

Web Development Crash Course

HTML5 and CSS3

Learn HTML and CSS from Experts

Neo D. Truman

Copyright

HTML5 and CSS3: Learn HTML and CSS from Experts

Copyright © 2022 by Neo D. Truman

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning, or otherwise, without the author’s prior
consent.

Table of Contents

COPYRIGHT
TABLE OF CONTENTS
PREFACE

BOOK AUDIENCE

HOW TO CONTACT US

ACKNOWLEDGMENTS

CONVENTIONS USED IN THIS BOOK

SETTING UP A DEVELOPMENT ENVIRONMENT
1.1 INSTALL A CODE EDITOR

1.1.1 Install Essential Extensions
1.1.2 Install Live Server
1.1.3 Setting Default Formatter
1.1.4 Enable Formatting Code on Save
1.1.5 Auto Save Files on Focus Change
1.1.6 Disable Compact Folders
1.1.7 Enable Word Wrap
1.1.8 Set Tab Size Smaller

1.2 USING A WEB BROWSER
1.2.1 Using Developer Tools in The Browser
1.2.2 Using Console Tool
1.2.3 Using Source Tool

1.3 PREPARING A WORKSPACE

PART I: HTML5
WHAT WILL YOU LEARN?

CHAPTER 1 GETTING TO KNOW HTML
1.1 TWO TYPES OF HTML ELEMENTS

1.2 HTML DOCUMENT STRUCTURE

1.3 YOUR FIRST WEBPAGE

1.4 CHARACTER ENCODING

1.5 ELEMENT ATTRIBUTES

1.6 FAVORITE ICON

1.7 COMMENTS

CHAPTER 2 HTML ELEMENTS
2.1 HEADINGS

2.2 PARAGRAPHS

2.3 HYPERLINKS
2.3.1 External Anchors
2.3.2 Internal Anchors
2.3.3 Download Links

2.4 IMAGES
2.4.1 Image Maps
2.4.2 Responsive Pictures

2.5 LISTS
2.5.1 Unordered List
2.5.2 Ordered List
2.5.3 Description Lists

2.6 TABLES
2.6.1 Table Headers
2.6.2 Table Rows
2.6.3 Table Caption
2.6.4 Group of Columns
2.6.5 Column Span

2.7 BREAKS
2.7.1 Line Breaking
2.7.2 Thematic Breaking

2.8 PROGRESS BARS
2.8.1 <progress>
2.8.2 <meter>

2.9 COMPUTER CODE
2.9.1 <code>
2.9.2 <pre>

2.10 IFRAMES

2.11 HTML ENTITIES

CHAPTER 3 HTML STYLES
3.1 FORMATTING ELEMENTS

3.1.1
3.1.2 <i>
3.1.3 <u> or <ins>
3.1.4 <s> or
3.1.5 <mark>
3.1.6 <sub> and <sup>

3.2 HTML STYLE ATTRIBUTE

CHAPTER 4 SEMANTIC HTML
4.1 SEMANTIC ELEMENTS

4.1.1 <blockquote>
4.1.2 <address>
4.1.3 <details> and <summary>
4.1.4 <figure> and <figcaption>

4.2 SEMANTIC LAYOUT ELEMENTS

4.3 SEMANTIC FORMATTING ELEMENTS
4.3.1
4.3.2

CHAPTER 5 WEB FORMS
5.1 HTML FORM ELEMENTS

5.1.1 <input> and <label>
5.1.2 <textarea>
5.1.3 <select> and <option>
5.1.4 <button>
5.1.5 <fieldset> and <legend>
5.1.6 <datalist>

5.2 HTML INPUT TYPES
5.2.1 Buttons

5.2.1.1 button
5.2.1.2 submit
5.2.1.3 reset
5.2.1.4 image

5.2.2 Texts
5.2.2.1 text
5.2.2.2 password
5.2.2.3 email
5.2.2.4 url
5.2.2.5 hidden

5.2.3 Numbers
5.2.3.1 number
5.2.3.2 range

5.2.4 Options

5.2.4.1 checkbox
5.2.4.2 radio

5.2.5 Files
5.2.6 Date and Time

5.2.6.1 date
5.2.6.2 time
5.2.6.3 datetime-local

5.2.7 Colors

5.3 HTML INPUT ATTRIBUTES
5.3.1 name
5.3.2 value
5.3.3 placeholder
5.3.4 readonly
5.3.5 disabled
5.3.6 size
5.3.7 multiple
5.3.8 step
5.3.9 width and height
5.3.10 autofocus
5.3.11 autocomplete

5.4 FORM VALIDATION
5.4.1 minlength
5.4.2 maxlength
5.4.3 min and max
5.4.4 required
5.4.5 pattern
5.4.6 Styles for The Invalid Inputs

CHAPTER 6 HTML MULTIMEDIA
6.1 AUDIO

6.2 VIDEO

CHAPTER 7 HTML GRAPHICS
7.1 SVG GRAPHICS

7.1.1 SVG Rectangle
7.1.2 SVG Circle
7.1.3 SVG Ellipse
7.1.4 SVG Line
7.1.5 SVG Polyline
7.1.6 SVG Polygon
7.1.7 SVG Path
7.1.8 SVG Text
7.1.9 SVG Link

7.1.10 SVG Stroke
7.1.10.1 Stroke Color
7.1.10.2 Stroke Width
7.1.10.3 Stroke Ending
7.1.10.4 Dash Stroke

7.1.11 SVG Gradients
7.1.11.1 Linear Gradient
7.1.11.2 Radial Gradient

7.1.12 SVG Filters

7.2 CANVAS
7.2.1 Draw Text
7.2.2 Draw Lines
7.2.3 Draw Circles
7.2.4 Draw Rectangles
7.2.5 Draw Gradients

7.2.5.1 Linear Gradient
7.2.5.2 Radial Gradient

7.2.6 Draw Images

CHAPTER 8 HTML ADVANCED
8.1 DATA URIS

8.2 BLOCK ELEMENTS

8.3 INLINE ELEMENTS

8.4 INLINE-BLOCK ELEMENTS

CHAPTER 9 HTML EVENTS
9.1 WINDOW EVENTS

9.1.1 onload
9.1.2 onresize

9.2 FORM EVENTS
9.2.1 onfocus
9.2.2 onblur
9.2.3 onchange
9.2.4 oninput

9.3 KEYBOARD EVENTS
9.3.1 onkeydown
9.3.2 onkeyup
9.3.3 onkeypress

9.4 MOUSE EVENTS
9.4.1 onclick
9.4.2 ondblclick
9.4.3 onmousemove

9.4.4 onmousedown and onmouseup
9.4.5 onmouseover and onmouseout

9.5 CLIPBOARD EVENTS
9.5.1 oncopy
9.5.2 oncut
9.5.3 onpaste

CHAPTER 10 HTML APIS
10.1 DRAG AND DROP

10.2 GEOLOCATION

10.3 WEB STORAGE
10.3.1 The localStorage Object
10.3.2 The sessionStorage Object

10.4 WEB WORKERS
10.4.1 Web Worker File
10.4.2 Web Worker Object
10.4.3 Web Workers and the DOM

PART II: CSS3
WHAT WILL YOU LEARN?

CHAPTER 11 GETTING TO KNOW CSS
11.1 CSS SYNTAX

11.2 COMMENTS IN CSS
11.3 CSS UNITS

11.3.1 Absolute Lengths
11.3.2 Relative Lengths

11.3.2.1 em
11.3.2.2 rem

11.4 SHORTHAND PROPERTIES

11.5 WHERE DO WE PUT OUR CSS?
11.5.1 Inline CSS
11.5.2 Internal CSS
11.5.3 External CSS

11.6 USER AGENT STYLE SHEETS

CHAPTER 12 CSS SELECTORS
12.1 UNIVERSAL SELECTOR

12.2 TYPE SELECTOR

12.3 ID SELECTOR

12.4 CLASS SELECTOR

12.5 MULTIPLE-CLASS SELECTOR

12.6 CSS PSEUDO-CLASS
12.6.1 Status of Links

12.6.1.1 :link
12.6.1.2 :visited

12.6.2 Cursor Interaction
12.6.2.1 :focus
12.6.2.2 :hover
12.6.2.3 :active

12.6.3 Status of Elements
12.6.3.1 :enabled
12.6.3.2 :disabled
12.6.3.3 :checked

12.6.4 Form Validation
12.6.4.1 :invalid
12.6.4.2 :required
12.6.4.3 :out-of-range

12.6.5 Child Elements
12.6.5.1 :first-child
12.6.5.2 :last-child
12.6.5.3 :nth-child(N)
12.6.5.4 :nth-last-child(N)
12.6.5.5 :only-child

12.6.6 Type of elements
12.6.6.1 :first-of-type
12.6.6.2 :last-of-type
12.6.6.3 :nth-of-type(N)
12.6.6.4 :nth-last-of-type(N)
12.6.6.5 :only-of-type

12.6.7 Others Pseudo-classes
12.6.7.1 :root
12.6.7.2 :empty
12.6.7.3 :target
12.6.7.4 :not(selector)

12.6.8 Pseudo-class Chain

12.7 CSS PSEUDO-ELEMENT
12.7.1 ::first-letter
12.7.2 ::first-line
12.7.3 ::before
12.7.4 ::after
12.7.5 ::selection

12.8 CSS COMBINED SELECTOR
12.8.1 Descendant selector
12.8.2 Child Selector
12.8.3 Adjacent Sibling Selector
12.8.4 General Sibling Selector

12.9 CSS ATTRIBUTE SELECTOR
12.9.1 [attribute]
12.9.2 [attribute="value"]
12.9.3 [attribute|="value"]
12.9.4 [attribute~="value"]
12.9.5 [attribute^="value"]
12.9.6 [attribute$="value"]
12.9.7 [attribute*="value"]

12.10 SELECTOR GROUPING

CHAPTER 13 CSS CASCADING
13.1 RULE 1: THE LAST DECLARATION WILL WIN

13.2 RULE 2: THE MORE SPECIFIC DECLARATION WILL WIN

13.3 RULE 3: INLINE STYLE IS PREFERRED TO BOTH INTERNAL AND EXTERNAL

STYLES

13.4 RULE 4: “!IMPORTANT” DECLARATION IS THE STRONGEST RULE

13.5 INHERITANCE

CHAPTER 14 CSS BOX MODEL
14.1 BOX SIZING TYPES

14.1.1 Border Box
14.1.2 Content Box

14.2 CSS MARGINS
14.2.1 Auto Margin
14.2.2 Collapsing Margins

14.3 CSS OUTLINE

14.4 CSS BORDERS
14.4.1 Border Styles
14.4.2 CSS Border Radius
14.4.3 CSS Border Images

14.5 CSS PADDING

14.6 CSS WIDTH AND HEIGHT

CHAPTER 15 CSS COLORS

15.1 COLOR NAMES

15.2 HEX COLORS

15.3 RGB COLORS

15.4 GREY COLORS

CHAPTER 16 CSS TEXT
16.1 TEXT RENDERING

16.1.1 Setting Color
16.1.2 Text Decoration
16.1.3 Text Transform
16.1.4 Handling Whitespaces
16.1.5 Text Overflow
16.1.6 Word Wrap
16.1.7 Word Break

16.2 TEXT SPACING
16.2.1 Letter Spacing
16.2.2 Word Spacing
16.2.3 Line Height

16.3 TEXT POSITION
16.3.1 Text Align
16.3.2 Text Indent

16.4 CSS FONTS
16.4.1 Font Family
16.4.2 Font Size
16.4.3 Font Weight
16.4.4 Font Style
16.4.5 Font Variant
16.4.6 The @font-face

CHAPTER 17 CSS BACKGROUNDS
17.1 CSS BACKGROUND PROPERTIES

17.1.1 background-color
17.1.2 background-image
17.1.3 background-repeat
17.1.4 background-position
17.1.5 background-size
17.1.6 background
17.1.7 background-clip
17.1.8 background-origin
17.1.9 background-attachment

17.2 CSS GRADIENT BACKGROUNDS

17.2.1 Linear Gradients
17.2.2 Repeating Linear Gradients
17.2.3 Radial Gradients
17.2.4 Repeating Radial Gradients

17.3 CSS SPRITES

CHAPTER 18 CSS DISPLAY
18.1 DISPLAY VS. VISIBILITY

18.1.1 display
18.1.2 visibility

18.2 CSS OBJECT-FIT

18.3 CURSOR

18.4 CSS OVERFLOW
18.4.1 overflow: visible
18.4.2 overflow: hidden
18.4.3 overflow: scroll
18.4.4 overflow: auto

18.5 CSS OPACITY

18.6 CSS SHADOWS
18.6.1 text-shadow
18.6.2 box-shadow

18.7 CSS MULTIPLE COLUMNS
18.7.1 Fixed Columns
18.7.2 Responsive Columns
18.7.3 Column Span

18.8 CSS TABLES
18.8.1 Table Sizing
18.8.2 Text Alignment in Table Cells

18.9 CSS LISTS
18.9.1 List Item Markers
18.9.2 Position the List Item Markers

18.10 CSS TRANSFORMS
18.10.1 Moves an Element
18.10.2 Scales an Element
18.10.3 Rotates an Element
18.10.4 Skews an Element

CHAPTER 19 CSS LAYOUT
19.1 CSS POSITION

19.1.1 static
19.1.2 relative

19.1.3 absolute
19.1.4 fixed
19.1.5 sticky

19.2 CSS FLOAT
19.2.1 float
19.2.2 clear

19.3 CSS Z-INDEX

19.4 CSS FLEXBOX
19.4.1 Flex Container

19.4.1.1 gap
19.4.1.2 flex-direction
19.4.1.3 justify-content
19.4.1.4 align-items
19.4.1.5 flex-wrap
19.4.1.6 align-content

19.4.2 Flex Items
19.4.2.1 flex-basis
19.4.2.2 order
19.4.2.3 flex-grow
19.4.2.4 flex-shrink
19.4.2.5 align-self
19.4.2.6 flex
19.4.2.7 Auto Margin for Flex Items

19.5 CSS GRID
19.5.1 Grid Container

19.5.1.1 grid-template-columns
19.5.1.2 grid-template-rows
19.5.1.3 column-gap
19.5.1.4 row-gap
19.5.1.5 gap
19.5.1.6 justify-items
19.5.1.7 align-items
19.5.1.8 justify-content
19.5.1.9 align-content

19.5.2 Grid Items
19.5.2.1 grid-column-start
19.5.2.2 grid-column-end
19.5.2.3 grid-column
19.5.2.4 grid-row-start
19.5.2.5 grid-row-end
19.5.2.6 grid-row
19.5.2.7 grid-area
19.5.2.8 justify-self
19.5.2.9 align-self

19.5.2.10 grid-template-areas

19.6 CSS ALIGNMENT
19.6.1 Horizontal Alignment
19.6.2 Vertical alignment
19.6.3 Perfect Centering

19.6.3.1 Centering Using The position And transform Properties
19.6.3.2 Centering Using The flex Property

CHAPTER 20 CSS TRANSITIONS AND ANIMATIONS
20.1 CSS TRANSITIONS

20.1.1 Basic Transitions
20.1.2 Transition Delay
20.1.3 Transition Timing Function
20.1.4 Shorthand Transition Property

20.2 CSS ANIMATIONS
20.2.1 Two-step Keyframes
20.2.2 Multiple Keyframes
20.2.3 Animation Delay
20.2.4 Animation Iteration Count
20.2.5 Animation Direction
20.2.6 Animation Timing Function
20.2.7 Shorthand Animation Property

CHAPTER 21 ADVANCED CSS
21.1 CSS VARIABLES

21.2 CSS CALCULATION

21.3 CSS COUNTERS

CHAPTER 22 RESPONSIVE CSS
22.1 RESPONSIVE WEB DESIGN

22.2 RWD VIEWPORT

22.3 CSS MEDIA
22.3.1 Media Types
22.3.2 Media Queries

22.4 RWD GRID VIEW

22.5 MOBILE-FIRST VS. DESKTOP-FIRST
22.5.1 Mobile-First
22.5.2 Desktop-First

BONUS: FREE EBOOK DOWNLOAD
PLEASE LEAVE A REVIEW ON AMAZON

ABOUT THE AUTHOR
OTHER BOOKS BY THE AUTHOR

Preface

Book Audience
The book is aimed at web developers and designers who want to learn

HTML5 and CSS3.
● It is for beginners in web development and web design.
● It is a complete reference book for those who want to learn HTML and

CSS codes for front-end web development.
● For individuals who want to build websites or learn web design.

How to Contact Us
Please email contact@neodtruman.com to ask questions about this book.

Follow us on the Amazon Author page, https://www.amazon.com/Neo-D-
Truman/e/B09P6LHL2M, for news and information about our books.

https://www.amazon.com/Neo-D-Truman/e/B09P6LHL2M

Acknowledgments
First, I must thank my parents for their love and guidance. Thank you,

parents, for buying me my first computer, which started my career path.

Then, I want to express this special thanks to my dear wife. My wife takes
care of everything in the family. Thanks to that, I have time to contribute to
the community and complete this book.

Finally, my sincere thanks are to my loved ones in my family, friends,
colleagues, and people who have supported and helped me.

Conventions Used in This Book
The following conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Bold

Indicates important concepts or UI items, such as menu items and
buttons to be selected or clicked.

Constant width

Indicates computer code, including statements, functions, classes,
objects, methods, properties, etc.

Constant width bold

Shows commands or other text that should be typed literally by the
user.

Constant width italic

Shows text that should be replaced with user-supplied values or values
determined by context.

 This element signifies a general note.

 This element signifies a tip or suggestion.

 This element indicates a warning or caution.

Setting Up a Development Environment

The first step in setting up your development environment is choosing your
code editor. Almost editors have essential features like autocompletion,
syntax highlighting, formatting code, and intelligent refactoring. Using them
helps you to prevent potential mistakes. Other features, such as line-by-line
debugging, could be already available in the editor. However, we will use
web browsers’ Developer Tools while debugging JavaScript code. After
setting up the development environment, your coding will be effortless and
fast.

 Several tools are available so that you can choose any of
them. However, no matter what tools you choose, you’ll
follow a similar process to learn the lessons.

1.1 Install a Code Editor
This book uses Visual Studio Code (shortened to VS Code) as the code

editor. You can download this free at

https://code.visualstudio.com/download

In Stack Overflow’s survey, VS Code was ranked as the most popular
code editor across languages.

1.1.1 Install Essential Extensions
VS Code supports adding extensions that help us code faster and easier.

After installing the editor, let’s add these essential extensions:
● Prettier - Code formatter: Enforces a consistent style by parsing your

code and re-printing it with its rules that take the maximum line length
into account, wrapping code when necessary.

● Path Intellisense: Visual Studio Code plugin that autocompletes
filenames and paths.

● Auto Rename Tag: Auto rename paired HTML/XML tags.
● ESLint: Finds and fixes problems in your JavaScript code.
● Rainbow Brackets: Provides rainbow colors for the round, square, and

squiggly brackets.
● vscode-icons: File and folder icons for Visual Studio Code.

Below is a screenshot of the extensions for your reference when searching
for them.

To install the extensions, click on the Extensions icon (as in the picture
below), then type a name into the Search Box; select the extension you want
and click its Install button.

1.1.2 Install Live Server
Live Server helps us launch a local development server with a live reload

feature for static or dynamic web pages.

To install the extension, click on the Extensions icon, then type “Live
Server” into the Search Box; select the extension in the picture below and
click its Install button.

How to run an HTML file with the Live Server?
● Step 1: Open your HTML file with the Visual Studio Code.
● Step 2: Right-click on the editing area, select “Open with Live

Server,” or click the “Go Live” button at the bottom-right corner of
the VS Code.

After doing the above steps, your HTML file will be loaded into a live

server and available at this address:

http://127.0.0.1:5500/

 You must manually refresh your web page only once after
waking up your PC.

1.1.3 Setting Default Formatter
We should configure the Default Formatter to use the “Prettier - Code

formatter” extension. Please follow these steps to turn it on:
● Go to the menu and select: File > Preferences > Settings
● Type “default format” into the Search Box
● Then select the “Prettier - Code formatter” option as in the below

picture.

1.1.4 Enable Formatting Code on Save
We should enable the “Format on Save” feature to have the best readable

code. Please follow these steps to turn it on:
● Go to the menu and select: File > Preferences > Settings
● Type “format on save” into the Search Box
● Then check the “Editor: Format On Save” checkbox as in the picture

below.

1.1.5 Auto Save Files on Focus Change
We should enable the “File: Auto Save” feature on focus change. Please

follow these steps to turn it on:
● Go to the menu and select: File > Preferences > Settings
● Type “auto save” into the Search Box
● Then select the “onFocusChange” option as in the below picture.

1.1.6 Disable Compact Folders
VS Code renders folders in its explorer in a compact form. In such a form,

single child folders will be compressed in a combined tree element. It’s only
helpful for Java package structures. Therefore, we should disable the
“Compact Folders” feature by following these steps:

● Go to the menu and select: File > Preferences > Settings
● Type “compact folders” into the Search Box

● Then uncheck the “Explorer: Compact Folders” checkbox, as in the
picture below.

1.1.7 Enable Word Wrap
To get rid of the horizontal scroll bar, we could turn on the “Word Wrap”

feature by following these steps:
● Go to the menu and select: File > Preferences > Settings
● Type “word wrap” into the Search Box
● Then select option “on” of “Editor: Word Wrap” as in the below

picture.

1.1.8 Set Tab Size Smaller
The default number of spaces in a tab is 4. But according to my

experience, we need only two spaces. If you want to change the default

setting like me, then follow these steps:
● Go to the menu and select: File > Preferences > Settings
● Type “tab size” into the Search Box
● Then set the “Editor: Tab Size” number to 2, as shown in the picture

below.

1.2 Using a Web Browser
We will use Google Chrome to run and debug our JavaScript code since it

is the most popular browser. Moreover, it also includes fantastic developer
tools that will be described below.

Anyway, you could choose any browser as your favorite one and follow a
similar process.

1.2.1 Using Developer Tools in The Browser
The developer tools are usually presented as a tabbed group of panes at

the right or bottom of the web browser window. For example, to open the
developer tools in Google Chrome, open the Chrome Menu in the upper-
right-hand corner of the browser window and select More Tools >
Developer tools.

You can also use Shift + CTRL + J (on Windows/Linux) or Option + ⌘
+ J (on macOS) to open the tools.

The developer tools will either open up in a new window or within the
Chrome window, as in the picture below.

We can undock it into a separate window or only change the dock side
following these steps:

● Click the “Customize and control Dev Tools” button in the upper-
right-hand corner.

● Then select the dock side you want, as shown in the picture below.

1.2.2 Using Console Tool
You might have to select the Console tab if the Console tool wasn't

selected. We can check the values of variables or try JavaScript code directly
in the Console tool as below.

You can see the errors on your web page and the debugging messages
here. The Console panel is the one that shows the messages you output with
console.log() and any unhandled errors.

1.2.3 Using Source Tool
Select the Sources tab to open the debugging tool. It supports line-by-line

debugging with breakpoints, reviewing the call stack, etc. The details will be

introduced with the code later.

1.3 Preparing a Workspace
Please follow these steps to create your workspace:
● Create the Example folder, such as “D:\Example”
● Open the Visual Studio Code
● In the VS Code, select the menu File > Open Folder…
● Select your folder, “D:\Example” in my example
● Hover the mouse on the EXAMPLE folder; some icons will appear,

as shown in the screenshot below.

● Click the New File icon.

● Type “index.html” and press Enter
● Then type below HTML code into the editor

<!DOCTYPE html>
<html>
 <head>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h2>Testing Page</h2>
 <!-- Your HTML code here -->
 </body>
</html>

● Select menu File > Save to save the change to the index.html file.

● Hover the mouse on the EXAMPLE folder and click the New File
icon.

● Type “style.css” and press Enter but leave the file empty.
● Select menu File > Save to save the change to the style.css file.

 While learning this book, you will change the HTML code
in the index.html file and the CSS code in the style.css file.

Let's try the code in a web browser like Google Chrome. Before following
the steps, you should configure Google Chrome as your default web browser.

Right-click the index.html file from Explorer Window and click
on Open with Live Server.

It will launch a local web server with a live reload feature for the file
index.html.

We could change our HTML code and save the index.html file.
Consequently, the web page will load the change for us, as shown in this
screenshot.

Part I: HTML5

HTML is HyperText Markup Language for documents that are displayed in
web browsers. There could be CSS and JavaScript code in the HTML
documents to make the documents more attractive and support user
interaction.

An HTML document includes many semantic elements to describe the
structure of a webpage, such as headings, paragraphs, etc. Web browsers
request and receive it from a web server, then render it into a webpage.

What will you learn?
In this part of the book, you will learn the following:
● HTML document structure and HTML elements such as headings,

paragraphs, hyperlinks, images, lists, tables, iframes, etc.
● HTML entities, Data URIs
● HTML formatting elements and the style attribute
● Semantic HTML elements
● Block elements, inline elements, and inline-block elements
● Web forms, including form elements and form validation
● HTML multimedia: audio and video
● HTML graphics: SVG and canvas
● HTML events: window events, form events, keyboard events, mouse

events, and clipboard events
● HTML APIs: drag and drop, geolocation, web storage, web workers.

CHAPTER 1
Getting to Know HTML

HTML stands for HyperText Markup Language. It helps us describe the
content and structure of our web pages. We use different HTML elements (or
HTML tags) to describe different types of content, such as headings,
paragraphs, links, images, etc.

1.1 Two Types of HTML Elements
An HTML element typically has three portions, for example:

<h1>My First Heading</h1>

● Opening tag: <h1>
● Content: “My First Heading”
● Closing tag: </h1> . The closing tag is the same as the opening tag but

with a slash (/)

The closing tags will be omitted when elements do not have content, for
example:

1.2 HTML Document Structure
The document should begin with a DOCTYPE element to tell the

browser that this document uses HTML.
<!DOCTYPE html>

Then, we create an <html> element, which is the root element of the
HTML document. It has two children, as below.

<html>
 <head></head>
 <body></body>
</html>

The above structure is always the same in all web pages, where the
<head> element is for things that are not visible in the browser as it will
contain the page title, some metadata of the page, links to CSS files, etc.

On the other hand, all the visible elements are placed inside the <body>
element so that they will appear on the web pages. We often link our
JavaScript files at the end of the <body> tag.

1.3 Your First Webpage
Let’s add two more elements. The first element is the <title> element,

which is used to set the webpage’s title and is shown in the browser’s title
tab. The second one is the <h1> element, which is the main heading for the
webpage, so we should only use it once.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Welcome to my site!</h1>
 </body>
</html>

Now, open the index.html file in a browser by double-clicking it or
opening it with the Live Server. You will see the “Welcome to my site!”
heading on the page.

1.4 Character Encoding
We use the “ charset ” attribute of the <meta> element, which will be

placed inside the <head> element, to specify the character encoding for our
HTML documents.

index.html
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>My Website</title>
 </head>
 <body>
 <h1>Welcome to my site!</h1>
 </body>
</html>

The UTF-8 character set covers almost all of the characters and symbols
in the world. Naturally, therefore, we should use it on our web pages.

1.5 Element Attributes
Various HTML elements have different attributes to configure the

elements, set their contents, or adjust their behavior.

For example, we use the “ lang ” attribute to specify the language of our
web pages as below.

<html lang="en">

In the above example, “ en ” stands for “English.”

1.6 Favorite Icon
A favorite icon is a small image displayed to the left of the page title in

the browser tab, like this:

Do these steps to add a favorite icon to your website:
● prepare an ICO file as your favorite icon (A common name for it is

“favicon.ico,” but not mandatory)
● save the file in the root directory or its sub-folder
● finally, add a <link> element to your “index.html” file, like the below

example.

Example
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="icon" type="image/x-icon" href="/images/favicon.ico" />
 </head>
 <body>
 <h1>Welcome to my site!</h1>
 </body>
</html>

 If the favorite icon were placed inside the root folder, the
<link> element would change its href attribute as below.

<link rel="icon" type="image/x-icon" href="/favicon.ico" />

1.7 Comments
Comments are used to explain code and to make it more readable. They

can also be used to prevent execution when testing alternative code.

In HTML, we use “ <!-- ” and “ --> ” to comment out code by wrapping
the code by them as in the below example.

index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Heading 1</h1>
 <!-- <h2>Heading 2</h2>
 <h3>Heading 3</h3> -->
 </body>
</html>

We could only see the <h1> heading on the webpage.

CHAPTER 2
HTML Elements

2.1 Headings
There are six headings from <h1> to <h6>, as “h” stands for “heading.”

The <h1> tag is the most important heading and has the biggest font size. In
contrast, <h6> defines the least important heading and is the smallest one.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Heading 1</h1>
 <h2>Heading 2</h2>
 <h3>Heading 3</h3>
 <h4>Heading 4</h4>
 <h5>Heading 5</h5>
 <h6>Heading 6</h6>
 </body>
</html>

It can be seen on the “index.html” page that there are six headings in
different sizes.

2.2 Paragraphs
We use <p> elements to create paragraphs since “p” stands for

“paragraph.”

index.html
<!DOCTYPE html>

<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Heading 1</h1>
 <p>This is your first paragraph.</p>
 </body>
</html>

2.3 Hyperlinks
The hyperlink is one of the fundamental HTML elements. A hyperlink (or

“link” for short) contains an URL attribute so that links can help users
navigate through a website. Without links, visitors do not know how to go to
other web pages since they do not know their addresses.

To create a link, we use the <a> element which stands for “anchor.” The
content between the opening and closing tags is the text displayed on the
webpage.

2.3.1 External Anchors
The external anchors will navigate users to another webpage. This page

can belong to the same website, or it can be to another website. The URL that
this link points to is set using the “ href ” attribute as below.

 Without the “ href ” attribute, an anchor element is not a
link.

/index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Home Page</h1>
 Contact Page
 Login Page
 </body>
</html>

/contact.html
<!DOCTYPE html>
<html>
 <head>

 <title>Contact Page</title>
 </head>
 <body>
 <h1>This is Contact Page</h1>
 Home Page
 </body>
</html>

/user/login.html
<!DOCTYPE html>
<html>
 <head>
 <title>Login Page</title>
 </head>
 <body>
 <h1>This is Login Page</h1>
 Home Page
 </body>
</html>

Now, users can navigate between the “Home” page, the “Contact” page,
and the “Login” page using those links. Since index.html is the main page, we
can write “ / ” instead of “ /index.html .”

To open an URL in a new tab, we can specify the “ target ” attribute as
“ _blank .”

/index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Home Page</h1>
 Contact Page
 Login Page
 </body>
</html>

Moreover, we can set the “ href ” attribute to an URL of another website,
such as “https://www.google.com.”

2.3.2 Internal Anchors
Internal anchors help users navigate within a webpage based on the IDs of

its HTML elements. Without ID, the internal anchors will navigate users to
the top of the current page. The syntax is:

Description Here

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Home Page</h1>
 Go to My Cake

 <h2 id="apple">My Apple</h2>

 <h2 id="cake">My Cake</h2>

 Go to My Apple
 Back to the top
 </body>
</html>

Please prepare two images, “an-apple.jpg” and “a-cake.jpg,” by yourself
and put them in the same folder containing the index.html file.

At the top of the page, clicking the anchor “Go to My Cake” will bring
the heading “My Cake” to the viewport. Besides, clicking the anchor “Back
to the top” will bring us to the top of the page.

2.3.3 Download Links
The “ download ” attribute of the <a> tag specifies that the target file

(specified in the “ href ” attribute) will be downloaded when users click on
the hyperlink.

We can declare a new name for the file by setting the value of the
“ download ” attribute, but this is optional. Moreover, if we do not specify the
file extension, the browser automatically detects and adds it to the file.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 Download Image
 </body>
</html>

2.4 Images
To display images, we use the elements. has no closing

tag since it has no content. Therefore, we add the slash at the very end of the
element like this:

To specify which image to be displayed, we use the “ src ” (which stands
for “source”) attribute to describe the path of the image file.

Another important attribute is “ alt ,” which stands for “alternative text”
and describes what the image is about. This attribute is essential for the
following:

● search engines such as Google actually to know what content the
image is

● and allow the screen reader to read it out loud

● the alternative text will be used when the “ src ” attribute is invalid.
Because the path is invalid, the browser cannot download the image,
so that it will display the image description from the “ alt ” attribute.

Two more attributes are usually used in the element; they are
“ width ” and “ height .” However, we only use one to scale the image up or
down. Otherwise, using both will distort the image because our width and
height may not be in the same ratio as the original image size.

Let’s examine a square image of 300x300 pixels.
● This code will scale down the image:

or

● This code will scale up the image:

or

● And this will distort the image:

2.4.1 Image Maps
The <map> element defines an image map having clickable areas. The

areas are represented with one or more <area> elements as children of the
<map> element. Every <map> has a “ name ” attribute, so the
element can use its " usemap " attribute to specify which map to use.

An <area> element uses “ shape ,” and “ cords ” attributes to define a
clickable area inside the image. The “ shape ” attribute can have one of these
values:

● circle - a circle. The “ cords ” attribute will be “Ox, Oy, R.”

● rect - a rectangle. The “ cords ” attribute will be “P1x, P1y, P2x, P2y.”

● poly - a polygon. The “ cords ” attribute will be “P1x, P1y, P2x, P2y, …,

PNx, PNy.”

For example, we will use this image for testing the image map:

and the image’s coordinates are as below.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>

 <map name="nav-bar">
 <area shape="rect" coords="20,20,80,60" alt="Computer" href="#cake" />
 <area shape="circle" coords="120,40,20" alt="Coffee" href="#apple" />
 </map>

 <h2 id="apple">My Apple</h2>

 <h2 id="cake">My Cake</h2>

 </body>
</html>

2.4.2 Responsive Pictures
The <picture> element contains multiple images, and only one of them

will be chosen to display based on the media queries of the <source> tags. If
none of the source tags matches, the element will be used as a
fallback option.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Resize the browser to load different images.</p>
 <picture>
 <source media="(min-width:500px)" srcset="3.jpg" />
 <source media="(min-width:300px)" srcset="2.jpg" />

 </picture>
 </body>
</html>

2.5 Lists

2.5.1 Unordered List
We make a list of bullet points using the element, which stands for

“unordered list.” The list items are made by using the elements which
stand for “list item,” and they are nested inside the element as below.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>

 Item 1
 Item 2
 Item 3

 </body>
</html>

On the webpage, we will see the following:
 ● Item 1
 ● Item 2
 ● Item 3

2.5.2 Ordered List
We make an ordered list with numbers using the element, which

stands for “ordered list.” The list items are made by using the elements
which stand for “list item,” and they are put inside of the element as
below.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>

 Item 1
 Item 2
 Item 3

 </body>
</html>

On the webpage, we will see the following:
 1. Item 1
 2. Item 2
 3. Item 3

2.5.3 Description Lists
We use one <dl> element to make a description list. A description in the

list is constructed by using these two elements:
● <dt> - defines terms/names
● <dd> - describes each term/name

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <dl>
 <dt>HTML</dt>
 <dd>is the standard markup language for Web pages.</dd>
 <dt>CSS</dt>
 <dd>is the language we use to style an HTML document.</dd>
 <dt>JavaScript</dt>
 <dd>is the world's most popular programming language.</dd>
 </dl>
 </body>
</html>

Result:
HTML
 is the standard markup language for Web pages.
CSS
 is the language we use to style an HTML document.
JavaScript
 is the world's most popular programming language.

2.6 Tables
When arranging data into rows and columns, we use the <table>

elements. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 table {
 border-collapse: collapse;
 }
 th,
 td {
 border: 1px solid black;
 }
 .days {
 background-color: lightyellow;
 }
 .weekend {
 background-color: lightblue;
 }
 </style>
 </head>
 <body>
 <table>
 <caption>
 September 2022
 </caption>
 <colgroup>
 <col span="5" class="days" />
 <col span="2" class="weekend" />
 </colgroup>
 <thead>
 <tr>
 <th>Mon</th>
 <th>Tue</th>
 <th>Wed</th>
 <th>Thu</th>
 <th>Fri</th>
 <th>Sat</th>

 <th>Sun</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 <td>4</td>
 </tr>
 <tr>
 <td>5</td>
 <td>6</td>
 <td>7</td>
 <td>8</td>
 <td>9</td>
 <td>10</td>
 <td>11</td>
 </tr>
 <tr>
 <td>12</td>
 <td>13</td>
 <td>14</td>
 <td>15</td>
 <td>16</td>
 <td>17</td>
 <td>18</td>
 </tr>
 <tr>
 <td>19</td>
 <td>20</td>
 <td>21</td>
 <td>22</td>
 <td>23</td>
 <td>24</td>
 <td>25</td>
 </tr>
 <tr>
 <td>26</td>
 <td>27</td>
 <td>28</td>
 <td>29</td>

 <td>30</td>
 <td colspan="2"></td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Result:

2.6.1 Table Headers
In the above example, a table header is a <tr> element that contains

some <th> elements. Moreover, we often put this <tr> element inside a
<thead> element. Table headers are optional.

2.6.2 Table Rows
A table row is a <tr> element that contains some <td> elements, and we

often put this <tr> element inside a <tbody> element, as in the above
example.

2.6.3 Table Caption
We use the <caption> element to set the table’s caption. It is usually

inserted immediately after the <table> tag. By default, this caption will be
center-aligned above the table.

2.6.4 Group of Columns
The <colgroup> element selects groups of columns in a table for

formatting. It contains one or more <col> elements that specify the groups
(one <col> is one group). We often use the “ span ” attribute of the <col>
element to group some columns and the “ class ” attribute to format the table
cells by class names in the CSS code.

2.6.5 Column Span
The “ colspan ” attribute of the <td> element specifies the number of

columns a cell should span in the table. Besides, <td> also has the
“ rowspan ” attribute for merging the cells vertically.

2.7 Breaks

2.7.1 Line Breaking
The
 element inserts a single line break. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>I've added a line break here.
This sentence will be on the second line.</p>
 </body>
</html>

2.7.2 Thematic Breaking
The <hr> element defines a thematic break in a webpage, e.g., a topic

shift. It is displayed as a horizontal rule that is used to separate content. For
example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Web Development</h1>
 <p>HTML is the standard markup language for web pages.</p>
 <hr />
 <p>CSS is the language we use to style an HTML document.</p>
 <hr />
 <p>JavaScript is the world's most popular programming language.</p>
 </body>
</html>

2.8 Progress Bars

2.8.1 <progress>
The <progress> element help us show the completion progress of a task.

The “ value ” attribute is the current progress, while the “ max ” attribute is
often set to 100 . For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>
 Uploading:
 <progress value="60" max="100"></progress>
 60%
 </p>
 </body>
</html>

Result:

2.8.2 <meter>
The <meter> element defines a scalar measurement within a known

range, such as dish usage. The “ value ” attribute is the current meter’s value,
while the “ max ” attribute is the maximum value of the meter. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>
 Disk usage:
 <meter value="60" max="120"></meter>
 60GB of 120GB
 </p>
 </body>
</html>

Result:

2.9 Computer Code

2.9.1 <code>
The <code> element defines computer code. It will be displayed in the

default monospace font of the browser. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is a piece of JavaScript code:</p>
 <code>var x = 10;</code>
 </body>
</html>

2.9.2 <pre>
Text in a <pre> element is displayed in the browser’s default monospace

font. Moreover, the text will be displayed as written in the HTML code. It
means that both spaces and line breaks will be kept unchanged. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <pre>
 Text in a pre element is displayed
 in the browser’s default monospace font,
 and it preserves both spaces
 and line breaks
 </pre>
 </body>
</html>

2.10 Iframes
An <iframe> element displays another webpage within the current

HTML document. Its “ src ” attribute sets the URL to be loaded into the
iframe. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 #my-iframe {
 width: 800px;
 height: 600px;
 border: none;
 }
 </style>
 </head>
 <body>
 <h1>Web Development Books</h1>
 <iframe id="my-iframe" src="https://www.amazon.com/dp/B09VFLS7TF"></iframe>
 </body>
</html>

By default, an <iframe> element has a border around it. Therefore, we
often use the CSS “ border ” property to remove it, as in the above example.

2.11 HTML Entities
In HTML, there are some reserved characters. For example, we cannot

use the less than (<) or greater than (>) signs in our text since the browsers
might mix them with HTML tags.

To display reserved characters in HTML, we use HTML entities. The
syntax of an HTML entity looks like this:

&entity-name;

or
&#entity-number;

These are some popular HTML entities:
Result Description Entity Name Entity Number

 non-breaking space

< less than < <

> greater than > >

& ampersand & &

¢ cent ¢ ¢

£ pound £ £

¥ yen ¥ ¥

€ euro € €

© copyright © ©

® registered trademark ® ®

™ trademark ™ ™

← leftwards arrow ← ←

↑ upwards arrow ↑ ↑

→ rightwards arrow → →

↓ downwards arrow ↓ ↓

Below is an example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <footer>© 2022, Neo D. Truman</footer>
 </body>
</html>

CHAPTER 3
HTML Styles

3.1 Formatting Elements

3.1.1
We can make some text in bold by putting it inside a element as “b”

stands for “bold.” For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is your first paragraph</p>
 </body>
</html>

The text “first paragraph” will turn bold when we reload the webpage.

3.1.2 <i>
Besides, we can wrap some text that we want to be italic inside of the

<i> element as “i” stands for “italic.” For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>

 <p>This is your <i>first paragraph</i></p>
 </body>
</html>

3.1.3 <u> or <ins>
The <u> or <ins> element represents some text displayed with an

underline. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is some <u>mispeled</u> text.</p>
 </body>
</html>

3.1.4 <s> or
The <s> or element shows text that is not accurate and will be

displayed with a line through it. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p><s>These are</s>This is some text.</p>
 </body>
</html>

3.1.5 <mark>
The <mark> element defines the text that should be highlighted by

changing its background color. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is an <mark>important</mark> paragraph</p>
 </body>
</html>

3.1.6 <sub> and <sup>
The <sub> element defines subscript text which appears half a character

below the regular line and is rendered in a smaller font. For example, “1” in
“X1.”

The <sup> element defines superscript text which appears half a
character above the normal line and is rendered in a smaller font. For
example, “2” in “X2.”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is a _{subscript} text.</p>
 <p>This is a ^{superscript} text.</p>
 </body>
</html>

3.2 HTML Style Attribute
CSS declaration code can be placed in the “ style ” attribute of HTML

elements. These inline styles will be applied only to the element that declares
the “ style ” attribute. In the below example, inline styles are applied only to
the first paragraph.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p style="color: red; font-size: 26px">This is the first paragraph.</p>
 <p>This is the second paragraph.</p>
 </body>
</html>

However, inline CSS should be avoided due to these reasons:
● it pollutes the HTML code
● and it is hard to maintain

CHAPTER 4
Semantic HTML

Semantic HTML is a web document using certain HTML elements which
have a meaning or a purpose attached to them. These elements do not render
anything special in a browser since they have special meanings.

4.1 Semantic Elements

4.1.1 <blockquote>
The <blockquote> element specifies a quoted portion from another

website or source. URL of the source is defined using the “ cite ” attribute.
For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Here is a quote from Wikipedia:</p>
 <blockquote cite="https://en.wikipedia.org/wiki/HTML">The HyperText Markup Language or
HTML is the standard markup language for documents designed to be displayed in a web browser.
</blockquote>
 </body>
</html>

Besides, the <q> tag defines a short quotation, although it is not a
semantic element.

<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 </head>
 <body>
 <p>Wikipedia's goal is to: <q>Provide a free encyclopedia that anyone can edit.</q></p>
 </body>
</html>

4.1.2 <address>
To define the contact information of the author of a document or an

article, we use the <address> element. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <address>
 <p>12345 South St. Philadelphia, PA 12345</p>
 <p>
 123-456-7890

 contact@neodtruman.com
 </p>
 </address>
 </body>
</html>

4.1.3 <details> and <summary>
The <details> element is used to create a widget that users can open and

close (it is closed by default). When opened, it shows the content within.

The <summary> element is a child of <details> and defines the heading
for the details. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <details>
 <summary>HTML</summary>
 <p>HTML is the standard markup language for Web pages.</p>
 </details>
 </body>
</html>

4.1.4 <figure> and <figcaption>
A <figure> element defines a photo in the HTML documents. Besides,

we often use the <figcaption> element to add a caption for it. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <figure>

 <figcaption>Fig.1 - My apple</figcaption>
 </figure>
 </body>
</html>

4.2 Semantic Layout Elements
HTML has several semantic elements that define different portions of a

webpage. They are:
● <article> element defines independent content.
● <main> element specifies the main content of the HTML document.
● <section> element defines a section in an HTML document.
● <header> element is the top part of a web document or the top part of

some more minor elements like <section> and <article> .
● <footer> element is used to wrap content that comes at the very end

of a page, such as the copyright or at the end of <section> and
<article> .

● <aside> element represents a section of a page that consists of
content that is related to the main content.

● <nav> stands for “navigation,” and it is where we put our navigation
links.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <header>
 <nav>
 Logo

 Posts
 Contact
 Login

 </nav>
 <h1>Main Heading</h1>
 </header>

 <main>
 <section>
 <h2>Section's Heading 1</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut eget ex eget lacus luctus porta
ac ut nisi. Nunc euismod maximus faucibus. In hac habitasse platea dictumst. Sed molestie
consequat massa, non sollicitudin metus dapibus eu.</p>
 </section>

 <section>
 <h2>Section's Heading 2</h2>
 <p>In egestas dictum suscipit. Vestibulum condimentum tristique imperdiet. Quisque lacinia
eros et tempus volutpat. Morbi malesuada eleifend sapien, id tristique urna porta maximus.</p>
 </section>
 </main>

 <footer>
 <p>Copyright © 2022 by Neo D. Truman</p>
 <address>
 <p>12345 South St. Philadelphia, PA 12345</p>
 <p>
 123-456-7890

 contact@neodtruman.com
 </p>
 </address>
 </footer>
 </body>
</html>

4.3 Semantic Formatting Elements

4.3.1
Instead of using the tag, we should use the element

because it has semantic meaning. A element means a critical piece
of content that wants to stand out from the page. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>

 </head>
 <body>
 <h1>Heading 1</h1>
 <p>This is your first paragraph</p>
 </body>
</html>

4.3.2
The element emphasizes a piece of content since it stands for

“emphasize.” For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <h1>Heading 1</h1>
 <p>This is your first paragraph</p>
 </body>
</html>

CHAPTER 5
Web Forms

We use HTML forms to collect user input and send it to our server for
processing. A web form might contain many HTML input elements to collect
the user input. Each input usually has a label describing what information the
user should enter.

Below is a simple form that we usually see on web pages:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <form action="/login">
 <label for="acc-name">Username:</label>
 <input type="text" id="acc-name" name="username" />

 <label for="acc-pass">Password:</label>
 <input type="password" id="acc-pass" name="password" />

 <input type="submit" value="Log in" />
 </form>
 </body>
</html>

Result:

Enter some text into the boxes and click the “Log in” button, and you will
be redirected to the “/login” page. For example, I entered “ john ” as my
username and “ 123 ” as my password, so I have been redirected to this URL:

http://127.0.0.1:5500/login?username=john&password=123

It also means that the browser has sent an HTTP request to the web server
to retrieve the webpage at the address “http://127.0.0.1:5500/login,”
including a query string, which in this case is
“ username=john&password=123 .” In the query string, “ username ” and
“ password ” are specified by the “ name ” attributes of the <input>
elements. Finally, the server will authenticate users using this username and
password.

5.1 HTML Form Elements

5.1.1 <input> and <label>
The <input> element is used to collect user input. There are many types

of inputs, and they will be introduced in the next section.

Besides, a <label> element is often used to describe what information
the user should enter into the <input> tag. The “ for ” attribute of <label>
specifies which form element this label is bound to by using the element’s
ID. As a result, the input will get focused when the user clicks on the label.

Example:
<label for="fname">First name:</label>
<input type="text" id="fname" name="firstname" />

Result:

5.1.2 <textarea>
The <textarea> element defines a multi-line text input control.

Example:
<textarea name="comment" rows="3" cols="30"> </textarea>

Result:

Users can enter as many lines of text as they want into the element.
Moreover, they can drag and drop the bottom-right corner of the <textarea>
element to resize it.

5.1.3 <select> and <option>
The <select> element is used to create a drop-down list containing many

options. Each option is defined by using an <option> element.

Example:
<select name="car">
 <option value="volvo">Volvo</option>
 <option value="saab">Saab</option>
 <option value="mercedes">Mercedes</option>
 <option value="audi">Audi</option>
</select>

Result:

We can use the <optgroup> element to group related options in a
<select> element like this. The “ label ” attribute of <optgroup> will be
rendered in the drop-down list to clarify the groups.

Example:
<select name="car">
 <optgroup label="Swedish Cars">
 <option value="volvo">Volvo</option>
 <option value="saab">Saab</option>
 </optgroup>
 <optgroup label="German Cars">
 <option value="mercedes">Mercedes</option>
 <option value="audi">Audi</option>
 </optgroup>
</select>

Result:

5.1.4 <button>
The <button> element defines a clickable button. The button’s text is

placed between the opening and closing tags. When a user clicks a <button>
element inside a form (<form>), all form values will be submitted to the
server.

Example:
<button>Submit</button>

Result:

The “ onclick ” attribute can specify which JavaScript code will be
executed when the user clicks the button, but it is optional. After executing
the JS code, the form values will be submitted to the server. For example:

<button onclick="alert('Hi')">Submit</button>

5.1.5 <fieldset> and <legend>
The <fieldset> element is used to group related elements in a form. It

could have a <legend> tag inside to define a caption for the group of
elements.

Example:
<fieldset>
 <legend>Profile:</legend>
 <label for="fname">First name:</label>
 <input type="text" id="fname" name="fname" />

 <label for="lname">Last name:</label>
 <input type="text" id="lname" name="lname" />

 <label for="email">Email:</label>
 <input type="email" id="email" name="email" />
</fieldset>

Result:

5.1.6 <datalist>
The <datalist> element specifies a list of pre-defined options for an

<input> element.

Example:
<datalist id="car-list">
 <option value="Volvo"></option>
 <option value="Saab"></option>
 <option value="Mercedes"></option>
 <option value="Audi"></option>
</datalist>
<input type="text" name="car" list="car-list" />

Result:

5.2 HTML Input Types

5.2.1 Buttons

5.2.1.1 button

The <input type="button"> element is a clickable button. Its “ value ”
attribute is used to set the button’s text.

This input type needs the “ onclick ” attribute to specify which JavaScript
code will be executed when the user clicks the button. Without the attribute,
this input type will do nothing when the user clicks it.

Example:
<input type="button" value="Click me" onclick="alert('Hi')" />

Result:

5.2.1.2 submit

The <input type="submit"> element is a submit button that submits all
form values to the server. Its “ value ” attribute is used to set the button’s
text, but it is optional since its default value is “ Submit .”

Example:
<input type="submit" />

Result:

5.2.1.3 reset

The <input type="reset"> element is a reset button that resets all form
values to their initial values. Its “ value ” attribute is used to set the button’s
text, but it is optional since its default value is “ Reset .”

Example:

<input type="reset" />

Result:

5.2.1.4 image

The <input type="image"> element is an image used as a submit button.
This special button also submits the coordinates where the user clicks on the
button, for example:

http://127.0.0.1:5500/login?firstname=John&x=36&y=25

Example: (please prepare the “ btn-submit.jpg ” image by yourself)
<input type="image" src="btn-submit.jpg" alt="Submit" width="50" height="50" />

5.2.2 Texts

5.2.2.1 text

The <input type="text"> defines a single-line text field.

Example:
<input type="text" name="firstname" />

When we type “John” into the input field, we will see this:

5.2.2.2 password

The <input type="password"> defines a password field.

Example:
<input type="password" name="password" />

When we type “ 12345678 ,” into the input field, we will see this:

The input’s value is still “ 12345678 ” but the browser hides it since this
input is a password field.

5.2.2.3 email

The <input type="email"> defines a field for an email address.

Example:
<input type="email" name="email" />

This email input differs from the text input since it has a simple email
validation. When a user clicks the submit button, the browser will validate
the user input whether is a valid email or not. For example:

5.2.2.4 url

The <input type="url"> defines a field for entering a URL.

Example:
<input type="url" name="yourSite" />

This URL input differs from the text input since it has a simple URL
validation. When a user clicks the submit button, the browser will validate
user input whether it is a valid URL or not. For example:

5.2.2.5 hidden

The <input type="hidden"> defines a hidden input field. Although it is
not displayed on the webpage, its value will be submitted to the web server
when the user clicks the submit button.

Example:
<input type="hidden" name="userId" value="123" />

5.2.3 Numbers

5.2.3.1 number

The <input type="number"> defines a field for entering a number, so the
user can only enter numbers.

The “ min ” and “ max ” attributes are optional. We use them to tell the
browser to validate user input before submitting it to the server.

Example:
<input type="number" name="quantity" min="1" max="9" />

Result:

5.2.3.2 range

The <input type="range"> defines a control for selecting a number via
slider control.

Example:
<input type="range" name="points" min="0" max="10" />

Result:

5.2.4 Options

5.2.4.1 checkbox

The <input type="checkbox"> elements support selecting one or more
options.

Example:
<input type="checkbox" id="book" name="book" value="Book" />
<label for="book"> I have a book</label>

<input type="checkbox" id="pen" name="pen" value="Pen" />
<label for="pen"> I have a pen</label>

Result:

We can select none, one, or both options in the above example.

5.2.4.2 radio

The <input type="radio"> are radio buttons usually presented in several
related options. Only one radio button in a group can be selected
simultaneously.

So, in this example, we can select only one option:
<input type="radio" id="book" name="schoolThing" value="Book" />
<label for="book"> A book</label>

<input type="radio" id="pen" name="schoolThing" value="Pen" />
<label for="pen"> A pen</label>

Result:

5.2.5 Files

The <input type="file"> element defines a file-select field and a “Choose
File” button for file uploads.

Example:
<input type="file" name="bgimage" />

Result:

5.2.6 Date and Time

5.2.6.1 date

The <input type="date"> element defines a date picker.

Example:
<input type="date" name="birthday" />

Result:

5.2.6.2 time

The <input type="time"> element defines a time picker.

Example:
<input type="time" name="alarmTime" />

Result:

5.2.6.3 datetime-local

The <input type="datetime-local"> element defines a date-time picker.

Example:
<input type="datetime-local" name="alarmDateTime" />

Result:

5.2.7 Colors
The <input type="color"> element defines a color picker.

Example:
<input type="color" name="bgcolor" />

Result:

5.3 HTML Input Attributes

5.3.1 name
The most important attribute of an HTML form element is “ name ” since

it will be used as a parameter in the query string, which will be sent to the
web server when the user submits the form. We have already known how it
works at the beginning of this chapter.

5.3.2 value
The “ value ” attribute defines an initial value for an input element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <form action="/login">
 <label for="fname">First name:</label>
 <input type="text" id="fname" name="firstname" value="John" />
 </form>
 </body>
</html>

Result:

5.3.3 placeholder
The “ placeholder ” attribute specifies a short hint describing an input

element’s expected value. The hint will be replaced with user input as they
type.

This attribute works with <input> (input types: text, password, email ,
and url) and <textarea> .

Example:
<input type="text" name="firstname" placeholder="Your first name here" />

Result:

5.3.4 readonly
The “ readonly ” attribute is used to make an element un-editable.

 Although the element cannot be edited, its value will be
submitted to the server when the user clicks the submit
button.

Example:
<input type="text" name="firstname" value="John" readonly />

5.3.5 disabled
The “ disabled ” attribute makes an element unusable and un-clickable.

This attribute can be applied to these elements: <input>, <button>,
<textarea>, <select>, <option>, <optgroup> , and <fieldset> .

 Values of disabled elements will not be submitted to the
server when the user clicks the submit button.

Example:
<input type="text" name="firstname" value="John" disabled />

<input type="submit" disabled />

Result:

5.3.6 size
The “ size ” attribute specifies the width of an <input> element in

characters. For <select> elements, the “ size ” attribute specifies the number
of visible options in its drop-down list.

Example:
<input type="text" name="firstname" size="6" />

<select name="car" size="2">
 <option value="volvo">Volvo</option>
 <option value="saab">Saab</option>
 <option value="mercedes">Mercedes</option>
 <option value="audi">Audi</option>
</select>

Result:

5.3.7 multiple
The “ multiple ” attributes specify that users can enter more than one

value in the <input> (input types: email and file) or <select> elements.

Example:
<select name="cars" multiple>
 <option value="volvo">Volvo</option>
 <option value="saab">Saab</option>
 <option value="mercedes">Mercedes</option>
 <option value="audi">Audi</option>
</select>

Result:

5.3.8 step
The “ step ” attribute specifies the interval between legal numbers in an

<input> element. For example, if the step is 2, valid numbers could be -2, 0,
2, 4, 6, etc. This attribute is often applied to this input type: number .

Example:
<input type="number" name="points" step="2" />

Result:

5.3.9 width and height
The width and height attributes are used to set the size (in pixels) of

these elements: , <input type="image">, <video>, <canvas> , and
<iframe> .

Example:
<iframe src="https://www.amazon.com/dp/B09VFLS7TF" width="800" height="600"></iframe>

5.3.10 autofocus
The autofocus attribute specifies that an element should get focused

when the page loads. This attribute can be applied to these elements:
<input>, <textarea>, <select> , and <button> .

Example:
<input type="text" name="fname" autofocus />

5.3.11 autocomplete
The autocomplete attribute allows the browsers to:
● predict the value when users start typing into an input field
● and display options to fill in the field based on earlier user input.

It works with <form> and these input types: text, password, email , and
url .

Example:
<input type="text" name="fname" autocomplete />

5.4 Form Validation

5.4.1 minlength
The minlength attribute specifies the minimum number of characters

required in an input field. This attribute works with <input> (input types:
text, password, email , and url) and <textarea> .

Example:
<input type="text" name="username" minlength="6" />

Result:

5.4.2 maxlength
The maxlength attribute specifies the maximum number of characters

allowed in an input field. This attribute works with <input> (input types:
text, password, email , and url) and <textarea> .

Example:
<input type="text" name="username" maxlength="6" />

In the above example, users cannot enter the 7th character into the input.

5.4.3 min and max
The min attribute specifies the minimum value of <input> and

<meter> elements. On the other hand, the max attribute specifies the
maximum value of those elements.

The attributes work with these input types: number, range, date, time ,
and datetime-local .

Example:
<input type="number" name="quantity" min="1" max="8" />

5.4.4 required
The required attribute specifies that an input field must be entered as a

value before submitting the form. This attribute works with these elements:
<input>, <textarea> , and <select> .

 The Safari browser does not support the required attribute.

Example:
<input type="text" name="fname" required />

Result:

5.4.5 pattern
The pattern attribute specifies a regular expression that the element's

value will be checked against on form submission. This attribute works with
these input types: text, password, email , and url .

The “ title ” attribute of the input will be used as a hint when validation
fails.

 The Safari browser does not support the pattern attribute.

Example:
<input type="text" name="code" pattern="[A-Za-z]{3}" title="Three letter code." />

Result:

5.4.6 Styles for The Invalid Inputs
Some CSS pseudo-classes help us highlight the invalid inputs before

submitting the form.
● “ :invalid ” is used to select form elements if their values are not legal

according to the element's settings.
● “ :required ” is used to select required form elements.
● “ :out-of-range ” is used to select form elements with a value outside a

specified range according to the min and max attributes.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 p {
 margin-bottom: 6px;
 }
 input:invalid {
 background-color: lightpink;
 }
 input:invalid:required {
 background-color: lightgreen;
 }
 input:out-of-range {
 background-color: lightblue;
 }
 </style>
 </head>
 <body>
 <form action="">
 <p>This text input is required:</p>
 <input type="text" name="fname" required />

 <p>This number input must be in the range of 1 - 6:</p>
 <input type="number" name="quantity" min="1" max="6" />

 <p>This text input must be a three-letter code:</p>
 <input type="text" name="code" pattern="[A-Za-z]{3}" title="Three letter code." />
 </form>
 </body>
</html>

Result:

CHAPTER 6
HTML Multimedia

6.1 Audio
We use the <audio> elements to embed audio files into our webpage.

These are supported audio formats: MP3, WAV, and OGG but MP3 is
recommended since almost browsers support it.

Attributes of the <audio> element:
● controls - shows the control panel (play/pause, timeline, and volume)
● autoplay - plays the audio right after the page loaded
● muted – no sound mode
● loop - auto play the audio again when playing done
● preload - the audio file should be loaded when the page loads. The

preload attribute is ignored if autoplay is present
● src - specifies the location (URL) of the audio file

Instead of using the “ src ” attribute, <audio> could have some
<source> elements as its children to specify the audio files. Then, browsers
will choose the best audio source they can handle and play it.

Example 1:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <audio controls autoplay loop>
 <source src="my-music.ogg" type="audio/ogg" />
 <source src="my-music.mp3" type="audio/mpeg" />
 This browser does not support the audio element.

 </audio>
 </body>
</html>

Example 2:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <audio controls autoplay loop src="my-music.mp3"></audio>
 </body>
</html>

Result:

6.2 Video
We use the <video> elements to embedded video files into our webpage.

These are supported video formats: MP4, WebM, and Ogg, but MP4 is
recommended since almost browsers support it.

Attributes of the <video> element:
● controls - shows the control panel (play/pause, timeline, and volume)
● autoplay - plays the audio right after the page loaded
● muted – no sound mode
● loop - auto play the audio again when playing done
● preload - the audio file should be loaded when the page loads. The

preload attribute is ignored if autoplay is present
● src - specifies the location (URL) of the audio file.
● width - width of the video player
● height - height of the video player

Instead of using the “ src ” attribute, <video> could have some
<source> elements as its children to specify the video files. Then, browsers
will choose the best video source they can handle and play it.

Example 1:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <video src="my-video.mp4" controls autoplay loop></video>
 </body>
</html>

Example 2:
<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 </head>
 <body>
 <video width="320" height="240" autoplay>
 <source src="my-video.mp4" type="video/mp4" />
 <source src="my-video.ogg" type="video/ogg" />
 This browser does not support the video element.
 </video>
 </body>
</html>

CHAPTER 7
HTML Graphics

7.1 SVG Graphics
SVG stands for Scalable Vector Graphics and defines graphics for the

web. SVG images are zoomed or resized without losing quality, often used as
icons on web pages. Moreover, SVG files are pure XML, so they can be
compressed before transferring via the internet.

We use <svg> element to define an SVG image. The “ width ” and
“ height ” attributes determine the image’s width and height. This element
often has several children elements to define/draw the picture, like the below
example having a <line> element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <svg width="100" height="100">
 <line x1="0" y1="0" x2="100" y2="50" stroke="red" stroke-width="2" />
 </svg>
 </body>
</html>

7.1.1 SVG Rectangle
We use the <rect> element to draw a rectangle in an SVG image or a

<svg> tag. Its top-left corner will be at point (x, y), and its width and height
are defined by the “ width ” and “ height ” attributes.

In the case of a shape like this, we use the “ fill ” attribute to specify its
filled color. On the other hand, if we need only the outline, we can set
“ none ” to the “ fill ” attribute.

Example:
<svg width="100" height="100">
 <rect x="10" y="10" width="80" height="60" stroke="red" stroke-width="2" fill="yellow" />
</svg>

Result:

We can draw a rounded rectangle using the “ rx ,” and “ ry ” attributes
like this.

<svg width="100" height="100">
 <rect x="10" y="10" width="80" height="60" rx="8" ry="8" stroke="red" stroke-width="2"
fill="yellow" />
</svg>

Result:

7.1.2 SVG Circle
We use the <circle> element to draw a circle in an SVG image or a

<svg> tag. Its center will be at point (cx, cy), and the “ r ” attribute defines
its radius.

Example:
<svg width="100" height="100">
 <circle cx="50" cy="50" r="40" stroke="red" stroke-width="2" fill="yellow" />
</svg>

Result:

7.1.3 SVG Ellipse
We use the <ellipse> element to draw an ellipse in an SVG image or a

<svg> tag. Its center will be at point (cx, cy), and the “ rx ” attribute defines
its horizontal radius; the “ ry ” attribute defines its vertical radius.

Example:
<svg width="100" height="100">
 <ellipse cx="50" cy="50" rx="40" ry="20" fill="yellow" stroke="red" stroke-width="2" />
</svg>

Result:

7.1.4 SVG Line
We use the <line> element to draw a line in an SVG image or a <svg>

tag. The line will start from a point (x1, y1) and be drawn to a point (x2,
y2). Finally, we must specify the stroke color using the “ stroke ” attribute;
nothing will be drawn without it!

Example:
<svg width="100" height="100">
 <line x1="0" y1="0" x2="100" y2="50" stroke="red" stroke-width="2" />
</svg>

Result:

7.1.5 SVG Polyline
We use the <polyline> element to draw a shape that consists of many

connected straight lines in an SVG image or a <svg> tag. Its “ points ”
attribute defines a list of points (x, y coordinates) required to draw the
polyline.

Example:
<svg width="100" height="100">
 <polyline points="50,0 100,50 50,100 0,50" fill="none" stroke="red" stroke-width="2" />
</svg>

Result:

7.1.6 SVG Polygon

The <polygon> element works like an auto “closed” <polyline> . It
means that a line will automatically connect the final point to the first point.

Example:
<svg width="100" height="100">
 <polygon points="50,0 100,50 50,100 0,50" fill="white" stroke="red" stroke-width="2" />
</svg>

Result:

7.1.7 SVG Path
The <path> element defines a path of lines and curves. Path data, the

“ d ” attribute can use these commands to describe a path:
● M = move the pen to
● L = draw a line to
● H = draw a horizontal line to
● V = draw a vertical line to
● C = draw a curve to
● S = draw a smooth curve to
● Q = draw a quadratic Bézier curve
● T = draw a smooth quadratic Bézier curve to
● A = draw an elliptical Arc
● Z = draw a line to close the path

The capital letter means positioned to the point (0,0), and lower-case
letter means relatively positioned to the previous point in the path.

Example:
<svg height="100" width="100">

 <path d="M50 0 L25 80 l50 0 Z" fill="none" stroke="red" stroke-width="2" />
</svg>

Result:

Explanation:
● M50 0 - move the pen to point P1(x1, y1) = (50, 0)
● L25 80 - draw a line from the previous point (P1) to the point

P2(x2, y2) = (25, 80)
● l50 0 - draw a line from the previous point (P2) to the point P3(x2

+ 50, y2 + 0) = (25 + 50, 80 + 0) = (75, 80)
● Z – draw a line from the previous point (P3) to the first point (P1)

7.1.8 SVG Text
The <text> element defines a text.

Example:
<svg height="100" width="200">
 <text x="0" y="20" fill="red">This is a line of text.</text>
</svg>

The <text> element can handle a group of <tspan> elements. Each
<tspan> element works similarly to <text> .

Example:
<svg height="100" width="200">
 <text x="0" y="20" fill="red">
 This is a line of text.
 <tspan x="10" y="50" fill="blue">This is the second line.</tspan>
 <tspan x="20" y="80">This is the third line.</tspan>
 </text>
</svg>

Moreover, we can transform the text using the “ transform ” attribute like
this.

<svg height="100" width="200">
 <text x="20" y="20" fill="red" transform="rotate(30)">This is a line of text.</text>
</svg>

7.1.9 SVG Link
We use an <a> element to “draw” a hyperlink in an SVG image. The

link text is defined by using a <text> element.

Example:
<svg height="100" width="200" xmlns:xlink="http://www.w3.org/1999/xlink">
 <a xlink:href="https://www.amazon.com/dp/B09VFLS7TF" target="_blank">
 <text x="0" y="20" fill="blue">This is a link</text>

</svg>

7.1.10 SVG Stroke
The below stroke properties can be applied to text, lines, and outlines of

shapes (rectangles, circles, etc.)

7.1.10.1 Stroke Color

We use the “ stroke ” attribute to define the color of a stroke.

Example:
<svg width="100" height="100">
 <line x1="0" y1="0" x2="100" y2="50" stroke="red" stroke-width="2" />
</svg>

Result:

7.1.10.2 Stroke Width

We use the “ stroke-width ” attribute to define the thickness of a stroke
like the above example.

7.1.10.3 Stroke Ending

We use the “ stroke-linecap ” attribute to define the type of endings of an
open path. It can have one of these values:

● butt - no endings (default value)
● square - defines square endings
● round - defines round endings

Example:
<svg width="100" height="100">
 <line x1="10" y1="10" x2="90" y2="10" stroke="red" stroke-width="6" />
 <line x1="10" y1="30" x2="90" y2="30" stroke="red" stroke-width="6" stroke-linecap="butt" />
 <line x1="10" y1="50" x2="90" y2="50" stroke="red" stroke-width="6" stroke-linecap="square"
/>
 <line x1="10" y1="70" x2="90" y2="70" stroke="red" stroke-width="6" stroke-linecap="round"

/>
</svg>

Result:

In the above example, square and round endings make the line longer than
its actual length, more than 80px.

7.1.10.4 Dash Stroke

We use the “ stroke-dasharray ” attribute to create dashed lines. The odd
items in the dash array will be used to draw the line segments, and the even
items specify the spaces between them.

Example:
<svg width="300" height="100">
 <line x1="0" y1="10" x2="300" y2="10" stroke="red" stroke-width="2" stroke-
dasharray="10,5,20" />
</svg>

Result:

Explanation:
● 10 was used to draw the 1st line segment

● 5 was used to make the 1st space

● 20 was used to draw the 2nd line segment

since the line is 300px in length, it continues to use the dash array to draw
the rest

● 10 was used to make the 2nd space

● 5 was used to draw the 3rd line segment

● 20 was used to make the 3rd space

and
● 10 was used to draw the 4th line segment

● 5 was used to make the 4th space

● 20 was used to draw the 5th line segment

and so on.

7.1.11 SVG Gradients

7.1.11.1 Linear Gradient

The <linearGradient> element defines a linear gradient for filling a
shape in an SVG image. It is placed within a <defs> tag (short for
“definitions” since the tag can contain many definitions). The gradient is
composed of two or more colors. Each color is defined with a <stop> nested
within the <linearGradient> tag.

Finally, the (x1,y1) and (x2,y2) attributes of the <linearGradient>
element define the start and end position of the gradient. Thus,

● if x1 and x2 are different and y1 and y2 are equal, the gradient is
horizontal

● if x1 and x2 are equal and y1 and y2 are different, the gradient is
vertical

● if x1 and x2 are different and y1 and y2 are different, the gradient is
vertical

Example 1:
<svg height="100" width="200">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="100%" y2="0%">
 <stop offset="0%" stop-color="yellow" />
 <stop offset="50%" stop-color="green" />
 <stop offset="100%" stop-color="red" />
 </linearGradient>
 </defs>
 <rect x="0" y="0" width="200" height="100" fill="url(#grad)" />
</svg>

Result:

Example 2:
<svg height="100" width="200">
 <defs>
 <linearGradient id="grad" x1="0%" y1="0%" x2="100%" y2="100%">
 <stop offset="0%" stop-color="yellow" />
 <stop offset="50%" stop-color="green" />
 <stop offset="100%" stop-color="red" />
 </linearGradient>
 </defs>
 <rect x="0" y="0" width="200" height="100" fill="url(#grad)" />
</svg>

Result:

7.1.11.2 Radial Gradient

The <radialGradient> element defines a radial gradient for filling a
shape in an SVG image. It is placed within a <defs> tag (short for
“definitions” since the tag can contain many definitions). The gradient is
composed of two or more colors. Each color is defined with a <stop> nested
within the <linearGradient> tag.

Finally, the (cx,cy) is the center, and r is the radius of the outermost
circle; the (fx,fy) is the center of the innermost circle.

Example:
<svg height="100" width="200">
 <defs>

 <radialGradient id="grad" cx="50%" cy="50%" r="50%" fx="30%" fy="30%">
 <stop offset="0%" stop-color="yellow" />
 <stop offset="50%" stop-color="green" />
 <stop offset="100%" stop-color="red" />
 </radialGradient>
 </defs>
 <rect x="0" y="0" width="200" height="100" fill="url(#grad)" />
</svg>

Result:

7.1.12 SVG Filters
The <filter> element defines an SVG filter. There are many filters

available in SVG, but we will only examine the Gaussian Blur, the
<feGaussianBlur> element, in the example below.

The “ stdDeviation ” attribute of <feGaussianBlur> defines the amount
of the blur, and the in="SourceGraphic" specifies that the effect is for the
entire element.

Example:
<svg height="100" width="200">
 <defs>
 <filter id="my-filter">
 <feGaussianBlur in="SourceGraphic" stdDeviation="30" />
 </filter>
 </defs>
 <rect x="0" y="0" width="200" height="100" fill="green" filter="url(#my-filter)" />
</svg>

Result:

7.2 Canvas
The <canvas> element is used to draw graphics on a webpage via

JavaScript. Therefore, it always has an “ id ” attribute to be later referred to
by JavaScript code. Besides, the “ width ” and “ height ” attributes define the
canvas size.

By default, the canvas has no border and a transparent background so that
we can place it in front of another element, such as a video, and draw
rectangles to mark things like cars on the road, for example.

Example:
<canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This browser
does not support the canvas tag. </canvas>

Result:

7.2.1 Draw Text
To draw something, first, we must get the canvas element from our

HTML document like this.
var c = document.getElementById("my-canvas");

Then, we need to get a drawing object from the canvas.
var ctx = c.getContext("2d");

Finally, we use the drawing object to draw text on our canvas using the
fillText() method. We can also set a font for the text using the “ font ”
property.

Example:
<!DOCTYPE html>

<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");
 ctx.font = "20px Arial";
 ctx.fillText("Neo D. Truman", 10, 50);
 </script>
 </body>
</html>

Result:

7.2.2 Draw Lines
We also get the drawing object from our canvas to draw a line. Then use

these three methods to draw it:
● moveTo(x, y) - move pen to the point (x,y)
● lineTo(x, y) - draw a line from current position to the point (x,y)
● stroke() - invoke the drawing

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");
 ctx.moveTo(0, 0);
 ctx.lineTo(200, 100);
 ctx.stroke();
 </script>
 </body>
</html>

Result:

7.2.3 Draw Circles
We also get the drawing object from our canvas to draw a circle. Then use

these two methods to draw it:
● arc(x,y,r,startangle,endangle) - draw an arc with the center point at

(x,y) , and the radius is r , from start angle to end angle
● stroke() - invoke the drawing

Since we want to draw a circle, the start angle is set to 0 and the end angle
to 2*PI.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");

 var ctx = c.getContext("2d");
 ctx.arc(95, 50, 40, 0, 2 * Math.PI);
 ctx.stroke();
 </script>
 </body>
</html>

Result:

7.2.4 Draw Rectangles
We also get the drawing object from our canvas to draw a rectangle. Then

use these two methods to draw it:
● rect(x,y,width,height) - draw a rectangle with the top-left corner at

point (x,y) and width and height as specified
● stroke() - invoke the drawing

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");
 ctx.rect(20, 20, 160, 60);
 ctx.stroke();
 </script>
 </body>
</html>

Result:

7.2.5 Draw Gradients

7.2.5.1 Linear Gradient

We use the createLinearGradient(x1,y1,x2,y2) method to create a linear

gradient where (x1,y1) and (x2,y2) define the start and end position of the
gradient. Besides, the addColorStop() method specifies a color stop along
the gradient; its value can be anywhere between 0 to 1.

Finally, we use the “ fillStyle ” property to specify the gradient to be filled
in the shape.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");

 // Create gradient
 var grd = ctx.createLinearGradient(0, 0, 200, 0);
 grd.addColorStop(0, "red");
 grd.addColorStop(1, "yellow");
 // Fill with gradient
 ctx.fillStyle = grd;

 // Draw a filled rect
 ctx.fillRect(20, 20, 160, 60);
 </script>
 </body>
</html>

Result:

7.2.5.2 Radial Gradient

We use the createRadialGradient(x1,y1,r1,x2,y2,r2) method to create a
radial gradient where (x1,y1) is the center and r1 is the radius of the
innermost circle; the (x2,y2) is the center, and r2 is the radius of the
outermost circle. Besides, the addColorStop() method specifies a color stop
along the gradient; its value can be anywhere between 0 to 1.

Finally, we use the “ fillStyle ” property to specify the gradient to be filled
in the shape.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid #ccc"> This
browser does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");

 // Create gradient
 var grd = ctx.createRadialGradient(60, 60, 10, 95, 50, 70);
 grd.addColorStop(0, "red");
 grd.addColorStop(1, "yellow");
 // Fill with gradient
 ctx.fillStyle = grd;

 // Draw a filled rect
 ctx.fillRect(0, 0, 200, 100);
 </script>
 </body>
</html>

Result:

7.2.6 Draw Images
We use the drawImage(image,x,y,width,height) method to draw an

image on canvas at the point (x,y) . If width and height parameters are not
specified, the intrinsic size of the image will be used.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <canvas id="my-canvas" width="200" height="100" style="border: 1px solid red"> This browser
does not support the canvas tag. </canvas>

 <script>
 var c = document.getElementById("my-canvas");
 var ctx = c.getContext("2d");

 const image = new Image();
 // Set a callback function when the image has been loaded
 image.onload = drawMyImage;

 // Load an image of intrinsic size 150x150 in pixels
 image.src = "my-img.jpg";

 function drawMyImage() {
 // At point (50,0), draw the image at its intrinsic size 150x150
 ctx.drawImage(this, 50, 0);

 // At point (0,0), draw the image at the size 80x80
 ctx.drawImage(this, 0, 0, 80, 80);
 }
 </script>
 </body>
</html>

Result:

CHAPTER 8
HTML Advanced

8.1 Data URIs
Data URI (Uniform Resource Identifier) supports including inline data in

web pages as if they were external resources. Below is the syntax of a data
URI:

data:[<media type>][;base64],<data>

Where:
● <media type> - (optional) is a MIME type string having this format:

type/subtype;parameter=value . For example, if it is omitted, the
default value is “ text/plain;charset=US-ASCII ”

● ;base64 - (optional) specifies that the data is base64-encoded binary
data, so it is used with media types like images.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <textarea name="input" cols="30">Change this text and click the download link</textarea>

 Download Text

 <script type="text/javascript">
 var input = document.querySelector("textarea[name = 'input']");
 var download = document.querySelector("a[download]");

 // Listen for input changes so that we can update the HREF
 // attribute of the download link to contain the proper Data URI

 input.addEventListener("input", updateDownloadHref, false);

 // Initialize the download link
 updateDownloadHref();

 function updateDownloadHref() {
 var text = input.value;
 // Build the Data URI
 download.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
 }
 </script>
 </body>
</html>

Result:

8.2 Block Elements
Block elements occupy 100% of the parent element’s width, regardless of

content. Therefore, they are stacked vertically by default.

These elements could have more space than their contents by using these
CSS properties: width, height, padding, and margin .

These are HTML block elements: body, header, nav, main, section,
footer, h1-h6, p, div, ul, ol, li, pre, blockquote, address, details, figure,
fieldset , etc.

We can change other types of elements to block elements using this CSS
declaration:

display: block

8.3 Inline Elements
Inline elements only occupy the space necessary for their contents so that

they will not cause any line breaks. Therefore, they could not use these CSS
properties: width, height, padding-top, padding-bottom, margin-top, margin-
bottom .

These are HTML inline elements: formatting elements (b, strong, i, em,
mark, etc.), label, a, span, code, img, button , etc.

We can change other types of elements to inline elements using this CSS
declaration:

display: inline

8.4 Inline-block Elements
The inline-block elements have both characteristics of inline and block

elements. They only occupy the space necessary for their contents so that
they will not cause any line breaks. However, they could have more space
than their contents by using these CSS properties: width, height, padding,
and margin .

These are HTML inline-block elements: button, input, textarea, select,
progress, meter, iframe, img, svg, canvas, audio, video , etc.

We can change other types of elements to inline-block elements using this
CSS declaration:

display: inline-block

CHAPTER 9
HTML Events

HTML can let events trigger actions in a browser, like invoking a JavaScript
function when users click on an element.

9.1 Window Events

9.1.1 onload
The “ onload ” attribute fired when the browser finished loading a

webpage. We usually handle the “ onload ” event on these elements: <body>,
<iframe>, , <link> , and <script> .

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <script>
 function eventHandler() {
 alert("Page is loaded");
 }
 </script>
 </head>
 <body onload="eventHandler()">
 <h1>This is a heading</h1>
 </body>
</html>

9.1.2 onresize
The “ onresize ” attribute fires when the browser window is resized.

Example:

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <script>
 function eventHandler() {
 alert("You have changed the size of your browser window!");
 }
 </script>
 </head>
 <body onresize="eventHandler()">
 <h1>This is a heading</h1>
 </body>
</html>

9.2 Form Events

9.2.1 onfocus
The “ onfocus ” attribute fires when the element gets focused.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 First name: <input type="text" onfocus="eventHandler(this)" />

 <script>
 function eventHandler(input) {
 input.style.background = "yellow";
 }
 </script>
 </body>
</html>

9.2.2 onblur
The “ onblur ” attribute fires when the element loses focus.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 Enter your name: <input type="text" id="fname" onblur="eventHandler()" />

 <script>
 function eventHandler() {
 var x = document.getElementById("fname");
 alert("Hi " + x.value);
 }

 </script>
 </body>
</html>

9.2.3 onchange
The “ onchange ” attribute fires when the element’s value has been

changed. Supported HTML tags: <input type="checkbox">, <input
type="file">, <input type="password">, <input type="radio">, <input
type="range">, <input type="text">, <select> and <textarea> .

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <select id="my-select" onchange="eventHandler()">
 <option value="Audi">Audi</option>
 <option value="BMW">BMW</option>
 <option value="Mercedes">Mercedes</option>
 <option value="Volvo">Volvo</option>
 </select>

 <script>
 function eventHandler() {
 var x = document.getElementById("my-select").value;
 alert("You selected: " + x);
 }
 </script>
 </body>
</html>

9.2.4 oninput
The “ oninput ” attribute fires when an element gets user input.

Example:
<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 </head>
 <body>
 <p>Write some text into the box!</p>

 <input type="text" id="my-input" oninput="eventHandler()" />

 <p id="output"></p>

 <script>
 function eventHandler() {
 var x = document.getElementById("my-input").value;
 document.getElementById("output").innerHTML = "You wrote: " + x;
 }
 </script>
 </body>
</html>

9.3 Keyboard Events

9.3.1 onkeydown
The “ onkeydown ” attribute fires when users press a key on the

keyboard.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>A function is triggered when the user presses a key in the input field.</p>

 <input type="text" onkeydown="eventHandler()" />

 <script>
 function eventHandler() {
 alert("You pressed a key inside the input field");
 }
 </script>
 </body>
</html>

9.3.2 onkeyup
The “ onkeyup ” attribute fires when the users release a key on the

keyboard.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>A function is triggered when the user releases a key in the input field. This function
transforms the character to upper case.</p>

 Enter your name: <input type="text" id="fname" onkeyup="eventHandler()" />

 <script>
 function eventHandler() {
 var x = document.getElementById("fname");
 x.value = x.value.toUpperCase();
 }
 </script>
 </body>
</html>

9.3.3 onkeypress
The “ onkeypress ” attribute fires when users press a key on the keyboard.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>A function is triggered when the user presses a key in the input field.</p>

 <input type="text" onkeypress="eventHandler()" />

 <script>
 function eventHandler() {
 alert("You pressed a key inside the input field");
 }
 </script>
 </body>
</html>

9.4 Mouse Events

9.4.1 onclick
The “ onclick ” attribute fires on a mouse click on the element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <button onclick="eventHandler()">Click me</button>

 <script>
 function eventHandler() {
 alert("You clicked the button");
 }
 </script>
 </body>
</html>

9.4.2 ondblclick
The “ ondblclick ” attribute fires on a mouse double-click on the element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <button ondblclick="eventHandler()">Click me</button>

 <script>
 function eventHandler() {
 alert("You double-clicked the button");
 }
 </script>
 </body>
</html>

9.4.3 onmousemove
The “ onmousemove ” attribute fires when the pointer is moving while it

is over an element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p onmousemove="enlarge(this)">The function enlarge() is triggered when the user mouse
pointer is moved over the paragraph. This function will enlarge the font size.</p>

 <script>
 function enlarge(x) {
 var oldFontSize = x.style["font-size"];
 if (!oldFontSize) {
 oldFontSize = 16;
 } else {
 oldFontSize = parseFloat(oldFontSize.replace("px", ""));
 }

 x.style["font-size"] = oldFontSize + 0.1 + "px";
 }
 </script>
 </body>
</html>

9.4.4 onmousedown and onmouseup
The “ onmousedown ” attribute fires when a mouse button is pressed on

the element. On the other hand, the “ onmouseup ” attribute fires when a
mouse button is released over the element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p id="p1" onmousedown="mouseDown()" onmouseup="mouseUp()">
 Click this text!

 The mouseDown() function is triggered when the mouse button is pressed over this paragraph.
The function sets the color of the text to red.

 The mouseUp() function is triggered when the mouse button is released while over the
paragraph. The function sets the color of the text to blue.
 </p>

 <script>
 function mouseDown() {
 document.getElementById("p1").style.color = "red";
 }

 function mouseUp() {
 document.getElementById("p1").style.color = "blue";
 }
 </script>
 </body>
</html>

9.4.5 onmouseover and onmouseout
The “ onmouseover ” attribute fires when the mouse pointer moves over

an element. On the other hand, the “ onmouseout ” attribute fires when the
mouse pointer moves out of an element.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p onmouseover="increaseFontSize(this)" onmouseout="decreaseFontSize(this)">
 When the user mouse over the paragraph, its font size will be 32px.

 When the mouse pointer is moved out of it, the font size will be 20px.
 </p>

 <script>
 function increaseFontSize(x) {
 x.style["font-size"] = "32px";
 }

 function decreaseFontSize(x) {
 x.style["font-size"] = "20px";
 }
 </script>
 </body>
</html>

9.5 Clipboard Events

9.5.1 oncopy
The “ oncopy ” attribute fires when the user copies the content of an

element. There are two ways to copy the content:
● Press CTRL + C
● Right-click to display the context menu and select the "Copy"

command

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <input type="text" oncopy="eventHandler()" value="Try to copy this text" />

 <script>
 function eventHandler() {
 alert("You copied the text.");
 }
 </script>
 </body>
</html>

9.5.2 oncut
The “ oncut ” attribute fires when the user cuts the content of an element.

There are two ways to cut the content:
● Press CTRL + X
● Right-click to display the context menu and select the "Cut" command

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <input type="text" oncut="eventHandler()" value="Try to cut this text" />

 <script>
 function eventHandler() {
 alert("You cut the text.");
 }
 </script>
 </body>
</html>

9.5.3 onpaste
The “ onpaste ” attribute fires when the user pastes some content in an

element. There are two ways to paste some content into an element:
● Press CTRL + V
● Right-click to display the context menu and select the "Paste"

command

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <input type="text" onpaste="eventHandler()" value="Try to paste text in here" size="40" />

 <script>
 function eventHandler() {
 alert("You pasted the text.");
 }
 </script>
 </body>
</html>

CHAPTER 10
HTML APIs

10.1 Drag and Drop
Using JavaScript code, we can drag and drop an HTML element into

another element.

First of all, to make an element draggable, set its “ draggable ” attribute to
true:

<div id="div1" draggable="true">This div is draggable</div>

Then, specify what happens when the element is dragged using the
“ ondragstart ” attribute. Finally, we will define a callback function for it to
invoke when users start dragging. In this function, we will call the
dataTransfer.setData() method to set the dragged data.

<div id="div1" draggable="true" ondragstart="dragStartHandler(event)">This div is
draggable</div>

<script>
 function dragStartHandler(evt) {
 evt.dataTransfer.setData("sourceID", evt.target.id);
 }
</script>

By default, HTML elements do not allow dropping other elements onto
them. So, to enable it, we have to prevent the default handling of those
HTML elements by using the “ ondragover ” attribute like the below code.

<div id="div2" ondragover="allowDropping(event)"></div>

<script>
 function allowDropping(evt) {
 evt.preventDefault();
 }

</script>

When the dragged element is dropped, a drop event occurs, so the
callback function setting at the “ ondrop ” attribute will be called. First, the
callback function will get the dragged data (the dragged element’s ID) using
the dataTransfer.getData() method. Then, it gets the element by the ID and
appends it to the destination element.

<div id="div2" ondrop="dropHandler(event)" ondragover="allowDropping(event)"></div>

<script>
 function dropHandler(ev) {
 var data = ev.dataTransfer.getData("sourceID");
 ev.target.appendChild(document.getElementById(data));
 }
</script>

This is the final code:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 #div2 {
 border: 1px solid black;
 width: 200px;
 height: 60px;
 }
 </style>
 </head>
 <body>
 <div id="div1" draggable="true" ondragstart="dragStartHandler(event)">This div is draggable.
You can drag and drop it into the rectangle.</div>

 <div id="div2" ondrop="dropHandler(event)" ondragover="allowDropping(event)"></div>

 <script>
 function allowDropping(ev) {
 ev.preventDefault();
 }

 function dropHandler(ev) {
 var data = ev.dataTransfer.getData("sourceID");

 ev.target.appendChild(document.getElementById(data));
 }

 function dragStartHandler(ev) {
 console.log(ev);
 ev.dataTransfer.setData("sourceID", ev.target.id);
 }
 </script>
 </body>
</html>

10.2 Geolocation
The HTML Geolocation API in JavaScript helps us get the user’s

geographical position (latitude and longitude). By default, the position is
unavailable unless the user approves it because this can compromise privacy.

We use geolocation.getCurrentPosition() method of the navigator
object to get the user’s current position. The function receives a callback as
its parameter to return a coordinate object to the callback.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Click the button to get your coordinates.</p>

 <button onclick="getLocation()">Get location</button>

 <p id="out"></p>

 <script>
 var x = document.getElementById("out");

 function getLocation() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(showPosition);
 } else {
 x.innerHTML = "Geolocation is not supported by this browser.";
 }
 }

 function showPosition(position) {
 x.innerHTML = "Latitude: " + position.coords.latitude + "
Longitude: " +
position.coords.longitude;
 }
 </script>
 </body>
</html>

10.3 Web Storage
Before HTML5, application data had to be stored in cookies which would

be included in every server request. Consequently, using cookies affects our
website performance.

Our web applications can store data locally within the browsers with web
storage. Web storage is more secure, large amounts of data (at least 5MB)
can be stored locally, and it is never transferred to the server.

Before using web storage, we should check browser support for it:
if (typeof Storage !== "undefined") {
 // Code for Web Storage
} else {
 // Not support Web Storage
}

HTML web storage provides two objects for storing data on the client:
● localStorage - stores data with no expiration date
● sessionStorage - stores data for one session (data is lost when the

browser tab is closed)

10.3.1 The localStorage Object
The localStorage object stores the data with no expiration date and will

not be deleted when the browser is closed.

We can store and retrieve the data using setItem() and getItem()
methods like this example.

// Store
localStorage.setItem("firstname", "John");

// Retrieve
var firstname = localStorage.getItem("firstname");

The example above could also be written like this:
// Store
localStorage.firstname = "John";

// Retrieve
var firstname = localStorage.firstname;

The syntax for removing the “firstname” item in the local storage is as
follows:

localStorage.removeItem("firstname");

 Web storage data is always strings. Therefore, we must
convert them to another format when needed.

Let’s examine the below example to see how Local Storage works in
reality.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Step 1. Enter your name:</p>
 <input id="name" type="text" />

 <p>Step 2. Click this button to set it to the Local Storage:</p>
 <input type="button" value="Set data" onclick="setItem()" />

 <p>Step 3. Open this webpage in another tab.</p>

 <p>Step 4. Click this button to get data from the Local Storage:</p>
 <input type="button" value="Get data" onclick="getItem()" />

 <p>Step 5. Close all tabs and open this page again. Then, click the "Get data" button to see if we
can still get the data.</p>

 <script>
 function setItem() {
 if (typeof Storage !== "undefined") {
 var name = document.getElementById("name").value;
 localStorage.myName = name;
 }

 }

 function getItem() {
 if (typeof Storage !== "undefined") {
 alert(localStorage.myName);
 }
 }
 </script>
 </body>
</html>

10.3.2 The sessionStorage Object
The sessionStorage object is similar to the localStorage object, except

that it stores the data for only one session. It means that the data will be
deleted when users close the tab on the browser.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Step 1. Enter your name:</p>
 <input id="name" type="text" />

 <p>Step 2. Click this button to set it to the Session Storage:</p>
 <input type="button" value="Set data" onclick="setItem()" />

 <p>Step 3. Click this button to get data from the Session Storage:</p>
 <input type="button" value="Get data" onclick="getItem()" />

 <p>Step 4. Open this webpage in another tab.</p>

 <p>Step 5. Then, click the "Get data" button to see that we cannot get the data since it's only
available in the first tab.</p>

 <script>
 function setItem() {
 if (typeof Storage !== "undefined") {
 var name = document.getElementById("name").value;
 sessionStorage.myName = name;

 }
 }

 function getItem() {
 if (typeof Storage !== "undefined") {
 alert(sessionStorage.myName);
 }
 }
 </script>
 </body>
</html>

10.4 Web Workers
The page becomes unresponsive when executing JavaScript code on a

webpage until the execution is finished. Therefore, when we have JavaScript
code that could run for a long time, we put it in a Web Worker.

A Web Worker is a JavaScript code running in the background without
blocking users from doing whatever they want on the webpage, such as
clicking, selecting things, etc.

10.4.1 Web Worker File
Let's create our web worker in a separate JavaScript file. The script will

increase a counter every second.

my-web-worker.js
var i = 0;

function startCounter() {
 i = i + 1;
 postMessage(i);
 setTimeout("startCounter()", 1000);
}

startCounter();

The most critical line of the above code is the postMessage() method
which is used to post a message back to our HTML page.

10.4.2 Web Worker Object
Now, from our HTML page, let’s create a web worker object and use it to

receive messages from the worker. However, before creating it, we should
check whether the web browser supports it:

if (typeof Worker !== "undefined") {
 // Yes, Web Worker is supported.
 // Your code here...
} else {
 // No, Web Worker is not supported!

}

Then, we create a Web Worker object
w = new Worker("my-web-worker.js");

and receive messages from the web worker by adding an “ onmessage ”
event listener to the web worker object.

w.onmessage = function (event) {
 document.getElementById("result").innerHTML = event.data;
};

When the web worker posts a message, the code within the event listener
is executed. The data from the web worker is stored in event.data .

Finally, to terminate a web worker and free the resources of the browser,
we use the terminate() method and set the variable to undefined :

w.terminate();
w = undefined;

We should stop/terminate the worker when finished. Otherwise, it will
continue to listen for messages (even after the external worker script is done)
until it is terminated.

Below is the code for the HTML page:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>Count numbers: <output id="result"></output></p>
 <button onclick="startWorker()">Start Worker</button>
 <button onclick="stopWorker()">Stop Worker</button>

 <script>
 var w;

 function startWorker() {
 if (typeof Worker !== "undefined") {

 if (typeof w == "undefined") {
 w = new Worker("my-web-worker.js");
 }
 w.onmessage = function (event) {
 document.getElementById("result").innerHTML = event.data;
 };
 } else {
 document.getElementById("result").innerHTML = "This browser does not support Web
Workers!";
 }
 }

 function stopWorker() {
 w.terminate();
 w = undefined;
 }
 </script>
 </body>
</html>

10.4.3 Web Workers and the DOM
Since web workers are placed in external JavaScript files and run in other

threads, they do not have access to the following JavaScript objects of the
DOM:

● The window object
● The document object

It means web workers cannot manipulate or interact with the HTML elements
on our web pages.

Part II: CSS3

While talking about CSS3, we must mention its predecessor, CSS. CSS is an
acronym for Cascading Style Sheets, the language used to style web pages.

Why should we learn CSS3?

CSS3 is the 3rd and the latest version of CSS. CSS3 has added many more
convenient features for users than CSS. Inheriting everything from the
previous version and adding new features, CSS3 is now very popular in
website design.

CSS is a tool that helps us add changes in appearance, such as changing
layout, colors, fonts, etc. If a web page does not have CSS, it will simply be a
page containing text with two primary colors, black and white.

CSS works by partitioning the selection based on the HTML tag name,
ID, or class. From there, apply the properties to be changed to the selected
HTML elements.

What will you learn?
In this part of the book, you will learn the following:
● Basic CSS: CSS syntax, comments, and units (absolute and relative

lengths).
● Three types of CSS: Inline CSS, Internal CSS, and External CSS.
● CSS selectors: Universal selector, Type selector, ID selector, Class

selector, Multiple-class selector, Pseudo-class selector, Pseudo-
element, Combined selector, Attribute selector, and selector grouping.

● CSS cascading rules and inheritance in CSS.
● CSS box model: box-sizing types, margins, outline, borders, padding,

width, and height.
● CSS colors: color names, HEX colors, RGB colors, and grey colors.
● CSS text: text rendering, text spacing, text position, CSS fonts.
● CSS backgrounds: background properties, gradient backgrounds, and

CSS sprites.
● CSS display: display vs. visibility, object-fit, cursor, overflow,

opacity, shadows, multiple columns, table styling, list styling, and
CSS transforms.

● CSS layout: position, float, z-index, flexbox, grid, and CSS alignment.
● CSS transitions and animations.
● Advanced CSS: CSS variables, calculation, and CSS counters.
● Responsive CSS: responsive web design (RWD), RWD viewport, CSS

media, RWD grid view, and Mobile-first vs. Desktop-first.

CHAPTER 11
Getting to Know CSS

CSS stands for Cascading Style Sheets. It describes the visual style and the
presentation of the HTML content in a web browser. It can also change a
site’s display based on different screen sizes and devices. In addition, CSS
includes rules that format the content, such as font, text, layout, etc.

In this book, we will learn CSS3 since it is the latest version of CSS.
CSS3 has added many more convenient features for users than CSS.
Inheriting everything from the previous version and adding new features,
CSS3 is now very popular in website design. However, I will write “CSS” as
a shorthand for “CSS3” from now on.

11.1 CSS Syntax
Let’s examine this example:

p {
 color: red;
 font-size: 28px;
}

The above CSS rule starts with a selector (“ p ”) followed by a declaration
block (inside the curly brackets {}).

The declaration block includes all styles for elements matching the
selector. A style declaration (e.g., “ color: red; ”) is a pair of a property
(“ color ” in the example) and a value (“ red ” in the example) that describes
the style. The semicolon (“ ; ”) separates many declarations.

11.2 Comments in CSS
Any code should have comments to maintain the code later easily. The

comments start with “ /* ” and end with “ */ .” Web browsers will ignore all
comments.

Example:
/* Single Line */

/*
Multiple
Lines
*/

11.3 CSS Units
CSS code has several different units for expressing a length. In addition,

some CSS properties take length values, such as width, margin, padding,
font-size, border-width , etc. A length is a number followed by a length unit,
for example, 10px or 2em .

A whitespace cannot appear between the number and the unit. However,
if the value is 0 , the unit can be omitted. Moreover, some CSS properties
can have negative lengths.

11.3.1 Absolute Lengths
These are the most popular absolute lengths:
● cm : centimeters
● mm : millimeters
● in : inches (1in = 96px = 2.54cm)
● px : pixels (1px = 1/96th of 1in)
● pt : points (1pt = 1/72 of 1in)

11.3.2 Relative Lengths
Relative length units specify a length relative to another length property.

They scale better between different screen sizes.
● rem : Relative to the font-size of the root element (2rem means two

times the size of the root element’s font)
● em : Relative to the font-size of the element (2em means two times

the size of the current element’s font)
● vw : Relative to 1% of the width of the viewport
● vh : Relative to 1% of the height of the viewport
● % : Relative to 1% of the containing element.

11.3.2.1 em

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <article>
 <p>
 This element does not have its style, so that the font-size will be 20px, inherited from its parent
(article)
 </p>
 <p class="custom">
 This element has style "font-size: 1.5em" so that the font-size will be 30px (20 * 1.5 = 30)
 </p>
 </article>
 </body>
</html>

style.css
article {
 font-size: 20px;
}

.custom {
 font-size: 1.5em;
}

We can check the computed styles of an element using the Developer
Tools of the browser. First, go to the “Elements” tab, and select the <p
class="custom"> element. Then, select the “Computed” panel (beside the
“Styles” panel) and type “font-size” into the filter box. We can see that the
font-size is 30px , as the screenshot points out.

 Using the em unit can cause compounding errors like the
below example.

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="parent">
 I'm 15px
 <div class="child">
 I'm 30px, as expected
 <div class="child">I'm 60px, oh no!</div>
 </div>
 </div>
 </body>
</html>

style.css
.parent {
 font-size: 15px;
}

.child {
 font-size: 2em;
}

Therefore, instead of using em , we are recommended to use the rem
unit.

11.3.2.2 rem

The root of an HTML document is the <html> element. If we do not
define any font-size on the root element, 1rem equals the default browser
font-size , 16px .

This unit is similar to em , but relative only to the root element, not any
parent element. Thus, compounding does not occur as it does with the em
units.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="parent">
 I'm 15px
 <div class="child">
 I'm 32px, as expected
 <div class="child">I'm 32px, good!</div>
 </div>
 </div>
 </body>
</html>

style.css
.parent {
 font-size: 15px;
}

.child {
 font-size: 2rem;
}

While using rem , it will be easier to calculate the font-size of elements
if we set font-size of the <html> element to 10px .

If users change the browser’s font-size , they will expect that font-size
on the web page will change the same way. However, this will not happen if
we set our root font-size to 10px . To avoid that, we will use a percentage
of the default font-size of the browser like this:

html {
 /* 10px / 16px = 0.625 = 62.5% */
 font-size: 62.5%;
}

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="parent">
 I'm 1.5rem = 1.5 * 10px = 15px
 <div class="child">
 I'm 2.6rem = 2.6 * 10px = 26px, as expected
 <div class="child">I'm 26px, good!</div>
 </div>
 </div>
 </body>
</html>

style.css
html {
 /* font-size: 10px; */
 font-size: 62.5%;
}

.parent {
 font-size: 1.5rem;
}

.child {
 font-size: 2.6rem;
}

In CSS media queries, rem and em do not depend on font-size of the
HTML elements; instead, 1rem or 1em is always equal to 16px . Therefore,
to convert px to em , we divide px by 16 and use the result in em unit.
For example, 1000/16 = 62.5 , so 1000px equals 62.5em .

11.4 Shorthand Properties
Some CSS declarations could have shorthand notation. For example, let’s

try the style of the element’s border.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div></div>
 </body>
</html>

style.css
div {
 height: 50px;
 border-color: red;
 border-style: solid;
 border-top-width: 5px;
 border-right-width: 10px;
 border-bottom-width: 15px;
 border-left-width: 20px;
}

Shorthand notation of the above CSS is
div {
 height: 50px;
 border-color: red;
 border-style: solid;
 border-width: 5px 10px 15px 20px;
}

Example 2:
div {
 border-width: 5px 10px 15px;

}

equals
div {
 border-top-width: 5px;
 border-right-width: 10px;
 border-bottom-width: 15px;
 border-left-width: 10px; /* = border-right-width */
}

Example 3:
div {
 border-width: 5px 10px;
}

equals
div {
 border-top-width: 5px;
 border-right-width: 10px;
 border-bottom-width: 5px; /* = border-top-width */
 border-left-width: 10px; /* = border-right-width */
}

Example 4:
div {
 border-width: 5px;
}

equals
div {
 border-top-width: 5px;
 border-right-width: 5px;
 border-bottom-width: 5px;
 border-left-width: 5px;
}

11.5 Where Do We Put Our CSS?

11.5.1 Inline CSS
Inline CSS code is put in the HTML elements’ style attribute. The styles

are applied only to the elements that declare the “ style ” attribute.

In the below example, inline styles are applied only to the first paragraph
since the second <p> element does not have any “ style ” attribute.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p style="color: red; font-size: 26px">This is the first paragraph.</p>
 <p>This is the second paragraph.</p>
 </body>
</html>

However, we should avoid inline CSS due to these reasons:
● it pollutes the HTML code
● it is hard to maintain both HTML and CSS code

For example, when we want to apply the color to all paragraphs, we must
duplicate the CSS code in all <p> elements. After that, if we’re going to
change the color, we must change it in all those <p> elements.

11.5.2 Internal CSS
Internal CSS is written as the content of the <style> element, and we

often put it inside the <head> element.

Example:
<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 <style type="text/css">
 p {
 color: red;
 font-size: 26px;
 }
 </style>
 </head>
 <body>
 <p>This is the first paragraph.</p>
 <p>This is the second paragraph.</p>
 </body>
</html>

It is not practical since we could have many lines of CSS code. In this
case, that CSS code would pollute the HTML file and makes both CSS and
HTML code hard to maintain.

11.5.3 External CSS
External CSS is in an external CSS file (*.css) as below. Then, we need to

tell the HTML file that we want to use that external CSS file by using the
<link> element inside the <head> element. The <link> element has two
attributes:

● rel : relationship of the linked document to the current document, so
we set it to “ stylesheet ”

● href : this attribute specifies the URL of the linked resource

style.css
p {
 color: red;
 font-size: 28px;
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is the first paragraph.</p>
 <p>This is the second paragraph.</p>
 </body>
</html>

We can put the internal and external CSS anywhere inside the HTML file,
but why should we put them inside the <head> element? Let’s try this
example to see the reason.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 </head>
 <body>
 <p>This is the first paragraph.</p>
 <p>This is the second paragraph.</p>
 <link rel="stylesheet" href="style.css" />
 </body>
</html>

In the above example, we set style-sheet link as the last child of <body> .
It means that the CSS file will be loaded after rendering all HTML above it.

Then, open the “Developer tools” of your browser (Chrome is used in this
example) and set your Network to “Slow 3G,” as shown in the below
screenshot.

Finally, refresh the “index.html” page to see that:
● Firstly, two paragraphs are loaded in black and small font size.
● Then, they are changed to big red texts when the CSS file is loaded.

 It is not a good user experience since users see two styles of content and
a flash or blink screen of style transition.

11.6 User Agent Style Sheets
Besides your CSS code, there are the user agent’s style sheets. They are

the default styles of web browsers, and different browsers could have
different styles.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <p>This is the first paragraph.</p>
 </body>

</html>

That simple HTML code without any CSS is applied default styles of the
web browser as below.

body {
 display: block;
 margin: 8px;
}

To see it, open the Developer Tools of Google Chrome, then select the
“Elements” tab; select the <body> element and switch to the “Styles”
panel.

CHAPTER 12
CSS Selectors

12.1 Universal Selector
Universal selector (“ * ”) is whatever element(s) but at least one element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Some text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
body * p {
 color: red;
}

Only “Some text” is red. “Another text” is a <p> element, but it is a
direct child of the <body> element, so it was not selected.

12.2 Type Selector
In CSS, we can select elements using HTML tag names such as

“ div ,”“ p ,” etc. The syntax is:
tagname {
 declaration block
}

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Some text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
p {
 color: red;
}

Result: All paragraphs are red.

12.3 ID Selector
In CSS, we can select elements by using the “ id ” attribute of them. The

syntax is:
#element-id {
 declaration block
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p id="my-text">Some text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
#my-text {
 color: red;
}

Result: Only “Some text” is red.

12.4 Class Selector
In CSS, we can select elements by using the “ class ” attribute of the

elements. The syntax is:
.class-name {
 declaration block
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p class="my-text">Some text</p>
 <p class="my-text">Another text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
.my-text {
 color: red;
}

Result: Only two paragraphs, children of the <div> element, are red
since they have the class “ my-text .”

12.5 Multiple-class Selector
In CSS, we can select elements by using several classes (2 or more) in the

“ class ” attribute of the elements. The syntax is:
.class-name-1.class-name-2...class-name-n {
 declaration block
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p class="my-text main">Some text</p>
 <p class="my-text">Another text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
.my-text.main {
 color: red;
}

.my-text {
 color: blue;
}

Result: Only “Some text” is red since it has both “ my-text ” and “ main ”
classes.

12.6 CSS Pseudo-class
Pseudo-class is a CSS selector based on a specific state or position of

HTML elements.

12.6.1 Status of Links

12.6.1.1 :link

In CSS, we use “ :link ” to select regular unvisited links.

 An <a> element without a“ href ” attribute is not a link.

12.6.1.2 :visited

In CSS, we use “ :visited ” to select visited links. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <a>This is not a link
 My Website
 Google Fonts
 </body>
</html>

style.css
:link {
 color: green;
}

:visited {
 color: red;
}

12.6.2 Cursor Interaction

12.6.2.1 :focus

In CSS, we use “ :focus ” to select elements having the focus.

12.6.2.2 :hover

In CSS, we use “ :hover ” to select elements with a mouse in front of
them.

12.6.2.3 :active

In CSS, we use “ :active ” to select elements being clicked.

 The order of these three pseudo-classes (focus > hover >
active) in the CSS code is very important. It must be kept so
that styles can be applied correctly.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Press TAB to remove the focus on the button.</p>
 <button>This is a button</button>
 </body>
</html>

style.css
:focus {
 color: red;
}

:hover {
 color: green;

}

:active {
 color: blue;
}

Click the button to see the effect.

 We can add a tag name right before the Pseudo-class to
select only the buttons as below.

button:focus {
 color: red;
}

button:hover {
 color: green;
}

button:active {
 color: blue;
}

12.6.3 Status of Elements

12.6.3.1 :enabled

In CSS, we use “ :enabled ” to select enabled elements.

12.6.3.2 :disabled

In CSS, we use “ :disabled ” to select disabled elements. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Update user's information</p>
 <p>Username: <input type="text" value="username" disabled /></p>
 <p>Email: <input type="text" value="email@company.com" /></p>
 </body>
</html>

style.css
:enabled {
 background-color: cyan;
}

:disabled {
 background-color: #ccc;
}

12.6.3.3 :checked

In CSS, we use “ :checked ” to select checked radio buttons or
checkboxes. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Select your options:</p>
 <p>
 Gender:
 <label><input type="radio" name="gender" /> Male</label>
 <label><input type="radio" name="gender" /> Female</label>
 </p>
 <p>
 <label><input type="checkbox" /> Accept the agreement</label>
 </p>
 </body>
</html>

style.css
input:checked + span {
 color: red;
}

12.6.4 Form Validation

12.6.4.1 :invalid

We use “ :invalid ” to select form elements if their values are not legal
according to the element's settings. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <form action="">
 <p>This text input must be a three-letter code:</p>
 <input type="text" name="code" pattern="[A-Za-z]{3}" title="Three letter code." value="a" />
 </form>
 </body>
</html>

style.css
input:invalid {
 background-color: lightpink;
}

12.6.4.2 :required

We use “ :required ” to select form elements that are required. For
example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <form action="">

 <p>This text input is required:</p>
 <input type="text" name="fname" required />
 </form>
 </body>
</html>

style.css
input:required {
 background-color: lightgreen;
}

12.6.4.3 :out-of-range

We use “ :out-of-range ” to select form elements with a value outside a
specified range according to the min and max attributes. For example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <form action="">
 <p>This number input must be in the range of 1 - 6:</p>
 <input type="number" name="quantity" min="1" max="6" value="8" />
 </form>
 </body>
</html>

style.css
input:out-of-range {
 background-color: lightblue;
}

12.6.5 Child Elements

12.6.5.1 :first-child

In CSS, we use “ :first-child ” to select elements if they are the first child

of their parents.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 <p>Line 2</p>
 </div>
 <p>Line 3</p>
 <p>Line 4</p>
 </body>
</html>

style.css
p:first-child {
 color: red;
}

Result: only “ <p>Line 1</p> ” was selected because it is the first child.

12.6.5.2 :last-child

In CSS, we use “ :last-child ” to select elements if they are the last child
of their parents.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 <p>Line 2</p>
 </div>

 <p>Line 3</p>
 <p>Line 4</p>
 </body>
</html>

style.css
p:last-child {
 color: red;
}

Result: only “ <p>Line 2</p> ” and “ <p>Line 4</p> ” were selected
because they are the last child.

12.6.5.3 :nth-child(N)

In CSS, we use “ :nth-child(N) ” to select elements if they are the N child
of their parents.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 <p>Line 5</p>
 <p>Line 6</p>
 </body>
</html>

style.css
p:nth-child(2) {
 color: red;
}

Result: only “ <p>Line 2</p> ” and “ <p>Line 4</p> ” were selected
because they are the 2nd child.

:nth-child(2n+1), :nth-child(odd) will select odd-numbered children.

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>

 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 <p>Line 5</p>
 <p>Line 6</p>
 </body>
</html>

style.css
p:nth-child(odd) {
 color: red;
}

Result: only “ <p>Line 1</p> ,” “ <p>Line 3</p> ” and “ <p>Line
5</p> ” were selected because they are the odd child.

:nth-child(2n), :nth-child(even) will select even-numbered children.

Example 3:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 <p>Line 5</p>
 <p>Line 6</p>
 </body>

</html>

style.css
p:nth-child(even) {
 color: red;
}

Result: only “ <p>Line 2</p> ,” “ <p>Line 4</p> ” and “ <p>Line
6</p> ” were selected because they are the even child.

12.6.5.4 :nth-last-child(N)

:nth-last-child(N) is the reverted case of :nth-child(N) since it will
examine the children from the bottom of the list.

12.6.5.5 :only-child

In CSS, we use “ :only-child ” to select elements if they are the only child
of their parent.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p>Line 1</p>
 </div>
 <p>Line 2</p>
 <p>Line 3</p>
 </body>
</html>

style.css
p:only-child {
 color: red;
}

Result: only “ <p>Line 1</p> ” was selected because it is the only child.

12.6.6 Type of elements

12.6.6.1 :first-of-type

In CSS, we use “ :first-of-type ” to select the first child element of the
specified element type.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <div>Line 1</div>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 </body>
</html>

style.css
p:first-of-type {
 color: red;
}

Result: only “ <p>Line 2</p> ” and “ <p>Line 4</p> ” were selected
because they are the first <p> child.

12.6.6.2 :last-of-type

In CSS, we use “ :last-of-type ” to select the last child element of the
specified element type.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Line 1</p>
 <div>
 <p>Line 2</p>
 <p>Line 3</p>
 <div>Line 4</div>
 </div>
 </body>
</html>

style.css
p:last-of-type {
 color: red;
}

Result: only “ <p>Line 1</p> ” and “ <p>Line 3</p> ” were selected
because they are the last <p> child.

12.6.6.3 :nth-of-type(N)

In CSS, we use “ :nth-of-type(N) ” to select the Nth child element of the
specified element type.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <div>Line 1</div>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 </body>
</html>

style.css
p:nth-of-type(2) {
 color: red;
}

Result: only “ <p>Line 3</p> ” was selected because it is the 2nd <p>
child.

12.6.6.4 :nth-last-of-type(N)

In CSS, we use “ :nth-last-of-type(N) ” to select the Nth last child element
of the specified element type.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Line 1</p>
 <div>
 <p>Line 2</p>
 <p>Line 3</p>
 <div>Line 4</div>
 </div>
 </body>
</html>

style.css
p:nth-last-of-type(2) {
 color: red;
}

Result: only “ <p>Line 2</p> ” was selected because it is the 2nd last
<p> child (counting from the bottom).

12.6.6.5 :only-of-type

In CSS, we use “ :only-of-type ” to select the only child element of the
specified element type.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <div>Line 1</div>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 <p>Line 4</p>
 </body>
</html>

style.css
p:only-of-type {
 color: red;
}

Result: only “ <p>Line 4</p> ” was selected because it is the only child
of type <p> .

12.6.7 Others Pseudo-classes

12.6.7.1 :root

The “ :root ” pseudo-class selects the HTML document’s root element,
the <html> element.

12.6.7.2 :empty

The “ :empty ” pseudo-class selects the empty elements.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div></div>
 <div></div>
 <div>This is not empty!</div>
 </body>
</html>

style.css
div:empty {
 height: 20px;
 border: 1px solid red;
}

12.6.7.3 :target

The “ :target ” pseudo-class selects the target element by its ID.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 Select target 1
 Select target 2
 <p id="target1">Target 1</p>
 <p id="target2">Target 2</p>
 </body>
</html>

style.css
:target {
 border: 1px solid red;
}

Result when the user clicks on the link “Select target 2”:

12.6.7.4 :not(selector)

The “ :not(selector) ” pseudo-class is used to invert the selector .

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Update user's information</p>
 <p>Address: <input type="text" value="Your address" /></p>
 <p>Email: <input type="text" value="email@company.com" /></p>
 <input type="submit" value="Submit" />
 </body>
</html>

style.css
input:not([type="submit"]) {
 background-color: cyan;
}

Result:

12.6.8 Pseudo-class Chain
We can chain pseudo-classes like the below example.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 Articles
 Links
 About
 Newsletter
 </div>
 </body>
</html>

style.css
.nav-lnk:not(:first-child):not(:last-child) {
 color: red;
}

Result: Only the “Links” and “About” links are red since they are not the
first or last child.

12.7 CSS Pseudo-element

12.7.1 ::first-letter
The “ ::first-letter ” pseudo-element selects the first letter of an element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1>My heading</h1>
 <p>My paragraph</p>
 </body>
</html>

style.css
p::first-letter {
 font-size: 30px;
 color: red;
}

Result:

12.7.2 ::first-line
The “ ::first-line ” pseudo-element selects the first line of an element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>My paragraph has
two lines.</p>
 </body>
</html>

style.css
p::first-line {
 color: red;
}

Result: Only “My paragraph has” is red.

12.7.3 ::before
The “ ::before ” pseudo-element generates and renders the content right

before the element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>
 <label class="required">Username: </label>
 <input type="text" />
 </p>
 <p>
 <label>Email: </label>
 <input type="text" />
 </p>
 </body>
</html>

style.css
.required::before {
 content: "* ";
 color: red;
}

Result:

12.7.4 ::after
The “ ::after ” pseudo-element generates and renders the content right

after the element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>
 <label class="required">Username: </label>
 <input type="text" />
 </p>
 <p>
 <label>Email: </label>
 <input type="text" />
 </p>
 </body>
</html>

style.css
.required::after {
 content: "* ";
 color: red;
}

Result:

12.7.5 ::selection
The “ ::selection ” pseudo-element defines the style for the selected text.

index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Please select some text in this paragraph.</p>
 </body>
</html>

style.css
p::selection {
 color: red;
 background-color: yellow;
}

12.8 CSS Combined Selector

12.8.1 Descendant selector
We can select all elements that are descendants of a specified element.

The syntax is:
X Y {
 declaration blocks
}

The below example will select all <p> children of elements having the
class“ container .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div>
 <p>Line 1</p>
 </div>
 <p>Line 2</p>
 </div>
 </body>
</html>

style.css
.container p {
 color: red;
}

Result: <p>Line 1</p> and <p>Line 2</p> are red since they are
descendants of the <div class="container"> element.

12.8.2 Child Selector
We can select elements that are the immediate children of a specified

element. The syntax is:
X > Y {
 declaration blocks
}

The below example will select all <p> elements that are immediate
children of elements having class “ container .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div>
 <p>Line 1</p>
 </div>
 <p>Line 2</p>
 </div>
 </body>
</html>

style.css
.container > p {
 color: red;
}

Result: Only <p>Line 2</p> is red since it is an immediate child of the
<div class="container"> element.

12.8.3 Adjacent Sibling Selector
We can select elements immediately following siblings of a specified

element. The syntax is:
X + Y {
 declaration blocks
}

The below example will select all <p> elements that follow a <div>
element (<p> and <div> are siblings).

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div>
 <p>Line 1</p>
 </div>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 </body>
</html>

style.css
div + p {
 color: red;
}

Result: Only <p>Line 2</p> is red.

12.8.4 General Sibling Selector
We can select elements that are siblings of a given element. The syntax is:

X ~ Y {
 declaration blocks
}

The example below will select all <p> siblings of a <div> element.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div>
 <p>Line 1</p>
 </div>
 <p>Line 2</p>
 <p>Line 3</p>
 </div>
 </body>
</html>

style.css
div ~ p {
 color: red;
}

Result: <p>Line 2</p> and <p>Line 3</p> are red since they are
siblings of a <div> element.

12.9 CSS Attribute Selector

12.9.1 [attribute]
We can select elements that have a specific attribute by using this syntax:

[attribute]

The example below will select <p> elements with the attribute “ class .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p class="my-text">Some text</p>
 </div>
 <p>Another text</p>
 </body>
</html>

style.css
[class] {
 color: red;
}

 Result: Only “Some text” is red.

12.9.2 [attribute="value"]
We can select elements that have a specific attribute’s value by using this

syntax:
[attribute="value"]

The below example will select <p> elements having the attribute
“ class ” with the value “ my-text .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 <p class="my-text">Some text</p>
 </div>
 <p class="another-text">Another text</p>
 </body>
</html>

style.css
[class="my-text"] {
 color: red;
}

Result: Only “Some text” is red.

12.9.3 [attribute|="value"]
We can select elements with an attribute that begins with a specific word

(can be followed by a hyphen). The syntax is:
[attribute|="value"]

The below example will select elements that have the “ class ” attribute
that begins with “ word ” (can be followed by a hyphen).

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>[class|="word"] { color: red; }</p>
 <p class="word">Word class: "word"</p>
 <p class="highlight word">Word class: "highlight word"</p>
 <p class="word highlight">Word class: "word highlight"</p>
 <p class="highlight-word">Word class: "highlight-word"</p>
 <p class="word-highlight">Word class: "word-highlight"</p>
 <p class="words">Word class: "words"</p>
 </body>
</html>

style.css
[class|="word"] {
 color: red;
}

Only these paragraphs are red:
● Word class: "word"
● Word class: "word-highlight"

12.9.4 [attribute~="value"]
We can select elements that have an attribute that contains a space-

separated word. The syntax is:
[attribute~="value"]

The example below will select elements with the “ class ” attribute
containing “ word .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>[class~="word"] { color: red; }</p>
 <p class="word">Word class: "word"</p>
 <p class="highlight word">Word class: "highlight word"</p>
 <p class="word highlight">Word class: "word highlight"</p>
 <p class="highlight-word">Word class: "highlight-word"</p>
 <p class="word-highlight">Word class: "word-highlight"</p>
 <p class="words">Word class: "words"</p>
 </body>
</html>

style.css
[class~="word"] {
 color: red;
}

Only these paragraphs are red:
● Word class: "word"
● Word class: "highlight word"
● Word class: "word highlight"

12.9.5 [attribute^="value"]

We can select elements with an attribute that starts with a specified value.
The syntax is:

[attribute^="value"]

The example below will select elements with the “ class ” attribute that
starts with “ word .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>[class^="word"] { color: red; }</p>
 <p class="word">Word class: "word"</p>
 <p class="highlight word">Word class: "highlight word"</p>
 <p class="word highlight">Word class: "word highlight"</p>
 <p class="highlight-word">Word class: "highlight-word"</p>
 <p class="word-highlight">Word class: "word-highlight"</p>
 <p class="words">Word class: "words"</p>
 </body>
</html>

style.css
[class^="word"] {
 color: red;
}

Only these paragraphs are red:
● Word class: "word"
● Word class: "word highlight"
● Word class: "word-highlight"
● Word class: "words"

12.9.6 [attribute$="value"]
We can select elements with an attribute that ends with a specified value.

The syntax is:
[attribute$="value"]

The example below will select elements with the “ class ” attribute that
ends with “ word .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>[class$="word"] { color: red; }</p>
 <p class="word">Word class: "word"</p>
 <p class="highlight word">Word class: "highlight word"</p>
 <p class="word highlight">Word class: "word highlight"</p>
 <p class="highlight-word">Word class: "highlight-word"</p>
 <p class="word-highlight">Word class: "word-highlight"</p>
 <p class="words">Word class: "words"</p>
 </body>
</html>

style.css
[class$="word"] {
 color: red;
}

Only these paragraphs are red:
● Word class: "word"
● Word class: "highlight word"
● Word class: "highlight-word"

12.9.7 [attribute*="value"]
We can select elements that have an attribute that contains a specified

value. The syntax is:
[attribute*="value"]

The example below will select elements with the “ class ” attribute
containing “ word .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p class="word">Word class: "word"</p>
 <p class="highlight word">Word class: "highlight word"</p>
 <p class="word highlight">Word class: "word highlight"</p>
 <p class="highlight-word">Word class: "highlight-word"</p>
 <p class="word-highlight">Word class: "word-highlight"</p>
 <p class="words">Word class: "words"</p>
 </body>
</html>

style.css
[class*="word"] {
 color: red;
}

Result: All paragraphs are red.

12.10 Selector Grouping
We can group (using commas“ , ” as separators) many CSS selectors

having the same declaration blocks into one to reduce the CSS file size.

For example, we can group these two selectors
div {
 color: red;
}

p {
 color: red;
}

into this
div,
p {
 color: red;
}

CHAPTER 13
CSS Cascading

When many duplicated CSS declarations apply to the same element, the web
browser will pick up only one style and apply it to the page using the below
cascading rules (the lower, the stronger).

13.1 Rule 1: The Last Declaration Will Win
index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 <style>
 h1 {
 color: green;
 }
 h1 {
 color: blue;
 }
 </style>
 </head>
 <body>
 <h1>My first heading</h1>
 <p>My first paragraph.</p>
 </body>
</html>

style.css
h1 {
 color: yellow;
}

h1 {
 color: red;
}

Since we put the <link> element before the <style> element, all style
declarations are in this order:

h1 { color: yellow; }
h1 { color: red; }
h1 { color: green; }
h1 { color: blue; }

Therefore, we will see “My first heading” in blue as the last declaration
is “ h1 { color: blue; } .”

If the external CSS (style.css) is put after the tag <style> , the style
declarations are in this order:

h1 { color: green; }
h1 { color: blue; }
h1 { color: yellow; }
h1 { color: red; }

As a result, we will see “My first heading” in red.

13.2 Rule 2: The More Specific Declaration Will Win
In this listing, the lower CSS selector is the more specific declaration:
● Universal Selector (*)
● Type Selector (e.g., h1, p, div , etc.)
● Combined Selector of Tags (e.g., “ body h1 ”)
● Class (.) or Pseudo-class(:) or Attribute([]) Selector
● Combined Selector of Classes and Tags (e.g., “ body .heading ”)
● Multiple-class Selector (e.g., “ .heading.first ”)
● ID (#) Selector

We will use this HTML file in the next six examples:
index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1 id="heading-one" class="heading first">My First Heading</h1>
 <p>My first paragraph.</p>
 <h1 id="heading-two" class="heading">My Second Heading</h1>
 <p>My second paragraph.</p>
 </body>
</html>

Example 1:
style.css

/* Type Selector */
h1 {
 color: orange;
}

/* Universal Selector */
* {
 color: red;

}

All headings are orange because “Type Selector” is more specific than
“Universal Selector” despite the order.

Example 2:
style.css

/* Combined Selector of Tags */
body h1 {
 color: yellow;
}

/* Type Selector */
h1 {
 color: orange;
}

All headings are yellow because “Combined Selector of Tags” is more
specific than “Type Selector” despite the order.

Example 3:
style.css

/* Class Selector */
.heading {
 color: green;
}

/* Combined Selector of Tags */
body h1 {
 color: yellow;
}

All headings are green because “Class Selector” is more specific than
“Combined Selector of Tags” despite the order.

Example 4:
style.css

/* Combined Selector of Classes and Tags */
body .heading {
 color: blue;
}

/* Class Selector */
.heading {
 color: green;
}

All headings are blue because “Combined Selector of Classes and Tags”
is more specific than “Class Selector” despite the order.

Example 5:
style.css

/* Multiple-Class Selector */
.heading.first {
 color: indigo;
}

/* Combined Selector of Classes and Tags */
body .heading {
 color: blue;
}

The first heading is indigo because the “Multiple-Class Selector” is more
specific than the “Combined Selector of Classes and Tags” despite the order.

Example 6:
style.css

/* ID Selector */
#heading-one {
 color: violet;
}

/* Multiple-Class Selector */
.heading.first {
 color: indigo;
}

The first heading is violet because “ID Selector” is more specific than
“Multiple-Class Selector” despite the order.

All-in-one example:
/* ID Selector */
#heading-one {
 color: violet;
}

/* Multiple-Class Selector */
.heading.first {
 color: indigo;
}

/* Combined Selector of Classes and Tags */
body .heading {
 color: blue;
}

/* Class Selector */
.heading {
 color: green;
}

/* Combined Selector of Tags */
body h1 {
 color: yellow;
}

/* Type Selector */
h1 {
 color: orange;
}

/* Universal Selector */
* {
 color: red;
}

Then open “Chrome DevTools > Elements > Styles” to check the result
(as in the below screenshot) after selecting the first heading in the Elements
panel.

The CSS declaration at the bottom of the CSS file will override the top.
However, the “Universal Selector” at line 32 has the lowest priority, so the
others override it.

13.3 Rule 3: Inline Style Is Preferred to both Internal
and External Styles

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 #heading-one {
 color: green;
 }
 </style>
 </head>
 <body>
 <h1 id="heading-one" style="color: red">My First Heading</h1>
 <p>My first paragraph.</p>
 </body>
</html>

Result: The heading is red.

13.4 Rule 4: “!important” Declaration Is the Strongest
Rule

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <style>
 #heading-one {
 color: green !important;
 }
 </style>
 </head>
 <body>
 <h1 id="heading-one" style="color: red">My First Heading</h1>
 <p>My first paragraph.</p>
 </body>
</html>

Result: The heading is green.

Finally, this diagram summarizes the four rules above.

13.5 Inheritance
Inheritance in CSS means that the parent’s styles (mostly related to text)

are applied to its children automatically. Many styles, such as the “ border ”
property, are not inherited because that would be very impractical.

In some cases, as below, we must use the keyword “ inherit ” to set the
element’s style as the same as its parent. For example, we want to set the
color of all children to green but keep the first one inherited from its parent
(keep it in red).

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <article class="parent">
 <h1>Heading</h2>
 <p class="line first-line">First line.</p>
 <p class="line second-line">Second line.</p>
 </article>
 </body>
</html>

style.css
.parent {
 color: red;
}

.line {
 color: green;
}

.first-line {
 color: inherit;
}

CHAPTER 14
CSS Box Model

An HTML element consists of a margin, border, padding, and content, as
shown below.

To calculate the size of an element, we must consider its box-sizing type.

14.1 Box Sizing Types
There are two box sizing types:
● border-box
● content-box

14.1.1 Border Box
With “ border-box ” CSS, the padding and border are included in the total

width and height of the element. Therefore, the actual size of the element is
as CSS declarations(width: 200px; height: 200px in the below example).

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <pre id="my-element">
#my-element {
 width: 200px;
 height: 200px;
 padding: 10px;
 border: 5px solid red;
 margin: 8px;
 box-sizing: border-box;
}
 </pre>

 <script>
 var myElement = document.getElementById("my-element");
 var width = myElement.offsetWidth;
 var height = myElement.offsetHeight;
 document.getElementById("result").innerHTML = "Element size: width = " + width + ", height
= " + height;
 </script>
 </body>
</html>

style.css
#my-element {
 width: 200px;
 height: 200px;
 padding: 10px;
 border: 5px solid red;
 margin: 8px;
 box-sizing: border-box;
}

14.1.2 Content Box
With “ content-box ” CSS, the padding and border are not included in the

total width and height of the element. Therefore, the actual size of the
element must be added padding and border.

index.html: use the same code as in the “Border Box” section.

style.css
#my-element {
 width: 200px;
 height: 200px;
 padding: 10px;
 border: 5px solid red;
 margin: 8px;
 box-sizing: content-box;
}

Actual width = left-border + left-padding + css-width + right-padding +
right-border

= 5 + 10 + 200 + 10 + 5 = 230

Actual height = top-border + top-padding + css-height + bottom-padding
+ bottom-border

= 5 + 10 + 200 + 10 + 5 = 230

“ box-sizing: content-box; ” is the default CSS applied to all HTML
elements in our web pages. However, this CSS rule confuses developers since
the actual size is not as the “ width ” and “ height ” declarations. Therefore, it
is a best practice to use this CSS rule to override the default box-sizing :

* {
 box-sizing: border-box;
}

14.2 CSS Margins
The margin of an HTML element is the outer space from its border, as in

the below picture.

We have four CSS properties for the top, right, bottom, and left sides.
● margin-top
● margin-right
● margin-bottom
● margin-left

 Inline elements do not have margin-top and margin-
bottom properties.

And the shorthand for them is “ margin .” For more details about the
shorthand, please refer to the “Shorthand Properties” section.

Margin property can have one of the following values:
● auto - the browser calculates the margin automatically
● specific value in px, pt, cm , etc.
● % of the width of the containing element
● inherit - specifies that the margin should be inherited from the parent

element

Example:

index.html
<!DOCTYPE html>

<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div id="parent">
 <div id="child">
 This element has a top margin of 50px, a right margin of 30px, a bottom margin of 50px, and a
left margin of 30px.
 </div>
 </div>
 </body>
</html>

style.css
#parent {
 border: 1px solid black;
}

#child {
 border: 1px solid red;
 margin-top: 50px;
 margin-right: 30px;
 margin-bottom: 50px;
 margin-left: 30px;
}

Result:

14.2.1 Auto Margin
We can horizontally align an element using “ margin: auto; ” as in the

below example.

index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div id="parent">
 <div id="child">This element has an auto margin.</div>
 </div>
 </body>
</html>

style.css
#parent {
 border: 1px solid black;
 height: 100px;
}

#child {
 border: 1px solid red;
 width: 200px;
 margin: auto;
}

Result:

14.2.2 Collapsing Margins
The margin-bottom and margin-top could be collapsed, as in this

example.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>

 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div id="parent">
 <div id="child-one">This element has a margin of 30px.</div>
 <div id="child-two">This element has a margin of 60px.</div>
 </div>
 </body>
</html>

style.css
#parent {
 border: 1px solid black;
}

#child-one {
 border: 1px solid red;
 margin: 30px;
}

#child-two {
 border: 1px solid blue;
 margin: 60px;
}

The #child-one element has a bottom margin of 30px , and the #child-
two element has a top margin of 60px , so the space (collapsing margin)
between them will be 60px (the more significant number).

14.3 CSS Outline
The outline is usually drawn outside the border but doesn’t take up space

like borders. These are outline properties:
outline-color, outline-style, outline-width

and the shorthand of them:
outline

Example:
p {
 outline-width: 5px;
 outline-style: dotted;
 outline-color: red;
}

will have a shorthand like this
p {
 outline: 5px dotted red;
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

style.css
p {
 outline: 5px dotted red;
 border: 1px solid black;
}

The outline is drawn outside the border, as shown in this screenshot:

14.4 CSS Borders
The border of an HTML element is the space between its padding and its

margins, as in the below picture.

14.4.1 Border Styles
We have CSS properties for the top, right, bottom, and left sides.

border-top-color, border-top-style, border-top-width
border-right-color, border-right-style, border-right-width
border-bottom-color, border-bottom-style, border-bottom-width
border-left-color, border-left-style, border-left–width

And shorthand of the above properties:
border-top, border-right, border-bottom, border-left
border-color, border- style, border-width

One shorthand for all properties:
border

For values of colors, please refer to the section “CSS Colors.”

Values of border style can be:
● dotted - defines a dotted border
● dashed - defines a dashed border
● solid - defines a solid border

● double - defines a double border
● groove - defines a 3D grooved border. The effect depends on the

border-color value
● ridge - defines a 3D ridged border. The effect depends on the border-

color value
● inset - defines a 3D inset border. The effect depends on the border-

color value
● outset - defines a 3D outset border. The effect depends on the border-

color value
● none - defines no border

Example 1:
p {
 border-top-color: red;
 border-top-style: solid;
 border-top-width: 5px;
}

will have a shorthand like this
p {
 border-top: 5px solid red;
}

Example 2:
p {
 border-top: 5px solid red;
 border-right: 5px solid red;
 border-bottom: 5px solid red;
 border-left: 5px solid red;
}

or
p {
 border-color: red;
 border-style: solid;
 border-width: 5px;
}

will have a shorthand like this
p {
 border: 5px solid red;
}

Example 3:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

style.css
p {
 border: 16px groove red;
}

14.4.2 CSS Border Radius
The “ border-radius ” property defines the radius of the HTML element's

corners. The property value can be an absolute length or a relative length.

There are four properties for the corners:
border-top-left-radius
border-top-right-radius
border-bottom-right-radius
border-bottom-left-radius

A shorthand property for setting all four properties:
border-radius

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>border-radius: 10px:</p>
 <p id="p1"></p>

 <p>border-radius: 50%:</p>
 <p id="p2"></p>
 </body>
</html>

style.css
p[id] {
 padding: 20px;
 width: 100px;
 height: 50px;
 background: green;
}

#p1 {

 border-radius: 10px;
}

#p2 {
 border-radius: 50%;
}

Result:

14.4.3 CSS Border Images
The “ border-image ” property allows you to specify an image to be used

as a border.

The property has three parts:
● the image to use as the border
● the position to slice the image
● define whether the middle sections should be repeated or stretched

We will use the following image (called “border.png”):

The border-image property takes a PNG image and slices it into nine
sections. It then places corners of the image at corners of the element, and the
middle sections of the image are repeated or stretched as you specify.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p id="border-img-round"></p>
 <p id="border-img-stretch"></p>
 </body>
</html>

style.css
#border-img-round {
 border: 10px solid transparent;

 padding: 15px;
 border-image: url(border.png) 30 round;
}

#border-img-stretch {
 border: 10px solid transparent;
 padding: 15px;
 border-image: url(border.png) 30 stretch;
}

Result:

14.5 CSS Padding
Padding is the area between the element’s content and its border.

The “ padding ” property is a shorthand property for the following
individual padding properties:

padding-top, padding-right, padding-bottom, padding-left

Example 1:
p {
 padding-top: 20px;
 padding-right: 20px;
 padding-bottom: 20px;
 padding-left: 20px;
}

will have a shorthand like this
p {
 padding: 20px;
}

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>

 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

style.css
p {
 border: 1px solid black;
 padding: 20px;
}

Result:

14.6 CSS Width and Height
We use “ width ” and “ height ” properties to set the content size of the

elements. However, we must consider the box-sizing property to calculate
the element's size.

We will use this HTML file in the next three examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

Example 1:

style.css
p {
 border: 1px solid black;
 width: 100px;
 height: 100px;
}

Result:

We use “ max-width ” and “ max-height ” properties to set the elements’
maximum content width and height.

Example 2:

style.css
p {
 border: 1px solid black;
 max-width: 100px;
 max-height: 100px;
}

Result:

We use “ min-width ” and “ min-height ” properties to set the elements’
minimum content width and height.

Example 3:

style.css
p {
 border: 1px solid black;
 min-width: 100px;
 min-height: 100px;
}

Result:

CHAPTER 15
CSS Colors

We will use this HTML file in all the examples in this chapter:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

15.1 Color Names
We can use color names to set the color of an element like this example.

For example, the value can be: black, white, red, green, blue, yellow , etc.

Example:

style.css
p {
 background-color: red;
}

15.2 HEX Colors
We can also set the color of an element using HEX value (0-9, A-F or a-f)

with the below format.
#rrggbb or #rrggbbaa

or
#rgb or #rgba

where:
● r: red
● g: green
● b: blue
● a: alpha. This value sets how transparent the color is.

Example:

style.css
p {
 color: #ff0000;
 background-color: #ff0;
}

15.3 RGB Colors
HTML elements can be set in color by using the RGB formula. The

syntax is:
rgb(red, green, blue)

or
rgba(red, green, blue, alpha)

The red, green, and blue parameters are integers from 0 to 255 . The
alpha parameter is a float number between 0 (fully transparent) and 1 (not
transparent).

Example:

style.css
p {
 color: rgb(255, 0, 0);
 background-color: rgb(255, 255, 0);
}

15.4 Grey Colors
When colors in all three channels (red, green, and blue) are the same, we

get a grey color. For example:
#000, #111, #222, ..., #eee, #fff

or
rgb(0,0,0), rgb(17,17,17), rgb(34,34,34), ..., rgb(238,238,238), rgb(255,255,255)

CHAPTER 16
CSS Text

16.1 Text Rendering
We will use this HTML file in the following examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph</p>
 </body>
</html>

16.1.1 Setting Color
The “ color ” property is used to set the color of the text.

Example:

style.css
p {
 color: red;
}

16.1.2 Text Decoration
The “ text-decoration-line ” property adds a decoration line to the text. Its

value can be:
● underline - draw a line under the text

● line-through - draw a line through the text
● overline - draw a line over the text

Example:

style.css
p {
 text-decoration-line: line-through;
}

We can combine more than one value of the “ text-decoration-line ”
property in a CSS declaration, like the following example.

The “ text-decoration-color ” property sets the color of the decoration
line.

Example:

style.css
p {
 text-decoration-line: overline underline;
 text-decoration-color: red;
}

The “ text-decoration-thickness ” property sets the thickness of the
decoration line.

Example:

style.css
p {
 text-decoration-line: underline;
 text-decoration-thickness: 5px;
}

The “ text-decoration-style ” property sets the style of the decoration line.
Its value can be: solid (default value) , double, dotted, dashed, or wavy .

Example:

index.html
<!DOCTYPE html>

<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p class="p1">This is the 1st paragraph.</p>
 <p class="p2">This is the 2nd paragraph.</p>
 <p class="p3">This is the 3rd paragraph.</p>
 <p class="p4">This is the 4th paragraph.</p>
 <p>This is the 5th paragraph.</p>
 </body>
</html>

style.css
p {
 text-decoration-line: underline;
}

.p1 {
 text-decoration-style: double;
}

.p2 {
 text-decoration-style: dotted;
}

.p3 {
 text-decoration-style: dashed;
}

.p4 {
 text-decoration-style: wavy;
}

Result:

The “ text-decoration ” property is a shorthand property for the four
properties above.

Example:

style.css
p {
 text-decoration: underline red wavy 3px;
}

16.1.3 Text Transform
The “ text-transform ” property is used to turn everything into upper-case

or lower-case letters or capitalize the first letter of each word. Its value can be
uppercase, lowercase , or capitalize .

Example:

style.css
p {
 text-transform: capitalize;
}

16.1.4 Handling Whitespaces
The “ white-space ” property handles whitespaces inside an HTML

element. Typically, browsers will collapse a sequence of whitespace
characters within an element into a single space character.

The white-space property can have one of these values:
● normal (default value) - This will collapse all sequences of

whitespace into a single space character. It also breaks the line if it

exceeds the containing element’s width.
● nowrap : ensures that sequences of whitespace or line breaks will

collapse into a single space character. It usually causes a horizontal
scroll bar since there is no line break.

● pre : ensures that sequences of whitespace won’t collapse. Lines are
only broken at new lines, as in the HTML code.

● pre-line : likes pre , but line-breaks will happen if lines exceed the
width of containing element. The sequences of whitespaces in a line
will be collapsed.

● pre-wrap : likes pre , but line-breaks will happen if lines exceed the
width of containing element. The sequences of whitespaces in a line
won’t be collapsed.

 Please disable the “Prettier - Code formatter” extension
before trying the below example.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1>This is the heading</h1>
 <p>
 This is some text. This is some text. This is some text. This is some text. This is some text.
This is some text.
 This is some text. This is some text. This is some text.
 This is some text. This is some text. This is some text.
 </p>
 </body>
</html>

style.css

p {
 white-space: pre-wrap;
}

16.1.5 Text Overflow
The “ text-overflow ” property specifies how the overflowed content that

its container will hide should be signaled to the visitors.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p class="test-clip">text-overflow: clip - This is some text</p>
 <p class="test-ellipsis">text-overflow: ellipsis - This is some text</p>
 </body>
</html>

style.css
.test-clip {
 white-space: nowrap;
 width: 200px;
 border: 1px solid #000000;
 overflow: hidden;
 text-overflow: clip;
}

.test-ellipsis {
 white-space: nowrap;
 width: 200px;
 border: 1px solid #000000;
 overflow: hidden;
 text-overflow: ellipsis;
}

Result:

16.1.6 Word Wrap
The “ word-wrap ” property allows long words to be broken and wrapped

onto the next line by setting its value to “ break-word .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p class="test-word-wrap">
 This paragraph contains a very long word:
 thisisaveryveryveryveryveryverylongword. The long word will break and wrap to the next line.
 </p>
 </body>
</html>

style.css
.test-word-wrap {
 width: 200px;
 border: 1px solid #000000;
 word-wrap: break-word;
}

Result:

16.1.7 Word Break
The “ word-break ” property specifies line-breaking rules. This property

can have one of these values:
● keep-all : this will break the whole word into a new line or break at a

hyphen
● break-word : this will break long words at arbitrary points into a new

line or break at a hyphen to prevent overflow
● break-all : the lines will break at any character

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Testing "word-break: keep-all"</p>
 <p class="test-keep-all">This is a-very-long-hyphen word, and this is
averyveryveryveryveryverylong word.</p>

 <p>Testing "word-break: break-word"</p>
 <p class="test-break-word">This is a-very-long-hyphen word, and this is
averyveryveryveryveryverylong word.</p>

 <p>Testing "word-break: break-all"</p>
 <p class="test-break-all">This is a-very-long-hyphen word, and this is
averyveryveryveryveryverylong word.</p>
 </body>
</html>

style.css
p[class] {
 width: 140px;
 border: 1px solid #000000;
}

.test-keep-all {
 word-break: keep-all;

}

.test-break-word {
 word-break: break-word;
}

.test-break-all {
 word-break: break-all;
}

Result:

16.2 Text Spacing
We will use this HTML file in all the examples in this section:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This paragraph is for testing.</p>
 <p class="test-one">This paragraph is for testing.</p>
 <p class="test-two">This paragraph is for testing.</p>
 </body>
</html>

16.2.1 Letter Spacing
The “ letter-spacing ” property is used to specify the space between the

characters in a text.

style.css
.test-one {
 letter-spacing: -1px;
}

.test-two {
 letter-spacing: 1px;
}

Result:

16.2.2 Word Spacing

The “ word-spacing ” property is used to specify the space between the
words in a text.

style.css
.test-one {
 word-spacing: -5px;
}

.test-two {
 word-spacing: 5px;
}

Result:

16.2.3 Line Height
The “ line-height ” property is used to specify the space between lines. Its

value can be:
● a number that will be multiplied by the current font-size to set the line

height
● %: a line height in percent of the current font size
● a fixed line height (in px, pt, cm , etc.).

style.css
p {
 border: 1px solid black;
 font-size: 20px;
}

.test-one {
 line-height: 80%; /* 20px * 80% = 16px */
}

.test-two {
 line-height: 2.3; /* 20px * 2.3 = 46px */
}

Result:

The “ line-height ” property can vertically align an element inside its
containing element by setting its value to the equal height of the containing
element.

index.html
<!DOCTYPE html>
<html>

 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>
 Some text
 </div>
 </body>
</html>

style.css
div {
 height: 100px;
 border: 1px solid black;
}

span {
 line-height: 100px;
}

Result:

16.3 Text Position

16.3.1 Text Align
The “text-align” property is used to set the horizontal alignment of a text.

Its value can be left, right, center , or justify .

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This paragraph is for testing. This paragraph is for testing. This paragraph is for testing.</p>
 <p class="test-one">This paragraph is for testing. This paragraph is for testing. This paragraph is
for testing.</p>
 <p class="test-two">This paragraph is for testing. This paragraph is for testing. This paragraph is
for testing.</p>
 <p class="test-three">This paragraph is for testing. This paragraph is for testing. This paragraph
is for testing.</p>
 </body>
</html>

style.css
p {
 width: 150px;
 border: 1px solid black;
}

.test-one {
 text-align: justify;
}

.test-two {
 text-align: center;
}

.test-three {
 text-align: right;

}

Result:

16.3.2 Text Indent
The “ text-indent ” property is used to specify the indentation of the first

line of a text.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>
 This paragraph is for testing. This paragraph is for testing. This paragraph is for testing.
 </p>
 <p class="test">
 This paragraph is for testing. This paragraph is for testing. This paragraph is for testing.
 </p>
 </body>
</html>

style.css
p {
 width: 150px;
 border: 1px solid black;
}

.test {
 text-indent: 30px;
}

Result:

16.4 CSS Fonts
We will use this HTML file in all the examples in this section:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This Paragraph Is for Testing.</p>
 </body>
</html>

16.4.1 Font Family
As a fallback system, the “ font-family ” property should hold several font

names (separated by commas). If the browser does not support the first font,
it will try the next one.

style.css
p {
 font-family: "Helvetica Neue", "Segoe UI", sans-serif;
}

We can check the rendered font of an element using the Developer Tools
of the browser. First, go to the “Elements” tab, and select the <p> element.
Then, select the “Computed” panel (beside the “Styles” panel). We can see
at the bottom of the screenshot that the rendered font is “ Segoe UI .”

I used Chrome to test the example. Since my Chrome does not have the
font “ Helvetica Neue ,” it uses “ Segoe UI ” to render the text.

16.4.2 Font Size
The “ font-size ” property sets the size of the text.

style.css
html {
 /* font-size: 10px; */
 font-size: 62.5%;
}

p {
 font-size: 2.5rem;
}

 We usually use rem as the unit of font-size since it helps
us to scale elements on our web pages by changing only the
root font-size .

Please review the “CSS Units > Relative Lengths > rem” section for more
examples.

16.4.3 Font Weight
The “ font-weight ” property specifies the weight of a font. Font weight

can be bold, normal , etc., or a number from thin to thick characters (100,
200, 300, ..., 900).

style.css
p {
 font-weight: bold;
}

16.4.4 Font Style
The “ font-style ” property is mainly used to specify italic text. This

property has one of these values:
● italic - The text is shown in italics
● normal - The text is shown normally

style.css
p {
 font-style: italic;
}

16.4.5 Font Variant
The “ font-variant ” property specifies whether or not a text should be

displayed in a “ small-caps ” font. In small caps, all lowercase letters are
converted to uppercase, but the converted uppercase letters will appear in
smaller font sizes than the original uppercase letters.

style.css
p {
 font-variant: small-caps;
}

Result: The “F” character is small-cap since it was not an uppercase letter
at the beginning.

16.4.6 The @font-face
This special CSS is used to define your font. Most browsers support these

font types:
● TrueType Fonts (*.ttf)
● OpenType Fonts (*.otf)
● The Web Open Font Format (*.woff)

You can download fonts here:

https://fonts.google.com

since Google Fonts is a library of 1000+ open-source font families for
your website.

style.css
@font-face {
 font-family: "Dyna Puff";
 src: url(DynaPuff-Regular.ttf);
}

p {
 font-family: "Dyna Puff";
}

Result:

CHAPTER 17
CSS Backgrounds

17.1 CSS Background Properties
The CSS background properties are used to add backgrounds for HTML

elements.

We will use this HTML file in all the examples in this section:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

17.1.1 background-color
The “ background-color ” property sets the background color of elements.

style.css
p {
 background-color: yellow;
}

Result:

17.1.2 background-image
The “ background-image ” property uses one or more images to render the

background of elements.

Example 1:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
}

In the example, I use the “bg.jpg” file, which is an image of 150x150
pixels, and here it is:

Result:

It can be seen that the last images at the right and bottom edges have been
clipped as they do not fit into the element.

We can add multiple images to an element’s background like this.

Example 2:
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("another-bg.png"), url("bg.jpg");
}

 In example 2, the first image is placed on top of the second.
Therefore, the first must have a transparent background
(using a PNG file) so the users can see both images.

We can see that the images are repeated horizontally and vertically. To
control the repeating, we use the “ background-repeat ” property.

17.1.3 background-repeat
The “ background-repeat ” property specifies how the background image

is repeated. This property can have one of these values:
● repeat (default value) - The background image is repeated vertically

and horizontally.
● repeat-x - The background image is repeated only horizontally.
● repeat-y - The background image is repeated only vertically.
● space - The background image is repeated as much as possible

without clipping, and whitespace is distributed evenly between the
images.

● round - The background image is repeated and scaled to fill all the
space without clipping or gaps.

● no-repeat - The background image will only be shown once.

Example 1:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
 background-repeat: repeat-x;
}

Result:

Example 2:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
 background-repeat: repeat-y;
}

Result:

Example 3:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
 background-repeat: space;
}

Result:

Example 4:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
 background-repeat: round;
}

Example 5: we can set the property to “ no-repeat ” to stop the repeating.
p {
 color: red;
 border: 1px solid red;
 width: 380px;
 height: 380px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
}

17.1.4 background-position
The “ background-position ” property specifies the starting position of the

background image. This property can have one of these values:
● x y - where the top left corner is “0 0.”
● x% y% - The top left corner is “0% 0%” and the right bottom corner

is “100% 100%.”
● or one of these: left top, left center, left bottom, right top, right center,

right bottom, center top, center center, center bottom .

style.css
p {
 color: red;
 border: 1px solid red;
 width: 300px;
 height: 180px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-position: right top;
}

Result:

17.1.5 background-size
The “ background-size ” property allows you to change the size of the

background image.
● w h - width and height of the background image
● w% h% - width and height of the background image in percent of the

containing element.
● contain - scales the background image to be as large as possible but

keeps it inside the bounding box of the containing element.
● cover - scales the background image to be as large as possible so that

it will cover all its parent content.

Example 1:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 300px;
 height: 150px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-size: 100px 100px;
}

Result:

Example 2:

style.css
p {

 color: red;
 border: 1px solid red;
 width: 300px;
 height: 180px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-size: 50% 66%;
}

Result:

Example 3:

style.css
p {
 color: red;
 border: 1px solid red;
 width: 200px;
 height: 100px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-size: contain;
}

Result: The “contain” keyword scales the background image to be as large
as possible but keeps the image inside the bounding box containing the
element.

Example 4:
p {
 color: red;
 border: 1px solid red;
 width: 200px;
 height: 100px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-size: cover;
}

Result: The “ cover ” keyword scales the background image to be as large
as possible, and the image must cover all the content of the containing
element.

17.1.6 background
We can use the shorthand of background properties like the below

example. Please use a background image smaller than 300x300 pixels in the
below example.

style.css
p {
 width: 300px;
 height: 300px;
 background: #ff0 url("bg.jpg") no-repeat right top;
}

17.1.7 background-clip
The “ background-clip ” property specifies the drawing area of the

background (image or color). The property can have one of these values:
● border-box - (default) the background is painted to the outside edge

of the border
● padding-box - the background is painted to the outside edge of the

padding
● content-box - the background is painted within the content box

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>No background-clip (border-box is default):</p>
 <p class="bg">This is a paragraph.</p>

 <p>background-clip: padding-box:</p>
 <p class="bg padding">This is a paragraph.</p>

 <p>background-clip: content-box:</p>
 <p class="bg content">This is a paragraph.</p>
 </body>
</html>

style.css
.bg {
 border: 10px dotted black;
 padding: 20px;
 background: yellow;
}

.padding {
 background-clip: padding-box;
}

.content {
 background-clip: content-box;
}

Result:

17.1.8 background-origin
The “ background-origin ” property specifies where the background

image is positioned. The property can have one of these values:
● border-box - the background image starts from the border
● padding-box - (default) the background image starts from the

padding edge
● content-box - the background image starts from the edge of the

content

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>No background-origin (padding-box is default):</p>
 <p class="bg">Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>

 <p>background-origin: border-box:</p>
 <p class="bg border-box">Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>

 <p>background-origin: content-box:</p>
 <p class="bg content-box">Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>
 </body>
</html>

style.css
.bg {
 width: 300px;
 height: 100px;
 color: red;
 border: 10px solid red;

 padding: 35px;
 background: url(bg.jpg);
 background-repeat: no-repeat;
}

.border-box {
 background-origin: border-box;
}

.content-box {
 background-origin: content-box;
}

Result:

17.1.9 background-attachment
The “ background-attachment ” property specifies if the background

image scrolls with the rest of the page or not. This property can have one of
these values:

● scroll (default value) - The background image will scroll with the
page.

● fixed - The background image will not scroll with the page.
● local - The background image will scroll with the element's contents.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <header>This is a header with height of 60px.</header>
 <div class="fixed"></div>
 <footer></footer>
 </body>
</html>

style.css
body {
 margin: 0;
}

header {
 height: 60px;
}

.fixed {
 background-position: center 60px;
 height: 500px;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;

 background-attachment: fixed;
}

footer {
 height: 1000px;
 background-color: lightgreen;
}

Example 2: The background image can be scrolled with the element’s
content by using the “ background-attachment ” property and setting it as
“ local .”

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis
nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>
 </body>
</html>

style.css
p {
 width: 120px;
 height: 200px;
 overflow: auto;
 border: 1px solid black;
 background-image: url("bg.jpg");
 background-repeat: no-repeat;
 background-attachment: local;
}

17.2 CSS Gradient Backgrounds
A color gradient consists of two or more colors that blend, transitioning

from one color to another over a given distance.

We will use this HTML file in all the examples in this section:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is a paragraph.</p>
 </body>
</html>

17.2.1 Linear Gradients
Below is the syntax of the linear gradients:

background: linear-gradient(direction, color-stop1, color-stop2, ...);

Linear gradient “top to bottom” is the default, so we can declare it like
this:

Example 1:

style.css
p {
 height: 100px;
 background: linear-gradient(red, yellow);
}

Result:

Linear gradient “left to right”:

Example 2:

style.css
p {
 height: 100px;
 background: linear-gradient(to right, red, yellow);
}

Result:

Diagonal linear gradient:

Example 3:

style.css
p {
 height: 100px;
 background: linear-gradient(to bottom right, red, yellow);
}

Result:

We can specify an angle of linear gradients using this syntax:
background: linear-gradient(angle, color-stop1, color-stop2);

Example 4:

style.css
p {
 height: 100px;
 background: linear-gradient(-90deg, red, yellow);
}

Result:

17.2.2 Repeating Linear Gradients
The “ repeating-linear-gradient ” property helps to repeat a linear

gradient.

Example:

style.css
p {
 height: 100px;
 background: repeating-linear-gradient(red, yellow 30%, green 50%);
}

Result:

The above CSS is a repeating gradient going from top to bottom, starting
red, turning yellow after 30%, and finishing green at 50%. Therefore, we will
see it is repeated two times.

17.2.3 Radial Gradients

Below is the syntax of the linear gradients:
background: radial-gradient(shape size at position, start-color, ..., last-color);

Example 1: Radial gradient with evenly spaced color stops (this is the
default).

style.css
p {
 height: 100px;
 background: radial-gradient(red, yellow, green);
}

Result:

Example 2: Radial gradient with differently spaced color stops.

style.css
p {
 height: 100px;
 background: radial-gradient(red 10%, yellow 30%, green 60%);
}

Result:

The above example creates a gradient at the center of its container,
starting red, changing to yellow from 10% to 30%, and finishing green from
60%.

17.2.4 Repeating Radial Gradients

The “ repeating-radial-gradient ” property helps to repeat a radial
gradient.

Example:

style.css
p {
 height: 100px;
 background: repeating-radial-gradient(red, yellow 10%, green 20%);
}

Result:

The above example creates a repeating gradient at the center of its
container, starting red, changing to yellow from 10%, and finishing green at
20%. Therefore, we will see it repeated five times.

17.3 CSS Sprites
To reduce HTTP requests to the server, we can merge many images into a

single image called image sprite.

 CSS sprite only works with block or inline-block elements
since we cannot set the height of the inline elements.

In the below example, we will use this image (150x150 pixels).
Therefore, each number has a size of 50x50 pixels.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="sprite testing"></div>
 <div class="sprite number-1"></div>
 <div class="sprite number-2"></div>
 <div class="sprite number-3"></div>
 <div class="sprite number-4"></div>
 <div class="sprite number-5"></div>
 <div class="sprite number-6"></div>
 <div class="sprite number-7"></div>
 <div class="sprite number-8"></div>
 <div class="sprite number-9"></div>
 </body>

</html>

style.css
.sprite {
 background-image: url("sprites.jpg");
 height: 50px;
 width: 50px;
 margin: 5px;
 display: inline-block;
}

.testing {
 background-position: -10px -10px;
}
.number-1 {
 background-position: 0 0;
}
.number-2 {
 background-position: -50px 0;
}
.number-3 {
 background-position: -100px 0;
}
.number-4 {
 background-position: 0 -50px;
}
.number-5 {
 background-position: -50px -50px;
}
.number-6 {
 background-position: -100px -50px;
}
.number-7 {
 background-position: 0 -100px;
}
.number-8 {
 background-position: -50px -100px;
}
.number-9 {
 background-position: -100px -100px;
}

Result:

It can be seen that CSS sprites use the background-position property to
shift a portion of a big image into a smaller viewport like the <div
class="sprite testing"> element.

We often use the image sprite in the navigation bar like this.

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <ul class="navlist">
 <li class="sprite home">
 <li class="sprite prev">
 <li class="sprite next">

 </body>
</html>

style.css
.navlist li {
 margin: 0;
 padding: 0;
 list-style: none;
 float: left;
}
.navlist li,
.navlist a {
 display: block;
 height: 50px;
 width: 50px;
}

.sprite {
 background-image: url("sprites.jpg");
}

.home {
 background-position: 0 0;
}
.home:hover {
 background-position: 0 -50px;
}

.prev {
 background-position: -50px 0;
}
.prev:hover {
 background-position: -50px -50px;
}

.next {
 background-position: -100px 0;
}
.next:hover {
 background-position: -100px -50px;
}

CHAPTER 18
CSS Display

18.1 display vs. visibility

18.1.1 display
The “ display ” property specifies if/how an element is displayed.

“ display: none; ” is commonly used with JavaScript to hide or show
elements without deleting and recreating them. For example, to show a
hidden element, we could set it to “ display: block ,”“ display: inline ” or
“ display: inline-block ” according to the HTML element type.

The CSS “ height ” property will not affect the inline elements. Therefore,
to convert a block element into an inline but keep its height, we use “ display:
inline-block; .”

 The inline-block elements have both characteristics of
inline and block elements. They only occupy the space
necessary for their contents so that they will not cause any
line breaks. However, they could have more space than their
contents by using these CSS properties: width, height,
padding, and margin .

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>

 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="inline-blocks">I'm the 1st child</div>
 <div class="inline-blocks">I'm the 2nd child</div>
 <div class="normal-blocks">I'm the 3rd child</div>
 </div>
 </body>
</html>

style.css
.container {
 border: 1px solid black;
 width: 300px;
 height: 100px;
}

.inline-blocks {
 display: inline-block;
 border: 1px solid red;
 height: 40px;
}

.normal-blocks {
 border: 1px solid blue;
}

Result:

This example is another way to make elements float without the “ float ”
property.

18.1.2 visibility
To hide the element but still take up the same space of it as before, we use

the “ visibility ” property.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p>This is the hidden element</p>
 <p>This is the invisible element</p>
 </body>
</html>

style.css
.hidden {
 display: none;
}

.invisible {
 visibility: hidden;
}

Result:

18.2 CSS object-fit
The CSS “ object-fit ” property is used to specify how the object (image

or video) should be resized to fit its container (the or <video>
elements). The property can have the following values:

● fill (default value) - The object is resized to fill the element's content
box. If necessary, the object will be distorted to fit.

● contain - The object is scaled to maintain its aspect ratio while fitting
within the element's content box.

● cover - The object is scaled to maintain its aspect ratio while filling
the element's entire content box. The object will be clipped to fit.

● none - The object is not resized.
● scale-down - The object is sized as “ none ” or “ contain ” if the

element's content box is smaller than the object size.

In the below examples, we will use an image of 150x150 pixels.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>

 </body>
</html>

Example 1:

style.css
img {
 width: 300px;
 height: 200px;
 border: 1px solid red;
 object-fit: contain;

}

Result:

Example 2:

style.css
img {
 width: 300px;
 height: 200px;
 border: 1px solid red;
 object-fit: cover;
}

Result:

Example 3:

style.css
img {
 width: 300px;
 height: 200px;

 border: 1px solid red;
 object-fit: none;
}

Result:

Example 4:

style.css
img {
 width: 150px;
 height: 100px;
 border: 1px solid red;
 object-fit: scale-down;
}

Result:

18.3 Cursor
The “ cursor ” property specifies how the mouse’s pointer looks when the

user hovers it on an element. These are popular values of this property:
● pointer - The cursor is a pointer
● not-allowed - The cursor indicates that the requested action will not

be executed
● grab - The cursor indicates that something can be grabbed
● grabbing - The cursor indicates that something is grabbing
● help - The cursor indicates that help is available
● move - The cursor indicates something is to be moved
● zoom-in - The cursor indicates that something can be zoomed

in
● zoom-out - The cursor indicates that something can be zoomed out

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p class="my-element">This is a paragraph</p>
 </body>
</html>

style.css
.my-element {
 cursor: pointer;
}

18.4 CSS Overflow
The overflow property specifies how the overflowed content is rendered

inside its containing element.

This file will be used in the following examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I am the content.</div>
 </div>
 </body>
</html>

18.4.1 overflow: visible
By default, the overflow is visible. It means that the content will be

rendered outside its parent.

Example:

style.css
.container {
 border: 1px solid black;
 width: 200px;
 height: 100px;
}

.child {
 margin: 10px;
 border: 1px solid red;
 background-color: white;
 height: 150px;
}

Result:

18.4.2 overflow: hidden
With the “ hidden ” value, the overflowed content will be hidden.

Example:

style.css
.container {
 overflow: hidden;
 border: 1px solid black;
 width: 200px;
 height: 100px;
}

.child {
 margin: 10px;
 border: 1px solid red;
 background-color: white;
 height: 150px;
}

Result:

18.4.3 overflow: scroll
Setting the value to “ scroll ,” horizontally and vertically scrollbars are

added to view the overflowed content. The two scrollbars are always shown
despite needing.

Example:

style.css
.container {
 overflow: scroll;
 border: 1px solid black;
 width: 200px;
 height: 100px;
}

.child {
 margin: 10px;
 border: 1px solid red;
 background-color: white;
 height: 150px;
}

Result:

18.4.4 overflow: auto
The “ auto ” value will add scrollbars when necessary.

Example:

style.css
.container {
 overflow: auto;
 border: 1px solid black;
 width: 200px;
 height: 100px;
}

.child {
 margin: 10px;
 border: 1px solid red;
 background-color: white;
 height: 150px;
}

Result:

18.5 CSS Opacity
The “ opacity ” property sets the transparency of an element and all its

children, including backgrounds and texts. Its valid value is a float from 0.0
to 1.0, where 0 is completely transparent and 1 is not transparent.

The example below also compares the “ opacity ” property and the
transparent“ background-color .” Again, we use the transparent background
color to keep the text unchanged.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I'm a child element</div>
 </div>
 <div class="container opacity">
 <div class="child">I'm a child element</div>
 </div>
 <div class="container transparent">
 <div class="child">I'm a child element</div>
 </div>
 </body>
</html>

style.css
.container {
 background-color: rgb(255, 0, 0);
 padding: 20px;
 margin: 10px;
}

.container.opacity {
 opacity: 0.5;

}

.container.transparent {
 background-color: rgba(255, 0, 0, 0.5);
}

.child {
 border: 1px solid black;
}

Result:

18.6 CSS Shadows
We can add shadows to text and HTML elements using CSS.

18.6.1 text-shadow
The “ text-shadow ” property adds a shadow to text and accepts a comma-

separated list of shadows. The syntax is:
text-shadow: h-offset v-offset blur-radius color

where:
● h-offset - The horizontal position of the shadow (allows negative

values to put the shadow on the left side of the text).
● v-offset - The vertical position of the shadow (allows negative values

to put the shadow above the text).
● blur-radius (optional) - The higher the number, the more blurred the

shadow will be.
● color (optional) - The color of the shadow (The default value is the

text color).

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1>This is a heading</h1>
 </body>
</html>

style.css
h1 {
 text-shadow: 3px 3px red;

}

Result:

Example 2: To make it real, we should put a blur-radius into the CSS at
the 3rd position.

h1 {
 text-shadow: 3px 3px 5px red;
}

Result:

Example 3: Multiple shadows

To add more than one shadow to the text, you can add a comma-separated
list of shadows.

h1 {
 color: white;
 text-shadow: 0 0 2px #f00, 0 0 20px #00f;
}

Result:

Example 4:

The below CSS creates a 2px border around the text. The solution is
straightforward, so we create four shadows (without blur) and then shift them
left (-2px 0 black), bottom (0 2px black), right (2px 0 black), and top (0 -2px
black), each side 2px.

h1 {
 color: white;
 text-shadow: -2px 0 black, 0 2px black, 2px 0 black, 0 -2px black;
}

Result:

18.6.2 box-shadow
The “ box-shadow ” property adds one or more shadows to an element.

The syntax is:
box-shadow: h-offset v-offset blur-radius spread color

where:
● h-offset - The horizontal position of the shadow (allows negative

values to put the shadow on the left side of the text).
● v-offset - The vertical position of the shadow (allows negative values

to put the shadow above the text).
● blur-radius (optional) - The higher the number, the more blurred the

shadow will be.
● spread (optional) - A positive value increases the size of the shadow;

a negative value decreases the size of the shadow.
● color (optional) - The color of the shadow (The default value is the

text color).

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>This is a div</div>
 </body>
</html>

style.css

Example 1:

div {
 border: 1px solid black;
 box-shadow: 5px 5px grey;
}

Result:

Example 2: To make it real, we should put a blur number into the CSS at
the 3rd position.

div {
 border: 1px solid black;
 box-shadow: 5px 5px 5px grey;
}

Result:

Example 3: Let’s make the shadow bigger by adding a spread number
into the CSS at the 4th position.

div {
 border: 1px solid black;
 box-shadow: 5px 5px 5px 2px grey;
}

Result:

Example 4: To add more than one shadow to the text, you can add a
comma-separated list of shadows.

div {
 border: 1px solid black;
 box-shadow: 8px 0 10px grey, 0 8px 10px grey;
}

Result:

18.7 CSS Multiple Columns
The CSS multi-column layout allows easy definition of multiple columns

of text - like the newspapers.

18.7.1 Fixed Columns
These CSS properties help us define a multi-column layout:
● The column-count property specifies the number of columns an

element should be divided into.
● The column-gap property specifies the gap between the columns.
● The column-rule-style property specifies the style of the rule between

columns.
● The column-rule-width property specifies the width of the rule

between columns.
● The column-rule-color property specifies the color of the rule

between columns.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="newspaper">Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie
consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio
dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Nam
liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim
placerat facer possim assum.</div>
 </body>
</html>

style.css
.newspaper {
 column-count: 3;
 column-gap: 40px;
 column-rule-style: solid;
 column-rule-width: 1px;
 column-rule-color: black;
}

Result:

The column-rule property is a shorthand property for setting all the
column-rule-* properties above.

.newspaper {
 column-count: 3;
 column-gap: 40px;
 column-rule: 1px solid black;
}

18.7.2 Responsive Columns
The “ column-width ” property specifies a suggested, optimal width for

the columns.
.newspaper {
 column-count: 3;
 column-gap: 40px;
 column-rule: 1px solid black;
 column-width: 200px;
}

Try to resize the browser to see how the number of columns will change

based on the viewport’s width.

18.7.3 Column Span
The “ column-span ” property specifies whether an HTML element

should span across all the columns by using “ column-span: all .”

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="newspaper">
 <h1>Lorem Ipsum Dolor Sit Amet</h1>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis
nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore
eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent
luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Nam liber tempor cum soluta nobis
eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum.</p>
 </div>
 </body>
</html>

style.css
.newspaper {
 column-count: 3;
 column-gap: 40px;
 column-rule: 1px solid black;
}

h1 {
 column-span: all;
}

Result:

18.8 CSS Tables
Below is a simple table.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Firstname</th>
 <th>Lastname</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John</td>
 <td>Corner</td>
 </tr>
 <tr>
 <td>Neo</td>
 <td>D. Truman</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Example 1:

style.css
table {
 border: 1px solid green;
}

th {
 border: 1px solid red;

}

td {
 border: 1px solid blue;
}

Result:

We see double borders because of the space between cells inside the table.

The “ border-collapse ” property sets whether the table borders should be
collapsed into a single border.

Example 2:

style.css
table {
 border-collapse: collapse;
 border: 1px solid green;
}

th {
 border: 1px solid red;
}

td {
 border: 1px solid blue;
}

Result:

18.8.1 Table Sizing
We can set the table’s width and height or its cells’ width and height

using “ width ” and “ height ” properties. For example:

style.css
table {
 border-collapse: collapse;
 border: 1px solid green;
 width: 100%;
}

th {
 border: 1px solid red;
 height: 30px;
}

td {
 border: 1px solid blue;
 height: 50px;
}

Result:

18.8.2 Text Alignment in Table Cells
We can align text inside cells using “ text-align ” (with value: left, right,

center, justify) and “ vertical-align ” (with value: baseline, length, sub,
super, top, text-top, middle, bottom, text-bottom) properties. For example:

style.css
table {
 border-collapse: collapse;
 border: 1px solid green;
 width: 100%;
}

th {
 border: 1px solid red;
 height: 30px;
}

td {
 border: 1px solid blue;
 height: 50px;
 text-align: center;
 vertical-align: top;
}

Result:

18.9 CSS Lists
In HTML, there are two main types of lists:
● unordered lists () - the list items are marked with bullets.
● ordered lists () - the list items are marked with numbers or

letters.

18.9.1 List Item Markers
The “ list-style-type ” property specifies the type of list item marker. The

value of this property can be circle, square, decimal, decimal-leading-zero,
lower-alpha, lower-roman, upper-alpha, upper-roman, or none .

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="col">
 <p>Unordered lists:</p>

 Item 1
 Item 2
 Item 3

 <ul class="circle">
 Item 1
 Item 2
 Item 3

 <ul class="square">
 Item 1
 Item 2
 Item 3

 </div>
 <div class="col">
 <p>Ordered lists:</p>

 Item 1
 Item 2
 Item 3

 <ol class="upper-roman">
 Item 1
 Item 2
 Item 3

 <ol class="lower-alpha">
 Item 1
 Item 2
 Item 3

 </div>
 </body>
</html>

style.css
.col {
 display: inline-block;
 width: 150px;
}

ul.circle {
 list-style-type: circle;
}
ul.square {
 list-style-type: square;
}

ol.upper-roman {
 list-style-type: upper-roman;
}
ol.lower-alpha {
 list-style-type: lower-alpha;
}

Result:

The “ list-style-image ” property specifies an image as the list item
marker.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>

 Item 1
 Item 2
 Item 3

 </body>
</html>

style.css
ul {
 list-style-image: url("marker.png");
}

18.9.2 Position the List Item Markers
The “ list-style-position ” property specifies whether the list-item markers

should appear inside or outside the content flow.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>

 Item 1
 Item 2
 Item 3

 </body>
</html>

style.css
ul {
 list-style-position: inside;
}

This shorthand list-style property simultaneously sets all three list-style
properties(list-style-type, list-style-position, list-style-image).

Example:
ul {
 list-style: upper-latin inside;
}

18.10 CSS Transforms

18.10.1 Moves an Element
We can move an HTML element to another position by using one of these

CSS declarations:
● transform: translateX(x) - Moves the element along the X-axis.
● transform: translateY(y) - Moves the element along the Y-axis.
● transform: translateZ(z) - Moves the element along the Z-axis.
● transform: translate(x,y) - Moves the element along the X-axis and

Y-axis.
● transform: translate3d(x,y,z) - Moves the element along the three

axes.

The following example moves the <div class="test"> element 30 pixels
to the right and 60 pixels down from its original position.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>First paragraph</div>
 <div class="test">Second paragraph</div>
 <div>Third paragraph</div>
 </body>
</html>

style.css
div {
 width: 200px;
 border: 1px solid black;
}

.test {
 transform: translate(30px, 60px);
}

Result:

18.10.2 Scales an Element
We can scale an HTML element by using one of these CSS declarations:
● transform: scaleX(x) - Scales the element along the X-axis.
● transform: scaleY(y) - Scales the element along the Y-axis.
● transform: scaleZ(z) - Scales the element along the Z-axis.
● transform: scale(x,y) - - Scales the element along the X-axis and Y-

axis.
● transform: scale3d(x,y,z) - Scales the element along the three axes.

The following example increases the <div class="test"> element to two
times its original width and three times its original height.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>First paragraph</div>
 <div class="test">Second paragraph</div>
 </body>
</html>

style.css

div {
 width: 200px;
 border: 1px solid black;
}

.test {
 position: relative;
 left: 100px;
 top: 30px;
 transform: scale(2, 3);
}

Result:

18.10.3 Rotates an Element
We can rotate an HTML element by using one of these CSS declarations:
● transform: rotateX(angle) - Defines a rotation along the X-axis.
● transform: rotateY(angle) - Defines a rotation along the Y-axis.
● transform: rotateZ(angle) - Defines a rotation along the Z-axis.
● transform: rotate(angle) - Defines a 2D rotation at a given angle.
● transform: rotate3d(x,y,z,angle) - Defines a 3D rotation.

Example 1:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>First paragraph</div>
 <div class="div2">Second paragraph</div>
 <div class="div3">Third paragraph</div>
 </body>
</html>

style.css
.div2 {
 transform: rotate(180deg);
}

.div3 {
 transform: rotate(-20deg);
}

Result:

The rotateX(), rotateY() , or rotateZ() method rotates an element around
its X-axis, Y-axis, or Z-axis at a given degree.

Example 2:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>A paragraph</div>
 <div class="test1">1st paragraph</div>
 <div class="test2">2nd paragraph</div>
 <div class="test3">3rd paragraph</div>
 </body>
</html>

style.css
div {
 border: 1px solid black;
}

.test1 {
 transform: rotateX(150deg);
}
.test2 {
 transform: rotateY(150deg);
}
.test3 {
 transform: rotateZ(-100deg);
}

Result:

18.10.4 Skews an Element
We can skew an HTML element by using one of these CSS declarations:
● transform: skewX(angle) - Skews an element along the X-axis.
● transform: skewY(angle) - Skews an element along the Y-axis.
● transform: skew(x-angle,y-angle) - Defines a 2D skew transformation

along the X-axis and Y-axis.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>A paragraph</div>
 <div class="test1">1st paragraph</div>
 <div class="test2">2nd paragraph</div>
 <div class="test3">3rd paragraph</div>
 </body>
</html>

style.css
div {
 border: 1px solid black;
}

.test1 {
 transform: skewX(30deg);

}
.test2 {
 transform: skewY(-10deg);
}
.test3 {
 position: relative;
 top: 60px;
 transform: skew(20deg, 10deg);
}

Result:

CHAPTER 19
CSS Layout

The layout is the way HTML elements are placed on a web page. We often
use CSS to build a design by arranging the elements into our preferred visual
structure.

19.1 CSS Position

19.1.1 static

The default value of the CSS “ position ” property is “ static .” The
element is placed where it should be inside the web page according to its
order in the HTML code. We said that the element is not positioned.

19.1.2 relative

An element with “ position: relative ” is relative to its normal position.
We use the top, right, bottom , and left properties to set the element’s
position.

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="parent">
 <div class="normal">Normal element</div>
 <div class="relative">I am relative!</div>
 </div>
 </body>

</html>

style.css
.parent {
 width: 200px;
 height: 200px;
 border: 1px dashed black;
}

.relative {
 position: relative;
 left: 30px;
 top: 30px;
 border: 1px solid red;
}

.normal {
 border: 1px dashed blue;
}

Result:

19.1.3 absolute

An element with “ position: absolute ” is positioned relative to the nearest
positioned ancestor.

 We can set the“ position ” property of the parent element to
“ relative ” to make it a positioned element without changing
its position.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="positioned">
 <div class="non-positioned">
 <div class="absolute">I am absolute!</div>
 </div>
 </div>
 </body>
</html>

style.css
.positioned {
 position: relative;
 border: 1px solid black;
 width: 200px;
 height: 200px;
}

.non-positioned {
 border: 1px dashed black;
 width: 150px;
 height: 150px;
}

.absolute {
 position: absolute;
 right: 30px;
 top: 30px;
 border: 1px solid red;
 background-color: white;
}

Result: The <div class="absolute"> element is positioned relative to the
<div class="positioned"> element since this is the nearest positioned
ancestor.

19.1.4 fixed

An element with “ position: fixed ” is positioned relative to the viewport,
which means it always stays in the same place even if the page is scrolled.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>Normal element</div>
 <div class="fixed">I am fixed!</div>
 <div class="big">A big element.</div>
 </body>

</html>

style.css
.big {
 height: 1000px;
 border: 1px solid black;
}

.fixed {
 position: fixed;
 right: 30px;
 top: 30px;
 width: 100px;
 border: 1px solid red;
}

19.1.5 sticky

An element with “ position: sticky ” is left in the normal flow until the
conditions that trigger its stickiness come to pass.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="parent">
 <p>Try to scroll inside this frame to understand how sticky positioning works.</p>
 <div class="sticky">I am sticky!</div>
 <p>In this example, the sticky element sticks to the top of the page when it reaches the position
"top: 0".</p>
 <p>Scroll back up to remove the stickiness.</p>
 <p>Lorem ipsum dolor sit amet, illum definitiones no quo, maluisset concludaturque et eum,
altera fabulas ut quo.</p>
 </div>
 </body>
</html>

style.css
.parent {
 width: 200px;
 height: 200px;
 overflow: auto;
}

.sticky {
 position: sticky;
 top: 0;
 border: 1px solid red;
 background-color: white;
}

19.2 CSS Float

19.2.1 float

Make elements float inside their containing element. There are several use
cases:

● “ float: none ” (default value) - Elements are placed in the normal
flow.

● “ float: left ” - Elements float on the left side of their parent.
● “ float: right ” - Elements float on the right side of their parent but in

reverted order.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I'm the 1st child</div>
 <div class="child">I'm the 2nd child</div>
 </div>
 </body>
</html>

style.css
.container {
 border: 1px solid black;
 width: 300px;
 height: 100px;
}

.child {
 float: right;
 border: 1px solid red;

}

Result:

19.2.2 clear

The example below shows us that the 3rd element is not placed in the
expected place.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="float">I'm the 1st child</div>
 <div class="float">I'm the 2nd child</div>
 <div class="no-float">I'm the 3rd child</div>
 </div>
 </body>
</html>

style.css
.container {
 border: 1px solid black;
 width: 300px;
 height: 100px;
}

.float {
 float: left;
 border: 1px solid red;

}

.no-float {
 border: 1px solid blue;
}

Result:

To force an element to start below any floated elements, we use the
“ clear ” property. In this case, we use “ clear: left ” because the above
elements are floated left.

.no-float {
 clear: left;
 border: 1px solid blue;
}

Result:

Two other options of the “ clear ” property are “ clear: right; ” or “ clear:
both; .”

19.3 CSS Z-index
The “ z-index ” property specifies the order of positioned elements on the

Z-axis.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="absolute child z-index-minus-two">z-index: -2</div>
 <div class="absolute child z-index-minus-one">z-index: -1</div>
 <div class="absolute child z-index-zero">z-index: 0</div>
 <div class="absolute child z-index-one">z-index: 1</div>
 <div class="child z-index-two">z-index: 2; but I'm not positioned</div>
 </div>

 </body>
</html>

style.css
div {
 border: 1px solid black;
}

.container {
 position: relative;
 width: 250px;
 height: 250px;
}

.child {
 width: 100px;
 height: 100px;
 background-color: white;
}

.absolute {
 position: absolute;
 border: 1px solid red;
 text-align: right;
}

.z-index-minus-two {
 z-index: -2;
 left: 100px;
 top: 5px;
}

.z-index-minus-one {
 z-index: -1;
 left: 70px;
 top: 35px;
}

.z-index-zero {
 z-index: 0;
 left: 40px;
 top: 65px;
}

.z-index-one {
 z-index: 1;
 left: 10px;
 top: 95px;
}

.z-index-two {
 z-index: 2;
}

Result:

19.4 CSS Flexbox
A flexible box or flexbox ensures that elements behave predictably when

the page layout must accommodate different screen sizes and display devices.
A flex container is declared by setting the “ display ” property of an element
to either “ flex ” (rendered as a block) or “ inline-flex ” (rendered as inline).

Inside a flex container, there are one or more flex items. Flex items are
positioned inside a flex container along a flex line. By default, there is only
one flex line per flex container.

The following example shows three flex items. They are positioned by
default: along the horizontal flex line from left to right.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item item1">flex item 1</div>
 <div class="flex-item item2">flex item 2</div>
 <div class="flex-item item3">flex item 3</div>
 </div>
 </body>
</html>

style.css
.flex-container {
 display: flex;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

19.4.1 Flex Container

19.4.1.1 gap

The “ gap ” property is used to create space between flex items. As in the
previous example, the gap between flex items is 10 pixels.

19.4.1.2 flex-direction

The “ flex-direction ” property specifies the direction of the flexible items
inside the flex container. The default value of flex-direction is row (left-to-
right).

The other values are as follows:
● row - The flex items are displayed horizontally as a row.
● row-reverse - Same as row, but the flex items will be laid out right to

the left.
● column - The flex items are displayed vertically as a column.
● column-reverse - Same as the column, but in reverse order.

Example 1:

style.css
.flex-container {
 display: flex;
 flex-direction: row-reverse;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 2:

style.css
.flex-container {
 display: flex;
 flex-direction: column;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 3:

style.css
.flex-container {
 display: flex;
 flex-direction: column-reverse;
 width: 300px;
 height: 150px;
 border: 1px solid black;

 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

19.4.1.3 justify-content

The “ justify-content ” property horizontally aligns the flexible container's
items when the items do not use all available space.

The possible values are as follows:
● flex-start (default value) - Items are positioned at the beginning of the

container.
● flex-end - Items are positioned at the end of the container.
● center - Items are positioned at the center of the container.
● space-between - Items are positioned with space between the lines.
● space-around - Items are positioned with space before, between, and

after the lines.
● space-evenly - Items will have equal space around them.

Example 1:

style.css
.flex-container {
 display: flex;
 justify-content: flex-end;
 width: 300px;
 height: 150px;

 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 2:

style.css
.flex-container {
 display: flex;
 justify-content: center;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 3:

style.css
.flex-container {
 display: flex;
 justify-content: space-between;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 4:

style.css
.flex-container {
 display: flex;
 justify-content: space-around;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 5:

style.css
.flex-container {
 display: flex;
 justify-content: space-evenly;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

19.4.1.4 align-items

The “ align-items ” property vertically aligns the flexible container's items
when the items do not use all available space.

The possible values are as follows:
● stretch (default value) - Items are stretched to fit the container
● flex-start - Items are positioned at the top of the container
● flex-end - Items are positioned at the bottom of the container
● center - Items are positioned at the center of the container (vertically)
● baseline - Items are aligned along the text baseline of the container

Example 1:

style.css
.flex-container {
 display: flex;
 align-items: flex-start;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 2:

style.css
.flex-container {
 display: flex;
 align-items: flex-end;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 3:

style.css
.flex-container {
 display: flex;
 align-items: center;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

Result:

Example 4:

style.css
.flex-container {
 display: flex;
 align-items: baseline;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.item1 {
 height: 50px;
}
.item2 {
 line-height: 80px;
}

Result:

19.4.1.5 flex-wrap

The “ flex-wrap ” property specifies whether the flex items should wrap
or not if there is not enough room for them on one flex line.

The possible values are as follows:
● nowrap (default value) - The flexible items will not wrap
● wrap - The flexible items will wrap if necessary
● wrap-reverse - The flexible items will wrap, if necessary, in reverse

order

Example 1:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 2:

style.css

.flex-container {
 display: flex;
 flex-wrap: wrap-reverse;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

19.4.1.6 align-content

The “ align-content ” property modifies the behavior of the “ flex-wrap ”
property as it aligns flex lines of wrapping items. The possible values are as
follows:

● stretch (default value) - Lines stretch to take up the remaining space
● flex-start - Lines are packed toward the start of the flex container
● flex-end - Lines are packed toward the end of the flex container
● center - Lines are packed toward the center of the flex container
● space-between - Lines are evenly distributed in the flex container
● space-around - Lines are evenly distributed in the flex container, with

half-size spaces on either end
● space-evenly - Items will have equal space around them.

Example 1:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: flex-start;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 2:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: flex-end;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 3:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: center;

 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 4:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: space-between;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 5:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: space-around;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

Example 6:

style.css
.flex-container {
 display: flex;
 flex-wrap: wrap;
 align-content: space-evenly;

 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result:

19.4.2 Flex Items

19.4.2.1 flex-basis

The “ flex-basis ” property defines an item’s width if the original width is
smaller than the flex-basis value.

Example:

style.css
.flex-container {
 display: flex;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 120px;
}

Result: The flex items were expanded as much as possible to reach the
flex-basis size.

19.4.2.2 order

The “ order ” property controls the order of items. The items with no
“ order ” value will be settled first; then come the smallest order value, and
the highest order value makes the item last.

style.css
.flex-container {
 display: flex;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.item1 {
 order: 2;
}

.item2 {
 order: 1;
}

Result:

19.4.2.3 flex-grow

The “ flex-grow ” property allows an element to grow (0 means no).

Example:

style.css
.flex-container {
 display: flex;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.item1 {
 flex-grow: 1;
}
.item2 {
 flex-grow: 2;
}

Result: Item 2 gets double the available space compared to item 1.

19.4.2.4 flex-shrink

The “ flex-shrink ” property allows an element to shrink (0 means no).

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>

 <body>
 <div class="flex-container">
 <div class="flex-item item1">Item 1</div>
 <div class="flex-item item2">Item 2</div>
 <div class="flex-item item3">Item 3</div>
 <div class="flex-item item4">Item 4</div>
 <div class="flex-item item5">Item 5</div>
 </div>
 </body>
</html>

style.css
.flex-container {
 display: flex;
 width: 400px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
 flex-basis: 100px;
}

.item2 {
 flex-shrink: 3;
}

Result: Since the container width is 400px, but there are five items with
flex-basis of 100px , all the items must be shrunk. The second item with
“ flex-shrink: 3 ” will be the smallest one since its shrinking space is three
times that of other items.

19.4.2.5 align-self

The “ align-self ” property of flex items overrides the “ align-items ”
property of its parent.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item item1">flex-start</div>
 <div class="flex-item item2">flex-end</div>
 <div class="flex-item item3">center</div>
 <div class="flex-item item4">baseline</div>
 <div class="flex-item item5">stretch</div>
 </div>
 </body>
</html>

style.css
.flex-container {
 display: flex;
 align-items: center;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.item1 {
 align-self: flex-start;
}
.item2 {
 align-self: flex-end;

}

.item4 {
 align-self: baseline;
}
.item5 {
 align-self: stretch;
}

Result:

19.4.2.6 flex

The “ flex ” property is the shorthand for flex-grow , flex-shrink , and
flex-basis .

flex: 0 1 auto;

In the following example, the first flex item will consume 2/4 of the free
space, and the other two will consume 1/4 of the free space.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item item1">flex item 1</div>
 <div class="flex-item item2">flex item 2</div>
 <div class="flex-item item3">flex item 3</div>
 </div>

 </body>
</html>

style.css
.flex-container {
 display: flex;
 width: 400px;
 height: 150px;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.item1 {
 flex: 2;
}
.item2 {
 flex: 1;
}
.item3 {
 flex: 1;
}

Result:

19.4.2.7 Auto Margin for Flex Items

We can implement our navigation bar like this example:

Example:

index.html

<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item lnk-home">HOME</div>
 <div class="flex-item">Contact</div>
 <div class="flex-item">Login</div>
 </div>
 </body>
</html>

style.css
.flex-container {
 display: flex;
 width: 100%;
 border: 1px solid black;
 gap: 10px;
}

.flex-item {
 border: 1px solid red;
}

.lnk-home {
 margin-right: auto;
}

Result:

19.5 CSS Grid
While CSS flexbox works with a 1D array of items, CSS grid provides a

grid-based layout system with rows and columns. To define a grid container,
we set the “ display ” property to “ grid ” to create a block-level grid or
“ inline-grid ” to create an inline-level grid.

This file is used in the following examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="grid-container">
 <div class="grid-item item1">Item 1</div>
 <div class="grid-item item2">Item 2</div>
 <div class="grid-item item3">Item 3</div>
 <div class="grid-item item4">Item 4</div>
 <div class="grid-item item5">Item 5</div>
 <div class="grid-item item6">Item 6</div>
 <div class="grid-item item7">Item 7</div>
 <div class="grid-item item8">Item 8</div>
 <div class="grid-item item9">Item 9</div>
 </div>
 </body>
</html>

19.5.1 Grid Container

19.5.1.1 grid-template-columns

The “ grid-template-columns ” property defines the number of columns in
the grid layout and the width of each column. The syntax is:

grid-template-columns: col-1-width col-2-width ... col-N-width

The column width can be:
● a fixed length like 60px
● auto - only take the necessary size to fill its content
● fr - flexible value, e.g., 1fr, 2fr , etc.

style.css
.grid-container {
 display: grid;
 grid-template-columns: auto auto auto;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.1.2 grid-template-rows

The “ grid-template-rows ” property defines the height of each row. The
syntax is:

grid-template-rows: row-1-height row-2-height ... row-N-height

The row height can be:
 ● a fixed length like 60px
● auto - only take the necessary size to fill its content
● fr - flexible value, e.g., 1fr, 2fr , etc.

style.css
.grid-container {
 display: grid;
 grid-template-columns: 2fr 1fr 3fr;
 grid-template-rows: 30px auto 60px;
}

.grid-item {
 border: 1px solid red;
}

Result: The grid is horizontally divided into 6 fragments. Then, the first
column gets two fragments, the second column gets one fragment, and the
third column gets three fragments.

Instead of writing this CSS code:
grid-template-columns: 1fr 1fr 1fr;

we can write:
grid-template-columns: repeat(3, 1fr);

19.5.1.3 column-gap

The “ column-gap ” property creates space between columns in the grid.

Example:

style.css
.grid-container {
 display: grid;
 grid-template-columns: 2fr 1fr 3fr;
 grid-template-rows: 30px auto 60px;
 column-gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.1.4 row-gap

The “ row-gap ” property creates space between rows in the grid.

Example:

style.css
.grid-container {
 display: grid;
 grid-template-columns: 2fr 1fr 3fr;
 grid-template-rows: 30px auto 60px;
 row-gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.1.5 gap

The “ gap ” property creates space between rows and columns in the grid.
It is a shorthand for the “ row-gap ” and “ column-gap ” properties. The
syntax is:

gap: row-gap column-gap

or if row-gap = column-gap = gap-size
gap: gap-size

Example:

style.css
.grid-container {
 display: grid;
 grid-template-columns: 2fr 1fr 3fr;
 grid-template-rows: 30px auto 60px;
 gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.1.6 justify-items

The “ justify-items ” property horizontally aligns the grid container's
items when the items do not use all available space of the grid cells.

The possible values are as follows:
● stretch (default value) - Items are stretched to fit the cell
● start - Items are positioned on the left side of the cell
● end - Items are positioned on the right side of the cell
● center - Items are positioned in the center of the cell (horizontally)

Example 1:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-items: start;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

Example 2:

style.css

.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-items: end;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

Example 3:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-items: center;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

19.5.1.7 align-items

The “ align-items ” property vertically aligns the grid container's items
when the items do not use all available space of the grid cells.

The possible values are as follows:
● stretch (default value) - Items are stretched to fit the cell
● start - Items are positioned at the top of the cell
● end - Items are positioned at the bottom of the cell
● center - Items are positioned in the center of the cell (vertically)
● baseline - Items are aligned along the text baseline of the cell

Example 1:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-items: start;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

Example 2:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-items: end;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

Example 3:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-items: center;
}

.grid-item {
 border: 2px solid red;
}

Result: (dotted lines are outlines of the grid cells)

19.5.1.8 justify-content

The “ justify-content ” property horizontally aligns the grid container's
items when the items do not use all available space.

The possible values are as follows:
● start - Items are positioned at the beginning of the container.
● end - Items are positioned at the end of the container.
● center - Items are positioned at the center of the container.
● space-between - Items are positioned with space between the items.
● space-around - Items are positioned with space before, between, and

after the items.
● space-evenly - Items will have equal space around them.

Example 1:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: start;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 2:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: end;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 3:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;

 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: center;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 4:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: space-between;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 5:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: space-around;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 6:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;

 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-content: space-evenly;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.1.9 align-content

The “ align-content ” property vertically aligns the rows inside the grid’s
container. The possible values are as follows:

● start - Rows are packed toward the top of the grid container
● end - Rows are packed toward the bottom of the grid container
● center - Rows are packed toward the center of the grid container
● space-between - Rows are evenly distributed in the grid container
● space-around - Rows are evenly distributed in the grid container,

with half-size spaces on either end
● space-evenly - Items will have equal space around them.

Example 1:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: start;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 2:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: end;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 3:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: center;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 4:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: space-between;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 5:

style.css
.grid-container {
 display: grid;
 width: 300px;

 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: space-around;
}

.grid-item {
 border: 1px solid red;
}

Result:

Example 6:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-content: space-evenly;
}

.grid-item {
 border: 1px solid red;
}

Result:

19.5.2 Grid Items
We use grid lines to specify the location of a grid item. The grid lines are

assigned numbers along the X-axis and Y-axis. Horizontal lines are called
row-lines, and vertical lines are called column-lines.

A grid line can be assigned a positive number or a negative number. For
example, in the above grid, the second row-line can be 2 or -3; and the
second column-line can be 2 or -4.

19.5.2.1 grid-column-start

The “ grid-column-start ” property defines a grid item’s start location
within the grid by referring to the grid column-lines. The syntax is:

grid-column-start: start-column

start-column could have these values:
● <line number> - a number refers to a numbered grid line.
● span <number> - the item will span the provided number of cells.

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;

 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

.item3 {
 grid-column-start: 2;
}

Result:

19.5.2.2 grid-column-end

The “ grid-column-end ” property is similar to the “ grid-column-start ”
property, but it defines the ending location.

19.5.2.3 grid-column

The “ grid-column ” property is a shorthand for the “ grid-column-start ”
and “ grid-column-end ” properties. The syntax is:

grid-column: start-column / end-column

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;

 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

.item2 {
 /* grid-column: 2 / 4; */
 /* grid-column: 2 / -1; */
 grid-column: 2 / span 2;
}

Result:

19.5.2.4 grid-row-start

The “ grid-row-start ” property defines a grid item’s start location within
the grid by referring to the grid row-lines. The syntax is:

grid-row-start: start-row

start-row could have these values:
● <line number> - a number refers to a numbered grid line.
● span <number> - the item will span the provided number of cells.

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;

 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

.item1 {
 grid-row-start: 3;
}

Result:

19.5.2.5 grid-row-end

The “ grid-row-end ” property is similar to the “ grid-row-start ” property,
but it defines the ending location.

19.5.2.6 grid-row

The “ grid-row ” property is a shorthand for the “ grid-row-start ” and
“ grid-row-end ” properties. The syntax is:

grid-row: start-row / end-row

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;

 grid-template-columns: auto auto auto;
 gap: 10px;
}

.grid-item {
 border: 1px solid red;
}

.item9 {
 grid-column-start: 2;
 /* grid-row: 1 / 3; */
 grid-row: 1 / span 2;
}

Result:

19.5.2.7 grid-area

The “ grid-area ” property is a shorthand property for the “ grid-row-
start ,” “ grid-column-start ,” “ grid-row-end ,” and the “ grid-column-end ”
properties.

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
}

.grid-item {

 border: 1px solid red;
}

.item6 {
 grid-area: 1 / 3 / 5 / 4;
}

Result: “item6” starts on row-line 1 and column-line 3 and ends on row-
line 5 and column-line 4.

19.5.2.8 justify-self

The “ justify-self ” property overrides the “ justify-items ” property of the
grid container.

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 justify-items: start;
}

.grid-item {
 border: 1px solid red;
}

.item5 {
 justify-self: end;
}

Result:

19.5.2.9 align-self

The “ align-self ” property overrides the “ align-items ” property of the
grid container.

Example:

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;
 align-items: start;
}

.grid-item {
 border: 1px solid red;
}

.item5 {
 align-self: end;
}

Result:

19.5.2.10 grid-template-areas

The “ grid-template-areas ” property specifies areas within the grid layout.
We name the grid items using the “ grid-area ” property and then refer to the
name in the “ grid-template-areas ” property.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="grid-container">
 <div class="grid-item item1">Header</div>
 <div class="grid-item item2">Menu</div>
 <div class="grid-item item3">Main</div>
 <div class="grid-item item4">Sidebar</div>
 <div class="grid-item item5">Footer</div>
 </div>
 </body>
</html>

style.css
.grid-container {
 display: grid;
 width: 300px;
 height: 150px;
 border: 1px solid black;
 grid-template-columns: auto auto auto;
 gap: 10px;

 grid-template-areas:
 "header header header header header header"
 "menu main main main sidebar sidebar"
 "footer footer footer footer footer footer";
}

.grid-item {
 border: 1px solid red;
}

.item1 {
 grid-area: header;
}
.item2 {
 grid-area: menu;
}
.item3 {
 grid-area: main;
}
.item4 {
 grid-area: sidebar;
}
.item5 {
 grid-area: footer;
}

Result:

19.6 CSS Alignment

19.6.1 Horizontal Alignment

We use the CSS “ text-align ” property to align text. Please refer to the
section “CSS Text” for more details.

To align a block element center inside its containing element, we use the
CSS “ margin: auto; .”

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I'm the child element</div>
 </div>
 </body>
</html>

style.css
.container {
 border: 1px solid black;
 width: 300px;
 height: 60px;
}

.child {
 border: 1px solid red;
 width: 150px;
 margin: auto;
}

Result:

Therefore, to center align an image, we could change it to a block element
and use “ margin: auto; ” like this.

img {
 display: block;
 margin: auto;
}

We can use “ position: absolute; ” or “ float ” to align elements left or
right. Please refer to sections “CSS Position” and “CSS Float” sections in the
chapter “CSS Layout” for more details.

19.6.2 Vertical alignment
We can use “ margin-top ” and “ margin-bottom ” properties to make an

element center vertically inside its containing element.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I'm the child element</div>
 </div>
 </body>
</html>

style.css
.container {
 border: 1px solid black;
 width: 300px;
}

.child {
 border: 1px solid red;
 margin-top: 50px;
 margin-bottom: 50px;
}

Result:

Or we can use the CSS line-height property as in the chapter “CSS
Text” to vertically center align the text.

19.6.3 Perfect Centering

19.6.3.1 Centering Using The position And transform Properties

The CSS “ margin ” and “ line-height ” properties only work if the
containing element has only one child. Therefore, in some cases as below
example, we need a better way to vertically center align an element using
CSS “ position ” and “ transform ” properties.

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="container">
 <div class="child">I'm a child element</div>
 <div class="another-child">I'm another child element</div>
 </div>
 </body>
</html>

style.css
.container {
 position: relative;
 border: 1px solid black;
 width: 300px;
 height: 150px;
}

.child {
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 border: 1px solid red;
}

.another-child {
 border: 1px solid blue;
}

Result:

19.6.3.2 Centering Using The flex Property

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item">Perfect centering!</div>
 </div>
 </body>
</html>

style.css
.flex-container {
 display: flex;
 width: 300px;
 height: 160px;
 border: 1px solid black;
}

.flex-item {
 border: 1px solid red;

 width: 80px;
 height: 80px;
 margin: auto;
}

Result:

CHAPTER 20
CSS Transitions and Animations

20.1 CSS Transitions
CSS transitions allow you to change CSS property values smoothly (from

one value to another) over a given duration.

We will use this file in the following examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div>Hover the mouse on this element to see the effect!</div>
 </body>
</html>

20.1.1 Basic Transitions
To create a transition effect, you must specify two things:
● the CSS property you want to add an effect to
● the duration of the effect

Example 1:

style.css
div {
 width: 100px;
 height: 100px;
 color: white;
 background: red;
 transition: width 2s;
}

div:hover {
 width: 300px;
}

Example 2:

style.css
div {
 width: 100px;
 height: 100px;
 color: white;
 background: red;
 transition: width 2s, height 4s, transform 2s;
}

div:hover {
 width: 300px;
 height: 300px;
 transform: skewX(50deg);
}

20.1.2 Transition Delay
The “ transition-delay ” property specifies a delay (in seconds) for the

transition effect.

Example:

style.css
div {
 width: 100px;
 height: 100px;
 color: white;
 background: red;
 transition: width 2s, height 4s;
 transition-delay: 1s;
}

div:hover {
 width: 300px;
 height: 300px;
}

20.1.3 Transition Timing Function
The “ transition-timing-function ” property specifies the speed curve of

the transition effect. It can have the following values:
● ease - specifies a transition effect with a slow start, then fast, then

end slowly (this is the default)
● linear - specifies a transition effect with the same speed from start to

end
● ease-in - specifies a transition effect with a slow start
● ease-out - specifies a transition effect with a slow end
● ease-in-out - specifies a transition effect with a slow start and end

Example:

style.css
div {
 width: 100px;
 height: 100px;
 color: white;
 background: red;
 transition: width 2s, height 4s;

 transition-timing-function: ease-out;
}

div:hover {
 width: 300px;
 height: 300px;
}

20.1.4 Shorthand Transition Property
The CSS transition properties can be specified one by one, like this:

div {
 transition-property: width;
 transition-duration: 2s;
 transition-timing-function: linear;
 transition-delay: 1s;
}

or by using the shorthand property “ transition ”:
div {
 transition: width 2s linear 1s;
}

20.2 CSS Animations
Animations let HTML elements gradually change from one style to

another. To use CSS animation, you must first define some “ key-frames ” for
the animation. Key-frames hold what styles the element will have at certain
times.

We will use this file in the following examples:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div></div>
 </body>
</html>

20.2.1 Two-step Keyframes
The following example binds the " my-animation " animation to the

<div> element. The animation will last for 4 seconds, and it will gradually
change the background-color of the <div> element from " red " to
" yellow ":

Example:

style.css

@keyframes my-animation {
 from {
 background-color: red;
 }
 to {
 background-color: yellow;
 }
}

div {
 width: 100px;
 height: 100px;
 background-color: green;
 animation-name: my-animation;
 animation-duration: 4s;
}

20.2.2 Multiple Keyframes
It is also possible to use percentages from 0% to 100% like this.

Example:

style.css
@keyframes my-animation {
 0% {
 background-color: red;
 }
 25% {
 background-color: yellow;
 }
 50% {
 background-color: blue;
 }
 100% {
 background-color: green;
 }
}

div {
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
}

20.2.3 Animation Delay
The “ animation-delay ” property specifies a delay for the start of an

animation.

Example:

style.css
@keyframes my-animation {
 0% {
 background-color: red;
 }
 25% {
 background-color: yellow;
 }
 50% {
 background-color: blue;
 }
 100% {
 background-color: green;
 }
}

div {
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
 animation-delay: 2s;
}

20.2.4 Animation Iteration Count
The “ animation-iteration-count ” property specifies the number of times

an animation should run. We can set its value to a number or " infinite " (the
animation continue forever).

Example:

style.css
@keyframes my-animation {
 0% {
 background-color: red;
 }
 25% {
 background-color: yellow;
 }
 50% {
 background-color: blue;
 }
 100% {
 background-color: green;
 }
}

div {
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
 animation-iteration-count: 3;
}

20.2.5 Animation Direction
The “ animation-direction ” property lets an animation run in reverse

direction or alternate cycles.

Example 1:

style.css
@keyframes my-animation {
 from {
 left: 0;
 }
 to {
 left: 300px;
 }
}

div {
 position: relative;
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
 animation-iteration-count: 3;
 animation-direction: reverse;
}

Result: The box is moved from the right (left: 300px) to the left (left: 0)
three times.

Example 2:

style.css
@keyframes my-animation {
 from {
 left: 0;
 }
 to {
 left: 300px;
 }
}

div {
 position: relative;
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
 animation-iteration-count: 3;
 animation-direction: alternate;
}

Result: The box is moved three times
● from the left (left: 0) to the right (left: 300px)
● from the right (left: 300px) to the left (left: 0)
● from the left (left: 0) to the right (left: 300px)

20.2.6 Animation Timing Function
The “ animation-timing-function ” property specifies the speed curve of

the animation. It can have the following values:
● ease - specifies an animation with a slow start, then fast, then end

slowly (this is the default)
● linear - specifies an animation with the same speed from start to end
● ease-in - specifies an animation with a slow start
● ease-out - specifies an animation with a slow end
● ease-in-out - specifies an animation with a slow start and end

Example:

style.css
@keyframes my-animation {
 from {
 left: 0;
 }
 to {
 left: 300px;
 }
}

div {
 position: relative;
 width: 100px;
 height: 100px;
 background-color: cyan;
 animation-name: my-animation;
 animation-duration: 4s;
 animation-timing-function: ease-out;
}

20.2.7 Shorthand Animation Property
The “ animation ” property is the shorthand of the above animation

properties. For example:

style.css
div {
 position: relative;
 width: 100px;
 height: 100px;
 background-color: cyan;

 animation-name: my-animation;
 animation-duration: 4s;
 animation-iteration-count: infinite;
 animation-direction: alternate;
 animation-timing-function: linear;
}

can be written like this:
div {
 position: relative;
 width: 100px;
 height: 100px;
 background-color: cyan;

 animation: my-animation 4s linear infinite alternate;
}

CHAPTER 21
Advanced CSS

21.1 CSS Variables
CSS variables help us:
● makes our CSS code much easier to maintain since we only change

the value of one variable, and it will affect wherever the variable used
● makes the code more readable since we use the names of the variables

We use the var() function to get the value of a CSS variable. Moreover,
variables are only available within the scope of the CSS selector that defines
them. The syntax is:

selector {
 --your-variable-name: the-value;
}

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <section>
 <header>
 <h2>This is a heading</h2>
 </header>
 <p>This is a paragraph.</p>
 <footer>
 <p>This is a footer.</p>
 </footer>

 </section>
 <footer>
 <p>This is the main footer.</p>
 </footer>
 </body>
</html>

style.css
:root {
 --a-global-color: red;
}

section {
 --a-local-color: blue;
}

header {
 color: var(--a-global-color);
}

footer {
 color: var(--a-local-color);
}

Result: The main footer is not a child of the <section> element, so it
cannot access the “ --a-local-color ” variable.

 In HTML, the :root selector always matches the <html>
element.

21.2 CSS Calculation
The calc() function is used to calculate the property value in CSS

dynamically. Basic math operators like addition (+), subtraction (-),
division (/), multiplication (*) and parentheses are allowed in calc() . For
example:

width: calc((100%/3 - 50px) + (1em*2));

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <header>Header</header>
 <div class="main-content">
 <p>This is a paragraph</p>
 <p class="long-content">This is a long paragraph</p>
 </div>
 <footer>Footer</footer>
 </body>
</html>

style.css
header,
footer {
 height: 30px;
 line-height: 30px;
}

header {
 border-bottom: 1px solid black;
}
footer {
 border-top: 1px solid black;
 text-align: center;

}

.main-content {
 min-height: calc(100vh - 96px);
}

.long-content {
 border: 1px solid #ccc;
 /* height: 1000px; */
}

 Open this web page in a browser and try to change the height of the
browser; you will see that <footer> is always at the bottom of the page.

Then, uncomment the CSS “ height ” property of the <p class="long-
content"> element to see that the code still works well with long content.

21.3 CSS Counters
The CSS counter helps us create automatic numbering outlines without

any JavaScript code.
● counter-reset - Creates a counter by giving it a name
● counter-increment - Increments a counter value
● content - Inserts generated content
● counter() function - Adds the value of a counter to an element

Example:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1>HTML tutorials:</h1>
 <h2>HTML Tutorial</h2>
 <h2>CSS Tutorial</h2>

 <h1>Scripting tutorials:</h1>
 <h2>JavaScript</h2>
 <h2>VBScript</h2>
 </body>
</html>

style.css
body {
 font-size: 12px;
 counter-reset: my-section;
}

h1 {
 counter-reset: my-sub-section;
}

h1::before {

 counter-increment: my-section;
 content: "Section " counter(my-section) ". ";
}

h2::before {
 counter-increment: my-sub-section;
 content: counter(my-section) "." counter(my-sub-section) " ";
}

Result:

CHAPTER 22
Responsive CSS

22.1 Responsive Web Design
Web pages can be viewed using many devices: desktops, tablets, phones,

etc. Your web page should look good and be easy to use, regardless of the
device. Responsive web design (RWD) can be done using only HTML and
CSS.

22.2 RWD Viewport
The viewport is the user's visible area of a web page. To configure the

viewport correctly, you should include the following <meta> element in all
your web pages.

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

The “ width=device-width ” part sets the page’s width to follow the
device’s screen width (which will vary depending on the device).

The “ initial-scale=1.0 ” part sets the initial zoom level when the browser
loads the page.

Below are two screenshots of a web page on a mobile device without and
with the viewport meta tag.

22.3 CSS Media

22.3.1 Media Types
The @media is used to define different style rules for different media

types. You could have one set of style rules for computer screens, one for
printers, one for handheld devices, one for television-type devices, and so on.

● all - Used for all media type devices (default)
● print - Used for printers
● screen - Used for computer screens, tablets, smartphones, etc.

Multiple comma-separated media types can be declared in the attribute.
For example:

media="screen,print"

22.3.2 Media Queries
Instead of looking for a type of device, they look at the capability of the

device:
● width and height of the viewport
● width and height of the device
● orientation (Is the tablet/phone in landscape or portrait mode?)
● resolution

A media query consists of a media type and can contain one or more
expressions that resolve to either true or false. The syntax is:

@media not|only mediatype and (expressions) {
 CSS-code;
}

in the <head> element:
<link rel="stylesheet" media="mediatype and|not|only (expressions)" href="style.css">

In the expression, these features are popularly used:

● aspect-ratio - The ratio between the width and the height of the
viewport

● height - The viewport height
● max-aspect-ratio - The maximum ratio between the width and the

height of the display area
● max-height - The maximum height of the display area, such as a

browser window
● max-resolution - The maximum resolution of the device, using dpi or

dpcm
● max-width - The maximum width of the display area, such as a

browser window
● min-aspect-ratio - The minimum ratio between the width and the

height of the display area
● min-height - The minimum height of the display area, such as a

browser window
● min-resolution - The minimum resolution of the device, using dpi or

dpcm
● min-width - The minimum width of the display area, such as a

browser window
● orientation - The orientation of the viewport (landscape or portrait

mode)
● resolution - The resolution of the output device, using dpi or dpcm
● width - The viewport width

The following example changes the background-color to green if the
viewport is 480 pixels wide or wider (if the viewport is less than 480 pixels,
the background-color will be blue).

body {
 background-color: blue;
}

@media screen and (min-width: 480px) {
 body {

 background-color: green;
 }
}

Media queries can also be used to change a page’s layout depending on
the browser’s orientation.

@media only screen and (orientation: landscape) {
 body {
 background-color: grey;
 }
}

22.4 RWD Grid View
Many web pages are based on a grid view, which means that the page is

divided into columns. A responsive grid view often has 12 columns and a
total width of 100%. The columns will shrink and expand as you resize the
browser window.

Firstly, ensure that all HTML elements have the box-sizing property set
to border-box . It ensures that the padding and border are included in the
total width and height of the elements.

* {
 box-sizing: border-box;
}

Then, we must calculate the percentage for one column: 100% / 12
columns = 8.33%.

After that, we make one class for each of the 12 columns, class="col-"
and a number defining how many columns the section should span:

.col-1 { width: 8.33%; }

.col-2 { width: 16.66%; }

.col-3 { width: 25%; }

.col-4 { width: 33.33%; }

.col-5 { width: 41.66%; }

.col-6 { width: 50%; }

.col-7 { width: 58.33%; }

.col-8 { width: 66.66%; }

.col-9 { width: 75%; }

.col-10 { width: 83.33%; }

.col-11 { width: 91.66%; }

.col-12 { width: 100%; }

All these columns have to be floating to the left.
[class*="col-"] {
 float: left;
}

Each row should be wrapped in a <div> . The number of columns inside

a row should always add up to 12x.
<div class="row">
 <div class="col-3">...</div>
 <div class="col-9">...</div>
</div>

The columns inside a row are all floating to the left. Therefore, when a
row does not use all its columns, other elements behind it or from the next
row could be placed to fill that unused space. To prevent this, we will add a
style that clears the flow.

.row::after {
 content: "";
 clear: both;
 display: block;
}

The style automatically adds an empty (height = 0px) block-element right
after each row and sets its style to clear the floating (clear: both).

We will add breakpoints to look good on many screen sizes using
@media. And we will design for a smaller screen size first. It will make the
page display faster on smaller devices, called mobile-first responsive CSS.

rwd-grid.css
* {
 box-sizing: border-box;
}

.row::after {
 content: "";
 clear: both;
 display: block;
}

/* For mobile phones: */
[class*="col-"] {
 float: left;
 width: 100%;
}

@media only screen and (min-width: 600px) {

 /* For tablets: */
 .col-m-1 { width: 8.33%; }
 .col-m-2 { width: 16.66%; }
 .col-m-3 { width: 25%; }
 .col-m-4 { width: 33.33%; }
 .col-m-5 { width: 41.66%; }
 .col-m-6 { width: 50%; }
 .col-m-7 { width: 58.33%; }
 .col-m-8 { width: 66.66%; }
 .col-m-9 { width: 75%; }
 .col-m-10 { width: 83.33%; }
 .col-m-11 { width: 91.66%; }
 .col-m-12 { width: 100%; }
}

@media only screen and (min-width: 768px) {
 /* For desktop: */
 .col-1 { width: 8.33%; }
 .col-2 { width: 16.66%; }
 .col-3 { width: 25%; }
 .col-4 { width: 33.33%; }
 .col-5 { width: 41.66%; }
 .col-6 { width: 50%; }
 .col-7 { width: 58.33%; }
 .col-8 { width: 66.66%; }
 .col-9 { width: 75%; }
 .col-10 { width: 83.33%; }
 .col-11 { width: 91.66%; }
 .col-12 { width: 100%; }
}

style.css
.row div {
 padding: 8px;
 border: 1px solid black;
}

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>My Website</title>
 <link rel="stylesheet" href="rwd-grid.css" />

 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div class="row">
 <div class="col-3 col-m-3">DIV 1</div>
 <div class="col-6 col-m-9">DIV 2</div>
 <div class="col-3 col-m-12">DIV 3</div>
 </div>
 </body>
</html>

Result:

For mobiles having a screen width smaller than 600px, the style
[class*="col-"] will be applied.

1 2 3 4 5 6 7 8 9 10 11 12

DIV 1

DIV 2

DIV 3

For tablets having screen widths between 600px and 768px, styles of col-
m-3, col-m-9 and col-m-12 will be applied since they override the style
[class*="col-"] .

1 2 3 4 5 6 7 8 9 10 11 12
DIV 1 DIV 2

DIV 3

For desktops with a screen width larger than 768px, col-3 and col-6
will be applied since they override the style [class*="col-"] .

1 2 3 4 5 6 7 8 9 10 11 12
DIV 1 DIV 2 DIV 3

22.5 Mobile-first vs. Desktop-first

22.5.1 Mobile-First
Mobile-first responsive CSS is designed/written for smaller screen-size

first. It will make the page display faster on smaller devices.

Mobile-first uses the “ min-width ” property in the media query so that the
CSS inside it is only calculated when the screen size is bigger than the “ min-
width .”

The example in the section “RWD Grid View” is mobile-first. Therefore,
as in the screenshot, the browser only proceeds with a few CSS lines of code
on a small device.

However, if we use a bigger device, more CSS must have proceeded, as

shown in the below screenshot.

22.5.2 Desktop-First
Desktop-first responsive CSS is designed/written for bigger screen size

first. It will make the page display faster on bigger devices.

Desktop-first uses“ max-width ” property in the media query so that the
CSS inside it is only calculated when the screen size is smaller than the
“ max-width .”

For example, let’s change the CSS code of the “RWD Grid View” to be
desktop-first.

rwd-grid.css
* {
 box-sizing: border-box;
}

.row::after {
 content: "";
 clear: both;
 display: block;
}

[class*="col-"] {
 float: left;
}

/* For desktop: */
.col-1 { width: 8.33%; }
.col-2 { width: 16.66%; }
.col-3 { width: 25%; }
.col-4 { width: 33.33%; }
.col-5 { width: 41.66%; }
.col-6 { width: 50%; }
.col-7 { width: 58.33%; }
.col-8 { width: 66.66%; }
.col-9 { width: 75%; }
.col-10 { width: 83.33%; }
.col-11 { width: 91.66%; }
.col-12 { width: 100%; }

@media only screen and (max-width: 768px) {

 /* For tablets: */
 .col-m-1 { width: 8.33%; }
 .col-m-2 { width: 16.66%; }
 .col-m-3 { width: 25%; }
 .col-m-4 { width: 33.33%; }
 .col-m-5 { width: 41.66%; }
 .col-m-6 { width: 50%; }
 .col-m-7 { width: 58.33%; }
 .col-m-8 { width: 66.66%; }
 .col-m-9 { width: 75%; }
 .col-m-10 { width: 83.33%; }
 .col-m-11 { width: 91.66%; }
 .col-m-12 { width: 100%; }
}
@media only screen and (max-width: 600px) {
 /* For mobile phones: */
 [class*="col-"] {
 width: 100%;
 }
}

BONUS: Free eBook Download

Please Leave a Review on Amazon

Thank you for purchasing and reading my book. Please leave a review on
Amazon after reading this book.

This page has been left blank intentionally.
Please turn it over.

About the Author

Neo D. Truman has been using computers since 1998, when he was a child.
In 2011, he got a Master of Science in Information Technology degree. Neo
has more than 15 years of experience in software development, especially
full-stack web development.

Other Books by The Author

HTML5 Coding Book for Beginners

https://www.amazon.com/dp/B0BGNL5XQY

CSS3 Coding Book for Beginners

https://www.amazon.com/dp/B0BN93R9F7

JavaScript Coding Book for Beginners

https://www.amazon.com/dp/B0BMSVSTJ7

React JS Application Development

https://www.amazon.com/dp/B0BGN8YFXK

Next JS, The Full Stack React JS Framework

https://www.amazon.com/dp/B0BH1YZW4R

https://www.amazon.com/dp/B0BGNL5XQY
https://www.amazon.com/dp/B0BN93R9F7
https://www.amazon.com/dp/B0BMSVSTJ7
https://www.amazon.com/dp/B0BGN8YFXK
https://www.amazon.com/dp/B0BH1YZW4R

	Copyright
	Table of Contents
	Preface
	Book Audience
	How to Contact Us
	Acknowledgments
	Conventions Used in This Book

	Setting Up a Development Environment
	1.1 Install a Code Editor
	1.1.1 Install Essential Extensions
	1.1.2 Install Live Server
	1.1.3 Setting Default Formatter
	1.1.4 Enable Formatting Code on Save
	1.1.5 Auto Save Files on Focus Change
	1.1.6 Disable Compact Folders
	1.1.7 Enable Word Wrap
	1.1.8 Set Tab Size Smaller

	1.2 Using a Web Browser
	1.2.1 Using Developer Tools in The Browser
	1.2.2 Using Console Tool
	1.2.3 Using Source Tool

	1.3 Preparing a Workspace

	Part I: HTML5
	What will you learn?

	Chapter 1 Getting to Know HTML
	1.1 Two Types of HTML Elements
	1.2 HTML Document Structure
	1.3 Your First Webpage
	1.4 Character Encoding
	1.5 Element Attributes
	1.6 Favorite Icon
	1.7 Comments

	Chapter 2 HTML Elements
	2.1 Headings
	2.2 Paragraphs
	2.3 Hyperlinks
	2.3.1 External Anchors
	2.3.2 Internal Anchors
	2.3.3 Download Links

	2.4 Images
	2.4.1 Image Maps
	2.4.2 Responsive Pictures

	2.5 Lists
	2.5.1 Unordered List
	2.5.2 Ordered List
	2.5.3 Description Lists

	2.6 Tables
	2.6.1 Table Headers
	2.6.2 Table Rows
	2.6.3 Table Caption
	2.6.4 Group of Columns
	2.6.5 Column Span

	2.7 Breaks
	2.7.1 Line Breaking
	2.7.2 Thematic Breaking

	2.8 Progress Bars
	2.8.1 <progress>
	2.8.2 <meter>

	2.9 Computer Code
	2.9.1 <code>
	2.9.2 <pre>

	2.10 Iframes
	2.11 HTML Entities

	Chapter 3 HTML Styles
	3.1 Formatting Elements
	3.1.1
	3.1.2 <i>
	3.1.3 <u> or <ins>
	3.1.4 <s> or
	3.1.5 <mark>
	3.1.6 <sub> and <sup>

	3.2 HTML Style Attribute

	Chapter 4 Semantic HTML
	4.1 Semantic Elements
	4.1.1 <blockquote>
	4.1.2 <address>
	4.1.3 <details> and <summary>
	4.1.4 <figure> and <figcaption>

	4.2 Semantic Layout Elements
	4.3 Semantic Formatting Elements
	4.3.1
	4.3.2

	Chapter 5 Web Forms
	5.1 HTML Form Elements
	5.1.1 <input> and <label>
	5.1.2 <textarea>
	5.1.3 <select> and <option>
	5.1.4 <button>
	5.1.5 <fieldset> and <legend>
	5.1.6 <datalist>

	5.2 HTML Input Types
	5.2.1 Buttons
	5.2.2 Texts
	5.2.3 Numbers
	5.2.4 Options
	5.2.5 Files
	5.2.6 Date and Time
	5.2.7 Colors

	5.3 HTML Input Attributes
	5.3.1 name
	5.3.2 value
	5.3.3 placeholder
	5.3.4 readonly
	5.3.5 disabled
	5.3.6 size
	5.3.7 multiple
	5.3.8 step
	5.3.9 width and height
	5.3.10 autofocus
	5.3.11 autocomplete

	5.4 Form Validation
	5.4.1 minlength
	5.4.2 maxlength
	5.4.3 min and max
	5.4.4 required
	5.4.5 pattern
	5.4.6 Styles for The Invalid Inputs

	Chapter 6 HTML Multimedia
	6.1 Audio
	6.2 Video

	Chapter 7 HTML Graphics
	7.1 SVG Graphics
	7.1.1 SVG Rectangle
	7.1.2 SVG Circle
	7.1.3 SVG Ellipse
	7.1.4 SVG Line
	7.1.5 SVG Polyline
	7.1.6 SVG Polygon
	7.1.7 SVG Path
	7.1.8 SVG Text
	7.1.9 SVG Link
	7.1.10 SVG Stroke
	7.1.11 SVG Gradients
	7.1.12 SVG Filters

	7.2 Canvas
	7.2.1 Draw Text
	7.2.2 Draw Lines
	7.2.3 Draw Circles
	7.2.4 Draw Rectangles
	7.2.5 Draw Gradients
	7.2.6 Draw Images

	Chapter 8 HTML Advanced
	8.1 Data URIs
	8.2 Block Elements
	8.3 Inline Elements
	8.4 Inline-block Elements

	Chapter 9 HTML Events
	9.1 Window Events
	9.1.1 onload
	9.1.2 onresize

	9.2 Form Events
	9.2.1 onfocus
	9.2.2 onblur
	9.2.3 onchange
	9.2.4 oninput

	9.3 Keyboard Events
	9.3.1 onkeydown
	9.3.2 onkeyup
	9.3.3 onkeypress

	9.4 Mouse Events
	9.4.1 onclick
	9.4.2 ondblclick
	9.4.3 onmousemove
	9.4.4 onmousedown and onmouseup
	9.4.5 onmouseover and onmouseout

	9.5 Clipboard Events
	9.5.1 oncopy
	9.5.2 oncut
	9.5.3 onpaste

	Chapter 10 HTML APIs
	10.1 Drag and Drop
	10.2 Geolocation
	10.3 Web Storage
	10.3.1 The localStorage Object
	10.3.2 The sessionStorage Object

	10.4 Web Workers
	10.4.1 Web Worker File
	10.4.2 Web Worker Object
	10.4.3 Web Workers and the DOM

	Part II: CSS3
	What will you learn?

	Chapter 11 Getting to Know CSS
	11.1 CSS Syntax
	11.2 Comments in CSS
	11.3 CSS Units
	11.3.1 Absolute Lengths
	11.3.2 Relative Lengths

	11.4 Shorthand Properties
	11.5 Where Do We Put Our CSS?
	11.5.1 Inline CSS
	11.5.2 Internal CSS
	11.5.3 External CSS

	11.6 User Agent Style Sheets

	Chapter 12 CSS Selectors
	12.1 Universal Selector
	12.2 Type Selector
	12.3 ID Selector
	12.4 Class Selector
	12.5 Multiple-class Selector
	12.6 CSS Pseudo-class
	12.6.1 Status of Links
	12.6.2 Cursor Interaction
	12.6.3 Status of Elements
	12.6.4 Form Validation
	12.6.5 Child Elements
	12.6.6 Type of elements
	12.6.7 Others Pseudo-classes
	12.6.8 Pseudo-class Chain

	12.7 CSS Pseudo-element
	12.7.1 ::first-letter
	12.7.2 ::first-line
	12.7.3 ::before
	12.7.4 ::after
	12.7.5 ::selection

	12.8 CSS Combined Selector
	12.8.1 Descendant selector
	12.8.2 Child Selector
	12.8.3 Adjacent Sibling Selector
	12.8.4 General Sibling Selector

	12.9 CSS Attribute Selector
	12.9.1 [attribute]
	12.9.2 [attribute="value"]
	12.9.3 [attribute|="value"]
	12.9.4 [attribute~="value"]
	12.9.5 [attribute^="value"]
	12.9.6 [attribute$="value"]
	12.9.7 [attribute*="value"]

	12.10 Selector Grouping

	Chapter 13 CSS Cascading
	13.1 Rule 1: The Last Declaration Will Win
	13.2 Rule 2: The More Specific Declaration Will Win
	13.3 Rule 3: Inline Style Is Preferred to both Internal and External Styles
	13.4 Rule 4: “!important” Declaration Is the Strongest Rule
	13.5 Inheritance

	Chapter 14 CSS Box Model
	14.1 Box Sizing Types
	14.1.1 Border Box
	14.1.2 Content Box

	14.2 CSS Margins
	14.2.1 Auto Margin
	14.2.2 Collapsing Margins

	14.3 CSS Outline
	14.4 CSS Borders
	14.4.1 Border Styles
	14.4.2 CSS Border Radius
	14.4.3 CSS Border Images

	14.5 CSS Padding
	14.6 CSS Width and Height

	Chapter 15 CSS Colors
	15.1 Color Names
	15.2 HEX Colors
	15.3 RGB Colors
	15.4 Grey Colors

	Chapter 16 CSS Text
	16.1 Text Rendering
	16.1.1 Setting Color
	16.1.2 Text Decoration
	16.1.3 Text Transform
	16.1.4 Handling Whitespaces
	16.1.5 Text Overflow
	16.1.6 Word Wrap
	16.1.7 Word Break

	16.2 Text Spacing
	16.2.1 Letter Spacing
	16.2.2 Word Spacing
	16.2.3 Line Height

	16.3 Text Position
	16.3.1 Text Align
	16.3.2 Text Indent

	16.4 CSS Fonts
	16.4.1 Font Family
	16.4.2 Font Size
	16.4.3 Font Weight
	16.4.4 Font Style
	16.4.5 Font Variant
	16.4.6 The @font-face

	Chapter 17 CSS Backgrounds
	17.1 CSS Background Properties
	17.1.1 background-color
	17.1.2 background-image
	17.1.3 background-repeat
	17.1.4 background-position
	17.1.5 background-size
	17.1.6 background
	17.1.7 background-clip
	17.1.8 background-origin
	17.1.9 background-attachment

	17.2 CSS Gradient Backgrounds
	17.2.1 Linear Gradients
	17.2.2 Repeating Linear Gradients
	17.2.3 Radial Gradients
	17.2.4 Repeating Radial Gradients

	17.3 CSS Sprites

	Chapter 18 CSS Display
	18.1 display vs. visibility
	18.1.1 display
	18.1.2 visibility

	18.2 CSS object-fit
	18.3 Cursor
	18.4 CSS Overflow
	18.4.1 overflow: visible
	18.4.2 overflow: hidden
	18.4.3 overflow: scroll
	18.4.4 overflow: auto

	18.5 CSS Opacity
	18.6 CSS Shadows
	18.6.1 text-shadow
	18.6.2 box-shadow

	18.7 CSS Multiple Columns
	18.7.1 Fixed Columns
	18.7.2 Responsive Columns
	18.7.3 Column Span

	18.8 CSS Tables
	18.8.1 Table Sizing
	18.8.2 Text Alignment in Table Cells

	18.9 CSS Lists
	18.9.1 List Item Markers
	18.9.2 Position the List Item Markers

	18.10 CSS Transforms
	18.10.1 Moves an Element
	18.10.2 Scales an Element
	18.10.3 Rotates an Element
	18.10.4 Skews an Element

	Chapter 19 CSS Layout
	19.1 CSS Position
	19.1.1 static
	19.1.2 relative
	19.1.3 absolute
	19.1.4 fixed
	19.1.5 sticky

	19.2 CSS Float
	19.2.1 float
	19.2.2 clear

	19.3 CSS Z-index
	19.4 CSS Flexbox
	19.4.1 Flex Container
	19.4.2 Flex Items

	19.5 CSS Grid
	19.5.1 Grid Container
	19.5.2 Grid Items

	19.6 CSS Alignment
	19.6.1 Horizontal Alignment
	19.6.2 Vertical alignment
	19.6.3 Perfect Centering

	Chapter 20 CSS Transitions and Animations
	20.1 CSS Transitions
	20.1.1 Basic Transitions
	20.1.2 Transition Delay
	20.1.3 Transition Timing Function
	20.1.4 Shorthand Transition Property

	20.2 CSS Animations
	20.2.1 Two-step Keyframes
	20.2.2 Multiple Keyframes
	20.2.3 Animation Delay
	20.2.4 Animation Iteration Count
	20.2.5 Animation Direction
	20.2.6 Animation Timing Function
	20.2.7 Shorthand Animation Property

	Chapter 21 Advanced CSS
	21.1 CSS Variables
	21.2 CSS Calculation
	21.3 CSS Counters

	Chapter 22 Responsive CSS
	22.1 Responsive Web Design
	22.2 RWD Viewport
	22.3 CSS Media
	22.3.1 Media Types
	22.3.2 Media Queries

	22.4 RWD Grid View
	22.5 Mobile-first vs. Desktop-first
	22.5.1 Mobile-First
	22.5.2 Desktop-First

	BONUS: Free eBook Download
	Please Leave a Review on Amazon
	About the Author
	Other Books by The Author

