

Summary of Contents

Preface . xxi

1. Introducing HTML5 and CSS3 . 1

2. Markup, HTML5 Style . 13

3. More HTML5 Semantics . 39

4. HTML5 Forms . 63

5. HTML5 Video and Audio . 99

6. Introducing CSS3 . 129

7. CSS3 Gradients and Multiple Backgrounds . 157

8. CSS3 Transforms and Transitions . 185

9. Embedded Fonts and Multicolumn Layouts . 213

10. Flexbox and Media Queries . 241

11. Geolocation, Offline Web Apps, and Web Storage 265

12. Canvas, SVG, and Drag and Drop . 305

A. Modernizr . 353

B. WAI-ARIA . 359

C. Microdata . 363

HTML5 &
CSS3 FOR
THE REAL
WORLD

BY ALEXIS GOLDSTEIN
LOUIS LAZARIS
ESTELLE WEYL

HTML5 & CSS3 for the Real World
by Alexis Goldstein, Louis Lazaris, and Estelle Weyl

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Aurelio De Rosa

Printing History:

First Edition: May 2011

Second Edition: March 2015

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9874674-8-5 (print)

ISBN 978-0-9874674-9-2 (ebook)

Printed and bound in the United States of America

iv

About Alexis Goldstein

Alexis Goldstein first taught herself HTML while a high school student in the mid-1990s,

and went on to get her degree in Computer Science from Columbia University. She runs her

own software development and training company, aut faciam LLC. Before striking out on

her own, Alexis spent seven years in technology on Wall Street, where she worked in both

the cash equity and equity derivative spaces at three major firms, and learned to love daily

code reviews. She taught dozens of classes to hundreds of students as a teacher and co-organ-

izer of Girl Develop It, a group that conducts low-cost programming classes for women. You

can find Alexis at her website, http://alexisgo.com/.

About Louis Lazaris

Louis Lazaris is a freelance web designer and front-end developer based in Toronto, Canada

who has been involved in the web design industry since 2000, when table layouts and one-

pixel GIFs dominated the industry. In recent years he has transitioned to embrace web

standards while endeavoring to promote best practices that help both developers and their

clients reach practical goals for their projects. Louis is Managing Editor for SitePoint's

HTML/CSS content, blogs about front-end code on his website Impressive Webs

(http://www.impressivewebs.com/), and curates Web Tools Weekly

(http://webtoolsweekly.com/), a weekly newsletter focused on tools for front-end developers.

About Estelle Weyl

Estelle Weyl is a front-end engineer from San Francisco who has been developing standards-

based accessible websites since 1999. Estelle began playing with CSS3 when the iPhone was

released in 2007, and after eight years of web application development with CSS3 she knows

(almost) every CSS3 quirk, and has vast experience implementing components of HTML5.

She writes tutorials and detailed grids of CSS3 and HTML5 browser support at

(http://www.standardista.com/). Estelle’s passion is teaching web development, where you’ll

find her speaking on CSS3, HTML5, JavaScript, and mobile web development at conferences

around the USA and the world. You can find all her presentations at http://estelle.github.io,

and find her speaking engagements at http://lanyrd.com/estellevw.

About the Technical Editor

Aurelio De Rosa is a (full-stack) web and app developer with more than 5 years' experience

programming for the web using HTML, CSS, Sass, JavaScript, and PHP. He's an expert on

JavaScript and HTML5 APIs, but his interests include web security, accessibility, performance,

v

http://alexisgo.com/
http://www.impressivewebs.com/
http://webtoolsweekly.com/
http://www.standardista.com/
http://estelle.github.io
http://lanyrd.com/estellevw

and SEO. He's also a regular writer for several networks, speaker, and author of the books

jQuery in Action, third edition and Instant jQuery Selectors.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

vi

http://www.sitepoint.com/

To my mother, who always

encourages and believes in me.

And to my father, who taught me

so much about living up to my full

potential. I miss you every day.

To Cakes, the most brilliant

person I know. Thank you for

everything you do for me. I'm so

grateful for each and every day

with you.

—Alexis

To Melanie, the best cook in the

world.

And to my parents, for funding

the original course that got me

into this unique industry.

—Louis

To Amie, for putting up with me,

and to Spazzo and Puppers, for

snuggling with me as I worked

away.

—Estelle

Table of Contents

Preface . xxi

Who Should Read This Book . xxi

Conventions Used . xxii

Code Samples . xxii

Tips, Notes, and Warnings . xxiii

Supplementary Materials . xxiii

Acknowledgments . xxiv

Alexis Goldstein . xxiv

Louis Lazaris . xxiv

Estelle Weyl . xxv

Want to Take Your Learning Further? . xxv

Chapter 1 Introducing HTML5 and CSS3 1

What is HTML5? . 1

How did we get here? . 3

Would the real HTML5 please stand up? . 4

Why should I care about HTML5? . 5

What is CSS3? . 6

Why should I care about CSS3? . 7

What do we mean by “the Real World”? . 8

The Current Browser Market . 9

The Growing Mobile Market . 10

On to the Real Stuff . 11

Chapter 2 Markup, HTML5 Style 13

Introducing The HTML5 Herald . 13

A Basic HTML5 Template . 15

The Doctype . 16

The html Element . 17

The head Element . 17

Leveling the Playing Field . 18

The Rest Is History . 20

HTML5 FAQ . 21

Why do these changes still work in older browsers? 21

Shouldn’t all tags be closed? . 23

What about other XHTML-based syntax customs? 24

Defining the Page’s Structure . 25

The header Element . 26

The section Element . 27

The article Element . 28

The nav Element . 29

The aside Element . 31

The footer Element . 31

Structuring The HTML5 Herald . 32

The New main Element . 33

Continuing to Structure The Herald . 35

Wrapping Things Up . 38

Chapter 3 More HTML5 Semantics 39

A New Perspective on Content Types . 39

The Document Outline . 41

No More hgroup . 41

More New Elements . 43

The figure and figcaption Elements . 43

The mark Element . 44

The progress and meter Elements . 45

x

The time Element . 46

Changes to Existing Features . 48

The Word “Deprecated” is Deprecated . 48

Block Elements Inside Links . 49

Bold Text . 49

Italicized Text . 50

Big and Small Text . 51

A cite for Sore Eyes . 51

Description (not Definition) Lists . 52

Other New Elements and Features . 52

The details Element . 53

Customized Ordered Lists . 54

Scoped Styles . 54

The async Attribute for Scripts . 55

The picture element . 55

Other Notables . 56

The Future of Markup — Web Components? . 57

Validating HTML5 Documents . 58

Summary . 60

Chapter 4 HTML5 Forms . 63

Dependable Tools in Our Toolbox . 64

HTML5 Form Attributes . 65

The required Attribute . 66

The placeholder Attribute . 70

The pattern Attribute . 74

The disabled Attribute . 76

The readonly Attribute . 77

The multiple Attribute . 77

The form Attribute . 78

xi

The autocomplete Attribute . 78

The datalist Element and the list Attribute 79

The autofocus Attribute . 80

Input Types . 80

Search . 82

Email Addresses . 83

URLs . 85

Telephone Numbers . 86

Numbers . 86

Ranges . 87

Colors . 88

Dates and Times . 90

Additional New Form Controls in HTML5 . 93

The progress and meter Elements . 94

The output Element . 95

The keygen Element . 95

The contenteditable Attribute . 95

Changes to Existing Form Controls . 96

The form Element . 96

The optgroup Element . 97

The textarea Element . 97

In Conclusion . 97

Chapter 5 HTML5 Video and Audio 99

A Bit of History . 99

The Current State of Play . 100

Video Container Formats . 100

Video Codecs . 101

Audio Codecs . 101

The Markup . 101

xii

Enabling Native Controls . 102

The autoplay Attribute . 103

The loop Attribute . 104

The preload Attribute . 104

The poster Attribute . 105

The muted Attribute . 105

Adding Support for Multiple Video Formats 106

Source Order . 107

What about browsers without support for HTML5 video? 108

Setting MIME Types . 110

Encoding Video Files for Use on the Web . 111

Creating Custom Video Controls . 112

Some Markup and Styling for Starters . 112

Introducing the Media Elements API . 114

Playing and Pausing the Video . 116

Muting and Unmuting the Video’s Audio Track 119

Responding When the Video Ends Playback 120

Updating the Time as the Video Plays . 121

Further Features of the Media Elements API 123

API Events . 124

API Properties . 124

What about audio? . 125

Accessible Media . 126

It’s Showtime . 127

Chapter 6 Introducing CSS3 . 129

Getting Older Browsers on Board . 129

CSS3 Selectors . 130

Relational Selectors . 131

Attribute Selectors . 133

xiii

Pseudo-classes . 134

Structural Pseudo-classes . 137

Pseudo-elements and Generated Content 141

CSS3 Colors . 143

RGBA . 143

HSL and HSLA . 144

Opacity . 145

Putting It into Practice . 146

Rounded Corners: border-radius . 148

Drop Shadows . 151

Inset and Multiple Shadows . 153

Text Shadow . 154

More Shadows . 155

Up Next . 156

Chapter 7 CSS3 Gradients and Multiple
Backgrounds . 157

Linear Gradients . 158

The W3C Syntax . 160

The Prefixed Syntax . 164

The Old WebKit Syntax . 165

Putting It All Together . 166

Linear Gradients with SVG . 168

Linear Gradients with IE Filters . 169

Tools of the Trade . 170

Radial Gradients . 171

The W3C Syntax . 171

The Prefixed WebKit Syntax . 175

Making Our Own Radial Gradient . 175

Repeating Gradients . 176

xiv

Multiple Background Images . 178

Background Size . 181

In the Background . 183

Chapter 8 CSS3 Transforms and
Transitions . 185

Transforms . 185

Translation . 186

Scaling . 188

Rotation . 190

Skew . 191

Changing the Origin of the Transform . 191

Support for Internet Explorer 8 and Earlier 193

Transitions . 194

transition-property . 195

The transition-duration Property . 197

The transition-timing-function Property 198

The transition-delay Property . 199

The transition Shorthand Property . 199

Multiple Transitions . 200

Animations . 202

Keyframes . 202

Animation Properties . 204

Moving On . 211

Chapter 9 Embedded Fonts and Multicolumn
Layouts . 213

Web Fonts with @font-face . 213

@font-face rule . 214

xv

Implementing @font-face . 215

Declaring Font Sources . 217

Font Property Descriptors . 219

The Unicode Range Descriptor . 220

Applying the Font . 221

Legal Considerations . 221

Creating Various Font File Types: Font Squirrel 223

Other Font Considerations . 226

CSS3 Multicolumn Layouts . 227

The column-count Property . 228

The column-gap Property . 229

The column-width Property . 230

The columns Shorthand Property . 232

Columns and the height Property . 233

Other Column Features . 234

Other Considerations . 236

Progressive Enhancement . 238

Up Next . 239

Chapter 10 Flexbox and Media Queries 241

Flexbox . 242

Flex Container and Flex Item . 242

Applying Flexbox to The HTML5 Herald . 256

Media Queries . 257

What are media queries? . 257

Syntax . 258

The Flexibility of Media Queries . 259

Browser Support . 261

Further Reading . 262

Living in Style . 262

xvi

Chapter 11 Geolocation, Offline Web Apps,
and Web Storage . 265

Geolocation . 266

Privacy Concerns . 267

Geolocation Methods . 267

Checking for Support with Modernizr . 268

Retrieving the Current Position . 269

Geolocation’s Position Object . 269

Grabbing the Latitude and Longitude . 271

Using Google Maps API . 271

Loading a Map . 272

Displaying Our Location in Google Maps . 273

A Final Word on Older Mobile Devices . 276

Offline Web Applications . 276

How It Works: the HTML5 Application Cache 277

Setting Up Your Site to Work Offline . 278

Seeking Permission to Store the Site Offline 281

Going Offline to Test . 281

Making The HTML5 Herald Available Offline 283

Limits to Offline Web Application Storage 285

The Fallback Section . 285

Refreshing the Cache . 287

Are we online? . 288

Further Reading . 335

Web Storage . 290

Two Kinds of Storage . 290

What Web Storage Data Looks Like . 292

Getting and Setting Our Data . 292

Converting Stored Data . 293

The Shortcut Way . 294

xvii

Removing Items and Clearing Data . 294

Storage Limits . 294

Security Considerations . 295

Adding Web Storage to The HTML5 Herald 296

Viewing Our Web Storage Values with Web Inspector 300

Additional HTML5 APIs . 301

Web Workers . 301

Web Sockets . 303

IndexedDB . 303

Back to the Future . 304

Chapter 12 Canvas, SVG, and Drag and
Drop . 305

Canvas . 305

A Bit of Canvas History . 306

Creating a canvas Element . 306

Drawing on the Canvas . 308

Getting the Context . 308

Filling Our Brush with Color . 309

Drawing a Rectangle to the Canvas . 310

Variations on fillStyle . 312

Drawing Other Shapes by Creating Paths . 315

Saving Canvas Drawings . 319

Drawing an Image to the Canvas . 320

Manipulating Images . 323

Security Errors with getImageData . 324

Converting an Image from Color to Black and White 325

Manipulating Video with Canvas . 327

Displaying Text on the Canvas . 330

Accessibility Concerns . 334

xviii

Further Reading . 335

SVG . 335

Drawing in SVG . 336

SVG Filters . 339

Using the Raphaël Library . 340

Canvas versus SVG . 343

Drag and Drop . 344

Feeding the WAI-ARIA Cat . 345

Making Elements Draggable . 346

The DataTransfer Object . 347

Accepting Dropped Elements . 348

Further Reading . 351

That’s All, Folks! . 351

Appendix A Modernizr . 353

Using Modernizr with CSS . 354

Using Modernizr with JavaScript . 356

Further Reading . 357

Appendix B WAI-ARIA . 359

How WAI-ARIA Complements Semantics . 359

The Current State of WAI-ARIA . 360

Further Reading . 361

Appendix C Microdata . 363

Aren’t HTML5’s semantics enough? . 364

The Microdata Syntax . 365

Understanding Name-Value Pairs . 365

Microdata Namespaces . 366

xix

Further Reading . 367

xx

Preface
Welcome to HTML5 & CSS3 for the Real World. We’re glad you’ve decided to join

us on this journey of discovering some of the latest and the greatest in front-end

website building technology.

If you’ve picked up a copy of this book, it’s likely that you’ve dabbled to some degree

in HTML and CSS. You might even be a bit of a seasoned pro in certain areas of

markup, styling, or scripting, and now want to extend those skills further by dipping

into the features and technologies associated with HTML5 and CSS3.

Learning a new task can be difficult. You may have limited time to invest in poring

over the official documentation and specifications for these web-based languages.

You also might be turned off by some of the overly technical books that work well

as references but provide little in the way of real-world, practical examples.

To that end, our goal with this book is to help you learn through hands-on, practical

instruction that will assist you to tackle the real-world problems you face in building

websites today—with a specific focus on HTML5 and CSS3.

But this is more than just a step-by-step tutorial. Along the way, we’ll provide plenty

of theory and technical information to help fill in any gaps in your understand-

ing—the whys and hows of these new technologies—while doing our best not to

overwhelm you with the sheer volume of cool new stuff. So let’s get started!

Who Should Read This Book
This book is aimed at web designers and front-end developers who want to learn

about the latest generation of browser-based technologies. You should already have

at least intermediate knowledge of HTML and CSS, as we won’t be spending any

time covering the basics of markup and styles. Instead, we’ll focus on teaching you

what new powers are available to you in the form of HTML5 and CSS3.

The final two chapters of this book cover some of the new JavaScript APIs that have

come to be associated with HTML5. These chapters, of course, require some basic

familiarity with JavaScript—but they’re not critical to the rest of the book. If you’re

unfamiliar with JavaScript, there’s no harm in skipping over them for now, returning

later when you’re better acquainted with it.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

xxii

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2015/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/htmlcss2/

The book’s website, which contains links, updates, resources, and more.

xxiii

http://www.learnable.com/books/htmlcss2/

https://github.com/spbooks/htmlcss2/

The downloadable code archive for this book.

http://community.sitepoint.com/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Acknowledgments
We'd like to offer special thanks to the following members of the SitePoint and

Learnable community who made valuable contributions to this edition of the book:

Martin Ansdell-Smith, Ilya Bodrov, Jacob Christiansen, Ethan Glass, Gerard Konars,

Dityo Nurasto, Thom Parkin, Guilherme Pereira, Jason Rogers, Bernard Savonet,

and Julian Tancredi.

Alexis Goldstein
Thank you to Simon Mackie and Aurelio DeRosa. Simon, you always kept us on

track and helped to successfully wrangle three co-authors, no small feat. And

Aurelio, your incredible attention to detail, impressive technical expertise and

catching of errors has made this book so much better than it would have been without

your immense contributions. Thank you to my co-authors, Louis and Estelle, who

never failed to impress me with their deep knowledge, vast experience, and uncanny

ability to find bugs in the latest browsers. A special thank you to Estelle for the en-

couragement, for which I am deeply grateful.

Louis Lazaris
Thank you to my wife for putting up with my odd work hours while I took part in

this great project. Thanks to my talented co-authors, Estelle and Alexis, for gracing

me with the privilege of having my name alongside theirs, and, of course, to our

expert reviewer Aurelio De Rosa for always challenging me with his great technical

insight. And special thanks to the talented staff at SitePoint for their super-profes-

sional handling of this project and everything that goes along with such an endeavor.

xxiv

https://github.com/spbooks/htmlcss2/
http://community.sitepoint.com/

Estelle Weyl
Thank you to the entire open source community. With the option to “view source,”

I have learned from every developer who opted for markup rather than plugins. I

would especially like to thank Jen Mei Wu and Sandi Watkins, who helped point

me in the right direction when I began my career. And thank you to my developer

friends at Opera, Mozilla, and Google for creating awesome browsers and even

better developer tools, providing us with the opportunity to not just play with

HTML5 and CSS3, but also to write this book.

Want to Take Your Learning Further?
Thanks for buying this book—we appreciate your support. Do you want to continue

learning? You can now gain unlimited access to courses and ALL SitePoint books

at Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xxv

http://www.learnable.com

Chapter1
Introducing HTML5 and CSS3
This chapter gives a basic overview of how the web development industry has

evolved and why HTML5 and CSS3 are so important to modern websites and web

apps. It will show how using these technologies will be invaluable to your career

as a web professional.

Of course, if you’d prefer to just get into the meat of the project that we’ll be building,

and start learning how to use all the new bells and whistles that HTML5 and CSS3

bring to the table, you can always skip ahead to Chapter 2 and come back later.

What is HTML5?
What we understand today as HTML5 has had a relatively turbulent history. You

probably already know that HTML is the predominant markup language used to

describe content, or data, on the World Wide Web (another lesser-used markup

language is XML). HTML5 is the latest iteration of the HTML5 language and includes

new features, improvements to existing features, and JavaScript APIs.

That said, HTML5 is not a reformulation of previous versions of the language—it

includes all valid elements from both HTML4 and XHTML 1.0. Furthermore, it’s

been designed with some principles in mind to ensure it works on just about every

platform, is compatible with older browsers, and handles errors gracefully. A sum-

mary of the design principles that guided the creation of HTML5 can be found on

the W3C’s HTML Design Principles page.1

First and foremost, HTML5 includes redefinitions of existing markup elements in

addition to new elements that allow web designers to be more expressive in describ-

ing the content of their pages. Why litter your page with div elements when you

can use article, section, header, footer, and so on?

The term “HTML5” has also been used to refer to a number of other new technologies

and APIs. Some of these include drawing with the canvas element, offline storage,

the new video and audio elements, drag-and-drop functionality, Microdata, and

embedded fonts. In this book, we’ll be covering a number of those technologies,

and more.

Application Programming Interface

API stands for Application Programming Interface. Think of an API in the same

way you think of a graphical user interface or GUI—except that instead of being

an interface for humans, it’s an interface for your code. An API provides your

code with a set of “buttons” (predefined methods) that it can press to elicit the

desired behavior from the system, software library, or browser.

API-based commands are a way of abstracting the more complex workings that

are done in the background (or sometimes by third-party software). Some of the

HTML5-related APIs will be introduced and discussed in later sections of this

book.

Overall, you shouldn’t be intimidated if you’ve had little experience with JavaScript

or other APIs. While it would certainly be beneficial to have some experience

with JavaScript or other languages, it isn’t mandatory. Whatever the case, we’ll

walk you through the scripting parts of our book gradually, ensuring that you’re

not left scratching your head!

At the time of writing, it’s been a good 5-plus years since HTML5 has had wide use

in terms of the semantic elements and the various APIs. So it’s no longer correct to

categorize HTML5 as a “new” set of technologies—but it is still maturing and there

1 http://www.w3.org/TR/html-design-principles/

HTML5 & CSS3 for the Real World2

http://www.w3.org/TR/html-design-principles/

are ongoing issues that continue to be addressed (such as bugs in browsers, and

inconsistent support across browsers and platforms).

It should also be noted that some technologies were never part of HTML5 (such as

CSS3 and WOFF), yet have at times been lumped in under the same label. This has

instigated the use of broad, all-encompassing expressions such as “HTML5 and re-

lated technologies.” In the interest of brevity—and also at the risk of inciting heated

arguments—we’ll generally refer to these technologies collectively as “HTML5.”

How did we get here?
The web development industry has evolved significantly in a relatively short time

period. In the late 1990s, a website that included images and an eye-catching design

was considered top of the line in terms of web content and presentation.

Today, the landscape is quite different. Simple performance-driven, Ajax-based

websites (usually differentiated as “web apps”) that rely on client-side scripting for

critical functionality are becoming more and more common. Websites today often

resemble standalone software applications, and an increasing number of developers

are viewing them as such.

Along the way, web markup has evolved. HTML4 eventually gave way to XHTML,

which is really just HTML4 with strict XML-style syntax. HTML5 has taken over

as the most-used version of markup, and we now rarely, if ever, see new projects

built with HTML4 or XHTML.

HTML5 originally began as two different specifications: Web Forms 2.02 and Web

Apps 1.0.3 Both were a result of the changed web landscape and the need for faster

and more efficient maintainable web applications. Forms and app-like functionality

are at the heart of web apps, so this was the natural direction for the HTML5 spec

to take. Eventually, the two specs were merged to form what we now call HTML5.

For a short time, there was discussion about the production of XHTML 2.0,4 but

that project has long since been abandoned to allow focus on the much more prac-

tical HTML5.

2 http://www.w3.org/TR/web-forms-2/
3 https://whatwg.org/specs/web-apps/2005-09-01/
4 http://www.w3.org/TR/xhtml2/

3Introducing HTML5 and CSS3

http://www.w3.org/TR/web-forms-2/
https://whatwg.org/specs/web-apps/2005-09-01/
https://whatwg.org/specs/web-apps/2005-09-01/
http://www.w3.org/TR/xhtml2/

Would the real HTML5 please stand up?
Because the HTML5 specification is being developed by two different bodies (the

WHATWG and the W3C), there are two versions of the spec. The W3C (or World

Wide Web Consortium) you’re probably familiar with: it’s the organization that

maintains the original HTML and CSS specifications, as well as a host of other web-

related standards such as SVG (Scalable Vector Graphics) and WCAG (Web Content

Accessibility Guidelines).

The WHATWG (aka the Web Hypertext Application Technology Working Group),

on the other hand, was formed by a group of people from Apple, Mozilla, and Opera

after a 2004 W3C meeting left them disheartened. They felt that the W3C was ignoring

the needs of browser makers and users by focusing on XHTML 2.0, instead of

working on a backwards-compatible HTML standard. So they went off on their own

and developed the Web Apps and Web Forms specifications that we’ve discussed,

which were then merged into a spec they called HTML5. On seeing this, the W3C

eventually gave in and created its own HTML5 specification based on the WHAT-

WG’s spec.

This can seem a little confusing. Yes, there are some politics behind the scenes that

we, as designers and developers, have no control over. But should it worry us that

there are two versions of the spec? In short, no.

The WHATWG’s version of the specification can be found at http://www.what-

wg.org/html/, and in January 2011 was renamed “HTML” (dropping the “5”). It’s

now called a “living standard,”5 meaning that it will be in constant development

and will no longer be referred to using incrementing version numbers.

The WHATWG version contains information covering HTML-only features, including

what’s new in HTML5. Additionally, there are separate specifications being de-

veloped by WHATWG that cover the related technologies. These specifications in-

clude Microdata, Canvas 2D Context, Web Workers, Web Storage, and others.

5 http://blog.whatwg.org/html-is-the-new-html5

HTML5 & CSS3 for the Real World4

http://www.whatwg.org/html/
http://www.whatwg.org/html/
http://blog.whatwg.org/html-is-the-new-html5

The W3C’s version of the spec can be found at ht-

tp://www.w3.org/html/wg/drafts/html/master/, and the separate specifications for

the other technologies can be accessed through http://dev.w3.org/html5/.6

So what’s the difference between the W3C spec and that of WHATWG? Besides the

name (“Living Standard” versus “HTML5.1”), the WHATWG version is a little more

informal and experimental (and, some might argue, more forward-thinking). But in

most places they’re identical, so either one can be used as a basis for studying new

HTML5 elements and related technologies.7

Why should I care about HTML5?
As mentioned, at the core of HTML5 are a number of new semantic elements, as

well as several related technologies and APIs. These additions and changes to the

language have been introduced with the goal of allowing developers to build web

pages that are easier to code, use, and access.

These new semantic elements, along with other standards such as WAI-ARIA and

Microdata (which we cover in Appendix B and Appendix C respectively), help to

make our documents more accessible to both humans and machines—resulting in

benefits for both accessibility and search engine optimization.

The semantic elements, in particular, have been designed with the dynamic Web

in mind, with a particular focus on making pages more accessible and modular.

We’ll go into more detail on this in later chapters.

Finally, the APIs associated with HTML5 help improve on a number of techniques

that web developers have been using for years. Many common tasks are now simpli-

fied, putting more power in developers’ hands. Furthermore, the introduction of

HTML5 audio and video means that there will be less dependence on third-party

software and plugins when publishing rich media content on the Web.

6 Technically, the W3C's version has now been upgraded to a new version: "HTML5.1"

[http://www.w3.org/TR/html51/]. For simplicity we'll continue to refer to both versions as "HTML5".

In addition, the W3C's website has a wiki page dedicated to something called "HTML.next

[http://www.w3.org/wiki/HTML/next]", which discusses some far-future features of HTML that we won't

cover in this book.
7 There’s a document published by the W3C [http://www.w3.org/wiki/HTML/W3C-WHATWG-Differences]

that details many of the differences between the two specs, but most of the differences aren’t very relevant

or useful.

5Introducing HTML5 and CSS3

http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/html/wg/drafts/html/master/
http://dev.w3.org/html5/
http://www.w3.org/TR/html51/
http://www.w3.org/wiki/HTML/next
http://www.w3.org/wiki/HTML/W3C-WHATWG-Differences

Overall, there are good reasons to start looking into HTML5’s new features and APIs,

and we’ll discuss more of those reasons as we go through this book.

What is CSS3?
Another separate—but no less important—part of creating web pages is Cascading

Style Sheets (CSS). As you probably know, CSS is a style language that describes

how HTML markup is presented to the user. CSS3 is the latest version of the CSS

specification.

CSS3 contains just about everything that’s included in CSS2.1, the previous version

of the spec. It also adds new features to help developers solve a number of

presentation-related problems without resorting to scripting plugins or extra images.

New features in CSS3 include support for additional selectors, drop shadows,

rounded corners, updated layout features, animation, transparency, and much more.

CSS3 is distinct from HTML5. In this publication, we’ll be using the term CSS3 to

refer to the current level of the CSS specification, with a particular focus on what’s

been added since CSS2.1. Thus, CSS3 is separate from HTML5 and its related APIs.

One final point should be made here regarding CSS and the current “version 3” label.

Although this does seem to imply that there will one day be a “CSS4,” Tab Atkins,

a member of the CSS Working Group, has noted that there are no plans for it.8 In-

stead, as he explains, the specification has been divided into separate modules,

each with its own version number. So you might see something like “CSS Color

Module Level 4”9—but that does not refer to “CSS4.” No matter what level an indi-

vidual module is at, it will still technically be under the umbrella of “CSS3,” or

better yet, simply “CSS.” For the purposes of this book, we’ll still refer to it as

“CSS3,” but just understand that this is likely to be the last version number for the

language as a whole.

8 http://www.xanthir.com/b4Ko0
9 http://dev.w3.org/csswg/css-color/

HTML5 & CSS3 for the Real World6

http://www.xanthir.com/b4Ko0
http://dev.w3.org/csswg/css-color/
http://dev.w3.org/csswg/css-color/

Why should I care about CSS3?
Later in this book, we’ll look in greater detail at many of the new features in CSS.

In the meantime, we’ll give you a taste of why CSS3’s new techniques are so exciting

to web designers.

Some design techniques find their way into almost every project. Drop shadows,

gradients, and rounded corners are three good examples. We see them everywhere.

When used appropriately, and in harmony with a site’s overall theme and purpose,

these enhancements can make a design flourish. Perhaps you’re thinking: we’ve

been creating these design elements using CSS for years now. But have we?

In the past, in order to create gradients, shadows, and rounded corners, web designers

have had to resort to a number of tricky techniques. Sometimes extra HTML elements

were required. In cases where the HTML is kept fairly clean, scripting hacks were

required. In the case of gradients, the use of extra images was inevitable. We put

up with these workarounds, because there was no other way of accomplishing those

designs. CSS3 allows you to include these and other design elements in a forward-

thinking manner that leads to so many benefits: cleaner markup, maintainable code,

fewer extraneous images, and faster-loading pages.

A Short History on Vendor Prefixes

Ever since experimental features in CSS3 have begun to be introduced, developers

have had to use prefixes in their CSS to target those features in various browsers.

Browsers add vendor prefixes to features that might still be experimental in the

specification (that is, they’re not very far along in the standards process).10 For

example, at one time it was common to see something like this for a simple CSS

transition:

a {
 color: #3381d6;
 -webkit-transition: color 0.4s ease;
 -moz-transition: color 0.4s ease;

10 For more info, see: http://www.sitepoint.com/web-foundations/vendor-specific-properties/

7Introducing HTML5 and CSS3

 -o-transition: color 0.4s ease;
 transition: color 0.4s ease;
}

This would seem counterproductive to what was just mentioned, namely that

CSS3 makes the code cleaner and easier to maintain. Fortunately, many prefixes

are no longer needed. Additionally, we highly recommend that developers use a

tool that will add prefixing automatically to your CSS.

One such tool is called Autoprefixer.11 Autoprefixer can be included as part of

your Grunt12 workflow to post-process your CSS. With this, you need to include

only the standard version of any CSS feature, and Autoprefixer will look through

the Can I use... database13 to determine if any vendor prefixes are needed. It will

then build your CSS automatically, with all necessary prefixes. You also have the

option to manually process your CSS using an online tool such as pleeease.14

Whatever the case, in many places in this book we will include vendor prefixes,

however be sure to use an online resource for up-to-date information on which

features still require prefixes.

What do we mean by “the Real World”?
In the real world, we create web applications and we update them, fine-tune them,

test them for potential performance problems, and continually tweak their design,

layout, and content.

In other words, in the real world, we don’t write code that we have no intention of

revisiting. We write code using the most reliable, maintainable, and effective

methods available, with every intention of returning to work on that code again to

make any necessary improvements or alterations. This is evident not only in websites

and web apps that we build and maintain as personal projects, but also in those we

create and maintain for our clients.

We need to continually search out new and better ways to write our code. HTML5

and CSS3 are a big step in that direction.

11 https://github.com/postcss/autoprefixer
12 http://gruntjs.com/
13 http://caniuse.com/
14 http://pleeease.io/play/

HTML5 & CSS3 for the Real World8

https://github.com/postcss/autoprefixer
http://gruntjs.com/
http://caniuse.com/
http://pleeease.io/play/

The Current Browser Market
Although HTML5 is still in development, presenting significant changes in the way

content is marked up, it’s worth noting that those changes won’t cause older browsers

to choke, nor result in layout problems or page errors.

What this means is that you could take any old project containing valid HTML4 or

XHTML markup, change the doctype to HTML5 (which we’ll cover in Chapter 2),

and the page will appear in the browser the same as it did before. The changes and

additions in HTML5 have been implemented into the language in such a way as to

ensure backwards-compatibility with older browsers—even older versions of Internet

Explorer! Of course, this is no guarantee that the new features will work, it simply

means they won’t break your pages or cause any visible problems.

Even with regards to the more complex new features (for example, the APIs), de-

velopers have come up with various solutions to provide the equivalent experience

to non-supporting browsers, all while embracing the exciting new possibilities

offered by HTML5 and CSS3. Sometimes this is as simple as providing fallback

content, such as a Flash video player to browsers without native video support. At

other times, though, it’s been necessary to use scripting to mimic support for new

features.

These “gap-filling” techniques are referred to as polyfills. Relying on scripts to

emulate native features isn’t always the best approach when building high-perform-

ance web apps, but it’s a necessary growing pain as we evolve to include new en-

hancements and features, such as the ones we’ll be discussing in this book. Fortu-

nately, as of writing, older browsers such as Internet Explorer 6 through 9 that fail

to support many of the new features in HTML5 and CSS3, are used by less than

10% of web visitors today.15 More and more people are using what has been termed

evergreen browsers;16 that is, browsers that automatically update. This means that

new features will be functional to a larger audience, and eventually to all, as older

browser shares wane.

15 http://gs.statcounter.com/#browser_version-ww-monthly-201502-201502-bar
16 http://tomdale.net/2013/05/evergreen-browsers/

9Introducing HTML5 and CSS3

http://gs.statcounter.com/#browser_version-ww-monthly-201502-201502-bar
http://gs.statcounter.com/#browser_version-ww-monthly-201502-201502-bar
http://tomdale.net/2013/05/evergreen-browsers/

In this book we may occasionally recommend fallback options or polyfills to plug

the gaps in browser incompatibilities; we’ll also try to do our best in warning you

of potential drawbacks and pitfalls associated with using these options.

Of course, it’s worth noting that sometimes no fallbacks or polyfills are required at

all; for example, when using CSS3 to create rounded corners on boxes in your design,

there’s often no harm in users of really old browsers seeing square boxes instead.

The functionality of the site has no degradation, and those users will be none the

wiser about what they’re missing.

As we progress through the lessons and introduce new subjects, if you plan on using

one of these in a project we strongly recommend that you consult a browser-support

reference such as the aforementioned Can I use...17 That way, you’ll know how and

whether to provide fallbacks or polyfills. Where necessary, we’ll occasionally discuss

ways you can ensure that non-supporting browsers have an acceptable experience,

but the good news is that it’s becoming less and less of an issue as time goes on.

The Growing Mobile Market
Another compelling reason to start learning and using HTML5 and CSS3 today is

the exploding mobile market. According to one source, in 2009 less than 1% of all

web usage was on mobile devices and tablets.18 By the middle of 2014, that number

had risen to more than 35%!19 That’s an astounding growth rate in a little more

than five years. So what does this mean for those learning HTML5 and CSS3?

HTML5, CSS3, and related cutting-edge technologies are very well supported in

many mobile web browsers. For example, mobile Safari on iOS devices such as the

iPhone and iPad, Opera Mobile, Android Browser, and UC Browser all provide

strong levels of HTML5 and CSS3 support. New features and technologies supported

by some of those browsers include CSS3 animations, CSS flexbox, the Canvas API,

Web Storage, SVG, Offline Web Apps, and more.

In fact, some of the new technologies we’ll be introducing in this book have been

specifically designed with mobile devices in mind. Technologies such as Offline

Web Apps and Web Storage have been designed, in part, because of the growing

17 http://caniuse.com/
18 http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200901-200901-bar
19 http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201408-201408-bar

HTML5 & CSS3 for the Real World10

http://caniuse.com/
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200901-200901-bar
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-200901-200901-bar
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201408-201408-bar

number of people accessing web pages with mobile devices. Such devices can often

have limitations with online data usage, and thus benefit greatly from the ability to

access web applications offline.

We’ll be touching on those subjects in Chapter 11, as well as others throughout the

course of the book, providing the tools you’ll need to create web pages for a variety

of devices and platforms.

On to the Real Stuff
It’s unrealistic to push ahead into new technologies and expect to author pages and

apps for only one level of browser. In the real world, and in a world where we desire

HTML5 and CSS3 to make further inroads, we need to be prepared to develop pages

that work across a varied landscape. That landscape includes modern browsers,

any remaining older versions of Internet Explorer, and an exploding market of mobile

devices.

Yes, in some ways, supplying a different set of instructions for different user agents

resembles the early days of the Web with its messy browser sniffing and code forking.

But this time around, the new code is much more future-proof: when older browsers

fall out of general use, all you need to do is remove any fallbacks and polyfills,

leaving only the code base that’s aimed at modern browsers.

HTML5 and CSS3 are the leading technologies that have ushered in a much more

exciting world of web page authoring. Because all modern browsers provide excellent

levels of support for a number of HTML5 and CSS3 features, creating powerful and

simple-to-maintain future-proof web pages is easier than ever before.

So, enough about the “why,” let’s start digging into the “how”!

11Introducing HTML5 and CSS3

Chapter2
Markup, HTML5 Style
Now that we’ve given you a bit of a history primer, along with some compelling

reasons to learn HTML5 and start using it in your projects today, it’s time to intro-

duce you to the sample site that we’ll be progressively building in this book.

After we briefly cover what we’ll be building, we’ll discuss some HTML5 syntax

basics, along with some suggestions for best-practice coding. We’ll follow that with

some important info on cross-browser compatibility, and the basics of page structure

in HTML5. Lastly, we’ll introduce some specific HTML5 elements and see how

they’ll fit into our layout.

So let’s get into it!

Introducing The HTML5 Herald
For the purpose of this book, we’ve put together a sample website project that we’ll

be building from scratch. The website is already built—you can check it out now

at thehtml5herald.com.1 It’s an old-time newspaper-style website called The HTML5

Herald. The home page of the site contains some media in the form of video, images,

1 http://thehtml5herald.com/

http://thehtml5herald.com/

articles, and advertisements. There’s also another page comprising a registration

form.

Go ahead and view the source, and try some of the functionality if you like. As we

proceed through the book, we’ll be working through the code that went into making

the site. We’ll avoid discussing every detail of the CSS involved, as most of it should

already be familiar to you—float layouts, absolute and relative positioning, basic

font styling, and the like. We’ll primarily focus on the new HTML5 elements, along

with the APIs, plus all the new CSS3 techniques being used to add styles and inter-

activity to various elements.

Figure 2.1 shows a bit of what the finished product looks like.

Figure 2.1. The front page of The HTML5 Herald

While we build the site, we’ll do our best to explain the new HTML5 elements,

APIs, and CSS3 features, and aim to recommend some best practices. Of course,

some of these technologies are still new and in development, so we’ll try not to be

too dogmatic about what you can and can’t do.

HTML5 & CSS3 for the Real World14

A Basic HTML5 Template
As you learn HTML5 and add new techniques to your toolbox, you’re likely to want

to build yourself a boilerplate, from which you can begin all your HTML5-based

projects. We encourage this, and you may also consider using one of the many online

sources that provide a basic HTML5 starting point for you.2

In this project, however, we want to build our code from scratch and explain each

piece as we go along. Of course, it would be impossible for even the most fantastical

and unwieldy sample site we could dream up to include every new element or

technique, so we’ll also explain many new features that don’t fit into the project.

This way, you’ll be familiar with a wide set of options when deciding how to build

your HTML5 and CSS3 websites and applications, enabling you to use this book as

a quick reference for a number of features and techniques.

Let’s start simple, with a bare-bones HTML5 page:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">

 <title>The HTML5 Herald</title>
 <meta name="description" content="The HTML5 Herald">
 <meta name="author" content="SitePoint">

 <link rel="stylesheet" href="css/styles.css">

 <!--[if lt IE 9]>
 <script src="js/html5shim.js"></script>
 <![endif]-->

 </head>
 <body>

 <script src="js/scripts.js"></script>

2 A few you might want to look into can be found at html5boilerplate.com [https://html5boilerplate.com/]

and https://github.com/murtaugh/HTML5-Reset.

15Markup, HTML5 Style

https://html5boilerplate.com/
https://github.com/murtaugh/HTML5-Reset

 </body>
</html>

With that basic template in place, let's now examine some of the significant parts

of the markup and how these might differ from how HTML was written prior to

HTML5.

The Doctype
First, we have the Document Type Declaration, or doctype. This is simply a way to

tell the browser—or any other parser—what type of document it's looking at. In the

case of HTML files, it means the specific version and flavor of HTML. The doctype

should always be the first item at the top of any HTML file. Many years ago, the

doctype declaration was an ugly and hard-to-remember mess. For XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www
➥.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

And for HTML4 Transitional:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http
➥://www.w3.org/TR/html4/loose.dtd">

Although that long string of text at the top of our documents hasn’t really hurt us

(other than forcing our sites’ viewers to download a few extra bytes), HTML5 has

done away with that indecipherable eyesore. Now all you need is this:

<!DOCTYPE html>

Simple, and to the point. The doctype can be written in uppercase, lowercase, or

mixed case. You’ll notice that the “5” is conspicuously missing from the declaration.

Although the current iteration of web markup is known as “HTML5,” it really is

just an evolution of previous HTML standards—and future specifications will simply

be a development of what we have today.

Because browsers are usually required to support all existing content on the Web,

there’s no reliance on the doctype to tell them which features should be supported

HTML5 & CSS3 for the Real World16

in a given document. In other words, the doctype alone is not going to make your

pages HTML5-compliant. It's really up to the browser to do this. In fact, you can

use one of those two older doctypes with new HTML5 elements on the page and

the page will render the same as it would if you used the new doctype.

The html Element
Next up in any HTML document is the html element, which has not changed signi-

ficantly with HTML5. In our example, we’ve included the lang attribute with a

value of en, which specifies that the document is in English. In XHTML-based

markup, you were required to include an xmlns attribute. In HTML5, this is no

longer needed, and even the lang attribute is unnecessary for the document to val-

idate or function correctly.

So here’s what we have so far, including the closing html tag:

<!DOCTYPE html>
<html lang="en">

</html>

The head Element
The next part of our page is the head section. The first line inside the head is the

one that defines the character encoding for the document. This is another element

that’s been simplified since XHTML and HTML4, and is an optional feature, but

recommended. In the past, you may have written it like this:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

HTML5 improves on this by reducing the character-encoding meta tag to the bare

minimum:

<meta charset="utf-8">

In nearly all cases, utf-8 is the value you’ll be using in your documents. A full ex-

planation of character encoding is beyond the scope of this book, and it probably

17Markup, HTML5 Style

won’t be that interesting to you, either. Nonetheless, if you want to delve a little

deeper, you can read up on the topic on W3C3 or WHATWG.4

Encoding Declaration

To ensure that all browsers read the character encoding correctly, the entire

character-encoding declaration must be included somewhere within the first 512

characters of your document. It should also appear before any content-based ele-

ments (such as the title element that follows it in our example site).

There’s much more we could write about this subject, but we want to keep you

awake—so we’ll spare you those details! For now, we’re content to accept this

simplified declaration and move on to the next part of our document:

<title>The HTML5 Herald</title>
<meta name="description" content="The HTML5 Herald">
<meta name="author" content="SitePoint">

<link rel="stylesheet" href="css/styles.css">

In these lines, HTML5 barely differs from previous syntaxes. The page title (the

only mandatory element inside the head) is declared the same as it always was, and

the meta tags we’ve included are merely optional examples to indicate where these

would be placed; you could put as many valid meta elements5 here as you like.

The key part of this chunk of markup is the stylesheet, which is included using the

customary link element. There are no required attributes for link other than href

and rel. The type attribute (which was common in older versions of HTML) is not

necessary, nor was it ever needed to indicate the content type of the stylesheet.

Leveling the Playing Field
The next element in our markup requires a bit of background information before it

can be introduced. HTML5 includes a number of new elements, such as article

and section, which we’ll be covering later on. You might think this would be a

major problem for older browser support for unrecognized elements, but you’d be

3 http://www.w3.org/html/wg/drafts/html/master/infrastructure.html#encoding-terminology
4 https://html.spec.whatwg.org/multipage/infrastructure.html#encoding-terminology
5 https://html.spec.whatwg.org/multipage/semantics.html#the-meta-element

HTML5 & CSS3 for the Real World18

http://www.w3.org/html/wg/drafts/html/master/infrastructure.html#encoding-terminology
https://html.spec.whatwg.org/multipage/infrastructure.html#encoding-terminology
https://html.spec.whatwg.org/multipage/semantics.html#the-meta-element

wrong. This is because the majority of browsers don’t actually care what tags you

use. If you had an HTML document with a recipe tag (or even a ziggy tag) in it,

and your CSS attached some styles to that element, nearly every browser would

proceed as if this were totally normal, applying your styling without complaint.

Of course, such a hypothetical document would fail to validate and may have ac-

cessibility problems, but it would render correctly in almost all browsers—the ex-

ception being old versions of Internet Explorer (IE). Prior to version 9, IE prevented

unrecognized elements from receiving styling. These mystery elements were seen

by the rendering engine as “unknown elements,” so you were unable to change the

way they looked or behaved. This includes not only our imagined elements, but

also any elements that had yet to be defined at the time those browser versions were

developed. That means (you guessed it) the new HTML5 elements.

The good news is, at the time of writing, most people still using a version of IE are

using version 9 or higher, and very few are on version 9, so this is not a big problem

for most developers anymore; however, if a big chunk of your audience is still using

IE8 or earlier, you'll have to take action to ensure your designs don't fall apart.

Fortunately, there’s a solution: a very simple piece of JavaScript originally developed

by John Resig.6 Inspired by an idea by Sjoerd Visscher, it can make the new HTML5

elements styleable in older versions of IE.

We’ve included this so-called “HTML5 shiv”7 in our markup as a script tag surroun-

ded by conditional comments. Conditional comments are a proprietary feature im-

plemented in Internet Explorer in version 9 and earlier. They provide you with the

ability to target specific versions of that browser with scripts or styles.8 The following

conditional comment is telling the browser that the enclosed markup should only

appear to users viewing the page with Internet Explorer prior to version 9:

6 http://ejohn.org/blog/html5-shiv/
7 You might be more familiar with its alternative name: the HTML5 shim. Whilst there are identical

code snippets out there that go by both names, we’ll be referring to all instances as the HTML5 shiv, its

original name.
8 For more information see the SitePoint Reference

[http://www.sitepoint.com/web-foundations/internet-explorer-conditional-comments/].

19Markup, HTML5 Style

http://ejohn.org/blog/html5-shiv/
http://ejohn.org/blog/html5-shiv/
http://www.sitepoint.com/web-foundations/internet-explorer-conditional-comments/

<!--[if lt IE 9]>
 <script src="js/html5shim.js"></script>
<![endif]-->

It should be noted that if you’re using a JavaScript library that deals with HTML5

features or the new APIs, it’s possible that it will already have the HTML5-enabling

script present; in this case, you could remove reference to the script. One example

of this would be Modernizr,9 a JavaScript library that detects modern HTML and

CSS features. Modernizr gives you the option to include code that enables the

HTML5 elements in older versions of IE, so the shiv would be redundant. We take

a closer look at Modernizr in Appendix A.

Not Everyone Can Benefit from the HTML5 Shiv

Of course, there’s still a group of users unable to benefit from the HTML5 shiv:

those who have for one reason or another disabled JavaScript and are using IE8

or lower. As web designers, we’re constantly told that the content of our sites

should be fully accessible to all users, even those without JavaScript. But it’s not

as bad as it seems. A number of studies have shown that the number of users who

have JavaScript disabled is low enough to be of little concern, especially when

you factor in how few of those will be using IE8 or lower.

In a study published in October, 2013, the UK Government Digital Service determ-

ined that users browsing government web services in the UK with JavaScript dis-

abled or unavailable was 1.1%.10 In another study conducted on the Yahoo De-

veloper Network11 (published in October 2010), users with JavaScript disabled

amounted to around 1% of total traffic worldwide.

The Rest Is History
Looking at the rest of our starting template, we have the usual body element along

with its closing tag and the closing html tag. We also have a reference to a JavaScript

file inside a script element.

9 http://www.modernizr.com/
10 https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/
11 https://developer.yahoo.com/blogs/ydn/many-users-javascript-disabled-14121.html

HTML5 & CSS3 for the Real World20

http://www.modernizr.com/
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/
https://developer.yahoo.com/blogs/ydn/many-users-javascript-disabled-14121.html
https://developer.yahoo.com/blogs/ydn/many-users-javascript-disabled-14121.html

Much like the link tag discussed earlier, the script tag does not require that you

declare a type attribute. If you ever wrote XHTML, you might remember your script

tags looking like this:

<script src="js/scripts.js" type="text/javascript"></script>

Since JavaScript is, for all practical purposes, the only real scripting language used

on the Web, and since all browsers will assume that you’re using JavaScript even

when you don’t explicitly declare that fact, the type attribute is unnecessary in

HTML5 documents:

<script src="js/scripts.js"></script>

We’ve put the script element at the bottom of our page to conform to best practices

for embedding JavaScript. This has to do with the page-loading speed; when a

browser encounters a script, it will pause downloading and rendering the rest of

the page while it parses the script. This results in the page appearing to load much

more slowly when large scripts are included at the top of the page before any content.

It's why most scripts should be placed at the very bottom of the page, so that they’ll

only be parsed after the rest of the page has loaded.

In some cases, however, (such as with the HTML5 shiv) the script may need to be

placed in the head of your document, because you want it to take effect before the

browser starts rendering the page.

HTML5 FAQ
After this quick introduction to HTML5 markup, you probably have a bunch of

questions swirling in your head. Here are some answers to a few of the likely ones.

Why do these changes still work in older browsers?
To understand why this isn’t a problem, we can compare HTML5 to some of the

new features added in CSS3, which we’ll be discussing in later chapters.

In CSS, when a new feature is added (for example, the border-radius property that

adds rounded corners to elements), that feature also has to be added to browsers’

rendering engines, so older browsers will fail to recognize it. If a user is viewing

the page on a browser with no support for border-radius, the rounded corners will

21Markup, HTML5 Style

appear square. This happens because square corners are the default and the browser

will ignore the border-radius declaration. Other CSS3 features behave similarly,

causing the experience to be degraded to some degree.

Many developers expect that HTML5 will work in a similar way. While this might

be true for some of the advanced features and APIs we’ll be considering later in the

book, it’s not the case with the changes we’ve covered so far; that is, the simpler

syntax, fewer superfluous attributes, and the new doctype.

HTML5’s syntax was more or less defined after a careful study of what older browsers

can and can’t handle. For example, the 15 characters that comprise the doctype

declaration in HTML5 are the minimum characters required to make every browser

display a page in standards mode.

Likewise, while XHTML required a lengthier character-encoding declaration and

an extra attribute on the html element for the purpose of validation, browsers never

actually required them in order to display a page correctly. Again, the behavior of

older browsers was carefully examined, and it was determined that the character

encoding could be simplified and the xmlns attribute removed—and browsers would

still see the page the same way.

Unlike changes to CSS3 and JavaScript, where additions are only supported when

browser makers actually implement them, there’s no need to wait for new browser

versions to be released before using HTML5’s markup syntax. And when it comes

to using the new semantic elements, a small snippet of JavaScript is all that’s required

to bring any really old browsers into line.

Standards Mode versus Quirks Mode

When standards-based web design was in its infancy, browser makers were faced

with a problem: supporting emerging standards would, in many cases, break

backwards compatibility with existing web pages that were designed to older,

nonstandard browser implementations. Browser makers needed a signal indicating

that a given page was meant to be rendered according to the standards. They found

such a signal in the doctype: new standards-compliant pages included a correctly

formatted doctype, while older nonstandard pages generally didn’t. Using the

doctype as a signal, browsers could switch between standards mode (in which

they try to follow standards to the letter in the way they render elements) and

HTML5 & CSS3 for the Real World22

quirks mode (where they attempt to mimic the “quirky” rendering capabilities of

older browsers to ensure that the page renders how it was intended).

It’s safe to say that in the current development landscape, nearly every web page

has a proper doctype, and thus will render in standards mode; it’s therefore un-

likely that you’ll ever have to deal with a page rendered in quirks mode. Of course,

if a user is viewing a web page using a very old browser (such as IE4), the page

will be rendered using that browser’s rendering mode. This is what quirks mode

mimics, and it will do so regardless of the doctype being used.

Although the XHTML and older HTML doctypes include information about the

exact version of the specification they refer to, browsers have never actually made

use of that information. As long as a seemingly correct doctype is present, they’ll

render the page in standards mode. Consequently, HTML5’s doctype has been

stripped down to the bare minimum required to trigger standards mode in any

browser. Further information, along with a chart that outlines what will cause

different browsers to render in quirks mode, can be found on Wikipedia.12 You

can also read a good overview of standards and quirks mode on SitePoint’s CSS

reference.13

Shouldn’t all tags be closed?
In XHTML, all elements were required to be closed—either with a corresponding

closing tag (such as html) or in the case of void elements, a forward slash at the end

of the tag. Void elements are elements that can’t contain child elements (such as

input, img, or link).

You can still use that style of syntax in HTML5—and you might prefer it for consist-

ency and maintainability reasons—but adding a trailing slash on void elements is

no longer required for validation. Continuing with the theme of “cutting the fat,”

HTML5 allows you to omit the trailing slash from such elements, arguably leaving

your markup cleaner and less cluttered.

It’s worth noting that in HTML5, most elements that can contain nested ele-

ments—but simply happen to be empty—still need to be paired with a corresponding

closing tag. There are exceptions to this rule (such as p tags and li tags), but it’s

simpler to assume that it’s universal.

12 http://en.wikipedia.org/wiki/Quirks_mode/
13 http://reference.sitepoint.com/css/doctypesniffing/

23Markup, HTML5 Style

http://en.wikipedia.org/wiki/Quirks_mode/
http://reference.sitepoint.com/css/doctypesniffing/
http://reference.sitepoint.com/css/doctypesniffing/

What about other XHTML-based syntax customs?
While we’re on the subject, omitting closing slashes is just one aspect of HTML5-

based syntax that differs from XHTML. In fact, syntax style issues are completely

ignored by the HTML5 validator, which will only throw errors for code mistakes

that threaten to disrupt your document in some way.

What this means is that through the eyes of the validator, the following five lines

of markup are identical:

<link rel="stylesheet" href="css/styles.css" />
<link rel="stylesheet" href="css/styles.css">
<LINK REL="stylesheet" HREF="css/styles.css">
<Link Rel="stylesheet" Href="css/styles.css">
<link rel=stylesheet href=css/styles.css>

In HTML5, you can use lowercase, uppercase, or mixed-case tag names or attributes,

as well as quoted or unquoted attribute values (as long as those values don’t contain

spaces or other reserved characters), and it will all validate just fine.

In XHTML, all attributes were required to have values, even if those values were

redundant. For example, in XHTML you’d often see markup like this:

<input type="text" disabled="disabled" />

In HTML5, attributes that are either “on” or “off” (called Boolean attributes) can

simply be specified with no value. So, the aforementioned input element can be

written as follows:

<input type="text" disabled>

Hence, HTML5 has very loose requirements for validation, at least as far as syntax

is concerned. Does this mean you should just go nuts and use whatever syntax you

want on any given element? No, we certainly don’t recommend that.

We encourage developers to choose a syntax style and stick to it—especially if you

are working in a team environment where code maintenance and readability are

crucial. We also recommend (though this is optional) that you choose a minimalist

coding style while staying consistent.

HTML5 & CSS3 for the Real World24

Here are some guidelines for you to consider using:

■ Use lowercase for all elements and attributes as you would in XHTML.

■ Despite some elements not requiring closing tags, we recommend that all elements

containing content be closed (as in <p>Text</p>).

■ Although you can leave attribute values unquoted, it’s highly likely that you’ll

have attributes that require quotes (for example, when declaring multiple classes

separated by spaces, or when appending a query string value to a URL). As a

result, we suggest that you always use quotes for the sake of consistency.

■ Omit the trailing slash from void elements (such as meta or input).

■ Avoid providing redundant values for Boolean attributes (for instance, use <input

type="checkbox" checked> rather than <input type="checkbox"

checked="checked">).

Again, these recommendations are by no means universally accepted; however, we

believe that they’re reasonable syntax suggestions for achieving clean, easy-to-read

maintainable markup.

If you do run amok with your code style, including too much that’s unnecessary,

you're just adding extra bytes for no reason. You're also potentially making your

code harder to maintain, especially if you work with other developers on the same

code base.

Defining the Page’s Structure
Now that we’ve broken down the basics of our template, let’s start adding some

meat to the bones and give our page some structure.

Later in the book, we’re going to specifically deal with adding CSS3 features and

other HTML5 goodness; for now, we’ll consider what elements we want to use in

building our site’s overall layout. We’ll be covering a lot in this section and

throughout the coming chapters about semantics. When we use the term “semantics,”

we’re referring to the way a given HTML element describes the meaning of its con-

tent.

25Markup, HTML5 Style

If you look back at the screenshot of The HTML5 Herald (or view the site online),

you’ll see that it’s divided up as follows:

■ header section with a logo and title
■ navigation bar
■ body content divided into three columns
■ articles and ad blocks within the columns
■ footer containing some author and copyright information

Before we decide which elements are appropriate for these different parts of our

page, let’s consider some of our options. First of all, we’ll introduce you to some of

the new HTML5 semantic elements that could be used to help divide our page and

add more meaning to our document’s structure.

The header Element
Naturally, the first element we’ll look at is the header element. The spec describes

it succinctly as “a group of introductory or navigational aids.”14

Contrary to what you might normally assume, you can include a new header element

to introduce each section of your content. It's not just reserved for the page header

(which you might normally mark up with <div id="header">). When we use the

word “section” here, we’re not limiting ourselves to the actual section element

described in the next part; technically, we’re referring to what HTML5 calls “sec-

tioning content.” This means any chunk of content that might need its own header,

even if that means there are multiple such chunks on a single page.

A header element can be used to include introductory content or navigational aids

that are specific to any single section of a page, or apply to the entire page, or both.

While a header element will frequently be placed at the top of a page or section, its

definition is independent from its position. Your site’s layout might call for the title

of an article or blog post to be off to the left, right, or even below the content; regard-

less of which, you can still use header to describe this content.

14 https://html.spec.whatwg.org/multipage/semantics.html#the-header-element

HTML5 & CSS3 for the Real World26

https://html.spec.whatwg.org/multipage/semantics.html#the-header-element

The section Element
The next element you should become familiar with is HTML5’s section element.

The spec defines section as follows:15

The section element represents a generic section of a document or

application. A section, in this context, is a thematic grouping of

content, typically with a heading.

It further explains that a section shouldn’t be used as a generic container that exists

for styling or scripting purposes only. If you’re unable to use section as a generic

container—for example, in order to achieve your desired CSS layout—then what

should you use? Our old friend, the div element, which is semantically meaningless.

Going back to the definition from the spec, the section element’s content should

be “thematic,” so it would be incorrect to use it in a generic way to wrap unrelated

pieces of content.

Some examples of acceptable uses for section elements include:

■ individual sections of a tabbed interface

■ segments of an “About” page; for example, a company’s “About” page might

include sections on the company’s history, its mission statement, and its team

■ different parts of a lengthy “terms of service” page

■ various sections of an online news site; for example, articles could be grouped

into sections covering sports, world affairs, and economic news

Using section Correctly

Every time new semantic markup is made available to web designers, there will

be debate over what constitutes correct use of these elements, what the spec’s in-

tention was, and so on. You may remember discussions about the appropriate use

of the dl element in previous HTML specifications. Unsurprisingly, HTML5 has

not been immune to this phenomenon, particularly when it comes to the section

element. Even Bruce Lawson, a well-respected authority on HTML5, has admitted

15 https://html.spec.whatwg.org/multipage/semantics.html#the-section-element

27Markup, HTML5 Style

https://html.spec.whatwg.org/multipage/semantics.html#the-section-element

to using section incorrectly in the past. For a bit of clarity, it's well worth reading

Bruce’s post explaining his error.16

In short:

■ section is generic, so if a more specific semantic element is appropriate (such

as article, aside, or nav), use that instead.

■ section has semantic meaning; it implies that the content it contains is re-

lated in some way. If you’re unable to succinctly describe all the content you’re

trying to put in a section using just a few words, it’s likely you need a se-

mantically neutral container instead: the humble div.

That said, as is always the case with semantics, it’s open to interpretation in some

instances. If you feel you can make a case for why you’re using a given element

rather than another, go for it. In the unlikely event that anyone ever calls you on

it, the resulting discussion can be both entertaining and enriching for everyone

involved, and might even contribute to the wider community’s understanding of

the specification.

Keep in mind, also, that you’re permitted to nest section elements inside existing

section elements, if it’s appropriate. For example, for an online news website, the

World News section might be further subdivided into a section for each major

global region.

The article Element
The article element is similar to the section element, but there are some notable

differences. Here’s the definition according to the spec:17

The article element represents a complete, or self-contained, com-

position in a document, page, application, or site and that is, in

principle, independently distributable or reusable, e.g. in syndica-

tion.

The key terms in that definition are self-contained composition and independently

distributable. Whereas a section can contain any content that can be grouped

thematically, an article must be a single piece of content that can stand on its

16 http://html5doctor.com/the-section-element/
17 https://html.spec.whatwg.org/multipage/semantics.html#the-article-element

HTML5 & CSS3 for the Real World28

http://html5doctor.com/the-section-element/
https://html.spec.whatwg.org/multipage/semantics.html#the-article-element

own. This distinction can be hard to wrap your head around, so when in doubt, try

the test of syndication: if a piece of content can be republished on another site

without being modified, or if it can be pushed out as an update via RSS, or on social

media sites such as Twitter or Facebook, it has the makings of an article.

Ultimately, it’s up to you to decide what constitutes an article, but here are some

suggestions in line with recommendations in the spec:

■ a forum post
■ a magazine or newspaper article
■ a blog entry
■ a user-submitted comment on a blog entry or article

Finally, just like section elements, article elements can be nested inside other

article elements. You can also nest a section inside an article, and vice versa.

It all depends on the content you're marking up.

The nav Element
It’s safe to assume that the nav element will appear in virtually every project. nav

represents exactly what it implies: a group of navigation links. Although the most

common use for nav will be for wrapping an unordered list of links, there are other

options. For example, you could wrap the nav element around a paragraph of text

that contained the major navigation links for a page or section of a page.

In either case, the nav element should be reserved for navigation that is of primary

importance. So, it’s recommended that you avoid using nav for a brief list of links

in a footer, for example.

Skip Navigation Links

A design pattern you may have seen implemented on many sites is the “skip

navigation” link. The idea is to allow users of screen readers to quickly skip past

your site’s main navigation if they’ve already heard it—after all, there’s no point

listening to a large site’s entire navigation menu every time you click through to

a new page! The nav element has the potential to eliminate this need; if a screen

reader sees a nav element, it could allow its users to skip over the navigation

without requiring an additional link. The specification states: “User agents (such

as screen readers) that are targeted at users who can benefit from navigation in-

29Markup, HTML5 Style

formation being omitted in the initial rendering, or who can benefit from navigation

information being immediately available, can use this element as a way to determ-

ine what content on the page to initially skip or provide on request (or both).”

Although not all assistive devices recognize nav as of this writing, by building to

the standards now you ensure that as screen readers improve, your page will become

more accessible over time.

User Agents

You’ll encounter the term “user agent” a lot when browsing through specifications.

Really, it’s just a fancy term for a browser—a software “agent” that a user employs

to access the content of a page. The reason the specs don’t simply say “browser”

is that user agents can include screen readers or any other technological means

to read a web page.

You can use nav more than once on a given page. If you have a primary navigation

bar for the site, this would call for a nav element. Additionally, if you had a second-

ary set of links pointing to different parts of the current page (using in-page anchors

or “local” links), this too could be wrapped in a nav element.

As with section, there’s been some debate over what constitutes acceptable use of

nav and why it isn’t recommended in some circumstances (such as in a footer).

Some developers believe this element is appropriate for pagination or breadcrumb

links, or for a search form that constitutes a primary means of navigating a site (as

is the case on Google).

This decision will ultimately be up to you, the developer. Ian Hickson, the primary

editor of WHATWG’s HTML5 specification, responded to the question directly:

“use [it] whenever you would have used class=nav”.18

18 See http://html5doctor.com/nav-element/#comment-213.

[http://html5doctor.com/nav-element/#comment-213]

HTML5 & CSS3 for the Real World30

http://html5doctor.com/nav-element/#comment-213

The aside Element
This element represents a part of the page that’s “tangentially related to the content

around the aside element, and which could be considered separate from that con-

tent.”19

The aside element could be used to wrap a portion of content that is tangential to:

■ a specific standalone piece of content (such as an article or section).

■ an entire page or document, as is customarily done when adding a sidebar to a

page or website.

The aside element should never be used to wrap sections of the page that are part

of the primary content; in other words, aside is not meant to be parenthetical. The

aside content could stand on its own, but it should still be part of a larger whole.

Some possible uses for aside include a sidebar, a secondary list of links, or a block

of advertising. It should also be noted that the aside element (as in the case of

header) is not defined by its position on the page. It could be on the side, or it could

be elsewhere. It’s the content itself, and its relation to other elements, that defines

it.

The footer Element
The final element we’ll discuss in this chapter is the footer element. As with

header, you can have multiple footer elements on a single page, and you should

use footer instead of something generic such as <div id="footer">.

A footer element, according to the spec, represents a footer for the section of content

that is its nearest ancestor. The section of content could be the entire document, or

it could be a section, article, or aside element.

Often a footer will contain copyright information, lists of related links, author in-

formation, and similar information that you normally think of as coming at the end

of a block of content; however, much like aside and header, a footer element is not

defined in terms of its position on the page, so it does not have to appear at the end

19 https://html.spec.whatwg.org/multipage/semantics.html#the-aside-element

31Markup, HTML5 Style

https://html.spec.whatwg.org/multipage/semantics.html#the-aside-element
https://html.spec.whatwg.org/multipage/semantics.html#the-aside-element
https://html.spec.whatwg.org/multipage/semantics.html#the-aside-element

of a section, or at the bottom of a page. Most likely it will, but this is not required.

For example, information about the author of a blog post might be displayed above

the post instead of below it, and will still be considered footer information.

How did we get here?

If you're wondering a little bit about the path to HTML5 and how we ended up

with the tags that we did, you might want to check out Luke Stevens' book called

The Truth about HTML5.20 Currently in its 2nd edition, Luke's book is somewhat

controversial. In addition to covering many of the HTML5 technologies such as

video and canvas, he also goes in-depth in his coverage of the history of HTML5,

explaining some of the semantic and accessibility problems inherent in the new

elements and providing some recommendations on how to handle these issues.

Structuring The HTML5 Herald
Now that we’ve covered the basics of page structure and the elements in HTML5

that will assist in this area, it’s time to start building the parts of our page that will

hold the content.

Let’s start from the top, with a header element. It makes sense to include the logo

and title of The Herald in here, as well as the tagline. We can also add a nav element

for the site navigation.

After the header, the main content of our site is divided into three columns. While

you might be tempted to use section elements for these, stop and think about the

content. If each column contained a separate “section” of information (such as a

sports section and an entertainment section), that would make sense. As it is, though,

the separation into columns is really only a visual arrangement, so we’ll use a plain

old div for each column.

Inside those divs, we have newspaper articles; these, of course, are perfect candidates

for the article element.

The column on the far right, though, contains three ads in addition to an article.

We’ll use an aside element to wrap the ads, with each ad placed inside an article

element. This may seem odd, but look back at the description of article: “a self-

20 http://www.truthabouthtml5.com/

HTML5 & CSS3 for the Real World32

http://www.truthabouthtml5.com/

contained composition […] that is, in principle, independently distributable or re-

usable.” An ad fits the bill almost perfectly, as it’s usually intended to be reproduced

across a number of websites without modification.

Next up, we’ll add another article element for the final article that appears below

the ads. That final article will be excluded from the aside element that holds the

three ads. To belong in the aside, the article needs to be tangentially related to

the page’s content. This isn’t the case: this article is part of the page’s main content,

so it would be wrong to include it in the aside.

Now the third column consists of two elements: an aside and an article, stacked

one on top of the other. To help hold them together and make them easier to style,

we’ll wrap them in a div. We’re not using a section, or any other semantic markup,

because that would imply that the article and the aside were somehow topically

related. They’re not—it’s just a feature of our design that they happen to be in the

same column together.

The New main Element
At this point, it's probably a good time to introduce another major structural element

that's been introduced in HTML5: the main element. This element was not originally

part of the HTML5 spec, but has been added since the first edition of this book was

published.

Unfortunately, defining the main element and how it can be used is a little tricky.

But let's start with where the element originated. In some HTML documents, de-

velopers were wrapping their primary content in a generic element, like this:

<body>
 <header>
 ...
 </header>

 <div id="main">
 ...
 </div>

 <footer>

33Markup, HTML5 Style

 ...
 </footer>
</body>

Notice the generic div element used here as a sibling to the header and footer

elements. Notice also the ID attribute with a value of "main". In addition to this,

many developers were adding an ARIA role to this element:

<div id="main" role="main">
 ...
</div>

We'll avoid going into the details of ARIA here―that's covered in Appendix B ―but

basically, the new main element is meant to replace this practice.

The W3C spec defines main as follows:21 “The main element represents the main

content of the body of a document or application. The main content area consists

of content that is directly related to or expands upon the central topic of a document

or central functionality of an application.”

The WHATWG spec defines it similarly; however, the two specs have very different

definitions beyond that. The WHATWG spec says22:

“There is no restriction as to the number of main elements in a

document. Indeed, there are many cases where it would make sense

to have multiple main elements. For example, a page with multiple

article elements might need to indicate the dominant contents of

each such element.”

But uncharacteristically, in complete contradiction to that, the W3C spec says:

“Authors must not include more than one main element in a docu-

ment. Authors must not include the main element as a descendant

of an article, aside, footer, header, or nav element.”

In addition, the W3C spec adds the recommendation to use the role="main" attribute

on the main element until the main element is fully recognized by user agents.

21 http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
22 https://html.spec.whatwg.org/multipage/semantics.html#the-main-element

HTML5 & CSS3 for the Real World34

http://www.w3.org/html/wg/drafts/html/master/grouping-content.html#the-main-element
https://html.spec.whatwg.org/multipage/semantics.html#the-main-element

Having that knowledge, we're going to adopt the W3C's recommendation, and use

only a single main element on our page, using an ARIA role as a fallback.

Going back to our Herald markup, this is how it will look after we've added the

main element inside the body tag:

<body>
 <header>
 ...
 </header>
 <main role="main">

 </main>
 <footer>
 ...
 </footer>
 <script src="js/scripts.js"></script>
</body>

As you can see, the main element exists outside the header and footer. Inside the

main is where we'll put the three columns we discussed, which make up the layout

and primary content for The HTML5 Herald.

Continuing to Structure The Herald
The last part of our layout we'll consider here is the footer, which you can see in

The Herald screenshot in its traditional location—at the bottom of the page. Because

the footer contains a few different chunks of content, each of which forms a self-

contained and topically related unit, we’ve split these out into section elements

inside the footer. The author information will form one section, with each author

sitting in their own nested section. Then there’s another section for the copyright

and additional information.

Let’s add the new elements to our page so that we can see where our document

stands:

<body>
 <header>
 <nav></nav>
 </header>

35Markup, HTML5 Style

 <main role="main">
 <div class="primary">
 <article></article>
 </div>

 <div class="secondary">
 <article></article>
 </div>

 <div class="tertiary">
 <aside>
 <article></article>
 </aside>

 <article>
 </article>

 </div>
 </main><!-- main -->

 <footer>
 <section id="authors">
 <section></section>
 </section>
 <section id="copyright">
 </section>
 </footer>

 <script src="js/scripts.js"></script>
</body>

Figure 2.2 shows a screenshot that displays our page with some labels indicating

the major structural elements we’ve used.

HTML5 & CSS3 for the Real World36

Figure 2.2. The HTML5 Herald broken into structural HTML5 elements

We now have a structure that can serve as a solid basis for the content of our website.

What if I use the wrong element?

Although it can be confusing at times to remember which elements to use in which

situations, we encourage you to avoid stressing or spending too much time making

decisions on semantics. While it is good to be consistent, there are few repercus-

sions from using the wrong elements. If your pages are accessible, that's what is

important. Of course, there are cases where the correct semantic element will be

beneficial to accessibility, so we encourage you to research this and make sure

37Markup, HTML5 Style

your choice of element won't cause your pages to become inaccessible. A good

place to start might be HTML5 Accessibility23 or The Accessibility Project.24

Wrapping Things Up
That’s it for this chapter. We’ve learned some of the basics of content structure in

HTML5, and we’ve started to build our sample project using the knowledge we’ve

gained.

In the next chapter, we’ll have a more in-depth look at HTML5 content, and continue

to add semantics to our page when we deal with some of the other elements available

in HTML5.

23 http://www.html5accessibility.com/
24 http://a11yproject.com/

HTML5 & CSS3 for the Real World38

http://www.html5accessibility.com/
http://a11yproject.com/

Chapter3
More HTML5 Semantics
Our sample site is coming along nicely. We’ve given it some basic structure, along

the way learning more about marking up content using HTML5’s new elements.

In this chapter, we’ll discuss even more new elements, along with some changes

and improvements to familiar elements. We’ll also add some headings and basic

text to our project, and we’ll discuss the potential impact of HTML5 on accessibility.

Before we dive into that, though, let’s take a step back and examine a few new—and

a little tricky—concepts that HTML5 brings to the table.

A New Perspective on Content Types
For layout and styling purposes, developers have become accustomed to thinking

of elements in an HTML page as belonging to one of two categories: block and inline.

Although elements are still rendered as either block or inline by browsers, the

HTML5 spec takes the categorization of content a step further. The specification

now defines a set of more granular content models. These are broad definitions

about the kind of content that should be found inside a given element. Most of the

time they’ll have little impact on the way you write your markup, but it’s worth

having a passing familiarity with them, so let’s have a quick look:

■ Metadata content: This category is what it sounds like—data that’s not present

on the page itself, but affects the page’s presentation or includes other information

about the page. This includes elements such as title, link, meta, and style.

■ Flow content: This includes just about every element that’s used in the body of

an HTML document, including elements such as header, footer, and even p.

The only elements excluded are those that have no effect on the document’s

flow: script, link, and meta elements in the page’s head, for example.

■ Sectioning content: This is the most interesting—and for our purposes, most

relevant—type of content in HTML5. In the last chapter, we often found ourselves

using the generic term “section” to refer to a block of content that could contain

a heading, footer, or aside. In fact, what we were actually referring to was sec-

tioning content. In HTML5, this includes article, aside, nav, and section.

Shortly, we’ll talk in more detail about sectioning content and how it can affect

the way you write your markup.

■ Heading content: This type of content defines the header of a given section, and

includes the various levels of heading (h1, h2, and so on).

■ Phrasing content: This category is roughly the equivalent to what you’re used

to thinking of as inline content; it includes elements such as em, strong, cite,

and the like.

■ Embedded content: This one’s fairly straightforward, and includes elements that

are, well, embedded into a page, such as img, object, embed, video, and canvas.

■ Interactive content: This category includes any content with which users can

interact. It consists mainly of form elements, as well as links and other elements

that are interactive only when certain attributes are present. Two examples in-

clude the audio element when the controls attribute is present, and the input

element with a type attribute set to anything but "hidden".

As you might gather from reading the list, some elements can belong to more than

one category. There are also some elements that fail to fit into any category (for ex-

ample, the head and html elements). Don’t worry if any of this seems confusing.

HTML5 & CSS3 for the Real World40

The truth is, as a developer, you won't need to think about these categories in order

to decide which element to use in which circumstance. More than anything, they're

simply a way to encapsulate the different kinds of HTML tags available.

The Document Outline
In the previous edition of this book, we described in detail a new feature called the

“document outline.” The purpose of this feature is to allow browsers to create page

hierarchy by means of sectioning content elements instead of headings (h1 through

to h6) as is done now; however, the spec gives the following warning regarding the

document outline:

“There are currently no known implementations of the outline al-

gorithm in graphical browsers or assistive technology user agents,

although the algorithm is implemented in other software such as

conformance checkers. Therefore the outline algorithm cannot be

relied upon to convey document structure to users. Authors are

advised to use heading rank (h1-h6) to convey document structure.”

If you'd like to research the document outline algorithm on your own, you can visit

the W3C's website.1 But because there is no practical use for the outline algorithm

as of this writing, we'll avoid delving into it here.

No More hgroup
Now that we have a solid handle on HTML5’s content types and document outlines,

it’s time to dive back into The HTML5 Herald and add some headings to our news-

paper's articles.

For brevity, we’ll deal with each part individually. Let’s add a title and subtitle to

our header, just above the navigation:

<header>
 <hgroup>
 <h1>The HTML5 Herald</h1>
 <h2>Produced With That Good Ol’ Timey HTML5 & CSS3</h2>
 </hgroup>

1 http://www.w3.org/html/wg/drafts/html/master/sections.html#outlines

41More HTML5 Semantics

http://www.w3.org/html/wg/drafts/html/master/sections.html#outlines

 <nav>
 ⋮
 </nav>

</header>

But wait! This is the wrong markup. In fact, this is the markup we used for our title

and tagline in the previous edition of this book. But things have changed.

You’ll notice we introduced three elements into our markup: the title of the website,

which is marked up with the customary h1 element; a tagline immediately below

the primary page title, marked up with h2; and a new element that wraps our title

and tagline, the hgroup element.

The hgroup element was originally introduced in HTML5 to help prevent problems

occurring in the document outline. Unfortunately, although some people liked the

element, browser makers and screen readers stopped short of implementing it in

any beneficial way, so it has been officially dropped from the W3C's version of the

HTML5 specification.

Oddly, the WHATWG's version of the specification still includes hgroup2, so you

might still consider using it if you wish. In our case, we're going to favor the W3C's

take on this element and refrain from using it to group our headings like we did in

the previous code snippet. Instead, we'll do this:

<h1>HTML5 Herald
 Produced With That Good Ol’ Timey HTML5
➥& CSS3
</h1>

That's how the W3C recommends you group headings and subheadings or taglines

now, with the absence of hgroup. The goal here is to ensure that the structure you

use doesn't mess in a detrimental way with the document outline.

2 https://developers.whatwg.org/sections.html#the-hgroup-element

HTML5 & CSS3 for the Real World42

https://developers.whatwg.org/sections.html#the-hgroup-element

More New Elements
In addition to the structural elements we saw in Chapter 2 and the now defunct

hgroup, HTML5 includes a number of other semantic elements. Let’s examine some

of the more useful ones.

The figure and figcaption Elements
The figure and figcaption elements are another pair of new HTML5 elements

that contribute to the improved semantics in HTML5. The figure element is ex-

plained in the spec3 as follows:

The figure element can […] be used to annotate illustrations, dia-

grams, photos, code listings, etc. […] A figure element's contents

are part of the surrounding flow.

Think of charts, graphs, images to accompany text, or example code. All those types

of content might be good places to use figure and potentially figcaption.

The figcaption element is simply a way to mark up a caption for a piece of content

that appears inside of a figure.

In order to use the figure element, the content being placed inside it must have

some relation to the main content in which the figure appears. If you can completely

remove it from a document, and the document’s content can still be fully understood,

you probably shouldn’t be using figure; you might, however, need to use aside or

an alternative.

Let’s look at how we’d mark up a figure inside an article:

<article>
 <h1>Accessible Web Apps</h1>

 <p>Lorem ipsum dolor … </p>

 <p>As you can see in Figure 1,

 <figure id="fig1">
 <figcaption>Screen Reader Support for WAI-ARIA</figcaption>

3 http://www.w3.org/TR/2011/WD-html5-author-20110809/the-figure-element.html

43More HTML5 Semantics

http://www.w3.org/TR/2011/WD-html5-author-20110809/the-figure-element.html
http://www.w3.org/TR/2011/WD-html5-author-20110809/the-figure-element.html

 </figure>

 <p>Lorem ipsum dolor … </p>
</article>

Using figcaption is fairly straightforward. It has to be inside a figure element and

it can be placed either before or after the figcaption content. In the example here,

we've placed it before the image.

The mark Element
The mark element “represents a run of text in one document marked or highlighted

for reference purposes, due to its relevance in another context.” Admittedly, there

are very few uses we can think of for the mark element. The most common is in the

context of a search, where the keywords that were searched for are highlighted in

the results.

The spec also mentions using mark to draw attention to text inside a quote. In any

case, you want to use it to indicate "a part of the document that has been highlighted

due to its likely relevance to the user's current activity".

Avoid confusing mark with em or strong; those elements add contextual importance,

whereas mark separates the targeted content based on a user’s current browsing or

search activity.

To use the search example, if a user has arrived at an article on your site from a

Google search for the word “HTML5,” you might highlight words in the article using

the mark element like this:

<h1>Yes, You Can Use <mark>HTML5</mark> Today!</h1>

The mark element can be added to the document either using server-side code, or

on the client side with JavaScript after the page has loaded. Search content, for ex-

ample, can be derived from a URL using search.php?query=html5, for example.

In that case, your server-side code might grab the content of the variable in the query

string, and then use mark tags to indicate where the word is found on the page.

HTML5 & CSS3 for the Real World44

The progress and meter Elements
Two new elements added in HTML5 allow for marking up of data that’s being

measured or gauged in some way. The difference between them is fairly subtle:

progress is used to describe the current status of a changing process that’s headed

for completion, regardless of whether the completion state is defined. The traditional

progress bar indicating download progress is a perfect example of this.

The meter element, meanwhile, represents an element whose range is known,

meaning it has definite minimum and maximum values. The spec gives the examples

of disk usage, or a fraction of a voting population—both of which have a definite

maximum value. Therefore, it’s likely you would avoid using meter to indicate an

age, height, or weight—all of which normally have unknown maximum values.

Let’s look in more detail at progress. The progress element can have a max attribute

to indicate the point at which the task will be complete, and a value attribute to

indicate the task’s status. Both of these attributes are optional. Here’s an example:

<h1>Your Task is in Progress</h1>
<p>Status: <progress max="100" value="0">0% </progress>
➥</p>

This element would best be used with JavaScript to dynamically change the value

of the percentage as the task progresses. You’ll notice that the code includes span

tags, isolating the number value; this facilitates targeting the number directly from

your script when you need to update it.

The meter element has six associated attributes. In addition to max and value, it

also allows use of min, high, low, and optimum.

The min and max attributes reference the lower and upper boundaries of the range,

while value indicates the current specified measurement. The high and low attrib-

utes indicate thresholds for what is considered “high” or “low” in the context. For

example, your grade on a test can range from 0% (min) to 100% (max), but anything

below 60% is considered low and anything above 85% is considered high. The op-

timum attribute refers to the ideal value. In the case of a test score, the value of op-

timum would be 100.

Here’s an example of meter, using the premise of disk usage:

45More HTML5 Semantics

<p>Total current disk usage: <meter value="130" min="0" max="320"
➥low="10" high="300" title="gigabytes">63 GB</meter></p>

In Figure 3.1, you can see how the meter element looks by default in Chrome and

Firefox.

Figure 3.1. The meter element in Chrome and Firefox

For better accessibility, when using either progress or meter, you're encouraged

to include the value as text content inside the element. So if you're using JavaScript

to adjust the current state of the value attribute, you should change the text content

to match.

The time Element
Dates and times are invaluable components of web pages. Search engines are able

to filter results based on time, and in some cases, a specific search result can receive

more or less weight by a search algorithm depending on when it was first published.

The time element has been specifically designed to deal with the problem of humans

reading dates and times differently from machines. Take the following example:

<p>We'll be getting together for our next developer conference on 12
➥ October of this year.</p>

While humans reading this paragraph would likely understand when the event will

take place, it would be less clear to a machine attempting to parse the information.

Here’s the same paragraph with the time element introduced:

<p>We’ll be getting together for our next developer conference on
➥<time datetime="2015-10-12">12 October of this year</time>.</p>

The time element also allows you to express dates and times in whichever format

you like while retaining an unambiguous representation of the date and time behind

the scenes, in the datetime attribute. This value could then be converted into a

HTML5 & CSS3 for the Real World46

localized or preferred form using JavaScript, or by the browser itself (although no

browsers at the time of writing support this behavior).

In earlier versions of the spec, the time element allowed use of the pubdate attribute.

This was a Boolean attribute, indicating that the content within the closest ancestor

article element was published on the specified date. If there was no article ele-

ment, the pubdate attribute would apply to the entire document. But this attribute

has been removed from the spec, even though it did seem to be useful. In his in-

depth article on the time element,4 Aurelio De Rosa provides an alternative for the

now dropped pubdate attribute, if you want to look at another method for achieving

this.

The time element has some associated rules and guidelines:

■ You should not use time to encode unspecified dates or times (for example,

“during the ice age” or “last winter”; this is because the time element does not

allow for ranges).

■ The date represented cannot be “BC” or “BCE” (before the common era); it must

be a date on the Gregorian Calendar.

■ If the time element lacks a valid datetime attribute, the element’s text content

(whatever appears between the opening and closing time tags) needs to be a

valid datetime value.

Here's a chunk of HTML that includes many of the different ways to write a datetime

value according to the spec:

<!-- month -->
<time>2015-11</time>

<!-- date -->
<time>2015-11-12</time>

<!-- yearless date -->
<time>11-12</time>

<!-- time -->
<time>14:54:39</time>

4 http://www.sitepoint.com/html5-time-element-guide/

47More HTML5 Semantics

http://www.sitepoint.com/html5-time-element-guide/
http://www.sitepoint.com/html5-time-element-guide/

<!-- floating date and time -->
<time>2015-11-12T14:54:39</time>

<!-- time-zone offset -->
<time>-0800</time>

<!-- global date and time -->
<time>2015-11-12T06:54:39.929-0800</time>

<!-- week -->
<time>2015-W46</time>

<!-- duration -->
<time>4h 18m 3s</time>

The uses for the time element are endless: calendar events, publication dates (for

blog posts, videos, press releases, and so forth), historic dates, transaction records,

article or content updates, and much more.

Changes to Existing Features
While new elements and APIs have been the primary focus of HTML5, this latest

iteration of web markup has also brought with it changes to existing elements. For

the most part, any changes made have been done with backwards-compatibility in

mind, to ensure that the markup of existing content is still usable.

We’ve already considered some of the changes (the doctype declaration, character

encoding, and content types, for example). Let’s look at other significant changes

introduced in the HTML5 spec.

The Word “Deprecated” is Deprecated
In previous versions of HTML and XHTML, elements that were no longer recom-

mended for use (and so removed from the spec), were considered “deprecated.” In

HTML5, there is no longer any such thing as a deprecated element; the term now

used is “obsolete.”

Obsolete elements fall into two basic categories: “conforming” obsolete features and

“non-conforming” obsolete features. Conforming features will provide warnings in

HTML5 & CSS3 for the Real World48

the validator, but will still be supported by browsers. So you are permitted to use

them but their use is best avoided.

Non-conforming features, on the other hand, are considered fully obsolete and

should not be used. They will produce errors in the validator.

The W3C has a description of these features, with examples.5

Block Elements Inside Links
Although most browsers handled this situation well in the past, it was never actually

valid to place a block-level element (such as a div) inside an a element. Instead, to

produce valid HTML, you’d have to use multiple a elements and style the group to

appear as a single block.

In HTML5, you’re now permitted to wrap almost anything in an a element without

having to worry about validation errors. The only block content you're unable to

wrap with an a element are other interactive elements such as form elements, but-

tons, and other a elements.

Bold Text
A few changes have been made in the way that bold text is semantically defined in

HTML5. There are essentially two ways to make text bold in most browsers: by using

the b element, or the strong element.

Although the b element was never deprecated, before HTML5 it was discouraged

in favor of strong. The b element previously was a way of saying “make this text

appear in boldface.” Since HTML is supposed to be all about the meaning of the

content, leaving the presentation to CSS, this was unsatisfactory.

According to the spec6, in HTML5, the b element has been redefined to represent

a section of text “to which attention is being drawn for utilitarian purposes without

conveying any extra importance and with no implication of an alternate voice or

mood.” Examples given are key words in a document abstract, product names in a

review, actionable words in interactive text-driven software, or an article lede.

5 http://www.w3.org/html/wg/drafts/html/master/obsolete.html
6 http://dev.w3.org/html5/spec-preview/the-b-element.html

49More HTML5 Semantics

http://www.w3.org/html/wg/drafts/html/master/obsolete.html
http://dev.w3.org/html5/spec-preview/the-b-element.html

The strong element, meanwhile, still conveys more or less the same meaning. In

HTML5, it represents “strong importance, seriousness, or urgency for its contents.”

Interestingly, the HTML5 spec allows for nesting of strong elements. So, if an entire

sentence consisted of an important warning, but certain words were of even greater

significance, the sentence could be wrapped in one strong element, and each im-

portant word could be wrapped in its own nested strong.

Italicized Text
Along with modifications to the b and strong elements, changes have been made

in the way the i element is defined in HTML5.

Previously, the i element was used to simply render italicized text. As with b, this

definition was unsatisfactory. In HTML5, the definition has been updated to “a span

of text in an alternate voice or mood, or otherwise offset from the normal prose in

a manner indicating a different quality of text.” So the appearance of the text has

nothing to do with the semantic meaning, although it may very well still be ital-

ic—that’s up to you.

An example of content that can be offset using i tags might be an idiomatic phrase

from another language, such as reductio ad absurdum, a latin phrase meaning “re-

duction to the point of absurdity.” Other examples could be text representing a

dream sequence in a piece of fiction, or the scientific name of a species in a journal

article.

The em element is unchanged, but its definition has been expanded to clarify its

use. It still refers to text that’s emphasized, as would be the case colloquially. For

example, the following two phrases have the exact same wording, but their meanings

change because of the different use of em:

<p>Harry’s Grill is the best burger joint in town.</p>
<p>Harry’s Grill is the best burger joint in town.</p>

In the first sentence, because the word “burger” is emphasized, the meaning of the

sentence focuses on the type of “joint” being discussed. In the second sentence, the

emphasis is on the word “is,” thus moving the sentence focus to the question of

whether Harry’s Grill really is the best of all burger joints in town.

HTML5 & CSS3 for the Real World50

Neither i nor em should be used to mark up a publication title; instead, you should

use cite.

Of all the four elements discussed here (b, i, em, and strong), the only one that

gives contextual importance to its content is the strong element.

Big and Small Text
The big element was previously used to represent text displayed in a large font.

The big element is now a non-conforming obsolete feature and should not be used.

The small element, however, is still valid but has a different meaning.

Previously, small was intended to describe “text in a small font.” In HTML5, it

represents “side comments such as small print.” Some examples where small might

be used include information in footer text, fine print, and terms and conditions.

The small element should only be used for short runs of text. So you wouldn't use

small to mark up the body of an entire “terms of use” page.

Although the presentational implications of small have been removed from the

definition, text inside small tags will more than likely still appear in a smaller font

than the rest of the document.

For example, the footer of The HTML5 Herald includes a copyright notice. Since

this is essentially legal fine print, it’s perfect for the small element:

<small>© SitePoint Pty. Ltd.</small>

A cite for Sore Eyes
The cite element was initially redefined in HTML5 accompanied by some contro-

versy. In HTML4, the cite element represented “a citation or a reference to other

sources.” Within the scope of that definition, the spec permitted a person’s name

to be marked up with cite (in the case of a quotation attributed to an individual,

for example).

The earlier versions of the HTML5 spec forbade the use of cite for a person’s name,

seemingly going against the principle of backwards compatibility. Now the spec

has gone back to a more similar definition to the original one, defining cite as “a

reference to a creative work. It must include the title of the work or the name of the

51More HTML5 Semantics

author (person, people, or organization) or a URL reference, or a reference in abbre-

viated form.”

Here's an example, taken from the spec:

<p>In the words of <cite>Charles Bukowski</cite> -
<q>An intellectual says a simple thing in a hard way. An artist says
➥a hard thing in a simple way.</q></p>

Description (not Definition) Lists
The existing dl (definition list) element, along with its associated dt (term) and dd

(description) children, has been redefined in the HTML5 spec. Previously, in addition

to terms and definitions, the spec allowed the dl element to mark up dialogue, but

the spec now prohibits this.

In HTML5, these lists are no longer called “definition lists”; they’re now the more

generic-sounding “description lists” or “association lists.” They should be used to

mark up any kind of name-value pairs, including terms and definitions, metadata

topics and values, and questions and answers.

Here's an example using CSS terms and their definitions:

<dl>
 <dt>Selector:</dt>
 <dd>The element(s) targeted.</dd>
 <dt>Property:</dd>
 <dd>The feature used to add styling to the targeted element,
➥defined before a colon.</dd>
 <dt>Value:</dd>
 <dd>The value given to the specified property, declared after the
➥colon.</dd>
</dl>

Other New Elements and Features
We’ve introduced you to and expounded on some of the more practical new elements

and features. In this section, let's touch on lesser-known elements, attributes, and

features that have been added to the HTML5 spec.

HTML5 & CSS3 for the Real World52

The details Element
This new element helps mark up a part of the document that’s hidden, but can be

expanded to reveal additional information. The aim of the element is to provide

native support for a feature common on the Web—a collapsible box that has a title,

and more info or functionality hidden away.

Normally this kind of widget is created using a combination of HTML and JavaScript.

The inclusion of it in HTML5 removes the scripting requirements and simplifies

its implementation for web authors, thus contributing to decreased page load times.

Here’s how it might look when marked up:

<details>
 <summary>Some Magazines of Note</summary>

 <cite>Bird Watcher's Digest</cite>
 <cite>Rower's Weekly</cite>
 <cite>Fishing Monthly</cite>

</details>

In the example, the contents of the summary element will appear to the user, but the

rest of the content will be hidden. Upon clicking summary, the hidden content ap-

pears.

If details lacks a defined summary, the browser will define a default summary (for

example, “Details”). If you want the hidden content to be visible by default, you

can use the Boolean open attribute on the details element.

The summary element can be used only as a child of details, and it must be the

first child if used.

As of this writing, details lacks complete browser support (IE and Firefox don't

support it), but it's improving. To fill the gaps, a couple of JavaScript-based polyfills

are available, including a jQuery version by Mathias Bynens7 and a vanilla JavaScript

version by Maksim Chemerisuk.8

7 http://mathiasbynens.be/notes/html5-details-jquery
8 https://github.com/chemerisuk/better-details-polyfill

53More HTML5 Semantics

http://mathiasbynens.be/notes/html5-details-jquery
https://github.com/chemerisuk/better-details-polyfill
https://github.com/chemerisuk/better-details-polyfill

Customized Ordered Lists
Ordered lists, marked up using the ol element, are quite common in web pages.

HTML5 introduces a new Boolean attribute called reversed so that when present,

it reverses the numbers on the list items, allowing you to display lists in descending

order. Additionally, HTML5 has brought back the start attribute, deprecated in

HTML4. The start attribute lets you specify with which number your list should

begin.

Support is good for both reversed and start. As of this writing, Internet Explorer

is the only browser without support for reverse-ordered lists. If you want a polyfill,

you can use a script by one of the book's authors.9

Scoped Styles
In HTML5, the style element, used for embedding styles directly in your pages (as

opposed to referencing a linked stylesheet), allows use of a Boolean attribute called

scoped. Take the following code example:

<h1>Page Title</h1>
<article>
 <style scoped>
 h1 {
 color: blue;
 }
 </style>
 <h1>Article Title</h1>
 <p>Article content.</p>
</article>

Because the scoped attribute is present, the styles declared inside the style element

will apply only to the parent element and its children (if cascading rules permit),

instead of the entire document. This allows specific sections inside documents

(such as the article element in this example) to be easily portable along with their

associated styles.

This is certainly a handy new feature, but it's likely going to take some time for it

to be implemented in all browsers. The only browser that currently supports scoped

9 https://github.com/impressivewebs/HTML5-Reverse-Ordered-Lists

HTML5 & CSS3 for the Real World54

https://github.com/impressivewebs/HTML5-Reverse-Ordered-Lists

styles is Firefox. Chrome previously supported it, but it was removed due to “high

code complexity.10” And at the time of writing, the IE team has no immediate plans

to add this feature.11

The async Attribute for Scripts
The script element now allows the use of the async attribute, which is similar to

the existing defer attribute. Using defer specifies that the browser should wait

until the page’s markup is parsed before loading the script. The new async attribute

allows you to specify that a script should load asynchronously. This means it should

load as soon as it’s available, without causing other elements on the page to delay

while it loads. Both defer and async are Boolean attributes.

These attributes must only be used when the script element defines an external

file. For legacy browsers, you can include both async and defer to ensure that one

or the other is used, if necessary. In practice, both attributes will have the effect of

not pausing the browser’s rendering of the page while scripts are downloaded;

however, async can often be more advantageous, as it will load the script in the

background while other rendering tasks are taking place, and execute the script as

soon as it’s available.

The async attribute is particularly useful if the script you’re loading has no other

dependencies, and if it benefits the user experience for the script to be loaded as

soon as possible, rather than after the page loads. It should also be noted, however,

that if you have a page that loads multiple scripts, the defer attribute ensures that

they're loaded in the order in which they appear, while there's no guaranteeing the

order with async.

The picture element
One of the most recent additions to the HTML5 spec is the picture element, which

is intended to help with responsive web design, specifically responsive images.

picture lets you define multiple image sources. This allows users on mobile

browsers to download a low-res version of the image, while offering a larger version

for tablets and desktops.

10 https://www.chromestatus.com/features/5374137958662144
11 https://status.modern.ie/scopedstyles

55More HTML5 Semantics

https://www.chromestatus.com/features/5374137958662144
https://www.chromestatus.com/features/5374137958662144
https://status.modern.ie/scopedstyles
https://status.modern.ie/scopedstyles

The picture element has its accompanying source elements (which are also used

for video and audio elements, as described in Chapter 5), in addition to some new

attributes such as srcset and sizes. These two attributes can be used on picture,

img, and source.

For a good discussion of the way these new features are used in responsive image

implementations, see this excellent article by Eric Portis on A List Apart.12

Other Notables
Here are some further new HTML5 features you'll want to look at using, each with

varying levels of browser support:

■ The dialog element, which represents “a part of an application that a user inter-

acts with to perform a task; for example, a dialog box, inspector, or window.”

■ The download attribute for a elements, used to indicate that the targeted resource

should be downloaded rather than navigated to (useful for PDFs, for example).

■ The sandbox and seamless attributes for iframe elements. sandbox lets you run

an external page with restrictions and the seamless attribute integrates the

iframe content more closely with the parent document, adopting its styles more

seamlessly.

■ The menu element and its menuitem child elements, which allow you to create

a list of interactive commands. For example, you can mark up an Edit menu with

options for Copy, Cut, and Paste, adding scripting functionality as needed.

■ The address element, which lets you mark up contact information applying to

the nearest article or body element.

There are other new elements not discussed here, simply because of lack of space.

Be sure to check out the specs from time to time to see if anything new has been

added or changed.13

12 http://alistapart.com/article/responsive-images-in-practice
13 http://www.w3.org/html/wg/drafts/html/master/

HTML5 & CSS3 for the Real World56

http://alistapart.com/article/responsive-images-in-practice
http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/html/wg/drafts/html/master/

The Future of Markup — Web Components?
In the last year or so a new specification called "Web Components", initiated by

engineers working on Google's Chrome browser, has gained a lot of traction in the

industry with already some significant browser support. In brief, Web Components

are divided into four main sections, summarized briefly here.

Custom Elements Custom elements14 allow developers to define their own DOM

elements with a custom API. These elements and their associ-

ated scripts and styling are meant to be easily portable and

reusable as encapsulated components.

Shadow DOM Shadow DOM15 allows you to define a sort of hidden sub-tree

of DOM nodes that exists in its own namespace, inside a

custom element. This encapsulates the sub-tree to prevent

naming collisions, allowing the entire node tree to be portable

along with the custom element.

HTML Imports The HTML Imports16 feature is a way to include and reuse

HTML documents inside of other HTML documents, similar

to how you might use "include" files in PHP. Imports are in-

cluded by means of HTML's <link> tag, which is commonly

used to embed external CSS.

HTML Templates Finally, there's the new template tag17. This new element is

part of an answer to a popular trend in front-end development

called client-side templating. The template element itself does

nothing, but it's used in conjunction with some scripting to

allow predefined document fragments to be inserted into the

document whenever they're needed.

Many expect that Web Components — in particular, Custom Elements — are the

future of web markup and scripting. But time will tell. Web Components go pretty

14 http://w3c.github.io/webcomponents/spec/custom/
15 http://w3c.github.io/webcomponents/spec/shadow/
16 http://w3c.github.io/webcomponents/spec/imports/
17 http://www.w3.org/html/wg/drafts/html/master/#the-template-element

57More HTML5 Semantics

http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/imports/
http://www.w3.org/html/wg/drafts/html/master/#the-template-element

deep; we could probably write an entire book on the topic! If you want to read more,

check out the spec links referenced above or the sources listed below:

■ WebComponents.org18

■ Polymer19 (A Custom Elements polyfill)

■ An Introduction to Web Components and Polymer20 by Pankaj Parashar

■ Intro to Shadow DOM21 by Agraj Mangal

■ HTML's New Template Tag22 by Eric Bidelman

■ An Introduction to HTML Imports23 by Armando Roggio

Validating HTML5 Documents
In Chapter 2, we introduced you to a number of syntax changes in HTML5, and

touched on some issues related to validation. Let’s expand upon those concepts a

little more so that you can better understand how validating pages has changed.

The HTML5 validator is no longer concerned with code style. You can use uppercase

or lowercase, omit quotes from attributes, exclude optional closing tags, and be as

inconsistent as you like, and your page will still be valid.

So, you ask, what does count as an error for the HTML5 validator? It will alert you

to the incorrect use of elements, elements included where they shouldn’t be, missing

required attributes, incorrect attribute values, and the like. In short, the validator

will let you know if your markup conflicts with the specification, so it’s still a

valuable tool when developing your pages.

To give you a good idea of how HTML5 differs from the overly strict XHTML, let’s

go through some specifics. This way, you can understand what is considered valid

in HTML5:

18 http://webcomponents.org/
19 https://www.polymer-project.org/
20 http://www.sitepoint.com/introduction-to-web-components-and-polymer-tutorial/
21 http://code.tutsplus.com/tutorials/intro-to-shadow-dom--net-34966
22 http://www.html5rocks.com/en/tutorials/webcomponents/template/
23 http://www.sitepoint.com/introduction-html-imports-tutorial/

HTML5 & CSS3 for the Real World58

http://webcomponents.org/
https://www.polymer-project.org/
http://www.sitepoint.com/introduction-to-web-components-and-polymer-tutorial/
http://code.tutsplus.com/tutorials/intro-to-shadow-dom--net-34966
http://www.html5rocks.com/en/tutorials/webcomponents/template/
http://www.sitepoint.com/introduction-html-imports-tutorial/

■ Some elements that were required in XHTML-based syntax are no longer required

for a document to pass HTML5 validation; examples include the html and body

elements. This happens because even if you exclude them, the browser will

automatically include them in the document for you.

■ Void elements (that is, elements without a corresponding closing tag or without

any content) aren't required to be closed using a closing slash; examples include

meta and br.

■ Elements and attributes can be in uppercase, lowercase, or mixed case.

■ Quotes are unnecessary around attribute values. The exceptions are when mul-

tiple space-delimited values are used, or a URL appears as a value and contains

a query string with an equals (=) character in it.

■ Some attributes that were required in XHTML-based syntax are no longer required

in HTML5. Examples include the type attribute for script elements, and the

xmlns attribute for the html element.

■ Some elements that were deprecated and thus invalid in XHTML are now valid;

one example is the embed element.

■ Stray text that doesn’t appear inside any element but is placed directly inside

the body element would invalidate an XHTML document; this is not the case in

HTML5.

■ Some elements that had to be closed in XHTML can be left open without causing

validation errors in HTML5; examples include p, li, and dt.

■ The form element isn’t required to have an action attribute.

■ Form elements, such as input, can be placed as direct children of the form ele-

ment; in XHTML, another element (such as fieldset or div) was required to

wrap form elements.

■ textarea elements are not required to have rows and cols attributes.

■ The target attribute for links was previously deprecated in XHTML. It's now

valid in HTML5.

59More HTML5 Semantics

■ As discussed earlier in this chapter, block-level elements can be placed inside

link (a) elements.

■ The ampersand character (&) doesn’t need to be encoded as & if it appears

as text on the page.

That’s a fairly comprehensive, though hardly exhaustive, list of differences between

XHTML strict and HTML5 validation. Some are style choices, so you’re encouraged

to choose a style and be consistent. We outlined some preferred style choices in the

previous chapter, and you’re welcome to incorporate those suggestions in your own

HTML5 projects.

Stricter Validation Tools

If you want to validate your markup’s syntax style using stricter guidelines, there

are tools available that can help you. One such tool is Philip Walton's HTML In-

spector.24 To use it, you can include the script in your pages during the develop-

ment phase, then open your browser's JavaScript console in the developer tools

and run the command HTMLInspector.inspect(). This will display a number

of warnings and recommendations right inside the console on how to improve

your markup. HTML Inspector also lets you change the configuration to customize

the tool to your own needs.

Summary
By now, we’ve gotten our heads around just about all the new semantic and syntactic

changes in HTML5. Some of this information may be a little hard to digest straight

away, but don’t worry! The best way to become familiar with HTML5 is to use

it—start with your next project. Try using some of the structural elements we covered

in the last chapter, or some of the text-level semantics we saw in this chapter. If

you’re unsure about how an element is meant to be used, go back and read the section

about it, or better yet, read the specification itself. While the language is certainly

drier than the text in this book (at least, we hope it is!), the specs can provide a

more complete picture of how a given element is intended to be used. Remember

that the HTML5 specification is still in development, so some of what we’ve covered

is still subject to change in the new HTML5.1 version (or in the HTML5 “living

24 https://github.com/philipwalton/html-inspector

HTML5 & CSS3 for the Real World60

https://github.com/philipwalton/html-inspector
https://github.com/philipwalton/html-inspector

standard,” if you go by the WHATWG's definition). The specifications will always

contain the most up-to-date information.

In the next chapter, we’ll look at a crucial segment of new functionality introduced

in HTML5: forms and form-related features.

61More HTML5 Semantics

Chapter4
HTML5 Forms
We’ve coded most of the page, and you now know almost all of what there is to

know about new HTML5 elements and their semantics. But before we start work

on the look of the site—which we do in Chapter 7—we’ll take a quick detour away

from The HTML5 Herald’s front page to look at the sign-up page. This will illustrate

what HTML5 has to offer in terms of web forms.

HTML5 web forms have introduced new form elements, input types, attributes,

native validation, and other form features. Many of these features we’ve been using

in our interfaces for years: form validation, combo boxes, placeholder text, and the

like. The difference is that before we had to resort to JavaScript to create these be-

haviors; now they’re available directly in the browser. All you need to do is include

attributes in your markup to make them available.

HTML5 not only makes marking up forms easier on the developer, it’s also better

for the user. With client-side validation being handled natively by the browser,

there will be greater consistency across different sites, and many pages will load

faster without all that redundant JavaScript.

Let’s dive in!

Dependable Tools in Our Toolbox
Forms are often the last thing developers include in their pages—many developers

find forms just plain boring. The good news is HTML5 injects a little bit more joy

into coding forms. By the end of this chapter, we hope you’ll look forward to em-

ploying form elements as appropriate in your markup.

Let’s start off our sign-up form with plain old-fashioned HTML:

<form id="register" method="post">
 <header>
 <h1>Sign Me Up!</h1>
 <p>I would like to receive your fine publication.</p>
 </header>

 <label for="register-name">My name is:</label>
 <input type="text" id="register-name" name="name">

 <label for="address">My email address is:</label>
 <input type="text" id="address" name="address">

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url">

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>
 <input type="password" id="password" name="password">

 <label for="rating">On a scale of 1 to 10, my knowledge of
➥HTML5 is:</label>
 <input type="text" name="rating" id="rating">

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="text" id="startdate" name="startdate">

HTML5 & CSS3 for the Real World64

 <label for="quantity">I would like to receive <input
➥type="text" name="quantity" id="quantity"> copies of <cite>
➥The HTML5 Herald</cite>.</label>

 <label for="upsell">Also sign me up for <cite>The CSS3
➥Chronicle</cite></label>
 <input type="checkbox" id="upsell" name="upsell" value="CSS
➥Chronicle">

 <input type="submit" id="register-submit" value="Send Post
➥Haste">

</form>

This sample registration form uses form elements that have been available since

the earliest versions of HTML. This form provides clues to users about what type

of data is expected in each field via the label and p elements, so even your users

on Netscape 4.7 and IE5 (kidding!) can understand the form. It works, but it can

certainly be improved upon.

In this chapter we’re going to enhance this form to include HTML5 form features.

HTML5 provides new input types specific to email addresses, URLs, numbers, dates,

and more. In addition to these, HTML5 introduces attributes that can be used with

both new and existing input types. These allow you to provide placeholder text,

mark fields as required, and declare what type of data is acceptable—all without

JavaScript.

We’ll cover all the newly added input types later in the chapter. Before we do that,

let’s look at the new form attributes HTML5 provides.

HTML5 Form Attributes
For years, developers have written (or copied and pasted) snippets of JavaScript to

validate the information users entered into form fields: what elements are required,

what type of data is accepted, and so on. HTML5 provides us with several attributes

that allow us to dictate what is an acceptable value and inform the user of errors,

all without the use of any JavaScript.

65HTML5 Forms

Browsers that support these HTML5 attributes will compare data entered by the

user against the attribute values, such as regular expression patterns provided by

the developer (you). They check to see if all required fields are indeed filled out,

enable multiple values if allowed, and so on. Even better, including these attributes

won’t harm older browsers; they simply ignore the attributes they’re unable to un-

derstand. In fact, you can use these attributes and their values to power your

scripting fallbacks instead of hardcoding validation patterns into your JavaScript

code or adding superfluous classes to your markup. We’ll look at how this is done

later; for now, let’s go through some of the new attributes.

The required Attribute
The Boolean required attribute tells the browser to only submit the form if the field

in question is filled out. Obviously, this means that the field can’t be left empty,

but it also means that, depending on other attributes or the field’s type, only certain

types of values will be accepted. Later in the chapter, we’ll be covering different

ways of letting browsers know what kind of data is expected in a form.

If a required field is empty the form will fail to submit. Opera, Firefox, Internet

Explorer 10+, and Chrome provide the user with error messages; for example, “Please

fill out this field” or “You have to specify a value” if left empty.

Time to Focus

Time for a quick refresher: a form element is focused either when users click on

the field with their mouse, tap into the field with their finger on a touch device,

tab to it with their keyboard, or click or touches the label associated with that

form element. For input elements, typing with the keyboard will enter data into

that element.

In JavaScript focus event terminology, the focus event will fire on a form element

when it receives focus, and the blur event will fire when it loses focus.

In CSS, the :focus pseudo-class can be used to style elements that currently have

focus.

The required attribute is valid on any input type except button, submit, image,

range, color, and hidden, all of which generally have a default value so the attribute

would be redundant. As with other Boolean attributes we’ve seen so far, the syntax

is either simply required, or required="required" if you’re using XHTML syntax.

HTML5 & CSS3 for the Real World66

Let’s add the required attribute to our sign-up form. We’ll make the name, email

address, password, and subscription start date fields required:

 <label for="register-name">My name is:</label>
 <input type="text" id="register-name" name="name" required aria-
➥required="true">

 <label for="email">My email address is:</label>
 <input type="text" id="email" name="email" required aria-
➥required="true">

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url">

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>
 <input type="password" id="password" name="password" required
➥aria-required="true">

 <label for="rating">On a scale of 1 to 10, my knowledge of
➥HTML5 is:</label>
 <input type="text" name="rating" type="range">

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="text" id="startdate" name="startdate" required aria
➥-required="true">

 <label for="quantity">I would like to receive <input
➥type="text" name="quantity" id="quantity"> copies of <cite>
➥The HTML5 Herald</cite></label>

 <label for="upsell">Also sign me up for <cite>The CSS3
➥Chronicle</cite></label>
 <input type="checkbox" id="upsell" name="upsell"
➥value="CSS Chronicle">

67HTML5 Forms

 <input type="submit" id="register-submit" value="Send Post
➥Haste">

Improving Accessibility

You can include the WAI-ARIA attribute aria-required="true" for improved

accessibility; however, as most browsers and screen readers now natively support

the required attribute, this will soon by unnecessary. See Appendix B for a brief

introduction to WAI-ARIA.

Figure 4.1, Figure 4.2, and Figure 4.3 show the behavior of the required attribute

when you attempt to submit the form.

Figure 4.1. The required field validation message in Firefox

Figure 4.2. How it looks in Opera …

HTML5 & CSS3 for the Real World68

Figure 4.3. … and in Google Chrome

Styling Required Form Fields
You can style required form elements with the :required pseudo-class, and optional

form elements with the :optional pseudo-class (or use the negation pseudo-class

:not(:required)). You can also style valid and invalid fields with the :valid and

:invalid pseudo-classes respectively. With these pseudo-classes and a little CSS

magic, you provide visual cues to sighted users indicating which fields are required,

and give feedback for successful data entry:

input {
 background-position: 0% 50%;
 background-repeat: no-repeat;
 padding-left: 15px;
}
input:required {
 background-image: url('../images/required.png');
}
input:focus:invalid {
 background-image: url('../images/invalid.png');
}
input:focus:valid {
 background-image: url('../images/valid.png');
}

We’re adding a background image (an asterisk) to required form fields. We can’t

include generated content on an input as they’re replaced or empty elements, so

we use a background image instead. We’ve also added separate background images

to valid and invalid fields. The change is only apparent when the form element has

focus, to keep the form from looking too cluttered.

69HTML5 Forms

Firefox Applies Styles to Invalid Elements

Note that Firefox applies its own styles to invalid elements (a red shadow), as

shown in Figure 4.1 earlier. You may want to remove the native drop shadow

with the following CSS:

:invalid { box-shadow: none; }

Targeted Styles for Older Browsers

Older browsers such as IE8 and IE9 don’t support the :required pseudo-class,

but you can still provide targeted styles using the attribute selector:

input:required,
input[required] {
 background-image: url('../images/required.png');
}

You can also use this attribute as a hook for form validation in browsers without

support for HTML5 form validation. Your JavaScript code can check for the

presence of the required attribute on value-less inputs, and not submit the form

if any are found.

The placeholder Attribute
The placeholder attribute allows a short hint to be displayed inside the form ele-

ment—space permitting—telling the user what type of data should be entered in

that field. The placeholder text disappears when the field gains focus and the user

enters at least one character, and reappears when the value is null. Developers have

provided similar functionality with JavaScript for years―adding a temporary value,

then clearing the value on focus―but in HTML5 the placeholder attribute allows

it to happen natively with no JavaScript required, and stays present until a value

is entered.

For The HTML5 Herald’s sign-up form, we’ll put a placeholder on the website URL

and start date fields:

HTML5 & CSS3 for the Real World70

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url"
➥ placeholder="e.g. http://example.com">

⋮

 <label for="startdate">Please start my subscription on:</label>
 <input type="text" id="startdate" name="startdate" required
➥aria-required="true" >

In Internet Explorer, because the placeholder attribute only received support in

IE10, and because the placeholder text disappears once the user enters data, you

shouldn’t rely on it as the only way to inform users of requirements. If your hint

exceeds the size of the field, describe the requirements in the input’s title attribute,

in the label or in text next to the input element. Some developers suggest adding

“e.g.” as part of the placeholder text to make it evident that it’s placeholder text and

not actually prefilled data.

All browsers starting with Safari 4, Chrome 10, Opera 11.1, Firefox 4, Android 2.3,

and Internet Explorer 10 support the placeholder attribute, though the original

implementation of placeholder removed the placeholder text on focus rather than

on data entry.

Polyfilling Support with JavaScript
Like everything else in this chapter, it won’t hurt to include the placeholder attrib-

ute even when dealing with older browsers that lack support.

As with the required attribute, you can make use of the placeholder attribute and

its value to make older versions of Internet Explorer behave as if they supported

it—all by using a little JavaScript polyfill magic.

Here’s how you’d go about it: first, use JavaScript to determine which browsers are

without support. Then, in those browsers, use a function that creates a faux place-

holder. The function needs to determine which form fields contain the placeholder

attribute, then temporarily grab that attribute’s content and replace empty value

attributes with that text.

71HTML5 Forms

Then you need to set up two event handlers: one to clear the field’s value on focus,

and another to replace the placeholder value on blur if the form control’s value is

still an empty string. If you do use this trick, make sure that the value of your

placeholder attribute isn’t one that users might actually enter, or alternatively use

the "e.g." precursor to indicate that the placeholder is an example and not a valid

value. Additionally, remember to clear the faux placeholder when the form is sub-

mitted. Otherwise, you’ll have lots of “(XXX) XXX-XXXX” submissions!

Let’s look at a sample JavaScript snippet to progressively enhance our form elements

using the placeholder attribute.

Here’s our placeholder polyfill:

<script>
 // check if supported
 if(!Modernizr.input.placeholder) {
 // get all the form controls with the placeholder attribute
 var fcToCheck = document.querySelectorAll("*[placeholder]"),
 frmsToCheck = document.querySelectorAll('form'),
 i, count;

 // loop through form controls with placeholder attribute,
 // copy placeholder value into value, clearing on focus and
 // resetting, if empty, on blur
 for(var i = 0, count = fcToCheck.length; i < count; i++) {
 if(fcToCheck[i].value == "") {
 fcToCheck[i].value = fcToCheck[i].getAttribute("placeholder");
 fcToCheck[i].classList.add('placeholder');
 fcToCheck[i].addEventListener('focus', function() {
 if (this.value==this.getAttribute("placeholder")) {
 this.value = '';
 this.classList.remove('placeholder');
 }
 });
 fcToCheck[i].addEventListener('blur', function() {
 if (this.value == '') {
 this.value = this.getAttribute("placeholder");
 this.classList.add('placeholder');
 }
 });
 }
 }

HTML5 & CSS3 for the Real World72

 for(i = 0, count = frmsToCheck.length; i < count; i++) {

 frmsToCheck[i].addEventListener('submit', function(e) {
 var i, count, plcHld;

 // first do all the checking for required
 // element and form validation.
 // Only remove placeholders before final submission
 plcHld = this.querySelectorAll('[placeholder]');
 for(i = 0, count = plcHld.length; i < count; i++){
 //if the placeholder still equals the value
 if(plcHld[i].value == plcHld[i].getAttribute(
➥'placeholder')){
 // don't submit if required
 if(plcHld[i].hasAttribute('required')) {
 // create error messaging
 plcHld[i].classList.add('error');
 e.preventDefault();
 } else {
 // if not required, clear value before submitting.
 plcHld[i].value = '';
 }
 } else {
 // remove legacy error messaging
 plcHld[i].classList.remove('error');
 }
 }
 });
 }
</script>

The first point to note about this script is that we’re using the Modernizr1 JavaScript

library to detect support for the placeholder attribute. There’s more information

about Modernizr in Appendix A, but for now it’s enough to understand that it

provides you with a whole raft of true or false properties for the presence of given

HTML5 and CSS3 features in the browser. In this case, the property we’re using is

fairly self-explanatory. Modernizr.input.placeholder will be true if the browser

supports placeholder, and false if it doesn’t.

If we’ve determined that placeholder support is absent, we grab all the elements

on the page with a placeholder attribute. For each of them, we check that the value

1 http://www.modernizr.com/

73HTML5 Forms

http://www.modernizr.com/

isn’t empty, then replace that value with the value of the placeholder attribute. In

the process, we add the placeholder class to the element, so you can lighten the

color of the font in your CSS or otherwise make it look more like a native placehold-

er. When the user focuses on the input with the faux placeholder, the script clears

the value and removes the class. When the user removes focus, the script checks to

see if there is a value. If not, we add the placeholder text and class back in.

Before submitting the form, we need to check if any form controls have a value that

matches their placeholder attribute. In this scenario, we could have also checked

to see whether any required input still has the placeholder class when the form is

submitted. If a form control is required, we add error messaging and prevent the

form from submitting. If the form control isn’t required, we clear the placeholder

values that are still in place before submitting, only clearing those if no required

elements have prevented form submission.

Before adding a reset button to your form, determine whether your users will ever

want to throw away all of their work. If the answer is yes and you include a reset

button, note that if the user clicks on the reset button, our faux placeholders will

disappear but the placeholder class will remain, as we are using the value in our

polyfill.

This is a great example of an HTML5 polyfill: we use JavaScript to provide support

only for those browsers without native support, and we do it by leveraging the

HTML5 elements and attributes already in place, rather than resorting to additional

classes or hard-coded values in our JavaScript.

While the placeholder attribute may not be the most important one to polyfill, it’s

a good example of how we can simplify form validation scripts while polyfilling

support for all the new attributes, all while maintaining separation between the

content and presentation layers.

The pattern Attribute
The pattern attribute enables you to provide a regular expression that the user’s

input must match in order to be considered valid. For any input where the user can

enter free-form text, you can limit what syntax is acceptable with the pattern attrib-

ute.

HTML5 & CSS3 for the Real World74

The regular expression language used in patterns is the same Perl-based regular

expression syntax as JavaScript, except that the pattern attribute must match the

entire value, not just a subset. When including a pattern, you should always indicate

to users what is the expected (and required) pattern.

The global title attribute has special significance when used in conjunction with

the pattern attribute. Since browsers currently show the value of the title attribute

on hover such as a tooltip, include pattern instructions that are more detailed than

placeholder text, and which form a coherent statement. That title attribute will

also be displayed with the browser’s default error message in browsers that support

native form validation with error messaging, which we’ll cover later in this chapter.

Regular Expressions

Regular expressions are a feature of most programming languages that allow de-

velopers to specify patterns of characters and check to see if a given string matches

the pattern. Regular expressions are famously indecipherable to the uninitiated.

For instance, one possible regular expression to check if a string is formatted as

a hexidecimal color value is this: #[A-Fa-f0-9]{6}.

A full tutorial on the syntax of regular expressions is beyond the scope of this

book, but there are plenty of great resources,2 tutorials,3 and cheat sheets4 available

online if you’d like to learn. Alternatively, you can search the Web or ask around

on forums for a pattern that will serve your purpose.

For a basic example, let’s add a pattern attribute to the password field in our form.

We want to enforce the requirement that the password be at least six characters long

with no spaces:

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>

2 http://shop.oreilly.com/product/9780596528126.do
3 http://qntm.org/files/re/re.html
4 http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

75HTML5 Forms

http://shop.oreilly.com/product/9780596528126.do
http://qntm.org/files/re/re.html
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

 <input type="password" id="password" name="password" required
title="(at least 6 characters, no spaces)" pattern="\S{6,}">

\S refers to “any nonwhitespace character,” and {6,} means “at least six times.” If

you wanted to stipulate the maximum amount of characters, the syntax for between

six and ten characters, for example, would be \S{6,10}.

As with the required attribute, the pattern attribute will prevent the form from

being submitted if there is no match for the pattern, and will provide an error mes-

sage.

If your pattern is not a valid regular expression, it will be ignored for the purposes

of validation.

The pattern attribute has been supported to some extent in all browsers since

Firefox 4, Safari 5, Chrome 10, Opera 11, IE10, and Android 2.3. By “some extent,”

we mean that while all browsers now support the pattern attribute, some—notably

Safari and Android through 4.4—allow invalid data to be sent on form submission.

Additionally, similar to the placeholder and required attributes, you can use the

value of this attribute to provide the basis for your JavaScript validation code for

nonsupporting browsers.

The disabled Attribute
The Boolean disabled attribute has been around longer than HTML5 but has been

expanded on, to a degree. It can be used with any form control except the new

output element, and, unlike previous versions of HTML, HTML5 allows you to set

the disabled attribute on a fieldset and have it apply to all the form elements con-

tained in that fieldset.

Generally, form elements with the disabled attribute have the content grayed out

by default in the browser. Browsers will prohibit the user from focusing on a form

control that has the disabled attribute set. This attribute is often used to disable

the submit button until all fields are correctly filled out.

HTML5 & CSS3 for the Real World76

You can employ the :disabled pseudo-class in your CSS to style disabled form

controls, and use either :enabled or :not(:disabled) pseudo-classes to target form

controls that aren’t disabled.

Form controls with the disabled attribute aren’t submitted along with the form so

their values will be inaccessible to your form processing code on the server side. If

you want a form value that users are unable to edit but can still see and submit, use

the readonly attribute.

The readonly Attribute
The readonly attribute is similar to the disabled attribute: it makes it impossible

for the user to edit the form field. Unlike disabled, however, the field can receive

focus and its value is submitted with the form.

In a comments form, we may want to include the URL of the current page or the

title of the article that is being commented on, letting the user know that we’re

collecting this data without allowing them to change it:

<label for="about">Article Title</label>
<input type="text" name="about" id="about" readonly
➥value="http://www.thehtml5herald.com/register.html">

The multiple Attribute
The multiple attribute, if present, indicates that multiple values can be entered in

a form control. While it was available in previous versions of HTML, it only applied

to the select element. In HTML5, it can be added to file, email, and range input

types as well. If present, the user can select more than one file, include several

comma-separated email addresses, or have a range with two sliders.

While multiple file input is supported in all browsers since mobile Safari 7 and

IE10, the multiple attribute on range input is yet to be supported anywhere at the

time of writing.

Spaces or commas?

You may notice that the iOS touch keyboard for email inputs includes a space.

Of course, spaces aren’t permitted in email addresses, but browsers allow you to

77HTML5 Forms

separate multiple emails with spaces along with the required comma. Originally

the spaces were disallowed in some browsers, but adding spaces after the comma

separator has been included in the specification.

The form Attribute
Not to be confused with the form element, the form attribute in HTML5 allows you

to associate form elements with forms in which they’re not nested. It means that

you can now associate a fieldset or form control with any other form in the document.

This solves the age-old issue of forms not being nestable. While you’re still unable

to nest forms, you can associate “nested” form controls with a form that’s not an

ancestor.

The form attribute takes as its value the ID of the form element with which the

fieldset or control should be associated.

If the attribute is omitted, the control will only be submitted with the form in which

it’s nested. If you include the form attribute and remove it, make sure to use

el.removeAttribute('form') and not el.setAttribute('form', ''). If the form

attribute is included but the value is either empty or points to an invalid form ID,

the form control will be disassociated from all forms on the page and will not be

submitted with any form, including any ancestral form in which it may be nested.

This attribute is supported in all browsers, starting with Android 4 and IE 11.

The autocomplete Attribute
The autocomplete attribute specifies whether the form, or a form control, should

have autocomplete functionality. For most form fields, this will be a drop-down

that appears when the user begins typing. For password fields, it’s the ability to

save the password in the browser. Support for this attribute has been present in

browsers for years, though it was never in the specification until HTML5.

If the autocomplete attribute is omitted from the form control or the form, the default

value is on. You may have noticed this the last time you filled out a form. In order

to disable autocomplete on a form control (or form), use autocomplete="off". This

is a good idea for sensitive information, such as a credit card number, or data that

will never need to be reused, such as a CAPTCHA.

HTML5 & CSS3 for the Real World78

Autocompletion is also controlled by the browser, ignoring developer-set preferences.

While the default value is on, the browser must have it enabled for it to work at all;

however, setting the autocomplete attribute to off overrides the browser's on pref-

erence for the relevant form control.

The datalist Element and the list Attribute
Datalists are currently supported in all browsers except Safari, starting with IE10

and Android 4.4.3. In the default form, they fulfill a common requirement: a text

field with a set of predefined autocomplete options. Unlike the select element,

users can enter whatever value they like, but they’ll be presented with a set of sug-

gested options.

Figure 4.4. The datalist element in action in Firefox

For some input types, like text and date input types, a drop-down list of options

is presented as users type into the field, as shown in Figure 4.4. For the range input

type, the browser will display little tick marks along the slider rule indicating where

suggested options are found. For the color input type, users are presented with

swatches of color suggestions, with the option to switch to the device's default color

picker if they prefer to pick a different color.

The datalist element, much like select, is a list of options, with each one placed

in an option element. You then associate the datalist with an input using the

list attribute on the input. The list attribute takes as its value the id attribute of

the datalist you want to associate with the input. One datalist can be associated

with several input fields.

Here’s what this would look like in practice:

79HTML5 Forms

<label for="favcolor">Favorite Color</label>
<input type="color" list="colors" id="favcolor" name="favcolor">

<datalist id="colors">
 <option value="#0000FF" label="blue">
 <option value="#008000" label="green">
 <option value="#ff0000" label="red">
 <option value="#663399" label="RebeccaPurple">
</datalist>

5Here, the user will be presented with a selection of four color swatches, with the

choice to see the full color picker if they prefer a different color.

The autofocus Attribute
The Boolean autofocus attribute specifies that a form control should be focused as

soon as the page loads. Only one form element can have autofocus in a given page.

For a better user experience and for accessibility reasons, it is best not to use this

attribute.

The input elements support many more attributes, with some being type-specific.

The attributes include alt, src, height, and width for the image input type, and

step, min, and max for numeric input types, including dates and range. dirname

helps tell the server the form control’s directionality. formaction, formenctype,

formmethod, formnovalidate, and formtarget provide methods to override the

form’s attributes. inputmode helps indicate to the browser what keypad to show

when the device is capable of displaying dynamic keypads. minlength and

maxlength dictate the length of allowable input. checked, name, size, type, and

value should already be familiar to you, though :checked and :default pseudo-

classes may be new. We’ll cover some of these with their relevant input types next.

Input Types
You’re probably already familiar with the input element’s type attribute. This is

the attribute that determines what kind of form input will be presented to the user.

If it is omitted—or in the case of new input types and older browsers, not under-

stood—it still works; the input will default to type="text". This is the key that

5 The named color "rebeccapurple" #663399, is a tribute to Eric Meyer's daughter, who passed away in

2014. It is a mark of support from all the web community to Eric Meyer.

HTML5 & CSS3 for the Real World80

makes HTML5 forms usable today even if you’re still supporting older browsers. If

you use a new input type, such as email or search, older browsers will simply

present users with a standard text field.

Our sign-up form currently uses four of the ten input types you’re familiar with:

checkbox, text, password, and submit. Here’s the full list of types that were available

before HTML5:

■ button

■ checkbox

■ file

■ hidden

■ image

■ password

■ radio

■ reset

■ submit

■ text

The HTML5 specification6 gave us nine more input types that provide for more

data-specific UI elements and native data validation:

■ search

■ email

■ url

■ tel

■ date

6 http://www.w3.org/TR/html5/forms.html

81HTML5 Forms

http://www.w3.org/TR/html5/forms.html

■ time

■ number

■ range

■ color

HTML5.1 and the WHATWG HTML Living Standard includes four additional date

input types, three of which are well supported in modern browsers:

■ datetime-local

■ month

■ week

■ datetime (not supported in any browser)

Let’s look at each of these new types in detail, and see how we can put them to use.

Search
The search input type (type="search") provides a search field—a one-line text

input control for entering one or more search terms. The spec states:

The difference between the text state and the search state is

primarily stylistic: on platforms where search fields are distin-

guished from regular text fields, the search state might result in an

appearance consistent with the platform’s search fields rather than

appearing like a regular text field.

Many browsers style search inputs in a manner consistent with the browser or the

operating system’s search boxes. Currently, Chrome, Safari, Opera, and IE have added

the ability to clear the input with the click of a mouse by providing an × icon once

text is entered into the field, as shown in Figure 4.5. The date/time input types are

also clearable in Chrome and Opera, and IE11 includes an × icon to clear most input

types now, including inputs of type text.

HTML5 & CSS3 for the Real World82

Figure 4.5. The search input type is styled to resemble the operating system’s search fields

On Apple devices, the search field has rounded corners by default in Chrome, Safari,

and Opera, matching the devices’ search field appearance. On touch pads with dy-

namic keyboards, the “go” button appears as a search icon or the word “search,”

depending on the device. If you include the non-standard results attribute, Chrome

and Opera will display a magnifying/looking glass icon within the form field.

While you can still use type="text" for search fields, the new search type is a

visual cue as to where the user needs to go to search the site, and provides an inter-

face to which the user is accustomed. The HTML5 Herald has no search field, but

here’s an example of how you’d use it:

<form id="search" method="get">
 <label for="s">Search</label>
 <input type="search" id="s" name="s">
 <input type="submit" value="Search">
</form>

Since search, like all the new input types, appears as a regular text box in nonsup-

porting browsers, there’s no reason not to use it when appropriate.

Email Addresses
The email type (type="email") is, not surprisingly, used for specifying one or more

email addresses. It supports the Boolean multiple attribute, allowing for multiple

comma-separated (with optional space) email addresses.

Let’s change our form to use type="email" for the registrant’s email address:

<label for="email">My email address is</label>
<input type="email" id="email" name="email">

If you change the input type from text to email, as we’ve done here, you’ll notice

no visible change in the user interface; the input still looks like a plain text field.

However, there are differences behind the scenes.

83HTML5 Forms

The change becomes apparent if you’re using a touchpad device. When you focus

on the email field, most touchpad devices—such as the iPad or Android phone

running Chromium—will all display a keyboard optimized for email entry, including

the @ symbol, period, and space buttons, but no comma, as shown in Figure 4.6.

Figure 4.6. The email input type provides a custom keyboard on iOS devices

Firefox, Chrome, Opera, and Internet Explorer 10 also provide error messaging for

invalid email inputs: if you try to submit a form with content unrecognizable as

one or more email addresses, the browser will tell you what’s wrong. The default

error messages are shown in Figure 4.7.

Figure 4.7. Error messages for incorrectly formatted email addresses on Opera (left) and Firefox (right)

Custom Validation Messages

Dislike the default error messages the browsers provide? Set your own with

.setCustomValidity(errorMsg). setCustomValidity takes as its only

parameter the error message you want to provide. If you set a custom validation

message, once that value becomes valid you must set the validation message to

an empty string (a falsy value) to enable form submission:

HTML5 & CSS3 for the Real World84

function setErrorMessages(formControl) {
 var validityState_object = formControl.validity;
 if (validityState_object.valueMissing) {
 formControl.setCustomValidity('Please set an age
➥(required)');
 } else if (validityState_object.rangeUnderflow) {
 formControl.setCustomValidity('You\'re too young');
 } else if (validityState_object.rangeOverflow) {
 formControl.setCustomValidity('You\'re too old');
 } else if (validityState_object.stepMismatch) {
 formControl.setCustomValidity('Counting half
➥birthdays?');
 } else {
 //if valid, must set falsy value or will always error
 formControl.setCustomValidity('');
 }
}

Unfortunately, while you can change the content of the message, you’re stuck

with its appearance, at least for now.

URLs
The url input (type="url") is used for specifying a web address. Much like email,

it will appear as a normal text field. On many touch screens, the onscreen keyboard

displayed will be optimized for web address entry, with a forward slash (/) and a

“.com” shortcut key.

Let’s update our registration form to use the url input type:

<label for="url">My website is located at:</label>
<input type="url" id="url" name="url">

Validation of URLs
All modern browsers starting with Internet Explorer 10 support the url input type,

reporting the input as invalid if the value doesn’t begin with a protocol. Only the

general protocol format of a URL is validated, so, for example, q://example.xyz

will be considered valid, even though q:// isn’t a real protocol and .xyz isn’t a real

top-level domain. If you want the value entered to conform to a more specific format,

85HTML5 Forms

provide information in your label (or in a placeholder) to let your users know, and

use the pattern attribute to ensure that it’s correct, as previously described.

Telephone Numbers
For telephone numbers, use the tel input type (type="tel"). Unlike the url and

email types, the tel type doesn’t enforce a particular syntax or pattern. Letters and

numbers—indeed, any characters other than new lines or carriage returns—are

valid. There’s a good reason for this: all over the world, countries have valid phone

numbers of various lengths and punctuation, so it would be impossible to specify

a single format as standard. For example, in the USA, +1(415)555-1212 is just as

well understood as 415.555.1212, but companies may also use letters in their phone

number, such as (800)CALL-NOW.

You can encourage a particular format by including a placeholder with the correct

syntax, or a comment after the input with an example. Additionally, you can stipulate

a format by using the pattern attribute. Include a title with the pattern attribute

to provide for a tooltip and to improve the UX of the native validation error message.

You can also use the setCustomValiditymethod to provide more informative client-

side validation.

In using the tel input type, dynamic touch pads will usually display the telephone

keyboard, including the asterisk and pound key. You can use tel for more than just

phone numbers. For example, it is likely to be the best keypad for social security

number form entry.

Numbers
The number type (type="number") provides an input for entering a number. Usually,

this is a spinner box, where you can either enter a number, or click on the up/down

arrows in a native browser spinner UI to select a number.

Let’s change our quantity field to use the number input type:

<label for="quantity">I would like to receive <input type="number"
➥min="1" name="quantity" id="quantity"> copies of <cite>The HTML5
➥ Herald</cite></label>

Figure 4.8 shows what this looks like in Opera.

HTML5 & CSS3 for the Real World86

Figure 4.8. The number input seen in Opera

On many touchscreen devices, focusing on a number input type will bring up a

number touch pad (rather than a full keyboard).

The number input has min, max, and step attributes to specify the minimum, max-

imum, and incremental values allowed. If the step is omitted it defaults to 1. If you

would like to allow float values, you must specify a float step, such as 0.1 or the

keyword any to allow for any value. Note that some browsers will minimize the

width of the number form field for restricted numbers. For example, min="0"

max="10" step="1" doesn't need to be as wide as step="any", where the user could

enter the full value of Pi.

Use number with Caution

There will be times when you may think you want to use number, when in reality

another input type is more appropriate. For example, it might seem to make sense

that a street address should be a number. But think about it: would you want to

click the spinner box all the way up to 34154? More importantly, many street

numbers have non-numeric portions: think 24½ or 36B, neither of which work

with the number input type.

Additionally, account numbers may be a mixture of letters and numbers, or have

dashes. If you know the pattern of your number, use the pattern attribute. Just

remember not to use number if the range is extensive or the number could contain

non-numeric characters and the field is required. If the field is optional, you might

want to use number anyway, or tel in order to prompt the number or telephone

keyboard as the default on touchscreen devices.

Ranges
The range input type (type="range") displays a slider control. As with the number

type, it allows the min, max, and step attributes. The difference between number and

range, according to the spec, is that the exact value of the number is unimportant

with range. It’s ideal for inputs where you want an imprecise number; for example,

87HTML5 Forms

a customer satisfaction survey asking clients to rate aspects of the service they re-

ceived.

Let’s change our registration form to use the range input type. We'll create a field

asking users to rate their knowledge of HTML5 on a scale of 1 to 10:

<label for="rating">On a scale of 1 to 10, my knowledge of HTML5
➥is:</label>
<input name="rating" type="range" min="1" max="10" step="1">

Figure 4.9 shows what this input type looks like in Safari. In this case the step at-

tribute is not required, as it defaults to 1. A negative value for step will break the

range by making the thumb immovable in Firefox.

Figure 4.9. The range input type in Safari

The default value of a range is the midpoint of the slider—in other words, halfway

between the minimum and the maximum. Including the list attribute with an as-

sociated datalist enables creating little notches along the slider path showing the

location of the suggested values.

The spec allows for a reversed slider (with values from right to left) if the maximum

specified is less than the minimum; however, no browsers currently support this.

Additionally, the spec allows for two thumbs with the inclusion of the multiple

attribute. No browsers support this either.

range is supported in all browsers, starting with Firefox 23, Android 4.2, and Internet

Explorer 10. list support on the range input type is currently only found in Chrome

20+, Opera, and Internet Explorer 10+.

Colors
The color input type (type="color") provides the user with a color picker—or at

least it does in some browsers, including BlackBerry 10, Firefox 29+, Safari 8+ for

HTML5 & CSS3 for the Real World88

desktop, Chrome, Opera, and Android 4.4. WebKit for iOS 8 and Internet Explorer

11 are yet to support the color input type. The color picker returns a lower-case

hexadecimal RGB color value, such as #ff3300, with the default value being #000000

(black).

If you want to use a color input, provide placeholder text indicating that a hexa-

decimal RGB color format is required, and use the pattern attribute to restrict the

entry to only valid hexadecimal color values.

We don’t use color in our form, but if we did, it would look a little like this:

<label for="clr">Color: </label>
<input id="clr" name="clr" type="color" placeholder="#ffffff"
➥pattern="#(?:[0-9A-Fa-f]{6})">

The resulting color picker is shown in Figure 4.10. Clicking the Other… button

brings up a full color wheel, allowing the user to select any hexadecimal color value.

If you’re after other colors, use the list attribute with an associated datalist to

define each color you want to suggest as individual options. This is currently sup-

ported in Blink browsers only.

89HTML5 Forms

Figure 4.10. Chrome’s color picker control for the color input type

Dates and Times
There are new date and time input types, some of which are included in the HTML5

specification, as well as a few others that are still listed in the HTML Living

Standard and the HTML5.1 draft that may be at risk. The date and time input types

made it into the HTML5 W3C Recommendation, while datetime, datetime-local,

month, and week are at risk of being dropped. All date and time inputs accept data

formatted according to the ISO 8601 standard.7

Here are the available date and time input types:

■ date: comprises the date (year, month, and day), but no time; for example, 2004-

06-24.

7 http://en.wikipedia.org/wiki/ISO_8601

HTML5 & CSS3 for the Real World90

http://en.wikipedia.org/wiki/ISO_8601

■ time: signifies a time of day using the military format (24-hour clock); for ex-

ample, 22:00 instead of 10.00 p.m.

■ month: only includes the year and month; for example, 2012-12.

■ week: covers the year and week number (from 1 to 52); for example, 2011-W01

or 2012-W52.

■ datetime: includes both the date and time, separated by a “T”, and followed by

either a “Z” to represent UTC (Coordinated Universal Time) or by a time zone

specified with a + or - character; for example, “2011-03-17T10:45-5:00” represents

10:45 a.m. on the 17th of March, 2011 in the UTC minus five hours time zone

(Eastern Standard Time). This value has been removed from the spec and then

added back in. It is currently without support.

■ datetime-local: is identical to datetime, except that it omits the time zone;

the main difference is that datetime-local is supported in browsers that support

date and time, while datetime is not.

The most commonly used of these types is date. The specifications call for the

browser to display date controls. At the time of writing, WebKit for iOS, Chrome

20+, and Opera provide calendar controls for most of these values. Internet Explorer

11, Safari for desktop, and Firefox 37 still do not.

Let’s change our subscription start date field to use the date input type:

<label for="startdate">Please start my subscription on:</label>
<input type="date" min="1904-03-17" max="1904-05-17"
➥id="startdate" name="startdate" required aria-required="true"
➥placeholder="1904-03-17">

Now, we’ll have a calendar control when we view our form in Opera, Chrome, or

iOS WebKit, as shown in Figure 4.11. Unfortunately, it’s unable to be styled with

CSS at present.

91HTML5 Forms

Figure 4.11. A calendar control

For the month and week types, browsers display a similar UI as the date input type,

but only allow the user to select full months or weeks. In those cases, individual

days are unable to be selected; instead, clicking on a day selects the whole month

or week. While datetime-local is supported in these browsers, datetime is not.

datetime has been deprecated. month, week, and datetime-local are at risk as well,

but have yet to fall to the same fate. Chrome lost support for datetime in version

26, Opera in version 15, and Safari in iOS7. Instead of using datetime since support

should be deprecated, use date and time as two separate input types.

We recommend including a minimum and maximum when using the date input

type. As with number and range, this is done with the min and max attributes.

The placeholder attribute that we added to our start date field earlier is made re-

dundant in browsers supporting the datepicker interface, but it makes sense to leave

it in place to guide users of IE, Safari, and Firefox until they implement the date

and time controls. Until all browsers support the UI of the new input types, place-

holders are a good way to hint to your users what kind of data is expected in those

fields. Remember, they’ll just look like regular text fields in nonsupporting browsers.

HTML5 & CSS3 for the Real World92

Dynamic Dates

In our example, we hardcoded the min and max values into our HTML. If you

wanted the minimum to be the day after the current date—which makes sense for

a newspaper subscription start date—this would require updating the HTML every

day. The best way to handle it is to dynamically generate the minimum and

maximum allowed dates on the server side. A little PHP can go a long way:

<?php
function daysFromNow($days){
 $added = ($days * 24 * 3600) + time();
 return date("Y-m-d", $added);
}
?>

In our markup where we had static dates, we now dynamically create them with

the above function:

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="date" min="<?php echo(daysFromNow(1)); ?>"
➥max="<?php echo(daysFromNow(91)); ?>" id="startdate"
➥name="startdate" required aria-required="true"
➥placeholder="<?php echo(daysFromNow(1)); ?>">

This way, the user is limited to entering dates that make sense in the context of

the form.

You can also include the step attribute with these input types. For example,

step="7" on date will limit the user to selecting only one day per week: the partic-

ular weekday depends on the min if one is present, or is the current day of the week

if none is present. On time input, the step attribute must be expressed in seconds,

so adding step="900" on the time input type will cause the input to step in incre-

ments of 15 minutes.

Additional New Form Controls in HTML5
We’ve covered the new values for the input element’s type attribute, along with

some attributes that are valid on most form elements. But HTML5 web forms still

93HTML5 Forms

have more to offer us! There are five new form elements in the HTML5 forms spe-

cification: datalist, output, keygen, progress, and meter. We covered datalist

above. We introduced you to progress and meter in the last chapter as they are

often useful outside of forms. So let’s recap and take a look at the other two elements.

The progress and meter Elements
Two of the most well-known HTML5 elements are the progress and meter elements.

The meter element provides for a gauge, displaying a general value within a range.

You provide minimum (min) and maximum (max) values, and the required value

that falls between those minimum and maximum values. While many think it’s a

form control with attributes similar to some numeric input types, it has no name

attribute and won’t be submitted on form submission.

The meter will default the minimum value to 0, or the meter’s value, whichever is

lower. The maximum value defaults to 1 or the meter’s value, whichever is higher.

Use meter when there is a minimum value, a maximum value, and optimal values,

and the value can go up and down like a test grade, gas tank level, or blood pressure.

With these three attributes, browsers that support meter including Android 4.4+

(but not iOS7 or IE11) will show a green gauge.

meter enables us to show when a value is in the right range with the low, high, and

optimum values. If the value is between min and low, the meter is yellow. If the

value is between the low and high value the meter is green. If the value is between

high and max, it will be red. Currently the optimum value has no noticeable effect.

The meter element should not be used to indicate progress; instead, use a progress

bar to indicate the percentage of how complete a task is.

Progress attributes include max and value, with progress always being between 0

and 100% complete. The browser calculates what percentage the value is of the

maximum and adjusts the length of the progress bar accordingly. It displays a par-

tially filled gray to blue progress bar where it is fully gray at 0% and fully blue at

100%.

If no value is included, the progress bar is indeterminate. Chrome, Opera, Safari,

and Firefox display indeterminate progress as animated bars, with IE styling it as

animated dots.

HTML5 & CSS3 for the Real World94

Unlike meter, progress heads only in the direction of 100% of the max value. The

presentation defaults to inline-block so you can set width and height on progress

elements. Height will not change the actual height of the stylized bar (unlike meter)

but will add space below it.

The output Element
The purpose of the output element is to accept and display the result of a calculation.

The output element should be used when the user can see the value, but not directly

manipulate it, and when the value can be derived from other values entered in the

form. An example use might be the total cost calculated after shipping and taxes in

a shopping cart.

The output element’s value is contained between the opening and closing tags.

Generally, it will make sense to use JavaScript in the browser to update this value.

The output element has a for attribute, which is used to reference the IDs of form

fields whose values went into the calculation of the output element’s value.

The output element’s name and value are submitted along with the form.

The keygen Element
The keygen element is a control for generating a public-private key pair8 and for

submitting the public key from that key pair. Opera, Chrome, Safari, Android, and

Firefox all support this element, rendering it as a drop-down menu with options

for the length of the generated keys; all provide different options, though. There is

still no support in iOS7 and IE11.

The keygen element introduces two new attributes: the challenge attribute specifies

a string that is submitted along with the public key, and the keytype attribute spe-

cifies the type of key generated. At the time of writing, the only supported keytype

value is rsa, a common algorithm used in public-key cryptography.

The contenteditable Attribute
While it is always best to use the most appropriate form element for its intended

purpose, sometimes the existing form elements fall short of our needs; for example,

no form control makes for a good inline WYSIWYG text editor.

8 http://en.wikipedia.org/wiki/Public-key_cryptography

95HTML5 Forms

http://en.wikipedia.org/wiki/Public-key_cryptography

There is a roundabout solution for that, though. Any element in an HTML5 document

can be made editable with the contenteditable attribute. The contenteditable

attribute, written simply as contenteditable or contenteditable="true", makes

the element on which it is included editable. You will usually find this attribute

on divs, but you can even make a style element that's set to "display:block"

editable, and change CSS on the fly. While any element that is not natively a form

control will not by default be sent to the server with the rest of the form data on

form submission, you can use JavaScript to send user edited content to the server

asynchronously or on form submission.

If you’ve ever seen an editable profile where the element to click doesn’t look like

a form control at all, there is a chance that you were actually editing a contented-

itable element. Any edits made on contenteditable components actually update

the DOM.

Simply adding contenteditable to an element makes that element editable in all

browsers. In addition, its descendents will also be editable unless contentedit-

able="false" is explicitly applied to them. While this does update the DOM client

side, you do have to add JavaScript to explicitly save it.

Changes to Existing Form Controls
There have been a few other changes to form controls in HTML5.

The form Element
Throughout this chapter, we’ve been talking about attributes that apply to various

form field elements; however, there are also some new attributes specific to the

form element itself.

First, as we’ve seen, HTML5 provides a number of ways to natively validate form

fields; certain input types such as email and url, for example, as well as the re-

quired and pattern attributes. You may, however, want to use these input types

and attributes for styling or semantic reasons without preventing the form being

submitted. The new Boolean novalidate attribute allows a form to be submitted

without native validation of its fields.

Next, forms no longer need to have the action attribute defined. You no longer

need to explicitly state the URL to use it for form submission. If omitted, the form

HTML5 & CSS3 for the Real World96

will behave as though the action were set to the current page. You can write or

override the URL defined in the form’s action attribute with the formaction attribute

of the button input types that activate form submission.

Lastly, the autocomplete attribute we introduced earlier can also be added directly

to the form element; in this case, it will apply to all fields in that form unless those

fields override it with their own autocomplete attribute.

The optgroup Element
In HTML5, you can have an optgroup as a child of another optgroup, which is

useful for multilevel select menus.

The textarea Element
In HTML 4, we were required to specify a textarea element’s size by specifying

values for the rows and cols attributes. In HTML5, these attributes are no longer

required; you should use CSS to define a textarea’s width and height.

New in HTML5 is the wrap attribute. This attribute applies to the textarea element,

and can have the values soft (the default) or hard. With soft, the text is submitted

without line breaks other than those actually entered by the user, whereas hard will

submit any line breaks introduced by the browser due to the size of the field. If you

set the wrap to hard, you need to specify a cols attribute.

In Conclusion
Unfortunately, we weren’t able to cover everything—that should be a book in itself.

This was, however, a fairly in-depth introduction. As support for HTML5 input

elements and attributes grows, sites will require less and less JavaScript for client-

side validation and user interface enhancements, while browsers handle most of

the heavy lifting. Legacy user agents are likely to stick around for the foreseeable

future, but there is no reason to avoid moving forward and using HTML5 web forms,

with appropriate polyfills and fallbacks filling the gaps where required.

In the next chapter, we’ll continue fleshing out The HTML5 Herald by adding what

many consider to be HTML5’s killer feature: native video and audio.

97HTML5 Forms

Chapter5
HTML5 Video and Audio
No book on HTML5 would be complete without an examination of the new video

and audio elements. These groundbreaking new elements have already been utilized

on the Web, and more developers and content creators are starting to incorporate

them into their projects in place of technologies such as Flash and Silverlight.

For The HTML5 Herald, we’re going to place a video element in the first column

of our three-column layout. Before we explore the details of the video element and

its various features, though, we'll take a brief look at the state of video on the Web

today.

For the most part, this chapter will focus on the video element, since that’s what

we’re using in our sample project. Note that the audio element behaves nearly

identically: almost all the features that we’ll be using for video also apply to audio.

Where there are exceptions, we’ll do our best to point them out.

A Bit of History
Up until the late 2000s and early 2010s, multimedia content on the Web was for

the most part placed in web pages by means of third-party plugins or applications

that integrated with the web browser. Some examples of such software include

QuickTime, RealPlayer, and Silverlight.

At that time, by far the most popular way to embed video and audio on web pages

was by means of Adobe’s Flash Player plugin. The Flash Player plugin was originally

developed by Macromedia and is now maintained by Adobe as a result of their 2005

buy out of the company. The plugin has been available since the mid-90s, but did

not really take off as a way to serve video content until well into the 2000s.

Before HTML5, there was no standard way to embed video into web pages. A plugin

such as Adobe’s Flash Player is controlled solely by Adobe, and is not open to

community development. The introduction of the video and audio elements in

HTML5 resolves this problem and makes multimedia a seamless part of a web page,

the same as the img element. With HTML5, there’s no need for the user to download

third-party software to view your content, and the video or audio player is easily

accessible via scripting.

The Current State of Play
Unfortunately, as sublime as HTML5 video and audio sounds in theory, it’s less

simple in practice. A number of factors need to be considered before you decide to

include HTML5’s new multimedia elements on your pages.

First, you’ll have to understand the state of browser support. HTML5 audio and

video is supported in all in-use browsers except Internet Explorer versions 8 and

earlier. Many websites still receive some traffic from those earlier browsers, so you’ll

have to take that into consideration.

The good news is even if you need to support those older browsers, you can still

use HTML5 video on your pages today. Later on, we’ll show you how the video

element has been designed with backwards compatibility in mind so that users of

non-supporting browsers will still have access to your multimedia content.

Video Container Formats
Video on the Web is based on container formats and codecs. A container is a

wrapper that stores all the necessary data that comprises the video file being ac-

cessed, much like a ZIP file wraps or contains files. Some examples of well-known

video containers include Flash Video (.flv), MPEG-4 (.mp4 or .m4v), and AVI (.avi).

HTML5 & CSS3 for the Real World100

The video container houses data, including a video track, an audio track with

markers that help synchronize the audio and video, language information, and

other bits of metadata that describe the content. The video container formats relevant

to HTML5 are MPEG-4, Ogg, and WebM.

Video Codecs
A video codec defines an algorithm for encoding and decoding a multimedia data

stream. A codec can encode a data stream for transmission, storage, or encryption,

or it can decode it for playback or editing. For the purpose of HTML5 video, we’re

concerned with the decoding and playback of a video stream. The video codecs that

are relevant to HTML5 video are H.264, Theora, and VP8.

Audio Codecs
An audio codec in theory works the same as a video codec, except that it’s dealing

with the streaming of sound rather than video frames. The audio codecs that are

relevant to HTML5 video are AAC, Vorbis, and MP3.

Licensing Issues

The new video element itself is free to use in any context, but the containers and

codecs are not always as simple. For example, while the Theora and VP8 (WebM)

codecs are not patent-encumbered, the H.264 codec is, so licensing for it is

provided by the MPEG-LA group.

Currently for H.264, if your video is provided to your users for free, there’s no

requirement for you to pay royalties; however, detailed licensing issues are far

beyond the scope and intent of this book, so just be aware that you may have to

do some research before using any particular video format when including HTML5

video in your pages.

The Markup
After that necessary business surrounding containers, codecs, and licensing issues,

it’s time to examine the markup of the video element and its associated attributes.

The simplest way to include HTML5 video in a web page is as follows:

101HTML5 Video and Audio

<video src="example.webm"></video>

As you’ve probably figured out from the preceding sections, this will only work in

a limited number of browsers. It is, however, the minimum code required to have

HTML5 video working to some extent. In a perfect world, it would work every-

where—the same way the img element works everywhere—but that’s a little way

off just yet.

Similar to the img element, the video element can also include width and height

attributes:

<video src="example.webm" width="375" height="280"></video>

Even though the dimensions can be set in the markup, they’ll have no effect on the

aspect ratio of the video. For example, if the video in the previous example was

actually 375×240 and the markup was as shown, the video would be centered ver-

tically inside the 280-pixel space specified in the HTML. This stops the video from

stretching unnecessarily and looking distorted.

The width and height attributes accept integers only, and their values are always

in pixels. Naturally, these values can be overridden via scripting or CSS.

Enabling Native Controls
No embedded video would be complete without giving the user the ability to play,

pause, stop, seek through the video, or adjust the volume. HTML5’s video element

includes a controls attribute that does just that:

<video src="example.webm" width="375" height="280" controls></video>

controls is a Boolean attribute, so no value is required. Its inclusion in the markup

tells the browser to make the controls visible and accessible to the user.

Each browser is responsible for the look of the built-in video controls. Figure 5.1

to Figure 5.4 show how these controls differ in appearance from browser to browser.

Figure 5.1. The native video controls in Chrome

HTML5 & CSS3 for the Real World102

Figure 5.2. … in Firefox

Figure 5.3. … in Internet Explorer

Figure 5.4. … and in Opera

The autoplay Attribute
We’d love to omit reference to this particular attribute, since using it will be undesir-

able for the most part; however, there are cases where it can be appropriate. The

Boolean autoplay attribute does exactly what its name implies: it tells the web page

to play the video immediately as soon as possible.

Normally, this is a bad practice; most of us know too well how jarring it can be if a

website starts playing video or audio as soon as it loads—especially if our speakers

are turned up. Usability best practice dictates that sounds and movement on web

pages should only be triggered when requested by the user. But this doesn’t mean

that the autoplay attribute should never be used.

For example, if the page in question contains nothing but a video—that is, the user

clicked on a link to a page for the sole purpose of viewing a specific video—it may

be acceptable for it to play automatically, depending on the video’s size, surrounding

content, viewing platform, and audience.

Here’s how you’d use this attribute:

103HTML5 Video and Audio

<video src="example.webm" width="375" height="280" controls
➥autoplay></video>

Mobile Browsers Ignore autoplay

Many, if not all, mobile browsers will ignore the autoplay attribute, so the video

will always wait for the user to press the play button before starting. This is

sensible, given that mobile bandwidth is often limited and expensive.

The loop Attribute
Another available attribute that you should think twice before using is the Boolean

loop attribute. Again, it’s fairly self-explanatory: according to the spec, this attribute

will tell the browser to “seek back to the start of the media resource upon reaching

the end.”

So if you created a web page whose sole intention was to annoy its visitors, it might

contain code such as this:

<video src="example.webm" width="375" height="280" controls autoplay
➥loop></video>

Autoplay and an infinite loop! We’d just need to remove the native controls and

we’d have a trifecta of worst practices.

Of course, as with autoplay, there are some situations where loop can be useful: a

browser-based game in which ambient sounds and music should play continuously

when the page is open, for example.

The preload Attribute
In contrast to the two previously discussed attributes, preload is certainly handy

in a number of cases. The preload attribute accepts one of three values:

■ auto: indicates that the video and its associated metadata will start loading before

the video is played. This way, the browser can start playing the video more

quickly when the user requests it.

■ none: indicates that the video shouldn’t load in the background before the user

presses play.

HTML5 & CSS3 for the Real World104

■ metadata: works like none, except that any metadata associated with the video

(for example, its dimensions, duration, and the like) can be preloaded, even

though the video itself won’t be.

The preload attribute has no spec-defined default in cases where it’s omitted; each

browser decides which of those three values should be the default state. This makes

sense, as it allows desktop browsers on good connections to preload the video and/or

metadata automatically, having no real adverse effect; yet it permits mobile browsers

to default to either metadata or none, as many mobile users have restricted band-

width and will prefer to have the choice of whether or not to download the video.

The poster Attribute
When you attempt to view a video on the Web, usually a single frame of the video

will be displayed in order to provide a teaser of its content. The poster attribute

makes it easy to choose such a teaser. This attribute, similar to src, will point to an

image file on the server by means of a URL.

Here’s how our video element would look with a poster attribute defined:

<video src="example.webm" width="375" height="280" controls
➥poster="teaser.jpg"></video>

If the poster attribute is omitted, the default “poster” will be the first frame of the

video, which displays as soon as it’s loaded.

The muted Attribute
The muted attribute, a Boolean, controls the default state of the audio track for the

video element.

Adding this attribute will cause the video’s audio track to default to muted, poten-

tially overriding any user preferences. This will only control the default state of the

element—a user interacting with the controls or JavaScript can change this.

Here it is added to our video element:

105HTML5 Video and Audio

<video src="example.webm" width="375" height="280" poster=
➥"teaser.jpg" muted></video>

In previous versions of the HTML5 spec, there was an attribute called audio that

took a value of muted. The new muted attribute replaces the audio attribute, which

is now obsolete.

Adding Support for Multiple Video Formats
As we’ve discussed, there is currently no option to use a single container format to

serve your video, even though that’s really the idea behind having the video element,

and one which we hope will be realized in the near future. To include multiple

video formats, the video element allows source elements to be defined so that you

can allow each browser to display the video using the format of its choice. These

elements serve the same function as the src attribute on the video element, so if

you’re providing source elements, there’s no need to specify an src for your video

element.

To achieve full browser support, here’s how we’ll declare our source elements:

<source src="example.mp4" type="video/mp4">
<source src="example.webm" type="video/webm">
<source src="example.ogv" type="video/ogg">

The source element (oddly enough) takes an src attribute that specifies the location

of the video file. It also accepts a type attribute that specifies the container format

for the resource being requested. This latter attribute enables the browser to determ-

ine if it can play the file in question, thus preventing it from unnecessarily down-

loading an unsupported format.

The type attribute allows also a codec parameter to be specified, which defines the

video and audio codecs for the requested file. Here’s how our source elements will

look with the codecs specified:

HTML5 & CSS3 for the Real World106

<source src="example.mp4" type='video/mp4; codecs="avc1.42E01E,
➥mp4a.40.2"'>
<source src="example.webm" type='video/webm; codecs="vp8, vorbis"'>
<source src="example.ogv" type='video/ogg; codecs="theora, vorbis"'>

You’ll notice that the syntax for the type attribute has been slightly modified to

accommodate the container and codec values. The double quotes surrounding the

values have changed to single quotes, and another set of nested double quotes is

included specifically for the codecs.

This can be a tad confusing at first glance, but in most cases you’ll just be copying

and pasting those values once you have a set method for encoding the videos (which

we’ll touch on later in this chapter). The important point is that you define the

correct values for the specified file to ensure that the browser can determine which

(if any) file it can play.

Which formats do you need?

Depending on your website’s target audience, you may not require three source

elements for full browser support. Support for video and audio codecs and con-

tainers is excellent, and you might only need one or two combinations. To help

you decide which formats to use, be sure to check out the latest browser support

info on Can I use.1

Source Order
The three source elements are placed as children of the video element, and the

browser being used to render the HTML will choose whichever container/codec

format it recognizes—downloading only the resources it needs and ignoring the

others. With our three file formats declared, our code will now look like this:

<video width="375" height="280" poster="teaser.jpg" audio="muted">
 <source src="example.mp4" type='video/mp4; codecs="avc1.42E01E,
➥mp4a.40.2"'>
 <source src="example.webm" type='video/webm; codecs="vp8,
➥vorbis"'>

1 http://caniuse.com/

107HTML5 Video and Audio

http://caniuse.com/

 <source src="example.ogv" type='video/ogg; codecs="theora,
➥vorbis"'>
</video>

You’ll notice that our code is now without the src attribute on the video element.

As mentioned, as well as being redundant, including it would override any video

files defined in the source elements, so it’s necessary in this case to leave it out.

What about browsers without support for HTML5
video?
The three source elements that we included inside our video element will cover

all modern browsers, but we’re yet to ensure that our video will play for older

browsers. As has been mentioned, you might still have a significant percentage of

users utilizing browsers without native support for HTML5 video. Most of those

users are on some version of Internet Explorer prior to version 9.

In keeping with the principle of graceful degradation, the video element has been

designed so that older browsers can access the video by some alternate means. Any

browsers that fail to recognize the video element will simply ignore it, along with

its source children. But if the video element contains content that the browser re-

cognizes as valid HTML, it will read and display that content instead.

What kind of content can we serve to those non-supporting browsers? According

to Adobe,2 over one billion desktop users have the Flash Player plugin installed on

their systems. And most of those instances of the Flash plugin are version 9 or later,

which offer support for the MPEG-4 video container format. With this in mind, to

allow Internet Explorer 8 and earlier (and other older browsers without support for

HTML5 video) to play our video, we can declare an embedded Flash video to use

as a fallback. Here’s the completed code for the video on The HTML5 Herald with

the Flash fallback code included:

<video width="375" height="280" poster="teaser.jpg" audio="muted">
 <source src="example.mp4" type='video/mp4; codecs="avc1.42E01E,
➥mp4a.40.2"'>
 <source src="example.webm" type='video/webm; codecs="vp8,
➥vorbis"'>

2 http://www.adobe.com/ca/products/flashruntimes/statistics.html

HTML5 & CSS3 for the Real World108

http://www.adobe.com/ca/products/flashruntimes/statistics.html
http://www.adobe.com/ca/products/flashruntimes/statistics.html

 <source src="example.ogv" type='video/ogg; codecs="theora,
➥vorbis"'>
 <!-- fallback to Flash: -->
 <object width="375" height="280" type="application/x-shockwave-
➥flash" data="mediaplayer-5.5/player.swf">
 <param name="movie" value="mediaplayer-5.5/player.swf">
 <param name="allowFullScreen" value="true">
 <param name="wmode" value="transparent">
 <param name="flashvars" value="controlbar=over&image=images/
➥teaser.jpg&file=example.mp4">
 <!-- fallback image -->
 <img src="teaser.jpg" width="375" height="280" alt="" title="No
➥video playback capabilities">
 </object>
</video>

We’ll skip going into all the details of how this newly added code works (this isn’t

a Flash book, after all!), but here are a few points to note about this addition to our

markup:

■ The width and height attributes on the object element should be the same as

those on the video element.

■ To play the file, we’re using the open-source JW Player by LongTail Video,3

which is free for non-commercial use, but you can use whichever video player

you prefer.

■ The Flash video code has a fallback of its own—an image file that displays if

the code for the Flash video fails to work.

■ The fourth param element defines the file to be used (example.mp4). As has been

mentioned, most instances of the Flash player now support video playback using

the MPEG-4 container format, so there’s no need to encode another video format.

■ HTML5-enabled browsers that support HTML5 video are instructed by the spec

to ignore any content inside the video element that’s not a source tag, so the

fallback is safe in all browsers.

3 http://www.longtailvideo.com/players/jw-flv-player/

109HTML5 Video and Audio

http://www.longtailvideo.com/players/jw-flv-player/

In addition to the Flash fallback content, you could also provide an optional

download video link that allows the user to access a local copy of the video and view

it at their leisure. This would ensure that nobody is left without a means to view

the video.

The last point to mention here is that, as is the case with the extra source elements,

you may have no visitors from browsers without HTML5 video support on your

website, or you might not be concerned about the small percentage using older

browsers. In either of such cases, you could easily leave out the Flash fallback

content and thus simplify the code.

Setting MIME Types
If you find that you’ve followed our instructions closely and your HTML5 video

still fails to play from your server, the issue could be related to the content-type

information being sent.

Content-type, also known as the MIME type, tells the browser the kind of content

it’s looking at. Is this a text file? If so, what kind? HTML? JavaScript? Is this a video

file? The content-type answers these questions for the browser. Every time your

browser requests a page, the server sends “headers” to your browser before sending

any files. These headers tell your browser how to interpret the file that follows.

Content-type is an example of one of the headers the server sends to the browser.

The MIME type for each video file that you include via the source element is the

same as the value of the type attribute (minus any codec information). For the

purpose of HTML5 video, we’re concerned with three MIME types. To ensure that

your server is able to play all three types of video files, place the following lines of

code in your .htaccess file (or the equivalent if you’re using a web server other than

Apache):

AddType video/ogg .ogv
AddType video/mp4 .mp4
AddType video/webm .webm

If this fails to fix your problem, you may have to talk to your host or server admin-

istrator to find out if your server is using the correct MIME types. To learn more

HTML5 & CSS3 for the Real World110

about configuring other types of web servers, read the excellent article “Properly

Configuring Server MIME Types” from the Mozilla Developer Network.4

More on .htaccess

An .htaccess file provides a way to make configuration changes on a per-direct-

ory basis when using the Apache web server. The directives in an .htaccess

file apply to the directory it lives in and all subdirectories. For more on .htaccess

files, see the Apache documentation.5

Encoding Video Files for Use on the Web
The code we’ve presented for The HTML5 Herald is virtually bullet-proof, and will

enable the video to be viewed by nearly everyone that sees the page. Because we

need to encode our video in at least two formats (possibly three, if we want to), we

need an easy way to encode our original video file into these HTML5-ready formats.

Fortunately, there are some online resources and desktop applications that allow

you to do exactly that.

Miro Video Converter6 is free software with a super-simple interface that can encode

your video into all the necessary formats for HTML5 video. It’s available for Mac

and Windows.

Simply drag a file to the window, or browse for a file in the customary way. A drop-

down box gives options for encoding your video in a number of formats, including

various platform- and device-specific presets (Apple iPad, Android, and so on).

There are a number of other choices for encoding HTML5 video, but Miro should

suffice to help you create the two (or three) files necessary for embedding video

that 99% of users can view.

4 https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Configuring_serv-

er_MIME_types
5 http://httpd.apache.org/docs/current/howto/htaccess.html
6 http://www.mirovideoconverter.com/

111HTML5 Video and Audio

https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Configuring_server_MIME_types
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Configuring_server_MIME_types
http://httpd.apache.org/docs/current/howto/htaccess.html
http://www.mirovideoconverter.com/

Creating Custom Video Controls
There’s another huge benefit to using HTML5 video compared to the customary

method of embedding video with a third-party technology. As discussed earlier in

this chapter, with HTML5 video the video element becomes a real part of the web

page, rather than just an inaccessible plugin. It’s as much a part of the web page as

an img element or any other native HTML element. This means that we can target

the video element and its various parts using JavaScript—and even style the video

element with CSS.

As we’ve seen, each browser that supports HTML5 video embeds a native set of

controls to help the user access the video content. These controls have a different

appearance in each browser, which may vex those concerned with a site’s branding.

No problem: by using the JavaScript API available with the video element, we can

create our own custom controls and link them to the video’s behavior.

Custom controls are created using whichever elements you want—images, plain

HTML and CSS, or even elements drawn using the Canvas API—the choice is yours.

To harness this API, create your own custom controls, insert them into the page,

and then use JavaScript to convert those otherwise static graphic elements into dy-

namic, fully functioning video controls.

Some Markup and Styling for Starters
For our sample site, we’re going to build a simple set of video controls to demonstrate

the power of the new HTML5 video API. To start off, Figure 5.5 shows a screenshot

of the set of controls we’ll be using to manipulate the video.

Figure 5.5. Our set of video controls that we’ll be building

Both of those buttons have alternate states: Figure 5.6 shows how the controls will

look if the video is playing and the sound has been muted.

Figure 5.6. Our controls with the sound muted and the video playing

HTML5 & CSS3 for the Real World112

Our controls have three components:

■ play/pause button
■ timer that counts forward from zero
■ mute/unmute button

In most cases, your custom video controls should have all the features of the default

controls that various browsers natively provide. If your set of controls introduces

fewer or inferior features, it’s likely you’ll frustrate your users.

For the purpose of introducing the API rather than trying to mimic what the browsers

natively do, we want to introduce the important parts of the video API gradually.

This will allow you to get your feet wet while establishing a foundation from which

to work.

We’ll be creating a simple, yet usable, set of controls for our video. The main feature

missing from our set of controls is the seek bar that lets the user “scrub” through

the video to find a specific part, so there will be no way of going back to the start

of the video aside from refreshing the page or waiting for the video to end. Other

than that, the controls will function adequately—they’ll allow the user to play,

pause, mute, or unmute the video.

Here’s the HTML we’ll use to represent the different parts of the video controls:

<div id="controls" class="hidden">
 Play/Pause
 00:00
 Mute/Unmute
</div>

We’ll skip going into the CSS in great detail, but here’s a summary of what we’ve

done (you can view the demo page’s source in the code archive if you want to see

how it’s all put together):

■ The text in the play/pause and mute/unmute buttons is removed from view using

the text-indent property.

■ A single CSS sprite image is used as a background image to represent the different

button states (play, pause, mute, unmute).

113HTML5 Video and Audio

■ CSS classes are being used to represent the different states; those classes will be

added and removed using JavaScript.

■ The "controls"wrapper element is absolutely positioned and placed to overlay

the bottom of the video.

■ We’ve given the controls a default opacity level of 50%, but on mouseover the

opacity increases to 100%.

■ By default, the controls wrapper element is set to display: none using a class

of "hidden", which we’ll remove with JavaScript.

If you’re following along building the example, go ahead and style the three elements

however you like. You might even want to use icon fonts or SVG graphics to create

the interface. Whatever you choose, the appearance of the controls is really secondary

to what we’re accomplishing here, so feel free to fiddle until you have a look that

you’re happy with.

Introducing the Media Elements API
Let’s go through the steps needed to create our custom controls, and in the process

we’ll introduce you to the relevant aspects of the video API. Afterwards, we’ll

summarize some other features from the API that we won’t be using in our controls,

so that you have a good overview of what the API includes.

In order to work with our new custom controls, we’ll first cache them by placing

them into JavaScript variables. Here are the first few lines of our code:

var videoEl = document.getElementsByTagName('video')[0],
 playPauseBtn = document.getElementById('playPause'),
 vidControls = document.getElementById('controls'),
 muteBtn = document.getElementById('muteUnmute'),
 timeHolder = document.getElementById('timer');

Of course, caching our selections in variables is optional, but it’s always best practice

(for maintainability and performance) to work with cached objects, rather than

needlessly repeating the same code to target various elements on the page. We’re

using a comma to separate our variable definitions, which means we’re using a

single var statement.

HTML5 & CSS3 for the Real World114

The first line is targeting the video element itself. We’ll be using this videoEl

variable quite a bit when using the API—since most API methods need to be called

from the media element. The next four lines of code should be familiar to you if

you took note of the HTML that comprises our controls. Those are the four elements

on the page that we’ll be manipulating based on user interaction.

Our first task is to make sure the video’s native controls are hidden. We could do

this easily by simply removing the controls attribute from the HTML. But since

our custom controls are dependent on JavaScript, visitors with JavaScript disabled

would be deprived of any way of controlling the video. So to follow the principle

of progressive enhancement, we’re going to remove the controls attribute using

JavaScript:

videoEl.removeAttribute('controls');

The next step is to make our own custom controls visible. As has been mentioned,

we’ve used CSS to remove our controls from view by default. By using JavaScript

to enable the visibility of the custom controls, we ensure that the user will never

see two sets of controls.

Our next chunk of code will look like this:

videoEl.addEventListener('canplaythrough', function () {
 vidControls.classList.remove('hidden');
}, false);

This is the first place we’ve used a feature from the HTML5 video API. First, take

note of the addEventListener method. This method does exactly what its name

implies: it listens for the specified event occurring on the targeted element.

addEventListener Isn’t Cross-browser

If you’re familiar with cross-browser JavaScript techniques, you probably know

that the addEventListener method isn’t cross-browser. In this case, it poses no

problem. The only browsers in use that have no support for addEventListener

are versions of Internet Explorer prior to version 9—and those browsers have no

support for HTML5 video anyway. All we need do is use Modernizr (or some

equivalent JavaScript) to detect support for the HTML5 video API, and then only

run the code for supporting browsers—all of which support addEventListener.

115HTML5 Video and Audio

In this case, we’re targeting the video element itself. The event we’re registering to

listen for is the canplaythrough event from the video API. According to the defini-

tion of this event in the spec:7

The user agent estimates that if playback were to be started now,

the media resource could be rendered at the current playback rate

all the way to its end without having to stop for further buffering.

There are other events we can use to check whether the video is ready, each of

which has its own specific purpose. We’ll touch on some of those other events later

in the chapter. This particular one ensures continuous playback, so it’s a good fit

for us as we’d like to avoid choppy playback.

Playing and Pausing the Video
When the canplaythrough event fires, a callback function is executed. In that

function, we’ve put a single line of code that removes the hidden class from the

controls wrapper, so now our controls are visible. Now we want to add some func-

tionality to our controls. Let’s bind a click event handler to our play/pause button:

playPauseBtn.addEventListener('click', function () {
 if (videoEl.paused) {
 videoEl.play();
 } else {
 videoEl.pause();
 }
}, false);

When the button is clicked, we run an if/else block that’s using three additional

features from the video API. Here’s a description of all three:

■ The paused property is being accessed to see if the video is currently in the

“paused” state. This doesn’t necessarily mean the video has been paused by the

user; it could represent the start of the video before it’s been played. This property

will return true if the video isn’t currently playing.

7 http://www.w3.org/html/wg/drafts/html/master/single-page.html#event-media-canplaythrough

HTML5 & CSS3 for the Real World116

http://www.w3.org/html/wg/drafts/html/master/single-page.html#event-media-canplaythrough
http://www.w3.org/html/wg/drafts/html/master/single-page.html#event-media-canplaythrough

■ Since we’ve now determined that the play/pause button has been clicked, and

the video is not currently playing, we can safely call the play() method on the

video element. This will play the video from its last paused location.

■ Finally, if the paused property doesn’t return true, the else portion of our code

will execute and this will trigger the pause() method on the video element,

pausing the video.

You may have noticed that our custom controls have no “stop” button (customarily

represented by a square icon), which would not only stop playback but also send

the video to the beginning. You could add such a button if you feel it’s necessary,

but many video players don’t use it since the seek bar can be used to move to the

beginning of the video. The only catch is that the video API has no “stop” method;

to counter this, you can cause the video to mimic the traditional “stop” behavior

by pausing it and then sending playback to the beginning (more on this later).

You’ll notice that something’s missing from our if/else construct. Earlier, we

showed you a couple of screenshots displaying the controls in their two states. We’ll

use JavaScript to alter the background position of our sprite image, and change the

button from visually representing “play me” to “pause me.”

This is how we’ll do it:

videoEl.addEventListener('play', function () {
 playPauseBtn.classList.add('playing');
}, false);

videoEl.addEventListener('pause', function () {
 playPauseBtn.classList.remove('playing');
}, false);

Here we have two more uses of the addEventListenermethod (you’ll need to become

accustomed to this method if you’re going to use the video and audio APIs!). The

first block is listening for play events, so if the click handler we wrote triggers the

play() method (or if something else causes the video to play, such as other code

on the page), the play event will be detected by the listener and the callback function

will execute. The second block of code is listening for the pause event (not to be

confused with the paused property).

117HTML5 Video and Audio

If the element has been played, the first block will add the class playing to our

play/pause button. This class will change the background position of the sprite on

the play/pause button to make the “pause me” icon appear. Similarly, the second

block of code will remove the playing class, causing the state of the button to go

back to the default (the “play me” state).

You’re probably thinking, “Why not just add or remove the playing class in the

code handling the button click?” While this would work just fine for when the

button is clicked (or accessed via the keyboard), there’s another behavior we need

to consider here, demonstrated in Figure 5.7.

Figure 5.7. Some video controls are accessible via the context menu

This menu appears when you bring up the video's context menu (accessed via right-

clicking on the video). As you can see, clicking the controls on the video element

isn’t the only way to play/pause or mute/unmute the video.

To ensure that the button states are changed no matter how the video element’s

features are accessed, we instead listen for play and pause events (and, as you’ll

see in a moment, sound-related events) to change the states of the buttons.

Save Video As...

You may be concerned that the video element’s context menu has an option for

Save Video As…. There’s been discussion online about how easy it is to save HTML5

video, and this could affect how copyrighted videos will be distributed. Some

content producers might feel like avoiding HTML5 video for this reason alone.

HTML5 & CSS3 for the Real World118

Whatever you choose to do, just recognize the realities associated with web video.

Most users who are intent on copying and distributing copyrighted video will

find ways to do it, regardless of any protection put in place. There are many web

apps and software tools that can easily rip even Flash-based video. You should

also be aware that even if you do disable the context menu on the video element,

the user can still view the source of the page and find the location of the video

file(s).

Some sites, like YouTube, have already implemented features to combat this when

using HTML5 video. YouTube has a page that allows you to opt in to HTML5

video8 if your browser doesn’t use HTML5 video by default. After opting in, when

you view a video and open the video element’s context menu, there’s a custom

context menu without the Save Video As… option. YouTube also dynamically adds

the video element to the page, and deeply nests the element with an indecipher-

able src attribute. So you do have options, and it is possible to make it more dif-

ficult (but not impossible) for users to rip your copyrighted videos. But recognize

that there are drawbacks to changing user expectations, in addition to the perform-

ance and maintainability issues associated with convoluting your scripts and

markup for what could be little, if any, gain.

Muting and Unmuting the Video’s Audio Track
The next bit of functionality we want to add to our script is the mute/unmute button.

This piece of code is virtually the same as what was used for the play/pause button,

except that this time we’ve bound the click event to the mute/unmute button, fol-

lowing with a similar if/else construct:

muteBtn.addEventListener('click', function () {
 if (videoEl.muted) {
 videoEl.muted = false;
 } else {
 videoEl.muted = true;
 }
}, false);

This block of code introduces a new part of the API: the muted property. After the

mute button is clicked, we check to see the status of the muted property. If it’s true

(meaning the sound is muted), we set it to false (unmuting the sound); if it’s false,

we set its status to true.

8 http://www.youtube.com/html5

119HTML5 Video and Audio

http://www.youtube.com/html5
http://www.youtube.com/html5

Again, we’ve avoided any button-state handling here for the same reasons mentioned

earlier when discussing the play/pause buttons; the context menu allows for muting

and unmuting, so we want to change the mute button’s state depending on the ac-

tual muting or unmuting of the video, rather than the clicking of the button.

Unlike the play/pause button, we lack the ability to listen for “mute” and “unmute”

events. Instead, the API offers the volumechange event:

videoEl.addEventListener('volumechange', function () {
 if (videoEl.muted) {
 muteBtn.classList.add('muted');
 } else {
 muteBtn.classList.remove('muted');
 }
}, false);

Again, we’re using an event listener to run some code each time the specified event

(in this case, a change in volume) takes place. As you can probably infer from its

name, the volumechange event isn’t limited to detecting muting and unmuting; it

can detect any change in volume.

Once we’ve detected the change in volume, we check the status of the video ele-

ment’s muted property and change the class on the mute/unmute button accordingly.

Responding When the Video Ends Playback
The code we’ve written so far will allow the user to play and pause the video, as

well as mute and unmute the sound. All of this is done using our custom controls.

At this point, if you let the video play to the end it will stop on the last frame. Instead

of leaving it on the last frame, we think it’s best to send the video back to the first

frame, ready to be played again. This gives us the opportunity to introduce two new

features of the API:

videoEl.addEventListener('ended', function () {
 videoEl.currentTime = 0;
}, false);

This block of code listens for the ended event, which tells us that the video has

reached its end and stopped. Once we detect this event, we set the video’s current-

HTML5 & CSS3 for the Real World120

Time property to zero. This property represents the current playback position, ex-

pressed in seconds (with decimal fractions).

This brings us to the next step in our code.

Updating the Time as the Video Plays
Now for the last step: we want our timer to update the current playback time as the

video plays. We’ve already introduced the currentTime property, which we can

use to update the content of our #timeHolder element (which is the cached element

with an ID of "timer"). Here’s how we do it:

videoEl.addEventListener('timeupdate', function () {
 timeHolder.innerHTML = secondsToTime(videoEl.currentTime);
}, false);

In this case, we’re listening for timeupdate events. The timeupdate event fires each

time the video’s time changes, which means that even a fraction of a second’s change

will fire this event.

This alone would suffice to create a bare-bones timer. Unfortunately, it would be

unhelpful and ugly on the eyes because you’d see the time changing every milli-

second to numerous decimal places, as shown in Figure 5.8.

Figure 5.8. Using the currentTime property directly in our HTML is less than ideal

In addition, instead of hours or minutes the timer in this state will only display

seconds—which could end up being in the hundreds or thousands, depending on

the length of the video. That’s impractical, to say the least.

To format the seconds into a more user-friendly time, we’ve written a function

called secondsToTime(), and called it from our timeupdate handler. We want to

avoid showing the milliseconds in this case, so our function rounds the timer to

the nearest second. Here’s the start of our function:

121HTML5 Video and Audio

var h = Math.floor(s / (60 * 60)),
 dm = s % (60 * 60),
 m = Math.floor(dm / 60),
 ds = dm % 60,
 secs = Math.ceil(ds);

After those five lines of code, the final variable secs will hold a rounded number

of seconds, calculated from the number of seconds passed into the function.

Next, we need to ensure that a single digit amount of seconds or minutes is expressed

with a preceding zero; that is, employing “05” instead of just “5”. The next code

block will take care of this:

if (secs === 60) {
 secs = 0;
 m = m + 1;
}

if (secs < 10) {
 secs = '0' + secs;
}

if (m === 60) {
 m = 0;
 h = h + 1;
}

if (m < 10) {
 m = '0' + m;
}

Finally, we return a string that represents the current time of the video in its correct

format:

if (h === 0) {
 fulltime = m + ':' + secs;
} else {
 fulltime = h + ':' + m + ':' + secs;

HTML5 & CSS3 for the Real World122

}

return fulltime;

The if/else construct is included to check if the video is one hour or longer; if so,

we’ll format the time with two colons. Otherwise, the formatted time will use a

single colon that divides minutes from seconds, which will be the case in most

circumstances.

Remember where we’re running this function: we’ve included this inside our

timeupdate event handler. The function’s returned result will become the content

of the timeHolder element:

timeHolder.innerHTML = secondsToTime(videoEl.currentTime);

Because the timeupdate event is triggered with every fraction of a second’s change,

the content of the timeHolder element will change rapidly. But because we’re

rounding the value to the nearest second, the visible changes will be limited to a

time update every second, even though technically the content of the timer element

is changing more rapidly.

And that’s it, our custom controls are done! The buttons work as expected and the

timer runs smoothly. As has been stated, this falls a little short of being a fully

functional set of controls, but you should at least have a good handle on the basics

of interacting with HTML5 video using JavaScript, so have a tinker and see what

else you can add.

Further Features of the Media Elements API
The Media Elements API has much more to it than what we’ve covered here. Here’s

a summary of some events and properties that you might want to use when building

your own custom controls, or when working with video and audio elements.

One point to remember is that these API methods and properties can be used any-

where in your JavaScript—they don’t need to be linked to custom controls. If you’d

like to play a video when the mouse hovers over it, or use audio elements to play

various sounds associated with your web application or game, all you have to do

is call the appropriate methods.

123HTML5 Video and Audio

API Events
We’ve already seen the canplaythrough, play, pause, volumechange, ended, and

timeupdate events. Here are some of the other events available to you when working

with HTML5 video and audio:

■ canplay: this is similar to canplaythrough, but will fire as soon as the video is

playable, even if it’s just a few frames (this contrasts with canplaythrough,

which only fires if the browser thinks it can play the video all the way to the

end without rebuffering)

■ error: this event is sent when an error has occurred; there’s also an error

property

■ loadeddata: the first frame of the media has loaded

■ loadedmetadata: this event is sent when the media’s metadata has finished

loading; the metadata would include dimensions, duration, and any text tracks

(for captions)

■ playing: this indicates that the media has begun to play; the difference between

playing and play is that play will not be sent if the video loops and begins

playing again, whereas playing will

■ seeking: this is sent when a seek operation begins; it might occur when a user

starts to move the seek bar to select a new part of the video or audio

■ seeked: this event fires when a seek operation is completed

API Properties
In addition to the properties we’ve already seen, here’s a number of useful ones that

are available to use:

■ playbackRate: the default playback rate is 1, which can be changed to speed up

or slow down playback; this is naturally of practical use if you’re creating a fast-

forward or rewind button, or a slow-motion or slow-rewind button

■ src: as its name implies, this property returns the URL that points to the video

being played, but only works if you’re using the src attribute on the video ele-

ment

HTML5 & CSS3 for the Real World124

■ currentSrc: this will return the value of the URL pointing to the video file being

played, whether it’s from the video element’s src attribute or one of the source

elements

■ readyState: this property returns a numeric value from 0 to 4 with each state

representing the readiness level of the media element; for example, a value of 1

indicates that the media’s metadata is available, while a value of 4 is virtually

the same as the condition for firing the canplaythrough event, meaning the

video is ready to play and won’t be interrupted by buffering or loading

■ duration: this returns the length of the video in seconds

■ buffered: this represents the time ranges of the video that have buffered and

are available for the browser to play

■ videoWidth, videoHeight: these properties return the intrinsic dimensions of

the video—the actual width and height as the video was encoded, not what’s

declared in the HTML or CSS; if you want the HTML- or CSS-defined values,

these can be accessed through the customary width and height properties

You can also access attributes that can be declared directly in the HTML such as

preload, controls, autoplay, loop, and poster.

What about audio?
Much of what we’ve discussed in relation to HTML5 video and its API also applies

to the audio element, the obvious exceptions being those related to visuals.

Similar to the video element, the preload, autoplay, loop, and controls attributes

can be used (or not) on the audio element.

The audio element won’t display anything unless controls are present, but even if

the element’s controls are absent, the element is still accessible via scripting. This

is useful if you want your site to use sounds not tied to controls presented to the

user. The audio element nests source tags, similar to video, and will also treat any

child element that’s not a source tag as fallback content for non-supporting browsers.

125HTML5 Video and Audio

Accessible Media
In addition to their status as first-class citizens of the page—making them intrinsic-

ally more keyboard accessible (using tabindex, for example)—the HTML5 media

elements also give you access to the track element to display captions or a transcript

of the media file being played. Like source elements, track elements should be

placed as children of the video or audio element.

If the track element is included as a child of the video element, it would look like

the example shown here (similar to an example given in the spec):

<video src="example.webm">
 <track kind="subtitles" src="example.en.vtt" srclang="en" label=
➥"English" default>
 <track kind="captions" src="example.en.hoh.vtt" srclang="en" label
➥="English for the Hard of Hearing">
 <track kind="subtitles" src="example.fr.vtt" srclang="fr"
➥lang="fr"label="Français">
 <track kind="subtitles" src="example.de.vtt" srclang="de"
➥lang="de" label="Deutsch">
</video>

The code here has four track elements, each referencing a text track for captions

in a different language (or, in the case of the second one, alternating content in the

same language).

The kind attribute can take one of five values: subtitles, captions, descriptions,

chapters, and metadata. The src attribute is required, and points to an external

file that holds the track information. The srclang attribute specifies the language.

The label attribute gives a user-readable title for the track. Finally, the Boolean

default attribute defines which of the tracks will be used if the others are unsuitable.

The track element has excellent browser support, being available in all modern

browsers. For an in-depth explanation of the track element and its many features,

check out this article on the SitePoint website by Ankul Jain.9

9 http://www.sitepoint.com/comprehensive-look-html5-track-element/

HTML5 & CSS3 for the Real World126

http://www.sitepoint.com/comprehensive-look-html5-track-element/

It’s Showtime
Video and audio on the Web have long been the stronghold of Flash, but, as we’ve

seen, HTML5 has changed that. While the codec and format landscape is still

somewhat fragmented, the promises of fully scriptable multimedia content—along

with the performance benefits of running audio and video natively in the browser

instead of in a plugin wrapper—are hugely appealing to web designers, developers,

and content providers.

Because of excellent browser support and easy-to-implement fallback techniques,

there’s no reason not to start using these elements and their associated APIs today.

We’ve now covered just about everything on HTML5 proper (that is, the bits that

are in the HTML5 spec). In the next few chapters, we’ll turn our attention to CSS3

and start to make The HTML5 Herald look downright fancy. Then we’ll finish by

looking at some of the new JavaScript APIs that are frequently bundled with the

term “HTML5.”

127HTML5 Video and Audio

Chapter6
Introducing CSS3
The content layer is done. Now it’s time to make it pretty. The next four chapters

focus on presentation. In this one, we’ll start by covering some basics: we’ll first do

a quick overview of CSS selectors, and see what’s been added to our arsenal in

CSS3. Then, we’ll take a look at a few new ways of specifying colors. We’ll dive

into rounded corners, drop shadows, and text shadows—tips and tricks enabling

us to style pages without having to make dozens of rounded-corner and text images

to match our designs.

But first, we need to ensure older browsers recognize the new elements on our page,

so that we can style them.

Getting Older Browsers on Board
As we mentioned back in Chapter 2, styling the new HTML5 elements in older

versions of Internet Explorer requires a snippet of JavaScript called an HTML5 shiv.

If you’re using the Modernizr library detailed in Appendix A you'll have the option

to include the shiv, so in that case you'll be fine.

Even with this JavaScript in place, though, you’re not quite ready to roll. IE through

version 8 will now be aware of these new elements, but these archaic browsers will

still be without any default styles. In fact, this will be the case for previous versions

of other browsers as well; while they may allow arbitrary elements, they’ve no way

of knowing, for example, that article should be displayed as block-level and mark

should be displayed inline. Because elements render as inline by default, it makes

sense to tell these browsers which elements should be block-level.

This can be done with the following CSS rule:

article, aside, figure, footer, header, main, nav, section {
 display: block;
}

With this CSS and the required JavaScript in place, all browsers will start off on an

even footing when it comes to styling HTML5 elements.

CSS3 Selectors
Selectors are at the heart of CSS. Without selectors to target elements on the page,

the only way to modify the CSS properties of an element would be to use the ele-

ment’s style attribute and declare the styles inline, which is awkward and unmain-

tainable. So we use selectors. Originally, CSS allowed the matching of elements by

type, class, and/or ID. This required adding class and ID attributes to our markup

to create hooks and differentiate between elements of the same type. CSS2.1 added

pseudo-elements, pseudo-classes, and combinators. With CSS3, we can target almost

any element on the page with a wide range of selectors.

In the descriptions that follow, we’ll be including the selectors provided to us in

earlier versions of CSS. They are included because, while we can use CSS3 selectors,

selectors that predate CSS3 are also part of the CSS Selectors Level 3 specification

and are still supported, as CSS Selectors Level 3 expands on them. Even for those

selectors that have been around for quite some time, it’s worth going over them

here, as there are some hidden gems in the old spec that few developers know. Note

that all modern browsers, including IE9 and above, support all CSS3 selectors.

HTML5 & CSS3 for the Real World130

Relational Selectors
Relational selectors target elements based on their relationship to another element

within the markup. All of these are supported since IE7+, and in all other major

browsers:

Descendant combinator (E F) You should definitely be familiar with this one.

The descendant selector targets any element F

that is a descendant (child, grandchild, great

grandchild, and so on) of an element E. For ex-

ample, ol li targets li elements that are inside

ordered lists. This would include li elements in

a ul that’s nested in an ol, which might not be

what you want.

Child combinator (E > F) This selector matches any element F that is a dir-

ect child of element E—any further nested ele-

ments will be ignored. Continuing the example,

ol > li would only target li elements directly

inside the ol, and would omit those nested inside

a ul.

Adjacent sibling, or next sibling

selector (E + F)

This will match any element F that shares the

same parent as E, and comes directly after E in the

markup. For example, li + li will target all li

elements except the first li in a given container.

General sibling or following

sibling selector (E ~ F)

This one’s a little trickier. It will match any ele-

ment F that shares the same parent as any E and

comes after it in the markup. So, h1 ~ h2 will

match any h2 that follows an h1, as long as they

both share the same direct parent—that is, as long

as the h2 is not nested in any other element.

Let’s look at a quick example:

<article>
 <header>
 <h1>Main title</h1>

131Introducing CSS3

 <h2>This subtitle is matched </h2>
 </header>
 <p> blah, blah, blah …</p>
 <h2>This is not matched by h1 ~ h2, but is by header ~ h2</h2>
 <p> blah, blah, blah …</p>
</article>

The selector string h1 ~ h2 will match the first h2, because both the h1 and h2 are

children, or direct descendants, of the header. The next h2 you’ll see in the code

snippet doesn’t match, since its parent is article, not header. It would, however,

match header ~ h2. Similarly, h2 ~ p only matches the last paragraph, since the

first paragraph precedes the h2 with which it shares the parent article.

Why is there no “parent” selector?

You’ll notice that up to this point there has been no “parent” or “ancestor” selector,

and there’s also no “preceding sibling” selector. The performance of the browser

having to go backwards up the DOM tree, or recurse into sets of nested elements

before deciding whether or not to apply a style, prevented the ability to have

native "up the DOM tree" selectors.

jQuery included :has() as an ancestral selector. This selector is being considered

for CSS Selectors Level 4, but has yet to be implemented in any browser. If and

when it is implemented, we will be able to use E:has(F) to find E that has F as

a descendant, E:has(> F), to find E that has F as a direct child, E:has(+ F),

to find E that directly precedes a sibling F, and similar.

Looking through the stylesheet for The HTML5 Herald, you’ll see a number of places

where we’ve used these selectors. For example, when determining the overall layout

of the site, we want the three-column divs to be floated left. To avoid this style being

applied to any other divs nested inside them, we use the child selector:

main > div {
 float: left;
 overflow: hidden;
}

As we add new styles to the site over the course of the next few chapters, you’ll be

seeing a lot of these selector types.

HTML5 & CSS3 for the Real World132

Attribute Selectors
CSS2 introduced several attribute selectors. These allow for matching elements

based on their attributes. CSS3 expands upon those attribute selectors, allowing for

some targeting based on pattern matching. CSS Selectors Level 4 adds a few more:

E[attr] Matches any element E that has the attribute attr regardless of

the attribute’s value. We made use of this back in Chapter 4 to

style required inputs; input:required works in the latest

browsers, but input[required] has the same effect and works in

IE7 and IE8 as well.

E[attr=val] Matches any element E that has the attribute attr with the exact

value val. While not new, it’s helpful in targeting form input

types; for instance, targeting checkboxes with input[type=check-

box].

E[attr|=val] Matches any element E whose attribute attr either has the value

val or begins with val-. This is most commonly used for the lang

attribute. For example, p[lang|="en"] would match any para-

graph that has been defined as being in English whether it be UK

or US English with <p lang="en-uk"> or <p lang="en-

us">.

E[attr~=val] Matches any element E whose attribute attr has within its value

the full word val, surrounded by whitespace. For example,

.info[title~=more] would match any element with the class

info that had a title attribute containing the word “more,” such

as “Click here for more information.”

E[attr^=val] Matches any element E whose attribute attr starts with the value

val. In other words, the val matches the beginning of the attribute

value.

E[attr$=val] Matches any element E whose attribute attr ends in val. In other

words, the val matches the end of the attribute value.

E[attr*=val] Matches any element E whose attribute attr matches val any-

where within the attribute. It is similar to E[attr~=val], except

133Introducing CSS3

the val can be part of a word. Using the same example as before,

.fakelink[title~=info] {} would match any element with the

class fakelink that has a title attribute containing the string

info, such as “Click here for more information.”

In these attribute selectors, the value of val is case-sensitive for values that are case

sensitive in HTML. For example, input[class^="btn"] is case sensitive as class

names are case sensitive, but input[type="checkbox"] is not case sensitive, as the

type value is case-insensitive in HTML.

The value does not have to be quoted if the value is alphanumeric, with some ex-

ceptions. Empty strings, strings that begin with a number, two hyphens, and other

quirks need to be quoted. Because of the exceptions, it’s a good idea to make a habit

of always including quotes for those times when you do need them.

In CSS Selectors Level 4, we can have case insensitivity by including an i before

the closing bracket, E[attr*=val i].

Pseudo-classes
It’s likely that you’re already familiar with some of the user interaction pseudo-

classes, namely :link, :visited, :hover, :active, and :focus.

Key Points to Note

■ There are security issues the :visited pseudo-class can pose, so browsers

do not support all CSS properties on visited links. Without these limitations,

malicious sites could apply a style to a visited link, such as a unique back-

ground image for each visited link, to check whether popular sites or banks

have been visited by the user. This allows the attacker to glimpse the user’s

browsing history without their permission. As a result, modern browsers limit

the styles that can be applied with :visited.

The spec explicitly condones these changes, saying: “UAs [User Agents] may

therefore treat all links as unvisited links, or implement other measures to

preserve the user’s privacy while rendering visited and unvisited links differ-

ently.”

■ For better accessibility, add :focus wherever you include :hover as not all

visitors will use a mouse to navigate your site.

HTML5 & CSS3 for the Real World134

■ :hover can apply to any element on the page—not just links and form controls.

■ :focus and :active are relevant to links, form controls, content editable

elements, and any element with a tabindex attribute.

While it’s likely you’ve been using these basic pseudo-classes for some time, there

are many others available. Several of these pseudo-classes have been in the specific-

ation for years, but weren’t supported (or commonly known) until browsers started

supporting the new HTML5 form attributes that made them more relevant.

The following pseudo-classes match elements based on attributes, user interaction,

and form control state:

:enabled A user interface element that’s enabled, which is basically any

form control that supports the disabled attribute but doesn’t

currently have it applied.

:disabled Conversely, a user interface element that is disabled: any form

control that supports the disabled attribute and currently has

it applied.

:checked For radio buttons or checkboxes that are selected or ticked.

:indeterminate For form elements that are neither checked nor unchecked. For

example, if you tick a check all checkbox to select a group of

checkboxes, then deselect some but not all of the checkboxes

in the group, the check all could be set to the indeterminate

state (with JavaScript) to indicate that it’s neither checked nor

unchecked.

:target This selector singles out the element that is the target of the

currently active intrapage anchor. That sounds more complic-

ated than it is: you already know that you can have links to

anchors within a page by using the # character with the ID of

the target. For example, you may have <a href="#con-

tent">Skip to content link in your page that, when

clicked, will jump to the element with an ID of content.

135Introducing CSS3

This changes the URL in the address bar to thispage.html#con-

tent—and the :target selector now matches the element in

the document that has content as its ID. It's as if you had in-

cluded, temporarily, the selector #content. We say temporarily

because as soon as the user clicks on a different anchor, :target

will match the new target.

:default Applies to one or more UI elements that are the default among

a set of similar elements. For example, the one radio button in

a group of same-named radio buttons that was checked on page

load will continue to match :default after another radio button

in the same-named group is selected. Similarly, checkboxes

that are selected on page load will continue to match :default

after they are unchecked.

:valid Applies to elements that are valid, based on the type, pattern,

or other input attributes (as we discussed in Chapter 4).

:invalid Applies to empty required elements and elements failing to

match the requirements defined by the type or pattern attrib-

utes.

:in-range Applies to elements with range limitations where the value is

within those limitations. This applies, for example, to

date/time, number, and range input types with min and max

attributes. When the value is null, it is :in-range.

:out-of-range The opposite of :in-range: elements whose value is outside

the limitations of their range. Missing values are not out of

range, as they are empty.

:required Applies to form controls that have the required attribute set.

:optional Applies to all form controls that do not have the required at-

tribute.

:read-only Applies to elements whose contents are unable to be altered

by the user. This is most elements other than those with the

contenteditable attribute set and form fields.

HTML5 & CSS3 for the Real World136

:read-write Applies to elements whose contents are user-alterable, such as

contenteditable components and writable input fields.

Browser support for these attributes is complete in browsers that support the attrib-

utes in their form controls; in other words, browsers that support required and

pattern also support the associated :valid and :invalid pseudo-classes.

IE8 and earlier lack support for :checked, :enabled, :disabled, and :target. The

good news is that IE9 does support these selectors, but not the user-interface select-

ors. IE10 and IE11 support :indeterminate, :required, and :optional, but not

:default, :in-range, :out-of-range, :read-only, or :read-write.

While support is still lacking, JavaScript libraries such as Selectivizr1 can help in

targeting these pseudo-classes in Internet Explorer.

Structural Pseudo-classes
So far, we’ve seen how we can target elements based on their attributes and states.

CSS3 also enables us to target elements based simply on their location in the markup.

These selectors are grouped under the heading structural pseudo-classes.2

These might seem complicated right now, but they’ll make more sense as we look

at ways to apply them later on. These selectors are supported in IE9 and newer, as

well as current and older versions of all the other browsers—but not in IE8 and be-

low:

:root The root element, which is the html element in our

HTML files.

E:nth-child(n) The element E that is the nth child of its parent. The

n parameter is explained in the note below.

E:nth-last-child(n) The element F that is the nth child of its parent E,

counting backwards from the last one. li:nth-last-

child(1) would match the last item in any list—this

is the same as li:last-child (see the note below).

1 http://selectivizr.com/
2 http://www.w3.org/TR/css3-selectors/#structural-pseudos

137Introducing CSS3

http://selectivizr.com/
http://www.w3.org/TR/css3-selectors/#structural-pseudos

E:nth-of-type(n) The element that is the nth element of its type in a

given parent element.The difference between :nth-

child and :nth-of-type is explained in the note be-

low.

E:nth-last-of-type(n) Like nth-of-type(n), except counting backwards

from the last element in a parent.

Parameters of Structural Selectors

There are four pseudo-classes that take the

equation an+b as a parameter in parentheses, or

the keywords odd and even. The structural

pseudo-classes include :nth-child(an + b),

:nth-last-child(an + b), :nth-of-

type(an + b), and :nth-last-of-type(an

+ b). In the equation an+b, a is the multiplier

as an integer, b is the offset as an integer, and n

is always the variable n.

In the simplest case, you can pass an integer. For

example, E:nth-of-type(3) will target the

third E element child of a single parent element.

You can pass one of the two keywords odd or

even, targeting every other element. You can

also, more powerfully, pass a number expression

such as E:nth-of-type(3n+1). 3n means

every third element, defining the frequency, and

+1 is the offset. The default offset is zero, so

where :nth-of-type(3n) would match the

3rd, 6th, and 9th elements in a series, :nth-of-

type(3n+1) would match the 1st, 4th, 7th, and

so on.

Negative offsets are also allowed. CSS is based

on linguistic languages, not programming lan-

guages, so the count starts at 1 not 0. There can

be no space between the multiplier a and the

variable n, and the offset must come last.

HTML5 & CSS3 for the Real World138

With these numeric pseudo-classes, you can

pinpoint which elements you want to target

without adding classes to the markup. The most

common example is a table where every other

row is a slightly darker color to make it easier to

read. We used to have to add odd or even classes

to every tr to accomplish this. Now, we can

simply declare tr:nth-of-type(odd) to target

every odd line without touching the markup.

You can even take it a step further with three-

colored striped tables: target tr:nth-of-

type(3n), tr:nth-of-type(3n+1), and

tr:nth-of-type(3n+2) and apply a different

color to each.

E:first-child The element E if E is the first child of its parent. This

is the same as E:nth-child(1).

E:last-child The element E if E is the last child of its parent, same

as E:nth-last-child(1).

E:first-of-type The same as :nth-of-type(1).

E:last-of-type The same as :nth-last-of-type(1).

E:only-child Element E if E is the only child of its parent.

E:only-of-type Element E if E is the only element of type E that is a

direct child of its parent element.

Child versus Type

In employing the structural selectors of nth-of-

type and nth-child, it’s important to under-

stand what “child” and “type” mean in this case.

“Child” looks at all the child elements that match

the count and check if the precursor is a match.

“Type” looks at all the elements that match the

precursor first, then matches based on the count.

139Introducing CSS3

In the case of p:nth-child(3n), the browser

looks at every third child of a parent. If that child

is a p, there is a match; if not, no match. In the

case of p:nth-of-type(3n), the browser looks

at all the p children of the parent, and matches

every third p.

Structural pseudo-classes are based on the par-

ent, and restart counting for each new parent.

They only look at elements that are the direct

children of the parent. Text nodes are not part

of the equation.

E:empty An element that has no children; this includes text

nodes, so <p>hello</p> and <p> </p> will not be

matched by p:empty, but <p></p> and <p><!-- com-

ment --></p> will be. This selector also matches

empty or void elements, such as
 and <input>.

In CSS Selectors Level 4, we’ll get p:blank that will

match <p> </p>.

E:lang(en) An element in the language denoted by the two-letter

abbreviation, such as en. Unlike E:[lang|=en], where

the lang attribute must be present as an attribute of

element E, E:lang(en) will match E if the language

was declared on the element itself or any ancestor.

E:not(exception) This is a particularly useful one: it will select elements

that don’t match the selector in the parentheses.

Selectors with the :not pseudo-class match everything

to the left of the colon, and then exclude from that

matched group the elements that also match what’s

to the right of the colon. The left-hand side matching

goes first. For example, p:not(.copyright) will

match all the paragraphs in a document first, and then

exclude all the paragraphs from the set that also have

the class of copyright. You can string several :not

HTML5 & CSS3 for the Real World140

pseudo-classes together. input:not([type=check-

box]):not([type=radio]) will match all input ele-

ments on a page except those that are of type checkbox

or radio.

Pseudo-elements and Generated Content
In addition to pseudo-classes, CSS gives us access to pseudo-elements. Pseudo-

elements allow you to target text that is part of the document, but not otherwise

targetable in the document tree. Pseudo-classes enable us to target existing elements.

Pseudo-elements, on the other hand, enable us to target content based on the

structure of the document when there are no actual elements or DOM nodes to target.

For example, all text nodes have a first letter and a first line, but how can you target

them without wrapping them in a span, especially when you don’t know exactly

where the first line will wrap? CSS provides the ::first-letter and ::first-line

pseudo-elements that match the first letter and first line of a text node respectively.

These can alternatively be written with just a single colon: :first-line and :first-

letter.

Why bother with the double colon?

The double colon is the correct syntax, but the single colon is what IE supported

through IE8. All other browsers support both. Even though :first-letter,

:first-line, :first-child, :before, and :after have been around since

CSS2, these pseudo-elements in CSS3 have been redefined using double colons

to differentiate them from pseudo-classes.

Generated Content
The ::before and ::after pseudo-elements don’t refer to content that exists in the

markup, but rather to a location where you can insert additional content, generated

right there in your CSS. While this generated content won’t become part of the DOM,

it can be styled.

To generate content for a pseudo-element, use the content property. For example,

let’s say when printing a document that you wanted all external links on your page

to be followed by the link’s URL in parentheses, enabling users to know where the

links led even when they’re unclickable as they’re looking at a printed page. Rather

141Introducing CSS3

than hardcoding the URLs into your markup, you can use the combination of an

attribute selector and the ::after pseudo-element:

a[href^=http]:after {
 content: " (" attr(href) ")";
}

attr() allows you to access any attribute of the selected element, coming in handy

here for displaying the link’s target. And you’ll remember from the attribute selectors

section that a[href^=http] means “any a element whose href attribute begins with

http”; in other words, external links. To be more precise, we could have written

a[href^="http://"], a[href^="https://"].

Here’s another example:

a[href$=".pdf"] {
 background: transparent url(pdficon.gif) 0 50% no-repeat;
 padding-left: 20px;
}
a[href$=".pdf"]:after {
 content: " (PDF)";
}

Those styles will add a PDF icon and the text “ (PDF)” after links to PDFs. Remem-

ber that the [attr$=val] selector matches the end of an attribute—so document.pdf

will match but pdf.html won't.

::selection

The ::selection pseudo-element matches user-selected or highlighted text.

This is supported in all browsers since IE9, but requires the -moz vendor prefix for

Firefox. Let’s use it on The HTML5 Herald to bring the selection background and

text color in line with the monochrome style of the rest of the site:

::-moz-selection {
 background: #484848;
 color: #fff;
}
::selection {

HTML5 & CSS3 for the Real World142

 background: #484848;
 color: #fff;
}

CSS3 Colors
We know you’re probably champing at the bit to put the really cool stuff from CSS3

into practice, but before we do there’s one more detour we need to take. CSS3 brings

with it support for some new ways of describing colors on the page. Since we’ll be

using these in examples over the next few chapters, it’s important we cover them

now.

Prior to CSS3, we almost always declared colors using the hexadecimal format

(#FFF, or #FFFFFF for white). It was also possible to declare colors using the rgb()

notation, providing either integers (0–255) or percentages. For example, white is

rgb(255, 255, 255) or rgb(100%, 100%, 100%). In addition, we had access to

several named colors such as purple, lime, aqua, red, and the like. While the color

keyword list has been extended in the CSS3 color module3 to include 147 additional

keyword colors (that are generally well supported), CSS3 also provides us with a

number of other options: HSL, HSLA, and RGBA. The most notable change with

these new color types is the ability to declare semitransparent colors.

RGBA
RGBA works just like RGB, except that it adds a fourth value: alpha, the opacity

level or alpha transparency level. The first three values still represent red, green,

and blue. For the alpha value, 1 means fully opaque, 0 is fully transparent, and 0.5

is 50% opaque. You can use any number between 0 and 1 inclusively.

Unlike RGB, which can also be represented with hexadecimal notation as #RRGGBB,

there is no hexadecimal notation for RGBA. An eight-character hexadecimal value

for RGBA as #RRGGBBAA has been proposed and added to the draft CSS Color

Module Level 4,4 but is yet to be supported.

For example, let’s look at our registration form. We want the form to be a darker

color, while still preserving the grainy texture of the site’s background. To accom-

3 http://www.w3.org/TR/css3-color/
4 http://dev.w3.org/csswg/css-color-4/#hex-notation

143Introducing CSS3

http://www.w3.org/TR/css3-color/
http://dev.w3.org/csswg/css-color-4/#hex-notation
http://dev.w3.org/csswg/css-color-4/#hex-notation

plish this, we’ll use an RGBA color of 0,0,0,0.2—in other words, solid black that’s

80% transparent:

form {
 ⋮
 background: url(../images/bg-form.png) no-repeat bottom center
➥rgba(0, 0, 0, 0.2);
}

Since Internet Explorer 8 and below lack support for RGBA, if you declare an RGBA

color, make sure you precede the property value pair with the same property that

includes as its value a color IE can understand. IE will render the last color it can

make sense of, so it will just skip the RGBA color. Other browsers will understand

both colors, but thanks to the CSS cascade, they’ll overwrite the IE color with the

RGBA color as it comes later.

In the aforementioned example, we’re actually fine with older versions of IE having

no background color, because the color we’re using is mostly transparent anyway.

HSL and HSLA
HSL stands for hue, saturation, and lightness. Unlike RGB, where you need to ma-

nipulate the saturation or brightness of a color by changing all three color values

in concert, with HSL you can tweak either just the saturation or the lightness while

keeping the same base hue. The syntax for HSL comprises an integer value for hue,

and percentage values for saturation and lightness.5

Although monitors display colors as RGB, the browser simply converts the HSL

value you give it into one the monitor can display.

The hsl() declaration accepts three values:

■ The hue in degrees from 0 to 359. Some examples are: 0 = red, 60 = yellow, 120

= green, 180 = cyan, 240 = blue, and 300 = magenta. Of course, feel free to use

everything in between.

5 A full exploration of color theory—along with what is meant by the terms “saturation” and “light-

ness”—is beyond the scope of this book. If you want to read more, The Principles of Beautiful Web Design

(SitePoint: Melbourne, 2014)

[https://learnable.com/books/the-principles-of-beautiful-web-design-3rd-edition] includes a great primer

on color.

HTML5 & CSS3 for the Real World144

https://learnable.com/books/the-principles-of-beautiful-web-design-3rd-edition
https://learnable.com/books/the-principles-of-beautiful-web-design-3rd-edition

■ The saturation as a percentage with 100% being the norm. Saturation of 100%

will be the full hue, and saturation of 0 will give you a shade of gray—essentially

causing the hue value to be ignored.

■ A percentage for lightness with 50% being the norm. Lightness of 100% will be

white, 50% will be the actual hue, and 0% will be black.

HSL also allows for an opacity value. For example, hsla(300, 100%, 50%, 0.5)

is magenta with full saturation and normal lightness, which is 50% opaque.

HSL mimics the way the human eye perceives color, so it can be more intuitive for

designers to understand and, as mentioned, make adjustments a bit quicker and

easier. Feel free to use whatever syntax you’re most comfortable with—but remember

that if you need to support IE8 or below, you’ll generally want to limit yourself to

hexadecimal notation.

Let’s sum up with a review of all the ways to write colors in CSS. A shade of dark

red can be written as:

■ #800000

■ maroon

■ rgb(128,0,0)

■ rgba(128,0,0,1.0)

■ hsl(0,100%,13%)

■ hsla(0,100%,13%,1.0)

Last, but certainly not least, CSS Color Module Level 3 provides us with current-

Color. The currentColor keyword is equal to the current element’s color property.

In CSS Colors Level 4, we get four- and eight-digit hex colors with the last digit(s)

specifying transparency, hwb() and hwba() to specify colors by hue, whiteness and

blackness, plus a gray() function to enable a shorter method for declaring shades

of gray.

Opacity
In addition to specifying transparency with HSLA and RGBA colors (and soon,

eight-digit hexadecimal values), CSS3 provides us with the opacity property. opa-

city sets the opaqueness of the element on which it’s declared. Similar to alpha

145Introducing CSS3

transparency, the opacity value is a floating point number between (and including)

0 and 1. An opacity value of 0 defines the element as fully transparent, whereas an

opacity value of 1 means the element is fully opaque.

Let’s look at an example:

div.halfopaque {
 background-color: rgb(0, 0, 0);
 opacity: 0.5;
 color: #000000;
}

div.halfalpha {
 background-color: rgba(0, 0, 0, 0.5);
 color: #000000;
}

Though the two declaration blocks may seem identical at first glance, there’s actually

a key difference. While opacity sets the opacity value for an element and all of its

children, a semitransparent RGBA or HSLA color has no impact on the element’s

other CSS properties or descendants, other than inherited properties such as text

color.

Looking at the example, any text in the halfopaque div will be 50% opaque (most

likely making it difficult to read!). The text on the halfalpha div, though, will still

be black and 100% opaque. Only the background color of that single element will

be slightly opaque, as background-color is not an inherited property.

While the opacity property is a quick and easy solution for creating semitransparent

elements, you should be aware of this consequence.

Putting It into Practice
Now that we’ve been through all the available CSS selectors and new color types,

we’re ready to really start styling.

For the rest of the chapter, we’ll style a small section of The HTML5 Herald front

page; this will demonstrate how to add rounded corners, text shadow, and box

shadow.

HTML5 & CSS3 for the Real World146

In the right-hand sidebar of The HTML5 Herald’s front page are a series of whimsical

advertisements—we marked them up as article elements within an aside way

back in Chapter 2. The first of these is an old “Wanted” poster-style ad, advising

readers to be on the lookout for the armed and dangerous HTML5 and CSS3. The

ad’s final appearance is depicted in Figure 6.1.

Figure 6.1. Our “Wanted” ad

You’ll notice that the dark gray box in the center of the ad has a double border with

rounded corners, as well as a three-dimensional “pop” to it. The text that reads

“<HTML5> & {CSS3}” also has a shadow that offsets it from the background. Thanks

to CSS3, all these effects can be achieved with some simple code and with no reliance

on images or JavaScript. Let’s learn how it’s done.

The markup for the box is simply <HTML5> & {CSS3}.

Other than the HTML entities, it’s as straightforward as it gets!

Before we can apply any styles to it, we need to select it. Of course, we could just

add a class attribute to the markup, but where’s the fun in that? We’re here to learn

CSS3, so we should try and use some fancy new selectors instead.

Our box isn’t the only a element on the page, but it might be the only a immediately

following a paragraph in the sidebar. In this case, that’s good enough to single out

the box. We also know how to add some pre-CSS3 styling for the basics, so let’s do

that:

147Introducing CSS3

aside p + a {
 display: block;
 text-decoration: none;
 border: 5px double;
 color: #ffffff;
 background-color: #484848;
 text-align: center;
 font-size: 1.75rem;
 margin: 5px 5px 9px 5px;
 padding: 15px 0;
 position: relative;
}

Not bad! As Figure 6.2 shows, we’re well on our way to the desired appearance.

This will also be the appearance shown to IE8 and below except for the font styling,

which we’ll be adding in Chapter 9.

Figure 6.2. The basic appearance of our ad link, which will be seen by older browsers

IE6 lacks support for the adjacent sibling selector—so if you really need to provide

support to that browser, you can add an id or class to the HTML and select it that

way.

This presentation is fine and should be acceptable—there’s no need for web pages

to look identical in all browsers. Users with Internet Explorer 9 and older will be

unaware that they’re missing anything. But we can still provide treats to better

browsers. Let’s go ahead and add a bit of polish.

Rounded Corners: border-radius
The border-radius property lets you create rounded corners without the need for

images or additional markup. To add rounded corners to our box, we simply add:

HTML5 & CSS3 for the Real World148

border-radius: 25px;

Safari, Chrome, Opera, IE9+, and Firefox all support rounded corners without a

vendor prefix (just border-radius).

Figure 6.3 shows what our link looks like with the addition of these properties.

Figure 6.3. Adding rounded corners to our link

The border-radius property is actually a shorthand. For our a element, the corners

are all the same size and symmetrical. If we had wanted different-sized corners, we

could declare up to four unique values—border-radius: 5px 10px 15px 20px;,

for example. Just like padding, margin, and border, you can adjust each value indi-

vidually:

border-top-left-radius: 5px;
border-top-right-radius: 10px;
border-bottom-right-radius: 15px;
border-bottom-left-radius: 40px;

The resulting off-kilter box is shown in Figure 6.4.

Figure 6.4. It’s possible to set the radius of each corner independently

When using the shorthand border-radius, the order of the corners is top-left, top-

right, bottom-right, and bottom-left. You can also declare only two values, in which

case the first is for top-left and bottom-right, and the second is for top-right and

149Introducing CSS3

bottom-left. If you declare three values, the first refers to top-left, the second sets

both the top-right and bottom-left, and the third is bottom-right.

We recommend using the shorthand—because it’s much shorter.

You can also create asymmetrical corners with a different radius on each side. Rather

than being circular, these will appear elliptical. If two values are supplied to any

of the four longhand values, you’ll be defining the horizontal and vertical radii of

a quarter ellipse respectively. For example, border-bottom-left-radius: 20px

10px; will create an elliptical bottom-left corner.

When using the shorthand for elliptical corners, separate the value of the horizontal

and vertical radii with a slash. border-radius: 20px / 10px; will create four

equal elliptical corners, and border-radius: 5px 10px 15px 20px / 10px 20px

30px 40px; will create four unequal elliptical corners. That last example will create

corners seen in Figure 6.5. Interesting? Yes. Aesthetically pleasing? Not so much.

Figure 6.5. Four interesting unequal elliptical corners

There’s only one other element on The HTML5 Herald that uses rounded corners:

the registration form’s submit button. Let’s round those corners now:

input[type=submit] {
 border-radius: 10%;
 background-clip: padding-box;
}

You’ll note two things about this CSS: we’ve used an attribute selector to target the

submit input type, and we’ve used percentages instead of pixel values for the

rounded corners. This will come in handy if we need to add more forms to the site

later; other submit buttons might be smaller than the one on the registration page,

and by using percentages, rounded corners will scale in proportion to the size of

the button.

HTML5 & CSS3 for the Real World150

Note that if a border-radius declaration is larger than 50% of the width or height

of the box, the browser will round the corners proportionally based on the values

provided. We also included background-clip: padding-box; to ensure that the

background color doesn’t bleed through the rounded border.

The border-radius property can be applied to all elements except the table element

when the border-collapse property is set to collapse.

Older Browsers

Generally speaking, there’s no need to provide an identical look in older browsers,

but sometimes a client may insist on it. There are some JavaScript solutions such

as CSS3 PIE6 that provide CSS3 decorations to older versions of IE without requir-

ing additional images or markup. For Android 2.3, you can prefix the property as

-webkit-border-radius. For performance reasons, we recommend against

providing rounded corners to Android 2.3, IE8, and earlier versions of those

browsers.

Drop Shadows
CSS3 provides the ability to add drop shadows to elements using the box-shadow

property. This property lets you specify the color, height, width, blur, and offset of

one or multiple inner and/or outer drop shadows on your elements.

We usually think of drop shadows as an effect that makes an element look like it’s

hovering over the page and leaving a shadow; however, with such fine-grained

control over all those variables, you can be quite creative. For our advertisement

link, we can use a box-shadow with no blur to create the appearance of a 3D box.

The box-shadow property takes a comma-separated list of shadows as its value. Each

shadow is defined by two to four size values, a color, and the key term inset for

inset—or internal—shadows. If you fail to specify inset, the default is for the

shadow to be drawn outside of the element:

Let’s look at the shadow we’re using on our element, so that we can break down

what each value is doing:

6 http://css3pie.com/

151Introducing CSS3

http://css3pie.com/

box-shadow: 2px 5px 0 0 rgba(72,72,72,1);

The first value is the horizontal offset. A positive value will create a shadow to the

right of the element, a negative value to the left. In our case, our shadow is two

pixels to the right of the a.

The second value is the vertical offset. A positive value pushes the shadow down,

creating a shadow on the bottom of the element. A negative value pushes the

shadow up. In our case, the shadow is five pixels below the a.

The third value, if included, is the blur distance of the shadow. The greater the

value, the more the shadow is blurred. Only positive values are allowed. Our

shadow is not blurred ― being opaque throughout ― so we can either include a

value of zero (0), or omit the value altogether.

The fourth value determines the spread distance of the shadow. A positive value

will cause the shadow shape to expand in all directions. A negative value contracts

the shadow. Our shadow has no spread, so again we can either include a value of

zero (0), or omit the value altogether.

The fifth value is the shadow’s color. You will generally want to declare the color

of the shadow. If it’s omitted, the spec states that it should default to the same as

the color property of the element, or currentColor. In the example, we used an

RGBA color. In this particular design the shadow is a solid color, so we could just

have used the hex value. Most of the time, though, shadows will be partially trans-

parent, so you’ll typically be using RGBA or HSLA.

The drop shadow created by these declarations is shown in Figure 6.6.

Figure 6.6. Adding a drop shadow to our box gives it the illusion of depth

HTML5 & CSS3 for the Real World152

By default, the shadow is a drop shadow—occurring on the outside of the box. You

can create an inset shadow by adding the word inset to the start or end of your

shadow declaration.

The box-shadow property is well supported, with IE support starting at IE9.

Drop Shadows on Transparent Images

Drop shadows look good on rectangular elements, following the curve of the

corners. Keep in mind, though, that the shadow follows the edges of your element,

rather than the pixels of your content. So, if you try to use drop shadows on

semitransparent images, you’ll receive an ugly surprise: the shadow follows the

rectangular borders of the image box instead of the contour of the image’s content.

To create drop shadows that work for alpha transparent images, use the filter

property’s drop-shadow() function—filter: drop-shadow(2px 5px

rgb(72,72,72))—which works in Firefox 35, with the -webkit- prefix in

Chrome 31+, Safari 7+, Opera, Android 4.4+, and iOS6+. The filter property is

significantly different from and incompatible with Microsoft’s older filter

property, and is without support in IE 11.

To include more than one box shadow on an element, define a comma-separated

list of shadows. When more than one shadow is specified, the shadows are layered

front to back as if the browser drew the last shadow first and the previous shadow

on top of that.

Like an element’s outline, box shadows are supposed to be invisible in terms of the

box model. In other words, they should have no impact on the layout of a

page—they’ll overlap other boxes and their shadows if necessary. We say “supposed

to,” because there are bugs in some browsers, though these are few and will likely

be fixed fairly quickly.

Inset and Multiple Shadows
The registration form for The HTML5 Herald has what looks like a gradient back-

ground around the edges, but it’s actually a few inset box shadows.

To create an inset box shadow, add the inset key term to your declaration. In our

case, we have to include two shadows so that we cover all four sides: one shadow

for the top left, and one for the bottom right:

153Introducing CSS3

form {
 box-shadow:
 inset 1px 1px 84px rgba(0,0,0,0.24),
 inset -1px -1px 84px rgba(0,0,0,0.24);
}

As you can see, to add multiple shadows to an element repeat the same syntax again,

separated with a comma.

WebKit and Inset Shadows

Older versions of WebKit-based browsers that are still found on many mobile

devices suffer from very slow performance when rendering inset box shadows

with a large blur value, such as the one we’re using on The HTML5 Herald’s re-

gistration form. For this reason, we recommend against using the vendor-prefixed

property. It’s very simple to not give older mobile browser users a bad experience:

avoid adding the -webkit- prefix on shadow and border radii.

Text Shadow
Where box-shadow lets us add shadows to boxes, text-shadow adds shadows to

individual characters in text nodes. Added in CSS2, text-shadow has been supported

in Safari since version 1 and finally received support in IE10, unprefixed in all

browsers.

The syntax of the text-shadow property is very similar to box-shadow, including

prefixes, offsets, and the ability to add multiple shadows; the exceptions are that

there’s no spread, and inset shadows aren’t permitted:

/* single shadow */
text-shadow: topOffset leftOffset blurRadius color;

/* multiple shadows */
text-shadow: topOffset1 leftOffset1 blurRadius1 color1,
 topOffset2 leftOffset2 blurRadius2 color2,
 topOffset3 leftOffset3 blurRadius3 color3;

Like box-shadow, when multiple shadows are declared, they’re painted from front

to back with the first shadow being the topmost. Text shadows appear behind the

text itself. This is different from box-shadow, which starts on the outside of the box

HTML5 & CSS3 for the Real World154

(or is displayed only on the inside in the case of inset). If a shadow is so large that

it touches another letter, it will continue behind that character.

Our text has a semi-opaque shadow to the bottom right:

text-shadow: 3px 3px 1px rgba(0, 0, 0, 0.5);

This states that the shadow extends three pixels below the text, three pixels to the

right of the text, is slightly blurred (one pixel), and has a base color of black at 50%

opacity.

With that style in place our ad link is nearly complete, as Figure 6.7 shows. The

finishing touch—a custom font—will be added in Chapter 9.

Figure 6.7. Our ad link is looking quite snazzy!

Color-matching Your Shadow

Use the keyword currentColor if you want your text’s shadow to match the

color of your text. A single-pixel text shadow can make very thin fonts, such as

Helvetica Neue Light, more legible:

text-shadow: 0 0 1px currentColor;

More Shadows
We now know how to create drop shadows on both block-level elements and text

nodes. But so far, we’ve only styled a fraction of our page—only one link in one

advertisement, in fact. Let’s do the rest of the shadows before moving on.

Looking back at the site design, we can see that all the h1 elements on the page are

uppercase and have drop shadows. The text is dark gray with a very subtle solid-

155Introducing CSS3

white drop shadow on the bottom right, providing a bit of depth.7 The tagline in

the site header also has a drop shadow, but is all lowercase. The taglines for the

articles, meanwhile, have no drop shadow.

We know that we can target all these elements without using classes. Let’s do that

without any additional markup:

h1, h2 {
 text-transform: uppercase;
 text-shadow: 1px 1px #FFFFFF;
}
:not(article) > header h2 {
 text-transform: lowercase;
 text-shadow: 1px 1px #FFFFFF;
}

The first declaration targets all the h1 and h2 elements on the page. The second

targets all the h2 elements that are in a header, but only if that header is not nested

in an article element.

Our text shadows are a solid white, so there’s no need to use alpha transparent

colors or a blur radius.

Up Next
Now that we have shadows and rounded corners under our belt, it’s time to have

some more fun with CSS3. In the next chapter, we’ll be looking at CSS3 gradients

and multiple background images.

7 See http://twitter.com/#!/themaninblue/status/27210719975964673.

HTML5 & CSS3 for the Real World156

http://twitter.com/#!/themaninblue/status/27210719975964673

Chapter7
CSS3 Gradients and Multiple
Backgrounds
In Chapter 6, we learned a few ways to add decorative styling features—such as

shadows and rounded corners—to our pages without the use of additional markup

or images. The next most common feature frequently added to websites that used

to require images is gradients. CSS3 provides us with the ability to include multiple

background images on any element including multiple radial and linear gradients

that we can make the browser create for us. With CSS3, there’s no need to create

the multitudes of JPEGs of years past, or add nonsemantic hooks to our markup.

Browser support for gradients and multiple backgrounds has fully evolved, with

IE9 supporting multiple background images and IE10 supporting gradients.

We’ll start by looking at CSS3 gradients. But first, what are gradients about?

Gradients are smooth transitions between two or more specified colors. In creating

gradients, you can specify multiple in-between color values called color stops. Each

color stop is made up of a color and a position; the browser fades the colors from

each stop to the next to create a smooth gradient. Gradients can be utilized anywhere

a CSS image can be used. This means that in your CSS, a gradient can be theoretically

employed anywhere a url() value can be used, such as background-image, border-

image, and even list-style-type.

By using CSS gradients to replace images, you save your users from having to

download extra images. Furthermore, CSS gradients are fully responsive, and so

you avoid pixelation when you zoom in, unlike with images.

Linear and radial gradients are both well-supported types of gradients. Let’s go over

them in turn.

Linear Gradients
Linear gradients are those where colors transition across a straight line: from top to

bottom, left to right, or along any arbitrary axis. If you’ve spent any time with image-

editing tools such as Photoshop and Fireworks, you should be familiar with linear

gradients—but as a refresher, Figure 7.1 shows some examples.

Figure 7.1. Linear gradient examples

Similar to image-editing programs, to create a linear gradient you specify a direction,

the starting color, the end color, and any color stops you want to add along the

gradient line. The browser takes care of the rest, filling the entire element by

painting lines of color perpendicular to the gradient line. It produces a smooth fade

from one color to the next, progressing in the direction you specify.

When it comes to browsers and linear gradients, it becomes a little messy. WebKit

first introduced gradients several years ago using a particular and—many ar-

gued—convoluted syntax. After that, Mozilla implemented gradients using a simpler

and more straightforward syntax. Then, in January of 2011, the W3C included a

proposed syntax in CSS3. The final W3C syntax, which is slightly different from

HTML5 & CSS3 for the Real World158

the previous prefixed implementation, is supported by all major browsers starting

with IE10. It is supported without prefixes, though you may want to use the inter-

mediate syntax with the -webkit- prefix to target some mobile WebKit browsers

that are still in play, such as Android 4 to 4.3, Blackberry 10, and UC Browser for

Android 9.

That still leaves us with the question of how to handle gradients in IE9 and earlier.

Fortunately, IE9 supports scalable vector graphics (SVG) backgrounds—and it’s

fairly simple to create gradients in SVG. (We’ll be covering SVG in more detail in

Chapter 12.) In addition, IE8 supports a proprietary filter that enables the creation

of basic linear gradients.

Confused? Don’t be. While gradients are important to understand, memorizing all

the browser syntaxes is unnecessary. We’ll cover the final syntax, as well as the

soon-to-be-forgotten old-style syntax, but first we’ll let you in on a little secret: there

are tools that will create all the required styles for you, so there’s no need to remem-

ber all the specifics of each syntax. Let’s get started.

There’s one linear gradient in The HTML5 Herald, in the second advertisement

block shown in Figure 7.2 (which happens to be advertising this very book!). You’ll

note that the gradient starts off dark at the top, lightens, then darkens again as if to

create a road under the cyclist, before lightening again.

Figure 7.2. A linear gradient in The HTML5 Herald

To create a cross-browser gradient for our ad, we’ll start with the standard syntax.

Then we’ll cover how to tweak it slightly to target older WebKit browsers.

159CSS3 Gradients and Multiple Backgrounds

The W3C Syntax
Here’s the basic syntax for linear gradients:

background-image: linear-gradient(…);

Inside those parentheses, you specify the direction of the gradient and then provide

some color stops. For the direction, you can provide either the angle along which

the gradient should proceed, or the side or corner to which it should end—in which

case it will proceed towards the opposite side or corner.

For angles, you use values in degrees (deg). 0deg points upward, 90deg points toward

the right, and so on in a clockwise rotation. For a side or corner, use to top, to

bottom, to left, to right, to top left, to bottom left, to top right, or to

bottom right direction key phrases.

After specifying the direction, provide your color stops; these are made up of a

color and a percentage or length specifying how far along the gradient that stop is

located.

That’s a lot to take in, so let’s look at some gradient examples. For the sake of illus-

tration, we’ll use a gradient with just two color stops: #FFF (white) to #000 (black).

To have the gradient go from top to bottom of an element, as shown in Figure 7.3,

you could specify any of the following:

HTML5 & CSS3 for the Real World160

background-image: linear-gradient(180deg, #FFF 0%, #000 100%);
background-image: linear-gradient(to bottom, #FFF 0%, #000 100%);
background-image: linear-gradient(#FFF 0%, #000 100%);

Figure 7.3. A white-to-black gradient from the top center to the bottom center of an element

The last declaration works because to bottom is the default in the absence of a

specified direction.

Because the first color stop is assumed to be at 0%, and the last color stop is assumed

to be at 100%, you could also omit the percentages from that example and achieve

the same result:

background-image: linear-gradient(#FFF, #000);

While all of these examples are functionality-equivalent, we recommend that you

select a preferred way of declaring your gradients for consistency and markup

legibility.

Now let’s put our gradient on an angle and place an additional color stop. Let’s say

we want to go from black to white, and then back to black again:

background-image: linear-gradient(60deg, #000, #FFF 75%, #000);

We’ve placed the color stop 75% along the way, so the white band is closer to the

gradient’s end point than its starting point, as shown in Figure 7.4.

161CSS3 Gradients and Multiple Backgrounds

Figure 7.4. A gradient with three color stops

You can place your first color stop somewhere other than 0%, and your last color

stop at a place other than 100%. All the space between 0% and the first stop will

be the same color as the first stop, and all the space between the last stop and 100%

will be the color of the last stop. Here’s an example:

background-image: linear-gradient(60deg, #000 50%, #FFF 75%,
➥#000 90%);

The resulting gradient is shown in Figure 7.5.

Figure 7.5. A gradient confined to a narrow band by offsetting the start and end color stops

There’s no need to actually specify positions for any of the color stops. If you omit

them, the stops will be evenly distributed. Here’s an example:

HTML5 & CSS3 for the Real World162

background-image:
 linear-gradient(45deg,
 #FF0000 0%,
 #FF6633 20%,
 #FFFF00 40%,
 #00FF00 60%,
 #0000FF 80%,
 #AA00AA 100%);

background-image:
 linear-gradient(45deg,
 #FF0000,
 #FF6633,
 #FFFF00,
 #00FF00,
 #0000FF,
 #AA00AA);

Each of the previous declarations makes for a fairly unattractive angled rainbow.

Note that we’ve added line breaks and indenting for ease of legibility—they are not

essential.

Colors transition smoothly from one color stop to the next; however, if two color

stops are placed at the same position along the gradient, the colors won’t fade, but

will stop and start on a hard line. This is a way to create a striped background effect,

such as the one shown in Figure 7.6.

Figure 7.6. Careful placement of color stops can create striped backgrounds

Here are the styles used to construct that example:

163CSS3 Gradients and Multiple Backgrounds

background-image:
 linear-gradient(45deg,
 #000000 30%,
 #666666 30%,
 #666666 60%,
 #CCCCCC 60%,
 #CCCCCC 90%
);

At some point in the reasonably near future, you can expect this hopefully final,

non-prefixed version of the syntax to be the only one you’ll need to write—but we’re

not quite there yet.

The Prefixed Syntax
If you intend targeting gradients to older mobile WebKit browsers, you need to in-

clude a prefixed gradient declaration with slightly different syntax.

In the prefixed rendition of linear gradients, the angles were different: 0deg pointed

to the right, and angles went counterclockwise instead of clockwise, so 90deg was

up, and so on. In addition, the key phrases were different: we declared where the

gradient was coming from instead of where it was going to. For a side or corner, in

the prefixed syntax use top, bottom, left, right, top left, bottom left, top

right, or bottom right.

In this intermediate syntax, the corner gradients didn’t necessarily go from corner

to corner like the new syntax: instead, they went at a 45 degrees angle through the

center of the element on which it was applied.

These three declarations are the same as our three default declarations listed, but

with the -webkit- prefix.

background-image: -webkit-linear-gradient(270deg, #FFF 0%, #000
➥100%);
background-image: -webkit-linear-gradient(top, #FFF 0%, #000 100%);
background-image: -webkit-linear-gradient(#FFF 0%, #000 100%);

This -webkit- prefixed syntax works for Safari 5.1-6, iOS 5-6.1, Chrome 10-25,

Android 4.0-4.3, and Blackberry 10. Microsoft, other than for its developer preview,

never released a browser with prefixed linear gradients.

HTML5 & CSS3 for the Real World164

The Old WebKit Syntax
Older versions of Webkit for Safari 4 and 5, Android 2.3 to 3, iOS 3.2 to 4.3, Black-

berry 7, and Chrome through version 9 supported the original syntax. If you still

need to support these browsers, you have to understand the syntax. But think twice

before including it as the performance and memory consumption of this old syntax

on old devices that require it may not make the gradient worth the effort.

Let’s look at this original syntax, using our first white-to-black gradient example

again:

background-image:
 -webkit-gradient(linear, 0% 0%, 0% 100%, from(#FFFFFF),
➥to(#000000));

Rather than use a specific linear-gradient property, there’s a general-purpose

-webkit-gradient property where you specify the type of gradient (linear in this

case) as the first parameter. The linear gradient then needs both a start and end

point to determine the direction of the gradient. The start and end points can be

specified using percentages, numeric values, or the keywords top, bottom, left,

right, or center.

The next step was to declare color stops of the gradients. You can include the ori-

ginating color with the from keyword and the end color with the to keyword. Then

you can include any number of intermediate colors using the color-stop function

to create a color stop. The first parameter of the color-stop() function is the position

of the stop expressed as a percentage, and the second parameter is the color at that

location.

Here’s an example:

background-image:
 -webkit-gradient(linear, left top, right bottom,
 from(red),
 to(purple),
 color-stop(20%, orange),

165CSS3 Gradients and Multiple Backgrounds

 color-stop(40%, yellow),
 color-stop(60%, green),
 color-stop(80%, blue));

With that, we’ve recreated our angled rainbow, reminiscent of GeoCities circa 1996.

This syntax is more complicated than what was finally adopted by the W3C. Fortu-

nately, tools exist to generate all the required code for a given gradient automatically.

We’ll be looking at some of them at the end of this section, but first we’ll see how

to use both syntaxes to create a cross-browser gradient for The HTML5 Herald. The

good news is that since the three WebKit syntaxes use different property values,

you can use them side by side without conflict. The old syntax is still supported in

newer browsers, so the browser will just use whichever one was declared last. We’ve

included it here mainly for legacy purposes, as you might come across this still-

supported old syntax in legacy code.

Putting It All Together
Now that you have a fairly good understanding of how to declare linear gradients,

let’s declare ours.

If your designer included a gradient in the design, it’s likely to have been created

in Photoshop or another image-editing program. You can use this to your advantage;

if you have the original files, it’s fairly easy to replicate exactly what your designer

intended.

If we open Photoshop and inspect the gradient we want to use for the ad (shown in

Figure 7.7), we see that our gradient is linear, with five color stops that change the

opacity of a single color (black).

HTML5 & CSS3 for the Real World166

Figure 7.7. An example linear gradient in Photoshop

You’ll note via the Photoshop screengrab that the first color stop’s location is at

37% with an opacity of 0%. We can use this tool to grab the data for our CSS declar-

ation, beginning with the -webkit- prefixed version for older browsers, and followed

by the W3C non-prefixed syntax:

.ad-ad3 {
 ⋮
 background-image:
 -webkit-linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
 background-image:
 linear-gradient(
 180deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
}

We want the gradient to run from the very top of the ad to the bottom, so we set the

angle to 180deg, which is toward bottom, or 180 degrees clockwise from the top of

0 degrees. The prefixed syntax has a different angle with 270deg: as in the older

167CSS3 Gradients and Multiple Backgrounds

version 0 degrees is to the right instead of to the top, and angle measurements are

counterclockwise unlike the final syntax that is clockwise.

We’ve then added all the color stops from the Photoshop gradient. Note that we’ve

omitted the end point of the gradient, because the last color stop is at

98%—everything after that stop will be the same color as the stop in question (in

this case, black at 0% opacity, or fully transparent).

Linear Gradients with SVG
We still have a few more browsers to add our linear gradient to. For IE9, which

lacks support for gradients, we can declare SVG files as background images. By

creating a gradient in an SVG file and declaring that SVG as the background image

of an element, we can recreate the same effect we achieved with CSS3 gradients.

SVG

SVG stands for Scalable Vector Graphics. It’s an XML-based language for defining

vector graphics using a set of elements—like what you use in HTML to define the

structure of a document. We’ll be covering SVG in much more depth in Chapter 12,

but for now we’ll just skim over the basics, since all we’re creating is a simple

gradient.

An SVG file sounds scary, but for creating gradients it’s quite straightforward. Here’s

our gradient in SVG form:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20050904/DTD/svg10.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1">
<title>Module Gradient</title>
 <defs>
 <linearGradient id="grad" x1="0" y1="0" x2="0" y2="100%">
 <stop offset="0" stop-opacity="0.3" color-stop="#000000" />
 <stop offset="0.37" stop-opacity="0" stop-color="#000000" />
 <stop offset="0.83" stop-opacity="0" stop-color="#000000" />
 <stop offset="0.92" stop-opacity="0.06" stop-color="#000000" />
 <stop offset="0.98" stop-opacity="0" stop-color="#000000" />
 </linearGradient>
</defs>

HTML5 & CSS3 for the Real World168

<rect x="0" y="0" width="100%" height="100%"
➥style="fill:url(#grad)" />
</svg>

Looking at the SVG file, you should notice that it’s quite similar to the syntax for

linear gradients in CSS3. We declare the gradient type and the orientation in the

linearGradient element, then add color stops. Like in the oldest WebKit syntax,

the orientation is set with start and end coordinates, from x1, y1 to x2, y2. The

color stops are fairly self-explanatory, having an offset between 0 and 1 determining

their position and a stop-color for their color. After declaring the gradient, we then

have to create a rectangle (the rect element) and fill it with our gradient using the

style attribute.

So, we’ve created a nifty little gradient, but how do we use it on our site? Save the

SVG file with the .svg extension. Then in your CSS declare the SVG as your back-

ground image with the same syntax, as if it were a JPEG, GIF, or PNG:

.ad-ad3 {
 ⋮
 background-image: url("../images/gradient.svg);
 ⋮
}

The SVG background should be declared before the CSS3 gradients, so browsers

that understand both will use the latter. Browsers that support gradients are even

smart enough not to download the SVG if it’s overwritten by another background-

image property later on in your CSS.

The major difference between our CSS linear gradients and the SVG version is that

the SVG background image won’t default to 100% of the height and width of the

container the way CSS gradients do. To make the SVG fill the container, declare

the height and width of your SVG rectangle as 100%.

Linear Gradients with IE Filters
For Internet Explorer prior to version 9, we can use the proprietary IE filter syntax

to create simple gradients. The IE gradient filter doesn’t support color stops, gradient

angle, or, as we’ll see later, radial gradients. All you have is the ability to specify

whether the gradient is horizontal or vertical, as well as the “to” and “from” colors.

169CSS3 Gradients and Multiple Backgrounds

It’s fairly basic, but if you need a gradient on these older browsers, it can provide

the solution.

The filter syntax for IE is:

filter:progid:DXImageTransform.Microsoft.gradient(GradientType=0,
➥startColorstr='#COLOR', endColorstr='#COLOR); /* IE6 & IE7 */
-ms-filter:"progid:DXImageTransform.Microsoft.gradient(GradientType=
➥0,startColorstr='#COLOR', endColorstr='#COLOR')"; /* IE8 */

The GradientType parameter should be set to 1 for a horizontal gradient, or 0 for a

vertical gradient.

Since the gradient we’re using for our ad block requires color stops, we’ll skip using

the IE filters. The ad still looks fine without the gradient, so it’s all good.

As we’ve mentioned before, IE’s filters can have a significant impact on performance,

so use them sparingly if at all. Calculating the display of filter effects takes processing

time, with some effects being slower than others. We recommend against using

Microsoft filters: sites do not need to look the same in all browsers.

Tools of the Trade
Now that you understand how to create linear gradients and have mastered the in-

tricacies of their convoluted syntax, there’s no need to worry if you forget the spe-

cifics of the syntax you just learned. There are some very cool tools to help you

create linear gradients without having to recreate your code for the old and new

syntaxes.

John Allsop’s CSS3 Sandbox1 is a tool that enables you to create gradients with

color stops, with separate tabs for radial and linear gradients. The tool only creates

gradients with hexadecimal color notation, but it does provide you with copy-and-

paste code, so you can copy it and then switch the hexadecimal color values to

RGBA or HSLA if you prefer.

Damian Galarza’s Gradient Generator2 provides for both color stops and RGB. It

even lets you set colors with an HSL color picker, but converts it to RGB in the code.

1 http://www.westciv.com/tools/gradients/
2 http://gradients.glrzad.com/

HTML5 & CSS3 for the Real World170

http://www.westciv.com/tools/gradients/
http://gradients.glrzad.com/

It does not provide for alpha transparency, but since the code generated is in RGB,

it’s easy to update. This gradient generator is more powerful than John Allsop's one,

but may be a bit overwhelming for a newbie.

Radial Gradients
Radial gradients are circular or elliptical gradients. Rather than proceeding along

a straight axis, colors blend out from a starting point in all directions. To create a

radial gradient you define the center of the gradient, its size and shape, and the

color stops, like we do for linear gradients. The color stops start at the center and

progress outwards. Similar to linear gradients, radial gradients are supported in all

browsers (beginning with IE10). As with linear gradients, they can be created in

SVG so support can be provided to IE9. Radial gradients are entirely unsupported

in IE8 and earlier—not even with filters.

The W3C Syntax
Let’s start with a basic circular gradient to illustrate the standard syntax:

background-image: radial-gradient(circle farthest-corner at center,
➥#FFF, #000);

This will result in the gradient shown in Figure 7.8. We’ve declared the shape of

the gradient as a circle: the default radial gradient is an ellipse whose height and

width has the same aspect ratio as the container on which it is set, unless the size

is declared in length units with differing proportions. We’ve declared the size as

farthest-corner, which means that the end of the gradient is at the corner furthest

from the center of the gradient. We set the center of the gradient to be at the center

of the containing block, which is the default. We then defined two color stops of

white and black. Color stops are declared the same way as linear gradients.

171CSS3 Gradients and Multiple Backgrounds

Figure 7.8. A centered radial gradient

Let’s now play with the position:

background-image: radial-gradient(circle farthest-corner at 30px
➥30px, #FFF, #000);

This will place the center of the gradient 30 pixels from the top and 30 pixels from

the left of the element, as you can see in Figure 7.9. As with background-position,

you can use values, percentages, or keywords to set the gradient’s position.

Figure 7.9. A radial gradient positioned off-center

Now let’s look at the shape and size parameter. The shape can take one of two values,

circle or ellipse, with the latter being the default.

HTML5 & CSS3 for the Real World172

For the size parameter, you can use one of the following values (and you can see

example results in Figure 7.10):

closest-side The gradient’s shape meets the side of the box closest to its

center (for circles), or meets both the vertical and horizontal

sides closest to the center (for ellipses). It creates the smallest

gradient of the four key terms.

closest-corner The gradient’s shape is sized so that it meets exactly the

closest corner of the box from its center.

farthest-side Similar to closest-side, except that the shape is sized to

meet the side of the box farthest from its center—or the farthest

vertical and horizontal sides in the case of ellipses.

farthest-corner The gradient’s shape is sized so that it meets exactly the

farthest corner of the box from its center. Creates the largest

gradient of the four key terms.

lengths For the size we could have used a length unit instead of one

of the four key terms mentioned, with percentage values being

supported for elliptical declarations, but not for circles. If you

declare lengths, the circle gradient only supports one value;

for ellipses, the length unit requires both the horizontal and

vertical radii be declared, with the width coming before the

height.

The length or key term determines where the 100% color stop will be located. Any

points beyond that color stop will be the same color as that color stop.

173CSS3 Gradients and Multiple Backgrounds

Figure 7.10. Radial gradient sizing

The color stop syntax is the same as for linear gradients: a color value followed by

an optional stop position. Let’s look at one last example:

background-image: radial-gradient(circle farthest-side at 30px 30px,
➥#FFF, #000 30%, #FFF);

This will create a gradient like the one in Figure 7.11.

Figure 7.11. A radial gradient with a modified size and shape, and an extra color stop

HTML5 & CSS3 for the Real World174

The Prefixed WebKit Syntax
To create the example in Figure 7.11 using the prefixed WebKit syntax currently in

iOS up to 5.1, Android up to 4.3, and BlackBerry 10, we need to prefix the value

and reorder the value components:

background-image: -webkit-radial-gradient(30px 30px,
➥ circle farthest-side, #FFF, #000 30%, #FFF);

We prefix the property value with -webkit-. The location is declared first, without

the at key term. Otherwise, the prefixed version is similar to the unprefixed syntax.

Making Our Own Radial Gradient
Let’s take all that we’ve learned and implement a radial gradient for The HTML5

Herald. You may not have noticed, but the form submit button has a radial gradient

in the background. The center of the radial gradient is outside the button area, to-

wards the left and a little below the bottom, as Figure 7.12 shows.

Figure 7.12. A radial gradient on a button in The HTML5 Herald’s sign-up form

We’ll want to declare at least three background images: an SVG file for IE9, the older

WebKit syntax for mobile Webkit, and the unprefixed version for modern browsers:

input[type=submit] {
 ⋮
 background-color: #333;
 /* SVG for IE9 */
 background-image: url(../images/button-gradient.svg);
 /* prefixed for Android 4 to 4.3, Blackberry and UC Browser
 background-image: -webkit-radial-gradient(30% 120%, circle,
 rgba(144,144,144,1) 0%,
 rgba(72,72,72,1) 50%);
 background-image: radial-gradient(circle at 30% 120%,

175CSS3 Gradients and Multiple Backgrounds

 rgba(144,144,144,1) 0%,
 rgba(72,72,72,1) 50%);
}

The center of the circle is 30% from the left, and 120% from the top, so it’s actually

below the bottom edge of the container. We’ve included two color stops for the

color #484848—or rgba(72,72,72)—and #909090—or rgba(144,144,144).

And here’s the SVG file used as a fallback:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
➥"http://www.w3.org/TR/2001/REC-SVG-20050904/DTD/svg10.dtd">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="
➥http://www.w3.org/1999/xlink" version="1.1">
<title>Button Gradient</title>
 <defs>
 <radialGradient id="grad" cx="30%" cy="120%" fx="30%" fy="120%"
➥r="50%" gradientUnits="userSpaceOnUse">
 <stop offset="0" stop-color="#909090" />
 <stop offset="1" stop-color="#484848" />
 </radialGradient>
</defs>
<rect x="0" y="0" width="100%" height="100%"
➥style="fill:url(#grad)" />
</svg>

The syntax is fairly explanatory, but we’ll cover SVG in Chapter 12 anyway. Keep

in mind that you can also leverage background-position and background-size

for your design.

Repeating Gradients
Sometimes you’ll find yourself wanting to create a gradient pattern that repeats over

the background of an element. While recurring linear gradients can be created by

repeating the background image (with background-repeat), there’s no equivalent

way to easily create repeating radial gradients. Fortunately, CSS3 comes to the rescue

with both a repeating-linear-gradient and a repeating-radial-gradient syntax.

The vendor-prefixed repeating-linear-gradient syntax is supported in Firefox

3.6+, Safari 5.0.3+, Chrome 10+, and Opera 11.10+, and unprefixed since IE10,

HTML5 & CSS3 for the Real World176

Firefox 16, Safari 6.1, iOS 7.1, Opera 12.1, Chrome 26 (though it can be quirky) and

even Opera Mobile 12.1.

In terms of color stops and angles, gradients with repeating-linear-gradient and

repeating-radial-gradient have the same syntax as the non-repeating versions.

Here are examples of what can be created with just a few lines of CSS:

.repeat_linear_1 {
 background-image:
 repeating-linear-gradient(to right,
 rgba(0,0,0,0.5) 10%,
 rgba(0,0,0,0.1) 30%);
}
.repeat_radial_2 {
 background-image:
 repeating-radial-gradient(circle at top left,
 rgba(0,0,0,0.9),
 rgba(0,0,0,0.1) 10%,
 rgba(0,0,0,0.5) 20%);
}
.multiple_gradients_3 {
 background-image:
 repeating-linear-gradient(to right,
 rgba(0,0,0,0.5) 10%,
 rgba(0,0,0,0.1) 30%),
 repeating-radial-gradient(circle at top left,
 rgba(0,0,0,0.9),
 rgba(0,0,0,0.1) 10%,
 rgba(0,0,0,0.5) 20%);
}

The resulting gradients are shown in Figure 7.13.

177CSS3 Gradients and Multiple Backgrounds

Figure 7.13. A few examples of repeating gradients

The important difference to remember is that the color-stop placement values matter

in repeating gradients. In regular gradients, the last color stop location is simply

the end point of the color transition. In repeating gradients, the first color stop is

the beginning of the gradient, and the last color stop location is the end of the

gradient: it starts repeating with the first color stop at that location. In our example

our two color stops are at10% and 30%. This means the gradient will repeat five

times, as each is 20% of the width of the containing object (30% - 10% = 20%). In

our radial example, the first color stop has no location, so it defaults to 0%.

Multiple Background Images
You probably noticed that our advertisement with the linear gradient is incomplete:

we’re missing the bicycle. Prior to CSS3, adding the bicycle would have required

placing an additional element in the markup to contain the new background image.

In CSS3, there’s no need to include an element for every background image; it

provides us with the ability to add more than one background image to any element,

even to pseudo-elements.

To understand multiple background images, you need to understand the syntax and

values of the various background properties. The syntax for the values of all the

background properties, including background-image and the shorthand background

property, are the same whether you have one background image or many. To make

a declaration for multiple background images, simply separate the values for each

individual image with a comma. For example:

HTML5 & CSS3 for the Real World178

background-image:
 url(firstImage.jpg),
 url(secondImage.gif),
 url(thirdImage.png);

This works just as well if you’re using the shorthand background property:

background:
 url(firstImage.jpg) no-repeat 0 0,
 url(secondImage.gif) no-repeat 100% 0,
 url(thirdImage.png) no-repeat 50% 0;

The background images are layered one on top of the other with the first declaration

on top, as if it had a higher z-index. The final image is drawn under all the images

preceding it in the declaration, as if it had a low z-index. Basically, think of the

images as being stacked in reverse order with the last one being drawn first, and

each previous image being drawn on top of it.

IE8 doesn’t support multiple background images. If you’re still supporting IE8, de-

clare a single background image before the multiple background image declaration.

If you want to declare a background color—which you should, especially if it’s

light-colored text on a dark-colored background image—declare it last. It’s often

simpler and more readable to declare it separately using the background-color

property.

As a reminder, the shorthand background property is short for eight longhand

background properties. If you use the shorthand, any longhand background property

value that’s omitted from the declaration will default to the longhand property’s

default (or initial) value. The default values for the various background properties

are listed:

■ background-color: transparent;

■ background-image: none;

■ background-position: 0 0;

■ background-size: auto;

179CSS3 Gradients and Multiple Backgrounds

■ background-repeat: repeat;

■ background-clip: border-box;

■ background-origin: padding-box;

■ background-attachment: scroll;

The heading on our sign-up form has two background images. While we could attach

a single extra-wide image in this case, spanning across the entire form, there’s no

need! With multiple background images, CSS3 allows us to attach two separate

small images, or a single image sprite twice with different background positions.

This saves on bandwidth, of course, but it’s also beneficial if the heading needed

to stretch; a single image would be unable to accommodate differently sized elements.

This time, we’ll use the background shorthand:

background:
 url("../images/bg-formtitle-left.png") left 13px no-repeat,
 url("../images/bg-formtitle-right.png") right 13px no-repeat;

Using the Shorthand

In browsers that support all the available background properties and the short-

hand, the following two statements are equivalent:

div {
 background: url("tile.png") no-repeat scroll center
➥bottom / cover rgba(0, 0, 0, 0.2);
}

div {
 background-color: rgba(0,0,0,0.2);
 background-position: 50% 100%;
 background-size: cover;
 background-repeat: no-repeat;
 background-clip: border-box;
 background-origin: padding-box;

HTML5 & CSS3 for the Real World180

 background-attachment: scroll;
 background-image: url(form.png);
}

If you declare the shorthand, remember that all omitted properties reset themselves

to each longhand property’s default value. When using both shorthand with a

property override, remember to declare the shorthand before the longhand property.

Multiple Background Images in IE8

If you still need to support IE8, which does not support multiple background im-

ages, you can leverage generated content to access three hooks to use for single

background images: adding a single background image to the element, the :before

content and the :after content as shown:

div {
 position: relative;
 background: url(secondImage.gif) no-repeat 100% 0;
}
div:before, div:after {
 position: absolute;
 top: 0; left: 0; right: 0; bottom: 0;
 content: '';
}
div:after { background: url(firstImage.jpg) no-repeat 0 0;}
div:before { background: url(thirdImage.png) no-repeat 50%
➥0;}

Remember to use single-colon notation as IE8 doesn’t understand double-colon

notation.

Background Size
The background-size property allows you to specify the size you want your back-

ground images to have. Include background-size within the shorthand background

declaration by adding it after the background’s position, separated with a slash (/).

This syntax is confusing to many. As a result, many developers use the background-

size property as a separate declaration instead. Support for background-size is

fairly universal, starting with IE9, and unprefixed starting with Firefox 4 and Android

3.

181CSS3 Gradients and Multiple Backgrounds

The background-size value takes a length, a percentage, or one of the key terms

cover, contain, or auto, with auto being the default.

If you include a single length or percentage value, that will define the width of the

image, with the height set to maintain the image’s aspect ratio. If you prefer to base

the size on the height of the image, use two values with the first (or width) being

auto and the second being the height preference, as the first value is the width and

the second, the height. If you have multiple background images, separate the sizes

for each image with a comma.

Both these lines have the same meaning:

background-size: 100px auto, auto auto;
background-size: 100px, auto;

As with all background properties, use commas to separate values for each image

declared. If you only include one size, all the background images will be of that

size. If we wanted our bicycle to be really big, we could declare:

background-size: 100px auto, cover;

By default, a background image is the actual size of the image. Sometimes the image

is just a bit smaller or larger than its container. You can define the size of your

background image in pixels (as shown) or percentages, or you can use the contain

or cover keyterms.

The contain value scales the image while preserving its aspect ratio, which may

leave uncovered space. The cover value scales the image so that it completely

covers the element, also maintaining the image’s aspect ratio. This can result in

clipping the image if the background image has a different aspect ratio than the

element.

Background Image Performance

In terms of performance, it’s best to use autowith the background-size property

if you can, especially when animating. All other values require the image to be

decoded twice, with cover requiring the most time and CPU.

HTML5 & CSS3 for the Real World182

Working with HiDPI Devices

The background-size property comes in handy for devices that have different

pixel densities, such as HiDPI devices like the many mobile devices and Apple

laptops that have a pixel density four times higher than the average inexpensive

laptop or monitor. To prevent pages designed for older devices from looking tiny,

the browsers on these HiDPI devices behave as though they had a regular display.

The iPhone 5, for example, has a screen resolution of 640×960 but behaves as if

it has a 320×480 display. On this device, every pixel in your CSS corresponds to

four screen pixels. Images are scaled up to compensate, but this means they can

sometimes look a little rough compared to the smoothness of the text displayed.

To deal with this, you can provide higher-resolution images to HiDPI devices. For

example, if we were providing a high-resolution image of a bicycle for the iPad,

it would measure 74×90px instead of 37×45px. However, we don’t actually want

it to be twice as big! We only want it to take up 37×45px worth of space. We can

use background-size to ensure that our high-resolution image still takes up the

right amount of space:

background-size: 37px 45px, cover;

In this scenario, you can use media queries to define which device receives what

based on the viewport size and pixel density, with min-resolution replacing

the min-device-pixel-ratio:

<link rel="stylesheet" media="screen and (max-device-width:
➥520px) and (min-resolution: 2dppx)" />

In the Background
That’s all for CSS3 backgrounds and gradients. In the next chapter, we’ll be looking

at transforms, animations, and transitions. These allow you to add dynamic effects

and movement to your pages without relying on bandwidth- and processor-heavy

JavaScript.

183CSS3 Gradients and Multiple Backgrounds

Chapter8
CSS3 Transforms and Transitions
Our page is fairly static. Actually, it’s completely static. In Chapter 4 we learned a

little about how to alter a form’s appearance based on its state with the :invalid

and :valid pseudo-classes. But what about really moving things around? What

about changing the appearance of elements, such as rotating or skewing them?

For years, the only way to display text on an angle was to use an image of text created

in an image-editing program and the only way to animate was to change positioning

with JavaScript. This is far from ideal. Enter CSS3: without a line of JavaScript or

a single JPEG, you can tilt, scale, move, and even flip your elements with ease.

Let’s see how it’s done.

Transforms
The CSS3 transform property lets you lets you translate, rotate, scale, and/or skew

any element on the page. While some of these effects were possible using previously

existing CSS features (such as translating with relative and absolute positioning),

CSS3 gives you unprecedented control over many more aspects of the element’s

appearance.

We can manipulate an element’s appearance using transform functions. The value

of the transform property is one or more transform functions (separated by spaces)

that will be applied in the order they’re provided. In this book, we’ll cover all the

two-dimensional transform functions. All modern browsers, starting with IE10 and

Android 3, also support the transformation of elements in 3D space, but 3D trans-

forms are beyond the scope of this book.

To illustrate how transforms work, we’ll be working on another advertisement block

from The HTML5 Herald, shown in Figure 8.1.

Figure 8.1. This block will serve to illustrate CSS3 transforms

Translation
Translation functions allow you to move elements left, right, up, or down. These

functions are similar to the behavior of position: relative; when declaring top

and left, moving elements up and down or left and right along the x and y axes.

When you employ a translation function, you’re moving elements without impacting

the flow of the document. Unlike position: relative, which allows you to position

an element either against its current position or against a parent or other ancestor,

a translated element can only be moved relative to its current position.

The translate(x,y) function moves an element x from the left, and y from the top:

transform: translate(45px, -45px);

Transforms and Older Browsers

Transforms require vendor prefixing for IE9, Android up to 4.4.3, iOS8, and

Blackberry 10. To make the aforementioned code work in IE9 and older mobile

WebKit browsers, you would include the following:

HTML5 & CSS3 for the Real World186

-webkit-transform: translate(45px,-45px); /* iOS8, Android
➥4.4.3, BB10 */
-ms-transform: translate(45px,-45px); /* IE9 only */
transform: translate(45px,-45px);

If you only want to move an element vertically or horizontally, you can use the

translatex or translatey functions respectively. To move 45px to the right along

the x axis, include:

transform: translateX(45px);

To move up along the y axis by 30px, include:

transform: translateY(-30px);

For our ad, we want to move the word “dukes” over to the right when the user

hovers over it, as if it had been punched by our mustachioed pugilist. In the markup,

we have:

<h1>Put your dukes up, sire</h1>

Let’s apply the style whenever the user hovers over the h1. This will make the effect

more likely to be stumbled across than if it was only triggered by hovering over the

span itself:

.ad-ad2 h1:hover span {
 color: #484848;
 transform: translateX(40px);
}

Wait—this doesn’t work. What gives?

Transforms don’t work on inline elements. But that’s easy enough to fix. We’ll just

add display: inline-block; to our span:

187CSS3 Transforms and Transitions

.ad-ad2 h1 span {
 font-size: 30px;
 color: #999999;
 display: inline-block;
 ⋮

The result is shown in Figure 8.2.

Figure 8.2. The result of our translate transform

It’s nice, but we can still do better! Let’s look at how we can scale our text to make

it bigger as well.

Scaling
The scale(x,y) function scales an element by the defined factors horizontally then

vertically. If only one value is provided, it will be used for both the x and y values,

growing or shrinking your element or pseudo-element while maintaining the original

aspect ratio. For example, scale(1)would leave the element the same size, scale(2)

would double its proportions, scale(0.5) would halve them, and so on. Providing

different values will distort the element, as you’d expect:

transform: scale(1.5, 0.25);

As with translate, you can also use the scaleX(x) or scaleY(y) functions. These

functions will scale only the horizontal dimensions or only the vertical dimensions

respectively.

A scaled element will grow outwards from or shrink inwards towards its center; in

other words, the element’s center will stay in the same place as its dimensions

change. To change this default behavior, you can include the transform-origin

property, which we’ll be covering a bit later.

HTML5 & CSS3 for the Real World188

Let’s add a scale transform to our span:

.ad-ad2 h1:hover span {
 color: #484848;
 transform: translateX(40px) scale(1.5);
}

Note that you shouldn’t declare a new transform: because of the cascade, a second

transform would override the first. To declare multiple transformations, provide

a space-separated list of transform functions. We simply add our scale to the end

of that space-separated list.

It’s also worth remembering that scaling, like translation, has no impact on the

document flow. This means that if you scale inline-block elements, text around

it will fail to accommodate it with reflowing. Figure 8.3 shows an example of how

this might be a problem. In cases where this is an issue, you may consider adjusting

the element’s height, width, or font-size instead of using a scale() transform.

Changing those properties will alter the space allocated to the element by the

browser, but will also cause a reflow, recalculating the elements in the document

to re-rendering part or all of the page. Transforming does not cause a reflow.

Figure 8.3. Using the scale function on inline text can have unwanted results

In our example, however, we want the text to pop out of the ad without reflowing

the surrounding text, so the scale does exactly what we need it to do. Figure 8.4

shows what our hover state looks like with the scale added to the existing translation.

189CSS3 Transforms and Transitions

Figure 8.4. Our ad now has plenty of pop

It’s looking good, but there’s still more to add.

Rotation
The rotate() function rotates an element around the point of origin by a specified

angle value. As with scale, by default the point of origin is the element’s center.

Generally, angles are declared in degrees, with positive degrees moving clockwise

and negative moving counterclockwise. In addition to degrees, values can be

provided in grads, radians, or turns, but we’ll just be sticking with degrees.

Let’s add a rotate transform to our “dukes”:

.ad-ad2 h1:hover span {
 color: #484848;
 transform: rotate(10deg) translateX(40px) scale(1.5);
}

We’re rotating our span by ten degrees clockwise—adding to the effect of text that’s

just been dealt a powerful uppercut. We are declaring the rotation before the

translate so that it’s applied first—remember that transforms are applied in the

order provided. In this case, the span will be rotated 10 degrees, and then moved

40px along the rotated x axis.

The final transformed text is shown in Figure 8.5.

HTML5 & CSS3 for the Real World190

Figure 8.5. Our text has now been translated, scaled, and rotated—that’s quite a punch!

There’s one more type of transform we’re yet to visit. It won’t be used on The

HTML5 Herald, but let’s take a look anyway.

Skew
The skew(x,y) function specifies a skew along the x and y axes. As you’d expect,

the x specifies the skew on the x axis, and the y specifies the skew on the y axis. If

the second parameter is omitted, the skew will only occur on the x axis:

transform: skew(15deg, 4deg);

Applying these styles to a heading, for example, results in the skew shown in Fig-

ure 8.6.

Figure 8.6. Some text with a skew transform applied

As with translate and scale, there are axis-specific versions of the skew transform:

skewX() and skewY().

Changing the Origin of the Transform
As we hinted at earlier, you can control the origin from which your transforms are

applied. This is done using the transform-origin property. It has the same syntax

as the background-position property, and defaults to the center of the object (so

that scales and rotations will be around the center of the box by default).

191CSS3 Transforms and Transitions

Let’s say that you were transforming a circle. Because the default transform-origin

is the center of the circle, applying a rotate() transform to a circle would have no

visible effect—a circle rotated 90 degrees still looks exactly the same as it did before

being rotated. An ellipse rotated 180 degrees around its center would also look the

same as it did before being rotated upside down. However, if you gave your circle

or ellipse a transform-origin of 10% 10% or top center, you would notice the

rotation as Figure 8.7 illustrates.

Figure 8.7. Rotating an ellipse1 is more noticeable if the transform-origin is set to something other than the default

50% 50%

Browser support for the transform-origin property is the same as for trans-

form—prefixing being required when the transform property requires it:

transform-origin: 0 0;

Choose Your Ordering Carefully

The order of transform functions does matter: if you rotate before translating,

your translate direction will be on the rotated axis. The rightmost square in Fig-

ure 8.8 was translated then rotated with transform: translateX(200px)

rotate(135deg);. The leftmost square was rotated first then translated along

the newly rotated axis: transform: rotate(135deg) translateX(200px);.

1 http://codepen.io/estelle/pen/myXGGe

HTML5 & CSS3 for the Real World192

http://codepen.io/estelle/pen/myXGGe

Figure 8.8. The order of transform functions makes a difference

Support for Internet Explorer 8 and Earlier
While CSS3 transforms are unsupported in IE before version 9, you can mimic these

effects with other CSS properties, including filters. To mimic translation use posi-

tion: relative;, and top and left values:

.translate {
 position: relative;
 top: 200px;
 left: 200px;
}

You can also scale an element by altering its width and height, or changing the

font-size. Remember, though, that while transformed elements still take up the

space they did before being scaled, altering a width, height or font-size alters the

space allocated for the element and can affect the layout.

193CSS3 Transforms and Transitions

You can use filters to rotate an element in older versions of Internet Explorer, but

it’s ugly and performs poorly:

.rotate {
 transform: rotate(15deg);
 filter: progid:DXImageTransform.Microsoft.Matrix(
 sizingMethod='auto expand', M11=0.9659258262890683,
 M12=-0.25881904510252074, M21=0.25881904510252074,
 M22=0.9659258262890683);
 -ms-filter: "progid:DXImageTransform.Microsoft.Matrix(
 M11=0.9659258262890683, M12=-0.25881904510252074,
 M21=0.25881904510252074, M22=0.9659258262890683,
 sizingMethod='auto expand')";
 zoom: 1;
}

This filter’s syntax isn’t worth going into here. If you want to rotate an element in

Internet Explorer, go to http://www.useragentman.com/IETransformsTranslator/

for cross-browser code for a given transform. Just edit the original transform expres-

sion; the older IE version will be updated accordingly. This page provides prefixed

transform declarations that are outdated, but the IE filter is accurate.

Transitions
Animation has certainly been possible for some time with JavaScript, but native

CSS transitions generally require less client-side processing, so they’ll usually appear

smoother. On mobile devices with limited computing power, this can be a lifesaver.

As much fun as it’s been to have a feature work in IE9, it’s time to again leave that

browser behind. IE10 and all other browsers support CSS transitions, and transitions

are UI enhancements, and fail accessibly, so we need not worry about archaic IE

browsers.

Transitions allow the values of CSS properties to change over time, essentially

providing simple animations. For example, if a link changes color on hover, you

can have it gradually fade from one color to the other instead of a sudden change.

They’re both transitions, but with the CSS transition property the color transition

can be gradual. If the browser lacks support for transitions, the change will be im-

mediate instead of gradual, which is fine and accessible.

HTML5 & CSS3 for the Real World194

http://www.useragentman.com/IETransformsTranslator/

We can animate any of the transforms we’ve just seen, so that our pages feel more

dynamic.

CSS transitions are declared along with the regular styles on an element. Whenever

the target properties change, the browser will apply the transition making the change

gradual. Often the change will be due to different styles applied to a hover state;

however, transitions will work equally well if the property in question is changed

by adding a class, or otherwise using JavaScript to change state. This is significant:

rather than writing out an animation in JavaScript, you can simply switch a property

value and rely on the browser to do all the heavy lifting.

Here are the steps to create a simple transition using only CSS:

1. Declare the original state of the element in the default style declaration.

2. Declare the final state of your transitioned element; for example, a :hover state.

3. Include the transition functions in your default style declaration using the

transition properties, including: transition-property, transition-duration,

transition-timing-function, and transition-delay. We’ll look at each of

these and how they work shortly.

The important point to note is that the transition is declared in the default or

originating state. The -webkit- vendor prefix is still needed for older mobile devices,

including iOS6.1, BlackBerry10, Android 4.3 and UC Browser for Android. All

other browsers, including IE10 and Android 4.4 browser support the unprefixed

syntax.

This may be a lot to grasp, so let’s go over the various transition properties. As we

go, we’ll apply a transition to the transforms we added to our ad in the last section,

so that the word “dukes” moves smoothly into its new position when hovered.

transition-property
The transition-property property defines the CSS properties of the element that

should be transitioned, with all for all properties being the default.

Any property changing from one value to another for which you can find a valid

midpoint can be transitioned. For example, in transitioning from a 1px red border

to a 15px blue border, we transition the color and width of the border. The midpoint

195CSS3 Transforms and Transitions

of 1px and 15px is obvious (8px), so we know that is a transitionable property value.

The midpoint between red and blue might not seem obvious, but the browser con-

verts named colors to their numeric values, which have a midpoint. If the border-

style were declared as changing from solid to dashed, that would not be a trans-

itionable property as there is no midpoint between these key terms.

It is important to include a pre-state and a post-state. For example, to transition

from rectangular corners to rounded corners, set the original state to border-radius:

0;.

The exception to this “if there is a valid midpoint, it can be transitioned” rule is

visibility: although there is no valid midpoint between the values visible and

hidden, when transitioned, the value changes at the endpoint of the transition. The

list of properties that can be animated is found at

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties.

You can provide any number of CSS properties to the transition-property declar-

ation, separated by commas. Alternatively, you can use the keyword all to indicate

that every supported property should be animated as it transitions.

In the case of our ad, we’ll apply the transition to the transform property:

.ad-ad2 h1 span {
 transition-property: transform;
}

Supporting Older Browsers

To support older WebKit browsers, you need to include the -webkit- prefix for

all of your transition properties. You may also need to specify the -webkit-

prefixed forms of properties. For example, you’re unable to animate transform

in a browser that only understands -webkit-transform:

.ad-ad2 h1 span {
 -webkit-transition-property: -webkit-transform;
 transition-property: transform;
}

Include the -webkit- prefix for all the transition properties, not just the trans-

ition-property property. There’s no need to include -ms-transform:; al-

HTML5 & CSS3 for the Real World196

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties

though IE9 does understand prefixed transforms, it doesn’t understand transitions.

IE9 will get the transformed look, but will not animate it as it transitions to the

new value.

As new properties gain browser transition support, be careful what you include as

the value for the transition-property: it’s possible that a property that doesn’t

animate at the time you’re writing your page eventually will, so be selective in the

properties you specify, and only use or default to all if you really want to animate

every property. If you want to transition more than one property, but not all, comma-

separate them:

.foo {
 transition-property: transform, color;
}

In itself, the transition-property property has no effect; that’s because we still

need to specify the duration of the transition.

The transition-duration Property
The transition-duration property sets how long the transition will take: the

duration of time it takes to go from the default state to the transitioned state. You

can specify this either in seconds (s) or milliseconds (ms). We’d like our animation

to be fairly quick, so we’ll specify 0.2 seconds (0.2s), or 200 milliseconds (200ms):

transition-duration: 0.2s;

200ms is generally considered the optimum time for a transition: anything slower

will make the website seem slow, drawing generally unwanted attention to what

was supposed to be a subtle effect. Anything faster may be too subtle.

With those styles in place, our span will transition on hover. Notice that by default

the “reverse” transition also takes place over the same duration—the element returns

to its previous position.

Automatic Graceful Degradation

While transitions are supported in all modern browsers, the fact that they’re de-

clared separately from the properties that are changing means that those changes

197CSS3 Transforms and Transitions

will still be apparent in older browsers without support for transitions. Those

browsers will still apply the :hover (or other) state, except that the changes will

happen instantly rather than transitioning over time.

The transition-timing-function Property
The transition-timing-function lets you control the pace of the transition in

even more granular detail. Do you want your animation to start off slow and become

faster, start off fast and end slower, advance at an even keel, or some other variation?

The most common timing functions include the key terms ease, linear, ease-in,

ease-out, or ease-in-out. The default ease has a slow start, then it speeds up, and

ends slowly. ease-in-out is similar to ease, but accelerates more sharply at the

beginning. linear creates a transition that animates at a constant speed. ease-in

creates a transition that is slow to start but gains speed, then stops abruptly. The

opposite, ease-out, starts at full speed, then slows progressively as it reaches the

conclusion of the transition. The best way to familiarize yourself with them is to

play around and try them all. Most often, one will just feel right for the effect you’re

aiming to create. It’s helpful to set a relatively long transition-duration when

testing timing functions—if it’s too fast, you may not be able to tell the difference.

You can also describe your timing function more precisely by defining your own

cubic-bezier function. It accepts four numeric parameters; for example, linear is

the same as cubic-bezier(0, 0, 1, 1). If you’ve studied six years of calculus,

the method of writing a cubic Bézier function might make sense; otherwise, it’s

likely you’ll want to stick to one of the five basic timing functions. You can also

look at online tools that let you play with different values, such as

http://cubic-bezier.com/, which lets you compare the common key terms against

each other or against your own cubic Bézier function. Another document,

http://estelle.github.io/animation/files/cubicbezierprint.html, allows you to set the

timing function and time to watch it, visualizing how Bézier curves work.

In addition to the predefined timing functions and developer-defined cubic Bézier

function, you can divide the transition over equidistant steps. With the steps

function, you define the number of steps and the direction of either start or end,

where either the first step happens at the animation start, or the last step happens

at the animation end respectively. For example, steps(5, start) would jump

through the equidistant steps of 0%, 20%, 40%, 60%, and 80%, and steps(5, end)

HTML5 & CSS3 for the Real World198

http://cubic-bezier.com/
http://estelle.github.io/animation/files/cubicbezierprint.html

would jump throught the equidistant steps of 20%, 40%, 60%, 80%, and 100%.

We will use the steps(n, end) timing function when we animate our bicycle with

CSS animation later on in this chapter.

For our transition, we’ll use ease-out:

transition-timing-function: ease-out;

This makes the transition fast to start with, becoming slower as it progresses. Of

course, with a 0.2 second duration, the difference is barely perceptible.

The transition-delay Property
Finally, by using the transition-delay property, it’s possible to introduce a delay

before the transition begins. Normally a transition begins immediately, so the default

is 0. Include the number of milliseconds (ms) or seconds (s) to delay the transition.

We don’t want our transition to start immediately, because that might be a bad user

experience if the user accidentally mouses through our ad on the way from one part

of the document to the next. A 50ms delay is enough time to wait to be sure they

are intentionally hovering over our advertisement:

-webkit-transition-delay: 50ms;
transition-delay: 50ms;

Negative Delays

Interestingly, a negative time delay that’s less than the duration of the entire

transition will cause it to start immediately, but it will start partway through the

animation. For example, if you have a delay of -500ms on a 2s transition, the

transition will start a quarter of the way through, and will last 1.5 seconds. On

the way back, it will jump 75% of the way through the transition, and then

transition back to the default state. This might be used to create some interesting

effects, so it’s worth being aware of.

The transition Shorthand Property
With four transition properties and a vendor prefix, you could wind up with eight

lines of CSS for a single transition. Fortunately, as with other properties such as

199CSS3 Transforms and Transitions

border, there’s a shorthand available. The transition property is shorthand for

the four transition properties just described.

Let’s take another look at our transition so far:

.ad-ad2 h1 span {
 transition-property: transform;
 transition-duration: 0.2s;
 transition-timing-function: ease-out;
 transition-delay: 50ms;
}

Now let’s combine all those values into a shorthand declaration:

.ad-ad2 h1 span {
 transition: transform 0.2s ease-out 50ms;
}

Note that the properties in the shorthand syntax can be in any order, however, if a

delay is included, you must also include a duration, and the duration must precede

the delay.

Multiple Transitions
The transition properties allow for multiple transitions in one call. For example,

if we want to change the color at the same time as changing the rotation and size,

we can.

Let’s say instead of just transitioning the rotation, we transition the text’s color

property as well. We’d have to first include a color property in the transitioned

style declaration, and then either add the color property in the transition-prop-

erty value list, or use the key term all:

transition-property: transform, color;
transition-duration: 0.2s;
transition-timing-function: ease-out;
transition-delay: 50ms;

If you want your properties to transition at different rates, or if you just want a select

few to have a transition effect, include them as a comma-separated list containing,

HTML5 & CSS3 for the Real World200

at minimum, the transition-property and transition-duration for each. Simply

include each value in a comma-separated list using the same order as the trans-

ition-property for all your longhand transition property declarations:

transition-property: transform, color;
transition-duration: 0.2s, 0.1s;
transition-timing-function: ease-out, linear;
transition-delay: 50ms;

These properties will apply an ease-out transition over 0.2 seconds to the trans-

form, but a linear transition over 0.1 seconds to the color. Both have a delay of

50ms before transition initiation.

You can also use the shorthand to specify multiple transitions at different durations,

delays, and timing functions. In this case, specify all the transition values as a

shorthand for each transition, and separate each property’s transition with a comma:

transition: transform 0.2s ease-out 50ms, color 0.1s linear 50ms;

If you want to change both properties at the same rate and delay, you can include

both property names or—since you are transitioning all the properties listed in the

hover state anyway—you can employ the all keyword.

When using the all keyword, all the properties transition at the same rate, speed,

and delay:

transition: all 0.2s ease-out 50ms;

How do we know when a transition has ended? A transitionend event—prefixed

and camel-cased as webkitTransitionEnd for older mobile browsers—is fired upon

completion of a CSS transition in both directions. The event is fired once per direc-

tion for each completed transformed property. In the case where the transition fails

to complete, such as if you mouseout before our 250ms transition is over in the ex-

ample above, it will not fire when it has only partially moved and started changing

color, but will fire when it returns to the original default state. If you have more

than one property being transitioned, the transitionend event will fire multiple

times. In our case, it will fire twice when both the color and transform reach their

201CSS3 Transforms and Transitions

transitioned state, and twice again when color and transform return to the original

state.

Animations
Transitions animate elements over time; however, they’re limited in what they can

do. You can define starting and ending states, but there’s no fine-grained control

over any intermediate states. CSS animations, unlike transitions, allow you to

control each step of an animation via keyframes.

If you’ve ever worked with Flash, you’re likely very familiar with the concept of

keyframes; if not, don’t worry, it’s fairly straightforward. A keyframe is a snapshot

that defines a starting or end point of any smooth transition. With CSS transitions,

we’re essentially limited to defining a first and a last keyframe. CSS animations allow

us to add any number of keyframes in between, to guide our animation in more

complex ways.

All modern browsers support CSS animation, starting with IE10, though we still

require the -webkit- prefix in iOS8, Android 4.4.3, and BlackBerry 10. IE10 is un-

prefixed. Firefox 16, Chrome 39, and Opera 26 dropped their need for a prefix for

CSS animations.

The lack of powerful processors on many mobile devices makes CSS animations a

great alternative to weighty, CPU-intensive JavaScript animation. Generally, it is

best to use CSS for simple-state changes in a mobile environment. But it’s still better

to employ JavaScript for intricate, stateful UIs, and when you do, you’ll likely want

to use a JavaScript animation library to help with manageability and performance.

We do have a subtle animation in our Herald, so we’ll use CSS for our animations.

Keyframes
To animate an element in CSS, you first create a named animation, then attach it

to an element in that element’s property declaration block. Animations in themselves

don’t do anything; in order to animate an element, you’ll need to associate the an-

imation with that element.

To create an animation, use the @keyframes rule for IE10+ and FF16+. Include @-

webkit-keyframes for all WebKit implementations followed by a name of your

HTML5 & CSS3 for the Real World202

choosing, which will serve as the identifier for the animation. Then, you can specify

your keyframes.

For an animation called myAnimation, the @keyframes rule would look like this:

@-webkit-keyframes myAnimation {
 /* put animation keyframes here */
}
@keyframes myAnimation {
 /* put animation keyframes here */
}

Do not quote the animation name.

Each keyframe looks like its own nested CSS declaration block. Instead of a tradi-

tional selector, though, you use a percentage value, or a comma-separated list of

percentage values. There are two keyterms―from and to―which evaluate to 0%

and 100% respectively. These values specify how far along the animation each

keyframe is located.

Inside each keyframe include the properties you want to animate, along with the

animated values. The values will be smoothly interpolated by the browser’s anima-

tion engine between each keyframe.

Keyframes can be specified in any order; it’s the percentage values rather than the

order of the declarations that determine the sequence of keyframes in the animation.

Here are a few simple animations:

@keyframes moveRight {
 from {
 transform: translateX(-50%);
 }
 to {
 transform: translateX(50%);
 }
}

@keyframes appearDisappear {
 0%, 100% {
 opacity: 0;
 }

203CSS3 Transforms and Transitions

 20%, 80% {
 opacity: 1;
 }
}

@keyframes bgMove {
 100% {
 background-position: 120% 0;
 }
}

The second animation is worth paying extra attention to: we’ve applied the same

styles to 0% and 100%, and to 20% and 80%. In this case, it means the element

will start out invisible (opacity: 0;), fade in to visible by 20% of the way through

the duration, remain visible until 80%, then fade out.

We’ve created three animations, but nothing in our document will animate yet. An

element must have at minimum an animation name for there to be an animation,

and must also have a duration declared for the animation to be perceptible. Once

we have defined our keyframe animations, the next step is to apply it to one or more

elements using the various animation properties.

Animation Properties
The animation properties, remembering that you will need two declarations for

each property as the -webkit- prefix is still needed in WebKit browsers, are as

follows:

animation-name

This property is used to attach an animation (previously defined using the @key-

frames syntax) to an element:

animation-name: appearDisappear;

Note that you should not put quotes around the animation name in either the

property value or the @keyframes at-rule, as the specifications state the name is an

identifier and not a string, so browsers don’t support quoted animation names.

HTML5 & CSS3 for the Real World204

animation-duration

The animation-duration property defines the length of time (in seconds or milli-

seconds) an animation takes to complete one iteration (all the way through, from

0% to 100%):

animation-duration: 300ms;

While animation-name is the only required animation property to create an anima-

tion, the animation-duration should be considered required to animate an element.

Without declaring the duration it defaults to 0s, which is imperceptible, but still

fires the animationstart and animationend events. The other animation properties,

while they enable you to better control your animation, are optional.

animation-timing-function
Like the transition-timing-function property, the animation-timing-function

determines how the animation will progress over its duration. The options are the

same as for transition-timing-function: ease, linear, ease-in, ease-out, ease-

in-out, a developer-defined cubic-bezier() function, step-start, step-end, or

a developer-defined number of steps with the steps(number, direction) function:

animation-timing-function: linear;

The bicycle in the advertisement on the right is animated in browsers that support

animation. The bicycle is a background image, and while background images aren’t

able to be animated, background-position is. We’ve created a sprite of four images

with our silhouetted man pedaling, as shown in Figure 8.9.

Figure 8.9. The sprite image we'll use to create the animation

205CSS3 Transforms and Transitions

To make it look like he is pedaling along, we show the different images of the sprite

in succession. To do this, we use the steps() function, moving the background

image sprite through the sized background box in four steps. We move the back-

ground image to the left so that each image within the sprite is displayed in succes-

sion:

.ad-ad3 :after {
 content: '';
 width: 90px;
 height: 92px;
 background-image: url(../images/bike_sprite.png);
 display: block;
 margin: auto;
}

@keyframes bike {
 0% {
 background-position: 0 0;
 }
 100% {
 background-position: -360px 0;
 }
}

Our background image is 360px wide and our container is 90px wide. We want to

show the background images in quick succession, with the background-position

at 0 0, -90px 0, -180px 0, and -270px 0. Using steps(4, direction), if the dir-

ection is start we’ll see the 25%, 50%, 75%, and 100% keyframes. If the direction

is end we’ll see the 0%, 25%, 50%, and 75% keyframes. At the 100% keyframe, the

background image is completely off to the left—we don’t want to see this. At the

0% keyframe, the background image is at 0 0, which is the default value for back-

ground-position, and which will display the first image in our sprite. This is what

we want:

animation-timing-function: steps(4, end);

animation-iteration-count
The animation-iteration-count property lets you define how many times the

animation will play through. The value is generally an integer, but you can also use

numbers with decimal points (in which case, the animation will end partway through

HTML5 & CSS3 for the Real World206

an iteration), or the value infinite for endlessly repeating animations. If omitted,

it will default to 1, in which case the animation will occur only once. The following

is an example of using this property:

animation-iteration-count: infinite;

animation-direction
When the animation iterates, it normally goes from the 0% to the 100% keyframe,

jumping back to the 0% when it starts a new iteration (if the animation-iteration-

count is greater than 1). This is the default or normal value for animation-direction.

You can use the animation-direction property to change this behavior.

The value of reverse will cause the animation to start at the 100% keyframe and

work its way to the 0% keyframe for every iteration. With the alternate value, the

initial iteration and odd-numbered iterations after that will go in the normal 0% to

100% direction, but the second iteration and every even iteration after that will go

in the reverse direction of 100% to 0%. Similarly, the alternate-reverse anima-

tion-direction value causes the animation to alternate direction at every iteration,

but it starts in reverse.

An animation of a snowflake falling will always be normal, though, you could use

the same “falling” animation and employ alternate to reverse it, making it bounce

up on every second playthrough. If you were to animate two kids playing on a

seesaw, one kid could be tagged alternate and the other, alternate-reverse:

animation-direction: alternate;

When animations are played in reverse, timing functions are also reversed; for ex-

ample, ease-in becomes ease-out.

animation-delay
The animation-delay property is used to define how many milliseconds or seconds

to wait before the browser begins the animation:

207CSS3 Transforms and Transitions

animation-delay: 50ms;

animation-fill-mode

The animation-fill-mode property defines what happens before the first animation

iteration begins and after the last animation iteration concludes. By default, an an-

imation has no effect on property values outside of when it’s iterating, but we can

override this default behavior of animation-fill-mode: none.

The available values are none, forwards, backwards, or both. The default is none,

in which case the animation proceeds and ends as expected, not inheriting the initial

keyframe properties until after the delay has expired; it reverts to no longer being

impacted by any of the keyframe property values when the animation completes

its final iteration.

We can tell the animation to sit and wait on the first keyframe from the moment

the animation is applied to the element, through the duration of the animation

delay, until the animation starts iterating with animation-fill-mode: backwards.

We can also hold the element at the last keyframe, with last keyframe property

values overriding the element's original property values, without reverting to the

original values at the conclusion of the last animation iteration with animation-

fill-mode: forwards. We can also achieve both of these with animation-fill-

mode: both.

As an example, let’s say we animate four green elements from red to blue over one

second, include a one-second delay for each, and set each with a different value for

the animation-fill-mode property. The elements with animation-fill-mode set

to backwards or both will be set to red as soon as the animation is attached to the

element. When the animation-delay expires, all four elements will be red, changing

to blue over one second. When the animation ends, the elements with animation-

fill-mode set to forwards and both will stay blue, but those without the property

set, or if it’s set to none or backwards, will jump back to green.

HTML5 & CSS3 for the Real World208

Table 8.1. Examples of animation-fill-mode in effect

after 2s2s1spage loadFill mode

greenblueredgreennone

greenblueredredbackwards

blueblueredgreenforwards

blueblueredredboth

When set to forwards, the animation continues to apply the values of the last key-

frames after the animation ends. When set to backwards, the animation’s initial

keyframes are applied as soon as the animation style is applied to an element. As

you’d expect, a value of both applies both the backwards and forwards effects:

animation-fill-mode: both;

animation-play-state

The animation-play-state property defines whether the animation is running or

paused. A paused animation displays the current state of the animation statically.

When a paused animation is resumed, it restarts from the current position. This

provides a simple way to control CSS animations from within your CSS or with

JavaScript.

The Shorthand animation Property
Fortunately, there’s a shorthand for all of these animation properties, especially

since we’re still including the -webkit- prefix. The animation property takes as

its value a space-separated list of values for the longhand animation-name, anima-

tion-duration, animation-timing-function, animation-delay, animation-iter-

ation-count, animation-direction, animation-fill-mode, and animation-play-

state properties:

.verbose {
 animation-name: appearDisappear;
 animation-duration: 300ms;
 animation-timing-function: ease-in;
 animation-iteration-count: 1;
 animation-direction: alternate;
 animation-delay: 5s;

209CSS3 Transforms and Transitions

 animation-fill-mode: backwards;
 animation-play-state: running;
}

/* shorthand */
.concise {
 animation: 300ms ease-in alternate 5s backwards appearDisappear;
}

Note that in the shorthand version, we’ve left out the animation-iteration-count

and animation-play-state since both were set to default.

Be Careful with Naming

If using the shorthand property, be careful with your animation-name. You want

to avoid accidentally using any animation property key term such as forwards,

running, or alternate. Those three key terms in particular have caused many

developers hours of debugging. If you include a key term, the browser will assume

that the first occurrence of a valid value for any of the longhand properties is the

value for that property, not the value for the animation-name property.

To declare multiple animations on an element, include a grouping for each animation

name, with each shorthand grouping separated by a comma. For example:

.target {
 animation:
 animationOne 300ms ease-in backwards,
 animationTwo 600ms ease-out 1s forwards;
}

For our bicycle, we want to translate it to the right while animating the sprite to

make it seem as if the man is pedaling, using the steps() timing function to change

the background image:

@keyframes bike {
 0% {
 background-position: 0 0;
 }
 100% {
 background-position: -360px 0;
 }

HTML5 & CSS3 for the Real World210

}
@keyframes move {
 0% {
 transform: translateX(-100px);
 }
 100% {
 transform: translateX(100px);
 }
}

h1:after {
 content: '';
 width: 90px;
 height: 92px;
 background-image: url(../images/bike_sprite.png);
 display: block;
 margin: auto;
 animation:
 0.4s steps(4, end) infinite 50ms bike,
 8s linear infinite 50ms move;
 animation-play-state: paused;
}
h1:hover:after {
 animation-play-state: running;
}

We’ve created two keyframe animations: one to animate the bicycle pedals using

an animated sprite, and a second to move the animated bicycle across the advertise-

ment using translated transform functions.

In its default state we have paused the animation. On hover, the animation comes

alive with animation-play-state of running. There's no need to include the anim-

ation-fill-mode property as our animations iterate infinitely, and there's a 50ms

delay before the animation starts so that it doesn't start if the user accidentally

mouses through the ad.

Moving On
With transforms, transitions, and animations, our site is looking more dynamic.

Remember the old maxim, though: just because you can, doesn’t mean you should.

Animations were aplenty on the Web in the late 90s; a lot of us remember flashing

banners and scrolling marquees, and animated gifs were less entertaining than those

211CSS3 Transforms and Transitions

that are popular today. Use animations and transitions where it makes sense, enhan-

cing the user experience—and skip it everywhere else.

We still have a few lessons to learn in CSS3 to make our website look more like an

old-time newspaper. In the next chapter, we’ll we’ll learn about typography and

how to include fancy fonts not installed by default on our users’ computers. We'll

also look at how you can span text across multiple columns without scripts or extra

HTML.

HTML5 & CSS3 for the Real World212

Chapter9
Embedded Fonts and Multicolumn
Layouts
We’ve added quite a lot of decoration to The HTML5 Herald, but we’re still missing

some key components to give it that old-fashioned feel. To look like a real newspaper,

the text of the articles should be laid out in narrow columns, and we should use

some suitably appropriate fonts.

In this chapter, we’ll add to the look and feel of our website with @font-face and

CSS3 columns.

Web Fonts with @font-face
Since the early days of the Web, designers have been dreaming of creating sites with

beautiful typography. But, as we all know too well, browsers are limited to rendering

text in just the fonts the user has installed on their system. In practical terms, this

has limited most sites to a handful of fonts: Arial, Verdana, Times, Georgia, and a

few others.

Over the years, web decelopers have come up with a number of clever workarounds

for this problem. We created JPEGs and PNGs for site titles, logos, buttons, and

navigation elements. When those elements required additional states or variants,

we created even more images. We then converted our text images to image sprites

to ensure the page stayed snappy and responsive. Whenever the design or text

changed, all those images had to be recreated. By definition this was a bad idea, but

it really caused problems when it came to site performance, accessibility, transla-

tions, and internationalization. For page elements that need to change frequently,

or at all, and to maximize accessibility and minimize bandwidth usage, we were

stuck with those same few fonts.

To fill this typographic void, a few font-embedding scripts were created such as the

Flash- and JavaScript-based sIFR1 methods, and the canvas-based Cufón2. While

these methods were a useful stopgap measure, allowing us to include our own fonts,

they had severe drawbacks. Sometimes they were tricky to implement. They required

that JavaScript be enabled and, in the case of sIFR, the Flash plugin be installed. In

addition, they significantly slowed the page’s download and rendering.

@font-face rule
Fortunately, there’s now a better way. @font-face is a pure CSS solution for embed-

ding fonts—and it’s supported on every modern browser.

We’ll be including two embedded fonts on The HTML5 Herald site: League Gothic

from The League of Movable Type,3 and Acknowledgement Medium by Ben

Weiner of Reading Type.4 The two fonts are shown respectively in Figure 9.1 and

Figure 9.2.

1 http://en.wikipedia.org/wiki/Scalable_Inman_Flash_Replacement
2 http://cufon.shoqolate.com/generate/
3 http://www.theleagueofmoveabletype.com/
4 http://www.readingtype.org/

HTML5 & CSS3 for the Real World214

http://en.wikipedia.org/wiki/Scalable_Inman_Flash_Replacement
http://cufon.shoqolate.com/generate/
http://www.theleagueofmoveabletype.com/
http://www.readingtype.org/

Figure 9.1. League Gothic

Figure 9.2. Acknowledgement Medium

We’ll now look at how we can embed these fonts and use them to power any of the

text on our site, just as if they were installed on our users’ machines. While including

multiple fonts may improve a site’s appearance, it’s important that your typography

choices don’t decimate your site’s performance.

Implementing @font-face
@font-face is one of several CSS at-rules, like @media, @import, @page, and the one

we’ve just seen, @keyframes.

At-rules are ways of encapsulating several rules together in a declaration to serve

as instructions to the browser’s CSS processor. We saw the @keyframes at-rule in

the previous chapter. The @font-face at-rule allows us to specify custom fonts that

we can then include with the font-family property in other declaration blocks.

To include fonts using @font-face, you have to:

1. load the font file onto your servers in a variety of formats required by all the dif-

ferent browsers

2. name, describe, and link to that font in an @font-face rule

3. include the font’s name in a font-family property value in your CSS, just as you

would for system fonts

You already know how to upload a file onto a server, so we’ll discuss the details of

the various file types in the next section. For now, we’ll focus on the second and

third steps so that you can become familiar with the syntax of @font-face.

215Embedded Fonts and Multicolumn Layouts

Here are the rules that go into an @font-face block:

@font-face {
 font-family: 'fontName';
 src: source;
 font-weight: weight;
 font-style: style;
 unicode-range: characters;
}

The font-family and src properties are required. The font-weight, font-style,

and unicode-range are optional.

You need to include a separate @font-face at-rule for every font you include in

your site. You’ll also have to include a separate at-rule for each variation of the font:

regular, thin, thick, italic, black, and so on. The HTML5 Herald will require two

imported fonts, so we’ll include two @font-face blocks:

@font-face {
 ⋮
}

@font-face {
 ⋮
}

The font-family declaration part of the @font-face at-rule declaration is slightly

different from the font-family property with which you are already familiar. In

this case, we’re declaring a name for our font, rather than assigning a font with a

given name to an element. The font name can be anything you like—it’s only a ref-

erence to a font file, so it need not even correspond to the name of the font. Of

course, it makes sense to use the font’s name, or an abbreviated version of it, to keep

your CSS readable and maintainable. Whatever you decide to name your font, it’s

best to settle on a convention and stick to it for all your fonts. For our two fonts,

we’ll use camel case:

@font-face {
 font-family: 'LeagueGothic';
}

HTML5 & CSS3 for the Real World216

@font-face {
 font-family: 'AcknowledgementMedium';
}

Declaring Font Sources
Now that we have a skeleton laid out for our @font-face rules and given each of

them a name, it’s time to link them up to the actual font files.

There are several different font formats, including EOT, OTF, TTF, WOFF, WOFF2,

among others. EOT (Embedded Open Type) font is a proprietary format for Internet

Explorer and the only file type understood by IE4 through IE8. TTF (TrueType Font)

is an outline font that is the most common format for fonts on the Mac OS and Mi-

crosoft Windows operating systems. OTF (OpenType Font) is a scalable font built

on TTF, with the same basic structure but added data structures for prescribing ty-

pographic behavior. The W3C recommendation is WOFF (Web Open Font Format),

which is essentially an OpenType or TrueType font format with compression and

additional metadata. The goal for WOFF was to improve performance, by minimizing

the bandwidth needed to send the font file to the client. WOFF2 is the second W3C

spec, improving compression and therefore performance.

The src property can take several formats. Additionally, you can declare more than

one comma-separated source as the value of the source property.

Let’s add some formats to our League Gothic declaration:

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot?#iefix')
 ➥format('embedded-opentype'),
 url('../fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype');
}

There are four font sources listed in this code block. If the browser fails to locate or

recognize the first source, it will try for the next one, and so on, until it either finds

a source it supports (at which point it stops looking) or runs out of options.

217Embedded Fonts and Multicolumn Layouts

The first declaration is the EOT font declaration for older versions of Internet Ex-

plorer.

Then we define WOFF2, which has the best compression but is yet to be well sup-

ported; then WOFF, which is a better-supported Web Open Font Format. We then

declare the TTF (TrueType Font) and OTF (OpenType Font) fallback formats. We

used to include an SVG (Scalable Vector Graphics) font file for the original iPhones.

This format is being deprecated, but continues to be supported.

WOFF is supported in all newer browsers, so we could have simply included a

single WOFF file; however, we have a new format in WOFF2, similar to WOFF but

with better web font compression (leading to faster loading), and we still want to

ensure some support for older Android browsers.

Here's a table showing current browser support for the various font formats.

Table 9.1. Browser support for font formats

AndroidiOSOperaFirefoxChromeSafariIE

2.13.2103.543.26@font-face

4.45.111.13.655.19WOFF

5a2335?36WOFF2

2.24.310.13.543.19OTF

2.24.310.13.543.19TTF

3.03.29.64-37b3.2SVG

4EOT

a starting with Android 5.0, the WebView will be updated

[http://developer.telerik.com/featured/android-5-0s-auto-updating-webview-means-mobile-apps/] so it

will support WoFF2
b To be precise, “SVG fonts are no longer supported, except on Windows systems older than Windows

7. Note that while the feature works on those systems, it is considered deprecated.”

[http://blog.chromium.org/2014/08/chrome-38-beta-new-primitives-for-next.html]

As you can see, WOFF is supported in all modern browsers. You may still want to

provide fallbacks for older browsers, like we did with video in Chapter 5. Because

of bandwidth issues, however, you may just want to include WOFF for newer

browsers and EOT for IE8, and avoid forcing additional HTTP requests to older

mobile devices. If a format hint is listed, browsers check to see if it is supported

HTML5 & CSS3 for the Real World218

http://developer.telerik.com/featured/android-5-0s-auto-updating-webview-means-mobile-apps/
http://blog.chromium.org/2014/08/chrome-38-beta-new-primitives-for-next.html
http://blog.chromium.org/2014/08/chrome-38-beta-new-primitives-for-next.html

before downloading or advancing to the next format listed. If no format hint is in-

cluded, the browser downloads the resource. While we list WOFF 2.0 for browsers

that support it, WOFF for the majority of browsers, TTF for Android 4.4 and below,

and EOT for IE8 and earlier, as long as we provide the format hint, only the font

file the browser will use will be downloaded.

Adding these extra font formats ensures support for all browsers, but unfortunately

it can cause problems in versions of IE older than IE9. They see everything between

the first url(' and the last ') as one URL, so will fail to load the font. Fortunately,

adding a query string to the end of the EOT URL is a quick fix, so no choice needs

to be made between supporting IE or supporting all other browsers. This tricks the

browser into thinking that the rest of the src property is a continuation of that query

string, so it goes looking for the correct URL and loads the font:

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot?#iefix') format('
➥embedded-opentype'),
 url('../fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype');
}

Font Property Descriptors
Font property descriptors—including font-style, font-variant, font-weight,

and others—can optionally be added to define the characteristics of the font face,

and are used to match styles to specific font faces. The values are the same as the

equivalent CSS properties:

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot?#iefix')
➥format('embedded-opentype'),
 url('../fonts/League_Gothic-webfont.woff2') format('woff2'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype');

219Embedded Fonts and Multicolumn Layouts

 font-weight: bold;
 font-style: normal;
}

You are not telling the browser to make the font bold; rather, you’re telling it that

this is the bold variant of the font. This can be confusing, but there is a reason to

use the font-weight or font-style descriptor in the @font-face rule declaration.

You can declare several font sources for the same font-family name:

@font-face {
 font-family: 'CoolFont';
 font-style: normal;
 src: url(fonts/CoolFontStd.woff);
}

@font-face {
 font-family: 'CoolFont';
 font-style: italic;
 src: url(fonts/CoolFontItalic.woff);
}

.whichFont {
 font-family: 'CoolFont';
}

Notice that both at-rules use the same font-family name but different font styles. In

this example, the .whichFont element will use the CoolFontStd.woff font, because

it matches the style given in that at-rule; however, if the element were to inherit an

italic font style, it would switch to using the CoolFontItalic.woff font instead.

The Unicode Range Descriptor
Also available is the unicode-range descriptor, which is employed to define the

range of Unicode characters supported by the font. If this property is omitted, the

entire range of characters included in the font file will be made available.

Here’s an example of what it looks like:

HTML5 & CSS3 for the Real World220

unicode-range: U+000-49F, U+2000-27FF, U+2900-2BFF, U+1D400-1D7FF;

If you are including a Unicode range, it makes sense to create font files containing

only the characters within your range to reduce bandwidth and memory consump-

tion. Tools that convert your desktop fonts to EOT, WOFF, WOFF2, TTF, OTF, and

SVG, such as Font Squirrel Generator,5 are capable of creating very small font re-

sources containing only the characters you need; however, you have to take care to

include all the characters that may be required. Furthermore, if you want to enable

your content to be translated while maintaining the desired look and feel, you’ll

likely need to include the characters for any translation. The process of creating

these smaller files is described shortly. Unfortunately, this feature is yet to be well

supported.6.

Applying the Font
Once the font is declared using the @font-face syntax, you can then refer to it as

you would any normal system font in your CSS: include it in a font stack as the

value of a font-family property. It's a good idea also to declare a fallback font or

two in case your embedded font fails to load.

Let’s look at one example from The HTML5 Herald:

h1 {
 text-shadow: #ffffff 1px 1px;
 font-family: LeagueGothic, Tahoma, Geneva, sans-serif;
 text-transform: uppercase;
 line-height: 1;
}

Our two embedded fonts are used in a number of places in our stylesheet, but you

get the idea.

Legal Considerations
We’ve included the markup for two fonts on our site, but we’re yet to put the font

files themselves in place. We found both of these fonts freely available online. They

are both licensed as freeware; that is, they're free to use for both personal and

5 http://www.fontsquirrel.com/tools/webfont-generator
6 http://jakearchibald.com/2014/minimising-font-downloads/

221Embedded Fonts and Multicolumn Layouts

http://www.fontsquirrel.com/tools/webfont-generator
http://jakearchibald.com/2014/minimising-font-downloads/
http://jakearchibald.com/2014/minimising-font-downloads/

commercial use. Generally, this is the only kind of font you should use for @font-

face, unless you're using a third-party service.

How is @font-face any different from using a certain font in an image file? By

having a website on the Internet, your font source files are hosted on publicly

available web servers. In theory, anyone can download them. In fact, in order to

render the text on your page, the browser has to download the font files. By using

@font-face, you’re distributing the font to everyone who visits your site. To include

a font on your website, then, you need to be legally permitted to distribute the font.

Owning or purchasing a font doesn’t give you the legal right to redistribute it—in

the same way that buying a song on iTunes doesn’t grant you the right to put it up

on your website for anyone to download. Licenses that allow you to distribute fonts

are more expensive (and rarer) than licenses allowing you to use a font on one

computer for personal or even commercial use.

There are several websites that have free downloadable web fonts with Creative

Commons,7 shareware, or freeware licensing. Alternatively, there are paid and

subscription services that allow you to purchase or rent fonts, generally providing

you with ready-made scripts or stylesheets that make them easy to use with @font-

face.

A few sites providing web font services include Typekit,8 Typotheque,9 Webtype,10

Fontdeck,11 and Fonts.com.12

Google’s web fonts directory13 has a growing collection of fonts provided free of

charge and hosted at Google’s servers. It simply provides you with a URL pointing

to a stylesheet that includes all the required @font-face rules, so all you have to

do is add a link element to your document and the font name in a font-family de-

claration in your CSS in order to start using a font.

7 If you’re unfamiliar with Creative Commons licenses, you can find out more at

http://creativecommons.org/.
8 http://typekit.com/
9 http://www.typotheque.com/
10 http://www.webtype.com/
11 http://fontdeck.com/
12 http://webfonts.fonts.com
13 http://code.google.com/apis/webfonts/

HTML5 & CSS3 for the Real World222

http://typekit.com/
http://www.typotheque.com/
http://www.webtype.com/
http://fontdeck.com/
http://webfonts.fonts.com
http://code.google.com/apis/webfonts/
http://creativecommons.org/

When selecting a service, font selection and price are certainly important, but there

are other considerations. Make sure any service you choose to use takes download

speed into consideration. As has been mentioned, font files can be fairly large, po-

tentially containing several thousand characters. Good services allow you to select

character subsets, as well as font-style subsets, to decrease the file size. Bear in

mind, also, that some services require JavaScript in order to function.

Creating Various Font File Types: Font Squirrel
If you have a font that you’re legally allowed to redistribute, there’ll be no need for

you to use any of the font services mentioned. You will, however, have to convert

your font into the various formats required to serve the most performant file format

while supporting every browser on the market. So how do you go about converting

your fonts into all of these formats?

One of the easiest tools for this purpose is Font Squirrel’s @font-face generator.14

This service allows you to select fonts from your desktop with a few clicks of your

mouse and convert them to TTF, EOT, WOFF, WOFF2, SVG, SVGZ, and even a

Base64 encoded version.15

By default, the Optimal option is selected for generating an @font-face kit; however,

in some cases you can decrease the file sizes by choosing Expert… and creating a

character subset. Rather than including every conceivable character in the font file,

you can limit yourself to those you know will be used on your site.

For example, on The HTML5 Herald site the Acknowledgement Medium font is

used only in specific ad blocks and headings, so we require just a small set of

characters. All the text set in this font is uppercase, so let’s restrict our font to up-

percase letters, punctuation, and numbers, as shown in Figure 9.3.

14 http://www.fontsquirrel.com/fontface/generator
15 Base64 encoding is a way of including the entire contents of a font file directly in your CSS file.

Sometimes this can provide performance benefits by avoiding an extra HTTP request, but that’s beyond

the scope of this book. Don’t sweat it, though—the files generated by the default settings should be fine

for most uses.

223Embedded Fonts and Multicolumn Layouts

http://www.fontsquirrel.com/fontface/generator

Figure 9.3. Selecting a subset of characters in Font Squirrel’s @font-face generator

Figure 9.4 shows how the file sizes of our subsetted fonts stack up against the default

character sets. In our case, the uppercase- and punctuation-only fonts are 25 to 30%

smaller than the default character sets. Font Squirrel even lets you specify certain

characters for your subset, so there's no need to include all the letters of the alphabet

if you know you won’t use them. Just remember, if there's the possibility that your

text might be translated, you may need to include characters not in your original

content.

Figure 9.4. File sizes of subsetted fonts can be substantially smaller

For the League Gothic font, we’ll need a more expanded character subset. This font

is used for article titles, which are all uppercase like our ads, so we can again omit

lowercase letters; however, we should consider that content for titles may include

a wider range of possible characters. Moreover, users might use in-browser tools or

Google Translate to translate the content on the page—in which case other characters

might be required. So, for League Gothic, we’ll go with the default Basic Subset-

ting—this will give you all the characters required for Western languages.

HTML5 & CSS3 for the Real World224

When employing @font-face, as a general rule minimize font file size as much as

reasonably possible, while making sure to include enough characters so that a

translated version of your site is still accessible.

Once you’ve uploaded your font for processing and selected all your options, press

Download Your Kit. Font Squirrel provides an archive containing your font files with

the extensions requested, a demo HTML file for each font face style, and a stylesheet

from which you can copy and paste the code directly into your own CSS.

Font Squirrel’s Font Catalog

In addition to the @font-face generator, the Font Squirrel site includes a catalog

of hand-picked free fonts whose licenses allow for web embedding. In fact, both

the fonts we’re using on The HTML5 Herald can also be found on Font Squirrel,

with ready-made @font-face kits to download without relying on the generator

at all.

To target all browsers, make sure that you’ve created WOFF2, WOFF, TTF, and EOT

font file formats, including SVG if you’re still supporting really old mobile. Once

you’ve created the font files, upload the web fonts to your server. Copy and paste

the CSS provided, changing the paths to point to the folder where you’ve placed

your fonts. Make sure the font-family name specified in the @font-face rule

matches the one you’re using in your styles, and you’re good to go!

Font Failure

If your fonts are failing to display in any browser, the problem could very well be

the path in your CSS. Check to make sure that the font file is actually where you

expect it to be. Browser-based debugging tools—such as the Web Inspector in

WebKit, Opera, and Chrome; F12 in Internet Explorer; or the Firebug Firefox ex-

tension—will indicate if the file is missing.

If you’re sure that the path is correct and the file is where it’s supposed to be,

make sure your server is correctly configured to serve up the fonts. Windows IIS

servers won’t serve up files if they’re unable to recognize their MIME type, so try

adding WOFF to your list of MIME types (EOT and TTF should be supported out

of the box):

225Embedded Fonts and Multicolumn Layouts

.woff application/x-font-woff

Finally, browsers are supposed to require that font files are served from the same

domain as the page they're embedded on: if your fonts fail to work in Internet

Explorer or Firefox, make sure to set CORS configurations16 to enable fonts from

different domains and CDNs.

Developer Tools

Browsers come standard with tools to help save you time as a web developer. In

most browsers you can right-click (or control-click on a Mac) and choose Inspect

Element. A panel will open up at the bottom of your browser, highlighting the

HTML of the element you’ve selected. You’ll also see any CSS applied to that

element.

While Safari comes with this tool, it needs to be manually enabled. To turn it on,

go to Safari > Preferences, and then click the Advanced tab. Be sure to check the

Show Develop menu in the menu bar checkbox.

Firefox comes with inspection tools, but Firebug—a free Firefox plugin that

provides the same functionality as the other browsers’ native debuggers—is more

robust. You can download Firebug at http://getfirebug.com/.

Internet Explorer also has developer tools that you can access via F12, enabling

you to inspect elements.

Other Font Considerations
Embedded fonts can improve performance and decrease maintenance time when

compared to text as images. Remember, though, that font files can be big. If you

need a particular font for a banner ad, it may make more sense (given the limited

amount of text required) to create an image instead of including font files. At the

minimum, if you’re only embedding a font for your company name or logo, send

just the limited character set needed for your name to your visitors. Or, better yet,

save your logo as an SVG image.

When pondering whether to include multiple font files on your site, consider per-

formance. Multiple fonts will increase your site’s download time, and font overuse

16 http://davidwalsh.name/cdn-fonts

HTML5 & CSS3 for the Real World226

http://davidwalsh.name/cdn-fonts
http://getfirebug.com/

can be tacky. Furthermore, the wrong font can make your content difficult to read.

For body text, you should almost always stick to the usual selection of web-safe

fonts.

Another point worth considering is that browsers are unable to render the @font-

face font until it has been downloaded entirely. Browsers behave differently in

how they display your content before the download is complete: some will render

the text in a system font, while others won’t render any text at all.

This effect is referred to as a “flash of unstyled text,” or FOUT, a term coined by

Paul Irish.17 To try to prevent this from happening (or to minimize its duration),

make your file sizes as small as possible, serve them gzipped, and include your

@font-face rules in CSS files as high up as possible in your markup. If there’s a

script above the @font-face declaration in the source, some versions of IE experience

a bug whereby the page will fail to render anything until the font has down-

loaded—so be sure to declare your fonts above any scripts on your page.

Another option to mitigate @font-face’s impact on performance is to defer the font

file download until after the page has rendered. This may be unviable for your de-

signer or client, however, as it may result in a more noticeable FOUT, even if the

page loads faster overall.18

Of course, we don’t want to scare you away from using @font-face, but it’s important

that you avoid using this feature without regard for the consequences. Remember

that there are trade-offs, so use web fonts where they’re appropriate, and consider

the available alternatives.

CSS3 Multicolumn Layouts
Nothing says “newspaper” like a row of tightly packed columns of text. There's a

reason for this: newspapers break articles into multiple columns because long lines

of text are too hard to read. Browser windows can be wider than printed books—even

as wide as some newspapers—so it makes sense for CSS to give us the ability to

flow our content into columns.

17 http://www.paulirish.com/2009/fighting-the-font-face-fout/
18 For more on @font-face and performance, as well as an example of how to “lazy load” your font

files, see http://www.stevesouders.com/blog/2009/10/13/font-face-and-performance/.

227Embedded Fonts and Multicolumn Layouts

http://www.paulirish.com/2009/fighting-the-font-face-fout/
http://www.paulirish.com/2009/fighting-the-font-face-fout/
http://www.stevesouders.com/blog/2009/10/13/font-face-and-performance/

You may be thinking that we’ve always been able to create column effects using the

float property. But the behavior of floats is subtly different from what we’re after.

Newspaper-style columns have been close to impossible to accomplish with CSS

and HTML without forcing column breaks at fixed positions. True, you could break

an article into divs, floating each one to make it look like a set of columns. But what

if your content is dynamic? Your back-end code will need to figure out where each

column should begin and end in order to insert the requisite div tags.

With CSS3 columns, the browser determines when to end one column and begin

the next without requiring any extra markup. You retain the flexibility to change

the number of columns, as well as their width, without having to go back in and

alter the page’s markup.

For now, we’re mostly limited to splitting content across a few columns while

controlling their widths and the gutters between them. As support broadens, we’ll

be able to break columns, span elements across multiple columns, and more. Browser

support for CSS3 columns is moderate: IE10 and Opera Mini are the only two

browsers with full, unprefixed support. Opera mobile and desktop used to have full

support, but reverted to quirky prefixed support when it switched to the Blink engine

(in version 15). Firefox, Blink (Chrome) and WebKit (iOS) browsers have had support

via vendor-prefixed properties for years, with some bugs still needing to be fixed.

Almost all the content on the main page of The HTML5 Herald is broken into

columns. Let’s dig deeper into the properties that make up CSS3 columns and learn

how to create these effects on our site.

The column-count Property
The column-count property specifies the number of columns wanted, and the

maximum number of columns allowed. The default value of auto means that the

element has one column. Our left-most articles are broken into three columns, and

the article below the ad blocks has two columns:

.primary article .content {
 -webkit-column-count: 3;
 -moz-column-count: 3;
 column-count: 3;
}

HTML5 & CSS3 for the Real World228

.tertiary article .content {
 -webkit-column-count: 2;
 -moz-column-count: 2;
 column-count: 2;
}

This is all we really need to create our columns. By default, the columns will have

a small gap between them. The total width of the columns combined with the gaps

will take up 100% of the width of the element.

Still, there are a number of other properties we can use for more granular control.

The column-gap Property
The column-gap property specifies the width of the space between columns:

.primary article .content,

.tertiary article .content {
 -webkit-column-gap: 10px;
 -moz-column-gap: 10px;
 column-gap: 10px;
}

Declare the width in length units, such as ems or pixels, or use the term normal.

It’s up to the browser to determine what normal means, but the spec suggests 1em.

We’ve declared our gaps to be 10px wide. The resulting columns are shown in Fig-

ure 9.5.

229Embedded Fonts and Multicolumn Layouts

Figure 9.5. Our left-most content area has articles split over three columns

The column-width Property
The column-width property is like having a min-width for your columns. The

browser will include as many columns of at least the given width as it can to fill

up the element, up to the value of the column-count property. If the columns need

to be wider to fill up all the available space, they will be.

.parent {
 width: 400px;
 column-count: 3;
 column-width: 150px;
 column-gap: 10px;
}

For example, if we have a parent that is 400 pixels wide, a 10-pixel column gap,

and the column-width is declared as 150px, the browser can fit two columns:

(400px width – 10px column gap) ÷ 150px width = 2.6

The browser rounds down to two columns, making columns that are as large as

possible in the allotted space; in this case, that’s 195px for each column—the total

HTML5 & CSS3 for the Real World230

width minus the gap, divided by the number of columns. Even if the column-count

were set to 3, there would still only be two columns, as there’s not enough space

to include three columns of the specified width. In other words, you can think of

the column-width as being the minimum column width and column-count property

as specifying the maximum column count.

The only situation in which columns will be narrower than the column-width is if

the parent element itself is too narrow for a single column of the specified width.

In this case, you’ll have one column that fills the whole parent element.

It’s a good idea to declare your column-width in ems, ensuring a minimum number

of characters for each line in a column. Let’s add a column-width of 9em to our

content columns:

.primary article .content,

.tertiary article .content {
 ⋮
 -webkit-column-width: 9em;
 -moz-column-width: 9em;
 column-width: 9em;
}

Now, if you increase the font size in your browser, you’ll see that the number of

columns is decreased as required to maintain a minimum width. This ensures

readability, as shown in Figure 9.6.

231Embedded Fonts and Multicolumn Layouts

Figure 9.6. Declaring column-width in ems ensures a minimum number of characters on each line

The columns Shorthand Property
The columns shorthand property is a composite of the column-width and column-

count properties. Declare the two parameters—the width of each column and the

number of columns—as previously described:

.primary article .content {
 -webkit-columns: 3 9em;
 -moz-columns: 3 9em;
 columns: 3 9em;
}

The math of those two declarations may not give you what you’d expect. By default,

there is a gap of 1em between every two columns. If our .content is less than 29

ems wide (three columns of 9ems each, plus two times the column-gap of 1em), say

25 ems, the browser will display only two columns:

(25em total width – 2em column gaps) ÷ 9em column width = 2.55

To have three columns fit, our parent would need to be at least 29 ems wide:

HTML5 & CSS3 for the Real World232

(29em total width – 2em column gaps) ÷ 9em column width = 3 columns

If the .content is equal to or greater than 29 ems, say 38 ems, the browser will show

a maximum of three columns, displaying columns that are 12 ems wide:

(38em total width – 2em column gaps) ÷ 3 columns = 12 ems

Again, think of columns values as the maximum number of columns and minimum

width per column. The only time a column will be less than 9em in this case is if

.content is less than 9em wide.

Columns and the height Property
With the aforementioned declarations—and no height specified on the ele-

ment—browsers will balance the column heights automatically so that the content

in each column is approximately equal in height.

But what if a height is declared? When the height property is set on a multicolumn

block, each column is allowed to grow to that height and no further before a new

column is added. Depending on the browser, the columns may start with the first

column and create as many columns as necessary, or just the one if there is minimal

text. This is how Opera and Chrome currently handle columns but to ensure this

effect in all browsers, include column-fill: auto;.

If you want to declare a height on your element, but would also like the content to

be spread evenly across your columns, you can use the column-fill property. When

supported and set to balance, the browser will balance the height of the columns

as though there were no height declared. This is what happens by default in Safari

and Firefox.

Finally, if too little space is allocated with the height property, the content will

overflow from the parent—or be clipped if overflow: hidden; is set.

Issues with Column Height

Even with a height declared, columns may still not appear to have exactly the

desired height because of the bottom margins on paragraphs. Some browsers split

233Embedded Fonts and Multicolumn Layouts

http://zomigi.com/blog/deal-breaker-problems-with-css3-multi-columns/

margins and padding between columns,19 sometimes adding the extra spacing at

the top of a column that follows. Others allow margins to go beyond the bottom

of the box, rather than letting them show up at the top of the next column, which

makes more sense.

As with column-width, you may also want to declare your height in ems instead

of pixels; this way, if your user increases the font size, they are less likely to have

content clipped or overflowing.

Other Column Features
Beyond the core count, width, and gap properties, CSS3 provides us with additional

features for laying out multicolumn content.

The column-rule Property
Column rules are essentially borders between each column. The column-rule

property specifies the color, style, and width of the column rule. The rule will appear

in the middle of the column gap if there is content in the column to both sides of

the rule. Similar to border, the column-rule property is actually shorthand for the

column-rule-color, column-rule-style, and column-rule-width properties.

The syntax for the values is exactly the same as for borders and the related border-

width, border-style, and border-color properties. The width can be any length

unit, just like border-width, including the key terms of medium, thick, and thin.

And the color can be any supported color value:

-webkit-column-rule: 1px solid #CCCCCC;
-moz-column-rule: 1px solid #CCCCCC;
column-rule: 1px solid #CCCCCC;

Column Breaks
There are three column-breaking properties that, when supported, will allow de-

velopers to define where column breaks should appear. The break-before, break-

after, and break-inside properties take a limited number of key terms as values

to define whether a column break can and should occur before, after, or inside an

element respectively. Rather than being applied to the same element on which we

defined our primary column properties, they’re applied to other elements nested

19 http://zomigi.com/blog/deal-breaker-problems-with-css3-multi-columns/

HTML5 & CSS3 for the Real World234

http://zomigi.com/blog/deal-breaker-problems-with-css3-multi-columns/

inside it. Unfortunately, only IE10+ supports these properties at the time of this

writing.

The values available are the same as for page-break-after, page-break-before,

and page-break-inside: auto, always, avoid, left, right, page, column, avoid-

page, and avoid-column.

For example, you might want to avoid a column break occurring immediately after

an h2 element in your content. Here’s how you’d do that:

.columns {
 column-count: 3;
 column-gap: 5px;
}

.columns h2 {
 break-after: avoid;
}

Until Blink and WebKit support the standard properties, we can include vendor-

specific syntax that behaves similarly. Note the addition of the word column to the

property names in the non-standard prefixed syntax:

-webkit-column-break-after: always;
-webkit-column-break-before: auto;
-webkit-column-break-inside: never;

Spanning Columns
The column-span property will make it possible for an element to span across sev-

eral columns. If column-span: all; is set on an element, all content that comes

before that element in the markup should be in columns above that element. All

content in columns appearing in the markup after the element should be in columns

below the spanned element.

The h1s span all the columns. The text between the two headings is divided equally

across three columns, with the column rules breaking for the second heading. The

rest of the text—that which follows the second heading—is again divided across

the three columns, with the column rules dividing the columns but not displayed

behind the spanning text:

235Embedded Fonts and Multicolumn Layouts

article {
 columns: 3 12em;
 column-rule: 1px solid #CCCCCC;
}
h1 {
 column-span: all;
}
p {
 margin-top: 0;
}

We included margin-top: 0 on the paragraphs to ensure paragraphs that start at

the top of the column aren’t dropped by 1em.

For cross-browser compatibility, you would add the -webkit- prefix for Chrome,

Opera, and Safari. Firefox doesn’t support column-span at all, and IE supports it

without a prefix. Including this feature results in a very different appearance when

there’s no support, so you may want to develop for browsers that don’t support it,

and put the column-span: all; behind @media queries or @supports rules.

For example, for the first article on The HTML5 Herald, we could have applied the

column properties to the article element rather than the .content div, and used

column-span: all; to ensure that the video spanned across the full width of the

article; however, this would appear badly broken in Firefox—so we instead opted

to separate the video from the column content.

Other Considerations
If you’ve been following along with our examples, you might notice that some of

your blocks of text have ugly holes in them, like the one shown in Figure 9.7.

HTML5 & CSS3 for the Real World236

Figure 9.7. “Rivers” appear in your text when your columns are too narrow

This problem occurs when text with text-align: justify; is set in very narrow

columns, as we’re doing for The HTML5 Herald. Browsers are yet to know how to

hyphenate words in the same way that word processors do, so they space words

out awkwardly to ensure that the left and right edges stay justified.

For The HTML5 Herald, we’ve used a JavaScript library called Hyphenator20 to

hyphenate words and keep our text looking tidy. This may, however be unnecessary

for your site—our columns are extremely narrow, as we’re trying to replicate a

newspaper style.

If you prefer to use CSS instead of JavaScript to hyphenate, there is a solution. The

­ character is an invisible or “soft” hyphen you include to suggest a location

within a word where it would make sense to hyphenate if necessary. The hyphen

is only shown if there is a word break at that point. This differs from the regular

hyphen, which is displayed whether or not there is word break at that character.

Browsers are slowly gaining the ability to hyphenate words like word processors

do. The experimental hyphens property—with possible values of none, manual, and

20 http://code.google.com/p/hyphenator/

237Embedded Fonts and Multicolumn Layouts

http://code.google.com/p/hyphenator/

auto—supports auto hyphenation in some spoken languages, as defined in the lang

attribute in IE and Firefox with a prefix. Internet Explorer 10 and Firefox 6 both

support the prefixed experimental hyphens: auto, if the browser has integrated

the dictionary for the document’s declared language. See

https://developer.mozilla.org/en-US/docs/Web/CSS/hyphens.

Few real-world sites would likely need justified columns that narrow, but if you

ever come across this issue, it’s good to know that there are solutions available.

Progressive Enhancement
While columns still have limited browser support, there’s no harm in including

them in your sites unless your designer is a stickler for detail. Columns can be

viewed as a progressive enhancement: making long lines easier to read. Those using

browsers without support for columns will be none the wiser about what they’re

missing. For instance, The HTML5 Herald will have no columns when viewed in

Internet Explorer 9, as Figure 9.8 shows. But the site certainly doesn’t look

broken—it’s simply adapted to the capabilities of the browser.

Figure 9.8. Our site has no columns when viewed in IE9—but that’s okay!

If, however, columns are an important feature of your design that must be provided

to all visitors, there are scripts that can help; for instance, there’s Columnizer,21 a

jQuery plugin by Adam Wulf.

21 http://welcome.totheinter.net/columnizer-jquery-plugin/

HTML5 & CSS3 for the Real World238

https://developer.mozilla.org/en-US/docs/Web/CSS/hyphens
http://welcome.totheinter.net/columnizer-jquery-plugin/

Up Next
There are many new features in CSS that progressively enhance a site, such as

columns and fonts, with non-supporting browsers still rendering all the content.

When it comes to content, one size fits all. You want to send the same content to

all your users no matter how they are accessing it. With browsers and devices of

different sizes and resolutions, however, it’s far from being “one size fits all” when

it comes to presentation. You’ll want to include fewer columns on a narrower screen

than you would on a large screen. You may also want to include fewer fonts on a

device with limited bandwidth.

Responsive websites are more than just “squishy” layouts. In the next chapter, we

look at a few features that will help you send the right design to the right screen

size, including flexbox, which—combined with media queries—enables on-the-fly

changing of your layout.

239Embedded Fonts and Multicolumn Layouts

Chapter10
Flexbox and Media Queries
At this point, we’ve added a number of CSS3 enhancements to The HTML5 Herald.

Along the way, we’ve filled in some knowledge gaps by presenting aspects of CSS3

that were outside the scope of our sample site. So it’s fitting that we should introduce

two other CSS3 features that have received much attention among designers targeting

audiences on various devices and screen sizes: flexbox and media queries.

In Chapter 1, we talked about the growth rate of mobile devices and the importance

of considering the needs of mobile users. With flexbox, we can create layouts that

easily resize to accommodate different screen widths. For example, we can provide

a wide screen with a three-column layout, and provide a narrower screen with a

single-column layout, all without touching the HTML. With CSS3 media queries,

we can take that concept a step further, not only creating layouts that resize to ac-

commodate different screen sizes, but even providing different CSS rules based on

the user’s screen size and resolution.

Flexbox
Flexbox, as described in CSS Flexible Box Layout Module Level 1,1 provides for an

efficient way to layout, align, and distribute space among elements within your

document, even when the viewport and the size of your elements is unknown and/or

dynamic. Flexbox is a flexible, float-free CSS layout method that accommodates

different screen sizes and display devices. Flexbox allows the browser to alter the

width or height of elements to best fill the available space on any display device:

with elements expanding to fill all available free space, or shrinking to prevent

overflow.

With flexbox, we can modify the appearance of the document to the user―changing

the appearance of the source order―without JavaScript and without actually ma-

nipulating the DOM. Flexbox allows us to fully separate the structure of the code

from how it’s displayed; with CSS only we can reorder or even invert how elements

are displayed, all without touching the HTML.

CSS layout has always been viewed as difficult. Flexbox makes it simple. With

flexbox we can lay out elements vertically or horizontally, taking up all the space

provided or the least amount of space necessary, creating elements of equal height

or width with just a few lines of CSS. We can add any number of items onto one

line or several lines, and even change the order of appearance of the content without

touching the underlying markup.

Flex Container and Flex Item
The general idea of flexbox is that you define a containing block as the container

of flexible items―either an inline or a block-level flex container―and then you

nest flexible children into that parent container. You define whether those children

are laid out vertically, horizontally, on one line, or several, in the source order or

reversed, or in some other order, and what direction in which those children are

laid out. The flex container can expand items to fill space or shrink items to prevent

overflow:

1 http://dev.w3.org/csswg/css-flexbox/

HTML5 & CSS3 for the Real World242

http://dev.w3.org/csswg/css-flexbox/

<ul class="container">
 <li class="flexItem">...
 <li class="flexItem">...
 <li class="flexItem">...

2The flex container is the parent element in which flex items are contained. The

children of the flex container are flex items: when an element is turned into a flex

container via the display property, each child of that flex container becomes a flex

item. The flex container’s margins collapse with the margins of its contents.

The properties applied to the parent or container include display, flex-direction,

flex-wrap, and flex-flow (which is shorthand for flex-direction and flex-wrap).

There are also alignment properties applied to the container, including justify-

content, align-items, and align-content. The children, or flex items, have

properties that enable the ordering and laying out of the children within the parent,

including order, align-self, flex-grow, flex-shrink, flex-basis, and flex

(which is shorthand for flex-grow, flex-shrink, and flex-basis).

Container Properties
The container can be displayed as a block or inline, but avoid using either of those

as values for the container’s display property. To make an element a flex container,

we do use the well-known display property, but we define the block and inline

presentation by using display: flex and display: inline-flex respectively, as

shown in Figure 10.1. If neither value is set, the element is not a flex container and

the children will not be flex items:

2 In the markup above, we wouldn't need to add the flexItem class as we could use .container

li instead, or even .container > * for less specificity: we added an unnecessary class for ease of

explanation.

243Flexbox and Media Queries

.container {
 display: flex || inline-flex;
}

Figure 10.1. The display property set to flex and inline-flex

The flex-direction property defines the axis along which the flex items follow

each other. A flex container has the default flex-direction of row, meaning that

the flex items follow each other horizontally across the main axis or column. The

alternative is to use a flex-direction of column, in which case the flex items flow

vertically. These two directions can be reversed with row-reverse and column-

reverse respectively, as shown in Figure 10.2:

HTML5 & CSS3 for the Real World244

.container {
 display: flex;
 flex-direction: row || column || row-reverse || column-reverse;
}

Figure 10.2. The flex-direction property defines the flex items’ axis

The flex-wrap property controls whether the flex container is single-line, multi-

line, or multi-lined with each new line coming visually before the previous line

with the values of nowrap, wrap, and wrap-reverse respectively. nowrap is the de-

fault. You can see the effects of the different flex-wrap property values in Fig-

ure 10.3:

245Flexbox and Media Queries

.container {
 display: flex;
 flex-direction: row;
 flex-wrap: nowrap || wrap || wrap-reverse;
}

Figure 10.3. The flex-wrap property defines whether flex items can spread across multiple lines

We’re provided a shorthand of flex-flow for the flex-direction and flex-wrap

properties:

HTML5 & CSS3 for the Real World246

.container {
 display: flex;
 flex-flow: row nowrap;
}

The justify-content property defines how flex items are laid out on the current

line, as shown in Figure 10.4. The default is flex-start, which groups items to the

left of the line (or the top, if flex-direction is set to column). flex-end groups the

items to the right of the line (or bottom, if flex-direction is set to column), while

center groups the items in the center of the line. space-between will push the first

item to the left or top, and the last item to the right or bottom, with equal space in

between all the items. The space-around value divides the white space equally

between all the items, including around the first and last items:

.container {
 display: flex;
 flex-flow: row nowrap;

247Flexbox and Media Queries

 justify-content: flex-start || flex-end || center || space-
➥between || space-around;
}

Figure 10.4. Examples of the justify-content property

Mind Your Margins

Make sure the flex items, or children of the container, don’t have margin set to

auto. If they do, it will appear as if the justify-content were set to space-

around.

While justify-content allows us to align items along the direction axis (left to

right for row and top to bottom for column), the align-items property defines how

flex items are laid out along the opposite axis, as shown in Figure 10.5. When flex-

direction is set to row, flex-start will place the flex items flush to the top of the

HTML5 & CSS3 for the Real World248

container, flex-end to the bottom, center will center the items vertically, while

the default, stretch, will stretch the items so that they’re all equal height—taking

up 100% of the height when there’s a single row. The last value, baseline, usually

appears to be the same as flex-start, though it isn’t really the case: items are

aligned along their baselines:

.container {
 display: flex;
 flex-flow: row nowrap;
 justify-content: space-between;

249Flexbox and Media Queries

 align-items: flex-start || flex-end || center || stretch ||
➥baseline;
}

Figure 10.5. The different values of the align-items property

The flexbox layout specification also allows styling of the flex items. You can

override the align-items property for individual flex items by setting the align-

self property on that single flex item individually, with the value of auto, flex-

start, flex-end, center, baseline, or stretch, as shown in Figure 10.6:

HTML5 & CSS3 for the Real World250

.container {
 display: flex;
 flex-direction: row;
 justify-content: space-around;
 align-items: stretch;
}
.flexItem:first-of-type {
 align-self: auto || flex-start || flex-end || center || baseline
➥|| stretch;
}

Figure 10.6. Different values of the flex item’s align-self property

251Flexbox and Media Queries

For example, to center all the flex items while stretching the first element to 100%

of the height, as shown in Figure 10.7, you would use the following markup:

.container {
 display: flex;
 flex-direction: row;
 justify-content: space-between;
 align-items: center;
}
.flexItem:first-of-type {
 align-self: stretch;
}

Figure 10.7. Overwriting an item’s alignment with the align-self property

Flexbox makes it very easy to display content in a different order than the source

order. The order property assigns elements to ordinal groups and determines in

which order the elements appear. So what does that mean? You can assign integers

to the flex items’ order property, and the browser will display the items in ascending

order instead of the markup’s source order.

Let’s say that you want the last item to come first, the first item to go last, and all

the other flex items to follow the markup’s source order as shown in Figure 10.8.

You would write this:

.flexItem:first-of-type {
 order: 1;
}

HTML5 & CSS3 for the Real World252

.flexItem:last-of-type {
 order: -1;
}

Figure 10.8. Employing the order property to change the order of appearance

Because the default value of order is 0, the flex item with a value less than 0 will

be placed first, and the flex items with values greater than 0 will go last. If different

flex items have different order values, the browser will display them in order

starting with the lowest value, unless the order is reversed with a container with a

flex-direction reversing value.

The order values of the multiple flex items don’t need to be unique. If two or more

flex items have the same order value—as flex items two, three, and four do in our

case (they all have the default value of 0)—the browser will display the items with

the same order value in the order in which they appear in the source markup.

order Only Affects Visual Rendering

In using the order property, the display order is independent of the source code

order for visual rendering only. Assistive technology and tabbed navigation are

not impacted by the use of order, and maintain the source order.

The flex property is shorthand for flex-grow, flex-shrink, and flex-basis, in

that order.

flex-grow defines how the flex item should grow if there is room. It’s a unitless

value for each item that defines the proportion or ratio that the particular element

should occupy within the flex container.

Some examples of flex-grow are shown in Figure 10.9. If all items have flex-grow

set to 1, every child will be set to an equal size inside the container. If you were to

253Flexbox and Media Queries

give one of the children a value of 2, that child would take up twice as much space

as the others:

.container {
 display: flex;
}
.flexItem:first-of-type {
 flex-grow: 2;
}
.flexItem:last-of-type {
 flex-grow: 3;
}

Figure 10.9. Example of the flex-grow property

In our scenario, if we have an item with flex-grow set to 2 and one set to 3, after

room is made for all the items, the first item will take up 40% of the available area

and the latter will take up 60% for a ratio of 2:3 of the available area (which may

differ from 40% and 60% of the width of the parent).

When you use flex-grow, all the space is taken up, making the use of justify-

content moot.

HTML5 & CSS3 for the Real World254

We can use flex-basis to define the default width of each item. Without it, our

example is ugly. By default, flex items use the least amount of space necessary to

fit their content. In our example, the flex items have been sized differently, as they

are as narrow as their content with padding. We can use the flex-basis with a

length unit value to define the default size of a flex item. The remaining space is

distributed, with proportions able to be controlled by flex-grow. You can also set

flex-basis: content, which automatically sizes flex items based on the item's

content.

But what if there isn’t enough room for all the flex items given the flex-basis and

the size of the container? That’s where flex-shrink comes in: it defines the ability

for a flex item to shrink if necessary:

.container {
 display: flex;
}
.flexItem {
 flex-basis: 200px;
}
.flexItem:first-of-type {
 flex-shrink: 3;
}
.flexItem:last-of-type {
 flex-shrink: 2;
}

All flex items in this example will be 200px wide. If the container is more than

1000px (5x200px), any item with a flex-grow property will grow wider; however,

if the container is less than 1000px and there isn’t enough room for all the flex

items, the flex items with the largest flex-shrink value will shrink first.

It’s best to avoid setting flex-shrink, flex-grow, or flex-basis as individual

properties. Rather, you should set all three at once with the flex shorthand property.

Setting flex: none is the same as setting flex: 0 0 auto. The default value, if

none of these properties is specified, is flex: 0 1 auto;.

A Few Notes

Some properties make no sense on a flex container and are therefore ignored. The

column properties, vertical-align, float, and clear have no effect on a flex

255Flexbox and Media Queries

item. On the other hand, box-model properties such as margin, min-height,

and min-width do impact flex items.

Absolutely positioned children of a flex container are positioned so that their

static position is determined in reference to the main start content-box corner of

their flex container.

Flexbox’s alignment property of center does true centering: the flex item stays

centered even if it overflows the flex container. You can’t currently scroll the

overflowed content, but we trust this will be resolved soon:

.container {
 display: flex;
 flex-direction: row;
 justify-content: space-around;
 align-items: center;
 height: 100px;
}

Applying Flexbox to The HTML5 Herald

#authors {
 display: flex;
}
#authors section:nth-of-type(2) {
 order: 2;
}

By setting display: flex on the parent, the three author sections become flex items.

We reorder the items with the order property, as shown in Figure 10.10.

HTML5 & CSS3 for the Real World256

Figure 10.10. Flexbox in action on The HTML5 Herald

By default, the three author sections will be displayed side by side. But when the

page is narrow—say, on a mobile device with a a screen less than 500px wide—we

want each author description to take up 100% of the width. We can use media

queries to change the layout for narrow browsers.

Media Queries
Media queries are at the heart of a recent design trend called responsive web design.

With responsive web design all page elements, including images and widgets, are

designed and coded to resize and realign seamlessly and elegantly, depending on

the capabilities and dimensions of the user’s browser.

What are media queries?
Before CSS3, a developer could specify a media type for a stylesheet using the media

attribute. You might have come across a link element that looked like this:

<link rel="stylesheet" href="print.css" media="print">

Notice that the media type is specified as print. Acceptable values in addition to

print include screen, handheld, projection, all, and a number of others you’ll

see less often, if ever. The media attribute allows you to specify which stylesheet

to load based on the type of device the site is being viewed on. This has become a

fairly common method for serving a print stylesheet.

257Flexbox and Media Queries

With CSS3’s media queries you can, according to the W3C spec3, “extend the

functionality of media types by allowing more precise labeling of style sheets.” This

is done using a combination of media types and expressions that check for the

presence of particular media features. So media queries let you change the

presentation (the CSS) of your content for a wide variety of devices without changing

the content itself (the HTML).

Syntax
Let’s implement a basic media query expression:

<link rel="stylesheet" href="style.css" media="screen and (color)">

This tells the browser that the stylesheet in question should be used for all screen

devices that are in color. Simple—and it should cover nearly everyone in your

audience. You can do the same using @import:

@import url(styles.css) screen and (color);

Additionally, you can implement media queries using the @media at-rule, which

we touched on earlier in Chapter 9 when discussing @font-face. @media is probably

the most well-known usage for media queries, and is the method you’ll likely use

most often:

@media handheld and (max-width: 380px) {
 /* styles go here */
}

In this example, this expression will apply to all handheld devices that have a

maximum display width of 380 pixels. Any styles within that block will apply only

to the devices that match the expression. Note that this is likely to not be what you

want: smartphones are just small-sized computers. Android and iOS happen to

match screen and actually ignore handheld.

Here are a few more examples of media queries using @media, so that you can see

how flexible and varied the expressions can be. This style will apply only to screen-

3 http://www.w3.org/TR/css3-mediaqueries/

HTML5 & CSS3 for the Real World258

http://www.w3.org/TR/css3-mediaqueries/

based devices that have a minimum device width (or screen width) of 320px and a

maximum device width of 480px:

@media only screen and (min-device-width: 320px) and
➥(max-device-width: 480px) {
 /* styles go here */
}

Here’s a slightly more complex example:

@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
➥only screen and (min-device-pixel-ratio: 1.5) {
 /* styles go here */
}

In this example, we use the only keyword, along with the and keyword in addition

to a comma—which behaves like an or keyword. This code will specifically target

the iPhone 4’s higher resolution display, which could come in handy if you want

that device to display a different set of images. Prefixing media queries with only

causes CSS3 non-compliant browsers to ignore the rule.

The Flexibility of Media Queries
Using the aforementioned syntax, media queries allow you to change the layout of

your site or application based on a wide array of circumstances. For example, if

your site uses a two-column layout, you can specify that the sidebar column drop

to the bottom and/or become horizontally oriented, or you can remove it completely

on smaller resolutions. On small devices such as smartphones, you can serve a

completely different stylesheet that eliminates everything except the bare necessities.

Additionally, you can change the size of images and other elements that aren’t

normally fluid to conform to the user’s device or screen resolution. This flexibility

allows you to customize the user experience for virtually any type of device while

keeping the most important information and your site’s branding accessible to all

users.

In The HTML5 Herald, we want to change the layout for narrow screens. Our

newspaper is 758px wide. On devices under 500px wide, the scrolling required to

view the page gives a bad user experience. With media queries, we can narrow the

259Flexbox and Media Queries

entire layout of the page, providing a better user experience for those using narrow

browsers:

@media screen and (max-width: 500px) {
 body {
 width: 100%;
 min-width: 320px;
 }
 body main > div:nth-of-type(n),
 aside,
 aside article {
 width: 100%;
 padding: 0 1em;
 box-sizing: border-box;
 }
 body > header h1 {
 font-size: 7vw;
 }
}

The above CSS targets browsers that are 500px wide or narrower, making the width

of the document 100% but not less than 320px wide, and making the aside, advert-

isements, and different sections as wide as the device. In addition, we make the

main heading font size responsive at 7vw, or 7% of the viewport width. This way

the heading is never too small, and never wider than the newspaper itself.

Returning to the layout of the site’s author listing, to make the author listing appear

at 100% width instead of appearing in three columns, we can also use media queries;

we change the flex-direction when the browser or viewport width is 500px wide

or smaller:

 @media screen and (max-width: 500px) {
 ...
 #authors {

HTML5 & CSS3 for the Real World260

 flex-direction: column;
 }
 }

Figure 10.11. Using media queries on The HTML5 Herald to list our authors

Now in narrow browsers, we’ve changed the flex-direction from the default of

row to column, so that the authors appear top to bottom instead of side by side, as

shown in Figure 10.11.

Browser Support
Support for media queries is very good:

■ IE9+
■ Firefox 3.5+
■ Safari 3.2+
■ Chrome 8+
■ Opera 10.6+

261Flexbox and Media Queries

■ iOS 3.2+
■ Opera Mini 5+
■ Opera Mobile 10+
■ Android 2.1+

The only area of concern is previous versions of Internet Explorer. There are two

options for dealing with this: you can supply these versions of IE with a “default”

stylesheet that’s served without using media queries, providing a layout suitable

for the majority of screen sizes, or you can use a JavaScript-based polyfill. One such

ready-made solution can be found at http://code.google.com/p/css3-mediaqueries-js/.

So by taking advantage of CSS3 media queries, you can easily create a powerful

way to target nearly every device and platform conceivable.

Further Reading
In a book such as this, it’s impossible to describe every aspect of media queries.

That could be another book in itself—and an important one at that. But if you’d like

to look into media queries a little further, be sure to check out the following articles:

■ “Responsive Web Design” on A List Apart4

■ “How to Use CSS3 Media Queries to Create a Mobile Version of Your Site” on

Smashing Magazine5

Living in Style
We’ve now covered all the new features in CSS that went into making The HTML5

Herald—and quite a few that didn’t. While we haven’t covered everything CSS3

has to offer, we’ve mastered several techniques that you can use today, and a few

that should be usable in the very near future. Remember to check the specifica-

tions—as these features are all subject to change—and keep up to date with the state

of browser support. Things are moving quickly for a change, which is both a great

boon and an additional responsibility for web developers.

4 http://www.alistapart.com/articles/responsive-web-design/
5 http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-

version-of-your-website/

HTML5 & CSS3 for the Real World262

http://code.google.com/p/css3-mediaqueries-js/
http://www.alistapart.com/articles/responsive-web-design/
http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/
http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-version-of-your-website/

Up next, we’ll switch gears to cover some of the new JavaScript APIs. As we’ve

mentioned, these aren’t strictly speaking part of HTML5 or CSS3, but they’re often

bundled together when people speak of these new technologies. Plus, they’re a lot

of fun, so why not get our feet wet?

263Flexbox and Media Queries

Chapter11
Geolocation, Offline Web Apps, and
Web Storage
Much of what is loosely considered to be a part of HTML5 isn’t, strictly speaking,

HTML at all—it’s a set of additional APIs that provide a wide variety of tools to

make our websites even better. We introduced the concept of an API way back in

Chapter 1, but here’s a quick refresher: an API is an interface for programs. So, rather

than a visual interface where a user clicks on a button to make something happen,

an API gives your code a virtual “button” to press in the form of a method it calls,

giving it access to a set of functionality.

In this chapter, we’ll be covering three APIs: Geolocation, Offline Web Applications,

and Web Storage. With these APIs, we can find a visitor’s current location, make

our website available offline as well as perform faster online, and store information

about the state of our web application so that when a user returns to our site, they

can pick up where they left off.

In addition, we’ll also provide an overview of other APIs. To learn about the APIs

we won’t be covering, you may want to check out HTML5 API demos,1 a repository

where you can find information about many JavaScript and HTML5 APIs.

JavaScript Ahead!

A word of warning: as you know, the P in API stands for Programming—so there’ll

be some JavaScript code in the next two chapters. If you’re fairly new to JavaScript,

don’t worry! We’ll do our best to walk you through how to use these new features

employing simple examples with thorough explanations. We’ll be assuming you

have a sense of the basics, but JavaScript is an enormous topic. To learn more,

SitePoint’s JavaScript: Novice to Ninja by Darren Jones is an excellent resource

for beginners.2 You may also find the Mozilla Developer Network’s JavaScript

Guide useful.3

Geolocation
The first API we’ll cover is geolocation. Geolocation allows your visitors to share

their current location. With that location information, you can display it on a map

using a maps library such as Google Maps or the MapQuest API.

Depending on how your visitors are accessing your site, their location may be de-

termined by any, or a combination, of the following:

■ IP address
■ wireless network connection
■ cell tower
■ GPS hardware on the device

Which of the above methods are used will depend on the browser, as well as the

device’s capabilities. Most browsers attempt to combine methods in order to be

more accurate. The browser then determines the location and passes it back to the

Geolocation API. One point to note, as the W3C Geolocation spec states: “No guar-

antee is given that the API returns the device’s actual location.”4

1 https://github.com/AurelioDeRosa/HTML5-API-demos
2 Melbourne: SitePoint, 2014
3 https://developer.mozilla.org/en/JavaScript/Guide
4 http://dev.w3.org/geo/api/spec-source.html#introduction

HTML5 & CSS3 for the Real World266

https://github.com/AurelioDeRosa/HTML5-API-demos
https://developer.mozilla.org/en/JavaScript/Guide
https://developer.mozilla.org/en/JavaScript/Guide
http://dev.w3.org/geo/api/spec-source.html#introduction
http://dev.w3.org/geo/api/spec-source.html#introduction

Geolocation is supported in:

■ Safari 5+
■ Chrome 5+
■ Firefox 3.5+
■ Internet Explorer 9+
■ iOS (Mobile Safari) 3.2+
■ Android 2.1+
■ Opera 10.6—12, then 16+ (Opera began supporting gelocation in version 10.6.

When Opera switched to the Blink layout engine in version 15, geolocation was

temporarily dropped. It returned in version 16 and later)

Privacy Concerns
Some users will decline sharing their location with you, as there are privacy concerns

inherent to this information. Thus, your visitors must opt in to share their location;

nothing will be passed along to your site or web application unless the user agrees.

The decision is made via a prompt. Figure 11.1 shows what the prompt looks like

in Chrome.

Figure 11.1. Geolocation user prompt

Chrome May Block This Prompt

Be aware that Chrome may block your site from showing this prompt entirely if

you’re viewing your page locally, rather than from an internet server. If this hap-

pens, you’ll see an icon in the address bar alerting you to it.

There’s no way around this at present, but you can either test your functionality

in other browsers, or deploy your code to a testing server (this can be a local

server on your machine, a virtual machine, or an actual internet server).

Geolocation Methods
With geolocation, you can determine the current position of your users. You can

also be notified of changes to their position, which could be employed, for example,

in a web application that provided real-time driving directions.

267Geolocation, Offline Web Apps, and Web Storage

These different tasks are controlled through the three methods currently available

in the Geolocation API:

■ getCurrentPosition

■ watchPosition

■ clearPosition

We’ll be focusing on the first method, getCurrentPosition.

Checking for Support with Modernizr
Before we attempt to use geolocation, we should ensure that our visitor’s browser

supports it. We can do that with Modernizr.

We’ll start by creating a function called determineLocation. We’ve put it in its own

JavaScript file, geolocation.js, and included that file in our page.

Inside the function, we’ll first use Modernizr to check if geolocation is supported:

function determineLocation() {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(displayOnMap);
 } else {
 // geolocation is not supported in this browser
 }
}

Let’s examine this line by line:

We declare a function called determineLocation to contain our location-checking

code.

We check the Modernizr object’s geolocation property to see whether geolocation

is supported in the current browser. For more information on how the Modernizr

object works, consult Appendix A. If geolocation is supported, we continue on to

line three, which is inside the if statement. If geolocation is unsupported, we move

on to the code inside the else statement.

Let’s assume that geolocation is supported.

HTML5 & CSS3 for the Real World268

Retrieving the Current Position
The getCurrentPosition method takes one, two, or three arguments. Here’s a

summary of the method’s definition from the W3C’s Geolocation API specification:5

void getCurrentPosition(successCallback, errorCallback, options);

Only the first argument, successCallback, is required. successCallback is the

name of the function you want to call once the position is determined.

In our example, if the location is successfully found, the displayOnMap function

will be called with a new Position object. This Position object will contain the

current location of the device.

What’s a callback?

A callback is a function that is passed as an argument to another function. A

callback is executed after the parent function is finished. In the case of getCur-

rentPosition, the successCallbackwill only run once getCurrentPosition

is completed and the location has been determined.

For more information on callbacks, see this post by Mike Vollmer at recurial.com.6

Geolocation’s Position Object
Let’s take a closer look at the Position object, as defined in the Geolocation API.

The Position object has two attributes: one that contains the coordinates of the

position (coords), and another that contains the Geolocation API timestamp of when

the position was determined (timestamp):

5 http://dev.w3.org/geo/api/spec-source.html
6 http://recurial.com/programming/understanding-callback-functions-in-javascript/

269Geolocation, Offline Web Apps, and Web Storage

http://dev.w3.org/geo/api/spec-source.html
http://recurial.com/programming/understanding-callback-functions-in-javascript/

interface Position {
 readonly attribute Coordinates coords;
 readonly attribute DOMTimeStamp timestamp;
};

Specification Interfaces

The HTML5, CSS3, and related specifications contain plenty of “interfaces” like

the above. These can seem scary at first, but never fear. They’re just summarized

descriptions of everything that can go into a certain property, method, or object.

Most of the time the meaning will be clear—and if not, they’re always accompanied

by textual descriptions of the attributes.

But where are the latitude and longitude stored? They’re inside the coords object.

The coords object is also defined in the W3C Geolocation spec. It implements an

interface called Coordinates, and these are its attributes:

interface Coordinates {
 readonly attribute double latitude;
 readonly attribute double longitude;
 readonly attribute double? altitude;
 readonly attribute double accuracy;
 readonly attribute double? altitudeAccuracy;
 readonly attribute double? heading;
 readonly attribute double? speed;
};

The question mark after double in some of those attributes simply means that there’s

no guarantee that the attribute will be there. If the browser is unable to obtain these

attributes, their value will be null. For example, very few computers or mobile

devices contain an altimeter—so most of the time there will be no altitude value

from a geolocation call. The only three attributes that are guaranteed to be there are

latitude, longitude, and accuracy.

latitude and longitude are self-explanatory, and give you exactly what you would

expect: the user’s latitude and longitude. The accuracy attribute tells you, in meters,

how accurate is the latitude and longitude information.

The altitude attribute is the altitude in meters, and the altitudeAccuracy attribute

is the altitude’s accuracy, also in meters.

HTML5 & CSS3 for the Real World270

The heading and speed attributes are only relevant if we’re tracking the user across

multiple positions. These attributes would be important if we were providing real-

time cycling or driving directions, for example. If present, heading tells us the dir-

ection the user is moving (in degrees) in relation to true north. And speed, if present,

tells us how quickly the user is moving in meters per second.

Grabbing the Latitude and Longitude
Our successCallback is set to the function displayOnMap. Here’s what this function

looks like:

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 // Let’s use Google Maps to display the location
}

The first line of our function grabs the Coordinates object from the Position object

that was passed to our callback by the API. Inside the object is the property latitude,

which we store inside a variable called latitude. We do the same for longitude,

storing it in the variable longitude.

Using Google Maps API
In order to display the user’s location on a map, we’ll leverage the Google Maps

JavaScript API. Before we can use this, though, we need to add a reference to it in

our HTML page. Instead of downloading the Google Maps JavaScript library and

storing it on our server, we can point to Google’s publicly available version of the

API:

 ⋮
 <!-- google maps API-->
 <script type="text/javascript"

271Geolocation, Offline Web Apps, and Web Storage

 src="https://maps.googleapis.com/maps/api/js?key=API_KEY">
</body>
</html>

Where to Get the API Key

You may have noticed in the code the link to the Google Maps API has the para-

meter key=API_KEY.

While the Google Maps API will work without an API key, it’s a good idea to obtain

one. Directions for obtaining an API key can be found in the Google Maps docu-

mentation.7

Loading a Map
Now that we’ve included the Google Maps JavaScript file, we need to, first, add an

element to the page to hold the map, and, second, provide a way for the user to call

our determineLocation method by clicking a button.

To take care of the first step, let’s create a fourth box in the sidebar of The HTML5

Herald below the three advertisement boxes. We’ll wrap it inside an article ele-

ment, as we did for all the other ads. Inside it, we’ll create a div called mapDiv, and

a form with a button for users to click to display their location. Let’s also add a

heading to tell the user what we’re trying to find out:

<article class="ad-ad4">
 <div id="mapDiv">
 <h1>Where in the world are you?</h1>
 <form id="geoForm">
 <input type="button" id="geobutton" value="Tell us!">
 </form>
 </div>
</article>

We’ll also add a bit of styling to this new HTML:

7 https://developers.google.com/maps/documentation/javascript/tutorial#api_key

HTML5 & CSS3 for the Real World272

https://developers.google.com/maps/documentation/javascript/tutorial#api_key
https://developers.google.com/maps/documentation/javascript/tutorial#api_key

.ad4 {
 position: relative;
}

.no-geolocation .ad4 {
 display: none;
}

.ad4 h1 {
 font-size: 20px;
 font-family: AcknowledgementMedium;
 text-align: center;
}

Figure 11.2 reveals what our new sidebar box looks like.

Figure 11.2. The new widget that enables users to tell us their location

The second step is to call determineLocation when we hit the button. First, we

grab the button itself. Then, we attach our function to the button’s click event:

var geobutton = document.getElementById('geobutton');
geobutton.addEventListener('click', determineLocation);

With this code in place, determineLocation will be called whenever the button is

clicked.

Displaying Our Location in Google Maps
Now, let’s return to our displayOnMap function and deal with the nitty-gritty of

actually displaying the map. First, we’ll create a myOptions variable to store some

of the options that we’ll pass to Google Maps:

273Geolocation, Offline Web Apps, and Web Storage

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 14,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

The first option that we’ll set is the zoom level. For a complete map of the Earth,

use zoom level 0. The higher the zoom level, the closer you’ll be to the location,

and the smaller your frame (or viewport) will be. We’ll use zoom level 14 to zoom

in to street level.

The second option that we’ll set is the kind of map we want to display. We can

choose from the following:

■ google.maps.MapTypeId.ROADMAP

■ google.maps.MapTypeId.SATELLITE

■ google.maps.MapTypeId.HYBRID

■ google.maps.MapTypeId.TERRAIN

If you’ve used the Google Maps website before, you’ll be familiar with these map

types. ROADMAP is the default, while SATELLITE shows you photographic tiles. HYBRID

is a combination of ROADMAP and SATELLITE, and TERRAIN will display elements

such as elevation and water. We’ll use the default, ROADMAP.

Google Maps Options

To learn more about Google Maps options, see the Map Options section of the

Google Maps tutorial.8

Now that we’ve set our options, it’s time to create our map! We do this by creating

a new Google Maps object with new google.maps.Map().

8 http://code.google.com/apis/maps/documentation/javascript/tutorial.html#MapOptions

HTML5 & CSS3 for the Real World274

http://code.google.com/apis/maps/documentation/javascript/tutorial.html#MapOptions
http://code.google.com/apis/maps/documentation/javascript/tutorial.html#MapOptions

The first parameter we pass is the result of the DOM method getElementById, which

we use to grab the form that houses the button triggering our geolocation call. Passing

the results of this method into the new Google Map means that the map created will

be placed inside that element, replacing the form with the Google Map.

The second parameter we pass is the collection of options we just set. We store the

resulting Google Maps object in a variable called map:

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 14,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById("geoForm"),
➥myOptions);

Now that we have a map, let’s add a marker with the location we found for the user.

A marker is the little red drop we see on Google Maps that marks our location.

In order to create a new Google Maps marker object, we need to pass it another kind

of object: a google.maps.LatLng object—which is just a container for a latitude and

longitude. The first new line creates this by calling new google.maps.LatLng and

passing it the latitude and longitude variables as parameters.

Now that we have a google.maps.LatLng object, we can create a marker. We call

new google.maps.Marker, and then between two curly braces ({}) we set position

to the LatLng object, map to the map object, and title to "Hello World!". The title

is what will display when we hover our mouse over the marker:

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 14,

275Geolocation, Offline Web Apps, and Web Storage

 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById("geoForm"),
➥myOptions);

 var initialLocation = new google.maps.LatLng(latitude, longitude);

 var marker = new google.maps.Marker({
 position: initialLocation,
 map: map,
 title: "Hello World!"
 });
}

The final step is to center our map at the initial point, and we do this by calling

map.setCenter with the LatLng object:

map.setCenter(initialLocation);

You can find a plethora of documentation about Google Maps’ JavaScript API, version

3 in the online documentation.9

A Final Word on Older Mobile Devices
While the W3C Geolocation API is well supported in current mobile device browsers,

you may need to allow for older mobile devices and support all the Geolocation

APIs available. If this is the case, you should take a look at the open-source library

geo-location-javascript.10

Offline Web Applications
The visitors to our websites are increasingly on the go. With many using mobile

devices all the time, it’s unwise to assume that our visitors will always have a live

internet connection. Wouldn’t it be nice for our visitors to browse our site or use

our web application even if they’re offline? Thankfully, we can cater for this with

Offline Web Applications.

9 http://code.google.com/apis/maps/documentation/javascript/
10 http://code.google.com/p/geo-location-javascript/

HTML5 & CSS3 for the Real World276

http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/p/geo-location-javascript/

HTML5’s Offline Web Applications allows us to interact with websites offline. This

might sound like a contradiction: a web application exists online by definition. But

there are an increasing number of web-based applications that could benefit from

being usable offline. You probably use a web-based email client, such as Gmail;

wouldn’t it be useful to be able to compose drafts in the app while you were on the

subway traveling to work? What about online to-do lists, contact managers, or office

applications? These are all examples of applications that benefit from being online,

but which we’d like to continue using if our internet connection cuts out in a tunnel.

The Offline Web Applications spec is supported in:

■ Safari 4+
■ Chrome 5+
■ Firefox 3.5+
■ Opera 10.6+
■ iOS (Mobile Safari) 2.1+
■ Android 2.0+

It is currently unsupported in all versions of IE.

How It Works: the HTML5 Application Cache
Offline Web Applications works by leveraging what is known as the application

cache. The application cache can store your entire website offline: all the JavaScript,

HTML, and CSS, as well as your images and resources.

This sounds great, but you may be wondering what happens when there’s a change?

That’s the beauty of the application cache: your application is automatically updated

every time the user visits your page while online. If even one byte of data has

changed in one of your files, the application cache will reload that file.

Application Cache versus Browser Cache

Browsers maintain their own caches in order to speed up the loading of websites;

however, these caches are only used to avoid having to reload a given file—and

not in the absence of an internet connection. That’s even if all the files for a page

are cached by the browser. If you try to click on a link while your internet connec-

tion is down, you’ll receive an error message.

277Geolocation, Offline Web Apps, and Web Storage

With Offline Web Applications, we have the power to tell the browser which files

should be cached or fetched from the network, and what we should fall back to

in the event that caching fails. It gives us far more control about how our websites

are cached.

Setting Up Your Site to Work Offline
There are three steps to making an Offline Web Application:

1. Create a cache.appcache manifest file.

2. Ensure that the manifest file is served with the correct content type.

3. Point all your HTML files to cache.appcache in the manifest attribute.

The HTML5 Herald isn’t really an application at all, so there’s no real need to provide

offline functionality. Yet it’s simple enough to do, and there’s no real downside, so

we’ll go through the steps of making it available offline to illustrate how it’s done.

The cache.appcache File
Despite its fancy name, the cache.appcache file is really nothing more than a text file

that adheres to a certain format. You can name the file whatever you like

(cache.appcache, mysite.appcache, herald.appcache etc), so long as the extension is

.appcache.

Here’s an example of a simple cache.appcache file:

CACHE MANIFEST

CACHE:
index.html
photo.jpg
main.js

NETWORK:
*

The first line of the cache.appcache file must read CACHE MANIFEST. After this line,

we enter CACHE:, and then list all the files we’d like to store on our visitor’s hard

drive. This CACHE: section is also known as the explicit section (since we’re explicitly

telling the browser to cache these files).

HTML5 & CSS3 for the Real World278

Upon first visiting the page, the visitor’s browser makes a local copy of all files

defined in the section. On subsequent visits, the browser will load the local copies

of the files.

After listing all the files we’d like stored offline, we can specify an online whitelist.

This will define any files that should never be stored offline—usually because they

require internet access for their content to be meaningful. For example, you may

have a PHP script, lastTenTweets.php, that grabs your last ten updates from Twitter

and displays them on an HTML page. The script would only be able to pull your

last ten tweets while online, so it makes no sense to store the page offline.

The first line of this section is the word NETWORK. Any files specified in the NETWORK

section will always be reloaded when the user is online, and will never be available

offline.

Here’s what that example online whitelist section would look like:

NETWORK:
lastTenTweets.php

Unlike the explicit section, where we had to painstakingly list every file we wanted

to store offline, in the online whitelist section we can use a shortcut: the wildcard

*. This asterisk tells the browser that any files or URLs not mentioned in the explicit

section (and therefore not stored in the application cache) should be fetched from

the server.

Here’s an example of an online whitelist section that uses the wildcard:

NETWORK:
*

All Files Must Be Included

Every URL in your website must be accounted for in the .appcache file, even URLs

that you link to. If it’s unaccounted for in the manifest file, that resource or URL

will fail to load, even if you’re online. To avoid this problem, you should use the

* (asterisk) in the NETWORK section.

279Geolocation, Offline Web Apps, and Web Storage

You can also add comments to your .appcache file by beginning a line with # (hash).

Everything after the # will be ignored. Be careful to avoid having a comment as the

first line of your .appcache file; as we mentioned earlier, the first line must be CACHE

MANIFEST. You can, however, add comments to any other line.

It’s good practice to have a comment with the version number of your .appcache file

(we’ll see why a bit later on):

CACHE MANIFEST
version 0.1

CACHE:
index.html
photo.jpg
main.js

NETWORK:
*

Setting the Content Type on Your Server
The next step in making your site available offline is to ensure that your server is

configured to serve the manifest files correctly. This is done by setting the content

type provided by your server, along with the .appcache file (we discussed content

type in Chapter 5, so you can skip back there now if you need a refresher).

Assuming you’re using the Apache web server, add the following to your .htaccess

file:

AddType text/cache-manifest .manifest

Pointing Your HTML to the Manifest File
The final step to making your website available offline is to point your HTML pages

to the manifest file. We do that by setting the manifest attribute on the html element

in each of our pages:

HTML5 & CSS3 for the Real World280

<!DOCTYPE html>
<html manifest="cache.appcache">

Once we’ve done that, we’re finished! Our web page will now be available offline.

Better still, since any content that hasn’t changed since the page has been viewed

will be stored locally, our page will now load much faster—even when our visitors

are online.

Set the manifest Attribute on Every Page

Each HTML page on your website must set the manifest attribute on the html

element. Ensure that you do this, or your application might not be stored in the

application cache! While it’s true that you should only have one .appcache file for

the entire application, every HTML page of your web application needs <html

manifest="cache.appcache">.

Seeking Permission to Store the Site Offline
As with geolocation, browsers provide a permission prompt when a website is using

a cache.appcache file. Unlike geolocation, though, not all browsers are required to

do this. When present, the prompt asks users to confirm that they’d like the website

to be available offline. Figure 11.3 shows the prompt’s appearance in Firefox.

Figure 11.3. Prompt to allow offline web application storage

Going Offline to Test
Once we have completed the three steps to make an offline website, we can test out

our page by going offline. Firefox and Opera provide a menu option that lets you

work offline, so there’s no need to cut your internet connection. (Note that you do

need to have the menu bar enabled in these browsers, otherwise it will fail to work).

To do this in Firefox, go to File > Work Offline as shown in Figure 11.4.

281Geolocation, Offline Web Apps, and Web Storage

Figure 11.4. Testing offline web applications with Firefox’s Work Offline mode

However, while it’s convenient to go offline from the browser menu, it’s most ideal

to turn off your network connection altogether when testing Offline Web Applica-

tions.

Testing if the Application Cache Is Storing Your Site
Going offline is a good way to spot-check if our application cache is working, but

for more in-depth debugging we’ll need a finer instrument. Fortunately, Chrome’s

Web Inspector tool has some great features for examining the application cache.

To check whether our cache.appcache file has the correct content type, here are the

steps to follow in Chrome

(http://html5laboratory.com/s/offline-application-cache.html has a sample you can

use to follow along):

1. Navigate to the URL of your home page in Chrome.

2. Open up the Web Inspector (click the wrench icon, then choose Tools > Developer

Tools).

3. Click on the Console tab, and look for any errors that may be relevant to the

cache.appcache file. If everything is working well, you should see a line that starts

HTML5 & CSS3 for the Real World282

http://html5laboratory.com/s/offline-application-cache.html

with “Document loaded from Application Cache with manifest” and ends with

the path to your cache.appcache file. If you have any errors, they will show up in

the console, so be on the lookout for errors or warnings here.

4. Click on the Resources tab.

5. Expand the application cache section. Your domain (www.html5laboratory.com

in our example) should be listed.

6. Click on your domain. Listed on the right should be all the resources stored in

Chrome’s application cache, as shown in Figure 11.5.

Figure 11.5. Viewing what is stored in Chrome’s application cache

Making The HTML5 Herald Available Offline
Now that we understand the ingredients required to make a website available offline,

let’s practice what we’ve learned on The HTML5 Herald. The first step is to create

our herald.appcache file. You can use a program such as TextEdit on a Mac or Notepad

on Windows to create it, but you have to make sure the file is formatted as plain

text. If you’re using Windows, you’re in luck! As long as you use Notepad to create

this file, it will already be formatted as plain text. To format a file as plain text in

TextEdit on a Mac, choose Format > Make Plain Text. Start off your file by including

the line CACHE MANIFEST at the top.

Next, we add all the resources we’d like available offline in the explicit section,

which starts with the word CACHE:. We must list all our files in this section. Since

283Geolocation, Offline Web Apps, and Web Storage

there’s nothing on the site that requires network access (well, there is one thing,

but we’ll get to that shortly), we’ll just add an asterisk to the NETWORK section to

catch any files we may have missed in the explicit section.

Here’s an excerpt from our herald.appcache file:

CACHE MANIFEST
#v1

CACHE:
index.html
register.html

js/hyphenator.js
js/modernizr-1.7.min.js
css/screen.css
css/styles.css
images/bg-bike.png
images/bg-form.png
⋮
fonts/League_Gothic-webfont.eot
fonts/League_Gothic-webfont.svg
⋮

NETWORK:
*

Once you’ve added all of your resources to the file, save it as herald.appcache. Be

sure that the extension is set to .appcache rather than .txt or something else.

Then, if you’re yet to do so already, configure your server to deliver your manifest

file with the appropriate content type.

The final step is to add the manifest attribute to the html element in our two HTML

pages.

We add the manifest attribute to both index.html and register.html, like this:

HTML5 & CSS3 for the Real World284

<!DOCTYPE html>
<html lang="en" manifest="herald.appcache">

And we’re set! We can now browse The HTML5 Herald at our leisure, whether or

not we have an internet connection.

Limits to Offline Web Application Storage
While no specific storage limit is defined for the application cache in the Offline

Web Applications spec, it does state that browsers should create and enforce a

storage limit. As a general rule, assume that you’ve no more than 5MB of space with

which to work.

Several of the files we specified to be stored offline are video files. Depending on

how large your video files are, it might make little sense to have them available

offline, as they could exceed the browser’s storage limit.

What can we do in that case? We could place large video files in the NETWORK section,

but then our users will simply see an unpleasant error when the browser tries to

pull the video while offline.

A better alternative is to use an optional section of the appcache file: the fallback

section.

The Fallback Section
The fallback section allows us to define what the user will see should a resource

fail to load. In the case of The HTML5 Herald, rather than storing our video file

offline and placing it in the explicit section, it makes more sense to leverage the

fallback section.

Each line in the fallback section requires two entries. The first is the file for which

you want to provide fallback content. You can specify either a specific file, or a

partial path such as media/, which would refer to any file located in the media

folder. The second entry is what you’d like to display should the file specified fail

to load.

If the files are unable to be loaded, we can provide a still image of the film’s first

frame instead. We’ll use the partial path media/ to define the fallback for both video

files at once:

285Geolocation, Offline Web Apps, and Web Storage

FALLBACK:
media/ images/ford-plane-still.png
/ /offline.html

Of course, this is redundant since, as you know from Chapter 5, the HTML5 video

element already includes a fallback image to be displayed in the event the video

doesn’t load.

For some more practice with this concept, let’s add another fallback. In the event

that none of our pages load, it would be nice to define a fallback file that tells you

the site is offline. We can create a simple offline.html file:

<!DOCTYPE html>
<html lang="en" manifest="/herald.appcache">
 <head>
 <meta charset="utf-8">
 <title>You are offline!</title>
 <link rel="stylesheet" href="css/styles.css?v=1.0"/>
 </head>
 <body>
 <h1>Sorry, we are now offline!</h1>
 </body>
</html>

In the fallback section of our cache manifest, we can now specify /, which will

match any page on the site. If any page fails to load or is not in the application

cache, it will fall back to the offline.html page:

FALLBACK:
media/ images/video-fallback.jpg
/ /offline.html

Safari 5

There is a bug in Safari 5 where media files such as .mp3 and .mp4 won’t load

from the offline application cache.

HTML5 & CSS3 for the Real World286

Refreshing the Cache
The files that you’ve specified in the explicit section of the manifest will be cached

until further notice. This can cause headaches while developing: you might change

a file and be left scratching your head when you’re unable to see your changes re-

flected on the page.

Even more importantly, once your files are sitting on a live website, you’ll want a

way to tell browsers that they need to update their application caches. This can be

done by modifying the herald.appcache file. When a browser loads a site for which

it already has an .appcache file, it will check to see if the manifest file has changed.

If there are no changes, it will assume that its existing application cache is all it

needs to run the application, so it won’t download anything else. If the .appcache

file has changed, the browser will rebuild the application cache by re-downloading

all the specified files.

This is why we specified a version number in a comment in our herald.appcache.

This way, even if the list of files remains exactly the same, we have a way of indic-

ating to browsers that they should update their application cache; all we need to

do is increment the version number.

Caching the Cache
This might sound absurd, but your offline site access herald.appcache file may itself

be cached by the browser. Why, you may ask? Because of the way HTTP handles

caching.

In order to speed up the performance of web pages overall, caching is performed

by browsers according to rules set out via the HTTP specification.11 What do you

need to know about these rules? That the browser receives certain HTTP headers,

including Expire headers. These Expire headers tell the browser when a file should

be expired from the cache and when it needs updating from the server.

If your server is providing the manifest file with instructions to cache it (as is often

the default for static files), the browser will happily use its cached version of the

file instead for fetching your updated version from the server. As a result, it will

11 http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

287Geolocation, Offline Web Apps, and Web Storage

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

skip re-downloading any of your application files because it thinks the manifest

has not changed!

If you find that you’re unable to force the browser to refresh its application cache,

try clearing the regular browser cache. You could also change your server settings

to send explicit instructions not to cache the herald.appcache file.

If your site’s web server is running Apache, you can tell Apache not to cache the

herald.appcache file by adding the following to your .htaccess file:

<Files herald.appcache>
 ExpiresActive On
 ExpiresDefault "access"
</Files>

The <Files herald.appcache> entry tells Apache to only apply the rules that follow

to the herald.appcache file. The combination of ExpiresActive On and ExpiresDe-

fault "access" forces the web server to always expire the herald.appcache file

from the cache. The effect is that the herald.appcache file will never be cached by

the browser.

Are we online?
Sometimes you’ll need to know if your user is viewing the page offline or online.

For example, in a web mail app saving a draft while online involves sending it to

the server to be saved in a database; but while offline, you would want to save that

information locally instead, and wait until the user is back online to send it to your

server.

The Offline Web Applications API provides a few handy methods and events for

managing this. For The HTML5 Herald, you may have noticed that the page works

well enough while offline: you can navigate from the home page to the sign-up form,

play the video, and generally mess around without any difficulty. However, when

you try to use the geolocation widget we built earlier in this chapter, things don’t

go so well. This makes sense—without an internet connection, there’s no way for

our page to figure out your location (unless your device has a GPS), much less

communicate with Google Maps to retrieve the map.

HTML5 & CSS3 for the Real World288

Let’s look at how we can fix this. We’d like to provide a message to users indicating

that this functionality is unavailable while offline. It’s actually very easy—browsers

that support Offline Web Applications give you access to the navigator.onLine

property, which will be true if the browser is online and false if it’s not. Here’s

how we’d use it in our determineLocation method:

function determineLocation() {
 if (navigator.onLine) {
 // find location and call displayOnMap
 } else {
 alert("You must be online to use this feature.");
 }
}

Give it a spin. Using Firefox or Opera, navigate to the page and click the button to

load the map. Once you’re satisfied that it works, choose Work Offline and reload

the page; now try clicking the button again. This time you’ll receive a helpful message

telling you that you need to be online to access the map.

Some other features that might be of use to you include events that fire when the

browser goes online or offline. These events fire on the window element, and are

simply called window.online and window.offline. These can, for example, allow

your scripts to respond to a change in state by either synchronizing information up

to the server when you go online, or saving data locally when you drop offline.

There are a few other events and methods for dealing with the application cache,

but the ones we’ve covered here are the most important. They’ll suffice to have most

websites and applications working offline without a hitch.

Further Reading
If you’d like to learn more about Offline Web Applications, here are a few good re-

sources:

■ WHATWG Offline Web Applications spec12

■ HTML5 Laboratory’s “Using the cache manifest to work offline”13

12 http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#offline
13 http://www.html5laboratory.com/working-offline.php

289Geolocation, Offline Web Apps, and Web Storage

http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#offline
http://www.html5laboratory.com/working-offline.php

■ Opera’s Offline Application Developer’s Guide14

■ Peter Lubbers’ SlideShare presentation on Offline Web Applications15

■ Mark Pilgrim’s walk-through of Offline Web Applications16

■ Safari’s Offline Applications Programming Guide17

Web Storage
The Web Storage API defines a standard for how we can save data locally on a user’s

computer or device. Before the emergence of the Web Storage standard, web de-

velopers often stored user information in cookies, or by using plugins. With Web

Storage, we now have a standardized definition for how to store up to 5MB of data

created by our websites or web applications. Better still, Web Storage already works

in Internet Explorer 8.0!

Web Storage is a great complement to Offline Web Applications, because you'll

need somewhere to store all that user data while you’re working offline and Web

Storage provides it.

Web Storage is supported in these browsers:

■ Safari 4+
■ Chrome 5+
■ Firefox 3.6+
■ Internet Explorer 8+
■ Opera 10.5+
■ iOS (Mobile Safari) 3.2+
■ Android 2.1+

Two Kinds of Storage
There are two kinds of HTML5 Web Storage: session storage and local storage.

14 http://dev.opera.com/articles/view/offline-applications-html5-appcache/
15 http://www.slideshare.net/robinzimmermann/html5-offline-web-applications-silicon-valley-user-

group
16 http://diveintohtml5.org/offline.html
17 http://developer.apple.com/library/safari/#documentation/iPhone/Conceptual/SafariJSData-

baseGuide/OfflineApplicationCache/OfflineApplicationCache.html

HTML5 & CSS3 for the Real World290

http://dev.opera.com/articles/view/offline-applications-html5-appcache/
http://www.slideshare.net/robinzimmermann/html5-offline-web-applications-silicon-valley-user-group
http://diveintohtml5.org/offline.html
http://developer.apple.com/library/safari/#documentation/iPhone/Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/OfflineApplicationCache.html

Session Storage
Session storage lets us keep track of data specific to one window or tab. It allows

us to isolate information in each window or tab. Even if the user is visiting the same

site in two windows (or two tabs), each window (or tab) will have its own individual

session storage object and thus separate, distinct data.

Session storage is not persistent—it only lasts for the duration of a user’s session

on a specific site (in other words, for the time that a browser window or tab is open

and viewing that site).

Local Storage
Unlike session storage, local storage allows us to save persistent data to the user’s

computer via the browser. When a user revisits a site at a later date, any data saved

to local storage can be retrieved.

Consider shopping online: it’s not unusual for users to have the same site open in

multiple windows or tabs. Let’s say that you’re shopping for shoes, and you want

to compare the prices and reviews of two brands. You may have one window open

for each brand, but regardless of what brand or style of shoe you’re looking for,

you’re always going to be searching for the same shoe size. It’s cumbersome to have

to repeat this part of your search in every new window.

Local storage can help. Rather than require the user to specify the shoe size they’re

browsing for every time they launch a new window, we could store this information

in local storage. That way, when the user opens a new window to browse for another

brand or style, the results would just present items available in that shoe size. Fur-

thermore, because we’re storing the information to the user’s computer, we’ll be

able to access this information when they visit the site at a later date.

Each Browser’s Web Storage is Unique

One important point to remember when working with Web Storage is that if the

user visits your site in Safari, any data will be stored to Safari’s Web Storage store.

If the user then revisits your site in Chrome, the data that was saved via Safari

will be unavailable. Where the Web Storage data is stored depends on the browser,

and each browser’s storage is separate and independent.

291Geolocation, Offline Web Apps, and Web Storage

Local Storage versus Cookies

Local storage can at first glance seem to play a similar role to HTTP cookies, but

there are a few key differences. First of all, cookies are intended to be read on the

server side, whereas local storage is only available on the client side. If you need

your server-side code to react differently based on some saved values, cookies are

the way to go. Yet, cookies are sent along with each HTTP request to your serv-

er—and this can result in significant overhead in terms of bandwidth. Local storage,

on the other hand, just sits on the user’s hard drive waiting to be read, so it costs

nothing to use. (But you can send what’s stored in local storage to a server as well

using an Ajax request, if you wish.)

In addition, we have significantly more space to store data using local storage.

With cookies, we can only store 4KB of information in total. With local storage,

the maximum is much greater, though it varies a bit across desktop and mobile.

On the desktop, the maximum for Chrome, Opera, Firefox, and IE is 10MB, and

5MB for Safari. On mobile, the maximum is 2MB for Android, 5MB for mobile

Safari and iOS, and 10MB for Chrome and Firefox on mobile.

What Web Storage Data Looks Like
Data saved in Web Storage is stored as key/value pairs. Here are a few examples of

simple key/value pairs:

■ key: name, value: Alexis
■ key: painter, value: Picasso
■ key: email, value: info@me.com

Getting and Setting Our Data
The methods most relevant to Web Storage are defined in an object called Storage.

Here is the complete definition of Storage:18

interface Storage {
 readonly attribute unsigned long length;
 DOMString key(in unsigned long index);
 getter any getItem(in DOMString key);
 setter creator void setItem(in DOMString key, in any value);

18 http://dev.w3.org/html5/webstorage/#the-storage-interface

HTML5 & CSS3 for the Real World292

http://dev.w3.org/html5/webstorage/#the-storage-interface

 deleter void removeItem(in DOMString key);
 void clear();
};

The first methods we’ll discuss are getItem and setItem. We store a key/value pair

in either local or session storage by calling setItem, and we retrieve the value from

a key by calling getItem.

If we want to store the data in or retrieve it from session storage, we simply call

setItem or getItem on the sessionStorage global object. If we want to use local

storage instead, we’d call setItem or getItem on the localStorage global object.

In the examples to follow, we’ll be saving items to local storage.

When we use the setItem method, we must specify both the key we want to save

the value under, and the value itself. For example, if we’d like to save the value "6"

under the key "size", we’d call setItem like this:

localStorage.setItem("size", "6");

To retrieve the value we stored to the "size" key, we’d use the getItem method

specifying only the key:

var size = localStorage.getItem("size");

Converting Stored Data
Web Storage stores all values as strings, so if you need to use them as anything else,

such as a number or even an object, you’ll have to convert them. To convert from

a string to a numeric value, we can use JavaScript’s parseInt method.

For our shoe size example, the value returned and stored in the size variable will

actually be the string "6", rather than the number 6. To convert it to a number, we

use parseInt:

293Geolocation, Offline Web Apps, and Web Storage

var size = parseInt(localStorage.getItem("size"));

The Shortcut Way
We can quite happily continue to use getItem(key) and setItem(key, value);

however, there’s a shortcut we can use to save and retrieve data.

Instead of localStorage.getItem(key), we can simply say localStorage[key].

For example, we could rewrite our retrieval of the shoe size:

var size = localStorage["size"];

And instead of localStorage.setItem(key, value), we can say localStorage[key]

= value:

localStorage["size"] = 6;

Out of Key

What happens if you request getItem on a key that was never saved? In this case,

getItem will return null.

Removing Items and Clearing Data
To remove a specific item from Web Storage, we can use the removeItem method.

We pass it the key we want to remove, and it removes both the key and its value.

To remove all data stored by our site on a user’s computer, we can utilize the clear

method. This will delete all keys and all values stored for our domain.

Storage Limits
Internet Explorer “allows web applications to store nearly 10MB of user data.”19

Chrome, Safari, Firefox, and Opera all allow for up to 5MB of user data, which is

the amount suggested in the W3C spec. This number may evolve over time, as the

spec itself states: “A mostly arbitrary limit of five megabytes per origin is recommen-

ded. Implementation feedback is welcome and will be used to update this suggestion

19 https://msdn.microsoft.com/en-us/library/bg142799(v=vs.85).aspx

HTML5 & CSS3 for the Real World294

https://msdn.microsoft.com/en-us/library/bg142799(v=vs.85).aspx

in the future.” In addition, Opera allows users to configure how much disk space

is allocated to Web Storage.

Rather than worrying about how much storage each browser has, a better approach

is to test to see if the quota is exceeded before saving important data. The way you

test for this is by catching the QUOTA_EXCEEDED_ERR exception. Here’s one example

of how we can do this:

try {
 sessionStorage["name"] = "Susan";
} catch (exception) {
 if (exception === QUOTA_EXCEEDED_ERR) {
 // we should tell users that their quota has been exceeded.
 }
}

Trying to Catch Exceptions

Sometimes problems happen in our code. Designers of APIs know this, and in

order to mitigate the effects of these problems, they rely on exceptions. An excep-

tion occurs when something unexpected happens. The authors of APIs can define

specific exceptions to be thrown when particular problems occur. Then developers

using those APIs can decide how they’d like to respond to a given type of excep-

tion.

In order to respond to exceptions, we can wrap any code we think may throw an

exception in a try/catch block. This works the way you might expect: first, you

try to do something. If it fails with an exception, you can catch that exception and

attempt to recover gracefully.

To read more about try/catch blocks, see the “try…catch” article at the Mozilla

Developer Networks’ JavaScript Reference.20

Security Considerations
Web Storage has what’s known as origin-based security, which means that data

stored via Web Storage from a given domain is only accessible to pages from that

domain. It’s impossible to access any Web Storage data stored by a different domain.

For example, assume that we control the domain html5isgreat.com, and we store

20 https://developer.mozilla.org/en/JavaScript/Reference/Statements/try...catch

295Geolocation, Offline Web Apps, and Web Storage

https://developer.mozilla.org/en/JavaScript/Reference/Statements/try...catch
https://developer.mozilla.org/en/JavaScript/Reference/Statements/try...catch

data created on that site using local storage. Another domain (say, google.com), does

not have access to any of the data stored by html5isgreat.com. Likewise, html5is-

great.com has no access to any of the local storage data saved by google.com.

Adding Web Storage to The HTML5 Herald
We can use Web Storage to add a Remember me on this computer checkbox to our

registration page. This way, once the user has registered, future forms that may need

filling out on the site would already have this information.

Let’s define a function that grabs the value of the form’s input elements for name

and email address:

function saveData() {
 var name = document.getElementById("name").value;
 var email = document.getElementById("email").value;
}

Here we’re storing the value of the email and name form fields in variables called

email and name respectively.

Once we have retrieved the values in the two input elements, our next step is to

actually save these values to localStorage:

function saveData() {
 var name = document.getElementById("name").value;
 var email = document.getElementById("email").value;

 localStorage.setItem("name", name);
 localStorage.setItem("email", email);
}

Let’s also store the fact that the “Remember me” checkbox was checked, saving this

information to local storage:

function saveData() {
 var name = document.getElementById("name").value;
 var email = document.getElementById("email").value;

 localStorage.setItem("name", name);

HTML5 & CSS3 for the Real World296

 localStorage.setItem("email", email);
localStorage.setItem("remember", true);

}

Now that we have a function that saves the visitor’s name and email address, let’s

call it if they check the Remember me on this computer checkbox. We’ll do this by

watching for the change event on the checkbox; this event will fire whenever the

checkbox’s state changes, whether it’s due to a click on the checkbox itself, a click

on its label, or a keyboard press:

var rememberMe = document.getElementById("rememberme");
rememberMe.addEventListener("change", saveData, false);

IE8 Support

For simplicity, we are using addEventListener in this chapter. This function

is supported in all major modern browsers except IE8. If you look at the code for

the book, you’ll see that we use a simple helper function called addEvent that

employs addEventListener if it’s supported, or an old method called at-

tachEvent if not—a method that IE8 supports.

Next, let’s make sure that the checkbox is actually checked, since the change event

will fire when the checkbox is unchecked as well:

function saveData() {
 if (document.getElementById("rememberme").checked === true) {
 var name = document.getElementById("name").value;
 var email = document.getElementById("email").value;

 localStorage["name"] = name;
 localStorage["email"] = email;
 localStorage["remember"] = true;
 }
}

Finally, let’s ensure that Web Storage is present in our visitor’s browser:

function saveData() {
if (document.getElementById("rememberme").checked === true) {

 var name = document.getElementById("name").value;

297Geolocation, Offline Web Apps, and Web Storage

 var email = document.getElementById("email").value;

 localStorage["name"] = name;
 localStorage["email"] = email;
 localStorage["remember"] = true;
}

}

Now we’re saving our visitor’s name and email whenever the checkbox is checked,

so long as local storage is supported. The problem is that we have yet to actually

do anything with the data!

Let’s add another function to check and see whether the name and email have been

saved and, if so, fill in the appropriate input elements with that information. Let’s

also precheck the “Remember me” checkbox if we’ve set the key remember to true

in local storage:

function loadStoredDetails() {
 var name = localStorage["name"];
 var email = localStorage["email"];
 var remember = localStorage["remember"];

 if (name) {
 document.getElementById("name").value = name;
 }
 if (email) {
 document.getElementById("email").value = email;
 }
 if (remember === "true") {
 document.getElementById("rememberme").setAttribute("checked",
➥"checked");
 }
}

Again, we want to check to ensure that Web Storage is supported by the browser

before taking these actions:

function loadStoredDetails() {
 if (Modernizr.localstorage) {
 var name = localStorage["name"];
 var email = localStorage["email"];
 var remember = localStorage["remember"];

HTML5 & CSS3 for the Real World298

 if (name) {
 document.getElementById("name").value = name;
 }
 if (email) {
 document.getElementById("email").value = email;
 }
 if (remember === true) {
 document.getElementById("rememberme").setAttribute("checked",
➥"checked");
 }
 } else {
 // no support for Web Storage
 }
}

At the beginning of rememberMe.js, we call the loadStoredDetails function once

the page loads:

loadStoredDetails();

Now if the user has previously visited the page and checked Remember me on this

computer, their name and email will already be populated on subsequent visits to

the page.

As a final step, we should clear out any values saved previously if the user unchecks

the “Remember me” checkbox:

if (document.getElementById("rememberme").checked === true) {
 var name = document.getElementById("name").value;
 var email = document.getElementById("email").value;

 localStorage.setItem("name", name);
 localStorage.setItem("email", email);
 localStorage.setItem("remember", "true");
}
// if they uncheck the "Remember me" checkbox, clear out
// all the values

299Geolocation, Offline Web Apps, and Web Storage

else {
 localStorage.clear();
}

Viewing Our Web Storage Values with Web Inspector
We can use the Safari or Chrome Web Inspector to look at or even change the values

of our local storage. In Safari, we view the stored data under the Storage tab, as

shown in Figure 11.6.

Figure 11.6. Viewing the values stored in local and session storage

In Chrome, the data can be viewed through the Resources tab.

Since users own any data saved to their hard drive, they can actually modify the

data in Web Storage should they choose to do so.

Let’s try this ourselves. If you double-click on the email value in Web Inspector’s

Storage tab while viewing the register.html page, you can actually modify the value

stored there, as Figure 11.7 shows.

HTML5 & CSS3 for the Real World300

Figure 11.7. Modifying the values stored in Web Storage

There’s nothing we as developers can do to prevent this, since our users own the

data on their computers. We can and should, however, bear in mind that savvy

users have the ability to change their local storage data. In addition, the Web Storage

spec states that any dialogs shown in browsers asking users to clear their cookies

should now also allow them to clear their local storage. The message is we can’t be

100% sure that the data we store is accurate, nor that it will always be there. Thus,

sensitive data should never be kept in local storage.

If you’d like to learn more about Web Storage, here are a few resources you can

consult:

■ W3C’s Web Storage specification21

■ Mozilla Developer Network’s Web Storage documentation22

■ Web Storage tutorial from IBM’s developerWorks23

Additional HTML5 APIs
We’d like to mention some other APIs briefly, to give you an overview of what they

are, and provide resources should you want to learn more.

Web Workers
The new Web Workers API allows us to run large scripts in the background without

interrupting our main page or web app. Prior to Web Workers, it was impossible to

21 http://dev.w3.org/html5/webstorage/#the-storage-interface
22 https://developer.mozilla.org/en/DOM/Storage
23 http://www.ibm.com/developerworks/xml/library/x-html5mobile2/

301Geolocation, Offline Web Apps, and Web Storage

http://dev.w3.org/html5/webstorage/#the-storage-interface
https://developer.mozilla.org/en/DOM/Storage
http://www.ibm.com/developerworks/xml/library/x-html5mobile2/

run multiple JavaScript scripts concurrently. Have you ever come across a dialog

like the one shown in Figure 11.8?

Figure 11.8. A script that runs for too long freezes the whole page

With Web Workers, we should see less of these types of warnings. The new API

allows us to capture scripts that take a long time to run and require no user interac-

tion, and run them behind the scenes concurrently with any other scripts that do

handle user interaction. This concept is known as threading in programming, and

Web Workers brings us thread-like features. Each “worker” handles its own chunk

of script without interfering with other workers or the rest of the page. To ensure

the workers stay in sync with each other, the API defines ways to pass messages

from one worker to another.

Web Workers are supported in:

■ Safari 4+
■ Chrome 4+
■ Firefox 3.5+
■ IE10+
■ Opera 11.5+
■ Android 4.4+

To learn more about Web Workers, see:

■ HTML5 Rocks article “The Basics of Web Workers”24

■ Mozilla Developer Network tutorial “Using Web Workers”25

■ W3C Web Workers’ specification26

24 http://www.html5rocks.com/tutorials/workers/basics/
25 https://developer.mozilla.org/En/Using_web_workers
26 http://dev.w3.org/html5/workers/

HTML5 & CSS3 for the Real World302

http://www.html5rocks.com/tutorials/workers/basics/
https://developer.mozilla.org/En/Using_web_workers
http://dev.w3.org/html5/workers/

Web Sockets
Web Sockets defines a “protocol for two-way communication with a remote host.”27

We’ll avoid going into this topic for a couple of reasons. First, this API is of great

use to server-side developers, but is less relevant to front-end developers and de-

signers. Second, Web Sockets are still in development and have actually run into

some security issues. Firefox 4 and Opera 11 have disabled Web Sockets by default

due to these issues.28

Web Sockets are supported in:

■ Safari 7.1+
■ Chrome 31+
■ Firefox 34+
■ Opera 26+
■ iOS (Mobile Safari) 7.1+
■ IE 10+
■ Android 4.4+

Web Sockets are currently unsupported in all versions of IE and on Android.

To learn more about Web Sockets, see the specification at the W3C.29

IndexedDB
There are going to be times when the 5MB of storage and simplistic key/value pairs

offered by the Web Storage API falls short of your needs. If you require the ability

to store substantial amounts of data and have more complex relationships between

your data, you'll likely need a fully fledged database to take care of your storage

requirements.

Usually databases are unique to the server side, but there is a database solution

that’s been proposed to fill the need on the client side: Indexed Database API, or

IndexedDB for short.

27 http://www.w3.org/TR/websockets/
28 See http://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/ and

http://dev.opera.com/articles/view/introducing-web-sockets/.
29 http://www.w3.org/TR/2009/WD-websockets-20091222/

303Geolocation, Offline Web Apps, and Web Storage

http://www.w3.org/TR/websockets/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/
http://dev.opera.com/articles/view/introducing-web-sockets/

What about Web SQL?

There was an additional database proposal previously called Web SQL, but its

specification is no longer being updated. Web SQL was at one point seen as a viable

option, but it’s since been abandoned in favor of IndexedDB.

IndexedDB is supported in:

■ Partial support in Safari 7.1+
■ Firefox 10+
■ Chrome 23+
■ Opera 15+
■ Partial support in iOS 8
■ Android 4.4+
■ Partial support in IE 10+

If you would like to learn more, here are a few good resources:

■ Mark Pilgrim’s summary of local storage in HTML530

■ W3C’s IndexedDB specification31

Back to the Future
In this chapter, we’ve had a glimpse into the new JavaScript APIs available in the

latest generation of browsers. While these might lack full browser support for some

time, tools such as Modernizr can help us gradually incorporate them into our real-

world projects, bringing an extra dimension to our sites and applications.

In the next—and final—chapter, we’ll look at one more API, as well as two tech-

niques for creating complex graphics in the browser. These open up a lot of potential

avenues for creating web apps that leap off the page.

30 http://diveintohtml5.org/storage.html#future
31 http://dev.w3.org/2006/webapi/IndexedDB/

HTML5 & CSS3 for the Real World304

http://diveintohtml5.org/storage.html#future
http://dev.w3.org/2006/webapi/IndexedDB/

Chapter12
Canvas, SVG, and Drag and Drop
The HTML5 Herald is becoming quite dynamic for an “ol’ timey” newspaper! We’ve

added a video with the new video element, made our site available offline, added

support to remember the user’s name and email address, and used geolocation to

detect where our user is.

But there’s still much we can do to make it even more fun. First, the video is a little

at odds with the rest of the paper, since it’s in color. Second, the geolocation feature,

while fairly speedy, could use a progress indicator to let the user know we haven’t

left them stranded. And finally, it would be nice to add one more dynamic piece

to our page. We’ll take care of all three of these items using the APIs we’ll discuss

in this chapter: Canvas, SVG, and Drag and Drop.

Canvas
With HTML5’s Canvas API, we can draw anything we can imagine, all through

JavaScript. This can improve the performance of our websites by avoiding the need

to download images off the network. With canvas, we can draw shapes and lines,

arcs and text, gradients and patterns. In addition, canvas gives us the power to ma-

nipulate pixels in images and even video. We’ll start by introducing some of the

basic drawing features of canvas, but then move on to using its power to transform

our video—taking our modern-looking color video and converting it into conven-

tional black and white to match the overall look and feel of The HTML5 Herald.

The Canvas API is supported in:

■ Chrome 4+
■ Firefox 2+
■ Opera 9.6+
■ Safari 3.1+
■ iOS 3.2+
■ Internet Explorer 9.0+
■ Android 3.0+

A Bit of Canvas History
Canvas was first developed by Apple. Since they already had a framework—Quartz

2D—for drawing in two-dimensional space, they went ahead and based many of

the concepts of what woud come to be known as HTML5’s canvas on that framework.

It was then adopted by Mozilla and Opera, and then standardized by the WHATWG

(and subsequently picked up by the W3C, along with the rest of HTML5).

There’s some good news here. If you aspire to do development for the iPhone or

iPad (referred to jointly as iOS), or for the Mac, what you learn in canvas should

help you understand some of the basic concepts of Quartz 2D. If you already develop

for the Mac or iOS and have worked with Quartz 2D, many canvas concepts will

look very familiar to you.

Creating a canvas Element
The first step to using canvas is to add a canvas element to the page:

<canvas>
 Sorry! Your browser doesn’t support Canvas.
</canvas>

The text in between the canvas tags will only be shown if the canvas element is

not supported by the visitor’s browser.

HTML5 & CSS3 for the Real World306

Since drawing on the canvas is done using JavaScript, we’ll need a way to grab the

element from the DOM. We’ll do so by giving our canvas an ID:

<canvas id="myCanvas" class="myCanvas">
 Sorry! Your browser doesn’t support Canvas.
</canvas>

The canvas element takes both a width and height attribute, which must also be

set.

Why not set width and height using CSS?

You may be asking yourself, why not set the width and height via CSS? It’s because

the width and height attributes determine how large the canvas’s coordinate

system is. If we don’t specify width and height, the canvas element will default

to a width of 300 and a height of 150. If we set the width and height for a canvas

only in CSS, the canvas element will be 300 by 150, and the CSS properties will

simply determine how large the box is that displays the image.

Let’s add a width and height attribute to the canvas element:

<canvas id="myCanvas" class="myCanvas" width="200" height="200">
 Sorry! Your browser doesn’t support Canvas.
</canvas>

Finally, let’s add a border to our canvas using some CSS to visually distinguish it

on the page. Canvas has no default styling, so it’s difficult to see where it is on the

page unless you give it some kind of border:

.myCanvas {
 border: dotted 2px black;
}

Now that we’ve styled it, we can actually view the canvas container on our page;

Figure 12.1 shows what it looks like.

307Canvas, SVG, and Drag and Drop

Figure 12.1. An empty canvas with a dotted border

Drawing on the Canvas
All drawing on the canvas happens via the Canvas JavaScript API. In this chapter,

we’ll walk you through several different things you can draw onto the canvas ele-

ment. Each example will have a new function, and all of these different functions

live in a file called canvas.js.

A Canvas Playground

We have created a separate file at The HTML5 Herald, canvas.html, for you to see

the examples outlined in this chapter. At canvas.html there are seven different

canvas elements, each demonstrating a different technique shown in this chapter.

But first, let’s start with the basics. Before we can draw onto a canvas, we need to

grab hold of the canvas element on our page:

var canvas = document.getElementById("myCanvas");

Getting the Context
Once we’ve stored our canvas element in a variable, we then set up the canvas’s

context. The context is the place where your drawing is rendered. Currently, there’s

only wide support for drawing to a two-dimensional context. The W3C Canvas spec

defines the context in the CanvasRenderingContext2D interface. Most methods

we’ll be using to draw onto the canvas are defined in this interface.

HTML5 & CSS3 for the Real World308

We obtain our drawing context by calling the getContext method and passing it

the string "2d", since we’ll be drawing in two dimensions:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");

The object that’s returned by getContext is an instance of CanvasRenderingCon-

text2D. In this chapter, we’ll refer to it as simply “the context object” for brevity.

What about 3D?

WebGL is a new API for 3D graphics being managed by the Khronos Group, with

a WebGL working group that includes Apple, Mozilla, Google, and Opera.

By combining WebGL with HTML5 Canvas, you can draw in three dimensions.

WebGL is currently fully supported in Chrome 18+, Internet Explorer 11+, and

iOS 8+, and partially supported in Firefox 4+, Safari 5.1, Opera 12+, and Chrome

37+ for Android. To learn more, see http://www.khronos.org/webgl/.

Filling Our Brush with Color
On a real-life painting canvas, you must first saturate your brush with paint before

you can begin. In the HTML5 canvas, you must do the same, and we do so with the

strokeStyle or fillStyle properties. Both strokeStyle and fillStyle are set on

a context object, and both take one of three values: a string representing a color, a

CanvasGradient object, or a CanvasPattern object.

Let’s start by using a color string to style the stroke. You can think of the stroke as

the border of the shape you’re going to draw. To draw a rectangle with a red border,

we first define the stroke color:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
context.strokeStyle = "red";

To draw a rectangle with a red border and blue fill, we must also define the fill

color:

309Canvas, SVG, and Drag and Drop

http://www.khronos.org/webgl/

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
context.strokeStyle = "red";
context.fillStyle = "blue";

We can use any CSS color value to set the stroke or fill color, as long as we specify

it as a string: a hexadecimal value such as #00FFFF, a color name such as red or

blue, or an RGB value such as rgb(0, 0, 255). We can even use the property rgba

to set a semitransparent stroke or fill color.

Let’s change our blue fill to blue with a 50% opacity:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
context.strokeStyle = "red";
context.fillStyle = "rgba(0, 0, 255, 0.5)";

Drawing a Rectangle to the Canvas
Once we’ve defined the color of the stroke and the fill, we’re ready to start drawing!

Let’s begin by drawing a rectangle. We can repeat the steps we just took: grabbing

the canvas and the context, and setting a fill and stroke style. But now, we’ll draw

a rectangle. We can do this by calling the fillRect and strokeRect methods. Both

of these methods take the X and Y coordinates where you want to begin drawing

the fill or the stroke, and the width and height of the rectangle. We’ll add the stroke

and fill 10 pixels from the top and 10 pixels from the left of the canvas’s top-left

corner:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
context.strokeStyle = "red";
context.fillStyle = "rgba(0, 0, 255, 0.5)";
context.fillRect(10, 10, 100, 100);
context.strokeRect(10, 10, 100, 100);

This will create a semitransparent blue rectangle with a red border, such as the one

in Figure 12.2.

HTML5 & CSS3 for the Real World310

Figure 12.2. A simple rectangle—not bad for our first canvas drawing!

The Canvas Coordinate System

As you may have gathered, the coordinate system in the canvas element is different

from the Cartesian coordinate system you learned in math class. In the canvas

coordinate system, the top-left corner is (0,0). If the canvas is 200 pixels by 200

pixels, then the bottom-right corner is (200,200), as Figure 12.3 illustrates.

Figure 12.3. The canvas coordinate system goes top-to-bottom and left-to-right

311Canvas, SVG, and Drag and Drop

Variations on fillStyle
Instead of a color as our fillStyle, we could have used a CanvasGradient or a

CanvasPattern object. Let’s create a pattern on the second canvas element (whose

ID is demo2) on the canvas.html page.

We create a CanvasPattern by calling the createPattern method. createPattern

takes two parameters: the image to create the pattern with, and how that image

should be repeated. The repeat value is a string, and the valid values are the same

as those in CSS: repeat, repeat-x, repeat-y, and no-repeat.

Instead of using a semitransparent blue fillStyle, let’s create a pattern using our

bicycle image. We’ll do this in a new function called drawPattern. After doing the

basics (grabbing the canvas and the context and setting a stroke), we must create an

Image object and set its src property to our image:

function drawPattern() {
 var canvas = document.getElementById("demo2");
 var context = canvas.getContext("2d");
 context.strokeStyle = "red";

 var img = new Image();
 img.src = "../images/bg-bike.png";
}

Setting the src attribute will tell the browser to start downloading the image; how-

ever, if we try to use it immediately to create our gradient, we might run into some

problems, because the image may still be loading (depending on whether it is in

the browser cache). To be on the safe side, we’ll use the image’s onload property

to create our pattern once the image has been fully loaded by the browser:

function drawPattern() {
 var canvas = document.getElementById("demo2");
 var context = canvas.getContext("2d");
 context.strokeStyle = "red";

 var img = new Image();
 img.src = "../images/bg-bike.png";

HTML5 & CSS3 for the Real World312

 img.onload = function() {
 };
}

In our onload event handler, we call createPattern, passing it the Image object

and the string repeat so that our image repeats along both the X and Y axes. We

store the results of createPattern in the variable pattern, and set the fillStyle

to that variable:

function drawPattern() {
 ⋮
 var img = new Image();
 img.src = "../images/bg-bike.png";
 img.onload = function() {
 var pattern = context.createPattern(img, "repeat");

context.fillStyle = pattern;
context.fillRect(10, 10, 100, 100);
context.strokeRect(10, 10, 100, 100);

 };
}

Anonymous Functions

You may be asking yourself, “what is that function statement that comes right

before the call to img.onload?” It’s an anonymous function. Anonymous functions

are much like regular functions except, as you might guess, they are without

names.

When you see an anonymous function defined as an event listener, it means that

the anonymous function is being bound to that event. In other words, the code

inside that anonymous function will be run when the load event is fired.

Now, our rectangle’s fill is a pattern made up of our bicycle image, as Figure 12.4

shows.

313Canvas, SVG, and Drag and Drop

Figure 12.4. A pattern fill on a canvas

We can also create a CanvasGradient object to use as our fillStyle. To create a

CanvasGradient, we call one of two methods: createLinearGradient() or creat-

eRadialGradient(); then we add one or more color stops to the gradient.

createLinearGradient’s x0 and y0 represent the starting location of the gradient.

x1 and y1 represent the ending location.

Let’s try creating a gradient in the third canvas element. To create a gradient that

begins at the top of the canvas and blends the color down to the bottom, we’d define

our starting point at the origin (0,0), and our ending point 200 pixels down from

there (0,200):

function drawGradient() {
 var canvas = document.getElementById("demo3");
 var context = canvas.getContext("2d");
 context.strokeStyle = "red";
var gradient = context.createLinearGradient(0, 0, 0, 200);

}

Next, we specify our color stops. The color stop method is simply addColorStop().

The offset is a value between 0 and 1. An offset of 0 is at the start of the gradient,

and an offset of 1 is at the end of the gradient. The color is a string value that, as

with the fillStyle, can be a color name, a hexadecimal color value, an rgb() value,

or an rgba() value.

HTML5 & CSS3 for the Real World314

To make a gradient that starts as blue and begins to blend into white halfway down

the gradient, we can specify a blue color stop with an offset of 0 and a purple

color stop with an offset of 1:

function drawGradient() {
 ⋮
 var gradient = context.createLinearGradient(0, 0, 0, 200);
 gradient.addColorStop(0, "blue");
 gradient.addColorStop(1, "white");
 context.fillStyle = gradient;
 context.fillRect(10, 10, 100, 100);
 context.strokeRect(10, 10, 100, 100);
}

Figure 12.5 is the result of setting our CanvasGradient to be the fillStyle of our

rectangle.

Figure 12.5. Creating a linear gradient with canvas

Drawing Other Shapes by Creating Paths
We’re not limited to drawing rectangles—we can draw any shape we can imagine!

Unlike rectangles and squares, however, there’s no built-in method for drawing

circles or other shapes. To draw more interesting shapes, we must first lay out the

path of the shape.

Paths create a blueprint for your lines, arcs, and shapes, but paths are invisible

until you give them a stroke! When we drew rectangles, we first set the strokeStyle

and then called fillRect. With more complex shapes, we need to take three steps:

315Canvas, SVG, and Drag and Drop

layout the path, stroke the path, and fill the path. As with drawing rectangles, we

can just stroke the path, or fill the path—or we can do both.

Let’s draw a circle on the fourth canvas element at canvas.html. We’ll write a generic

function that draws a circle that we can pass the canvas element we want to draw

onto―that way, we can reuse this function in a later example. The first step is to

begin the path of the circle. We do that with the method beginPath(), which resets

the default path for you to begin drawing a new shape:

function drawCircle(canvas) {
 var context = canvas.getContext("2d");
 context.beginPath();
}

Now we need to create an arc. An arc is a segment of a circle, but as there’s no

method for creating a circle, we can draw a 360° arc. We create it using the arc

method:

function drawCircle(canvas) {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 context.beginPath();
context.arc(50, 50, 30, 0, Math.PI*2, true);

}

The signature for the arc method is: arc(x, y, radius, startAngle, endAngle,

anticlockwise).

x and y represent where on the canvas you want the arc’s path to begin. Imagine

this as the center of the circle that you’ll be drawing. radius is, of course, the dis-

tance from the center to the edge of the circle.

startAngle and endAngle represent the start and end angles along the circle’s cir-

cumference that you want to draw. The units for the angles are in radians, and a

circle is 2π radians. We want to draw a complete circle, so we’ll use 2π for the en-

dAngle. In JavaScript, we can obtain this value by multiplying Math.PI by 2.

HTML5 & CSS3 for the Real World316

Radians Explained

Radians are a unit used to measure angles, and the symbol π denotes a measure-

ment in radians. One radian is equal to 180 degrees. Two radians, or 2π, are equal

to 360 degrees. For a review of radians, see the “Intuitive Guide to Angles, Degrees

and Radians” at betterexplained.com.1

anticlockwise is an optional argument. If you wanted the arc to be drawn counter-

clockwise instead of clockwise, you would set this value to true. Since we are

drawing a full circle, it’s of no consequence which direction we draw it in, so we

omit this argument.

Our next step is to close the path, as we’ve now finished drawing our circle. We do

that with the closePath method:

function drawCircle(canvas) {
 var context = canvas.getContext("2d");
 context.beginPath();
 context.arc(100, 100, 50, 0, Math.PI*2, true);
context.closePath();

}

Now we have a path—but unless we stroke it or fill it, we’ll be unable to see it.

Thus, we must set a strokeStyle if we’d like to give it a border, and we must set

a fillStyle if we’d like our circle to have a fill color. By default, the width of the

stroke is one pixel, which is stored in the lineWidth property of the context object.

Let’s make our border a bit bigger by setting the lineWidth to 3:

function drawCircle(canvas) {
 var context = canvas.getContext("2d");
 context.beginPath();
 context.arc(50, 50, 30, 0, Math.PI*2, true);
 context.closePath();
context.strokeStyle = "red";

1 http://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

317Canvas, SVG, and Drag and Drop

http://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/
http://betterexplained.com/articles/intuitive-guide-to-angles-degrees-and-radians/

 context.fillStyle = "blue";
 context.lineWidth = 3;
}

Lastly, we fill and stroke the path. Note that this time, the method names are different

from those we used with our rectangle. To fill a path you simply call fill, and to

stroke it you call stroke:

function drawCircle(canvas) {
 var context = canvas.getContext("2d");
 context.beginPath();
 context.arc(100, 100, 50, 0, Math.PI*2, true);
 context.closePath();
 context.strokeStyle = "red";
 context.fillStyle = "blue";
 context.lineWidth = 3;
context.fill();
context.stroke();

}

Figure 12.6 shows the finished circle.

Figure 12.6. Our shiny new circle

To learn more about drawing shapes, the Mozilla Developer Network has an excellent

tutorial.2

2 https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes

HTML5 & CSS3 for the Real World318

https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes
https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes

Saving Canvas Drawings
If we create an image programmatically using the Canvas API, but decide we’d like

to have a local copy of our drawing, we can use the API’s toDataURL method to save

our drawing. toDataURL creates a URL with the image in it, (either a png or jpg,

whichever is specified). You can then right-click the image at this URL, and save

it as a PNG or JPEG.

In the fifth demo on the canvas.html page, let’s redraw a circle, but add a button

called saveButton that allows us to save this circle drawn onto the canvas:

<h2>Demo 5: Saving canvas drawings</h2>
<canvas width="200" height="200" id="demo5" class="myCanvas">
 Sorry! Your browser doesn't support Canvas.
</canvas>

<button name="saveButton" id="saveButton">Save Drawing</button>

When the button is clicked, we want to open the canvas drawing as an image in a

new tab. To do that, we’ll define a new JavaScript function called saveDrawing:

function saveDrawing() {
 var canvas5 = document.getElementById("demo5");
 window.open(canvas5.toDataURL("image/png"));
}

Next, let’s add code to canvas.js to call our saveDrawing function when the Save

button is clicked:

var button = document.getElementById("saveButton");
button.addEventListener("click", saveDrawing, false);

Adding IE8 Support

For simplicity, we are using addEventListener in this chapter. This function

is supported in all major, modern browsers, but not IE8, which we want support

for in our code examples. You'll see in the book's code that we use a simple

helper function called addEvent that uses addEventListener if it's supported;

In the case where there's no support, it uses an old method called attachEvent,

the method IE8 supports.

319Canvas, SVG, and Drag and Drop

When the button is clicked, a new tab opens with a PNG file loaded into it, as shown

in Figure 12.7.

Figure 12.7. Our image loads in a new window

To learn more about saving our canvas drawings as files, see the W3C Canvas spec3

and the “Saving a canvas image to file” section of Mozilla’s Canvas code snippets.4

Drawing an Image to the Canvas
We can also draw images onto the canvas element. In this example, we’ll be redraw-

ing onto the canvas an image that already exists on the page.

For the sake of illustration, we’ll use the HTML5 logo5 as our image for the next

few examples. Let’s start by adding it to our page in an img element:

<h2>Demo 6: Drawing an image to the canvas</h2>
<canvas width="200" height="200" id="demo6" class="myCanvas">
 Sorry! Your browser doesn't support Canvas.

3 http://www.w3.org/TR/2011/WD-html5-20110525/the-canvas-element.html
4 https://developer.mozilla.org/en/Code_snippets/Canvas
5 http://www.w3.org/html/logo/

HTML5 & CSS3 for the Real World320

http://www.w3.org/TR/2011/WD-html5-20110525/the-canvas-element.html
https://developer.mozilla.org/en/Code_snippets/Canvas
http://www.w3.org/html/logo/

</canvas>

Then, in our canvas.js file, we’ll create a new function called drawImageToCanvas

in order to redraw the HTML img element onto the canvas.

Before we attempt to redraw an HTML img element on the page, we must ensure

that the element has loaded. In order to do that, we’ll add an event listener that will

run our code only once the window’s load event has fired:

window.addEventListener("load", drawImageToCanvas, false);

Next, after grabbing the canvas element and setting up the canvas’s context, we can

grab an image from our page via document.getElementById:

function drawImageToCanvas() {
 var canvas = document.getElementById("demo6");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
}

We’ll use the same CSS that we used before to make the area of the canvas element

visible:

.myCanvas {
 border: dotted 2px black;
}

Let’s modify it slightly to space out our canvas and our image:

.myCanvas {
 border: dotted 2px black;
 margin: 0 20px;
}

Figure 12.8 shows our empty canvas next to our image.

321Canvas, SVG, and Drag and Drop

Figure 12.8. An image and a canvas sitting on a page, doing very little

We can use canvas’s drawImage method to redraw the image from our page into the

canvas:

function drawImageToCanvas() {
 var canvas = document.getElementById("demo6");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
 context.drawImage(image, 0, 0);
}

Because we’ve drawn the image to the (0,0) coordinate, the image appears in the

top-left of the canvas, as you can see in Figure 12.9.

Figure 12.9. Redrawing an image inside a canvas

HTML5 & CSS3 for the Real World322

We could instead draw the image at the center of the canvas by changing the X and

Y coordinates that we pass to drawImage. Since the image is 64 by 64 pixels and

the canvas is 200 by 200 pixels, if we draw the image to (68, 68),6 the image will

be in the center of the canvas, as in Figure 12.9.

Figure 12.10. Displaying the image in the center of the canvas

Manipulating Images
Redrawing an image element from the page onto a canvas is fairly unexciting. It’s

really no different from using an img element. Where it does become interesting is

how we can manipulate an image after we’ve drawn it into the canvas.

Once we’ve drawn an image on the canvas, we can use the getImageData method

from the Canvas API to manipulate the pixels of that image. For example, if we

wanted to convert our logo from color to black and white, we can do so using

methods in the Canvas API.

getImageData will return an ImageData object, which contains three properties:

width, height, and data. The first two are self-explanatory; it’s the last one, data,

that interests us.

data contains information about the pixels in the ImageData object in the form of

an array. Each pixel on the canvas will have four values in the data array, which

correspond to that pixel’s R, G, B, and A values. A stands for Alpha, a measure of

6 Half of the canvas’s dimensions minus half of the image’s dimensions: (200/2) - (64/2) = 68.

323Canvas, SVG, and Drag and Drop

the element’s transparency, with 0 meaning the element is totally transparent, 1

meaning it’s totally opaque, and 0.5 meaning it’s 50% transparent.

The getImageData method allows us to examine a small section of a canvas, so let’s

use this feature to become more familiar with the data array. getImageData takes

four parameters, corresponding to the four corners of a rectangular piece of the

canvas we’d like to inspect. If we call getImageData on a very small section of the

canvas, say context.getImageData(0, 0, 1, 1), we’d be examining just one pixel

(the rectangle from 0,0 to 1,1). The array that’s returned is four items long, as it

contains a red, green, blue, and alpha value for this lone pixel:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
var image = document.getElementById("myImageElem");
// draw the image at x=0 and y=0 on the canvas
context.drawImage(image, 68, 68);
var imageData = context.getImageData(0, 0, 1, 1);
var pixelData = imageData.data;
console.log(pixelData.length);

We log the length of the pixelData array to the console, and the output confirms

that the data array for a one-pixel section of the canvas will have four values.

Security Errors with getImageData
If you tried out this code by double-clicking the file in Chrome or Firefox (in other

words, you’re not using a web server to view the file), you may have noticed that

it failed to work—the image on the canvas is in color. That’s because when you’re

running the code locally on your computer, you’ll be using the file:// protocol

to open local files. And files loaded with the file:// protocol are considered to

come from different domains, which is deemed a security error.

What you’ll see specifically is an error in getImageData. The error is a security error,

though in our case it’s an unnecessary one.

The true security issue that Chrome and Firefox are attempting to prohibit is a user

on one domain manipulating images on another domain. For example, stopping me

from loading an official logo from http://google.com/ and then manipulating the

pixel data.

HTML5 & CSS3 for the Real World324

http://google.com/

The W3C Canvas spec describes it this way:7

Information leakage can occur if scripts from one domain can access

information (e.g. read pixels) from images from another domain

(this is called a cross-origin request). To mitigate this, canvas ele-

ments are defined with a flag indicating whether they are origin-

clean.

This origin-clean flag will be set to false if the image you want to manipulate is

on a different domain from the JavaScript doing the manipulating. Unfortunately,

in Chrome and Firefox, this origin-clean flag is also set to false while you’re testing

from files on your hard drive, as they’re seen as being files that live on different

domains.

If you want to test pixel manipulation using canvas in Firefox or Chrome, you’ll

need to either test it on a web server running on your computer (http://localhost/),

or test it online.

Converting an Image from Color to Black and White
Let’s look at how we’d go about using getImageData to convert a full color image

into black and white on a canvas. We’ll create a new function in the canvas.js file

called manipulateImage to do so.

Assuming that we’ve already placed an image onto the canvas, as we did above, we

can use a for loop to iterate through each pixel in the image and change it to gray-

scale.

First, we’ll call getImageData(0, 0, 200, 200) to retrieve the entire canvas. Then,

we’ll grab the red, green, and blue values of each pixel, which appear in the array

in that order:

function manipulateImage() {
 var canvas = document.getElementById("demo7");
 var context = canvas.getContext("2d");
 var image = document.getElementById("secondImage");
 context.drawImage(image, 68, 68);

7 http://dev.w3.org/html5/2dcontext/

325Canvas, SVG, and Drag and Drop

http://dev.w3.org/html5/2dcontext/

 var imageData = context.getImageData(0, 0, 200, 200);

 var red, green, blue, greyscale;

 for (var i = 0; i < imageData.data.length; i += 4) {
 red = imageData.data[i];
 green = imageData.data[i + 1];
 blue = imageData.data[i + 2];
 }
}

Notice that our for loop is incrementing i by 4 instead of the usual 1. This is because

each pixel takes up four values in the imageData array—one number each for the

R, G, B, and A values.

Next, we must determine the grayscale value for the current pixel. It turns out that

there’s a mathematical formula for converting RGB to grayscale; you simply need

to multiply each of the red, green, and blue values by some specific numbers, seen

in this code block:

function manipulateImage() {
⋮
 for (var i = 0; i < imageData.data.length; i += 4) {
 red = imageData.data[i];
 green = imageData.data[i + 1];
 blue = imageData.data[i + 2];

 grayscale = red * 0.3 + green * 0.59 + blue * 0.11;
}

Now that we have the proper grayscale value, we’re going to store it back into the

red, green, and blue values in the data array:

function manipulateImage() {

⋮
 for (var i = 0; i < imageData.data.length; i += 4) {
 var red = imageData.data[i];
 var green = imageData.data[i + 1];
 var blue = imageData.data[i + 2];

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

HTML5 & CSS3 for the Real World326

 imageData.data[i] = grayscale;
 imageData.data[i + 1] = grayscale;
 imageData.data[i + 2] = grayscale;
 }
}

So now we’ve modified our pixel data by individually converting each pixel to

grayscale. The final step? Putting the image data we’ve modified back into the canvas

via a method called putImageData. This method does exactly what you’d expect:

it takes an image's data and writes it onto the canvas. Here’s the method in action:

function manipulateImage() {
 var canvas = document.getElementById("demo7");
 var context = canvas.getContext("2d");
 var image = document.getElementById("secondImage");
 context.drawImage(image, 60, 60);

 var imageData = context.getImageData(0, 0, 200, 200);

 for (var i = 0; i < imageData.data.length; i += 4) {
 var red = imageData.data[i];
 var green = imageData.data[i + 1];
 var blue = imageData.data[i + 2];

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

 imageData.data[i] = grayscale;
 imageData.data[i + 1] = grayscale;
 imageData.data[i + 2] = grayscale;
 }
 context.putImageData(imageData, 0, 0);
}

With that, we’ve drawn a black-and-white version of the validation image into the

canvas.

Manipulating Video with Canvas
We can take the code we’ve already written to convert a color image to black and

white and enhance it to make our color video black and white, matching the old-

327Canvas, SVG, and Drag and Drop

timey feel of The HTML5 Herald page. We’ll do this in a new separate JavaScript

file called videoToBW.js, so that we can include it on the site’s home page.

The file begins, as always, by setting up the canvas and the context:

function makeVideoOldTimey() {
 var video = document.getElementById("video");
 var canvas = document.getElementById("canvasOverlay");
 var context = canvas.getContext("2d");
}

Next, we’ll add a new event listener to react to the play event firing on the video

element.

We want to call a custom function called draw when the video begins playing (we’ll

review what happens in this custom function right after this code block). To do so,

we’ll add an event listener to our video element that responds to the play event:

function makeVideoOldTimey() {
 var video = document.getElementById("video");
 var canvas = document.getElementById("canvasOverlay");
 var context = canvas.getContext("2d");

 video.addEventListener("play", function() {
 draw(video,context,canvas);
 }, false);

}

The draw function, which is a custom function that we’ll define, will be called when

the play event fires. It will be passed the video, context, and canvas objects. We’re

using an anonymous function here instead of a normal named function because

we’re unable to actually pass parameters to named functions when declaring them

as event handlers without wrapping them in an another function.

Since we want to pass several parameters to the draw function—video, context,

and canvas—we must call it from inside an anonymous function.

Let’s look at the custom draw function:

HTML5 & CSS3 for the Real World328

function draw(video, context, canvas) {
 if (video.paused || video.ended) return false;

 drawOneFrame(video, context, canvas);
}

Before doing anything else, we check to see if the video is paused or has ended, in

which case we’ll just cut the function short by returning false. Otherwise, we

continue on to the drawOneFrame function. The drawOneFrame function is nearly

identical to the code we had earlier for converting an image from color to black and

white, except that we’re drawing the video element onto the canvas instead of a

static image:

function drawOneFrame(video, context, canvas){
 // draw the video onto the canvas
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 var imageData = context.getImageData(0, 0, canvas.width,
➥canvas.height);
 var pixelData = imageData.data;
 // Loop through the red, green and blue pixels,
 // turning them grayscale

 var red, green, blue, greyscale;
 for (var i = 0; i < pixelData.length; i += 4) {
 red = pixelData[i];
 green = pixelData[i + 1];
 blue = pixelData[i + 2];
 //we'll ignore the alpha value, which is in position i+3

 grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
 }

329Canvas, SVG, and Drag and Drop

 context.putImageData(imageData, 0, 0);
}

Getting Better Performance

You may notice a difference between the code sample used in converting an image

to black and white, and the code sample for converting a video. In the video

conversion, we’ve created another variable, pixelData, which stores the array

of pixels in it. You may be wondering why we bother doing this, instead of just

accessing imageData.data. The reason is performance. Creating the pixelData

variable, which is then used several times in the for loop, saves us several

property lookups. There would be no issue if we were just doing one color con-

version, but since we’re performing this action over and over again as the video

plays, tiny delays matter.

After we’ve drawn one frame, what’s the next step? We need to draw another frame!

The setTimeout method allows us to keep calling the draw function over and over

again, without pause. The final parameter is the value for delay, which tells the

browser how long, in milliseconds, to wait before calling the function. Because it’s

set to 0, we are essentially running draw continuously. This goes on until the video

has either ended, or been paused:

function draw(video, context, canvas) {
 if (video.paused || video.ended) return false;

 drawOneFrame(video, context, canvas);

 // Start over!
setTimeout(function(){ draw(video, context, canvas); }, 0);

}

What’s the final result of this code? Our color video of a plane taking off now plays

in black and white!

Displaying Text on the Canvas
If we were to view The HTML5 Herald from a file on a computer, we’d encounter

security errors in Firefox and Chrome when trying to manipulate an entire video,

as we did with a simple image. We can add a bit of error-checking in order to make

HTML5 & CSS3 for the Real World330

our video work anyway, whether or not we view it from our local machine in Chrome

or Firefox.

The first step is to add an error handling try/catch block to catch the error:

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 var imageData = context.getImageData(0, 0, canvas.width,
➥canvas.height);
 var pixelData = imageData.data;
 for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];
 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;
 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
 }

 imageData.data = pixelData;
 context.putImageData(imageData, 0, 0);
 } catch (err) {
 // error handling code will go here
 }
}

If an error occurs when trying to call getImageData, it would be nice to let the user

know what is going wrong. We’ll do just that, using the fillText method of the

Canvas API.

Before we write any text to the canvas, we should clear what’s already there. We’ve

already drawn the first frame of the video into the canvas using the call to drawImage.

How can we clear it?

It turns out that if we reset the width or height of the canvas, the canvas will be

cleared. So, let’s reset the width:

331Canvas, SVG, and Drag and Drop

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 } catch (err) {
 canvas.width = canvas.width;
 }
}

Next, let’s change the background color from black to transparent, since the canvas

element is positioned on top of the video:

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 } catch (err) {
 // clear the canvas
 context.clearRect(0,0,canvas.width,canvas.height);
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 }
}

Before we can draw any text to the now transparent canvas, we first must set up

the style of our text—similar to what we did with paths earlier. We do that with the

fillStyle and textAlign methods:

videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {(review code style)
 ⋮
 } catch (err) {
 // clear the canvas
 context.clearRect(0,0,canvas.width,canvas.height);
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";

HTML5 & CSS3 for the Real World332

 context.textAlign = "left";
 }
}

We can also set a specific font and font style we’d like to use. The font property of

the context object works the same way the CSS font property does. We’ll specify

a font size of 18px and a comma-separated list of font families:

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 } catch (err) {
 // clear the canvas
 context.clearRect(0,0,canvas.width,canvas.height);
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 context.textAlign = "left";

 context.font = "18px LeagueGothic, Tahoma, Geneva, sans-serif";
 }
}

Notice that we’re using League Gothic; any fonts you’ve included with @font-face

are also available for use on the canvas. Finally, we draw the text. We use a method

of the context object called fillText, which takes the text to be drawn and the x,y

coordinates where it should be placed. Since we want to write out a fairly long

message, we’ll split it up into several sections, placing each one on the canvas

separately:

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 } catch (err) {
 // clear the canvas
 context.clearRect(0,0,canvas.width,canvas.height);
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 context.textAlign = "left";

333Canvas, SVG, and Drag and Drop

 context.font = "18px LeagueGothic, Tahoma, Geneva, sans-serif";
 context.fillText("There was an error rendering ", 10, 20);
 context.fillText("the video to the canvas.", 10, 40);
 context.fillText("Perhaps you are viewing this page from", 10,
➥70);
 context.fillText("a file on your computer?", 10, 90);
 context.fillText("Try viewing this page online instead.", 10,
➥130);

 return false;
 }
}

As a last step, we return false. This lets us check in the draw function whether an

exception was thrown. If it was, we want to stop calling drawOneFrame for each

video frame, so we exit the draw function:

function draw(video, context, canvas) {
 if (video.paused || video.ended) return false;

drawOneFrame(video, context, canvas);

 // Start over!
 setTimeout(function(){ draw(video, context, canvas); }, 0);
}

Accessibility Concerns
A major downside of canvas in its current form is its lack of accessibility. The canvas

doesn’t create a DOM node, is not a text-based format, and is thus essentially invis-

ible to tools such as screen readers. For example, even though we wrote text to the

canvas in our last example, that text is essentially no more than a bunch of pixels

and is therefore inaccessible―it’s just like an image that contains text.

The HTML5 community is aware of these failings, and while no solution has been

finalized, debates on how canvas could be changed to make it accessible are under-

way. You can read a compilation of the arguments and currently proposed solutions

on the W3C’s wiki page.8

8 http://www.w3.org/html/wg/wiki/AddedElementCanvas

HTML5 & CSS3 for the Real World334

http://www.w3.org/html/wg/wiki/AddedElementCanvas

Further Reading
To read more about canvas and the Canvas API, here are a couple of good resources:

■ “HTML5 Canvas—the Basics” at Dev.Opera9

■ Safari’s HTML5 Canvas Guide10

SVG
We mentioned SVG previously in Chapter 7. In this chapter, we’ll dive into SVG

in more detail and learn how to use it in other ways.

First, a quick refresher: SVG stands for Scalable Vector Graphics, a specific file

format that allows you to describe vector graphics using XML. A major selling point

of vector graphics in general is that, unlike bitmap images (such as GIF, JPEG, PNG,

and TIFF), vector images preserve their quality even as you blow them up or shrink

them down. We can use SVG to do many of the same tasks we can do with canvas,

including drawing paths, shapes, text, gradients, and patterns. There are also very

useful open-source tools relevant to SVG, some of which we’ll leverage in order to

add a spinning progress indicator to The HTML5 Herald’s geolocation widget.

What's XML?

XML stands for eXtensible Markup Language. Like HTML, it’s a markup

metalanguage. In plain English, it’s a system meant to annotate text. Just as we

can use HTML tags to wrap our content and give it meaning, so can XML tags be

used to describe data, such as the content of a file.

Basic SVG, including using SVG in an HTML img element, is supported in:

■ Chrome 4+
■ Safari 3.2+
■ Firefox 3+
■ Opera 9.6+
■ iOS 3.2+

9 http://dev.opera.com/articles/view/html-5-canvas-the-basics/
10 http://developer.apple.com/library/safari/#documentation/AudioVideo/Conceptual/HTML-canvas-

guide/Introduction/Introduction.html

335Canvas, SVG, and Drag and Drop

http://dev.opera.com/articles/view/html-5-canvas-the-basics/
http://developer.apple.com/library/safari/#documentation/AudioVideo/Conceptual/HTML-canvas-guide/Introduction/Introduction.html

■ Internet Explorer 9.0+
■ Android browser 4.4+

Unlike canvas, images created with SVG are available via the DOM. This enables

technologies such as screen readers to see what’s present in an SVG object through

its DOM node, as well as allowing you to inspect SVG using your browser’s developer

tools. Since SVG is an XML file format, it’s also more accessible to search engines

than canvas.

Drawing in SVG
Drawing a circle in SVG is arguably easier than drawing a circle with canvas. Here’s

how we do it:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 400 400">
 <circle cx="50" cy="50" r="25" fill="red"/>
</svg>

The viewBox attribute defines the starting location, width, and height of the SVG

image.

The circle element defines a circle, with cx and cy the X and Y coordinates of the

center of the circle. The radius is represented by r, while fill defines the fill style.

To view an SVG file, you simply open it via the File menu in any browser that sup-

ports SVG. Figure 12.11 shows what our circle looks like.

Figure 12.11. A circle drawn using SVG

We can also draw rectangles in SVG, and add a stroke to them as we did with canvas.

HTML5 & CSS3 for the Real World336

This time, let’s take advantage of SVG being an XML—and thus text-based—file

format, and utilize the <desc> tag, which allows us to provide a description for the

image we’re going to draw:

<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 400 400">
 <desc>Drawing a rectangle</desc>
</svg>

Next, we populate the <rect> tag with a number of attributes that describe the

rectangle. This includes the X and Y coordinate where the rectangle should be

drawn, the width and height of the rectangle, the fill, the stroke, and the width of

the stroke:

<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 400 400">
 <desc>Drawing a rectangle</desc>
 <rect x="10" y="10" width="100" height="100"
 fill="blue" stroke="red" stroke-width="3" />

</svg>

Figure 12.12 shows what our rectangle looks like.

Figure 12.12. A rectangle drawn with SVG

Unfortunately, it’s not always this easy. If you want to create complex shapes, the

code begins to look a little scary. As an example of what SVG looks like, let's examine

the first few lines of a more complex image in SVG:

<svg xmlns="http://www.w3.org/2000/svg"
 width="122.88545" height="114.88568">
<g

337Canvas, SVG, and Drag and Drop

 inkscape:label="Calque 1"
 inkscape:groupmode="layer"
 id="layer1"
 transform="translate(-242.42282,-449.03699)">
 <g
 transform="matrix(0.72428496,0,0,0.72428496,119.87078,183.8127)"
 id="g7153">
 <path
 style="fill:#ffffff;fill-opacity:1;stroke:#000000;stroke-width
➥:2.761343;stroke-linecap:round;stroke-linejoin:round;stroke-miterl
➥imit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
 d="m 249.28667,389.00422 -9.7738,30.15957 -31.91999,7.5995 c -
➥2.74681,1.46591 -5.51239,2.92436 -1.69852,6.99979 l 30.15935,12.57
➥796 -11.80876,32.07362 c -1.56949,4.62283 -0.21957,6.36158 4.24212
➥,3.35419 l 26.59198,-24.55691 30.9576,17.75909 c 3.83318,2.65893 6
➥.12086,0.80055 5.36349,-3.57143 l -12.10702,-34.11764 22.72561,-13
➥.7066 c 2.32805,-1.03398 5.8555,-6.16054 -0.46651,-6.46042 l -33.5
➥0135,-0.66887 -11.69597,-27.26175 c -2.04282,-3.50583 -4.06602,-7.
➥22748 -7.06823,-0.1801 z"
 id="path7155"
 inkscape:connector-curvature="0"
 sodipodi:nodetypes="cccccccccccccccc" />
⋮

Eek!

To save ourselves some work (and sanity), instead of creating SVG images by hand,

we can use an image editor to help. One open source tool that you can use to make

SVG images is Inkscape, which is available for download at http://inkscape.org/.

As we mentioned at the start of the chapter, it would be nice to add a progress in-

dicator to our geolocation example from Chapter 11, one that lets the user know

we’re still waiting for the map to load and haven’t left them stranded.

Instead of starting from scratch, we’ve searched the public domain to find a good

progress-indicating spinner image from which to begin. A good resource to know

about for public domain images is http://openclipart.org/, where you can find images

that are free to use and free of copyright. The images have been donated by their

creators for use in the public domain, even for commercial purposes, without the

need for permission.

HTML5 & CSS3 for the Real World338

http://inkscape.org/
http://openclipart.org/

We will be using an image of three arrows as the basis of our progress spinner,

shown in Figure 12.13. The original can be found at openclipart.org.11

Figure 12.13. The image we’ll be using for our progress indicator

SVG Filters
To make our progress spinner match our page a bit better, we can use a filter in

Inkscape to make it black and white. Start by opening the file in Inkscape, then

choose Filters > Color > Moonarize.

You may notice that if you test out The HTML5 Herald in an older version of IE or

Safari that our black-and-white spinner is still ... in color. That’s because SVG filters

are only supported in IE10 and later, and Safari 6 and later. Here’s a complete list

of SVG filter support:

■ all recent versions of Chrome, Firefox, and Opera
■ iOS 6.1+
■ Android browser 4.4+

A safer approach would be to avoid using filters, and instead modify the color of

the original image.

We can do this in Inkscape by selecting the three arrows in the spinner.svg image,

and then selecting Object > Fill and Stroke. The Fill and Stroke menu will appear on

the right-hand side of the screen, as seen in Figure 12.14.

11 http://www.openclipart.org/people/JoBrad/arrows_3_circular_interlocking.svg

339Canvas, SVG, and Drag and Drop

http://www.openclipart.org/people/JoBrad/arrows_3_circular_interlocking.svg

Figure 12.14. Modifying color using Fill and Stroke

From this menu, we can choose to edit the existing linear gradient by clicking the

Edit button. We can then change the red, green, and blue values to 0 to make our

image black and white.

We’ve saved the resulting SVG as spinnerBW.svg.

Using the Raphaël Library
Raphaël12 is an open-source JavaScript library that makes drawing and animating

with SVG much easier.

Drawing an Image to Raphaël’s Container
Much as with canvas, you can draw images into a container that you create using

Raphaël.

Let’s add a div to our main index file. We’ll use this as the container for the SVG

elements that we’ll create using Raphaël. We’ve given this div the ID of spinner:

12 http://raphaeljs.com/

HTML5 & CSS3 for the Real World340

http://raphaeljs.com/

<article class="ad-ad4">
 <div id="mapDiv">
 <h1 id="geoHeading">Where in the world are you?</h1>
 <form id="geoForm">
 <input type="button" id="geobutton" value="Tell us!">
 </form>

 <div class="spin" id="spinner"></div>
 </div>
</article>

We have styled this div to be placed in the center of the parent mapDiv using the

following CSS (note that without this, the element won’t be centered):

.spin {
 position: absolute;
 top: 8px;
 left: 55px;
}

Now in our geolocation JavaScript file, geolocation.js, let’s put the spinner in place

while we’re fetching the map. The first step is to turn our div into a Raphaël con-

tainer. This is as simple as calling the Raphael method, and passing in the element

we’d like to use along with a width and height:

function determineLocation() {
 if (navigator.onLine) {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(displayOnMap);

var container = Raphael(document.getElementById("spinner"),
➥125, 125);

Next, we draw the spinner SVG image into the newly created container with the

Raphaël method image, which is called on a Raphaël container object. This method

takes the path to the image, the starting coordinates where the image should be

drawn, and the width and height of the image:

341Canvas, SVG, and Drag and Drop

var container = Raphael(document.getElementById("spinner"), 125,
➥125);
var spinner = container.image("images/spinnerBW.svg", 0, 0, 125,
➥125);

With this code our spinner image will appear once the geolocation code begins to

run, and will spin until the map is displayed.

Rotating a Spinner with Raphaël
Now that we have our container and the spinner SVG image drawn into it, we want

to animate the image to make it spin. Raphaël has animation features built in with

the animate method. Before we can use this method, though, we first need to tell

it which attribute to animate. Since we want to rotate our image, we’ll create an

object that specifies how many degrees of rotation we want.

We create a new object attrsToAnimate specifying that we want to animate the ro-

tation, and we want to rotate by 720 degrees (two full turns). The way we do that

is to set the value of the transform property to "r720", with the "r" indicating the

transform is a rotation:

var container = Raphael(document.getElementById("spinner"),125,125);
var spinner = container.image("images/spinnerBW.png",0,0,125,125);
var attrsToAnimate = { transform: "r720" };

The final step is to call the animate method, and specify how long the animation

should last. In our case, we’ll let it run for a maximum of 60 seconds. Since animate

takes its values in milliseconds, we’ll pass it 60000:

var container = Raphael(document.getElementById("spinner"),125,125);
var spinner = container.image("images/spinnerBW.png",0,0,125,125);
var attrsToAnimate = { transform: "r720" };
spinner.animate(attrsToAnimate, 60000);

That’s great! We now have a spinning progress indicator to keep our visitors in the

know while our map is loading. There’s still one problem, though: it remains after

the map has loaded. We can fix this by adding one line to the beginning of the ex-

isting displayOnMap function:

HTML5 & CSS3 for the Real World342

function displayOnMap(position) {
 document.getElementById("spinner").style.display = "none";
}

This line sets the display property of the spinner element to none, effectively hiding

the spinner div and the SVG image we’ve loaded into it.

Canvas versus SVG
Now that we’ve learned about canvas and SVG, you may be asking yourself which

is the right one to use? The answer is: it depends on what you’re doing.

Both canvas and SVG allow you to draw custom shapes, paths, and fonts. But what’s

unique about each?

Canvas allows for pixel manipulation, as we saw when we turned our video from

color to black and white. One downside of canvas is that it operates in what’s known

as immediate mode. This means that if you ever want to add more to the canvas,

you’re unable to simply add to what’s already there. Every time you finish drawing

a shape, the canvas no longer has access to that shape, because it won’t persist as

an object that you can modify. So if you want to add to what you’ve already drawn

on the canvas, you must redraw the new shape from scratch. Still, canvas does allow

you to save the images you create to a PNG or JPEG file.

There’s also no access to what’s drawn on the canvas via the DOM. Because of this,

canvas is much faster than SVG (here’s one speed comparison13), and canvas is

generally the better choice if you’re looking to design a game requiring lots of anim-

ations.

By contrast, what you draw to SVG is accessible via the DOM, because its mode is

retained mode, meaning that the structure of the image is preserved in the XML

document that describes it. SVG also has, at this time, a more complete set of tools

to help you work with it, such as the Raphaël library and Inkscape. However, since

SVG is a file format—rather than a set of methods that allows you to dynamically

draw on a surface—you can’t manipulate SVG images the way you can manipulate

pixels on canvas. It would have been impossible, for example, to use SVG to convert

our color video to black and white as we did with canvas.

13 http://codepen.io/chris-creditdesign/details/BIADJ

343Canvas, SVG, and Drag and Drop

http://codepen.io/chris-creditdesign/details/BIADJ

In summary, if you need to paint pixels to the screen and have no concerns about

the ability to retrieve and modify your shapes, canvas is probably the better choice.

If, on the other hand, you need to be able to access and change specific aspects of

your graphics, SVG might be more appropriate.

Drag and Drop
We’ve spent quite a bit of time this chapter focusing on drawing with code. Let’s

shift gears a little now and look at an API we can use to add some fun user interaction

to our website, the Drag and Drop API. This API allows us to specify that certain

elements are draggable, and then specify what should happen when these draggable

elements are dragged over or dropped onto other elements on the page.

Drag and Drop is supported in:

■ All recent versions of Chrome, Firefox, and Safari

■ Partial support in Internet Explorer 7.0+ (IE10 doesn’t allow setting the drag

image, but supports all other features)

■ Opera 12+

The API is unsupported by Android. It is also unsupported by design in iOS, as

Apple directs you to use the DOM Touch API instead.14

There are two major kinds of functionality you can implement with Drag and Drop:

dragging files from your computer into a web page—in combination with the File

API—or dragging elements into other elements on the same page. In this chapter,

we’ll focus on the latter.

Using Drag and Drop with the File API

If you’d like to learn more about how to combine Drag and Drop with the File API

in order to let users drag files from their desktop onto your websites, an excellent

14 http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWeb-

Content/HandlingEvents/HandlingEvents.html

HTML5 & CSS3 for the Real World344

http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWebContent/HandlingEvents/HandlingEvents.html
https://developer.mozilla.org/en/Using_files_from_web_applications

guide can be found at the Mozilla Developer Network.15 All modern browsers

support the File API.16

There are several steps to adding drag and drop to your page:

1. Set the draggable attribute on any HTML elements you’d like to be draggable.

2. Add an event listener for the dragstart event on any draggable HTML elements.

3. Add an event listener for the dragover and drop events on any elements that you

want to have accept dropped items.

Feeding the WAI-ARIA Cat
In order to add a bit of fun and frivolity to our page, let’s add a few images of mice

so that we can drag them onto our cat image and watch the cat react and devour

them. Before you start worrying (or call the Society for the Prevention of Cruelty to

Animals), rest assured that we mean computer mice, of course. We’ll use another

image from OpenClipArt for our mice.17

The first step is to add these new images to our index.html file. We’ll give each mouse

image an ID as well:

<article id="ac3">
 <h1>Wai-Aria? HAHA!</h1>
 <h2>Form Accessibility</h2>

 <div class="content">
 <p id="mouseContainer" class="mc">
 <img src="images/computer-mouse-pic.svg"
➥alt="mouse treat" id="mouse1" draggable="true">
 <img src="images/computer-mouse-pic.svg"
➥alt="mouse treat" id="mouse2" draggable="true">
 <img src="images/computer-mouse-pic.svg"

15 https://developer.mozilla.org/en/Using_files_from_web_applications
16 http://caniuse.com/#feat=fileapi
17 http://www.openclipart.org/detail/111289

345Canvas, SVG, and Drag and Drop

https://developer.mozilla.org/en/Using_files_from_web_applications
http://caniuse.com/#feat=fileapi
http://www.openclipart.org/detail/111289

➥alt="mouse treat" id="mouse3" draggable="true">
 </p>
⋮

We style the "mouseContainer" div to have its text center aligned (assuming drag

and drop is supported, which is what the .draganddrop class is checking for):

.draganddrop .mc {
 text-align: center;
}

Figure 12.15 shows our images in their initial state.

Figure 12.15. Three little mice, ready to be fed to the WAI-ARIA cat

Making Elements Draggable
The next step is to make our images draggable. In order to do that, we add the

draggable attribute to them, and set the value to true:

<img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse1" draggable="true">
<img src="images/computer-mouse-pic.svg" width="30"

HTML5 & CSS3 for the Real World346

➥alt="mouse treat" id="mouse2" draggable="true">
<img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse3" draggable="true">

draggable is not Boolean!

Note that draggable is not a Boolean attribute, so you have to explicitly set it to

true.

Now that we have set draggable to true, we have to set an event listener for the

dragstart event on each image. We’ll have to do this for all three of our img elements

that contain the computer mouse images. So we begin by using querySelectorAll

to grab all the img elements whose parent element has the ID set to mouseContainer:

var mice = document.querySelectorAll("#mouseContainer img");

Next, we’ll loop through all the img elements contained in the mice variable, and

add an event listener for the dragstart event on each computer mouse:

var mouse = null;
for (var i=0; i < mice.length; i++) {
 mouse = mice[i];
 mouse.addEventListener('dragstart', function (event) {
 // handle the dragstart event
 });
}

The DataTransfer Object
DataTransfer objects are one type of object outlined in the Drag and Drop API. These

objects allow us to set and get data about the elements that are being dragged. Spe-

cifically, DataTransfer lets us define two pieces of information:

■ the type of data we’re saving of the draggable element
■ the value of the data itself

In the case of our draggable mouse images, we want to be able to store the ID of

these images so that we know which image is being dragged around.

347Canvas, SVG, and Drag and Drop

To do this, we first tell DataTransfer that we want to save some plain text by passing

in the string text/plain. Then we give it the ID of our mouse image:

mouse.addEventListener("dragstart", function (event) {
event.dataTransfer.setData("text/plain", this.id);

});

When an element is dragged, we save the ID of the element in the DataTransfer object,

to be used again once the element is dropped.

Accepting Dropped Elements
Now our mouse images are set up to be dragged. Yet, when we try to drag them

around, we’re unable to drop them anywhere—which is no fun.

The reason is that by default, elements on the page aren’t set up to receive dragged

items. In order to override the default behavior on a specific element, we must stop

it from happening. We can do that by creating two more event listeners.

The two events we need to monitor for are dragover and drop. As you’d expect,

dragover fires when you drag an item over an element, and drop fires when you

drop an item on it.

We’ll need to prevent the default behavior for both these events, since the default

prohibits you from dropping an element.

Let’s start by adding an ID to our cat image so that we can bind event handlers to

it:

<article id="ac3">
 <h1>Wai-Aria? HAHA!</h1>
 <h2 id="catHeading">Form Accessibility</h2>

You may have noticed that we also gave an ID to the h2 element. This is so we can

change this text once we’ve dropped a mouse onto the cat.

Now let’s handle the dragover event:

HTML5 & CSS3 for the Real World348

var cat = document.getElementById("cat");
cat.addEventListener("dragover", function(event) {
 event.preventDefault();
});

That was easy! In this case, we merely ensured that the mouse picture can actually

be dragged over the cat picture. We simply need to prevent the default behavior,

and JavaScript’s preventDefault method serves this purpose exactly.

The code for the drop handler is a bit more complex, so let us review it piece by

piece. Our first task is to figure out what the cat should say when a mouse is dropped

on it. In order to demonstrate that we can retrieve the ID of the dropped mouse from

the DataTransfer object, we’ll use a different phrase for each mouse, regardless of

the order in which they’re dropped. We’ve given three cat-appropriate options:

“MEOW!”, “Purrr ...”, and “NOMNOMNOM.”

We’ll store these options inside an object called mouseHash, where the first step is

to declare our object:

cat.addEventListener("drop", function(event) {
 var mouseHash = {};

Next, we’re going to take advantage of JavaScript’s objects allowing us to store

key/value pairs inside them, as well as storing each response in the mouseHash object,

associating each response with the ID of one of the mouse images:

cat.addEventListener("drop", function(event) {
 var mouseHash = {
 mouse1: 'NOMNOMNOM',
 mouse2: 'Meow',
 mouse3: 'Purrrrrr ...'
 };
}

Our next step is to grab the h2 element that we’ll change to reflect the cat’s response:

349Canvas, SVG, and Drag and Drop

var catHeading = document.getElementById('catHeading');

Remember when we saved the ID of the dragged element to the DataTransfer object

using setData? Well, now we want to retrieve that ID. If you guessed that we’ll need

a method called getData for this, you guessed right:

var mouseID = event.originalEvent.dataTransfer.getData("text/plain");

Note that we’ve stored the mouse’s ID in a variable called mouseID. Now that we

know which mouse was dropped, and we have our heading, we just need to change

the text to the appropriate response:

catHeading.innerHTML = mouseHash[mouseID];

We use the information stored in the item variable (the dragged mouse’s ID) to re-

trieve the correct message for the h2 element. For example, if the dragged mouse is

mouse1, calling mouseHash[item] will retrieve “NOMNOMNOM” and set that as

the h2 element’s text.

Given that the mouse has now been “eaten,” it makes sense to remove it from the

page:

var mousey = document.getElementById(item);
mousey.parentNode.removeChild(mousey);

Last but not least, we must also prevent the default behavior of not allowing elements

to be dropped on our cat image, as we did before:

event.preventDefault();

Figure 12.16 shows our happy cat, with one mouse to go.

HTML5 & CSS3 for the Real World350

Figure 12.16. This cat’s already consumed two mice

Further Reading
We’ve only touched on the basics of the Drag and Drop API, in order to give you a

taste of what’s available. We’ve shown you how you can use DataTransfer to pass

data from your dragged items to their drop targets. What you do with this power is

up to you.

To learn more about the Drag and Drop API, here are a couple of good resources

■ Mozilla Developer Network’s Drag and Drop documentation18

■ W3C’s Drag and Drop specification19

That’s All, Folks!
With these final bits of interactivity, our work on The HTML5 Herald has come to

an end, and your journey into the world of HTML5 and CSS3 is well on its way!

We’ve tried to provide a solid foundation of knowledge about as many of the cool

new features available in today’s browsers as possible, but how you build on that

is up to you.

We hope we’ve given you a clear picture of how most of these features can be used

today on real projects. Many are already well supported, and browser development

is once again progressing at a rapid clip. And when it comes to those elements for

which support is still lacking, you have the aid of an online army of ingenious de-

velopers. These community-minded individuals are constantly working at creating

18 https://developer.mozilla.org/En/DragDrop/Drag_and_Drop
19 http://dev.w3.org/html5/spec/dnd.html

351Canvas, SVG, and Drag and Drop

https://developer.mozilla.org/En/DragDrop/Drag_and_Drop
http://dev.w3.org/html5/spec/dnd.html

fallbacks and polyfills to help us push forward and build the next generation of

websites and applications.

Get to it!

HTML5 & CSS3 for the Real World352

Appendix A: Modernizr
Modernizr is an open-source JavaScript library that enables us to test for individual

features of HTML5, CSS3, and some APIs in our users’ browsers. Instead of testing

solely for a particular browser and trying to make decisions based on that, Modernizr

allows us to ask specific questions such as “does this browser support geolocation?”

and receive a clear “yes” or “no” answer. Modernizr does this by feature detection:

checking whether the browser that our user is currently utilizing supports a given

feature.

The first step to using Modernizr is to download it from the website,1 where it’s

recommended that you begin with the Development version—we agree! This version

will test for every single feature of HTML5, CSS3, and the new APIs. This is a good

idea when you’re starting your project, as chances are you’ll be a little unsure about

all the different features you’ll be using.

Once you’re ready to move your project into production, you can return to Modern-

izr’s download page and create a custom build, checking off the particular features

you’d like to detect. Why be so specific? Because it takes time for Modernizr to test

for the presence of a given feature, it’s best for performance reasons to only check

the HTML5 features that you’ll use, as shown in Figure A.1. A custom build of

Modernizr will also be minified (which isn’t true of the Development version), so

the size of the library will be much smaller.

Figure A.1. Modernizr’s download page prompt

1 http://modernizr.com/download/

http://modernizr.com/download/

Once you have a copy of the library, you’ll need to include the file in your pages.

We’ll add it to the head in this example:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>My Beautiful Sample Page</title>
 <script src="modernizr-2.8.3.min.js"></script>
</head>

You can use Modernizr in two ways: with CSS, and with JavaScript. Let’s discover

more.

Using Modernizr with CSS
When Modernizr runs, it will add a new class name to the html tag for every feature

you have asked it to detect. It will prefix the feature with no- if the browser offers

no support for it.

For example, if you’re using Safari 6.2—which supports almost everything in HTML5

and CSS3—and you use the development version of Modernizr—which checks for

all available HTML5 features—your opening html tag will look a little like this after

Modernizr runs (we're only showing a snippet of it to save space in this book):

<html class="js no-blobworkers no-adownload applicationcache
audiodata webaudio audio no-lowbattery no-batteryapi no-battery-api
blobconstructor blob-constructor canvas todataurljpeg todataurlpng
no-todataurlwebp canvastext contenteditable no-contentsecuritypolicy
no-contextmenu cookies cors cssanimations backgroundcliptext
bgpositionshorthand bgpositionxy bgrepeatround bgrepeatspace
backgroundsize bgsizecover borderimage borderradius boxshadow
boxsizing csscalc checked csscolumns cubicbezierrange
⋮
testobjfntrue testchainone testchaintwo testchainthree">

As you can see, the complete list of all the features Modernizr tests for is compre-

hensive! Again, as has been mentioned, this is great while you’re still testing. But

once you’re ready for your website to move into production, you should create a

custom build of Modernizr and test only for the features you intend to use in the

HTML5 & CSS3 for the Real World354

project, ensuring you have the smallest amount of Modernizr code necessary for

your project.

Once we’ve downloaded Modernizr and included it in our project, we then add the

class no-js to our html element in our HTML source:

<html class="no-js">

Why do we do this? If JavaScript is disabled, Modernizr won’t run at all—but if

JavaScript is enabled, Modernizr’s first job will be to change no-js to js. This way,

you’ll have hooks to base your styles on the presence or absence of JavaScript.

You might be thinking, “That sounds pretty cool, but what am I actually supposed

to do with this information?” What we can do is use these classes to provide two

flavors of CSS: styles for browsers that support certain features, and different styles

for browsers that don’t.

Because the classes are set on the html element, we can use descendant selectors

to target any element on the page based on support for a given feature.

Here’s an example. Any element with a class of .ad2 that lives inside an element

with a class of .cssgradients (in other words, the html element when Modernizr

has detected support for gradients) will receive whichever style we specify:

.cssgradients .ad2 {
 /* gradients are supported! Let’s use some! */
 background-image: linear-gradient(#FFF 0%, #000 100%);
}

But what if CSS gradients aren’t supported? We could change the styling to use a

simple PNG background image that recreates the same gradient look. Here’s how

we might do that:

.no-cssgradients .ad2 {
 background-image: url(../images/put_a_replacement_img_here.png);
}

Another way we could use the classes Modernizr adds to the html element is with

Drag and Drop. We discussed Drag and Drop in Chapter 12, where we added several

355Appendix A: Modernizr

images of computer mice that can be dragged onto our cat picture to be eaten. These

images are all stored in a div with an ID of mouseContainer.

In some mobile browsers, drag and drop will fail to work, so why show the mouse

images at all? We can use Modernizr to hide the div if Drag and Drop is unsupported:

.no-draganddrop .mc { // mc is short for "mouse container"
 visibility: hidden;
 height: 0;
}

If Drag and Drop is supported, we simply align all the content in the div horizontally:

.draganddrop .mc {
 text-align: center;
}

Using Modernizr with JavaScript
We can also use Modernizr in our JavaScript to provide some fallback if the visitor’s

browser has no support for any of the HTML5 elements, CSS3 properties, or (some

of) the APIs you use.

When Modernizr runs, as well as adding all those classes to your html element, it

will also create a global JavaScript object that you can use to test for support of a

given feature. Appropriately enough, the object is called Modernizr. It contains a

property for every HTML5, CSS3, and API feature it can test.

Here are a few examples:

Modernizr.draganddrop;
Modernizr.geolocation;
Modernizr.textshadow;

Each property will be either true or false, depending on whether or not the feature

is available in the visitor’s browser. This is useful, because we can ask questions

such as “Is geolocation supported in my visitor’s browser?” and then take actions

depending on the answer.

HTML5 & CSS3 for the Real World356

Here’s an example of using an if/else block to test for drag and drop support using

Modernizr:

if (Modernizr.draganddrop) {
 // go ahead and use the drag and drop API,
 // it’s supported!
}
else {
 // There is no support for drag and drop.
 // We can use jQuery UI Draggable(http://jqueryui.com/)
 // or the dropfile polyfill https://github.com/MrSwitch/dropfile
 // instead
}

Further Reading
To learn more about Modernizr, see:

■ the Modernizr documentation2

■ a fairly comprehensive and up-to-date list of polyfills for HTML5 and CSS3

properties that can be used in conjunction with Modernizr, maintained at the

Modernizr wiki3

■ “Taking Advantage of HTML5 and CSS3 with Modernizr,4” an A List Apart article

2 http://modernizr.com/docs/
3 https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
4 http://www.alistapart.com/articles/taking-advantage-of-html5-and-css3-with-modernizr/

357Appendix A: Modernizr

http://modernizr.com/docs/
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
http://www.alistapart.com/articles/taking-advantage-of-html5-and-css3-with-modernizr/

Appendix B: WAI-ARIA
In Chapter 2 and Chapter 3, we covered considerable ground explaining how our

pages can become more semantic and potentially more accessible using HTML5's

new semantic elements. Improved semantics alone, however, is often insufficient

to make a sophisticated web application fully accessible.

In order to have the content and functionality of our pages as accessible as possible

for our users, we need the boost that WAI-ARIA provides, extending what HTML5

already does. We’ll avoid going into an extensive discussion on WAI-ARIA

here—that’s a topic that could fill many chapters—but we felt it was important to

mention it here so that you’re aware of your options.

WAI-ARIA stands for Web Accessibility Initiative-Accessible Rich Internet Applic-

ations. The overview of WAI-ARIA on the W3C site1 explains it as:

[…] a way to make Web content and Web applications more access-

ible to people with disabilities. It especially helps with dynamic

content and advanced JavaScript-heavy user interface controls de-

veloped with Ajax, HTML, JavaScript, and related technologies.

Users who rely on screen reader technology, or who are unable to use a mouse, are

often excluded from using certain website and web application functionality—for

example, sliders, progress bars, and tabbed interfaces. With WAI-ARIA, you’re able

to deal with these shortcomings in your pages—even if the content and functionality

is trapped in complex application architecture. Thus, parts of a website that would

normally be inaccessible can be made available to users who are reliant on assistive

technology.

How WAI-ARIA Complements Semantics
WAI-ARIA assigns roles to elements, and gives those roles properties and states.

Here’s a simple example:

1 http://www.w3.org/WAI/intro/aria.php

http://www.w3.org/WAI/intro/aria.php

<li role="menuitemcheckbox" aria-checked="true">Sort by Date

The application might be using the list item as a linked element to sort content; yet

without the role and aria-checked attributes, a screen reader would have no way

to determine what this element is for. Semantics alone (in this case, a list item) tells

it nothing. By adding these attributes, the assistive device is better able to understand

what this function is for.

For semantic elements—for example header, h1, and nav—WAI-ARIA attributes in

most cases are unnecessary, as those elements already express what they are. Instead,

they should be used for elements whose functionality and purpose cannot be imme-

diately discerned from the elements themselves (or for elements that have little or

no accessibility support in one or more of the major browsers).

The Current State of WAI-ARIA
The WAI-ARIA specification is still improving, as is HTML5, so these technologies

are yet to provide all the benefits we would like. Although we’ve described the way

that WAI-ARIA can extend the semantics of our page elements, it may be necessary

to include WAI-ARIA roles on elements that already express their meaning in their

names, because assistive technology doesn’t support all the new HTML5 semantics

yet. In other words, WAI-ARIA can serve as a sort of stopgap, to provide accessibility

for HTML5 pages while screen readers are catching up.

Let’s look at a site navigation, for example:

<nav role="navigation">

 ⋮

</nav>

It would seem that we’re doubling up here: the nav element implies that the list of

links contained within it make up a navigation control, but we’ve still added the

WAI-ARIA role navigation to it. In many cases, this sort of doubling up will often

be necessary. In the case of the nav element, Internet Explorer is the only browser

that doesn't correctly expose a role of "navigation" by default, so for now, adding

this attribute is necessary.

HTML5 & CSS3 for the Real World360

Does this mean that WAI-ARIA will become redundant once HTML5 semantics and

accessibility are fully supported? No. There are roles in WAI-ARIA without corres-

ponding HTML5 elements; for example, the timer2 role. While you might represent

a timer using the HTML5 time element and then update it with JavaScript, you’d

have no way of indicating to a screen reader that it was a timer, rather than just an

indication of a static time.

For a screen reader to access WAI-ARIA roles, the browser must expose them through

an accessibility API. This allows the screen reader to interact with the elements

similarly to how it would access native desktop controls.

Browser support for ARIA features has been growing and is currently very good.

All the latest versions of browsers support WAI-ARIA at least partially. A fairly up

to date guide for support of accessibility features like WAI-ARIA in browsers on

certain OSes can be found on the Paciello Group's website3.

Finally, it’s worth noting that not all users who could benefit from WAI-ARIA roles

are utilizing them. In Janaury 2014, WebAIM (Web Accessibility In Mind) conducted

their fifth screen reader user survey,4 which revealed that about 28% of participants

either seldom or never navigated web pages by means of ARIA landmarks. The good

news is, the number of users utilizing ARIA landmarks is increasing. In 2010, in a

similar survey5, more than 50% either didn't use or didn't know ARIA roles existed.

In short, there is pretty good support for WAI-ARIA and you won’t hurt your HTML5

documents by including these attributes. They pass markup validation in HTML5

and even though the full benefits are yet to be seen, they’ll only increase over time.

Further Reading
As mentioned, a full primer on all of the WAI-ARIA roles is beyond the scope of

this book, but if you’re interested in learning more, we recommend the official

2 http://www.w3.org/TR/wai-aria/roles#timer
3 http://www.paciellogroup.com/blog/2014/10/rough-guide-browsers-operating-systems-and-screen-

reader-support-updated/
4 http://webaim.org/projects/screenreadersurvey5/
5 http://webaim.org/projects/screenreadersurvey3/#landmarks

361Appendix B: WAI-ARIA

http://www.w3.org/TR/wai-aria/roles#timer
http://www.paciellogroup.com/blog/2014/10/rough-guide-browsers-operating-systems-and-screen-reader-support-updated/
http://webaim.org/projects/screenreadersurvey5/
http://webaim.org/projects/screenreadersurvey3/#landmarks
http://webaim.org/projects/screenreadersurvey3/#landmarks
http://www.w3.org/TR/wai-aria/

specification6 first and foremost. The W3C has also put together a shorter Primer7

and an Authoring Practices guide8.

You can also check out Stephan Max's Introduction to WAI-ARIA9 on SitePoint.

Finally, you might find it useful to review HTML5 Accessibility10 a website main-

tained by accessibility expert Steve Faulkner that summarizes in chart form how

different browsers handle HTML5's semantic elements from an accessibility stand-

point.

6 http://www.w3.org/TR/wai-aria/
7 http://www.w3.org/TR/wai-aria-primer/
8 http://www.w3.org/TR/wai-aria-practices/
9 http://www.sitepoint.com/introduction-wai-aria/
10 http://www.html5accessibility.com/

HTML5 & CSS3 for the Real World362

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-practices/
http://www.sitepoint.com/introduction-wai-aria/
http://www.html5accessibility.com/

Appendix C: Microdata
Microdata is another technology that’s rapidly gaining adoption and support, but,

unlike WAI-ARIA, it’s technically part of HTML5. Although still early in develop-

ment, it’s worth mentioning the Microdata specification here,1 because the techno-

logy provides a peek into what may be the future of document readability and se-

mantics.

In the spec, Microdata is defined as a mechanism that “allows machine-readable

data to be embedded in HTML documents in an easy-to-write manner, with an un-

ambiguous parsing model.”

With Microdata, page authors can add specific labels to HTML elements, annotating

them so that they can be read by machines or bots. This is done by means of a cus-

tomized vocabulary. For example, you might want a script or other third-party service

to be able to access your pages and interact with specific elements on the page in a

certain manner. With Microdata, you can extend existing semantic elements (such

as article and figure) to allow those services to have specialized access to the

annotated content.

This can appear confusing, so let’s think about a real-world example. Let’s say your

site includes reviews of movies. You might have each review in an article element,

with a number of stars or a percentage score for your review. But when a machine

comes along, such as Google’s search spider, it has no way of knowing which part

of your content is the actual review—all it sees is a bunch of text on the page.

Why would a machine want to know what you thought of a movie? It’s worth con-

sidering that Google has recently started displaying richer information in its search

results pages, in order to provide searchers with more than just textual matches for

their queries. It does this by reading the review information encoded into those

sites’ pages using Microdata or other similar technologies. An example of movie

review information is shown in Figure C.1.

1 http://www.w3.org/TR/microdata/

http://www.w3.org/TR/microdata/

Figure C.1. Google leverages Microdata to show additional information in search results

By using Microdata, you can specify exactly which parts of your page correspond

to reviews, people, events, and more—all in a consistent vocabulary that software

applications can understand and make use of.

Aren’t HTML5’s semantics enough?
The HTML5 spec now includes a number of new elements to allow for more express-

ive markup. But it would be counterproductive to add elements to HTML that would

only be used by a handful of people. This would bloat the language, making its

features unmaintainable from all perspectives—whether that's specification authors,

browser vendors, or standards bodies.

Microdata, on the other hand, allows developers to use custom vocabularies (either

existing ones or their own) for specific situations—ones that aren’t possible using

HTML5’s semantic elements. Thus existing HTML elements and new elements added

in HTML5 are kept as a sort of semantic baseline, while specific annotations can

be created by developers to target their own needs.

HTML5 & CSS3 for the Real World364

The Microdata Syntax
Microdata works with existing, well-formed HTML content, and is added to a doc-

ument by means of name-value pairs (also called properties). Microdata prohibits

you from creating new elements; instead it gives you the option to add customized

attributes that expand on the semantics of existing elements.

Here’s a simple example:

<aside itemscope>
 <h1 itemprop="name">John Doe</h1>
 <p><img src="http://www.sitepoint.com/bio-photo.jpg" alt="John
➥Doe" itemprop="photo"></p>
 <p>Author’s
➥website</p>
</aside>

In the example above, we have a run-of-the-mill author bio placed inside an aside

element. The first oddity you’ll notice is the Boolean itemscope attribute. This

identifies the aside element as the container that defines the scope of our Microdata

vocabulary. The presence of the itemscope attribute defines what the spec refers

to as an item. Each item is characterized by a group of name-value pairs.

The ability to define the scope of our vocabularies allows us to define multiple

vocabularies on a single page. In this example, all name-value pairs inside the aside

element are part of a single Microdata vocabulary.

After the itemscope attribute, the next item of interest is the itemprop attribute,

which has a value of "name". At this point, it’s probably a good idea to explain how

a script would obtain information from these attributes, as well as what we mean

by “name-value pairs.”

Understanding Name-Value Pairs
A name is a property defined with the help of the itemprop attribute. In our example,

the first property name happens to be one called name. There are two additional

property names in this scope: photo and url.

The values for a given property are defined differently, depending on the element

the property is declared on. For most elements, the value is taken from its text

365Appendix C: Microdata

content; for instance, the name property in our example would obtain its value from

the text content between the opening and closing h1 tags. Other elements are treated

differently.

The photo property takes its value from the src attribute of the image, so the value

consists of a URL pointing to the author’s photo. The url property, although defined

on an element that has text content (namely, the phrase “Author’s website”), doesn’t

use this text content to determine its value; instead, it obtains its value from the

href attribute.

Other elements that don’t use their associated text content to define Microdata

values include meta, iframe, object, audio, link, and time. For a comprehensive

list of elements that obtain their values from somewhere other than the text content,

see the Values section of the Microdata specification.2

Microdata Namespaces
What we’ve described so far is acceptable for Microdata that’s not intended to be

reused—but that’s a little impractical. The real power of Microdata is unleashed

when, as we discussed, third-party scripts and page authors can access our name-

value pairs and find beneficial uses for them.

In order for this to happen, each item must define a type by means of the itemtype

attribute. Remember that an item in the context of Microdata is the element that

has the itemscope attribute set. Every element and name-value pair inside that

element is part of that item. The value of the itemtype attribute, therefore, defines

the namespace for that item’s vocabulary. Let’s add an itemtype to our example:

<aside itemscope itemtype="http://schema.org/Person">
 <h1 itemprop="name">John Doe</h1>
 <p><img src="http://www.sitepoint.com/bio-photo.jpg" alt="John Doe
➥" itemprop="photo"></p>

2 http://www.w3.org/TR/microdata/#values

HTML5 & CSS3 for the Real World366

http://www.w3.org/TR/microdata/#values

 <p>Author’s
➥website</p>
</aside>

In our item, we’re using the "http://schema.org/Person" URL, which is from

Schema.org,3 a collaborative project supported by several major search engines.

This website houses a number of Microdata vocabularies, including Organization,

Person, Review, Event, and more.

Further Reading
This brief introduction to Microdata barely does the topic justice, but we hope it

will provide you with a taste of what’s possible when extending the semantics of

your documents with this technology.

It’s a very broad topic that requires reading and research outside of this source. With

that in mind, here are a few links to check out if you want to delve deeper into the

possibilities offered by Microdata:

■ “Extending HTML5—Microdata”4 on HTML5 Doctor

■ the W3C Microdata specification5

■ Mark Pilgrim’s excellent overview of Microdata6

■ Google’s Rich Snippets Help7

■ "Using Schemas to Improve Content Visibility in Search Results"8 on SitePoint

3 http://schema.org/
4 http://html5doctor.com/microdata/
5 http://www.w3.org/TR/microdata/
6 http://diveintohtml5.info/extensibility.html
7 http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170
8 http://www.sitepoint.com/using-schemas-improve-content-visibility-search-results/

367Appendix C: Microdata

http://schema.org/
http://html5doctor.com/microdata/
http://www.w3.org/TR/microdata/
http://diveintohtml5.info/extensibility.html
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170
http://www.sitepoint.com/using-schemas-improve-content-visibility-search-results/

	Cover
	HTML5 & CSS3 for the Real World
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Acknowledgments
	Alexis Goldstein
	Louis Lazaris
	Estelle Weyl

	Want to Take Your Learning Further?

	Introducing HTML5 and CSS3
	What is HTML5?
	How did we get here?
	Would the real HTML5 please stand up?
	Why should I care about HTML5?
	What is CSS3?
	Why should I care about CSS3?
	What do we mean by “the Real World”?
	The Current Browser Market
	The Growing Mobile Market
	On to the Real Stuff

	Markup, HTML5 Style
	Introducing The HTML5 Herald
	A Basic HTML5 Template
	The Doctype
	The html Element
	The head Element
	Leveling the Playing Field
	The Rest Is History
	HTML5 FAQ
	Why do these changes still work in older browsers?
	Shouldn’t all tags be closed?
	What about other XHTML-based syntax customs?

	Defining the Page’s Structure
	The header Element
	The section Element
	The article Element
	The nav Element
	The aside Element
	The footer Element
	Structuring The HTML5 Herald
	The New main Element
	Continuing to Structure The Herald
	Wrapping Things Up

	More HTML5 Semantics
	A New Perspective on Content Types
	The Document Outline
	No More hgroup
	More New Elements
	The figure and figcaption Elements
	The mark Element
	The progress and meter Elements
	The time Element

	Changes to Existing Features
	The Word “Deprecated” is Deprecated
	Block Elements Inside Links
	Bold Text
	Italicized Text
	Big and Small Text
	A cite for Sore Eyes
	Description (not Definition) Lists

	Other New Elements and Features
	The details Element
	Customized Ordered Lists
	Scoped Styles
	The async Attribute for Scripts
	The picture element
	Other Notables

	The Future of Markup — Web Components?
	Validating HTML5 Documents
	Summary

	HTML5 Forms
	Dependable Tools in Our Toolbox
	HTML5 Form Attributes
	The required Attribute
	Styling Required Form Fields

	The placeholder Attribute
	Polyfilling Support with JavaScript

	The pattern Attribute
	The disabled Attribute
	The readonly Attribute
	The multiple Attribute
	The form Attribute
	The autocomplete Attribute
	The datalist Element and the list Attribute
	The autofocus Attribute

	Input Types
	Search
	Email Addresses
	URLs
	Validation of URLs

	Telephone Numbers
	Numbers
	Ranges
	Colors
	Dates and Times

	Additional New Form Controls in HTML5
	The progress and meter Elements
	The output Element
	The keygen Element
	The contenteditable Attribute

	Changes to Existing Form Controls
	The form Element
	The optgroup Element
	The textarea Element

	In Conclusion

	HTML5 Video and Audio
	A Bit of History
	The Current State of Play
	Video Container Formats
	Video Codecs
	Audio Codecs

	The Markup
	Enabling Native Controls
	The autoplay Attribute
	The loop Attribute
	The preload Attribute
	The poster Attribute
	The muted Attribute
	Adding Support for Multiple Video Formats
	Source Order
	What about browsers without support for HTML5 video?
	Setting MIME Types

	Encoding Video Files for Use on the Web
	Creating Custom Video Controls
	Some Markup and Styling for Starters
	Introducing the Media Elements API
	Playing and Pausing the Video
	Muting and Unmuting the Video’s Audio Track
	Responding When the Video Ends Playback
	Updating the Time as the Video Plays
	Further Features of the Media Elements API
	API Events
	API Properties

	What about audio?
	Accessible Media
	It’s Showtime

	Introducing CSS3
	Getting Older Browsers on Board
	CSS3 Selectors
	Relational Selectors
	Attribute Selectors
	Pseudo-classes
	Structural Pseudo-classes
	Pseudo-elements and Generated Content
	Generated Content
	::selection

	CSS3 Colors
	RGBA
	HSL and HSLA
	Opacity

	Putting It into Practice
	Rounded Corners: border-radius
	Drop Shadows
	Inset and Multiple Shadows

	Text Shadow
	More Shadows
	Up Next

	CSS3 Gradients and Multiple Backgrounds
	Linear Gradients
	The W3C Syntax
	The Prefixed Syntax
	The Old WebKit Syntax
	Putting It All Together
	Linear Gradients with SVG
	Linear Gradients with IE Filters
	Tools of the Trade

	Radial Gradients
	The W3C Syntax
	The Prefixed WebKit Syntax
	Making Our Own Radial Gradient

	Repeating Gradients
	Multiple Background Images
	Background Size
	In the Background

	CSS3 Transforms and Transitions
	Transforms
	Translation
	Scaling
	Rotation
	Skew
	Changing the Origin of the Transform
	Support for Internet Explorer 8 and Earlier

	Transitions
	transition-property
	The transition-duration Property
	The transition-timing-function Property
	The transition-delay Property
	The transition Shorthand Property
	Multiple Transitions

	Animations
	Keyframes
	Animation Properties
	animation-name
	animation-duration
	animation-timing-function
	animation-iteration-count
	animation-direction
	animation-delay
	animation-fill-mode
	animation-play-state
	The Shorthand animation Property

	Moving On

	Embedded Fonts and Multicolumn Layouts
	Web Fonts with @font-face
	@font-face rule
	Implementing @font-face
	Declaring Font Sources
	Font Property Descriptors
	The Unicode Range Descriptor
	Applying the Font
	Legal Considerations
	Creating Various Font File Types: Font Squirrel
	Other Font Considerations

	CSS3 Multicolumn Layouts
	The column-count Property
	The column-gap Property
	The column-width Property
	The columns Shorthand Property
	Columns and the height Property
	Other Column Features
	The column-rule Property
	Column Breaks
	Spanning Columns

	Other Considerations
	Progressive Enhancement

	Up Next

	Flexbox and Media Queries
	Flexbox
	Flex Container and Flex Item
	Container Properties

	Applying Flexbox to The HTML5 Herald

	Media Queries
	What are media queries?
	Syntax
	The Flexibility of Media Queries
	Browser Support
	Further Reading

	Living in Style

	Geolocation, Offline Web Apps, and Web Storage
	Geolocation
	Privacy Concerns
	Geolocation Methods
	Checking for Support with Modernizr
	Retrieving the Current Position
	Geolocation’s Position Object
	Grabbing the Latitude and Longitude
	Using Google Maps API
	Loading a Map
	Displaying Our Location in Google Maps
	A Final Word on Older Mobile Devices

	Offline Web Applications
	How It Works: the HTML5 Application Cache
	Setting Up Your Site to Work Offline
	The cache.appcache File
	Setting the Content Type on Your Server
	Pointing Your HTML to the Manifest File

	Seeking Permission to Store the Site Offline
	Going Offline to Test
	Testing if the Application Cache Is Storing Your Site

	Making The HTML5 Herald Available Offline
	Limits to Offline Web Application Storage
	The Fallback Section
	Refreshing the Cache
	Caching the Cache

	Are we online?
	Further Reading

	Web Storage
	Two Kinds of Storage
	Session Storage
	Local Storage

	What Web Storage Data Looks Like
	Getting and Setting Our Data
	Converting Stored Data
	The Shortcut Way
	Removing Items and Clearing Data
	Storage Limits
	Security Considerations
	Adding Web Storage to The HTML5 Herald
	Viewing Our Web Storage Values with Web Inspector

	Additional HTML5 APIs
	Web Workers
	Web Sockets
	IndexedDB

	Back to the Future

	Canvas, SVG, and Drag and Drop
	Canvas
	A Bit of Canvas History
	Creating a canvas Element
	Drawing on the Canvas
	Getting the Context
	Filling Our Brush with Color
	Drawing a Rectangle to the Canvas
	Variations on fillStyle
	Drawing Other Shapes by Creating Paths
	Saving Canvas Drawings
	Drawing an Image to the Canvas
	Manipulating Images
	Security Errors with getImageData
	Converting an Image from Color to Black and White
	Manipulating Video with Canvas
	Displaying Text on the Canvas
	Accessibility Concerns
	Further Reading

	SVG
	Drawing in SVG
	SVG Filters
	Using the Raphaël Library
	Drawing an Image to Raphaël’s Container
	Rotating a Spinner with Raphaël

	Canvas versus SVG

	Drag and Drop
	Feeding the WAI-ARIA Cat
	Making Elements Draggable
	The DataTransfer Object
	Accepting Dropped Elements
	Further Reading

	That’s All, Folks!

	Appendix A: Modernizr
	Using Modernizr with CSS
	Using Modernizr with JavaScript
	Further Reading

	Appendix B: WAI-ARIA
	How WAI-ARIA Complements Semantics
	The Current State of WAI-ARIA
	Further Reading

	Appendix C: Microdata
	Aren’t HTML5’s semantics enough?
	The Microdata Syntax
	Understanding Name-Value Pairs
	Microdata Namespaces
	Further Reading

