both, or none (the default). This tells
the browser what styles to apply to the element
after the animation completes. With a value of
none or backwards, for example, our logo would
fly in from the left, then, after it finishes, disap-
pear to get back to where it started. We want it to
finish with the styles that end the animation, so
we define it as forwards.

Knowing all these details, we can choose to write our animation styles using

longhand, like this:

.1logo {

animation-name: logomove;

animation-duration:

animation-timing-function:
animation-delay: 1s;
animation-iteration-count:

ease-out;

-

Getting Fancy

animation-direction: normal;
animation-fill-mode: forwards;

}

But as is the case with many CSS features, the shorthand is much easier to maintain
because it uses less code, so we’ll use that. While learning CSS it can be useful to
use longhand for many properties, just to aid familiarity with each property indi-

vidually. But eventually, it’s almost always more practical to use the shorthand.

If we put that code into our CSS and refresh the page, we won'’t see anything happen.
This is because we haven’t yet defined any actual keyframes to accompany the an-
imation property. Let’s do that now.

@keyframes logomove {

0% {

transform: translateX(-800%) rotate(0);
}
100% {

transform: translateX(0) rotate(-360deg);
}

As shown here, keyframes are defined using the @keyframes at-rule. We learned
about at-rules in Chapter 1. Notice, however, that this at-rule is a little different.

Here are some points to help you understand this syntax:

The @keyframes part is followed immediately by the custom animation name

that we chose and included in the animation property.
There is one set of curly braces that wraps the entire set of keyframes.

Each keyframe block has a selector with another set of curly braces for each
keyframe.

Each keyframe selector is defined using a percentage.

149

150

Jump Start CSS

A single keyframe represents how the element will look at that point in the anima-
tion. All the in-between keyframes that aren't defined are where the animations
take place. So between keyframes the styles will transition, or animate, until they
reach their state in later keyframes, using the duration we defined in the animation
property to determine how long each phase of the animation takes.

The first and last keyframes are always 0% and 100% respectively, and they can
be alternatively written as from and to respectively. If we don’t include 0% and
100% (or from and to), then the browser will construct the first and last keyframes
automatically.

Additionally, you can specify multiple percentages into a single keyframe selector,
comma-separated, and even write the keyframes out of order. The browser will still
render the animation in the order that is specified by the percentage keyframe se-

lectors, regardless of the order in which they appear in the CSS.

With those keyframes in place, the logo will fly in from the left side of the screen
and rotate as it appears, then settle in to its regular spot in the layout, as shown
Figure 5.14.

RECIPES INGREDIE

Figure 5.14. The RecipeFinder logo animated using CSS keyframe animations

Getting Fancy

Graceful Degradation and Page Performance

A lot of the techniques we’ve discussed in this chapter are not supported in older
browsers or, as is the case with gradients, are supported in older browsers using a
different syntax.

If using any of these techniques, remember to test the pages without these features
present, to ensure everything looks acceptable. This is a concept referred to as
graceful degradation, meaning that the page will degrade gracefully, or without
major problems, even if certain features don’t work.

Another word of warning: many of these techniques, if used too liberally, can cause
web pages to become slow and sluggish. For example, it may not be a good choice
to layer multiple gradients on a web page's background. Similarly, too many anim-

ations can not only annoy users, but may also make your page slower than usual.

So use these techniques sparingly, and don't be afraid to resort to images if a CSS
technique is causing the page to become too slow.

Other Cutting-edge Features

Since this is a short book, we can’t possibly include every fancy new CSS technique,
so we chose only the ones that have good browser support and that might be most
practical.

Some other features that are worth looking into include:

multiple columns

values defined using calc()
3D transforms

CSS filters

CSS variables

You can get a basic overview and links to many new CSS features by checking out
this page at Can I use...” or GSS3 Click Chart.?

7 http://caniuse.com/#cats=CSS
8 http://css3clickchart.com/

151

http://caniuse.com/#cats=CSS
http://css3clickchart.com/

152

Jump Start CSS

Making RecipeFinder Responsive

In Chapter 2, we touched on the concept of Responsive Web Design (RWD), and the
use of media queries to achieve it. To close out this chapter, we're going to add
some media queries to RecipeFinder to make it viewable on any size monitor, device,
or screen. We're also going to change many of the pixel-based units in our existing
CSS to use percentages instead.

With these new styles in place, the layout will adjust depending on whether the
user is visiting the website on a desktop computer, a tablet (like the iPad), or a
smartphone. In all cases, those visiting RecipeFinder will have access to the exact
same information, but with an appropriate layout for each.

Before getting started, it's worth noting that we're going to run through all these
changes and additions pretty quickly. This isn’t a book on RWD, so we don’t have
the space to consider this topic in great detail. For a full discussion of RWD, check

out Jump Start Responsive Web Design, also published by SitePoint.’

min- and max- Dimensions

There are four new CSS properties that we haven’t discussed yet, and which often
come in handy in flexible, responsive layouts. They are min-width, min-height,
max-width, and max-height.

These work very similarly to the width and height properties except, instead of
declaring the width or height explicitly, they set boundaries for them. For example,
the first thing we’re going to change in our styles is the width value declared for
the .center-global elements:

.center-global {
max-width: 1020px;
margin: 0 auto;

}

Now, the width of .center-global will still be 1020 pixels, but when the browser
window or device size is smaller, it will shrink to fit. Thus, it doesn’t have a set
width; it can be any width but it cannot be more than 1020 pixels.

o http://www.sitepoint.com/books/responsive1/

http://www.sitepoint.com/books/responsive1/

Getting Fancy

The other min- and max- properties work similarly. We’ll use a few others in this
section, and they'll often prove to be useful in responsive layouts.

Converting Pixels to Percentages

The next step is to convert all of our horizontal layout-based pixel values to percent-
ages. By “horizontal”, I'm referring to elements like left and right margins and
padding, widths, and right and left positioning. The percentages we're going to re-
place them with will be percentage equivalents for the existing values. This means
the layout will not change for standard, wide-screen desktop users.

Percentages in CSS are always relative to something. In the case of widths and left
and right margins, these values are relative to the parent element’s width. So if you
have an element that is 100 pixels wide, and you add 10% of left padding to a child

element, that 10% will compute to 10 pixels.

Let’s begin with our . logo element, which is a child element of one of our .center-
global elements (in this case, the one inside <header>):

.logo {
float: left;
margin-left: 14.2156862745098%;
margin-top: -34px;
position: relative;
top: 34px;
transform: translateX(-800%) ;
animation: logomove 2s ease-out 1s 1 normal forwards;

Here we’ve changed the value for the margin-left property from 145px to a percentage
value. This percentage is arrived at using the following formula:

target value / context * 100

In the case of the logo’s left margin, the target value is 145 pixels. This was the
amount of left margin we had on the element to begin with. We then divide that
number by the parent element’s width (the “context”). The parent element, as just
mentioned, is 1020 pixels when it’s at its widest. That calculation gives us a value
0f 0.142156862745098. The last thing we do is multiply this number by 100 (which

153

154 Jump Start CSS

moves the decimal place over two places), giving us our final desired percent-
age—which in this case is about 14.22%.

1 @1 Too Many Decimal Places?

You’ll notice the decimal-based percentage values we’re using are specified using
an inordinate number of decimal places. There has been some discussion as to
whether this many decimal places is necessary. As it stands, it's probably only
necessary to include about three decimal places. But things could change in the
future, and browsers may require more decimal places to ensure higher-precision
results. Also, some people have noted slight changes in layout when removing
decimal places. It's likely, however, that the only real drawback to using this many
decimal places is the fact that it makes the CSS less readable at a glance. But we’ll
put up with this for the purpose of ensuring that our layouts are as future-proof
as possible.

Let’s continue changing pixel values to percentages. First, the right margin on the
<nav> element, which was 177px:

nav {
float: right;
margin-right: 17.35294117647059%;
padding-top: 20px;

}

Next, the width and right values for the .promo-desc element:

.promo-desc {
position: absolute;
bottom: 93px;
right: 7.35294117647059%;
width: 30.98039215686275%;
text-align: center;

The width value for the promo button (which is relative to the width of the . promo-
desc element):

.promo-btn {
display: inline-block;
width: 65.82278481012658%;

Getting Fancy

padding: 13px O;

background-color: #6c0733;

background-image: linear-gradient (#87053e, #560329);
box-shadow: rgba(0, 0, 0, .25) O 7px 2px O;
font-size: 20px;

color: #fefefe;

transition: transform .5s ease-out;

We won’t change the width of the other button (.more-btn). We’ll leave that at 280
pixels, which works fine since it doesn’t have anything beside it.

Next, we’ll change the width and padding values on the .latest element:

.latest {
width: 62.74509803921569%;
float: left;

padding: 0 3.92156862745098% 0 3.92156862745098%;
background: url(../images/bg-column.png) no-repeat top right;

... and so on. As long as we know the width of the parent element, then we can use
the formula described earlier to get the correct percentage value. In some cases, we
may have to account for inner horizontal padding when using percentages on nested
child elements, but in most cases the calculation is pretty straightforward.

Using percentage values like this will help the layout adjust naturally when the
elements are displayed on a smaller screen. For the remainder of our styles, go
through and change all horizontal-based values (the widths, left padding, right
padding, and any horizontal positioning using the left or right properties), from
pixels to percentages, using the formula we discussed. After that, head on to the
remainder of this chapter.

Fixing the Size of Images

Another thing we want to correct in our layout is the way the images look when
the user is visiting the page with a smaller browser window or device. First, let’s
deal with the big promo image.

Let’s add a line to our .promo styles:

155

156 Jump Start CSS

.promo {
position: relative;
z-index: 5;
padding-bottom: 8px;
box-shadow: rgba(0, 0, 0, .25) O 3px 2px 0;
background-image: linear-gradient(#4e0324, #4e0324 97%, #851f49);
overflow: hidden;

Here we’ve added the overflow property with a value of hidden. This is going to
ensure that when the . promo element gets smaller, the big promo image that’s inside
it will not overflow the boundaries of .promo, but instead, any excess parts of the
image will hide from view.

Then we’ll add a new rule set that targets our promo image:

.promo img {
width: auto;
height: auto;

}

Here we're setting the width and height of the image to a value of auto to ensure
the CSS overrides any dimensions set in the HTML using width and height attributes.
If we didn’t define a width and height in the HTML, then these styles wouldn’t be
necessary.

Next, we’ll deal with the images inside the .media elements. Let’s add three lines

to the styles for those, in addition to the percentage value for the right margin:

.media img {
float: left;
margin-right: 4.6875%;
max-width: 241px;
width: 100%;
height: auto;
border: solid 9px #ede0d5;
box-shadow: rgba(0, 0, 0, .25) 2px 2px 2px 0;

Notice we’ve added a max-width value of 241 pixels, combined with a width of
100%. This ensures that the image will fill 100% of its parent block container (the

Getting Fancy

.media element), but will not exceed 241 pixels. So when the browser width gets
fairly small, the images will become smaller than 241 pixels, if necessary. We’ve
also set the height to auto, as we did with the big promo image, which helps the
height stay proportional to the width.

Adding Media Queries

In addition to percentages and max/min widths, to get a fully responsive website,
we’ll also need to add some media queries. We're going to use them to target four
different browser widths. Each of these media queries target what are often referred

to as "breakpoints™:

@media (max-width: 930px) { }
@media (max-width: 730px) { }
@media (max-width: 480px) { }
@media (max-width: 340px) { }

Inside of the curly braces for each of these media queries, we’re going to add
whatever selectors and declaration blocks we need to make the layout adjust to the

specified browser width.

Adding the Viewport Meta Tag

For every responsive design, you'll want to add the following HTML tag to the

<head> section of your website:

<meta name="viewport" content="width=device-width,
= jnitial-scale=1.0">

Without this tag, the website will appear at normal width, but scaled down to fit
the screen. This might not be desirable, so include this tag to ensure the media
queries are working as expected. For a full explanation of the viewport meta tag,
see the Mozilla developer site.'°

As mentioned, since this is not a full discussion of RWD, we don’t have the space
to describe in detail all the layout changes we’ll be making inside our media queries,
but here is a rundown of what we’ll do for each:

10 https://developer.mozilla.org/en-US/docs/Mobile/Viewport_meta_tag

157

https://developer.mozilla.org/en-US/docs/Mobile/Viewport_meta_tag

158

Jump Start CSS

At 930 pixels

At 730 pixels

At 480 pixels

At 340 pixels

Center the logo and drop the main navigation links below
the logo.

Disable the logo animation.

Change the two-column layout in the main content area to a
single column, dropping the sidebar below the “Latest Re-

cipes” section.

Change the width of each of the two columns to fill the
available space (using width: auto) and remove the back-

ground on the left column.

Change the 3-column footer to be a single column, again
changing the three individual footer sections to width: auto.

Change some margin, padding, positioning, and font values

for various elements.

Add a text shadow to the promo text so it's more readable
when overlaying a light-colored promo image like the one

we're using.

Shrink the height of the promo image and realign the promo
text and button.

Add aborder below each .media element to clearly delineate
each entry in the “Latest Recipes” section.

Change the padding on the main navigation items.

Remove the float from the .media images so the accompany-

ing text drops below each image.

Make the main navigation links block elements (instead of
inline-block), so they align vertically instead of horizontally.

The values chosen for these media queries (930, 730, 480, and 340) are not arbitrary,

nor do they represent specific devices or commonly-used browser window sizes.

These values are points at which the layout was breaking, and thus needed adjust-

Getting Fancy

ments. These break points were discovered by resizing the browser window until
the layout no longer looked readable or usable.

For each project, find out where the primary break points are, and then work from

there, adding styles to the media queries after some trial and error.

To fiddle with these styles, view the CSS for the final version of RecipeFinder or
download the code from the code archive for this book.

We can test RecipeFinder on a number of different devices to see if it works, or we
can use an online tool that displays a URL in various widths, mimicking what
happens in various devices sizes. One such tool is located at http://mattkers-
ley.com/responsive/. Figure 5.15 shows us how RecipeFinder looks after adding
our responsive styles.

240 320 480

\ i W

RECI-® RECI-SE

E [
FINDER i FINDER

RECIPES RECIPES
INGREDIENTS INGREDIENTS
CONTRIBUTORS CONTRIBUTORS

INIPUR

cook it now!

cookitnow! LATEST RECIPES

Responsive Web Design Testing Tool
Figure 5.15. RecipeFinder displayed using an online responsive design testing tool

Of course, a tool like this is only a guide and will not look and function the same
as a mobile device. It's much preferable to test your projects on as many real devices
as possible, but if budgets are small and the necessary hardware is hard to come by,
these types of online tools are better than nothing.

159

http://mattkersley.com/responsive/
http://mattkersley.com/responsive/

160

Jump Start CSS

Summary

At last, RecipeFinder is complete! We’ve looked at a number of cool techniques
that can help add some life to our pages. With CSS gradients, animations, and
transitions, we no longer have to resort to large unwieldy scripts and other
troublesome techniques.

We’ve also scratched the surface of flexible layouts by making RecipeFinder respons-
ive to different browser windows and device widths.

In the final chapter, you'll learn all about ways to debug and solve problems in code
as quickly and as efficiently as possible.

Chapter

Debugging Your CSS

The RecipeFinder project is complete and you now have a good, rounded under-
standing of what CSS is capable of, but there are some areas we haven’t yet covered

that are well worth exploring.

In comparison to other programming languages, CSS is fairly simple, but it's not
without its quirks and inconsistencies. Firstly, as we've already touched on, not all
CSS features are supported in all browsers. Also, even where CSS code is supported
by all browsers, it's often implemented differently in one or several of them. This
is especially true when dealing with differences between older versions of Internet
Explorer and the other browsers (Chrome, Firefox, Safari, and Opera), or when using

very new CSS properties.

This chapter is not going to cover the specific browser compatibility problems that
are bound to arise at one time or another. Instead, we're going to look at how to
avoid and debug virtually all CSS problems, regardless of whether they are browser
issues, coding errors, or something else. These methods are universal, and should
help with many of the puzzling situations that you'll come across while writing
CSS.

162

Jump Start CSS

Understand How CSS “Errors” Work

Write code that isn't valid, in many programming languages, and the result will be
a syntax error warning, plus the program running the code will stumble at the error
and won't run beyond that point. And so, until the error in the code is corrected,
the program is effectively ruined.

CSS is different. For example, if we were to go to the top of the RecipeFinder
stylesheet and add a bunch of random characters, then refresh the page in the
browser, we’d notice only one change on the page: The box-sizing property that
we added to the top of our stylesheet would no longer have any effect, causing,
among other things, the sidebar to drop out of place.

Here’s how the top of our stylesheet might look after adding some random characters
that aren't valid CSS:

asdfjjlgkljd

*A{

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}
.cf:before,
.cf:after {
content: " "; /* 1 */
display: table; /* 2 */
}

Here's what's happening. Instead of disabling the entire stylesheet, the random
characters disable only the first rule set, which is the one using box-sizing. The
reason only this first rule set is disabled is because the browser is viewing that first
line with the random characters as a selector. So, what it does is read everything
before the first curly brace, attempting to identify the elements you’re trying to target.
Since it can't identify those characters as a valid selector or selector group—or as

anything else that’s valid in CSS—it proceeds to ignore what’s in that first declaration
block.

Now look at this:

Debugging Your CSS

asdfjjlgkljd {}

*{
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}
.cf:before,
.cf:after {
content: " "; /* 1 */
display: table; /* 2 */
}

Here again we've inserted some random characters, but with one difference: we’ve
added a pair of curly braces after the characters. In this example, the random char-
acters will have no effect because the browser will ignore only what’s inside the
first set of curly braces (the empty ones). This is because the browser thinks the
random characters are a CSS selector, so it reads the curly braces in that context.

Let’s try something similar inside of a valid set of curly braces further down in our
stylesheet. We’ll remove the random characters at the top and this time we’ll add

a random group of characters inside the .center-global declaration block:

.center-global {
asdfasdf
max-width: 1020px;
margin: 0 auto;

No prizes for guessing that this will cause only the max-width declaration to be
disabled. As there's no semicolon at the end of the line of random characters, the
browser views it as part of the second line, making it produce an internal error and
ignoring the max-width declaration. But the rest of the CSS works just fine, because
it appears after a valid semicolon at the end of the disabled line.

So what do we take from this? The basic principle to keep in mind is that the browser
will ignore any CSS it fails to understand but will continue to try to read the rest.

Of course, there is a possibility, depending on which random characters are included,
that they could disable the whole stylesheet. For example, a single opening curly

163

164

Jump Start CSS

brace at the top of the stylesheet would nullify the whole thing. The key is to under-
stand that the browser is trying to read what’s in between the curly braces (for de-
claration blocks), what’s before each curly brace (for selectors) and what’s before
and after the colons and semicolons (for properties and values).

CSS Comments

Every programming language lets you add notes and other hints that help you un-
derstand what’s going on. Not all CSS is as understandable at first glance as, say,
something like font-size: 20px, so some sections of code can benefit from adding
notes or other hints in their vicinity. We introduced the syntax for CSS comments
in Chapter 2. You might remember this bit of code from our clearfix:

.cf {
zoom: 1; / for IE6 and IE7 */

}

The comment in this line of code is the part that says “for IE6 and IE7,” and is
identifiable as such by the preceding backslash followed by an asterisk, and the
asterisk and backslash at the end.

We can add as many of these to our stylesheet as we like, and it’s good practice to
use CSS comments to help identify parts of any stylesheet that might be difficult
to understand from a cursory glance. By using CSS comments to make our stylesheets

more readable, the CSS will be easier to maintain in the future.

A CSS comment can span multiple lines if required. Everything that’s in between
the opening and closing comment characters will be ignored by the browser, and
so will the comment characters themselves. So often you’ll see something like this
in a CSS file:

/***************************

khkkkhkkkhkhkkhhkhkkhkkhhhkkhkhkkhkkkhhkk*x

These are the styles for
the header section

khkkkhkkkhkhkkhhkhkkhkkhhhkkhkhhkkhhkkkhhkk*x

***************************/

Debugging Your CSS 165

Notice that, in this example, not only have I included the opening and closing as-
terisk and backslash characters, but I’ve also added some extra asterisk characters
spanning multiple lines. This makes the comment easy to find when scrolling
through the CSS file. Add section headings like this in CSS to help organize it into
readable, related chunks of code.

Unfortunately, CSS doesn’t have an easy way to present a valid, single-line comment
that uses just an opening comment character combo. For example, in JavaScript,

you can comment out a single line of code like this:

// This is a JavaScript comment

This is helpful in JavaScript because it makes it easy to nullify an entire line of
code, or add a helpful comment, with just two characters (the backslashes). But in
CSS it's necessary to use both the opening and closing characters to specify the
boundaries of any comments.

For quick, temporary fixes, however, it's acceptable to create a sort of faux CSS
comment by applying the principle we discussed in the previous section on CSS
errors. Let’s say we have the following CSS:

.center-global {
max-width: 1020px;
margin: 0 auto;

}

And let's say we want to temporarily remove the first line (the max-width declara-
tion). We could do this:

.center-global {
/* max-width: 1020px; */
margin: 0 auto;

}

This works fine, but a quicker way to achieve the same result is simply to put some

random characters at the beginning of the line, like so:

166

Jump Start CSS

.center-global {
AAAAmax-width: 1020px;
margin: 0 auto;

}

It's quick and effective, but don't ever leave your CSS like this on a live website. It's
not valid CSS and should only be used in development for doing quick debugging.

Validating CSS

When encountering a problem in your CSS, it may help to ensure that your code is
as valid as possible. The World Wide Web Consortium (WSC]1 is a standards body
that decides what is and isn’t valid in CSS. W3C produce an online validation system
that lists all the errors it finds in submitted CSS. This is a good way to ensure that
any problem isn't due to a coding error. The CSS validator? enables users to validate
their CSS using three options: by a URL (which is a link to the website in question),
by uploading a CSS file, or by copying and pasting CSS into a text box. Use the
latter option for any website you’re working on that’s only available on your local
computer.

Now that we’re done with RecipeFinder, we can use CSS Validator to see if there

are any errors in our code. Figure 6.1 shows the result we achieve.

! http://www.w3.org/
2 http://jigsaw.w3.org/css-validator/

http://www.w3.org/
http://jigsaw.w3.org/css-validator/

Debugging Your CSS

The W3C CSS Validation Service
W3C CSS Validator results for TextArea (C55 level 3)

W3C CSS Validator results for TextArea (CSS level 3)

Sorry! We found the following errors (7)

URI : TextArea

22 «f Parse Error "zoom: 1;

23 «f Parse Error}
112 Sorry, the at-rule @-webkit-keyframes is not implemented.
126 Sorry, the at-rule @-moz-keyframes is not implemented.
140 Sarry, the at-rule @-o-keyframes is naot implemented.
180 Nav L Parse Error *display: inline;

[
185 Parse Error [0 30px; font-size: 20px; } nav ul li-last-child]

Figure 6.1. Running RecipeFinder through the validator

In addition to the seven errors that the validator finds, there are also 51 warnings.

None of these errors or warnings has any visible effect on our page, no matter which
browser we use, and with the exception of two examples, they're a result of using

vendor prefixes like -webkit-, -moz-, and -ms-. This is fine. We don’t need to worry
about the validity of our CSS with these types of warnings.

For the most part, the validator is a guide. Don’t expect to get perfect results. In fact,
receive perfect results (no errors, no warnings), and the likelihood is that you're
doing something out of the ordinary, such as not using any CSS features that have
been introduced in the past few years. Also, remember to use the validator

throughout the coding process, and not just at the end.

What about the other two CSS errors that aren’t related to vendor prefixes? Those
two errors are due to the fact that two of our CSS declarations begin with an asterisk

167

168

Jump Start CSS

character. Those asterisked declarations are CSS hacks. The first example is part of
our clearfix code and the other helps us to align our navigation elements. Let’s take
a moment to consider these types of hacks.

CSS Hacks

As previously mentioned, this final chapter is not an extensive discussion of browser-
specific issues, but it's important to be familiar with the concept of CSS hacks, as
they've been valuable tools in many a CSS developer's box of tricks over the years.

A CSS hack is basically a line or block of code in a CSS file that only a specific
browser, or browser version, understands. So if we run into a problem that only
happens in one browser, we may have the option to use a CSS hack to target only

that browser in order to fix the problem.

But a word of caution: A CSS hack should not be used unless all other possible
valid solutions have been tried and exhausted. The rest of this chapter outlines
some principles and techniques to help solve problems in CSS without the use of
hacks. But as a last resort, for a list of possible CSS hacks, or to learn different ways
to target older versions of Internet Explorer (which is the browser that's most fre-
quently targeted by hacks), here are three articles to bookmark and refer to:

"Conditional Stylesheets vs CSS Hacks? Answer: Neither!" by Paul Irish®
"Browser [-specific] CSS Hacks" by Paul Irish?

"How Do I Target IE7 or IE8 Using CSS Hacks?" by Louis Lazaris’

Reduced Test Cases

Reduced test cases are invaluable for debugging particularly knotty problems in
CSS. A reduced test case is a bare-bones version that displays the same behaviour

as the problem in question.

For example, perhaps there's an issue in one of several columns in a really complic-
ated layout (where each column contains all sorts of content, such as images, text,

3 http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
4 http://paulirish.com/2009/browser-specific-css-hacks/
> http://www.impressivewebs.com/ie7-ie8-css-hacks/

http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://paulirish.com/2009/browser-specific-css-hacks/
http://www.impressivewebs.com/ie7-ie8-css-hacks/

Debugging Your CSS

headings, and so on). To figure out what’s wrong, we can try to reduce the content

in that column and see if the problem persists.

Maybe we have a two-column layout and the problem area is in column two. We
can try removing all the CSS or all the HTML inside column two, and leave only
the CSS we’re having the problem with, to see if that fixes it. If it doesn’t, then we
can try removing the HTML and/or CSS in column one, and see if that helps.

CSS comments will often come in handy in a case like that, so instead of deleting
CSS, simply wrap the unwanted CSS in comments, removing it only temporarily,

then adding those styles again once the issue has been chased down.

By systematically removing as much as possible while leaving only the problem
HTML and/or CSS in place, it's easier to identify what causes the problem to go
away. From here it's possible to narrow down even further by reducing single de-
claration blocks and, if necessary, by reducing single declarations.

Get Help Online

Even experienced developers cannot solve every problem immediately and without
help. To resolve CSS issues, first remember that Google, as they say, is your best
friend. Whatever problem you’re having, it’s almost certain that another user has
had the same issue.

Type the problem into Google and see what results come back. Try entering the
problem in the form of a question, or as a statement. For example: “How do I center
multiple divs?” or “Right column falls below left column when using floats.”

One website that'll almost certainly come up in many search results when looking
for solutions to CSS problems is Stack Overflow.® Stack Overflow is a question-and-
answer website frequented by thousands of experienced developers.

Another excellent source for finding answers to problems you’re encountering in
your GSS is the CSS section of the SitePoint forums.’ There are thousands of archived
forum posts to mine for information, and its membership includes a number of ex-

perienced CSS developers who are more than happy to help with problems.

® http://stackoverflow.com/
7 http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

169

http://stackoverflow.com/
http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

170

Jump Start CSS

Use Online Coding Tools

We've already talked about debugging problems by systematically reducing the issue
to a bare minimum of code. In order to create real, live, editable, reduced test cases,
there are a number of online tools well worth taking advantage of. A few of the most
useful are JS Bin,8 CodePen,9 and jsFiddle.10

All of these sites make it possible to write code in one panel and view the result in
another, on the same screen. This is great for creating reduced test cases, and then
messing around with the code until the solution reveals itself. Conveniently, most
of these tools update the code automatically as you type, too, so there’s no need to
keep hitting “refresh.”

Ideal for experimenting with new or unfamiliar coding features, these tools are in-
valuable.

Test Your Layout Early in Multiple Browsers

Most developers do almost all their coding on a single project in one browser. Many
choose Firefox or Chrome, both of which are good choices because of the extra tools
they offer for development (see the next section). Be sure to check your layout in

multiple browsers, soon after the basic framework is in place, and prior to adding
lots of extra shadows, gradients, backgrounds, and so forth. It's much easier to fix

problems early on, when you haven't yet committed to a lot of code. It might even
be worth checking your CSS in multiple browsers at regular intervals. For example,
check after finishing the header, then check again after completing one column in

the main content area, and again after the next column, and so on.

If you know that many of your website visitors will be viewing the site in a particu-
larly old browser (like Internet Explorer 7 or 8, or Firefox 3.5), then it’s even more
vital to check for layout differences early. Layout problems are much more difficult
to correct in older browsers after having committed to a lot of HTML and CSS, so
checking the results in those browsers very early in development, and often there-
after, will ensure you minimize problems.

8 http://jsbin.com/
o http://codepen.io/
10 hittp://jsfiddle.net/

http://jsbin.com/
http://codepen.io/
http://jsfiddle.net/

Debugging Your CSS

Fortunately, layout issues are not as much of a problem with newer browsers like
IE9 and IE10, and later versions of Firefox, Chrome, Safari, and Opera. But do check
early to reduce the risk of having to rewrite a lot of CSS in later stages. Or, worse
yet, having to rely on browser hacks to get the results you want.

For more info on principles and work flow that can help your CSS be as bug-free

as possible, see the following two articles:
"The Principles of Cross-browser CSS Coding”1 !

"Cross-browser CSS Development Workflow"'?

Use Developer Tools and a Good Text Editor

Here are two final tips that will help you reduce overall development time. The
catch is that they require the use of some fairly complex tools.

The first tip is to know how to use developer tools in your browser of choice, and
learn to use them to debug issues. If you use Google Chrome as a primary develop-
ment browser, you’ll have a set of developer tools that come pre-installed with the
browser, seen in Figure 6.2. To open those tools, hit the F12 key, enter the alternate
keyboard combination of GTRL-SHIFT-i, or right-click (Command-Click on a Mac)
anywhere on a web page and select Inspect element from the context menu.

" http://coding.smashingmagazine.com/2010/06/07/the-principles-of-cross-browser-css-coding/
12 http://www.impressivewebs.com/cross-browser-css-workflow/

171

http://coding.smashingmagazine.com/2010/06/07/the-principles-of-cross-browser-css-coding/
http://www.impressivewebs.com/cross-browser-css-workflow/

172 Jump Start CSS

INGREDIENTS CONTRIBUTORS

SWEET AND SOUR

ZUCCHINI PUREE

cook it now!

| Elements | Resources MNetwork Sources Timeline

)

¥<html lang="en" class="no-js"»
» <head>..</head>

» <headers.</header>

»<div clas ome center-global">.</div>
<l-- .pro >
»<div class="main center-global cf">.</div>
<l-- .main -->
» <footers.</footer>
</body>
</html>

O, > Q hmnojs

» Computed Style [[]Show inherited +
¥ Styles + g 4
element.style {

H
listched CSS Rules
body { styles.css:60
background: » [[#cabSa3 url(../images/bg-main.gif) repeat repeat @ =
2

font-family: Lato, Arial, Helvetica, sans-serif

T

body { normalize.css:74
margin:re;

b

= styles.css:1l

=dhet

box-sizing: border-box;
b
Inherited from htmlno-js

html { normalize.css:fd T

Figure 6.2. Chrome Developer Tools

Apple’s Safari browser also comes installed with developer tools, as do Internet

Explorer and Opera. For Firefox, you can download two add-ons to help with devel-

opment: the Web Developer toolbar' 3 and Firebug.]4

The Web Developer toolbar appears in Firefox below the address bar, and includes

a number of options, including many CSS-related features. The Firebug add-on,

seen in Figure 6.3, works much like Chrome’s developer tools, opening when you

hit F12 or when you right-click (Command-Click on a Mac) an element on the page

and choose Inspect Element with Firebug.

13 https://addons.mozilla.org/firefox/addon/web-developer/

14 http://getfirebug.com/

https://addons.mozilla.org/firefox/addon/web-developer/
http://getfirebug.com/

Debugging Your CSS

@ Dissble & Cookies- # €SS+ [] Forms- [Images @ Information- [F Miscellaneous= # Outlines ¢ Resizer ¥ Tools+ Bl View Source~ |1L| Options~ PAYN

I
RECI-OE RECIPES INGREDIENTS CONTRIBUTORS

FINDER

SWEET AND SOUR

ZUCCHINI PUREE

cook it now!

LATEST RECIPES MOST POPULAR

49/5 DELICIOUS BAKED GARLIC

- | BREAD
OKED | -

Q’T|§ p‘; tﬁmsole|HTMLV|(SS Script DOM Net Cookies YSlow (P |oEa

| Edit |+ imgloge < alogo-ink < divheader-inside < header - | Style v | Computed Layout DOM

|| bedy { styles.css (line 80)
background: url{"../images/bg-main.gif") repeatrepeat screll 0 0 $CABSRZ;
fons-family: Lato,Ririal Helvetica,sans-serif;

. =1
[<header>

[<div class="header-inside center-global

cfn> N

[<a ela: go-link” href="i"s

bedy { normalize.css (line 74)
margin: 07

1 styles.css (line 1)

e =" logan ale=rE
ing class="loge" alt="Recipefinder ea-bex-sizing: border-beis

logo™ sre="imzges/logo.png">

<nav>

1

« I~ i D

Figure 6.3. Firebug

Chrome's developer tools and Firefox’s Firebug add-on conveniently display all the
styles applied to the selected element, making it easy to change these on the fly
right there in the browser, inside the CSS panel. The changes are applied to the

page immediately and will remain until the page is refreshed.

This can be an excellent way to add small sections of code, and see the changes
take place instantly, saving you the trouble of having to go back and forth between
the text editor and browser, refreshing the page each time. And, as a bonus, after
writing some code, you can then select the section you’ve edited and paste it into
your real CSS file, knowing it will work as expected.

In Figure 6.4, you can see the live editing taking place, where an entire declaration
has been removed (the background on the <body> element), and another has been
edited (the margin value on the <body> element).

173

174 Jump Start CSS

w w“\\ ,/‘E *| Console | HTML ~ | €55 Script DOM Net Cookies YSlow L 288

< | Edit | body < htmino-js Style ~ | Computed Layout DOM

<IDOCTYFE htmls bedy | styles.css (line 60)
= <html class="no-is" lang="en">

¥ <head> font—family: Lato,Arisl,Helvetica,sans—serif;

e |B

body { normalize.css (line 74)

@ margin:

}

- styles.css (line 1)
-moz-box-sizing: border-box;

1

Figure 6.4. Editing in Firebug

In addition to learning how to use in-browser developer tools, the other tip is to
find a good text editor and become familiar with its many shortcuts and features.
This will boost your productivity and development speed. Some excellent and
popular choices include Sublime Text'® (PC or Mac, not free), Notepad++'® (PC
only, free), and Coda'’ (Mac only, not free).

There are others, too—some free, some not. In general, the text editors you have to
pay for are quite good and well worth the relatively small, one-time cost.

Most importantly, these editors have tons of excellent coding features designed for
front-end developers working primarily with HTML, CSS, and JavaScript. These
include auto-complete functionality for typing CSS properties and values, options
for different color schemes, enhanced search-and-replace functionality, and much
more. So do yourself a huge favour by installing one of these editors, and slowly
taking the time to learn about all its features.

In Figure 6.5, you'll see Sublime Text with a custom color scheme for syntax high-
lighting. You’ll notice that Sublime Text recognizes the float: left declaration
as typing begins, meaning all we have to do is hit the tab key and it will auto-com-
plete the declaration. It also adds the trailing semicolon automatically!

15 http://www.sublimetext.com/
16 http://notepad-plus-plus.org/
17 http://panic.com/coda/

http://www.sublimetext.com/
http://notepad-plus-plus.org/
http://panic.com/coda/

Debugging Your CSS

.media img {
float: 1;
margin-rfgaEs
max-width: 241px;
width: 100%;

height: auto;

border: solid 9px #ede@d5;
-webkit-box-shadow: rgha(e, @, e, .1
box-shadow: rgba(e, @, 8, .25) 2px

Figure 6.5. Editing in Sublime Text

This book, however, is far too short to describe the true power of these kinds of
applications. Try a good text editor out (even those that cost offer free trials), and
fiddle with the features to really understand how good they are. Don't have the time
for this? Try searching online for tutorials that describe the features of the text editor
you're considering. The bottom line is that learning CSS isn't complete without a
tool to do a lot of the heavy lifting for you. A good text editor will look after this,
and will allow you to focus on getting the job done as quickly and efficiently as
possible.

Summary

CSS debugging and problem solving is a way of life for many front-end developers.
Although it can be a headache at times, view every debugging session as a learning
experience that will make you a better developer in the future.

Learn to do many of the tricks mentioned in this chapter, and you’ll notice your
CSS skills will improve dramatically with every project. Debugging CSS can actually
be fun, especially when you understand why problems occur and start to apply the
most productive and future-proof techniques to solve them.

175

	Jump Start CSS
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to take your learning further?
	Acknowledgments

	An Introduction to CSS
	The Sample Project
	How are web pages built?
	What Is CSS?
	How do I include CSS in a web page?
	Using Inline Styles
	Using the <style> Element
	Using @import inside a <style> element
	The Best Way: Using the <link> Element

	Introducing CSS Selectors
	Universal Selector
	Element Type Selector
	ID Selector
	Class Selector
	Descendant Combinator
	Child Combinator
	General Sibling Combinator
	Adjacent Sibling Combinator
	Attribute Selector
	Pseudo-class
	Pseudo-element

	Using Multiple Selectors
	The Cascade and Specificity
	Always Use Standards Mode
	A Skeleton for Our Sample Website
	Summary

	Layout Techniques
	The Box Model
	Block versus Inline
	Shorthand versus Longhand CSS
	Float-based Layouts
	Clearing Floats
	Positioning in CSS
	Absolute and Relative Positioning

	What about Responsive Web Design?
	Using box-sizing for Intuitive Sizing
	Adding More Layout Styles
	Floating the “Latest Recipes” Images
	Layout Styles for the Header
	Laying out the Promo Photo
	Laying out the Footer
	Laying out the “Most Popular” Recipes
	What’s the future of CSS Layouts?
	Flexbox
	Other New Layout Features

	Summary

	Backgrounds, Borders, and More
	Backgrounds
	Borders
	Rounded Corners
	Values and Units
	Px Units
	Em Units
	Rem Units
	Percentages
	Integers
	Keywords
	Color Values

	Transparency
	The Opacity Property
	RGBA and HSLA Colors

	Opacity versus Color-based Transparency
	Other Values

	Adding Shadows to Elements
	Adding a Shadow to the Header
	Adding a Shadow below the Promo Image
	Adding Shadows to Small Images
	Adding Shadows to Buttons
	Adding the Divider Shadow

	What about text shadows?
	Summary

	Links, Text, and Custom Fonts
	Styling Links and Text
	Changing Link Color
	Using Custom Web Fonts
	Using @font-face
	Including the Different Font Files
	Generating the Font Files
	@font-face Review
	Using Our New Fonts on RecipeFinder
	Cleaning Things Up
	Styling the Footer Section
	The line-height Property

	Adding Styles to Text in the Sidebar
	Summary

	Getting Fancy
	Hover Effects
	Transitions
	Multiple Transitions on a Single Element

	Vendor Prefixes
	Transforms
	translate
	scale
	rotate
	skew
	Multiple Transforms on a Single Element

	Defining the Origin of a Transform
	Combining Transitions and Transforms
	Linear Gradients
	Positions for Color Stops
	Changing a Linear Gradient's Direction
	Adding Multiple Gradients on a Single Element

	Adding More Linear Gradients
	Radial Gradients
	More Options for Radial Gradients

	Keyframe Animations
	Graceful Degradation and Page Performance
	Other Cutting-edge Features
	Making RecipeFinder Responsive
	min- and max- Dimensions
	Converting Pixels to Percentages
	Fixing the Size of Images
	Adding Media Queries
	Adding the Viewport Meta Tag

	Summary

	Debugging Your CSS
	Understand How CSS “Errors” Work
	CSS Comments
	Validating CSS
	CSS Hacks
	Reduced Test Cases
	Get Help Online
	Use Online Coding Tools
	Test Your Layout Early in Multiple Browsers
	Use Developer Tools and a Good Text Editor
	Summary

