

HTML5

Your visual blueprint™ for designing
richÂ€web pages and applications

Adam McDaniel

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND
THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK
AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO
WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY
NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER
NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS NAMES,
COMPANY NAMES, MAILING, E-MAIL AND INTERNET ADDRESSES, PHONE
AND FAX NUMBERS AND SIMILAR INFORMATION, ALL OF WHICH ARE
FICTITIOUS. ANY RESEMBLANCE OF THESE FICTITIOUS NAMES, ADDRESSES,
PHONE AND FAX NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL
PERSON, COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

Contact Us
For general information on our other products and services please con-
tact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

HTML5: Your visual blueprint™ for designing rich web
pages and applications
Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Published simultaneously in Canada

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechani-
cal, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax
201-748-6008, or online at www.wiley.com/go/permissions.

Wiley publishes in a variety of print and electronic formats and by print-on-
demand. Some material included with the standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you
purchased, you may download this material at http://booksupport.wiley.
com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011939648

ISBN: 978-0-470-95222-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Trademark Acknowledgments
Wiley, the Wiley logo, Visual, the Visual logo, Visual Blueprint, Read
Less - Learn More and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other
trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in
this book.

Sales | Contact Wiley at (877) 762-2974 or fax (317) 572-4002.

Arc de Triomphe

Commissioned by the Emperor Napoleon in 1806 to commemorate his
imperial armies, this familiar landmark is the world’s largest triumphal
arch. It dominates the famed Champs-Elysées and bears the names of
hundreds of Napoleon’s generals
along with four spectacular relief
sculptures. From its summit,
tourists view a breathtaking
panorama of Paris.

Discover more about the city and
its monuments in Frommer’s Paris
2011 (ISBN 978-0-470-61441-9),
available wherever books are sold
or at www.Frommers.com.

file:///Volumes/COMPSERVICES/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.wiley.com/techsupport
http://www.wiley.com/go/permissions
file:///Volumes/COMPSERVICES/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.Frommers.com

Credits
Acquisitions Editor
Aaron Black

Senior Acquisitions Editor
Stephanie McComb

Project Editor
Dana Rhodes Lesh

Technical Editor
Paul Geyer

Copy Editor
Dana Rhodes Lesh

Editorial Director
Robyn Siesky

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Carrie A. Cesavice
Joyce Haughey
Andrea Hornberger
Jennifer Mayberry

Quality Control Technicians
Lindsay Amones
Melanie Hoffman
Lauren Mandelbaum
Rob Springer

Proofreading
Melissa D. Buddendeck

Indexing
Potomac Indexing, LLC

Screen Artist
Jill A. Proll

Cover Art Illustrator
David Gregory

About the Author
Adam McDaniel has been designing, developing, modifying, and maintaining computer programs of one
language or another since 1993, and he has been an active proponent of HTML since being introduced to the
language in 1994.

Since that time, Adam has led a team of developers implementing an eCommerce fulfillment engine for a virtual
shopping mall, designed hundreds of corporate websites, and developed front-end HTML and back-end CGI
infrastructure for CADVision, at the time one of the largest ISPs in Western Canada. In 2001, Adam moved into the
software security sector, working for Hitachi ID Systems for over eight years, designing and implementing software
security recommendations for various Fortune 500 companies across the United States and Europe. Soon
afterwards, based on his past CGI experience, Adam wrote his first book, Perl and Apache: Your visual blueprint to
developing dynamic Web content. Most recently, Adam rejoined the HTML world as the lead OS architect for
Jolicloud, a Paris-based company, contributing to its HTML5 Linux operating system.

As Adam is always interested in new technologies and architectures, his other development credits include an
open-source offline HTML reader for the Palm OS platform, contributions to the Linux Kernel, and other utility
and specialty programs. In 2006, Adam produced the Array.org Netbook Kernel software download and website,
allowing users to download an optimized build of the Linux kernel, specific for the Ubuntu Linux distribution.

Author’s Acknowledgments
This book is the product of many significant people, without all of whom, this project would never have been
possible.

My expert Wiley editors were instrumental in shepherding this book into what you see today. Aaron Black, my
acquisitions editor, kept this project on schedule, and I am grateful to him for introducing me to the publishing
industry. Dana Lesh, my project editor, gracefully offered feedback and direction and prevented this book from
degrading into a garbled mess of inconsistent ideas and broken sentences. Also, thank you Neil Salkind and
Andrew Kim of StudioB; this is the first project we have worked on together, and I look forward to many more.

I would also like to thank the Jolicloud HTML5 team: Tariq Krim, Brenda O’Connell, Romain Huet, Jeremy Selier,
and Cedric Duclos. The desktop revolution offered by HTML5 and cloud computing is something few people could
have foreseen, it was great being on the ground floor with you all. In addition, thank you Adam Buckeridge for
your help with the book’s example site design and Derek Brans for your HTML5 and jQuery expertise.

To the HTML5 architects, designers, and developers from Mozilla, Opera, Google, and Apple who took the lead
in identifying the future of the Internet, shaping the HTML5 standard, and promoting it, thank you. The web
certainly would not be as awesome without your resources and innovation.

Finally, to my beautiful wife Shauna, without your many years of love, support, and encouragement, and even
your devil’s advocate (“I don’t think this you’ve thought this through”) feedback, I would be lost, overwhelmed,
and probably homeless. As this project was in the homestretch, your patience and understanding is what allowed
it to succeed. You always keep me grounded and focused, and I cherish the life and family we have built together.

This book is dedicated to my firstborn — my daughter, Brielle. Although today you are very young, one day you
may choose a career that has not even been invented yet. By then, I hope that I have inspired you to explore new
technologies, ask questions, investigate problems, and find innovative solutions in whatever path you take.

How to Use This Visual Blueprint Book
Whom This Book Is For
This book is for advanced computer users who want to
take their knowledge of HTML to the next level.

The Conventions in This Book
1	 Steps
This book uses a step-by-step format to guide you easily
through each task. Numbered steps are actions you must
do; bulleted steps clarify a point, step, or optional
feature; and indented steps give you the result.

2	 Notes
Notes give additional information — special conditions
that may occur during an operation, a situation that you
want to avoid, or a cross-reference to a related area of
the book.

3	 Icons and Buttons
Icons and buttons show you exactly what you need to
click to perform a step.

4	 Extra or Apply It
An Extra section provides additional information about
the preceding task — insider information and tips for
ease and efficiency. An Apply It section takes the code
from the preceding task one step further and allows you
to take full advantage of it.

5	 Bold
Bold type shows text or numbers that you must type.

6	 Italics
Italic type introduces and defines a new term.

7	 Courier Font
Courier font indicates the use of scripting language
code such as statements, operators, or functions, and
code such as objects, methods, or properties.

CHAPTER

18
8 Open your HTML �le in Google

Chrome.

9 Click the link that will pull up your
desktop noti�cation permission
request.

A An infobar appears and asks if you
want to allow or deny desktop
noti�cations.

Note: If the user simply closes the infobar,
checkPermission() will continue to
return 1 because no decision has been
made.

0 Click Allow.

Note: Users can revoke permissions in
Chrome’s preferences: Click ➔

Preferences ➔ Under the Hood ➔ Privacy ➔
Content Settings ➔ Noti�cation ➔ Manage
Exceptions.

! Reload the page.

B In this example, the con�gure request
is gone.

Note: Reloading is required because of how
the sample code �ows. Unfortunately, in
this version of the Desktop Noti�cations
API, there is no event that �res after the
user clicks Allow.

1 Open an HTML5 or JavaScript �le that
uses the jQuery library.

2 Type var notifyAPI = window.
webkitNoti�cations; to access the API
with a shorter variable name.

3 Type if (typeof notifyAPI == ‘object’
&& notifyAPI.checkPermission() == 1
) { } else { }.

4 Type <div id=’con�gure-notify’><span
class=’fake-link’>Click here to
con�gure desktop noti�cation
messages.</div>.

Note: Create a fake-link class to make this
 tag look like a normal hyperlink.

5 Type $(‘div#con�gure-notify span’).
click(function() { notifyAPI.
requestPermission(); }); to request
permissions when the span is clicked.

6 Type $(‘div#con�gure-notify’).
remove(); to remove the request
permission message when access is
granted or denied.

7 Save your �le.

Request User Permission to Display Desktop Noti�cations

Before you can display a Desktop Noti�cations API
pop-up window in Chrome, you must request permission

from the user using an infobar. An infobar is a subtle slide-
down prompt that appears underneath the URL bar and asks
the user a question. The user must grant permission for
your web app to use the API; otherwise, all other desktop
noti�cation calls will be ignored.

This ensures that the user actually wants the desktop
noti�cation feature active, avoiding the problems
associated with rampant abuse of unwanted pop-up
windows in the late 1990s and early 2000s.

Although you can call the checkPermission() method at
any time, you can call requestPermission() only on a
click event performed by the user. You can use jQuery to
easily leverage such an event:

var notifyAPI = window.webkitNotifications;
if (typeof notifyAPI == ‘object’ &&

notifyAPI.checkPermission() == 1) {
 $(‘div#configure-notify span’).
click(function(){

notifyAPI.requestPermission();
 });
} else {
 $(‘div#configure-notify’).remove();
}

The checkPermission() call returns 1 if the user has
not made a decision about access, 0 if permission is
granted, and 2 if permission is denied. To provide a good
user interface, remove the configure-notify object
if the Desktop Noti�cations API is not supported or if
checkPermission() returns anything but 1.

3

2

5

6

4

8

9

10
11

A

B

You can easily show the user what the current setting is
by changing your logic slightly. In the sample code, you
would split the typeof notifyAPI and notifyAPI.
checkPermission() tests, so if the former is true and
the latter is not equal to 1, you can override the <div
id=’configure-notify’> block to display the status;
otherwise, you can remove the link as the API is
unavailable.

Example
if (typeof notifyAPI == ‘object’) {

 var perm = notifyAPI.checkPermission();

 if (perm == 1) {

 // jQuery request permission click event

 } else {

 $(‘div#configure-notify’).html(

 “Desktop notifications are currently “ +

 (perm == 2 ? “disabled” : “enabled”) +
“.”);

 }

} else {

 $(‘div#configure-notify’).remove();

}

APPLY IT

REQUEST USER PERMISSION TO DISPLAY
DESKTOP NOTIFICATIONS

7
6

3

4

5

1

2

Table of Contents

Introducing HTML5 . 2

Understanding HTML5 Web Browsers . 6

Understanding Backward Compatibility . 8

Understanding the History of Markup Languages . 10

Introducing the New and Changed HTML5 Tags and Attributes . 12

Understanding Obsolete HTML Tags and Attributes . 16

Validate a Website for HTML5 Compliance . 18

Validate a Web Browser for HTML5 Support . 20

Support HTML5 in Internet Explorer with a Plug-in . 22

	 Chapter 1	 Introducing HTML5

Create an HTML5 Web Page . 24

Understanding the Semantic Layout in HTML5 . 26

Declare Header and Footer Layout Elements . 30

Declare a Navigation Layout Element . 32

Declare Section and Article Layout Elements . 34

Declare Heading and Paragraph Layout Elements . 36

Declare Figure and Aside Layout Elements . 38

Assign CSS Styles to Layout Elements . 40

Provide a Fallback for Outdated Web Browsers . 42

Announce HTML5 Support . 44

Resize Your Website for Mobile Web Browsers . . 46

	 Chapter 2	 Getting Started with HTML5 Page Layout

Display a Fixed-Meter Bar . 48

Display a Moving Progress Meter . 50

Add a Caption to a Figure . 52

Highlight Text . 54

Specify Safe Line Breaks in Long Words . 55

Allow the User to Edit Content . . 56

Spell-Check User Content . 57

Declare an Interactive Summary and Details Layout Element . . 58

	 Chapter 3	 Using New HTML5 User Interface Tags and Attributes

Introducing CSS3 . 60

Validate a Web Browser for CSS3 Support . . 62

Select an HTML Element Using Its Class or ID . . 64

Select an HTML Element Using an Attribute . 65

Select an HTML Element Using a Specific Attribute Value . 66

Select an HTML Element Using a Partial Attribute Value . . 68

Select an HTML Element Using the Structural type Pseudo-Class . 70

Select an HTML Element Using the Structural child Pseudo-Class . 72

Select an HTML Element by Its Sibling Element . 74

Select HTML Elements Using a Negating Pseudo-Class . 76

Select HTML Elements by User Selection . 77

Change an Element’s Background Image . 78

Customize an Element’s Font . 80

Format Text Overflow inside an Element . 82

	 Chapter 4	 Styling with CSS3

Table of Contents

Round Border Corners . 84

Add a Shadow Effect . 86

Change an Element’s Opacity . 88

Apply an Image As an Element Border . . 90

Customize a Scroll Bar with Images . 92

Apply a Color Gradient . 96

Transform Object Dimensions . . 98

Transition between Styles . 100

Create Simple Animations . 102

	 Chapter 5	 Enhancing Your Web Page Visually with CSS3

Introducing the Flexible Box Model . 106

Create a Horizontal Flexible Box Model . 108

Create a Vertical Flexible Box Model . 110

Stretch and Shrink Objects in a Flexible Box . 112

Horizontally Pack Objects within a Flexible Box . 114

Vertically Align Objects within a Flexible Box . 115

Reorder Objects in a Flexible Box . 116

Introducing Multi-Column Layouts . 118

Create a Multi-Column Layout . 120

Add a Ruler and Gap in between Columns . 122

Span Objects Horizontally across Columns . 124

	 Chapter 6	 Creating Boxes and Columns with CSS3

Create a Number Input Type . 126

Create a Telephone Input Type . . 127

	 Chapter 7	 Creating HTML5 Form Inputs

Introducing jQuery . . 148

Download jQuery . 150

Load jQuery . 151

Execute jQuery Methods on Elements . 152

Manipulate HTML Elements via the DOM . 154

Customize Browser Events with jQuery . . 156

Hide and Show Content with jQuery . 158

Add and Remove CSS Classes on Elements with jQuery . 160

Send Custom HTML Attribute Data into jQuery . 162

Using Scrolling Transitions with jQuery . 164

	 Chapter 8	 Using jQuery with HTML5

Create an Email Input Type . 128

Create a URL Input Type . 129

Create a Search Input Type . 130

Require a Value in an Input Field . 131

Set a Placeholder for an Input Field . 132

Auto-Focus on an Input Field . 133

Disable Auto-Completion of Input Text . 134

Using Speech Input . 135

Create a Drop-Down List for Text Input Suggestions . 136

Restrict Input Values Using Pattern Matching . 138

Create a Date Input Type . 140

Create a Range Input Type . 142

Create a Color Input Type . 144

Link an Input Field to a Specific Form . . 146

Table of Contents

Launch the Chrome Inspector . 166

Examine Elements’ Structure and Layout . 168

Modify HTML and CSS Code in Real Time . 170

Examine JavaScript Code . . 172

Add a JavaScript Breakpoint . 174

Step through JavaScript Code . 176

Add a Watch Expression . 178

	 Chapter 9	 Inspecting and Debugging Your Website

Introducing the HTML5 Canvas . . 180

Declare a canvas Element . 186

Draw Basic Rectangles on the Canvas . 188

Draw Paths on the Canvas . 190

Draw Text on the Canvas . 192

Using Solid Color on the Canvas . 194

Using Linear Gradient Colors on the Canvas . 196

Using Radial Gradient Colors on the Canvas . 198

Draw an Image on the Canvas . 200

Scale a Canvas Image . 202

Crop a Canvas Image . 203

Query Individual Canvas Pixels . . 204

Track Mouse Activity on the Canvas . 206

Translate the X- and Y-Axes . . 210

Rotate the X- and Y-Axes . 212

Create Animations on the Canvas . 214

	 Chapter 10	 Drawing with the HTML5 Canvas

Introducing HTML5 Audio and Video . 218

Understanding Audio and Video Formats . 220

Install a Movie Encoder . 222

Reencode Movies with the Miro Video Converter . 224

Play Movies with the HTML5 video Element . 226

Play Sound with the HTML5 audio Element . 228

Control Audio and Video Playback with JavaScript . 230

Embed a Movie Player with VideoJS . 232

	 Chapter 11	 Adding HTML5 Multimedia

Introducing Drag and Drop in HTML5 . 234

Specify Objects to Drag . . 238

Specify a Drop Zone . 240

Handle the Drag-and-Drop Events . . 242

Visually Enhance the Drag-and-Drop Experience . 248

	 Chapter 12	 Using Drag and Drop in HTML5

Introducing Client-Side Storage in HTML5 . 250

Store Data Using the Web Storage API . 252

Retrieve Data from the Web Storage API . 254

Using the Correct IndexedDB API . 256

Open an IndexedDB Database . 257

Create a New IndexedDB Object Store . 258

Store an Object Using the IndexedDB API . 260

Retrieve Objects Using the IndexedDB API . . 262

Delete an Object Using the IndexedDB API . 264

Delete an IndexedDB Object Store . 265

	 Chapter 13	 Storing Data Using a Client-Side Database

Table of Contents

Identify Whether the Browser Is Online . . 266

Identify Whether the Network Is Online . 268

Listen for Online and Offline Events . 272

Introducing the Application Cache . 274

Create an Application Cache Manifest . 276

Update the Application Cache . 278

Create a “Website Offline” Fallback Page . 280

	 Chapter 14 Providing Offline Access to Web Applications

Display a Specific Location with Google Maps . . 282

Understanding Geolocation and GPS Services . 284

Request the User’s Current Location . 286

Display the User’s Current Location with Google Maps . 288

	 Chapter 15	 Using Geolocation

Introducing WebSockets . 302

Create a WebSocket Client . 304

	 Chapter 17	 Communicating with WebSockets

Introducing Web Workers . 290

Create a Web Worker JavaScript File . 294

Link a Web Worker to Your Web Application . 296

Launch a Web Worker Event from Your Web Application . 298

Falling Back for Non–Web Worker Browsers . 300

	 Chapter 16	 Running Secondary JavaScript Threads Using Web Workers

Introducing Desktop Notifications for Chrome . 312

Request User Permission to Display Desktop Notifications . 316

Launch a Desktop Notification Message . . 318

Customize the Desktop Notification UI . 320

Listen for Desktop Notification Events . 322

	 Chapter 18	 Displaying Desktop Notifications

HTML5 Reference . 324

HTML Global Attributes . 327

HTML Metadata Tags . . 330

HTML Sectioning Tags . . 336

HTML Grouping Tags . . 339

HTML Phrasing Tags . 342

HTML Embedding Tags . 349

HTML Table Tags . 355

HTML Form Tags . 358

	 Appendix A	 HTML5 Reference

Index... 363

Send WebSocket Messages . . 306

Display WebSocket Messages . 308

Interact with a WebSocket Service . 310

2

Introducing HTML5

H TML, or Hypertext Markup Language, is a programming language designed, documented, and maintained by the World
Wide Web Consortium (W3C). A markup language is a programming language that uses special tags to embed words

and commands in and around regular text.

HTML5 is the latest version of HTML available today for the World Wide Web. It is a new specification that builds on
the previous HTML 4.01 and XHTML 1.1 specifications, providing you with the tools that you need to produce the next
generation of websites.

As a whole, HTML5 also relies on other technologies, such as Cascading Style Sheets version 3 (CSS3) and JavaScript as the
magic to make websites really pop and move. So much do these three disciplines complement each other that they all fall
under the “HTML5” banner.

The W3C was in charge of HTML since its inception in 1994, but
by 2004, the W3C had become complacent in developing the
next generation of the language. In response, a new
organization called the Web Hypertext Application Technology
Working Group (WHATWG) was founded by industry affiliates to
direct the future of HTML.

By April 2007, WHATWG published a working draft of HTML5 to
the W3C and began promoting it to web browser vendors.
Today, that working draft has been renamed to “HTML: The
Living Standard” and the term HTML5 refers to a snapshot of
that standard. Because WHATWG is a community-driven body,

This book is written for web developers who already have
experience with HTML 4.01 or earlier, JavaScript, and CSS. If
you are a developer who has previously created websites with
images, hyperlinks, and tables and want to move on to the
next level, this book is for you.

HTML: The Living Standard

the process is completely open to define the future of the
HTML living standard.

HTML5 in the media has actually grown to include features that
are not directly controlled by the W3C HTML5 or WHATWG HTML
specifications but by web browser vendors. As such, one HTML5
browser may add a new HTML5-like feature or API, thus
appearing to enhance the specification to the public. Google’s
Notification API is an example of this.

Until these rogue features are merged with WHATWG’s
standards, they tend not to be implemented on competing
HTML5 web browsers, and support remains limited.

Audience

There has been a lot of talk about HTML5 in the technology
press: New web browsers, web applications, and mobile devices
have already started producing new and creative sites,
applications, animations, videos, and interfaces with HTML5.
Now it is your turn.

New Features of HTML5

The actual list of features currently defined in the HTML5 scope
is always changing. This is because HTML5 is still technically
an “experimental technology,” and even in mid-2011, it is
reported that its standard will not be finalized until 2014. This
book covers the most stable and anticipated features of HTML5,
but by the time you read this, there may be even more to
discover online.

The Semantic Layout
A new group of HTML tags enables you to build your web page
using a semantic layout. This means that logically grouped
sections of your page can have equally logical HTML tags. For
example, web page headers and footers can be wrapped in
<header> and <footer> tags; navigational toolbars can use
<nav> tags; large sections are enclosed in <section>; and
actual content is written within <article> tags.

Producing a web page in this way will make understanding the
source code easier for you and easier for automated programs
to parse.

The semantic layout is described in Chapter 2, “Getting Started
with HTML5 Page Layout.”

3

CHAPTER

1Introducing HTML5

New User Interface Tags
HTML5 introduces a few new user interface (UI) tags that you
can use to make browsing your website a richer experience.
New features include <mark> for highlighting, <figure> and
<figcaption> for providing new details to images, and
<meter> and <progress> to display a static and moving
progress bar.

WHATWG has also used this opportunity to deprecate older
HTML tags that have become obsolete or are simply better
implemented in CSS. Tags such as <center>, ,
<frame>, <strike>, <tt>, and <u> are now ignored.

All new and removed tags are summarized later in this chapter.
You can learn how to use the new tags in Chapter 3, “Using
New HTML5 User Interface Tags and Attributes.”

New CSS3 Visual Enhancements
CSS enables you to customize any HTML element’s dimension,
color, font, text, image, alignment, and layout. For CSS3, there
are easier ways to locate and isolate individual tags to apply
these custom styles in your website. You can even create
interesting 2D and 3D transformations, transitions, and
animations.

The new CSS3 visual enhancements are showcased in Chapters 4,
“Styling with CSS3,” and 5, “Enhancing Your Web Page Visually
with CSS3.”

Flexible Box Model and Multi-Column Layout
There are two new ways to create tablelike layouts in CSS3 and
HTML5. The Flexible Box Model allows you to organize web
page data into multiple rows or columns within a new
display: box object. The multi-column layout allows you to
structure data into multiple columns of variable height and
width.

These new methods are demonstrated in Chapter 6, “Creating
Boxes and Columns with CSS3.”

Intelligent Form Inputs
Form input fields enable your users to submit data back to
your website. Because some fields must accept only specific
formats — such as numbers and dashes for telephone
numbers — in HTML 4.01 and earlier, you had to sanitize
data inputs in JavaScript or with web server code. In HTML5,
you can now instruct the web browser to restrict input fields
to specific formats.

For example, you can enforce numbers only, number ranges,
dates, email addresses, and URLs. You can even specify custom
pattern-matching rules for obscure format restrictions.

The intelligent form inputs are explained in Chapter 7,
“Creating HTML5 Form Inputs.”

jQuery, Browser Events, and Custom Data Attributes
JavaScript is the scripting language that can be leveraged on
any modern web browser. In HTML5, you can alter web browser
events, use custom data attributes, and dynamically hide and
display entire sections of HTML code, all to produce a dynamic
user experience.

jQuery is particularly well suited for simplifying the flow of
HTML5 events and custom data attributes within JavaScript, as
JavaScript code can be fickle depending on the web browser.

The jQuery library, new events, and custom data attributes are
itemized in Chapter 8, “Using jQuery with HTML5.”

The Chrome Inspector
The Chrome Inspector is a debugger built right into the Google
Chrome web browser. It enables you to examine and
manipulate HTML, CSS, and JavaScript code in real time, and
you can even audit your website for network and resource
activity. This is an incredibly useful tool for anyone who wants
to master HTML5.

The Chrome Inspector is delineated in Chapter 9, “Inspecting
and Debugging Your Website.”

Canvas Graphics
The Canvas API gives you complete control over every pixel,
color, animation, and user interaction with the web browser; it
is literally a blank canvas to create anything. Effectively, the
Canvas API was designed to compete directly against Adobe
Flash, providing all logic within the trusted and open confines
of JavaScript. Several mobile platform companies have publicly
embraced HTML5 and its Canvas API as a 100% replacement of
Flash.

Although the Canvas API is restricted to 2D graphics and
plotting, HTML5 does have an experimental specification called
WebGL that can generate enhanced 3D graphics within your
web browser.

The Canvas API is illustrated in Chapter 10, “Drawing with the
HTML5 Canvas.”

continued ➤

New Features of HTML5 (continued)

4

When the user comes back online, all data that is new on the
cache can be automatically uploaded and resynchronized with
your web server software. This effectively produces the illusion
that your web application is always available, regardless of
whether the Internet itself is or not.

Offline detection and synchronization is covered in Chapter 14,
“Providing Offline Access to Web Applications.”

Geolocation
Because so many smartphones have HTML5 mobile web
browsers built in, you can leverage the Geolocation API and
provide information and guidance based on the user’s physical
location.

This information can easily be tied to other third-party
services, such as Google Maps, to provide an instant overhead
map of the surrounding streets and buildings.

Coverage of the Geolocation API is located in Chapter 15,
“Using Geolocation.”

Web Workers
JavaScript by its nature is a synchronous, single-threaded
environment. This means only one script can run at a time on
your website. Web Workers are a new way to create multiple
threads of the JavaScript runtime environment, all running as
separate scripts, asynchronously in your website. Each thread
has the capability to send messages to the others within the
JavaScript stack, enabling you to offload a CPU-intensive
process in the background but leave the UI free and
responsive.

JavaScript Web Workers are discussed in Chapter 16, “Running
Secondary JavaScript Threads Using Web Workers.”

WebSockets
WebSockets are designed to be low-level, persistent
communication channels between a web browser and web
server. Whereas Ajax is a technology that hacks together an
asynchronous XML request to the web server over the HTTP
protocol, WebSockets are designed to be more efficient, using
their own dedicated channel and protocol.

The WebSockets API is explained in Chapter 17,
“Communicating with WebSockets.”

Built-in Audio/Video Support
Whereas the Canvas API replaces Flash drawing and animations,
the new audio and video support built into HTML5 replaces
Flash movies and multimedia.

Although different HTML5 web browsers support different file
encoding formats — or codecs — you can easily produce
content and convert it into the necessary formats to reach the
widest-possible HTML5 audience.

The built-in audio and video tags are presented in Chapter 11,
“Adding HTML5 Multimedia.”

Drag-and-Drop Events
Using a combination of HTML5 events, JavaScript, and CSS, you
can interact with the user in ways only experienced directly on
the desktop. With a drag-and-drop interface, you can allow
your users to use their mouse or touchscreen to visually
interact with your website in creative new ways.

Ultimately, by combining drag-and-drop events, audio, video,
and the Canvas API, you have everything you need to create
HTML5 web applications and games!

A drag-and-drop example is outlined in Chapter 12, “Using
Drag and Drop in HTML5.”

Storage Databases
For years, cookies have been used as a medium to store
information on the user’s web browser. Because a cookie
consists of only simple key/value data chunks, web developers
have had to utilize clever techniques so that they could handle
more complex data structures. Although HTML5 reimplements
cookies as the Web Storage API, it goes the next step by
introducing the Web SQL and IndexedDB APIs as relational
databases.

The various storage databases are explored in Chapter 13,
“Storing Data Using a Client-Side Database.”

Offline Detection and Synchronization
No longer do you need to actually be connected online in order
to use a website. HTML5 now provides you with the ability to
produce a web application that can detect whether it is
connected online and, if not, instruct the web browser to
retrieve your website from its internal application cache.

New Features of HTML5 (continued)

Introducing HTML5 (continued)

5

CHAPTER

1Introducing HTML5

Although this may sound ripe for abuse, notifications cannot
appear from a website or web application without the user
first agreeing to receive them. Unlike pop-up windows, which
have plagued the Internet since the 1990s, this feature is
off by default and can be enabled only when requested on
a per-domain basis.

The Notifications API is revealed in Chapter 18, “Displaying
Desktop Notifications.”

New Features of HTML5 (continued)

Notifications
The Notifications API enables you to pop up subtle display
notification messages outside of the web browser itself. This
API was developed by Google for the purpose of displaying new
email notifications from its Gmail service. As such, this API is
available only in WebKit-based browsers, such as Chrome and
Chromium.

Fallbacks and Drawbacks

Just because you have new access to a rich set of tools and
features in HTML5, it does not mean that you need to use
everything everywhere. Furthermore, not every HTML5 web
browser supports every HTML5 specification. Unless you
specifically mandate that your website is HTML5 only, you
should think about users who have not yet upgraded their web
browsers. Will implementing a new HTML5 feature ensure
accessibility to your website for all web browsers? Can you use
a combination of HTML, CSS, and JavaScript to emulate the
feature? If the answer is “no” to either question, you need to
ask yourself if such a feature is appropriate.

Static HTML5 on Older Browsers
Fortunately, earlier HTML standards have instructed web
browsers to ignore HTML tags that they do not understand but
display the text contained within the unknown tag anyway. This
means that content described within <header>...</header>
and <mark>...</mark> tags will still appear to the end user,
but it may appear unformatted and not in context.

For most new HTML5 features described in this book, a fallback
method is available to at least partially display a usable web

page to older web browsers. Assuming your site is
uncomplicated, you can produce a 100%-compliant HTML5 web
page that renders basically the same on non-HTML5 web
browsers.

Enhanced HTML5 on Older Browsers
A drawback of HTML5’s enhanced content is that there is no
easy fallback for non-HTML5 web browsers. In fact, even most
browsers that are partially HTML5 compliant cannot display all
of the same enhanced HTML5 tags exactly as specified by
WHATWG. The end result may be a bit of a mess: Your site may
work with one browser, partially work with another, and
completely fail with a third.

You will need to decide if a new, enhanced HTML5 feature, such
as 3D transition effects, the Canvas API, or HTML5 videos, is
actually worth it. If a user’s browser fails to render an HTML5
video tag, what exactly is lost? What if it is an advertisement
or featured content?

Ideally, all enhanced features of HTML5 will complement your
website but not make the site dependent on them.

The Future of HTML5

Until HTML5 has reached official status, as a standard it is
constantly evolving. Even today, there are several new features
that have been specified by WHATWG that have not been
implemented by any of the HTML5 web browsers. Later in this
chapter, you will learn how to compare web browsers for overall
HTML5 levels of support; even today’s best HTML5 web browser,
Chrome, scores only 288 out of 400 points for overall HTML5
compliance!

New features will be added, just as features on the current
HTML5 docket will be removed. In addition, web browser
developers will continue to provide complementary APIs and

specifications of their own, outside of the W3C, that will be
touted as a new “HTML5” feature.

There are several blogs and tutorial websites that demonstrate
the latest and greatest HTML5 features. You can use this book
as an introduction to the technology, plus the current
incarnation of its supporting specifications, but the following
resources are great for keeping tabs on the latest information:
http://html5.org, www.whatwg.org/html, www.html5rocks.com,
www.html5tutorial.net, www.w3schools.com/html5, and www.
w3.org/html/planet.

http://html5.org
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5rocks.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5tutorial.net
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3schools.com/html5
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/html/planet
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/html/planet

6

By mid-2008, the first web browsers built on the new WHATWG HTML5 specification were being released for end users.
The first such web browser was Firefox 3 from the Mozilla Foundation. Actual support was far from the complete HTML5

specs, but it could handle the new Canvas API, some semantic markup tags, and new mouse interaction events. Google
Chrome soon followed in April 2009, and today there are about a half dozen HTML5 web browsers, with Chrome leading the
pack in terms of overall HTML5 compliance.

All HTML5-aware web browsers are fully compatible with earlier HTML specifications. This backward-compatibility helped to
encourage user adoption rates and provided a means for the standard to be tested and grow into the next generation of HTML.

Understanding HTML5 Web Browsers

Desktop Web Browsers

Traditional PC desktop and laptop computers typically employ
highly powered CPU chips, a large monitor display, a full-sized
keyboard, and multibutton mouse. This is the environment in
which the desktop web browser was born and where HTML5
flourishes today.

Mozilla Firefox
Firefox emerged from the ashes of the now-defunct Netscape
and Mozilla web browsers in November 2004, providing a viable,
open-source alternative to the then-dominant Internet Explorer
market. After a number of successful releases, Firefox enjoys a
stable 30% market share, second overall of all Internet users.
Firefox uses the Gecko layout engine.

The Mozilla Foundation, the organization behind Firefox, is a
founding member of WHATWG. Firefox is available on the widest
range of operating system platforms, including Windows 2000
and later, Mac OS X 10.4 and later, and Linux.

Firefox 3 was the first browser to embrace HTML5 and has
always been a strong supporter. Even today’s latest release,
Firefox 4, includes the platform’s best contribution to the
HTML5 bandwagon. It features major Gecko enhancements,
such as a faster JavaScript engine, WebGL 3D support, and
GPU-based hardware acceleration.

Google Chrome
The web browser produced by Google, called Chrome, always has
featured HTML5 support. First released in April 2009, it has

come a long way in a very short period of time. As of June
2011, Chrome is estimated to own 15 to 20% of the browser
market share, and this is still growing. Google Chrome is
available for Windows (XP, Vista, and 7), Mac OS X, and Linux
operating systems, and it features the WebKit layout engine.

A very close relative to Google Chrome is a web browser called
Chromium because both use the same code base and WebKit
engine. Because Chrome is an open-sourced browser, anyone is
free to build and release it. Chromium is the name assigned to
third-party builds of the browser source, whereas the name
Chrome can be applied only to official Google builds.
Effectively, Chrome and Chromium are the same base code,
the only difference being that Chromium can be customized
and released by individuals — outside of Google’s quality
control — to apply features for specific operating systems
or environments.

Opera
Originally conceived in 1994 as a research project in Norway,
Opera was soon spawned into its current namesake company,
Opera Software ASA. A founding member of WHATWG, Opera
released its first HTML5-aware web browser, Opera 10, in
June 2009.

The Opera 11 layout engine, Presto, features a mixed level of
better-yet-worse HTML5 support, at least when compared to
other HTML5 web browsers. It handles the new intelligent form
inputs much better than any other browser but is still lacking
when it comes to semantic tags and drag-and-drop support.

7

CHAPTER

1Introducing HTML5

Desktop Web Browsers (continued)

Apple Safari
Apple, the third and final founding member of WHATWG, is a
staunch proponent of HTML5. Part of this stems from the
longstanding dispute with Adobe over Flash support, but part is
from the rich UI capabilities that Apple software is known for.

Apple has invested the most resources into its WebKit layout
engine, first announcing it in 2003 as an open-sourced web
page renderer forked from KHTML, the KDE layout engine. Today,
Apple still oversees its development, but there are many
high-profile contributors, including Google and Nokia.

Safari is the web browser Apple ships on its Mac OS X desktop
and iOS mobile operating systems, and it is also available for
Windows XP, Vista, and 7. The first version of Safari to support
HTML5 was released as Safari 4. The most recent version, Safari
5, provides improved support for many HTML5 features.

Microsoft Internet Explorer
Internet Explorer, once the top web browser in terms of
innovation and market penetration, has fallen steadily since its
peak of a 90% market share in early 2006. Internet Explorer 6,
7, and 8 are still used today by many legacy Internet users, but
the level of HTML5 support is poor at best. Overall market share
in mid-2011 hovers around 38%, its earlier share first eaten
away by Firefox and then by Chrome.

To counter this trend, Microsoft released its first web browser
to tout HTML5 compatibility, Internet Explorer 9, in March
2011. It uses an enhanced Trident layout engine to provide
Microsoft’s first foray into HTML5. Early results are impressive,
with integrated CPU and GPU support and other significant
speed improvements; Microsoft is clearly attempting to assert
Internet Explorer 9 as the top HTML5 web-browsing experience.

Internet Explorer 9 is available only for the Windows Vista,
Windows 7, and Windows Server 2008 platforms. It is not
available for Windows users who are still running older
operating systems, such as XP and Server 2003.

Mobile Web Browsers

Mobile computers — available as smartphones, netbooks,
tablets, and other ultracompact PCs — have experienced
significant growth over the past few years. These are devices
with lower-powered CPUs, smaller displays, a thumb-sized
keyboard (or none at all), a touchscreen or trackpad, and
cellular connectivity. These devices have special web browsers
designed for these limitations, yet many offer some of the best
level of HTML5 support available.

Many desktop web browser vendors have produced mobile
versions of their platforms, featuring the same HTML5 layout
engine. WebKit powers Google Android and Apple Safari (for the
iPhone, iPad, and iPod touch) browsers, Presto for Opera Mobile,
Nintendo Wii, and Nintendo DSi, and Gecko for Firefox Mobile.

Of note is Trident for Windows Phone 7. This layout engine is
not the same version featured in Internet Explorer 9 but rather
an earlier version closely based on Internet Explorer 6. As such,
Windows Phone 7 offers one of the poorest mobile HTML5
browsing experiences among smartphones.

Finally, there are also vendors that compete only in the mobile
browser market. This includes the RIM BlackBerry devices,
whose recent versions feature the BOLT web browser, and the
HP WebOS browser. Both of these companies use the WebKit
layout engine on their smartphones and tablets.

The Best Overall Support?

If you are noticing a trend here with WebKit, you are not alone.
WebKit overall today provides the best level of HTML5 support
and is the most widely adopted layout engine, thanks to its
open-source license. Ultimately, all WebKit-based browsers can
be treated roughly as equal in terms of HTML5 support;

however, WebKit itself is under constant, independent
development. Newer versions of WebKit browsers will feature a
more recent version of the engine, and each WebKit release
brings us one step closer to HTML5 nirvana.

8

It is important to note that HTML5 implies a transitional period between HTML 4.01 and the new standard. Furthermore,
even HTML5-aware web browsers do not support the HTML5 specification perfectly. This means that you need to provide

some sort of backward compatibility with all HTML5 features you use, providing that you do not want to alienate your users
based on their choice of web browser.

This book stresses backward compatibility wherever possible. However, you should discourage your users from using
outdated web browsers so that you can avoid these types of compatibility issues. You will learn how to best use an HTML5
tag and how to safely implement its HTML 4 fallback.

Understanding Backward Compatibility

Mixing HTML Standards and Web Browsers

A single web page can follow only a single HTML standard. In
other words, mixing standards on a single page is not possible;
you must decide if a page is HTML 4, HTML5, or based on some
other markup language. This instructs the web browser on
which etymology to use and how to interpret your web page.

HTML 4 on HTML5 Web Browsers
It is safe to assume that all HTML5 web browsers will honor
HTML 4 websites, but only if the appropriate HTML 4 document
type declaration is found. This maintains backward
compatibility with the vast majority of websites on the
Internet.

The HTML 4 declaration instructs the web browser to run in
HTML 4 standards mode, thus rendering the older standard
correctly. An example of an HTML 4 document type declaration is

<!doctype html public “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

HTML5 on HTML5 Web Browsers
When an HTML5 web browser encounters the HTML5 document
type declaration, new features and APIs are automatically
activated in the browser and made available for that website.
However, because not all browsers are created equal, a subset
of HTML5 tags may not be implemented in certain browsers.
Effectively, the browser needs to fall back to HTML 4
compatibility when it encounters an HTML5 feature that it does
not understand.

An example of an HTML5 document type declaration is simply

<!doctype html>

Following is a list of the latest HTML5 web browsers, as of
mid-2011, and their current state of HTML5 support. Note that
there are some HTML5 specifications that are not supported by
any of these browsers, specifically video subtitle support, and
the Microdata, FileWriter, and Device APIs.

Google Chrome
Google Chrome, as of milestone version 14, provides one of the
best levels of HTML5 support available. For multimedia support,
it does understand Ogg Theora and WebM encoded videos;
however, MPEG-4 and H.264 are to be removed due to patent
restrictions.

It does not yet understand some new tags such as <ruby>,
<time>, and <command>, all of which it silently ignores.

In forms, Chrome is behind in adopting some intelligent form
inputs, such as the color, date, datetime, datetime-
local, month, week, and time input types; for these, it falls
back to the generic <input type=text> behavior. It silently
ignores the <fieldset>, <datalist>, and <keygen> form
elements.

Chrome cannot yet handle the new seamless <iframe>
attribute, instead falling back to the HTML 4.01 specification
for <iframe>.

9

CHAPTER

1Introducing HTML5

Mozilla Firefox
Mozilla Firefox has better HTML5 support as of its 5.0 release
than the previous 3.6 or 4.0 builds but still places second
overall in terms of support. For multimedia, it cannot decode
MPEG-4 or H.284 formats, but it can handle Ogg Theora and
WebM videos. It also lacks AAC and MP3 audio decoding
support, but it does handle PCM and Ogg Vorbis correctly.

Furthermore, Firefox does not yet understand some new tags
such as <ruby>, <time>, <details>, and <command>, all
of which it ignores.

In forms, Firefox 5 does not yet handle new inputs, such as the
color, date, datetime, datetime-local, month, week,
time, number, and range input types; for these, it falls back
to the generic <input type=text> behavior. It also ignores
the <keygen>, <progress>, and <meter> form elements.

It cannot yet handle the new seamless or sandboxed
<iframe> attributes, instead falling back to the HTML 4.01
specification. Finally, there is no support for the WebGL API.

Apple Safari
Apple Safari, as of version 5.1, offers overall very good HTML5
support, but it too is not perfect. There is great support for
QuickTime multimedia video and audio, which supports H.264,
MP3, and AAC, with Ogg Vorbis and Theora plus WebM
supported with a QuickTime plug-in.

It also does not yet understand some new tags such as
<time>, <details>, and <command>, all of which it
ignores.

There is good support for the new intelligent input types.
However, the color, date, and time-based types are not yet fully
supported. Most of these attributes do work, but there is still
incomplete support for the <fieldset>, <progress>, and
<meter> form tags.

Safari cannot handle the new seamless <iframe> attribute.
Also, there is no support for the WebGL 3D, FileReader, or
IndexedDB APIs.

Opera
Opera, as of version 11.5, offers fairly good HTML5 support. For
multimedia, it does not support decoding MPEG-4 or H.284
formats, but it can decode Ogg Theora and WebM videos. It also

lacks AAC and MP3 audio decoding support, but it does handle
PCM and Ogg Vorbis correctly.

It has a good understanding of the semantic layout; however, it
does not yet understand some new tags such as <ruby>,
<details>, and <command>, all of which it ignores.

In forms, Opera has the best-available support for the new
input types. Nearly every type specified by the HTML5
specification is supported.

There is no support for the new <iframe> attributes. Finally,
there is no support in JavaScript for the drag-and-drop, session
history, WebGL, FileReader, IndexDB, or WebSocket APIs.

Microsoft Internet Explorer
Microsoft Internet Explorer, as of version 9, is the company’s
first foray into HTML5. Its level of support is not great, but it
is about halfway there. For multimedia, Internet Explorer
cannot understand the Ogg Theora and WebM formats, but it
can decode MPEG-4 with H.264 video. It also lacks Ogg Vorbis
audio decoding support, but it does handle MP3 correctly. Ogg
Vorbis, Theora, and WebM can be added with the help of a
DirectShow filter.

In forms, Internet Explorer cannot handle any of the new
intelligent form input types; everything falls back to the
generic <input type=text>. It also ignores the new
required attribute, along with all new form elements.

There is no support for the new <iframe> attributes. Finally,
there is no support for the drag-and-drop, session history, Web
Applications, WebGL, FileReader, IndexedDB, WebSQL, or Web
Workers APIs.

HTML5 on non-HTML5 Web Browsers
When a non-HTML5 web browser opens your HTML5 web page,
one of three things may happen, depending on the HTML5 tag
used. First, content will appear, but it may be displayed in the
wrong order or in the wrong place. Second, JavaScript-enhanced
features may not work entirely or may produce an error message.
Third, content or features may be missing entirely.

Your job as a web developer is to minimize these potential risks
by coding your HTML5 website with appropriate fallbacks for
non-HTML5 web browsers whenever possible.

Mixing HTML Standards and Web Browsers (continued)

10

Understanding the History of Markup Languages

As mentioned earlier, the World Wide Web Consortium is the standards body charged with maintaining and developing
markup languages, prior to HTML5, on the Internet.

<element/>

<element>text</element>

One or more optional attributes can then be added to further
extend an element’s definition. The value itself must use single
or double quotes:

<element key=”value”/>

<element key=”value”>text</element>

Tags can be nested within each other, producing an SGML
document. This format was standardized by the ISO
(International Organization for Standardization) as ISO 8879 in
1986.

The Standard Generalized Markup Language (SGML) is a
document structure language that dates back to the mid-1980s.
Its syntax is remarkably flexible, yet its implementation is very
program specific. Every SGML file must begin with formal
declarations — this defines all elements and attributes that can
be used within — followed by the document itself. The
elements and attributes, when found, dictate how the
document text can be marked up to define formatting, layout,
structure, and purpose.

Syntax is controlled by a structure of standalone tags —
with element names and a forward slash, all within angle
brackets — and container tags — which have a starting and
ending element tag, with the forward slash in the latter.
Marked-up text can then be defined within the container tags,
as follows:

SGML

HTML

HTML is the most commonly used dialect among web browsers
and web servers on the Internet. Effectively, HTML is a
derivative of SGML but with predefined tag names, structure,
and display standards.

HTML Tags
In 1991, Tim Berners-Lee, an engineer at CERN, published an
internal document called “HTML Tags” that used SGML as its
basis point. He took the complicated declaration syntax from
SGML out and predefined a series of element names.

HTML further simplified beyond SGML by removing the forward
slash from standalone tags and relaxed the requirement of
nesting tags properly. Even the quotes for attribute values were
no longer required:

<element>

<element name=value>

<element name=value>text</element>

It was using the tags from the “HTML Tags” document that the
first web browser, NCSA Mosaic, was implemented. Some tags
from this era still exist today, such as <title>, <h1> to
<h6>, <p>, , , and <a>; however, the actual
structure of HTML documents was still very loose and not
clearly defined.

HTML 2.0
In November 1995, HTML 2.0 became the first official
specification of HTML published. This standard provided the
modern structure of <html>, <head>, and <body> tags, plus
new text-formatting tags such as <pre>, <blockquote>,
, <i>, <tt>,
, and <hr>. HTML now supported
embedding image files with and submitting data with
<form>. After this release, additional features such as tables,
image maps, and internationalization were added.

HTML 3.0
Never officially adopted, the draft HTML 3.0 specification was
deemed too large and daunting for the two major web browser
vendors of its time, Netscape and Microsoft, to fully implement.
This included many new display features, including tables,
figures, and mathematical formulas.

However, both companies decided to implement their own
proprietary features into their HTML 3.0-compatible web
browsers, such as stylized fonts, colors, backgrounds, and even
an early version of JavaScript. This led to a major disconnect
between the HTML 3.0 draft authors, web browsers, websites,
and users in terms of who produced the best online experience.

11

Introducing HTML5

CHAPTER

1

Although the overall HTML 4.0 standard was solid, the new
framing features were treated by web developers as an
overcomplicated solution to a nonexistent problem and were
often abused and shunned from use.

HTML 4.01 was released in December 1999 as a minor
clarification update that addressed questions and problems
implementers had about the specification.

ISO HTML
The ISO officially adopted HTML 4.01 (strict) as ISO 15445 in
2000. The standards published by the ISO span hundreds of
industries and jurisdictions, so acceptance meant that HTML
4.01 was solidified as the de facto standard for all participants
on the World Wide Web.

HTML 3.2
Published in January 1997, HTML 3.2 dropped some complexity
from HTML 3.0 and reconciled many proprietary features onto
common ground. This officially added new stylized attributes
such as bgcolor, text, link, and background for
<body>, plus new text-formatting tags such as <center>,
<div>, and . Java applet support was added, but
JavaScript was still not yet sanctioned.

HTML 4.0 and 4.01
Published in December 1997, HTML 4.0 was the first standard
that offered variations: strict, in which tags that were
deprecated from HTML 3.2 and earlier were not allowed;
transitional, in which deprecated tags were allowed; and
frameset, which was like transitional except that the new
<frameset> tag replaced <body>. The frameset allowed for
the web browser’s display area to be subdivided into
independently controlled views, each with their own URL.

For example, all element names had to be represented in
lowercase; attribute values had to be properly quoted;
standalone tags had to end in a forward slash (<element/>);
and nested container tags had to be opened and closed in the
correct order. For existing web developers, it was difficult to
give up the freedoms HTML offered, just for the badge of
“XHTML compliance.”

XHTML suffered in its adoption due to incomplete and buggy
implementations of programs attempting to follow its stricter
standard.

XHTML

Very shortly after HTML 4.01 was published, development of
HTML was forked. The Extensible Markup Language (XML)
produced XHTML 1.0. XML, by definition, used the same
structure of markup tags as HTML, except that the element
names were completely open and free and available ad hoc to
custom platform definitions. Effectively, XML documents were
like simplified SGML documents.

First published in January 2000, XHTML moved HTML closer to
its SGML roots but required web developers to use stricter rules
to define their websites.

HTML5

As the W3C was promoting “proper XHTML use,” a group of web
browser vendors became concerned that the W3C was not
preparing for the next generation of websites and web
applications. In 2004, these vendors formed WHATWG, an
organization to spearhead the development of HTML5, as
mentioned earlier in the chapter.

HTML5 is actually a collection of new technologies that build
upon HTML 4.01. Some extend the elements available to add in
new features; others extend the Document Object Module (DOM)
by adding new JavaScript APIs.

In April 2007, WHATWG presented to the W3C its first HTML5
draft, which the W3C adopted.

Officially, in early 2011, WHATWG decided that the term HTML5
will be the last HTML-based standard to actually have a number
attached. Instead, simply put, HTML should be used to refer to
all standards, including whatever comes afterward. HTML5 is
now, according to both the W3C and WHATWG, simply a
snapshot of “HTML: The Living Standard.”

HTML (continued)

12

Introducing the New and Changed HTML5
Tags and Attributes

HTML5 has introduced several new tags and attributes from the previous HTML 4.01 standard. This was done by
WHATWG to prepare the Internet for the future paradigm of web applications. The new standard includes better page

structure definitions through semantic markup tags, new features such as the Canvas API, multimedia APIs, and new UI
objects, and better text input through customizable text input types.

Some tags and attributes were even changed slightly from HTML 4.01. This was done to better define how they are to be
used in the real world and to make them easier to use.

Note the following tables describe only the changes from HTML 4.01 to HTML5. A more-complete list of HTML5-supported
tags and attributes can be found in Appendix A, “HTML5 Reference.”

New Tag(s) Description
<article>, <aside>, <header>, <footer>,
<nav>, <section>

New semantic markup tags to define the flow and structure of a web
page.

<audio>, <video> New multimedia tags to embed audio and video resources.
<bdi> Applied to text that should change bidirectionally, right to left.
<canvas> An object to render dynamic graphics in JavaScript.
<command> Represents a command the user can activate.
<details> Represents additional information that builds on <summary>.
<datalist> Applies to the new list attribute, used in <input>, to create pull-down

combo boxes.
<embed> Defines a plug-in object.

<figure>, <figcaption> Create a single figure block to complement a main document.
<hgroup> Groups multiple <h1>..<h6> headers together.
<keygen> Defines control for public and private key pair generation.
<mark> Highlights text with a yellow background and is customizable in CSS.
<meter> A static progress bar that shows an absolute measurement.
<output> A placeholder for dynamic script output.
<progress> A progress bar that can demonstrate activity via JavaScript.

<ruby>, <rt>, <rp> Applied around ruby annotations.
<time> Represents a date and/or timestamp.
<wbr> Represents a line-break opportunity within single words.

13

Introducing HTML5

CHAPTER

1
Existing Tag(s) New Attribute(s) Description
<a>, <area> media Define what type of CSS media a link applies to.
<area> hreflang, rel Defines the language an image map refers to.
<base> target Represents a new browsing context name for relative hyperlinks.

<input>, <select>, <textarea>,
<button>

autofocus Automatically focus an input object after the page is loaded.

<input>, <textarea> placeholder A short hint or keyword that applies to an text input element.
<html> manifest Gives the address of the web page’s application cache manifest.

<input>, <output>, <select>,
<textarea>, <button>,
Â�<fieldset>

form Link a data-entry element to a specific form externally from its
<form> tag.

<input> required Specifies that an input element is required when the form is
submitted.

<fieldset> disabled Allows you to recursively disable a <fieldset> element group.
<iframe> sandbox Applies additional security restrictions to content imported in an

iframe.
<iframe> sameless Renders the iframe element seamlessly in the parent document.
<iframe> srcdoc Defines the literal source content document text.
<input> autocomplete Allows the web browser to save the form values when submitted,

autopopulating them if the user returns to the same form.
<input> list Applies the new <datalist> element values into an text input

element.
<input> min, max Indicates a numeric range of allowed values.
<input> multiple Allows the user to enter multiple values for a single text-input

field.
<input> pattern Defines a regular expression pattern required by allowed values.
<input> step Indicates a numeric step factor for allowed values.
<link> sizes Specifies the number of icon link type attributes.
<menu> label Applies a text label identifier to a menu element group.
<menu> type Defines a menu type as a toolbar, context menu, or list.
<meta> charset Specifies the character encoding used.
 reversed Boolean to create a descending ordered list.
<style> scoped Allows you to limit the depth of CSS definitions.
<script> async Executes a JavaScript script asynchronously.

continued ➤

14

Introducing the New and Changed HTML5
Tags and Attributes (continued)

New Input Type Attribute Value Description
email Restricts text input to a valid email address.
color Displays a color input box.
search Defines a search field.
tel Restricts text input to a telephone number.
url Restricts text input to a valid URL.
date Restricts text input to a valid date by year, month, and day.
month Restricts text input to a valid month by year and month.
week Restricts text input to a valid week number.
time Restricts text input to a valid time by hour, minute, seconds, and milliseconds.
datetime Restricts text input to a valid date and time.
datetime-local Restricts text input to a valid date and time without a time zone.
number Restricts text input to a number.
range Restricts text input to a valid numeric range.

New Global Attribute Description
contenteditable Indicates that an element is editable by the user.
contextmenu Applies a specific context menu to an individual element.
data-* Allows you to embed custom data values as attributes that will be accessible in

JavaScript.
draggable Defines an element that can be selected in a drag-and-drop operation.
hidden Defines an element as being hidden from the user’s display.
spellcheck Allows the web browser to check spelling and grammar of editable text.

15

Introducing HTML5

CHAPTER

1
Changed Tag(s) Description
<a> Without an href attribute, represents a placeholder for a link.
<address> Scoped only by the <section> tag.

, Represent text that should be stylistically offset from normal text. The traditional bold effect is applied
via CSS.

<cite> Represents a title of work being referenced.
<head> No longer allows the <object> element to be found within.
<hr> Represents a paragraph-level break and no longer a literal line.
<i> Represents text that should be typographically different from normal text. The traditional italic effect is

applied via CSS.
<menu> Represents toolbars and context menus only.
<s> Represents content that is no longer accurate or relevant.
<small> Represents small print.

Tag Changed Attribute Description
 border Must be 0 if used; otherwise, use CSS border-width: size declaration.
<script> language Omit and use type attribute instead.

16

According to WHATWG, HTML5 must redefine how some legacy HTML tags are being used — especially the tags that
apply cosmetic alterations and are better suited as CSS definitions. However, rather than deprecate these HTML tags,

WHATWG and W3C have decided instead to flag them as obsolete.

The difference between these two is that obsolete tags are still required by web browsers to be supported, but web
developers — people like you — are now required not to use them! In other words, if you use any of these obsolete tags
in your HTML5 website, HTML5 Validator tools will mildly complain, but HTML5 web browsers will happily comply.

Obsolete Tag(s) Replacement
<acronym> Use the <abbr> tag.
<applet> Use the <object> tag.
<basefont> Use CSS body { font-family: font } rule.

<basefont>, Use CSS font-family: font declaration.
<big> Use CSS font-size: 1.3em declaration.
<center> Use CSS text-align: center declaration.
<dir> Use the tag.

<frame>, <frameset>, <noframes> Use the <iframes> tag and CSS position: fixed declaration.
<isindex> Use the <input> tag.
<strike> Use CSS text-decoration: line-through declaration.
<tt> Use CSS font-family: monospace declaration.
<u> Use CSS text-decoration: underline declaration.

Tag(s) Obsolete Attribute(s) Replacement
<a>, <embed>, , Â�<option> name Use the id attribute instead.

<a>, <link> charset Use a proper content-type header on the linked resource.
<a> shape, cords Use <area> for image maps.
<area> nohref Simply omit the href attribute. Do not specify nohref.
<body> alink, link, vlink Use CSS a:active, a:link, a:visited selectors with the

color property.
<body> text Use CSS body { color: color } rule.
<body> background Use CSS body { background-color: color } rule.
<body> marginheight,

Â�marginwidth
Use CSS body { margin: height width } rule.

 clear Use CSS clear: direction declaration.

Understanding Obsolete HTML Tags and Attributes

17

CHAPTER

1

EXTRA

Introducing HTML5

Tag(s) Obsolete Attribute(s) Replacement
<col>, <colgroup>, <tbody>, <td>,
<tfoot>, <th>, <thead>, <tr>

char, charoff No available replacement.

<col>, <colgroup>, <tbody>, <td>,
<tfoot>, <th>, <thead>, <tr>

valign Use CSS vertical-align: type declaration.

<dl>, <menu>, , compact Use CSS font-size: 0.7em declaration.
<link> target No longer necessary.
<head> profile No longer necessary.
<hr> noshade Use CSS hr { border-style: none;

background-color: gray } rule.
<hr> size Use CSS hr { height: size } rule.
<hr> width Use CSS hr { width: percent } rule.
<html> version No longer used.
<iframe> frameborder Use CSS iframe { border-width: size } rule.
<iframe> marginheight, marginwidth Use CSS iframe { margin: marginheight

marginwidth } rule.
<iframe> scrolling Use <iframe seamless>.

, <iframe> longdesc Use an tag.

, <object> hspace, vspace Use CSS margin: hspace vspace declaration.

, , type Use CSS list-stype-type: type declaration.
<meta> scheme No available replacement.
<object> archive, classid, codebase,

codetype, declare, standby
No longer used.

<param> valuetype, type No replacement; just use name and value attributes.
<table> cellpadding Use CSS table { padding: size } rule. If zero,

add border-collapse: collapse declaration.
<table> cellspacing Use CSS td, th { padding: size } rule.
<table> frame Use CSS table { border-side: size solid }

rule.
<table> rules Use CSS td, th { border-side: size solid }

rule.

<table>, <object> border Use CSS table, object { border-width:
size } rule.

<table>, <td>, <th>, <col>,
<colgroup>, <pre>

width Use CSS width: size declaration.

<table>, <tr>, <td>, <th>, <body> bgcolor Use CSS background-color: color declaration.
<td> axis, scope Use the scope attribute on <th> instead.

<td>, <th> abbr No available replacement; use more concise text in
the <th> column header.

<td>, <th> height Use CSS td, th { height: size } rule.

<td>, <th> nowrap Use CSS td, th { white-space: nowrap } rule.
* align Use CSS text-align: direction declaration.

18

A	A summary of the validation
appears.

3	 Scroll down to see the specifics.

1	 In a web browser, type http://
validator.w3.org and press
Enter.

	 The W3C Markup Validation
Service website loads.

2	 Enter the URL of the site that
you want validate and press
Enter.

Validate a Website for HTML5 Compliance

You can use an HTML5 Validator tool to verify how well
a website supports HTML5. There are many validation

tools available online, but they should all conform to the
most recent HTML5 specifications. One such tool produced
by the W3C is called the W3C Markup Validation Service, at
http://validator.w3.org.

The W3C Markup Validation Service is fairly thorough.
It enables you to verify a website against non-English
character-encoding types and older markup languages,
such as HTML versions 4.01, 3.2, and 2.0, various XHTML
standards, MathML, Scalable Vector Graphics (SVG), and
Synchronized Multimedia Integration Language (SMIL).

When you connect, you must submit the URL of the site
that you want to validate. The tool will download the
HTML source code for the site, autodetect the encoding
and document type, and analyze it for compliance. It rates
any infractions by severity, groups together like errors and

warnings, and provides you with an explanation on how to
resolve the problem.

The preceding section, “Understanding Obsolete HTML
Tags and Attributes,” states that the HTML5 specification
dictates a series of obsolete tags and attributes and yet
allows web browsers to maintain compatibility. Although
this is a convenience for the end user as the browser is
more forgiving, the W3C Markup Validation Service will not
be. As such, even if an HTML5 website you produce looks
perfect in an HTML5 web browser, expect to find warnings
and errors here.

How do you decide which warnings and errors are safe to
ignore? The simple answer is to test your HTML5 pages
yourself, in as many web browsers as possible. If it looks
correct, leave it. HTML is designed to be forgiving of errors;
however, XHTML is not. This tool follows the XHMTL mantra
in that everything must be to-the-letter correct.

Validate a Website for HTML5 Compliance

1

2

A

http://validator.w3.org
http://validator.w3.org
http://validator.w3.org

19

CHAPTER

1Introducing HTML5

EXTRA
As pointed out earlier, even if an HTML5 web page fails validation, it may still render correctly in your browser.
This is because the HTML5 specifications state that deprecated tags must be avoided by the web developer but
may be honored by web browsers. This is a critical requirement of maintaining backward compatibility with earlier
HTML versions. Ideally, this tool should be used not to report errors, but for you to judge if a warning or error is
appropriate given your target audience.
Other tools the W3C has created include the Semantic Data Extractor, at www.w3.org/2003/12/semantic-extractor.
html, and the CSS Validation Service, at http://jigsaw.w3.org/css-validator/. The Extractor enables you to view the
outline of an HTML5 website’s semantic layout tags, such as <header>, <footer>, <section>, <article>, and
<aside>, and displays the simplified outline and summary. The semantic layout method is described further in
Chapter 2.
The CSS Validation Service compares multiple versions of CSS, including HTML5’s counterpart, CSS3, and rates
your website for CSS compliance. CSS is introduced in Chapter 4.
The complete list of W3C tools can be found at the W3C Quality Assurance page, www.w3.org/QA/Tools/.

B	Here is an example of an error
message.

C	Here is a warning message.

4	 Click a link for more specific
documentation, such as this
element.

Note: Depending on the failure, not
all warnings or errors will have a link
to documentation.

Note: You can use Ctrl+click to open a
link in a new tab.

	 The documentation for the
HTML5 feature appears.

4

B

C

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/2003/12/semantic-extractor.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/2003/12/semantic-extractor.html
http://jigsaw.w3.org/css-validator/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/QA/Tools/

20

1	 In the first web browser that you want
to validate, type www.html5test.com
and press Enter.

	 The HTML5 Test website loads.

A	The web browser’s score appears here.

Note: The score in this example shows that
the web browser is HTML5 compatible.

2	 Scroll down to the individual test
results.

B	This shows the score of specific test
groups.

3	 Click here to expand a test.

C	This is a successful test for an
individual HTML5 feature.

D	This is a failed test for an individual
HTML5 feature.

Note: You can click the test’s name to open
the official W3C specification for that specific
HTML5 feature.

Validate a Web Browser for HTML5 Support

The HTML5 Test, at www.html5test.com, is a website
that enables you to validate how well today’s web

browsers support the most current HTML5 specification. As
mentioned, HTML5 is the “living standard,” so the official
specifications of today may differ tomorrow. Because
WHATWG wants HTML5 to evolve over time, you can
count on the HTML5 Test to verify sites using the latest
specifications available.

The HTML5 Test is not designed to be an all-inclusive
verifier of every HTML5 feature. It quantifies HTML5 support
at a high level and provides you with the ability to compare
different web browsers side by side. It works by identifying
when a tested feature is supported by your browser, but it
does not validate that your web browser actually interprets
a feature correctly. Therefore, there is a chance the HTML5
Test site will say that your browser supports a feature, but
that feature may not conform perfectly to the WHATWG
specifications.

The HTML5 Test assigns a score out of 400 points to your
browser. Bonus points are earned based on above-and-beyond
levels of support. Your web browser’s score is calculated
using hundreds of tests from various test classes, including
new parsing rules; canvas support; audio/video capabilities;
new HTML5 elements; new HTML5 form features; enhanced
user interaction support, such as drag-and-drop; microdata
support, such as native binary execution; web application
capabilities; and new security features.

The HTML5 Test site also verifies specifications related
to — but not defined within — the official HTML5 specs.
These include geolocation support, WebGL for 3D drawing,
interserver communications, local files, browser storage,
JavaScript Web Workers, local devices, miscellaneous text,
and scrolling enhancements.

For each test, the HTML5 Test site offers a link to the
official W3C HTML5 specification page. This describes the
technical details of each feature tested.

Validate a Web Browser for HTML5 Support

1

A

3
C

D

B

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com

21

CHAPTER

1Introducing HTML5

5	 Scroll down to browse the
individual test results.

F	Here are some test classes that
failed HTML5 support.

4	 In the second browser that you
want to validate, type www.
html5test.com and press Enter.

	 The HTML5 Test website loads.

E	The web browser’s score appears
here.

Note: This score shows that this web
browser is not HTML5 compatible.

4

E

F

EXTRA
The HTML5 Test scores bonus points to your browser based on features it supports but are not a part of the official
HTML5 specification. Most bonus points are awarded when the browser supports additional multimedia codecs.
Here is a summary of HTML5 Test results using various web browser applications and versions:

Web Browser HTML5 Test Score
Android 2.2 156

Android 2.3 182 (+1 bonus point)

Android 3.1 222 (+3 bonus point)

Chrome 10 273 (+13 bonus points)

Chrome 14 326 (+13 bonus points)

Firefox 3.0* 57

Firefox 3.6* 155 (+4 bonus points)

Firefox 4 240 (+9 bonus points)

Firefox 5 286 (+9 bonus points)

Internet Explorer 6* 17

Web Browser HTML5 Test Score
Internet Explorer 8* 32

Internet Explorer 9 130 (+5 bonus points)

iOS Safari 4.0.2 195 (+7 bonus points)

iOS Safari 4.3 206 (+7 bonus points)

OS X Safari 5.0.4 228 (+7 bonus points)

OS X Safari 5.1 293 (+7 bonus points)

Opera 11.50 296 (+7 bonus points)

Windows Phone 7* 17

WebOS 1.4.5 140 (+5 bonus points)

*Does not officially support HTML5.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com

22

1	 Open Internet Explorer 6, 7, or 8.

2	 Type www.google.com/chromeframe and
press Enter.

3	 Click Get Google Chrome Frame.

4	 Agree to the Terms of Service and click
Run if prompted.

A	The Google Chrome Frame Installer
launches.

5	 Click Finish when the installation is
complete.

6	 Restart Internet Explorer.

7	 Type gcf:about:version and press Enter.

B	The Google Chrome “About” page appears
within Internet Explorer.

Note: Internet Explorer is now HTML5
compatible but only on sites with the special
X-UA-Compatible meta tag.

8	 Press Q+R.

	 The Run dialog appears.

9	 Type regedit.exe and press Enter.

	 The Registry Editor opens.

Support HTML5 in Internet Explorer with a Plug-in

If you need to use Internet Explorer — even an old,
outdated version such as Internet Explorer 6 — you can

install the Google Chrome Frame (GCF) plug-in. This will
enable you to experience all the features of Google Chrome,
such as enhanced HTML5 support.

Some computer experts actually recommend using this
plug-in as standard practice because Internet Explorer’s
security and JavaScript features are rather outdated,
compared to most modern web browsers.

The GCF plug-in will work only on Internet Explorer 6, 7,
and 8, using Windows XP SP2 or greater, Windows Vista, and
Windows 7. Once installed, the plug-in can be activated to
render web pages in multiple ways.

Without any special configuration, the GCF will activate
only on websites that have a specific meta tag identifier,
stating HTML5+GCF compatibility:

<meta http-equiv=”X-UA-Compatible”
content=”chrome=1”>

For websites that lack this meta tag, you can activate GCF
on the workstation for any website you want using the
Registry. The AllowUnsafeURLs value enables you to
initiate GCF on all URLs that literally begin with “gcf:.”

[HKEY_CURRENT_USER\Software\Google\
ChromeFrame]

“AllowUnsafeURLs”=dword:00000001

Using this, when you type in a GCF-prefixed URL, such
as gcf:http://www.mydomain.com, the GCF plug-in will
activate and render the web page with Chrome and HTML5.

Support HTML5 in Internet Explorer with a Plug-in

2

3

A

7

9

B

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.google.com/chromeframe

23

CHAPTER

1Introducing HTML5

EXTRA
The Google Chrome Frame is available in stable, beta, and experimental builds. The procedure in this section
describes how to install the latest stable release.
If your website is already verifying whether the user is running Internet Explorer, you can promote the Google
Chrome Frame as a way to view HTML5 websites within Internet Explorer.
You can also enable GCF as the default renderer for Internet Explorer on all sites, regardless of the meta tag or
the “gcf:” URL prefix. You can do so by setting the IsDefaultRenderer value in the Registry as follows:

[HKEY_CURRENT_USER\Software\Google\ChromeFrame]

“IsDefaultRenderer”=dword:00000001

Internet Explorer will need to be restarted after applying this all-encompassing setting. After that, all websites you
visit will use GCF, and as such, the HTML Test, www.html5test.com, will report the best-possible score, showing
that GCF is active.

0	 Click HKEY_CURRENT_USER ➔
Software ➔ Google ➔
ChromeFrame to expand the
Registry tree.

Note: You may need to create the
ChromeFrame key by right-clicking
and clicking New ➔ Key.

!	 Right-click and click New ➔
DWORD.

@	 Type AllowUnsafeURLs and
press Enter.

#	 Double-click AllowUnsafeURLs.

	 The Edit DWORD Value dialog
box appears.

$	 Type 1.

%	 Click OK.

^	 Back in Internet Explorer, type
gcf: before an HTML5 website
URL and press Enter.

	 The HTML5 Web page is
rendered by Google Chrome
Frame.

Note: Internet Explorer is now HTML5
compatible for all sites with “gcf:” in
the URL.

10
11

11

10

12

13

10

10

14
15

16

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com

24

Create an HTML5 Web Page

A web page identified as an HTML5 web page means
different things to different web browsers, depending

on whether the browser itself supports HTML5, along with
which specific features. Chapter 1, “Introducing HTML5,”
discusses how to identify which features an HTML5 browser
supports; you can use this information later in building
your web page, but first, you must identify that your page
is designed for HTML5.

Every HTML5 web page requires a special doctype element
as the first element on the page. The whole line becomes a
doctype declaration, or DTD. If you are familiar with HTML
4.01, the DTD was a long, cumbersome string that described
which version of HTML or XHTML the page supported. For
example, the following describes a web page designed for
the HTML 4.01 Transitional standard:

<!doctype html public “-//W3C//DTD HTML 4.01
Transitional//EN” “http://www.w3.org/TR/
html4/loose.dtd”>

In HTML5, the DTD tag has been simplified immensely:

<!doctype html>

The doctype element is required for legacy reasons.
It ensures that the browser runs in standards mode,
which basically ensures that it follows the latest HTML
specification that it is coded for, as closely as possible.

So, when an HTML5 browser sees this, it knows that the
page supports the new HTML5 standard, which is the
latest version that it understands. When an HTML 4.01
browser sees this, it knows to follow HTML 4.01 Transitional
standard, as this is what it falls back to when the doctype
legacy string, the latter part of the DTD plus the URL, is
missing.

Following the DTD, other HTML container tags that you are
already familiar with from HTML 4.01 and earlier, such as
<html>, <head>, <title>, and <body>, are still valid
and required.

1	 Open a text editor.

2	 Type <!doctype html>.

3	 Type <html>.

4	 Type </html>.

Note: The html element must be
begin on the second line and end on
the last line of your web page.

5	 Type <head>.

6	 Type </head>.

7	 Type <body>.

8	 Type </body>.

Note: The head and body tag groups
must follow one another. All unique page
content appears within one or the other.

Create an HTML5 Web Page

2

3

4

5

76

8

25

CHAPTER

2Getting Started with HTML5 Page Layout

9	 Type <title>Page Title</title>
within the head tag group.

0	 Insert some content within the
body tag group.

!	 Save the HTML5 web page as
pagename.html.

@	 Open the pagename.html file in
an HTML5 web browser.

A	The title appears.

B	The body content appears.

Note: Because this HTML5 example
follows HTML 4.01 standard, this
particular page will render correctly in
a pre-HTML5 browser as well.

9

10

12

A

B

Note that in HTML5 and HTML 4.01, the doctype element and attributes are not case sensitive. So you can use
<!DOCTYPE HTML>, and it will still be considered valid.
The doctype element is also used by third-party validator services to check for compliance against the various
HTML standards, as described in Chapter 1. There is one caveat, though: An HTML 4.01 browser will not
understand HTML5 tags, but your doctype element will say that it supports the latest HTML specification,
according to this older browser. So how do you test an HTML5 web page for compliance against earlier standards,
such as HTML 4.01 Transitional?

APPLY IT

RESULT

The number of errors and warnings will
increase, compared to the same test run
with an HTML5 Document Type option.
This indicates the HTML5-specific code
that is not perfectly HTML 4.01 compliant.

TRY THIS

Go to the W3C Markup Validation Service, at
http://validator.w3.org, type in an HTML5
website URL, and click More Options.
Select a non-HTML5 Document Type option, such
as HTML 4.01 Transitional, and run the test.

➔

As you start to implement the HTML5 features described in this book, this test can produce more and more
supposed failures. Fortunately, fallback procedures inherent with HTML5 tag structure will prevail, allowing the
page to render correctly, and these errors become benign.

http://validator.w3.org

26

The new semantic layout in HTML5 refers to a new class of elements that is purely designed to help you understand
where and how text is defined in your web page and its context. All semantic tags must appear within the

<body>...</body> container tag group.

Each semantic element has no specific output, color, or design; they are purely here to help you, the web developer,
understand the context in which HTML code and text belong on your page. Each element can be stylized with CSS, however,
which is described later in the section “Assign CSS Styles to Layout Elements.” Until then, each element will be invisible,
and its text will appear drab and monotone when viewed in an HTML5 web browser.

It is important to note that the new semantic layout elements are all optional and are only provided for your benefit as a
web developer. They are designed to help you visualize and understand where appropriate content goes and how it is to be
stylized with CSS.

Understanding the Semantic Layout in HTML5

<header>...</header>, <footer>...</footer>

The <header> and <footer> tag groups are most commonly
found immediately after <body> begins and before <body>
ends, respectively. They indicate content that appears at the
top and the bottom of your web page:

<body>

 <header>[Page header]</header>

 [Page content]

 <footer>[Page footer]</footer>

</body>

Most websites’ headers typically contain a site logo image,
introductory text, navigation, and possibly a search form.
Footers, by contrast, may contain additional secondary
navigation, legal or copyright notices, and any final closing
images or text.

<section>...</section>

The <section> tag group describes the different sections of
content on your web page. You can use as many section groups
as you need. All sections must be found directly within the
<body> tag group, preceded and succeeded by a single
<header> and <footer> tag group, if used:

<body>

 <header>[Page header]</header>

 <section>[First Section]</section>

 <section>[Second Section]</section>

 <section>[Third Section]</section>

 ...

 <footer>[Page footer]</footer>

</body>

How do you decide what makes a unique section? Different
major, unrelated components of your website should each make
up a single section. For example, you may create a navigational
section, an article content section, a search section, and so on.

27

CHAPTER

2Getting Started with HTML5 Page Layout

continued ➤

It is most common for a <nav> tag group to contain only an
unordered list of ... links, specially
stylized by CSS, as described later in this chapter in the section
“Declare a Navigation Layout Element.”

<nav>...</nav>

The <nav> tag group describes the navigational links users can
use to traverse your website. The nav tag is most commonly
found within <section>, creating a navigational section, but
may also be used within the <article>, <header>, and
<footer> tag groups:

<section>

 <header>[Navigational section header]</header>

 <nav>[Navigational links...]</nav>

 <footer>[Navigational section footer]</footer>

</section>

<article>...</article>

The <article> tag group houses actual content, with
different groups indicating standalone articles of content, all
stored within a single section designed to hold all articles:

<section>

 <header>[Article section header]</header>

 <article>[First article...]</article>

 <article>[Second article...]</article>

 <article>[Third article...]</article>

 ...

 <footer>[Article section footer]</footer>

</section>

This might seem unusual at first, but imagine a typical
newspaper as an analogy. A newspaper has multiple sections,
such as World News, Local News, Sports, and Classifieds, with
each containing several unique articles related to the section.

For your website, if you only have one logical article within a
single section, you could bypass the <article> tag and
define the content directly within the <section> group, but
this goes against the spirit of the semantic layout in HTML5.

28

Understanding the Semantic Layout in HTML5
(continued)

If your article has only one heading element, you can ignore
the <hgroup> tag group and place it directly within the
<article> group.

<hgroup>...</hgroup>

The optional <hgroup> tag is designed to appear within the
<article> container, when the container contains more than
one heading tag — <h1>, <h2>, and up to <h6> — in a row.
A good example of this is an article title, followed by a subtitle,
and the article author:

<article>

 <hgroup>

 <h1>[Article title]</h1>

 <h2>[Article subtitle]</h2>

 <h3>[Article author]</h3>

 </hgroup>

 [Article content...]

</article>

Prior to HTML5, poorly written HTML pages used a standalone
<p> tag indicating a paragraph break. I myself was often guilty
of this infraction. Never do this in HTML5. A <p> tag must
always indicate the start of the paragraph, and </p> indicates
the end.

<p>...</p>

The paragraph tag you should already be familiar with. It can
appear anywhere within any of the earlier tags, except
<hgroup>, and describes an individual paragraph composing
the article’s content. You can use as many paragraph tag groups
as there are paragraphs of text:

<article>

 <hgroup>[Article headers]</hgroup>

 <p>[First paragraph text]</p>

 <p>[Second paragraph text]</p>

 ...

</article>

29

CHAPTER

2Getting Started with HTML5 Page Layout

<figure>...<figcaption>...</figcaption></figure>

The optional <figure> tag is designed to appear only within
the <article> container, straddled by paragraphs:

<article>

 <hgroup>[Article headers]</hgroup>

 <figure>

 [Image related to the article]

 <figcaption>[Figure image description]</
figcaption>

 </figure>

 <p>[Paragraph text]</p>

 ...

</article>

For a <figure> to “stand out,” CSS would need to be applied.
This example is described later in this chapter in the section
“Declare Figure and Aside Layout Elements.”

<aside>...</aside>

The optional <aside> tag is designed to appear only within
the <article> container, straddled by paragraphs. It
represents content that is related to the article but not
a part of the article’s reading text order. For example,
in a news-related website, an <aside> tag could hold
an interesting image, quote, or poignant text — basically
something that summarizes the article yet stands out from
the article’s main text. This is designed to catch the reader’s
eye, enticing him or her to read the article itself:

<article>

 <hgroup>[Article headings]</hgroup>

 <figure>[Figure image]</figure>

 <p>[Paragraph text]</p>

 <aside>[Supporting article text or quote]</aside>

 <p>[Paragraph text]</p>

 ...

</article>

Naturally, for an <aside> to stand out, CSS would need to be
applied to make its font larger than the regular article, limited
to a specific width, and boxed in with a subtle black border.
This example is described later in this chapter in the section
“Declare Figure and Aside Layout Elements.”

30

5	 Scroll to one line above the Â�
</body> tag.

6	 Type <footer>.

7	 Insert HTML content for the
bottom of the page.

8	 Type </footer>.

1	 Scroll to one line after the
<body> tag.

2	 Type <header>.

3	 Insert HTML content for the top
of the page.

4	 Type </header>.

Declare Header and Footer Layout Elements

The header and footer elements are new in the HTML5
semantic layout design, although their idea has been

around for quite some time. Previously, a simple <div> tag,
or even a table, would create headers and footers. These
elements are purely optional, but they help you understand
your page layout at a glance:

<body>
 <header>
 Body header content
 </header>
 Main body content
 <footer>
 Body footer content
 </footer>
</body>

Use <header> and <footer> within any semantic layout
element. For example, you could use the <section> tag,

described later in this chapter in “Declare Section and
Article Layout Elements,” and assign the section a header or
footer, if you so choose.

The header and footer elements will not receive
any special treatment from the web browser, just like
<div>...</div> tags. The real benefit to semantic
elements lies in the ability to understand the purpose of
the code within and to easily assign CSS styles.

When first establishing a header or footer, or any semantic
layout element, assign it a temporary CSS border. This will
help give you an idea about the boundaries of the header
and footer when rendered by the web browser. Later, after
you are happy with the complete layout of the web page,
you can remove the temporary CSS and apply a proper
design layout.

Declare Header and Footer Layout Elements

32

1

4

7
8

6

31

CHAPTER

2Getting Started with HTML5 Page Layout

$	 Load the web page in an HTML5
web browser.

A	The header content appears.

B	The footer content appears.

Note: Because the <header> and
<footer> tags are displayed as CSS
blocks, their boundaries extend the
full length of the browser window.

9	 Scroll to the <head> tag group.

0	 Type <style type=’text/css’>.

!	 Type header, footer { border:
1px solid gray; } to create a
temporary border.

Note: A border around any tag helps
you to visualize its boundaries in a
web browser.

@	 Type </style>.

#	 Save the HTML file.

10
11

9

12

14

A

B

Your <header> and <footer> tag groups do not need to be the very first and last groups in <body>. If you want to
add additional formatting throughout the entire page itself, such as to limit the overall page width, you can add an
all-encompassing <div> tag around <header> and <footer> and then style it accordingly using standard CSS rules.
When placing your header and footer, or any other semantic layout tag, a very useful trick is to use CSS and place a
little marker to remind you where a particular display block originates.

APPLY IT

RESULT

The text “<header>” appears, gray and italicized, in
the top-left corner of the header element. The
position: absolute declaration means that it
does not affect anything else in the header and is
displayed independently of other content.

TYPE THIS
header:before {
 content: “<header>”;
 position: absolute;
 font-style: italic;
 color: gray;
}

➔

Note that the CSS border and “<header>” text should be used only while developing your HTML5 web page. After
you are happy with the layout, proper CSS styling should replace these temporary CSS rules.

32

The navigation element represents a section of your web
page that links to other pages, or other parts in the

same page, with a series of links.

When creating navigational links, you can be very minimal
and rely on CSS for all your formatting. For example, just
use straight <a href> tags:

<nav>
 link1
 link2
 link3
</nav>

Some sites overcomplicate navigational tags and turn them
into an unordered list. You could do this, but then you will

require additional CSS code to undo the bullet style, remove
the list margin, and display everything inline.

If you simply want a series of <a href> tags to appear
vertically, just like a bulleted list, assign it the display:
block CSS declaration, as described in the “Apply It” on
the facing page.

When first establishing the navigation, or any semantic
layout element, it is a good idea to assign it a temporary
CSS border declaration. This will help give you an idea of
the boundaries of the navigation entries when rendered
by the web browser. Later, after you are happy with the
complete layout of the web page, you can remove the
temporary CSS styles and apply a proper design layout.

Declare a Navigation Layout Element

4	 Type link for
each navigational link.

1	 Scroll to the <header> tag
group.

2	 Type <nav>.

3	 Type </nav>.

Note: In this example, the nav
element is placed above the heading.
This will make the CSS float property
display better, when you add it later in
step 6.

Declare a Navigation Layout Element

21

3

4

33

CHAPTER

2Getting Started with HTML5 Page Layout

9	 Load the web page in an HTML5
web browser.

A	The navigational list appears,
aligned to the right of the
header element block.

5	 Scroll to the <style> tag group.

6	 Type header nav { border: 1px
dashed black; float: right; } to
create a border.

7	 Type header nav a { margin:
10px; } to set a margin.

Note: If you use any other <nav>..
</nav> blocks in any other semantic
tags, such as <footer>, the sample
CSS declarations will not affect them.
This example specifically targets the
<nav> tag within the <header> tag.

8	 Save the HTML file.

6

5

7

9

A

When using CSS, you have the freedom to reposition entire semantic tags and make significant changes to your
web page’s layout, all while using very little new code.

APPLY IT

RESULT

The list now appears vertically to the left of
the heading, with each link displayed with a
10 pixel margin. The main web page text flows
nicely beside the nav element.

TYPE THIS

Insert the following CSS style
declarations; be sure to remove the
float: right declaration if you
used it from the example in this
section:
header nav {
 float: left;
}
header nav a {
 display: block;
 margin: 10px;
}

➔

Note that the header and nav element borders overlap, and yet
their content does not. This is a feature of CSS in which the
rendering engine attempts to place objects intelligently, all while
keeping content legible. Remember that the temporary borders
added will be removed later, so the two element boundaries will
overlap nicely.

34

The section and article layout elements allow you
to group large amounts of display content and text

content in your web page. As WHATWG conceived, one or
more section blocks should appear in between the top-level
header and footer element blocks, and one or more
article blocks appear within a section dedicated to articles.
That being said, you are free to apply sections and articles
as you see fit, the point being that you understand what,
within your own code, is a display section and what is a
text article.

Multiple sections can be defined by assigning a CSS class
identifier to the section. This will help you later when

assigning style sheet declarations. Multiple articles can be
defined with a similar class identifier for the same reason:

<section id=’sidebar’>
 <nav>...</nav>
</section>
<section id=’articles’>
 <article id=’news1’>...</article>
 <article id=’news2’>...</article>
 <article id=’news3’>...</article>
</section>

Another section block could hold a secondary form of
navigation on your website, as in the example in the figures
below, a listing of a blog post archive by month.

Declare Section and Article Layout Elements

8	 Type <section id=’sidebar’>
prior to the articles section.

9	 Insert secondary navigational
content for this sidebar archive
section.

Note: In this example, the archive
text is not yet hyperlinked. The links
can be added later after your layout
is good.

0	 Type </section>.

1	 Scroll to one line after the Â�
</header> closing tag.

2	 Type <section id=’articles’>.

3	 Type <article>.

4	 Insert some article content.

5	 Type </article>.

6	 Create a few more articles within
this section.

7	 Type </section>.

Declare Section and Article Layout Elements

2

6

4

1

3

5

7

8

9

10

35

CHAPTER

2Getting Started with HTML5 Page Layout

!	 Scroll to the <style> tag group.

@	 Type section#sidebar { border: 3px
dotted gray; float: right; width:
20%; } to create a border.

#	 Type section#articles { border: 3px
dashed black; margin: 10px; } to
create a dashed border with a margin.

$	 Type section#articles article {
border: 2px solid gray; margin:
10px; } to create a solid border with
a margin.

%	 Save the HTML file.

^	 Load the web page in an HTML5 web
browser.

A	The articles section appears in a
dashed black border.

B	The individual articles appear in a
solid gray border.

C	The sidebar section appears in dotted
light gray on the right.

12

13

14

11

16

A

B

C

You can use CSS to alter the placement of sections, such as move the sidebar in the example shown here to the left
side of the articles section. Before you can do that, the footer needs a minor amendment.

APPLY IT

RESULT

The footer will always appear at the
bottom of either the articles or sidebar
sections, depending on which one is longer.

TYPE THIS
footer {
 clear: both;
}

➔

RESULT

The sidebar section appears on the left
of the page, using 20% of the available
width. The sidebar section appears on the
right of the article section, using 75% of
the available width.

TYPE THIS

Move the <section id=’sidebar’> block below the
<section id=’articles’> block. Remove float:
right from section#sidebar and then add this:
section#articles{
 float: right;
 width: 75%;
}

➔

Note that the clear: both CSS declaration must be added to the first tag that comes after the floating sections,
in this case, the footer. If you had another section, such as <section id=’summary’>..</section>, prior to
the footer, you would have put your clear statement there instead.

36

1	 Scroll to one line after the
<article> tag.

2	 Type <h1>.

Note: In this example, the article
heading is actually <h3>. This is
because <h1> was used for the page
title, and <h2> for the section title.
You should use <h1> if this is your
first heading on the page.

3	 Insert the article title.

4	 Type </h1>.

5	 Type <p>.

6	 Insert a paragraph of text.

7	 Type </p>.

8	 Repeat steps 5 to 7 for the
remaining paragraphs in the
article.

9	 Create similar headings and
paragraphs for the other
articles.

Declare Heading and Paragraph Layout Elements

After you have a rough layout for your web page, you
can start adding in some actual content. This is done

using the same tags used in previous versions of HTML: the
heading and paragraph elements:

<h1>Heading</h1>
<p>Paragraph text</p>
...
<h2>Subheading</h2>
<p>Paragraph text</p>
...
<h3>Sub-subheading</h3>
<p>Paragraph text</p>
...

HTML5 does add in one new heading group semantic layout
element, called <hgroup>. This enables you to group
multiple heading elements together that immediately follow
one another in descending order:

<hgroup>
 <h1>heading</h1>
 <h2>subheading</h2>
</hgroup>
<p>paragraph text</p>
...

You can use the heading group to alter the default margin
spacing on the grouped headings, making the first and
subsequent headings appear closer together.

Declare Heading and Paragraph Layout Elements

42

31

6

8

9

5

7

9

37

CHAPTER

2Getting Started with HTML5 Page Layout

0	 Type <hgroup>.

!	 Type <h2>.

Note: Again, in this example, the next
heading in order is <h4>.

@	 Insert the optional secondary
article header.

#	 Type </h2>.

$	 Type </hgroup>.

%	 Save the HTML file.

^	 Load the web page in an HTML5
web browser.

A	Here is the article’s header.

B	Here is the article’s secondary
header.

C	Here are the article’s paragraphs
of text.

1311

10
12

14

16

B
A

C

The headings shown here are way too big, and you are not yet leveraging the hgroup element properly. Instead, a
single hgroup’s margin should be the same as standalone headings. You can fix this by reducing the margin and
font size of the article heading elements and apply the margin to <hgroup>.

APPLY IT

RESULT

Groups of headings appear closer
together, and the heading group as
a whole has a 0.67em margin,
matching standalone headings. The
article’s primary heading is the same
font size as the standard font size —
which is always 1em — and the
subheading is two-thirds the size.

TYPE THIS
article hgroup {
 margin: 0.67em 0px;
}
article hgroup * {
 margin: 0px;
}
article h1 {
 font-size: 1em;
}
article h2 {
 font-size: 0.67em;
}

➔

38

The figure element enables you to define a container
around an image, table, or code example that is used

as a supporting object to complement an article. An aside
element is similar to a figure, except that it is typically
smaller and holds only a key quote or sentence from the
article’s copy. Both elements are used to draw a reader’s
attention to an article, punctuating a single point, or
demonstrating a single example, that is described in detail
by the article’s main text.

<figure>
 [image, table, code, etc.]
</figure>

You can add an optional caption to a figure with a
<figcaption> tag. The figcaption element is described
further in Chapter 3, “Using New HTML5 User Interface Tags
and Attributes.”

The aside element should be used in between article
paragraphs. The purpose of this is to make the aside
block appear outside of the paragraph itself, having the
paragraph text flow around the block:

<p>Paragraph text...</p>
<aside>Article quote</aside>
<p>Paragraph text continues...</p>

The aside element flows around the paragraph with the
help of simple CSS declarations, applied by the width and
float properties. In the following code, the aside block
floats to the right and expands up to 25% of the available
paragraph width:

aside { float: right; max-width: 25%; }

Some websites even apply a simple border, background
shadow, or even a stylized double-quote image to the
aside element.

Declare Figure and Aside Layout Elements

3

4

2

5	 Scroll to the paragraph to which
you want to add an aside.

6	 Type <aside>.

7	 Insert supplementary text
related to the article.

8	 Type </aside>.

1	 Scroll to the article’s content to
which you want to add a figure.

2	 Type <figure>.

3	 Insert an image, table, or code.

4	 Type </figure>.

Declare Figure and Aside Layout Elements

86

7

39

CHAPTER

2Getting Started with HTML5 Page Layout

APPLY IT
You can apply some interesting styles to figures. This gives better guided flexibility over the old HTML 4 way of
simply assigning images with the tag alone. For example, the following CSS turns the figure image into a
Polaroid-like frame.

Example
figure {

 border: 1px solid;

 margin: 10px;

 padding: 10px;

 padding-bottom: 50px;

 background-color: white;

}

figure img {

 border: 1px solid;

 padding: 5px;

 background-color: white;

}

9	 Scroll to the <style> tag
group.

0	 Type aside { border: 1px solid;
max-width: 20%; float: right;
} to create a border.

!	 Type figure { border: 1px solid;
margin 2px; float: left; } to
create a border.

Note: In this example, additional
padding, margin, and float: left
was added to place the figure beside
the text.

@	 Save the HTML file.

#	 Load the web page in an HTML5
web browser.

A	The article’s figure appears
within a border and small
margin.

B	The article’s aside text appears
within a paragraph.

10

11

13

A

B

40

2

2

2

3	 Insert your own newly stylized
declarations to this CSS selector.

4	 Type /* text */ to insert a
comment for your new CSS
declaration.

5	 Save the HTML file.

Note: Follow these steps if you have
used the temporary borders suggested
as guidelines earlier in this chapter.

1	 Scroll to the CSS style
definitions.

2	 Select and delete the border
declarations for the first group
of CSS selectors.

Assign CSS Styles to Layout Elements

The examples throughout this chapter have used borders
to give you a rough idea as to how the semantic layout

elements are being placed by your web browser. These
borders, although ugly, have served their purpose, as the
content in the example is now relatively populated and in
the right place. It is now time to assign proper CSS styles to
your semantic layout elements.

Work through one bordered block at a time, applying the
style for the final page layout. In other words, do not
strip everything; otherwise, you may forget where and
how different layout elements interacted with each other.
This can be especially true if you are using any modifying
float, clear, or width properties.

When laying out your page, remember that some
elements actually have preassigned values built into your
web browser, such as the case with the <h1> to <h6>

heading tags, which can be overridden. Some of the CSS
modifications you may want to consider applying at this
stage include the following:

•	 Manually resize objects, via the height, width,
margin, and padding properties.

•	 Precisely position objects, via the position property.

•	 Float objects, via the float and clear properties.

•	 Align objects, via the align property.

•	 Overlap objects, via the z-index property.

•	 Apply background colors, via the background-color
property.

•	 Create background images, via the background-image
property.

If you get lost, you can always restore the temporary CSS
borders to get your bearings on the web page.

Assign CSS Styles to Layout Elements

4

3

41

CHAPTER

2Getting Started with HTML5 Page Layout

8	 Load the web page in an HTML5
web browser again.

	 All temporary CSS code is gone;
the final CSS style is ready.

6	 Load the web page in an HTML5
web browser.

A	The new CSS style appears.

7	 Repeat steps 2 to 4 for the
remaining temporary CSS
borders.

6

A

8

In the example shown here, CSS modifications are applied directly to the HTML page itself. This is good as a
starting point, but the true strength of CSS is its capability to centralize all declarations into an external CSS file.
This external file can then be referenced by every page on your website, providing a good, consistent interface.

APPLY IT

RESULT

All CSS rules stored in base.css
are applied to the web page.

TRY THIS

Cut all the CSS code within the <style> block and save it as a
new file called base.css. Do not save the <style> and </style>
tags themselves in your new file, but do remove them from your
HTML file.
Insert this code into the <head> block, in place of the original
<style> block:
<link rel=’stylesheet’ type=’text/css’ href=’base.css’>

➔

42

1	 Launch an older, non-HTML5
web browser.

2	 Type in the URL of your HTML5
web page.

	 The page display is distorted
and incorrect.

Provide a Fallback for Outdated Web Browsers

Pre-HTML5 web browsers will react differently to your
new HTML5 code. Previous HTML specifications state

that if a browser encounters a tag it does not understand,
it should ignore that tag but continue processing the tag’s
contents. Unfortunately, this specification was implemented
differently by the browser vendors.

When an HTML5 tag is viewed by a browser, regardless of
its version, one of three things will happen: 1.) The tag
is recognized as an HTML5 tag. It is fully customizable by
CSS. 2.) The tag is considered an error, but a DOM node
is still created. The tag is still customizable by CSS, but a
display: inline style is implicitly applied. Or 3.) The
tag is considered an error and ignored. The JavaScript DOM
also ignores the tag, resulting in no CSS support.

The first scenario happens when an HTML5 browser accesses
your site. The tags are identified as “supported” and can be
stylized with CSS.

The second scenario happens with most pre-HTML5 web
browsers. Such browsers may not understand the new tags
but can still stylize them. However, displaying them inline
is wrong and must be addressed.

The third scenario describes how Internet Explorer prior to
version 9 reacts to new tags. The tags are ignored, yet the
content within the group is still displayed. Unfortunately,
the tags themselves cannot be stylized by CSS because they
do not exist in the DOM.

These two problems need to be resolved. The first solution
is very simple: Just establish a display: block
declaration for all HTML5 semantic tags.

The second problem can be solved by linking into a
JavaScript project called html5shim. This is a third-party
script tailored for Internet Explorer 8 and earlier that corrects
the DOM for HTML5 code. You can find more information
about html5shim at http://code.google.com/p/html5shim/.

Provide a Fallback for Outdated Web Browsers

2

5

3	 Open your web page in a text
editor.

Note: If your CSS styles are in an
external file, open that file instead.

4	 Scroll to your CSS definitions.

5	 Type header, footer, nav,
section, article, figure,
figcaption, aside { display:
block; }.

6	 If you are using an external CSS
file, save it.

http://code.google.com/p/html5shim/

43

CHAPTER

2Getting Started with HTML5 Page Layout

7	 Scroll to the <head> section of
your web page.

8	 Type <!--[if lt IE 9]>.

Note: This test ensures that the following
code is loaded only for browsers earlier
than Internet Explorer 9.

9	 Type <script src=’http://
html5shim.googlecode.com/svn/
trunk/html5.js’></script>.

Note: You can always download this
html5.js file, link to it locally, and serve
it from your own web server.

0	 Type <![endif]-->.

!	 Save the HTML file.

@	 Reload the web page in an older
web browser.

	 The HTML5 semantic layout appears
correctly.

A	Internet Explorer 8 may trigger a
Compatibility View pop-up.

8 9

7

10

12

A

EXTRA
For other HTML5 tags and features, outside of the new
semantic layout elements, there are implicit fallbacks
for non-HTML5 browsers. This means that you do not
need to rely on CSS or JavaScript trickery to at least
display an appropriate warning or error message to the
user.
This book describes several examples of this type of
automatic fallback for complex HTML5 tags, such as
the new <canvas> and <video> tags. The content
within these tags will appear only on browsers that do
not support the tag itself. Therefore, you can create
something like this for an easy and effective fallback
for browsers that do not support the Canvas or Video
features of HTML5.

Example
<canvas id=”animation”>

We’re sorry, you need an HTML5 compatible
browser to view this HTML5 Canvas animation. Go
to http://www.whatbrowser.org/ to download one.

</canvas>

Example
<video><source src=”movie.webm”>

We’re sorry, you need an HTML5 compatible
browser to view this WebM HTML5 movie. Go to
http://www.whatbrowser.org/ to download one.

</video>

The HTML5 Canvas and Video tags are described in
more detail in Chapters 10, “Drawing with the HTML5
Canvas,” and 11, “Adding HTML5 Multimedia.”

44

1	 In a browser, type www.w3.org/html/
logo/#the-logo and press Enter.

	 The W3C HTML5 Logo page loads.

2	 Click Badge Builder.

Note: If you are using an HTML5 web
browser, the page actually scrolls down for
you! This is a jQuery smooth-scrolling
transition effect, which is explained in
Chapter 8, “Using jQuery with HTML5.”

Announce HTML5 Support

In an effort to promote HTML5 adoption, the W3C has
created an HTML5 badge that you can place on your

website. A badge is basically an image with supporting
HTML code that promotes a specific cause or idea that you
can install on your website. You can use this to show the
world that your site is coded for HTML5.

Installing badges on a website is a technique that was
very common in the early days of the World Wide Web; in
the mid- to late 1990s, badges were often used to promote
programs such as Internet Explorer 3 and Netscape Navigator
3.1, obscure social causes, cures for diseases, and so on.

Understandably, these badges got so overused and annoying
that many website developers dropped them entirely.

Because the nostalgists at the W3C marketing department
want to bring back badges, they have created a new logo
for an HTML5 badge as an old-school throwback to those
early days of the web.

You can see the new HTML5 logo and the form used to
generate the HTML5 badge at www.w3.org/html/logo/.

When you configure your new HTML5 badge on the W3C’s
website, you have the option to display which supporting
HTML5 technologies your site uses. These technologies
are displayed as add-on icons to the main HTML5 badge,
demonstrating your ability to support offline storage,
connectivity, multimedia, enhanced graphics, device access,
performance, semantics, and CSS3 styling.

Announce HTML5 Support

1

2

4
3

5

6

A

3	 Click the check boxes to customize
your HTML5 badge by technology.

4	 Click Horizontal or Vertical for your
badge orientation.

A	A preview of your badge is displayed.

5	 Highlight the badge HTML text.

6	 Right-click and click Copy.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/html/logo/%23the-logo
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/html/logo/%23the-logo
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/html/logo/

45

CHAPTER

2Getting Started with HTML5 Page Layout

EXTRA
Up to this point, this chapter has demonstrated only the Semantics HTML5 technology, but HTML5 is much more
than that. The other HTML5 technologies are described throughout this book. After you have implemented them on
your website, be sure to update your HTML5 badge!
If you have been paging ahead in this book, you have probably noticed that there are some HTML5 technologies that
are not available as technology options on the HTML5 badge. This is because the badge is solely from the W3C’s
perspective of HTML5 technologies. Web browser vendors have been free to add their own features into their HTML5
browsers and have been advertising them as “HTML5 features,” even though they are not in any official documentation.
On the other hand, one interesting technology showcased on the HTML5 badge yet is strangely unusable is called
Device Access. As of mid-2011, no HTML5 web browsers properly support the Device API, so this book does not
cover the topic. The idea behind the API is to allow the browser to access peripheral devices directly connected to
your computer, such as a webcam, microphone, or smartphone over Bluetooth.
Until HTML5 is finalized in 2014, any API that has a weak adoption rate could be dropped out of the HTML5
standard entirely.

7	 Open your HTML text editor.

8	 Type <div class=’html5badge’>
to control the placement of the
badge.

9	 Paste in the HTML5 badge code.

0	 Type </div>.

!	 Save your HTML file.

@	 Load the web page in an HTML5
web browser.

B	The HTML5 badge appears on
your web page.

Note: In this example, the badge
overlaps the end of the footer. This
was achieved by assigning float:
right to the html5badge CSS class.

10

9
8

12

B

46

1	 Scroll to the <head> tag group.

2	 Type media=’all’ for the default CSS.

3	 Type <link rel=’stylesheet’ media=
‘screen and (max-width: value)’
href=’mobile.css’>.

Note: The type=’text/css’ attribute is
optional and implied.

4	 Type <meta name=’viewport’
content= ‘width=device-width,
initial-scale=1.0,
user-scalable=yes’>.

5	 Save the HTML file.

6	 Create a new file for the mobile CSS
layout.

7	 Insert comments describing the
change for the smaller layout.

8	 Insert the new CSS code to override
the default-layout CSS code.

9	 Save the CSS file as mobile.css.

Resize Your Website for Mobile Web Browsers

One lesser-known feature of CSS is its capability to alter
your site’s layout based on display size. This means

that when your site is viewed on a mobile browser, an
optimized layout for the screen real estate can appear.

Nothing is more annoying than going to a website on your
favorite mobile device only to find a desktop-sized layout
compressed into a tiny screen, or a layout so oversimplified
and stripped down that the most useful features are
crippled or absent.

There are a few different ways to apply this technique to
your website. CSS allows for a media attribute to target a
style sheet by hardware. For example, you can instruct the
browser to apply base.css for all media and superimpose
mobile.css for handheld devices:

<link rel=’stylesheet’ media=’all’
href=’base.css’>

<link rel=’stylesheet’ media=’handheld’
href=’mobile.css’>

Unfortunately, some mobile web browsers actually ignore
the handheld property, such as iPhone and Android
browsers. Instead, the most reliable way to implement this
feature is to forgo the media=’handheld’ method and
instead focus on absolute screen width values:

<link rel=’stylesheet’ media=’screen and
(max-width: 320px)’ href=’mobile.css’>

This loads mobile.css on screens 320 pixels or smaller.
You can resize your web browser below the max-width
threshold to experience the mobile layout on the desktop.

For iPhone and iPad users, you should also specify a
viewport meta tag. This sets a default zoom level and
specifies whether the user is allowed to zoom in or out.

Resize Your Website for Mobile Web Browsers

4

1

3

2

8

8

8

8

8
7

7

7

7

7

47

CHAPTER

2Getting Started with HTML5 Page Layout

EXTRA
When choosing a max-width value, experiment with
your default site layout and slowly reduce the browser
window width. As soon as the CSS layout starts to
break, measure the width and use it as your threshold.
You can use the broken CSS layout to identify what
needs to be optimized for the smaller layout.
If you wanted to create an iPad-specific version of your
website, you can create a CSS layout that specifies a
min-width and max-width value range.

Example
<link rel=’stylesheet’ media=’screen and (min-
width: 641px) and (max-width: 800px)’
href=’ipad.css’>

Finally, if you are familiar with browser detection, you
may be tempted to use the browser’s user-agent string
and categorize the device into a list of known layouts.
This method is flawed because new devices are
constantly coming out, and many devices misrepresent
themselves. For example, the Motorola Xoom is a
10-inch tablet running Android 3.x, and its user agent
identifies itself as an Android device; if your site
assumes all Android devices have smartphone-sized
displays, Xoom users will be left with a poorly formatted
version of your website.

0	 Open your web page in a normal
browser.

	 The page appears normally; the
mobile.css style sheet is not
applied.

Note: The browser window width is
above the max-width threshold set
in step 3.

!	 Narrow the browser window to
below the max-width value.

10

B

A

A	The mobile.css layout is applied
to the desktop browser.

@	 Open your web page on a mobile
phone.

B	The mobile layout is applied on
the phone.

Note: Most mobile phones have a
maximum width of 320 pixels. Use this
value as the absolute minimum value
for the maximum-width detection in
step 3.

48

Display a Fixed-Meter Bar

The meter element, new in HTML5, enables you to
display a gauge graphic to the user at any point on a

web page. This is useful to display a metered bar of some
absolute values to users. For example, if you were hosting a
fundraiser, you could display a fundraiser goal gauge easily
with meter. Just set the maximum and current values, and
the browser will show the progress to the goal.

If the meter element is unsupported by the browser, the
fallback display within its start and end tags will appear
instead. You can use this to display a text description or a
fallback image graphic:

<meter value=’num’ min=’num’
max=’num’>Fallback Display</meter>

The meter element accepts several attribute values as
input. At a minimum, you should set a value attribute as
a real number between 0 and 1. If you also specify min

and max numbers, the value attribute must be anywhere
between min and max, and the browser calculates the
display as a percentage meter.

Extra numeric attributes that you can set include low,
high, and optimum, which alter the meter’s color
depending on which are used. For example, using all three
extra attributes, if the meter’s value is between 0 and
low, it is colored red; between low and high, yellow;
and between high and optimum, green. If optimum is
omitted, values below low and above high are yellow,
and those between low and high are green. Experiment
with these attributes to find the color combination that is
appropriate for your meter.

The actual color theme displayed and the design of the
meter graphic varies from browser to browser and by the
operating system the browser is running on.

1	 Type <meter.

2	 Type value=’number’ to assign
an initial meter setting.

A	Optionally, type min=’number’
max=’number’ to assign a
minimum and maximum range
for value.

Note: If you omit min and max, the
value must be between 0 and 1.

3	 Type ></meter>.

B	Optionally, type low=’number’
to set a low number threshold.

C	Optionally, type high=’number’
to set a high number threshold.

D	Optionally, type
optimum=’number’ to set a
target number.

4	 Insert fallback display text or an
image.

5	 Save the HTML file.

Display a Fixed-Meter Bar

1

32 A

4

B C D

49

EXTRA
You can use the CSS3 transform property, described in Chapter 5, “Enhancing Your Web Page Visually with
CSS3,” to rotate the meter by 90 degrees so that it displays vertically, like a thermometer gauge.
For WebKit browsers, you can override the display colors in the meter element with the following CSS selectors:

CSS Selector Description
meter::webkit-meter-horizontal-optimum-value The used portion of the progress bar, when the value is optimal.
meter::webkit-meter-horizontal-suboptimal-
value

The used portion of the progress bar, when the value is one
level above or below optimal.

For only very recent WebKit browsers, you can override the display format in the meter element by setting the
CSS -webkit-appearance property to the following values:

CSS Appearance Property Value Description
continuous-capacity-level-indicator Displays the meter as one continuous bar.
discrete-capacity-level-indicator Displays the meter as ten thick blocks.
relevancy-level-indicator Displays the meter as very thin bar slats.
rating-level-indicator Displays the meter as stars.

If -webkit-appearance is undefined or is not supported by the browser, it will fall back to the continuous-
capacity-level-indicator format as the default.

CHAPTER

3Using New HTML5 User Interface Tags and Attributes

6	 Open your CSS definitions file.

7	 Locate or create a CSS selector
to the meter element.

8	 Type width: value; to customize
its width.

9	 Type height: value; to
customize its height.

0	 Save your CSS definitions file.

!	 Open your web page in an
HTML5 web browser.

E	The meter gauge is displayed.

Note: In this example, the value is
below high but close to optimum, so
it is displayed in green.

87

9

E

11

50

4	 Load your web page in a
browser.

A	An animated progress bar
appears, moving from left to
right.

1	 Type <progress>.

2	 Type </progress>.

3	 Save your HTML file.

Display a Moving Progress Meter

A progress element differs from the meter element in
that its design specification says it moves to convey

an in-progress task. This could be something such as
downloading a file, processing a command, or any action
that has a relatively short time until completed, but not
instantaneously. In order to make use of this, you will need
some additional JavaScript code to control the progress
meter’s current level.

If the progress element is unsupported by the browser,
the fallback display within its start and end tags will appear
instead. You can use this to display a text description or a
fallback image graphic:

<progress value=’num’ max=’num’>Fallback
Display</progress>

The progress element accepts only two values as input;
both are optional. When specified, the value attribute is a
real number between 0 and max, its target. When displayed,
the progress bar displays just like the meter element,
showing a rendered percentage of progress.

If you do not specify the value and max attributes, the
progress bar displays an animating “working” block that
moves from one end of the bar to the other. This is typically
deemed a waiting state, a state the user could be in if the
value and max numbers have not yet been established by
the device that requires measuring.

The actual color theme displayed and the design of the
progress bar graphic vary from browser to browser and by
the operating system the browser is running on.

Display a Moving Progress Meter

21

4

A

51

CHAPTER

3Using New HTML5 User Interface Tags and Attributes

APPLY IT
As mentioned, the progress bar should be tied into some
sort of JavaScript process that requires measuring. To
do this, you must gain access to the progress bar object
in the JavaScript DOM and then manipulate the value
and max variables accordingly.
In this example JavaScript code, jQuery can be used to
set the progress element’s attributes. As a fallback for
non-HTML5 browsers, this code also sets the literal text
“Progress: value/max” if the progress bar cannot be
displayed.

Example
var value = 50, max = 100;

$(‘progress’).attr(‘max’, max);

$(‘progress’).attr(‘value’, value);

$(‘progress’).html(‘Progress: ‘+value+’/’+max);

If you were to tie this into your own JavaScript code,
you would need to set the max attribute once and
update the value and inner HTML as your JavaScript
function progresses. jQuery is described in more detail
in Chapter 8, “Using jQuery with HTML5.”

7	 Reload your web page in a
browser.

D	The progress bar appears as a
solid bar, representing the
percentage of value to max.

B	Optionally, type
value=’number’.

Note: If you omit value, a value can
still be assigned in JavaScript.

C	Optionally, type max=’number’.

Note: If you omit max, the value
must be between 0 and 1, unless a
new max number is assigned in
JavaScript.

5	 Insert fallback display text or an
image.

6	 Save your HTML file.

5B C

7

D

52

Note: If the figure is an image, you
should add an alt attribute.

A	Optionally, type alt=’text’
within the tag to provide
a description when the image is
unavailable.

B	Optionally, type title=’text’
within the tag to provide
a separate image title as a hover
pop-up.

1	 Scroll to a <figure> tag block
that has an image, table, or
code reference.

2	 Type <figcaption> after the
image, table, or code.

3	 Insert the figure’s caption text.

4	 Type </figcaption>.

Add a Caption to a Figure

Chapter 2 discusses the new HTML5 semantic layout tag,
<figure>, which enables you to define a standalone

image, table, or code as a self-contained, supporting
object that complements the document. Using the new
figcaption element, you can add caption text.

Place the <figcaption> tag either above or below the
supporting object within the <figure> group. Insert your
caption text within:

<figure>
 [image, table, code, etc.]
 <figcaption>Caption Text</figcaption>
</figure>

Most HTML5 web browsers will not preformat figure or
figcaption elements. This means that they will appear as

text following an image when viewed by the browser. You
should use figure and figcaption CSS selectors to add
some display properties to your style sheet, such as font,
border, margin, and padding.

If you do add in a figure or figcaption border, note
that by default figure is display:block and will span
the entire width of the page; this will look odd if the image
itself is much smaller than the border. To counter this, set
the width property on the figure selector to match the
width of the image.

Alongside figcaption, you can also use an image’s title
attribute to display a short, temporary text message when
the mouse cursor hovers over the image or the alt attribute
to display a description of the image if it cannot be loaded.

Add a Caption to a Figure

32

1

4

B

A

53

CHAPTER

3Using New HTML5 User Interface Tags and Attributes

5	 Scroll to your CSS style
definitions.

6	 Type figcaption {.

7	 Insert CSS declarations to
customize the caption text
block.

8	 Type }.

9	 Save the HTML file.

0	 Load the web page in a web
browser.

C	The figure’s caption appears
below the figure content.

7
6

8

10

C

APPLY IT
You can apply some interesting styles to figures and captions. This gives better guided flexibility over the old
HTML 4 way of simply assigning images with the tag alone.

Example
figure {

 border: 1px solid black;

 width: 128px;

}

figure, figcaption {

 padding: 5px;

}

figcaption {

 text-align: center;

 font-style: italic;

 border-top: 1px solid gray;

}

54

4	 Load the web page in an HTML5
browser.

A	The marked text appears with a
highlighted background color.

1	 Type <mark> at the start of a
block of text.

2	 Type </mark> at the end of the
block.

3	 Save the HTML file.

Highlight Text

You can highlight text in a web page, just like a
highlighter pen on paper, using the new mark element

in HTML5. This enables you to put additional new emphasis
on a block of text, without using the older methods such as
italicizing, bolding, or underlining:

<mark>text</mark>

Essentially, the mark element simply adds a yellow
background color to enclosed text. The following CSS is
built into all HTML5 web browsers:

mark {
 background-color: yellow;
}

Most non-HTML5 web browsers will understand <mark>, but
you will need to explicitly assign it a CSS declaration, just

as in the preceding example. A good general guideline is
to assign a value regardless; this way both newer and older
HTML web browsers work fine.

In order for mark to be supported in Internet Explorer
8 and earlier, not only do you need to assign a CSS
declaration, but you must also include the html5shim
JavaScript code, as described in Chapter 2. This is
because Internet Explorer does not allow CSS properties
to be assigned to tags that it does not understand. The
html5shim program corrects this problem.

Naturally, you can change the color by using a CSS
declaration that overrides the mark selector. It is safe for
you to redefine it on HTML5 to another background color,
border color, text color, or whatever you want.

Highlight Text

1

2

4

A

CHAPTER

3

3	 Load the web page in a web
browser.

A	The long word spans multiple
lines.

1	 Type <wbr> to break up a long
word.

Note: Use ­ to break up a long
word with soft hyphens.

2	 Save the HTML file.

Specify Safe Line Breaks in Long Words

Specify Safe Line
Breaks in Long Words Using New HTML5 UI Tags and Attributes

The wbr element, new in HTML5, enables you to specify
a word-break opportunity so that long words can span

multiple lines. This has a slightly different execution from
the soft-hyphen character, ­, introduced in HTML 4.
Whereas the <wbr> tag will just break up a long word, the
­ code will also insert a hyphen before the line break.

When either is used, you can specify where the browser
should wrap a word onto the next line of text if the word is
longer than the available space on the line. Ideally, place
it in between syllabic breaks. This helps the word remain
legible when broken up, such as

Hippopoto<wbr>monstrosesquip<wbr>
pediliophobia

When split across multiple lines with spacing for 30
characters, this long word would be rendered as:

Hippopotomonstrosesquip
pediliophobia

The ­ code has the same basic implementation in
your HTML code as <wbr>; however, you have the choice of
using its proper code name, decimal notation (­), or
hexadecimal notation (­) to split up long words with
a soft hyphen.

The new wbr element has already been implemented in
some pre-HTML5 web browsers. For example, Firefox 3
and Internet Explorer 6 both implement correct <wbr>
functionality.

1 1 1

A

A

55

56

3	 Load the web page in a web
browser.

	 The text appears as a normal
paragraph.

4	 Click the paragraph text.

	 The paragraph becomes editable.

Note: The browser displays a flashing
cursor and highlights the editable
block of text with a subtle border.

1	 Type contenteditable=’true’
into the paragraph element that
you want to be editable.

Note: Be careful about using
contenteditable on any text block
that contains a hyperlink. The link
itself will become unusable, even
when the text is not being edited.

2	 Save the HTML file.

Allow the User to Edit Content

You can configure any static text block to become
editable by the user within any HTML5 web browser

using the new contenteditable attribute. When
activated, the text block will appear normal, but when
it is clicked, it will transform into a form input field
prepopulated with the current text.

This technique can apply to almost any text block,
including sentences that are wrapped with ,
paragraphs, headings, articles, and the entire body of a
web page. This is possible because contenteditable is
actually a global attribute, meaning it can apply to basically
any tag, regardless of context:

<p contenteditable=’true’>Editable Paragraph
Text</p>

If any elements exist under a contenteditable block,
they inherit the contenteditable property. If you add

contenteditable to <body>, all text blocks will be
editable.

So, why make static text editable? The original purpose was
to create rich text editors built as websites. Being able to
see the changes in real time meant that users did not need
to bother with creating text files, saving them, and then
uploading them. Today, contenteditable is implemented
on sites in such a way as to create subtle HTML form inputs.

For example, the web application Yammer (http://yammer.
com) allows you to post URLs to your Yammer feed for you
to comment on. When the URL is entered, Yammer retrieves
the page, generates a short summary paragraph, and
displays a normal form input for you to type a comment.
The summary paragraph is actually editable, so you can
fine-tune the auto-generated text, all while keeping the
summary separate from your own comments.

Allow the User to Edit Content

1

3

4

http://yammer.com
http://yammer.com

57

CHAPTER

3

1	 Type spellcheck=’true’ into the
input text element for which
you would like to enable
spell-checking.

Note: Do not forget to add
contenteditable=’true’ to
spell-check editable static text blocks,
such as <p>...</p>.

Note: Some browsers automatically
spell-check textarea inputs. To
disable this, simply use
spellcheck=’false’.

2	 Save the HTML file.

3	 Load the web page in a web
browser.

4	 Insert some text.

	 The spelling errors appear with a
red underline squiggle.

5	 Right-click a spelling error.

	 Spelling suggestions appear in a
menu.

A	Click a suggested word to
replace the misspelled word.

Spell-Check User Content

Most web browsers provide a useful built-in spell-check
feature available to any website that allows the user

to type text. This feature is enabled when a spellcheck
attribute is enabled on an editable text block. Note that
content displayed on a site that is not editable is not Â�
spell-checked.

This technique can apply to almost any editable text block.
This is possible because spellcheck is a new global
attribute in HTML5. It is most common to see this on
input type=text or textarea elements:

<input type=’text’ spellcheck=’true’
value=’Spell-check text input’>

If any elements exist under a spellcheck-active block,
they will inherit the spellcheck property. If you add

spellcheck to <body>, all form inputs and editable fields
will be checked.

The spell-check feature is made possible by a built-in
wordlist inside your web browser. When the browser finds a
word not in this wordlist, it displays a jagged red underline
that, when right-clicked, lists suggestions. An option to add
the word to the wordlist is also available.

You can use any text-based element with the spellcheck
attribute, provided that you also specify that it is editable
with the contenteditable attribute. The wordlist used is
based on the website’s detected language. If you are viewing
a site written in a language that you do not have a wordlist
for, or if you need to spell-check in a different language, you
will need to install an alternative wordlist dictionary.

Spell-Check
User Content Using New HTML5 User Interface Tags and Attributes

1

3

4

5

A

58

The details and summary elements enable you
to display a shortened summary of a larger body,

temporarily hiding the detailed content from the display.
When the summary is clicked, the complete content
becomes visible. For example, you can use these features to
summarize an article by displaying only its first paragraph;
when the article is clicked, the remaining article paragraphs
will appear.

<details>
 <summary>Summarized content...</summary>
 Detailed content...
</details>

When a web browser sees this code, it knows that the
content within the <details> tag group should be hidden
by default, except for the content within the <summary>

group. When the summary is clicked, the complete details
content is shown. Likewise, when the summary is clicked
again, the details are hidden.

With the help of some simple CSS declarations, you can
extend this functionality and provide information about the
state of the display. The following can be used to append
useful instructions for the user and make them appear
clickable:

details summary:after { content: ‘(Read
Details)’ }

details.open summary:after { content: ‘(Hide
Details)’ }

details summary { cursor: pointer }

Additional information about CSS can be found in Chapter 4,
“Styling with CSS3.”

Declare an Interactive Summary and
Details Layout Element

4	 Type <summary> within the
<details> tag group.

5	 Insert a short summary of the
article.

6	 Type </summary>.

1	 Scroll to the article for which
you want to use the summary
and details features.

2	 Type <details> before the first
paragraph.

Note: Use <details open> if you
want to display the detailed content
when the page first loads.

3	 Type </details> after the last
paragraph.

Declare an Interactive Summary and Details Layout Element

2

3

5
4

6

59

CHAPTER

3Using New HTML5 User Interface Tags and Attributes

EXTRA
Unfortunately, as of mid-2011, no HTML5 web browsers properly support the <details> and <summary> tags.
However, you can address this through a JavaScript fallback program and implement its intended functionality
today. The screenshots in this section actually demonstrate one such JavaScript program.
As HTML5 browsers mature, this feature will be added, and correctly written JavaScript will yield to
built-in functionality. A JavaScript example is available on this book’s web page, http://html5.array.org/demos/
details-summary-fallback.html.
Until you implement this type of JavaScript fallback, content within both the details and summary elements will
appear at the same time, all the time.

@	 Load the web page in an HTML5
web browser.

A	Only the article summary is visible.

#	 Click the text that you added to
read the details.

B	The text changes to your hide
details text.

C	The article’s details appear below
the summary.

7	 Scroll to the CSS declarations or create
a new <style> tag group.

8	 Type details summary:after { content:
‘(text)’; } to display a queue to the
user to click to read more info.

9	 Type details.open summary:after
{ content: ‘(text)’; } to display a
queue to the user to click to read
less info.

0	 Type details summary { cursor:
pointer; }.

!	 Save the HTML file.

9

8

10

7

12

13

A

C

B

http://html5.array.org/demos/details-summary-fallback.html
http://html5.array.org/demos/details-summary-fallback.html

60

Introducing CSS3

Cascading Style Sheets (CSS) is a language that describes how HTML should be rendered by the web browser. CSS level 3, or
more simply CSS3, is the third major revision of the CSS standard. CSS is maintained by the CSS Working Group (CSSWG),

a collection of interested individuals and companies, but guided by the W3C.

Because most browsers have built-in standards for how HTML tags should be rendered, such as how <h1> appears in a
large bold font, you can override these built-in definitions with your own CSS rules. Your CSS code is stored parallel to your
HTML code, and it is possible to share one CSS file with multiple HTML files. This simplifies making cosmetic changes to an
entire website as all stylization is sourced from a single file.

What’s New in CSS3

CSS3 actually started showing up in web browsers well before
HTML5 was widely supported; however, today it is considered
a major supporting component of the group of HTML5
technologies.

New features of CSS3 include support for multiple backgrounds,
partial attribute value selectors, new pseudo-class selectors,
and a new group of properties that enable you to transition,
transform, animate, and stylize HTML.

CSS Syntax

The following high-level list is an aggregated summary of CSS
syntax, from CSS1 to CSS3.

Rules
A single CSS rule typically stylizes one element a specific way,
but rules are applied aggregately. This means that a single
element can be targeted with multiple rules; each rule’s
property changes can apply and override an earlier CSS rule:

selector { property: value; }

The selector determines which HTML elements should be
modified by the declaration, the part between the curly
brackets. The property is the codename for the style that will
be altered, and the value is the new style itself. The syntax
for value differs for each property.

Selectors
Selectors are the first part of every CSS rule. They allow you to
define which elements are to be modified by the CSS
declaration within the curly brackets:

element {...}

The most basic selector is to refer to an element by its tag
name. This will allow you to apply your CSS declaration
everywhere that <element> tag is used.

Selecting Elements by Class or ID
To limit your CSS declaration to only specific elements, you can
refer to them either by a class or ID name:

element.classname {...}

element#idname {...}

This selector will match only elements defined as <element
class=’classname’> and <element id=’idname’>.

Selecting Elements by Attributes
Elements can arbitrarily be targeted with a selector that looks
only for elements with specific attributes defined, with
attributes with specific values, or attributes with partial values:

element[attr] {...}

element[attr=value] {...}

These selectors will match only elements defined as <element
attr=’value’>. The difference is that the first example
matches only if attr is defined; the second matches when
attr is set to value.

Whereas the = operator tests for an exact value match, there
are other operators that can be used to test for partial values:

Operator Description
~= Matches elements whose attribute contains value

as a word.
|= Matches elements whose attribute matches value

or begins with value followed by a dash.
^= Matches elements whose attribute begins with

value.
$= Matches elements whose attribute ends with value.
*= Matches elements whose attribute contains value.

61

CHAPTER

4Styling with CSS3

Selecting Elements by Pseudo-Class
Pseudo-classes are like special, built-in functions in the web
browser. They help you to identify groups of elements by their
placement order or pattern:

element:first-of-type {...}

element:last-of-type {...}

element:only-of-type {...}

element:nth-of-type(c) {...}

element:nth-last-of-type(c) {...}

You can use the :*-of-type pseudo-class to target a specific
element by its ordering within its parent element. For example,
if you have a large table that contains several rows, you can
style odd and even rows with different background colors:

tr:nth-of-type(odd) { background-color: #eef; }

tr:nth-of-type(even) { background-color: #ddf; }

A variation of type is the child pseudo-class:

element:first-child {...}

element:last-child {...}

element:nth-child(c) {...}

element:nth-last-child(c) {...}

The :*-child pseudo-class targets a specific element by its
ordering within its parent element, but only if the element
occupies that exact position in the parent-child index.

c is a formula that can represent an exact type or child,
alternating counts of type or child, plus an optional offset.

Combinators
Combinators group multiple simple selectors together and
produce a more complex, single selector idiom that can span
multiple HTML tags. This allows you to drill down through your
HTML element tree to select a specific element based on what
comes before it.

Descendent

selector1 selector2 {...}

A descendent combinator is used to match the element
represented by selector2, whenever it exists anywhere
underneath selector1’s element group.

Child

selector1 > selector2 {...}

A child combinator is used to match the element represented
by selector2, whenever it exists immediately underneath
selector1’s parent-element group, but not deeper.

General Sibling

selector1 ~ selector2 {...}

An adjacent sibling combinator is used to match the element
represented by selector2, whenever it follows selector1’s
element, within the same parent-element group.

Adjacent Sibling

selector1 + selector2 {...}

An adjacent sibling combinator is used to match the element
represented by selector2, whenever it immediately follows
selector1’s element, within the same parent-element group.

Declarations
The declaration is a collection of one or more property/value
pairs applied to the elements matched by its preceding selector.

CSS describes a collection of properties and values that are
used to apply various cosmetic changes to elements. However,
depending on the web browser, you may find that not every
browser supports every CSS property. Therefore, you need to get
creative deciding what CSS features you plan on utilizing.

Different Engines, Nonstandard CSS3?

Depending on the web engine, some selectors, pseudo-classes,
properties, and values actually do not follow the latest syntax
CSS3 specifications but instead define their own, prefixed
by the engine’s name.

As of August 2011, the CSS3 specification is still in flux, but
the browser vendors want to implement its draft specifications
today and maintain the capability to support what will become
the future “official” CSS3 syntax. These types of -engine-
property names are reflective of the current CSS3
specification at that browser’s implementation time.

Later, when CSS3 is finalized, these browsers will reimplement
the feature and any new syntax changes to properties such as
transform, boxshadow, and border-image, thus
providing a way for websites to access these features on web
browsers of today and tomorrow.

There is one catch. This means that if you are coding a site
today, you have to implement the same CSS3 declaration three
or four times, just to support all of today’s browsers. Chapter 5
describes when this is the case.

62

The Acid3 Test
1	 In the browser that you want to test,

type acid3.acidtests.org and press Enter.

	 The Acid3 Test website loads.

B	This shows a successful Acid3 Test result.

Note: If your browser looks any different than
the This Reference Rendering link, it failed the
Acid3 test.

CSS3 Selectors Test
1	 In the browser that you want to test,

type http://tools.css3.info/
selectors-test/test.html and press
Enter.

	 The CSS3 Selectors Test website loads.

A	The results of various selector tests
for the browser appear.

Note: Scroll down and click on any row of
selector results to get more details about
the actual test code involved.

Validate a Web Browser for CSS3 Support

You can validate any HTML5 or pre-HTML5 web browser
for CSS3 support using various online tools. For CSS3,

there are two different levels of validation to consider: CSS3
selector logic and CSS3 property application.

CSS3 selector logic confirms how well the browser understands
the new CSS3 selectors, such as selecting an element by
a partial attribute value, by its nth-child or nth-type Â�
pseudo-class, by input status, by user selection, and so on.

CSS3 property application pertains to how well the browser
understands the new properties that can be applied, such as
multiple background-image support, custom fonts, custom
image borders, and so on.

Here are some of the online tools that you can use to
validate a web browser for CSS3 support:

•	 The CSS3 Selectors Test — Focuses primarily on the CSS3
selector logic. It enables you to confirm that a particular
selector is working properly in each web browser you

test. If you suspect that a selector is not working
properly in a specific browser, test it here to confirm
that.

•	 The Acid3 Test — A reference rendering test that builds
a very specific image composed by HTML, CSS, and
JavaScript. Most modern web browsers can pass Acid3
with ease, but it is still a good idea to verify with older
browsers any failures.

•	 The QuirksMode.org CSS tests — Provide a very easy-to-
read summary of CSS features and the available level of
support. They validate selectors and declarations from
both CSS2.1 and CSS3 and describe various quirks, hacks,
and lesser-known tweaks to make CSS work efficiently.

Instead of testing your individual web browser, the When
Can I Use... website, at http://caniuse.com, summarizes a
complete list of available CSS3 features, correlated by browser
support. This site is different from the QuirksMode.org CSS
tests as it also compares past, present, and anticipated web
browser releases, and it is frequently updated.

Validate a Web Browser for CSS3 Support

1

A

1

B

http://tools.css3.info/selectors-test/test.html
http://tools.css3.info/selectors-test/test.html
http://caniuse.com

63

CHAPTER

4Styling with CSS3

QuirksMode.org CSS Tests
1	 Type www.quirksmode.org/css/

contents.html and press Enter.

2	 Scroll down to the CSS3 declarations
section.

Note: This page also features a CSS3 selectors
section, useful for comparing selector support.

Note: “Yes” indicates support and “no”
complete support failure. White boxes indicate
incomplete, nonstandard, or nontested
support.

C	This shows a group of failed and
nonstandard tests.

3	 Click a declaration test that is
nonstandard or incomplete.

D	This is a failed test using the standard
W3C syntax.

E	This is a successful test using the WebKit
syntax.

Note: Just because a QuirksMode.org test cites
a WebKit, Mozilla, Opera, or Microsoft syntax,
it does not guarantee support. You need to be
running a version of the browser that
understands the nonstandard syntax.

1
2

3

C

D

E

In the example in this section, the gradient property could be set only using the WebKit syntax for Chrome. If
Firefox had been used, only the Mozilla syntax would properly display the same gradient background image.
Because of this discrepancy, you actually need to specify all declaration derivatives in the same selector in order to
have the same effect across supporting CSS3 web browsers.

APPLY IT

RESULT

The selector element identified will have
a gradient applied as a background image
for Firefox, Chrome, and Internet Explorer.
Note that Internet Explorer will move only
top down, and Opera is unsupported,
according to the QuirksMode.org chart.

TYPE THIS
selector {
 background: linear-gradient(top left, white,
black);

 background: -webkit-gradient(linear, left bottom,
right top, from(#fff), to(#000));

 background: -moz-linear-gradient(left, #fff, #000);
 filter: progid:DXImageTransform.Microsoft.gradient
(startColorstr=’#ffffff’, endColorstr=’#000000’);

}

➔

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.quirksmode.org/css/contents.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.quirksmode.org/css/contents.html

64

4	 Open your CSS file or scroll to the
<style> block in your HTML file.

5	 Type element.name { } to match
elements with this class name.

6	 Type element#name { } to match
elements with this ID name.

7	 Type property: value; to define CSS
style declarations.

	 All elements with this class or ID
name will be stylized by these CSS
declarations.

1	 Open your HTML file.

2	 Type class=’name’ to assign a
class name to a group of similar
elements.

3	 Type id=’name’ to assign an
identifier name to an individual
element.

Select an HTML Element Using Its Class or ID

You can select any HTML element by assigning it a class
or ID name and then using that name in CSS as a part

of your element selector. Once selected, CSS declarations
can be applied to stylize the matching HTML code:

element.class { ... }
element#id { ... }

How do you decide which method to use as your selector?

Simply put, an ID should be used only as a proper name,
assigned to only one element per page. It should be a
specific object or component that requires dedicated CSS
rules. For example, a site logo image could be assigned an
ID in HTML with
and be stylized in CSS via img#logo{...}, or just
#logo{...}, as the element prefix is optional.

A class should be used as a generic name, assigned to
a group of elements in any page. There can be multiple
elements that share a single class name, sharing the CSS
declarations assigned to that class. For example, if the
header and footer share like properties, they can be created
in HTML as <header class=’banner’>...</header>
and <footer class=’banner’>...</footer>, which
can be selected in CSS via header.banner, footer.
banner {...}, or even just .banner{...}.

You can even combine the class and identifier into a single
selector, further restricting matching elements. This will
act like an and CSS conditional test: If the element has
this class and identifier, apply the specified CSS declaration
element.class#id {...}.

Select an HTML Element Using Its Class or ID

2 3

7

7

5

6

4

65

CHAPTER

4

3	 Open your CSS file or scroll to the
<style> block in your HTML file.

4	 Type element[attribute] { } to
match elements with this attribute.

5	 Type property: value; to define CSS
style declarations.

	 All elements with this attribute will
be stylized by these CSS declarations.

1	 Open your HTML file.

2	 In the element tag, type
attribute=’value’ to assign an
attribute to the element.

Note: Remember that the value is
irrelevant. Even if the HTML code is
<element attribute>, it will still
match the selector.

Select an HTML Element Using an Attribute

You can apply CSS declarations to HTML elements
that specifically use a particular attribute within

the element’s HTML tag. This type of selector enables
you to narrow down selection criteria and apply only CSS
declarations to specific HTML code that references said
element and attribute:

element[attr] { ... }

Note that this particular selector ignores the attribute’s
value, concentrating only on whether the attribute is
defined in the original HTML page. The CSS declarations
defined by this selector will be applied to every matching
element and attribute in the HTML document — in other
words, any reference to <element attr=’value’>.

Do not forget, you can always combine the attribute
selection component with a class or an ID name or even a

class and an ID name. You can use this to fine-tune your
CSS selection logic:

element[attr].class { ... }
element[attr]#id { ... }
element[attr].class#id { ... }

This will act like an and CSS conditional test: If the
element has this attribute and is a member of that class or
ID, or both, apply the specified CSS declarations.

Multiple attribute tests can be applied to the same element
simply by repeating attributes in the selector name:
element[attr1][attr2] {...}.

If you prefer, you may even drop the element component of
the selector entirely. The following will match any element
that specifies a particular attribute: [attr] {...}.

Select an HTML Element
Using an Attribute Styling with CSS3

2

54

3

66

1	 Open your HTML file.

2	 Identify an element tag with
attribute=’value’ to match with
the attribute-equals operator.

3	 Identify another element tag with
attribute=’value’ to match with
the attribute-contains-word operator.

4	 Identify a third element tag with
lang=’language’ to match with the
attribute-is-language-country operator.

5	 Open your CSS file or scroll to the
<style> block in your HTML file.

6	 Type element[attribute=’value’] { }
to match elements with this exact
attribute value.

7	 Type property: value; to define CSS
style declarations.

8	 Type element[attribute~=’value’] { }
to match elements that contain a word
in this attribute value.

9	 Type property: value; to define its CSS
style declarations.

Select an HTML Element Using a Specific Attribute Value

You can use different attribute value operators to
identify HTML tags with specific attribute values.

You can use this in your CSS selector logic to match on
attribute values that are complete words and stylize them
accordingly:

element[attr=’value’] { ... }
element[attr~=’value’] { ... }
element[attr|=’value’] { ... }

The = operator matches elements whose attribute value
exactly matches value. For example, img[src=’image.
jpg’] will match only images of image.jpg. Note that other
attribute values found in the selected HTML tag, such as
alt=’An image’, will be ignored by the CSS selector.

The ~= operator matches elements whose attribute value
contains a complete word that matches value. For example,
button[value~=’file’] will match any <button>

tag with the word “file” in its value attribute, such as
<button value=’Save file’>.

The |= operator matches elements whose attribute value
exactly matches value or begins with value immediately
followed by a dash. This is typically a test used in Â�
two-character language and country code identification.
For example, p[lang|=’en’] will match <p lang=’en’>
and <p lang=’en-US’>, but not <p lang=’english’>.

The quotes surrounding the attribute’s value are not
required but are a good practice. Also, double quotes can be
used instead of single quotes, if you prefer.

Note that in HTML5, the attribute name is not case
sensitive, but the value is case sensitive. If this were
XHTML, or a future hybrid like “XHTML5,” expect the name
to be case sensitive as well.

Select an HTML Element Using a
Specific Attribute Value

3

4
3 2

76

98

5

CHAPTER

4Styling with CSS3

EXTRA
It is possible to define your own custom attributes in HTML and select them with CSS attribute selectors. This
involves a new feature in HTML5 called custom data attributes, which enable you to define any arbitrary attribute
name, as long as it is prefixed with data-.

Example

<style type=’text/css’>

img[data-copyright=’Creative Commons’] { border: 1px solid green; }

</style>

Note that copyright would not be a valid attribute, but data-copyright is.

#	 View your HTML file in a web browser.

A	The element(s) matching the
attribute=’value’ test are
stylized.

B	The element(s) matching the
attribute~=’value’ test are
stylized.

C	The element(s) matching the
lang|=’en’ test are stylized.

0	 Type element[lang~=’en’] { }
but match elements that use the
first two language characters.

!	 Type property: value; to define
language-specific CSS style
declarations.

@	 Save your CSS and HTML files. 1110

13

A
C

B

67

68

1	 Open your HTML file.

2	 Identify an element tag with
attribute=’value’ to use with
the attribute-begins-with operator.

3	 Open your CSS file or scroll to the
<style> block in your HTML file.

4	 Type element[attribute^=’value’]
to match elements that begin with
this attribute value.

5	 Type { declarations } to define its
CSS style declarations.

6	 Identify another element tag with
attribute=’value’ to use with
the attribute-ends-with operator.

7	 Type element[attribute$=’value’]
to match elements that end with
this attribute value.

8	 Type { declarations } to define its
CSS style declarations.

Select an HTML Element Using a Partial Attribute Value

CSS3 has introduced new comparison tests to identify
HTML tags with partial attribute values. You can use

this in your CSS selector logic to match on attribute values
that are not complete words and stylize them accordingly:

element[attr^=’value’] { ... }
element[attr$=’value’] { ... }
element[attr*=’value’] { ... }

The ^= comparison matches elements whose
attribute value begins with value. For example,
object[type^=’application’] will match all object
elements whose MIME type begins with application,
such as <object type=’application/x-shockwave-
flash’>.

The $= comparison matches elements whose attribute
value ends with value. For example, form[action$=’.
pl’] will match all forms that use a Perl CGI script, such as
<form action=’submit.pl’>.

The *= comparison matches elements whose attribute value
contains value. For example, input[name*=’name’] will
match all input elements whose name contains name, such
as <input name=’firstname’>.

The quotes surrounding the attribute value are not required
but are a good practice. Also, double quotes can be used
instead of single quotes, if you prefer.

The difference between this group of attribute comparison
tests and those in the section “Select an HTML Element
Using a Specific Attribute Value” — ~= and |= — is that
these tests are not word-centric. This means that the
begins-with, ends-with, and contains values do not have to
be a complete word in the original HTML tag’s attribute.

Note that in HTML5, the attribute name and value tests are
all not case sensitive. If this were XHTML, or a future hybrid
like “XHTML5,” only then will the name and values be case
sensitive.

Select an HTML Element Using a
Partial Attribute Value

43
5

2

87

6

69

CHAPTER

4Styling with CSS3

EXTRA
The attribute selectors described in this section and in the section “Select an HTML Element Using a Specific
Attribute Value” are fairly specialized. The examples described in both sections are just simple examples; these
CSS3 attribute selectors can be used on any HTML tag with an attribute, no matter how complex.
They are most useful if you find yourself needing to stylize a specific element identified only by its attribute, and
you cannot easily — or simply do not want to — modify existing HTML code to add in a unique class or id
attribute.
For additional information on how these new attribute selectors work in CSS3, see the W3C page at www.w3.org/
TR/css3-selectors/#attribute-selectors.

#	 View your HTML file in a web
browser.

A	The element(s) matching the
attribute^=’value’ test
are stylized.

B	The element(s) matching the
attribute$=’value’ test
are stylized.

C	The element(s) matching the
attribute*=’value’ test
are stylized.

9	 Identify another element tag with
attribute=’value’ to use with
the attribute-contains operator.

0	 Type element[attribute*=’value’]
to match elements that contain
this attribute value.

!	 Type { declarations } to define its
CSS style declarations.

@	 Save your CSS and HTML files.

1110

9

13

A
B

C

http://www.w3.org/TR/css3-selectors/#attribute-selectors
http://www.w3.org/TR/css3-selectors/#attribute-selectors

70

3	 Open your CSS file or scroll to the
<style> block in your HTML file.

4	 Type element:first-of-type { ... }
to style element when it is the
first of type in its parent.

Note: Using tr:first-of-type
always selects the first row of a table,
and td:first-of-type always selects
the first column of each row.

1	 Open your HTML file.

2	 Identify a series of repeating
elements, such as table cells
that you want to selectively
modify by structural type.

Select an HTML Element Using the Structural type Pseudo-Class

A pseudo-class is a predefined class that a web browser
uses to match a specific type or pattern of elements.

In CSS3, the list of pseudo-class names was expanded in
two new areas: type and child. The type pseudo-class
is described here; the child pseudo-class is discussed in
the following section, “Select an HTML Element Using the
Structural child Pseudo-Class.”

The structural type pseudo-class matches a series of like
elements within a shared parent:

element:first-of-type { ... }
element:last-of-type { ... }
element:only-of-type { ... }
element:nth-of-type(counter) { ... }
element:nth-last-of-type(counter) { ... }

The :first-of-type and :last-of-type selectors
match the first and last elements found in a shared parent

element; :only-of-type matches the element only if it is
the only one in its parent.

For :nth-of-type and :nth-last-of-type, use
counter to allow you to select a pattern of matching
elements listed from the top down and the bottom up:

•	 n — This matches exactly the nth element of that type
on the page, where n is greater than zero.

•	 an — This matches every element type whose position is
divisible by a, where a is greater than zero followed by a
literal n character.

•	 an+b — This matches every element type whose position
is divisible by a, offset by b elements, where a and b are
greater than zero, separated by literal n+ characters.

For example, :nth-of-type(2n) would match all even
elements of the same type; :nth-of-type(2n+1) would
match all odd elements.

Select an HTML Element Using the
Structural type Pseudo-Class

2

3

4

71

CHAPTER

4Styling with CSS3

EXTRA
There are additional pseudo-class selectors new in
CSS3 related to an input element type and its current
state. In all three cases, the input selector can be
expanded to support attribute type values, such as
input[type=’text’] to catch all text input
elements. One of the three new input pseudo-classes
could then follow, expanding the selector criteria.

Example
input:enabled { background-color: yellow; }

If an input element is flagged as enabled, this CSS
rule would set its background color to yellow.

Example
input:disabled { background-color: red; }

If an input element is flagged as disabled, this CSS rule
would set its background color to red.

Example
input:checked { background-color: green; }

This can be used to dynamically change an input radio
button or check box based on its selected or checked
status. As the input activated and deactivated, the
:checked style is added, becoming green, and
removed, becoming the color specified by its enabled or
disabled CSS rule. The :checked pseudo-class is only
supported by Opera, as of August 2011.

5	 Type element:nth-of-type(2n)
{ ... } to style every second
element when of this type.

Note: All index numbers start at 1.

6	 Type element:nth-of-type(2n+3)
{ ... } to style every second
element at least three elements
from the top.

Note: In this example, the offset of 3
ensures the first row, the maroon header,
is ignored by the dark salmon color.
Effectively, coloring starts at row #3.

7	 Save your CSS and HTML files.

8	 View your web page in a CSS3
browser.

A	In this example, the first elements
matching the <tr> type are
selected.

B	The first elements matching the
<td> type are selected.

C	The even elements are selected.

D	The odd elements, starting at offset
#3, are selected.

65

8

A

C

D

B

72

4	 Open your CSS file or scroll to the
<style> block in your HTML file.

5	 Type element:first-child { declaration }
to target every child element when it is
the first child.

6	 Type element:nth-child(counter)
{ declaration } to target every child
element in counter under its parent.

7	 Save your CSS and HTML files.

1	 Open your HTML file.

2	 Identify a series of repeating
elements, such as table cells that you
want to selectively modify by
structural child.

3	 Ensure that there is some diversity in
the tag names on each table row.

Note: In this example, the first column of
each row is now <th></th>, compared to
the <td> example in the previous section,
“Select an HTML Element Using the
Structural type Pseudo-Class.”

Select an HTML Element Using the Structural child Pseudo-Class

As mentioned earlier, a pseudo-class is a list of
predefined names that a web browser uses to match a

specific structure of elements. In CSS2, the :first-child
pseudo-class was introduced. In CSS3, the list was expanded
to allow you to match new combinations and patterns of
child elements.

The structural child pseudo-class matches the first-level
descendents of a parent element:

element:first-child { ... }
element:last-child { ... }
element:only-child { ... }
element:nth-child(counter) { ... }
element:nth-last-child(counter) { ... }

element:first-child matches the first element, when
the element specified is the first child found underneath its
parent. If a different element is the first child, the selector

will ignore it. element:last-child does the same thing
but from the parent’s last element.

For :nth-child and :nth-last-child, use counter to
select a pattern of matching elements listed from the top
down and the bottom up:

•	 n — This matches exactly the nth child element, where n
is greater than zero.

•	 an — This matches every child element whose position
is divisible by a, where a is a number followed by a literal
“n” character.

•	 an+b — This matches every child element whose
position is divisible by a, offset by b elements, where a
and b are numbers separated by literal “n+” characters.

For example, :nth-child(2n) would match all even
children of the same element; :nth-child(2n+1) would
match all odd children.

Select an HTML Element Using the
Structural child Pseudo-Class

2

3

5

4

6

CHAPTER

4Styling with CSS3

EXTRA
type selects like elements, regardless of the existence of nonlike elements; child selects like elements but only when
their position exactly matches the selector. Ergo, if you have p:first-child but the first child is a figure followed by
a paragraph, nothing will match. Try swapping the :nth-of-type and :nth-child selectors, positioning elements
differently, and inserting different elements. Experimenting with these two pseudo-classes is the best way to understand
how they work.
There are two more minor child/parent-like tags available in CSS3: :root and :empty. The :root selector
automatically targets the top-most level of nested HTML, the <html> tag itself. This allows you to specify CSS
declarations prior to any other HTML tags, such as background images or colors or very low-level formatting.
The :empty selector targets any HTML element group that is void of any child tags. It is typically used with a tag that
normally has child elements, but they are currently lacking. For example, textarea:empty Â�{ background-
color: yellow } could be used to indicate a blank textarea element.

9	 In the CSS, correct the element to be
the first child of its parent.

Note: In this example, <th> is the first
child, not <td>.

0	 Save the file and reload your web
page in the browser.

D	The first child tag, <th>, of each row
is properly selected and stylized.

8	 View your web page in a CSS3
browser.

A	In this example, the first <tr> child
is selected under <table>.

B	The first <td> child is not selected
under <tr>!

C	All the nth-childs are selected
correctly.

Note: In this example, the first child in
<td>’s parent is not a <td>, but <th>.
Had you used td:first-of-type, the
second column would have been
highlighted, which is also wrong.

8

A

C

B

10

9

D

73

74

4	 Open your CSS file or scroll to the
<style> block in your HTML file.

5	 Type sibling1 ~ element { ... } to
stylize element whenever it comes
after sibling1.

A	Optionally, type sibling2 ~ element
{ ... } to stylize element whenever
it comes after sibling2.

6	 Save your CSS and HTML files.

1	 Open a web page with a basic
structure of semantic HTML5.

Note: See Chapter 2, “Getting Started with
HTML5 Page Layout,” for more information.

2	 Identify sibling elements to use
when searching.

3	 Identify adjacent elements that you
want to stylize.

Select an HTML Element by Its Sibling Element

There is a new general sibling combinator in CSS3 that
allows you to select an element when followed by a

previous sibling element:

element1 ~ element2 { ... }

This will select element2 whenever it comes after
element1 but only when element1 and element2
share the same parent. For example, if you have an article
that begins with a heading, followed by a figure, several
paragraphs and more figures, but you want the leading
figure to be styled differently than the other figures, you
can do something like this:

h1 ~ figure { style1 }
p ~ figure { style2 }

Do not confuse the general sibling combinator with the
child and adjacent sibling combinators introduced in CSS2:

element1 > element2 { ... }
element1 + element2 { ... }

The child (>) combinator will select element2 only when it
is found directly under element1. If you want element2
to be matched at any level under element1, use a normal
descendent combinator, such as element1 element2.

The adjacent sibling (+) combinator will select element2
only when it is immediately followed by element1. This
is more restrictive than the general sibling (~) combinator
where element2 may come anywhere after element1, as
long as both have the same parent element.

Select an HTML Element by Its Sibling Element

3

3

2
2

2

54

A

75

CHAPTER

4Styling with CSS3

8	 Return to your HTML file.

D	In this example, the second
<figure> comes after both
<h5> and <p> in the same
parent; therefore, it receives
both general sibling styles.

7	 View your web page in a CSS3
browser.

B	In this example, both elements
that come after sibling1 are
stylized with a background color
and centered in their boxes.

C	In this example, the element
that comes after sibling2 is
stylized with a rounded border.

Note: The border-radius property
is introduced in Chapter 5.

7

C

B

B

D

The element1 and element2 selectors described in this section do not need to be simple HTML elements and
can test for more than two. You can combine any of the earlier CSS selection rules, such as the class, ID, or
attribute selectors, and add new combinators to further restrict matching elements.

Example
<style>

article#leadstory > h1.title ~ figure.picture {

 border: 2px solid black;

 margin: 2px;

}

</style>

<article id=’leadstory’>

 <h1 class=’title’>2014: HTML5 Now Finalized!</h1>

 <figure class=’picture’>

 <figcaption>Web developers embrace HTML5, but many questions remain.</figcaption>

 </figure>

</article>

Only the figure class picture, when followed by heading class title, under article ID leadstory will receive
the changed border and margin properties.

APPLY IT

76

1	 Open your CSS file or scroll to the
<style> block in your HTML file.

A	Optionally, insert a parent selector
to limit the descendent scope of
the negating pseudo-class selector.

2	 Type selector1:not(selector2) to
create a negating pseudo-class
selector.

B	These elements match selector1.

C	This element matches selector2.

3	 Save your HTML or CSS file.

4	 View your web page in a CSS3
browser.

D	Elements that match selector1
but not selector2 are stylized.

Select HTML Elements Using a Negating Pseudo-Class

You can use the new negating pseudo-class selector to
match all elements that do not match the supplied

argument. Effectively, you are changing “select everything
that matches element” into “select everything except this
matching element.”

To limit the scope of what you want to stylize, append
:not(selector) after an initial selector:

selector1:not(selector2) { ... }

Simply put, this will select all elements that match
selector1 but do not match selector2.

Actually, the preceding synopsis is overly simplified. You
can combine any of the CSS selector types on either side
of :not, such as the class, ID, or attribute selectors, to
further restrict matching elements.

Be careful about specifying the leading selector with :not.
Using it as a descendent combinator with a space, for
example, will produce a selector that has a very different
meaning than the earlier example code:

parent :not(selector) { ... }

Effectively, the earlier example literally means, “This
element matches selector1 but does not match
selector2.” This second example means, “This element
has a parent element that matches parent selector, and it
itself does not match selector.”

Generally speaking, always give :not a matching selector,
and if you use it as a descendent combinator, also give it a
parent selector, like this:

parent selector1:not(selector2) { ... }

Select HTML Elements Using a Negating Pseudo-Class

1 2

B

A

C

4

D

77

CHAPTER

4

1	 Open your CSS file or scroll to the
<style> block in your HTML file.

2	 Type ::selection {.

3	 Insert background-color and
color CSS declarations to set the
highlight colors.

4	 Type }.

5	 Type ::-moz-selection { ... } and
repeat step 3 within the brackets.

6	 Save your CSS or HTML file.

7	 View your web page in a CSS3
browser.

8	 Click and drag, highlighting text.

	 The highlight colors match the
new CSS rule.

Select HTML Elements by User Selection

You can alter the user-selection highlight — what
the user sees when selecting text — using new CSS3

pseudo-elements called ::selection and ::-moz-
selection. The first syntax is understood by Chrome and
Safari and Opera 9.5. The second syntax is supported by
Firefox 3.6 and later.

No additional arguments or elements can be specified in
the selector, but the CSS declaration is limited to only
color-based CSS stylizing. Therefore, background images,
borders, font, or text-based stylizing will be ignored:

::selection {
 background-color: #f00;
 color: #fff;

}
::-moz-selection {
 background-color: #f00;
 color: #fff;
}

In these example CSS rules, the background is changed to
red, and the text color to white. Note that the two syntax
methods are separate CSS rules.

Note the actual properties that you can modify are very
limited: just background-color and color. Any
other properties will be ignored. Also, you cannot use a
descendent combinator; changes happen pagewide.

Select HTML Elements by
User Selection Styling with CSS3

3

5

2

4

1

7

8

78

1	 Open your CSS file or scroll to the
<style> block in your HTML file.

2	 Identify an element by its selector.

3	 Type background-image: url(file); to
set a background image.

A	Optionally, type , url(file) to set any
additional background images.

B	Optionally, type background-size:
repeattype;.

Note: When using absolute values, the CSS unit
px is recommended.

Note: When using relative percent values, 100%
represents the parent element’s height and
width.

Note: auto can be used to maintain scale if
only one of height or width is specified.

C	Optionally, type , repeattype to configure
any additional background images.

Note: If multiple background-images are
specified but not enough optional properties,
the previous, or default, property value is
reused.

Change an Element’s Background Image

In CSS3, three new properties were added to give you
better control over background images repeating size,

origin area, and clip area. Also, you can now layer multiple
background images on top of each other:

selector {
 background-image: url(imagefile), ...;
 background-size: sizetype, ...;
 background-origin: boxtype, ...;
 background-clip: boxtype, ...;
}

The background-size property enables you to control the
absolute size of a background image. The sizetype value
can be a height and width as either an absolute size or
percentage or two possible keywords: cover, which scales
the image to the smallest size to fit in a content area, and
contain, which scales it to the largest size to fit in a
content area.

The background-origin property controls where a
background should begin. The boxtype value can be
one of these keywords: padding-box, border-box, or
content-box. When set, the background will originate
inside the padding, border, or content margins.

background-clip controls where to limit an element
background. Its boxtype value options are the same as
background-origin. When set, the background will not
grow outside of the padding, border, or content margins.

It is possible to specify all background values, including
the new CSS3 properties, in a single background property
declaration, but only if you are using one background
image: background: color position size repeat
origin clip attachment image;.

Change an Element’s Background Image

2

3

1

A

B C

79

CHAPTER

4Styling with CSS3

EXTRA
The original CSS1 background properties are still valid in CSS3. At a minimum, you need to specify only either
background-color or background-image, but not both. All other CSS1 and CSS3 properties are optional.
Note that the new CSS3 properties apply only when background-image is set, as they are all image specific.

CSS1 Property Format Description
background-color color Sets a specific background color.
background-image url(imagefile) Sets a specific background image.
background-repeat no-repeat, repeat-x,

repeat-y
Assigns the background repeat rate.

background-Â�
attachment

scroll|fixed Specifies whether a background image is fixed or scrolls with
the web page.

background-position xpos ypos Sets the position of a background image.

D	Optionally, type background-clip:
boxtype; and -webkit-background-
clip: boxtype; and define additional
boxtypes per background image.

Note: WebKit browsers require their own
prefixed property name.

E	Optionally, type background-origin:
boxtype; and define additional
boxtypes per background image.

4	 Save the file.

5	 View your web page in a CSS3 web
browser.

F	The first background image originates
in the background-origin box.

G	The second background image is
resized according to
background-size.

H	The image stops at the background-
clip box.

Note: Try setting background-size to
cover or contain and resize the browser
window to see how the keywords manipulate
the background image size.

D
E

5

H

F

G

80

5	 Type src: url(font.ttf) to define the
TTF font source.

6	 Type , url(font.eot); to define the
EOT font source.

Note: Additional fonts can be defined. At
a minimum, you should specify TTF and
EOT versions.

1	 Open your CSS file or scroll to the
<style> block in your HTML file.

2	 Type @font-face {.

3	 Type font-family: name;.

Note: The font-family name requires
single or double quotes if it contains a
space.

4	 Type }.

Customize an Element’s Font

No longer are you limited to so-called web safe fonts,
the short list of fonts built into browsers and defined

in HTML 4.01. CSS3 adds support for custom fonts. You can
actually import your own TrueType (TTF), OpenType (OTF),
and Embedded OpenType (EOT) font files into your web page:

@font-face {
 font-family: MyFont;
 src: url(myfont.ttf), url(myfont.eot);
}
selector { font-family: MyFont; }

@font-face uses a selector-like syntax that you can
use and reuse, once for each new custom font. The
font-family property assigns a proper name to the font
and is used later when assigning the font with a CSS rule.

The files referenced by the src property must be stored
on your web server. They will be downloaded by the web

browser and installed onto the browsing session. Multiple
fonts are allowed by src because different browsers support
different formats. For example, Internet Explorer supports
only EOT and Chrome-only TTF.

If you have a font file in only one format, you can convert
it using a site called Font Squirrel, at www.fontsquirrel.
com, with the @font-face Kit Generator. It can convert
one font into several different formats and provides sample
HTML and CSS files demonstrating your new font. This CSS
code, dubbed The New Bulletproof @font-face Syntax, was
developed by Font Squirrel to work around several quirks
and support as many browsers as possible. You can use the
generator at www.fontsquirrel.com/fontface/generator and
learn about the Bulletproof Syntax at www.fontsquirrel.
com/blog/the-new-bulletproof-font-face-syntax.

Customize an Element’s Font

3
2

1

4

5

6

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fontsquirrel.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fontsquirrel.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fontsquirrel.com/fontface/generator
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fontsquirrel.com/blog/the-new-bulletproof-font-face-syntax
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fontsquirrel.com/blog/the-new-bulletproof-font-face-syntax

81

CHAPTER

4Styling with CSS3

7	 Type selector { to define where to
apply your custom font.

8	 Type font-family: name; to include
your custom font.

A	Optionally, type , fallback as a
web-safe fallback.

Note: One or more standard web-safe
fonts can still be used for browsers that
do not support custom fonts.

9	 Add any additional font formatting
required by the text.

0	 Type }.

!	 Save the file.

@	 View your web page in a CSS3 web
browser.

B	The custom font appears in the
matching selector block.

9
8

10

7
A

12

B

You can provide bold and italicized versions of fonts as separate @font-face CSS rules, along with the font-style
and font-weight properties.

APPLY IT

RESULT

Two additional fonts are loaded, adding
bold and italic variants of the existing
MyFont family. The <h1> headings
default to the bold MyFont — the
font-weight is not specified because
it is inherited — <p> paragraphs
display the normal MyFont, and
<aside> text is displayed in the italic
version of MyFont.

TYPE THIS
@font-face {
 font-family: MyFont;
 src: url(myfont-bold.ttf);
 font-weight: bold;
}
@font-face {
 font-family: MyFont;
 src: url(myfont-italic.ttf);
 font-style: italic;
}
h1 { font-family: MyFont }
p { font-family: MyFont }
aside { font-family: MyFont; font-style: italic }

➔

82

5	 Type selector:hover to restylize the
selected block when the mouse
cursor hovers over it.

6	 Type text-overflow: inherit; to
restore the default overflow from
the parent object.

7	 Type overflow: visible; to display
the overflow content.

8	 Type white-space: inherit; to
restore the default whitespace from
the parent object.

1	 Type selector to select the block
of text that will be restricted.

A	Optionally, type width: width;
border: border; to force a smaller
line width and a border to see the
boundary.

2	 Type text-overflow: ellipsis;.

3	 Type overflow: hidden;.

4	 Type white-space: nowrap;.

Format Text Overflow inside an Element

You can format any element’s text, such as an <h1>
heading, a <p> paragraph, or a <figcaption>

caption, to alter how it is rendered by the browser. This
goes beyond simply modifying the font; you can change
text overflow and line-wrapping characteristics and even
draw an outline and shadow under the text:

selector {
 text-overflow: clip|ellipsis;
 overflow: hidden;
 white-space: nowrap;
}

This hides any text that would otherwise wrap in a Â�
width-restricted element. The clip option simply cuts

off the text, and ellipsis displays three periods, or ...,
just before the text is cut off. You can make the hidden
text visible again by using the :hover pseudo-class on the
original selector:

selector:hover {
 text-overflow: inherit;
 overflow: visible;
 white-space: inherit;
}

HTML5 browser support is good for this feature, except for
Firefox 4. It does not understand the ellipsis Â�text-overflow
character, instead defaulting to clip mode.

Format Text Overflow inside an Element

2
4

1

3
A

6
7

5

8

83

CHAPTER

4Styling with CSS3

0	 Hover your mouse cursor over
the text block.

	 The entire text block appears.

9	 View your web page in a CSS3 web
browser.

B	In this example, the text block is
restricted to one line, and the
overflow is hidden.

C	The ellipsis character appears
where the text was cut off.

Note: If you used text-overflow:
clip, or Firefox 4, nothing will appear.

9

B

C

10

You can also configure new CSS3 features called column-count and text-shadow. column-count splits a text
block into multiple columns and displays the text top down and right to left, newspaper-style.

APPLY IT

RESULT

The element identified by selector is divided into three columns. The text
flows evenly into all three in order, just like columns in a newspaper.
text-shadow adds a background-shadow effect behind the selected text block.

TYPE THIS
selector {
 column-count: 3;
}

➔

RESULT

The element identified by selector is copied, shifted down and to the right
by xpos and ypos, and then colored to make it look like a three-dimensional
shadow.

TYPE THIS
selector {
 text-shadow: xpos
ypos blur color;

}

➔

84

Round Border Corners

I t was not that long ago when HTML developers had to
use images and tables just to produce seamless rounded

borders. Thanks to CSS3, you can now modify any element
that supports the border property and render rounded
borders with border-radius.

The border-width, border-style, and border-color
properties, or the border shorthand property, must first be
applied before you can set the border-radius property.

Because this feature has only recently been standardized
in CSS3, the actual property name varies depending on the
web browser engine version. Older WebKit browsers such
as Chrome and Safari use the -webkit- prefix, and older
Mozilla browsers such as Firefox use the -moz- prefix.
Newer versions of these browsers, plus Opera and Internet
Explorer 9, use no special prefix:

border: width style color;
border-radius: radius;
-moz-border-radius: radius;
-webkit-browser-radius: radius;

The radius value can represent one to four values of
length. When all four values are defined, they refer to the
top-left, top-right, bottom-right, and bottom-
left radius values. Less than four will apply a radius to
symmetrical corners.

If you wanted to, you could also specify a single rounded
corner in the property name, such as border-top-left-
radius, -moz-border-radius-topleft, and -webkit-
browser-top-left-radius. Note the inconsistent use
of topleft and top-left. Only one value for radius is
accepted with this format.

1	 In an HTML file, type <element
class=’round-border’>.

2	 Insert any content that should
appear in the rounded border.

3	 Type </element>.

4	 Save your HTML file.

5	 In your CSS file or in a <style>
block, type element.round-
border { to apply rounded
borders by class name.

6	 Type border: size style color;
to set a CSS1-style border as a
fallback.

7	 Type }.

Note: In this example, the height and
width are hard-coded to make the
effect appear better in the screenshot.

Round Border Corners

2

3

1

65

7

85

CHAPTER

5Enhancing Your Web Page Visually with CSS3

8	 Type border-radius: radius; to
set the border radius in Opera
and Internet Explorer 9.

9	 Type -moz-border-radius:
radius; to set the border radius
in Firefox.

0	 Type -webkit-border-radius:
radius; to set the border radius
in Chrome and Safari.

Note: It is recommended that you
measure radius in pixels using px.

!	 Save your CSS file.

@	 View your HTML file in a web
browser.

A	The rounded border appears.

98

10

12

A

A slight modification of the aforementioned border-radius syntax will enable you to create a rounded border
that uses two different radiuses. This can be used to create an ellipse.

APPLY IT

RESULT

The CSS rule forces a <div class=’oval’> tag to
500 pixels wide, 200 pixels high. The values between
the slash assigned to the various border-radius
properties represent the inner-horizontal and
inner-vertical radiuses for each corner.

TYPE THIS
div.oval {
 border: 1px solid black;
 border-radius: 500px / 200px;
 -moz-border-radius: 500px / 200px;
 -webkit-border-radius: 500px / 200px;
 width: 500px;
 height: 200px;
}

➔

Be careful as this syntax may confuse older browsers.

86

1	 In an HTML file, type <element
class=’shadow’>.

2	 Insert any content that should
appear in the box-shadow block.

3	 Type </element>.

4	 Save your HTML file.

5	 In your CSS file, type element.
shadow { to apply a shadow by
class name.

A	Optionally, add a border to make
the shadow effect stand out.

6	 Type box-shadow: xpos ypos blur
spread color; to set a blurry and
complex shadow effect that
renders relative to the parent
object.

Note: A shadow with negative xpos
and ypos values will appear above and
to the left of the parent object.

7	 Type }.

Note: In this example, the parent’s
margin is increased to make the effect
appear better in the screenshot.

Add a Shadow Effect

You can easily add a shadow effect to any element with
the box-shadow property in CSS3. This effect requires

at least two values, the relative X and Y positions, but accepts
up to five values to fine-tune the shadow application:

box-shadow: xpos ypos blur spread color, ...;

xpos and ypos are relative coordinates to indicate where
the shadow should be placed. Positive integers indicate
that the shadow is placed to the right of, and below, the
shadowed element. blur represents the size to which
a blur effect will be added. For example, a setting of
10px indicates that the shadow is blurred from color
to transparency for 10 pixels, straddling the shadow’s
perimeter. spread allows for a general increase of the
shadow’s height and width. color defines the base color
of the shadow. If omitted, the shadow defaults to black.

Multiple box-shadow effects can be applied simply by
adding a comma and then another prototype group.

Most recent HTML5 web browsers do honor the box-shadow
property name. Older browsers such as Chrome 9 and earlier,
Safari 3, and Firefox 3.5 instead use their own derivative
property name. Therefore, also specify -moz-box-shadow
and -webkit-box-shadow to support these browsers.
These properties accept the same prototype as the standard
box-shadow:

-moz-box-shadow: xpos ypos blur spread color,
...;

-webkit-box-shadow: xpos ypos blur spread
color, ...;

Add a Shadow Effect

2

1

3

6

5

7

A

87

CHAPTER

5Enhancing Your Web Page Visually with CSS3

B	Optionally, repeat , xpos ypos
blur spread color to create
additional shadow effects.

Note: In this example, the 0px 0px
position means that there is no
shadow offset, but the spread is
increased, displaying a fuzzy,
centered, and white margin
underneath the selected element.

Note: If the blur, spread, or color
values are undefined, they will
default to 0px, 0px, and black,
respectively.

8	 Duplicate the box-shadow
values for -moz-box-shadow
and -webkit-box-shadow.

9	 Save your CSS file.

0	 View your HTML file in a web
browser.

C	In this example, a black box
shadow appears below and to
the right of the object.

D	In this example, a white box
shadow appears centered
underneath the object.

8

B

10

CD

The box-shadow property allows for an extra optional keyword, inset, in its value. When used, the shadow’s
direction moves inward, toward the center of the shadowed element. This allows you to create the illusion of sunken
depth, as opposed to hover depth.

APPLY IT

TYPE THIS
-webkit-box-shadow: 5px 5px 10px black inset;
-moz-box-shadow: 5px 5px 10px black inset;
box-shadow: 5px 5px 5px gray inset;

➔

RESULT

The inset keyword may be used either at the beginning or the end of the box-shadow value string.

88

5	 In your CSS file, type
.translucent { to apply an
opacity value by class name.

6	 Type opacity: value; to render
the block partially translucent.

A	Optionally, type filter:
alpha(opacity=value); to
support Internet Explorer 4 to 8.

7	 Type }.

1	 In an HTML file, type <element
class=’translucent’>.

2	 Insert any content that should
appear in the translucent block.

3	 Type </element>.

4	 Save your HTML file.

Change an Element’s Opacity

Y ou can set an element’s visual opacity, also known as
transparency in CSS3, using the opacity property.

When set, the selected element will become translucent,
according to the nonnegative real number value between
0 and 1. In other words, a value of 0 is completely
transparent, 1 is completely visible, and any decimal
number in between will achieve a see-through effect.

Older versions of Internet Explorer, versions 4 to 8 to
be precise, support a similar feature through an alpha
filter. Its value is a two-digit percentage, so if you
set opacity to 0.75, you should also set filter to

alpha(opacity=75). Note that Internet Explorer 9 does
understand the new opacity property:

selector {
 opacity: value;
 filter: alpha(opacity=value);
}

Once applied, anything under the selected elements will
become visible through the CSS layers. For the most part,
this will be just a background image or color, but through
z-index layering, you can actually make other elements
visible underneath a transparent element.

Change an Element’s Opacity

3

2

1

5
6

7

A

CHAPTER

5Enhancing Your Web Page Visually with CSS3

89

8	 Apply a background image or
color to the translucent class.

9	 Apply a background size to the
parent object of the translucent
class.

Note: In this example, the parent and
target margins are increased to make
the effect stand out better in the
screenshot.

0	 Save your CSS file.

!	 View your HTML file in a web
browser.

B	The background appears
partially visible to the block
that has opacity applied.

89

11

B

Most often, opacity is used to make the background visible, but by layering elements with the position and
z-index properties, you can actually make content appear visible underneath the translucent element.

APPLY IT

RESULT

The fixedbelow class block is rendered
below the translucent class block. A
part of the red appears through the class
that used opacity.

TYPE THIS
div.fixedbelow {
 position: absolute;
 z-index: 0;
 background-color: white;
}
div.translucent {
 z-index: 1;
}

In your HTML file, add <div
class=’fixedbelow’></div>
above the <div class=’translucent’></div> block.

➔

90

1	 In a graphics-editing program,
create a template border image,
divided into nine segments.

Note: To make creating the template
easier, select a constant segment
length and width, such as 30 x 30,
and set the template’s overall size to
three times that, 90 x 90.

A	The template’s corners are all
the same size.

B	The template’s edges will be
rendered with one variable axis
length, perpendicular to a static
width.

2	 In an HTML file, type <element
class=’border-image’>.

3	 Insert any content that should
appear in the border-image
block.

4	 Type </element>.

5	 Save your HTML file.

Apply an Image As an Element Border

Y ou can create custom borders around elements
with the help of image templates and CSS3’s new

border-image property. Web browsers that support this
feature dynamically map your template image to correctly
stretch and shrink its edges to match the selected object,
but leave the corners intact:

border-image: source slice repeat;
border-width: width;

The source value should be in the form of url(imagefile)
to load the border template image. The slice value can be
one to four numbers or percentages, representing the inward
offsets from the source image, dividing it into nine segments:
four corners, four edges, and a middle block.

When sized correctly, border-image attempts to use
exactly one segment for each corner, and, depending on the
value for the repeat option, either repeats or stretches the
edges to fill the object border. border-width allows you
to specify the width of the border around the element.

Note that Opera, Mozilla, and WebKit browsers have their
own property names but accept the same value list. As a
result, you need to define your border-image definition
three more times:

-o-border-image: source slice repeat;
-moz-border-image: source slice repeat;
-webkit-border-image: source slice repeat;

Apply an Image As an Element Border

B1

A A

A A

3

2

4

91

CHAPTER

5Enhancing Your Web Page Visually with CSS3

6	 In your CSS file, type element.
border-image { to apply a border
image template by class name.

7	 Type border-image: url(imagefile)
slice; to set the source by filename and
set the template’s slice depth value.

8	 Repeat step 7 using the WebKit,
Mozilla, and Opera prefixes.

9	 Type border-width: width; and reuse
the slice value(s) from step 7 as pixels.

0	 Type }.

!	 Save your CSS file.

@	 View your HTML file in a web browser.

C	The template’s corners appear the same
in the bordered object.

D	The template’s edges appear stretched
to fit in the height and width of the
bordered object.

#	 Type repeat in all border-image
property values. Reload the page.

E	The edges appear as they did in the
template but are duplicated to stretch
to the height and width of the object.

7
8

9

6

10

12

C

D

E

D

E

There seems to be confusion over the correct syntax
for border-image. In the CSS3 specification, two
additional groups of dimensions, a width and outset,
are supposed to be allowed. However, because all three
dimensions can accept one to four values, the completed
syntax can suddenly get very crowded.
To help with this, CSS3 says that you can specify all
values as standalone properties.

Example
border-image-source: source;

border-image-slice: slice;

border-image-width: width;

border-image-outset: outset;

border-image-repeat: repeat;

The problem here is that no browser understands these
standalone properties.
The solution? Keep your border image as simple as
possible. Try to keep all corners and edges symmetrical;
otherwise you will limit end-user support, at least until
CSS3 and the HTML5 web browsers standardize and
accept these new standalone properties.

EXTRA

92

Create a Custom Scroll Bar Framework
1	 In your HTML file, type <element

class=’scrollbar’>.

2	 Insert HTML code to be scrolled with
your custom scroll bar.

3	 Type </element>.

4	 Save your HTML file.

5	 In your CSS rules file or in a <style>
block, type element.scrollbar {
overflow: auto; width: width; height:
height; } to initialize the scroll bar.

Note: Reuse this selector for the remaining
steps.

Note: The display: block declaration is
implied by all <div> tags. If you want to
scroll a different tag group, you may need to
add it in.

Note: The overflow property also accepts
the value scroll, which configures the scroll
bars to be displayed regardless of text size.

6	 Type selector::-webkit-scrollbar {
width: width; height: height; } to
assign scroll bar height and width
to the horizontal and vertical axis.

Customize a Scroll Bar with Images

You can create a custom scroll bar on any display block
that has the overflow property set. This can be

used to replace the bland scroll bar that is built into the
browser’s operating system. This feature is supported in
only the desktop WebKit browsers Chrome and Safari; WebKit
introduced the feature, and it is not yet included in CSS3:

selector { overflow: auto; display: block;
 width: windowwidth; height: windowheight; };
::-webkit-scrollbar { width: scrollbarwidth;
 height: scrollbarheight; };

windowwidth and windowheight are length values
indicating the size of the scrollable window that you want
to create. scrollbarwidth and scrollbarheight
represent the maximum width of the vertical scroll bar and
maximum height of the horizontal scroll bar. Now you can
start defining the style of the main scroll bar components:
the buttons with ::-webkit-scrollbar-button, the

movable bar with ::-webkit-scrollbar-thumb, and
the bar’s track with ::-webkit-scrollbar-track and
::-webkit-scrollbar-track-piece.

The scroll bar style selectors accept additional pseudo-
classes that define the style of scroll bar subcomponents.
For example, you can extend ::-webkit-scrollbar-
button by adding :vertical or :horizontal into the
selector to stylize the scroll bar axis differently; then create
another rule and add :increment or :decrement to
stylize the direction buttons differently. This will allow you
to produce unique directional buttons.

Creating the scroll bar first requires you to define the
basic CSS structure, rather than apply the images now.
Therefore, it is easier to begin with basic CSS border and
background-color properties to help you understand
how the selectors function and add images later.

Customize a Scroll Bar with Images

2

3

1

5

6

93

CHAPTER

5Enhancing Your Web Page Visually with CSS3

7	 Type selector::-webkit-scrollbar-
button { ... } to stylize all buttons.

Note: Specifying height here will only
affect the vertical axis buttons; and width
only the horizontal axis buttons.

8	 Type selector::-webkit-scrollbar-
thumb { ... } to stylize the movable
thumb bar.

9	 Type selector::-webkit-scrollbar-
track { ... } to stylize the bar’s
available track.

0	 Save your CSS file.

!	 View your HTML file in a web browser.

A	The custom scroll bar buttons appear.

B	The custom scroll bar thumb bar
appears.

C	The custom scroll bar track appears.

Note: Replace ::-webkit-scrollbar-
track with ::-webkit-scrollbar-
track-piece only when you want to style
the incrementing and decrementing track
portions separately.

8

7

9

11

A

B

C
A

The ::-webkit-scrollbar-button and ::-webkit-scrollbar-track-piece selectors also accept
another pseudo-class, :start or :end, to stylize the sides of the track before or after the thumb piece.
Additional, less-common selectors are available. These are optional but allow for further customization.

Pseudo-Selector Description
::-webkit-scrollbar-corner The corner image if the overflow window is resizable.
::-webkit-scrollbar-corner:window-inactive The corner image if the overflow window is not resizable.
::-webkit-scrollbar-resizer The resizer image if the overflow window is resizable.
::-webkit-scrollbar-resizer:window-inactive The resizer image if the overflow window is not resizable.

EXTRA

continued ➤

94

Add Images to the Scroll Bar
@	 Edit selector::-webkit-scrollbar-

button to stylize all buttons with a
nonrepeating background image.

#	 Type selector::-webkit-scrollbar-
button:vertical:increment { ... } to
stylize the vertical increment button.

$	 Repeat step 13 for the decrement button.

Note: If you used overflow: scroll in step
5, you will also need to stylize the horizontal
increment and decrement buttons, and later,
the horizontal track and thumb images.

%	 In an image editor, create a vertical scroll
bar thumb bar image, ensuring that its
width matches the ::-webkit-
scrollbar width defined in step 6.

^	 Create a vertical scroll bar track with the
same width.

A	The edging depth will remain fixed,
specified in border-width and
border-image later in steps 18 and 19.

Note: In this example, the fixed boundary of
both images is exactly one pixel.

Customize a Scroll Bar with Images (continued)

N ow that you have a working scroll bar with just
borders, you can start to create images for the

buttons and the track piece. To begin, mock up your scroll
bar in a graphics editor as a static image and then chop it
into button, track, and track-piece image files.

Because the track and thumb piece length can be variable,
depending on the dimensions of the window and amount
of text, you must use the border-image CSS3 property.
This will stretch the images to fit within the scroll bar
component area.

The buttons’ size will be static. In this case, you can simply
use multiple background-image files layered on top of each
other — one for the background and another for an arrow
image — and placed precisely with background-position.

You should note that so far the ::-webkit-scrollbar
selectors have not been prefixed by any type of CSS
descendent selector. This means that anything on the web
page that is scrollable, including the browser window itself,
will have the same scroll bar theme. You can create multiple
scroll bar themes by prefixing all ::-webkit-scrollbar
CSS rules with a parent selector class. However, both
selectors must be side by side; do not insert a space as
required by normal descendent combinators:

.scroller1::-webkit-scrollbar-button { /*
theme1 */ }

.scroller1::-webkit-scrollbar-track { /*
theme1 */ }

.scroller2::-webkit-scrollbar-button { /*
theme2 */ }

.scroller2::-webkit-scrollbar-track { /*
theme2 */ }

Customize a Scroll Bar with Images (continued)

13

12

14

15 16

AA

95

CHAPTER

5Enhancing Your Web Page Visually with CSS3

&	 Type selector::-webkit-scrollbar-
thumb:vertical { } to stylize a specific
thumb bar.

*	 Type -webkit-border-image: source
width height;.

Note: Because only WebKit browsers can have a
customized scroll bar, only -webkit-border-
image is required.

(Type border-width: width height; to
match step 16’s border-image widths,
using px units!

)	 Repeat steps 17 to 19 for the
::-webkit-scrollbar-

track:vertical border image.

Note: If you used overflow: scroll in step
5, you will also need to assign the horizontal
track and thumb border images.

q	 Save your CSS file.

w	 View your HTML file in a web browser.

B	The custom scroll bar button images
appear.

C	The custom scroll bar thumb bar image
appears.

D	The custom scroll bar track image
appears.

18

20

17
19

22

B

C

D
B

EXTRA
The pseudo-classes :hover and :active can be also be used to create new CSS rules, one at a time, onto any of
the scroll bar style selectors. You can highlight that a component is movable by changing its color when the cursor is
over it and then changing the color again when the component is actively in use.
Internet Explorer supports only changing scroll bar colors. This is done by simply assigning one of the following
CSS properties a color: scrollbar-arrow-color, scrollbar-base-color, scrollbar-darkshadow-
color, scrollbar-face-color, scrollbar-highlight-color, scrollbar-shadow-color, or
scrollbar-track-color.
It is relatively safe to mix the two methods together in the same CSS source. Just remember that Internet Explorer
does not understand the overlay property, so only the textarea element and the page body can be modified.

96

1	 In your CSS file, create a selector for
an object to which you want to apply
a gradient.

2	 Type background-image: linear-
gradient();.

Note: In this example, the parent margin
and target width, height, and border are
modified to make the effect stand out
better in the screenshot.

3	 Type top left, to start the gradient
in the top-left corner of the element.

Note: You can fine-tune where the gradient
starts by entering in a degree value, such
as 30deg.

4	 Insert a series of colors that will
appear in the gradient, separated by
commas.

Apply a Color Gradient

Y ou can assign a linear color gradient in CSS3 that
renders one side of an object in one color, shifting

across the color spectrum to the other side of the object
and the second color. linear-gradient is applied to the
background-image property:

background-image: linear-gradient(start,
color1 percent, color2 percent, ...);

start defines a pair of coordinate numbers, or simple
words, that specify where the color gradient will begin.
Words such as top left, top, top right, left, right,
bottom left, bottom, and right indicate that the
gradient progresses from the specified location to the
opposite side or corner. You can even specify degrees; for
example, -90deg is equivalent to top. Specify one or
more color percent values to assign a color gradient,
separating each with a comma. color can be represented
as any CSS color name, RGB, HSL, or hex value. percent

defines at what point along the gradient path the color is
fullest, and is actually optional; when omitted, the browser
will evenly space all colors across the gradient path.

Because CSS3 has not finalized the linear-gradient
syntax, each web browser vendor has implemented the
feature using its own specific value name. To implement
this, essentially you define the background-image
property multiple times:

background-image: -moz-linear-gradient(...
);

background-image: -webkit-linear-gradient(
...);

WebKit and Mozilla browsers have the best support for this
feature. As of August 2011, Opera and Internet Explorer
are planning to add in support. You may specify their
anticipated values today as -o-linear-gradient and
-ms-linear-gradient.

Apply a Color Gradient

2

1

3 4

97

CHAPTER

5Enhancing Your Web Page Visually with CSS3

Prior to Chrome 10, earlier versions of WebKit
implemented gradients using a very different syntax.

Example
background-image: -webkit-gradient(

linear, xstart ystart, xend yend,

 color-stop(percent, color)

);

The main difference is linear as an argument, along
with ending coordinates and a color-stop function.
It is possible to specify -webkit-gradient and
-webkit-linear-gradient in the same CSS rule.

Because Chrome browsers are automatically upgraded,
there are not many users with earlier versions; you can
safely ignore this legacy syntax.
A radial gradient version is also available, also not yet
accepted by the W3C and requiring similar name
variants. It follows a similar structure to linear-
gradient but requires some additional information,
such as a degree value for the starting coordinates,
along with a behavioral size constant argument.
For more information, see Mozilla’s CSS3 Documentation
site at https://developer.mozilla.org/en/CSS/-moz-
radial-gradient.

EXTRA

A	Optionally, type value% for any
colors to assign them a specific
percentage point along the
gradient path.

Note: If unspecified, 0% and 100% is
implied for the first and last colors. All
colors in between are divided evenly in
between these start and end values.

5	 Repeat steps 2 to 4 and if preferred,
the optional bullet for the Opera,
Microsoft, Mozilla, and WebKit linear
gradient prefixes.

6	 Save your CSS file.

7	 View your Web page in a WebKit
browser such as Chrome or Safari.

B	In this example, the first color
appears at the top left.

C	The second color appears at 30%.

D	The third color appears at 70%.

E	The third color continues to the end
of the linear gradient path.

5

A A

7

D

E

B

C

https://developer.mozilla.org/en/CSS/-moz-radial-gradient
https://developer.mozilla.org/en/CSS/-moz-radial-gradient

98

1	 In an HTML file, type <element
class=’scale’>.

2	 Insert any content that should appear in
the scale transformation block.

3	 Type </element>.

4	 Repeat steps 1 to 3 for the skew,
rotate, and translate blocks.

5	 Save your HTML file.

6	 In your CSS file, type .scale { transform:
scale(value); } to scale an object by
class name.

7	 Type .skew { transform: skew(xdegrees,
ydegrees); } to skew an object by class
name.

8	 Type .rotate { transform: rotate
(degrees); } to rotate an object by
class name.

9	 Type .translate { transform: translate
(xpos, ypos); } to move an object by
class name.

Note: Transformations work only on block
and inline-block display objects, not on
inline or list display objects.

Transform Object Dimensions

Y ou can transform any type of block object in CSS3
using the new transform property allowing you to

scale, skew, rotate, and translate objects:

.scale { transform: scale(xpercent, ypercent
) }

.skew { transform: skew(xdegrees, ydegrees)
}

.rotate { transform: rotate(degrees) }

.translate { transform: translate(xpos, ypos
) }

The scale function is relatively simple. It will resize an
object into a new width and height using xpercent and
ypercent as a decimal value between 0 to 1. If only one
value is defined, the browser scales the object proportionally.

The skew function changes the 2D perspective of the object
by slanting it left or right by xdegrees and up or down by

ydegrees. You may specify only one value here, in which
case only the x-axis is skewed. Alternatively, you can use
skewx(xdegrees) or skewy(ydegrees) to specifically
target an axis.

The rotate function rotates an object on its center pivot
point by degrees value.

The translate function actually moves an object by xpos
and ypos pixels away from its original position. Alternatively,
you can use translatex(xpos) or translatey(ypos) to
specifically target only one direction.

All four major HTML5 web browser engines require their own
specific prefix for the transition property. This is once
again because the W3C has not yet finalized the syntax
for the transform property, and as such it may change
sometime in the future.

Transform Object Dimensions

2

4

1
3

8

9

6

7

99

CHAPTER

5Enhancing Your Web Page Visually with CSS3

@	 View your HTML file in a web browser.

	 The original object layout appears.

#	 Save your CSS file and reload the
page.

A	In this example, the first object has
been resized.

B	The second object has been skewed.

C	The third object has been rotated.

D	The fourth object has been moved.

0	 Repeat steps 6 to 9 for the Opera,
Internet Explorer, Mozilla, and
WebKit prefixed property names.

!	 Execute multiple arguments
through specific x and y functions
for -ms-transform only.

Note: This is necessary because Internet
Explorer 9 has issues with using multiple
argument transforms.

11

11

10

10

10

10

12

13

A

B C
D

The scale, rotate, skew functions all use the center
of the object as the origin point. You can change this
with -browser-transform-origin: x y. The
values for x and y can be coordinate numbers or literal
text, such as top left, left, and bottom right.
To combine transformations, all functions must be
specified on a single browser-specific transform CSS
value. Unfortunately, this can create very long and
cumbersome CSS rules.
When the W3C finalizes CSS3, every browser should
simply understand transform, and as such, the number
of total declarations will shrink to a fraction of what is
required today.

transform: rotate(10deg) translate(100px,
10px);

-o-transform: rotate(10deg) translate(100px,
10px);

-ms-transform: rotate(10deg) translate(100px)
translate(10px);

-moz-transform: rotate(10deg) translate(100px,
10px);

-webkit-transform: rotate(10deg)
translate(100px, 10px);

EXTRA

100

1	 In an HTML file, type <element
class=’transition’>.

2	 Insert any content that should appear in
the transition block.

3	 Type </element>.

4	 Save your HTML file.

5	 In your CSS file, type element.transition
{ to apply a transition animation by class
name.

6	 Type transition-property: property;
to select which property changeover to
animate.

7	 Type transition-duration: seconds;
to define how long to animate the
transition effect.

8	 Repeat steps 6 and 7 using the WebKit,
Mozilla, and Opera prefixes.

Note: As of version 9, Internet Explorer does
not yet support transitions.

9	 Type property: value; to set the initial
display value of the transitional property.

0	 Type }.

Transition between Styles

T ransitions are a very easy way to create simple object-
morphing animations as it changes from one style into

another, using nothing but CSS. To do this, you must define
a CSS rule with transition and an initial property
value:

selector {
 transition: property, duration, timing,
delay;

 property: value1;
}

Then, for mouse-based transitions, use :hover on the
second CSS rule and set the ending property value:
selector:hover { property: value2; }.

The transition property’s first value states the actual
CSS property to be transitioned and its starting property
value. duration is the number of seconds that should

be spent during the transition effect on that property.
At a minimum, you need only these first two values to
get a working transition effect. The optional timing and
delay values control the animation rate and the number
of seconds before the transition process starts. The website
http://cssglue.com/cubic contains a very useful tool that
enables you to visualize different timing rates.

Because CSS3 has not finalized the transition syntax, each
web browser vendor has implemented the feature using its
own specific value name in the first selector:

-o-transition: property, duration, timing,
delay;

-moz-transition: property, duration, timing,
delay;

-webkit-transition: property, duration,
timing, delay;

Transition between Styles

2
1
3

6

8

5
7

9

10

http://cssglue.com/cubic

101

CHAPTER

5Enhancing Your Web Page Visually with CSS3

!	 Type element.transition:hover { to
define the mouse-over transitional
style.

@	 Type property: value; to set the final
display value of the transitional
property.

Note: If you add any properties to this
:hover rule, the transitional effect will not
apply. Instead, the object will abruptly change,
applying that untransitioned property’s value,
at the start of the transition cycle.

#	 Type }.

$	 Save your CSS file.

%	 View your HTML file in a web browser.

^	 Move your mouse cursor over the
transitional object.

A	The object begins to morph into the
new style.

B	The object is displayed as the target
style.

&	 Move your mouse cursor off the object.

	 The object morphs back to its initial
style.

1112

13

15

16

B

A

The transition property syntax is capable of supporting only one property changeover. However, if you have
multiple properties to change in a single event, you can use the longhand transition syntax.

APPLY IT

RESULT

Multiple properties can now be transitioned
to, all at once. Similarly, different durations,
timing functions, and delays can be applied
to the additional property changes. If you
specify only one duration, timing, or
delay value, the same value is used for all
properties being transitioned.

TYPE THIS
transition-property: property1, property2, ...;
transition-duration: duration1, duration2, ...;
transition-timing-function: timing1, timing2, ...;
transition-delay: delay1, delay2, ...;

➔

102

1	 In an HTML file, type <element
class=’animate’>.

2	 Insert any content that should be
animated in the element tag block.

3	 Type </element>.

4	 Save your HTML file.

5	 In your CSS file, type element.
animate { } to create the animation
style.

6	 Type -webkit-animation-name:
name;.

A	Optionally, type -webkit-animation-
direction: direction;.

7	 Type -webkit-animation-duration:
seconds;.

B	Optionally, type -webkit-animation-
iteration-count: count;.

Note: You can use the keyword infinite
to indicate that the animation continues
indefinitely.

8	 Insert the initial state of the
animating CSS selector.

Create Simple Animations

O ne of the highly anticipated features of CSS3 is
its capability to create simple animations without

any JavaScript. A new group of animation properties and
a selector expand on the idea of transitions, described in
the previous section. To begin, compose a CSS rule that
matches what you would like to animate:

selector {
 -webkit-animation-name: name;
 -webkit-animation-direction: direction;
 -webkit-animation-duration: duration;
 -webkit-animation-iteration-count: count;
 property: value1;
}

The name value is an identifier used to link the selected
element to the @-webkit-keyframes rule. The

direction value, which defaults to normal, can be
changed to alternate, causing the animation to move
forward and backward every two cycles. The duration
value describes the number of seconds that one animation
cycle must complete in. The count value indicates the
number of animation cycles that should be executed.
@-webkit-keyframes states the property’s value at a
percentage of each cycle, for this animation name:

@-webkit-keyframes name {
 percent1 { property: value2; ... }
 percent2 { property: value3; ... }
 ...
}

The same name value used in -webkit-animation-name
is specified after @-webkit-keyframes.

Create Simple Animations

21
3

7

5
6

8

A
B

103

CHAPTER

5Enhancing Your Web Page Visually with CSS3

Optionally, some additional attributes are available to
fine-tune your animation selector:

-webkit-animation-delay: delay;

-webkit-animation-timing-function: timing;

-webkit-animation-play-state: state;

The delay value is the number of seconds after the
animation trigger is made — the selector matched an
object — until the animation cycle begins. The timing
value indicates the animation rate at which the cycles

are executed. Both values are very similar to the delay
and timing values described in the section “Transition
between Styles.” The state value enables you to set
whether the animation is currently playing or not. You
can set the initial play state to off, or paused, and it will
not start running when the page loads. Only when this
value is set to running, which is the default, will the
animation play. Typically, you could create a JavaScript
play/pause button that controls the CSS3 animation play
state by changing this property’s value.

EXTRA

9	 Type @-webkit-keyframes name { }
to create the animation procedure for
name.

0	 Type percent { declarations } to
assign CSS at this percentage of the
animation cycle.

Note: percent may use the keywords from
and to as shortcuts to 0% and 100%.

!	 Repeat step 10 for the other
animation keyframes.

@	 Save your CSS file.

#	 View your HTML file in a web browser.

C	The first keyframe appears.

D	The object transitions to the second,
third, and fourth keyframes.

E	In this example, the object transitions
back to the first keyframe and then
repeats the cycle.

Note: The cycle repeats depending on the
optional animation-iteration-count.
If none is defined, only one cycle is
performed.

10

11

9

13

D

C

E

continued ➤

104

$	 In your CSS file, create a new
@-webkit-keyframes procedure
with a different name.

%	 Type , name as a second value into
-webkit-animation-name.

^	 Insert secondary values for the
other animation properties.

Note: If you use two animation
keyframes but do not define enough
values into an animation property, its
existing value is used for the secondary
keyframe cycle.

&	 Type .animate:hover { } to create
the animating style with the
mouse event trigger.

*	 Move the animation properties
from the .animate selector into
.animate:hover.

(Save your CSS file.

Create Simple Animations (continued)

I t is possible to extend the CSS3 animations by layering
multiple keyframe scripts on top of one animating

object. This type of concurrency even offers independent
control of the other animation properties.

To add concurrent animations, all you need to do is define
a new @-webkit-keyframes name and append that new
name onto -webkit-animation-name by separating the
names with commas. Then simply add new values onto the
other animation properties, separating them with commas.
Note that if an animation property does not have enough
values specified, that property’s last value is repeated for
the remaining animations that are applied to the object.

The example on the previous page starts the animation
immediately after the web page first loads. It is possible to

use the :hover pseudo-class to trigger the animation when
the user has the mouse cursor over the animating object.

To do this, establish an original selector that sets the
initial styles of the animating object but not the animation
properties. Because selector:hover inherits selector
and defines the animation properties, the keyframes will
animate only when hovering. When the user’s mouse cursor
leaves the object, the initial style is restored:

selector {
 property: value1;
}
selector:hover {
 -webkit-animation-name: name, ...;
 -webkit-animation-duration: duration, ...;
}

Create Simple Animations (continued)

14
15 16

16

18
17

105

CHAPTER

5Enhancing Your Web Page Visually with CSS3

If you need something more complex than :hover,
JavaScript can be deployed to configure detailed
playback timing. Simply set the object to -webkit-
animation-play-state: paused in the CSS file
and change it to playing in JavaScript when you want
the animation to launch.
This feature was designed and implemented by the
WebKit developers directly, which is why its property
names all have the -webkit- prefix. Fortunately, the

W3C has adopted the standard as a working draft.
Hopefully, within the next few years, it will be accepted
as standard CSS3 functionality by the W3C and
implemented across all major web browsers.
Mozilla has already added CSS animations into
Firefox 5; you can try it by duplicating all WebKit
animation properties and keyframes declarations with
the -moz- prefix.

EXTRA

q	 Hover your mouse cursor over
the object.

B	The animation cycle begins,
with two independent keyframes
active.

w	 Move your mouse cursor away
from the object.

	 The object returns to its default
CSS state.

)	 View your HTML file in a web
browser.

A	The animate class is applied,
but there is no movement.

20

A

21

B

B

B

106

Purpose

The Flexible Box Model makes it easier to construct one-dimensional data — one row with multiple columns or one column with
multiple rows — than HTML tables, and it provides additional flexibility when ordering and stylizing the data in your CSS rules.

Direction
You can set the directional axis of the flexible box by setting
the box-orient property:

div.box-parent > child { box-orient: axis; }

The axis value can be horizontal, vertical, or
inherit. If unspecified, horizontal is the default.

Flexibility
Individual box-child objects can have a flex ratio value applied.
This instructs the browser how to calculate the size each
box-child object should expand to. When all the box-child
objects have a box-flex value, an individual child can expand
or shrink relative to the sum of the other box-flex siblings:

div.box-parent > child { box-flex: ratio; }

If a box-child’s box-flex ratio is unspecified, the default is 0
(zero), or the smallest size possible. So, if you assign a single
box-child a value of 1, it will expand to 100% of the available
width; two box-children set to 1 would each take up 50% of
the available width, and so on.

Implementation

To implement the Flexible Box Model, you will need a parent
block object, such as a <div> tag group, which holds a series
of child objects, such as paragraphs, tables, images, or even
other boxes.

HTML Structure
To create a flexible box, you must start with a parent object
that contains multiple child objects of any type; each child
object becomes a box cell. Assign the parent a CSS ID or class
name:

<div class=’box-parent’>

 <div>child1</div>

 <p>child2</p>

 <table><tr><td>child3</td></tr></table>

 <figure></figure>

</div>

Display Property
Set the new box display property on the parent object:

div.box-parent { display: box; display: -moz-box;
display: -webkit-box; }

Do not forget the -moz- and -webkit- derivatives. They
must be set here and on all other box* property names.

Introducing the Flexible Box Model

T he Flexible Box Model is a module of the draft CSS3
specification, and by extension, HTML5. It enables you

to organize web page data into multiple rows or columns as
a new display: box object.

Because this is still a draft feature, its specifications could
still change. This is why not all browsers support this feature,
and those that do require a special prefix to all flexible box
properties. As of August 2011, only WebKit browsers such as
Safari, Chrome, and Firefox support the Flexible Box Model
working draft specification dated July 23, 2009.

107

Creating Boxes and Columns with CSS3

CHAPTER

6
CHAPTER

6Creating Boxes and Columns with CSS3

Placement
You can control the horizontal placement of box-child objects
by assigning a box-pack value to the box-parent object:

div.box-parent { box-pack: packing; }

The packing value can be set to start, end, center, or
justify, which will force all the box-child objects to the left,
right, middle, or averaged placement, respectively.

You can control the vertical placement of box-child objects with
the box-align value:

div.box-parent { box-align: alignment; }

The alignment value can be set to start, end, center,
baseline, or stretch.

Display Order
You can modify the display order of the box-child objects with
the help of box-direction, which is set on the box-parent,
or box-ordinal-group, which is set on individual Â�
box-children. If unspecified, the box-children are rendered
in the same order as they exist in the HTML code:

div.box-parent { box-direction: direction; }

Possible values for direction are normal, reverse, and
inherit.

The box-ordinal-group property enables you to assign
arbitrary numbers to box-child objects directly, which act as a
primary sorting variable. Child objects that share the same
box-ordinal-group number fall back to HTML ordering:

div.box-parent > child { box-ordinal-group: number; }

For box-ordinal-group sorting to take effect, all
box-children require a number.

The Flexible Box Model is supported as of Firefox 3.0, and all
versions of Chrome and Safari, including their mobile
counterparts, such as the Android and iOS browsers. For each
of the box-related properties and values, you will need to
prefix -webkit- and -moz- to activate the Flexible Box
Model on these browsers.

Supported Web Browsers

Support is expected to be added into Internet Explorer 10,
which will likely require an -ms- prefix.

As for Opera 11.50, support is unavailable and not expected
anytime soon.

Alternatives to the Flexible Box Model

Depending on what your goals are, the Flexible Box Model may
not be sufficient for your application. There are a few
alternatives that you can consider.

Tables
Tables have been the venerable rendering standard since HTML 3.
If you have a complex two-dimensional structure with multiple
rows and columns, tables remain the best resource to use.

The Flexible Box Model can handle multiple rows and columns,
but only by nesting multiple boxes within each other. The
precise cell alignment of row and column boundaries

throughout the body of the nested box objects will be lost,
making the end result rather ugly.

If a clean row and column alignment is required, use a regular
HTML table.

Multi-Column Layouts
CSS3 columns are similar to the Flexible Box Model, but the idea
of box-children is not used. Instead, child objects are displayed
vertically in a series of two or more columns, spanning
horizontally. The effect is exactly like columns in a newspaper.

Columns are described later in this chapter.

108

5	 Open your CSS file or scroll to the
<style> block in your HTML file.

6	 Type element.horizontal-box { to
apply the horizontal flexible box by
class name.

7	 Type display: box;.

8	 Type box-orient: horizontal;.

9	 Repeat steps 7 and 8 with the Mozilla
and WebKit flexible box prefixes.

0	 Type }.

1	 In an HTML file, type <element
class=’horizontal-box’>.

2	 Insert any content blocks that
should appear in the horizontal
flexible box block.

3	 Type </element>.

4	 Save your HTML file.

Create a Horizontal Flexible Box Model

T o create a horizontal Flexible Box Model, you must
first create a parent object in HTML and then assign

that object new CSS3 tags to indicate that it is a box and
that it flows horizontally:

display: box;
display: -moz-box;
display: -webkit-box;
box-orient: horizontal;
-moz-box-orient: horizontal;
-webkit-box-orient: horizontal;

The display property is assigned a new value, aptly named
box. This activates the box properties described throughout
this chapter. There are no HTML5 tags that imply the
display: box declaration automatically, so you must
specify it whenever you want to use the Flexible Box Model.

The box-orient property controls the axis the Â�box-children
are displayed on. If unspecified, the box is displayed
horizontally.

Note that because the Flexible Box Model is a CSS3 feature
still in development, there are engine-specific prefixes that
are required in order to activate it. This includes the Mozilla
and WebKit prefixes. For all other browsers, content will
appear normally, like vertical block objects.

A flexible box typically spans the entire width of its parent
object or the browser window itself. The height of a
horizontal box is set by the height of the largest box-child.
You can use the height and width properties on the
box-parent object.

Create a Horizontal Flexible Box Model

2
1

3

6
9

9
8

7

5

10

109

CHAPTER

6Creating Boxes and Columns with CSS3

A	Optionally, type border: 2px dashed
black; to display a dashed border
around the Flexible Box Model.

B	Optionally, type element.horizontal-
box > * { border: 2px solid black; }
to display a solid border around the
flexible box-children.

!	 Save your CSS file.

@	 View your HTML file in a web browser.

	 The Flexible Box Model appears,
spanning the available width.

C	The Flexible Box Model child objects
appear.

D	This is the overall space the
box-parent object uses.

Note: Apply width and height properties
to the parent and child box objects to set
absolute sizes.

B

A

12

C

D

In WebKit, the width of a horizontal box automatically spans to be 100%. This contradicts with Mozilla where its
width spans to the minimum required by the box-children. This can adversely affect placement of content before
and after the flexible box.

APPLY IT

TYPE THIS
<style>
div#box {
 display: box;
 box-orient: horizontal;
 border: 2px solid black;
}
</style>
Content prior to the flexible box...
<div id=’box1’>
 <p>Paragraph 1</p><p>Paragraph 2</
p><p>Paragraph 3</p>

</div>
...followed by content after the flexible box.

➔

RESULT

In Chrome and Safari, the page appears like this:

However in Firefox 4, the page appears like this:

To avoid this problem, make sure content that precedes and follows a flexible box is wrapped in a block display
element, such as a <div> or <p> tag group.

110

1	 In an HTML file, type <element
class=’vertical-box’>.

2	 Insert any content blocks that
should appear in the vertical
flexible box block.

3	 Type </element>.

4	 Save your HTML file.

Create a Vertical Flexible Box Model

T o create a vertical Flexible Box Model, you must first
create a parent object in HTML and then assign that

object new CSS3 tags to indicate that it is a box and that it
flows vertically:

display: box;
display: -moz-box;
display: -webkit-box;
box-orient: vertical;
-webkit-box-orient: vertical;
-moz-box-orient: vertical;

A vertical flexible box requires the same display: box
declarations as its horizontal counterpart.

The box-orient property controls the axis that the
Flexible Box Model displays its children on. If you are
nesting vertical boxes together, you can also set the value
of subboxes to inherit.

Note that because the Flexible Box Model is a CSS3 feature
still in development, there are engine-specific prefixes that
are required in order to activate it.

A vertical flexible box typically spans the entire width
of its parent object, which could be the browser window
itself. The height of a vertical box is set by the total height
of all box-children. You can use the height and width
properties to change the flexible box dimensions on the
box-parent object.

Note that in the March 22, 2011, working draft, the W3C
renamed display: box to display: flexbox; however,
no browsers implement this new naming convention yet.
Browsers are expected to be backward compatible, at least
with the -moz-box and -webkit-box values.

Create a Vertical Flexible Box Model

2
1

3

6
9

9

7

8

10

5	 Open your CSS file or scroll to the
<style> block in your HTML file.

6	 Type element.vertical-box { to
apply the vertical flexible box by
class name.

7	 Type display: box;.

8	 Type box-orient: vertical;.

9	 Repeat steps 7 and 8 for the
Mozilla and WebKit flexible box
prefixes.

0	 Type }.

111

CHAPTER

6Creating Boxes and Columns with CSS3

A	Optionally, type border: 2px dashed
black;.

B	Optionally, type element.vertical-box
> * { border: 2px solid black; }.

!	 Save your CSS file.

@	 View your HTML file in a web
browser.

	 The Flexible Box Model appears,
spanning the available width.

C	The Flexible Box Model child objects
appear.

Note: Block objects, such as the box-child
<div> tags in this example, automatically
span to the maximum width.

Note: Apply width and height properties
to the parent and child box objects to set
absolute sizes.

B

A

12

C

Horizontal and vertical boxes can be nested together to provide an effect similar to tables in HTML.

APPLY IT

TYPE THIS
<style>
 div.vertical-box { display: box; box-orient:
vertical; }

 div.horizontal-box { display: box; box-
orient: horizontal; }

 div.parent-box > * { border: 1px solid
black; margin: 2px 2px 0 0; }

</style>
<div class=’vertical-box’>
 <div class=’horizontal-box parent-box’>
 <div>child 1,1</div><div>child 1,2</
div><div>child 1,3</div>

 </div>
 <div class=’horizontal-box parent-box’>
 <div>child 2,1</div><div>child 2,2</
div><div>child 2,3</div>

 </div>
</div>

Do not forget to include the -moz- and -webkit-
flexible box prefixes.

➔

RESULT

A two-row, three-column table appears,
constructed by nesting two horizontal boxes in
a vertical box. This example is overly simplistic.
What would happen if a single box-child
contains more characters than its siblings?

For precise alignment, use a normal HTML table.

112

1	 Create a horizontal or vertical Flexible
Box Model object in your HTML and
CSS files.

2	 Type div.horizontal-box > :nth-
child(n) { to target the parent box’s
nth child object.

3	 Type box-flex: 1; to set the parent
box’s nth child object flex ratio to 1.

4	 Repeat step 3 for the Mozilla and
WebKit flexible box prefixes.

5	 Type }.

6	 Save your CSS file.

7	 View your HTML file in a web browser.

A	In this example, the nth box-child
expands to the full width because it
is the only child object with a
box-flex value.

B	The box-children with no box-flex
value do not expand beyond the size
forced by their content.

Stretch and Shrink Objects in a Flexible Box

Y ou can control the size of child objects within a
flexible box with the box-flex property. When this is

set on a box-child object, the child will have a higher- or
lower-size priority, when compared to the other children in
the flexible box object:

box-flex: ratio;
-moz-box-flex: ratio;
-webkit-box-flex: ratio;

The ratio value can be any positive number, but it is
pretty rare to require any value higher than 2. Effectively,
0 makes the box-child as small as possible, or not flexible,
and the highest ratio number stretches the box-child to
be as large as possible, or the most flexible. All ratios are
relative, so any number between 1 and the highest number

is treated as a partial stretch, proportionate to the other
ratios and number of children currently in that box.

To calculate the width of an individual box-child object, the
browser takes the overall width of the box — or height if it
is a vertical box model — multiplies by the box-child object’s
box-flex ratio, and then divides by the total ratios of all
the children. For example, if a flexible box is 600px wide and
has three box-children with box-flex ratios of 1, 2, and 0,
the first child will be 600 × 1 ÷ 3 = 200px, the second 600
× 2 ÷ 3 = 400px, and the third 600 × 0 ÷ 3 = 0px. Naturally,
this is only a rough calculation as the contents of each
child can affect the overall width; thus forcing a child to
box-flex: 0 will display larger than 0px wide. Essentially,
the first child is half the width as the second, whereas the
third is as small as possible.

Stretch and Shrink Objects in a Flexible Box

2
4

3

5

7

AB B

113

CHAPTER

6Creating Boxes and Columns with CSS3

0	 Reload your page in the web browser.

C	In this example, this box-child has
the largest width because it has the
largest ratio.

D	This box-child with the smaller ratio
expands to a smaller width.

8	 Repeat steps 2 to 5 on a different
box-child, and increase the Â�
box-flex value to 2.

9	 Save your CSS file. 8

10

D C

The box-flex-group property was a part of the
July 23, 2009, Flexible Box Model working draft
specification but has since been dropped in the more
recent March 22, 2011, working specification.
It is important to be aware of box-flex-group if you
encounter it described on HTML5 or CSS3 websites,
but avoid it yourself, at least until the specification is
standardized, sometime by 2014:

box-flex-group: number;

-moz-box-flex-group: number;

-webkit-box-flex-group: number;

Grouping box-children by box-flex-group will
subdivide the length of flexible space, in which the
width of like box-children will be calculated based on
the total ratios of children within the same group. Any
space left over will then be allocated to the next
box-flex-group of children, and so on.
This method of calculation seemed overkill for the
specification, which is why it was dropped from CSS3.

EXTRA

114

1	 Create a horizontal or vertical Flexible
Box Model object in your HTML and
CSS files.

A	Optionally, add borders around each
of the box-children to help you to
visualize their position and size.

B	Optionally, type width: value; on the
parent so that the children can expand.

2	 Type box-pack: type; to set the
horizontal packing of the box-children.

3	 Repeat step 2 for the Mozilla and
WebKit prefixes.

4	 Save your CSS file.

5	 View your HTML file in a web browser.

	 The box-children are forced to
horizontally pack with the box-pack
property value.

Horizontally Pack Objects within a Flexible Box

Y ou can pack box-children together on one side of the
horizontal axis of the Flexible Box Model. This will

enable you to force child objects to appear on the left,
right, centered, or justified across the forced width of a
flexible box.

The term forced width refers to setting the min-width
or width properties of the box-parent object to be larger
than the natural width, or the width produced solely by the
box-children. Forced width implies whitespace within the
Flexible Box Model, and packing involves placement within
that whitespace.

Note that horizontally packing objects is pointless if you
employ the box-flex property to stretch one or more Â�
box-children to the entire width of a flexible box:

box-pack: packing;
-moz-box-pack: packing;
-webkit-box-pack: packing;

The packing value can be set to one of four keywords:

•	 start — Aligns all box-children to the left.

•	 end — Aligns all box-children to the right.

•	 center — Aligns all box-children to the middle,
horizontally.

•	 justify — Forces the first and last box-children to be
placed on the left and right and all other box-children to
average spacing in between them.

Note that in the March 22, 2011, working draft, the W3C
renamed box-pack to flex-pack; however, no browsers
implement this new naming convention yet. Browsers are
expected to be backward compatible, at least with the
-moz-box-pack and -webkit-box-pack properties.

Horizontally Pack Objects within a Flexible Box

3
2

AB

A

5

115

CHAPTER

6

1	 Create a horizontal or vertical Flexible
Box Model object in your HTML and
CSS files.

A	Optionally, add borders around each of
the box-children to help you to
visualize their position and size.

B	Optionally, type height: value; on
the parent so that the children can
expand.

2	 Type box-align: type; to set the
vertical alignment of the box-children.

3	 Repeat step 2 for the Mozilla and
WebKit prefixes.

4	 Save your CSS file.

5	 View your HTML file in a web browser.

	 The box-children are forced to
vertically align with the box-align
property value.

Note: This example also demonstrates
box-pack: justify from the previous
page, coupled with box-align: end.
Experiment with the different values for
these two properties.

Vertically Align Objects within a Flexible Box

Y ou can align box-children together on one side of the
vertical axis of the Flexible Box Model. This will enable

you to force child objects to appear on the top, bottom,
middle, baseline, or stretched across the forced height of a
flexible box.

As mentioned earlier, the term forced height refers to
setting the min-height or height properties of the
box-parent object to be larger than the natural height,
or the height produced solely by the box-children. Forced
height implies whitespace within the Flexible Box Model,
and vertical alignment involves placement within that
whitespace:

box-align: alignment;
-moz-box-align: alignment;
-webkit-box-align: alignment;

The alignment value can be set to one of five keywords:

•	 start — Aligns all box-children to the top.

•	 end — Aligns all box-children to the bottom.

•	 center — Aligns all box-children to the middle,
vertically.

•	 stretch — Forces the height of all box-children to
span the height of the box.

•	 baseline — Aligns all box-children along their
baselines, as in normal text. This is equivalent to using
display: inline on the box-children directly, while
maintaining other flexible box properties.

Note that in the March 22, 2011, working draft, the W3C
renamed box-align to flex-align; however, no browsers
implement this new naming convention yet. Browsers are
expected to be backward compatible, at least with the
-moz-box-align and -webkit-box-align properties.

Vertically Align Objects within a Flexible Box

3
2

B
A

A

5

116

1	 Create a horizontal or vertical Flexible Box
Model object in your HTML and CSS files.

Note: In this example, the number of box-children
was increased to better demonstrate this feature.

2	 Type parent > :nth-child(n) { to set the
parent box’s nth child object.

3	 Type box-ordinal-group: 2; to set the
child object’s ordinal-group to 2.

Note: Remember that by default all box-children
are implicitly set with box-ordinal-group: 1.

4	 Repeat step 3’s value for the Mozilla and
WebKit flexible box prefixes.

5	 Type }.

6	 Save your CSS file.

7	 View your HTML file in a web browser.

A	In this example, the nth box-child is
displayed at the start of the flexible box,
displacing the other objects, because its
box-ordinal-group is set to 1.

	 The remaining box-children share their
box-ordinal-group value, displaying in
the same order as their HTML code.

Reorder Objects in a Flexible Box

Y ou can change the display order of objects within a
flexible box without changing the order of the objects

in the HTML source code. This is done by setting the box-
ordinal-group property to one or more box-children:

box-ordinal-group: number;
-moz-box-ordinal-group: number;
-webkit-box-ordinal-group: number;

A lower box-ordinal-group value means that the child
should be displayed earlier in the box display order, and
a higher value means later. If multiple children share the
same value, as a group they appear in the value’s position,
but their individual order is decided by their HTML ordering.
All children have a default box-ordinal-group property
value of 1, meaning that they are all members of the first
ordinal group, unless explicitly set otherwise. Note that a
value of 0 (zero) indicates a box-child should be hidden

entirely from the flexible box. 0 can be arbitrarily set to
hide any box-child, even if other children do not have a
box-ordinal-group value. For example, if you have
a horizontal flexible box of five children assigned the
values of 5, 4, 0, 2, and 1, the children will be displayed
in reverse, and the third will be omitted entirely. If you
assign them the values of 2, 2, 1, 1, and 1, the last three
child objects described in the HTML will be displayed first,
followed by the first two.

Note that in the March 22, 2011, working draft, the W3C
renamed box-ordinal-group to flex-order; however,
no browsers implement this new naming convention yet.
Browsers are expected to be backward compatible, at least
with the -moz box-ordinal-group and -webkit-box-
ordinal-group properties.

Reorder Objects in a Flexible Box

4
23

5

7

A

117

CHAPTER

6Creating Boxes and Columns with CSS3

A simpler way to reverse the ordering of flexible box
children is to set the box-direction property.

Example
div#box {

 box-direction: reverse;

 -moz-box-direction: reverse;

 -webkit-box-direction: reverse;

}

The ordering of box-children, and by extension whether
a child is displayed or not — in fact, any CSS
declaration — can be controlled in JavaScript. For
example, using jQuery’s css() function, you can
manipulate any property and assign it a new value. Be
sure to also change the Mozilla and WebKit properties
in additional css() function calls and to import the
jQuery library as described in Chapter 8, “Using jQuery
with HTML5.”

EXTRA

0	 Reload your web page.

	 In this example, the box-child
with a box-ordinal-group:
0 is now gone.

8	 Repeat steps 2 to 5 on a
different box-child, and set the
box-ordinal-group value to
0 to make it not be displayed.

9	 Save your CSS file.

8

10

118

Purpose

The multi-column layout makes it is easier to read large amounts of text, and it enables better use of space, just like columns in a
newspaper. This newspaper-column style format has been used in print for centuries, and now the layout style can easily be
transferred to web pages with very little code change.

Column Count
You can set the preferred number of columns to appear in a
text block with column-count:

div.multi-column {

 column-count: number;

 -moz-column-count: number;

 -webkit-column-count: number;

}

Normally, a multi-column layout’s height is dictated by the
height of the text divided by the number of columns. If you
force the parent object’s height to be artificially high, the
number of column-count columns will still be created, but
the text will not fill into it properly, leaving whitespace in the
multi-column layout.

Implementation

To implement a multi-column layout, you will need a parent
block object, such as a <div> tag group. Anything found
within it, such as paragraphs, tables, and images, are
automatically rendered like columns in a newspaper.

HTML Structure
To create a multi-column layout, you must start with a parent
object, which holds any number of child objects of any type.
The parent object needs to be selectable by CSS later, so assign
its element an ID or class name to make it easier to match:

<div class=’multi-column’>

 <h1>...content...</h1>

 <p>...content...</p>

 <aside>...content...</aside>

 <figure></figure>

 <p>...content...</p>

 ...

</div>

T he multi-column layout is a module of the draft CSS3 specification, and by extension, HTML5. It enables you to
organize web page data into multiple columns of variable height and width, depending on how much content there is

to display.

Because this is still a draft feature, its specifications could change. This is why not all browsers support this feature, and
those that do require a special prefix to all flexible box properties, as per their time of implementation. As of August 2011,
only Safari, Chrome, and Firefox support the multi-column layout working draft specification dated December 17, 2009. A
newer specification was released on April 12, 2011, to address minor clarification issues in the original draft.

For browsers that do not yet support multi-column layouts, content is displayed normally, like a top-to-bottom series
of objects, so there is an inherent level of backward compatibility. What these browsers do lose is the special column
formatting that a multi-column layout provides.

Introducing Multi-Column Layouts

119

Creating Boxes and Columns with CSS3

CHAPTER

6

Column Ruler
You can display a subtle ruler in between each column with
column-rule. It will appear as a line with a customizable
width, style, and color. In fact, its syntax is exactly the same
as the CSS border property:

div.multi-column {

 column-rule: width style color;

 -moz-column-rule: width style color;

 -webkit-column-rule: width style color;

}

Horizontal Column Span
If you need to bisect a multi-column layout and have
an element span the entire width, you can do that with
column-span:

div.multi-column > child {

 column-span: none|all;

 -moz-column-span: none|all;

 -webkit-column-span: none|all;

}

If unspecified, the default value is none, which means that the
child block appears normally within a column’s width. If you
use the value all, it will effectively end any previous content’s
column layout, span the entire width of all columns, and then
start a new column layout.

Column Width
The horizontal column width can be controlled with column-
width. When set, it dictates the minimum width of individual
columns:

div.multi-column {

 column-width: size;

 -moz-column-width: size;

 -webkit-column-width: size;

}

If column-count is set too high on smaller screens, it can
squish the columns together, making the content rather hard
to read. The column-width property allows you to set the
smallest width allowed, overriding the column-count variable
to a smaller number if necessary.

Column Gap
The gap in between the columns is configurable using the
column-gap property:

div.multi-column {

 column-gap: size;

 -moz-column-gap: size;

 -webkit-column-gap: size;

}

Implementation (continued)

Support has been added into Internet Explorer 10 and Opera
11.1; however, these versions do not require any special prefix
and follow the April 12, 2011, W3C working draft standard.

The multi-column layout is supported as of Firefox 3.5 and
all versions of Chrome and Safari, including their mobile
counterparts, such as the Android and iOS browsers.

Supported Web Browsers

120

5	 Open your CSS file or scroll to
the <style> block in your
HTML file.

6	 Type element.multi-column { to
apply the multi-column layout
by class name.

7	 Type column-count: number; to
define the number of columns
the layout will have.

8	 Repeat step 7 with the Mozilla
and WebKit prefixes.

9	 Type }.

1	 In an HTML file, type <element
class=’multi-column’>.

2	 Insert any content that should
appear in the multi-column
layout block.

3	 Type </element>.

4	 Save your HTML file.

Create a Multi-Column Layout

Y ou can create a multi-column layout rather easily in
CSS3. Simply configuring the column-count property,

and its Mozilla and WebKit equivalents, in an HMTL element
block will cause any content to automatically format itself
into narrow vertical columns in your web browser, just like
text columns in a newspaper:

selector {
 column-count: number;
 -moz-column-count: number;

 -webkit-column-count: number;
}

Individual children have no control over the height of the
multi-column layout. Instead, the layout height is extended
only by the total height of the children divided by the
number of columns.

Anything can be displayed as content within a multi-column
layout. This includes Flexible Box Models, tables, or even
another multi-column layout.

Create a Multi-Column Layout

3

1

2

6
8

5

7

9

121

CHAPTER

6Creating Boxes and Columns with CSS3

A	Optionally, type border: 2px solid
black; padding: 10px; to display a
solid border around the multi-column
layout and add some padding.

B	Optionally, type element.multi-
column > * { border: 1px solid
black; border-radius: 10px;
background-color: lightgray; }
to display a rounded border and
background color around the Â�
multi-column layout children.

0	 Save your CSS file.

!	 View your HTML file in a web browser.

	 The multi-column layout appears in a
solid border.

	 The multi-column layout child objects
appear with rounded borders and a
background color.

C	Paragraphs that continue beyond the
column height boundary abruptly stop
and continue at the top of the next
column.

Note: In this example, each paragraph has
rounded borders, but the borders do not
round when the paragraph is broken up by
a new column.

B

A

11

C

C

There are some extended multi-column layout properties
that you can use but are not required. This includes
column-width, which sets the minimum width that a
column should be rendered as, and column-gap, which
sets the width in between the columns.

Example
div.multi-column {

 column-width: size;

 -moz-column-width: size;

 -webkit-column-width: size;

}

Before you set a column-width value, slowly resize
your browser window, making it narrower. You will see
how the browser attempts to maintain column-count
columns, despite text readability. When you find the
smallest width where text is still legible, set that width
to column-width.

EXTRA

122

3	 Type column-gap size; to
specify the margin gap in
between each column.

1	 Scroll to your multi-column
layout parent CSS selector.

2	 Type column-rule: width style
color; to specify the ruler
display properties in between
each column.

Add a Ruler and Gap in between Columns

Y ou can customize your multi-column layout further by
adding a simple ruler border and extend the gap width

in between each column:

selector {
 column-rule: width style color;
 -moz-column-rule: width style color;
 -webkit-column-rule: width style color;
 column-gap: size;
 -moz-column-gap: size;
 -webkit-column-gap: size;
}

The width value refers to the width of the column ruler
line. The style value refers to the style of the line, which
can be solid, dashed, or dotted. The color value can
be any valid CSS color notation.

If column-gap’s size is unspecified, the default size
is 1em. The unit em refers to multiples of the current
font size. In most browsers, the default font size is 12
points, or one-sixth of an inch. The em unit automatically
resizes itself if the users modify their font size; as such,
column-gap increases as the font increases.

Add a Ruler and Gap in between Columns

2

1

3

123

CHAPTER

6Creating Boxes and Columns with CSS3

6	 View your HTML file in a web browser.

A	A custom ruler is configured in
between each column.

B	A custom gap is configured in between
each column.

Note: The gap affected the overall placement
of the paragraphs. In this example, the
cutoff of the fourth paragraph to the third
column has moved.

4	 Repeat steps 2 and 3 with the Mozilla
and WebKit flexible box prefixes.

5	 Save your CSS file.
4

4

6

A

B

The column-rule property can be split up into separate property declarations. This follows the same CSS practice
of allowing multivalue properties to be set via specific property names, just like display, border, margin, and
padding.

Example
column-rule-width: width;

-moz-column-rule-width: width;

-webkit-column-rule-width: width;

column-rule-style: style;

-moz-column-rule-style: style;

-webkit-column-rule-style: style;

column-rule-color: color;

-moz-column-rule-color: color;

-webkit-column-rule-color: color;

APPLY IT

124

3	 Open your CSS file or scroll to the
<style> block in your HTML file.

4	 Type div.multi-column > element
{ to select anything with the class
under the parent selector.

5	 Type column-span: all; to activate
the column-spanning property.

6	 Type }.

1	 Create a multi-column layout HTML
and CSS code.

2	 Identify spanning text blocks to
begin a new multi-column layout.

Note: If you have several different
elements that you want to span, you
may want to consider creating a new
class, such as <element
class=’column-span’>.

Span Objects Horizontally across Columns

T o further the look of a newspaper on your web page,
you can span objects horizontally across columns to

display headlines, bylines, and figures that cover the entire
width of the columns:

selector > child {
 column-span: none|all;
 -moz-column-span: none|all;
 -webkit-column-span: none|all;
}

The value for column-span can be only one of two
keywords: none, which is the default, or all, which is the
entire width.

Whatever you are spanning horizontally must be a display:
block object such as a paragraph, heading, or other
semantic tag group. Despite its name, do not use the
tag because it displays inline. If you are unsure, you can
always force an element to be displayed as a block object.

For example, to span an image across all columns, you
would do something like this:

div.multi-column > img {
 column-span: all;
 -moz-column-span: all;
 -webkit-column-span: all;
 display: block;
}

Span Objects Horizontally across Columns

2

2

54

6

125

CHAPTER

6Creating Boxes and Columns with CSS3

0	 View your HTML file in a web
browser.

A	In this example, the headings
span across the multi-column
layout.

B	The text after the second
column-span: all creates a
new multi-column layout.

7	 Repeat step 5 with the Mozilla
and WebKit flexible box prefixes.

8	 Insert any additional formatting
properties for the multi-
column class.

9	 Save your CSS file.
7

8

10
A

A

B

The current multi-column layout specification stipulates
that column-span can be only an all-or-nothing type
of property. This means that it can span the entire
multi-column width or none at all. Therefore, for
example, it is impossible to configure an object to span
only two of three columns.
Up to this point, this chapter has discussed a Â�
multi-column layout that may seem overkill for basic
website design. There is a shortcut property available,
columns, which sets column-width and column-
count at once:

div.multi-column {

 columns: 200px 3;

 -webkit-columns: 200px 3;

}

Depending on the amount of text contained within <div
class=’multi-column’>, this example will span
three columns, but only if the browser width is greater
than 3 × 200 px plus the column-gap. If it is less,
one or more columns will be removed, maintaining
the per-column width.

EXTRA

126

1	 Open an HTML file and locate the <form>
tag group to which you want to add a
number input type.

2	 Type <input type=’number’ name=’field’.

A	Optionally, type value=’number’ to assign
a default number value.

B	Optionally, type min=’number’
max=’number’ step=’number’ to specify
an allowable number range and stepping
period.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a web browser.

	 The number input field appears.

6	 Clicking either arrow button or using your
scroll wheel will increment and decrement
the number field.

C	Optionally, type a number beyond the
range of the minimum or maximum and
submit the form.

D	A rejection message appears.

Note: The nonnumeric characters are
automatically purged from numeric fields when
you submit the form.

Create a Number Input Type

You can use the number input type to restrict input fields
to numeric values only. Supported web browsers will

inhibit any nonnumeric data from being submitted. You
can set a minimum and maximum number range and an
interval. If a number is outside of the specified range or is
not divisible by the stepping value, it will be rejected with
a pop-up message.

<input type=’number’ name=’field’
value=’number’ min=’number’ max=’number’
step=’number’>

The type=’number’ attribute value activates the
number-specific input options of the user’s web browser, if
supported. Additional input element attributes, such as
name and value, have the same meaning and functionality

common in HTML forms. Any combination of the min,
max, and step attributes can be optionally applied. step
specifies the interval size of valid numbers, starting at 0,
unless min is specified.

When the number input type is activated, a pair of up and
down buttons will appear beside the input field.

The number input type feature is supported by all recent
releases of Chrome and Opera. For older and other web
browsers, the number input type falls back to a text input
type. For this reason, do not rely on the web browser
to error-correct your numeral form inputs! Proper error-
correction and validation must also occur on the server-side
CGI script that receives the submitted form.

Create a Number Input Type

2

3

B

A

5

6

D

C

127

CHAPTER

7

1	 Open an HTML file and locate the
<form> tag group to which you want
to add a telephone input type.

2	 Type <input type=’tel’ name=’field’.

A	Optionally, type value=’telephone’ to
assign a default telephone number.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a mobile web
browser.

6	 Touch the field to bring up the virtual
keyboard.

	 The keyboard appears like a
telephone keypad.

Note: When this input type is viewed on a
desktop browser, nothing special happens.

Create a Telephone Input Type

You can use the telephone input type to accept into an
input field telephone numbers and characters such

as +, -, and a space. When a web form requires a phone
number for an input field, it is relatively simple for desktop
users to simply type in a phone number, but on mobile
web browsers, there is no point in displaying a full-sized
virtual keyboard; instead, only a numeric keypad with the
telephone-related characters appears.

<input type=’tel’ name=’field’
value=’telephone’>

The type=’tel’ attribute value activates the telephone-
specific input options of the user’s web browser, if supported.
Additional input element attributes, such as name and
value, have the same meaning and functionality common in
HTML forms.

Because newer HTML5 desktop web browsers do not pay
special attention to the telephone input type itself, they

treat it as a normal text input type, just like pre-HTML5
browsers. Therefore, it is relatively safe to deploy this
on your website today. No special sanitization or value
restriction is done by the browser, mobile or desktop —
meaning do not assume that the data entered by the user is
an actual phone number.

If you want to restrict the value to syntax that looks like
a phone number, see the section “Restrict Input Values
Using Pattern Matching” later in this chapter. Be careful
implementing this, as telephone number syntax varies
worldwide. However, if your form requires a North American
telephone number, adding the attribute pattern=’[0-9]
{3}-[0-9]{3}-[0-9]{4}’ is acceptable.

This feature is supported by all recent releases of iOS Safari
and the Android browser.

Create a Telephone Input Type Creating HTML5 Form Inputs

2

3

A

6

128

1	 Open an HTML file and locate the
<form> tag group to which you
want to add an email input type.

2	 Type <input type=’email’
name=’field’.

A	Optionally, type value=’email’ to
assign a default email value.

B	Optionally, type multiple.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a web
browser.

6	 Type in an invalid email address.

7	 Submit the form.

C	A message appears, saying that
the address is formatted
incorrectly.

Note: Chrome does not permit additional
spacing around an email address. With
multiple, this includes spacing around
the comma. Firefox and Opera ignore
any additional spacing.

Create an Email Input Type

You can use the email input type to restrict input
fields to values formatted like email addresses only.

Supported web browsers will reject values that are not
formatted with an @ sign and a specific domain name with
a TLD (top-level domain), such as user@domain.com — or
to be precise, values that do not follow RFC5322. Note this
feature makes no effort to verify that the user owns the
email address provided or whether it is even real.

<input type=’email’ name=’field’
value=’email’ multiple>

The type=’email’ attribute value activates the email-
specific input options of the user’s web browser. Additional
input element attributes, such as name and value, have
the same meaning and functionality common in HTML
forms. In addition, the optional multiple attribute can be

used to allow the user to insert multiple email addresses,
separated by a comma.

The email input type is executed differently on some
mobile web browsers, such as iOS Safari and Firefox Mobile.
These browsers display a keyboard optimized for entering
in email information, making it easier to access common
email-related characters, such as @ and “.com.” Note that
both browsers do not check for RFC5322 validation and may
allow any value to be submitted.

Email address validation is supported by all recent releases
of Chrome, Firefox, and Opera. For older and other web
browsers, the email input type falls back to a text input
type. For this reason, do not rely on the web browser to
error-correct your email form inputs! Proper error-correction
and validation must also occur on the server-side CGI script
that receives the submitted form.

Create an Email Input Type

2

3

A B

5

6 7

C

129

CHAPTER

7Creating HTML5 Form Inputs

1	 Open an HTML file and locate the
<form> tag group to which you want
to add a URL input type.

2	 Type <input type=’url’ name=’field’.

A	Optionally, type value=’url’ to assign
a default URL value.

Note: Even if you do not have a default
URL, setting value=’http://’ will
encourage users to type in the rest of the
address with the proper prefix.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a web browser.

6	 Type an incomplete or badly formatted
URL.

7	 Submit the form.

B	A pop-up message appears, requesting
a valid URL address.

8	 Open your HTML file in a mobile
browser, such as iOS Safari. Touch in
the URL field.

C	The keyboard changes to display the
/, period, and “.com” keys.

Create a URL Input Type

You can use the URL input type, new in HTML5, to restrict
input fields to values formatted like an absolute HTTP or

HTTPS Internet address prefix. Supported web browsers will
reject values that are not formatted with a proper prefix, but
the address itself is not verified to determine whether it is real.

<input type=’url’ name=’field’ value=’url’>

The type=’url’ attribute value activates the URL-specific
input options of the user’s web browser, if supported.
Additional input element attributes, such as name and
value, have the same meaning and functionality common
in HTML forms. If you assign value=’url’ to prepopulate
the input field, the URL should be formatted with a proper
prefix, such as http://www.mydomain.com, but if not it
will still be inserted into the form. As such, unless the user
edits the value, the form input will be rejected.

Additionally, the URL input type provides hints to some
mobile web browsers such as iOS Safari to display a keyboard
optimized for entering in URL information. This makes it
easier for the user to access common URL-related characters,
such as a period, /, and “.com.” Note that Mobile Safari
does not do the URL-formatting test and may allow any
information to be submitted.

This feature is supported by all recent releases of Chrome,
Firefox, Opera, and iOS Safari. For older and other web
browsers, the URL input type falls back to a text input
type. For this reason, do not rely on the web browser to
error-correct your URL form inputs! Proper error-correction
and validation must also occur on the server-side CGI script
that receives the submitted form.

Create a URL Input Type

3

A2

5

6 7

B
C

130

1	 Open an HTML file and locate
the <form> tag group to which
you want to add a search input
type.

2	 Type <input type=’search’
name=’field’.

A	Optionally, type value=’query’
to assign a default query value.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a web
browser.

6	 Start typing in a search query.

B	In Chrome and Safari, an X
appears, allowing you to clear
your search field.

Note: Safari also rounds the edges of
input search fields.

Create a Search Input Type

You can use the search input type, new in HTML5, to
create an input field designed to support a search

query. Supported web browsers will apply additional
user interface elements to make the query prompt more
functional:

<input type=’search’ name=’field’
value=’query’>

The type=’search’ attribute value activates the
search-specific input options of the user’s web browser, if
supported. Additional input element attributes, such as
name and value, have the same meaning and functionality
common in HTML forms.

At a fundamental level, the search input type simply acts
like a text input type, except for some very minor user
interface changes. Specifically, in Chrome, an X appears to
the right of the text field; clicking it will clear the search
query. In addition, in Mac OS X Safari, the search field
appears rounded so that it is consistent with the user
interface of other Apple products, such as iTunes.

The search input type feature is supported by all recent
releases of Safari, Chrome, Firefox, and Opera. For older and
other web browsers, the search input type falls back to a
text input type.

Create a Search Input Type

2

3

A

5

6 B

131

CHAPTER

7Creating HTML5 Form Inputs

1	 Open an HTML file and locate
the <input> tag in which you
want to require a value.

2	 Type required as a new
attribute for the input
element.

Note: You may use required=’on’;
however, the value itself is irrelevant.

3	 Save the HTML file.

4	 Open your HTML file in a web
browser.

5	 Click the Submit button,
ignoring the required field.

A	A pop-up message appears over
the required field that was
ignored.

Require a Value in an Input Field

You can use the new required input attribute to force
the user to supply a value in any input field. Supported

web browsers will pop up a simple message saying that
the field is required if the user attempts to submit a blank
value:

<input ... required>

The required attribute, when applied to an input element,
activates the require-input feature in the user’s web
browser, if supported.

One unfortunate problem with the require-input feature
is that if multiple fields are required and missing a value,
only the first one will receive the pop-up notification error.
The user will need to correct the first problem and submit
the form again before being notified of the second error.

To sidestep this issue, simply make it clear which fields
are actually required by labeling them in the HTML form
differently, as in the following:

First name (required): <input type=’text’
name=’firstname’ required>

Last name (required): <input type=’text’
name=’lastname’ required>

Address: <input type=’text’ name=’address’>

The require-input feature is supported by all recent releases
of Chrome, Firefox, and Opera. For older and other web
browsers, the required attribute is ignored. For this
reason, do not rely on the web browser to error-correct your
required form inputs! Proper error-correction and validation
must also occur on the server-side CGI script that receives
the submitted form.

Require a Value in
an Input Field

2

4

5

A

132

1	 Open an HTML file and locate
the text-based <input> tag in
which you want to put a
placeholder.

2	 Type placeholder=’text’ as a
new attribute for the input
element.

3	 Save the HTML file.

4	 Open your HTML file in a web
browser.

A	The placeholder text appears in
the form input field.

5	 Type something into the text
field.

	 The placeholder text disappears.

Set a Placeholder for an Input Field

You can use the placeholder input attribute to
insert a one-line text string into any text-based input

field. When the form loads, supported web browsers will
display this string in the input area with gray text and
automatically clear it when the user attempts to type in
a value. This is useful to provide a subtle description or
formatting hints that the user is expected to follow in order
to submit your form:

<input type=’text’ ... placeholder=’text’>

The type attribute can be a text-based input type, such
as text, telephone, url, email, and search. The
placeholder attribute value appears as gray text in
the input field itself, if supported. When the user clicks
in the field, the placeholder text disappears, allowing the
user to type.

Because the placeholder text can be used to advise the user
how to format an input value, you may want to combine it
with the pattern attribute, described later in this chapter in
the section “Restrict Input Values Using Pattern Matching.”
This enables you to instruct the user how to format an answer
and provides a way to enforce correctly formatted answers.

For example, a company warranty form may require a 15-digit
product serial number like this:

Product Serial number (required):
<input type=’text’ name=’serialnum’
placeholder=’Enter all 15 digits’
pattern=’[0-9]{15}’ required=’on’>

The placeholder feature is supported by all recent releases
of Safari, Chrome, Firefox, and Opera. For older and other
web browsers, the placeholder attribute is ignored, and
the text field is rendered empty.

Set a Placeholder for an Input Field

2

4

5

A

133

CHAPTER

7Creating HTML5 Form Inputs

1	 Open an HTML file and locate the
<input> tag on which you want to
auto-focus.

2	 Type autofocus as a new attribute for
the input element.

Note: Remember, the value itself is
irrelevant; you could use autofocus=on to
make the end result clear.

3	 Save the HTML file.

4	 Open your HTML file in a web browser.

A	The text input element
automatically has focus; the insertion
point cursor flashes ready for input.

Note: If multiple input elements are set to
auto-focus, in Firefox the first input receives
the focus and the cursor, but in Chrome,
Safari, and Opera, it is the last input.

Auto-Focus on an Input Field

You can use the autofocus input attribute to
automatically move the user’s cursor, or insertion point,

directly to any input field as soon as the web page loads.
This is useful to direct the user to input fields that are
required to be populated early after the page loads, such as
a username field:

<input ... autofocus>

The autofocus attribute activates the auto-focus feature
in the user’s web browser, if supported. The attribute does
not require a value — in fact, its value can be anything;
the browser only looks for the attribute name to enable
the feature. This means that you could use the value on
if it makes better sense to you; however, even if you set
autofocus=off, it will still be enabled! The browser pays
no attention to this attribute’s value.

The auto-focus feature is supported by all recent releases of
Safari, Chrome, Firefox, and Opera. For older and other web
browsers, the autofocus attribute is ignored. Fortunately,
this feature can easily be implemented using a little
fallback JavaScript with jQuery. For example, after you load
the jQuery library as described in Chapter 8, “Using jQuery
with HTML5,” the following code will auto-focus input
elements with the autofocus attribute defined, even if
the attribute is not natively understood:

<script type=’text/javascript’>
 $(function(){
 $(“input[autofocus]”).focus();
 });
</script>

Auto-Focus on an Input Field

2

4

A

134

1	 Open an HTML file and locate the <form>
tag group in which you want to disable
auto-completion.

Note: Auto-complete is on by default on all
forms and text input types.

2	 Type autocomplete=’off’ within an
<input> tag to disable auto-completion
only on this element.

Note: In this example, two input fields are
used, one with auto-completion enabled and
one disabled.

3	 Save the HTML file.

4	 Open your HTML file in a web browser.

5	 Insert and submit text into the fields.

6	 Reload the form.

7	 Insert the beginning characters again.

A	A pull-down list appears of the completed
value only in the enabled field.

	 Optionally, in the code, type
autocomplete=’off’ in the <form> tag to
disable auto-complete in the entire form.

	 No new auto-completion values will be
cached.

Disable Auto-Completion of Input Text

You can use the autocomplete input attribute to
instruct the browser how it should remember the

values in a form after it is submitted. When the form loads
again, supported web browsers will present a pull-down list
showing all previous values after the user types the first
character that matches a previously used value. This feature
is enabled by default, but should be disabled for security
text fields, such as usernames and Q&A authentication.

You can disable it on your website by applying
autocomplete=’off’ to a form tag:

<form ... autocomplete=’off’>
<input type=’text’ ... >
</form>

Or set autocomplete=’off’ on individual input elements;
no values will be cached, nor will a pull-down list appear:

<form ... >
<input type=’text’ ... autocomplete=’off’>
</form>

There is a strange quirk here you should be aware of. If you
leave auto-complete enabled on a form and then later decide
to disable it, you must actually deactivate the attribute on
the form and the input elements! autocomplete=’off’ on
the form will disable any new values from being cached, but
previously cached values will still appear in input element
pull-down lists. If your website is not yet deployed, you only
need to disable auto-complete on the form.

Disable Auto-Completion of Input Text

2

4

5 5

6

7 7

5

A

135

CHAPTER

7Creating HTML5 Form Inputs

1	 Open an HTML file and locate the
text-based <input> tag for which
you want to use speech input.

2	 Type x-webkit-speech as a new
attribute for the input element.

3	 Save the HTML file.

Using Speech Input

The Google Chrome web browser supports a speech input
feature, which enables the user to transcribe voice data

into text input values. Although this is not currently a
part of any official HTML5 specification, you can add the
attribute x-webkit-speech to text-based form inputs to
activate it:

<input type=’text’ ... x-webkit-speech>

Unlike what the name implies, this feature is not supported
by any other WebKit browsers.

The type attribute can be a text-based input type, such as
text, number, telephone, and search. This is limited
because x-webkit-speech is accessible only within
simple text or number attributes and will not work on the
URL, email, or date input type elements.

This feature is supported in Chrome 11 and later. All other
browsers simply ignore the special attribute, thus causing

no compatibility issues if you add this feature to your
website.

The new Google Speech API actually performs the voice-to-
text conversion. This means that the speech input feature’s
algorithm and code is not found locally on the user’s web
browser but is accessible only over the Internet and kept
proprietary by Google’s licensing and copyright.

In fact, as of August 2011, the Google Speech API is not
yet publicly documented. However, some enterprising users
have identified its interface code in Chrome and have
produced simple third-party programs to interact with it.
A useful blog post by Mike Pultz on March 2011, at http://
mikepultz.com/2011/03/accessing-google-speech-api-
chrome-11/, demonstrates a simple program that interfaces
with the API outside of Chrome, by uploading a FLAC sound
file to a Google web service.

Using Speech Input

2

4

5

A

B

4	 Open the HTML file in Chrome 11 or
later.

5	 Click the microphone icon.

Note: If you do not have a microphone
installed on your computer, an icon may
not appear.

6	 Speak into your microphone.

A	The input monitor moves as the
microphone and browser records
your voice.

B	The Google Speech API will attempt
to convert your voice into text for
the input field.

http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11/
http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11/
http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11/

136

3	 Type <datalist id=’listid’>.

4	 Type </datalist>.

Note: Multiple <input> tags can share the
same <datalist> tag group.

Note: The <datalist> group can appear
anywhere within the body of your web page.
It does not need to reside within the <form>
tag group or near the targeted <input> tag.

1	 Open an HTML file and locate the
text-based <input> tag to which you
want to add a suggestion list.

2	 Type list=’listid’.

Create a Drop-Down List for Text Input Suggestions

If you have a text input field that supports text input and
you want to provide a subtle list of suggested values,

you can create a drop-down list of suggestions that will
appear immediately under the form input as the user starts
typing.:

<input type=’text’ ... list=’listid’>
<datalist id=’listid’>
 <option label=’label1’ value=’value1’>
 <option label=’label2’ value=’value2’>
 ...
</datalist>

The type attribute can be a text-based input type, such
as text, telephone, email, and search. In the input
element, add a new attribute, list, and assign it an
identifier. The datalist element must have a matching
id attribute value, binding the datalist’s options to

that input element. Within datalist, define a series of
option elements with label and value attributes; label
will appear in the drop-down list, and value will be used
when the form is submitted.

When the drop-down list is rendered, the content that
appears depends on the browser. In Opera, both the label
and value attributes appear on the list; in Firefox, only the
label attribute appears. As such, the text will be filtered on
both attributes in Opera and only on one in Firefox.

Other web browsers ignore the list attribute and
<datalist> tag. The input element will act like a normal
text field. Therefore, implementing this feature today is
relatively safe; however, read the Extra for an important
footnote about Safari.

Create a Drop-Down List for Text Input Suggestions

2

3
4

137

CHAPTER

7Creating HTML5 Form Inputs

EXTRA

5	 Type <option label=’label’
value=’value’> to define a
single suggested input option.

6	 Repeat step 5 for any additional
suggested text options.

7	 Save the HTML file.

8	 Open your HTML file in Opera.

9	 Start typing text in a text input
field.

A	A drop-down list of suggested
text input values and labels
appears.

0	 Click a suggestion to insert the
value in the input field.

Note: If you simply continue typing a
unique value, all suggested text
options will disappear.

!	 Open your HTML file in Firefox.

@	 Start typing text in a text input
field.

B	A drop-down list of suggested
text labels appears.

6
5

11

10

8

12
9

B
A

Safari versions prior to 5.1 may experience major
problems with the suggested drop-down list feature. The
browser will simply stop rendering any HTML content
after the <datalist> tag group!
This bug is caused by unclosed <option> tags found
within <datalist>. Simply closing the <option> tag
allows Safari to render the web page:

<datalist id=’listid’>

 <option label=’label1’ value=’value1’></option>

 <option label=’label2’ value=’value2’></option>

 ...

</datalist>

Naturally, the actual drop-down list feature will still not
work, as Safari itself does not support it, but at least the
rest of the page will be rendered correctly. The HTML5
specification does not specify whether the <option> tag
requires a closing tag. Fortunately, the other browsers
that do support this feature will continue to work.

138

1	 Open an HTML file and locate
the text-based <input> tag for
which you want to restrict
input.

2	 Type pattern=’pattern’ to
define a restrictive regular
expression pattern.

Note: In this example, the pattern
used, [A-Z]{3}, represents exactly
three characters, suitable for an ISO
3166-1 three-character country code.

3	 Save your HTML file.

4	 Open your HTML file in a web
browser.

5	 Insert an incorrect value in the
restricted text field.

6	 Submit the form.

	 The form submission is aborted.

A	A pop-up appears, displaying a
generic text message requesting
the required format.

Restrict Input Values Using Pattern Matching

You can use the pattern matching attribute, new in
HTML5, to restrict input fields to values that follow a

custom formatting pattern that you define. This is useful
if you need to ensure that the user submits correctly
formatted values; otherwise, the browser displays a message
to the user and stops the form submission process:

<input type=’text’ ... pattern=’pattern’
title=’title’>

The type attribute can be a text-based input type, such as
text, number, telephone, and search. The pattern
variable represents a regular expression syntax that defines
the format of acceptable values that can be submitted by the
user. A regular expression allows you to restrict values to very
specific, finely tuned formats. Because different programming
languages have different regular expression syntaxes, HTML5
follows the JavaScript pattern syntax. The title variable
is a plain-text explanation of what the regular expression

represents. It will be displayed to the user as a pop-up
bubble if the user’s value does not match pattern.

There is not enough space here to fully describe the
JavaScript pattern semantics, but there are some excellent
websites available. One such resource is the JavaScript
Programmer’s Guide to Regular Expressions, www.
javascriptkit.com/javatutors/redev.shtml. This tutorial covers
JavaScript declarations, patterns, flags, and methods; note
that only the patterns’ syntax applies to this HTML5 feature.

Input pattern matching is supported by all recent releases
of Chrome, Firefox, and Opera. For older and other web
browsers, the pattern attribute is simply ignored. For this
reason, do not rely on the web browser to error-correct
your restricted form inputs! Proper error-correction and
validation must also occur on the server-side CGI script that
receives the submitted form.

Restrict Input Values Using Pattern Matching

2

4

5 6

A

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.javascriptkit.com/javatutors/redev.shtml
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.javascriptkit.com/javatutors/redev.shtml

139

CHAPTER

7Creating HTML5 Form Inputs

0	 Reload your HTML file in a
browser.

!	 Again, insert an incorrect value
in the restricted text field.

@	 Submit the form.

	 The form submission is stopped.

B	A pop-up appears, displaying the
text from the title attribute.

7	 Return to your HTML file.

8	 Type title=’title’ to supply a
simple explanation of the
pattern.

9	 Save your HTML file.

8

10

11 12

B

Be careful about mixing the pattern attribute with input types other than text in Opera: Although Opera 11 will
honor type=’text’ pattern=’pattern’ attributes, using type=’tel’ pattern=’pattern’ to enforce a
specific telephone number format will cause the pattern-matching validation to be ignored! This is because Opera
supports pattern matching only on free-text fields, whereas other browsers support it on restricted text fields as well.
In addition, the browsers that do not support the pattern attribute, such as Internet Explorer and Safari, do
understand the title attribute. This will allow your
plain-text explanation of the regular expression to
appear in a subtle pop-up message when the users
hover their mouse cursor over the input field.

EXTRA

140

Use the HTML5 Date Input Type
1	 Open an HTML file and locate the

<form> tag group to which you
want to add a date input type.

2	 Type <input type=’date’
name=’field’>.

	 Optionally, type value=’date’ to
assign a default date value.

3	 Save your HTML file.

4	 Open your HTML file in Opera.

5	 Click the date field.

A	The date pop-up appears.

6	 Click a date or the Today button to
fill in the date input field.

7	 Open your HTML file in Chrome.

8	 Click the up arrow.

B	The date is increased one day from
today.

Create a Date Input Type

You can use the date input type, new in HTML5, to restrict
input fields to values formatted like a date string:

<input type=’date’ name=’field’ value=’date’>

The type=’date’ attribute value activates the date-specific
input options of the user’s web browser, if supported. If you
assign value=’date’ to prepopulate the input field, the
date format should match the yyyy-mm-dd format.

Other date-related input types are also available in HTML5:
month, week, time, datetime, and datetime-local.
The type=’month’ and type=’week’ input types are
similar to type=’date’ in idea, except that they follow a
yyyy-mm and yyyy-Www format. To clarify, the week syntax
is four year digits, followed by a literal W and then two
week digits, such as 2011-W24.

Time can also be represented here and optionally appended
to date. The time follows the 24-hour format hh:mm:ss.
mmm. When accepted for input here, the user may
optionally omit the lesser time units, such as seconds and
milliseconds, and only specify a time like 13:54.

The date input type feature is supported by all recent
releases of Safari, Chrome, and Opera. However, as of
Chrome 13 and Safari 5.1, support for the date input type is
very weak. Opera provides the best level of support today.
For all older and other web browsers, the date input type
falls back to a text input type.

Because not many browsers support the date input type,
there are several third-party JavaScript fallbacks that
can easily be employed. jQuery UI provides a Datepicker
function that can be used as a fallback; you can download
it from http://jqueryui.com/demos/datepicker.

Create a Date Input Type

2

7

6

6

4

8

A

B

http://jqueryui.com/demos/datepicker

141

CHAPTER

7Creating HTML5 Form Inputs

Use a Date Input Fallback Script
9	 Import the jQuery UI library,

including its CSS and JavaScript
code.

0	 Type $(function() {
$(“#datepicker”).datepicker()
}); to initialize the Datepicker
in JavaScript.

!	 Type id=’datepicker’ on the
date input element to identify
it for the jQuery UI.

@	 Save your HTML file.

#	 Open your HTML file in Chrome
or Firefox.

$	 Click the date field.

C	The jQuery UI Datepicker
appears.

%	 Select a date.

	 The selected date is written to
the date field.

9

10

11

13

15

14

C

When you select a jQuery UI Datepicker date, the format is dd/mm/yy, which conflicts with the HTML5 format. To
standardize this, add the following line after $(“#datepicker”).datepicker():

$(“#datepicker”).datepicker(“option”,”dateFormat”,”yy-mm-dd”);

Note, in the jQuery UI, yy expands the year in four digits.
After you have a working native HTML5 date picker and a working JavaScript date picker as a fallback, you will
need to inhibit the JavaScript fallback if the HTML5 method is properly supported; otherwise, the UI layouts can
conflict with each other!
To solve this problem, you can use a JavaScript library called Modernizr, downloadable from www.modernizr.com.
This library can detect whether individual features are supported and allow for a fallback process to execute.
Ensure that the jQuery, jQuery UI, and Modernizr libraries are all imported, as described in Chapter 8.

<script>

 $(function() {

 if (! Modernizr.inputtypes.date)

 $(“#datepicker”).datepicker();

 });

</script>

APPLY IT

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.modernizr.com

142

1	 Open an HTML file and locate a
<form> tag group to which you want
to add a range input type.

2	 Type <input type=’range’
name=’field’.

A	Optionally, type value=’number’ to
assign a default number value.

B	Optionally, type min=’number’
max=’number’ to assign allowable
minimum and maximum number
values.

	 Optionally, type step=’number’ to
assign a number interval rate.

Note: If undefined, min is 0, max is 100,
step is 1, and value is 50% of the range.

3	 Type >.

4	 Save your HTML file.

5	 Open your HTML file in a web browser.

C	The range input element appears.

Note: The slider UI changes depending on
the operating system and web browser the
page is loaded under.

Create a Range Input Type

You can use the range input type, new in HTML5, to
create a sliding input field. Supported web browsers will

display a slider bar and a thumb piece that can be moved
left and right. The value of the input element changes
depending on the position of the thumb piece:

<input type=’range’ name=’field’
value=’number’ min=’number’ max=’number’
step=’number’>

Because the range input type is effectively a slider version
of the number input type, it also supports the same optional
min, max, and step attributes. If absent, min defaults to 0,
max is 100, and step is 1. The value attribute automatically
defaults to one-half of max minus min, or 50.

In WebKit browsers, you can customize the slider CSS itself.
This is done by disabling the -webkit-appearance
property and then applying your own CSS declarations to
the input element directly:

input[type=’range’] {
 -webkit-appearance: none;
 property: value;
 ...
}

To modify the movable thumb piece, duplicate this format
and append ::-webkit-slider-thumb to the selector.

The range input type feature is supported by all recent
releases of Safari, Chrome, and Opera. For older and other web
browsers, the range input type falls back to a text input type.

Create a Range Input Type

2

3

A B

5

C

143

CHAPTER

7Creating HTML5 Form Inputs

6	 Open your CSS file or scroll to the
<style> block in your HTML file.

7	 Type input[type=’range’] {
-webkit-appearance: none;
property: value; ... } to
customize the slider bar in
WebKit browsers.

8	 Type input[type=’range’]::-
webkit-slider-thumb { -webkit-
appearance: none; property:
value; ... } to customize the
slider thumb piece in WebKit
browsers.

9	 Save your CSS file.

0	 Reload your HTML file in Chrome
or Safari.

D	The range input element
appears, with the custom CSS
layout.

Note: Some browsers, such as Firefox,
do not understand the webkit
property names but will understand
your CSS selector in step 7. Because
Firefox will fall back to a text input
type, it will also apply the non-webkit
CSS properties!

6

7

8

10

D

You may find it useful to display actual number values beside the range slider. This can easily be accomplished with
jQuery code that listens for changes on the input element, reads the current value, and inserts it in an <output>
tag group after the slider UI display.

APPLY IT

RESULT

The current value is displayed in the output
element immediately after the range slider. It
updates as the user moves the slider left and right.
Note that the CSS ID range1 was used to link
the input and output elements in jQuery. If you
have multiple input range elements on the same
page, pair each with its own output element
through a unique identifier they can share.

TYPE THIS

Ensure that the jQuery library is imported, as
described in Chapter 8.
<input type=’range’ id=’range1’><output
id=’range1’></output>

<script>
 $(“input#range1”).change(function(){
 $(“output#range1”).html($(this).val());
 });
</script>

➔

144

Use the HTML5 Color Input Type
1	 Open an HTML file and locate the

<form> tag group to which you
want to add a color input type.

2	 Type <input type=’color’
name=’field’>.

	 Optionally, type value=’#rrggbb’
to assign a default color value.

3	 Save your HTML file.

4	 Open your HTML file in Opera.

5	 Click the color input field.

	 A basic color selector appears.

A	Optionally, click a basic color to
update the input field.

6	 Click the Other button.

B	A more complex color selector
appears.

7	 Click a color.

8	 Click OK.

	 The selected color is displayed in
the color field.

Create a Color Input Type

You can use the color input type, new in HTML5, to
display a color selection input field on supported web

browsers. The actual color selection user interface differs
between web browsers, but the idea is to allow the user to
visually select a color via a color wheel or square and then
translate that value into a standard HTML color code:

<input type=’color’ name=’field’
value=’color’>

The type=’color’ attribute value activates the search-
specific input options of the user’s web browser, if
supported. Additional input element attributes, such as
name and value, have the same meaning and functionality
common in HTML forms. If you assign value=’color’ to

prepopulate the input field, the color should be in #rrggbb
hexadecimal color format.

Because not many browsers support the color input type,
there are several third-party JavaScript fallbacks that can
easily be employed. One of these is a jQuery plug-in called
ColorPicker, available at www.eyecon.ro/colorpicker/.

The color input type feature is supported only by recent
releases of Opera. For older and other web browsers, the
color input type falls back to a text input type. For this
reason, do not rely on the web browser to error-correct your
color form inputs! Proper error-correction and validation
must also occur on the server-side CGI script that receives
the submitted form.

Create a Color Input Type

2

4

7

8

5

6

A

B

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.eyecon.ro/colorpicker/

145

CHAPTER

7Creating HTML5 Form Inputs

Use a Color Input Fallback Script
9	 Import the jQuery library.

Note: See Chapter 8 for more information on
jQuery.

0	 Import the ColorPicker plug-in library.

!	 Type $(function() { $(“#colorpicker”).
ColorPicker({ ... }); to initialize the
ColorPicker plug-in in JavaScript.

@	 Type id=’colorpicker’ on the date input
element to identify it for the jQuery UI.

#	 Save your HTML file.

$	 Open your HTML file in Chrome or
Firefox.

%	 Click the color field.

C	The jQuery UI ColorPicker appears.

^	 Select a color.

&	 Click the Close button.

	 The selected color’s value is written to
the text field.

10
9

11

12

14

16

17

15

C

After you have a working native HTML5 color picker and a working jQuery color picker as a fallback, you will need
to inhibit the JavaScript fallback if the HTML5 method is properly supported; otherwise, the UI layouts can
conflict with each other!
To solve this problem, you can use a JavaScript library called Modernizr, downloadable from www.modernizr.com.
This library can detect whether individual features are supported and allow for a fallback process to execute.

APPLY IT

RESULT

Modernizr detects whether the
color input type is supported by
the user’s web browser. If it is
not, the jQuery ColorPicker
plug-in is allowed to initialize.

TYPE THIS

Ensure that the Modernizr library source is imported.
<script>
 $(function() {
 if (! Modernizr.inputtypes.color) {
 // Initialize ColorPicker plug-in
 // as described in step 12.
 }
 });
</script>

➔

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.modernizr.com

146

3	 Create a form input element
outside of the <form> block.

4	 Type form=’formid’ to link this
input element to the form
block.

5	 Save your HTML file.

1	 Open an HTML file and locate
the <form> tag group to which
you want to add a linked input
field.

2	 Type id=’formid’.

Link an Input Field to a Specific Form

In HTML 4.01 and earlier, all input elements needed to
be within a form element group. In HTML5, it is now

possible to store these input elements outside of the form
group, provided that you specify a form attribute in the
input element to link the two together:

<form ... id=’formid’>
</form>
<input ... name=’input1’ form=’formid’>

The same formid value must be applied to the id attribute
on the form element and the form attribute on the input
element.

Note that an input element that appears within a form
block may also be assigned to a different form using this
method. So, why exactly was the external input elements
feature added to HTML5? The short answer is obvious:

so that form input elements no longer needed to reside
within the form tag group. But when would that happen?

If you are working on a web page that needs to generate
fields dynamically in JavaScript, you may encounter a
situation in which form input elements appearing “over
here” need to supply data to a form that begins “over
there,” and vice versa. With this feature, you can be sure
you do not create any orphaned input elements.

The linked input field feature is supported by all recent
releases of Chrome, Firefox, and Opera. For older and other
web browsers, the external input elements will be ignored,
which could significantly break form functionality until
these browsers are updated. Because support is not widely
available and no proper fallback can be easily implemented,
be careful if choosing to implement this feature.

Link an Input Field to a Specific Form

2

3

4

147

CHAPTER

7Creating HTML5 Form Inputs

A	The normal input element’s value
appears.

Note: The CGI script in this example simply
dumps the CGI object received using Perl’s
Data::Dumper module.

B	The linked input element’s value
appears.

Note: If you perform this test on a browser that
does not support linked input elements, such
as Internet Explorer or Safari, the second linked
element will not be sent to the CGI script.

6	 Open your HTML file in a web browser.

	 The external input element appears
normally.

7	 Interact with the input elements.

8	 Click the Submit button.

6

7 8

A
B

It is possible to share input elements in different
forms. In the following example, you can pull
unassociated text inputs directly into a form being
submitted with jQuery.

Text: <input type=’text’ name=’text’
id=’shared’>

<form ... id=’myform1’>

 Text (myform1): <input type=’text’
name=’text-form1’>

 <input type=submit>

</form>

<form ... id=’myform2’>

 Text (myform2): <input type=’text’
name=’text-form2’>

 <input type=submit>

</form>

<script>

 $(‘form’).submit(function(){

 var form = this;

 $(‘input#shared’).each(function(){

 $(this).clone().appendTo(form);

 });

 });

</script>

This example has the added benefit of being backward
compatible with pre-HTML5 web browsers and HTML5
browsers that do not support the linked-input field
feature.

APPLY IT

148

Although it is not a part of any W3C or WHATWG specification, jQuery performs an important role as a contributor to
HTML5’s adoption: It makes common and complex JavaScript tasks much easier to implement. By simplifying large

portions of code into two or three lines, jQuery automates some of the little tricks and quirks required to execute complex
tasks across most common web browsers.

jQuery provides the fastest, easiest, and most efficient way to produce a sexy HTML5 experience. Think of it like this:
jQuery is to HTML5 as the automatic transmission is to a freeway.

Some argue that although jQuery helps you implement JavaScript, it does not help you learn it. Such is the case if you
encounter a problem that is not handled by jQuery; you are stuck, whereas a true JavaScript hacker would have no trouble
coding a solution. This is completely true. In fact, the “language shortcuts” jQuery uses seem very un-JavaScript-like, even
to mid-level JavaScript developers, which actually hinders its adoption!

Although this book does not focus on JavaScript directly, this chapter does introduce you to a few of these language
shortcuts and shows you how they can play an important role in the HTML5 world. In order for you to proceed, it is
assumed that you have at least a moderate knowledge of JavaScript, just as you should already have with HTML 4.01.

Introducing jQuery

on your web server. If you cannot download it, you may link to
an externally hosted copy. You have the option of selecting the
development format or the minimized production format. See
the section “Download jQuery” for more information.

To use jQuery, you can either download and install the
JavaScript library or use a link to a hosted copy.

Download and Install
Download the latest version of jQuery from the jQuery Project,
www.jquery.com, and save the library alongside your HTML files

Loading jQuery

The latter is preferred because this makes the placement of
your code independent of the HTML. The document-ready
method calls a function when the document is finished loading;
therefore, all your jQuery-specific code runs inside of this
handler function:

$(document).ready(function(){

 ...

});

Because this document-ready code is rather long and very
common, you can use a shortcut:

$(function(){

 ...

};

jQuery is fairly specific about when and how its functionality
can be executed. For the most part, all you need to remember is
the jQuery global function and the document-ready setup
process.

The jQuery Global Function
jQuery provides a global function with a very unorthodox name,
$ — just a dollar sign. This is automatically used as a shortcut
to provide easy access to the jQuery() global function.

The Document-Ready Setup
Before you can execute any jQuery function or method, one of
two things must happen in each web page: Your jQuery code
must be defined after all HTML code that it will manage, or you
must delay the execution of your jQuery code until after the
document has finished loading.

jQuery Library

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.jquery.com

149

Using jQuery with HTML5

CHAPTER

8
Note that you do not need an individual $(function(){...}); wrapper for each jQuery call, but you do need at least one to
house every jQuery call that is executed after the page loads. Local functions are exempt, as long as they are called from
somewhere within this document-ready block.

If you happen to forget this wrapper and your jQuery and JavaScript code is defined prior to the HTML it is manipulating, jQuery
simply will not run!

$(‘:contains()’), which are not valid in CSS3 but are
valid within jQuery.

Object Selectors
Some methods require that you select the entire document or
window object in order to proceed. You can do so by specifying
the object variable in the selector function and then calling
your method:

$(document).method();

$(window).method();

$(this).method();

The $(this) object selector is unique as it is only applicable
inside a function handle of another method. Effectively,
$(this) is a shortcut to the parent object that triggered the
original selector match.

jQuery is designed to let you select the HTML element or
elements that you are interested in and then execute a method
on them to manipulate them. The selection process uses a
syntax very similar to CSS.

CSS-Style Selectors
jQuery uses selectors that closely follow CSS. The method that
follows will be applied to all matching HTML elements:

$(‘p’).method();

$(‘div.classname’).method();

$(‘section#idname’).method();

$(‘input[attr=value]’).method();

There is a subset of non-CSS-style pseudo-class selectors
available, such as $(‘:checkbox’), $(‘:button’), and

Select HTML Elements

Applying jQuery Methods

After you have a $(selector) established, you can begin
calling jQuery methods.

Calling Methods
jQuery has methods that enable you to manipulate the DOM of
all HTML elements that match $(selector). For example, you
can add a CSS class, manipulate HTML element attributes,
change entire HTML blocks, and even make an HTML block
dynamically disappear with an animation:

$(selector).addClass(classname);

$(selector).attr(key, value);

$(selector).html(code);

$(selector).hide();

Other methods register for action events and define handler
functions when the action is performed by the user on the
selector defined.

Chaining Methods
Most jQuery methods actually return a jQuery object of the
same type as the original $(selector). This means that you
can chain multiple methods together in a single command with
a single selector:

$(selector).method1().method2().method3();

Note that depending on the method used, the contents of the
jQuery object may be slightly different than the original
selector. This is true for methods that manipulate the selected
object list itself:

$(‘input:checkbox’).css(‘background-color’, ‘red’).
find(‘:checked’).css(‘color’, ‘green’);

In this example, all input check boxes are selected, and a
background-color: red CSS declaration is applied to
them. Then, of those that were modified, find() filters out
the ones that are checked from the initial selector, allowing
css() to set color: green only to them.

150

	 The literal jQuery source appears
in your web browser.

4	 Right-click anywhere on the
page.

5	 Click Save As.

6	 Select your website directory.

7	 Click Save.

	 jQuery is now downloaded and
ready for you to load into your
website.

1	 In a web browser, go to the
jQuery Project page at www.
jquery.com.

2	 Click Development.

Note: When you are ready to deploy
jQuery on your live website, download
the Production version.

3	 Click Download jQuery.

Download jQuery

In order to use jQuery on your website, you can download
it from its home page at www.jquery.com or use a CDN

(content delivery network) hosted copy of the software. The
CDN method is described on the next page and does not
require you to download anything.

If you prefer to have a local copy, you can proceed with the
procedure described here.

jQuery is available for download in two release formats: a
minimized production format and an full-sized development
format. The production format is useful if you have used
jQuery before or are more interested in speed and efficiently
loading the library on a production website.

The examples in this book use the development format because
this version is most useful for understanding how jQuery works,
especially later on when you use the Chrome Inspector.

The download process itself is not like a typical program
that you download online. Instead, the jQuery source is

displayed right in the web browser; you need to save the
page as a file on your hard drive and then transfer that file
to your web server. After it is downloaded, you can load
jquery.js into your website.

jQuery also provides hundreds of third-party plug-in libraries
that allow for specialized functionality. These plug-ins are
available at the jQuery Project Plug-ins page http://plugins.
jquery.com, and they follow the same basic download and
install process described here and in the following section.

Although most of these third-party plug-ins are simple
hacks, some have grown into standalone projects
themselves, such as jQuery UI. Available at http://jqueryui.
com, this plug-in extends jQuery by adding in themes,
widgets, and even more effect animations. Note that jQuery
UI’s download process is different from jQuery itself: You
download a Zip archive that contains the JavaScript library,
CSS library, and supporting documentation and examples.

Download jQuery

1

2

3

5

4

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.jquery.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.jquery.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.jquery.com
http://plugins.jquery.com
http://plugins.jquery.com
http://jqueryui.com
http://jqueryui.com

151

CHAPTER

8Using jQuery with HTML5

From a Downloaded Copy
1	 Download jQuery.

2	 Open an HTML file in a text editor.

3	 Type <script type=’text/javascript’
src=’jquery-version.js’></script>
into the <head> group.

Note: For the Production version, use
jQuery-version.min.js.

4	 Save your HTML file.

	 jQuery is ready to use.

Note: Stop here. There is no need to load
jQuery over CDN if you load it locally.

From a CDN
1	 Go to http://docs.jquery.com/

Downloading_jQuery#CDN_Hosted_
jQuery.

2	 Right-click the CDN that you want.

3	 Click Copy Link Address.

4	 Open an HTML file in a text editor.

5	 Paste the CDN URL within <script
type=’text/javascript’ src=’URL’>
</script> into the <head> group.

6	 Save your HTML file.

Load jQuery

As mentioned earlier, if you choose to download the
jQuery source code, after that, the next step is to

load jquery.js into your website. If you choose to forgo
downloading and use a CDN, you still need to load the jQuery
source code into your website, but from the CDN’s URL.

Regardless of method, the syntax to load jquery-version.js
into your HTML code’s <head> block is the same:

<script type=’text/javascript’
 src=’jquery-version.js’></script>

To find a list of CDN-hosted jQuery servers, go to the jQuery
Project page at http://docs.jquery.com/Downloading_
jQuery#CDN_Hosted_jQuery. The example below uses the
code.jquery.com host, which is provided by Media Temple.
Other versions available are hosted by Google and Microsoft.

So, how do you decide which method to use? Ultimately, if
you have web server–hosting capabilities and the ability to
upload files or are developing on your own local web server,
download your own local copy. If you a producing a website
that is accessible only through an online HTML editor, you
will need to use the CDN copy.

Do not use the CDN method for a large-scale production
website; it may slow down web page load times
unnecessarily, as now you are dependent on the response
time of a third party.

Do not forget, you can always switch back and forth if your
needs ever change; simply delete the existing <script
src=’jquery.js’></script> code and repeat steps 1
to 4 below, based on your current requirements.

Load jQuery

3

1

3

2

5

http://docs.jquery.com/Downloading_jQuery%23CDN_Hosted_jQuery
http://docs.jquery.com/Downloading_jQuery%23CDN_Hosted_jQuery
http://docs.jquery.com/Downloading_jQuery%23CDN_Hosted_jQuery
http://docs.jquery.com/Downloading_jQuery%23CDN_Hosted_jQuery
http://docs.jquery.com/Downloading_jQuery%23CDN_Hosted_jQuery

152

3	 Go to your <script type=’text/
javascript’> block or a JavaScript
file loaded after jQuery.

Note: This script element can load a
separate JavaScript file where you can place
your commands. If you want to do this, add
src=’myfile.js’ to the script element
and open myfile.js in a text editor
instead.

4	 Type $(document).ready(function()
{ to begin a jQuery document-is-ready
block.

5	 Type }); to end the jQuery ready()
handler function.

1	 Open an HTML file with jQuery loaded.

2	 Identify the HTML element that you
want to manipulate with jQuery.

Execute jQuery Methods on Elements

After jQuery is loaded, you can execute any jQuery
methods using the following syntax within a <script

type=’text/javascript’> tag group:

<script type=’text/javascript’>
 $(selector).method(params);
 ...
</script>

The dollar sign is a special function exported by the jQuery
library; you use it to specify a CSS-style selector that
identifies an HTML object or objects. .method(params)
indicates what you want to apply to that selector, described
by the jQuery API. Multiple methods can be called in a row.

If your jQuery code comes before your selected HTML code,
you can instruct jQuery to wait until the page has loaded:

<script type=’text/javascript’>
 $(document).ready(function(){
 $(selector).method(params);
 ...
 });
</script>

If you look closely, the preceding wrapper uses the same
jQuery preamble but with a specific selector and method:
document indicates the root level of the DOM, the entire
document; ready() is a method that waits for the load
event on the selector; and function(){...} houses what
will be executed when the event fires.

Execute jQuery Methods on Elements

2

43

5

153

CHAPTER

8Using jQuery with HTML5

6	 Type alert($(selector).html());

Note: This code simply repeats the
literal HTML in an alert() pop-up
message; this is a good test to verify
that jQuery and the selector you chose
are working.

Note: Code within jQuery’s anonymous
function() handlers are event based
and run asynchronously from the rest
of your JavaScript code.

7	 Save your HTML and any
JavaScript files.

8	 Open your HTML file in a browser.

A	In this example, if jQuery and
your selector are good, a pop-up
message appears, repeating the
selector’s HTML code.

Note: If there is an error, you can use
the JavaScript console in your browser
to debug it. If you are using Chrome,
the Chrome Inspector can do this, as
described in Chapter 9, “Inspecting
and Debugging Your Website.”

6

8

A

You can shorten the $(document).ready() wrapper to
something a little easier to remember:

$(function(){

 $(selector).method(params);

 ...

});

As you develop jQuery source code, $(function()
{...}); is what you will use most often when you want
to execute jQuery code after the page has finished loading,
but both it and the $(document).ready(function(){
... }); wrapper are equivalent.

Some jQuery API methods do not require the
$(selector) prefix, such as utility methods, which
will never manipulate HTML elements directly.

$(function(){

 alert(“jQuery “ + .fn.jquery + “ is
successfully installed”);

});

In this example, a pop-up message appears that
executes .fn.jquery, which is an internal method that
returns jQuery’s version number.

EXTRA

154

1	 Open an HTML file with jQuery loaded.

2	 Identify the HTML element that you
want to manipulate with jQuery.

3	 Go to your <script type=’text/
javascript’> block or a JavaScript
file loaded after jQuery.

4	 Type $(function() { }); if not yet
defined.

Note: If you already have a handler function
block or a $(document).ready() block,
there is no need to create another one.

5	 Type $(selector).after(.

6	 Insert the new HTML code that will
replace the code currently found within
all elements that match selector.

7	 Type); to close off the html method.

8	 Type $(selector).html(newcode); to
change the selected elements’ contents.

Note: New HTML elements can instantly be
used as selectors. In this example, the
<figcaption> tag group that was added
with after() is being modified slightly
with html().

Manipulate HTML Elements via the DOM

You can manipulate and change HTML elements found in
the DOM with jQuery. This enables you to dynamically

change the original HTML tags and attributes rendered in
the web browser after the web page actually loads.

The HTML content within selected elements can be modified
using the html() method. Or you can inject new HTML
content before HTML elements using before() and after
using after(). In all three cases, you can specify the new
HTML code as a parameter to the method.

You can also edit the selected HTML elements by adding or
changing individual attributes. Use attr() to get or set
values or removeAttr() to remove an attribute.

Finally, you can remove selected HTML elements using
detach(). This will purge the selected element and all its
descendents from your web page.

Note that the plural “selected elements” was used to
describe these HTML manipulation methods. Remember,
the jQuery selector uses a CSS-style selector syntax and
behavior, meaning that the method used on the selector is
applied to all possible elements that match. Therefore, if
you want to manipulate only one HTML element, make sure
that its selector is specific enough, such as by using a CSS
#id with an HTML id attribute.

A complete list of all manipulation methods provided by the
jQuery API can be found at the jQuery API Reference page
at http://api.jquery.com/category/manipulation/.

Manipulate HTML Elements via the DOM

34

2

6

8

5

7

http://api.jquery.com/category/manipulation/

155

CHAPTER

8Using jQuery with HTML5

9	 Type $(selector).attr(key, value
); to add or modify an attribute in
all HTML elements that match
selector.

Note: Use removeAttr(key) to remove
an attribute from the selected elements.

0	 Type $(selector).detach(); to
remove all HTML elements that
match selector.

!	 Save your HTML and any JavaScript
files.

@	 Open your HTML file in a browser.

	 New HTML code is injected into the
document.

A	In this example, the contents of an
HTML element are modified using
html().

B	The attribute of an HTML element
is modified using attr().

	 An HTML element specified by
detach() is purged entirely.

910

12

B

A

You may think that there is not much benefit to
dynamically changing a web page immediately after it is
loaded. Why not just simply modify the original HTML
source code to the final result directly, rather than
modify it with jQuery?
The “trick” shown in the example in this section was
performed in jQuery because, as is shown in the next
section, “Customize Browser Events with jQuery,” there
are other jQuery components that can be used to
identify when a change like this should happen, and

potentially what the final result will be, based on
JavaScript events and logic.
For example, you can use jQuery to make it so that
when a user clicks button A, the page performs change
B. This makes a lot more sense from a user-interface
standpoint than simply performing change B as soon as
the page loads.
Therefore, customize browser events in jQuery so that
you can manipulate the DOM as the user interacts with
your website.

EXTRA

156

1	 Open an HTML file with jQuery loaded.

2	 Identify the HTML element that you
want to manipulate with jQuery.

3	 Go to your <script type=’text/
javscript’> block or a JavaScript
file loaded after jQuery.

4	 Go to a $(function(){ } jQuery
block or create one if it does not yet
exist.

Customize Browser Events with jQuery

One of jQuery’s strengths is its capability to modify
browser activity based on what event you are

interested in, rather than how to monitor the event and
override it, as in the traditional JavaScript process.

There are three components required when customizing a
browser event in jQuery: What is the object, what will the
user do to that object, and what process occurs when the
user does it.

The first component is easy; that is the standard
$(selector) you have used earlier. The second
component is the event method itself. Here are some of the
most common browser events you can customize:

•	 click(), dblclick() — When the user clicks or
double-clicks an object.

•	 hover() — When the user hovers over an object. Note
that this event takes two handler functions, representing
when the user hovers in and hovers out.

•	 focus(), blur() — When the user selects and
deselects a form element.

•	 submit() — When the user submits a form.

•	 keypress() — When the user presses a key.

•	 keydown(), keyup() — Divides a keypress event into
separate key-down and key-up events.

The third component is the handler function within which
an event object needs to be retrieved: function(event)
{ ... }. This helps you identify additional specifics about
the event itself.

A full list of jQuery API events, including the low-level bind()
method that provides the most flexibility, can be found at
http://api.jquery.com/category/events/.

Customize Browser Events with jQuery

34

2

7
5

8 6

5	 Type $(selector).
event(function(event){ to create a
selector and event listener and begin
the handler function.

Note: In this example, a simple click
event is used. See the jQuery API
documentation for all event methods.

6	 Verify that the selector you chose will
identify the correct target elements.

7	 Insert the code that will execute
when the event occurs.

8	 Type });.

http://api.jquery.com/category/events/

157

CHAPTER

8Using jQuery with HTML5

Note: Built-in browser events will still
execute after your event handler function
finishes.

A	Optionally, type event.
preventDefault(); to inhibit any
built-in browser event activities on
this event.

Note: Inhibiting the normal event in this
way is very useful on hyperlinks or
submit form events. It enables you to
cancel the normal click process and
perform alternative functionality.

Note: In this example, nothing normally
happens when the user simply clicks an
img element, so event.
preventDefault() has no effect.

9	 Save your HTML and any JavaScript
files.

0	 Open your HTML file in a browser.

!	 Trigger the event on an object
identified by the selector.

B	The registered event handler
function runs.

A

10

11

B

The contents of the event object differ based on what is actually clicked. One way to determine what a jQuery
event contains when an event occurs is to use the console.log() function.
Note that this is not a jQuery function, nor standard JavaScript. It is provided by some JavaScript debuggers such
as the Chrome Inspector and Firebug. It allows you to not only log an arbitrary variable or text, but also browse
complex structures, such as your event object.

APPLY IT

RESULT

Click the paragraph to trigger
the event and open the
JavaScript console. In Chrome,
click ➔ Tools ➔ JavaScript
Console. Alternatively, in
Firefox, you can install Firebug (www.getfirebug.com) and click

 to open the console.

Click to browse the event object in the JavaScript console window.

TYPE THIS
$(‘.clickme’)(function(event){
 console.log(event);
});

➔

http://www.getfirebug.com

158

1	 In your HTML file, type <span
id=’action-content’ class=’fake-
link’>Action Text to create
jQuery “links” that hide and show
content.

Note: The fake-link class makes any
nonhyperlink element appear like a clickable
link to the user. Use the CSS rule .fake-link
{ text-decoration: underline;

cursor: pointer; color: blue }.

2	 Type id=’content’ in a block that will be
hidden and displayed.

3	 Go to your <script type=’text/
javascript’> block or a JavaScript
file loaded after jQuery.

4	 Type $(‘span#hide-content’).
click(function(event)){ $(#content).
hide(500) });.

5	 Type $(‘span#show-content’).
click(function(event)){ $(#content).
show(500) });.

Note: If you have multiple objects you want to
hide and show, repeat steps 1 to 5 but replace
content with a unique identifier.

6	 Save your HTML or JavaScript files.

Hide and Show Content with jQuery

You can add special effects to your web page with jQuery,
the simplest being hide() and show(), both of which

will do as advertised, but with an optional duration
parameter that produces a transition effect to dynamically
make the content disappear and reappear in the browser.
These effects, along with animate(), fade(), and slide(),
launch when the user triggers an event such as a button click,
mouse hover, or a keypress.

So, to tie the display of one element to the event of
another, you will need to first customize the browser event
on the first event selector, as described in the preceding
section, and then in the event handler function call the
effect method on a target selector, or what you want to
manipulate.

For example, you can easily control the display of a
<element id=’content’>...</element> block by
creating two span tags and registering a click event
handler on them:

Hide Content
Show Content
<script type=’text/javascript’>
$(‘span#hide-content’).click(function()){
 $(‘#content’).hide(500)
});
$(‘span#show-content’).click(function()){
 $(‘#content’).show(500)
});
</script>

A complete list of all transition effects and display methods
can be found at http://api.jquery.com/category/effects/.

Hide and Show Content with jQuery

1

2

3
4

5

http://api.jquery.com/category/effects/

159

CHAPTER

8Using jQuery with HTML5

9	 Click the show-content object.

B	The content block reappears.

Note: The click() event can be tied
to any HTML object, such as a
paragraph, image, or table.
Furthermore, any type of event can be
used to trigger the effect, such as
dblclick(), hover(), or even a
specific keyboard letter.

7	 Open your HTML file in a
browser.

8	 Click the hide-content object.

A	The content block animates as it
disappears.

7
8

A

9

B

If you want to set an element to be hidden when the page first loads, simply set display: none to its CSS rule.
The duration argument used in this example was 500 milliseconds, or one-half second. It can be a number or
literally the text fast or slow, which indicates 200ms and 600ms, respectively.
toggle() can be used to combine hide() and show() into a single event object and flip between display states.

APPLY IT

RESULT

Clicking the fake link once will hide the
content block, and again will show it.

TYPE THIS
Toggle Content
<script type=’text/javascript’>
$(function(){
 $(‘span#toggle-content’).click(function(event)){
 $(‘#content’).toggle(500);
 });
});
</script>

➔

160

Add and Remove CSS Classes on Elements with jQuery

It is possible for you to dynamically add or remove CSS
styles on elements through established class names. This

is done by manipulating the class attribute on selected
elements. Essentially, if you create an HTML tag such as
<element>, you can dynamically convert it into <element
class=’classname’> and then back to <element>, all
through jQuery. This process is similar to adding or removing
attributes, as described earlier in this chapter, but different as
a single class attribute can have multiple values.

There are four jQuery methods that you can use to
manipulate an element’s class:

$(selector).addClass(classname);
$(selector).removeClass(classname);
$(selector).hasClass(classname);
if ($(selector).hasClass(classname)) { ... }

addClass() simply adds classname into all elements
that match selector, and removeClass() removes
classname. The hasClass() method returns a Boolean
that is true if classname is currently a member of
selector elements; otherwise, it returns false. The
toggleClass() method actually combines all three CSS
methods into one: It checks if classname is present, adds
classname if missing, and removes it if present.

Note that these methods work only when classname is
already established as a CSS rule with an element-less class
selector; a selector with no element name preceding the
period:

<style type=’text/css’>
 .classname { property: value; }
</style>

Add and Remove CSS Classes on Elements with jQuery

4

4

2

2

3
5

6

87
9

10

7

7

A

1	 Open an HTML file with jQuery loaded or a
JavaScript file loaded after jQuery.

2	 Use .classname as the parent selector
to define the CSS class styles.

3	 Go to a $(function(){ } jQuery block
or create one if it does not yet exist.

4	 Listen for browser events you can use to
add and remove the CSS manipulation code.

5	 Type $(selector).addClass(classname);.

6	 Type $(selector).removeClass
(classname);.

7	 Create a function that runs when the page
loads and when a class is modified.

8	 Type if ($(selector).hasClass
(classname)) {.

9	 Insert code that runs when the class is
present.

0	 Type }.

A	Optionally, type else { ... } and insert
code that runs when the class is absent.

!	 Save your HTML or JavaScript files.

161

CHAPTER

8Using jQuery with HTML5

$	 Trigger the event that will call
the removeClass() method.

	 The CSS class is removed.

C	The hasClass() code modifies
the display content.

@	 Load your HTML file in a web
browser.

#	 Trigger the event that will call
the addClass() method.

	 The CSS class is applied.

B	The hasClass() code modifies
the display content.

12

13

B

14

C

If you are more interested in controlling the CSS
declarations on an element directly, use the method
css() to get or set individual properties and their
values. This manipulates the style attribute in any
HTML element that matches your $(selector):

$(selector).css(property); // Get value

$(selector).css(property, value); // Set value

$(selector).css(property, “”); // Remove value

This first line returns the current value of the property
applied to the first element that matches selector.
Naturally, this getter can only read the first element

because properties are element specific; so make sure
that your selector is specific enough!
The second line sets the CSS property to value on all
elements that match selector. Unlike the getter, this
setter will work on all elements that match selector.
The third line removes property from all selected
elements, via an empty value. Note that this will work
only if the element actually has the property assigned to
its style attribute. If an element received a property
through a CSS class or ID, this method cannot remove
it, but you can still override it with the setter.

EXTRA

162

1	 Open an HTML file with jQuery loaded.

2	 Type <button class=’run-program’
data-var=’value’>Button Text</button>.

Note: Any element can be used with data-*,
such as an <a> or tag. In this example,
<button> is most appropriate as it signifies
that something will happen on-screen.

3	 Repeat step 2, using a different value for
the data-var attribute, for each
element.

4	 Go to your <script type=’text/
javascript’> block or a JavaScript file
loaded after jQuery.

5	 Scroll to a JavaScript $(function()
{...}); group or create one if it does
not yet exist.

6	 Type $(‘button.run-program’).
click(function(){ to register for a click
event on all the elements.

7	 Type var data = $(this).attr(‘data-var’);
to retrieve the custom data attribute
value.

8	 Type });.

Send Custom HTML Attribute Data into jQuery

You may have a requirement that an element link needs
to send additional data to JavaScript, beyond the

typical id and class attribute selectors and standard
element attributes. Such is the case if you have multiple
objects, each registered to the same browser click event
handler function, but additional “parameters” need to be
passed into that handler function.

This can be done by specifying arbitrary data-* attributes
in your HTML elements, which are user-defined attributes
exempt from HTML5 validation checking. In the jQuery
handler function that receives the event, you can retrieve
the attribute’s value with $(this).attr(‘data-*’).

Imagine a series of buttons that all run the same JavaScript
function run_program(), but each button runs the

function with a different parameter. You can create the
series of buttons with the same class and then set the
data-var attribute to the unique value for each button:

<button class=’run-program’ data-
var=’0’>Off</button>

<button class=’run-program’ data-var=’1’>On:
1</button>

<button class=’run-program’ data-var=’2’>On:
2</button>

<button class=’run-program’ data-var=’3’>On:
3</button>

jQuery can register a click event on the button.run-
program selector, allowing you to monitor all four buttons
at once. When the user clicks one, retrieve the custom
attribute value within the function handler with $(this).
attr(‘data-var’).

Send Custom HTML Attribute Data into jQuery

3
2

4
65

7

8

163

CHAPTER

8Using jQuery with HTML5

9	 Use the data variable wherever it is
required by your function code.

0	 Save your HTML and any JavaScript
files.

9

9

11

13

12
A

B

This example demonstrates that custom data can be stored in HTML and flow into JavaScript.
Another good use case for this feature is the pop-up window function, window.open(). This example sets the
pop-up window’s URL, width, and height in HTML and executes it in JavaScript:

Open Popup Window

<script>

$(‘a#popup’).click(function(event){

 window.open($(this).attr(‘data-url’), ‘popup’, ‘width=’+$(this).attr(‘data-width’) + ‘,height=’ +
$(this).attr(‘data-height’));

 event.preventDefault();

});

</script>

APPLY IT

!	 Load your HTML file in a web browser.

@	 Click a button.

Note: In this example, the click method
and event is used because it is the primary
event fired by the button element.

A	The event handler and function run
with that button’s custom attribute
value.

#	 Click another button.

B	The same event handler and function
run again, but this time with a
different attribute value.

164

1	 Download the jQuery ScrollTo plug-in
from http://flesler-plugins.googlecode.
com/files/jquery.scrollTo-1.4.2-min.js.

Note: This URL downloads the minimized
version of the plug-in. If you want to study
how the plug-in works, remove “-min” from
the address.

Note: Your alternative is to link directly to
the plug-in, as mentioned earlier.

2	 Open an HTML file with jQuery loaded.

3	 Type <script type=’text/javascript’
src=’plugin.js’></script> to load the
plug-in in the <head> block, after
jQuery itself is loaded.

4	 Type <nav id=’top’></nav> to create
a navigation layout.

5	 Type First Topic
to create a topic hash link.

6	 Type id=’topic1’ where you want the
first topic link to scroll to.

7	 Type <nav>Back to
Top</nav> to create a navigation
hash link.

8	 Repeat steps 5 to 7 for all other topic
hash links.

Using Scrolling Transitions with jQuery

If your website uses any
Go To Topic hash links tied to <h1 id=

’topic’>Topic Content</h1> markers on the same
page, you can use jQuery and a plug-in called ScrollTo to
provide a smooth-scrolling animation process.

Before you begin, your first option is to link directly to the
jQuery ScrollTo plug-in from your web page, as described
earlier in the chapter with the CDN method of jQuery itself,
using http://flesler-plugins.googlecode.com/files/jquery.
scrollTo-1.4.2.js.

Your second option is to download the plug-in file, place it
on your web server, and load it directly:

<script src=’jquery.scrollTo-1.4.2.js’></script>

After the file is imported, you can call the ScrollTo plug-in
anywhere within jQuery, typically from within an overridden
click event function handler, using the following code:

$(selector).scrollTo(target, duration,
settings);

You can omit the (selector) component and just use
$.scrollTo() to scroll the entire web page. target is
the DOM object you want to scroll to, duration is the
time the animation will take get there, and settings is
an optional option map of configuration options.

Additional information about the jQuery ScrollTo plug-in,
including the complete list of settings, can be found at
http://flesler.blogspot.com/2007/10/jqueryscrollto.html.

Using Scrolling Transitions with jQuery

3

5
8

8

7

4

4

8

6

http://flesler-plugins.googlecode.com/files/jquery.scrollTo-1.4.2-min.js
http://flesler-plugins.googlecode.com/files/jquery.scrollTo-1.4.2-min.js
http://flesler-plugins.googlecode.com/files/jquery.scrollTo-1.4.2.js
http://flesler-plugins.googlecode.com/files/jquery.scrollTo-1.4.2.js
http://flesler.blogspot.com/2007/10/jqueryscrollto.html

165

CHAPTER

8Using jQuery with HTML5

9	 Go to your <script type=’text/
javscript’> block or a JavaScript
file loaded after jQuery.

0	 Scroll to a JavaScript
$(function(){...}); group or
create one if it does not yet exist.

!	 Type $(‘a[href^=#]’).
click(function(){ }); to register for
a click event on the hash links.

@	 Type event.preventDefault();.

#	 Type $.scrollTo(this.hash, duration
); to activate the ScrollTo plug-in.

$	 Save your HTML or JavaScript file.

%	 Load your HTML file in a web
browser.

^	 Click one of the navigational links.

	 The page visibly scrolls down as it
moves to the selected topic.

&	 Click the link that returns you to the
navigation links.

	 The page visibly scrolls back up as it
moves to the navigation.

9
11

13

10

12

11

15

17

16

It is possible to customize the animation’s speed at different points of the routine. This is done by specifying an
easing option into $.scrollTo() and importing a second plug-in, called jQuery Easing.
Note that if you do not use the Easing plug-in, you can still use the easing option here, but the only types available
are linear and the default, swing.

APPLY IT

RESULT

The animation moves more smoothly,
starting out slowly, gaining speed, and
then ending slowly as it approaches its
target link.

TYPE THIS

Download and load jQuery Easing from http://gsgd.co.uk/
sandbox/jquery/easing/jquery.easing.1.3.js into your
website and then specify the easing option in the
$.scrollTo function:
$.scrollTo(this.hash, 1000, {
 easing: ‘easeInOutQuad’
});

➔

Additional information about the jQuery Easing plug-in, as well as a complete list of easing types available, can be
found at http://gsgd.co.uk/sandbox/jquery/easing/.

http://gsgd.co.uk/sandbox/jquery/easing/jquery.easing.1.3.js
http://gsgd.co.uk/sandbox/jquery/easing/jquery.easing.1.3.js
http://gsgd.co.uk/sandbox/jquery/easing/

166

Launch the Chrome Inspector

Google Chrome has a built-in development tool called
the Chrome Inspector. You can use it to examine the

HTML elements in a web page; review what resources — or
files, cookies, and databases — are active; follow network
activity; break and step through JavaScript code; understand
a timeline of events; profile the CPU usage; and audit overall
web page performance.

This chapter focuses on the Chrome Inspector’s most
common tasks — reviewing and changing HTML and CSS
code and debugging JavaScript code.

The complete features list and documentation for the
Chrome Inspector can be found online at Google Chrome
Development Tools, http://code.google.com/chrome/
devtools/docs/overview.html.

If you are not using Google Chrome, there are equivalents
available for other major web browsers:

•	 Firebug is a free and open-sourced HTML and JavaScript
debugger for Firefox — and one of the more advanced
and mature third-party applications in its class. For other
browsers, Firebug Lite is also available. You can download
either version at Firebug’s website, http://getfirebug.com.

•	 Safari has the Web Inspector, an identical clone of the
Chrome Inspector. In fact, both inspectors are provided by
WebKit; therefore, everything in this chapter also applies
to Safari. To use the Web Inspector, you must first enable
the Develop menu: Open Safari Preferences, click the
Advanced tab, and enable Show Develop Menu in Menu Bar.

•	 Internet Explorer 9 features the Developer Toolbar,
which is very similar to the Chrome Inspector but lacks
some features. However, it can validate your website on
Internet Explorer 7 and 8, without needing either version
installed. Access it by pressing F12.

•	 Opera’s Dragonfly shares much of the same layout,
shortcuts, and user interface as the Chrome Inspector.
It looks cleaner and has a few extra features.

1	 Open the Google Chrome web
browser.

2	 Click the wrench menu button.

3	 Click Tools.

4	 Click Developer Tools.

	 The Chrome Inspector opens at
the bottom of the browser.

A	Various components of the
inspector appear as buttons.

5	 Click the Undock Inspector
button.

Launch the Chrome Inspector

3

2

4

5

A

http://code.google.com/chrome/devtools/docs/overview.html
http://code.google.com/chrome/devtools/docs/overview.html
http://getfirebug.com

167

CHAPTER

9Inspecting and Debugging Your Website

	 The Chrome Inspector becomes a
separate window.

6	 Click the Dock Inspector button.

	 The Chrome Inspector returns to
the browser window.

7	 Click the Close Inspector button.

	 The Chrome Inspector closes.
The browser window returns to
normal.

6

7

There are several hotkeys and shortcuts that you can
use to launch the Chrome Inspector and other tools
useful in developing web pages.

Keyboard Shortcut Description
Shift+Ctrl+I Launches the inspector.

Shift+Ctrl+J Launches the inspector’s JavaScript
Console panel.

Shift+Ctrl+C Examines an element in the
inspector. (See the following
section for more information.)

Ctrl+U Views the web page source code
(separate from the inspector).

After the inspector is launched, there are several other
keyboard shortcuts that you can use in the program.

Keyboard Shortcut Description
? Brings up Help.

Ctrl+] Moves to the next panel.

Ctrl+[Moves to the previous panel.

Esc Toggles the JavaScript console.

Ctrl+F Focuses on the search box.

Ctrl+G Finds the next search.

Shift+Ctrl+G Finds the previous search.

If you are using Chrome on the Mac, replace Shift with
Option and Ctrl with Ô.

EXTRA

168

	 The Chrome Inspector appears
with the Elements panel selected.

A	The object is highlighted in the
browser, with its tag name and
dimensions.

B	The HTML element code is
highlighted in the inspector.

C	Optionally, click to expand
any collapsed HTML source code.

D	The element’s applied CSS code is
displayed.

1	 Open the web page in Google
Chrome.

2	 Right-click the first HTML element
that you want to examine.

3	 Click Inspect Element.

Note: You can also press Ctrl+Alt+C (or
Shift+Ô+C on Mac OS X) to launch the
Inspect Element mode.

Examine Elements’ Structure and Layout

The Chrome Inspector enables you to examine a web
page’s elements’ structure with its Elements panel. This

panel can be launched multiple ways: You can right-click a
rendered HTML element, you can open up the inspector with
the Chrome menu, or press one of the keyboard shortcuts
described in the preceding section, “Launch the Chrome
Inspector.”

When examining an element, it is possible to highlight the
rendered HTML block and the source code tree at the same
time by using the Examine Element keyboard shortcut or the

 button in the inspector itself. This is a very useful way
to follow how a web page is built, all the way from the
highest-level <html> root down to the deepest table cell,
paragraph, or image.

CSS elements appear along the right side of the Elements
panel. The order CSS declarations appear in this panel
indicates where the CSS was applied, by filename. It even
shows you where any earlier CSS declarations got overridden
by later ones. Selecting the Computed Style option enables
you to see a complete list of what was declared, and the
Show Inherited check box expands the completed list to see
what Chrome itself is implicitly assigning.

The following section, “Modify HTML and CSS Code in Real
Time,” shows you how to use this Examine Elements feature
to actually modify the source code in real time and apply
changes to the rendered HTML without needing to reload
the web page.

Examine Elements’ Structure and Layout

3

2

B

A

D

C

169

CHAPTER

9Inspecting and Debugging Your Website

G	The inspector’s Elements panel
moves and highlights that
specific element’s HTML node.

H	That element’s applied CSS
declarations appear on the
right.

4	 Hover your mouse cursor across
the different HTML nodes.

E	The hovered element’s rendered
HTML block is highlighted
above.

F	Optionally, click the hierarchal
list of elements to browse to a
parent DOM node.

5	 Click the magnifying glass
button to select an element on
the page to inspect.

6	 Click a highlighted HTML block.

5
4

6

F

E

G

H

The Elements panel enables you to browse the entire
HTML tree as a visual representation of the document
object model (DOM). Anything used to construct this
page in the HTML source code is visible, even inline
JavaScript and CSS. You can examine the CSS
more closely on the right side of this panel, and the
JavaScript in the Scripts panel, which is described
later in this chapter in the section “Examine
JavaScript Code.”

The Elements panel has its own set of keyboard and
mouse shortcuts.

Shortcut Description
Up/Down Navigates.

Right/Left Expands/collapses a node.

Double-click a tag Expands a node.

Return or double-click
an attribute

Edits an attribute.

EXTRA

170

1	 Inspect the HTML element that you
want to modify in the Chrome
Inspector.

Note: See the preceding section for more
information.

2	 Right-click the element’s tag name in
the Elements panel.

3	 Click Edit As HTML.

	 The tag name becomes editable in the
Inspector.

4	 Modify the tag name or attribute and
click outside of the edit box.

A	The HTML change is reflected in the
main web browser window.

Note: If you are simply editing existing tags
or text blocks, you can double-click what you
want to modify, make your change, and press
Enter to apply it in the window.

5	 Double-click a CSS rule in the CSS pane
to modify it.

Note: Modifying a rule within the element.
style { } CSS pane is like editing the
HTML element’s style attribute directly.

Modify HTML and CSS Code in Real Time

One of the strengths of the Chrome Inspector is its
capability to modify HTML and CSS code in real time,

without the requirement of reloading the web page or even
modifying the original HTML files directly. This gives you
the opportunity to experience and develop HTML and CSS
in a whole new way, using a cause-and-effect relationship.
For example, if an element is not appearing in the right
place in the browser window, adjust its left, top, and
position property values in the inspector and watch it
move accordingly.

The one thing that the Chrome Inspector cannot do is
save your changes to the original HTML file. This feature is
designed to do simple one-off changes and to examine how
the rendering changes. You still need your HTML text editor

to save any of your inspector-guided changes, and you need
to upload them to your web server.

The actual modification is done by simply double-clicking
an HTML element node in the inspector and typing in a new
value. CSS properties and values can be modified in a similar
way, and you can temporarily disable any CSS declaration
simply by unchecking it; this helps you to better understand
any CSS inheritance problems or override any unwanted CSS
behavior introduced by the web browser itself.

Naturally, modifying source code and seeing it in real time
is great if Chrome is your users’ only web browser, but it is
likely not. Do not forget to save your changes and test them
in other HTML5 web browsers, too; you may not have the
same inspectorlike tools available, but at least you can get
most of your HTML development debugged here in Chrome!

Modify HTML and CSS Code in Real Time

3

1

2

4

5

A

171

CHAPTER

9Inspecting and Debugging Your Website

	 The CSS property or value becomes
editable in the inspector.

6	 Type in a property name.

7	 Press Tab to edit the property value.

8	 Type in a new property name or
value and press Enter.

Note: Pressing tab again will allow you
to edit the next CSS property down, and
so on.

B	The CSS change is reflected in the
main web browser window.

9	 Hover over a CSS rule.

C	A check box will appear.

Note: If there are multiple CSS
declarations in this rule, multiple check
boxes will appear.

0	 Uncheck a check box to temporarily
disable a CSS rule.

	 That particular declaration is
disabled, and the original CSS
re-renders based on what is still
available.

6 8

9

10

C

B

You can add a CSS class into an HTML element and see the effect right away in the Chrome Inspector.

APPLY IT

➔

TYPE THIS

1.	 Inspect an HTML element that you want to modify.
2.	 If the element does not yet have a class attribute,

type it in along with a value. If it already has a class,
double-click its class attribute value to edit it.

3.	 Insert the new class name. If you want to keep the
existing class intact, leave a space between names.

RESULT

The Chrome Inspector applies the new CSS
class to the HTML element in real time.

You can use the same trick, modifying CSS in
your HTML code in real time, on the style
attribute as well.

172

1	 With the website open, launch the
Chrome Inspector.

2	 Click Scripts.

3	 Click the filename pull-down.

	 A list of all active JavaScript files is
presented.

A	Optionally, select a different JavaScript
file to see its source code.

Note: All active Chrome extensions will also
appear in this list. If you have too many
extensions installed and cannot find the right
JavaScript file, they will be disabled when you
load a new Chrome window in Incognito mode
(Shift+Ctrl+N). Restart at step 1 with the new
Incognito browser.

Note: JavaScript code that has been minimized
will appear in very few lines, very compressed,
and hard to read.

B	Optionally, click the Pretty Print button
if the code is unreadable.

Note: The Pretty-Print Code feature is available
only in Chrome 13 and later.

	 The JavaScript code is now readable.

Examine JavaScript Code

You can use the Chrome Inspector to examine the
JavaScript code of any website. You can do so by using

the Scripts panel found in the inspector window. When
you examine your JavaScript code, it is also possible to
review any errors and warnings produced by executing the
JavaScript code and then reference back to the code where
the error occurred. This is done by using the JavaScript
Console panel, a subcomponent of the Chrome Inspector.

This console will also allow you to execute arbitrary
JavaScript code, and use it to interact with the DOM
components and the elements in your website.

Some websites use JavaScript optimizers and minimizers
to make code download and execution more efficient for
the web browser. This is done by removing comments,
unnecessary whitespace, and line feeds and by reducing

variables and local function names to the absolute
minimum number of characters required to maintain
uniqueness. Unfortunately, this makes it extremely difficult
for a human to read the source code, as the code now reads
like JavaScript gibberish.

To counter this problem, the Chrome Inspector has a code
Pretty-Print feature that enables you to reorganize optimized
and minimized JavaScript into human-readable code. It adds
a line feed after each statement, adds appropriate spacing
within statements, and even applies proper indenting based
on nesting brackets. However, it cannot restore the original
comments or variable and function names. So you will be
forced to use your imagination a little, but now you can step
through the source code as it is executed, a process which is
described later in this chapter in the section “Step through
JavaScript Code.”

Examine JavaScript Code

2

3
A

B

173

CHAPTER

9Inspecting and Debugging Your Website

The Chrome Inspector’s Resources panel describes
everything that was downloaded on a website, whereas
the Elements and Scripts panels describe everything
that was used for rendering the web page. To fix a
warning or error message in JavaScript, you will have
to edit and reexecute the source code anyway —
which cannot happen in either the Resources or Scripts
panels — and reload the web page. Therefore, edit your
original JavaScript code, fix the error, and reload; the

inspector’s JavaScript Console panel will tell you if the
problem is fixed.
The true strength of the Scripts panel is its capability to
set up JavaScript breakpoints, add watch expressions,
examine variables, and review the call stack. Or in other
words, it is used to examine and control the real-time
execution of your JavaScript code. The remainder of
this chapter focuses on these tasks.

EXTRA

D	The Resources panel opens,
displaying the offending line of
code and a detailed warning or
error message.

4	 Click Console to see if there
were any errors executing the
code.

	 The JavaScript Console panel
appears.

C	JavaScript error, warning, and
log messages appear.

5	 Click the filename associated
with a warning or error message. 4

5C

D

174

1	 View your JavaScript code in the
Scripts panel.

2	 Click the line number of a JavaScript
code line to set a breakpoint there.

A	Optionally, click the Reload button
to reload the web page and restart
execution.

Note: Reloading is only required if the
code executes only on page load. If your
breakpoint is in an area of event-driven
code, you can simply interact with the
web page normally.

B	The breakpoint pauses code
execution.

Note: All interaction with the main web
browser window is suspended.

C	The Call Stack pane shows which
functions are currently active.

D	The Scope Variables pane displays
the active local and global variables
and current values.

3	 Click to expand JavaScript
objects and see their structure.

E	Optionally, double-click a variable to
edit its value; press Enter to save it.

Add a JavaScript Breakpoint

As you examine a JavaScript source code file, you may
be able to gain only limited insight into its purpose

and process by reading the code; you may need to be able
to execute it and watch the process unfold. The best way to
do this is to set up a JavaScript breakpoint in the Chrome
Inspector.

If you have used a debugger in any native application
environment before, the process is essentially the same,
except much simpler. The JavaScript debugger is built right
into the interpreter and browser, and there is no compiler
involved; therefore, you can quickly execute, intervene,
monitor, and manipulate JavaScript code in your program.

The first step is to configure a line of the JavaScript code
as a breakpoint. This line, when the browser reaches it

while executing your code, will pause your program and
grant you control over what the interpreter knows about all
variables, functions, and the call stack. From here, you can
abort execution or step through it line by line, function by
function. With the code paused, you can even review and
change the values of variables and arbitrarily execute new
functions, thus applying the manipulated results into your
existing code once execution is resumed.

This is a vital technique if you have a bug in your
JavaScript code. Even if you do not know where the bug is
or what is causing it, breakpoints allow you to intervene
in the execution, examine the situation, and choose to
continue execution to the next breakpoint, continue
unhindered, or stop execution entirely.

Add a JavaScript Breakpoint

2

1

A

3 E

C

D

B

175

CHAPTER

9Inspecting and Debugging Your Website

H	With the optional steps, code
execution continues up until the
temporary breakpoint.

4	 Click the Continue button (or
press F8) to continue the
code-execution process.

	 The code execution continues to
the next breakpoint, or if none
is found, browser control is
restored.

F	Optionally, right-click a line
number later in the code order.

G	Optionally, click Continue to
Here to create a one-time-use
breakpoint. GF

4

H

EXTRA
If you have a large number of breakpoints, you can
disable and reenable them all by clicking . You can
remove a breakpoint entirely simply by clicking its line
number or by right-clicking it in the Breakpoint pane and
selecting Remove Breakpoint. As of Chrome 13, the only
way to remove all breakpoints is to close the browser tab.
Additional breakpoint types are also available:

•	 Conditional breakpoints — Set a conditional
expression on a line that must return true to pause
code execution. This is useful when dealing with for()
and while() loops or repeating functions. Right-click
a line number and select Add Conditional Breakpoint.

•	 DOM breakpoints — Set a breakpoint on an
HTML element whenever its DOM is mutated by
JavaScript code. Simply inspect an HTML element
in the Elements panel, right-click, and select Break
on Subtree Modifications, Break on Attribute
Modifications, or Break on Node Removal to set a
DOM breakpoint.

•	 Event listener breakpoints — Set a breakpoint
whenever an event is triggered, such as an activity
triggered by a keyboard, mouse, or other browser
interaction on the website.

176

1	 Establish a JavaScript breakpoint
and suspend code execution.

2	 Click the Step Over button (or press
F10) to step over to the next line of
code in this block.

A	Only the next line of code is
executed.

Note: The Call Stack and Scope Variables
panes on the right may change, based on
the code that was just executed.

3	 Click the Step Into button (or press
F11) to step into the next line of
code to be executed.

B	The debugger moves to the “next
line of code” as indicated by the
step-into command.

Note: In this example, the debugger
jumped into a jQuery method. Now the
jQuery code can be followed.

C	Optionally, continue clicking the
Step Into button (or pressing F11)
to follow deeper into the JavaScript
code.

4	 Click the Step Out button (or press
Shift+F11) to step out of the current
function and into its calling block.

Step through JavaScript Code

After the code execution is suspended by a breakpoint,
you can step through subsequent lines of code in the

inspector and watch the results unfold in the browser as
each line is executed. There are three different levels of
“stepping” that you can use in the Chrome Inspector, each
of which dictates where the debugger’s attention moves to
with respect to the new functions it encounters:

•	 (Step Over) — This instructs the debugger to proceed
until the next line of code, but if it encounters a new
function, to “step over” it by executing it all in one step.
The end result is the execution is paused at the next line
of code in the current block, or when the current function
ends, at the next line of the parent function block.

•	 (Step Into) — This instructs the debugger to
proceed until the next line of code, but if it encounters a
new function, to “step into” it and open its source code
in the Scripts panel, increasing the call stack. When the
function block ends, control is passed to its parent
function block.

•	 (Step Out) — This instructs the debugger to finish
executing the current function and to pause when control
is passed to its parent function in the call stack.

Although the three step methods will eventually lead to the
end of the program, Step Into will take the longest possible
path of pauses, and Step Out will take the shortest path,
relative to where you set your breakpoint.

Step through JavaScript Code

1

2

3

A

4

B

C

177

CHAPTER

9Inspecting and Debugging Your Website

D	The debugger moves to the
calling function from step 3;
now the results of the statement
can be applied to your local and
global variables.

Note: If there are no other items in
the call stack, execution finishes and
control is passed to the browser
window.

5	 Click a function in the Call Stack
pane.

E	The source code changes to see
where the execution point is
from the perspective of that
function.

6	 Click the Continue button (or
press F8) to continue the code
execution process.

	 The code execution continues to
the next breakpoint, or if none
is found, browser control is
restored.

5

D

D

6

E

E

Deciding which step command to use depends on where
the code is that you are interested in. Pay attention to
the Call Stack and Scope Variables panes so that you
can get your bearings in an unfamiliar program.
Think of the stepping process like this:

•	 Step Over — Repeatedly clicking will execute
code in the current block or, if exhausted, move to its
parent function block and execute code there.

•	 Step Into — Repeatedly clicking will execute
code in the current block and follow all subfunctions
until exhausted, then move to the parent, and so on.

•	 Step Out — Repeatedly clicking will complete
the current function and return to its parent.

In other words, Step Into is useful if you want to explore
new functions, and Step Out is useful if you have
traversed too deep into your code and want to instantly
move up the stack.
Remember, if you proceed past the code line you are
interested in or cannot locate it, you can always reload
the browser and restart the debugger or create a new
breakpoint at a more appropriate location.

EXTRA

178

1	 Establish a JavaScript
breakpoint and suspend code
execution.

2	 Click to expand the Watch
Expressions pane, if it is
collapsed.

3	 Click the Add button to add a
new watch expression.

4	 Type a JavaScript variable,
function, or statement and press
Enter.

A	The watch expressions execute
at this stage of the paused
program.

5	 Repeat steps 3 and 4 for any
other watch points.

6	 If the expression returns an
object, click to view its
contents.

7	 Click the Step Over button to
step through your program.

Add a Watch Expression

With a watch expression, you can create a JavaScript-
like statement inside the Chrome Inspector itself and

actually watch it change as you step through the code. This
can be extremely useful if a function is being executed with
the wrong input variable, when the variable itself changes
as each line of code is executed, and you want to monitor
the function and how the input variable is calculated.
Effectively, a watch expression is exactly like reexecuting
the same line of code every time the main execution
process pauses and examining the results.

This may seem like a convoluted use case right now, but as
you explore and begin to debug jQuery, watch expressions

will become a valuable tool. This is especially true if you
are dealing with interactive content, and you want to
examine the cause-and-effect relationship between using
your website and JavaScript’s perspective of your actions.

The simplest-possible watch expression could be just a
standard variable name; this is just like monitoring the
Scope Variables list, but this list can get rather large.
Watching a variable you are interested in means that it will
always be at the top of the Watch Expressions pane, making
it easier to find and monitor.

Add a Watch Expression

1

2

3

4

5

7

6

A

179

CHAPTER

9Inspecting and Debugging Your Website

C	Some watch expressions become
undefined.

Note: A watch can become undefined
if was established as a local variable
at the breakpoint but is no longer in
scope. If you restart your program
and break again, its new value will be
restored to this pane.

B	The watch expressions are
reevaluated, updating their
output each time the main
program pauses.

8	 Click the Continue button to let
your program finish.

8

B
B

C

If you are interested only in a simple variable or want
to examine an object or a function’s contents, the
Chrome Inspector has a very useful trick to view almost
any data type at a glance.
Simply hover your cursor over an evaluated function,
variable, or object in the Scripts pane. A pop-up will
appear that shows you exactly what the variable or
object holds or, in the case of a function, its source code,
without your having to create a watch expression or
step into the code itself.

EXTRA

180

<canvas id=’identifier’ height=’500’
width=’500’>Fallback Content</canvas>

The id attribute enables you to easily locate this particular
canvas element in JavaScript. Its value can be anything you
want, as long as it is unique among all elements.

The Canvas API is currently under development by WHATWG.
Its latest specification document can be found at the WHATWG
page at www.whatwg.org/specs/web-apps/current-work/
multipage/the-canvas-element.html.

The canvas Element
A canvas can be created using the canvas element, new for
HTML5, at any point within the <body> tag group on your
web page:

The Canvas API

has not been updated since 1998, so it lacks some of the
features the Canvas API supports, such as drawing text, but
you should at least be able to display basic canvas shapes
and animations. Note that this chapter uses jQuery’s
$(function(){...}); to wrap the Canvas API, which
appears incompatible with ExplorerCanvas. Instead, use
<body onload=’init()’> and create an init()
function that calls the Canvas API. See the ExplorerCanvas
examples directory for more information.

•	 Google Chrome Frame (www.google.com/chromeframe) was
introduced in Chapter 1, “Introducing HTML5.” This program
actually exports the entire Chrome-rendering engine as an
Internet Explorer plug-in. It provides the best level of
canvas support for legacy users, but it does require a
program to be locally installed on the user’s computer.

The canvas is available in all the latest builds of the popular
web browsers. That being said, the overall implementation level
and performance capabilities do differ. Generally speaking,
Chrome and Firefox provide some of the best overall level of
JavaScript engine speed and animation capabilities, followed by
Opera and Safari. Internet Explorer 9 is the first release from
Microsoft that supports the Canvas API, and its overall
capabilities are very good.

Currently, the only market share of users that may not have
canvas support are Internet Explorer 6 to 8 legacy users. There
are two polyfills, or programs that provide newer compatibility
to older browsers, available for these legacy users:

•	 ExplorerCanvas (http://excanvas.sourceforge.net) is a
JavaScript program that uses Microsoft’s vector markup
language (VML) to emulate the Canvas API. Note that VML

Browser Support

The HTML5 canvas grants you a very fine level of control over the individual pixels on your web page. The canvas can
be used to create just about anything using JavaScript: custom UI elements, image manipulation, animations, and

custom keyboard and mouse interfaces. In addition to the other new HTML5 features and the JavaScript DOM (document
object model), the canvas integrates seamlessly with video files, audio clips, and touchscreen events, alongside venerable
keyboard and mouse activity. Essentially, you now have access to nearly all the tools that developers in Flash or traditional
system and game platforms have been using for years.

It is no secret that the canvas was borne out of the frustrations with the Adobe Flash plug-in. Although Flash served its
purpose well enough — introduced many years ago because web developers were pushing the boundaries of HTML and
JavaScript too far — opponents argue that it had security problems, was CPU intensive, was inefficient, and lacked proper
touchscreen support. This restricted its deployment and adoption, especially on mobile devices such as phones and tablets.

As the Canvas API is still relatively new and under active development, its overall performance varies between browsers
and implementations. It does not yet exceed the performance of Flash under certain tests according to independent third
parties; however, its potential as a Flash-killer is certainly looming.

Introducing the HTML5 Canvas

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.google.com/chromeframe
http://excanvas.sourceforge.net

181

CHAPTER

10Drawing with the HTML5 Canvas

A fill involves flooding the area within a closed shape or text
with a color. The color that can be used for either process can
be a solid color, a linear gradient, a radial gradient, or an image
pattern.

Both a stroke and fill allow specific Canvas API attributes to
configure their behavior. When such an attribute changes, it
applies itself to all future calls to the drawing methods, until it
is changed to something else. These are the global attributes,
fill attributes, and stroke attributes and are all detailed here.

When you run canvas.getContext(type), there is only
one API currently available: 2d. This will enable you to access
the canvas element’s pixels as a two-dimensional drawing
plane.

Drawing on the Canvas
There are two main drawing processes available in the Canvas
API: stroke and fill. A stroke involves drawing a line or a border
with a specific thickness and color along a path, shape, or text.

The 2D Context API

The conditional test on canvas.getContext verifies that
the browser actually supports the canvas element. If it does
not, the canvas.getContext test will return false, and the
contents within the <canvas>...</canvas> tag group will
be displayed as a fallback.

All the methods and attributes described below use either the
canvas or context objects.

Methods

•	 context = canvas.getContext(type) — Loads a
canvas context API from the canvas object.

•	 url = canvas.toDataURL(mimetype) — Allows you
to export a drawn canvas as an image URL. The mimetype
argument can be image/png, image/jpg, or image/
gif; however, the PNG format is the most widely supported.

•	 canvas.toBlob(callback,mimetype) — Allows you
to export the drawn canvas image as a blob object, itself
being arbitrary data that can be passed through one of the
FileSystem APIs. These APIs are not discussed at length in
this book but are summarized in Chapter 13, “Storing Data
Using a Client-Side Database.” Note that this newer method
is not yet supported by any HTML5 web browsers, as of
Firefox 5 and Chrome 13.

Attributes

•	 canvas.width — Gets or sets the canvas width in display
pixels.

•	 canvas.height — Gets or sets the canvas height in
display pixels.

It is important to note that these height and width
attributes are not the same as the CSS height and width
properties. These attributes set the total number of pixels in
the canvas, whereas the CSS properties set the total display
area that the canvas allocates and scales the pixels accordingly.
You should never need to set the CSS height and width
properties on a canvas element.

If you ever need to read or change these height and width
attribute values, use the canvas.height and canvas.
width, or context.canvas.height and context.
canvas.width, JavaScript variables.

JavaScript Initialization
Your canvas must be initialized in JavaScript in order to draw
on it. This involves locating the canvas element in the DOM
and then retrieving the drawing context object using canvas.
getContext(). This object provides the core of the actual
canvas API methods and attributes:

<script type=’text/javascript>

 var canvas = document.getElementById(identifier);

 if (canvas.getContext) {

 var context = canvas.getContext(type);

 // Use context object to draw on the canvas

 }

</script>

Alternatively, if you are using jQuery, you can replace
document.getElementById(identifier) with
$(‘canvas#identifier’)[0].

continued ➤

182

This implementation may seem strange at first, but subsequent
sections in this chapter help its purpose become evident.
Essentially, think of it like this: If you ever need to modify the
current drawing configuration, run context.save() first;
when you are done with the modified configuration, run
context.restore(). This works particularly well in
functions that perform one specific canvas task using a
temporarily modified drawing configuration.

Global Attributes

•	 context.globalAlpha — Sets an overall level of
opacity for every drawing function in the canvas to follow.
Its supported range is a decimal number from 0, which is
completely transparent, to 1, which is completely visible.

•	 context.globalCompositeOperation — Configures
how semitransparent drawing methods blend into Â�
already-drawn objects. Although this is not often used,
you can find the list of options in the WHATWG Canvas API
specification.

•	 context.canvas — A reference to the original canvas
object that was used during canvas.
getContext(‘2d’).

Plane Transformations
The context drawing plane, known mathematically as a flat
Cartesian surface, can be altered and changed on the fly. The
changes applied by any of these methods can be backed up
using context.save() and restored using context.
restore().

Methods

•	 context.scale(x,y) — This enables you to alter the
plane by scaling it. The default state is 1x and 1y. You can
scale it by locking its aspect ratio with x = y, increasing
the horizontal width with x > y, and increasing the
vertical scale with x < y, and you can mirror it with
-x = y or x = -y.

•	 context.translate(x,y) — Normally, the (0, 0) origin
is in the top-left corner of the plane. Run this function to
reposition the origin to any new location point.

context.strokeStyle = ‘blue’;

context.fillStyle = ‘red’;

context.fillRect(10, 20, 50, 100);

context.fillStyle = ‘black’;

context.fillRect(20, 30, 100, 100);

context.strokeRect(0, 0, 200, 100);

In this code example, context.strokeStyle and
context.fillStyle are attributes that affect the
context.strokeRect() and context.fillRect()
drawing methods. First, one red rectangle is created at (10, 20)
that is 50 pixels wide and 100 tall; then a black rectangle is
created at (20, 30) and 100 pixels wide and tall. Finally, a blue
rectangle border is created at (0, 0) and 200 pixels wide and
100 tall.

So, in this code example, the drawing configuration changes
three times. The blue strokeStyle applies to all stroke
methods that follow it, and the red fillStyle applies to all
fill methods that follow it. Because fillStyle changes to
black midway through, it changed the behavior of all fill
methods that follow.

Context State
The context state is the current drawing configuration of all
global, text, fill, and stroke attributes, plus the current plane
transformation method settings. Because the drawing
environment and behavior can change drastically whenever the
drawing configuration changes, two methods are used to
manage temporary state changes.

Methods

•	 context.save() — Saves the current values for all
global, text, fill, and stroke attributes plus plane
transformation settings into a stack array.

•	 context.restore() — Restores all global, text, fill, and
stroke attributes plus plane transformation settings to the
latest state stored in the stack and removes that
configuration from the array.

Introducing the HTML5 Canvas (continued)

183

Drawing with the HTML5 Canvas

CHAPTER

10
•	 context.moveTo(x,y) — Moves the pen to a new point.

•	 context.lineTo(x,y) — Creates a line from the current
pen location to the specified point.

•	 context.arc(x,y,radius,startAngle,endAngle,
clockwise) — Creates an arc using the specified point as
the center. radius determines how big the arc is, and
startAngle and endAngle determine where the arc
begins and ends. The clockwise Boolean, if true, states that
the pen moves clockwise from startAngle to endAngle,
or, if false, the pen moves counterclockwise from
startAngle to endAngle.

•	 context.arcTo(x1,y1,x2,y2,radius) — Creates an
arc of radius size that joins two tangent lines, the first
defined by the current location to (x1,y1), the second
defined by (x1,y1) to (x2,y2).

•	 context.quadraticCurveTo(cpx,cpy,x,y) —
Creates an elongated arc that moves from the current pen
location to (x,y), using control points (cpx,cpy) to
influence its curve.

•	 context.bezierCurveTo(cp1x,cp1y,cp2x,cp2y,
x,y) — Creates a double-elongated curve, also known as a
Bézier curve, from the current pen location to (x,y). It uses
two pairs of control points to influence the curve at two
locations along the path.

•	 context.closePath() — Creates a straight line from
the current pen location to the first point in the path.

•	 context.fill() — Draws the path area with the
fillStyle color.

•	 context.stroke() — Draws a border along the path
area with the strokeStyle color.

•	 context.drawSystemFocusRing(element) — Draws
a native system focus ring around the current path, only if
the element specified has focus.

•	 context.drawCustomFocusRing(element) —
Returns true if the specified element has focus. Then you
can draw your own focus ring using the path and stroke()
or fill().

•	 context.scrollPathIntoView() — If the canvas
exceeds the overall browser screen size, this method will
scroll the path into the viewable display area.

•	 context.clip() — Constrains the drawable clipping area
with the current path.

•	 context.isPointInPath(x,y) — Allows you to verify
whether point (x,y) exists at any location along the current
path line.

•	 context.rotate(angle) — Rotates the x- and y-axes
by pivoting on the origin point.

•	 context.transform(a,b,c,d,e,f) — Performs an
identity matrix transformation to skew the plane’s display.
This can be used to emulate a perspective in the canvas
drawing.

•	 context.setTransform(a,b,c,d,e,f) — Just like
context.transform(), except that this method resets
the identity matrix to the default and then applies the
transformation change.

Drawing Shapes
Simple shape drawing in the canvas is limited to squares and
rectangles. Although this is not a very complicated process, it
is useful for creating simple four-sided shapes without resorting
to paths, which themselves are better suited for complex
shapes. All three methods use (x,y) as the top-left point and
grow w pixels wide and h pixels down.

Methods

•	 context.fillRect(x,y,w,h) — Draws a solid
rectangle or square.

•	 context.strokeRect(x,y,w,h) — Draws a
rectangular or square line.

•	 context.clearRect(x,y,w,h) — Erases a solid
rectangle or square from the canvas display. Basically, it is
like drawing a transparent shape to make the website
content under the canvas visible.

Attributes
The fillStyle, shadowBlur, shadowColor,
shadowOffsetX, and shadowOffsetY attributes described
later in this section in the “Color and Style” subsection apply
to the fillRect() method. Additionally, the strokeStyle,
lineCap, lineJoin, lineWidth, and miterLimit
attributes, also described in “Color and Style,” apply to the
strokeRect() method.

Drawing Paths
Complex and irregular shapes can be drawn as canvas paths.
A path is an invisible line that builds the shape’s structure by
moving an “invisible ink” pen from point to point. That shape
can be filled or stroked, which actually draws it to the screen.

Methods

•	 context.beginPath() — Starts a new path by clearing
out any previously established path points.

•	 context.rect(x,y,w,h) — Creates a rectangular path.
continued ➤

184

The fillStyle, shadowBlur, shadowColor,
shadowOffsetX, and shadowOffsetY attributes described
later in this section in the “Color and Style” subsection apply
to the fillText() method. Additionally, the strokeStyle,
lineCap, lineJoin, lineWidth, and miterLimit
attributes, also described in “Color and Style,” apply to the
strokeText() method.

Direct Pixel Manipulation
Direct pixel manipulation implies the ability to create a blank
ImageData object or convert an existing canvas display into
an ImageData object, giving yourself the ability to query and
manipulate exact pixel values.

Methods

•	 imagedata = context.createImageData(w,h) —
Creates a new ImageData object of the specified w width
and h height.

•	 imagedata = context.createImageData
(imagedata) — Creates a copy of an existing
ImageData object.

•	 imagedata = context.getImageData(x,y,w,h) —
Creates a new ImageData object sourced from the canvas
itself.

•	 context.putImageData(imagedata,dx,dy) —
Allows you to inject an ImageData object into the canvas
at (dx,dy).

•	 context.putImageData(imagedata,dx,dy,dirtyX,
dirtyY,dirtyW,dirtyH) — Allows you to inject an
ImageData object into the canvas at (dx,dy) but also to
specify a rectangular dirty clipping region relative to the
ImageData object. Therefore, only the content within the
clipping region will be drawn to the canvas.

Attributes

•	 imagedata.width — The width of the ImageData
object.

•	 imagedata.height — The height of the ImageData
object.

•	 imagedata.data[] — An array of numbers, called the
CanvasPixelArray, representing the red, green, blue,
and alpha channel values for every pixel in ImageData.
Because there are four channels per pixel, the total size of
imagedata.data[] is the total pixels times four.

•	 imagedata.data.length — The total length of
CanvasPixelArray. Dividing by four gets the total
number of pixels in the ImageData object.

Attributes
The fillStyle, shadowBlur, shadowColor,
shadowOffsetX, and shadowOffsetY attributes described
later in this section in the “Color and Style” subsection apply
to the fill() method. Additionally, the strokeStyle,
lineCap, lineJoin, lineWidth, and miterLimit
attributes, also described in “Color and Style,” apply to the
stroke() method.

Text Drawing Methods
The text drawing methods allow you to place a single line of
text, using a single font configuration, anywhere in the canvas.
Any midway changes within the text string to the location,
such as line wrapping, or font, such as bold and italic, must be
handled by a new call to a text drawing method.

Methods

•	 context.fillText(text,x,y,maxWidth) — Draws
text in the current font at (x,y) using a solid
fillStyle setting. An optional maxWidth size
determines how much text should actually be drawn.

•	 context.strokeText(text,x,y,maxWidth) —
Draws text in the current font at (x,y) using a lined-
border strokeStyle setting. An optional maxWidth size
determines how much text should actually be drawn.

•	 metrics = context.measureText(text) —
Measures text in the current font to determine the width
it would occupy without actually drawing it.

Attributes
The following attributes can be used to control how various
draw functions execute. Each attribute value can be stored and
retrieved in the drawing stack using save() and restore():

•	 context.font — Sets the current font using a syntax
that matches the CSS font property.

•	 context.textAlign — Sets the horizontal text
alignment with values like start, end, left, right, or
center.

•	 context.textBaseLine — Sets the vertical alignment
of the (x,y) point to the height of the text itself. Values
accepted are top, hanging, alphabetic, ideographic,
or bottom.

•	 metrics.width — The context.measureText()
method returns a metrics object. This object has one
property, width, which can be used to retrieve the
measured text’s width.

Introducing the HTML5 Canvas (continued)

185

Drawing with the HTML5 Canvas

CHAPTER

10
Color and Style
Each time that you draw on the canvas, you have the option to
use a solid color, gradient, or pattern. This is done by assigning
either a color string or style object to the fillStyle or
strokeStyle attribute. Most often, a solid color is all that is
required, so specifying a color string that follows a CSS-like
color syntax — such as red, #ff0000, or rgb(255,0,0) —
into either attribute is the quickest way to add colors to your
canvas.

Methods
The following methods are used to create complex styles:

•	 gradient = context.createLinearGradient(x0,
y0,x1,y1) — Creates a linear gradient that contains
gradient colors that change from (x0,y0) to (x1,y1). The
output of this function is a gradient object that first must
receive at least two addColorStop() calls before it is
assigned to fillStyle or strokeStyle.

•	 gradient = context.createRadialGradient(x0,
y0,r0,x1,y1,r1) — Creates a radial gradient that
contains gradient colors that change from (x0,y0) and a
radius of r0, outward to (x1,y1) and a radius of r1. The
output of this function is a gradient object that first must
receive at least two addColorStop() calls before it is
assigned to fillStyle or strokeStyle.

•	 gradient.addColorStop(offset,color) — Adds a
specific color stop at an offset location to the gradient
object. The offset value must be a decimal number
between 0 and 1, and the color value follows the same
CSS-like color syntax.

•	 pattern = context.createPattern
(image,repetition) — Allows you to assign a
specific image object as a repeating or scaling pattern.

Fill Attributes
The following fill attributes are used when you call the
fill-related methods: fill(), fillRect(), or fillText():

•	 context.fillStyle — Accepts a color string, gradient
object, or pattern object to which it specifies the fill color,
gradient, or pattern used by the fill-related methods. If
unspecified, the fill color is black.

•	 context.shadowOffsetX, context.shadowOffsetY —
Accepts an integer value to specify where a shadow should
be placed beside a fill object created by one of these
methods. If unspecified, there is no shadow.

•	 context.shadowBlur — Accepts an integer value to
specify how quickly the shadow’s edges blur away. If
unspecified, the shadow has no blur effect.

•	 context.shadowColor — Accepts a CSS-like color string
to specify the color of the shadow itself. If unspecified,
black is used.

Stroke Attributes
The following stroke attributes are used when you call the
stroke-related methods: stroke(), strokeRect(), or
strokeText():

•	 context.strokeStyle — Accepts a color string,
gradient object, or pattern object to which it specifies the
line color, gradient, or pattern used by the stroke-related
methods. If unspecified, the line color is black.

•	 context.lineCap — Specifies how the ends of open
lines will be capped. Options include butt, round, and
square.

•	 context.lineJoin — Specifies how the corners of line
paths will be filled in when two lines meet at different
angles. Options include bevel, round, and miter.

•	 context.lineWidth — Sets the stroked line width in
pixels.

•	 context.miterLimit — If context.lineJoin is set
to miter, a limit of the miter length can be applied.

186

1	 Open an HTML file with jQuery loaded.

2	 Type <canvas id=’surface’ width=’500’
height=’300’> to set a canvas element
500 pixels wide by 300 pixels tall.

3	 Insert some fallback content for when
canvas support is unavailable.

4	 Type </canvas>.

5	 Go to your <script type=’text/
javascript’> block or a JavaScript
file loaded after jQuery.

6	 Scroll to a JavaScript $(function()
{...}); group or create one if it does
not yet exist.

7	 Type var canvas = $(‘canvas#surface’)
[0]; to access the canvas element
with id=’surface’ using jQuery.

Note: If you are not using jQuery, you skip
step 6 and replace step 7 with var canvas
= document.

getElementById(‘surface’);. Be sure
to specify your JavaScript after the
<canvas> tag or in a document.onload
= function(){{ ... }); function.

8	 Type if (canvas.getContext) { } to
verify that the canvas object has the
getContext function.

Declare a canvas Element

Before you can begin drawing on the canvas, you must
declare a canvas element, along with its identifier

and dimensions. This process serves three purposes. First,
it allows you easy access to the element in JavaScript.
Second, it enables you to define the canvas pixel area size
using the height and width properties. Third, it enables
you to define fallback content that will be displayed on
non–Canvas API web browsers:

<canvas id=’surface’ width=’500’
height=’500’>

</canvas>

The id attribute is optional, but it does make locating
this particular canvas element easier, especially if you

have multiple canvases on the same page. If you know
the absolute height and width values, specify them now;
otherwise, you may use rough values as placeholders and
modify them in JavaScript later. The content within the
canvas tag group represents any fallback method that you
have available. This can be a static image showing what
the user will be seeing, a Flash version of the drawing or
animation, or perhaps a simple text message that prints,
“Your browser does not support the HTML5 Canvas API.”

After you have your canvas element defined, you can use
JavaScript to locate the canvas in the DOM, access the 2D
canvas API, and start to apply shapes, lines, text, colors,
gradients, images, and animations.

Declare a canvas Element

7
6
8

5

32

4

187

CHAPTER

10Drawing with the HTML5 Canvas

9	 Type var context = canvas.
getContext(‘2d’); to access the
two-dimensional canvas context
of functions.

Note: 2d is the only context currently
available in the Canvas API.

Note: In this example, the rest of the
code is described throughout this
chapter. It is just shown here to make
the canvas look like something when
you view it.

0	 Save your JavaScript and HTML
files.

!	 Load your HTML file in an
HTML5 web browser.

	 The Canvas API sample text and
border appear.

@	 Load your HTML file in a
non-HTML5 web browser.

	 The non–Canvas API fallback
content appears.

9

11

It is possible to declare a canvas that acts just like a dynamic background image.

APPLY IT

RESULT

When the page first loads, onWindowResize()
is registered as a resize event handler. This
ensures that if the user resizes the browser,
the canvas is adjusted to match the current
settings. Because the function also runs at load
time, the canvas width and height match the
displayable browser dimensions right away. The
CSS rules here simply set the canvas to run
underneath the actual website content, just
like a background image.

TYPE THIS
<style type=’text/css’>
 body{ margin:0; padding:0 }
 canvas#surface{ position:fixed; z-index:-1 }
</style>
<script type=’text/javascript’>
 function onWindowResize() {
 context.canvas.width = window.innerWidth;
 context.canvas.height = window.innerHeight;
 // (Re)draw canvas contents
 }
 $(window).resize(onWindowResize);
 onWindowResize();
</script>

➔

If you ever need to resize an existing canvas object, do not modify the CSS width and height properties. This
will cause your canvas to scale by forcing the same number of pixels to appear in a larger or smaller area.

188

1	 Open an HTML or JavaScript file with
a canvas and 2D context variables
loaded.

Note: In this example, and for the rest of
the chapter, the canvas element’s size is
700 x 500 pixels.

2	 Type context.fillStyle = ‘#FF8000’;
to set the current fill style color to
orange.

Note: The fillStyle attribute is
described later in the section “Using Solid
Color on the Canvas.”

3	 Type context.fillRect(50, 50, 300,
200); to fill a 300 x 200 rectangle at
(50, 50) with the fill color.

4	 Type context.strokeStyle =
‘#0000FF’; to set the current stroke
style color to blue.

Note: The strokeStyle attribute is
described later in the section “Using Solid
Color on the Canvas.”

5	 Type context.strokeRect(100, 100,
300, 200); to draw a 300 x 100
rectangle at (100, 100) with the
stroke color.

Draw Basic Rectangles on the Canvas

The simplest, and only, shape you can draw on the
canvas natively is a rectangle. This may seem like a

very restrictive statement, but the canvas rectangle is not
designed to be just a simple shape; it provides you with a
way to set a solid background color across the entire canvas
plane, draw a box or border around a selected area, or erase
part or all of the drawing area.

For more complex shapes, everything from lines, to
triangles, stars, circles, hearts, bears, cars, and people, you
must use a canvas path, as described in the next section,
“Draw Paths on the Canvas.”

There are three types of rectangles that you can draw on
the canvas:

•	 Clear rectangle — clearRect(x, y, w, h) — This
erases whatever was previously drawn in the canvas and
exposes underlying HTML elements.

•	 Fill rectangle — fillRect(x, y, w, h) — This draws a
solid rectangle using the current fillStyle setting.

•	 Stroke rectangle — strokeRect(x, y, w, h) — This
draws a rectangular border using the current lineWidth
and strokeStyle settings.

fillStyle and strokeStyle define the color styling to
draw with. In their simplest form, they use CSS-style values,
such as #ff0000, rgb(255,0,0), or color keywords like
red. These properties are explained in the sections “Using
Solid Color on the Canvas” and “Using Linear Gradient
Colors on the Canvas” later in this chapter. If you do not
specify them here, the default color is black.

Draw Basic Rectangles on the Canvas

32

54

189

CHAPTER

10Drawing with the HTML5 Canvas

8	 Load your HTML file in an
HTML5 web browser.

	 The canvas methods render a
drawing in the canvas element.

A	In this example, a yellow
rectangle is drawn.

B	A blue rectangle is drawn.

C	A clear square erases part of the
blue and yellow rectangles.

6	 Type context.clearRect(75, 75,
100, 100); to erase a 100 x 100
square at (75, 75).

7	 Save your HTML or JavaScript
file.

6

8

B

C

A

The default background color of a canvas is actually transparent. This makes other elements, such as the web page
<body> tag, that do have a CSS background-image or background-color property to show up through the
canvas drawing area. This is useful as the content you draw will appear to float above the background under it.
If you choose, you can apply a specific background color to the canvas. This can happen as soon as you have received
its 2D context object. Use the attributes context.canvas.width and context.canvas.height to get the
width and height of the canvas element.

APPLY IT

RESULT

A purple rectangle is drawn encompassing the
entire size of the canvas element.

TYPE THIS
context.fillStyle = ‘#FF00FF’;
context.fillRect(0, 0, context.canvas.width,
context.canvas.height);

➔

The fillStyle property is discussed later in this chapter.

190

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

2	 Type context.beginPath(); to start a
new path.

3	 Type context.moveTo(x, y); to move
the path “pen” to a specific point.

4	 Type context.lineTo(x, y); to draw a
line from the previous point to (x, y).

A	Optionally, repeat steps 3 and 4 to
draw additional lines.

5	 Type context.rect(x, y, height, width);
to add a standalone rectangle segment
to the path.

6	 Type context.arc(x, y, radius, Math.PI,
2*Math.PI, true); to create an arc
drawing, centered at (x, y) moving
clockwise from π to 2π.

Note: Be sure to use Math.PI and not
Math.Pi.

7	 Type context.stroke(); to draw a line
along the path.

Draw Paths on the Canvas

Complex and irregular shapes can be drawn as canvas
paths, generated by placing an “invisible ink” pen at a

specific location and defining straight lines, arcs, or curves
to build a shape. That shape can be filled or stroked, which
draws it to screen.

All paths must begin with beginPath(). This removes all
points established by any earlier paths. Note that previously
drawn paths will remain on the canvas; this function just
removes any of the analogous invisible ink.

Path-generation methods allow you to control your invisible
ink pen:

•	 moveTo(x, y) — This moves the pen to a specific
location in the canvas. This is useful as the first method in
a new path to define where you want the path to begin.

•	 lineTo(x, y) — This creates a straight line path
between the current pen location and the specified
coordinates.

•	 rect(x, y, w, h) — This creates a rectangular path,
just like calling one moveTo and four lineTo methods.

•	 arc(x, y, radius, startAngle, endAngle,
drawClockwise) — This creates an arc or circle
centered at x and y. The angles are measured in radians,
and the path can be drawn clockwise or counterclockwise.

•	 bezierCurveTo(cp1x, cp1y, cp2x, cp2y,
x, y) — This draws a parametric Bézier curve to
create smooth and fluid lines that gravitate toward two
pairs of control points and influence the path’s curve,
from the current position to x and y.

•	 quadraticCurveTo(cpx, cpy, x, y) — This draws
a quadratic curve from the current position to x and y.
The control point influences the middle of the path’s
curve.

When the path shape is complete, close and fill the path
with a specific color with fill() or draw a line along the
path with stroke().

Draw Paths on the Canvas

43

2

A

6

5

7

191

CHAPTER

10Drawing with the HTML5 Canvas

8	 Type context.beginPath(); to erase
the previous path.

9	 Type context.moveTo(0, 500);.

0	 Type context.bezierCurveTo(0, 0,
250, 500, 500, 500); to create a
Bézier curve from the previous point to
(500, 500), gravitating toward control
points (0, 0) and (250, 500).

Note: The quadratic curve is the same basic
idea as a Bézier curve, except there is only
one control point.

!	 Type context.fill(); to fill the path.

@	 Save your HTML or JavaScript files.

#	 Load your HTML file in an HTML5 web
browser.

B	In this example, the straight line paths
are drawn.

C	The rectangular line path is drawn.

D	The arc path is drawn.

E	This is the curved Bézier path, filled in.

Note: The rectangle created a whole new
path segment, as it implies moveTo().

11
109

8

13

D

E

B

C

After drawing with stroke() or fill(), you can create a new path with beginPath(). However, if you draw
your path and then add more points to it without declaring a new path, all earlier points will remain active for any
subsequent drawing methods and will be drawn twice.
Sometimes, when drawing a line along a path, you may want the entire path shape to be unbroken. Call
closePath() to add a new path line back to the very first point and then call stroke().

APPLY IT

TYPE THIS
context.beginPath();
context.arc(50, 20, 25, Math.PI, 0, true);
context.stroke();
context.beginPath();
context.arc(50, 60, 25, Math.PI, 0, true);
context.closePath();
context.stroke();

➔

RESULT

Two semicircles are created. The first
one starts from π to zero radians, or
180° to 0°. The second uses the same
arc path, but closePath() adds a
straight line back to the start of the arc.

Note that closePath() is implied if you use fill(). Experiment with this example by changing coordinates,
removing the additional beginPath()s, and by changing stroke() to fill().

192

1	 Open an HTML or JavaScript file with a
canvas and 2D context loaded.

A	Optionally, type context.save(); before
you change the font or text attributes, if
you want to restore the previous values.

2	 Type context.font = ‘size “Times New
Roman”,serif’; to define the font size
and a font family name, plus a fallback
generic font family name.

Note: As there are spaces in this example’s font
name, only that name is wrapped in quotes.

Note: There are no spaces between the
comma-separated font names.

B	Optionally, type bold to use a bold font
weight.

C	Optionally, type italic to use an italic
font style.

D	Optionally, type small-caps to use a
small-capped font variant.

Note: Because the font style, variant, and
weight all use unique keywords, they could be
specified in any order preceding the font size
and font family.

Draw Text on the Canvas

Drawing canvas text combines the capabilities of CSS
fonts with the fill and stroke procedures described

earlier in this chapter. Essentially, your font is defined using
the same syntax as the CSS font property; this includes the
ability to take advantage of @font-face, new in CSS3 and
described in Chapter 4, “Styling with CSS3.” The text itself
creates a path that can either be filled or stroked.

Start by specifying the font the text will be drawn as:

context.font = ‘font-style font-variant
font-weight font-size font-family’;

All font values are order specific, although not all are
required. At a minimum, you must specify font-size and
font-family values to properly set a canvas font. All
values use the same syntax as their CSS equivalents.

You may optionally control the text alignment, relative to
the point where text will be drawn, using the context.
textAlign and context.textBaseline attributes.
Possible values for the former are start, end, left,
right, and center. Possible values for the latter are top,
hanging, middle, alphabetic, ideographic, and
bottom. See the WHATWG page at www.whatwg.org/specs/
web-apps/current-work/multipage/the-canvas-element.
html#dom-context-2d-textbaseline for an explanation.

After your font properties are all defined, you can call
fillText() or strokeText() to actually draw the text to
the canvas using the current fillStyle and strokeStyle
attribute settings, described earlier in this chapter:

context.fillText(text, x, y);
context.strokeText(text, x, y);

Draw Text on the Canvas

2
A

C

B D

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html%23dom-context-2d-textbaseline
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html%23dom-context-2d-textbaseline
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html%23dom-context-2d-textbaseline

193

CHAPTER

10Drawing with the HTML5 Canvas

E	Optionally, type context.textAlign =
‘center’; and context.textBaseline =
‘middle’; to center the text on the
(x, y) point.

3	 Type context.fillText(text, x, y); to
draw filled text at (x, y).

4	 Type context.strokeText(text, x, y);
for stroked text at (x, y).

F	Optionally, type context.restore();
if you used save() earlier to restore
the attribute values.

5	 Save your HTML or JavaScript file.

6	 Load your HTML file in an HTML5
web browser.

Note: In this example, and for the rest of
the chapter, a grid layout is used to better
show you the origin point, the x- and
y-axes, and the placement of objects.

G	The text is drawn with fillText().

H	The text is drawn with
strokeText().

I	This is the point used to position the
text, centered by the textAlign
and textBaseline modifications.

34

E

F

6

H

I

I

G

If you want to use precise text placement in the canvas, such as drawing multiple text strings after each other, you
need to know the overall width of the text string in the selected font prior to actually writing it to the screen. This
can be done with the measureText(text) method, which returns a metrics object.
The pixel width of the font can be accessed using metrics.width.

APPLY IT

RESULT

The measureText() method calculates
the width of the first string and uses the
width in the placement of the next
string. This way, the text “Today is”
appears in a normal 30px font followed
by the date in a bold 40px font.

TYPE THIS
var todayStr = ‘Today is’;
var dateStr = new Date();
context.textBaseline = ‘top’;
context.font = ‘italic 30px arial’;
var todayStrMetrics = context.measureText(todayStr);
context.fillText(todayStr, 0, 0);
context.font = ‘bold 40px arial’;
context.fillText(dateStr, todayStrMetrics.width, 0);

➔

194

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

2	 Type context.save() to back up the
current attribute settings.

3	 Type context.strokeStyle = ‘#BADA55’;
to set the stroke style to a dark
yellow-green color.

4	 Type context.fillStyle =
‘rgba(0,128,128,0.5)’; to set the fill
style to teal at 50% transparency.

5	 Draw some canvas objects, such as
shapes, paths, or text strings.

6	 Save your HTML or JavaScript file.

7	 Load your HTML file in an HTML5 web
browser.

A	In this example, a dark yellow-green
line is drawn for stroked shapes.

B	A teal color is drawn for filled shapes.

Note: Because the teal is 50% transparent,
you can see items previously drawn
underneath it.

Using Solid Color on the Canvas

You can customize what color is used when drawing on
the canvas. Earlier sections of this chapter have shown

shapes, paths, and text drawn in black, which is the default if
the fillStyle and strokeStyle attributes are undefined.

context.fillStyle = ‘color’;
context.strokeStyle = ‘color’;

The color value can be one of four string formats:

•	 #RRGGBB — Specifies an RGB color in three pairs of
hexadecimal numbers, from 00 for no color to FF for
maximum color, depending on position. For example,
#FF8000 is maximum red, half green, and no blue,
which appears orange.

•	 rgb(rrr,bbb,ggg) — Specifies an RGB color, very
similar to #RRGGBB, except the values are decimal
numbers from 0 to 255. For example, rgb(255,128,0)

	 is orange. The format rgba() adds an alpha
transparency value: a decimal number from 0 to 1.

•	 hsl(hue,saturation,lightness) — Specifies an
HSL color by providing its hue, saturation, and lightness
values. hue is a decimal number from 0 to 255, and
saturation and lightness are percentage numbers.
For example, hsl(32,100%,50%) is orange. The format
hsla() adds an alpha transparency value, just like
rgba().

•	 colorname — Allows you to specify a literal color
name from a predetermined list, such as black, white,
orange, fuchsia, olive, chocolate, hotpink,
and khaki. For a complete list, see the W3C page at
www.w3.org/TR/css3-color/#svg-color.

When either style attribute is defined, use fill(),
fillRect(), fillText(), stroke(), strokeRect(),
and strokeText() to create colorful canvas objects.

Using Solid Color on the Canvas

43

5

2

7

B

A

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/css3-color/%23svg-color

195

CHAPTER

10Drawing with the HTML5 Canvas

8	 Go back to your HTML or
JavaScript file.

9	 Type context.restore(); to
restore the strokeStyle and
fillStyle values to what they
were before context.save()
was called.

0	 Continue drawing more stroked or
filled paths, rectangles, or text
strings.

!	 Save your HTML or JavaScript file.

@	 Load your HTML file in an HTML5
web browser.

C	The stroked and filled shapes
created after context.
restore() revert to the
previous strokeStyle and
fillStyle settings.

Note: As strokeStyle or
fillStyle both were not defined
prior to context.save(), they both
reverted to black.

10

9

12

C

C

You can use a shadow fill to simulate depth on any
shape or text, regardless of filling it with a solid color
or stroking it with a lined border.

Example
context.shadowColor = ‘color’;

context.shadowOffsetX = number;

context.shadowOffsetY = number;

context.shadowBlur = number;

The syntax for shadowColor’s color value is the same
as described above for the fill and stroke styles:

#RRGGBB, rgb(rrr,bbb,ggg), hsl(hue,saturation,
lightness), or colorname.
Essentially, whatever is being drawn will be mirrored
at coordinates offset by shadowOffsetX and
shadowOffsetY. The edges will then be blurred to
transparency using the length of shadowBlur.
The shadow fill can be stored and reverted, just like the
other fill and stroke styles, using context.save() and
context.restore().

EXTRA

196

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

2	 Type var gradient = context.
createLinearGradient(100, 100, 400,
400); to define a gradient that moves
diagonally from (100, 100) to (400, 400).

Note: If you want a horizontal gradient, set the
first and third parameters to the same x-axis
value; for a vertical gradient, set the second
and fourth parameters to the same y-axis value.

3	 Type gradient.addColorStop(0,’red’); to
use red at offset 0.

A	Optionally, type gradient.addColorStop
(0.5,’white’); to use white at offset 0.5,
which is effectively at (250, 250) in the
createLinearGradient() path.

4	 Type gradient.addColorStop(1,’blue’); to
use blue at offset 1.

Note: You can continue adding new colors at
different offsets between 0 and 1.

Using Linear Gradient Colors on the Canvas

You may use linear gradient colors in place of a solid
stroke or fill color. This allows you to add interesting

multicolored effects on a single canvas object that blend
from one color into another.

To create a gradient, you must first call createLinear
Gradient() and specify the coordinates for where the first
color begins (x0, y0) and the last color ends (x1, y1):

var gradient = context.
createLinearGradient(x0, y0, x1, y1);

The gradient object created must then be assigned color-
stop offsets. An offset determines where along the (x0, y0)
to (x1, y1) path that a specific color will be strongest:

gradient.addColorStop(offset, ‘color1’);
gradient.addColorStop(offset, ‘color2’);

For each gradient.addColorStop() call, the offset
variable must be a unique decimal number within 0 and 1.

If offset is 0, its color is applied to the (x0, y0) point
and everywhere before it on the path. The offset of 1 color
is applied to the (x1, y1) point and everywhere after it. All
other color offsets in between 0 and 1 will appear at their
relative offset location between (x0, y0) and (x1, y1).

Assign the gradient object to fillStyle or
strokeStyle. This will draw it to the canvas when you
use fill(), fillRect(), fillText(), stroke(),
strokeRect(), or strokeText():

context.fillStyle = gradient;
context.strokeStyle = gradient;

The canvas location where this gradient is drawn
determines which portions of the color blend actually
appear. The gradient will remain active until fillStyle
or strokeStyle are changed.

Using Linear Gradient Colors on the Canvas

2

3

4

A

197

CHAPTER

10Drawing with the HTML5 Canvas

5	 Type context.save() to back up the
current attribute settings.

6	 Type context.style = gradient; to
assign the linear gradient as the
stroke or fill style.

7	 Use a stroke- or fill-related method to
draw with the linear gradient.

8	 Type context.restore(); to restore
your previous attribute settings from
the save point, thus removing the
gradient from the drawing style.

9	 Save your HTML or JavaScript file.

0	 Load your HTML file in an HTML5 web
browser.

	 The objects are drawn with the linear
gradient as their painted colors,
relative to the linear gradient path.

B	This is the point where the linear
gradient begins.

C	This is the point where the linear
gradient ends.

6

7

5

8

10

C

B

Calling gradient.addColorStop() once does not
make a gradient;, it only makes a solid color, regardless
of the offset value. Only when you have multiple
gradient.addColorStop() calls, each with a unique
offset between 0 and 1, will a color gradient be
constructed.
In addition, you do not need to use 0 and 1; any two partial
values will suffice. In the previous example, had you only
assigned two color stops to 0.5 and 0.75, the perceived
path would shrink to (250, 250) and (300, 300).
It is possible to create a gradient that fades
into transparency. This is done by using rgba
(red,green,blue,0) as a gradient.
addColorStop() color. The three color channel

values should match your canvas background color or
image as closely as possible. So, if your background is
solid black or an image that is mostly black, use
rgba(0,0,0,0).
For example, the following color stops create a gradient
that moves from red to transparent-white:

gradient.addColorStop(0, ‘red’);

gradient.addColorStop(1, ‘rgba(255,255,255,0)’);

Note this technique also
works on radial gradients, as
described in the next section,
“Using Radial Gradient
Colors on the Canvas.”

EXTRA

198

1	 Open an HTML or JavaScript file with
a canvas and 2D context variables
loaded.

2	 Type var gradient = context.
createRadialGradient(250, 250, 50,
250, 250, 200); to define a gradient
that starts at (250, 250) and changes
colors from a 50 pixel radius up to a
200 pixel radius.

3	 Type gradient.addColorStop(0,’red’);
to use red at offset 0.

A	Optionally, type gradient.
addColorStop(0.5,’white’); to use
white at offset 0.5.

4	 Type gradient.addColorStop(1,’blue’);
to use blue at offset 1.

Note: You can continue adding new colors
at different offsets between 0 and 1.

Note: You do not need to use 0 and 1 for
the first two offset values, but you do need
at least two addColorStop()s with
different offsets and colors.

Using Radial Gradient Colors on the Canvas

An alternative to the linear gradient is the radial
gradient. This allows you to add interesting

multicolored effects on a single canvas object that actually
blend seamlessly from one color into another, but in a
circular fashion — outgoing from a specific point and
incoming into another specific point.

To create a gradient, you must first call createRadial
Gradient() and specify the absolute coordinates for where
the first color begins (x0, y0), the radius outward as r0,
and where the last color ends (x1, y1), plus its radius, r1:

var gradient = context.createRadialGradient
(x0, y0, r0, x1, y1, r1);

The gradient object created must then be assigned
color-stop offsets. An offset determines where along the
radial path a specific color will be strongest:

gradient.addColorStop(offset, ‘color1’);
gradient.addColorStop(offset, ‘color2’);

For each gradient.addColorStop() call, the offset
variable must be a unique decimal number between 0 and 1.
If offset is 0, its color is applied to the (x0, y0) point
and everywhere before r0. If offset is 1, its color is
applied to the (x1, y1) point and everywhere after r1. All
color offsets in between will appear relationally between
the two circles.

Assign the gradient object to fillStyle or
strokeStyle. This will draw it to the canvas when you
use fill(), fillRect(), fillText(), stroke(),
strokeRect(), or strokeText(). The gradient will
remain active until fillStyle or strokeStyle are
changed.

Using Radial Gradient Colors on the Canvas

2

3

4

A

199

CHAPTER

10Drawing with the HTML5 Canvas

0	 Load your HTML file in an HTML5 web
browser.

	 The objects are drawn with the radial
gradient as their painted colors,
relative to the linear gradient path.

B	This is the area before the linear
gradient begins. In this example, it is
a 50 pixel radius from the start point
at (250, 250).

C	This is the area where the linear
gradient ends. In this example, it is
a 200 pixel radius from the same
start point.

5	 Type context.save() to back up the
current attribute settings.

6	 Type context.style = gradient; to
assign the radial gradient as the fill or
stroke style.

7	 Use a fill- or stroke-related method to
draw with the radial gradient.

8	 Type context.restore(); to restore
your previous attribute settings from
the save point, thus removing the
gradient from the drawing style.

9	 Save your HTML or JavaScript file.

7
6

5

8

10

C

B

By setting a radial gradient with different (x0,y0) and (x1,y1) points and adjusting the values so that x1 progresses
from x0 to x0+r0, or y1 progresses from y0 to y0+r0, you can create some very interesting radial gradient effects.
For example, the following three images demonstrate three different states: when x0=y0=x1=y1 and r0>r1; when
x1 starts to increase toward x0+r0; and when x1 moves beyond x0+r0:

â•…â•…â•…â•…â•… â•…â•…â•…â•…â•…

EXTRA

200

3	 Type image.src = ‘image.jpg’;
to specify the image file that
you want to draw on the canvas.

4	 Type image.onload =
function(){ }; to specify an
anonymous function expression
on the load event.

1	 Open an HTML or JavaScript file
with a canvas and 2D context
variables loaded.

2	 Type var image = new Image();
to create the image object.

Draw an Image on the Canvas

You can draw an image onto any point in the canvas using
drawImage(). This provides a convenient way to import

image files stored on your web server into the canvas:

var image = document.getElementById(imageID);
context.drawImage(image, destX, destY);

imageID identifies for the image in HTML, as in <img
src=’image.jpg’ id=’imageID’>. drawImage()’s
destX and destY values indicate the point in the canvas
where the image will appear.

Alternatively, if the image resource is not available as an
HTML img element, you may download it dynamically using
a new Image() object’s src attribute. This requires you
to listen for the object’s load event, which tells you the
resource has been downloaded and can be displayed:

var image = new Image();
image.src = ‘image.jpg’;
image.onload = function() {
 context.drawImage(image, destX, destY);
};

If, after the canvas initially draws the image, you happen
to reassign image.src to a new file, the image.onload
function expression will run again and draw the new image.
This will overwrite the existing image; however, if the
new image is a smaller size, parts of the older image will
remain visible. If this proves to be a problem, you can call
clearRect() with the previous image’s dimensions before
drawImage().

Draw an Image on the Canvas

2

3
4

201

CHAPTER

10Drawing with the HTML5 Canvas

5	 Type context.
drawImage(image, x, y); to
draw the top left of the image
at the point (x, y) after it has
been downloaded from the web
server.

6	 Save your HTML or JavaScript
file.

7	 Load your HTML file in an
HTML5 web browser.

A	The image is drawn on the
canvas, with the top left of the
image at the point (x, y)
specified.

5

7

A

It is possible to send all images through an alpha-channel transparency filter, called globalAlpha. Simply assign
to it a decimal value between 0, for completely transparent, to 1, for completely visible before drawing your image.
Actually, this globalAlpha attribute applies itself to all drawing methods, not just drawImage(). Therefore, it is
a good idea to call save() to back up the current setting, which if left untouched is 1, make the change and draw
the image, and then call restore() to restore the saved setting.

APPLY IT

RESULT

The current attribute settings are backed up, and then
the image is drawn at the point (100, 100) with 50%
transparency; anything under the image remains visible.
The modified globalAlpha value is then reset to its
previous setting.

TYPE THIS
image.onload = function() {
 context.save();
 context.globalAlpha = 0.5;
 context.drawImage(image, 100, 100);
 context.restore();
};

➔

In addition, the globalCompositeOperation attribute can be used to customize how the canvas merges
semitransparent object colors in with the existing canvas content. Most of the time, the default setting of
source-over is sufficient, but if you want to customize it, an explanation of the options can be found at the
WHATWG page at www.whatwg.org/specs/web-apps/current-work/#dom-context-2d-globalcompositeoperation.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/%23dom-context-2d-globalcompositeoperation

202

4	 Load your HTML file in an
HTML5 web browser.

A	The scaled image is drawn on
the canvas.

1	 Perform steps 1 to 4 from the
section “Draw an Image on the
Canvas.”

2	 Type context.
drawImage(image, 100, 10,
500, 700) to draw an image at
(100, 10) and scale it to 500
pixels wide and 700 pixels high.

3	 Save your HTML or JavaScript
file.

Scale a Canvas Image

You can scale an image before drawing it into the canvas
using a similar procedure to the one described in the

section “Draw an Image on the Canvas,” except this time,
you must specify two more parameters to the drawImage()
method, a destination width and height:

context.drawImage(image, destX, destY, destW,
destH);

destX, destY, destW, and destH specify the destination
region of the canvas you are copying to. If destW and
destH do not match the image’s original width and height,
it will be scaled when drawn onto the canvas.

Scale a Canvas Image

The image’s aspect ratio cannot be locked by
drawImage() alone. So if you want to maintain the
height and width aspect while scaling, you will have to
cross-multiply using one destination dimension and the
image’s original dimensions. This will return the opposite
destination dimension at the same aspect ratio.

Example
destW = 360;

destH = image.height * destW / image.width;

If the original image is 600 x 400 and destW must equal
360, the destH calculation will yield 240. Now you can
run drawImage() and maintain the aspect ratio.

EXTRA

2
1

4

A

203

CHAPTER

10

4	 Load your HTML file in an
HTML5 web browser.

A	The cropped image is drawn on
the canvas.

1	 Perform steps 1 to 4 from the
section “Draw an Image on the
Canvas.”

2	 Type context.
drawImage(image, srcX, srcY,
srcW, srcH, destX, destY,
destW, destH) to crop and scale
an image.

3	 Save your HTML or JavaScript
file.

Crop a Canvas Image

You can crop an image before drawing it into the
canvas using a similar procedure to the one described

in the section “Draw an Image on the Canvas,” except
this time you must specify four more parameters to the
drawImage() method:

context.drawImage(image, srcX, srcY, srcW,
srcH, destX, destY, destW, destH);

srcX, srcY, srcW, and srcH specify the region of the
source image that you are copying from. Likewise, destX,
destY, destW, and destH specify the region of the canvas
you are copying to. If srcW and srcH do not equal destW
and destH, the cropped image will also be scaled.

Crop a Canvas Image Drawing with the HTML5 Canvas

A sprite sheet is a single image
file that contains multiple frames
of the same object at various
animation states.
This sprite sheet contains the same
character at different strides, facing different directions.
Because each frame is the same size, you can
repeatedly crop with drawImage() by modifying srcX
and srcY to get a different stride and angle and destX
and destY to move the character across the canvas.
This sprite sheet example is by Franck Dupont, a.k.a.
“arikel,” and used here under the CC-BY 3.0
attribution. The original image is located at the Open
Game Art page at http://opengameart.org/content/
2d-rpg-character-walk-spritesheet/.

EXTRA

1

2

4

A

http://opengameart.org/content/2d-rpg-character-walk-spritesheet/
http://opengameart.org/content/2d-rpg-character-walk-spritesheet/

204

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

2	 Draw something on the canvas.

3	 Type var image = context.
getImageData(srcX , srcY, srcW, srcH);
to take a snapshot of the canvas as an
image data array.

4	 Type for (var x = 0; x < image.width;
x++) { } to scan through each x-axis
pixel.

5	 Type for (var y = 0; y < image.height;
y++) { } to scan through each y-axis
pixel.

6	 Type var index = (y*image.
width+x)*4; to access the base index
of each individual pixel.

7	 Type var red = image.data[index+0];
to access the red channel value.

8	 Type var green = image.data[index+1];
for the green channel value.

9	 Type var blue = image.data[index+2];
for the blue channel value.

0	 Type var alpha = image.data[index+3];
for the alpha channel value.

Query Individual Canvas Pixels

The HTML5 canvas gives you direct access to individual
pixels. You can use this to query individual pixels for

red, green, blue, and alpha channel values. This process is
done by retrieving a static snapshot of the canvas as an
image creating the image’s data array:

var image = context.getImageData(x,y,w,h);

This method will take a rectangular picture of the canvas
element and store it in an ImageData object. This object
provides three properties: height, width, and data. The
data property is actually an array that contains a massive
list of numbers, four for each pixel, that describe the
pixel’s color channels:

for (var x = 0; x < image.width; x++){
 for (var y = 0; y < image.height; y++){
 var index = (y*image.width+x)*4;
 var red = image.data[index+0];
 var green = image.data[index+1];
 var blue = image.data[index+2];
 var alpha = image.data[index+3];
 // The pixel at (x,y) holds
rgba(red,green,blue,alpha)

 }
}

For each pass of the two for loops, x and y will contain
the point whose pixel is currently being queried. The index
variable indicates where in image.data[] that this pixel’s
colors are found. Finally, the four channels’ values are found
in image.data[index] to image.data[index+3].

Query Individual Canvas Pixels

5
34

2

6

89

7

10

205

CHAPTER

10Drawing with the HTML5 Canvas

#	 Load your HTML file in an HTML5
web browser.

A	This is the area sampled by
getImageData().

B	This shows the results of the
function that processes the pixel
colors within the sample area.

!	 Process the x, y, red, green, blue,
and alpha variables in a pixel-query
function.

Note: In this example, the
magnifyPixel() function draws a 20 x
20 rectangle in the pixel’s color beside the
sample canvas image. The rectangle is
placed at the same (x, y) coordinates of
the pixel, relative to the rectangle size.
The effect is that the image sampled by
getImageData() appears magnified.

@	 Save your HTML or JavaScript files.

11

11

13

A

B

When you can query the canvas’s individual pixel colors, it is very easy to build something to manipulate them.
Often this is done by creating an image filter that uses logic to calculate a new color and updating the same index
position of the image.data[] array. Once complete, run putImageData() to update the canvas.

APPLY IT

RESULT

For each pixel, the value of the three color
channels are added together, averaged, and
synchronized. This converts the image into
black and white. Next, 150 is added to red and
75 to green, which inserts a brown that
converts the image into a crude sepia tone.
Finally, putImageData() writes the sepia image
data directly onto the canvas element at (0, 0).

TYPE THIS
var image = context.getImageData(0,0,100,100);
for (var i = 0; i < image.data.length; i += 4) {
 var sum = image.data[i] + image.data[i+1] +
image.data[i+2];

 image.data[i] = image.data[i+1] = image.
data[i+2] = sum/3;

 image.data[i] += 150;
 image.data[i+1] += 75;
}
context.putImageData(image,0,0);

➔

The putImageData() method accepts three different parameter formats, exactly like drawImage().

206

Listen for Mouse Events
1	 Open an HTML or JavaScript file with a

canvas and 2D context variables loaded.

2	 Type canvas.addEventListener
(‘mousedown’, onMouseDown, false);
to declare the mousedown event
handler.

3	 Type function onMouseDown
(event) { }.

4	 Type if (event.button == 0) { } to
identify only to primary button clicks.

5	 Type canvas.addEventListener
(‘mousemove’, onMouseMove, false);
to declare the mousemove event
handler.

6	 Type canvas.addEventListener
(‘mouseup’, onMouseUp, false); to
declare the mouseup event handler.

Note: These event registrations are within the
mousedown function because they must only
respond when the mouse is “down-then-
moving” and “down-then-up.”

7	 Create functions for the mousedown
and mouseup events.

Track Mouse Activity on the Canvas

Tracking mouse activity on the canvas allows your users
to interact with your canvas drawing. This process

involves registering event listener functions on mouse event
activity. Your canvas JavaScript can identify what the user
clicked and update the display accordingly:

canvas.addEventListener(eventType,
onEventFunction, false);

Note that the canvas object is used here, not context;
the event listener registration is predicated on the actual
canvas element, not the Canvas API. You can now supply
eventType, onEventFunction, and a Boolean, which
almost always is false: This indicates that events bubble
up the DOM starting at the canvas element, which is most
appropriate in a mouse-activity context.

The following mouse events can be used as eventType to
specify the function’s target action:

•	 click, dblclick — Standard click and double-click
actions; mutually exclusive on the same target.

•	 mousedown, mouseup — The click-hold and
click-release actions. Use these if you want to fine-tune
a click into two events.

•	 mouseover, mouseout — When the user’s mouse
cursor hovers over the target and when it leaves.

•	 mousemove — The mouse cursor is moved within the
target. Useful for hover and drag-and-drop applications:
mousedown and mousemove as the drag and mouseup
as the drop.

•	 mousewheel — When the user’s scroll wheel is used by
the user while hovering over the target.

The mousedown, mousemove, and mouseup events can
be used together to fine-tune the control you have over
complex mouse interactions, such as drag and drop.

Track Mouse Activity on the Canvas

2

4
3

7

5
6

207

CHAPTER

10Drawing with the HTML5 Canvas

9	 Add canvas functionality that occurs
when the mouse button is initially
pressed down.

0	 Add canvas functionality that occurs
when the mouse button is released.

Note: In this example, the no-cursor class
assigns cursor: none. This allows the
canvas to display its own mouse cursor, but
only while the mouse is pressed down.

Note: If you want to know where the user
clicked and released the mouse button, you
must detect its offset position in the canvas.
This is described on the next page.

8	 Type canvas.removeEventListener
(eventType, function, false); to
unregister the mousemove and
mouseup events after the user releases
the initial mousedown button.

A	The functions removed must match the
functions that were added. A

A

8

10

9

Unregistering the events during mouseup ensures that
the browser will not send unrelated mouse activity to
your midworkflow listener functions. Remember that
the mouse workflow always begins with mousedown,
may contain multiple mousemoves, and always ends
with a single mouseup. In the example here, the code
in step 4 was used to restrict the type of initiating
mouse activity that launches this workflow, which is
completed by the code in step 8.
If you are interested in scroll wheel actions, they are
a little more difficult to respond to. The delta scroll

resolution — the amount of scroll wheel change in a
mouse event — is drastically different between browsers
and operating systems. Specifically, the delta value on
Safari on Mac OS X is ≈20,000 per mouse event, Chrome
in Windows is ≈900, and Internet Explorer 9 in Windows
is ≈1,400 — and Opera in Windows is ≈120 and on Linux
is ≈80, but also has reversed up/down delta direction!
Adomas Paltanavicius wrote a very good article, available
at www.adomas.org/javascript-mouse-wheel/, that tries
to make sense of this problem. The article is a little
outdated, but it still applies today to the HTML5 canvas.

EXTRA

continued ➤

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.adomas.org/javascript-mouse-wheel/

208

Identify Where the User Clicked
!	 Type canvasOffset = $(‘canvas#surface’

).offset();.

Note: jQuery’s offset() method runs on page
load and window resize, but the actual offset
calculation (in step 13) must be repeated for
each mouse event.

@	 Type var x = event.offsetX and var y =
event.offsetY to get the event’s
coordinates relative to the canvas element.

#	 Type || event.pageX - canvasOffset.left;
and || event.pageY - canvasOffset.top; as
fallback calculations for the offsetX and
offsetY values.

$	 Add functionality that occurs when the
mouse moves while pressed down.

Note: Duplicate steps 12 and 13 in the
onMouseDown and onMouseUp functions if
required.

A	In this example, onMouseDown and
onMouseMove perform the same canvas
functionality. This is why the former calls
the latter.

Track Mouse Activity on the Canvas (continued)

When an event launches your onEventFunction, an
event object parameter is provided that details the

contextual information associated with the mouse event.
As such, the event object contains several properties
that allow you to identify exactly where and what the user
clicked:

•	 event.screenX, event.screenY — The click
location relative to the user’s monitor.

•	 event.clientX, event.clientY — The click
location relative to the user’s browser window.

•	 event.pageX, event.pageY — The click location
relative to the web page.

•	 event.offsetX, event.offsetY — The click
location relative to the target element.

•	 event.ctrlKey, event.shiftKey, event.
altKey, event.metaKey — Booleans that specify
whether the Ctrl, Shift, Alt, or meta (Q or Ô) keys were
pressed in tandem with the mouse button.

•	 event.button — An integer indicating which mouse
button was pressed: 0 for primary, 1 for middle, 2 for
secondary.

In the context of a canvas click, the location you will be
interested in is event.offsetX and event.offsetY.
These properties will always indicate where the user clicked
relative to the top-left origin point of the canvas itself,
regardless of where the canvas element appears in the
browser window.

Unfortunately, not all browsers provide event.offsetX
and event.offsetY, so they require you to calculate this
yourself by subtracting the canvas element’s offset location
by event.pageX and event.pageY. What complicates
things is that the process to determine an element’s offset
location also differs by browser. Fortunately, jQuery’s
offset() method can be used to easily identify the
canvas element’s offset, which helps you calculate event.
offsetX and event.offsetY as a fallback.

Track Mouse Activity on the Canvas (continued)

11

13

11

12

14

A

209

CHAPTER

10Drawing with the HTML5 Canvas

*	 Click and drag across the canvas image.

C	The canvas responds to the mousedown
and mousemove events.

Note: In this example, the magnified image
updates as the mouse cursor drags across the
original image.

(Let go of the mouse button.

	 The canvas responds to the mouseup
event. Subsequent mousemove and
mouseup events over the canvas are
ignored.

%	 Save your HTML or JavaScript file.

^	 Load your HTML file in an HTML5 web
browser.

	 The canvas image’s default state is
drawn on the browser: Nothing has
been clicked.

&	 Click once on the canvas image.

B	The canvas responds to the mousedown
and mouseup events.

17

16

B

18 C

Be aware of touch-sensitive mobile devices with HTML5
browsers — specifically, the Android and iOS tablets
and phones. Although they do trigger mouseclick,
mousedown, and mouseup events, there are no
mouseover, mousemove, or mouseout events. This will
make developing touch and drag a little different — and
hovering impossible. Instead, these browsers implement
touchstart, touchmove, and touchend, with a
slightly more complicated event object structure that is
required to add multitouch support.
The term multitouch refers to multiple touch events
that are tracked independently, like multiple mouse
pointers. This provides new functionality gestures, like

pinch-to-zoom, and double- or triple-finger scrolling.
You can technically provide this functionality on your
website for your mobile phone and tablet users, but this
requires you to monitor events simultaneously and
calculate relative distances and movement between
each finger within the touchable area.
A blog post by Ross Boucher provides a very good
example of a single touch-to-mouse event shim, available
at http://ross.posterous.com/2008/08/19/iphone-touch-
events-in-javascript/. He demonstrates how to translate
touchstart and touchmove events into mousedown
and mousemove activity. The post focuses on the iPhone
platform but transfers seamlessly to the Android.

EXTRA

http://ross.posterous.com/2008/08/19/iphone-touch-events-in-javascript/
http://ross.posterous.com/2008/08/19/iphone-touch-events-in-javascript/

210

4	 Load your HTML file in an HTML5 web
browser.

A	The (0, 0) point appears in the top-left
corner of the canvas element.

B	The shape is placed at the point
(100, 100).

Note: In this example, arcs will automatically
center on the point used.

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

Note: In this example, a grid layout is drawn
in the canvas to demonstrate the location of
the (0, 0) origin and the size and layout of
the drawing area.

2	 Draw a shape at coordinates (100, 100).

3	 Save your HTML or JavaScript file.

Translate the X- and Y-Axes

The origin, the name for the point at (0, 0), is in the
top-left corner of the canvas element. Whereas this

works well enough if you are just starting out drawing
on the canvas — increase x to go right, increase y to
go down — it does make things a little more difficult to
understand if you have multiple objects to draw together
as a group, especially if that group is positioned at multiple
relative locations on the canvas.

In fact, this will become a major problem when you start
working with canvas animations. Imagine that you have a
group of shapes that make up a character in a game, and
the character moves from right to left on the screen. You
could calculate the absolute x and y coordinates for all
points to build the character, at every location along the

character’s travel path, but this is too much work and prone
to errors.

To help with this problem, you can translate the location
of the origin to a new point on the canvas. Then when
you draw your character, you do not need to calculate the
position of the head, body, arms, and legs separately; you
just code it once, relative to the origin, and simply move
the origin around when you want to move the character.

context.translate(x,y);

When you draw your objects, you can simply leave the
origin at its new location or move it back to the top left.
Either way works; it does not matter — that is, unless you
are animating and need to constantly save and restore the
baseline coordinates in a stack array, as described below.

Translate the X- and Y-Axes

2

4

B

A

211

CHAPTER

10Drawing with the HTML5 Canvas

You can translate the origin as many times as required
while drawing on the canvas. This is particularly useful
if you have a complex object, such as a person, that you
want to move across the screen. Rather than redraw
each individual component, draw it once relative to
(0, 0) and then move the origin point where you want
the character to move.
Fortunately, the methods save() and restore() can
be used to save a backup of the current drawing settings

and then restore them all when done. Multiple backups
can be stored and retrieved in a LIFO (last in, first out)
order.
Unfortunately, there is no way to retrieve what the
current translate point is. So be careful when nesting
multiple context saves and restores; make sure that you
have the same number of each. It can get very
confusing, and you may get lost in case you miss a
restore() somewhere in the middle of your program.

EXTRA

8	 Load your HTML file in an
HTML5 web browser.

C	The origin has moved to the
new location.

D	The shape created at (100, 100)
is offset by the origin point
change.

5	 Go back to your HTML or
JavaScript file.

6	 Type context.translate(x, y);
before calling any drawing
methods, moving the origin to
the coordinates (x, y).

7	 Save your HTML or JavaScript
file. 6

8

D

C

212

1	 Open an HTML or JavaScript file with a
canvas and 2D context variables loaded.

2	 Type context.translate(context.
canvas.width/2, context.canvas.
height/2); to move the origin point to
the center of the canvas.

Note: Rotating always pivots around the
origin point.

3	 Draw a shape at coordinates (100, 100).

4	 Save your HTML or JavaScript file.

5	 Load your HTML file in an HTML5 web
browser.

A	The origin appears in the center of the
canvas element.

B	The shape appears relative to the origin.

Rotate the X- and Y-Axes

You can rotate the entire canvas two-dimensional drawing
plane, which makes drawing objects at a specific angle

much easier as the number line the x- and y-axes follow is
actually altered. For example, rotating a 100 x 100 canvas by
45° will move point (0, 100) from the far right, to the near
bottom-right corner; point (50, 50) moves from the exact
center to the middle of the left-side border.

Regardless of whether you need to rotate a shape 180°,
45°, or 1°, do not spend your time calculating the shape’s
absolute coordinates rotated at an angle; just rotate the
axes themselves.

All rotations occur around the origin point. Therefore,
unless you first use translate(), your rotation will pivot

around the top left of the canvas. The rotation direction
itself moves clockwise and must be specified in radians:

context.translate(x,y);
context.rotate(radians);

If you prefer to work in degrees and cannot remember how
to specify radians from your high school trigonometry days,
note that 1° is equal to π/180, or written in JavaScript,
Math.PI/180. Therefore, 90° is 90*Math.PI/180, which
can be simplified to Math.PI/2.

The save() and restore() methods apply to the
rotate() method, too. It is usually a good idea to run
save() just before you manipulate the drawing plane and
then run restore() when you are done.

Rotate the X- and Y-Axes

3

2

5

A

B

213

CHAPTER

10Drawing with the HTML5 Canvas

6	 Go back to your HTML or
JavaScript file.

7	 Type context.rotate(radians);
before calling any drawing
methods to rotate the xy plane
clockwise.

Note: Math.PI/6 in radians is 30°.

8	 Save your HTML or JavaScript
file.

9	 Load your HTML file in an
HTML5 web browser.

C	The axes are rotated clockwise
by the radian amount specified.

D	The shape created is also
rotated, pivoting on the origin
point.

7

C

D

9

The JavaScript Math object contains a multitude of functions for working with angles and performing trigonometric
operations. Math.atan2(y,x) returns the angle of direction of any point.

APPLY IT

RESULT

The canvas plane is rotated as the x-axis crosses through
the point (200, 100), an angle of roughly 0.46364 radians,
or about 26.5°. Note that Math.atan2() first requires the
y coordinate and then x, unlike most functions.

TYPE THIS
context.rotate(Math.atan2(100,200)); ➔

If you are more familiar with degrees than radians, you can follow this conversion chart to help you identify a
radian representation for commonly used angles that is simpler than degrees*Math.PI/180.

Degrees Radians Degrees Radians

0 0 90 Math.PI/2

30 Math.PI/6 180 Math.PI

45 Math.PI/4 270 3*Math.PI/2

60 Math.PI/3 360 2*Math.PI

214

Build an Animation Frame Shim
1	 In a JavaScript file, type window.

requestAnimFrame = (function(){
to declare the shim function as
requestAnimFrame().

2	 Type })(); to close the shim
function.

3	 Type return window.
requestAnimationFrame ||.

Note: By stating the anticipated name for
the function first, your shim will
automatically default to it when the
implementation is standardized and web
browsers have it implemented.

4	 Type window.
webkitRequestAnimationFrame ||.

5	 Type window.
mozRequestAnimationFrame ||.

Create Animations on the Canvas

Before you can begin creating animations on the canvas,
it is important to understand the correct way to time

your animations in HTML5 web browsers.

Prior to HTML5, JavaScript animations relied on the
setTimeout() and setInterval() functions. These
allowed you to create asynchronous pseudo-threads — not
true process threads, which are discussed in Chapter 16,
“Running Secondary JavaScript Threads Using Web Workers” —
that split the JavaScript flow. One problem was that they were
active regardless of the browser’s current visible state: If you
opened a website with an active animation in one tab and
then navigated to another tab, the animation would still be
active in the CPU, calculating and updating a hidden browser
window. Furthermore, exact timing was never precise, and a
consistently smooth frame rate was nearly impossible.

Mozilla developed a solution, mozRequestAnimation
Frame(). This allows the JavaScript to notify the web browser
to say, “I have something to animate,” and the web browser

can coordinate the animation frame with the UI refresh rate.
The end result is smoother animations that automatically
pause when the browser’s display is hidden on-screen.

WebKit has also jumped on board with this idea, creating
webkitRequestAnimationFrame().

Because this is not yet an official API specification — there
is no requestAnimationFrame() function — you will
need to create a JavaScript shim to call the correct function
per browser. This will check which browser-specific function
is available and runs accordingly or automatically falls back
to the legacy functionality — in this case, setTimeout().

This shim technique comes courtesy of a blog post by
Google employee Paul Irish at http://paulirish.com/2011/
requestanimationframe-for-smart-animating/. It is
important to note that this new function is not canvas
specific. You can use it for any type of JavaScript animation
in any web browser.

Create Animations on the Canvas

1
2

45
3

http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/

215

CHAPTER

10Drawing with the HTML5 Canvas

6	 Type window.
oRequestAnimationFrame ||.

7	 Type window.
msRequestAnimationFrame ||.

Note: These Opera and Microsoft versions
of requestAnimationFrame() may
not exist today, but they may in the
future before the specification is finalized.

8	 Type function(callback, element)
{ };.

Note: Because setTimeout accepts a
timeout parameter, it must be called
inside an anonymous function that
manages the callback and a minimal
timeout value.

9	 Type window.setTimeout(callback,
1000/60); to fall back to the legacy
function.

Note: The timeout value used is 16.67
milliseconds. This is roughly the fastest
value that legacy browsers can support
without overloading the CPU.

0	 Save your JavaScript shim file as
requestAnimFrame.js.

9

10

8

76

Although requestAnimationFrame() assumes that
you want the absolute fastest animation frame rate
available, basically 60fps, its implementation supersedes
the original setTimeout() and setInterval()
functionality in which a very small delay could be used to
hit a number that was close enough to a full frame rate.
Now that the frame-rate problem is solved, at least for
some browsers, the original purpose of setTimeout()
and setInterval() got ignored. These functions
provided a simple way to set up an arbitrary delay
before executing an asynchronous function.
So how can you restore the convenience of this delay,
yet take advantage of the
requestAnimationFrame() features? You can do so
with the help of Joe Lambert’s extension to Paul Irish’s

shim, which you can view at the GitHub Gist page at
https://gist.github.com/1002116/.
Highlight Joe’s requestInterval.js and requestTimeout.js
code — the functions requestInterval(),
clearRequestInterval(), requestTimeout(),
and clearRequestTimeout() — and copy and paste
it into your requestAnimFrame.js.
Joe gives some background to his design in his blog post
“A better setTimeout()/setInterval()” on his
web page at http://blog.joelambert.co.
uk/2011/06/01/a-better-settimeoutsetinterval/.
The implementation is exactly the same as the
venerable setTimeout(), clearTimeout(),
setInterval(), and clearInterval().

EXTRA

continued ➤

https://gist.github.com/1002116/
http://blog.joelambert.co.uk/2011/06/01/a-better-settimeoutsetinterval/
http://blog.joelambert.co.uk/2011/06/01/a-better-settimeoutsetinterval/

216

Loop an Animation Function
1	 Open an HTML file with a canvas

element declared.

2	 Type <script type=’text/javascript’
src=’requestAnimFrame.js’></script>
to import the frame-animation shim.

3	 Go to a <script type=’text/
javascript’> block or a JavaScript
file loaded after the Animation Frame
shim with a canvas and 2D context
variables loaded.

4	 Insert JavaScript code that runs once
and initializes the canvas animation as
stage 1.

5	 Type function animateObject() { to
define the animation loop.

6	 Type calculateObject(); to run stage 2
and store its results in global variables.

7	 Type clearObject(); to erase the object’s
previous frame position for stage 3.

Note: For efficiency, ensure that
clearObject() only clears the “changing”
object area of the canvas and avoid clearing
the entire canvas plane if possible.

Create Animations on the Canvas (continued)

Now that you can create fast and efficient animation
frames, thanks to Paul Irish’s requestAnimFrame()

shim described on the previous page, you can now apply
movement into your canvas drawing.

Basic animations consist of four distinct stages:

1	 Draw the initial frame — This creates the initial setup
of the canvas “scene” using all the techniques described
throughout this chapter. Here you may also run any
precalculation and initialization routines that will make
the second stage run more efficiently.

2	 Calculate the next frame — In order to achieve smooth
animations, you must not spend any more time calculating
the next frame than you have to. Here you calculate the
changed objects’ positions, prepare any new images for
display, and process any user interaction events.

3	 Clear the current frame — Depending on how the
current and next frame differ, you may need to clear
any objects or drawing relics if their presence interferes
with the overall animation effect. Try to avoid running
clearRect() on the entire canvas plane, as this could
slow down the next stage.

4	 Draw the next frame — You can now update the canvas
plane with the second stage’s calculations. You should
try to recycle as much of the previous frame as possible
by not redrawing objects that have not changed in this
frame. Again, to achieve the fastest frame rate possible,
spend as little time here as necessary.

After the cycle is complete, you can choose to continue
the animation process by looping back to the second step,
calculation, repeating the animation process indefinitely. Or
you can simply let your JavaScript program finish naturally;
end your animation by leaving the final frame active on the
canvas.

Create Animations on the Canvas (continued)

2
3

4

6

7

5

217

CHAPTER

10Drawing with the HTML5 Canvas

8	 Type drawObject(); to draw the
object’s new frame for stage 4.

9	 Type requestAnimFrame
(animateObject); to create a
controlled infinite animation loop
inside of animateObject().

Note: This will create the fastest-possible
animation speed. To slow it down, use
requestTimeout(animateObject,

50) to delay each frame by at least
50 ms.

0	 Type animateObject(); back in stage
1 to launch the animation loop.

!	 Save your JavaScript or HTML files.

@	 Load your HTML file in an HTML5
web browser.

A	The animation process loop launches.

#	 Open the Task Manager or Activity
Monitor.

B	This shows the overall animation CPU
load.

Note: Minimize your web browser. The CPU
load will drop as the animation process is
frozen. Had you used setTimeout(), the
animation CPU would have started higher
and remain high even while minimized.

8
9

10

12

A

B

The clear stage 3 comes after the calculate stage 2 to
reduce any potential flickering; however, the calculate
stage may produce new x and y values that are of no
use to the clear stage. Therefore, the calculate stage
must first back up x and y so that the clear stage knows
where to work.
You can create concurrent animation loops running at
different rates by duplicating steps 5 to 10 here with
different function names. You can then use a different
delay in step 9 to create independently moving animation
objects. Note, however, that if the independent loops
control of the same object, they will need to share the
same stage 3 and stage 4 processes.

For example, in this “Puckman” animation, you can
make the character object bounce across the screen at
one frame rate but open and close his mouth at a
slightly faster frame rate. Because the entire character
is redrawn after either a move or chomp frame change,
both loops call clearObject() and drawObject().
In turn, these functions know how to handle a move or
chomp frame change by accessing the calculated values
for both animations.
The completed Puckman example can be viewed at
http://html5.array.org/demos/canvas/animation.html.

EXTRA

http://html5.array.org/demos/canvas/animation.html

218

The following optional attributes can be specified within the
<video> tag itself:

•	 src=’file’ — Specifies the movie file to play. Cannot be
used in tandem with the <source> tag.

•	 width=’value’, height=’value’ — Set an initial
width and height of the video element prior to playing.
Also, they will scale the video while playing. These are
strongly recommended because the website layout will shift
around when preload or playback starts as the element is
adjusted to the movie’s actual dimensions.

•	 poster=’image’ — Sets an image to appear within the
video element prior to playback, akin to a movie poster.
Note that poster is mostly useful if preload=’none’;
when preload is active, the first frame automatically
becomes the poster image.

The <video> tag group defines where in a web page that a
video object will appear. There are two ways to define the video
source content. First, a single movie file can be used in the
src attribute, described here. The second involves moving the
src attribute into the <source> tag, as described later in
this section in the subsection “<source>.”

<video src=’moviefile.format’ attributes>

 Fallback content

</video>

The contents within the <video> tag group will be used as
fallback content for browsers that do not support the HTML5
video element. This can be a Flash-based movie playback
program, a static image of the movie, or even a hyperlink to
download the video file.

<video>...</video>

browser developers started to weigh the pros and cons of using
Flash, especially on mobile devices. They found that better
battery life, hardware-based video decoding, and vector graphic
animations could all be offered by the browser directly, using
the standards developed under the HTML5 banner.

An essay written by Steve Jobs in April 2010 sums up Apple’s
decision to drop Flash on the iPhone and develop HTML5 and is
available at Apple’s web page www.apple.com/hotnews/
thoughts-on-flash/.

Prior to HTML5, Adobe Flash was the standard platform for
delivering rich multimedia content online, partly thanks to the
rise of websites like YouTube. Although Flash required a
third-party plug-in, developing animations and content was
relatively easy, and its capability to play video right in the
browser was unmatched.

However, citing reliability, security, and performance problems
with the Flash cross-platform development environment, web

HTML5 Video and Flash Video

HTML5 audio and video provide the means for you to deploy rich content on your website without requiring any
third-party plug-in. Support is already available not only in HTML5 web browsers, but also in many of today’s mobile

devices. This means that with very little effort you can post movies and music online for your users to view or listen to on
nearly any modern platform or device.

The complete HTML5 video specification can be found on the WHATWG page at www.whatwg.org/specs/web-apps/
current-work/multipage/the-video-element.html.

Introducing HTML5 Audio and Video

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.apple.com/hotnews/thoughts-on-flash/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.apple.com/hotnews/thoughts-on-flash/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html

219

audio element. This can be a Flash-based sound playback
program or a hyperlink to download the audio file.

The following optional attributes can be specified within the
<audio> tag:

•	 src=’file’ — Specifies the sound file to play. Cannot be
used in tandem with the <source> tag.

•	 preload, autoplay, controls, and loop — These
attributes have the same functionality as described in the
“<video>...</video>” subsection.

The <audio> tag group defines where in a web page an audio
object will appear. As with the video element, there are two
ways to define the audio source content, in the element itself
or with the <source> tag, described later in “<source>”:

<audio src=’soundfile.format’ attributes>

 Fallback content

</audio>

The contents within the <audio> tag group will be used as
fallback content for browsers that do not support the HTML5

<audio>...</audio>

CHAPTER

11Adding HTML5 Multimedia

downloaded to buffer playback without stopping.
Automatically sets preload=’auto’. Again, this may be
ignored by some web browsers, such as those found on
mobile devices.

•	 controls — A Boolean attribute that indicates the web
browser can use its built-in user-interface overlay to control
video playback and volume control. Do not use this if you
plan on providing your own video interface controls.

•	 loop — A Boolean to restart the video when it reaches the
end of playback.

•	 muted — A Boolean to mute the volume by default when
playback starts.

•	 preload=’state’ — Controls how the movie file will
download into the web browser when the page first loads.
Values for state are none, which suggests that no
predownload should occur; metadata, which suggests that
the video dimensions, first frame, track list, audio channels,
and duration are downloaded automatically; and auto,
which suggests that the movie download can begin as soon
as possible. Note that the suggestions indicated by this
attribute are merely that; there is no requirement for a web
browser to follow them.

•	 autoplay — A Boolean attribute that states the movie
may automatically play when enough data has been

<source>

The <source> tag can be used within either the <video> or
<audio> tag groups. It replaces the single-file src attribute,
allowing you to specify multiple source files along with a MIME
type and codec. The browser can then make an informed
decision as to which file format it understands best without
having to download each file:

<video attributes>

 <source src=’moviefile.format1’ type=’mimetype1’>

 <source src=’moviefile.format2’ type=’mimetype2’>

 <source src=’moviefile.format3’ type=’mimetype3’>

 Fallback content

</video>

This is the most ideal way to specify video and audio in HTML5
as not all web browsers understand every major format.
However, it is more work to produce because the same file
needs to be converted up to three formats.

220

•	 VP8 is also a freely usable video codec, released alongside
the WebM container. It was originally developed and
patented by On2 Technologies, and Google released the
specification under the Creative Commons license after its
purchase of On2.

•	 H.264 is the video codec most often used in MP4 movie
containers. It offers excellent compression and is the
standard on Blu-ray, Adobe Flash, Microsoft Silverlight, and
other online streaming services such as YouTube, Hulu, and
Netflix. A license is required to produce a program that can
encode and decode with H.264, but no license is required to
use such a program or play back a file when used on the
Internet.

Sound Containers and Audio Codecs
Often, a sound container and a sound codec are defined by the
same format standard. This is the case of OGG Vorbis (*.ogg)
and MPEG-1 Audio Layer III (*.mp3).

•	 Vorbis (*.ogg) is a freely usable audio codec designed for
the OGG container and was developed as an alternative to
the MPEG audio formats.

•	 The MP3 (*.mp3) sound container and codec is an older but
more widely supported format. First popularized in 1998, it
is not as efficient as most of today’s audio codecs, but it
remains popular, especially on mobile devices.

•	 The AAC (*.m4a, *.aac) sound codec is stored in the same
container as MP4 but as an audio-only file. The AAC codec
was produced as a successor to the MP3 format; it is more
efficient and offers much better quality output. It too is
encumbered by the same style of patents as the MP3 format.

•	 The WAV (*.wav) sound container typically holds raw and
uncompressed audio streams stored as the PCM (pulse-code
modulation) codec.

A container is like an envelope for the audio and video found
within sound and movie files. It determines how many audio
and video data streams are stored and how they can be
retrieved. The data stream itself is compressed using either an
audio or video codec. The container typically determines the
media file’s extension.

Movie Containers
A movie container usually houses one video data stream and
one or more audio data streams:

•	 The OGG (*.ogv) movie container is a freely usable
container format that can technically house any type of
codec; however, it is most commonly used with Theora for
video and Vorbis for audio.

•	 The WebM (*.webm) movie container is also a freely usable
container format, but this version was only first released by
Google in May 2010 as an efficient way to deliver HTML5
video. Despite its age, it is one of the better-supported
formats among HTML5 web browsers. It uses the VP8 video
codec and Vorbis audio codec.

•	 The MP4 (*.mp4) movie container, also known as MPEG-4
Part 14, is the latest version of MPEG video and audio files
developed since 1988. Although not a free container, it
tends to support other nonfree codecs, such as H.264, MP3,
and AAC.

Video Codecs
The video codec determines how visual data is compressed and
decompressed in a movie container. Usually, only one video
codec data stream exists in a container:

•	 Theora is a freely usable video codec designed for the OGG
container. It is designed to offer a free and comparable
alternative to the MPEG video formats.

Containers and Codecs

The audio and video data that is stored within sound and movie files are produced, stored, and retrieved using different
multimedia formats. However, the word format is an oversimplification: The proper way to identify a sound and movie

file is by its container and its codecs.

Understanding Audio and Video Formats

221

Adding HTML5 Multimedia

CHAPTER

11
HTML5 Browser Support

There are different levels of support for each video and audio file. Choosing which one to encode your multimedia presentation in
is based on your target market.

HTML5 Video Formats
Here are the main video formats — codecs, plus containers in parentheses — supported by the major HTML5 web browsers.

Browser Version Theora (OGG) VP8 (WebM) H.264 (MP4)

Chrome 3.0+ 6.0+ No*
Firefox 3.5+ 4.0+ No
Internet Explorer No† No† 9.0+
Opera 10.5+ 10.6+ No
Safari No‡ No§ 3.1+

HTML5 Audio Formats
Here are the “out-of-the-box” formats supported by the major HTML5 web browsers. Because all browsers support at least Vorbis
or MP3, you only really need to encode your sound files in these two formats.

Browser Version Vorbis MP3 AAC WAV

Chrome 3.0+ 3.0+ No* 3.0+
Chromium** 3.0+ No No 3.0+
Firefox 3.5+ No No 3.5+
Internet Explorer No† 9.0+ No No
Opera 10.5+ No No 10.5+
Safari No‡ 3.0+ 3.0+ No

+ Or later.

* Google has removed H.264/AAC support for Chrome, but Windows Chrome users can restore it with the help of the Microsoft WMP HTML5
Extension for Chrome, available at the Interoperability Bridges and Labs Center at www.interoperabilitybridges.com/wmp-extension-for-chrome.

** Chromium, the open-sourced version of Chrome that is not produced by Google, is on this list because it has a different level of support than
Chrome.

† Internet Explorer can support Theora, Vorbis, and VP8 with the help of the OpenCodecs DirectShow filter, available from Xiph.org at http://xiph.
org/dshow/.

‡ Safari can support Theora and Vorbis with the help of the OpenCodecs QuickTime component, available from Xiph.org at http://xiph.org/
quicktime/.

§ Safari can support VP8 with the help of a WebM QuickTime component, available from Google Code at https://code.google.com/p/webm/
downloads/.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.interoperabilitybridges.com/wmp-extension-for-chrome
http://xiph.org/dshow/
http://xiph.org/dshow/
http://xiph.org/quicktime/
http://xiph.org/quicktime/
https://code.google.com/p/webm/downloads/
https://code.google.com/p/webm/downloads/

222

Note: Depending on your browser, you
may be warned that this type of
download can harm your computer.

3	 Click Keep (or Save) if
prompted.

	 The MVC installer downloads
onto your computer.

Download the Miro Video
Converter
1	 Go to the Miro page at

www.mirovideoconverter.com.

2	 Click Download Miro Video
Converter (for Windows).

	 OR

2	 Click Download MVC for Mac OS
X (for Mac OS X).

Install a Movie Encoder

If you already own the rights to post a movie file online,
or at least the inclination, it is quite likely that its audio

and video will need to be changed into a format that is
more appropriate for HTML5 web browsers. This process,
called reencoding, involves a software program that is
capable of decoding — or more simply, playing — the
existing audio and video streams and then encoding the
playback into a new format.

There are dozens if not hundreds of free programs available
online that can do this. One program that is particularly
user-friendly is called the Miro Video Converter, produced by
the same developers who wrote Miro (www.getmiro.com), an
open-sourced music and video player.

The Miro Video Converter (MVC) is available for the Windows
and Mac OS X platforms. It is very easy to install and
use and actually acts as a front end for one of the most
powerful multimedia toolboxes available, FFmpeg.

MVC installs a copy of FFmpeg, itself an open-source program
that performs the actual video and audio conversion.
Essentially, MVC is a front end for FFmpeg’s myriad of
command-line options. If you want to produce a custom
encoding process, you can always run FFmpeg from the
command line.

For more information on how to interact with FFmpeg
directly, you can peruse the FFmpeg Documentation web
page at http://ffmpeg.org/ffmpeg-doc.html.

Install a Movie Encoder

1

2
2

3

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.mirovideoconverter.com
http://www.getmiro.com
http://ffmpeg.org/ffmpeg-doc.html

223

CHAPTER

11Adding HTML5 Multimedia

Install the Miro Video Converter
on Mac OS X
1	 Double-click Miro Video

Converter.

2	 Click and hold the Miro Video
Converter.app icon.

3	 Drop the icon into the
Applications folder.

	 MVC is now installed.

Install the Miro Video Converter
in Windows
1	 Launch the MVC installer.

2	 Click Browse and select a
different installation directory,
if preferred.

3	 Keep clicking Next to proceed
through the installation screens.

4	 Click Close to close the installer
when completed.

	 MVC is now installed.

2

3

3

2

1

If you want to execute FFmpeg from the command line, you must first locate the directory path to the FFmpeg
executable, depending on your operating system.

APPLY IT

RESULT

The output of FFmpeg’s version
information on Windows, including
compile-time libraries and configuration.

TYPE THIS

In a Windows Command prompt, run these commands:
cd “C:\Program Files\Participatory Culture
Foundation\Miro Video Converter\ffmpeg-bin”

ffmpeg.exe -version

➔

RESULT

The output of FFmpeg’s version
information on Mac OS X, including
compile-time libraries and configuration.

TYPE THIS

In a Mac OS X Terminal, run these commands:
cd “/Applications/Miro Video Converter.app/
Contents/Resources”

ffmpeg -version

➔

224

	 The Miro Video Converter
program starts.

2	 Click Choose a File.

	 The Open dialog box appears.

3	 Navigate to a movie file and
select it.

4	 Click Open.

1	 Click Start ➔ Programs ➔ Miro ➔
Miro Video Converter (or click
Applications ➔ Miro Video
Converter.app in Mac OS X).

Reencode Movies with the Miro Video Converter

After you install the Miro Video Converter (MVC)
program, you can put it to work and reencode your

movies for HTML5 web browsers. MVC is designed to be very
user-friendly and makes it easy to convert your files to the
format that you want.

MVC’s pull-down menu lists several options for different
formats, but for the purposes of this chapter, you should
look at Theora, WebM (vp8), and MP4. These represent the
top three codecs that all HTML5 browsers best support.
There are additional device-specific formats in the list, but
their main purpose is to adjust the size of your video for
the device display.

Note that if your original video’s dimensions are too big
to fit in a typical web browser window, you should run
your video through a device-specific encoder, such as iPad
to scale it to 1024 x 768, iPhone for 640 x 480, and iPod

Touch for 480 x 320, and then convert that to Theora and
WebM because it is already in MP4 format. Obviously, this
is a highly inefficient way to resize a movie, but if you are
just starting out with video, it can get the job done.

When you reencode the same file twice, you will get a
lower-quality output from MVC or any other video-conversion
program. For this reason, it is always best to work from the
original source content with the highest bit rate and lowest
compression. Reencoding the same file from one highly
compressed format into another will introduce video noise,
blurriness, and distortion.

For a listing of the actual FFmpeg command-line
options used for each conversion profile, see the
Participatory Culture Foundation page at https://develop.
participatoryculture.org/index.php/ConversionMatrix.

Reencode Movies with the Miro Video Converter

1

2

4

3

https://develop.participatoryculture.org/index.php/ConversionMatrix
https://develop.participatoryculture.org/index.php/ConversionMatrix

225

CHAPTER

11Adding HTML5 Multimedia

	 The reencoding process begins.

A	The current progress is displayed.

	 When completed, the output file will be
saved as movie.theora.ogv, movie.
webmvp8.webm, or movie.mp4video.
mp4 in the same directory as the source.

	 Optionally, you can rename the output file
and remove the MVC profile name, but
keep the movie title and the extension
name — for example, movie.ogv, movie.
webm, or movie.mp4 extension.

5	 Click the Video Formats down arrow.

6	 Click a format: Theora, WebM (vp8),
or MP4.

7	 Click Convert.

7

5
6

A

EXTRA
If there are any problems with the reencoding of your
movie, click the FFMPEG Output button. This will
display a detailed log that summarizes any problems.
One such issue that can cause your reencoding process
to fail is the audio sample rate, as indicated by this
error message:

Error while opening encoder for output stream
#0.1 - maybe incorrect parameters such as bit_
rate, rate, width or height

This means that your movie was using a sound input
rate that is not acceptable by MVC and the requested
format. Scroll up in the log, and you will see the input
format for the audio stream:

Stream #0.1: Audio: libvorbis, 22050 Hz, mono,
s16, 160 kb/s

The ideal audio value is 44100 Hz or higher; anything
less, such as 22050 or 8000 Hz, could cause a failure in
converting your file. This appears to be a problem only
with the WebM and MP4 formats; Theora seems
immune to this problem. Until this bug is fixed in MVC,
resample your audio to 44100 Hz first and then pass it
through MVC.
If you are still having problems, click the About/Help
link and then click the Please Visit Our Get Satisfaction
Page link.

226

1	 In an HTML file, type <video width=’640’
height=’480’ controls> to create a video
object 640 pixels wide by 480 tall that
uses the browser’s built-in controls.

2	 Insert fallback content to appear if the
HTML5 <video> tag is not supported.

3	 Type </video>.

A	Optionally, type preload=’state’ to set a
movie preload state of auto, metadata,
or none.

Note: If preload is used without a value or if
no preload is used at all, it defaults to
metadata.

Note: If autoplay is used, preload is set to
auto.

B	Optionally, type poster=’image’ to set a
default image to appear before the video
starts.

Note: Defining a poster on Safari 5 and Internet
Explorer 9 will flash and then hide the poster
image, caused by preloading the video. This can
be fixed if you use preload=’none’.

Play Movies with the HTML5 video Element

After you have your movie encoded in the HTML5-
friendly codecs, you are ready to place the video on

your web page. You do so by using the <video> tag group,
its optional attributes, and <source> tags — one for each
movie file format:

<video height=’640’ width=’480’
poster=’image’ controls preload>

 <source src=’movie.mp4’ type=’video/mp4;
codecs=”avc1.640029, mp4a.40.2”’>

 <source src=’movie.webm’ type=’video/webm;
codecs=”vp8, vorbis”’>

 <source src=’movie.ogv’ type=’video/ogg;
codecs=”theora, vorbis”’>

 Fallback display.
</video>

Although the height and width variables are not required,
they are highly recommended. Otherwise, only when the
video is preloading or starts playing will the element
adjust to the video’s actual height and width. This results
in shifting the website layout to support the larger video

element. Because both Android and iOS Safari do not
respect the preload or autoplay attributes, the height
and width should be set to provide a good user experience.

Use poster to set an initial image; its size must match
height and width. Otherwise, older versions of Chrome
and Safari may fail to scale the image and could crash the
browser.

Additional Boolean attributes that you can specify include
controls for the browser to provide control buttons,
autoplay to automatically start playing, muted to mute
volume when played, and loop to repeat the playback.

The <source> tag’s src attribute defines each file format
the movie is encoded with. Its type attribute declares files’
MIME type and codec.

The content within the <video> tag group is automatically
used as a fallback for non-HTML5 web browsers.

Play Movies with the HTML5 video Element

2

1

3

B

A

227

CHAPTER

11Adding HTML5 Multimedia

4	 Type <source src=’movie.mp4’
type=’video/mp4; codecs=
”avc1.640029, mp4a.40.2”’> to
add an H.264 MP4 file.

Note: iPhones and iPads prior to iOS 4.0
required the MP4 file to be the first
resource; otherwise, no video would play.

5	 Type <source src=’movie.webm’
type=’video/webm; codecs=”vp8,
vorbis”’> to add a WebM (vp8) file.

6	 Type <source src=’movie.ogv’
type=’video/ogg; codecs=”theora,
vorbis”’> to add an Ogg Theora file.

7	 Save your HTML file.

8	 Load your HTML file in a web
browser.

	 The movie’s poster image appears.

C	The movie control buttons appear.

Note: The built-in control layout appears
different for each HTML5 web browser.

9	 Click the Play button.

	 The movie starts to play back.

5
4

6

8

9 C

If you originally used the iPhone MVC profile to
create your H.264 video, you should specify a different
codec value in its <source> tag. Replace your
<source ... type=’video/mp4’>’s codecs value
with the following for the iPhone MVC profile video
file: codecs=”avc1.42E01E, mp4a.40.2”. The
original video codec string, avc1.640029, describes
an H.264 high flavor video, whereas avc1.42E01E
describes an H.264 baseline flavor video.
Niall Kennedy wrote a very good article on his blog
that demystifies H.264 flavors, levels, and features, at
www.niallkennedy.com/blog/2010/07/h264-video.html.

For HTML5, you may assume that because different
platforms support different codecs better, you could
specify multiple <source type=’video/mp4’> lines
and deliver a high-definition H.264 movie to desktops
and a standard-definition H.264 movie to mobile
devices. Unfortunately, this is not possible. All browsers
that support H.264 will attempt to play the first MP4
movie listed in <source>, regardless of the declared
codec. So, if you use the MP4 profile, the iPhone and
iPad will use more processor power than necessary to
display basically the same thing on a smaller display,
and the iPhone profile on Safari and Internet Explorer 9
will display a lower video quality.

EXTRA

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.niallkennedy.com/blog/2010/07/h264-video.html

228

A	Optionally, type preload=’state’
to set a sound file preload state of
auto, metadata, or none.

Note: If preload is used without a
value or if no preload is used at all, it
defaults to metadata.

Note: If autoplay is used, preload is
set to auto.

1	 In an HTML file, type <audio
controls> to create an audio
object that uses the browser’s
built-in controls.

2	 Insert fallback content to
appear if the HTML5 <audio>
tag is not supported.

3	 Type </audio>.

Play Sound with the HTML5 audio Element

You can play sound files in HTML5 just as you can movie
files. Because the structure and implementation of

<audio> and <video> are so close together, collectively
they are referred to as the media elements. There are
some attributes found in <video> that do not apply to
<audio>, such as height, width, and poster, but
everything else, including ensuring that you have the
proper encoding of your sound files for each web browser, is
basically the same idea:

<audio controls preload>
 <source src=’music.mp3’ type=’audio/mpeg’>
 <source src=’music.ogg’ type=’audio/ogg;
codecs=”vorbis”’>

 Insert fallback content here.
</audio>

Additional Boolean attributes that you can specify include
controls, for the browser to provide control buttons,
autoplay to automatically start playing, and loop to
repeat the playback.

The <source> tag represents the various file formats that the
movie is encoded with. Typically, you could specify resource
files for MP3, Ogg Vorbis, AAC, WMA, and WAV, with appropriate
MIME type values. Note that the MP3 and Ogg Vorbis versions
are sufficient to hit all HTML5 web browsers; therefore, there is
no need to also create others, especially a WAV format, as its
file size could be ten times larger than the others.

The content within the <audio> tag group is automatically
used as fallback for non-HTML5 web browsers. This space
can be used to launch a Flash-based audio player or to
display direct download links to the audio files.

Play Sound with the HTML5 audio Element

2

1

3

A

229

CHAPTER

11Adding HTML5 Multimedia

4	 Type <source src=’sound.mp3’
type=’audio/mpeg’> to add an
MP3 file.

5	 Type <source src=’sound.ogg’
type=’audio/ogg; codecs=
”vorbis”’> to add an Ogg Vorbis
file.

6	 Save your HTML file.

7	 Load your HTML file in a web
browser.

	 The audio resource loads.

B	The movie control buttons appear.

8	 Click the Play button.

	 The sound file starts to play back.

Note: The built-in control layout
appears different for each HTML5 web
browser.

54

7

8

B

Like <video>, <audio>’s codecs parameter is
optional. It is recommended for the Ogg container
though, as it allows you to specify different audio
codecs. Although Vorbis is by far the most popular
format for the majority of audio applications, such as
music and sound effects, you can use Speex for storing
spoken language, such as phone recordings and
speeches.
Speex , available at www.speex.org, was originally
developed as a free audio compression format for VoIP
applications, and as such can only handle mono audio in
8, 16, and 32 kilohertz.

Speex audio files use the .spx extension, but its
audio/x-speex MIME type is not a part of HTML5.
Therefore, you must use its Ogg container MIME type,
audio/ogg, plus the correct codec parameter in your
HTML5 web page’s <source> tag:

<source src=’mylecture.spx’ type=’audio/ogg;
codec=”speex”’>

As of August 2011, the actual level of browser support
for Speex is not great. In fact, only Opera 11.5 supports
Speex natively. But if you want to test it out, you will
likely experience as much as 40% better compression
than Ogg Vorbis.

EXTRA

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.speex.org

230

1	 Open an HTML file with jQuery loaded and
a <video> or <audio> tag defined.

2	 Type <script type=’javascript’>.

3	 Type var media = document.getElement
ById(‘mymedia’); to interface with the
audio or video element’s object.

4	 Type </script>.

5	 Type id=’mymedia’ to assign the same
identifier to the media object used in
step 3.

6	 Type <button id=’play’>Play</button>
to create a play button.

Note: In this example, the Play button is used
for both starting and pausing playback. Unicode
characters represent the play and pause symbols.

7	 Type media.load(); to begin downloading
the video or audio resource.

8	 Type $(‘button#play’).click(function(){
to tie the play button’s click event to a
function handler.

9	 Type media.play(); to trigger playback.

0	 Type });.

Control Audio and Video Playback with JavaScript

It may seem pointless to make the controls attribute
optional in the <audio> and <video> tags. When

omitted, no playback buttons will appear in the web
browser. This is actually intentional, as you can still
control the playback of either element using some simple
JavaScript methods and event listeners.

This moves control over the playback experience from the
user to the website itself. Your goal as a web developer
should be to only trigger playback when it is appropriate,
such as during an HTML5 Canvas game or when chaining
playback of multiple video files together.

Before you begin, you must locate the audio or video
element in the JavaScript DOM. The easiest way to do this
is to assign the element an id attribute and then use
document.getElementById() to interface with the
media object:

var video = document.
getElementById(‘mymovie’);

video.load();
video.play();

This simple example has essentially re-created the
autoplay attribute. The load() method will initiate
the download of the most appropriate resource, which is
required if preload=’none’ or preload=’metadata’.
The play() method will trigger the process that starts
playback only after enough data has been downloaded. You
need to call load() only once, but you can call play() as
many times as you want to play the file. To pause playback,
use pause().

The load() and play() methods run asynchronously
through event broadcasters and listeners. They coordinate
using the readyState property, which stores the current
state of the resource download.

Control Audio and Video Playback with JavaScript

3
2

4

5

10

8

6

7

9

231

CHAPTER

11Adding HTML5 Multimedia

!	 Add a listener function for the
timeupdate event, triggered when the
current time position changes.

@	 Add a listener function for the
durationchange event, triggered when
the media duration is known.

#	 Type ~~(this.currentTime) and ~~(this.
duration) to retrieve the current time
and duration in whole seconds.

A	Optionally, display and update a progress
slider and output timestamp with step
13’s values.

$	 Save your HTML or JavaScript files.

%	 Load your HTML file in an HTML5 web
browser.

	 The media file loads without built-in
controls.

B	The custom controls appear.

^	 Click the play button.

C	The input gauge and output timestamp
change as the media plays.

Note: If you left the controls attribute
active, you would see that the built-in controls
and the JavaScript controls are synchronized.

13

12

11

12

11

13

A

A

A

15

16

C

B

C

The currentTime and duration properties store timestamps measured in seconds but with 10-15 digits after
the decimal point. Because the example here is concerned only with using the seconds value as whole numbers,
~~lnumber) is used as a very efficient way to round down and is much faster than Math.floor().
Regarding the playback itself, you may set currentTime directly to change the current playback position.

APPLY IT

RESULT

Clicking the input gauge pauses the video,
and sliding the gauge moves currentTime,
changing the video display in real time.
Releasing the gauge restarts video playback
at the new currentTime.

TYPE THIS
$(‘input#progress’).mousedown(function(){video.
pause()});

$(‘input#progress’).mouseup(function(){video.
play()});

$(‘input#progress’).change(function(){
 video.currentTime = $(this).val();
 $(‘output#time’).text($(this).val());
});

➔

232

1	 Open an HTML file with a <video>
element.

2	 Type <script type=’text/javascript’
src=’video.js’></script> to import
the VideoJS library.

3	 Type <link rel=’stylesheet’
type=’text/css’ media=’screen’
href=’video-js.css’> to import the
VideoJS CSS.

4	 Type VideoJS.setupAllWhen
Ready(); to activate VideoJS.

5	 Type <div class=’video-js-box’> and
</div> around the <video> tag group.

6	 Type class=’video-js’ into the
<video> tag itself.

A	Optionally, type <object class=’vjs-
flash-fallback’ type=’application/
x-shockwave-flash’ data=’flashplayer.
swf’> to use a Flash player fallback.

Note: You can use the direct link to
Flowplayer, shown in the example. See
www.flowplayer.org.

B	Optionally, add any additional
<param> tags required by the Flash
player.

Embed a Movie Player with VideoJS

If you are not satisfied with the built-in player controls
offered by your HTML5 web browser and you have no

interest in creating your own controls and JavaScript code,
you may be interested in a program called VideoJS. Produced
as an add-on JavaScript program, it not only provides a
way for you to create custom video playback controls using
nothing but CSS, but also provides a built-in fallback to non-
HTML5 browsers to launch a Flash-based video player.

VideoJS requires you to add additional code around your
existing <video> tag group. This includes wrapping it in
a master <div class=’video-js-box’></div> block
and requires you to add some additional class names to the
<video> tag itself.

If <video> is not supported, VideoJS allows for a Flash
Video player fallback that must be placed within the
<video> tag group as a new <object> block. If both Flash
and HTML5 are not supported by the browser, an additional
text block inside of <object> can be used to provide video
download instructions as a second-level fallback.

To download VideoJS, go to http://videojs.com and click
the Download link on the right. You will receive a zip
archive that contains the library. Unzip the archive to
extract the video.js and video-js.css files and save them
into your website directory.

After that, you can begin adding VideoJS to your website.

Embed a Movie Player with VideoJS

32

4

5

5

6

B

A

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.flowplayer.org
http://videojs.com

233

CHAPTER

11Adding HTML5 Multimedia

7	 Insert within the <object> tag
group any fallback content for
users who have no HTML5 video
and no Flash support.

Note: Simply duplicate the resources
specified in your video’s <source>
tags as hyperlinks.

Note: If you did not use a Flash player
fallback, insert step 7’s code directly
under the <video> tag group.

8	 Save your HTML file.

9	 Load your HTML file in a web
browser.

C	The new VideoJS control interface
appears in the video element,
replacing the browser’s built-in
controls.

Note: Chrome 13 and earlier appears to
have problems loading VideoJS movies
if the MP4/H.264 format is the first
<source> referenced. Fortunately,
Chrome 14 is not affected by this bug.

7

9

C

C

The VideoJS instructions state the second-level failover
block in step 7 should be after the <video> block,
within <div class=’video-js-box’>, and use the
class vjs-no-video. However, due to a bug in how
VideoJS hides this failover content, I recommend that
you insert the second-level failover within the <object>
tag, as shown in the example here.
Included in the VideoJS download Zip archive is a
skins subdirectory. These are samples that you can use
to get an idea of how to create your own custom
HTML5 video skin.
To install the demo skins, copy the skins directory onto
your website and type this in after step 3’s <link ...
href=’video-js.css’>:

<link rel=’stylesheet’ type=’text/css’
media=’screen’ href=’skins/hu.css’>

<link rel=’stylesheet’ type=’text/css’
media=’screen’ href=’skins/tube.css’>

<link rel=’stylesheet’ type=’text/css’
href=’skins/vim.css’ media=’screen’>

Next, to activate one of the skins — only one can be
active at a time — modify step 5 and add one of the
new class names: hu-css, hu-tube, or hu-vim:

<div class=’video-js-box hu-css’>...</div>

Save and reload your web page in the browser. VideoJS’s
hu-css theme is applied to your video element.

EXTRA

234

drag-and-drop example with ARIA support at the Dev.Opera
page at http://dev.opera.com/articles/view/accessible-drag-
and-drop/.

The Opera example does work in other HTML5 web browsers, but
again, it does not follow the official HTML5 drag-and-drop
specification.

Mobile Browsers
The whole point-and-click paradigm introduced by the mouse
falls apart quickly on mobile devices. There is no mouse, only a
touchscreen, so some user interface aspects provided by the
mouse are lost. Although touch does open up new user
interface doors, some are closed, such as hovering and the
scroll wheel.

The actual web browser support for native HTML5 drag and drop
differs, especially among HTML5 web browsers themselves.

Desktop Browsers
Currently, most of the major HTML5 web browsers support the
new HTML5 drag-and-drop attributes and events, except for
Opera 11.50.

While Opera is working on the issue, one developer has
produced an article that demonstrates a way to emulate drag
and drop with the mousedown, mousemove, and mouseup
events. Moving beyond the HTML5 specification, the article also
explains how accessible rich Internet applications (ARIA)
support can be added. Essentially, ARIA allows for users with
reduced mobility to navigate a mouse-centric interface using
only the keyboard or another device. You can read about Opera’s

Browser Support

The mouse has always been one of the easiest user interface tools to learn how to use; you just point and click.
Unfortunately, some mouse interaction also has been one of the hardest features to support directly in JavaScript, such

as identifying what the user is pointing at and which button was clicked. For a long time, websites were forced to instruct
the browser as to what the user could click, where it was, and what it did. Anything that did not involve a single left click
was overly complicated and inconsistent across browsers.

Eventually, direct mouse detection and control was offered in 2000 with the W3C DOM Level 2 MouseEvent object, but
not all browsers adopted it properly. This led to cross-browser code complexity and confusion. With every new generation
of browsers released, these mouse-related problems are slowly going away, but one mouse-centric staple that was never
properly established was the drag-and-drop interface. Operating systems have been using it as early as 1988, but this was
off-limits to website developers who did not want to invest in a lot of MouseEvent work.

Browsers themselves implemented built-in drag-and-drop features several years ago, such as how dragging an image onto
a desktop produces a copy of the image file or how dragging a link onto the tab bar produces a new tab. But websites
themselves could not interact directly with the desktop or even provide their own OS-like user interface of icons, trash
cans, and what not — that is, they could not until WHATWG included in the HTML5 specification additional attributes and
events specifically designed for sites to support drag and drop natively within the web browser itself. Today, websites can
allow users to drag and drop one object into any other object, trigger custom-tailored JavaScript commands, and even
interact with the desktop, such as when downloading and uploading files.

Introducing Drag and Drop in HTML5

http://dev.opera.com/articles/view/accessible-drag-and-drop/
http://dev.opera.com/articles/view/accessible-drag-and-drop/

235

CHAPTER

12Using Drag and Drop in HTML5

[draggable=true] { cursor: move; }

The img element and hyperlinks have draggable=’true’
implicitly set; however, this particular CSS selector will not
match them. For clear HTML code, set the draggable
attribute on every element that you intend to allow the user to
drag and set the CSS to show the user it is possible to drag.

All of your draggable elements should be registered listeners for
the dragstart and dragend events, described later in this
section in the subsection “Browser Event Workflow.”

Elements that you intend to be clicked and dragged must be
identified as draggable, using the draggable attribute. Simply
set its value to true:

<element draggable=’true’>...</element>

When this is set, HTML5 web browsers will fire off additional
browser events that you can use in JavaScript to follow the
drag-and-drop process. This attribute causes no visual change
to the element; that must be handled by CSS. For example, you
can indicate to the user that an element is draggable by
changing the mouse cursor displayed over the element:

Identify Draggable Elements

Perhaps one day support will be added. But what is most
perplexing is that the HTML5 Test, at www.html5test.com,
reports that some support exists: The built-in browsers
tested on iOS 4.4.3 and Android 3.1 both report support
for drag-and-drop events but no support for drag-and-drop
attributes, yet both are required. Strange, but true.

What is interesting, though, is that you might assume that drag
and drop would survive in the mobile realm. The mousedown,
mousemove, mouseup events translate perfectly into the
touchstart, touchmove, and touchend events. Therefore,
HTML5 native drag-and-drop support should be here, yet
support is nonexistent in today’s HTML5-aware mobile web
browsers.

Identify Drop Zone Elements

There are two ways to identify elements as a drop zone, or in
other words, accept draggable elements. Note that the first
method is recommended, as it is supported by the most web
browsers.

The dragenter, dragover, and dragleave Event Methods
The first and primary method involves simply assigning
drop-point elements a specific class name, such as dropzone,
and then using that class name in JavaScript to register listener
functions for your drag-and-drop events. Overall, this method
gives you more control over the entire drag-and-drop process,
but it involves a bit more JavaScript work.

<element class=’dropzone’>...</element>

When using this method, all of your drop zone elements should
listen for the dragenter, dragover, dragleave, and
drop events in JavaScript, described later in this section in
the subsection “Browser Event Workflow.”

The dropzone Attribute Method
The alternative method involves using the new dropzone
attribute. As of July 2011, none of the major web browsers
support this attribute, but once implemented, it will allow you
to simplify the dragenter, dragover, and dragleave
events. Its value is a series of parameters that define the
drop-point element’s behavior:

<element dropzone=’feedback kind:type’>...</element>

The feedback parameter can be copy, move, or link and
sets the mouse icon effect. Only one feedback value can be
specified, but if unspecified, it defaults to copy. The kind
parameter is a single character that states the acceptable data
type. Use f for accepting files dragged from the desktop and s
for accepting data strings. type is the MIME type of the data
accepted. Multiple kind:type parameters can be specified, if
required.

continued ➤

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.html5test.com

236

dragover
The dragover event is very similar to drag and dragenter,
except that this event fires continuously only while the user
drags and hovers over a drop zone element on the web page.
Naturally, this can produce a lot of event noise, so you can
focus on appropriate dragover activity by registering an
event listener only on drop zone elements.

The purpose of this event is to set the drop effect for the user
feedback as the user actually moves the mouse. In most cases,
your registered dragover event function should call event.
preventDefault() — which allows you to define this
dragover process — and then set event.dataTranfer.
dropEffect to either move, copy, or link.

dragleave
The dragleave event is also very similar to dragenter,
except it fires for every element that the mouse drag leaves
across the web page. Again, most elements will be
uninteresting, except for those that you have already registered
as dragenter and dragover event listeners.

Your registered dragleave event function can be used to
remove the dragenter highlight on a drop zone element area.

drop
The drop event occurs on the drop zone element where the
user releases the mouse button. This allows you to identify
where exactly the user successfully completed the
drag-and-drop process and to launch the appropriate
JavaScript code to process the user’s action.

The following lists the events triggered during the in-browser
drag-and-drop process, in order.

dragstart
The dragstart event occurs on the element that has the
draggable=’true’ attribute set. When you register this
event listener on a draggable element, you will be notified
when the user has clicked down and initiated the drag-and-drop
process.

Your registered dragstart event function can be used to fade
out the draggable element object, to use event.
dataTransfer.setData() to store supplementary
information in the dragged item, and to assign a drag image
under the mouse cursor.

drag
The drag event occurs on the element that has the
draggable=’true’ attribute set. When you register this
event listener on a draggable element, you will be persistently
notified while the user is actively dragging something.

This event is not commonly used but can be if you need to
know exactly where the draggable element is on the web page,
as it is being dragged.

dragenter
The dragenter event fires for every element the mouse drag
enters across the web page. Most web page elements you will
not be interested in, so you can isolate your dragenter
activity by registering an event listener only on drop zone
elements.

Your registered dragenter event function can be used to
highlight a drop zone element area, which provides a visual cue
to the user that the element being dragged can be dropped here.

Browser Event Workflow

For example, if you were copying image files dragged from the desktop, the dropzone attribute would be dropzone=’copy
f:image/png f:image/jpeg f:image/gif’. If you were moving a data string, use dropzone=’move s:text/
plain’.

When using this method, all of your drop zone elements only need to listen for the drop event in JavaScript, described later.

Introducing Drag and Drop in HTML5 (continued)

237

Using Drag and Drop in HTML5

CHAPTER

12

Dragging Objects into a Web Page
Only the dragenter, dragover, dragleave, and drop
events fire when dragging something from your desktop into
your web page. All other events are omitted because the drag
start point is outside of the web browser. The information
being brought into your web page can be read using event.
dataTransfer.getData(), which is usually a path to the
local file.

The HTML5 drag-and-drop process can work outside of the web
browser. This means that objects can be dragged from the
desktop into your web page, and vice versa. When this happens,
the previously described event workflow changes slightly.

Dragging Objects out of a Web Page
Only the dragstart and dragend events fire when the
drag-and-drop process begins and finishes. All other events are
omitted because the drop point is outside of the web browser.
The information you store in event.dataTransfer.
setData() will then be transferred to your operating system.
It is then up to the desktop or application to interpret that
data correctly.

External Event Workflow

dragend
The dragend event occurs after the user releases the mouse
button. This differs from the drop event as dragend fires
from the draggable element, not the drop zone element. In
other words, dragend occurs regardless of whether the
drag-and-drop process completed successfully or not.

Your registered dragend event function can be used to undo
what the dragstart function did, cosmetically speaking. For
example, if dragstart faded out the draggable element
object, dragend should restore it.

Your registered drop event function can be used to verify that
a drop action was appropriate, such as if the dragged element is
compatible with the dropped element. This can be done by
comparing the elements directly and running the event.
dataTransfer.getData() method, which accesses the
content that was originally stored using event.
dataTransfer.setData() in your dragstart event
function. Your registered drop event function should call
event.preventDefault(), which notifies the DOM that
you are providing the drop validation process.

238

1	 In an HTML file, type
draggable=’true’ on all HTML
elements that you want to drag.

A	Optionally, type <output
id=’log’></output> to define a
location to log drag-and-drop
activity.

2	 Go to your <script type=’text/
javascript’> block or a
JavaScript file loaded after jQuery.

3	 Scroll to a JavaScript
$(function(){...}); group or
create one if it does not yet exist.

4	 Type $(‘[draggable=true]’).
each(function(){.

5	 Type this.addEventListener
(‘dragstart’, onDragStart, false);.

6	 Type this.addEventListener
(‘dragend’, onDragEnd, false);.

7	 Type });.

Specify Objects to Drag

To begin supporting HTML5 drag and drop in your
website, you must first instruct the web browser which

HTML objects are actually draggable. Fortunately, this
is very easy with the advent of a new global attribute
appropriately named draggable. To activate this, set its
attribute value to true:

<element draggable=’true’>...</element>

All elements identified as draggable will start firing off
dragstart and dragend events. Listening for these
will allow your code to launch when the user begins and
completes the drag-and-drop process, relative to the
element being dragged.

Using jQuery’s selectors and its each() method,
registration for this event is very easy to do:

<script type=’text/javascript’>
 $(‘[draggable=true]’).each(function(){
 this.addEventListener(‘dragstart’,
onDragStart, false);

 this.addEventListener(‘dragend’,
onDragEnd, false);

 });
</script>

If you are using jQuery, your code can replace
addEventListener(event, function, false) with
jQuery’s bind(event, function) method. However, if
you do this, the event that is provided to your function
will change from the browser’s native MouseEvent object
into jQuery’s modified Event object. Be aware of this as a
drag-and-drop specific object will not be where you expect
it to be, as described in the section “Handle the Drag-and-
Drop Events” later in this chapter.

Specify Objects to Drag

1

A

2
4

6

3
5

7

239

CHAPTER

12Using Drag and Drop in HTML5

8	 Type function onDragStart
(event) { }.

9	 Type function onDragEnd(event)
{ }.

B	Optionally, type $(‘output#log’).
append(event.type + “
”);
into each function to log the
drag-and-drop event as it occurs.

0	 Save your HTML and JavaScript
files.

!	 Load your HTML file in an HTML5
web browser.

	 The draggable objects appear as
normal objects.

@	 Click and hold a draggable object
and move the mouse.

C	The dragstart event fires.

#	 Release the mouse button.

D	The dragend event fires.

8

9

B

B

11

12

C

D

A third event can be used to monitor the dragging activity as the mouse moves, aptly called drag. If you register for
this event in the same way you register for dragstart and dragend, you will see the drag event fire repeatedly
while actively dragging the object.
You can also alter the mouse cursor displayed over all draggable elements very easily. This allows the user to
identify that an HTML object can be moved.

APPLY IT

RESULT

When the mouse hovers over the draggable object, the mouse cursor changes.
The following shows the cursor on Windows, Mac OS X, and Linux using Internet
Explorer 9, Safari, and Chrome.

TYPE THIS
[draggable=true] {
 cursor: move;
}

➔

â•…â•…â•…â•…â•… â•…â•…â•…â•…â•…

240

1	 Specify one or more draggable objects,
plus the optional <output
id=’log’> tag, if preferred.

Note: See the preceding section, “Specify
Objects to Drag,” for more information.

2	 Type class=’dropzone’ on all HTML
elements that you want to identify as
drop points and accept draggable
objects.

Note: In this example, the drop zone is an
invisible bar in between each icon. Because
the drag-and-drop process allows you to
move icons across a page, an icon can only
be moved to a location that is not occupied
by another icon.

3	 Go to your <script type=’text/
javascript’> block or a JavaScript
file loaded after jQuery.

4	 Type $(‘[.dropzone]’).each
(function(){.

5	 Type this.addEventListener(‘dragover’,
onDragOver, false);.

6	 Type this.addEventListener(‘drop’,
onDrop, false);.

7	 Type });.

Specify a Drop Zone

In order to support drag and drop in HTML5, you will
require at least one element to accept draggable

elements. Although there is a dropzone attribute that you
could use, as described in the section “Introducing Drag
and Drop in HTML5,” it is not currently supported by any
HTML5 web browsers. Instead, you can assign a dropzone
CSS class to one or more elements and then use jQuery to
add the event listeners, as shown in the preceding section,
“Specify Objects to Drag”:

<element class=’dropzone’>...</element>

Note that you do not actually need a CSS rule with the
name dropzone in order to use it as a CSS class. Because
jQuery’s selector will match all elements that identify
themselves with the dropzone class, this is more than

sufficient to apply the two primary drag-and-drop events,
dragover and drop.

These events will allow your code to launch when the user
hovers over a drop zone and completes the drag-and-drop
process relative to the drop zone:

<script type=’text/javascript’>
 $(‘.dropzone’).each(function(){
 this.addEventListener(‘dragover’,
onDragOver, false);

 this.addEventListener(‘drop’, onDragDrop,
false);

 });
</script>

Define these immediately after you register for the
dragstart and dragend events.

Specify a Drop Zone

1

2

1

5

3

4
6

7

241

CHAPTER

12Using Drag and Drop in HTML5

8	 Type function onDragOver(event)
{ }.

9	 Type function onDrop(event) { }.

A	Optionally, type $(‘output#log’).
append(event.type + “
”);
into each function to log the
drag-and-drop event as it occurs.

0	 Save your HTML and JavaScript
files.

!	 Reload your web page.

	 In this example, the drop zone
appears as space in between each
icon.

@	 Click and hold a draggable object
and move the cursor over a drop
zone element.

B	Following dragstart, the
dragover event fires repeatedly
as the cursor travels over a drop
zone element.

#	 Release the mouse button.

	 In this example, the drop event
does not fire. This is because the
dragover event is not yet
managed properly.

8

9

A

A

12

11

B

The dragover event works just like the drag event,
firing repeatedly while over a drop zone element. In
fact, the two will fire in tandem until you either leave a
drop zone element or let go of the mouse button.
The purpose of dragover firing repeatedly is to allow
you to access the event object’s mouse pointer location
during the drag-and-drop process. In your
onDragOver() function, you can use event.pageX and
event.pageY to access the pointer coordinates relative
to the web page. If you need to know the coordinates
relative to the drag-and-drop elements, use jQuery’s
offset() method described in Chapter 10, “Drawing

with the HTML5 Canvas,” as the same technique
applies to any HTML element.
If you simply need to know when the user enters and
leaves the drop zone, there are two additional events
that you can use, dragenter and dragleave. Both are
described later in this chapter in the section “Visually
Enhance the Drag-and-Drop Experience” because they
are best suited for applying visual enhancements using
CSS to the drag-and-drop process, but if you simply
want to add logging capabilities to the drag-and-drop
process, they are perfect for this stage.

EXTRA

242

Handle the Drag-Start Event
1	 Specify one or more objects as

draggable and as a drop zone,
plus the optional <output
id=’log’> tag, if needed.

2	 Type attribute=’value’ for each
draggable element.

Note: If you prefer, you can also use
the custom data attributes, such as
data-dragme=’content’ and
pass this information during the
drag-and-drop process. In this
example, the title attribute works
well for images.

3	 Go to your <script type=
’text/javascript’> block or
a JavaScript file loaded after
jQuery.

4	 Type var srcDragElement; to use
a global variable to store the
current element being dragged.

5	 Type srcDragElement = this; to
assign the element that triggered
onDragStart().

Handle the Drag-and-Drop Events

After you have the draggable and drop zone elements
established and functions registered for the drag-and-drop

events, you are ready to provide the JavaScript code to handle
the events’ transactions. There are three stages in the drag-
and-drop workflow described in this section, and all three are
required to fully support drag and drop in your website.

Stage one of three, handling the drag-start event, consists
of three parts: First, store the source drag element into a
global variable; second, specify which type of drop effects
are allowed; third, store any data that will be passed from
this draggable object into the drop zone element:

var srcDragElement;
function onDragStart(event) {
 srcDragElement = this;

 event.dataTransfer.effectAllowed = effects;
 event.dataTransfer.setData(format, data);
}

The srcDragElement global variable is used because the
original draggable object that initiated the drag-and-drop
process will be difficult to relate back to when you are
ready to drop. event.dataTransfer.effectAllowed
specifies which drag effects are allowed to be shown back
to the user. Allowed values are none, copy, copyLink,
copyMove, link, linkMove, move, and all. The event.
dataTransfer.setData() method accepts format and
data arguments. The current HTML5 specification states
that format should be a MIME type, but Internet Explorer
9 will not allow this. Therefore, text is used as a legacy
fallback to text/plain, which is simplest to use when
sending stringed content as data.

Handle the Drag-and-Drop Events

2

1 1

5

3

4

243

CHAPTER

12Using Drag and Drop in HTML5

6	 Type var data = $(this).
attr(attribute); to retrieve the
draggable elements’ attribute value.

7	 Type event.dataTransfer.
effectAllowed = ‘move’; to indicate
that this is a drag-to-move transaction.

8	 Type event.dataTransfer.
setData(‘text’, data); to assign the
data to the DataTransfer object.

Note: Other complex MIME types could be
used in lieu of text, but they will break
drag and drop in Internet Explorer 9.

A	Optionally, log the variable assigned in
step 6 to the $(‘output#log’).
append() method to log the data
being sent.

9	 Save your HTML and JavaScript files.

0	 Reload your web page.

!	 Click and hold a draggable object and
move the mouse.

B	Optionally, the content assigned to the
DataTransfer object is displayed in
the output log during the dragstart
event.

7

6

8

A

11

10

B

The allowed values for event.dataTransfer.
effectAllowed may seem a little convoluted, but its
purpose is to state to the UI which type of drop effects
are allowed by this particular draggable object. The
effectAllowed property accepts the values none,
copy, copyLink, copyMove, link, linkMove, move,
and all, which in turn limit which values are
acceptable by the event.dataTransfer.dropEffect
property, described on the next page.
As described earlier in this chapter in the sections
“Specify Objects to Drag” and “Specify a Drop Zone,”
if you used jQuery’s bind() method to register your

drag-and-drop event handler functions, there is a bug as
of jQuery 1.6.1: The original DataTransfer object is
not imported into jQuery bind()’s modified Event
object. Therefore, you will require the following code fix
on every function that uses event.dataTransfer:

if (!event.dataTransfer && event.originalEvent.
dataTransfer)

 event.dataTransfer = event.originalEvent.
dataTransfer;

When this bug in jQuery is fixed, this hack will
automatically disable itself thanks to the preceding if
statement.

EXTRA

continued ➤

244

Handle the Drag-Over Event
1	 Type if (event.preventDefault)

event.preventDefault(); to
notify the browser that your
onDragOver() function is
managing the dragover event.

2	 Type event.dataTransfer.
dropEffect = ‘move’; to inform
the user that this action will
“move” the draggable element
into the drop zone element.

Note: Other possible values are copy,
link, and none, but these must be
allowed by event.dataTransfer.
effectAllowed in onDragStart().

Handle the Drag-and-Drop Events (continued)

After processing the dragstart event, you need to
instruct the browser how to handle the data as it is

being dragged across the screen.

Stage two of three, handling the drag-over event, consists
of two parts: First, cancel the default event using event.
preventDefault() and by returning false; second,
specify the appropriate drop effect that will actually be
displayed to the user:

function onDragOver(event) {
 if (event.preventDefault)
 event.preventDefault();
 event.dataTransfer.dropEffect = effect;
 return false;
}

The event.preventDefault() and return false
commands both serve the same purpose but apply to

different browsers, yet this code is safe to define on
all browsers. Preventing the default action may seem
contradictory and pointless, but its purpose is to instruct
the browser that this individual function is providing
all the functionality for this particular event and that it
should therefore avoid the default event actions built into
the browser itself. In the case of the dragover event,
the default actions all relate to the built-in drag-and-drop
functionality in the browser’s own user interface, such as
dragging links into either the URL or tab bars.

The dragover event fires repeatedly as the user moves the
mouse cursor across the screen while dragging, so you will
see this event fire dozens if not hundreds of times during a
single drag-and-drop action.

Handle the Drag-and-Drop Events (continued)

1

2

245

CHAPTER

12Using Drag and Drop in HTML5

3	 Type return false;.

Note: Browsers are inconsistent with how
they are to be notified that you are
managing the event. Some require
event.preventDefault() and others
require return false.

4	 Save your JavaScript file.

5	 Reload your web page.

6	 Click and hold a draggable object.

7	 Move the cursor over a drop zone
element.

A	The mouse cursor changes to the
move effect.

8	 Move your cursor away from the
drop zone element.

B	The mouse cursor changes to a
neutral, or nontransactional, effect.

3

8

5

A

B

6 7

The HTML5 specification allows for the drop effect to
change during the drag-and-drop process. This allows
HTML5 developers to produce an interface that mimics
an operating system dragging and dropping files into
folders.
For example, had you set event.dataTransfer.
effectAllowed = ‘all’ in onDragStart() in the
example, you could use this code in onDragOver():

if (event.ctrlKey && event.shiftKey)

 event.dataTransfer.dropEffect = ‘link’;

else if (event.ctrlKey)

 event.dataTransfer.dropEffect = ‘copy’;

else

 event.dataTransfer.dropEffect = ‘move’;

Unfortunately, only Firefox 5 supports this code example
correctly; there are major problems when tested in
Safari 5.0.5, Chrome 14, and Internet Explorer 9.0.1.
These browsers allow you to set dropEffect only once;
any other changes will be treated as none. Furthermore,
Chrome will never convey event.shiftKey while
dragging. Finally, to be useful, you must access
dropEffect within onDrop(), but all three browsers
will always report that dropEffect is none.

EXTRA

continued ➤

246

Handle the Drop Event
1	 Type if (event.preventDefault) event.

preventDefault(); and return false; to
notify the browser that your onDrop()
function is managing the drop event.

Note: Browsers are inconsistent with how they
are to be notified that you are managing the
event. Some require event.prevent
Default(), and others require return
false.

2	 Use event.dataTransfer.
dropEffect to identify the drop effect
applied in onDragMove().

A	Optionally, log the data retrieved in step
2 with the $(‘output#log’).
append() method to monitor the
dropEffect used.

3	 Use srcDragElement to identify what
draggable element was picked up.

4	 Use this to identify the drop zone the
user dropped the element into.

5	 Apply any testing logic between the
elements to identify if the user performed
an acceptable drag-and-drop action.

Handle the Drag-and-Drop Events (continued)

Your drag-and-drop events now have a start and middle,
thanks to the code from the first two stages, but now

you need to instruct the browser on what to do when the
user drops the item onto a drop zone element.

Stage three of three, handling the drop event, consists of
three parts: First, cancel the default event using event.
preventDefault() and by returning false, just as
was shown in onDragOver(); second, retrieve the data
stored in the DataTransfer object by the drag-start
function, called onDragStart() in the example; and
third, process the transaction using the stored data and
srcDragElement by updating the web page:

function onDrop(event) {
 if (event.preventDefault)
 event.preventDefault();

 var data = event.dataTransfer.
getData(‘text’);

 // Process the completed transaction
 return false;
}

Use the event.dataTransfer.getData() method
to access the data that was originally started in
onDragStart(). It only allows for a format argument.
The current HTML5 specification states that format should
be a MIME type, but Internet Explorer 9 will not allow for
this. Therefore, ‘text’ is used to simulate text/plain,
which is simplest to use when sending stringed content.

While processing the transaction, use the srcDragElement
variable to identify the original draggable element and
this to identify the drop zone element.

Handle the Drag-and-Drop Events (continued)

2
1

1
A

5
3 4

247

CHAPTER

12Using Drag and Drop in HTML5

6	 Use event.dataTransfer.
getData(‘text’) to access the
original data packet stored in
onDragStart() related to the
draggable element.

B	Optionally, log the data retrieved in
step 6 to monitor the draggable
element’s data.

7	 Apply any changes to the web page to
show the user the final result of the
action.

8	 Save your JavaScript file.

9	 Reload your web page.

0	 Click and hold a draggable element
over a drop zone element.

!	 Drag the draggable element over a
drop zone element and release the
mouse button.

C	The drag-and-drop action is processed
by onDrop(). A message is displayed,
and the icons shift.

D	Optionally, the drop effect value is
displayed in the output log.

E	The source draggable element’s
assigned data is displayed in the
output log.

7

6

7 B

11

9

10

E

C

D

Unfortunately, when tested for this book, only Firefox 5
returned the correct dropEffect value; Chrome 14,
Safari 5.0.5, and Internet Explorer 9.0.1 returned
none, making this property useless in an drop event
function. Hopefully, this will be fixed in future browser
releases as drag-and-drop modifiers become better
understood by HTML5 web developers.
Also, you can amend multiple DataTransfer blocks
using setData() and then retrieve them using
getData(). This is done by specifying a different
MIME type for each data block.

In addition, the DataTransfer object also supports a
clearData() method. You can use this to wipe the
active data memory at the end of the drag-and-drop
process. Rather than use it within a function like
onDrop(), use a function like onDragEnd(). Its use is
not required, as it will be automatically cleared when
the user browses away from your web page, but it is a
good practice as a general cleanup if the user will be
remaining for an extended period.
Along with doing this, you may also want to set
srcDragElement = undefined.

EXTRA

248

1	 Type .hide { opacity: 0.5; } to create a
hide CSS class.

2	 Add and remove the hide class in the
onDragStart(), onDragLeave()
(not shown), and onDragEnd()
functions.

3	 Test for the setDragImage() method.

4	 Type event.dataTransfer.
setDragImage(image, x, y); to set
the drag image under the mouse cursor.

Note: If you are dragging an image element,
you can use the this variable.

5	 Type .hover { width: 64px } to create
a hover CSS class.

6	 Add and remove the hover class in the
onDragEnter(), onDragLeave() (not
shown), and onDragEnd() functions.

Note: jQuery’s each() method is used to
locate all elements that still have the hover
class. This is required within onDragEnd()
if the drop attempt was successful.

7	 Save your JavaScript file.

Visually Enhance the Drag-and-Drop Experience

With a working drag-and-drop interface, you can
visually spice up the click, drag, and drop actions

performed by the user. This, like all other cosmetic changes
to HTML, happens in the realm of CSS:

Event Effect
dragstart Applies the hide class; use setDragImage()

to set an image under the mouse cursor.
dragenter Applies the hover class.
dragleave Removes the hover class.
dragend Removes the hide and hover classes.

The hide CSS class will apply to the draggable element
as it is being dragged. You can do so by creating a CSS
declaration that modifies the source element’s dimensions

or opacity. Removing this class will automatically restore its
default display properties.

The hover CSS class will be used to indicate that the
user’s cursor is currently dragging an element over a drop
zone. This could apply a border around the drop zone, make
it flash, or apply a simple animation that expands the
area, making it appear to “make room” for the object to
be dropped. Again, removing this class will automatically
restore the original display properties of the drop zone.

event.dataTransfer.setDragImage() can be used
to set the floating cursor image while the drag is active.
Unfortunately, this does not always produce the desired
effect. You need to verify if the setDragImage() method
exists before running it.

Visually Enhance the Drag-and-Drop Experience

43

1

2

2

5

6

6

249

CHAPTER

12Using Drag and Drop in HTML5

8	 Load your HTML file into an
HTML5 web browser.

9	 Click and drag an element away
from its current location.

A	The hide class is applied.

0	 Hover over a drop zone element;
do not let go.

B	The hover class is applied.

!	 Move the mouse and hover over
a different drop zone element.

C	The hover class is removed
from the first drop zone
element.

D	The hover class is applied to
the second drop zone element.

	 Release the mouse button.

	 In this example, the onDrop()
event processes the
drag-and-drop transaction
and updates the web page.

E	The hover and hide classes are
removed.

8

9

10

B

A

11

D C

E

There are dozens of drag-and-drop plug-ins other
developers have made for the jQuery platform. You
can browse a complete list at the jQuery Plug-ins
page at http://plugins.jquery.com/projects/plugins/
drag-and-drop/. The majority of them are not HTML5’s
version but instead use the mousedown, mousemove,
and mouseup events.
But there is nothing wrong with that. These plug-ins will
support the major web browsers, including older versions;
however, these implementations did require a lot more
work upfront than what is described in this chapter. The
whole point behind HTML5 drag and drop is that it is

being provided by the browser as an additional layer of
infrastructure. Although support right now is buggy, the
amount of work required to create a visually appealing
drag-and-drop experience as described in this chapter is
a fraction of managing the mouse events.
So, pick your poison. Do you select the lesser-work but
lesser-supported HTML5 drag and drop or spend the time
and code it manually with lower-level functions, increasing
complexity for such a simple, intuitive interface? Support
for HTML5 drag and drop will get better over time,
especially because all the major web browser platforms
are onboard the WHATWG bandwagon.

EXTRA

http://plugins.jquery.com/projects/plugins/drag-and-drop/
http://plugins.jquery.com/projects/plugins/drag-and-drop/

250

Client-side storage allows websites to store and retrieve information on your computer, using a controlled API secured
by the web browser.

For many years now, websites’ only option for client-side storage was the HTTP cookie. The poor cookie, despite its flaws,
has been used and abused since its introduction in 1994. When used properly, a cookie is a very useful tool to facilitate
online authentication, shopping, and advertising. When used improperly, such as not including a server-side IP comparison,
an expiry date, and any domain or path restrictions, a cookie can be a useful tool for a watchful Big Brother.

Essentially, a cookie is nothing more than a virtual license plate that allows a site to efficiently identify you among a sea
of millions of users at a glance. Detractors argue that cookies carry viruses, cause identity theft, and can slow down your
computer. This is no more true than a license plate can cause your vehicle to get dirty, stolen, or crash.

However, this chapter is not about cookies but about the latest HTML5 proposals that endeavor to move browsers beyond
them. The Web Applications Working Group, working under the W3C banner, has proposed four new APIs to provide
client-side storage: a “better cookie” model, two relational-database models, and a browser–file system hybrid model.

Introducing Client-Side Storage in HTML5

numbers, arrays, and basic objects by serializing them with the
helper utilities JSON.stringify() and JSON.parse().

The Web Storage API is extremely weak at handling large
amounts of data, so if you need to store nested objects, or very
long strings, use the Indexed Database (IndexedDB) API
instead.

The full Web Storage specification can be found at the W3C
page at www.w3.org/TR/webstorage/.

Browser Support
The Web Storage API is available in all the latest HTML5 web
browsers. For pre-HTML5 browsers, the only release that has
support is Internet Explorer 8.

If support is lacking, you can always fall back to cookies or
implement both as a redundant backup of the information that
you are storing on the user’s web browser.

The Web Storage API is available in two flavors, session storage,
in which the database is active only as long as the browser tab
is open, and local storage, in which the database is written
right to disk.

A Better Tasting Cookie
The idea behind the Web Storage API is basically the same as
the HTTP cookie, except that the HTML5 designers wanted to
solve some of the problems inherent in the original cookie
model. Specifically, the JavaScript API is much simpler to use
than the document.cookie interface, and it is less
susceptible to the same cookie attacks.

However, it is unfortunate that the Web Storage standard did
not cover an extension to HTTP, as server-side CGI programs
cannot set Web Storage content directly; it must be done
through a JavaScript program.

Also, the Web Storage API can only handle strings natively.
However, as shown in this chapter, it is possible to store

The Web Storage API

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/webstorage/

251

Storing Data Using a Client-Side Database

CHAPTER

13

Presto browsers, Opera and Opera Mobile. However, officially,
the W3C deprecated the specification in November 2010,
meaning that its adoption by other web browsers effectively
has halted. Although support is likely to continue in WebKit
and Presto, sites that have implemented the Web SQL Database
API are encouraged to migrate to the IndexedDB API.

The decision to deprecate the Web SQL Database API was made
partly due to the higher learning curve of the SQL language, its
rigid schema design, and the overall API complexity — all
problems that the IndexedDB API attempts to avoid.

The IndexedDB API

The IndexedDB specification can be found at the W3C page at
www.w3.org/TR/IndexedDB/.

Browser Support
The IndexedDB API is supported as of Firefox 4 and Chrome 11.
Other browsers have expressed interest, particularly Microsoft
Internet Explorer, which is working on an integration effort, but
despite the poor adoption rate today, the IndexedDB API looks
to become the standard HTML5 will eventually settle on.

Developer Arun Ranganathan wrote a very good article for
Mozilla promoting the IndexedDB API, which compares it to
the other client-side storage models and is available at the
Mozilla Hacks page at http://hacks.mozilla.org/2010/06/
beyond-html5-database-apis-and-the-road-to-indexeddb/.

IndexedDB is a JavaScript API that allows you to store generic
objects in different databases and object stores, granting the
capability for a Web application to have a local database that is
always available, regardless of being online or offline.

An Indexable Object Store
The IndexedDB API offers a very flexible, transaction-based
place for you to store your objects, called an object store.
Multiple object stores can exist in a single database, but the
database itself is specific to the browser and your domain.

The IndexedDB API’s strength is its capability to handle large,
copious amounts of structured data. It can even be indexed by
assigning a primary key, called a key path, or additional index
properties that will result in fast speed lookups.

The Web SQL Database API

The Web SQL Database API turns a web browser into a relational
database within JavaScript.

SQL Commands in JavaScript
The deprecated Web SQL specification can be found at the W3C
page at www.w3.org/TR/webdatabase/.

Browser Support
The Web SQL Database API is currently supported on many
WebKit browsers, such as Chrome, Safari, and Android, plus the

The FileSystem API

HTML5’s FileSystem API enables you to access a sandboxed area
of your user’s local file system. This means that your website can
store and retrieve files without accessing the core workstation’s
file system. This is great for larger binary files that are not
appropriate for the Web Storage or IndexedDB APIs.

Typical features associated with file systems, such as directories
and subdirectories, plus reading, writing, listing, copying,
moving, and renaming files are all standard in this new API.
Files are created using a new BlobBuilder interface and then
downloaded as a traditional file using a new filesystem:

URL scheme. Because the API is still restricted to the browser
and web application, the goal by the specification developers is
to make it so that third parties can access the sandboxed file
system without going through excessive measures.

Currently, only Chrome 9 and later supports the FileSystem API,
and even this is only experimental. As a result, this topic is not
covered in this book.

You can find additional information about the FileSystem API at
its W3C working draft page at www.w3.org/TR/file-system-api/.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/IndexedDB/
http://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
http://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/webdatabase/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/file-system-api/

252

1	 Open a JavaScript file in a text
editor or an HTML file within a
<script type=’text/

javascript’> block.

2	 Type sessionStorage.setItem(key,
value); to store a value as a
string into session storage under
the identifier key.

Note: setItem() does not return
anything.

3	 Type localStorage.setItem(key,
value); to store a value as a
string into local storage under the
identifier key.

Note: To use the Web Storage API,
only one of sessionStorage or
localStorage is required; use
whichever is most appropriate for your
application.

Note: The same key can be used in
sessionStorage and localStorage
to store independently controlled values.

Note: If key is reused under the same
storage cache, its value will be
updated.

Store Data Using the Web Storage API

The Web Storage API is designed to store simple
stringed values in two ways — long term to disk using

localStorage and short term to the current browsing
session using sessionStorage. You can use the Web
Storage API to mirror or replace cookies as it has an
inherently higher level of security and privacy features and is
much easier to set and retrieve in JavaScript than cookies are.

There are several different ways to store data in the
Web Storage API. The recommended way is by using the
setItem() method on the intended storage interface:

localStorage.setItem(key, string);
sessionStorage.setItem(key, string);

Because the storage interface emulates an associative array,
the following code can be used instead, if you prefer:

localStorage[key] = string;
sessionStorage[key] = string;

Or, if your key does not begin with a number, you
can simplify this even further by assigning string to
localStorage.key or sessionStorage.key.

All variables passed into the Web Storage API will be
converted into a string; therefore, if you need to store a
number, array, or basic object, use JSON.stringify() to
flatten the variable into a string:

string = JSON.stringify(object);

Unfortunately, JSON will destroy the object’s constructor
and prototype; therefore, you cannot use the Web Storage
API to store complex objects.

Store Data Using the Web Storage API

2

3

253

CHAPTER

13Storing Data Using a Client-Side Database

A	Optionally, type JSON.stringify() to
convert a number, array, or object
into a string and store it into the
Web Storage API.

Note: In this example, the count variable
is a number to be encoded as a string
using JSON.stringify().

Note: It is safe to use JSON.
stringify() on a string.

Note: All Web Storage values that use
JSON.stringify() must use JSON.
parse() to access the original value,
as described in the following section,
“Retrieve Data from the Web Storage API.”

4	 Save your JavaScript or HTML file.

5	 Load your HTML file in an HTML5
web browser.

	 The local storage now holds value
under the key identifier.

	 The session storage now holds
value under the key identifier.

A

A

5

You can delete keys one of two ways: either by removing individual keys with removeItem() or by clearing the
entire storage cache with clear().

APPLY IT

RESULT

The only key identifier in the localStorage cache is deleted for
the web page’s domain. This can also be used for sessionStorage.

TYPE THIS
localStorage.removeItem(key); ➔

RESULT

The entire localStorage cache is deleted on the web page’s
domain. This can also be used for sessionStorage.

TYPE THIS
localStorage.clear();

➔

Of course, all sessionStorage content will be automatically deleted when the browser session ends, which
happens by closing the current tab or the entire browser window.
The W3C Web Storage specification states that localStorage expiry can be managed by the web browser, either
by treating localStorage as sessionStorage or by providing a way for the user to access the cache and
manually delete it per web domain.

254

A	Optionally, type sessionStorage.
getItem(key) in a conditional test to
check if a session storage key exists.

1	 Type value = sessionStorage.
getItem(key); to retrieve a key’s value
as a string from the session storage cache.

B	Optionally, type localStorage.
getItem(key) in a conditional test to
check if a local storage key exists.

2	 Type value = localStorage.getItem(key);
to retrieve a key’s value as a string from
the local storage cache.

C	Optionally, type JSON.parse() to convert
a JSON string retrieved from the Web
Storage API back into an original number,
array, or object.

Note: You can safely call JSON.stringify()
and JSON.parse() for all basic value types.

D	Optionally, display the values on the web
page.

3	 Save your HTML or JavaScript files.

Retrieve Data from the Web Storage API

Retrieving data from the Web Storage API is just as easy
as storing it. The only thing you need to be careful of

is that the context of what you access will be retrieved as
a string, so if you are expecting a number or object type,
some post-retrieval conversion is required.

All Web Storage events occur relative to the user’s current
domain. This means that if a user visits your website at
www.mycompany.com/path/to/storage.html, anything
stored there can be accessible only from other JavaScript
code running within www.mycompany.com.

There are different ways to retrieve data stored in the Web
Storage API:

string = localStorage.getItem(key);
string = sessionStorage.getItem(key);

This will return null if key is not yet used in either the
localStorage or sessionStorage caches. Because

the storage interface emulates an associative array, you
may retrieve the string with localStorage[key] or
sessionStorage[key]. Or, if your key does not begin
with a number, you can simplify this even further with
localStorage.key or sessionStorage.key.

These methods will return undefined if the key does not
store a value.

It is also important to note that the data returned
will always be a string, regardless of how you saved it.
Therefore, if you need to retrieve a number, array, or object,
use JSON.parse() to convert it from a string back into its
original format:

object = JSON.parse(string);

Because JSON will not provide an object constructor and
prototype, use the IndexedDB API to store complex object
types.

Retrieve Data from the Web Storage API

2

1

B

A

D

C

C

255

CHAPTER

13Storing Data Using a Client-Side Database

6	 Open a new browser tab or browser
window and load your HTML file again.

F	The session counter was reset, and the
local counter continues from where it
left off.

7	 Close the web browser entirely and
restart it. Load up the HTML file once
again.

G	The session counter was reset again;
the local counter continues from where
it left off.

4	 Load your HTML file in an HTML5 web
browser.

5	 If following the sample code, click
Reload on the web page three more
times, loading the page four times.

Note: In this example, the local and session
storage houses counters that increase each
time the page is loaded.

E	In this example, the local and session
values increment by four, counting the
number of page loads.

4

5

E E

6

7

7

F F

G G

In Chrome, you can purge any site using local web
storage by going into Preferences ➔ Under the Hood ➔
Privacy Content Settings ➔ All Cookies and Site Data
and removing entries by domain name.
If you want to see all the keys that are stored in a Web
Storage cache, you can retrieve a full list with the
following code:

for (i = 0; i < localStorage.length; i++) {

 var key = localStorage.key(i);

 var value = localStorage.getItem(key);

 console.log(key + ‘: ‘ + value);

}

This will enumerate through the size of the local
storage cache, identify the key and its value, and display
it to the console logger. As before, the localStorage
interface in this example can be replaced with
sessionStorage to access its array of session-specific
keys and values.

EXTRA

256

1	 Open an IndexedDB JavaScript file or
scroll to the <script> tag block.

2	 Type var indexedDB = window.
indexedDB to use the W3C’s IndexedDB
API name.

3	 Type || window.webkitIndexedDB to
otherwise fall back to WebKit’s
IndexedDB API name.

4	 Type || window.mozIndexedDB; to
otherwise fall back to Mozilla’s
IndexedDB API name.

Note: Now when you use indexedDB in your
code, an automatic fallback to the different
browser names occurs.

5	 Repeat steps 2 and 3 for the
IDBDatabaseException API.

6	 Repeat steps 2 and 3 for the
IDBKeyRange API.

7	 Repeat steps 2 and 3 for the
IDBTransaction API.

Note: Firefox 5 already uses the W3C names
for these interfaces.

Note: In this chapter, only these four interface
names are actually referenced in the code.

Using the Correct IndexedDB API

Because the IndexedDB API is still under heavy active
development, Mozilla and WebKit have implemented

experimental versions of it by modifying the interface
names. The thinking is that when the specification becomes
a standard, the final API names will be implemented in the
browsers.

As of August 2011, the latest versions of browsers that
support the IndexedDB API are Chrome 14 and Firefox 5. So
if you were to read the latest IndexedDB specification at
the W3C page at www.w3.org/TR/IndexedDB/, you would
find that it refers to the object interfaces IDBFactory,

IDBKeyRange, and IDBTransaction, but these objects
are nowhere to be found in these browsers.

Therefore, in order to experiment with the IndexedDB API
today, you can create an IndexedDB shim that amalgamates
the various browser-specific names and create code that
uses the standard W3C names.

Obviously, you are assuming an element of risk implementing
this API today, in that future versions of Firefox and Chrome will
support it differently according to the final W3C specifications.
The whole point behind this shim is for experimental testing and
to better prepare yourself to adopt the IndexedDB API as a tool
when it is finalized, along with the rest of HTML5.

Using the Correct IndexedDB API

2 3 4

5
76

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/IndexedDB/

257

CHAPTER

13

1	 Type var db, database = ‘myDatabase’;
to declare a global database variable and
name.

2	 Type var openDB = indexedDB.open
(database); to open the IndexedDB
database.

3	 Type openDB.onsuccess = function
(event) { to define code to run when
open() is successful.

4	 Type db = event.target.result; to assign
the opened IDBDatabase interface to
the db variable.

5	 Type } to close the anonymous function
assignment.

6	 Type openDB.onerror = popupErrorEvent;.

7	 Type function popupErrorEvent(event)
{ } to define generic code to run if an
error occurs.

8	 Type alert() and console.log() to
display an error message.

Note: WebKit provides error message
descriptions on some failures. You can access
one from event.target.
webkitErrorMessage if it exists.

Open an IndexedDB Database

Before you can access an IndexedDB object store, you
must first open its database context. An IndexedDB

database serves two purposes: It houses a series of object
stores under a common identification banner, and it serves
to offer version control snapshots of the collection of
object store schemas at different states.

For the sake of simplicity, and because the IndexedDB API
version control is not yet fully supported by browsers, this
chapter assumes that the database remains at version 1.0,
and no version control is used. “1.0” is used when creating
an IndexedDB database in the following section, “Create a
New IndexedDB Object Store.”

var db, database = ‘myDatabase’;
var openDB = indexedDB.open(database);
openDB.onsuccess = function(event) {
 db = event.target.result; };
openDB.onerror = function(event) {...};

db is a global variable that stores an IDBDatabase
interface to the myDatabase. You will be using db
throughout the IndexedDB API interaction process, but
the identifier is used only when opening the database
interface. The db variable is assigned when the database is
successfully opened; otherwise, a generic error message is
displayed.

Note, you may run db.close() to close the IDBDatabase
interface; however, this is unnecessary because the browser
closes the database connection automatically when the
page unloads.

Using the IndexedDB API is pointless if the user is running
Firefox in Private Browsing mode, which will trigger error 6
in event.target.errorCode, and Chrome in Incognito
mode, which will allow the API to continue but save
nothing to disk.

Open an IndexedDB
Database Storing Data Using a Client-Side Database

2
4

1
3

5

8

6
7

258

1	 Type var objectStore = ‘myStore’; to
declare a global name to this object
store.

2	 Type try { } catch(e) { } to create a
try-catch block.

3	 Type var store = db.transaction
(objectStore, IDBTransaction.READ_
ONLY).objectStore(objectStore); as
temporary code to throw an exception
error if the object store does not exist.

4	 Type if (e.code == IDBDatabase
Exception.NOT_FOUND_ERR) { } to
test whether the error was the object
store not being found and create a
new conditional block.

5	 Type var request =
db.setVersion(‘1.0’);.

6	 Type request.onsuccess =
function(event) { } to create an
anonymous function expression.

7	 Assign an error function for the error
event.

Create a New IndexedDB Object Store

Before creating a new IndexedDB object store, first
attempt to read something from it. This will throw

an exception error with the code NOT_FOUND_ERR.
This is your cue to create the object store by calling
db.setVersion() and db.createObjectStore().

Before you begin, you must set an object store name. This
can literally be anything, but remember that the information
you save to the IndexedDB API will be under this store
name, housed within the database name you picked earlier.
Because you will be referring to this store name several
times, store it as a global variable alongside var db:

var objectStore = ‘myStore’;

The store exception test must be placed within the openDB.
onsuccess function, after db = event.target.result:

try {
 db.transaction(objectStore, IDBTransaction.
READ_ONLY);

} catch(e) {
 if (e.code == IDBDatabaseException.NOT_
FOUND_ERR) {

 var request = db.setVersion(‘1.0’);
 request.onsuccess = function(event) {
 db.createObjectStore(objectStore,
 {keyPath: ‘id’, autoIncrement:
true});

 };
 };
}

In this code, db.transaction() is just a temporary
trigger for the exception. It will be replaced later, but it is
enough for now to identify when to create a database as
e.code is set to NOT_FOUND_ERR.

db.createObjectStore() creates an arbitrary id key
path, similar to a primary key in SQL, which automatically
increments on each object row added to the store.

Create a New IndexedDB Object Store

2

1

2

3

4

6
5

7

259

CHAPTER

13Storing Data Using a Client-Side Database

8	 Type var store =
db.createObjectStore(objectStore,
{keyPath: ‘id’, autoIncrement:
true}); to create a new object store
with an automatically incrementing
primary key property named id.

9	 Type console.log(var); at various
stages in the creation process to
follow along in the console logger.

0	 Save your JavaScript file.

9

9

9

8

11

13

A

B

You can actually create multiple object stores under a
single database and have multiple databases on a single
web browser. Although you can communicate to only one
database at a time, you can, however, work with
multiple object stores in tandem.
In step 5, the setVersion() method is used to handle
version control in the IndexedDB database. This method
waits for any open file handles to close and can error
out if it takes too long. Because the object store is only
just being created, this should never fail. Note that the
createObjectStore() method can only run within a
successful setVersion() response.

In step 8, auto-incrementing the primary key is a design
choice and a throwback to relational databases. If you
do not want to auto-increment the key path, you must
ensure that every object you store in this object store
has a unique key path property.
The key path property itself will be useful later with the
get(id), put(id), and delete(id) methods. You can
use these to retrieve, update, and remove an object from
the object store, as described over the next three
sections.

EXTRA

!	 Open your HTML file in an HTML5
browser that supports the IndexedDB
API.

@	 Press Ctrl+Shift+J in Chrome in
Windows (Option+Ô+J on Mac OS X)
to open the JavaScript console.

A	The exception error occurred.

B	The object store is created.

#	 Reload the web page.

	 No exception is thrown; the object
store loads normally.

260

1	 Create a new function that accepts
an object as a parameter.

2	 Type var transaction =
db.transaction(objectStore,
IDBTransaction.READ_WRITE);.

3	 Type var store = transaction.
objectStore(objectStore); to assign
the transaction to your object store.

4	 Type var request = store.
add(object); to request to add the
object to the object store.

5	 Type console.log(object, request);
to monitor the add() object and
request.

6	 Create an anonymous function for
the add() request’s success event.

7	 Assign an error function for the
add() request’s error event.

8	 Type object.id = event.target.
result; to ensure that the
autogenerated id property is
displayed with the object.

9	 Call a function to display the new
object in the web page.

Store an Object Using the IndexedDB API

You can store an object into an IndexedDB object
store using the add() request method generated by

a read-write transaction. Because all transactions run
asynchronously, the request/event model allows your code
to know when a transaction has completed.

Only an array or generic object can be stored, and not
simple strings or numbers. Custom objects that are built
with constructors will be destroyed, but their properties and
values will survive.

function addObject(object) {
 var transaction =
db.transaction(objectStore, IDBTransaction.
READ_WRITE);

 var store = transaction.
objectStore(objectStore);

 var request = store.add(object);
 request.onsuccess = function(event) {...};

 request.onerror = function(event) {...};
}

Typically, when request.onsuccess is called by the
IDRRequest API, you will know that the object was
successfully stored in the database. You can update the web
page to notify the user.

If your object store enabled autoIncrement when it was
created, you must not provide the key path property when
using add(). Because the purpose of autoIncrement is
to automatically increment the key path property number,
add() is managing this itself. However, if autoIncrement
is disabled, you must provide a key path value into add()
that is completely unique from all other objects’ key path
properties stored. This is akin to a relational database in
which a primary key must uniquely identify only one record
in a table.

Store an Object Using the IndexedDB API

2
4

1
3

5

8

7

9

6

9

261

CHAPTER

13Storing Data Using a Client-Side Database

0	 Create a way in the web browser to
call your “add object” function and
provide it with data.

!	 Construct the object itself.

Note: In this example, the object has
three properties with default names of
key1, key2, and key3. The property
names and values are customizable by
the user.

@	 Save your JavaScript file.

#	 Open your HTML file in an HTML5
browser that supports the
IndexedDB API and open its
JavaScript console logger.

$	 Trigger your “add object” function
call.

	 The object is stored in the object
store.

A	The object is displayed on the web
page.

B	The console logger shows the
results of the object and request
variables.

	 The first entry added into an object
store is assigned id number 1.

1110

10

13

14

A

B

If you want to update an object that already exists in an
IndexedDB object store, replace the add() method
described in this section with put(). You will need to
specify the key path property so that the IndexedDB
API knows which object to update.

Example
function updateObject(object) {

 var transaction = db.transaction(objectStore,
IDBTransaction.READ_WRITE);

 var store = transaction.
objectStore(objectStore);

 var request = store.put(object);

 request.onsuccess = function(event) {...};

}

So, in this example, the object whose key path is
object.id will be updated to store object. Any
properties previously stored in the object store and not
specified in put()’s object will be deleted. If put()
cannot find an object that matches object.id, object
will be added.

APPLY IT

262

1	 Create a new function for
retrieving all objects from a store.

2	 Start a new read-only transaction
and retrieve the IDMObjectStore
interface.

3	 Type var request = store.
openCursor(); to start the record
iteration process.

4	 Create an anonymous function for
the openCursor() request’s
success event.

5	 Assign an error function for the
openCursor() request’s error
event.

6	 Type if (cursor = event.target.
result) { to proceed only if the
cursor contains results.

7	 Type console.log(‘displayObject’,
cursor.value); to monitor the
object returned.

8	 Process the cursor object.

9	 Type cursor.continue(); to move
onto the next object in the object
store list.

0	 Type }.

Retrieve Objects Using the IndexedDB API

You can retrieve objects out of an IndexedDB object
store using a cursor. This is an enumeration tool that

progresses through the list of all objects and returns them
to your JavaScript program one by one:

function displayObjects() {
 var transaction =
db.transaction(objectStore, IDBTransaction.
READ_ONLY);

 var store = transaction.
objectStore(objectStore);

 var request = store.openCursor();
 request.onsuccess = function(event) {
 if (cursor = event.target.result) {
 renderObject(cursor.value);

 cursor.continue();
 }
 };
}

The store.openCursor() method starts the object
store retrieval process. For each object, a success event
fires. You must retrieve the cursor from event.target.
result, process the cursor’s value — which is the
original object — and then call the cursor’s continue()
method, signaling the next object in the store. When
event.target.result becomes undefined, the cursor
has returned everything.

Retrieve Objects Using the IndexedDB API

4

2
1

3

5

7
9

6
8

10

263

CHAPTER

13Storing Data Using a Client-Side Database

Note: In this example, this function
can be used to initially display the
object store table when the page first
loads. This means that the function
can replace the temporary code used
in step 3 of the section “Create a New
IndexedDB Object Store,” earlier in
this chapter.

!	 Add to the initial try-catch
block that opens the database
for your “display objects”
function.

@	 Save your JavaScript file.

#	 Open your HTML file in an
HTML5 browser that supports
the IndexedDB API and open its
JavaScript console logger.

$	 Add entries into the object store
and reload the web page.

A	The contents of the object store
are displayed in the browser.

B	The console logger shows the
objects being rendered.

11

13

A

B

14

You can use the IDBKeyRange interface to create a range. This is used to limit the cursor to an upper or lower
bound. Use lowerBound(min), upperBound(max), or bound(min, max) with openCursor().

APPLY IT

RESULT

Only objects with a key path value greater than id are
returned to the cursor.

TYPE THIS
var range = IDBKeyRange.lowerBound(id);
var request = store.openCursor(range);

➔

RESULT

Only the object with a key path value of id is returned.
If the object cannot be found, request.onsuccess
will still run, but event.target.result will be
undefined.

TYPE THIS
var request = store.get(id);
request.onsuccess = function(event) {
 if (cursor = event.target.result)
 renderObject(cursor);
};

➔

You can access a single object identified by its key path by calling store.get().This is useful if you do not need to
iterate through an entire list of objects just to find one that you can already identify using its key path.

264

1	 Create a new function for deleting
an object from an object store.

2	 Start a new read-write transaction
and retrieve the
IDMObjectStore interface.

3	 Type var request = store.
delete(id); to delete the object
identified by its key path.

4	 Create an anonymous function for
the delete() request’s success
event.

5	 Assign an error function for the
delete() request’s error event.

6	 Create a way in the web browser
to call your “delete object”
function.

7	 Save your JavaScript file.

8	 Open your HTML file in an HTML5
browser that supports the
IndexedDB API, and the console
logger.

9	 Trigger your “delete object”
function.

0	 Reload the web page.

	 The object is permanently removed
from the object store.

Delete an Object Using the IndexedDB API

You can delete an object from an IndexedDB object store
using the same basic code used to get() it by its key

path; however, the get() example earlier in this chapter
was a read-only task, and this is a read-write task:

function deleteObjectById(id) {
 var transaction =
db.transaction(objectStore, IDBTransaction.
READ_WRITE);

 var store = transaction.
objectStore(objectStore);

 var request = store.delete(id);
 request.onsuccess = function(event) {
 // Update the web page
 };

 request.onerror = function(event) {...};
}

Only the object with a key path value of id is deleted.
The process to delete an object may not be instantaneous.
Remember that the IndexedDB API runs asynchronously.
Therefore, only after you receive the request’s success
event should you update the web page to state that the
object is deleted.

If the object cannot be found, the error event will return
event.errorCode 3: “Key does not exist in the object
store.”

Delete an Object Using the IndexedDB API

6

6

2

4

5

1

3

8

9

10

265

CHAPTER

13Storing Data Using a Client-Side Database

7	 Open your HTML file in an HTML5
browser that supports the IndexedDB
API, and the console logger.

8	 Trigger the “delete object store”
function.

A	The database is deleted. A log entry
is produced.

9	 Reload the web page.

	 A blank object store is automatically
created, if you used the code in the
section “Create a New IndexedDB
Object Store.”

1	 Create a new function for deleting
an object store.

2	 Type var request =
db.setVersion(‘1.0’);.

3	 Create an anonymous function for
the setVersion() request’s
success event.

4	 Type db.deleteObjectStore(objectSt
ore); and a console.log(); message.

5	 Create a way in the web browser to
call your “delete object store”
function.

6	 Save your JavaScript file.

Delete an IndexedDB Object Store

You can delete an entire object store using the same
basic code to create one, within a setVersion()

request, using deleteObjectStore():

function deleteObjectStore() {
 var request = db.setVersion(‘1.0’);
 request.onsuccess = function(event) {
 db.deleteObjectStore(objectStore);
 };
 request.onerror = function(event) {...};
}

The database version number remains at 1.0 because many
HTML5 browsers that do support the IndexedDB API do not
properly manage the database version control functionality.
The purpose of this is to be able to store multiple versions
of data within the same object store within the same
database. Ultimately, for most applications, this is overkill;
just reassign your IndexedDB database version “1.0”
whenever you need to create or delete an object store.

Delete an IndexedDB
Object Store

2

4

1

3

3

5

5

7

8

9

A

266

Identify Whether the Browser Is Online

There are two ways to detect whether a browser is
online or offline in JavaScript. The first is to query the

navigator.onLine property, if supported, to give the
current state of the network connection media. So if the
Ethernet cable is unplugged or the Wi-Fi connection is lost,
this property is updated. The second way is to listen to
the online and offline browser events, if supported, to
notify you when the navigator.onLine property changes.

This is true in most browsers and operating systems, but
there are some notable exceptions:

•	 Internet Explorer 9 does provide the navigator.
onLine property, but it will not post online and
offline events when it changes.

•	 Firefox 5 and Opera 11.50 do provide navigator.
onLine and fire the events, but they are not tied to

	 the physical media status. Instead, these browsers tie
the property and events to a Work Offline option, available
on the File menu in Firefox and the Settings menu in Opera.

•	 Regardless of browser, some Linux distributions tend to
completely ignore the external connection media status.
So if Ethernet and Wi-Fi are unavailable, the browser still
thinks it is online!

Despite these shortcomings, the navigator.onLine
property and online and offline events are still useful
tools. The events are very standard. To read navigator.
onLine, use this code:

if (‘onLine’ in navigator) {
 if (navigator.onLine)
 // Browser is currently online
 else
 // Browser is currently offline
}

1	 Open an HTML file in a text editor
with jQuery.

2	 Type The browser is: <output
id=’browserStatus’>(state
unknown)</output> to provide a
location to display the browser
status to the user.

3	 Open a JavaScript file loaded after
jQuery or scroll to a <script
type=’text/javascript’> block.

4	 Type if (‘onLine’ in navigator) { }.

5	 Type if (navigator.onLine) { }
else { }.

6	 Type browserOnline(); for when
navigator.onLine is true.

7	 Type browserOffline(); for when
navigator.onLine is false.

Identify Whether the Browser Is Online

2

6
4

5

3

5

7

267

CHAPTER

14Providing Offline Access to Web Applications

8	 Type function browserOnline()
{ $(‘output#browserStatus’).
text(‘online’); }.

9	 Type function browserOffline()
{ $(‘output#browserStatus’).
text(‘offline’); }.

0	 Type window.
addEventListener(‘online’,
browserOnline, false);.

!	 Type window.
addEventListener(‘offline’,
browserOffline, false);.

@	 Save your JavaScript file.

#	 Open your HTML file in a web
browser.

A	If the navigator.onLine
property is defined, the
browser’s status is displayed.

$	 Disconnect from the network.

B	If the offline event is
supported, the browser’s status
should change.

10

8

9

11

13

14

B

A

The code in step 2 of this section provides a location in
the web page to display the browser status to the user.
You may decide not to do this and keep the information
internally only. If so, you will be still be notified of
browser status changes in the functions created in steps
8 and 9.
Experiment for yourself by changing the computer’s
physical connectivity, and follow along in the browser’s
response. Sometimes disabling the physical connectivity
using a software setting, such as disabling an Ethernet
port in the Control Panel or forgetting about an

associated Wi-Fi access point, is enough to notify the
browser that you are online or offline.
Whereas this status detector is suitable for checking
the physical connection on most platforms, what do you
do if there is no network or Internet connectivity?
Network access is also determined by online and offline
connectivity, and other factors such as router and ISP
settings. Testing for network access is something you
need to code yourself. Fortunately, you can use the
walkthrough described in the following section,
“Identify Whether the Network Is Online.”

EXTRA

268

1	 Type function testNetwork() { }.

2	 Type function lostNetwork() { }.

3	 Type function testXHR(callback) { }.

4	 Type function fireNetworkEvent
(state) { }.

5	 Assign testNetwork to online.

6	 Assign lostNetwork to offline.

7	 Type testXHR(fireNetworkEvent) in
testNetwork() to use
fireNetworkEvent as the callback.

8	 Type var xhr = new
XMLHttpRequest();.

9	 Create a noResponseTimer to abort
xhr after 5 seconds.

0	 Create an xhr.onreadystate
change function expression to return
early if xhr.readyState != 4.

!	 Cancel the noResponseTimer when
readyState = 4.

Note: Status code 4 means that the request
is finished.

Identify Whether the Network Is Online

Just because the browser is online or offline does not
mean that the network connection is. There can be

all sorts of connectivity problems between your browser
and a website that the navigator.onLine property and
the online and offline events will not respond to. The
only way to counter this is to use the Ajax core library,
XMLHttpRequest(), to actually query the website and
test for network connectivity in your JavaScript code.

For this to happen, you need to listen for the existing
online and offline events. When the browser is online,
test the network. When it is offline, the network is lost:

addEventListener(‘online’, testNetwork,
false);

addEventListener(‘offline’, lostNetwork,
false);

function testNetwork() {
 // Call XMLHttpRequest()
}

function lostNetwork() {
 // Network was forced offline
}

The testNetwork() function will be responsible for
calling the XMLHttpRequest() code, which in turn
will trigger a function to fire off new netonline or
netoffline events. The lostNetwork() function only
needs to worry about launching the netoffline event
because if the browser is offline, the network must be
offline, too.

Both new events, netonline and netoffline, will
provide for your JavaScript code the current status of the
network connection. It will be the fireNetworkEvent()
function’s responsibility to dispatch this event so that
JavaScript will know when the network connection is
actually good or bad.

Identify Whether the Network Is Online

4

2

6

3

1

5

9

11

7

8

10

269

CHAPTER

14Providing Offline Access to Web Applications

@	 Type if xhr.status == 200)
callback(true); to run
fireNetworkEvent(true) when
the 200 success code is received.

Note: This is the only point where
fireNetworkEvent() will ever run with
true: The user is actually online!

#	 Type else callback(false); to run
fireNetworkEvent(false) if any
other code is received.

$	 Type callback(false) if the
noResponseTimer activates.

%	 Type xhr.open(‘GET’, ‘/’); to get
your site’s base URL to test network
access with.

^	 Type xhr.send(); to launch the
XMLHttpRequest GET request.

&	 Type + ‘?’ + new Date().getTime());
to ensure that a unique URL is
required to avoid XMLHttpRequest
caching issues in Firefox.

*	 Place a try-catch block around
xhr.send(), as required by Firefox.

(Type callback(false); for when xhr.
send() throws an exception error in
Firefox.

14

13

12

15

16

19

18

18

17

The URL that you are testing against must be the same
domain you are running your website from, even if you
are just building testing code here. The browser applies
this restriction to avoid cross-site scripting attacks. So if
you were to pick an unrelated URL with open() in step
15 in this section, such as www.google.com, it will
always fail.
If you must specify a different URL in step 15 than
what your JavaScript code runs under, then that website

must specifically allow your script to run through a
procedure called Cross-Origin Resource Sharing
(CORS). This process requires the target web server to
grant you permissions so that the XMLHttpRequest()
function knows that it is allowed to proceed. Although
manipulating the web server to accomplish this is
outside the scope of this book, you can read about CORS
at its W3C specifications page, www.w3.org/TR/cors/.

EXTRA

continued ➤

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.google.com
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/cors/

270

)	 Type var networkTimer; to set up a
global timer handle.

q	 Type networkTimer =
setInterval(function(){ to begin an
asynchronous repeating code block and
assign the handle.

w	 Type testXHR(fireNetworkEvent); to
launch the same network test again.

e	 Type }, 30000); to repeat every 30
seconds.

r	 Type clearInterval(networkTimer);
under lostNetwork() to cancel the
repeating test.

t	 Type var event = document.
createEvent(‘Event’);.

y	 Type event.initEvent(state, ?
‘netonline’ : ‘netoffline’, true, true);
to declare an event that uses state,
does not bubble, and is not cancelable.

u	 Type window.dispatchEvent(event);.

A	Optionally, type console.log(‘Firing
event’, event.type); to see the event
activity in the JavaScript console
logger.

Identify Whether the Network Is Online (continued)

With the Ajax component finished, if you were to
load the JavaScript in a browser right now, the

online event would launch the HTTP GET request and,
if successful, would call fireNetworkEvent(true).
Otherwise, if the Ajax fails due to a bad URL or no network
connectivity or if the browser sends an offline event,
fireNetworkEvent(false) executes.

At this point, you are still missing some key components.
First, fireNetworkEvent() does not actually do anything
yet; it needs to actually dispatch the netonline and
netoffline events. Second, making one Ajax call is fine,
but what if the network access changes while the page is
currently loaded? You need to be able to dispatch the event
by routinely retesting for network access while the browser
is online.

Remember, “the browser is online” and “the browser is
offline” refer to the browser’s state of network access. As
described earlier, the browser could be offline because the
network cable has been removed, Wi-Fi access is lost, or the
user is running in offline mode in Firefox. Naturally, in all
three cases, network access is impossible, so you need to
cancel the continual testing of the network.

The key problem you are trying to solve is how to identify
when the browser has an IP, yet still no Internet access
is available. This is the case if the user’s router is up but
his or her ISP is down, if the user is traveling to a mobile
hotspot and needs to provide credentials to get online,
or if your own website is down. Specifically, your web
application needs to know when the user is connected to
your web servers; therefore, you need code to identify any
potential network disconnections.

Identify Whether the Network Is Online (continued)

24

21
23

20

22

2625
27

A

271

CHAPTER

14Providing Offline Access to Web Applications

i	 Type var networkStatus;.

o	 Type if (networkStatus == state)
return; networkStatus = state;.

p	 Type testNetwork(); to activate
the network tester when
navigator.onLine is true and if
there is no navigator.onLine.

j	 Type fireNetworkEvent(false); to
force the network offline when the
browser is offline.

k	 Save your JavaScript file.

29

28

31

30

33

34

35

B

C

You can see the actual XMLHTTPRequest()s made by
right-clicking in the Chrome log panel and selecting the
option Log XMLHttpRequests.
If your website is already using XMLHttpRequest(),
steps 7 to 19 in this section can effectively be merged
into your existing code. There is one thing to note,
though: Back in step 17, this example adds an arbitrary
timestamp onto the URL being requested.
It was alluded in step 17 that this is for cache control
reasons. When Firefox cannot establish a network

connection, regardless of its Working Offline setting,
it will try its best to cache everything. This includes
XMLHttpRequest() activity, which actually defeats the
purpose of what you are trying to accomplish. Testing
network connectivity is predetermined on not falling
back on the cache.
The timestamp hack fools Firefox into requesting a page
that is guaranteed to not be in the cache, thus allowing
the network connectivity test to proceed.

EXTRA

l	 Load an HTML page that uses this
JavaScript code in a web browser,
and open the JavaScript console.

B	A log entry shows the netonline
event firing.

m	 Sever your network access at your
router or web server.

C	After 30 seconds, the netoffline
event fires.

n	 Reload your web page.

	 The page should reload from cache
and should detect right away that
there is no network access.

272

4	 Type window.addEventListener
(‘online’, browserOnline, false);.

5	 Type window.addEventListener
(‘offline’, browserOffline, false);.

6	 Type window.addEventListener
(‘netonline’, networkOnline,
false);.

7	 Type window.addEventListener
(‘netoffline’, networkOffline,
false);.

1	 Open an HTML file that uses your
JavaScript code to detect network
status.

2	 Type The browser is: <output
id=’browserStatus’>(state
unknown)></output> to display
the browser’s current state on the
web page.

3	 Type The network is: <output
id=’networkStatus’>(state
unknown)></output> to display
the network’s current state on the
web page.

Listen for Online and Offline Events

When you have two levels of connectivity detection,
browser online and offline — which is typically

physical media connectivity or in-browser online/offline
mode — and network online and offline — which is the
actual access online to your web server — you can begin
modifying your web application to react properly to both
groups of online and offline events:

addEventListener(‘online’, function(){
 // The browser has come online.
}, false);
addEventListener(‘offline’, function(){
 // The browser has gone offline.
}, false);
addEventListener(‘netonline’, function(){
 // The network has come online.

}, false);
addEventListener(‘netoffline’, function(){
 // The network has gone offline.
}, false);

Considering that the netonline and netoffline
events are the key events to listen to and they are the
most amount of work to tie into according to the section
“Identify Whether the Network Is Online,” you really need
to only listen for their events.

In this code example, all four events are used so that you
can watch how they all react to the changing connectivity
conditions in real time and in between different web
browsers.

Listen for Online and Offline Events

3

2

5
6

4

7

273

CHAPTER

14Providing Offline Access to Web Applications

#	 Load your HTML file in a web browser.

	 The browser and network statuses
both report “online.”

$	 Disconnect your router or disable
your web server.

A	After a set timeout, network access
reports “offline.”

%	 Disconnect your Ethernet or Wi-Fi
cable.

	 The browser and network statuses
both report “offline.”

8	 Type function browserOnline()
{ $(‘output#browserStatus’).
text(‘online’); }.

9	 Type function browserOffline()
{ $(‘output#browserStatus’).
text(‘offline’); }.

0	 Type function networkOnline()
{ $(‘output#networkStatus’).
text(‘online’); }.

!	 Type function networkOffline()
{ $(‘output#networkStatus’).
text(‘offline’); }.

@	 Save your JavaScript and HTML
files.

9

11

8

10

13

14

A

Note that the example in this section merges the
navigator.onLine tests from the first two sections of
this chapter (“Identify Whether the Browser Is Online”
and “Identify Whether the Network Is Online”) into one
basic call. This way, both browserOnline() and
testNetwork() run when the navigator.onLine
property is true, and browserOffline() and
fireNetworkEvent(false) run when it is false.
Earlier in this chapter, the section “Identify Whether
the Browser Is Online” experiments with changing the

computer’s physical connectivity to observe the
browser’s response. If you perform that same process
with the code in this section, you should find that the
network status mirrors the browser’s status.
Of course, that functionality is not everything; you also
need to verify that the network connectivity responds.
While you are testing, you may want to decrease the
setInterval() value used in the testXHR() loop.
This will help you get faster responses from changing
your network connectivity status.

EXTRA

274

<!doctype html>

<html manifest=’webapp.appcache’>

Your webapp.appcache file summarizes all the online resources
that you want to cache on the user’s browser.

CACHE MANIFEST

file1.html

file2.js

file3.css

file4.jpg

Implementing the Application Cache

The Application Cache API can simply be implemented using a
manifest file; however, you will also need supporting JavaScript
events and methods in order to update the locally AppCached
copy. You can view the WHATWG Application Cache specification
at www.whatwg.org/specs/web-apps/current-work/multipage/
offline.html.

The Manifest File
The AppCache is activated when you create a manifest file and
apply it to your html element on all pages in your web
application:

Browser Support

The Application Cache API is supported by nearly all the HTML5 web browsers, both mobile and desktop. The only exception is
currently Internet Explorer 9; however, support is likely to be added by Internet Explorer 10.

If you were to implement the Application Cache API today, browsers that do not support it should properly ignore it — that is, as
long as your AppCache JavaScript code properly identifies when the AppCache API is available.

The application cache, or AppCache, is a new HTML5 feature that can be very useful, yet very frustrating. It is the final
piece of the puzzle that transforms a simple web page into a full-blown web application, but until you fully understand

how it works, you may be led to believe that your site has permanently lost all connectivity, even though the browser is
technically online!

Implementing the AppCache means that your site can be made to run regardless of network connectivity. The AppCache
needs to be downloaded only once while online and is then available any time after that, regardless of connectivity state,
and always at the same URL. This process is actually so transparent and convincing that you could be traveling on a
airplane and open www.mysuperwebapp.com, and an onlooker would be fooled into thinking that you have gained
high-speed Internet access!

You will still need to implement the online and offline detector, as described earlier in this chapter. This is useful to
identify when the users do actually come back online, and whatever activities they performed and stored into their local
IndexedDB database (see Chapter 13, “Storing Data Using a Client-Side Database”) while offline need to be synchronized
with your web server. This process, while outside the scope of this book, is what turns your user’s browser into an active
participant in the cloud, which is available anywhere you need it and still available when you cannot connect to it.

Introducing the Application Cache

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/offline.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/offline.html

275

Providing Offline Access to Web Applications

CHAPTER

14
Normally, the browser caches online resources as the user
navigates to them. When the AppCache manifest is
implemented, all resources in it are cached at once. This means
that the user needs to visit only the first page of your site once
in order to cache the entire web application for offline use.

The application cache will always be active after it is
implemented, serving manifest content all from the locally
cached copy, regardless of network connectivity state and
regardless of the online copy of your website. This means that
even if you change any of the manifest’s files on the web server
or disable the manifest file in the html element, its previous
version is still active in the web browser — that is, until the
cache is swapped in JavaScript. Until you fully understand this
“always local” feature, you may find it to be one of the more
frustrating “bugs” of the application cache.

The AppCache API
You can easily detect for Application Cache API support by
running the following test:

if (‘applicationCache’ in window) {

 applicationCache.update()

}

This is required before you decide to implement either
AppCache method.

applicationCache.update()
The update() method checks the network for an updated
manifest file and downloads it if it is changed, along with any
updated resources available on the web server.

When working, this method launches the AppCache events,
which you can use to create a progress bar or other effect for
large-scale application cache downloads.

applicationCache.swapCache()
When the updateready event fires, you can run swapCache()
to actually apply the new cache on the website. This application
process applies only to new resource requests — for example,
when the page reloads or when the user follows a link to another
AppCached web page.

AppCache Events
You can use events to follow along in the AppCaching process.
Note that if you listen for an event on a browser that does not
fully support AppCache, it will simply never fire. Likewise, you
can listen for events without using any AppCache API
JavaScript at all, as AppCaching will automatically kick in when
the manifest file is loaded via the html element.

checking
The browser is actively checking the web server for a new
manifest file.

noupdate
The browser has identified that there is no new manifest file
available.

downloading
The browser has started downloading the manifest file and its
referenced resources.

progress
The browser has started downloading an individual resource
file. Note that the supplied ProgressEvent object provides
event.loaded and event.total. This represents the
current file count downloading and the total to download each
time the progress event fires. You could use this to create a
moving progress bar element, described in Chapter 3, “Using
New HTML5 User Interface Tags and Attributes,” for large
AppCache downloads.

updateready
The browser has finished downloading the AppCache resources,
which can now be swapped into the live browser session with
applicationCache.swapCache().

cached
The browser has applied the AppCache automatically for the
first time.

obsolete
The manifest file is no longer available; the AppCache is
deleted, and the website returns to live-download mode.

error
There was a failure downloading a resource identified by the
manifest.

276

1	 Open a blank file in a text editor.

2	 Type CACHE MANIFEST.

3	 Type # Version 1.

Note: Actually, this version number is not
for version control. If you ever change any
resource files after the AppCache is
established, you must change the manifest
file, too. Incrementing a version number is
just a cheap way to modify the manifest
without actually modifying it and allowing
the web browser to re-download it!

4	 Enter the static HTML, JavaScript,
CSS, and image files that you want
to cache.

Note: In this example, the only page being
AppCached is a subdirectory demos/offline,
but its dependencies are actually located
up two directories.

Note: If you are using a jQuery CDN, as
described in Chapter 10, “Drawing with the
HTML5 Canvas,” or any other third-party–
hosted script, specify its full URL here.

5	 Save your AppCache manifest as
mysite.manifest.

Create an Application Cache Manifest

The AppCache uses a manifest file to represent how all
the resources — the HTML, JavaScript, CSS, and other

files — your website provides are to be made available
when the user is disconnected from the Internet. In its
most basic form, the manifest file is structured like this:

CACHE MANIFEST
file1.html
file2.js
file3.css
file4.jpg
...

Save this file with a .manifest extension and reference it
in the root html element’s manifest attribute on all static
web pages — specifically, all of your *.html files:

<!doctype html>
<html manifest=’mysite.manifest’>

When the user visits any page with an AppCache manifest
while online, it will download the resource files referenced
and store them locally for offline access.

In the Chrome Inspector, you can use the Resources panel
to examine the AppCache and verify that your manifest file
is working.

It is very important to note that if the AppCache resources
change after the manifest has been initially established,
a special JavaScript procedure is required in order to
instruct the browser to update the AppCache. See the
following section, “Update the Application Cache,” for more
information.

Create an Application Cache Manifest

2

3

4

5

277

CHAPTER

14Providing Offline Access to Web Applications

6	 Open an HTML file that you
want to cache.

7	 Type manifest=’mysite.
manifest’.

8	 Save your HTML file.

9	 Repeat steps 6 to 8 for all other
static HTML files that you want
to use with AppCache.

0	 Open a caching HTML file in an
HTML5 browser and open the
JavaScript console.

A	The manifest is downloaded.

B	The manifest files are
downloaded and cached.

!	 Click Resources.

@	 Click the Application Cache .

C	The files currently in the
AppCache are displayed with
their cache type.

7

10

12

11

A

C

B

It is possible to create a more complex manifest file that defines manifest sections for which pages should be cached
explicitly, which dynamic pages should use a static fallback, and which pages should be ignored by the AppCache
entirely. These three cache types are identified by the headers CACHE, FALLBACK, and NETWORK in the manifest file
and can be placed in any order. If you do not use any manifest sections after the first line, CACHE is assumed.

APPLY IT

RESULT

In this example, the index.html and jquery.js files are cached normally;
however, the files login.cgi and account.cgi, if accessed while offline, will
display offline.html. Furthermore, unless anything else is specified, the
/media/ directory will be omitted from the cache entirely.
As the user browses your website, files will be cached regardless using
standard HTTP procedures — that is, except for content under the
NETWORK section. In addition, only when the manifest file itself is updated
will files referenced in it be updated without the user specifically visiting.

TYPE THIS
CACHE MANIFEST
Version number
CACHE:
index.html
jquery.js
offline.html
FALLBACK:
login.cgi offline.html
account.cgi offline.html
NETWORK:
/media/

➔

278

Update on Web Page Load
1	 Type if (‘applicationCache’ in

window) { }.

2	 Type var appCache = applicationCache;.

3	 Type appCache.addEventListener
(‘updateready’, function() { }, false);.

4	 Type appCache.swapCache();.

5	 Type location.reload();.

Update Automatically at a Set Interval
6	 Type setInterval(function() { },

milliseconds);.

A	Optionally, type appCache.autoUpdate
= 1;

B	Optionally, type if (! appCache.
autoUpdate || confirm(‘Update found.
Reload?’).

7	 Type appCache.update(); to trigger an
AppCache manifest download and
update check.

8	 Save your JavaScript file.

Update the Application Cache

You may notice a very strange bug in the pages you
store under the application cache. None of them are

updating, despite the web server providing an updated file
and manifest. At the risk of sounding clichéd, this is not a
bug; it is a feature!

The AppCache is designed to supersede all network activity
for resources. Effectively, after a file is AppCached, it will
always be served from the browser’s local copy. So how do
you force the application cache to update?

When your page loads, listen for the AppCache updateready
event, and when it fires, swap the new cache in:

if (‘applicationCache’ in window) {
 applicationCache.
addEventListener(‘updateready’, function() {

 applicationCache.swapCache();
 },false);
}

The swapCache() method will install the downloaded copy
into the AppCache database, but for the user to actually see
the new content, the page must also be reloaded.

Every time your AppCached page loads while the browser
is online, the manifest file is downloaded. If the manifest
changed, the updateready event will fire, which notifies
your code to swap the current cache with the new cache.
After this, you can run location.reload().

Unfortunately, this can cause your page to double-
load, which can be ugly. To counter this, you can
launch the manifest download at any time by running
applicationCache.update(), which in turn will also
trigger updateready if a new manifest is available.

You could implement this update() method in a button
the user clicks or in a setInterval() repeater that
runs every 10 or 20 minutes. If you choose the latter, use
confirm() to verify that the user wants to reload.

Update the Application Cache

5
34

2

1

3

7
6

6

A

B

279

CHAPTER

14Providing Offline Access to Web Applications

9	 Load your AppCache manifest file.

0	 Increment your version number to
force a manifest update to
re-download AppCache resources.

!	 Save your manifest file.

@	 Load your AppCached HTML file in
your web browser and open a
JavaScript console.

#	 Type applicationCache.update();
and press Enter.

$	 Type applicationCache.
swapCache(); and press Enter.

	 The latest manifest is updated and
swapped into the cache.

10

9

12

13

14

15

C

You may be wondering about the purpose of steps 9 to
14 in this section. How can you implement a page that
listens for updateready and then calls swapCache() to
refresh the AppCache, when the page itself is currently
frozen and AppCached?
The simplest answer is to verify that your manifest has
changed, open up a JavaScript console, and run the
applicationCache.update() and application
Cache.swapCache() commands by hand. After
reloading one more time, your newest AppCached files
should now be visible in the browser, which includes this
new JavaScript to monitor the updateready event!

Steps 9 to 14 are very important if in the future you
happen to break your own JavaScript within the
AppCache and cannot trigger an automated reload.
Effectively, incrementing the version number, reloading,
and manually running these two functions should always
force the browser to refresh its AppCache.
Given the worst-case scenario, if even this does not
work, you can delete the manifest file itself and reload
your page to unfreeze it, or in Chrome you can go to the
internal URL, chrome://appcache-internals/, and remove
your site’s AppCache manually.

EXTRA

%	 Reload your web page.

^	 Repeat steps 9 to 11 and wait for
the setInterval timeout from
step 6.

	 The automated call to the
AppCache update() method runs.

C	A confirmation prompt appears,
showing a new version is ready.

280

1	 Open your AppCache manifest file in a
text editor.

2	 Type network-detector.js to add code
from earlier in the chapter to the
AppCache.

3	 Type offline.html to cache the
“Website Offline” page itself.

4	 Type FALLBACK: if you do not yet
have a fallback section.

5	 Type online-only.cgi offline.html.

6	 Increment your manifest’s version
number and save the file.

7	 Create a new HTML web page in a text
editor.

8	 Display a message that the web page
is not accessible offline.

9	 Import the network-detector.js script
created earlier in this chapter.

0	 Type addEventListener(‘netonline’,
function(){ location.reload(); },
false); to have the offline page listen
for the online event and reload itself.

!	 Save your file as offline.html.

Create a “Website Offline” Fallback Page

As described earlier in the section “Create an Application
Cache Manifest,” your AppCache manifest file can be

configured with a FALLBACK section. This can be used to
describe a cached file that will be displayed to the user in
place of caching the primary file while the user is offline.

This is an excellent way to provide a fallback to dynamic
CGI code that requires the server to deliver content while
the user is offline; instead of displaying a cached web
page that says “Sorry, this web page is available only while
connected to the Internet.”

In supporting web browsers, the DOM fires off specific
events when the browser notices that the network
connection has gone offline and comes back online.

Specifically, in your online-only web page, you can use the
offline event to reload the browser and switch to the offline
fallback page. Likewise, in your offline web page, you can use
the online event to reload the browser and switch back to
the online-only page. These events are the same ones described
earlier in the section “Listen for Online and Offline Events.”

Earlier, when you created the manifest, you also created
a version comment. The reason for this is to notify web
browsers that the AppCache resources have changed, simply
by making an arbitrary change to the manifest itself — like
changing a comment. Granted, in this particular section,
you do not need to modify the version comment because
the manifest file list is being updated, but it is a good
habit to get into. See the section “Update the Application
Cache” for more information.

Create a “Website Offline” Fallback Page

6

2

5

3

4

10

8

9

11

281

CHAPTER

14Providing Offline Access to Web Applications

@	 Open your CGI script to edit its
HTML and JavaScript code output.

Note: Do not apply the AppCache
manifest attribute to your CGI script
output! Otherwise, it will invariably be
cached and display while offline!

#	 Import network-detector.js.

$	 Type window.addEventListener
(‘netoffline’, function() {
location.reload(); }, false);.

%	 Save your CGI script.

^	 Load a web page that uses your
changed AppCache manifest file
while online.

	 The application cache is updated.

&	 Load your CGI script.

	 The CGI script is displayed normally.

*	 Take the network or browser offline.

	 The CGI script reloads the URL.

A	The offline.html page appears under
the CGI script’s URL.

13

14

17

A

The “Website Offline” fallback page is not limited to dynamic web pages; it can be used to redirect images, music,
movies, or any other content that can be loaded directly in the browser. The trick is to create the offline version of
the file in the same format as the original source, yet still hint to the user that a connection is required to get the
full file.

APPLY IT

RESULT

The web page index.html is cached normally for offline use. If you
assume that it also contains the HTML tags <img src=’sunset.
jpg’>, <audio src=’piano.mp3’>, and <video src=
’mywedding.mp4’>, these multimedia files will not be cached.
Instead, when index.html is viewed offline, the offline versions of
the picture, music, and movie will be displayed. These could
represent a lower-resolution image, a very brief music clip, or a
movie with a single frame that displays, “This movie can be
viewed only while online.”

TYPE THIS
CACHE MANIFEST
Version 4
index.html
offline-image.jpg
offline-sound.mp3
offline-movie.mp4
FALLBACK
sunset.jpg offline-image.jpg
piano.mp3 offline-sound.mp3
mywedding.mp4 offline-movie.mp4
NETWORK
*

➔

282

Display a Specific Location with Google Maps

You can use the Google Maps API to display a custom
map on your own web page, zoomed and centered on

latitude and longitude coordinates that you specify. By
typing in your own coordinates, you do not need to use any
GPS or Geolocation API methods on the user’s web browser,
but you will still need to identify the coordinates yourself.

You can easily determine a pair of coordinates by opening
Google Maps, at http://maps.google.com; clicking ;
clicking Maps Labs; and enabling the LatLng Marker feature.
After this is active, you can simply right-click any location
in Google Maps and click Drop LatLng Marker. The further
you zoom in on a map, the more accurate the returned
coordinates.

After you have created a working map with hard-coded
latitude and longitude coordinates, you can add the
Geolocation API, described later in this chapter in the
section “Understanding Geolocation and GPS Services,”
or the Google Geocoding API service, to convert a normal
street address into latitude and longitude coordinates.
However, if you have never used the Google Maps API
before, get the map itself working with static data first
before you add in either feature.

For more information on the features provided by the
Google Maps JavaScript API, go to http://code.google.
com/apis/maps/documentation/javascript/. The Google
Geocoding API is described at http://code.google.com/
apis/maps/documentation/geocoding/.

1	 In an HTML5 file, type <script
type=’text/javascript’ src=’http://
maps.google.com/maps/api/
js?sensor=false’></script> to import
the Google Maps JavaScript API.

Note: Because you are providing specific
latitude and longitude data, no sensor is
used; therefore, the sensor parameter is
false.

2	 Create a local JavaScript function
called initmap.

3	 Type onload=’initmap()’ in the
<body> tag.

4	 Type var latlng = new google.maps.
LatLng(latitude, longitude); to set
your map’s latitude and longitude
values.

5	 Type var options = { zoom: 4,
center: latlng, mapTypeId: google.
maps.MapTypeId.ROADMAP }; to
zoom in on your LatLng coordinates
with a roadmap overlay.

Note: The zoom level can be a number from
0 to 21, in which 5 is state level, 11 is city
level, and 15 is street level.

Display a Specific Location with Google Maps

2
1

3

5

4

http://maps.google.com
http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/apis/maps/documentation/geocoding/
http://code.google.com/apis/maps/documentation/geocoding/

283

CHAPTER

15Using Geolocation

6	 Type var map = new google.maps.Map
(document.getElementById
(‘map_canvas’), options);.

Note: If you have jQuery loaded, you can use
Map($(‘div#map_canvas’), options).

7	 Type <div id=’map_canvas’ style=’width:
width; height: height’></div> to create
the display map object.

Note: The width and height variables can be
hard-coded pixel values for now.

8	 Save your HTML file.

9	 Load your HTML file in a web browser.

	 The Google Maps API initializes.

A	A map is rendered, centering on your
latitude and longitude coordinates.

0	 Use your mouse cursor to navigate around
the map.

7

6

9

A

The Google Maps API is very flexible; you can even place landmark icons at specific coordinates on your custom map.
This is very useful if you run a business and want to announce where your office is located, relative to the city roads.
In step 7 of the example in this section, the map object that was returned by the google.maps.Map() constructor
allows you to manipulate your map in just this way.

APPLY IT

TYPE THIS
var marker = new google.maps.Marker({
 position: latlng, map: map, title: “Head Office”
});
var infowindow = new google.maps.InfoWindow({
 content: “<p>Our head office is located
at:
<address>123 Fake Street
Whale Cove,
Nunavut, Canada</address></p>”

});
google.maps.event.addListener(marker, ‘click’,
function() {

 infowindow.open(map, marker);
});

➔

RESULT

A marker is displayed, and when it
is clicked, it displays the HTML
code from the content property.

284

The user’s preference is then usually remembered for that
website, so if you decline once, you should not be re-asked on
that domain until you reset your privacy settings.

Disabling Geolocation
Geolocation can easily be disabled by the user at various levels,
depending on the device. For example, iOS devices allow the
user to disable geolocation on the entire device or only for
specific applications. Many web browsers allow users to disable
geolocation for all websites or only for specific websites.

Some systems default to geolocation being off, without
presenting any prompts at all.

If you are having any problems using the Geolocation API on
any device or you want to change your preference setting,
verify in your operating system control panel and your web
browser settings the state of geolocation support.

Web Browser Interface

Web browsers that support the Geolocation API provide a new
object over JavaScript, navigator.geolocation, that you
can interface with.

Hardware Interface
Mobile web browsers supply data to navigator.
geolocation through built-in GPS radios, cell-tower location
detection, or a combination of both. Many of these devices
offer a way for the user to disable support and to save battery
life, and as such the API will not be available.

Desktop web browsers supply navigator.geolocation
with information gleaned primarily from public IP addresses,
Internet service provider hints, and Wi-Fi connection
information, if available. These sources may not provide as
detailed or accurate results like true GPS, but if available, they
should provide a neighborhood-sized location area for the user
to reference.

Prompting the User for Access
When the Geolocation API is initialized, a notification prompt
is displayed to the user. Only when the user agrees to the
request for location information will the browser grant it to
the JavaScript program provided by the website.

The Geolocation API, a new feature for HTML5, is managed by an official W3C specification. It allows for a standard
way for websites to access location-specific data about the user, provided that the user consents to the request and

the hardware support is available. This process uses multiple methods to retrieve the user’s coordinates, via GPS or other
geolocation services, and makes the information available over JavaScript.

The website can then choose to process that information in the user’s web browser or send it using an Ajax or form
submission callback to the web server for server-side processing.

This is an invaluable tool used by many location-specific websites, such as Google Maps, foursquare, Flickr, and Twitter,
again, provided that the user allows the site to do so and the web browser hardware supports it. Remember, this is to
be used as a convenience to the user: If the Geolocation API is not available, all of these example web apps still work
perfectly fine. But if the user wants any location-specific content, that information will need to be provided manually.

Understanding Geolocation and GPS Services

285

Using Geolocation

CHAPTER

15

Mobile, and Nokia hardware, the GPS API is interfaced with and
is emulated using the Geolocation API’s methods and objects.

For a full list of supported platforms, see http://code.google.
com/p/geo-location-javascript/wiki/SupportedPlatforms.

Fallback Support

The Geolocation JavaScript API wrapper is a third-party library
that coordinates access to the various geolocation and GPS
services on different devices. For browsers that support the
W3C’s Geolocation API, that is used; for some older browsers,
the Google Gears API is used. For mobile operating systems
such as those using Android, BlackBerry, iOS, Palm, Windows

Geolocation API

The Geolocation API runs in three basic states: requesting,
displaying a successful request, and displaying a failed request.

Requesting Coordinates
When you are ready to request coordinates from the browser,
launch the Geolocation API method getCurrentPosition():

navigator.geolocation.getCurrentPosition(successHand
ler, failureHandler, optionMap);

When the request attempt is completed, either the
successHandler function or failureHandler function is
executed.

An optional optionMap can be used to specify additional
configuration properties to fine-tune the specific request.

Option Property Description
enableHigh

Accuracy

A Boolean that means the application
wants the highest accuracy available for
the coordinate results. This may consume
additional power and is off by default.

timeout An integer to adjust the timeout for a
pending request to fail.

maximumAge An integer indicating the age of the
last-known cached position. If the
last-returned position’s timestamp exceeds
this value, a new position query is forced.

A similar method is also available, watchPosition(), which
uses the same parameter structure. This method persistently
watches the user’s current location and executes a callback
handler every time the position changes. This method returns
an identifier that must be passed to a clearWatch() method
in order to halt the process.

Successful Request Callback
If a position becomes available before the timeout, the browser
executes the successHandler callback function and provides
one argument, a position object. You can then access the
information retrieved from the Geolocation service using this
object.

The object returned will contain the following properties:

•	 coords.latitude — The degrees latitude.

•	 coords.longitude — The degrees longitude.

•	 coords.accuracy — The number of meters accuracy to
the coordinates returned.

•	 coords.altitude — The number of meters above the
earth’s average surface level.

•	 coords.altitudeAccuracy — The number of meters
accuracy to the surface level altitude.

•	 coords.heading — The degrees from true north.

•	 coords.speed — The speed in meters per second.

•	 timestamp — A Date object timestamp.

Naturally, depending on the method used to retrieve the user’s
position, some data may not be available. For example, IP
addresses cannot reference altitude, speed, or heading, but
mobile phones with GPS radios can. The property stores null
in the fields that are not available.

Failed Request Callback
If a position cannot be discovered, the browser executes the
failureHandler function with an error object as its argument.

The object returned will contain the following properties:

•	 message — A plain-text message describing the error.

•	 code — The error code.

The object may report that the Geolocation service is
unavailable or that the request has timed out.

http://code.google.com/p/geo-location-javascript/wiki/SupportedPlatforms
http://code.google.com/p/geo-location-javascript/wiki/SupportedPlatforms

286

1	 Download the gears_init.js and
geo.js libraries.

2	 Load the libraries in an HTML file.

3	 Type if (geo_position_js.init()) { }.

4	 Type geo_position_js.getCurrentPosition
(geo_success); if init() returns true.

5	 Type else { ... } to inform the user that
no geolocation support or fallback is
available.

6	 Type function geo_success(position)
{ ... }.

7	 Access the user’s degrees latitude and
longitude.

8	 Display the information to the user.

A	Optionally, type , geo_failure to specify
a failure callback handler.

B	Optionally, type function geo_failure
(error) { ... } to access an error.
message and error.code.

9	 Save your HTML file.

Request the User’s Current Location

To access the user’s current location, the browser needs
to support the Geolocation API or an equivalent fallback,

and the user needs to allow access to your website.

One of the fallbacks, Google Gears, was designed by Google
to provide a multitude of features prior to when the HTML5
specification took hold. In today’s HTML5 web browsers,
Google Gears is obsolete, but it does provide a useful
fallback for pre-HTML5 web browsers, especially those that
do not understand the Geolocation API.

The Geolocation JavaScript Library is a useful tool that bridges
the interface discrepancies between the W3C’s Geolocation
API, Google Gears, and some mobile web browsers’ JavaScript
GPS interfaces. Once implemented, you can use this single
library to access all major Geolocation-like interfaces.

Download the libraries http://code.google.com/apis/gears/
gears_init.js and http://geo-location-javascript.googlecode.

com/svn/trunk/js/geo.js and save them into your website
directory.

After you have both libraries loaded, you can access the
Geolocation API, or fallback APIs, using the following code:

if (geolocation_position_js.init()) {
 geo_position_js.getCurrentPosition(
 successHandler, errorHandler);
}

If the init() method fails, no API was accessible, so an
appropriate error message can be displayed to the user. If
it succeeds, the successHandler and errorHandler
parameters are functions that are to be called after an API
has successfully retrieved the user’s coordinates or if there
is a failure.

successHandler provides a position object that holds the
actual coordinate data.

Request the User’s Current Location

43

2

5

7
6

8

B

A

http://code.google.com/apis/gears/gears_init.js
http://code.google.com/apis/gears/gears_init.js
http://geo-location-javascript.googlecode.com/svn/trunk/js/geo.js
http://geo-location-javascript.googlecode.com/svn/trunk/js/geo.js

287

CHAPTER

15Using Geolocation

0	 Load your HTML file in a web browser.

C	A notification bar requests that the
user allow the site to know his or her
location.

!	 Click Allow.

Note: Opera may request that you agree to
Google’s Terms of Service, which is strange as
there is no Google location service involved
here.

Note: If you do not allow the request to
proceed or you want to revoke access, you
must go into your browser’s preferences to
reset the geolocation permissions setting.

	 The user’s current position is retrieved.

D	The latitude and longitude coordinates
are displayed.

E	In Chrome, the icon appears when
the Geolocation API is active.

10

11C

D
E

Although web applications written for mobile HTML5 web browsers can gain a new perspective on their users’
surroundings, by providing relevant data to nearby shops, services, and attractions, for example, a significant
population of mobile users will be left out in the cold with the current code in this section.
Users who own Android 2.2 to 3.1 devices — and possibly later versions, too, but this was the latest Android
release as of August 2011 — require a specific option when calling the getCurrentPosition() method:

geo_position_js.getCurrentPosition(geo_success, geo_failure, { enableHighAccuracy: true });

According to the Geolocation API specification, the enableHighAccuracy option instructs the API to provide the
best-possible GPS results. Normally, if a device does not support this much detail, the option is ignored, but if it
does, it can result in higher power usage and a delay in getting results.

EXTRA

288

1	 Open an HTML file that uses the
Google Maps JavaScript API to
create a map object.

2	 Type sensor=true in the src
attribute URL parameter that loads
the Google Maps JavaScript API.

3	 Type zoom: 3 to move the default
zoom level to the country level.

4	 Remove any marker or
infowindow objects for now.

5	 Initialize geo.js; create a local
function that has the position
object.

6	 Create a new LatLng object using
position.coords.latitude and
position.coords.longitude.

Note: Because the map is already
initialized, you can call map object
methods to alter the current map display.

7	 Type map.panTo(latlng); to move
the map and center on the new
coordinates.

8	 Type map.setZoom(8); to zoom in
on the new location.

Display the User’s Current Location with Google Maps

Earlier in this chapter, the section “Display a Specific
Location with Google Maps” discusses how to use

Google Maps to display a location. After you can locate
the user, as explained in the preceding section, “Request
the User’s Current Location,” it is possible to inject that
information directly into a Google Maps JavaScript API
object.

This is useful if you want to provide an interactive map that
compares the user’s current location to another location,
such as a corporate office or an attraction. Although the
code in this example shows how to get the user’s location
and set a marker, you can modify it by repeating step 6
below — with absolute latitude and longitude coordinates —
and steps 9 and 10 — with unique variable names.

In order to do so, you will need to make some changes to
the earlier Google Maps example code. First, you must tell
the Google Maps API that you are now using a sensor to
access its information.

Second, it may take some time for GPS coordinates to be
retrieved, but this should not inhibit displaying a general
high-level map when the page loads. So display the map
first and then update it by panning and zooming in when
the coordinates are available.

Finally, set a marker and infowindow object at the
user’s location, indicating that his or her location has been
successfully detected. Also, add a click event to the
marker so that it opens the information window.

Display the User’s Current Location with Google Maps

3

2

6
7

5

8

289

CHAPTER

15Using Geolocation

9	 Create new marker and infowindow
objects indicating that this is the
user’s detected position.

0	 Add the click event listener on the
marker to open infowindow.

!	 Save your HTML file.

10

9

12

13

A

Because the Geolocation API example in this section is pure JavaScript, everything happens on the web browser:
There is no real way for you as the website owner to retrieve this information without leveraging some additional
technology, such as Ajax, to send it to your web server.
jQuery provides some useful Ajax helper methods that make implementing this functionality easier.

APPLY IT

RESULT

A listener CGI script located at /cgi-bin/
location-listener.pl is launched in the
background, after getCurrentPosition() has
populated the position object. The object is
serialized and sent as a parameter to the CGI script.
Note that this example simply sends the data to
the server and, when successful, injects the
response output immediately after the <div
id=’canvas’> tag block.

TYPE THIS
jQuery.post(“/cgi-bin/location-listener.pl”,
 position, function(data){
 return $(‘div#map_canvas’).after(data);
});

➔

Creating an appropriate CGI script to listen to Ajax requests is beyond the scope of this book. For a good example,
see the book Perl and Apache: Your visual blueprint for developing dynamic web content, published by John Wiley &
Sons, 2010.

@	 Open your HTML file in a web browser.

	 The map is rendered with a generic,
country-level location.

	 The Geolocation API requests and then
identifies your location coordinates.

	 The map pans and zooms in on your
location.

	 A marker appears at your location on
the map.

#	 Click the marker.

A	A pop-up message appears.

290

function onMessage(event) {

 var input = event.data;

 ...

}

The onMessage() function will receive one argument, the
event object, which can be used to access the data packet
produced by the parent. In fact, literally, the input data is
accessible from event.data.

Before you can use this function to process the input message,
you must tie it in with an event listener. This will instruct the
web browser what to do when a message event type is received
by the worker thread — execute the onMessage() function:

self.addEventListener(‘message’, onMessage, false
);

The following describes how to build a Web Worker and how it
communicates with the parent thread.

Dedicated Worker Code
The Web Worker code exists as a standalone file, separate from
your main JavaScript code. Because the worker is response-based,
there is just one “main” function that listens for input from the
main thread and sends a response back.

Listening for Input Messages
In order for your worker to do anything useful, you need to
define a function that runs when a Web Worker message event
occurs. A message event signifies a command from the parent
to the worker and allows the worker to send additional data as
instructions:

Dedicated Worker Setup and Communication

With Web Workers, you can split computationally expensive tasks into separate JavaScript threads and communicate to
them independently from the main JavaScript program actually running in a web page.

The workers themselves are clones of the JavaScript runtime environment, so nearly all built-in methods and functions are
available, but there are some restrictions on what they can do. For example, a worker cannot access the normal browser
window directly, including the window and document objects, nor the DOM itself, so its perspective on the browser’s HTML
rendering process is nil. Web Workers do have access to the navigator and location objects, though, so they can
discover what the browser is running and its current URL; however, this information is read-only.

The strength of the workers is to facilitate processing commands so that they can be outsourced from the browser’s
rendering process. This avoids locking the user interface while a resource-intensive task is working, allowing your web
application to use the user’s CPU more efficiently.

There are two types of Web Workers available — dedicated workers, which imply a single parent and worker process,
and shared workers, which imply multiple parents accessing a single worker process. The dedicated model is much more
common and described in this chapter; however, the differences between implementing the two are documented here.

The Web Workers specification is described in the Web Applications 1.0 document managed by WHATWG. You can access the
latest version of this specification at www.whatwg.org/specs/web-apps/current-work/complete/workers.html.

Introducing Web Workers

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/complete/workers.html

291

The third parameter, false, indicates that this non-normative
DOM event must not bubble up the DOM tree. The
addEventListener() was originally created to enable you
to override or amend existing event types, such as click and
submit, in which case it was desirable to add new
functionality to an event when the user triggered a click or
submit process, for example.

Because Web Worker code is very specific about who listens to
what, you will avoid conflicts with multiple workers in your
DOM by always specifying false in this function in the worker
and later in the parent.

Sending Output Messages
When your worker is ready to send a response message back to
the parent, it does so by using self.postMessage(). The
content being sent can be anything, such as a variable or an
object. Be aware that posted event data objects are copied and
not shared like a C pointer:

function onMessage(event){

 var input = event.data;

 var output = {};

 ...

 self.postMessage(output);

}

Note that multiple output messages can be posted from a
single input message event. This can be useful if you want to
send a progress report back to the parent detailing what stage
of a calculation the worker is currently at — and then the final
result when completed.

Parent Code
The following describes how to launch a Web Worker and how to
communicate with it.

Load the Worker
Now that your Web Worker code is defined and stored in a file,
you can import that file into your main JavaScript code using
the new Worker() constructor. This will return a worker
object that is used for communicating to the new thread:

var worker = new Worker(‘dedicated-worker.js’);

At this stage, the worker code is executed; nothing should
happen yet as the worker itself is event based. However, if you
wanted to, you could specify non-event code, such as an
initialization routine, in the worker that would be executed
right away.

Because each worker produces a worker object, multiple Web
Workers can be spawned at once from a single parent. The
workers themselves will not be able to see each other, so the
parent will have to coordinate all communication. Note that if
you use the shared worker model, this idea is reversed: Multiple
parents share a single Web Worker thread, and its responsibility
is to coordinate communication.

CHAPTER

16Running Secondary JavaScript Threads Using Web Workers

continued ➤

292

Shared Worker Setup and Communication

The shared worker model is almost exactly the same as the dedicated worker model, the difference being that there is more than
one parent accessing a worker at a time. To facilitate this, a port object is introduced.

Shared Worker Code
The port object is used to coordinate communication between different parents. The port that receives the message event must
be the same one used to respond:

function onMessage(event) {

 var port = event.ports[0];

 var input = event.data;

 var output = {};

 ...

 self.port.postMessage(output);

}

self.addEventListener(‘message’, onMessage, false);

Listen for Worker Output Messages
The parent listens for worker output messages in the same way
the worker listens for input messages. The only difference is
semantics:

function onWorkerMessage(event) {

 var workerOutput = event.data;

 ...

}

worker.addEventListener(‘message’, onWorkerMessage,
false);

This worker.addEventListener() callback must be
established before you actually send the worker any
instructions. This is because you must establish the callback
procedure before you expect it to be used by posting a message
to the worker.

Send the Worker Input Messages
After all the pieces are together, you can launch the worker
itself by sending it an instruction. The actual data input can be

anything, but if you are sending a complex structure, use an
anonymous object as the worker input:

var workerInput = {};

...

worker.postMessage(workerInput);

The worker thread launches, and its self.
addEventListener(‘message’, ...) receives this
workerInput variable from your main thread. The main
thread is now allowed to proceed as postMessage() is
nonblocking.

Terminate the Worker
A Web Worker thread can be terminated at any time by calling
the worker.close() method in the parent or by calling
self.close() in the worker itself.

After this is done, the worker cannot be relaunched until the
web page is reloaded.

Introducing Web Workers (continued)

293

Running Secondary JavaScript Threads Using Web Workers

CHAPTER

16
An element of delegation needs to be applied within the onMessage function in order to make the shared nature of this worker
useful. This implies an initialization routine and coordination between what data is shared publicly and privately with each
connected parent.

An example of this is beyond the scope of this book; however, a good demonstration is available on the WHATWG specification for
shared workers at www.whatwg.org/specs/web-apps/current-work/complete/workers.html#shared-state-using-a-shared-worker.

Parent Code
Each parent interested in communicating with a shared worker thread must use the new SharedWorker() constructor. This will
return a worker object that is used for communicating to the new thread:

var worker = new SharedWorker(‘shared-worker.js’);

As before, the worker’s code is executed, but only if it is the first time that this shared worker has been launched. The primary
difference between a dedicated and shared worker is a new worker.port object. This must be used to access the shared worker.

The onWorkerMessage() example callback function described earlier remains the same; only this time, the worker.port
version of addEventListener() must be used to establish the callback:

worker.port.addEventListener(‘message’, onWorkerMessage, false);

Sending messages using postMessage() has the same worker.port requirement.

var workerInput = {};

...

worker.port.postMessage(workerInput);

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/complete/workers.html%23shared-state-using-a-shared-worker

294

A	In a new JavaScript file, optionally,
type importScripts(‘script.js’); to
import a legacy JavaScript file that
you want to convert into a Web
Worker.

B	Optionally, define any initialization
routines needed to run when the Web
Worker first starts up.

Note: In this example, the legacy program
executes a portion of the DOM that is not
Web Worker safe. That function must be
overridden and made compatible with the
Web Worker runtime environment.

1	 Type function onMessage(event) {.

2	 Type var input = event.data; to
receive the input object from the
parent’s message event.

3	 Perform a computational task using
the input object.

4	 Type }.

5	 Type self.addEventListener(
‘message’, onMessage, false); to
register an event message callback.

Create a Web Worker JavaScript File

Using Web Workers in HTML5 is a very easy way to add
in a level of optimization that was not possible a few

short years ago. Previously, JavaScript could run in only one
thread in the browser, and any CPU-intensive tasks bogged
down user interface features. When you split up your
CPU-intensive code into a Web Worker JavaScript file, your
users can continue using your website while the Web Worker
asynchronously works.

To convert existing JavaScript code into Web Worker code,
you need to create a conduit that allows for subroutines
to be executed by way of event messages. The parent
JavaScript thread running in the browser window will send
event messages to a listener running on your Web Workers,

and they in turn will send event messages to a listener
running in your parent program.

When your Web Worker is first launched, all code that is
accessible directly, that is outside of the event messages,
will be launched right away. You can use this to initialize
your Web Worker and prepare for the CPU-intensive task
that will be executed by the user.

In the example code shown in this chapter, to generate
actual CPU activity, a stress-tester utility is used as the Web
Worker code. This program was originally produced by Yuen
Kit Mun for his website Fossil Toys, www.fossiltoys.com/
cpuload.html. His version was modified with permission to
add in Web Worker functionality.

Create a Web Worker JavaScript File

B

A

2
3

5

1

4

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fossiltoys.com/cpuload.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.fossiltoys.com/cpuload.html

295

CHAPTER

16Running Secondary JavaScript Threads Using Web Workers

8	 Type self.postMessage(output);
to send the output object back to
the parent as a message event.

9	 Save your JavaScript file as
program-worker.js.

	 Your Web Worker JavaScript file is
now ready to be linked into your
web application.

6	 Type var output = {}; to construct
a generic output object.

7	 Store the results of the message
event calculation in the output
object.

7
6

8

9

The example in this chapter demonstrates an
event-driven Web Worker that initializes itself and then
listens for incoming message events from its parent,
eventually sending messages back as the need arises.
Although this is the most common way that you can use
Web Workers, it is not the only way.
Specifically, if you were to forgo the self.addEvent
Listener() code and message event function, the Web
Worker shown in this section could be instructed to

launch its CPU-intensive code as soon as it is loaded in
the parent process.
Although the event message and listener model is the
most convenient medium for interprocess communication
in JavaScript, if you communicate with the Web server,
too, you will need to add in another protocol method. For
asynchronous connectivity, the XMLHttpRequest object
will always work, or you can try the new WebSockets
protocol, described in Chapter 17, “Communicating with
WebSockets.”

EXTRA

296

3	 Type function onWorkerError
(event) { ... } to receive any
error messages.

4	 Type worker.addEventListener
(‘error’, onWorkerError, false);
to register an event error
callback.

1	 Open an HTML file or JavaScript
file run by an HTML file.

2	 Type var worker = new Worker
(‘program-worker.js’); to
initialize a new Web Worker
process using program-worker.js.

Link a Web Worker to Your Web Application

To use a Web Worker in your website, your mainline
JavaScript program, known as the parent thread, must

construct the worker object from a constructor and its
source code. This object can then be used to communicate
to the worker by way of event messages.

The event message syntax used in the parent program is
almost identical to the Web Worker code, barring a couple
differences. First, the initial call to the constructor forms
a worker object that facilitates communication, whereas
the Web Worker within aptly uses self for communication.
Second, your parent program has the capability to listen to
runtime errors caused by the worker thread. Although this
may not help you with debugging per se, if an issue occurs
in loading the worker, your parent can be notified.

The actual messages that you send between the parent
and worker threads can be anything from simple numbers

to complex objects. Here is a warning, though:
postMessage() copies the message to the
addEventListener() callback as it traverses threads,
which means that data structures are duplicated in memory.
So if you are really concerned about JavaScript efficiency,
your code is probably already sending simple variables or
data objects, and nothing overly complex.

Note that this chapter describes using a dedicated Web
Worker, as this is the most common use case. You could
use the alternative shared Web Worker model, which
supports multiple parent threads — or to be more specific,
browser windows — communicating to a single Web Worker
memory stack. This shared worker model does not support
communicating to different browser programs or hardware;
to do this, you would require WebSockets and a web server
program to coordinate traffic.

Link a Web Worker to Your Web Application

2

4

3

297

CHAPTER

16Running Secondary JavaScript Threads Using Web Workers

8	 Type var workerInput = {}; to
construct a generic worker input
object.

B	Optionally, store commands for the
worker in the input object.

9	 Type worker.postMessage
(workerInput); to send a message
event with the object to the worker.

0	 Save your HTML or JavaScript file.

	 Your main JavaScript program is now
linked to the Web Worker thread.

5	 Type function onWorkerMessage
(event) { } to receive any
worker messages.

6	 Type var workerOutput = event.
data; to read the worker’s event
message.

A	Optionally, perform a display task
using the worker output message.

7	 Type worker.addEventListener(
‘message’, onWorkerMessage,
false); to register the event
message callback.

56

7

A

8

9

B

As soon as your main JavaScript code executes new
Worker() in step 2 of this section, the new JavaScript
thread is spawned and its global code, if any, is
executed. This happens automatically and
asynchronously from your main JavaScript program.
After that point, the thread will sit idly by, waiting for
you to post a message, as in step 9, or for the main
JavaScript program to close.
An interesting feature of the parent/worker relationship
is that Web Workers themselves can spawn their own
subworker threads. Simply duplicate the process

described in this section in your worker file and create a
new subworker script to communicate with. This can be
useful if a task your worker is charged with becomes
blocking and you want to spawn a third JavaScript thread.
Do not abuse this privilege. Even though workers are
threaded to run concurrently, the user still has a finite
amount of processor resources. For example, if you have
the urge to use JavaScript to calculate pi to 10,000
digits, you should at least leave some processor cycles
for the user to play a game such as HTML5 Angry Birds,
http://chrome.angrybirds.com, in another browser tab.

EXTRA

http://chrome.angrybirds.com

298

2	 Trigger a Web Worker event
message from the browser
interface.

A	The Web Worker listener event
launches, triggering a
CPU-intensive task.

1	 Open an HTML file with the
worker and parent JavaScript
code set up in an HTML5 web
browser.

Note: See earlier sections in this
chapter for more information.

	 The parent JavaScript process
initializes.

	 The worker JavaScript process
initializes.

Launch a Web Worker Event from Your Web Application

After you have a worker and parent JavaScript code set
up, you can launch the Web Worker process in your web

application.

It is important to note at this stage what to expect from
Web Workers. They will not automatically access new system
resources, better utilize extended or expanded memory, or
make your web browser 100% crash safe. In fact, they will
make debugging using tools such as the Chrome Inspector
impossible to use as no direct interaction with the rendered
web browser itself is allowed. You are kind of working in a
black-painted room with the lights out.

Web Workers’ sole purpose is to move your CPU-intensive
code into a different JavaScript thread, outside the
main-line user interface, so that the user does not need
to stare at a frozen browser window and can still use the
UI JavaScript code on your site.

In case there is a problem with the Web Worker code,
an error message handler was created that will relay any
runtime errors back to the parent. This is convenient
because, as mentioned, it is impossible to tie a debugger,
such as the Chrome Inspector or Firebug, into a Web Worker
process.

For this example site, a relatively complex jQuery animation
is used as a demonstration of a UI task that needs to run
alongside the Web Workers task. In other words, with the
processor-intensive task in its own thread, this jQuery
animation should move very smoothly.

But what if Web Workers are not available? Your program
should still be able to run, at least. See the next section,
“Falling Back for Non–Web Worker Browsers,” to learn how to
reenable legacy programs in a non–Web Worker environment.

Launch a Web Worker Event from Your Web Application

1

2

A

299

CHAPTER

16Running Secondary JavaScript Threads Using Web Workers

4	 Trigger the parent JavaScript that
manipulates the browser UI.

Note: In this example, jQuery’s hide() and
show() methods animate content as it
fades in and out of view. This generates
CPU load on the browser’s UI thread.

	 The website remains quick and
responsive while the Web Worker is
active.

C	The overall CPU usage is shared
between the Web Worker and the UI
animation threads.

3	 Launch the Task Manager in Windows
(or the Activity Monitor in Mac OS X)
to see the web browser CPU usage.

B	This is the browser CPU load of the
Web Worker. B

4

C

When you move to a new web page, close the browser’s tab or close the browser entirely. All running JavaScript
threads related to your web page will end. Although you do not have much control over the parent thread, you can
send a signal to a new Web Worker thread to terminate. This will help you free up system resources used by the
worker as it executed its program.
Such is the case when the worker has finished its task but the main web page or application is still active.

APPLY IT

RESULT

If the parent process at any time calls worker.terminate(),
that worker will terminate and free its resources.

TYPE THIS

Type this in the parent JavaScript:
worker.terminate();

➔

RESULT

If the worker process at any time calls self.close(), it will
terminate and free its resources.

TYPE THIS

Type this in the worker JavaScript:
self.close();

➔

If either action happens, the original worker object in the parent is voided and now unusable. If the parent wants to
use the worker again, it will have to be created again using the new Worker() constructor.

300

1	 Open your parent JavaScript file.

2	 Download and import the Modernizr
library.

3	 Type var worker = undefined; to
create a variable outside of the
Modernizr test to hold the worker
object.

Note: Be sure to remove the var before
the new Worker() constructor.

Note: Because this variable stores the
worker object handle, it will remain
undefined if it cannot use Web Workers.

4	 Type if (Modernizr.webworkers)
{ … } around your Web Worker
setup process.

5	 Type else { to provide initialization
code when Web Workers are not
available.

6	 Type jQuery.get(srcURL, function
(data) { jQuery.globalEval(data
); }); to import the legacy source
code into the main thread.

A	Optionally, display a message to
the user that Web Workers are not
available and execution may be slow.

7	 Type }.

Falling Back for Non–Web Worker Browsers

When your Web Worker code is functioning properly,
what do you do about the users who have not yet

upgraded their web browsers? You still want these users
to use your website, despite the known issues running
processor-intensive code. By activating Web Workers, you
have cut off these legacy users entirely!

First, you will need to split up your CPU-intensive code
into two separate files, one that provides Web Worker
functionality and one that does not. This is actually already
demonstrated in this chapter, as the previous sections show
a legacy program running the original code and another
running the Web Worker setup code.

Next, in your parent script, you will need to detect whether
Web Worker support is available. This can be done easily
using the Modernizr library, available at www.modernizr.com.
When you detect that Web Workers are unavailable, your
program must not call any Web Worker–dependent code, such
as addEventListener or postMessage(), and instead
import the original legacy program and run it locally.

In the examples in the earlier sections, the cpuload-worker.
js file ran a function called importScripts() to import
the cpuload.js code. Unfortunately, this function is available
only in the context of a Web Worker and is not available in
your main code. Instead, you can use jQuery’s get() and
globalEval() methods to perform the same functionality!

Falling Back for Non–Web Worker Browsers

4
3

6

5

7

A

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.modernizr.com

301

CHAPTER

16Running Secondary JavaScript Threads Using Web Workers

8	 Type if (worker) { … } around all
worker.postMessage() calls.

9	 Type else { ... } to execute the
legacy functions directly.

0	 Call the function required to launch
your imported code.

!	 Save your JavaScript file.

9
10

8

8

9

12

13

14

B C

Web Workers, like all new HTML5 features, should be
as transparent to the end user as possible, regardless of
the web browser version. Of course, there is an
unwritten statute of limitations; no self-respecting
website today will tout Netscape 2.0 compatibility, but
at the very least, you should respect that HTML5 is a
newer technology, and users are still using Internet
Explorer 6, Firefox 3.0, and so on.
On the other hand, you do need to ask yourself if this
legacy functionality is worth it. A CPU-intensive task
running inline will only produce a bad impression of

your website. It may be best to simply deny this support
and include a message saying, “Upgrade your web
browser, please.”
It all depends on who your target audience is and what
other HTML5 features you have already implemented
to date that do not provide seamless backward
compatibility. Such is the case with the Canvas API, the
new form input fields, the Geolocation API, and so on. It
is not the end of the world to simply deny these users
access to your site, at the cost of the potential audience
size, at least until these users upgrade.

EXTRA

@	 Load your code in a non–Web
Workers browser.

Note: You can simulate single-thread
execution in any browser: Change step 4
to if (false) { ... } and reload.

B	Optionally, an error message
appears, warning there is no Web
Worker support.

#	 Trigger the CPU-intensive task.

$	 Trigger the browser UI animation.

	 The website slows down significantly
while CPU load is high.

C	The Task Manager reports only one
process active, using CPU resources.

302

The original idea for WebSockets was promoted by Google
engineers to WHATWG in 2007, in time for inclusion in an early
draft of the HTML5 specification. As a direct result, Chrome has
always had the best level of support. Today, the WebSockets
API is available as of Safari 5, iOS Safari 4.2, Firefox 4, and
Opera 11. Unfortunately, although Firefox 4 and Opera 11
initially touted support, in December 2010 their support was
disabled by default due to concerns over protocol handshake
security. The procedure on how to reenable these browsers for

testing purposes is described later in this chapter in the Extra
section of “Interact with a WebSocket Service.”

In the long term, it is very likely that this problem will be fixed
and the WebSocket API will be adopted by all major web
browsers — even Microsoft has plans to include it for Internet
Explorer 11. Therefore, you can still investigate and develop for
it today, but limit your rollout to Chrome and Safari users.

Browser Support

When the Internet and the HTTP protocol were first conceived, information transfer was envisioned to be one way,
web server to web browser, and the information on the server rarely changed. As the Internet matured, dynamic web

page technology was developed, delivering updated content as soon as the user requested it. This was nice, but what if the
website wanted to deliver new data after the page loaded, and have it trickle onto the web page itself without reloading?

Ingenious web developers figured they could keep the HTTP connection alive after the initial connection attempt. New
information could flow to the user over an HTTP session that launched seconds or even minutes earlier and never closed.
However, many firewalls and proxies took exception to this practice, either by buffering the overall response or, figuring
the web server simply crashed or forgot about the user, by killing the connection. This left the user stranded in a state of
midpage download.

Later, even more ingenious web developers discovered a little-known JavaScript API called XMLHttp in Internet Explorer,
soon adopted as XMLHttpRequest in other browsers, and christened Ajax, an acronym for asynchronous JavaScript and XML.
With this, JavaScript could make asynchronous HTTP requests to the server after the initial page load. This was great! It
gave birth to many of the first web applications, notably Gmail and Google Maps. However, even Ajax was not without its
flaws. As the browser was still responsible to make pull requests to the web server, if there was no new data available, the
browser would not know until it asked. An efficient network-push model was still not available.

Even under Ajax, bidirectional communication between the server and browser, also known as full duplex, was still being
emulated under HTTP, itself a half-duplex protocol. This resulted in even more overhead and latency: additional JavaScript
on the browser and inefficient network traffic.

HTML5’s WebSockets are designed to finally solve this problem. They combine the low-level and efficient communications
inherent with Unix-like network sockets with Ajax-like asynchronous transactions. This full-duplex protocol significantly
reduces JavaScript complexity, minimizes the per-transaction payload, and lowers the overall network latency to provide a
true network-push interface.

Introducing WebSockets

303

CHAPTER

17Communicating with WebSockets

WebSockets API on a JavaScript Client

The WebSockets API is very straightforward: It initializes the
object to connect, registers handler functions to receive
incoming events, sends messages, and terminates when finished.

Initialize the Connection
If the web browser supports WebSockets, you can initialize it by
creating a new object, specifying the WebSocket service URL as
a parameter:

var ws = new WebSocket(wsURL);

This returns a WebSocket object that you can use to register
functions for incoming transactions, to send outgoing
messages, and to terminate the connection.

Register Event Listeners
There are four response event types that can be triggered by a
WebSocket service — open, close, message, and error.
You should register a handler function that will run as soon as
such an event arrives on the web browser client:

ws.addEventListener(‘open’, onOpen, false);

ws.addEventListener(‘close’, onClose, false);

ws.addEventListener(‘message’, onMessage, false);

ws.addEventListener(‘error’, onError, false);

The open and close events trigger only once, immediately
after the client/server connection is established and after it is
terminated. You must define the handler functions onOpen and
onClose as they will allow you to know when it safe to send a
message to the server and to communicate to the end user the
current status of the WebSocket connection.

The message event will trigger whenever a message is received
from the server. You must define the handler function

onMessage to respond appropriately to the event. This
function could be as simple as echoing the server message back
to the end user.

If a problem occurs on the server or in the communication
protocol, the error event triggers. Use this to attempt to
reopen the connection, or at the very least to let the user know
that there was a problem.

All four events supply an event object as the only parameter
to the function handlers. You can use this to access details
about the event as it was received.

Send Messages
Whenever you want to send to the WebSocket service a
message, use the send() method on the connected WebSocket
object:

ws.send(message);

The message will be interpreted by the server, so be sure to
follow any formatting that is required by the server to which
you are connecting.

Close the Connection
You can choose to disconnect the WebSocket connection at any
time by calling the close() method on the connected
WebSocket object:

ws.close();

It is a good practice to terminate the connection when the web
page unloads. This way, the server is not left assuming that the
connection is still active and can free its resources.

WebSockets API on a Web Server

There are already a few server-side technologies that can be used to create WebSocket services:

•	 Perl — Uses the Mojolicious framework, http://mojolicio.us/.

•	 PHP — Uses the phpwebsocket module, http://code.google.com/p/phpwebsocket/.

•	 Apache/Python — Uses the mod_pywebsocket extension, http://code.google.com/p/pywebsocket/.

•	 Node.js — Uses the Socket.IO frameworks, http://socket.io.

http://mojolicio.us/
http://code.google.com/p/phpwebsocket/
http://code.google.com/p/pywebsocket/
http://socket.io

304

1	 In a JavaScript block, type if
(‘WebSocket’ in window) { } to
check if the browser does support the
WebSocket API.

2	 Type var websocket = new WebSocket
(wsURL); to initialize the object and
connect to the WebSocket service.

A	Optionally, type else { ... } to notify
the user that the WebSocket API is not
supported.

3	 Type websocket.addEventListener
(‘open’, onOpen, false); to register an
open event handler function.

4	 Type websocket.addEventListener
(‘close’, onClose, false); to register a
close event handler function.

5	 Type websocket.addEventListener
(‘message’, onMessage, false); to
register a message event handler
function.

6	 Type websocket.addEventListener
(‘error’, onError, false); to register an
error event handler function.

Create a WebSocket Client

To connect to a WebSocket service running on a web
server, you will need to create a WebSocket client

that runs on the user’s web browser that supports the
WebSockets API.

Before initializing a connection, you will need to verify
if the browser supports the WebSocket API by testing
for the window.WebSocket object. If it exists, you can
establish the connection to a WebSocket service using a
ws://hostname/path URL:

if (‘WebSocket’ in window) {
 var websocket = new WebSocket(wsURL);

The returned object is then used to register an event
listener for each of the four event types, open, close,
message, and error:

 websocket.addEventListener(eventtype,
function, false);

Each event handler function will receive an event object
parameter when the event fires. For the open and close
event types, this object goes unused, but for the message
and error event types, the object contains a data
prototype with a message from the WebSocket server.

Upon the receipt of the initial open event, your program
is allowed to communicate to the service by sending it
messages using websocket.send(message).

The WebSocket connection can be terminated at any time by
sending a terminate signal with websocket.close(). The
close event will be received when the server acknowledges
the termination signal or closes the connection itself.

Create a WebSocket Client

21

A

45
3

6

305

CHAPTER

17Communicating with WebSockets

B	Optionally, type $(window).unload
(function() { websocket.close();
}); in the onOpen() function.

Note: This will register a handler function
to the unload event. It will disconnect
the WebSocket connection if the user
navigates away from the page. This is not
required, but it is a courtesy to the server
so that it can free resources.

!	 Save your HTML or JavaScript file.

	 This web page now supports a basic
WebSocket client.

7	 Type function onOpen() { } to
define the open event function.

8	 Type function onClose() { } to
define the close event function.

9	 Type function onMessage() { } to
define the message event function.

0	 Type function onError() { } to
define the error event function.

8

10

7

9

B

The initialization process can occur as soon as the web page loads or when the user clicks a connect button. If you
chose a manual connect method, any premature calls to WebSocket methods such as websocket.
addEventListener() will be ignored and trigger a JavaScript error.

APPLY IT

RESULT

The Connect button can now be used to
establish a WebSocket connection. Within
the $(selector).click() function,
register all other WebSocket event
listeners and define the supporting
function handlers and optionally a
Disconnect button function handler.

TYPE THIS
<script type=’text/javascript’>
 $(function(){
 $(‘button#connect’).click(function(){
 var wsURL = $(‘input#wsURL’).val();
 // Test for window.WebSocket, connect to wsURL,
 // and register event functions.
 });
 });
</script>
<input type=’text’ id=’wsURL’>
<button id=’connect’>Connect</button>

➔

306

1	 Open an HTML file that is already
configured as a WebSocket client.

2	 Type <input class=’useWhileOnline’
type=’text’ id=’message’>.

3	 Type <button class=’useWhileOnline’
id=’send’>Send</button>.

Note: Add class=’useWhileOffline’ to the
input and Connect button elements and
class=’useWhileOnline’ to the Disconnect
button element.

4	 Go to the <script> tag or a JavaScript
file sourced by this HTML file.

5	 Wrap the connection block around the
jQuery-ready function, if you have not
done so already.

6	 Type $(‘button#send’).click(function(){.

7	 Type var message = $(‘input#message’).
val();.

8	 Type websocket.send(message);.

9	 Type });.

	 Your WebSocket client can now send
messages to the server.

Send WebSocket Messages

After you have created a WebSocket client framework,
you can begin to tie outgoing messages as soon as the

onOpen() function has started. This function will be run by
the open event, after the connection handshake process is
complete, indicating that a connection is active.

Because WebSockets are a full-duplex protocol, you can
technically send a WebSocket message at any time to the
server, after, that is, you have established a successful
connection, of course. There is not much point in limiting
your outgoing messages to only the onOpen() function,
unless the WebSocket service does not require any
additional messages.

Therefore, you need a way to be able to send commands,
but only while online. This is accomplished by creating
a new Message field and Send button. Using jQuery, it

is simple to trigger the websocket.send(message)
command when the button is pressed.

But how do you stop the user from clicking the Send button
until the connection has come online?

This is where two new CSS classes called useWhileOnline
and useWhileOffline come into play. When you assign
any input or button element either class name, jQuery
can be made to automatically disable elements labeled
useWhileOnline while offline and disable elements
labeled useWhileOffline while online. When the
connection status changes, the logic is reversed! Because
you can only go online via onOpen() and go offline via
onClose(), it makes sense to put your jQuery calls here.

Naturally, when the JavaScript client web page first loads,
you default to an offline state. jQuery must ensure that all
useWhileOnline classed elements are disabled right away.

Send WebSocket Messages

32

76

5
4

8

9

307

CHAPTER

17Communicating with WebSockets

0	 Type $(‘.useWhileOnline’).attr
(‘disabled’,’true’); to disable all
useWhileOnline elements.

!	 Type $(‘.useWhileOffline’).remove
Attr(‘disabled’); to enable all
useWhileOffline elements.

Note: These functions set the default for
when the page first loads. The latter function
is unnecessary as nothing should be disabled
yet, but this makes the code look cleaner.

@	 Type $(‘.useWhileOnline’).removeAttr
(‘disabled’) in the onOpen() function.

#	 Type $(‘.useWhileOffline’).attr
(‘disabled’,’true’) in the onOpen()
function.

$	 Type $(‘.useWhileOnline’).attr
(‘disabled’,’true’) in the onClose()
function.

%	 Type $(‘.useWhileOffline’).removeAttr
(‘disabled’) in the onClose() function.

^	 Save your HTML or JavaScript file.

	 The buttons that require a WebSocket
connect are only clickable when online,
and vice versa.

1312

1514

The online and offline classes are used as a convenience
to the user and are technically not required to use
WebSockets. Because they control the state of the
disabled attribute in the button and input elements,
they can be used to show the user which UI components
are available when the WebSocket connection is offline
and which components are enabled when a connection
is online.
As a result, the only element that is clickable while
offline is the Connect button. When it is clicked and you

go online, it is impossible to connect to anything else, so
the Connect button is disabled. Granted, multiple
WebSocket connections can be opened in tandem, but for
the sake of this example, only one is allowed at a time.
Remember that the websocket.send() method, and
subsequently the Send button, can be called only when the
WebSocket API has sent the open event. This is why in
the example you remove the disabled attribute on the
input and button elements only in the onOpen function and
then re-add the attribute in the onClose function.

EXTRA

1110

308

3	 Go to the <style> tag or a CSS file
sourced by this HTML file.

4	 Type output#log {.

5	 Type height: 200px; to set the
output log window height.

6	 Type width: 500px; to set an
arbitrary output log window width.

7	 Type overflow: auto; to enable
automatic scrolling.

8	 Type display: block;.

9	 Type }.

1	 Open an HTML file that is already
configured as a WebSocket client.

2	 Type <output id=’log’></output>
to provide an output window that
displays WebSocket activity.

Display WebSocket Messages

After you have a WebSocket client that can send
messages to a WebSocket service, it makes sense to

display the service response messages back to the web
browser. Additional information, such as the connection
status, error messages, and outgoing messages, is useful
to display, too. The best way to do this is to create an
output element and use jQuery’s append method to inject
information into it. You also can use jQuery’s scrollTop
method to ensure that the window is always showing the
last entry, which appears at the bottom of the scrollable
window.

Because the <output> tag can potentially scroll down the
screen, it is a good idea to use the CSS overflow property.

This enables you to limit the height and width and have the
message automatically scroll down within a nested window.

Remember that this is a convenience process for you when
developing your HTML5 web application. Displaying the
message activity enables you to easily monitor and debug
the WebSocket communication between the browser and
the server. For a production web application, a WebSocket
implementation should be entirely transparent to the end
user.

The purpose of WebSockets is to be a faster and more efficient
version of Ajax. Therefore, any website that uses Ajax today
should be able to transition to WebSockets, theoretically. This
section helps you understand that transition process.

Display WebSocket Messages

2

7
5

8
6

4

3

9

309

CHAPTER

17Communicating with WebSockets

After your WebSocket client has all its components in
place, you will be ready to connect to a WebSocket
server, as described in the next section, “Interact with a
WebSocket Service,” and monitor the communication
activity log.
Going back to this example briefly, in the
logMessage() function in step 12, log messages are
appended to the scrollable $(‘output#log’) element,
but an odd technique is used that should be explained.
Because the log file is always being appended to, it

makes sense to always see the end of the scrollable log
area. jQuery ensures that the visible scrolling area is
always positioned at the bottom of the element, but the
way this works is a bit of a jQuery hack. By calling
$(selector).scrollTop(9e9), you are instructing
the browser to scroll to the 9,000,000,000th pixel from
the top of the selector element, but because that
element position will never be found, effectively this
means, “scroll to the bottom.”

EXTRA

%	 Type logMessage(‘Disconnected’); in
onClose().

^	 Type event as the parameter for
onMessage() and onError().

&	 Type logMessage(‘Received: ‘ +
event.data); in onMessage().

*	 Type logMessage(‘Error: ‘ + event.
data); in the onError() function.

(Save your HTML or JavaScript file.

	 Your WebSocket client can display its
activity log directly within the web
page.

0	 Go to the <script> tag, or a
JavaScript file sourced with this
HTML file.

!	 Type function logMessage(message)
{ }.

@	 Type $(‘output#log’).append
(‘’+message).scrollTop(9e9);.

#	 Type logMessage(‘Sent: ‘ +
message); in $(‘button#send).
click().

$	 Type logMessage(‘Connected’); into
the onOpen() function.

13

12

11

14

17

15

18

16

16

310

1	 Open a WebSocket client HTML file in a
supported WebSocket browser, such as
Google Chrome.

	 The input and button elements all appear.

Note: If you configured a manual Connect
button, it should be the only button that is not
disabled when the page first loads.

2	 Type a WebSocket service URL into the
input field, if you created one.

3	 Click the Connect button, if you created
one.

Note: If you do not have a wsURL input and
a Connect button, you will need to modify the
new WebSocket(wsURL) JavaScript code,
save, and reload the page.

	 The WebSocket client connects to the
WebSocket service.

A	A log message indicating that the
WebSocket is connected appears.

B	Other log messages start streaming in.

4	 Type a message into the input field.

5	 Click Send.

Interact with a WebSocket Service

Although it is outside the scope of this book to describe
how to create a WebSocket service online, there are

several examples available online that have open ports to
which you can connect. The companion website for this
book has a few demonstration WebSocket services active to
which you can connect:

•	 ws://html5.array.org:3000/relay — Relay WebSocket
Service — This service relays any incoming messages
back to all other clients currently connected.

•	 ws://html5.array.org:3000/time — Time WebSocket
Service — This service broadcasts the current server time
every second while connected. Any messages sent are
echoed back in uppercase.

•	 ws://html5.array.org:3000/news — News Ticker
WebSocket Service — This service accepts an incoming
category message and then streams the news.google.com
category’s RSS feedback.

All three of these services post a message to the client as
soon as it connects. This message introduces the service
and then either starts sending data, as is the case in
the Time WebSocket Service, or provides some simple
plain-text instructions as to how to proceed. At a minimum,
your WebSocket client program needs to be listening
to the message event so that it can receive the initial
server message.

These WebSocket services were written using Mojolicious,
a Perl WebSocket framework, specifically for this chapter
of the book. The source code is available at http://html5.
array.org/demos/websocket/services.html.

After you have all the pieces of the puzzle in place, you can
begin using your JavaScript WebSocket client.

Interact with a WebSocket Service

1

2

3

4 5

B

A

ws://html5.array.org:3000/relay
ws://html5.array.org:3000/time
ws://html5.array.org:3000/news
http://html5.array.org/demos/websocket/services.html
http://html5.array.org/demos/websocket/services.html

311

CHAPTER

17Communicating with WebSockets

	 The connection between the WebSocket
client and server is broken.

E	A log message indicating that the
WebSocket is disconnected appears.

	 The input field and the Send and
Disconnect buttons become disabled.

Note: Navigating away from the web page
will also disconnect the WebSocket
connection; the onClose() function will
fire, and a log message will be written to a
page that will imminently disappear.

	 The WebSocket client sends the
message to the server.

C	The outgoing message is displayed in
the output log element.

D	The incoming response message is
displayed.

	 Additional incoming messages continue
after the initial outgoing message.

6	 Click the Disconnect button, if you
created one.

6

DC

E

If the initialization fails, the user may be running a web browser that has support, but that support may be disabled
by default. Such is the case with Firefox 5 and Opera 11.50. Later versions of these browsers may also be affected.
In Firefox, you can activate WebSockets by going to the internal URL about:config, filter for websocket preferences,
and enable the network.websocket.enabled and network.websocket.override-security-block preferences:

In Opera, go to the internal URL opera:config, search for websocket, and enable the Enable WebSockets check box.
Naturally, these hidden configuration options are designed for developers to investigate WebSockets; they are not
intended for end users to actually use them quite yet. You could display instructions to users of these browsers; just
be sure that you detect the browsers and respective versions correctly! Do not promote these instructions for users
running an older Firefox or Opera release or Internet Explorer.

EXTRA

312

Using the Google Chrome web browser, it is possible to display a subtle notification pop-up window on the user’s
desktop from your web application. This will enable you to get the user’s attention if your web application is running

in the background and the user is focused on another program.

Currently, this Chrome-specific feature is not a part of any HTML5 specification. Its documentation is available at The
Chromium Projects page at www.chromium.org/developers/design-documents/desktop-notifications/api-specification/, but
it is subject to change the closer it gets to being accepted by the W3C.

There is a version of this API available at the W3C as an editor’s draft, meaning that it has not yet been officially submitted
to the W3C and is a work-in-progress. Written by the Google engineer who originally designed the Desktop Notifications
API, the specification is titled Web Notifications, and it is available at the W3C Public CVS Repository page at http://dev.
w3.org/2006/webapi/WebNotifications/publish/.

This chapter describes the Desktop Notifications API as it is currently available in Chrome but not the Web Notifications API.

Introducing Desktop Notifications for Chrome

Web Browser Support

To detect if the user’s web browser supports the Desktop Notifications API, simply check if the object window.
webkitNotifications exists in the DOM:

if (‘webkitNotifications’ in window) {

 // Desktop Notification API is available

}

else {

 // Desktop Notification API is not available,

 // attempt an alternative method.

}

For alternative notification implementations, see the subsection “Alternative Implementations,” later in this section.

If permissions have been granted, the second step is to create
an instance of the Notification interface and establish the
contents of the pop-up notification message.

The third and final step is to actually launch the Notification
instance on the user’s desktop and to handle any callback
function events. These events launch when the notification is
displayed, clicked, and closed and if there is an error.

Displaying desktop notifications is a three-step process. First,
you must use the NotificationCenter interface to check if the
user has made a decision to grant display permissions to your
website. If no decision has been made, the site must request
permission.

If permission has been denied, the API will not continue.
Only if the user removes the deny decision in the browser
preferences will this check-and-request process restart.

Notification Workflow

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.chromium.org/developers/design-documents/desktop-notifications/api-specification/
http://dev.w3.org/2006/webapi/WebNotifications/publish/
http://dev.w3.org/2006/webapi/WebNotifications/publish/

313

Displaying Desktop Notifications

CHAPTER

18

application. The request method triggers an information bar
(infobar) that slides down just below the bookmarks bar.

The user must click Allow in the infobar before the remainder of
the API may be used. From this point on, checkPermission()
will return only 0 or 2 until the user removes the permission
setting.

Continue creating the actual notification instance only if
checkPermission() returns 0.

message = window.webkitNotifications.
createNotification(icon, title, content)

The createNotification() method enables you to build a
simple notification pop-up that has an icon image URL, a
title text string, and a content text string. No HTML code
is allowed any parameter.

message = window.webkitNotifications.
createHTMLNotification(URL)

The createHTMLNotification() method is more flexible;
with it, you can reference an internal or external URL and have
it appear in the desktop notification pop-up window.

Both functions return an instance of the Notification interface
that is used to launch the pop-up itself.

The draft Desktop Notifications API is not yet standard, which
is why its parent object is window.webkitNotifications.
After it is accepted as an HTML5 specification, it will likely
migrate to window.notifications, but its current name
and interface will likely be kept active for legacy reasons.

NotificationCenter Interface
The NotificationCenter interface contains four methods used to
prepare for displaying a notification message to the user:

window.webkitNotifications.checkPermission()

The checkPermission() method verifies if the user has
already granted permission to the website to launch desktop
notification pop-ups. If it returns 0 (zero), permission is granted,
so the next step is to call either createNotification() or
createHTMLNotification(). If it returns 1, call
requestPermission() to request permissions from the user.
Any other API request will be ignored. If it returns 2, permission
has been denied. All other API requests will be ignored.

window.webkitNotifications.requestPermission()

The requestPermission() method can be executed only in
the context of a user event, such as the user clicking a link. For
this reason, the user must consciously be interacting with the
website before the request notification even appears. This
method is the only one with this restriction; all others in the
API can be called automatically by the website as each
requirement for a desktop notification occurs in your web

Desktop Notifications API

continued ➤

314

Notification Interface
An instance of the Notification interface is what you use to launch the actual notification message window when it is required
and to define callback functions that will execute as specific notification window events occur.

message.show()

The show() method launches the actual notification instance on the user’s desktop. If there are too many notifications currently
open, this will queue it to launch when space is available.

The actual width and height of the pop-up window is not customizable. The default is 300 pixels wide and between 45 and 160 pixels
tall. The height expands depending on how much text needs to be displayed. Usually, only three notification windows can appear at
once on Windows and Mac OS X desktops and four on Linux desktops; the actual number depends on desktop screen size.

message.cancel()

The cancel() method closes the pop-up message if it is visible, removes it from the show() queue if it is not yet displayed,
calls the onclose event, and destroys its Notification instance.

message.ondisplay = function() { ... }

The ondisplay property stores the event listener function executed when the display is actually launched on the user’s desktop.
This may or may not happen immediately after show() is called, depending on how many notifications are currently active and
cannot be immediately displayed.

message.onclick = function() { ... }

The onclick property stores the event listener function executed when the user clicks the display notification pop-up.

message.onclose = function() { ... }

The onclose property stores the event listener function executed when the user closes the display notification pop-up or when
cancel() is called.

message.onerror = function() { ... }

The onerror property stores the event listener function executed if the display notification pop-up fails to launch after show()
is called.

Introducing Desktop Notifications for Chrome (continued)

Desktop Notifications API (continued)

315

Displaying Desktop Notifications

CHAPTER

18

Yip
Yip is a Firefox extension that allows you to receive
notifications that are triggered by third-party desktop APIs,
such as Growl on Mac OS X, Snarl on Windows, and libnotify on
Linux. Therefore, coding your web app for Yip allows anyone
with its Firefox extension to launch desktop notifications. You
can learn more at http://abcdefu.wordpress.com/2009/06/09/
introducing-yip-an-unified-notification-system-for-the-web/.

Firefox Mobile
Firefox has recently implemented its own simpler Desktop
Notifications API based on Google’s specification, only
available on the Android version of Firefox Mobile. This feature
is documented at the Mozilla Developer Network page at
https://developer.mozilla.org/en/DOM/Displaying_notifications.

Alternative Implementations

There are some alternative implementations of the desktop
notifications feature for non-Chrome browsers; however, the
APIs they follow do not conform to what is described in this
chapter.

Google Gears
The Google Gears plug-in has proposed similar functionality in
its JavaScript API but appears to have stagnated. This is
unfortunate as it could have filled a good niche of pre-HTML5
web browsers including Internet Explorer 6 to 8, Firefox 1.5 to
3.6, and other mobile browsers. There is a design document
available at the Google Code page at http://code.google.
com/p/gears/wiki/NotificationAPI; however, it looks like
Google has abandoned this route in favor of its native Desktop
Notifications API.

The Notification Constructor
The previous NotificationCenter and Notification interfaces will
be merged into the new Web Notifications API. As a result, the
methods used to generate and display a notification window
will be simplified:

var notification = new Notification(icon, title,
content);

notification.show();

In this new API, the display event was renamed to show,
and the click, close, and error events and the cancel()
method are all maintained. If you want to review the latest
Notifications API specification, see the W3C working draft page
at www.w3.org/TR/notifications/.

Requesting Permission
The permission request component of the current
NotificationCenter interface has been moved into a completely
new specification, simply called the Feature Permissions API.
It is anticipated that other HTML5 features may join desktop
notifications here, such as the Geolocation and FileSystem APIs.

As the API is still in flux, I cannot give a code example here.
However, if you are interested in the plan for this new API,
an editor’s draft is available at the W3C page http://dev.w3.
org/2009/dap/perms/FeaturePermissions.html.

The Future of the Desktop Notifications API

Because the Notifications API is in a state of heavy development, the interfaces and methods described in this chapter may not
be the same as what you will find in a future web browser version. As of August 2011, if you were to browse the W3C’s
specifications regarding the Notifications API, you will find that it discusses an interface that is very different.

Essentially, the latest development version of Chrome as of when this book was written, Chrome 14, contains an experimental
version of the Desktop Notifications API, as it is described in this chapter, and not the version described by the Notification
constructor. Therefore, feel free to try it out to see if it works for your web application. If it does, pay special attention to future
versions of your browser to ensure that the code you write today works tomorrow. Just remember that with any HTML5
experimental API, there is no guarantee.

http://abcdefu.wordpress.com/2009/06/09/introducing-yip-an-unified-notification-system-for-the-web/
http://abcdefu.wordpress.com/2009/06/09/introducing-yip-an-unified-notification-system-for-the-web/
https://developer.mozilla.org/en/DOM/Displaying_notifications
http://code.google.com/p/gears/wiki/NotificationAPI
http://code.google.com/p/gears/wiki/NotificationAPI
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/notifications/
http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://dev.w3.org/2009/dap/perms/FeaturePermissions.html

316

1	 Open an HTML5 or JavaScript file that
uses the jQuery library.

2	 Type var notifyAPI = window.
webkitNotifications; to access the API
with a shorter variable name.

3	 Type if (typeof notifyAPI == ‘object’
&& notifyAPI.checkPermission() == 1
) { } else { }.

4	 Type <div id=’configure-notify’><span
class=’fake-link’>Click here to
configure desktop notification
messages.</div>.

Note: Create a fake-link class to make this
 tag look like a normal hyperlink.

5	 Type $(‘div#configure-notify span’).
click(function() { notifyAPI.
requestPermission(); }); to request
permissions when the span is clicked.

6	 Type $(‘div#configure-notify’).
remove(); to remove the request
permission message when access is
granted or denied.

7	 Save your file.

Request User Permission to Display Desktop Notifications

Before you can display a Desktop Notifications API
pop-up window in Chrome, you must request permission

from the user using an infobar. An infobar is a subtle slide-
down prompt that appears underneath the URL bar and asks
the user a question. The user must grant permission for
your web app to use the API; otherwise, all other desktop
notification calls will be ignored.

This ensures that the user actually wants the desktop
notification feature active, avoiding the problems
associated with rampant abuse of unwanted pop-up
windows in the late 1990s and early 2000s.

Although you can call the checkPermission() method at
any time, you can call requestPermission() only on a
click event performed by the user. You can use jQuery to
easily leverage such an event:

var notifyAPI = window.webkitNotifications;
if (typeof notifyAPI == ‘object’ &&
 notifyAPI.checkPermission() == 1) {
 $(‘div#configure-notify span’).
click(function(){

 notifyAPI.requestPermission();
 });
} else {
 $(‘div#configure-notify’).remove();
}

The checkPermission() call returns 1 if the user has
not made a decision about access, 0 if permission is
granted, and 2 if permission is denied. To provide a good
user interface, remove the configure-notify object
if the Desktop Notifications API is not supported or if
checkPermission() returns anything but 1.

Request User Permission to Display
Desktop Notifications

3

2

5

6

4

317

CHAPTER

18Displaying Desktop Notifications

8	 Open your HTML file in Google
Chrome.

9	 Click the link that will pull up your
desktop notification permission
request.

A	An infobar appears and asks if you
want to allow or deny desktop
notifications.

Note: If the user simply closes the infobar,
checkPermission() will continue to
return 1 because no decision has been
made.

0	 Click Allow.

Note: Users can revoke permissions in
Chrome’s preferences: Click ➔
Preferences ➔ Under the Hood ➔ Privacy ➔
Content Settings ➔ Notification ➔ Manage
Exceptions.

!	 Reload the page.

B	In this example, the configure request
is gone.

Note: Reloading is required because of how
the sample code flows. Unfortunately, in
this version of the Desktop Notifications
API, there is no event that fires after the
user clicks Allow.

8

9

10
11

A

B

You can easily show the user what the current setting is
by changing your logic slightly. In the sample code, you
would split the typeof notifyAPI and notifyAPI.
checkPermission() tests, so if the former is true and
the latter is not equal to 1, you can override the <div
id=’configure-notify’> block to display the status;
otherwise, you can remove the link as the API is
unavailable.

Example
if (typeof notifyAPI == ‘object’) {

 var perm = notifyAPI.checkPermission();

 if (perm == 1) {

 // jQuery request permission click event

 } else {

 $(‘div#configure-notify’).html(

 “Desktop notifications are currently “ +

 (perm == 2 ? “disabled” : “enabled”) +
“.”);

 }

} else {

 $(‘div#configure-notify’).remove();

}

APPLY IT

318

1	 Open an HTML5 or JavaScript file that
uses the jQuery library.

2	 Identify an Ajax or other asynchronous
event that you want to trigger a
notification.

Note: In this example, a jQuery click()
method is used as a stand-in for an incoming
Ajax event callback. Because clicking this
span element will pop up notifications, use
this for testing purposes only.

3	 Type var notifyAPI = window.
webkitNotifications;.

4	 Type if (typeof notifyAPI == ‘object’
&& notifyAPI.checkPermission() == 0
) { ... } to check if permission is
granted.

5	 Type var notifyMessage = notifyAPI.
createNotification(to create an
instance of the Notification interface.

6	 Insert the URL for an icon image.

7	 Insert the desktop notification title.

8	 Insert the desktop notification content.

9	 Type);.

Launch a Desktop Notification Message

After permission has been granted, you can trigger
a desktop notification pop-up message at any time

in your web application. Naturally, the whole point in
displaying a desktop notification is to get the user’s
attention when your web application is running in the
background. This implies some sort of Ajax-like activity that
triggers the launch. The Gmail service is a good example
of this implementation. Simply leave Gmail running in the
background and as new mail arrives, a desktop notification
message makes the announcement.

var notifyAPI = window.webkitNotifications;
if (typeof notifyAPI == ‘object’ &&
 notifyAPI.checkPermission() == 0) {
 var notifyMessage = notifyAPI.
createNotification(iconURL, title, content);

 notifyMessage.show();
}

Because createNotification() can be called at any
time, such as during an Ajax callback, it is a good idea
to repeat the object type discovery test and verify that
checkPermission() is 0, indicating the user has granted
you permission to display notifications. It is not possible to
repeat the requestPermission() method if it returns 1.

The object returned by the createNotification()
method is a member of the Notification interface. With it,
you can call the show() method to actually pop up the
notification message.

Notification windows can be closed when you run the
cancel() method or when the user clicks the Close button
on the notification itself.

Launch a Desktop Notification Message

2

3
4

7 8
5 6

9

319

CHAPTER

18Displaying Desktop Notifications

@	 Open your HTML file in Google Chrome.

#	 Trigger your desktop notification
event.

A	A desktop notification window
appears, separate from the calling
browser window.

0	 Type notifyMessage.show(); to launch
the desktop notification message.

!	 Save your file.

10

12

13 A

As mentioned earlier, usually only three notification windows can appear at a time on Windows and Mac OS X
desktops and four on Linux desktops, depending on the user’s desktop screen size. If there are additional Notification
instances created and launched, they will be queued to open when you run show(). When the user closes an existing
notification message while over this limit, the oldest message in the queue will be retrieved and displayed.
The size of the display area for a single line of title and content is 300 pixels wide, 45 pixels tall. If additional
lines are required, the maximum height grows to 160 pixels tall. After that, a scroll bar appears in the desktop
notification window itself.
Depending on the operating system, there are some subtle differences in the notification window itself. The
following shows the same notification window code running on Linux and Mac OS X desktops.

â•…â•…â•…

EXTRA

320

5	 Type notifyMessage.show(); to
launch the custom desktop
notification message.

6	 Save your file.

1	 Perform steps 1 to 4 from the
preceding section, “Launch a
Desktop Notification Message.”

2	 Type var notifyMessage =
notifyAPI.createHTML
Notification(.

3	 Insert the URL to the
notification web page.

Note: In this example, the URL is a
relative link to the same subdirectory
as this page because of an earlier
<link href=’../../’> in the
<head> block.

4	 Type);.

Customize the Desktop Notification UI

If the basic notification window structure is too plain
for you, you can customize it by launching an HTML

notification window with a custom URL. Simply save your
notification message into a separate web page, and it will
be displayed as the notification window content.

You use the same check permissions and display
procedures to create your custom desktop notification
UI as described earlier in this chapter, except
that you replace createNotification() with
createHTMLNotification() and specify the URL as
the only argument:

var notifyAPI = window.webkitNotifications;
if (typeof notifyAPI == ‘object’ &&
 notifyAPI.checkPermission() == 0) {
 var notifyMessage = notifyAPI.
createHTMLNotification(URL);

 notifyMessage.show();
}

Do not use any hyperlinks in your custom notification web
page! If you use any, Chrome will render the new page
within the notification window itself. Although you may
think that the target=’_parent’ global attribute would
correct this problem, Chrome does not identify the original
web app browser window as the _parent window, which is
a bug as of Chrome 14. At best, you could use an arbitrary
target name to open a new browser tab, but the original web
app browser page cannot be redirected to the link reference.

Instead, use the onclick event callback described in the
following section, “Listen for Desktop Notification Events,”
and refrain from using any hyperlinks in your custom
desktop notification UI.

Customize the Desktop Notification UI

32

1

4

5

321

CHAPTER

18Displaying Desktop Notifications

0	 Open your HTML file in Google
Chrome.

!	 Trigger your desktop notification
event.

A	A custom desktop notification
window appears, separate from
the calling browser window.

7	 Create a new HTML5 file.

8	 Define your notification
message.

9	 Save the HTML file so that it is
accessible from the URL used in
step 3.

Note: You can create a CGI script and
call it in step 3 to create a
dynamically generated custom error
message. Make sure that the URL you
specify includes any query-string
parameters required.

8

10

11 A

Regardless of whether a basic or custom desktop
notification window is on-screen, the user has the
opportunity to configure where the window appears on
the desktop and revoke access just in case the web
application is abusing its desktop-notification privileges.
The display area can be configured by clicking the
tiny icon in the top right of the corner of the
notification pop-up itself and selecting Choose Position.

This setting will be remembered for future desktop
notification messages.

EXTRA

322

1	 Open an HTML5 or JavaScript file that
triggers desktop notifications.

2	 Type notifyMessage.onclick = function()
{ ... }; to define code that runs when the
message is clicked.

3	 Type notifyMessage.onclose =
function() { ... }; to define code that
runs when the message is closed.

Note: In this example, jQuery’s append()
method is used to log in the browser when an
event occurs.

Note: If you receive an onclose event without
an onclick event, assume that the user has
ignored the message.

A	Optionally, type notifyMessage.ondisplay
= function() { … }; to define code that
runs when the message is displayed.

Note: The order here is irrelevant, but it looks
nicer in chronological order: display, click,
close.

B	Optionally, type notifyMessage.onerror =
function() { … }; to define code that
runs if the message has a problem.

4	 Save your file.

Listen for Desktop Notification Events

You can define custom JavaScript callback functions
at specific events to be executed as the Desktop

Notifications API interacts with the user. There are four
events in the Notification interface for which you can listen:

notifyMessage.ondisplay = function() { ... };
notifyMessage.onclick = function() { ... };
notifyMessage.onclose = function() { ... };
notifyMessage.onerror = function() { ... };

The ondisplay event is called whenever the notification
message is actually displayed on the desktop after calling
show(). This will allow you to know if a delay occurred
caused by too many messages on-screen.

The onclick event is called whenever the user clicks the
message itself. It is a good idea to call notifyMessage.

cancel() to close the notification window after receiving
an onclick event; this allows the user to indicate to your
web application that he or she has read the message.

The onclose event is called whenever the message is
closed, either by the user clicking the Close button or by
calling notifyMessage.cancel().

The onerror event is called if there is a problem in
launching the event to the user’s desktop. You may want
to display an error message in the main web page so that
when the user returns to your web application, he or she
will be notified that a notification attempt was made and
has failed.

Listen for Desktop Notification Events

A

B

3

2

323

CHAPTER

18Displaying Desktop Notifications

D	The onclick event fires.

Note: In this example,
notifyMessage.onclick calls
notifyMessage.cancel().

E	The onclose event fires.

Note: If the user clicks , only the
onclose event will fire.

5	 Open your HTML file in Google
Chrome.

6	 Trigger your desktop notification
event.

	 A desktop notification window
appears, separate from the
calling browser window.

C	The ondisplay event fires.

7	 Click the notification message.

5

7

6 C

ED

Technically, all of the event functions in this example are optional; however, onclick and onclose are strongly
recommended if you want the desktop notification to respond to the user.
It is possible to automatically close a lower-priority notification message by executing notifyMessage.cancel()
after a delay that begins when the notifyMessage.ondisplay event fires. This will automatically hide the pop-up,
without acknowledging that the user has seen or responded to it.

APPLY IT

RESULT

The desktop notification pop-up automatically exits after
five seconds. If a notifyMessage.onclose callback
function is defined, it will also be triggered at this time.

TYPE THIS
notifyMessage.ondisplay = function() {
 setTimeout(function() {
 notifyMessage.cancel()
 }, 5000);
};

➔

If the user closes your web application while a notification window is active, it is impossible for you to respond to
any events, even queued events like this setTimeout() example. The notification window will remain open until the
user closes it, or Chrome itself.

324

This appendix contains much of the information from HTML: The Living Standard, as of August 2011. You can find
the latest version of the HTML specification at the WHATWG page www.whatwg.org/specs/web-apps/current-work/

multipage/.

The following are the different HTML tag categories:

•	 Metadata tags — These describe the configuration elements in how content appears in the browser.

•	 Sectioning tags — These provide the HTML5 semantic page layout and define the context for content to appear.

•	 Grouping tags — These group similar content blocks together, such as paragraphs and lists.

•	 Phrasing tags — These control inline text blocks within a parent sectioning or grouping tag.

•	 Embedding tags — These import external content, such as an image, plug-in, movie, sound, or canvas.

•	 Table tags — These define a tabular structure for content to appear.

•	 Form tags — These provide a way to define input and output fields to communicate with a web server or JavaScript process.

•	 Interactive tags — These provide interactive features that the user manipulates on the web page.

The following is a list of all HTML tags identified by category:

HTML Tags Category Description
<!-- comment --> (none) Text comment ignored by the browser
<!doctype> (none) The HTML document type (DTD)
<a> Interactive, Phrase A hyperlink
<abbr> Group, Phrase An abbreviation
<address> Group, Phrase A physical address
<area> Group, Phrase An image map area
<article> Group, Section An article of content
<aside> Group, Section Text related to the main content
<audio> Embed, Group, Interactive (controls

attribute), Phrase
A playable sound file

 Phrase Keywords requiring attention
<base> Metadata The default URL context for relative links

<bdi>, <bdo> Phrase Text with bidirectional isolation and override
<blockquote> Group, Section Quoted text
<body> Section All web page content

 Phrase A forced new line in the same group
<button> Form, Interactive, Phrase A clickable button
<canvas> Embed, Group, Phrase A custom drawing object
<caption> Table A caption for a table
<cite> Phrase A referenced title of a work
<code> Phrase An example computer code or command

<col>, <colgroup> Table Group of one or more columns
<command> Metadata, Phrase A <menu> command
<datalist> Group, Phrase A list of suggestions for a form input

<dd>, <dl>, <dt> Group A series of terms with descriptions

HTML5 Reference

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/

325

HTML5 Reference

APPENDIX

A
HTML Tags Category Description
, <ins> Group, Interactive, Phrase Content deleted or inserted

<details>,
<summary>

Group, Interactive, Section A shortened summary of a larger body

<dfn> Group, Phrase A new term definition
<div> Group A generic division of content
 Group, Phrase Additional emphasis
<embed> Embed, Group, Interactive, Phrase Embeddable content
<fieldset> Form, Group, Section A collection of similar fields

<figure>,
<figcaption>

Group, Section A supporting image, table, chart, or code block

<footer> Group, Section The bottom portion of a section
<form> Form, Group A collection of input fields to submit

<h1>, <h2> . . . <h6> Group, Heading A multilevel text heading
<head> (none) A container for all other metadata for the web page, such

as the title
<header> Group, Section The leading portion of a section
<hgroup> Group, Heading A series of headings
<hr> Group A line break between paragraphs
<html> (none) The root of the web page
<i> Group, Phrase Text with an alternative voice or mood
<iframe> Embed, Group, Interactive, Phrase A window that nests external web pages
 Embed, Group, Interactive (usemap

attribute), Phrase
An image

<input> Form, Group, Interactive (type
Â�attribute, not hidden), Phrase

An input element

<kbd> Phrase A keyboard command
<keygen> Form, Interactive, Phrase A private/public key generator
<label> Form, Group, Interactive, Phrase A common name for a form input
<legend> Phrase Preamble for a <fieldset> tag
 Group A list item
<link> Group (itemprop attribute), Metadata,

Phrase (itemprop attribute)
Imports externally linked content

<map> Group, Phrase An image map
<mark> Group, Phrase Highlight text
<math> Embed, Group, Phrase A group of MathML elements
<menu> Group, Interactive (type attribute is

toolbar)
A horizontal or vertical menu list

<meta> Metadata Supplementary website configuration
<meter> Group, Form, Phrase A static progress bar

continued ➤

326

HTML Tags Category Description
<nav> Group, Section A group of navigational links
<noscript> Group, Metadata, Phrase Text for when JavaScript is unavailable
<object> Embed, Group, Form, Interactive

(usemap), Phrase
An embeddable object

, Group An ordered and unordered list
<optgroup> Form, Interactive A group of similar <option> types
<option> Form, Interactive An option in a <select> list
<output> Group, Form, Phrase Display program output
<p> Group A paragraph of text
<param> (none) A parameter for <object>
<pre> Group Preformatted text
<progress> Form, Group, Phrase A dynamic progress bar
<q> Phrase A quote from another source

<ruby>, <rp>, <rt> Group, Phrase Display literal and phrasing content for other languages
<s> Phrase Content that is no longer accurate or relevant
<samp> Phrase The sample output from a <code> example
<script> Metadata JavaScript code
<section> Section A section of content
<select> Form, Group, Interactive, Phrase A selectable list of <option>s for form input
<small> Phrase Secondary text, like fine print
<source> Embed Alternative sound or movie source files
 Phrase A generic span of text
 Phrase Text with additional importance
<style> Metadata CSS code

<sub>, <sup> Phrase Subscript and superscript text
<svg> Embed, Group, Phrase SVG code
<table> Group, Table A table
<tbody> Table The table’s body of content

<td>, <th>, <tr> Table, Section A table cell, header cell, and row
<textarea> Form, Group, Interactive, Phrase A multilined text form input

<thead>, <tfoot> Table The table’s header and footer
<time> Phrase A time or date
<title> Metadata The web page title
<track> Embed A track of audio
<var> Phrase A variable for equations
<video> Embed, Flow, Interactive (controls

attribute), Phrase
A playable movie file

<wbr> Phrase A word break opportunity

HTML5 Reference (continued)

327

APPENDIX

AHTML5 Reference

CSS Attributes

The CSS global attributes allow you to locate specific HTML objects in CSS selectors and stylize your website according to your
design and layout preferences.

Attribute Description
class Assigns a CSS class name directly to an element.
id Assigns a single identifier to an element.
style Assigns arbitrary CSS declarations to an element.

Actually, id is not strictly a CSS attribute, but it is most often used as one. Its main purpose is to easily identify HTML objects in
the JavaScript DOM; however, if you use jQuery, you can easily use any CSS-style selector.

To stylize class and id elements, a CSS selector must be constructed and one or more CSS rules used to declare a CSS property
and specific value. See Chapter 4, “Styling with CSS3,” for more information.

Every element in HTML supports a group of global attributes. These enable you to configure elements’ styling, user
interaction, writing system, language, and pragmatic data.

The HTML5 specification says browsers should allow global attributes to apply to nonstandard HTML elements. This provides
a vital level of forward compatibility: If an HTML5 web browser encounters a post-HTML5 web page, at the very least the
newly defined tags can still be stylized and controlled in the JavaScript DOM.

Note that these global attributes do not apply to metadata tags, described in the next section, “HTML Metadata Tags,” but
they do implicitly apply to all other HTML tags described in this appendix.

The following are all HTML global attributes grouped by their class, current as of the WHATWG HTML specification as of
August 2011. For an updated list, see the WHATWG page at www.whatwg.org/specs/web-apps/current-work/multipage/
elements.html#global-attributes.

HTML Global Attributes

continued ➤

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/elements.html%23global-attributes
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/elements.html%23global-attributes

328

Text and Language Attributes

The text and language global attributes provide subtle hints to the web browser about the language the web page text uses and
allows for brief descriptions assigned to elements as required.

Attribute Description
dir Configures the direction of text given the language — rtl is right to left of an element block; ltr is

left to right and the default.
lang Identifies an element block as written in a specific language.
title Assigns a simple text description to an element.

The lang attribute is useful if you need to specify multiple languages in a single web page, using the language’s two-character
name. If an entire web page is written in one specific language, declare the language in the metadata tag <meta http-
equiv=’content-language’ content=’lang’> or use the lang attribute directly very early on the main HTML tag:
<html lang=’lang’>. The implied default is lang=’en’.

The dir attribute is useful only for languages that flow right to left, such as Hebrew or Arabic. If the entire web page is written
in either language, use it alongside lang, as in <html lang=’he’ dir=’rtl’>. Otherwise, if the writing direction changes
midpage, you can assign it to individual <article> or <p> tags as needed. Note that dir=’ltr’ is the implied default.

The title attribute appears as a subtle pop-up on any standalone element, or element block and its children, that appears when
the user hovers the mouse cursor over it.

User Interaction Attributes

The user interaction global attributes allow you to configure an element to interact with the user in new and interesting ways
without any — or in the case of drag and drop, with very little — supporting JavaScript.

Attribute Description
accesskey Creates a keyboard shortcut to a specific element.
contenteditable A Boolean to identify text in an element block that can be edited by the user.
contextmenu Allows for configuration of a drop-down <menu id=’name’> tag to appear when an element with

contextmenu=’name’ is clicked.
draggable Specifies whether an element can be clicked and dragged by the user. Possible values are true,

false, and auto.
dropzone Specifies an element that accepts a draggable element to be dropped and what Â�happens. Possible

values are copy, move, link.
hidden A Boolean to hide an entire element or an element block and all its children. Equivalent to the CSS

declaration display: hidden.
spellcheck A Boolean to identify text in an element block to be checked for spelling errors.
tabindex Allows for a specific navigation focus order when pressing Tab.

You can read more information about HTML5 user interaction at the WHATWG page at www.whatwg.org/specs/web-apps/current-
work/multipage/editing.html.

For more information on drag and drop, see Chapter 12, “Using Drag and Drop in HTML5.”

HTML Global Attributes (continued)

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/editing.html
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/editing.html

329

HTML5 Reference

APPENDIX

A
Microdata

The HTML5 microdata specification allows you to label content to describe the specific type of information, using a standard
format. The idea is similar to a lightweight directory access protocol (LDAP) database. The microdata provides the database
schema, and the HTML code provides the database values. The purpose is to make human-readable HTML easier to parse by
automated programs and to identify facts and data.

HTML5 web browsers themselves may not have microdata capabilities, but they are not the target platform. Microdata is useful for
companies such as Google to parse websites for vital information, providing better search optimization.

Attribute Description
itemid Creates a unique identifier of the item in the DOM.
itemprop A child element’s item property name that is defined in the itemtype URL.
itemref An element not a descendent of itemscope can be assigned an itemtype via itemid.
itemscope A Boolean that creates a microdata item and indicates that a child element’s itemprop attribute can

be referenced back to this parent.
itemtype A URL to a vocabulary that describes the item and its properties, assigned to the parent with the

itemscope attribute. Prebuilt common microdata specs, such as person, product, and organization,
are available at http://data-vocabulary.org.

Microdata is defined by the WHATWG specification document located at the WHATWG page at www.whatwg.org/specs/web-apps/
current-work/multipage/links.html#microdata.

For more information on how to use microdata, also known as rich snippets, see Google’s Webmaster Tools Help page at www.
google.com/support/webmasters/bin/topic.py?topic=21997.

http://data-vocabulary.org
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/links.html%23microdata
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.whatwg.org/specs/web-apps/current-work/multipage/links.html%23microdata
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.google.com/support/webmasters/bin/topic.py?topic=21997
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.google.com/support/webmasters/bin/topic.py?topic=21997

330

<!-- ... -->

The <!-- ... --> tag is a special pseudo-tag that allows you to create comments in your web page. It can technically appear
nearly anywhere in the body of your HTML source, as long as it is after the DTD. The comment tag can wrap around nearly
anything, such as text or even other HTML tags, and will be ignored by all web browser rendering engines:

<!doctype html>

<!--

 This web page is Copyright (c)1999

 Most rights reserved

-->

<html>

 ...

</html>

<!doctype>

The <!doctype> tag is a special preamble tag to your HTML web page. Called a document-type definition (DTD), it instructs the
web browser which standards-mode rendering method it should use to display your web page. Prior to HTML5, the DTD could get
very long because it was also required to specify the public identifier and system identifier for the version of HTML the website
was written in. For example, if you wanted the Transitional DTD from HTML 4.01, you were expected to introduce a web page with
the following:

<!doctype html public “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

<html>

 ...

</html>

In HTML5, this was simplified greatly. You need to specify only a very short DTD prior to all other HTML tags:

<!doctype html>

<html>

 ...

</html>

The DTD must appear exactly once, as the first line of your web page, immediately followed by the <html> tag group.

The HTML metadata tags describe the configuration specific to your website and not specific content that appears in
the browser. In other words, they describe how content should appear and how your website should be portrayed to

automated programs in the outside world, but not the actual content.

Most HTML metadata tags should come before the <body> tag group; however, there are a few exceptions: The comment
tag, <script> tag, <link> tag, and <style> tag can appear anywhere in your website.

Note that these HTML metadata tags do not accept any of the global attributes defined earlier.

HTML Metadata Tags

331

HTML5 Reference

APPENDIX

A
<html> . . . </html>

The <html> tag group represents your entire HTML web page:

<!doctype html>

<html manifest=’filename’>

 ...

</html>

It accepts one optional attribute, manifest, that allows you to define which resources should be cached locally by the user’s
web browser. For more information on how the manifest and ApplicationCache works, see Chapter 14, “Providing Offline Access to
Web Applications.”

<head> . . . </head>

The <head> tag group holds all other metadata for the web page, such as the <title>, <meta>, <script>, and <style>
tags. No actual formatting or content should appear in the <head> block:

<!doctype html>

<html>

 <head>

 ...

 </head>

This block is followed by the <body> block, which defines your web page content.

<title> . . . </title>

The <title> tag group defines the title of your web page. It must appear within the <head> block:

<head>

 <title>Title of your web page</title>

 ...

</head>

This value is typically used when users bookmark your website and is displayed in the operating system user interface next to the
browser’s icon.

continued ➤

332

<base>

The optional <base> tag defines the default base URL and browsing context for the entire web page. It may appear only once
within the <head> block:

<head>

 ...

 <base href=’url’ target=’target’>

 ...

</head>

The href attribute specifies the web page base URL. This is useful for resolving relative URLs specified by the web page within
hyperlinks, images, or any other embeddable content.

The target attribute identifies the default browsing context for the entire page. This context specifies where hyperlinks and
forms open when they are clicked. Possible values are _blank, _self, _parent, _top, or your own custom name. This is most
often used when every link on a web page opens up a new pop-up window or when every link on a popped-up web page opens on
its parent. Remember that individual links and forms can also be assigned the target attribute, but when target is set in
<base>, it is the web page default for all links.

The type attribute indicates the MIME type of the file that will
be loaded by the href URL. For example, if you are loading a
rel=’alternate’ RSS feed, you would set type=
’application/rss+xml’.

The sizes attribute may be used only with rel=’icon’. It
specifies the sizes of the icons available in the href file for
visual media.

The href attribute refers to the external file that will be
loaded into the web page. If you are using
rel=’stylesheet’, then href should link to a CSS file; if
you are using rel=’icon’, then href should link to an ICO
file; and so on.

hreflang identifies the language the href URL uses, if any.
Most often this is formatted as a two-character language
code, such as en, or optionally is followed by a dash and a
two-character capitalized region, such as en-US. If you provide
an externally linked web page in multiple languages, each one
will need its own <link> tag, and the user’s browser will
select which one is most appropriate.

The title attribute refers to the title of the external resource.

<link>

The <link> tag defines any externally linked content, such as
CSS files, that should be imported into your web page. Multiple
link tags may be used, one for each imported file, but all
should appear within the <head> block. It is possible to use
<link> later in your web page outside of <head>, but this is
not a good practice.

<head>

 ...

 <link rel=’linktype’ media=’mediatype’
type=’mimetype’ sizes=’hhxww’ href=’url’
hreflang=’lang’ title=’title’>

 ...

</head>

The rel attribute, if defined, identifies the relationship
between this web page and the external resource by way of
specific link-type keywords, described later in the subsection
“Relationship Link Types.” In other words, this controls the
type of functionality the link definition provides. Multiple
relationships to your page can be defined with multiple
<link> tags, each with a specific rel attribute.

The media attribute specifies which presentation media type
the resource applies to, such as screen, print, or television; a
complete list is described later in the subsection “Media Types.”
If omitted, its value defaults to all, meaning that the link
applies to all media types.

HTML Metadata Tags (continued)

333

HTML5 Reference

APPENDIX

A

<style> . . . </style>

The <style> tag group defines the CSS rules that apply only to the web page. It normally appears only within the <head>
block, but it can be used anywhere in your web page:

<head>

 ...

 <style type=’text/css’>

 /* Define your CSS rules here */

 </style>

 ...

</head>

For additional information on how the CSS rules are structured, see Chapter 4.

Relationship Link Types
The most commonly used link types are as follows:

•	 stylesheet — All primary style sheets that you want to
load should use this rel type.

•	 icon — You can define a website icon through this rel
type. It will appear alongside the site <title> content in
the operating system, web browser, and bookmarks.

•	 alternate — You can specify alternative ways of viewing
your website, such as an RSS feed, or even combine it with
an alternative style sheet to define auxiliary style sheets.
You should use the title attribute as well to provide a
basic description of what the alternative is that you are
loading.

These less-commonly used link types are not as well supported
by most browsers but are still valid:

•	 author — Links to the web page author’s home page.

•	 help — Links to a general help page for the web page.

•	 license — Links to the page’s license or copyright file.

•	 first, last, next, prev, up — Link to pages in a
booklike web page, such as the first page, last page, next
page, previous page, and table of contents, respectively.

•	 pingback — Specifies the address of a pingback server,
often used by blogging systems such as WordPress.

•	 prefetch — Allows you to preload a URL in the browser’s
cache. When the user clicks the URL linked in the web page,
the linked page loads directly from cache.

•	 search — Indicates that the referenced page provides a
search form specifically designed for the website.

•	 sidebar — Defines a URL that is intended to be shown in
a sidebar interface, if available in the web browser.

Media Types
The media attribute must be set to one of the following types:

•	 all — Indicates any media type.

•	 braille — A Braille feedback device.

•	 embossed — A Braille printer.

•	 handheld — A handheld device, such as a mobile phone or
tablet.

•	 print — A printout copy on paper.

•	 projection — A PowerPoint-style presentation slide.

•	 screen — A regular computer screen.

•	 speech — A text-to-speech translation; replaces the
aural media type.

•	 tty — A monospace character device, such as a teletype or
terminal.

•	 tv — A television screen.

You can also create a media query by combining one or more
media types with a basic logic statement. As described in
Chapter 1, “Introducing HTML5,” you can use this to create a
style sheet specifically targeted to smaller handheld devices:

<link rel=’stylesheet’ media=’screen’ href=’base.
css’>

<link rel=’stylesheet’ media=’screen and (max-width:
320px)’ href=’mobile.css’>

This will load base.css for all screen media and mobile.css for
all screen media smaller than 320 pixels wide. If you viewed
this web page on alternative media, such as print, neither CSS
file would be loaded.

You can also use media queries within a CSS file directly.

334

<meta>

The <meta> tag defines any other configuration that your website requires to render properly but cannot be represented by any
of the aforementioned tags. When used, all meta tags must appear within the <head> block, and they may contain a
combination of the attributes name, http-equiv, content, and charset; at a minimum, at least one attribute must be
specified per <meta> tag:

<head>

 ...

 <meta name=’name’ content=’content’ http-equiv=’equiv’ charset=’charset’>

 ...

</head>

The name attribute can be one of the following keywords and then described with content:

•	 application-name — A short string describing the web application name.

•	 author — The name of one of the web page authors. You can use multiple instances of <meta name=’author’
content=’full name’>, one for each author.

•	 description — Descriptive text that describes the web page. Only one <meta> tag can define a description.

•	 generator — A string that describes which software program was used to generate the website’s HTML code, if one was
used.

•	 keywords — A string of comma-separated words that describes search keywords relevant to the website content. Note this is
a legacy metadata configuration; modern search engines no longer use its value due to rampant abuse, so this can be omitted
without penalty.

Additional keywords are maintained by the WHATWG at http://wiki.whatwg.org/wiki/MetaExtensions.

<script> . . . </script>

The <script> tag group defines any additional scripting code and external files, usually JavaScript, in your web page. It
normally appears within the <head> block but may be used anywhere in the <body> block if you need to coordinate the
execution of code with specific HTML elements:

<head>

 ...

 <script type=’text/javascript’>

 /* Include your JavaScript code here */

 </script>

 <script type=’mimetype’ src=’URL’></script>

</head>

The type attribute indicates the MIME type of the code itself; in the case of JavaScript, this is text/javascript. The src
attribute, if used, refers to an external script or library that you want to import into your web page. If you do specify the src
attribute, do not define any code within the <script> tag block.

If JavaScript is disabled on the user’s web browser, you can use the text-level tag <noscript> to define content that should
appear in place of JavaScript execution. Note that <noscript> is not valid as a metadata tag within the <head> block.

HTML Metadata Tags (continued)

http://wiki.whatwg.org/wiki/MetaExtensions

335

HTML5 Reference

APPENDIX

A
The http-equiv attribute converts the meta element into a pragma directive, which allows you to provide additional HTTP
header information via the content attribute. The possible values for http-equiv are the following and then described
with content:

•	 content-language — Specifies the default language of the current web page.

•	 content-type — Allows you to set the character encoding declaration; however, this value is maintained for backward
compatibility; use the charset attribute described below instead.

•	 default-style — Sets the name of the default alternative style sheet set. This is useful when you have multiple CSS files
that are alternative ways to display the web page and you want to assign a name to the default CSS file that is loaded first.

•	 refresh — This acts as a timed refresh rate, allowing you to reload this web page, or another web page, automatically after
a short time has elapsed.

•	 set-cookie — This allows you to set arbitrary HTTP cookies in the web page itself. Use this if the pragma should be
limited; instead, set cookies in JavaScript or in the HTTP headers by way of a CGI program directly.

Additional keywords are maintained by the WHATWG at http://wiki.whatwg.org/wiki/PragmaExtensions.

The final charset attribute represents the character encoding the website itself. It cannot be combined with any of the other
<meta> attributes and must be specified only once:

<!doctype html>

<html>

 <head>

 <meta charset=’UTF-8’>

 ...

 </head>

 <!-- The rest of the document may now use UTF-8 characters. -->

This attribute is designed to be a simpler way to represent the following pre-HTML5 pragma directive:

<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”>

Both are equivalent, but most pre-HTML5 browsers such as Firefox 3.5 and Internet Explorer 8 understand the simpler attribute.

http://wiki.whatwg.org/wiki/PragmaExtensions

336

Sectioning tags are the pinnacle of the semantic layout, which was introduced in HTML5. They do not tend to support
any local attributes but do fully support global attributes. As such, they can and should be manipulated via CSS. The

semantic layout is demonstrated in Chapter 2, “Getting Started with HTML5 Page Layout.”

All HTML sectioning tags support the standard global attributes, described earlier in this appendix in the section “HTML
Global Attributes.”

<body> . . . </body>

The <body> tag group represents the main content of the web page. It is used exactly once, directly after the <head> block:

<!doctype html>

<html>

 <head>

 ...

 </head>

 <body>

 ...

 </body>

</html>

Note the closing </body></html> tags should be the final two tags referenced at the end of your HTML file. All other HTML
tags described from here on in this appendix can be used only within this <body> tag group.

<header> . . . </header>

The <header> tag group represents a group of introductory or navigational components. It typically appears directly after the
<body> block begins but can be used anywhere within <body>:

<body>

 <header>

 Website header content

 </header>

 ...

</body>

HTML Sectioning Tags

<footer> . . . </footer>

The <footer> tag group represents a footer for sectioning content; it typically contains information about its section such as
the author and even secondary-level navigational components. It typically appears directly before the <body> block ends but can
be used anywhere within <body> or just prior to the end of any section-related tag:

<body>

 ...

 <footer>

 Website footer content

 </footer>

</body>

337

HTML5 Reference

APPENDIX

A
<section> . . . </section>

The <section> tag group represents a generic section of a web page, where a section is a grouping of content, typically with a
heading. It can be used multiple times anywhere within the <body> block:

<body>

 ...

 <section>

 A section of content...

 </section>

 ...

</body>

<nav> . . . </nav>

The <nav> tag group represents a section of a page that links to other pages or to parts within the page: a section with
navigation links. It can be used multiple times anywhere within the <body> block:

<body>

 ...

 <nav>

 Links or a navigational menu...

 </nav>

 ...

</body>

<article> . . . </article>

The <article> tag group represents a single web page, application, or object that is independent from other articles. This could
be a blog post, a newspaper article, a program, or any other piece of content. It can be used multiple times anywhere within the
<body> block. Often multiple <article> tags are used within a <section> block that is dedicated to house all articles:

<section class=’articles’>

 <article>

 The first article...

 </article>

 <article>

 The second article...

 </article>

 ...

</section>

continued ➤

338

HTML Sectioning Tags (continued)

<h1> . . . </h1>, <h2> . . . </h2> . . . <h6> . . . </h6>

The <h1> to <h6> tag groups represent headings for sections,
in order of hierarchy. They can be used multiple times anywhere
within the <body> block but are often used to introduce new
topics or subtopics in articles. The first heading in your web
page typically receives the <h1> tag, optionally followed later
by the subheading <h2> tag and so forth, or by a new <h1>
tag indicating a new higher-level topic:

<article>

 <h1>The main heading</h1>

 Introduce a new topic...

 <h2>The second-level heading</h2>

 Expand on the first topic with a sub-topic...

 <h2>A new second-level heading</h2>

 Expand on the first topic with another
sub-topic...

 <h1>A new top-level heading</h1>

 Introduce a completely new topic...

 ...

</article>

<aside> . . . </aside>

The <aside> tag group represents a section of a page that is
related to the main content but is still considered separate
from that content. For example, if newspapers were like
websites, <aside> would be used for featured quotes,
advertisements, or references. It can be used multiple times
anywhere within the <body> block. Often, <aside> is used
within an <article> block:

<article>

 Article text...

 <aside>Some additional quote about the
article...</aside>

 More article text...

</article>

<address> . . . </address>

The <address> tag group represents any contact information
relevant to the current section. It is typically used once near
the end of a <body> or <article> block:

<article>

 ...

 <address>

 To contact the author of this article, email John Smith.

 </address>

</article>

Note that it is typically used for an email address, telephone
number, or other contact information. It is not intended for
postal addresses unless that is the only way to contact the web
page author.

<hgroup> . . . </hgroup>

The <hgroup> tag group represents the heading of a section.
It can be used anywhere within the <body> block but should
be used only as the immediate parent object of multiple,
successive heading tags:

<article>

 <hgroup>

 <h1>The main heading</h1>

 <h2>The second-level heading</h2>

 </hgroup>

 Introduce a new topic and sub-topic...

 ...

</article>

339

APPENDIX

AHTML5 Reference

<p>paragraph text</p>

<hr>

<p>paragraph text</p>

The <hr> tag represents a break in between multiple
paragraphs. Often rendered as a single vertical line, it can be
used to transition to another topic within the same section by
displaying a type of a pause that spans an entire line of text:

<hr>

<body>

 <p>See below for articles:</p>

 <article>

 <h1>Welcome to my site</h1>

 <p>This is the first paragraph of text. It
introduces new ideas and topics in the form of
multiple sentences.</p>

 <p>This is the second paragraph of text. It
should expand on one of the ideas introduced in
the first paragraph. Subsequent ideas may be
elaborated on in additional paragraphs.</p>

 ...

 </article>

</body>

The <p> tag group represents a paragraph of text. Although
normal paragraphs segregate sentences into like-minded topics
and flow, the physical separation can be manipulated via CSS to
the point that the paragraph itself is no longer distinguishable.

Even if you have a single sentence of only a few words, if it is
to display as a standalone block of text, wrap it in the <p> tag
group.

One or more <p> blocks can appear anywhere within the
<body> block. If you are following the semantic layout
paradigm, you may find that the largest collection of
paragraphs appear within <article> blocks:

<p> . . . </p>

Grouping tags are designed to group similar blocks of text or content together under a tag group, such as a paragraph
or a figure, or to split up a series of similar groups with a subtle effect, such as a line.

All HTML grouping tags support the standard global attributes, described earlier in this appendix in the section “HTML
Global Attributes.”

HTML Grouping Tags

<pre> . . . </pre>

The <pre> tag group represents preformatted blocks of text.
Normally, all whitespace around elements and text is trimmed;
however, when wrapped in <pre> spacing in the HTML, source
code is displayed literally in the web browser:

<pre>

This text

 displays

 exactly as it appears

 in HTML source.

</pre>

<blockquote> . . . </blockquote>

The blockquote tag group represents quoted text, possibly
from an external source. It typically is rendered with a small
indent:

<p>”The Raven” - by Edgar Allen Poe - describes a
lonely evening when the narrator laments for his
life and love, only to be visited by a raven that
questions, confuses, and finally mocks him by
uttering only a single word.</p>

<blockquote>

 Quoth the raven, “Nevermore”.

</blockquote>

continued ➤

340

 Ordered item #1

 Ordered item #2

 Ordered item #2.1

 ...

 Ordered item #3

 ...

 . . .

The tag group represents an ordered list. This appears as
incrementing numbers for each item in the list. The tag
within represents a single list item and can be used multiple
times, once for each item in the list.

To create a subnumbered list, simply nest another tag
group as a new list item:

 Bulleted item #1

 Bulleted item #2

 Bulleted item #2.1

 ...

 Bulleted item #3

 ...

 . . .

The tag group represents an unordered list. Bullets
appear for each item in the list. The tag within
represents a single list item and can be used multiple times,
once for each item in the list.

To create a subbulleted list, simply nest another tag
group as a new list item:

HTML Grouping Tags (continued)

<dl><dt> . . . </dt><dd> . . . </dd></dl>

The <dl> tag group is a series of title-description groups represented by one or more sets of <dt> and <dd> tag groups; the
<dt> tag group represents the title portion of a specific definition in a description list, and the <dd> tag group represents the
text portion of a specific description:

<dl>

 <dt>Term #1</dt>

 <dd>First Description for Term #1</dd>

 <dd>Second Description for Term #1</dd>

 <dt>Term #2</dt>

 <dd>First Description for Term #2</dd>

 <dd>Second Description for Term #2</dd>

 ...

</dl>

Note that the closing </dt> and </dd> tags are optional but recommended.

341

HTML5 Reference

APPENDIX

A

The figure is not rendered as anything specific in the browser
but instead acts like a semantic layout tag, making it easy for
you to customize its layout in CSS.

<figure> . . . </figure>

The <figure> tag group represents additional content that
describes an image, table, chart, code, or other object that
typically coincides with paragraphs of text:

<figure>

</figure>

<figcaption> . . . </figcaption>

The <figcaption> tag group can be included in a <figure> block to define caption text that describes the nearby figure
object. Only one caption should be used per figure. This tag also acts like a semantic layout tag; however, it does have some
default formatting that can easily be overridden in CSS:

<figure>

 <figcaption>A description of the photo image.</figcaption>

</figure>

Note that the <figcaption> tag may be referenced below or above the referenced image, table, chart, or object.

<div> . . . </div>

The <div> tag group is like a wildcard. It represents anything you want it to that does not fit within any of the previously
described HTML block tags. It has no inherent formatting; therefore, it is most commonly used in stylizing HTML content using
CSS. For this to happen, either one of the class or id global attributes should also be used; very rarely will you ever see <div>
without one of these attributes on a website:

<div class=’center red’>This is centered red text.</div>

The <div> tag was most popular in sites designed for HTML 4.01 and earlier. With the advent of the semantic layout in HTML5,
tags such as <header>, <footer>, <section>, <article>, and <figure> should be used in place of <div
class=’header’>, <div class=’footer’>, and so on. In fact, if you think about it, these HTML5 semantic layout tags
are rendered the same way as <div> tags: as nothing but simple blocks; therefore, they also require CSS. The only difference is
that in HTML5, new semantic tags have specific names to identify their use and context.

342

Objects created using phrasing tags, also known as text-level tags, appear inline with each other within a parent
sectioning or grouping tag. This means that if you string a series of these tags one after another, they will be

rendered from left to right and top to bottom in the web browser. In other words, a phrasing tag will never force a new line
unless it runs out of room on its current line.

All HTML phrasing tags support the standard global attributes, described earlier in this appendix in the section “HTML
Global Attributes.”

applies only to this particular hyperlink.

•	 ping — Assigns a supplementary URL that will be notified
when the user follows the link.

•	 rel — Assigns a link-type keyword to the hyperlink itself.
This uses the same configuration as the <link
rel=’type’> tag described earlier, except that this
applies only to this particular hyperlink.

•	 target — Assigns a name to the browsing context the link
will be used for. This uses the same configuration as the
<base target=’context’> default described earlier,
except that it overrides on a per-link basis.

•	 type — Describes the MIME type encoding of the target
href URL.

The href, target, and ping attributes reflect what happens
when the user follows the hyperlink. The rel, media,
hreflang and type attributes describe what can be found at
the other end of the hyperlink.

<a> . . .

The <a> tag group represents a clickable hyperlink to another
web page, website, or URL. Text within the tag appears to the
user as clickable, by way of underlined, blue text. Note that the
default rendering of hyperlinks can easily be overridden in CSS.

<p>To learn more about this topic, you can click here to read follow-up
documentation.</p>

At a minimum, the href attribute should be used to specify
where the hyperlink directs the user. If href is not used, the
simpler <a>text block can be used as a placeholder for a
link to come later.

When you use href, you can use these additional attributes:

•	 hreflang — Describes the language of the target href
URL.

•	 media — Describes what media type the target web page is
designed for. This uses the same configuration as the <link
media=’type’> tag described earlier, except that this

 . . .

The tag group represents additional emphasis on the text included within it:

<p>Sometimes a form of emphasis is required to get a specific point across.

When rendered, this tag may make text display in italics by some web browsers, but this is not guaranteed and should not be used
as such. Instead, if you simply want to italicize text without specifying emphasis, use the CSS definition font-style: italic.

HTML Phrasing Tags

 . . .

The tag group represents additional importance on the text included within it:

<p>ERROR: Invalid user name or password. Please try again.</p>

When rendered, this tag may make text display in bold by some web browsers, but this is not guaranteed and should not be used
as such. Instead, if you simply want to bold text without specifying importance, use the CSS definition font-weight: bold.

343

HTML5 Reference

APPENDIX

A
<small> . . . </small>

The <small> tag group represents secondary text, such as fine print, which is often useful in licenses, disclaimers, or caveats.
However, if the page you are producing contains nothing but one big license or disclaimer, use normal text.

<p>This toy uses 4 AA batteries <small>(batteries not included)</small></p>

When rendered, this tag will display text with a line through it,
called strikethrough, but this is not guaranteed and should not
be used as such. Instead, if you simply want to display a
strikethrough line through text without specifying relevancy,
use the CSS definition text-decoration: line-through.

<s> . . . </s>

The <s> tag group represents content that is no longer
accurate or relevant but that you still want to display because
it is no longer accurate. It may be immediately followed by
contradictory text that corrects the irrelevant content:

<p>You can buy this product for <s>$129.95</s>
$59.95, but only for a limited time!</p>

<cite> . . . </cite>

The <cite> tag group represents an external title of work that
is referenced by your web page:

<p>My first book, <cite>Perl and Apache: Your visual
blueprint for developing dynamic Web content</
cite>, was published in 2010 and is available at
Amazon.com.</p>

When rendered, this tag may display text in italics by some web
browsers, but this is not guaranteed and should not be used as
such. Again, if you simply want to italicize text without citing
a source, use the CSS definition font-style: italic.

<q> . . . </q>

The <q> tag group represents content quoted from another
source. The idea is similar to <blockquote> except that it
appears inline with other text, typically rendered only with
double quotes. If the source can be referenced from another
website, the cite attribute may be used to link back to that
website:

<p>In February 2011, the W3C CEO Jeff Jaffe said,
<q cite=’ http://www.w3.org/2011/02/htmlwg-pr.
html’>Today we take the next step, announcing 2014
as the target for [HTML5].</q></p>

Note that this should not be used as a replacement for double
quotes but only if quoting an external source — and optionally
using the cite attribute along with the <cite> tag.

<dfn> . . . </dfn>

The <dfn> tag group represents the first time a new term is
introduced on a web page or site. Typically, the remainder of
the paragraph or section will go on to provide a definition of
the term. Additional uses of the term do not require the <dfn>
tag to be re-referenced, as the term has already been
established.

You can also set the title attribute, which will be interpreted
as a direct expansion of the acronym:

<p>The new <dfn title=’element names that provide
self-explanatory context’>semantic layout</dfn> in
HTML5 refers to a new class of elements that are
purely designed to help you understand where and
how text is defined in your web page and its
context. All semantic tags must appear within the
<body>...</body> container tag group.</p>

continued ➤

344

You can also set the title attribute, which will be interpreted
as a direct expansion of the acronym:

<p>The <dfn><abbr title=’World Wide Web
Consortium’>W3C</abbr></dfn> produced the first
<dfn><abbr title=’hypertext markup language’>HTML</
abbr></dfn> standard document. Follow-up versions
of HTML were produced by the W3C and other
parties.</p>

<abbr> . . . </abbr>

The <abbr> tag group represents an abbreviation or acronym.
It may be found within a <dfn> tag group by providing a new
definition and attribute at the same time. Additional uses of
the acronym do not require the <abbr> tag to be re-referenced,
as the acronym has already been established.

<time datetime=’2011-06-16’>June 16, 2011</time>

<time datetime=’2011-06-16T04:11:00-0600’>June 16,
2011, 4:11am</time>

Note that the format for datetime can be either yyyy-mm-
dd to reflect a simple date or yyyy-mm-ddThh:mm:ssTZ to
reflect a full date timestamp with a time-zone offset.

<time> . . . </time>

The <time> tag group represents an absolute time on a
24-hour clock or a precise date with an optional time and time
zone as a datetime attribute. The text within the time tag
can be arbitrarily structured, or, in other words, human
readable:

HTML Phrasing Tags (continued)

_{. . .}, ^{. . .}

<sub> represents subscript text, and <sup> superscript text. This will be rendered with smaller text below and above normal
text, respectively. This can be useful in scientific and mathematical formulas and to provide footnotes in text:

<p>The molecular formula for Butane is C₄H₁₀, it has a density of 2.48 kg/m³
in a gaseous state.</p>

<code> . . . </code>

The <code> tag group represents a small portion of computer code, such as a function name, keyword, or computational
statement. The text within can be used as the subject in a sentence of normal text or can be wrapped in <pre> and a
monospaced font to show larger portions of preformatted, sample code:

<p>You can call the <code>init()</code> function from the <code>System</code> object to initialize the API at
program startup.</p>

<pre><code style=’font-family: courier’>

int main(void) {

 char* handle;

 handle = System.init();

}

</code></pre>

When rendered, this tag may display the text in a sans-serif font in some web browsers, that is, unless you override it.

345

HTML5 Reference

APPENDIX

A
<var> . . . </var>

The <var> tag group represents a variable, either in a mathematical or computational context or as a placeholder term:

<p>The Pythagorean Theorem is written as <var>a</var>² + <var>b</var>² = <var>c</
var>².</p>

Variables typically appear italicized.

<kbd> . . . </kbd>

The <kbd> tag group represents user input, such as from a keyboard or keypad:

<p>To exit out of the Vi editor without saving the file, type <kbd>ESC</kbd> to return to command mode, then
<kbd>:q!</kbd> and press Enter.</p>

This tag causes the text to change to a monospaced font in some browsers. You may want to consider adding additional CSS
formatting to make it more obvious to the user; for example, command-line text inputs could be described with white text over a
black background, akin to input on a terminal prompt.

<samp> . . . </samp>

The <samp> tag group represents sample output from a described <code> program or from an external process:

<p>If you run the command <kbd>sudo whoami</kbd> and press Enter, the whoami program will print <samp>root</
samp> and exit.</p>

Like <kbd>, this tag also causes the text to change to a monospaced font in some browsers. You should consider differentiating
it so that the user can easily identify that it is sample output. Even simply adding border: 1px solid black will help.

<i> . . . </i>

The <i> tag group represents text with an alternative voice or mood. This could be used to represent an alternative speaker,
language, or idiom. If used as another language, include the global attribute lang:

<p>Despite many shortcomings, the manager’s <i lang=’fr’>savoir-faire</i> was his ability to respond
appropriately to any situation.</p>

The legacy formatting of this tag, italicizing text, is still used by nearly all web browsers. However, do not use this tag if you
simply want to italicize text for different reasons. Instead, consider or use the CSS declaration font-style: italic.

continued ➤

346

 . . .

The tag group represents text in which attention is being drawn to keywords, without marking them with any extra importance:

 Head north on 1st Street toward Hwy 401 for 500m.

 Turn right onto Hwy 401. Continue to follow for 15km.

 Take exit 125 for 35th Street eastbound.

The legacy formatting of this tag, bolding text, is still used by nearly all web browsers. However, do not use this tag if you simply
want to bold text for different reasons. Instead, consider or use the CSS declaration font-weight: bold.

<u> . . . </u>

The <u> tag group represents text with an unarticulated nontextual annotation. Sometimes this can be useful for labeling proper
names or misspelled text:

<p>Spelling <u>erorrs</u> are among the most common surface errors as well as the most easily <u>correked</
u>.</p>

The legacy formatting of this tag, underlining text, is still used by web browsers; therefore, do not use this tag where the text
could be confused with an underlined hyperlink.

HTML Phrasing Tags (continued)

<mark> . . . </mark>

The <mark> tag group represents text that should be highlighted for reference purposes:

<blockquote>

 Spelling <mark>erorrs</mark> are among the most common surface errors as well as the most easily
<mark>correked</mark>.

</blockquote>

<p>The original author forgot to the fix the spelling of the words <q>errors</q> and <q>corrected</q>.</p>

The <mark> tag is displayed with a yellow background, just like an actual highlighter pen.

<noscript> . . . </noscript>

The <noscript> tag group can be used to specify content that will appear when JavaScript is disabled. On browsers that have
JavaScript enabled, this tag and its contents will be ignored:

<script type=’text/javascript’>

 // Render the cool graphic animation

</script>

<noscript>You need to have JavaScript enabled to view the animation</noscript>

347

HTML5 Reference

APPENDIX

A
<ruby><rt> . . . </rt></ruby>

The <ruby> tag group allows for phrasing content to be marked with ruby annotations, which means supplementary text that is
displayed alongside of base text. This is commonly used in East Asian languages as a guide for pronunciation. The <rt> tag group
follows the foreign spelling and describes the correct pronunciation using a format that is understood by the reader:

The capital city of Japan is:

<ruby>

 <rt>t∂</rt>

 <rt>ky∂</rt>
</ruby>.

When rendered by supporting web browsers, the ruby block will appear as: “The capital city of Japan is .”

<rp> . . . </rp>

The <rp> tag group provides parentheses around ruby text around a ruby annotation. This is useful for browsers that do not
understand the <ruby> and <rt> tag annotations as a way to provide brackets around the <rt> phrasing content. Browsers that do
understand ruby will ignore the <rp> tag. To extend the previous example, <rp>(</rp> and <rp>)</rp> can be added as follows:

The capital city of Japan is:

<ruby>

 <rp>(</rp><rt>t∂</rt><rp>)</rp>

 <rp>(</rp><rt>ky∂</rt><rp>)</rp>
</ruby>

When rendered by nonruby supporting browsers, the ruby block will appear as: “The capital city of Japan is (t∂) (ky∂).”

Supporting web browsers will still render the pronunciation above the base text.

<bdi> . . . </bdi>

The <bdi> tag group represents text that is isolated for the purposes of bidirectional text formatting. This is useful if you need
to embed a short word or sentence that moves in the opposite direction to the body of your web page, such as Hebrew or Arabic,
or if you are accepting user-generated content that could appear in either format:

<p>Enter your name in English or Hebrew: <bdi><input type=text name=’name’></bdi></p>

<p>The value you submitted was: <bdi>My Name</bdi>.

continued ➤

348

could start from the left of the line and move to the right. The
appropriate context for this would be if you wanted to embed
right-to-left text, such as Hebrew or Arabic, within normal
left-to-right text.

Note that the result of this tag differs from any element using
the global attribute dir. For example, if you write the same
example as <p dir=’rtl’>, the line appears right to left,
and the words are reversed, but the ordering of the characters
stays the same.

<bdo> . . . </bdo>

The <bdo> tag group represents an override for the default
bidirectional text formatting. For this to work, the dir
attribute must set ltr for left-to-right or rtl for right-to-left
text direction:

<p>This is an example of <bdo dir=’rtl’>text that
appears backwards</bdo> when displayed to the
user.</p>

The end result is that every character is written backward;
however, the line formatting itself is still the default, so it

attributes should also be used; very rarely will you ever see
 without one of these attributes on any other website.

<p>Welcome to the City
Police website.</p>

 . . .

The tag group is like a wildcard element. It represents
anything you want it to that does not fit within any of the
previously described HTML inline tags. Essentially, it is <div>’s
inline cousin. It has no inherent formatting; therefore, it is
most commonly used in stylizing HTML content using CSS. For
this to happen, either one of the class or id global

HTML Phrasing Tags (continued)

The
 tag represents a simple line break without transitioning into a new display block. This is useful for line breaks that are
a part of the single content group, such as addresses and poetry:

<p>Visit the Currency Museum of Canada at:

<address>245 Sparks Street

Ottawa, Ontario

Canada</address></p>

Older websites often used multiple
 tags in succession to force several new lines and begin a new paragraph. Never do this;
use the <p> tag group as directed.

<wbr>

The <wbr> tag represents a line break opportunity. Natural line breaks occur only when a word reaches the end of the line;
however, you will not be aware of how wide the user’s browser is, especially if you are displaying a very long word. This tag can be
used to provide hints to the browser as to acceptable line break points, if required for spacing reasons:

<p>In the Dutch language, compound words can be formed to limitless length. For example, the word <i lang=’nl
’>vervoerder<wbr>saansprakelijk<wbr>heidsver<wbr>zekering</i> means <q>liability insurance carrier</q>.</p>

349

APPENDIX

AHTML5 Reference

<map><area> . . . </map>

The <map> tag group allows you to specify multiple geometric areas of an image that are clickable. The <area> tag, which
appears within the <map> group, identifies the general shape of the area, coordinates of the area, and URL. To tie the image map
to an image, use the tag’s usemap attribute:

<figure>

</figure>

<map name=’provinces’>

 <area shape=”poly” coords=”22,365,252,365,249,494,318,581,216,581,201,590,130,545” href=”british-columbia.
html”>

 <area shape=”poly” coords=”253,365,365,365,365,582,319,582,250,492” href=”alberta.html”>

 <area shape=”rect” coords=”366,366,459,581” href=”saskatchewan.html”>

 ...

</map>

The <map> tag group accepts only a name attribute. This matches the image’s usemap attribute but without the # character.

•	 crossorigin — A Cross-Origin Resource Sharing, or CORS,
settings attribute. This allows you to load an image from
another domain that may require credential authentication.

•	 usemap — Allows you to specify a <map><area>...</
map> tag group that specifies coordinates linked to URLs.
This will create one image that supports multiple URLs
based on click location. See <map> for more details.

•	 ismap — Specifies that the image is a server-side map.
Coordinates are passed to the parent <a> hyperlink target
that identify where the user clicked on the map.

•	 width — Specifies the display width of the image.

•	 height — Specifies the display height of the image.

Note that if only one of height or width is specified, the
image is scaled to match the value. If both are specified, the
image’s original aspect ratio may be lost.

The tag represents an image that you can load into your
web page. It takes a multitude of attributes, but at a minimum,
you need to specify src to identify the source file. When you
load an image, it is formatted to appear inline with other
content. To make it appear standalone, like its own paragraph,
wrap <figure> around it. The file format of your image
depends on what the web browser supports:

<figure>

</figure>

Additional attributes can be included in the tag:

•	 alt — This acts as the image fallback content, a text field
that describes the image for those who cannot see or load it.

HTML embedding tags allow you to import content from separate files into your web page document by specifying a
form of a URL on an embed tag. This could be an image, a movie, a Flash animation, and so on.

Some embedding tags do not accept separate files but instead allow you to embed separate code; this is the case with the
<math> tag group to create MathML code and the <svg> tag group to create scalable vector graphics.

All HTML embedding tags support the standard global attributes, described earlier in this appendix in the section “HTML
Global Attributes.”

HTML Embedding Tags

continued ➤

350

HTML Embedding Tags (continued)

The <area> tags within accept multiple attributes:

•	 shape — The basic shape of the coordinates specified. The
value can be circ for a circle, poly for a polygon, or
rect for a rectangle. If omitted, it defaults to a rectangle
shape.

•	 coords — A series of (x, y) values joined by commas that
construct the shape on the image map. Note that (0, 0) is
the top left of the image.

•	 href — The hyperlinked URL the user will transition to
when the specified coordinate area is clicked.

•	 hreflang — Describes the language of the target href
URL.

•	 alt — Acts as description of this clickable area of the
image.

•	 target — Identifies the default browsing context for the
entire page. This context specifies where hyperlinks and
forms open when they are clicked. Assigns a name to the
browsing context the link will be used for. This uses the
same configuration as the <base target=’context’>

default described earlier, except that overrides on a per-link
basis.

•	 ping — Assigns a supplementary URL that will be notified
when the user follows the link.

•	 rel — Assigns a link-type keyword to the hyperlink itself.
This uses the same configuration as the <link
rel=’type’> tag described earlier, except that it applies
only to this particular hyperlink.

•	 media — Describes what media type the target web page is
designed for. This uses the same configuration as the <link
media=’type’> tag described earlier, except that it
applies only to this particular hyperlink.

•	 type — Describes the MIME type encoding of the target
href URL.

The href, target, and ping attributes reflect what happens
when the user follows the hyperlink. The rel, media,
hreflang, and type attributes describe what can be found at
the other end of the hyperlink.

<iframe> . . . </iframe>

The <iframe> tag group represents a nestable browsing
window. Essentially, you can use this to import and restrict a
completely separate HTML into a virtual box in the current web
page. Content within the starting and ending tags appears in
browsers that do not support the <iframe> tag:

<iframe seamless src=’otherpage.html’ >

 The iframe element is not supported by your
browser!

</iframe>

<iframe sandbox srcdoc=’<p>This is
"sandboxed" HTML content</p>’></iframe>

The following attributes are available:

•	 src — A URL to the external web page or file.

•	 srcdoc — Simple HTML code that will appear in the
iframe. Note that only one of src or srcdoc may be
specified. If any quotes appear within srcdoc, they must
be specified with ". Otherwise, they could conflict
with parsing the tag itself.

•	 name — If specified, this attribute allows you to identify
the iframe object in the JavaScript DOM.

•	 sandbox — Enables additional restrictions over the
imported content, if supported by the web browser.
Essentially, if you are loading a web page from a source you
do not trust, specify this attribute with at least one of the
following values:

	 •	 allow-same-origin — Allows for the main site to
access the sandboxed DOM, but not vice versa.

	 •	 allow-top-navigation — Allows the sandboxed
iframe to change the URI of the parent.

	 •	 allow-forms — Allows the use of forms within the
sandboxed iframe.

	 •	 allow-scripts — Allows JavaScript to run inside the
iframe.

•	 seamless — Specifies that the iframe should be
seamlessly integrated into the web page.

•	 width — Specifies the display width of the iframe.

•	 height — Specifies the display height of the iframe.

351

HTML5 Reference

APPENDIX

A
<embed> . . . </embed>

The <embed> tag group represents an external resource that
can be included in your web page. The content between the
starting and ending tags will appear only in browsers that do
not support the embed element or could not load the
embedded item itself:

<embed src=’demo.swf’ type=’x-shockwave-flash’
allowfullscreen=’true’>

 The embed element is not supported by your browser!

</element>

The following attributes are available:

•	 src — The URL of the external file that will be embedded.

•	 type — Describes the MIME type encoding of the target
src URL.

•	 width — Specifies the display width of the iframe.

•	 height — Specifies the display height of the iframe.

Any additional attributes specified ad hoc will be sent to the
embedded resource as parameters.

<object> . . . </object>

The <object> tag group represents an external resource that
can be included in your web page. Depending on the attributes
specified, this can be an image, a nested browsing context, or a
resource processed by a plug-in.

It may sound like <embed> and <object> are very similar,
and this is actually true. Whereas <object> is useful for
maintaining legacy support for pre-HTML5 web browsers,
<embed> provides a simpler syntax to create embedded
objects, but only for supported web browsers.

The content between the starting and ending tags will appear
only in browsers that do not support the object element or
could not load the object itself:

<object data=’http://www.externalsite.com/widget.
html’

 type=’text/html-sandboxed’>

 The external object is not supported by your
browser!

</object>

The following attributes are available:

•	 data — The external resource URL that will be processed.

•	 type — Describes the MIME type encoding of the target
data URL.

•	 typemustmatch — A Boolean that specifies that the
type attribute must match the server-side MIME type
supplied by the external resource.

•	 name — If specified, this attribute allows you to identify
the external object in the JavaScript DOM.

•	 usemap — Allows you to specify a <map><area>...
</map> tag group that specifies coordinates linked to
URLs. This will create one image that supports multiple URLs
based on click location. See <map> for more details.

•	 form — Allows you to associate a form on the main web
page with input elements found in the external object.

•	 width — Specifies the display width of the iframe.

•	 height — Specifies the display height of the iframe.

Optional parameters can be specified with the <param> tag.

continued ➤

<param>

The <param> tag can be used to apply optional parameters to
the <object> tag group. This is useful if you need to provide
additional context to the plug-in or external URL that is being
embedded or objectified:

<object type=’application/x-shockwave-flash’>

 <param name=’movie’ value=’http://www.video.com/
movies/12345.swf’>

 <param name=’allowfullscreen’ value=’true’>

 Flash is not supported by your browser!

</object>

Two attributes are supported, name and value, which are provided to the external source in the form of key/value pairs.

352

HTML Embedding Tags (continued)

<video> . . . </video>

The <video> tag group enables you to play videos or audio
files with captions. The content between the starting and
ending tags will appear only in browsers that do not support
the video element:

<video src=’movie.avi’ controls>

 Your browser does not support HTML5 video, please
download the AVI of the
free movie.

</video>

The following attributes are available:

•	 src — The URL of the external video file.

•	 crossorigin — A CORS settings attribute. This allows
you to load an image from another domain that may require
credential authentication.

•	 poster — Specifies an image URL that appears in the
video frame before the video starts to play.

•	 preload — Specifies how the media may be preloaded in
the browser, if supported by the browser, before the user
starts playback:

	 •	 none — Do not preload any data. Download content
only after the user starts playback.

	 •	 metadata — Download only metadata content, such as
the video dimensions, duration, tracks, channels, and the
first video frame.

	 •	 auto — Begin downloading the entire file and cache it
locally in the browser.

•	 autoplay — A Boolean attribute that determines that the
media can start playing immediately after the page loads;
however, this can be overridden by a user preference on the
browser, if available. Implies preload=’auto’.

•	 mediagroup — Allows you to synchronize multiple videos
by sharing an arbitrary value.

•	 loop — A Boolean that loops the media playback.

•	 muted — A Boolean that sets the default volume level on
playback to muted.

•	 controls — A Boolean that enables built-in video
controls, provided by the browser itself.

•	 width — Specifies the display width of the video.

•	 height — Specifies the display height of the video.

<audio> . . . </audio>

The <audio> tag group allows you to play audio files. The
content between the starting and ending tags will appear only
in browsers that do not support the audio element:

<audio src=’music.mp3’ controls>

 Your browser does not support HTML5 audio, please
download the MP3 of the
free song.

</audio>

The following attributes are available:

•	 src — The URL of the external audio file.

•	 crossorigin — A CORS settings attribute. This allows
you to load an audio file from another domain that may
require credential authentication.

•	 preload — Specifies how the media may be preloaded in
the browser, if supported by the browser, before the user
starts playback:

	 •	 none — Do not preload any data. Download content
only after the user starts playback.

	 •	 metadata — Download only metadata content, such as
the duration, tracks, and channels.

	 •	 auto — Begin downloading the entire file and cache it
locally in the browser.

•	 mediagroup — Allows you to synchronize multiple audio
files by sharing an arbitrary value.

•	 loop — A Boolean that loops the media playback.

•	 muted — A Boolean that sets the default volume level on
playback to muted.

•	 controls — A Boolean that enables built-in audio
controls, provided by the browser itself.

353

HTML5 Reference

APPENDIX

A
<source>

The <source> tag enables you to specify alternative sources
for the video and audio elements. Because HTML5 web
browsers do not all support the same source formats, this
method is recommended because browsers will attempt to load
the first source file and, if it is not understood, attempt the
second, and so on. This tag is designed to replace the singular
use of <video src=’file’> or <audio src=’file’>
attributes. In other words, the <source> tag and <video
src> or <audio src> attributes are mutually exclusive:

<video controls>

 <source src=’movie.avi’ type=’video/msvideo;
codecs=”xvid, mp3”’>

 <source src=’movie.mp4’ type=’video/mp4;
codecs=”mp4v, mp4a”’>

 <source src=’movie.ogg’ type=’video/ogg;
codecs=”theora, vorbis”’>

 Your browser does not support HTML5 video, please
download the AVI, MP4, or <a href=’movie.
ogg’>OGG versions of the free movie.

</video>

The following attributes are available:

•	 src — The URL of the external video or audio file.

•	 type — Describes the MIME type encoding of the target
src URL. Additionally, a codecs parameter can be
amended to specify how the external file is encoded.

•	 media — Describes what physical media resources the
video applies to using a valid media query. See the earlier
subsection “Media Types” in the section “HTML Metadata
Tags” for more information on formatting.

<track>

The <track> tag allows media elements to use timed text
tracks. This is loaded from a separate external file and runs
parallel to the main media resource playback. This tag must be
specified within a <video> block:

<video src=’movie.avi’ controls>

 <source type=’video/msvideo; codecs=”xvid, mp3”’>

 <track kind=’subtitles’ src=’movie.en.vtt’
srclang=’en’ label=’English Subtitles’ default>

 <track kind=’subtitles’ src=’movie.fr.vtt’
srclang=’fr’ label=’French Subtitles’>

</video>

The following attributes are available:

•	 kind — Specifies the type of information that this track
provides:

	 •	 subtitles — A transcription or translation of the
dialogue. Useful when the sound cannot be understood,
such as foreign languages.

	 •	 captions — A transcription or translation of the
dialogue, plus sound effects, music cues, and other audio
information. This is useful for deaf and hard-of-hearing
users.

	 •	 descriptions — Textual descriptions of video
content. This is useful for blind users, when it is
synthesized into an audio track.

	 •	 chapters — Chapter titles, useful for navigation.

	 •	 metadata — Content that should be interpreted by
supporting JavaScript, if required. Not presented by the
web browser directly.

•	 src — The URL of the external text track data.

•	 srclang — The language of the text track data.

•	 label — Provides a user-readable title for the track.

•	 default — A Boolean that sets one particular track to be
the default, if the user’s preferences do not specify a
default.

continued ➤

354

HTML Embedding Tags (continued)

The following attributes are available:

•	 width — Specifies the display width of the canvas.

•	 height — Specifies the display height of the canvas.

It is strongly recommended that you assign the global attribute
id, too, as this is the most appropriate way to identify a
canvas object in JavaScript.

It is also recommended that the canvas should not be used for
static images or for elaborate content that can be marked up in
HTML and CSS. It is, of course, most useful for dynamically
generated visual content, interactive content, and embedded
content in place of Flash.

See Chapter 10, “Drawing with the HTML5 Canvas,” for more
information about using the canvas in JavaScript.

<canvas> . . . </canvas>

The <canvas> tag provides browsers with a bitmap canvas
that can be used for rendering graphics, animations, and other
custom visual elements in real time. It is designed to be a
flexible replacement for the proprietary Flash plug-in. The
element itself is highly dependent on JavaScript to do anything
useful, so there is very little you actually need to specify in
HTML. The content between the <canvas> starting and ending
tags will appear only in browsers that do not support the
canvas element:

<canvas id=’myCanvas’ height=’500’ width=’200’>

 <figure>

 <figcaption>

 Your web browser does not support the HTML5
canvas.

 A static image is displayed instead.

 </figcaption>

 </figure>

</canvas>

$. . .$

The <math> tag group can be used to access Mathematical Markup Language (MathML) elements and embed complex
mathematical formulas into your HTML web page. For a complete summary of all MathML elements and how to use them, see the
W3C page at www.w3.org/TR/MathML/.

<svg> . . . </svg>

The <svg> tag group can be used to access Scalable Vector Graphics (SVG) elements and embed dynamic vector graphics into your
HTML web page. For a complete summary of all MathML elements and how to use them, see the W3C page at www.w3.org/TR/SVG/.

file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/MathML/
file:///Volumes/compservices/Working/Tech/9780470952221/9780470952221%20Text/9780470952221%20Original%20Text/www.w3.org/TR/SVG/

355

APPENDIX

AHTML5 Reference

<caption> . . . </caption>
The <caption> tag group represents an optional display block
that summarizes the table. It can be as small as a few words or
as large as a few paragraphs using multiple <p> blocks:

<table>

 <caption>A description of this table</caption>

</table>

The caption will always appear at the top of the table, unless you
override it using the CSS declaration caption-side: bottom.

<colgroup><col> . . . </colgroup>
The <colgroup> tag group helps you to declare a table’s
column groups. This optional tag should appear early in the
table structure; its only allowed predecessor is <caption>.

Not all columns need to be in a group, but it can be useful if
you want to stylize a column group specifically with only one
CSS rule. This is done by using the global attribute id or
class on either <colgroup> or <col>:

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

</table>

The span attribute may be used on <col> to expand a specific
style to multiple columns. Or span can be applied to
<colgroup>, but only if there are no child <col>s within.

If you do not require any special column CSS styling, you can
omit the <colgroup> and <col> tags entirely.

The following describes the table tags that can appear only
once and establishes the basic table structure before any table
data can be specified.

<table> . . . </table>
The <table> tag group represents a simple or complex table,
filled with one or more rows and columns. The table itself is
most often a child of a section tag, described earlier in this
appendix in the section “HTML Sectioning Tags,” such as
<article>, <figure>, or simply <body>. It could be a
child of a group tag, but with the exception of <div>, this is
relatively rare:

<table>

</table>

In HTML 4.01 and earlier, tables could be stylized using HTML
attributes such as cellpadding, cellspacing, frame,
rules, and width. These attributes have been deprecated in
HTML5 and should not be used. Instead, you must style a table
using CSS.

There is one attribute that is still valid on <table>, but its
meaning has changed since HTML 4.01: border. In HTML5, if
its value is 0, this table is likely a layout table, meaning that it
is used across the entire web page in place of the semantic
layout and CSS. If its value is 1 or not specified, it is most
likely a nonlayout table, meaning that it shows only data.

High-Level Table Structure

The HTML table tags allow you to define a simple or complex grid-based structure in your web page. When compared to
HTML 4.01 and earlier, the <table> tag has gone through a major purge. Nearly all of the display attributes previously

allowable under HTML table tags, such as border, cellpadding, cellspacing, and width, are no longer valid. You
must use CSS to define these properties in HTML5.

Some alternatives to the HTML table structure include the CSS Flexible Box Model and CSS multi-column layout, both
described in Chapter 6, “Creating Boxes and Columns with CSS3.”

All HTML table tags support the standard global attributes, described earlier in this appendix in the section “HTML Global
Attributes.”

HTML Table Tags

continued ➤

356

HTML Table Tags (continued)

Cells that use the <th> tag center text in bold as a way of
differentiating themselves from the regular <td> cells. This can
easily be overridden using CSS.

<td> . . . </td>
The <td> tag group represents a single header cell and can be
found only within a <tr> tag group. Each time it is repeated
in a <tr> parent block, a new horizontal cell is created, right
to left. The total number of cells per row should match the
<colgroup><col>...</colgroup> schema if used;
otherwise, it should match the total of all other <tr> and
<td> members per row in this table. If not, the table will
appear incomplete with missing cells.

Its usage and implementation is exactly like the <th> tag
group, except that <th> is typically used only as the cells in
the first table row or the first column:

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <tr>

 <th id=’col1’>...</th>

 <th id=’col2’ colspan=’number’>...</th>

 ...

 </tr>

 <tr>

 <td headers=’col1’>...</td>

 <td headers=’col2’ colspan=’number’>...</td>

 ...

 </tr>

 ...

</table>

The colspan attribute instructs a cell to span multiple
columns in that row. In addition, a rowspan attribute may be
specified to allow a single cell to grow downward and span
multiple table rows. For each subsequent <tr> row that is
interfered with, there will be one less <th> or <td> cell that
can be specified.

New in HTML5 is the headers attribute. This optional feature
allows you to establish a clear link using a common name
between a data cell’s header attribute and a header cell’s id
attribute: the <td headers=’name’> tag and <th
id=’name’> tag. There is no visual change to establishing
this link when the table is rendered, but it does make parsing
the table easier for automated programs.

Table Rows and Cells

Individual rows and cells constitute the core table data. This is
the information that will appear within the grid layout provided
by HTML tables.

<tr> . . . </tr>
The <tr> tag group represents a single vertical table row. It is
required for every row in the table but should come after the
<colgroup> tag group, if it is used. You can repeat the <tr>
tag group for as many rows as required by your table:

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <tr>

 ...

 </tr>

 ...

</table>

<th> . . . </th>
The <th> tag group represents a single table header cell and
can be found only within a <tr> tag group. Each time it is
repeated in a <tr> parent block, a new horizontal header cell
is created, right to left. The total number of cells per row
should match the <colgroup><col>...</colgroup>
schema if used; otherwise, it should match the total of all other
<tr> and <td> members per row in this table. If not, the
table will appear incomplete with missing cells.

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <tr>

 <th>...</th>

 <th colspan=’number’>...</th>

 ...

 </tr>

 ...

</table>

The colspan attribute instructs a cell to span multiple
columns in that row. In addition, a rowspan attribute may be
specified to allow a single cell to grow downward and span
multiple table rows. For each subsequent <tr> row that is
interfered with, there will be one less <th> or <td> cell that
can be specified.

357

HTML5 Reference

APPENDIX

A

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>...</td>

 <td colspan=’number’>...</td>

 ...

 </tr>

 ...

 </tbody>

 ...

</table>

The <tbody> tag group may be repeated throughout <table>,
essentially creating multiple batches of subtable rows.

<tfoot>
The <tfoot> tag group represents one or more rows of cells
that either repeats the column labels or defines the column
summaries, if required.

This tag group can be used only after the <caption>,
<colgroup>, <thead>, and <tbody> blocks, if used, as the
bottom row or rows of the table. It should be the last tag group
before <table> ends:

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <thead>

 <tr>

 <th>...</th>

 <th colspan=’number’>...</th>

 ...

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>...</td>

 <td colspan=’number’>...</td>

 ...

 </tr>

 ...

 </tbody>

 <tfoot>

 <tr>

 <td>...</td>

 <td colspan=’number’>...</td>

 ...

 </tr>

 </tfoot>

</table>

Grouping Rows by Header, Body, and Footer

It is possible to define which rows make up the table header,
body, and footer. If you implement this, it helps you to clarify
how each <tr>...</tr> group is used in the table, as some
rows may be column descriptions, some column data, and
others column summaries.

The benefit of using these tag groups is that they allow you to
create row groups, just as <colgroup> is used to create
column groups, for the purpose of CSS styling.

If you do not require any special row group CSS styling, you can
omit these tags entirely.

<thead>
The <thead> tag group represents one or more rows of cells
that define the column labels.

Only one <thead> tag group should be defined — and only
after the <caption> and <colgroup> tags, if used, and
before <tbody>, <tfoot>, and additional <tr>s. Only one
<thead> tag group may be used within <table>:
<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <thead>

 <tr>

 <th>...</th>

 <th colspan=’number’>...</th>

 ...

 </tr>

 </thead>

 <tr>

 <td>...</td>

 <td colspan=’number’>...</td>

 ...

 </tr>

 ...

</table>

<tbody>
The <tbody> tag group represents the body of actual data for
the table. As many <tr> rows as required can be defined
within this group:

<table>

 <caption>A description of this table</caption>

 <colgroup><col><col span=’number’>...</colgroup>

 <thead>

 <tr>

 <th>...</th>

 <th colspan=’number’>...</th>

 ...

358

•	 name — A simple identifier to help locate the form in the
DOM.

•	 novalidate — A Boolean that disables all built-in
validation routines specified in HTML5.

•	 target — Identifies the browsing context when the form
is submitted.

<fieldset> . . . </fieldset>
The <fieldset> tag group represents a collection of similar
fields and other inputs. For example, if your web page asks for
registration information from the user, you may use one field
set for personal details, such as the first and last name, another
for contact details such as email address and phone number,
and another for mailing details, such as street, city, zip code,
and country.

Simply put, the <fieldset> tag enables you to subdivide
complex forms into categories and style each accordingly:

<form method=’method’ action=’URL’>

 <fieldset>

 </fieldset>

 ...

</form>

When rendered by the browser, a <fieldset> group appears
like a gray box around all child fields and text. This can of
course be customized in CSS.

<legend> . . . </legend>
The <legend> tag group provides preamble text for the field
set. It appears in the top-left corner, overlapping the box
graphic:

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 </fieldset>

 ...

</form>

From a high level, an HTML form requires only an appropriately
created <form> tag group. All other tags can be used only
within this group.

<form> . . . </form>
When defining an HTML form, you must configure where the
submitted data is to be sent to, which is the URL defined in the
action attribute, and how it is to get there, which is the
method attribute. After that, you still need to be concerned
with the CGI program that will be accepting the form input so
that you can process the user’s form submission request.

<form action=’URL’ method=’method’>

</form>

Several attributes are available to forms. If you are creating a
JavaScript-only form, you do not need any additional
attributes; but if you do communicate with a server-side CGI,
you need to specify action at minimum.

•	 accept-charset — Identifies the preferred character
encoding method of the server-side CGI program.

•	 action — A URL of the server-side CGI program that will
accept the submitted form data.

•	 autocomplete — A Boolean that controls whether any
submitted data may be cached in the browser and
repopulated if this form is reused.

•	 enctype — The encoding type of the content attributes.
Possible values are as follows:

	 •	 application/x-www-form-urlencoded — The
default form encoding method, if enctype is
unspecified.

	 •	 multipart/form-data — Useful if uploading files
within the form, but not much else.

	 •	 text/plain — Backward compatible to older CGI
programs, but not recommended as submitted data could
be misinterpreted.

•	 method — The method that the data will be submitted
over HTTP. Possible values are as follows:

	 •	 get — Use the HTTP GET method.

	 •	 post — Use the HTTP POST method.

Basic Form Structure

All HTML form tags support the standard global attributes, described earlier in this appendix in the section “HTML
Global Attributes.”

HTML Form Tags

359

HTML5 Reference

APPENDIX

A
Form Fields

The form fields allow the user to insert data into the form
itself, directly within the browser window. This data will be
included when the form is submitted.

<label> . . . </label>
The <label> tag group represents an input field’s common
name for a form input. Although optional, this helps the
browser understand that the text is associated with a specific
field input:

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>

 Field Label:

 </label>

 ...

 </fieldset>

 ...

</form>

<label> accepts two optional attributes:

•	 form — Links a label to a specific form from outside of a
<form> block.

•	 for — Links a label to an input, if that input is not
defined within the <label> block.

<input>
The <input> tag provides a way for the user to insert data
into the form. It may appear standalone anywhere inside of the
<form> block or within a <label> block, thus turning it into
a labeled control. This means that the user can click the labeled
text, and it is the input that is actually selected. This can
provide some usability improvements to complex forms:

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>Field Label:

 <input type=’type’ name=’fieldname’>

 </label>

 ...

 </fieldset>

 ...

</form>

Input Attributes

•	 accept — Acceptable MIME types for file input fields.

•	 alt — An alternative text description for image input
fields.

•	 autocomplete — Allows the browser to store the form
results for future reference.

•	 autofocus — A Boolean that sets an element to be
focused when a page first loads.

•	 checked — A Boolean that sets a radio or check box input
field to be on by default.

•	 dirname — Applies a new name field that specifies the
input text’s direction, left to right (ltr) or right to left
(rtl).

•	 disabled — Disables the input element so that the user
cannot change or use it in the form itself.

•	 form — Specifies a parent form element identifier, if this
input element is not defined under a specific <form> tag
group.

•	 formaction — Sets an alternative form action URL to
submit the form to with a submit input button.

•	 formenctype — Sets an alternative form enctype
setting when submitting the form with a submit input
button.

•	 formmethod — Sets an alternative form method setting
when submitting the form with a submit input button.

•	 formnovalidate — Sets an alternative form
novalidate setting when submitting the form with a
submit input button.

•	 formtarget — Sets an alternative form target setting
when submitting the form with a submit input button.

•	 height — The height of the input field, measured in
pixels.

•	 list — Links into a <datalist> identifier.

•	 max, min — The acceptable minimum and maximum values
a number input field can accept.

•	 maxlength — The maximum number of characters the
input field can accept.

•	 multiple — A Boolean that allows for multiple values to
be entered and submitted into a single text field.

•	 name — The name of the input field used for CGI
submission.

continued ➤

360

•	 hidden — Hidden from the user entirely; useful to pass
arbitrary data into the form that is not visible to the user.

•	 image — Provides a clickable button that is displayed as
an image identified by the src attribute.

•	 radio — Provides a radio button. Multiple radio buttons
can share the same name attribute, but only one can be
selectable.

•	 reset — Provides a button to reset the form to its default
state. The value attribute defines the button’s text.

•	 submit — Provides a button to submit the form. The
value attribute defines the button’s text.

Selection Pull-Downs
The <select>, <optgroup>, and <option> tag groups
define an input field that can be pulled down by the user as a
form input. This helps to save space in the form by displaying
only the current selection, rather than the whole list.

<select> . . . </select>

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>Field Label:

 <select name=’fieldname’>

 </select>

 </label>

 ...

 </fieldset>

 ...

</form>

The following input types are accessible with the type attribute. Those that are new in HTML5 are described throughout Chapter 7,
“Creating HTML5 Form Inputs.”

Text-Based Input Types

•	 email — An email address.

•	 number — A number or number range.

•	 password — A password.

•	 search — A search query.

•	 tel — A telephone number.

•	 text — A generic text string.

•	 url — A URL.

Time-Based Input Types

•	 date — A date string.

•	 datetime — A date and time string.

•	 datetime-local — A date and time with a local
timezone string.

•	 month — A month number.

•	 time — A time string.

•	 week — A week number.

Complex UI Input Types

•	 color — Provides a pop-up color selector, new for HTML5.

•	 range — Provides a slider bar, new for HTML5.

Other Input Types

•	 button — Provides a clickable button. The value
attribute defines the button’s text.

•	 checkbox — Provides a check box input.

•	 file — Provides a way to specify a local file to be
uploaded. It is displayed as a text-like field that opens a
dialog box to browse the user’s local file system. It is
recommended that you use enctype=’multipart/
form-data’ in the parent form to ensure that large files
can be accepted.

•	 size — The width of the input field, measured by the
number of characters to display at once.

•	 src — Specifies the source URL for an image input button.

•	 step — The stepping amount that a number input field
increments or decrements by.

•	 type — The input element’s type.

•	 value — The default value for the input element.

•	 width — The width of the input field, measured in pixels.

•	 pattern — A regular expression pattern that sets the
acceptable input text formatting.

•	 placeholder — Temporary text that appears in the input
field until the user starts typing.

•	 readonly — A Boolean that specifies the input field
cannot be changed.

•	 required — A Boolean that specifies the input requires a
text value.

HTML Form Tags (continued)

361

HTML5 Reference

APPENDIX

A
<textarea> . . . </textarea>
The <textarea> tag group represents a multilined text input
field:

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>Field Label:

 <textarea name=’fieldname’ rows=’number’
cols=’number’>

 </textarea>

 </label>

 ...

 </fieldset>

 ...

</form>

<keygen>
The <keygen> tag represents a dynamic public-private key
generator. This can be used to validate the server’s response.
The public version of the key is submitted with the form, and
its private counterpart is stored locally in the browser:

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>Field Label:

 <keygen name=’fieldname’>

 </label>

 ...

 </fieldset>

 ...

</form>

<optgroup> . . . </optgroup>

<select name=’fieldname’>

 <optgroup label=’group text’>

 </optgroup>

 ...

</select>

<option> . . . </option>

<select name=’fieldname’>

 <optgroup label=’group text’>

 <option value=’value’>option text</option>

 ...

 </optgroup>

 ...

</select>

<datalist> . . . </datalist>
The <datalist> tag group is similar to <select>, except
that it applies its pull-down list into a text input element
directly, linked by the list attribute value. Only after the user
begins to type in the text field will a filtered version of the
<datalist> options appear.

<form method=’method’ action=’URL’>

 <fieldset>

 <legend>Title of this field set</legend>

 <label>Field Label:

 <input type=’type’ name=’fieldname’
list=’listname’>

 <datalist id=’listname’>

 <option value=’value’>text</option>

 ...

 </datalist>

 </label>

 ...

 </fieldset>

 ...

</form>

continued ➤

362

<progress> . . . </progress>
The <progress> tag group represents a moving progress bar
indicating an action the user is waiting for. This element is a
JavaScript-only output mechanism and not used within
<form> blocks.

<progress value=’valuenumber’ max=’maxnumber’>

 Total progress is valuenumber of maxnumber

</progress>

The content between the <progress> starting and ending
tags will appear only in browsers that do not support the
progress element.

<meter>
The <meter> tag group represents a static progress bar
indicating a snapshot in time and does not typically change
after the page has loaded. This element is a JavaScript-only or
static HTML output mechanism and is not used within <form>
blocks.

<meter value=’valuenumber’ max=’maxnumber’>

 Total progress is valuenumber of maxnumber

</meter>

The content between the <meter> starting and ending tags
will appear only in browsers that do not support the meter
element.

Data Submission and Display Feedback

The HTML tags that are used to submit a form usually appear as
the last components of the <form> block. At minimum there
should be a button that submits the form. It is not uncommon
to see all of the following elements appear outside of a
<form> block, as is the case when the data being submitted
and displayed is being handled only by JavaScript.

<button>
The <button> tag represents any type of clickable button.

<form method=’method’ action=’URL’>

 ...

 <button type=’buttontype’ name=’buttonname’
value=’buttontext’>

</form>

Button Types

•	 button — A generic button, useful for JavaScript-only data
submission. If type is undefined, this is the default.

•	 submit — A form submit button. This is the same as
<input type=’submit’>.

•	 reset — A form reset button. This is the same as <input
type=’reset’>.

<output> . . . </output>
The <output> tag represents a placeholder for data that
will appear later. Such is the case of an Ajax form or a
JavaScript-only submission.

<form>

 ...

 <button type=’buttontype’ name=’buttonname’
value=’buttontext’>

 <output name=’outputfield’></output>

</form>

HTML Form Tags (continued)

363

Index

Symbols
$= operator, 60, 68

*= operator, 60, 68

^= operator, 60

|= operator, 60, 66

~= operator, 60

<!--...--> tag, 330

= operator, 66

A
<a href> tag, 32

<a> tag, 10, 13, 15, 16, 324, 342

AAC sound codec, 220

<abbr> tag, 17, 324, 344

accept attribute, 359

accessible rich Internet applications (ARIA), 234

accesskey attribute, 328

Acid3 Test, 62

<acronym> tag, 16

:active pseudo-class, 95

add() method, 260–261

addEventListener() function, 291, 293, 296–297

<address> tag, 15, 324, 338

adjacent sibling combinator, 74

after() method, 154–155

align attribute, 17, 40

alink attribute, 16

alt attribute, 359

alternate link type, 333

Android, 21

animate() method, 158

animations, 102–105, 158, 214–217

Apache/Python, 303

append() method, 308–309

Apple Safari, 7, 9, 166, 221, 245, 247

<applet> tag, 16

Application Cache API (AppCache)

about, 4

creating manifests, 276–277

creating “Website Offline” fallback pages, 280–281

displaying locations with Google Maps, 282–283

updating, 278–279

archive attribute, 17

<area> tag, 13, 16, 324, 349–350

ARIA (accessible rich Internet applications), 234

<article> tag, 12, 27–29, 34, 37, 324, 337

<aside> tag, 12, 29, 38–39, 324, 338

async attribute, 13

attr() method, 154–155

attributes. See also specific attributes

Canvas API, 181

CSS, 327

direct pixel manipulation, 184

for drawing, 183–184

language, 328

new and changed, 12–15

obsolete, 16–17

selecting elements by, 60, 65

text, 184, 328

user interaction, 328

values, 66–69

audio and video

controlling playback with JavaScript, 230–231

embedding movie players with VideoJS, 232–233

formats, 220–221

installing movide encoders, 222–223

playing movies with video element, 226–227

playing sound with audio element, 228–229

reencoding movies with Miro Video Converter, 224–225

<audio> tag, 12, 219, 228–231, 324, 352

author link type, 333

autocomplete attribute, 13, 134, 359

autofocus attribute, 13, 133, 359

autoplay attribute, 219, 230–231

axis attribute, 17

B
 tag, 10, 15, 324, 346

background attribute, 11, 16, 40, 77–79, 92–97, 189

backward compatibility, 8–9

badge, 44

<base> tag, 13, 324, 332

<basefont> tag, 16

<bdi> tag, 12, 324, 347

<bdo> tag, 324, 348

before() method, 154–155

beginPath() method, 190–191

bgcolor attribute, 11, 17

<big> tag, 16

<blockquote> tag, 10, 324, 339

blur() method, 86–87, 156

<body> tag

about, 10–11, 16–17, 324, 336

declaring headers and footers, 31

editing content, 56–57

in HTML5 canvas, 180–181, 189

in semantic layout, 26

border attribute, 15, 17, 61, 84–85, 90–92, 94

21_9780470952221-bindex.indd 36321_9780470952221-bindex.indd 363 10/10/11 3:01 PM10/10/11 3:01 PM

364

Index

charset attribute, 13, 16

checked attribute, 359

checkPermission() method, 313, 316–317

child pseudo-class, 61, 70–73

Chrome (Google), 6, 8, 21, 221, 245, 247, 255, 312–323

Chrome Inspector

about, 3

adding JavaScript breakpoints, 174–175

adding watch expressions, 178–179

elements’ structure and layout, 168–169

examining JavaScript code, 172–173

launching, 166–167

modifying HTML and CSS code in real time, 170–171

stepping through JavaScript code, 176–177

Chromium audio formats, 221

<cite> tag, 15, 324, 343

class attribute, 160–163, 327

classes, 60, 64. See also specific classes

classid attribute, 17

clear() method, 16, 35, 40, 253

clearData() method, 247

clearObject() method, 217

click() method, 156, 162–163, 206–209

client-side storage

creating IndexedDB object stores, 258–259

deleting IndexedDB object stores, 265

deleting objects using IndexedDB API, 264

identifying online browsers, 266–267

identifying online networks, 268–271

listening for online and offline events, 272–273

opening IndexedDB databases, 257

retrieving data from Web Storage API, 254–255

retrieving objects using IndexedDB API, 262–263

storing data using Web Storage API, 252–253

storing objects using IndexedDB API, 260–261

close() method, 303

closePath() method, 191

<code> tag, 324, 344

codebase attribute, 17

codetype attribute, 17

<col> tag, 17, 324, 355

<colgroup> tag, 17, 324, 355

color attribute, 14, 77, 86–87

color/color gradients, 96–97, 144–145, 185, 194–199

ColorPicker plug-in, 144–145

column-count property, 83, 118, 120, 121

column-gap property, 122–123

column-rule property, 119, 123

column-span property, 124–125

box-direction property, 107, 117

box-flex property, 106, 112–113, 114

box-flex-group property, 113

box-ordinal-group property, 107, 116–117

box-orient property, 106, 108–109, 110–111

box-shadow property, 61, 86–87

 tag, 10, 16, 324, 348

browser events, 3, 156–157, 236–237

browser support

Application Cache API, 274

Canvas API, 180

Desktop Notifications API, 312

drag and drop, 234–235

HTML5, 44–45, 221

IndexedDB API, 251

with plug-ins, 22–23

Web SQL Database API, 251

Web Storage API, 250

WebSockets, 302

browserOnline() method, 273

browsers. See web browsers

<button> tag, 13, 324, 362

C
cancel() method, 314, 318–319

Canvas API

about, 3

creating animations, 214–217

cropping images, 203

declaring canvas elements, 186–187

querying individual pixels, 204–205

rotating x- and y-axes, 212–213

scaling images, 202

tracking mouse activity, 206–209

translating x- and y-axes, 210–211

using gradient colors, 196–199

using solid color, 194–195

<canvas> tag

about, 12, 324, 354

fallbacks, 43

on HTML5 canvas, 180–181, 186–187, 206–209

<caption> tag, 52–53, 324, 355

CDN (content delivery network), 150

cellpadding attribute, 17

cellspacing attribute, 17

<center> tag, 3, 11, 16

char attribute, 17

charoff attribute, 17

365

Index

dblclick() method, 156, 206–209

<dd> tag, 324, 340

declare attribute, 17

 tag, 325

deleteObjectStore() method, 265

descendents, 61

Desktop Notifications API

customizing Desktop Notification UI, 320–321

launching messages, 318–319

listening for events, 322–323

requesting user permission to display desktop notifications,
316–317

detach() method, 154–155

<details> tag, 9, 12, 58–59, 325

Device Access, 45

<dfn> tag, 325, 343

<dir> tag, 16, 328

direct pixel manipulation, 184

dirname attribute, 359

disabled attribute, 13, 359

display: block object, 124–125

display: box object, 3. See also Flexible Box Model

display feedback, 362

display property, 106, 108–109

<div> tag, 11, 30, 31, 106, 118, 325, 341

<dl> tag, 17, 324, 340

<doctype> tag, 24–25, 324, 330

document-ready setup, 148–149

DOM, 154–155, 175

drag and drop

events, 4, 242–247

handling events, 242–247

specifying drop zones, 240–241

specifying objects to drag, 238–239

visually enhancing, 248–249

drag events, 235–239, 241, 248

draggable attribute, 14, 328

Dragonfly, 166

drawImage() method, 200–201, 202, 203

drawObject() method, 217

drop event, 236, 237

drop-down lists, 136–137

dropzone attribute, 235–236, 240–241, 328

<dt> tag, 324, 340

duration property, 231

E
each() method, 238–239

<element> tag, 60, 160–161

column-width property, 119, 121

columns, 118–119, 122–125

combinators (CSS), 61

<command> tag, 8, 9, 12, 324

<!-comment> tag, 324

compact attribute, 17

compliance (HTML), 18–19

conditional breakpoints, 175

console.log() function, 157

containers, 220

content, 56, 158–159

content delivery network (CDN), 150

contenteditable attribute, 14, 56, 57, 328

Context API, 181–182

context state, 182

contextmenu attribute, 14, 328

continue() method, 262–263

controls attribute, 219

cookies, 4

coordinates, requesting, 285

cords attribute, 16

createHTMLNotification() method, 313

createLinearGradient() method, 196–197

createNotification() method, 313, 318–319

createObjectStore() method, 259

createRadialGradient() method, 198–199

CSS (Cascading Style Sheets)

about, 3, 60–63, 327

assigning styles to layout elements, 40–41

declaring section and article layout elements, 34

displaying fixed-meter bars, 49

modifying code in real time, 170–171

using with jQuery, 149, 160–161

css() function, 117, 161

CSS Selectors Test, 62

CSS Validation Service, 19

CSSWG (CSS Working Group), 60

currentTime property, 231

D
data attributes, 3, 14

databases (IndexedDB), 257

<datalist> tag, 8, 12, 136–137, 324, 361

DataTransfer object, 247

date attribute, 14

date input type, 140–141

datetime attribute, 14

datetime-local attribute, 14

366

Index

first link type, 333

fixed-meter bars, displaying, 48–49

Flash video. See audio and video

flat Cartesian surface, 182

flexibility, 106

Flexible Box Model

about, 3

alternatives to, 107

creating, 108–111

horizontally packing objects within, 114

reordering objects in, 116–117

stretching and shrinking, 112–113

vertically aligning objects within, 115

float property, 40

focus() method, 156

Font Squirrel, 80

 tag, 3, 11, 16, 80–81, 192

@font-face, 80–81

font-family property, 80–81

font-style property, 81

font-weight property, 81

<footer> tag, 12, 26, 27, 30–31, 325, 336

forced height/width, 114–115

form attributes, 359

form fields, 359–361

<form> tag, 13, 146–147, 324, 325, 358–359

forms, 3, 146–147

<frame> tag, 3, 16, 17

frameborder attribute, 17

<frameset> tag, 11, 16

function() method, 152–153

G
gaps, adding between columns, 122–123

GCF (Google Chrome Frame) plug-in, 22–23

general sibling combinator, 74

Geolocation API, 4, 284–289

get() method, 264

getCurrentPosition() method, 285, 287

global attributes, 56, 182, 327–329

globalAlpha attribute, 201

Google Chrome, 6, 8, 21, 221, 245, 247, 255, 312–323

Google Chrome Development Tools, 166

Google Chrome Frame, 180

Google Chrome Frame (GCF) plug-in, 22–23

Google Gears, 286, 315

Google Maps API, 282–283, 288–289

Google Speech API, 135

GPS services, 4, 284–289

elements. See also specific elements

adding CSS classes with jQuery, 160–161

applying images as borders, 90–91

changing background images, 78–79

changing opacity, 88–89

customizing font, 80–81

draggable, 235

drop zone, 235–236

examining structure and layout, 168–169

executing jQuery methods on, 152–153

formatting text overfllow inside, 82–83

manipulating via the DOM, 154–155

removing CSS classes on with jQuery, 160–161

selecting, 60–61, 64–77, 149

Elements panel, 168–169

 tag, 325, 342

email attribute, 14

email input types, 128

<embed> tag, 12, 16, 325, 351

embedding tags, 324, 349–354

encoders, 222–223

EOT (Embedded OpenType), 80

event listener breakpoints, 175

event object, 208

events. See also specific events

AppCache, 275

browser, 3, 156–157, 236–237

desktop notification, 322–323

drag-and-drop, 4, 242–247

Web Worker, 298–299

eventType, 206–209

ExplorerCanvas, 180

Extensible Hypertext Markup Language (XHTML), 11

F
fade() method, 158

fallbacks, 42–43, 285

FFmpeg, 222

<fieldset> tag, 8, 13, 325, 358

<figcaption> tag, 3, 12, 38, 52–53, 82–83, 325, 341

<figure> tag, 3, 12, 29, 38–39, 52–53, 325, 341

FileSystem API, 251

fill() method, 181, 185, 188, 190–191

fillStyle attribute, 194–195

fillText() method, 192

Firebug, 166

Firefox (Mozilla), 6, 9, 21, 166, 221, 245, 247, 311, 315

fireNetworkEvent() method, 270–271

367

Index

changing element background, 78–79

customizing scroll bars with, 92–95

 tag, 10, 15, 16, 17, 39, 53, 235, 325, 349

importScripts() method, 300–301

IndexedDB API, 251, 256–265

infobar, 316

init() method, 286

input fields, 3, 131, 132, 133, 146–147

<input> tag, 13, 136–137, 142–143, 146–147, 325, 359–360

input types

date, 140–141

email, 128

number, 126

range, 142–143

search, 130

telephone, 127

URL, 129

<ins> tag, 325

interactive summaries, 58–59

interactive tags, 324

Internet Explorer (Microsoft), 7, 9, 21, 22–23, 166, 221, 245, 247

iOS Safari, 21

Irish, Paul (Google employee), 214

<isindex> tag, 16

ISO HTML, 11

itemid attribute, 329

itemprop attribute, 329

itemref attribute, 329

itemscope attribute, 329

itemtype attribute, 329

J
JavaScript. See also WebSockets API

breakpoint, 174–175

code, 172–173, 176–177

controlling audio and video playback with, 230–231

creating Web Worker files, 294–295

Math object, 213

SQL commands in, 251

WebSockets on JavaScript client, 303

JavaScript initialization, 181

JavaScript Programmer’s Guide to Regular Expressions, 138

jQuery

about, 3, 148–149

adding CSS classes on elements, 160–161

customizing browser events, 156–157

downloading, 150

executing methods on elements, 152–153

hiding content, 158–159

gradient object, 63, 198–199

gradient.addColorStop() method, 197

gradients (color), 96–97, 194–199

H
<h1...h6> tags, 10, 325, 338

H.264 video codec, 220

<head> tag, 15, 17, 151, 325, 331

<header> tag, 12, 26, 27, 30–31, 325, 336

height attribute, 17, 40, 115, 359

help link type, 333

<hgroup> tag, 12, 28, 36, 37, 325, 338

hidden attribute, 14, 328

hide() method, 158–159, 248

high attribute, 48–49

high-level table structure, 355

hotkeys (Chrome Inspector), 167

hover() method, 156, 248

:hover pseudo-class, 95, 105

<hr> tag, 10, 15, 17, 325, 339

hreflang attribute, 13

hspace attribute, 17

HTML (Hypertext Markup Language), 8–11, 18–21, 106, 118, 162–163,
170–171

html() method, 154–155

<html> tag, 10, 13, 17, 73, 325, 331

HTML Test, 22

HTML5. See also specific topics

about, 2–5

backward compatibility, 8–9

future of, 5

of markup languages, 10–11

reference guide, 324–362

support, 22–23, 44–45

tags and attributes, 12–17

validating websites for compliance, 18–19

web browsers, 6–7, 20–21

HTML5 Test, 20–21

I
<i> tag, 10, 15, 325, 345

icon link type, 333

id attribute, 162–163, 186, 327

IDBKeyRange interface, 263

IDs, 60, 64

<iframe> tag, 8, 13, 17, 325, 350

images

applying as element borders, 90–91

on canvas, 200–203

368

Index

margin attribute, 16, 17, 40

<mark> tag, 3, 12, 54, 325, 346

markup languages, 2, 10–11

<math> tag, 213, 325, 354

max attribute, 13, 50–51, 359

measureText() method, 193

media attribute, 13, 46, 333

media types, 333

<menu> tag, 13, 15, 17, 325

messages, 306–309, 318–319

<meta> tag, 13, 17, 22, 325, 334–335

metadata tags, 324, 330–335

<meter> tag, 3, 9, 12, 48–49, 325, 362

methods. See also specific methods

calling, 149

Canvas API, 181

chaining, 149

context state, 182

direct pixel manipulation, 184

drawing, 183–184

jQuery, 149, 152–153

metrics object, 193

microdata, 329

Microsoft Internet Explorer, 7, 9, 21, 22–23, 166, 221, 245, 247

min attribute, 13, 47, 114–115, 359

Miro Video Converter (MVC), 222–225

mobile browsers, 7, 46–47, 234–235

Modernizr, 141, 145

Mojolicious, 310

month attribute, 14

Motorola Xoom, 47

mouse events, 206–209, 234

movie containers, 220

moving progress meters, 50–51

Mozilla Firefox, 6, 9, 21, 166, 221, 245, 247, 311, 315

mozRequestAnimationFrame(), 214

MP3 sound container and audio codec, 220

MP4 movie container, 220

multi-column layouts

about, 3, 107, 118–119

adding rules and gaps between columns, 122–123

auto-focusing on input fields, 133

creating, 120–121

creating drop-down lists for text input suggestions, 136–137

creating input types, 126–130, 140–145

disabling auto-completion of input text, 134

linking input fields to specific forms, 146–147

requiring values in input fields, 131

jQuery (continued)

loading, 151

manipulating elements via the DOM, 154–155

removing CSS classes on elements, 160–161

scrolling transitions, 164–165

sending custom HTML attribute data into, 162–163

showing content, 158–159

jQuery API Reference, 154

jQuery Easing plug-in, 165

jQuery global function, 148

jQuery plug-ins, 164, 165, 249

jQuery ScrollTo plug-in, 164

jQuery UI, 141, 150

K
<kbd> tag, 325, 345

Kennedy, Niall (blogger), 227

key path, 251

keyboard shortcuts (Chrome Inspector), 167

keydown() method, 156

<keygen> tag, 8, 9, 12, 325, 361

keypress() method, 156

keyup() method, 156

L
<label> tag, 13, 325, 359

language attribute, 15, 328

last link type, 333

layout elements, 40–41

<legend> tag, 325, 358

 tag, 10, 325, 340

Library (jQuery), 148–149

license link type, 333

line breaks, 55

linear gradient color, 196–197

<link> tag, 11, 13, 16, 17, 325, 332–333

list attribute, 13, 136–137, 359

load() method, 230–231

locations, displaying with Google Maps, 282–283

logMessage() function, 309

longdesc attribute, 17

loop attribute, 219

lostNetwork() function, 268–271

low attribute, 48–49

M
manifest attribute, 13

manifest file, 274–275

<map> tag, 325, 349–350

369

Index

ondisplay property, 314, 322–323

onDragEnd() function, 247

onDragOver() function, 241

onDrop() function, 247

onerror property, 314, 322–323

onEventFunction, 208

online events, 272–273

onMessage() function, 290

onOpen() function, 306

onWorkerMessage(), 293

opacity property, 88–89

open(), 269, 306

Opera, 6, 9, 21, 166, 221, 234, 311

<optgroup> tag, 326, 361

optimum attribute, 48–49

<option> tag, 16, 137, 326, 361

origin, 210

OS X Safari, 21

OTF (OpenType font), 80

<output> tag, 12, 13, 143, 308–309, 326, 362

overflow property, 92

overlay property, 95

P
<p> tag, 10, 28, 326, 339

padding property, 40

Paltanavicius, Adomas (software developer), 207

paragraph layout elements, 36–37

<param> tag, 17, 326, 351

Participatory Culture Foundation, 224

paths, 183–184, 190–191

pattern attribute, 13, 138–139, 360

Perl, 303

PHP, 303

phrasing tags, 324, 342–348

picture class, 75

pingback link type, 333

pixels, 204–205

placeholder attribute, 13, 132, 360

plane transformations, 182–183

play() method, 230–231

port object, 292

position property, 40, 89

postMessage(), 296–297

<pre> tag, 10, 17, 326, 339

prefetch link type, 333

Pretty-Print feature, 172

prev link type, 333

profile attribute, 17

restricting input values using pattern matching, 138–139

setting placeholders for input fields, 132

spanning objects horizontally across columns, 124–125

speech input, 135

multiple attribute, 13, 359

multitouch, 209

muted attribute, 219

MVC (Miro Video Converter), 222–225

N
name attribute, 16, 334–335, 359

natural height/width, 114–115

<nav> tag, 12, 27, 32–33, 326, 337

navigator.geolocation object, 284–285

navigator.onLine property, 266–267, 268–271, 273

networks, 268–271

The New Bulletproof @font-face Syntax, 80

News Ticker WebSocket Service, 310

newWorker() method, 297

next link type, 333

<noframes> tag, 16

nohref attribute, 16

<noscript> tag, 326, 346

noshade attribute, 17

Notification Constructor, 315

NotificationCenter interface, 313

Notifications API, 5

notifyMessage.cancel() method, 323

nowrap attrribute, 17

number attribute, 14

number input types, 126

O
object stores, 251, 265

<object> tag, 17, 149, 232–233, 326, 351

objects. See also specific objects

dragging out of/into web pages, 237

in flexible boxes, 112–117

in IndexedDB API, 260–265

spanning horizontally across columns, 124–125

specifying to drag, 238–239

transforming dimensions, 98–99

offline detection, 4

offline events, 272–273

offset() method, 208

OGG movie container, 220

Ogg Vorbis, 229

 tag, 13, 17, 326, 340

onclick property, 314, 322–323

onclose property, 314, 322–323

370

Index

save() method, 211, 212–213

scale function, 98–99

scheme attribute, 17

scope attribute, 13, 17

<script> tag, 13, 15, 326, 334

scroll bar, 92–95

scrolling attribute, 17

scrollTip method, 308–309

search attribute, 14

search input types, 130

search link type, 333

<section> tag, 12, 26, 27, 34–35, 326, 337

sectioning tags, 324, 336–338

<select> tag, 13, 326, 360

selection pull-downs, 360–361

selector: attribute, 63, 103–105

selectors (CSS), 49, 60–61

self.postMessage(), 291

Semantic Data Extractor, 19

semantic layout, 2, 26–29

send() method, 303

setDragImage() method, 248

setInterval() method, 214, 215, 273, 278–279

setItem() method, 252–253

setTimeout() method, 214, 215

setVersion() method, 259

SGML (Standard Generalized Markup Language), 10

shadow effects, 86–87

shape attribute, 16

shapes, drawing, 183

show() method, 158–159, 314, 319

sibling elements, 61, 74–75

sidebar link type, 333

size attribute, 13, 17

skew function, 98–99

slide() method, 158

<small> tag, 15, 326, 343

sound, 228–229

sound containers, 220

<source> tag, 219, 226–227, 228–229, 326, 353

 tag, 56, 124, 326, 348

speech input, 135

Speex, 229

spellcheck attribute, 14, 57, 328

sprite sheet, 203

SQL commands, 251

src attribute, 80–81, 226–227

srcdoc attribute, 13

<progress> tag, 3, 9, 12, 50–51, 326, 362

properties. See specific properties

pseudo-classes, 61, 70–73, 76

“Puckman” animation, 217

put() method, 261

putImageData() method, 205

Q
<q> tag, 326, 343

QuirksMode.org CSS tests, 62–63

R
radial gradient color, 198–199

range, 263

range attribute, 14

range input type, 142–143

readonly attribute, 360

ready() method, 152–153

readyState property, 230–231

rectangles, 188–189

reencoding, 222, 224–225

reference guide, 324–362

reference rendering test, 62

regular expression, 138

rel attribute, 13

Relay WebSocket Service, 310

removeAttr() method, 154–155

removeItem() method, 253

requestAnimationFrame() method, 215

requestPermission() method, 313, 316–319

required attribute, 13, 131, 360

Resources panel (Chrome Inspector), 173

restore() method, 211, 212–213

reversed attribute, 13

rotate() method, 98–99, 212–213

rows, 357

<rp> tag, 12, 326, 347

<rt> tag, 12, 326, 347

<ruby> tag, 8, 9, 12, 326, 347

rulers, adding in between columns, 122–123

rules (CSS), 60

rules attribute, 17

S
<s> tag, 15, 326, 343

Safari (Apple), 7, 9, 166, 221, 245, 247

sameless attribute, 13

<samp> tag, 326, 345

sandbox attribute, 13

371

Index

testNetwork() function, 268–271, 273

testXHR() function, 273

text attribute, 11, 16, 328

<textarea> tag, 13, 95, 326, 361

text-based input types, 360

text-shadow.column-count, 83

<tfoot> tag, 17, 326, 357

<th> tag, 17, 326, 356

<thead> tag, 17, 326, 357

Theora video codec, 220

<time> tag, 8, 9, 12, 14, 326, 344

Time WebSocket Service, 310

time-based input types, 360

timing value, 103–105

<title> tag, 10, 75, 139, 326, 328, 331

<tr> tag, 17, 326, 356

<track> tag, 326, 353

transform property, 49, 61, 98–99

transition property, 98–99, 100–101

transitional tags, 11

translate() method, 98–99, 212–213

<tt> tag, 3, 10, 16

TTF (TrueType font), 80

type attribute, 13, 17, 70–71, 135, 136–137, 138–139

U
<u> tag, 3, 16, 346

UI (user interface) tags, 3

 tag, 10, 17, 326, 340

up link type, 333

update() method, 275, 278–279

url attribute, 14

URL input types, 129

user interaction attributes, 328

user selection, 77

users

displaying current location with Google Maps, 288–289

editing content, 56

requesting current location, 286–287

requesting permission to display desktop notifications, 316–317

spell-checking content, 57

useWhileOffline class, 306

useWhileOnline class, 306

V
valign attribute, 17

value attribute, 48–49, 50–51

valuetype attribute, 17

srcDragElement global variable, 242–243

standalone tags, 10

Standard Generalized Markup Language (SGML), 10

standards (HTML), 8–9

standby attribute, 17

static HTML5, 5

step attribute, 13

storage databases, 4

store.openCursor() method, 262–263

strict tags, 11

<strike> tag, 3, 16

stroke() method, 181, 185, 190–191

stroke rectangle, 188

strokeStyle attribute, 194–195

strokeText(), 192

 tag, 15, 326, 342

<style> tag, 13, 41, 326, 327, 333

stylesheet link type, 333

<sub> tag, 326, 344

submit() method, 156

<summary> tag, 58–59, 325

<sup> tag, 326, 344

support. See browser support

<svg> tag, 326, 354

swapCache() method, 275, 278–279

synchronization, 4

syntax (CSS), 60–61

T
tabindex attribute, 328

<table> tag, 17, 107, 326, 355

table tags, 324, 355–357

tags. See also specific tags

about, 324–326

embedding, 349–354

grouping, 339–341

HTML, 10

metadata, 330–335

new and changed, 12–15

obsolete, 16–17

phrasing, 342–348

sectioning, 336–338

table, 355–357

target attribute, 13, 17

<tbody> tag, 17, 326, 357

<td> tag, 17, 326, 356

tel attribute, 14

telephone input types, 127

372

Index

falling back from non-web Worker browsers, 300–301

launching events from web applications, 298–299

linking to web applications, 296–297

WebKit, 7

webkitRequestAnimationFrame(), 214

WebM movie container, 220

WebOS, 21

“Website Offline” fallback page, 280–281

websocket.addEventListener() method, 305

websocket.send() method, 307

WebSockets API

about, 4

creating clients, 304–305

displaying messages, 308–309

interacting with services, 310–311

sending messages, 306–307

week attribute, 14

WHATWG (Web Hypertext Application Technology Working Group), 2, 11

width attribute, 17, 40, 91, 114

window.open() function, 163

window.WebSocket object, 304–305

Windows Phone 7, 21

worker object, 296–297

worker.addEventListener(), 292

workflow notifications, 312

X
x-axis, 210–213

XHTML (Extensible Hypertext Markup Language), 11

XMLHttpRequest(), 268–271, 295. See also WebSockets API

xpos, 86–87

Y–Z
y-axis, 210–213

Yip, 315

ypos, 86–87

z-index property, 40, 88–89

<var> tag, 326, 345

version attribute, 17

video. See audio and video

<video> tag, 12, 43, 218–219, 226–233, 326, 352

VideoJS, 232–233

vlink attribute, 16

Vorbis audio codec, 220

VP8 video codec, 220

vspace attribute, 17

W
W3C DOM Level 2 MouseEvent object, 234

W3C Markup Validation Service, 18

W3C Quality Assurance, 19

watch expressions, 178–179

WAV sound container, 220

<wbr> tag, 12, 55, 326, 348

web applications, 296–299

web browsers

fallbacks for outdated, 42–43

Flexible Box Model, 107

HTML5, 6–7

identifying whether they are online, 266–267

multi-column layouts, 119

non-Web Worker, 300–301

resizing websites for mobile, 46–47

validating, 20–21, 62–63

web engines, 61

Web Hypertext Application Technology Working Group (WHATWG), 2, 11

Web Inspector, 166

web pages, 24–25, 237

web safe fonts, 80–81

web servers, 303

Web SQL Database API, 251

Web Storage API, 4, 250–255

Web Workers

about, 4

creating JavaScript files, 294–295

	HTML5: Your visual blueprint for designing rich web pages and applications
	Credits
	About the Author
	Author's Acknowledgments
	How to Use This Visual Blueprint Book
	Table of Contents
	Chapter 1: Introducing HTML5
	Introducing HTML5
	Understanding HTML5 Web Browsers
	Understanding Backward Compatibility
	Understanding the History of Markup Languages
	Introducing the New and Changed HTML5 Tags and Attributes
	Understanding Obsolete HTML Tags and Attributes
	Validate a Website for HTML5 Compliance
	Validate a Web Browser for HTML5 Support
	Support HTML5 in Internet Explorer With a Plug-In

	Chapter 2: Getting Started with HTML5 Page Layout
	Create an HTML5 Web Page
	Understanding the Semantic Layout in HTML5
	Declare Header and Footer Layout Elements
	Declare a Navigation Layout Element
	Declare Section and Article Layout Elements
	Declare Heading and Paragraph Layout Elements
	Declare Figure and Aside Layout Elements
	Assign CSS Styles to Layout Elements
	Provide a Fallback for Outdated Web Browsers
	Announce HTML5 Support
	Resize Your Website for Mobile Web Browsers

	Chapter 3: Using New HTML5 User Interface Tags and Attributes
	Display a Fixed-Meter Bar
	Display a Moving Progress Meter
	Add a Caption to a Figure
	Highlight Text
	Specify Safe Line Breaks in Long Words
	Allow the User to Edit Content
	Spell-Check User Content
	Declare an Interactive Summary and Details Layout Element

	Chapter 4: Styling with CSS3
	Introducing CSS3
	Validate a Web Browser for CSS3 Support
	Select an HTML Element Using Its Class or ID
	Select an HTML Element Using an Attribute
	Select an HTML Element Using a Specific Attribute Value
	Select an HTML Element Using a Partial Attribute Value
	Select an HTML Element Using the Structural Type Pseudo-Class
	Select an HTML Element Using the Structural Child Pseudo-Class
	Select an HTML Element By Its Sibling Element
	Select HTML Elements Using a Negating Pseudo-Class
	Select HTML Elements by User Selection
	Change an Element's Background Image
	Customize an Element's Font
	Format Text Overflow Inside an Element

	Chapter 5: Enhancing Your Web Page Visually with CSS3
	Round Border Corners
	Add a Shadow Effect
	Change an Element's Opacity
	Apply an Image as an Element Border
	Customize a Scroll Bar with Images
	Apply a Color Gradient
	Transform Object Dimensions
	Transition Between Styles
	Create Simple Animations

	Chapter 6: Creating Boxes and Columns with CSS3
	Introducing the Flexible Box Model
	Create a Horizontal Flexible Box Model
	Create a Vertical Flexible Box Model
	Stretch and Shrink Objects in a Flexible Box
	Horizontally Pack Objects within a Flexible Box
	Vertically Align Objects within a Flexible Box
	Reorder Objects in a Flexible Box
	Introducing Multi-Column Layouts
	Create a Multi-Column Layout
	Add a Ruler and Gap in Between Columns
	Span Objects Horizontally Across Columns

	Chapter 7: Create a Number Input Type
	Create a Number Input Type
	Create a Telephone Input Type
	Create an Email Input Type
	Create a URL Input Type
	Create a Search Input Type
	Require a Value in an Input Field
	Set a Placeholder for an Input Field
	Auto-Focus on an Input Field
	Disable Auto-Completion of Input Text
	Using Speech Input
	Create a Drop-Down List for Text Input Suggestions
	Restrict Input Values Using Pattern Matching
	Create a Date Input Type
	Create a Range Input Type
	Create a Color Input Type
	Link an Input Field to a Specific Form

	Chapter 8: Using jQuery with HTML5
	Introducing jQuery
	Download jQuery
	Load jQuery
	Execute jQuery Methods on Elements
	Manipulate HTML Elements Via the DOM
	Customize Browser Events with jQuery
	Hide and Show Content with jQuery
	Add and Remove CSS Classes on Elements with jQuery
	Send Custom HTML Attribute Data Into jQuery
	Using Scrolling Transitions with jQuery

	Chapter 9: Inspecting and Debugging Your Website
	Launch the Chrome Inspector
	Examine Elements’ Structure and Layout
	Modify HTML and CSS Code in Real Time
	Examine JavaScript Code
	Add a JavaScript Breakpoint
	Step Through JavaScript Code
	Add a Watch Expression

	Chapter 10: Drawing with the HTML5 Canvas
	Introducing the HTML5 Canvas
	Declare a Canvas Element
	Draw Basic Rectangles on the Canvas
	Draw Paths on the Canvas
	Draw Text on the Canvas
	Using Solid Color on the Canvas
	Using Linear Gradient Colors on the Canvas
	Using Radial Gradient Colors on the Canvas
	Draw an Image on the Canvas
	Scale a Canvas Image
	Crop a Canvas Image
	Query Individual Canvas Pixels
	Track Mouse Activity on the Canvas
	Translate the X- and Y-Axes
	Rotate the X- and Y-Axes
	Create Animations on the Canvas

	Chapter 11: Adding HTML5 Multimedia
	Introducing HTML5 Audio and Video
	Understanding Audio and Video Formats
	Install a Movie Encoder
	Reencode Movies with the Miro Video Converter
	Play Movies with the HTML5 Video Element
	Play Sound with the HTML5 Audio Element
	Control Audio and Video Playback with JavaScript
	Embed a Movie Player with VideoJS

	Chapter 12: Using Drag and Drop in HTML5
	Introducing Drag and Drop in HTML5
	Specify Objects to Drag
	Specify a Drop Zone
	Handle the Drag-and-Drop Events
	Visually Enhance the Drag-and-Drop Experience

	Chapter 13: Storing Data Using a Client-Side Database
	Introducing Client-Side Storage in HTML5
	Store Data Using the Web Storage API
	Retrieve Data from the Web Storage API
	Using the Correct IndexedDB API
	Open an IndexedDB Database
	Create a New IndexedDB Object Store
	Store an Object Using the IndexedDB API
	Retrieve Objects Using the IndexedDB API
	Delete an Object Using the IndexedDB API
	Delete an IndexedDB Object Store

	Chapter 14: Providing Offline Access to Web Applications
	Identify Whether the Browser is Online
	Identify Whether the Network is Online
	Listen for Online and Offline Events
	Introducing the Application Cache
	Create an Application Cache Manifest
	Update the Application Cache
	Create a "Website Offline" Fallback Page

	Chapter 15: Using Geolocation
	Display a Specific Location with Google Maps
	Understanding Geolocation and GPS Services
	Request the User's Current Location
	Display the User's Current Location with Google Maps

	Chapter 16: Running Secondary JavaScript Threads Using Web Workers
	Introducing Web Workers
	Create a Web Worker JavaScript File
	Link a Web Worker to Your Web Application
	Launch a Web Worker Event from Your Web Application
	Falling Back for Non-Web Worker Browsers

	Chapter 17: Communicating with WebSockets
	Introducing WebSockets
	Create a WebSocket Client
	Send WebSocket Messages
	Display WebSocket Messages
	Interact with a WebSocket Service

	Chapter 18: Displaying Desktop Notifications
	Introducing Desktop Notifications for Chrome
	Request User Permission to Display Desktop Notifications
	Launch a Desktop Notification Message
	Customize the Desktop Notification UI
	Listen for Desktop Notification Events

	Appendix A: HTML5 Reference
	HTML5 Reference
	HTML Global Attributes
	HTML Metadata Tags
	HTML Sectioning Tags
	HTML Grouping Tags
	HTML Phrasing Tags
	HTML Embedding Tags
	HTML Table Tags
	HTML Form Tags

	Index

