

HTML5 Programmer’s Reference

Jonathan Reid

HTML5 Programmer’s Reference

Copyright © 2015 by Jonathan Reid

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-6367-8

ISBN-13 (electronic): 978-1-4302-6368-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Victor Sumner
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan

Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew
Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Christine Ricketts and Melissa Maldonado
Copy Editor: James Fraleigh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com

eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

For my husband Steve, who is always there for me.

Contents at a Glance

About the Author
About the Technical Reviewer
Acknowledgments
Introduction

 Part I: HTML5 in Depth
 Chapter 1: Welcome to HTML5
 Chapter 2: HTML5 Elements
 Chapter 3: HTML5 APIs
 Chapter 4: Canvas
 Chapter 5: Related Standards
 Chapter 6: Practical HTML5

 Part II: HTML5 Reference
 Chapter 7: HTML5 Element Reference
 Chapter 8: HTML5 API Reference
 Chapter 9: Canvas Reference
 Appendix A: JavaScript Tips and Techniques

Index

Contents

About the Author
About the Technical Reviewer
Acknowledgments
Introduction

 Part I: HTML5 in Depth
 Chapter 1: Welcome to HTML5
What Is HTML5?
A Brief History of HTML

Enter Hypertext
Enter Markup Languages
Hypertext Markup Language Is Born
The Browser Wars
Standards to the Rescue
The Continuing Evolution of HTML
The Formation of the WHATWG and the Creation of HTML5

HTML5 Features
New Tags
JavaScript APIs
Related Standards

Summary
 Chapter 2: HTML5 Elements
Functionality, Semantics, and the Evolution of HTML
Sections
Grouping
Semantics

Audio and Video Content
Embedded Audio Content
Embedded Video Content
Specifying Multiple Sources

Interactive Elements
Dialogs
Progressive Disclosure

Forms
New Form Elements
New Form Element Attributes
New Input Types

Deprecated Elements and Obsolete Parameters
Summary

 Chapter 3: HTML5 APIs
Server-sent Events

Client Setup
Sending Events from the Server
Origin Limitations
Security
An Example Application

WebSockets
Connecting to the Server: Inside the WebSocket Handshake
Receiving Information from the Server
Sending Information to the Server
Closing the Connection
An Example WebSocket Application

Cross Document Messaging/Web Messaging
Web Storage

Methods and Syntax
Privacy and Web Storage

Drag and Drop
The draggable Property
Drag-and-Drop Events

The dataTransfer Object
Drag-and-Drop API Examples

Web Workers
Creating Web Workers
Inside a Web Worker
A Simple Example of a Web Worker
Common Use Cases

Summary
 Chapter 4: Canvas
The Canvas Drawing Mode
The Canvas Drawing Context
Basic Drawing Commands
Gradients and Patterns

Gradients
Patterns

Images
Saving Canvas Contents
Text
Shadows
Saving Drawing State
Compositing
Clipping
Transformations
Animation
Interaction
Summary

 Chapter 5: Related Standards
Geolocation

Privacy Considerations

Geolocation API

Animation Timing
Selectors
Device Orientation

The compassneedscalibration Event
The deviceorientation Event
The devicemotion Event

WebGL
SVG
Summary

 Chapter 6: Practical HTML5
Browser Support

A Crash Course in Feature Detection
Building a Feature Detection Script
Working with Broken or Missing HTML5 Implementations

Example Project: MobiDex, a Mobile Dexterity Puzzle
The Playing Field UI
Generating Obstacles and Targets

Summary

 Part II: HTML5 Reference
 Chapter 7: HTML5 Element Reference
Sections

The article Element
The aside Element
The footer Element
The header Element
The nav Element
The section Element

Grouping
The figure and figcaption Elements
The main Element

Semantics
The bdi Element
The data Element
The mark Element
The ruby, rp, and rt Elements
The time Element
The wbr Element

Audio and Video Content
The audio Element
The source Element
The track Element
The video Element

Interactive Elements
The details and s ummary Elements

Form Elements
The datalist Element
The meter Element
The output Element
The progress Element

 Chapter 8: HTML5 API Reference
Server-sent Events
WebSockets
Cross-Document Messaging/Web Messaging
Web Storage
Drag and Drop

Specifying Draggable Elements: The draggable Property
Handling the Interactions: Drag-and-Drop Events
Specifying Drop Targets
The dataTransfer Object

Web Workers
 Chapter 9: Canvas Reference
The canvas Element

The Drawing Context
Defining Paths
Basic Drawing Commands
Stroking and Filling Paths
Drawing Rectangles
Gradients and Patterns
Images
Text
Shadows
Compositing
Clipping
Transformations
Saving and Restoring Canvas State

 Appendix A: JavaScript Tips and Techniques
Code Formatting
JavaScript Rewards Verbosity
Comment Annotations
Using Objects as Event Handlers
Promises

Chaining Promises
Returning Values from Promises
Browser Support for Promises
Further Reading

Index

About the Author

Jonathan Reid has been building web applications professionally for almost two
decades. He has built everything from simple informational websites all the way up to
complex scientific and business applications, all using HTML, CSS, and JavaScript. In
addition, Jon has worked at some of the top interactive agencies in the United States
(EffectiveUI, Crispin Porter + Bogusky), so he knows what it is like to implement
difficult and complex requirements with web technologies on a tight deadline. He
currently works for Google, where he is a Senior User Experience Engineer on Google
Web Designer, an HTML5 authoring tool. Jon lives in Sunnyvale with his husband of 15
years.

About the Technical reviewer

Victor Sumner is a senior software engineer at D2L Corporation, where he helps to
build and maintain an integrated learning platform. As a self-taught developer, he is
always interested in emerging technologies and enjoys working on and solving
problems that are outside his comfort zone.

When not at the office, Victor has a number of hobbies, including photography,
horseback riding, and gaming. He lives in Ontario, Canada, with his wife, Alicia, and
their two children.

Acknowledgments

Writing a book is never a solitary activity. I had a lot of help along the way.
Pushkar Joshi, my colleague at Google, provided input on the Canvas chapter as

well as some great suggestions for topics to include in the chapter. He was also kind
enough to look through the chapters and provide feedback.

Victor Sumner did a great job as the technical reviewer, going through every line of
code in this book and testing them thoroughly. Code reviews are practically a way of
life for me, so I value my reviewers greatly, and Victor did a great job.

The rest of the Google Web Designer team, led by Sean Kranzberg, Tony Mowatt,
and San Khong, put up with me obsessing about this book off and on for over a year.
Thanks, everyone.

My husband, Steve, was patient while I barricaded myself in our home office on
Saturdays to write.

And as always, my editors at Apress were supportive, patient, and diligent.

Introduction

The World Wide Web has existed for almost 25 years now. It started as a simple
proposal by Tim Berners-Lee and Robert Cailliau as a way for the scientists at CERN
to publish papers easily, but it rapidly grew into a platform that captured the
imagination of the world.

The Web may have started out as a simple document-publishing platform, but it
quickly became clear that it was destined to become much more than that. As people
demanded more interactivity and richer experiences, the limits of the original HTML
standards quickly became obvious. The advent of other technologies like Cascading
Style Sheets and JavaScript helped, but developers were still spending extensive
resources on building the experiences that people wanted.

HTML5 is meant to help solve some of these problems. The fifth incarnation of the
HTML standard, HTML5, is designed to be both feature rich and easier to work with.
Prior versions of HTML focused on how best to standardize document markup, which
was a great way to bring standards to the chaos of the early Web. HTML5, however, is
focused on providing a platform for building rich interactions. Much of HTML5 was
also specifically designed with mobile technologies in mind, while older versions of
HTML were not.

What This Book Covers
This book is designed to be your go-to reference for HTML5 features. It is divided into
two sections.

Part I, “HTML5 in Depth,” has chapters that provide detailed examinations of the
HTML5 features, including multiple examples and the current level of support at press
time.

Chapter 1, “Welcome to HTML5,” is a history lesson, explaining
how the World Wide Web and its technologies evolved, and how
HTML5 came to be. This will hopefully help you understand why
HTML5 is so much different from previous HTML standards, and
will give you better insight in how HTML5 is structured.

Chapter 2, “HTML5 Elements,” covers the new semantic tags in

HTML5. As with predecessor standards, HTML5 includes a new
set of tags for marking up the content in your documents. This is
where you’ll find out how to use the new audio and video tags, as
well as a host of other HTML5 features.

Chapter 3, “HTML5 APIs,” dives into the JavaScript APIs that are
specified in the HTML5 standard. You’ll learn about new ways for
your HTML5 applications to communicate and save data.

Chapter 4, “Canvas,” covers one of the most innovative features of
HTML5: the canvas element. Here you’ll learn how to use this
element to draw, modify images, and create animations.

Chapter 5, “Related Standards,” covers several JavaScript APIs
that are related to HTML5 (and frequently used with HTML5) but
are not actually a part of the HTML5 standard. These APIs also
tend to have a strong mobile focus.

Chapter 6, “Practical HTML5,” covers actually working with
HTML5 in production projects. It covers detecting features and
applying shims, and includes a complete HTML5 mobile game
designed and built from the ground up.

Part II, “HTML5 Reference,” contains reference chapters for all of the HTML5
features covered in Part 1. Each chapter is designed to provide an at-a-glance reference
for each feature and includes a brief description of the feature, how it is used (including
both syntax and examples), and where to find its standards.

Chapter 7 is the reference chapter for HTML5 elements.

Chapter 8 is the reference chapter for the HTML5 JavaScript APIs.

Chapter 9 is the reference chapter for the canvas element.

What You Need to Know
Though there are lots of detailed examples throughout the book, it is written as a
reference and not as a tutorial. I’m assuming you have an intermediate understanding of
how browsers work as well as how to work with JavaScript, and at least a basic
understanding of CSS and the network protocols involved in HTTP. You should be
comfortable creating and editing web pages and writing your own CSS and JavaScript.

Running the Code Samples
There are extensive code samples throughout the book. You can download the samples
from www.apress.com, or you can type them in by hand. Many of the examples can
be run by simply loading the file into a web browser using the browser’s File menu.

Some examples, though, must be run from an actual server, either due to security
limitations or because you will want to view them on a mobile device. To build and test
all the examples in the book, I’ve used Aptana Studio, available for free at
http://www.aptana.com. Aptana Studio comes with an internal debugging
server that you can use to run any of these examples. If you prefer a stand-alone
solution, I’ve had very good luck with XAMPP, a stand-alone installation of the Apache
web server, along with optional components like MySQL, PHP, and Perl. And of course
both MacOS and Windows come with their own web server solutions that you can
activate and use, as do most standard Linux distributions.

Finally, be sure to check out the “Comment Annotations” section in Appendix A,
“JavaScript Tips and Techniques,” for an explanation of the format of the examples and
how to read the annotations.

http://www.apress.com
http://www.aptana.com

PART I

HTML5 in Depth

CHAPTER 1

Welcome to HTML5

In this chapter, I’m going to dive into the history of HTML and how HTML5 came to be.
I’ll talk about the evolution of HTML from a simple proposal all the way to its current
version, including reviews of related technologies. I’ll also cover what HTML5 is, its
scope, how it differs from previous versions, and how it fits in with other technologies.

What Is HTML5?
Hypertext Markup Language, or HTML, has been with us since 1989. Versions of
HTML prior to 5 only defined markup tags for content: lists, paragraphs, headers,
tables, and so on. HTML5, though, defines much more. It has new content tags (such as
<audio> and <video>) but it also defines complex interactions like dragging and
dropping, new network interfaces like server events, and even has new asynchronous
functionality like web workers. HTML specifications prior to HTML5 also defined the
tags in SGML (more on that in a bit), but the HTML5 specification is careful only to
define tags in terms of annotated content and expected behavior. And because HTML5
is a big part of a new set of advanced web technologies, many times you’ll see articles
on the Web or in popular media that mistakenly include technologies in HTML5 that
have nothing to do with HTML.

So what exactly is HTML5? Why does HTML5 define so much more than tags?
How did HTML5 come about? Why is the HTML5 standard such a big departure from
previous standards, both in terms of definition and scope? To answer these questions,
I’ll start with a quick review of how HTML came to be in the first place.

A Brief History of HTML

HTML’s humble beginnings go all the way back to 1989. At that time the most common
ways of sharing information online was via e-mail, Usenet newsgroups, and public FTP
sites. E-mail and newsgroups made it easy for people to communicate directly with one
another, and FTP sites provided a way for people to provide access to sets of files. The
main issue is that all of these forms of sharing information required different software,
and a certain level of skill to be able to actually navigate the Internet—though at that
time the Internet was considerably smaller than it is today.

Tim Berners-Lee proposed a better solution in 1989. At the time he was working at
the European Organization for Nuclear Research (known better by its French acronym
CERN, for Conseil Européen pour la Recherche Nucléaire), and he was keenly aware
of the need for a better way to share information online. In particular, Berners-Lee
needed to solve the problem of sharing technical documents online. CERN produced
huge amounts of technical documentation, ranging from nuclear physics papers intended
for publication to internal policy documents, and they needed a solution that would
work for all of these different use cases.

Berners-Lee found himself trying to solve two problems at once:

He needed a solution that provided a way of visually formatting the
information that CERN scientists were producing. This information
could take the form of documents such as published papers as well
as data observed during experiments.

He needed a solution that was capable of handling cross-references
and embedding graphics and other media. Many of the documents
and at CERN included diagrams and graphics and referenced one
another, or other internal data sources, or even external documents
and data sources.

Fortunately, Berners-Lee already had some experience with solving these problems.
Back in 1980 when he was a contractor at CERN he had built a prototype system called
ENQUIRE that provided some of the functionality the organization needed, but failed to
scale well. It did, however, employ a very important key concept: hypertext.

Enter Hypertext
Hypertext is text with references to other information that the user can activate to gain
immediate access to that information. This includes information contained within the
same document as well as information in external documents or other data sources.
These links are referred to as hyperlinks. In the case of most modern computers,
hypertext is displayed on the screen and hyperlinks are activated by clicking them with a

mouse or (in the case of touchscreens) tapping them with a finger. The term hypermedia
is an extension of the concept of hypertext to include not only hyperlinks but graphics,
audio, video, and other sources of information.

The concept of hypermedia has been around for quite some time. In 1945 American
engineer and inventor Vannevar Bush wrote an essay titled “As We May Think” for the
Atlantic Monthly. As part of the essay Bush proposed a “memory extender” or
“memex,” a device that people can use to store all of their personal information
sources: books, records, albums, and so on. The memex would provide a person with
access to all of their information through the use of a set of bookmarks, and could be
expanded as needed.

 Tip You can read “As We May Think” on the Atlantic’s web site at
www.theatlantic.com/magazine/archive/1945/07/as-we-may-
think/303881/.

In 1960 Ted Nelson founded Project Xanadu in an attempt to build a word
processing system capable of storing multiple versions of many documents that would
allow the user to move through those documents in a nonsequential fashion. He referred
to these nonsequential paths as “zippered lists” and posited that by using these zippered
lists, new documents could be formed from pieces of other documents in a process he
called “transclusion.” In 1963 Nelson coined the terms hypertext and hypermedia,
which were first published in his paper “Complex Information Processing: A File
Structure for the Complex, the Changing and the Indeterminate” (available at
http://dl.acm.org/citation.cfm?id=806036). At that time Nelson used
hypertext to refer to editable text rather than a text-based cross-reference, so the term
has had some semantic drift since Nelson first coined it.

 Tip Project Xanadu is alive and well today at www.xanadu.com/, and even has a
demonstration of a “xanadoc” that is created on demand via transclusion.

In 1962 American engineer and inventor Douglas Englebart began work on his
“oNLine System” or “NLS.” The NLS was the first system that included most of the
modern computer features available today: a pointing device, windows, separate
programs for presenting different kinds of data, information organized by relevance,
hypermedia links, and so forth. Englebart demonstrated the NLS at the Fall Joint
Computer Conference in San Francisco in December 1968. This demonstration was
groundbreaking not only because it was the first to show all of these modern features in

http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://dl.acm.org/citation.cfm?id=806036
http://www.xanadu.com/

use at once, but also because it used state-of-the-art video conferencing technology to
show the user interface for NLS as Englebart used it. Because the demonstration was so
groundbreaking in scope, it is often referred to as “The Mother of All Demos.”

 Tip The demonstration can be seen on Stanford University’s web site at
http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html

Berners-Lee had built ENQUIRE on the concept of hypertext (Figure 1-1). Within
ENQUIRE a given document was represented by a single page of information called a
“card,” which was essentially a list of hyperlinks defining what the document included,
how it was used, a description, and who the authors were. The links could easily be
followed by activating them, allowing the user to explore the entire network of
documents.

http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html

Figure 1-1. A Screenshot of ENQUIRE

In this respect, ENQUIRE was similar to an online version of a library’s card
catalog system, and unfortunately required a significant amount of effort to keep
updated.

ENQUIRE also didn’t address the requirement for visually formatting documents.
However, CERN already made use of a possible solution in the form of a document
markup language.

Enter Markup Languages
Document markup languages are programming languages that provide a way to
annotate (or “mark up” as an editor marks up a document under review) a document in
such a way that the annotations are syntactically distinct from the main content
document. Markup languages exist in three broad categories based on the goal of the
annotations:

Presentational markup languages are used to describe how a
document should be presented to the user. Most modern word
processors use presentational markup in the form of binary codes
embedded in the document. Presentational markup is typically
designed for a specific program or display method and thus not
meant to be human readable.

Procedural markup languages provide annotations that specify how
the contents of the document should be processed, often in the
context of layout and typesetting for printing. One of the most
common examples of a procedural markup language is PostScript.

Descriptive markup languages are used to annotate the document
with descriptions of its content. Descriptive markup does not give
any indication of how the contents should be processed or
displayed; that is left up to the processing agent.

Document markup languages have existed for decades. The first widely known
document markup language was presented by computer scientist William Tunnicliffe in
1967, but IBM researcher Charles Goldfarb is typically called the “father” of modern
markup languages because of his invention of the IBM Generalized Markup Language
(GML) in 1969. Goldfarb was responsible for pushing IBM to include GML in its
document management solutions. GML would eventually evolve into Standard
Generalized Markup Language (SGML, which became an ISO standard (ISO 8879:1986

Information processing—Text and office systems -- Standard Generalized Markup
Language) in 1986 with Goldfarb as the chair of the committee.

SGML isn’t a language you use directly; instead it is a “meta-language”—a language
that is used to define other languages. In this case, SGML is used to define markup
languages that can then be used to describe documents. Specifically, SGML requires
that markup languages describe a document’s structure and content attributes (vs.
describing how to process the document), and that the markup languages be rigorously
defined so that processing and viewing software can be built that follows the same
rules. Languages defined by SGML are referred to as “SGML applications” (not to be
confused with applications that run on computers and perform tasks). Common SGML
applications include XML (the eXtensible Markup Language) and DocBook (a markup
language designed for technical documentation).

CERN had been using an SGML application called SGMLguid) for marking up its
documents, and Berners-Lee recognized that a combination of SGMLguid with hypertext
could be the solution he needed for CERN’s document management problems.

Hypertext Markup Language Is Born
In late 1989, Berners-Lee proposed a pilot project that would employ hypertext and a
simple markup language as its basis. Berners-Lee envisioned that hyperlinks would be
the key feature that tied all of the disparate documents together:

HyperText is a way to link and access information of various kinds as a
web of nodes in which the user can browse at will. Potentially, HyperText
provides a single user-interface to many large classes of stored
information such as reports, notes, data-bases, computer documentation
and on-line systems help.

from “WorldWideWeb: Proposal for a HyperText Project,” 12 November 1990
(www.w3.org/Proposal.html)

This proposal outlined a simple client/server network protocol for the new “web”
of documents and how they would function together to transfer information from the
server to the viewing client. Berners-Lee dubbed the new protocol “the Hypertext
Transfer Protocol” or HTTP. The project was approved, and Berners-Lee and his team
began working on what would eventually become the World Wide Web.

After creating both client and server software for the new document system,
Berners-Lee published the first document that defined a basic set of tags that could be
used to mark up documents that were to be included in the new online document web.

http://www.w3.org/Proposal.html

This document, titled “HTML Tags,” defined 18 tags that could be used to mark up the
contents of a document in such a way that the new web clients would be able to parse
and display them. Almost all of the tags came from SGMLguid except one: the anchor
tag. The anchor tag was the implementation of the hypertext linking feature that was so
important to the new system.

 Tip You can read the original “HTML Tags” document in the W3C’s historical
archive at www.w3.org/History/19921103-
hypertext/hypertext/WWW/MarkUp/Tags.html.

This first document was a simple list of tags with a description of how to use them
to describe the content of a document. Later the tags were formalized as an SGML
application in 1993 with the publication of “Hypertext Markup Language
(HTML)”(www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt) as a
working draft submitted to the Internet Engineering Task Force (IETF). This draft
expired and was followed by a competing draft titled “HTML+ (Hypertext Markup
Format)” later that same year, authored by Dave Raggett.

OPEN AND COLLABORATIVE

Tim Berners-Lee worked to keep the HTML definition process open and
collaborative, leveraging the knowledge and experience of many participants.
These early collaborations paved the way not only for the creation of the entire
web technology ecosystem that would be designed through public collaboration,
but also for the creation of the core groups that would maintain the projects.

The Browser Wars
While working on the definition of HTML, Tim Berners-Lee was also working on the
first software that could make use of the new web of documents. In 1991 Berners-Lee
released the first web browser, “WorldWideWeb,” for the NeXTStep platform. There
was significant interest from other programmers in developing their own web browsers,
so in 1993 Berners-Lee released a portable C library called libwww to the public
domain so that anyone could work on building web browsers. (The library was
available prior to that as part of the larger WorldWideWeb software application.)

By this point there were several experimental web browser projects on multiple
platforms. Some of these were simple text-based browsers that could be used from any

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

terminal, such as the Lynx browser. Others were graphical applications for use in the
graphic desktops of the time.

One of the most popular of the graphical applications was Mosaic, developed at the
National Center for Supercomputing Applications (NCSA) at the University of Illinois.
Work on Mosaic was begun in late 1992 by Marc Andreesen and Eric Bina, with the
first release in 1993.

In 1994 Andreesen left the NCSA to found a company called Mosaic
Communications, where they built a new browser from entirely new code. The new
browser was called Netscape Navigator (and eventually Mosaic Communications was
renamed to Netscape Communications).

The actual Mosaic code base itself was licensed from the NCSA by a company
called Spyglass, Inc. Spyglass never did anything with the code, and in 1995 Microsoft
licensed the code from them, modified it, and renamed it Internet Explorer.

Both Netscape and Microsoft began expanding the capabilities of their browsers,
adding new HTML tags and other features. Netscape added JavaScript (codenamed
“mocha” and originally released as “LiveScript”) in Navigator in 1995. Microsoft
quickly followed with their own version of the same language, called JScript to avoid
trademark issues, in 1996.

Netscape Navigator and Internet Explorer both had radically different
implementations of the same features, as well as their own proprietary features. A given
HTML document could render one way in Navigator and look completely different
when rendered by Internet Explorer. Even simple HTML markup produced significantly
different visual results in the two browsers, and any attempt to do anything more
advanced was simply not possible.

This set the stage for the so-called Browser Wars. Anyone producing content for the
Web had to make a choice: choose a single browser to support, or spend significant
resources to try and support both (in many cases this meant producing two different
versions of the same content, one version for each browser). It became commonplace to
see web sites that were optimized for only one browser, with graphics indicating the
choice, as shown in Figure 1-2.

Figure 1-2. Graphics from the Browser Wars

Microsoft handily won the first round of the Browser Wars by including Internet
Explorer as a standard part of the Windows operating system. This gave Internet
Explorer a huge base of installations and little reason for people to pay for Netscape.
By 1999 Internet Explorer made up 96% of the browser usage on the World Wide Web.
Netscape Communications was acquired by AOL, and Netscape Navigator (by then
called Netscape Communicator) was mothballed.

BROWSER WARS: NETSCAPE STRIKES BACK

AOL open-sourced the Netscape Communicator code base and entrusted it to the
newly formed nonprofit organization named the Mozilla Foundation. The Mozilla
Foundation continued to build upon the Navigator code base as an open source
project and gained considerable momentum, adding new features to the browser
including e-mail and HTML editing features. In late 2002 a stripped-down
browser-only version of the suite was created, initially called Phoenix, then
Firebird, and then later (due to project naming conflicts) Firefox. Firefox went on
to successfully challenge Internet Explorer’s hold on the browser market in what
many people refer to as the second round of the Browser Wars.

Standards to the Rescue
Combating the fragmentation of the Web meant bringing all parties to the table and
agreeing upon technology standards everyone could build upon. Standards provided a
common ground for both browser manufacturers and content creators:

By adopting standards as part of their manufacturing process,
browser manufacturers would provide a predictable platform for
the Web.

By adapting standards as part of their coding practices, content
creators could be assured that their content would render
consistently across all browsers.

In October 1994, that’s exactly what Tim Berners-Lee did, in a move that harkened
back to his desire to keep the Web open and collaborative. He left CERN and formed
the World Wide Web Consortium (W3C), a standards organization devoted to web
technologies. The consortium was made up of anyone who wanted to participate in
defining and maintaining the standards for web technologies: companies that eventually
included Microsoft, Apple, Facebook, and Google; government organizations like
NASA and National Institute of Standards and Technologies; universities like Stanford
University and the University of Oxford; research organizations like CERN; and
nonprofit organizations like the Mozilla Foundation and the Electronic Frontier
Foundation.

The W3C standards process starts by publishing a working draft for a standard. The
consortium members can then comment on the draft, which can undergo considerable
evolution. Once the draft has solidified, a candidate recommendation is published.
Candidate recommendations are reviewed from an implementation viewpoint—how
difficult will it be to implement and use the standard. Once the implementers have had
their say, the draft moves to the proposed recommendation status. Proposed
recommendations go before the W3C advisory council for final approval. Once that
final approval is granted, the standard is given the status of an official W3C
recommendation.

Standards didn’t resolve the browser wars overnight. It took a while before
browser manufacturers implemented the standards. Microsoft in particular espoused an
“embrace and extend” philosophy in which they agreed to the standards but also
continued to add on their own proprietary technologies in an attempt to make Internet
Explorer a more attractive platform for web development. In the end, though, the
demand for consistent behavior across all browsers won out, and standards provided
the blueprint for the victory.

The Continuing Evolution of HTML
The HTML standard was initially maintained by the IETF, which published the HTML
2.0 standard in 1995 as RFC 1866.

 Note “RFC” stands for “Request for Comments,” which means the document was
published and stakeholders were invited to comment on it as part of an ongoing review
process.

The W3C took over the HTML standard in 1996. In 1997 the W3C published the
HTML 3.2 standard. This version officially deprecated several vendor-specific features
and further stabilized the standard for both browser manufacturers and content creators.
In less than a year the W3C published HTML 4.0. This version of HTML moved the
standard in the direction of purely semantic markup: many visual tags such as those that
created bold or italic tags were deprecated in favor of using Cascading Style Sheets
(CSS). The W3C published HTML 4.1 in 1999, which was essentially HTML 4.0 with
some minor edits and corrections. In 2000 HTML 4.1 because an ISO standard:
ISO/IEC 15445:2000.

All of these HTML versions were defined as SGML applications. Each tag along
with its attributes was defined using SGML rules, as show in in Listing 1-1.

Listing 1-1. SGML Definition of the UL Tag in HTML 4.1

<!ELEMENT UL - - (LI)+ -- unordered list -->
<!ATTLIST UL
 %attrs; -- %coreattrs, %i18n,
%events -->
<!ELEMENT OL - - (LI)+ -- ordered list -->
<!ATTLIST OL
 %attrs; -- %coreattrs, %i18n,
%events -->

As the standards progressed, content creators had to follow them more and more
strictly in order to guarantee consistent behavior across browsers.

THE RISE AND FALL OF XHTML

In 2008 a new SGML application was proposed that would provide a smaller and
more manageable subset of SGML directives. Called the Extensible Markup
Language, or XML, it was also meant to be used to define data markup languages.
The HTML 4 standard was quickly translated into XML, resulting in XHTML. The
XHTML 1.0 standard was published in 2000.

XHTML was meant to make the HTML language more modular and extensible.

XHTML syntax is stricter than plain HTML, and errors in XHTML markup will
cause the rendering agent to publish an error and stop rather than revert to a base
behavior and continue. XHTML was never widely adopted, however, because of
lack of backward compatibility with older content and lack of browser support.

The Formation of the WHATWG and the Creation of
HTML5
By 2004, the W3C was focusing its efforts on XHTML 2.0. However, some members of
the consortium felt that the XML-based direction wasn’t the correct path to follow for
web technologies. The Mozilla Foundation and Opera Software presented a position
paper to the W3C in June 2004. This paper focused on web applications as a whole:
how to build them, what technologies they should employ, backward compatibility with
existing web browsers, and so forth. The paper included a draft specification for Web
Forms as an example of direction. You can read the paper on the W3C’s web site at
www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html. The
paper asked more questions than it answered, but overall it pointed in a different
direction than the W3C’s current XML-based solutions. In the end the W3C voted down
the paper, opting to continue with XML solutions.

Many stakeholders felt very strongly about looking at web applications in the
holistic fashion proposed by the paper, so a group was formed to focus on the creation
of a web applications standard. Called the Web Hypertext Application Technology
Working Group (WHATWG), members included individuals from Apple Inc., the
Mozilla Foundation, and Opera Software. Initially they created a draft proposal for a
Web Applications standard, which covered all of the features that the group felt was
important for creating rich, interactive web applications, including:

New semantic markup tags for common content patterns such as
footers, sidebars, and pull quotes.

New state managemen0074 and data storage features.

Native drag-and-drop interactions.

New network features such as server-pushed events.

This new standard was eventually merged with the Web Forms standard (also being
worked on by the WHATWG) and the combined standard was renamed HTML5. This is
why the HTML5 standard is not an SGML application, and why it covers so much more

http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html

than just markup: it was designed to provide better tools for creating web applications.
In 2007 the W3C’s HTML group adopted the WHATWG’s HTML5 specification

and began moving forward with it. Both groups have continued to maintain their own
versions of the same standard. By mutual agreement the W3C maintains the canonical
standard for HTML5. The WHATWG’s standard is considered a “living standard,”
which is therefore never complete and always evolving. In this way the W3C’s standard
is like a snapshot of the WHATWG’s standard.

THE W3C HTML5 STANDARD

The W3C’s HTML5 standard is available at
www.w3.org/TR/html5/Overview.html. It is officially a W3C
recommendation.

THE WHATWG LIVING STANDARD

The WHATWG HTML standard is located at
https://html.spec.whatwg.org/multipage/index.html.

HTML5 Features
Because it was designed to enable the creation of rich interactive web applications,
HTML5 specifies a lot more than just markup tags—though it covers those as well.

New Tags
The HTML5 standard specifies a host of new tags for marking up documents. New
sectioning tags provide ways of indicating common design patterns such as footers and
navigation components and providing improved semantic information for screen
readers. New grouping tags offer ways to indicate groups of content such as figures.
And of course, HTML5 includes the new audio and video tags, for embedding
multimedia into web applications as easily as images. HTML5 also includes a whole
set of new interactive elements for implementing common design patterns such as
dialogs and progressive disclosure.

Since it includes the Web Forms specification, HTML5 also includes many new

http://www.w3.org/TR/html5/Overview.html
https://html.spec.whatwg.org/multipage/index.html

form elements, including data lists (filterable dropdowns), meters and progress bars,
and sliders. HTML5 also specifies several new form attributes to allow for richer
interactions with forms. Now with simple attributes you can specify placeholder text in
a form field, or indicate what form field should have focus (be active) when the page is
loaded.

Canvas
HTML5 specifies the new canvas feature, a way to programmatically draw on a web
page. The canvas also includes features for text, layer blending, and image
manipulation.

JavaScript APIs
The HTML5 standard includes a set of new JavaScript APIs to add more features to
web applications. There are new APIs for client/server communication, including the
ability for servers to push events to web pages and new ways of securing
communication across documents and domains. There are also features for storing data
locally in the browser, drag-and-drop interactions, and multithreading.

Related Standards
There are a family of related standards that interact with HTML5, and are maintained by
the W3C, but aren’t technically members of the HTML5 standard. These include
features like geolocation, device orientation, and WebGL.

Summary
In this chapter I covered the history of HTML and how HTML5 came about, including:

the origins of the underlying technologies,

the browser wars, and

the birth of the standards.

I also covered the overall composition of the HTML5 standard and its relatives.

Enough history! The next chapter will dive into the new HTML5 elements, including
the audio and video elements.

CHAPTER 2

HTML5 Elements

Though the HTML5 specification is much more complex than previous versions, like
those versions it includes definitions of new elements and deprecations of old elements.
In this chapter I’m going to focus on the Elements section of the HTML5 specification.

I will start by showing how best practices have contributed to the evolution of
HTML. Then I will cover many of the new tags included in the HTML5 specification:
tags for creating new sections, grouping content, semantic markup, embedded content,
new interactive content, and forms. I’ll also cover the new features of web forms: new
form properties, field properties, and input types. Finally, I’ll cover the elements that
have been deprecated in HTML5.

Functionality, Semantics, and the
Evolution of HTML
HTML5 represents the latest in the language’s evolutionary line. In the beginning of the
Web this evolution was largely driven by the browser manufacturers, who all wanted to
create their own proprietary spaces on the Web to distinguish themselves from their
competitors. Unfortunately, this led to the fracturing of the Web that is now known as the
“Browser Wars.”

The first standards were born to combat this fracturing. By providing a common
ground for all browser manufacturers, they made it possible for developers to code
HTML that was platform independent.

More important, as the standards evolved further, a set of best practices evolved
along with them to help developers leverage the strengths of complying with the
standards. Probably the two most important of these practices were the concepts of
separation of functionality and semantic markup.

Separation of functionality dictates that we should use each of our tools according
to their strengths. It is often summarized as “separation of presentation from content,”
but it goes deeper than that: use HTML for content, CSS for presentation, and JavaScript
for functionality.

Decoupling HTML from CSS and JavaScript allows the three languages to evolve
independently, and also makes it possible for developers to upgrade more easily or
even completely change technologies later without having to totally redo the code for all
three languages.

The core idea of semantic markup is to use the right tag to mark up a given section
or piece of data as determined by its content. In a way it’s a deeper application of
separation of functionality: use the right tag for the job. Thus paragraphs should be
marked up with <p> tags, unordered (bulleted) lists with , list items with ,
and so forth. Today this best practice has become second nature to web developers, but
it wasn’t always that way. It was common to see tags used just for the indentation or
margins that their default styles provided, which made for pretty confusing markup.

The problem with these best practices is they were of little help outside of building
simple informational documents on the Web. If you wanted to do complex layouts,
HTML didn’t have the necessary semantics. And if you wanted to build functionality
with web technologies, HTML really started to show its lack of semantics.

A major symptom of this lack was the proliferation of nonsemantic tags like <div>
and . Because these tags only denote sections (<div> denotes a block-level
section and denotes an inline section) they can safely be used to encompass
just about any content. This suffusion of nonsemantic tags caused the coining of the
neologism “div-itis” or, more commonly, “divitis.”

One of the main purposes of HTML5 was to address these shortcomings. HTML5
specifies several new tags for different sections of documents, new semantic tags, and
tags for improving interactivity and expanding the functionality of forms.

Sections
SUPPORT LEVEL

Good

All major browsers support section elements for at least the last two versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/sections.html#sections

http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#sections

W3C Candidate Recommendation:
http://www.w3.org/TR/html5/sections.html#sections

HTML5 includes a set of new tags that are designed to address the lack of structural
tags in previous versions of HTML. Marking up even moderately complex documents
revealed several weaknesses in the original HTML tag set that resulted in the use of
nonsemantic tags for many common purposes, such as navigation sections, document
headers, and document footers.

The new tags are as follows:

<article> An article is a complete, self-contained set of content
within a page. Conceptually an article could be distributed or
reused by itself. Examples of valid articles include a single
magazine article within a larger magazine, a blog post, a reusable
widget in the user interface, or any other self-contained set of
content.

<aside> An aside is a way of indicating a sidebar: a set of
content that is independent of, and tangential to, the content that
surrounds it. Examples include pull quotes, sidebars, or even
advertising sections within larger documents.

<nav> A nav section is the section with the major navigation links
to other articles, or to other documents. It is not generally meant for
collections of minor links, such as the links that are often relegated
to a footer (in that specific case, the <footer> tag is considered
semantically sufficient).

<footer> This well-named tag represents the footer of the
containing section element (<body>, <article>, etc.). Footers
typically contain information about the containing section element
like copyright information, contact information, and links to
supporting documents and site maps.

<header> The <header> tag groups together a set of
introductory tags for the current containing section element
(<body>, <article>, etc.). Headers can contain navigation,
search forms, or even the document’s table of contents and internal
links.

<section> The <section> tag is used to group thematically
similar content together, often with a heading of some sort.

http://www.w3.org/TR/html5/sections.html#sections

Before these tags were introduced, these sections were typically marked up using
<div> tags with relevant CSS classes, as in Listing 2-1.

Listing 2-1. Old and Busted Markup with Nonsemantic Tag0073

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
body {
 margin: 0;
 padding: 0;
}
.page {
 background-color: #C3DBE8;
}
.header {
 background-color: #DDDDDD;
}
.header li {
 display: inline-block;
 border: 1px solid black;
 border-radius: 5px;
 padding: 0 5px;
}
.footer {
 background-color: #DDDDDD;
}
 </style>
 </head>
 <body>
 <div class="page">
 <div class="header">
 <h1>Lorem Ipsum Dolor Sit Amet</h1>
 <div class="navigation">

 one
 two
 three

 </div>
 </div>
 <div class="section">
 <h2>Section Header</h2
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit.
 Proin congue leo ut nut tincidunt, sed hendrerit
justo
 tincidunt. Mauris vel dui luctus, blandit felis
sit amet,
 mollis enim. Nam tristique cursus urna, id
vestibulum
 tellus condimentum vulputate. Aenean ut lectus
adipiscing,
 molestie nibh vitae, dictum mauris. Donec lacinia
odio
 sit amet odio luctus, non ultrices dui rutrum.
Cras
 volutpat tellus at dolor rutrum, non ornare nisi
 consectetur. Pellentesque sit amet urna
convallis, auctor
 tortor pretium, dictum odio. Mauris aliquet odio
vel
 congue fringilla. Mauris pellentesque egestas
lorem.</p>
 </div>
 <div class="aside">
 <h2>Aside Header</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum.
Nullam
 imperdiet turpis vitae tortor laoreet ultrices.
Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.
</p>
 </div>
 <div class="footer">
 <div class="address">
 Sisko’s Creole Kitchen, 127 Main Street,
 New Orleans LA 70112
 </div>
 </div>

 </div>
 </body>
</html>

Listing 2-1 divides your content into a single “page,” contained within a <div> tag
with the class "page" applied to it. Within this page you have a header with our
navigation, a section, an aside, and a footer. You’ve also applied some basic styling to
the markup to better illustrate the header and footer sections, and make the navigation
elements look more like buttons than a simple unordered list.

This is the kind of markup that you’re probably used to seeing, and other than the
fact that it relies a great deal on nonsemantic <div> tags there’s nothing wrong with it.
With the new HTML5 tags, however, you can do away with all of those <div> tags
and replace them instead with semantic tags, as you do in Listing 2-2.

Listing 2-2. New Hotness Markup with HTML5 Semantic Tags

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
body {
 margin: 0;
 padding: 0;
}
.page, article {
 background-color: #C3DBE8;
}
.header, header {
 background-color: #DDDDDD;
}
.header li, header li {
 display: inline-block;
 border: 1px solid black;
 border-radius: 5px;
 padding: 0 5px;
}
.footer, footer {
 background-color: #DDDDDD;
}
 </style>

 </head>
 <body>
 <article>
 <header>
 <h1>Lorem Ipsum Dolor Sit Amet</h1>
 <nav>

 one
 two
 three

 </nav>>
 </header>
 <section>
 <h2>Section Header</h2>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit.
 Proin congue leo ut nut tincidunt, sed hendrerit
justo
 tincidunt. Mauris vel dui luctus, blandit felis
sit amet,
 mollis enim. Nam tristique cursus urna, id
vestibulum
 tellus condimentum vulputate. Aenean ut lectus
adipiscing,
 molestie nibh vitae, dictum mauris. Donec lacinia
odio
 sit amet odio luctus, non ultrices dui rutrum.
Cras
 volutpat tellus at dolor rutrum, non ornare nisi
 consectetur. Pellentesque sit amet urna
convallis, auctor
 tortor pretium, dictum odio. Mauris aliquet odio
vel
 congue fringilla. Mauris pellentesque egestas
lorem.</p>
 </section>
 <aside>
 <h2>Aside Header</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum.
Nullam
 imperdiet turpis vitae tortor laoreet ultrices.

Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.
</p>
 </aside>
 <footer>
 <address>
 Sisko’s Creole Kitchen, 127 Main Street,
 New Orleans LA 70112
 </address>
 </footer>
 </article>
 </body>
</html>

You have replaced all of the nonsemantic divs with their associated semantic
HTML5 tags. You’ve also updated the style sheet so the new tags will share the same
styles with the old classes that were applied to the <div> tags you removed.

Browsers do render the two examples slightly differently. The differences vary from
browser to browser: Internet Explorer 10 has the least variation, with the only
difference being that text contained within an <address> tag is automatically
rendered in italics. With Chrome and Firefox, the differences are greater, as seen in
Figure 2-1.

Figure 2-1. Screenshots of Listing 2-1 rendered in Chrome (left) and Listing 2-2 rendered in Firefox (right)

As you can see, the font size for <h1> tags within <header> tags is smaller in
both browsers, and they both render text within <address> tags in italics, as does
Internet Explorer. If you are migrating to the new semantic tags, be sure you take these
differences into account.

Grouping
SUPPORT LEVEL

Good

All major browsers support <figure> and <figcaption> features for at
least the last two versions. Internet Explorer does not support the <main> tag
natively but other browsers do.

WHATWG Living Standard: http://www.whatwg.org/specs/web-

http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#grouping-content

apps/current-work/multipage/grouping-
content.html#grouping-content

W3C Candidate Recommendation:
http://www.w3.org/TR/html5/grouping-
content.html#grouping-content

HTML5 defines a few new tags for grouping content. These tags differ from the HTML5
Section tags in that they define a given group of data as a particular kind of data, while
the Section tags provide structure for the document. The new tags are as follows:

<figure> This tag is used to group together a set of content that
is self-contained and independent from the main document flow, but
is referenced from within the document flow. Examples of figures
include illustrations, screenshots, and code snippets.

<figcaption> This tag is used to provide a caption for a
<figure> tag. Captions are optional.

<main> The definition of the <main> tag differs between the
W3C and the WHATWG specifications. According to the W3C the
<main> tag should be used to group together the primary content
of the document or application that has to do with the main subject
or functionality. According to the WHATWG, the <main> tag has
no intrinsic meaning and instead represents its contents. The
rationale for this difference is explained in detail in Bug 21553
over on the W3C’s bugbase:
https://www.w3.org/Bugs/Public/show_bug.cgi?
id=21553.

The new grouping tags are simple to use, as demonstrated in Listing 2-3.

Listing 2-3. Using the New HTML5 Grouping Tags

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
figure figcaption {
 font-style: italic;

http://www.w3.org/TR/html5/grouping-content.html#grouping-content
https://www.w3.org/Bugs/Public/show_bug.cgi?id=21553

}

figure pre {
 line-height: 1.6em;
 font-size: 11px;
 padding: 1em 0.5em 0.0em 0.9em;
 border: 1px solid #bebab0;
 border-left: 11px solid #ccc;
 margin: 0.3 0 1.7em 0.3em;
 overflow: auto;
 max-height: 500px;
 position: relative;
 background: #faf8f0;
}
 </style>
 </head>
 <body>
 <main>
 <article>
 <h1>Main, Figure and Figcaption</h1>
 <h2>Best Things Ever</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum.
Nullam
 imperdiet turpis vitae tortor laoreet ultrices.
Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.
</p>
 <figure>
 <figcaption>Using Figure and Figcaption for Code
Samples</figcaption>
 <pre>
[sample code here]
 </pre>
 </figure>
 <p>More content about Main, Figure and
Figcaption...</p>
 </article>
 </main>
 </body>
</html>

This example uses <main> to indicate the main section of the example document,
and <figure> and <figcaption> to define a code sample area. You have also
applied some simple CSS styling to the code area and its caption, to make it stand out
more from the rest of the document, as shown in Figure 2-2.

Figure 2-2. Screenshot of Listing 2-3 rendered in Firefox

In this screenshot you can see that the browser applies some default margins to the
<figure> tag, which is fairly consistent across browsers.

Semantics

SUPPORT LEVEL

Mixed

There is little support in any browser for <bdi>, <data>, <ruby>, <rt>,
<rp>, or <time>.

Support for <mark> is good (going back at least two versions of the major
browsers) and <wbr> is excellent (going back to the very earliest versions of the
major browsers).

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/text-level-
semantics.html#text-level-semantics

W3C Candidate Recommendation:
http://www.w3.org/TR/html5/text-level-
semantics.html#text-level-semantics

HTML5 includes several new semantic tags designed to help clarify content types.

<bdi> The Bi-Directional Isolation Element is used to isolate an
inline span of text that might be rendered in a different direction
than the surrounding text.

<data> The <data> tag is used to associate machine-readable
data with the content it encloses. It provides a semantic way of
annotating content with data002E

<mark> This tag is used to mark occurrences within a document,
such as search results.

<ruby>, <rp>, and <rt> These tags are for Ruby annotations,
which are used for showing pronunciation of East Asian characters.
For details about Ruby annotations, see
http://www.w3.org/TR/ruby/ and
http://en.wikipedia.org/wiki/Ruby_character.

<time> The <time> tag is similar to <data> in that it provides
a way to associate data (in this case, specifically date/time data)
with the enclosed content.

<wbr> The Word Break Opportunity tag is used to indicate a

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#text-level-semantics
http://www.w3.org/TR/html5/text-level-semantics.html#text-level-semantics
http://www.w3.org/TR/ruby/
http://en.wikipedia.org/wiki/Ruby_character

position in the document flow where the browser may initiate a line
break though its internal rules might not otherwise do so. It has no
effect on bidi-ordering, and if the browser does initiate a break at
the tag, a hyphen is not used.

Unfortunately support for these tags is rather poor. The <data> and <time> tags,
along with the tags for Ruby annotations, are not widely supported, even in the most
modern browsers.

The <mark> tag, though, is quite well supported, and is as easy to use as any other
inline tag. Listing 2-4 shows a very simple use of the <mark> tag to highlight certain
words within a document.

Listing 2-4. Marking Words in a Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
mark {
 background-color: #E3DA5D;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <mark> tag</h1>
 <p>Vivamus hendrerit nisl nec imperdiet
<mark>bibendum</mark>. Nullam
 imperdiet turpis vitae tortor laoreet ultrices.
Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt <mark>neque</mark> sed sapien consequat
dignissim.</p>
 </article>
 </body>
</html>

This example renders the same in all browsers (Figure 2-3).

Figure 2-3. Screenshot of Listing 2-4 rendered in Firefox

The <wbr> tag is probably one of the most broadly supported of all the HTML5
tags. It was a nonstandard tag available in all browsers that was brought into the
standard with HTML5. It’s used to provide word break suggestions in long words,
which can be situationally useful. Listing 2-5 shows a simple example with long words
before inserting <wbr> tags:

Listing 2-5. Long Words in a Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
.larger {
 font-size: 2em;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <wbr> tag</h1>
 <p>Here are some long words in a slightly larger font
size to demonstrate
 how useful the <wbr> tag can be.</p>
 <p class="larger">Supercalifragilisticexpialidocious
and antidisestablishmentarianism,
 also pneumonoultramicroscopicsilicovolcanoconiosis.
</p>
 </article>
 </body>
</html>

As shown in Figure 2-4, Listing 2-5 renders as you would expect in all modern
browsers.

Figure 2-4. Rendering of Listing 2-5 in Firefox

You can easily use some <wbr> tags to help the browser decide where to break
those long words, as in Listing 2-6.

Listing 2-6. Suggesting Line Breaks in Large Words

<!DOCTYPE HTML>

<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
.larger {
 font-size: 2em;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <wbr> tag</h1>
 <p>Here are some long words in a slightly larger font
size to demonstrate
 how useful the <wbr> tag can be.</p>
 <p
class="larger">Supercali<wbr>fragilistic<wbr>expialidocious
and
 antidis<wbr>establishment<wbr>arianism.</p>
 </article>
 </body>
</html>

The browser can break the words at our suggestions if needed (Figure 2-5).

Figure 2-5. Rendering Listing 2-6 at different browser widths

As you can see, the browser can now use our word break suggestions if it needs to.
This can be particularly useful if you are working on cramped layouts where screen real
estate is at a premium, such as on a mobile device.

Audio and Video Content
SUPPORT LEVEL

Good

All modern browsers support audio and video elements for at least the last two
versions, but see the following for information about format support.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/edits.html#embedded-
content

W3C Candidate Recommendation: www.w3.org/TR/html5/embedded-
content-0.html#embedded-content-0

One of the biggest shortcomings of previous versions of HTML was their inability to
easily include multimedia content on web pages. HTML5 has new tags that specifically
address that problem. With these new tags, including multimedia content on a web page
is as easy as including static images. Even better, all modern browsers support these
capabilities very well.

Before HTML5, if you wanted to embed a video into your web page, you needed a
third-party plug-in that had the ability to play the desired content, as well as do things
like adjust the volume, fast-forward or reverse through the content, and so forth. With
HTML5, browser manufacturers have built these capabilities into their software. These
capabilities include a user interface for controlling playback and the ability to play
various media formats for audio and video encoding.

An unfortunate complication is that audio and video can both be encoded in many
different formats, and many of these formats have patent encumbrances that made the
browser manufacturers unwilling to support them. So while all modern browsers
support multimedia tags, some browsers support different formats than others. For
details on what browser supports which formats, see Chapter 7.

Another complication arises from interacting with multimedia. For example, users
will often want to skip around in content, going forward or back as desired. Supporting
interactive functionality like that requires a server that is capable of reacting to these
user interactions and can provide the portions of content as needed. Simple web servers
typically don’t have this capability, though many of them can be configured to do so. For
more information on configuring servers for multimedia, see Chapter 7.

Embedded Audio Content
With the HTML5 <audio> tag, you can embed audio content into your web pages as
easily as including an image. Like any HTML tag, the <audio> tag has several
properties that you can set:

http://www.whatwg.org/specs/web-apps/current-work/multipage/edits.html#embedded-content
http://www.w3.org/TR/html5/embedded-content-0.html#embedded-content-0

autoplay: This is a boolean flag that, when set (to anything, even
false), will cause the browser to immediately begin playing the
audio content as soon as it can without stopping for buffering.

controls: If this attribute is set, the browser will display its
default user interface controls for the audio player (volume
controls, progress meter/scrub bar, etc.).

loop: If this attribute is set, the browser will loop playback of the
specified file.

muted: This attribute specifies that the playback should be muted
by default.

preload: This attribute is used to provide to the browser a hint
for how to provide the best user experience for the specified
content. It can take three values: none, metadata, and auto.
The none value specifies that the author wants to minimize the
download of the audio content, possibly because the content is
optional, or because the server resources are limited. The
metadata value specifies that the author recommends
downloading the metadata for the audio content (duration, track list,
tags, etc.) and possibly the first few frames of the content. The
auto value specifies that the browser can put the user’s needs first
without risk to the server. This means the browser can begin
buffering the content, download all the metadata, and so forth. Note
that these values can be changed after the page has loaded. For
example, if you have a page with many <audio> tags each with
preload set to none to prevent swamping the server, when the
user makes a choice of which of the <audio> tags they want to
hear, you can dynamically change its preload value to auto to
provide a better user experience. This enables you to balance user
experience with available resources.

src: This attribute specifies the source of the content, just as with
an tag. If desired, this attribute can be omitted in favor of
one or more <source> tags contained within the <audio> tag.

The <audio> tag is not self-closing and thus requires a closing tag. Note that since
older browsers do not support the <audio> tag, any content contained within one will
be displayed in those browsers, thus providing a backward-compatible way of
providing alternate content in older browsers.

The audio tag is very easy to use, as shown in Listing 2-7.

Listing 2-7. Embedding Audio Content in a Web Page

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <audio> tag</h1>
 <audio controls="controls" src="../media/windows-
rolled-down.mp3">
 </audio>
 </article>
 </body>
</html>

 Note The examples in this section use audio files. You should substitute your own
files as needed.

Listing 2-7 has opted to show the controls for the native player to demonstrate what
they look like by default. Each browser’s native player looks slightly different and has
somewhat different features (Figure 2-6).

Figure 2-6. Listing 2-7 rendered in Chrome (left) and Firefox (right)

Chrome’s default audio player has a volume slider, while Firefox’s player has a
tooltip indicating current play time. It is not possible to style the player, so if you want
to have a consistent look and feel across all browsers you will have to build your own
player—which is actually quite easy to do because HTML5 also specifies a JavaScript
API for working with <audio> tags. For details on this API, please see Chapter 7.

 Tip In Chrome, the audio and video players are implemented as web components
using the new Shadow DOM specification. Using the Shadow DOM APIs it is possible
to access and style the components of the player directly. For example, the background
of the player is a shadow <div>, which can be selected with the CSS selector
audio::-webkit-media-controls-panel and whose appearance (such as
the background color) can be altered as desired. Similarly, the volume bar is an
<input type="range"> tag with the selector audio::-webkit-media-
controls-volume-slider. Unfortunately, at the time of this writing Chrome and
Opera are the only two browsers to support the Shadow DOM specification. Other

browsers may also be implementing their players using Shadow DOM, and when they
fully support the specification, their players may become accessible as well, allowing
web developers to control the appearance of the players without having to resort to
building their own from scratch.

Embedded Video Content
The HTML5 <video> tag enables basic video capabilities in browsers. It functions
similarly to the <audio> tag and has a similar set of properties that can be set:

autoplay: This is a boolean flag that, when set (to anything, even
false), will cause the browser to immediately begin playing the
video content as soon as it can without stopping for buffering.

controls: If this attribute is set, the browser will display its
default user interface controls for the video player (volume
controls, progress meter/scrub bar, etc.).

height: This attribute can be used to specify the height, in pixels,
of the video player.

loop: If this attribute is set, the browser will loop playback of the
specified file.

muted: This attribute specifies that the playback should be muted
by default.

poster: This attribute can be used to specify a URL for a poster
to display before the video is played. If no poster is specified, then
the player will show the first frame of the video by default, once it
has loaded.

preload: This attribute is used to provide the browser a hint for
how to provide the best user experience for the specified content. It
can take three values: none, metadata, and auto. The none
value specifies that the author wants to minimize the download of
the video content, possibly because the content is optional, or
because the server resources are limited. The metadata value
specifies that the author recommends downloading the metadata for
the video content (duration, track list, tags, etc.) and possibly the
first few frames of the content. The auto value specifies that the
browser can put the user’s needs first without risk to the server.

This means the browser can begin buffering the content, download
all the metadata, and so forth. Note that these values can be changed
after the page has loaded. For example, if you have a page with
many <video> tags, each with preload set to none to prevent
swamping the server, when the user chooses which of the
<video> tags they want to view, you can dynamically change its
preload value to auto to provide a better user experience. This
enables you to balance user experience with available resources.

src: This attribute specifies the source of the content, just as with
an tag. If desired, this attribute can be omitted in favor of
one or more <source> tags contained within the <video> tag.

width: This attribute can be used to specify the width of the video
player, in pixels.

The <video> tag is just as easy as the <audio> tag to use, as shown in Listing 2-
8.

Listing 2-8. Embedding Video Content in a Web Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <video> tag</h1>
 <video controls="controls"
src="../media/podcast.m4v">
 </video>
 </article>
 </body>
</html>

 Note The examples in this section use video files. You should substitute your own
files as needed.

And as with the <audio> tag, each browser provides a slightly different video

player, as shown in Figure 2-7.

Figure 2-7. Listing 2-8 rendered in Chrome (left) and Firefox (right)

As before, the two browsers have slightly different interfaces for their video
players. If you want to change the appearance of the player and its controls, you’ll have
to build your own.

Specifying Multiple Sources
Both the <audio> and <video> tags have an src attribute, but you can forgo that
attribute in favor of including a list of one or more <source> tags inside of the
<audio> or <video> tag. You can even specify different encodings of the same file,
thus working around any limitations that browsers might have with encoding support.
The browser will go down the list of <source> tags and play the first file that it
supports.

The <source> tag has two attributes:

src: The URL for the audio file.

type: The MIME type of the audio file, with an optional codecs
parameter, specified according to RFC 4281.

As an example, imagine you have a video that we want to serve. You have it in two

different formats: Ogg Vorbis and MP4. Use two <source> tags as shown in Listing
2-9.

Listing 2-9. Specifying Multiple Sources for Multimedia

<video controls>
 <source src="../media/video-1.mp4" type="video/mp4">
 <source src="../media/video-1.ogv" type="video/ogg">
</video>

You can get very precise about the encoding of your audio and video by using the
optional codecs parameter in the type attribute. For example, if you have an H.264
video (profile 3) with low-complexity AAC audio all contained in an MP4 container,
you could specify the codecs as shown in Listing 2-10:

Listing 2-10. Specifying Audio and Video Codecs for a Video Source

<source src="../media/video-1.mp4" type="video/mp4,
codecs=’ avc1.4D401E, mp4a.40.2’">

This can be particularly useful for providing the best possible quality encoding for
your video while allowing the most browsers to access it regardless of encoding
support limitations.

Interactive Elements
SUPPORT LEVEL

Unsupported

Interactive elements are not supported by modern browsers except for
experimental versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/interactive-
elements.html#interactive-elements

W3C Candidate Recommendation:
http://www.w3.org/TR/html5/interactive-elements.html

http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html#interactive-elements
http://www.w3.org/TR/html5/interactive-elements.html

HTML5 includes a new set of interactive elements that are intended to provide some
prebuilt user interface elements that can be used in web pages and applications.
Unfortunately, these features are not yet supported in most browsers, but support
probably will improve with time.

Dialogs
One of the most exciting new features is the <dialog> tag, which provides the ability
to easily create pop-up dialogs. Any content enclosed in a <dialog> tag is not
rendered in the document until you call one of its display methods:

show: Calling this method will open the dialog as a standard pop-
up.

showModal: Calling this method will open the dialog as modal
dialog, with the rest of the page grayed out behind the dialog.

In addition, each dialog will dispatch a close event when it is closed.
Listing 2-11 is a simple example that demonstrates how to use the <dialog> tag.

As of this writing, the only browser that supports the <dialog> tag is Chrome, and
even then you have to activate the Experimental Web Platform Features in
chrome://flags. If you enable the features, the example will work great.

Listing 2-11. Web Dialogs

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
li {
 display: inline-block;
 background-color: #A9DCF5;
 border-radius: 4px;
 padding: 2px 10px;
 cursor: pointer;
}
 </style>
 </head>

 <body>
 <article>
 <h1>Using the <dialog> tag</h1>

 <li id="open-dialog">Open Dialog
 <li id="open-modal">Open Modal

 <dialog id="dialog">
 <p>Hello World!</p>
 <button id="close-dialog">Okay</button>
 </dialog>
 </article>
 <script>
var myDialog = document.getElementById(’dialog’),
 openDialog = document.getElementById(’open-dialog’),
 openModal = document.getElementById(’open-modal’),
 closeDialog = document.getElementById(’close-dialog’),
 status = document.getElementById(’status’);

closeDialog.addEventListener(’click’, function(event) {
 myDialog.close();
}, false);

openDialog.addEventListener(’click’, function(event) {
 myDialog.show();
}, false);

openModal.addEventListener(’click’, function(event) {
 myDialog.showModal();
}, false);

myDialog.addEventListener(’close’, function(event) {
 alert(’A close event was dispatched.’);
}, false);
 </script>
 </body>
</html>

This will render a very simple dialog shown in Figure 2-8.

Figure 2-8. The dialogs that Listing 2-11 produces

Each time you close one of the dialogs, the close event will fire, producing an alert
that reads, “A close event was dispatched.”

This is the default appearance of the dialogs. They can easily be styled with CSS to
make them more attractive, and of course they can contain any content, including images,
form fields, and so forth. You can also style the backdrop for the modal instance; it is a
pseudo-element that can be accessed using ::backdrop on your dialog selector.

For example, in Listing 2-12, if you add a couple of simple CSS directives to your
style sheet, you’ll have a much more attractive dialog.

Listing 2-12. CSS Styles for Web Dialogs

dialog {
 text-align: center;
 padding: 1.5em;
 margin: 1em auto;
 border: 0;
 border-radius: 8px;
 box-shadow: 0 2px 10px #111;
}

dialog::backdrop {
 background-color: rgba(187, 217, 242, 0.8);
}

These styles will change the appearance of both the dialog and the modal backdrop
(Figure 2-9).

Figure 2-9. Web dialog (modal state) with CSS styles applied

Though the <dialog> tag is currently only supported in Chrome, there is a polyfill
that provides most of the functionality in other browsers available at
https://github.com/GoogleChrome/dialog-polyfill.

 Tip Polyfill is a term for a library that enables or duplicates unsupported features in
browsers. Another term for polyfill is shim.

Progressive Disclosure

https://github.com/GoogleChrome/dialog-polyfill

One common UI feature is progressive disclosure: you provide a simple list of items,
and when the user clicks on one, the space beneath expands, revealing more
information. These widgets go by different names depending on the framework used
(jQuery UI, for example, refers to them as accordions). HTML5 includes a definition
for this feature using the <summary> and <details> tags. The <details> tag
encloses all of the desired content, including a <summary> tag, which should enclose
just a brief summary of the content. The default rendering of a <details> tag is to
show just the contents of the <summary> tag preceded by a small triangle. The user
can then click anywhere on the summary and the rest of the content will be revealed.
You can specify that a given <details> tag is to be rendered in the open state by
giving it the open attribute.

At the moment, Chrome, Opera, and Safari are the only browsers that support the
<details> and <summary> tags. Firefox will be supporting the tags and you can
check the status of their support in bug 591737 at
https://bugzilla.mozilla.org/show_bug.cgi?id=591737. The
status of support in Internet Explorer is unknown.

The tags are simple to use, as shown in Listing 2-13.

Listing 2-13. Progressive Disclosure

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <summary> and <details>
tags</h1>
 <details>
 <summary>Item 1</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue

https://bugzilla.mozilla.org/show_bug.cgi?id=591737

neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 2</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 <details open>
 <summary>Item 3--this one will be open by
default</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 3</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum

 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 </article>
 </body>
</html>

In Chrome, this example renders nicely, as shown in Figure 2-10.

Figure 2-10. Listing 2-13 rendered in Chrome

Clicking on a closed item reveals its hidden content, and clicking on an open item
hides its content.

Forms
Forms have been significantly improved in HTML5. The specification includes both
new tags for forms (such as data lists, progress meters, and date pickers) as well as new
attributes for existing form tags. These new features are designed to make forms more
interactive for users and easier to build and maintain.

New Form Elements

SUPPORT LEVEL

Mixed

Most of these features are well supported in the major browsers for the last two
versions. Internet Explorer does not support the <meter> tag, however.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/forms.html#forms

W3C Candidate Recommendation:
http://www.w3.org/TR/html5/forms.html#forms

HTML5 has a few new form elements that are specifically designed to implement
common user interface patterns that have evolved over the last few years. Specifically
these new tags implement autocomplete features and progress bars.

Data Lists
The first of the new tags implements a common autocomplete feature: when you begin
typing into a form field, a drop-down appears that has a list of options that match what
has already been typed. As you continue to type, the list becomes more specific, and at
any time you can use the arrow keys to select one of the options. These sort of
autocomplete fields are often referred to as data lists (and sometimes combo boxes)
and HTML5 has a new <datalist> tag that implements this exact user interface
element.

In practice, a <datalist> tags contain <option> tags, one for each item in the
data list. By themselves <datalist> elements are not rendered in page, and can go

http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#forms
http://www.w3.org/TR/html5/forms.html#forms

anywhere in the document structure. Once created, a data list must be associated with an
input field in order to use it. Give the <datalist> tag a unique id attribute. To
associate it with an <input> element, set that element’s list attribute to the unique id.
That tells the browser to render the specified data list with the <input> element, as
demonstrated in Listing 2-14.

Listing 2-14. A Data List

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <!-- Note the datalist can be anywhere -->
 <datalist id="browsers">
 <option value="Chrome">
 <option value="Firefox">
 <option value="Internet Explorer">
 <option value="Opera">
 <option value="Safari">
 </datalist>
 <article>
 <h1>Using the <datalist> tag</h1>
 <input list="browsers" />
 </article>
 </body>
</html>

As with other HTML5 user interface elements, each browser renders the data list
slightly differently (Figure 2-11).

Figure 2-11. Listing 2-14 rendered in Chrome (left) and Firefox (right)

As you can see, Chrome provides a drop-down arrow hint on the right side of the
input field to indicate that the input field is a data list, and Firefox has a slight drop
shadow on the dropdown. The functionality of the list remains the same between
browsers.

Meter
The new <meter> tag provides a simple meter bar or gauge visual element. This bar
is meant to model a measurement within a known range, or a fractional value of a whole
(e.g., volume, disk usage, etc.). It should not be used to show progress (e.g., in a
download); use the new <progress> tag for this.

The <meter> tag has the following properties:

value: The current value to be displayed. This value must be
within the min and max values, if specified. If no value is set, or if
it is malformed, the browser will default to 0. If specified but the
value is greater than the max attribute, the value will be set to the
value of the max attribute. If the value is less than the min attribute,
the value will be set to the value of the min attribute.

min: The minimum value of the range. Defaults to 0 if not

specified.

max: The maximum value of the range. Must be greater than the
value of the min attribute (if specified). Defaults to 1.

It is also possible to specify subranges within the measured range. There can be a
low range, a high range, and an optimum range. The low range goes from the min
value to a specified value, while the high range goes from the high value to the max
value. Either the low range or the high range can be specified as an optimum range
by specifying a number within them using the optimum attribute.

low: The highest value of the low range. When the value attribute
is within the low range, the bar will render yellow by default.

high: The lowest value of the high range, which ranges from this
value to the value of the max attribute. When the value attribute is
within the high range, the bar will render yellow by default.

optimum: Indicates an optimum value for the range. The value
must be between the min and max values of the range. If the low
and high ranges are used, specifying an optimum value within
one of them will indicate which of those ranges is preferred. When
the value is within the preferred range, the bar will render green.
When it is in the other range, it will render red.

Creating these meters is as simple as adding a <meter> tag to your document, as
demonstrated in Listing 2-15.

Listing 2-15. Meter Bars

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <meter> tag</h1>
 <p>Simple meter from 1 to 100, value set to 25:

 <meter min="1" max="100" value="25"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to

25, high range from
 75 to 100, value set to 90:

 <meter min="1" max="100" low="25" high="75"
value="90"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, value set to 10:

 <meter min="1" max="100" low="25" high="75"
value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75"
optimum="10" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75"
optimum="10" value="90"></meter>
 </p>
 </article>
 </body>
</html>

The meters render pretty consistently across browsers (Figure 2-12).

Figure 2-12. Listing 2-15 rendered in Chrome (left) and Firefox (right)

Output
The new <output> tag provides a way of specifying the output of a calculation or
other user action within a form. It doesn’t have any special features; instead it provides
a semantic tag for marking up this kind of content.

A simple example is shown in Listing 2-16.

Listing 2-16. Calculation Output in a Form

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>

 </head>
 <body>
 <article>
 <h1>Using the <output> tag</h1>
 <form id="mainform" onsubmit="return false">
 <label for="input-number">Temperature</label>
 <input name="input-number" id="input-number"
type="number" step="any">

 <input type="radio" name="convert-choice"
id="radio-ftoc" checked value="ftoc">
 <label for="radio-ftoc">Convert Fahrenheit to
Celcius</label>

 <input type="radio" name="convert-choice"
id="radio-ctof" value="ctof">
 <label for="radio-ctof">Convert Celcius to
Fahrenheit</label>

 Result:
 <output name="output-target" for="input-number"
id="output-target"></output>
 </form>
 </article>
 <script>
var myForm = document.getElementById(’mainform’);
var converter = {
 ctof: function(degreesC) {
 return (((degreesC * 9) / 5) + 32);
 },
 ftoc: function(degreesF) {
 return (((degreesF - 32) * 5) / 9);
 }
};
myForm.addEventListener(’input’, function() {
 var inputNumber = document.getElementById(’input-
number’),
 outputTarget = document.getElementById(’output-
target’);
 var sel = document.querySelector(’input[name=convert-
choice]:checked’).value;
 outputTarget.value = converter[sel]
(parseInt(inputNumber.value));
}, false);
 </script>

 </body>
</html>.

This is a simple example, but you’ve used a couple of nifty tricks.

You created a converter object, which has two methods, ctof (for
converting Celsius to Fahrenheit) and ftoc (for converting
Fahrenheit to Celsius).

You set one of the radio button’s value properties to ctof, and the
other to ftoc.

You used the selector input[name=convert-
choice]:checked to get whichever radio button is checked
and then fetch its value (either “ctof” or “ftoc”).

Then you can directly access the correct method on the converter
object just by using the result of your query.

 Tip JavaScript is also governed by a standard—ECMA-262—which specifically
defines two ways to access object members: dot notation or bracket notation. So
objectName.identifierName is functionally equivalent to
objectName[<identifierName string>] even if the object in question is
not an array. For details, see Section 11.2.1, “Property Accessors,” in ECMA-262 at
http://www.ecma-international.org/ecma-262/5.1/.

Figure 2-13 shows Listing 2-16 as rendered in Chrome.

http://www.ecma-international.org/ecma-262/5.1/

Figure 2-13. Listing 2-16 rendered in Chrome

Progress
HTML5 defines a new <progress> tag, which renders as a progress meter in the
document. It is used to indicate progression or completion of a task, and provides the
user with an idea of how much has been done and what still remains. It should not be
used for visualizing a measurement within a known range—for that, use the <meter>
tag.

The <progress> tag takes the following attributes:

max: The maximum value of the activity. This value must be a valid
positive floating-point number. If max is not specified, the

maximum value defaults to 1.

value: The current value of the progress. This value must be a
valid floating-point number between 0 and max (if specified) or 1
(if max is not specified). If value is not specified, then the
progress bar is considered indeterminate, meaning the activity it is
modeling is ongoing but gives no indication of how much longer it
will take to complete.

Listing 2-17 provides a simple demonstration of progress bars.

Listing 2-17. Progress Bars

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <progress> tag</h1>
 <p>Downloading file1

 <progress max="100" value="10">10/100</progress>
10%</p>
 <p>Downloading file2

 <progress max="100" value="50"
orient="vertical">50/100</progress> 50%</p>
 </article>
 </body>
</html>

As shown in Figure 2-14, the progress bar renders differently in the various
browsers.

Figure 2-14. Listing 2-17 rendered in Chrome (left), Internet Explorer (middle), and Firefox on Windows 8
(right)

The examples would look different when rendered on MacOS as well. Fortunately,
the bars are easy to style. Firefox and Internet Explorer give direct access to the
element’s styling, while in Chrome you have to select the pseudo-elements to change
them. By adding a few simple directives to your CSS, as shown in Listing 2-18, you can
make the bar look the same in all browsers.

Listing 2-18. CSS Rules for Progress Bars

progress {
 color: #0063a6;
 font-size: .6em;
 line-height: 1.5em;
 text-indent: .5em;
 width: 15em;
 height: 1.8em;
 border: 1px solid #0063a6;
 background-color: #fff;
}
::-webkit-progress-bar {
 background-color: #fff;
}
::-webkit-progress-value {
 background-color: #0063a6;
}

As you can see in Figure 2-15 the bars now render the same across browsers.

Figure 2-15. Progress bars with CSS rules applied

A slightly more practical example would be a timer. Using the <progress> tag
you can indicate that some allotted time—ten seconds, for example—is passing, as
shown in Listing 2-19.

Listing 2-19. A Ten-Second Timer

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
progress {
 color: #0063a6;
 font-size: .6em;
 line-height: 1.5em;
 text-indent: .5em;
 width: 15em;
 height: 1.8em;
 border: 1px solid #0063a6;
 background-color: #fff;
}
::-webkit-progress-bar {
 background-color: #fff;
}
::-webkit-progress-value {
 background-color: #0063a6;
}
 </style>
 </head>
 <body>

 <article>
 <h1>Using the <progress> tag</h1>
 <h2>Ten Second Timer</h2>
 <p><progress max="10" value="0"
id="myProgress">0</progress></p>
 </article>
 <script>
var progress = 0;
var myProgress = document.getElementById("myProgress");
var myTimer = setInterval(function() {
 myProgress.value = ++progress;
 if (progress > 10) {
 clearInterval(myTimer);
 }
}, 1000);
 </script>
 </body>
</html>

This example uses the DOM method setInterval() to run a function every
second that updates the value of the progress bar. When the progress bar is full, it
cancels the timer with the clearInterval() method.

New Form Element Attributes
The HTML5 specification includes a few useful new attributes for form elements.
Again, these new attributes were designed specifically to address shortcomings in
previous versions of HTML forms and to add commonly needed functionality that, until
now, had to be built using JavaScript.

Autocomplete
All browsers offer the capability of storing form data for later reuse. This is of
particular help with mobile devices because it reduces typing. The autocomplete
attribute allows you to specify which <input> elements can be autocompleted and
which should always be filled in manually. The autocomplete attribute can take
two values: on (autocomplete is allowed; this is the default) or off (autocomplete is
not allowed).

Listing 2-20 is a simple example with two form fields, one with autocomplete

allowed and the other with it disallowed.

Listing 2-20. Controlling Autocomplete in Forms

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the autocomplete attribute</h1>
 <form id="test-form" action="#" method="post">
 <p><label for="input-auto">This input allows
autocomplete:</label>

 <input autocomplete="on" id="input-auto"
name="input-auto"></p>
 <p><label for="input-noauto">This input does not
allow autocomplete:</label>

 <input autocomplete="off" id="input-noauto"
name="input-noauto"></p>
 <p><input type="submit"></p>
 </form>
 </article>
 </body>
</html>

In just about every browser, you should be able to fill out the form fields and click
the submit button. Then, reload the page. Double-click in the first form field, and you
should be presented with a drop-down containing the value you entered earlier (Figure
2-16).

Figure 2-16. Listing 2-20 rendered in Chrome (left) and Firefox (right)

Note that you will have to enable the autofill feature in your browser. Most
browsers will enable it by default, but many people turn it off for security purposes. If
the user has disabled the feature in their browser, the autocomplete attribute will have
no effect.

Browsers use a number of cues to determine which form fields should be
autocompleted with what data: the name and ID for the fields, the action and
method attributes of the <form> tag, and so forth. The process is fairly nonstandard
and edges into the realm of “magic.” In 2012, Google proposed an extension to the
autocomplete property to help standardize the process. In this proposal they
suggested an autocompletetype attribute with an extensive set of values ranging
from address-line1 to postal-code to url. You can read their full proposal
at http://wiki.whatwg.org/wiki/Autocompletetype. That proposal
was never fully adopted, but sections from it eventually went into the new Autofill
specification, which you can view at
https://html.spec.whatwg.org/multipage/forms.html#autofill

Autofocus
The autofocus attribute allows you to specify what form field should have focus
when the page loads. Because it is exclusive, you can only set autofocus on one
form field on a given page, and the focus will go to that element when the page is done

http://wiki.whatwg.org/wiki/Autocompletetype
https://html.spec.whatwg.org/multipage/forms.html#autofill

loading. You cannot set autofocus on a form element of type hidden. Autofocus
can be set to any <input>, <button>, or <textarea> field.

If you add an autofocus attribute to the second field in Listing 2-20 on page load
it will be focused, as in Listing 2-21.

Listing 2-21. Automatically Focusing an Input Field

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the autofocus attribute</h1>
 <form id="test-form" action="#" method="post">
 <p><label for="input-auto">This input allows
autocomplete:</label>

 <input autocomplete="on" id="input-auto"
name="input-auto"></p>
 <p><label for="input-noauto">This input does not
allow autocomplete:</label>

 <input autocomplete="off" id="input-noauto"
name="input-noauto" autofocus="autofocus"></p>
 <p><input type="submit"></p>
 </form>
 </article>
 </body>
</html>

When the page finishes loading, the second input field will be selected and ready to
receive input, as shown in Figure 2-17.

Figure 2-17. Listing 2-21 rendered in Chrome

Of course, as soon as the user clicks anywhere else in the browser, the field will
loose focus, and it will not return unless the user clicks on the field again. The autofocus
only happens on page load.

Placeholder
Another commonly designed feature of forms is placeholder text inside of an <input>
field. Placeholder text helps provide more information about what the field is for, and it
disappears when the user starts typing. HTML5 includes a new placeholder
attribute that can be applied to both <input> and <textarea> fields. The value
specified for the attribute is used as placeholder text inside the field.

Listing 2-22 is a simple example of a form in which the user can compose and send
an e-mail.

Listing 2-22. Placeholder Text

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the placeholder attribute</h1>
 <p><label for="message-title">Title:</label>

 <input placeholder="title of message" id="message-
title"></p>
 <p><label for="message-body">Body:</label>

 <textarea placeholder="body of message"
id="message-body"></textarea></p>
 <p><input type="submit" value="Send Email"></p>
 </article>
 </body>
</html>

In modern browsers the placeholder text will be visible as grayed-out text within
the form fields (Figure 2-18).

Figure 2-18. Listing 2-22 rendered in Chrome

As soon as the user begins to type in a field, the placeholder text will disappear, as
shown in Figure 2-19.

Figure 2-19. Listing 2-22 after user input

Note that this example still includes <label> tags. Placeholder text is a nice
design concept, but it should not replace <label> tags, which are an important part of
form accessibility. You don’t typically need both—as you can see in the example, the
labels are somewhat redundant. In this case, you can simply hide the <label> tags
with CSS, as per Listing 2-23.

Listing 2-23. Hiding Labels with CSS

label: {
 display: none;
}

This simple bit of CSS makes the form look much nicer in Figure 2-20.

Figure 2-20. Listing 2-23 rendered in Chrome

New Input Types
The HTML5 specification also includes new values for the input element’s type
attribute. You’re probably familiar with using this attribute to create checkboxes and
radio buttons:

<input type="checkbox">
<input type="radio">

HTML5 adds several new types that add new user interface capabilities to the input
field, from color and date pickers to search boxes. Unfortunately, support for these new
input types varies widely from browser to browser.

For desktop browsers, Chrome has the best support, with Firefox and Internet
Explorer both far behind. This limits their usefulness for desktop applications,
unfortunately.

On mobile browsers the support is better. Most of the new input types will use the
device’s special keyboards and input widgets. For example, when an input field with
the type of tel is active in Safari Mobile, the phone will display the telephone
keyboard. This makes it easier for mobile users to enter a phone number.

Even though these new types aren’t widely supported now, support is growing for
them, especially on mobile devices. Given the benefits of using specific keyboards for
mobile input, it’s a good practice to use these input types even if they’re not widely
supported.

The new input types are as follows:

color: Allows the user to select a color. In Chrome desktop this
displays a color chip that, when clicked, shows the host operating
system’s color-picker user interface widget. No other browser
supports this element.

date, datetime, datetime-local, month, time, and
week: These input types allow users to input dates and times. In
Chrome desktop these display calendar and time selection widgets
that are built into Chrome. On mobile devices these display date
and time selectors (on iOS these take the form of spinners).

email: Indicates an input field that will be used for collecting e-
mail addresses. On mobile devices this type will display an Internet
address–friendly keyboard when active. On iOS this keyboard takes
the form of a regular keyboard with the @ key easily available, and
a .com key.

number: This input type specifies that the user will be entering a
number. On Chrome and Firefox desktop, this input type will
display a simple increase/decrease widget. On mobile devices this
input type will display the numeric page of the alphanumeric
keyboard.

range: Displays a slider widget. This is the only input type that is
widely supported by all browsers on both desktop and mobile.

search: Indicates that the field is a search field. The primary
difference between a search field and a regular input field is that
search fields include a “clear” functionality, typically implemented
as an × button at the edge of the input field. On Chrome and Internet
Explorer desktop this displays a simple search field, with a clear
button on the right.

tel: Indicates that the field will be used to enter a telephone
number. On mobile devices, an input field with this type will
display the telephone number keyboard when active.

url: Indicates the field will be used to enter a URL, most probably
a web address. On mobile devices this will display an Internet
address–friendly keyboard while active.

If you would like to test these input fields, Listing 2-24 has a full set of them that you
can load into any browser.

Listing 2-24. New Input Types Demonstrated

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <meta name="viewport" content="width=device-width,
user-scalable=no">
 <style>
input {
 display: block;
 margin-bottom: 20px;
}
 </style>
 </head>
 <body>
 <article>
 <h1>New HTML5 Input Types</h1>
 <form id="mainform" onsubmit="return false">
 <label>type=color</label>
 <input type="color">

 <label>type=date</label>
 <input type="date">
 <label>type=datetime</label>
 <input type="datetime">
 <label>type=datetime-local</label>
 <input type="datetime-local">
 <label>type=email</label>
 <input type="email">
 <label>type=month</label>
 <input type="month">
 <label>type=number</label>
 <input type="number">
 <label>type=range</label>
 <input type="range">
 <label>type=search</label>
 <input type="search">
 <label>type=tel</label>
 <input type="tel">
 <label>type=time</label>
 <input type="time">
 <label>type=url</label>
 <input type="url">
 <label>type=week</label>
 <input type="week">
 </form>
 </article>
 </body>
</html>

Chrome is the most interesting browser for this example. It produces several highly
useful widgets for several of the types, as shown in Figure 2-21.

Figure 2-21. Color, date, and search input types rendered in Chrome desktop

Deprecated Elements and Obsolete
Parameters
HTML5 has officially deprecated several elements. Some of these have been replaced
with new tags or superseded by CSS features, while others are just no longer needed.

<applet>: Use <embed> or <object> instead.

<acronym>: Use <abbr> instead.

<frame>, <frameset>, and <noframes>: Frame sets have
been completely deprecated in HTML5. Instead, consider using
iframes or a server-side technology.

<strike>: Use <s>, unless the markup is for an edit, in which
case use .

<basefont>, <big>, <blink>, <center>, ,
<marquee>, <multicol>, <nobr>, <spacer>, and <tt>:
Use appropriate elements or CSS instead. For the <tt> element
use <kbd> (to denote keyboard input), <var> (for variables),
<code> (for computer code), or <samp> (for sample output). In
the case of the <big> element, use header tags if the content is a
heading, the element for denoting emphasis or
importance, or the <mark> element for highlighting references.

In addition, HTML5 has rendered obsolete many parameters on existing elements.
Again, many of these parameters have been replaced by CSS or other features, while
others were holdovers from earlier versions of HTML or XHTML.

The properties background, datasrc, datafld, and
dataformats have been deprecated from all applicable tags. In
the case of background, use CSS to apply backgrounds to elements.

<a>: charset, coords, methods, name, rev (use rel with
an opposite term), shape (use area for image maps), and urn.

<body>: alink, bgcolor, link, marginbottom,
marginheight, marginleft, marginright,
margintop, marginwidth, text, and vlink.

: clear.

<caption>: align.

<col>: align, char, charoff, valign, and width.

<div>: align.

<dl>: compact.

<hr>: align, color, noshade, size, and width.

All header tags: align.

<iframe>: align, allowtransparency, frameborder,
hspace, longdesc, marginheight, marginwidth,
scrolling, and vspace.

: align, border, datasrc, hspace, longdesc,
lowsrc, name, vspace.

<input>: align, hspace, ismap, usemap, vspace.

<legend>: align.

<link>: charset, methods, rev, target, and urn.

<menu>: compact.

<object>: align, archive, border, classid, code,
codebase, codetype (use data and type attributes and the
<param> element), declare, hspace, standby, and
vspace.

: compact.

<option>: name (use id instead).

<p>: align.

<param>: type and valuetype (use name and value
attributes).

<pre>: width.

<script>: event, for, and language.

<table>: align, bgcolor, border, bordercolor,
cellpadding, cellspacing, frame, rules, summary,
and width.

<tbody>: align, char, charoff, and valign.

<td>: abbr, align, axis, bgcolor, char, charoff,
height, nowrap, scope, valign, and width.

<tfoot>: align, char, charoff, and valign.

<th>: align, bgcolor, char, charoff, height, nowrap,
valign, and width.

<thead>: align, char, charoff, and valign.

<tr>: align, bgcolor, char, charoff, and valign.

: compact and type.

Though browsers may still render these tags and recognize these properties in an
HTML5 document, you should not use them. Any validator should throw errors on them
as well.

Summary

In this chapter, I have covered the highlights of the Elements section of the HTML5
specification:

I discussed how the evolution of HTML has been influenced by
semantics.

I took you on a brief tour of the new tags that HTML5 introduces for
sections, grouping and semantics. These tags further expand the
languages capabilities to handle complex documents and layouts.

I explored the new multimedia features of HTML5, and
demonstrated the basic use of the <audio> and <video> tags.

I then gave you a look at the new interactive elements specified by
HTML5: dialogs and progressive disclosure. Unfortunately, these
features are not yet well supported, but that should change as time
passes.

I reviewed the changes to forms that HTML5 has introduced, some
of which are especially useful in a mobile context.

And finally, I went over the tags and attributes that have been
deprecated in HTML5.

In the next chapter, you’ll dive into the JavaScript APIs that HTML5 specifies.

CHAPTER 3

HTML5 APIs

As mentioned in Chapter 1, the HTML5 standard differs from previous HTML standards
in that it is more than just the definition for a markup language. Since the standard was
designed to be a platform for creating web applications as well as web pages, it
introduces a host of new features designed to make building applications easier: new
ways for the browser to communicate with the server, new ways to store and retrieve
data, support for common user interactions like drag and drop, and so forth.

Like the new audio and video tags, many of these new web application features
have been implemented in the past using extensive JavaScript programs or even
browser plugins. Now, with HTML5, the browser manufacturers implement them
directly in their browsers.

All of these new features can be used in JavaScript programs, so browser
manufacturers provide interfaces for accessing them with your scripts. These interfaces
typically take the form of JavaScript objects and methods. The HTML5 standard defines
these interfaces as well, so the JavaScript objects and methods appear and function the
same way in all browsers that implement the standard (assuming they implement the
standard completely and correctly).

These interfaces are called Application Programming Interfaces (APIs). If you’ve
done any scripting at all in a browser you’re probably already familiar with one of the
most common APIs: the Document Object Model (DOM). The DOM is an API for
accessing the document currently rendered in the browser. Any method for fetching a
reference to an element in the browser (like getElementById) is a part of the DOM
API, as is any method for accessing the event model (like addEventListener). The
browser also publishes the Navigator API for accessing internal browser features
like browsing history. Another commonly used API is the XMLHttpRequest
constructor, which is an interface to the browser’s network communications system that
allows you to communicate asynchronously with the server.

 Note The term API has fairly broad application, from libraries and frameworks to
network services (including many web services that you can access asynchronously
with the browser) and even internal interfaces between objects in a single application.

In this chapter I’ll cover the new APIs that are defined in the HTML5 specification.
I’ll take a practical approach to the APIs, focusing on how well the feature is supported
and what you can do with it, and provide plenty of examples that you can use as a
starting point for your own web applications.

Server-sent Events
SUPPORT LEVEL

Mixed

Internet Explorer does not support this API. All other browsers have full support.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/comms.html#server-sent-
events

W3C Draft: http://dev.w3.org/html5/eventsource/

Imagine you’re building a simple stock ticker application. You have a server
resource that publishes the APIs you need for getting stock values, so it’s quite easy to
get things started. But how do you get updates to the stock values? How does the server
let your client application know that a stock’s value has changed?

This is probably the canonical use case for Server-sent Events: a situation in which
the server needs to inform the client that something has happened. Because HTTP as a
standard only defines stateless communication, and thus only clients can initiate requests
to servers, there was no way for a server to send a message to a client without the client
first asking for one. Server-sent Events is one of the ways that HTML5 addresses this
issue, in the specific case of one-way communication from the server to the client.

In the past, people wrote simple polling timers into their scripts that would
essentially ask the server “Is there anything new?” on a timer, as shown in Listing 3-1.

http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#server-sent-events
http://dev.w3.org/html5/eventsource/

 Note The examples in this section will need to be run from a server, rather than
loaded directly from your filesystem.

Listing 3-1. An Example Polling Script

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <script>

// This is a mock API that simply returns the same JSON
structure
// every time the URL is requested. This JSON structure
has a single
// property, isChanged, which is set to false.
var strUri = ’./example3-1.json’;

// This is how often we’ll query the mock API, in
milliseconds.
var timerLength = 1000;

/**
 * Fetch an update from a web service at the specified
URL. Initiates an
 * XMLHttpRequest to the service and attaches an event
handler for the success
 * state.
 * @param {string} strUrl The URL of the target web
service.
 */
function fetchUpdates(strUrl) {
 // Create and configure a new XMLHttpRequest object.
 var myXhr = new XMLHttpRequest();
 myXhr.open("GET", strUrl);
 // Register an event handler for the readyStateChange
event published by
 // XMLHttpRequest.
 myXhr.onreadystatechange = function() {

 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 handleUpdates(myXhr.responseText);
 }
 };
 // Everything is configured. Send the request.
 myXhr.send();
}

/**
 * Handle an update from the mock API. Parses the JSON
returned by the API and
 * looks for changes.
 * @param {string} jsonString A JSON-formatted string.
 */
function handleUpdates(jsonString) {
 // Parse the JSON string.
 var jsonResponse = JSON.parse(jsonString);
 if (jsonResponse.isChanged) {
 // Handle changes here, probably by checking the
structure to determine
 // what changed and then route the change to the
approprate part of the app.
 console.log(’change reported.’);
 } else {
 console.log(’no changes reported.’);
 }
}

// Everything is all set up: we have a function for
fetching an update and a
// function to handle the results of an update query. Now
we just have to kick
// off everything. Using setInterval, we will call our
fetchUpdates method every
// timerLength milliseconds. We can cancel the timer by
calling the
// cancelInterval(pollTimer) method.
var pollTimer = setInterval(fetchUpdates.bind(this,
strUri), timerLength);
 </script>
 </body>

</html>

This example does a lot of setup before it starts the polling process. Begin by
defining the URL for the mock API, which is just a file you have created on the
filesystem. You also define how often you want to poll your mock API. Then create a
function for fetching an update. This is the method you will call with the timer, and it
initiates the XMLHttpRequest (XHR for short) to the mock service. The XHR will
publish readyStateChange events as it communicates with the server. By looking
at the readyState property of the XHR object, you can tell what state the query is in:
still talking with the server, or done talking, or even if an error has occurred. So add an
event handler to the XHR object that will be called each time a readyStateChange
event occurs. In this case you’re using an inline function to keep the code simple, though
you could have defined it outside of this code block and referred to it by name. The
event handler checks the readyState property and, if it is in the correct state, it calls
the handleResponse function. That function takes the JSON-formatted string that
you fetched from your mock API and processes it accordingly.

This is a pretty unsophisticated example, but it demonstrates the basics of using a
timer to regularly poll a web service. Using the methods setInterval and
cancelInterval it’s easy to start and stop timers. If your application will need
multiple timers, you can build a constructor with convenience methods for creating,
starting, stopping, pausing, and disposing of them. You can rapidly build up a lot of
code just around creating and managing your timers.

And if you think about it, simple timers aren’t really a good way of handling this
problem. What if there is a temporary network problem and one of the calls to
fetchUpdates takes longer than a second? In that case, another call to
fetchUpdates would be executed before the first has returned, resulting in two
active and pending calls to the server. Depending on the network conditions, the second
call could return before the first. This situation is referred to as a race condition,
because the two pending calls are essentially in a race to see which one completes first.

Fortunately this race condition is fairly easy to fix: instead of having a timer fire off
requests regardless of external limitations, alter the handleUpdates method so that
the last thing it does is schedule the next call to fetchUpdates. That way you won’t
ever have more than one call happening and the race condition is eliminated. The script
would change as shown in Listing 3-2 (the surrounding HTML remains the same).

Listing 3-2. Eliminating the Race Condition from Example in Listing 3-1

// This is a mock API that simply returns the same JSON
structure
// every time the URL is requested. This JSON structure

has a single
// property, isChanged, which is set to false.
var strUri = ’./example3-1.json’;

// This is how often we’ll query the mock API, in
milliseconds.
var timerLength = 1000;

// Reference to the currently active timer.
var pollTimeout;

/**
 * Fetch an update from a web service at the specified
URL. Initiates an
 * XMLHttpRequest to the service and attaches an event
handler for the success
 * state.
 * @param {string} strUrl The URL of the target web
service.
 */
function fetchUpdates(strUrl) {
 // Create and configure a new XMLHttpRequest object.
 var myXhr = new XMLHttpRequest();
 myXhr.open("GET", strUrl);
 // Register an event handler for the readyStateChange
event published by
 // XMLHttpRequest.
 myXhr.onreadystatechange = function() {
 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 handleUpdates(myXhr.responseText);
 }
 };
 // Everything is configured. Send the request.
 myXhr.send();
}

/**
 * Handle an update from the mock API. Parses the JSON
returned by the API and
 * looks for changes, and then initiates the next query to
the mock service.
 * @param {string} jsonString A JSON-formatted string.

 */
function handleUpdates(jsonString) {
 // Parse the JSON string.
 var jsonResponse = JSON.parse(jsonString);
 if (jsonResponse.isChanged) {
 // Handle changes here, probably by checking the
structure to determine
 // what changed and then route the change to the
approprate part of the app.
 console.log(’change reported.’);
 } else {
 console.log(’no changes reported.’);
 }
 // Schedule the next polling call.
 pollTimeout = setTimeout(fetchUpdates.bind(this, strUri),
timerLength);
}

// Initiate polling process.
fetchUpdates(strUri);

The changes from the previous version of the script have been bolded. This version
of the code eliminates the race condition, because only one call to fetchUpdates
will be active at any given time. However, you could now be polling the server at an
unpredictable rate.

It is possible to program around these problems as well, but handling all of the edge
cases well can be difficult, and you will end up with a significant amount of code, all
just to intelligently handle polling a web service.

Ideally, this sort of communication should be a feature of the browser, and that’s
what the new Server-sent Events feature does. Server-sent Events has the browser
handle all of the details of connecting to the server and polling it for events, and lets you
leave behind timer-based polling scripts and all of the problems they entail. Server-sent
Events provide a way for you to open a channel to the server, and then attach event
listeners to that channel to handle various event types that the server will publish. The
browser handles everything else for you.

To use Server-sent Events, you need not only a client that can open a channel to a
web service and handle the events that occur on that channel; you also need a server that
will handle incoming channel subscriptions correctly and publish correctly formatted
events.

Client Setup

The Server-sent Events specification defines a new constructor, EventSource, in the
global context, which you can use to create new connections to the server:

var serverConnection = new EventSource(targetUrl);

The constructor returns an EventSource object that is an interface to a
connection that the browser will maintain to the server resource specified by
targetUrl. The browser will handle all of the connection maintenance and polling
for you—all you have to do is listen for events from the server.

As the server publishes events to the connection, the server resource will publish
events that will be dispatched from the EventSource object. Like any DOM event,
you can attach event handlers to the EventSource object using the
addEventListener method.

By default, the EventSource interface will publish three event types:

open: Published when the connection is first opened and network
communication has been initialized. Useful for initializing the
connection. Fires at most once, and if the browser fails to establish
a connection to the specified service, it won’t fire at all.

message: Published when the server sends a new message.

error: Published if an error occurs in the connection (e.g., the
connection times out).

When an event is dispatched, the EventSource will call the event handling
function registered for that event type. The function will be called with an event
object as a parameter, and that event object will have a data attribute that will
contain the data that was sent from the server. Listing 3-3 shows how to create a new
EventSource object and attach event listeners to it.

Listing 3-3. Stubbed EventSource Event Handlers and Subscriptions

/**
 * Handles message events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleMessage(event) {
 // Handle message.
 console.log(’A message was sent from the server: ’,
event.data);
}

/**
 * Handles error events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleError(event) {
 // Handle an error.
 console.error(’An error happened on the EventSource: ’,
event.data);
}

/**
 * Handles an open event published by the EventSource.
 * @param {EventSourceEvent} event
 */
Function handleOpen(event) {
 // Handle the open event.
 console.log(’The connection is now open.’);
}

// Create a new connection to the server.
var serverConnection = new EventSource(targetUrl);

// Attach event handlers.
serverConnection.addEventListener(’message’,
handleMessage);
serverConnection.addEventListener(’error’, handleError);
serverConnection.addEventListener(’open’, handleOpen);

Now whenever the resource specified by strUrl publishes an event, the
handleMessage event handler will be called. If an error arises in the connection the
browser will publish an error event and the handleError event handler will be
called. Note that you can configure your server to publish custom event types, and you
can add event handlers for them in exactly the same way (see next section, “Sending
Events from the Server”).

To close the connection to the server, call the close method on the
EventSource object:

serverConnection.close();

This will signal the browser to stop polling the server and close the connection.
You can then set the EventSource object to null to eliminate it from memory. There is
no way to reopen a connection once it has been closed.

Sending Events from the Server
For Server-sent Events to work, you need a resource on a server that knows how to
handle the incoming polling requests from the browser and how to correctly publish
events as needed. The server resource can be written in any language—Java, PHP,
JavaScript, C++, and so forth. The resource must respond to polling requests with the
text/event-stream MIME type. Responses consist of multiline key: value
pairs, and are terminated by a double linefeed. Valid keys are as follows:

data: This specifies a line of arbitrary data to be sent to the client,
which will receive it as the data property of the event object.

event: Specifies an arbitrary event type associated with this
Server-sent Event. This will cause an event of the same name to be
dispatched from the active EventSource object, thus enabling
arbitrary events beyond open, message, and error to be fired
from the server. If no event type is specified, the event will just
trigger a message event on the EventSource.

id: This specifies an arbitrary ID to associate with the event
sequence. Setting an ID on an event stream enables the browser to
keep track of the last event fired, and if the connection is dropped it
will send a last-event-ID HTTP header to the server.

retry: Specifies the number of milliseconds before the browser
should re-query the server for the next event. By default this is set
to 3000 (three seconds). This enables the server resource to
throttle browser queries and prevent itself from being swamped.

For example, a basic Server-sent Event would look like this:

data: arbitrary line of text\n\n

This event would trigger a message event on the associated EventSource
object and call the message event handler (assuming one was registered). The event
object received by the message event handler will have a data attribute, which will
contain the text sent by the server (in the preceding case, it would be “arbitrary line of
text”).

You can send multiple line events as well—just terminate the event with a double-
linefeed:

data: arbitrary line of text\n

data: another arbitrary line of text\n\n

In this case, the event.data attribute would be set to “arbitrary line of
text\nanother arbitrary line of text”. The event data can be any text: HTML, CSS, XML,
JSON, and so forth.

Multiple event types can be included in a single Server-sent Event as well. Going
back to the original example of a stock ticker, here is an event that shows updates on
two different stocks:

event: update\n
data: {\n
data: "ticker":"GOOG",\n
data: "newval":"559.89",\n
data: "change":"+0.05"\n
data: }\n
event: update\n
data: {\n
data: "ticker":"GOOGL"\n
data: "newval":"571.65"\n
data: "change":"+1.09"\n
data: }\n\n

This single Server-sent Event would trigger two update events on the
EventSource object. Each time the update event handler would be called, with an
event object containing the data for that event. The data for the first event would be
the following JSON-formatted text:

{
 "ticker":"GOOG",
 "newval":"559.89",
 "change":"+0.05"
}

And the data for the second event would be the following JSON-formatted text:

{
 "ticker":"GOOGL",
 "newval":"571.65",
 "change":"+1.09"
}

Origin Limitations

Server-sent Events are subject to the Same Origin Policy, so a page from one origin
cannot subscribe to an event stream from another. In particular, event streams are often
published on different TCP ports than standard web pages, so it’s not possible for a
web page published on a standard port like port 80 to subscribe to an event stream
published on a different port, even if it is from the same server. Only clients served
from the same origin as the event stream can access that event stream.

If you want to use Server-sent Events, you will need to have a web server that is
flexible enough to serve the HTML-based client (and all of its dependent resources like
CSS, JavaScript, images, etc.) and publish event streams. This makes server-integrated
scripting languages like PHP, JSP, or ColdFusion prime candidates for building
application servers that rely on Server-sent Events, because you can write the event
streams in the integrated scripting language and serve the clients using the same web
server. It’s also quite easy to configure most web servers to route requests to special
URLs to different resources, making it possible to publish both regular web content and
event streams from the same server. The details of such implementations are beyond the
scope of this book, but this is an important limitation to Server-sent Events.

In the example that follows, you’ll opt for a simpler solution: building a server that
can serve the client HTML file while acting as an event stream. Since both the HTML
client file and the event stream are from the same origin, there will be no problems with
the subscription.

Security
Just as with any technique for handling network communication, it’s a good idea to be
conscious of security when you’re building applications with Server-sent Events. Never
send sensitive information (e.g., passwords) on unencrypted connections, because
server events are sent in plain text. If you need to send sensitive information you should
at the very least use HTTPS.

As mentioned, Server-sent Events are limited by the Same Origin Policy, so a script
cannot subscribe to an event stream from a network resource different than its own. In
addition, the event object received by EventSource event handlers will have an origin
property that you can check to verify that the server event is coming from the source you
expect, as shown in Listing 3-4.

Listing 3-4. Checking Event Origins from Server-sent Events

// The EventSource object.
var serverConnection;

/**
 * Handle an event published on an EventSource object.
 * @param {EventSourceEvent} event
 */
function messageHandler(event) {
 if (event.origin !== ’https://www.myexample.com’) {
 // Something bad has happened, stop listening for
events and surface a warning to the user.
 serverConnection.close();
 alert(’Warning: Server event received from wrong
network resource.’);
 return;
 }
 // Handle event here.
}

// Initiate subscription to event stream and register
event handler.
serverConnection = new EventSource(targetUrl);
serverConnection.addEventListener(’message’,
messageHandler);

In this snippet you’re checking the origin of the event as reported by the browser.
This is not a foolproof check, however, as it can be spoofed, but it’s one more layer of
security you can add to your application.

An Example Application
To build a functional example application, you’ll need a server resource that can send
the events in the expected format and can also serve the client that will subscribe to the
event stream. As mentioned, you could use any language to build this server resource,
but to stay consistent with the other examples in the book, use JavaScript. You’re
probably used to using JavaScript in the browser. You can also use it on a server, just
like any other scripting engine. The most popular implementation of JavaScript as a
standalone scripting engine is the Node.js framework, which has been ported to multiple
operating systems. The Node.js framework provides a fast JavaScript interpreter and a
framework of APIs for accessing the filesystem, network stack, and other resources on
the server.

 Tip If you’ve never used Node.js, you can learn more about it at

http://nodejs.org.

To run this example, you’ll need a server with Node.js installed. You’ll build a
simple script that will both act as the event streamer and serve the event client. As you
can see in Listing 3-5, it’s quite easy to build a simple HTTP server with Node.js.

Listing 3-5. A Simple Event Stream Server Written in JavaScript

// Include the modules needed to build the server.
var http = require(’http’);
var sys = require(’sys’);
var fs = require(’fs’);

// Use the http.createServer method to create a server
listening on port 8030.
// The server will call the handleRequest method each time
a request is
// received.
http.createServer(handleRequest).listen(8030);

/**
 * Handle an incoming request from the server.
 * @param {Object} request The request headers.
 * @param {Object} resource A reference to the server
resource that received
 * the request.
 */
function handleRequest(request, resource) {
 // Incoming requests to our server will be to one of two
URLs.
 // If the request is for /example3-5-events we should
send our SSE.
 // If the request is for /example3-5.html, we should
serve the example client.
 if (request.url == ’/example3-5-events’) {
 // Initialize an event stream.
 sendSSE(request, resource);
 } else if (request.url == ’/example3-6.html’){
 // Send the client.
 resource.writeHead(200, {’Content-Type’:
’text/html’});

http://nodejs.org

 resource.write(fs.readFileSync(’example3-6.html’));
 resource.end();
 }
}

/**
 * Initializes an event stream and starts sending an event
every 5 seconds.
 * @param {Object} request
 * @param {Object} resource
 */
function sendSSE(request, resource) {
 // Initialize the event stream.
 resource.writeHead(200, {
 ’Content-Type’: ’text/event-stream’,
 ’Cache-Control’: ’no-cache’,
 ’Connection’: ’keep-alive’
 });

 // Send an event every 5 seconds.
 setInterval(function() {
 // Randomly generate either 0 or 1.
 var randNumber = Math.floor(Math.random() * 2);
 // If the random number is 1, set isChanged to true.
Otherwise, set it to
 // false.
 var isChanged = (randNumber === 1) ? true : false;
 resource.write(’data: ’ + ’{"isChanged":’ + isChanged
+ ’}\n\n’);
 }, 5000);
}

If you request example3-6.html it will serve the HTML client (which you’ll
define in Listing 3-6), and if you request example3-5-events it will initiate an
event stream that will push an event to the client every five seconds. The event will be a
simple JSON-formatted string with an isChanged property that will be set randomly
to true or false. To run this server, use the following command:

node example3-5server.js

The HTML client for this server just has to initiate the EventSource to the
correct URL, as shown in Listing 3-6.

Listing 3-6. A Server-sent Event Client

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
#changeme {
 width: 300px;
 height: 300px;
 border: 1px solid black;
 overflow: auto;
}
 </style>
 </head>
 <body>
 <h1>Server-sent Events Demonstration</h1>
 <div id="changeme"></div>
 <script>
// The URL for our event stream. Note that we are not
specifying a domain or
// port, so they will default to the same ones used by the
host script.
var strUri = ’/example3-5-events’;
// Get a reference to the DOM element we want to update.
var changeMe = document.getElementById(’changeme’);

// Create a new server-side event connection and register
an event handler for
// the ’message’ event.
var serverConnection = new EventSource(strUri);
serverConnection.addEventListener(’message’, handleSSE,
false);

/**
 * Handles a server-sent event by parsing the JSON in the
data and handling
 * any changes.
 * @param {EventSourceEvent} event The event object from
the event source.
 */
function handleSSE(event) {

 // Parse the JSON string.
 var jsonResponse = JSON.parse(event.data);
 // Create a new element to append to the DOM.
 var newEl = document.createElement(’div’);
 if (jsonResponse.isChanged) {
 newEl.innerHTML = ’Change reported.’;
 } else {
 newEl.innerHTML = ’No changes reported.’;
 }
 // Append the new element to the DOM.
 changeMe.appendChild(newEl);
}
 </script>
 </body>
</html>

This client initiates a new EventSource for the event stream’s URL and then
attaches a message event handler to it. Every time the server publishes an event, the
message event handler is called, the event data is parsed, and the results are appended
to the DOM. This client is a lot simpler than your previous polling example because all
of the details are handled by the browser now. There’s no need to initiate an
XMLHttpRequest object, no need to manage your own timers—all you have to do is
initialize an EventSource object and register event handlers.

Server-sent Events only allow for one-way communication from the server to the
browser. For full duplex communication, see the section on WebSockets.

WebSockets
SUPPORT LEVEL

Good

All modern browsers support WebSockets.

WHATWG Living Standard:
https://html.spec.whatwg.org/multipage/comms.html#network

W3C Draft: http://www.w3.org/TR/websockets/

https://html.spec.whatwg.org/multipage/comms.html#network
http://www.w3.org/TR/websockets/

WebSockets build on Server-sent Events by providing full duplex communication
between client and server: not only can the server send arbitrary information to the
client, but the client can transmit arbitrary information back to the server. In addition,
WebSockets are not beholden to the Same Origin Policy, which prevents scripts from
one origin from interacting with pages from a different origin.

The WebSocket JavaScript API in the browser manifests as a new WebSocket
constructor in the global context, which returns a WebSocket object:

var mySocket = new WebSocket(url, protocols);

The url parameter specifies a valid URL to a WebSocket compliant service.
WebSockets have their own communication protocol, which is different than the
hypertext transfer protocol (HTTP) we see all the time. The WebSocket protocol is
specified by either ws:// (for a standard WebSocket connection) or wss:// (for a
secure WebSocket connection). Any attempt to specify a different protocol (such as
http or https) when constructing a WebSocket will result in an error.

The optional protocols parameter is either a single protocol string or an array of
protocol strings specifying one or more sub-protocols implemented by the server. (A
protocol in this context is a set of rules for how data is transmitted between the client
and the server.) This parameter does not change the overall network protocol used by
the browser to create and maintain the connection with the server; instead it allows you
to specify acceptable data formats for sending and receiving information through that
connection. This enables a single server to implement multiple ways of transmitting data
to and receiving data from clients. For example, you can implement a server that
implements both a Server-sent Event protocol (using the key/value pairs specified for
that API) and a protocol that sends JSON-formatted strings as text. Your client can then
specify which protocol it expects. If a protocol is not specified, the server will have to
choose a default. If the specified protocols are not available on the server, the server
will refuse the connection.

Connecting to the Server: Inside the WebSocket
Handshake
A web browser creates a two-way connection with a service using a handshake
process. When you create a new WebSocket using the constructor, the browser will
immediately send a simple GET query to the host specified in the URL. The query will
contain all the headers needed to specify that the browser is attempting to create a
WebSocket connection (as opposed to making a simple HTTP request). For example,
assume you went to the web site at example.com and they were advertising their new

WebSocket-based chat service. (A chat service is a common example use case for
WebSockets, since it involves the need to both send and receive messages.) You click
the link to sign on to the chat service, and the application starts.

Behind the scenes, the browser will attempt to connect to the chat service. Assuming
the service was also hosted on the same domain example.com at the URL
ws://www.example.com/chat, the JavaScript socket creation might look
something like:

var mySocket = new WebSocket(’ws://www.example.com/chat’,
[’chat’, ’json’]);

and the resulting request and its headers would look something like:

GET /chat HTTP/1.1
Host: example.com:8000
Upgrade: websocket
Connection: upgrade
Origin: http://www.example.com
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: chat, json
Sec-WebSocket-Version: 13

The first line is a simple GET request. The “chat” part of the request is optional, but
allows a single server to publish many WebSocket services.

The headers contain the information needed to establish a WebSocket connection
with the server. Specifically, the Sec-WebSocket-Key header contains a unique
identifier that the client will expect the server to use in a specific way in its response.
The Sec-WebSocket-Protocol header contains the sub-protocols specified in the
constructor. In this case the client is specifying that it knows the ’chat’ and ’json’
protocols.

The server will take the information in the headers and formulate a response, which
could look something like the following:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

The value of the Sec-WebSocket-Accept header depends on the value of the
Sec-WebSocket-Key header sent by the client. The client knows to expect a
specific value from the server, and if a different one is specified (or if one is not

specified at all), the client knows that the server can’t handle a WebSocket connection.
The Sec-WebSocket-Protocol header indicates that the service has chosen the
’chat’ protocol for communication.

 Note The WebSocket Protocol is defined in RFC 6455, “The WebSocket Protocol,”
which you can read at https://tools.ietf.org/html/rfc6455. That
document specifies the entire protocol, including the details of handling the Sec-
WebSocket-Key header to create the Sec-WebSocket-Accept value.

Once the handshake is complete, the client and server will communicate with one
another using a special data frame protocol. This protocol allows the client and server
to send arbitrary information to one another easily.

Receiving Information from the Server
On the client, interactions with the server are event driven: when communication
happens with the server, specific events are published on the associated WebSocket
connection object.

error: An error event is published on the connection object
when the WebSocket fails to connect to the server, or loses the
connection.

open: The open event is published on the connection object when
the WebSocket first succeeds in connecting with the specified
service. This event indicates that the socket is ready to send and
receive data.

close: When a WebSocket closes, either due to an error or
because the client deliberately closed the connection, a close
event is published on the connection object.

message: When the server sends information through the
connection, the browser will publish a message event on the
connection object. The event will contain the data that was
transmitted from the server.

Listing 3-7 demonstrates some stubbed event handlers for these events using the
hypothetical chat service.

https://tools.ietf.org/html/rfc6455

Listing 3-7. Stubbed Event Handlers for a Web Socket

// Create a new WebSocket connection to the chat service.
var chatUrl = ’ws://www.fgjkjk4994sdjk.com/chat’;
var validProtocols = [’chat’, ’json’];
var chatSocket = new WebSocket(chatUrl, validProtocols);

/**
 * Handles an error event on the chat socket object.
 */
function handleError() {
 console.log(’An error occurred on the chat
connection.’);
}

/**
 * Handles a close event on the chat socket object.
 * @param {CloseEvent} event The close event object.
 */
function handleClose(event) {
 console.log(’The chat connection was closed because ’,
event.reason);
}

/**
 * Handles an open event on the chat socket object.
 * @param {OpenEvent} event The open event object.
 */
function handleOpen(event) {
 console.log(’The chat connection is open.’);
}

/**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log(’A message event has been sent.’);

 // The event object contains the data that was
transmitted from the server.
 // That data is encoded either using the chat protocol
or the json protocol,

http://www.fgjkjk4994sdjk.com/chat

 // so we need to determine which protocol is being used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log(’The chat protocol is active.’);
 console.log(’The data the server transmitted is: ’,
event.data);
 // etc...
 } else {
 console.log(’The json protocol is active.’);
 console.log(’The data the server transmitted is: ’,
event.data);
 // etc...
 }

// Register the event handlers on the chat socket.
chatSocket.addEventListener(’error’, handleError);
chatSocket.addEventListener(’close’, handleClose);
chatSocket.addEventListener(’open’, handleOpen);
chatSocket.addEventListener(’message’, handleMessage);

In this example you create a set of simple event handlers, one for each of the event
types, then register those handlers on the connection object. You can actually run this
example if you want. The domain fgjkjk4994sdjk.com doesn’t exist, so first the
browser will publish an error event on the connection, followed by a close event.
In the console, you’ll see something similar to Figure 3-1.

Figure 3-1. The results of running Listing 3-7 in Chrome

In the closed event handler handleClose you check the reason property on the
event object to see if a reason for the closing was specified. This property may or
may not be present, depending on the error that occurred and the subprotocol that was
specified for the connection.

The handleMessage event handler is very simple, but demonstrates how to
check the active subprotocol, and how to access the data that was transmitted by the
server. We’re used to simple text-based communication through HTTP (as with Server-
sent Events), but WebSockets can transmit binary data as well. You could transmit any
arbitrary binary data through a WebSocket; for example, you can send and receive
images.

In JavaScript, binary data is represented using either binary large objects (also
known as blobs) or array buffers. Both of these are valid data types in JavaScript:
Blob represents blobs and ArrayBuffer represents array buffers. The difference
between the two types is how the data is being used. If you are working with a single
chunk of raw data that never has to be changed (like an image) it is best represented by
a Blob. If you need to process the data (look at parts of it, or even change it), it’s
probably best represented using an ArrayBuffer. Both of these are data types in
JavaScript, so it’s easy to check to see if the information transmitted from the server is
in that format. Here’s an update to the handleMessage event handler that
demonstrates checking for Blobs and ArrayBuffers:

/**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log(’A message event has been sent.’);

 // The event object contains the data that was
transmitted from the server.
 // That data is encoded either using the chat protocol
or the json protocol,
 // so we need to determine which protocol is being used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log(’The chat protocol is active.’);

 // Check the data type of the incoming data.
 if (event.data instanceof Blob) {
 console.log(’The data is a Blob.’);
 }
 if (event.data instanceof ArrayBuffer) {
 console.log(’The data is an ArrayBuffer.’);
 }

 console.log(’The data the server transmitted is: ’,
event.data);

 // etc...
 } else {
 console.log(’The json protocol is active.’);
 console.log(’The data the server transmitted is: ’,
event.data);
 // etc...
 }

}

Here you’ve added checks in the chat subprotocol section to determine if the data
is a Blob or an ArrayBuffer. You could do a similar check in the json subprotocol
section as well; it is possible to encode both Blobs and ArrayBuffers in JSON
format (typically using Base64 encoding).

 Note For more details on handling Blobs, see
https://developer.mozilla.org/en-US/docs/Web/API/Blob, and
for more details on working with Array Buffers, see
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer

Sending Information to the Server
You can transmit information to the server using a WebSocket as well. Each WebSocket
connection object has a send method that you can use to immediately transmit
information to the server. You should make sure only to send information after the open
event has fired, otherwise the information likely will be lost. As a result, you will often
see a pattern in WebSocket applications in which the open event handler kicks off the
initialization of an application to guarantee nothing happens until the connection is
available.

The send method takes only one parameter: the data to send, as shown next:

var mySocket = new WebSocket(url);
mySocket.send(’hello world!’);

Valid data types are Strings, Blobs, and ArrayBuffers.

Closing the Connection

https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer

The connection object has a close method that can be used to close the connection to
the server when you’re done with it. Calling this method will immediately cause the
client to send a close request to the server, which in turn will close the connection.
The client will then dispatch a close event on the connection object. There is no way
to reopen a closed WebSocket connection object.

An Example WebSocket Application
As with Server-sent Events, you will need a server capable of handling WebSocket
connections in order to build a functioning example. Building such a server from scratch
is a moderately difficult task, as the server has to know how to upgrade the HTTP
connection to a WebSocket connection, and also how to send and receive data
according to the WebSocket protocol. Fortunately you probably won’t have to build one
from scratch. There are many open source projects devoted to creating WebSocket
servers that you can use in your projects. For the example WebSocket application you
will build a simple WebSocket server using Node.js, a JavaScript framework for
servers. Node.js provides a fast JavaScript interpreter as well as libraries for accessing
the filesystem, network stack, and other server technologies.

Rather than build the server from scratch, you’ll use WebSocket-Node, an open
source implementation of the WebSocket protocols in Node.js. The home for this
project is at https://github.com/theturtle32/WebSocket-Node. To
install the module, use the node package manager npm:

npm install websocket

This should install the module for you. If it doesn’t, see the Installation notes at the
project home site.

Once WebSocket-Node is installed, you can use it to build a server for your
example. The simplest WebSocket example is a server that simply echoes back anything
that the client sends. Listing 3-8 shows how simple it is to build a server using the
WebSocket-Node library.

Listing 3-8. A Simple WebSocket Server

// Include the modules needed to build the server.
var WebSocketServer = require(’websocket’).server;
var http = require(’http’);
var currentConnection;

// Define the subprotocol name for the WebSocket

https://github.com/theturtle32/WebSocket-Node

connection.
var subProtocol = ’echo’;

/**
 * Handles a request event on the WebSocket server.
 * @param {Object} request
 */
function handleRequest(request) {
 currentConnection = request.accept(subProtocol,
request.origin);
 currentConnection.on(’message’, handleMessage);
}

/**
 * Handles a message event on a socket connection.
 * @param {Object} message The message event object.
 */
function handleMessage(message) {
 // Echo back whatever was received.
 if (message.type === ’utf8’) {
 currentConnection.sendUTF(message.utf8Data);
 } else if (message.type === ’binary’) {
 currentConnection.sendBytes(message.binaryData);
 }
}

// Create a simple server that always returns 404 (not
found) to any request.
// (We’re only going to use it to upgrade to the WebSocket
protocol.)
var simpleServer = http.createServer(function(request,
response) {
 response.writeHead(404);
 response.end();
});
simpleServer.listen(8080);

// Create a WebSocket server based on the simple server.
var socketServer = new WebSocketServer({
 httpServer: simpleServer,
 autoAcceptConnections: false
});

// Register the request event handler.
socketServer.on(’request’, handleRequest);

This example creates a WebSocket server based on a simple HTTP server.
Whenever a connection request comes in on the socket server, a request event is
dispatched on that object. In the handleRequest event handler you establish a
WebSocket connection by accepting the request, and then register an event handler for
message events. Whenever the client sends a message to the server, a message
event is dispatched on the connection object. Your handleMessage event handler
simply echoes back whatever data was received.

Save this script in a file called example3-8-server.js. To run it, type node
example3-8-server.js.

 Tip If you don’t want to build a server yourself, there is a simple echo server running
at ws://echo.websocket.org. Use that as the URL and do not specify a
protocol. Note that if you do run the example this way, it will demonstrate that
WebSockets are not bound to the Single Origin Policy, since the original page will be
served from a local server but the WebSocket server is on an entirely different domain.

Next you need to build a client that can make use of the server. Your client should
try sending various types of data and display anything that is echoed back from the
server. Listing 3-9 shows a client that will connect to your server and run a set of tests.

Listing 3-9. A WebSocket Demonstration Class

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>WebSockets Demonstration</h1>
 <div id="display"></div>
 <script>
function WebSocketDemo() {

 /**
 * The URL for the WebSocket server. There is a simple
echo server running at
 * ws://echo.websocket.org/ if you don’t have a local

server running.
 * @private {string}
 */
 this.demoUrl_ = ’ws://localhost:8080/’;

 /**
 * The protocol used by the server. If using the server
at echo.websocket.org
 * set this to null, as it does not have a protocol.
 * @private {string|Array<string>}
 */
 this.subProtocol_ = ’echo’;

 /**
 * @private {WebSocket}
 */
 this.demoSocket_ = null;

 /**
 * A reference to the DOM element to use for displaying
messages.
 * @private {HtmlElement}
 */
 this.display = document.getElementById(’display’);

 /**
 * Displays a message on the page.
 * @param {string} messageText A simple string of text.
 * @param {*=} opt_messageData An optional set of data
to append to the text
 * string.
 * @private
 */
 this.displayMessage_ = function(messageText,
opt_messageData) {
 var messageData = opt_messageData ? opt_messageData
: ’’;
 var newParagraph = document.createElement(’p’);
 newParagraph.innerText = messageText + messageData;
 this.display.appendChild(newParagraph);
 };

 /**

 * Handles an error event on the demo socket object.
 * @private
 */
 this.handleError_ = function() {
 this.displayMessage_(’An error occurred on the demo
connection.’);
 };

 /**
 * Handles a close event on the demo socket object.
 * @private
 */
 this.handleClose_ = function() {
 this.displayMessage_(’The demo connection was
closed.’);
 };

 /**
 * Handles an open event on the demo socket object.
 * @private
 */
 this.handleOpen_ = function() {
 this.displayMessage_(’The demo connection is open.’);

 // Now that the socket is open, we can send data.
 this.sendDataAndClose_();
 };

 /**
 * Handles a message event on the demo socket object.
 * @param {MessageEvent} event The message event object.
 * @private
 */
 this.handleMessage_ = function(event) {
 this.displayMessage_(’A message event has been
received from the server.’);
 // Check the data type of the incoming data.
 if (event.data instanceof Blob) {
 this.displayMessage_(’The data is a blob.’);
 }
 if (event.data instanceof ArrayBuffer) {
 this.displayMessage_(’The data is an
ArrayBuffer.’);

 }
 this.displayMessage_(’The data the server transmitted
is: ’, event.data);
 };

 /**
 * Initializes the demo by creating a new connection and
registering event
 * handlers.
 * @private
 */
 this.initDemo_ = function() {
 // Open the socket.
 this.demoSocket_ = new WebSocket(this.demoUrl_,
this.subProtocol_);

 // Register the event handlers on the demo socket.
 this.demoSocket_.addEventListener(’error’,
this.handleError_.bind(this));
 this.demoSocket_.addEventListener(’open’,
this.handleOpen_.bind(this));
 this.demoSocket_.addEventListener(’message’,
 this.handleMessage_.bind(this));
 this.demoSocket_.addEventListener(’close’,
this.handleClose_.bind(this));
 };

 /**
 * Sends data to the server, then closes the socket.
 * @private
 */
 this.sendDataAndClose_ = function() {
 // Send a text string.
 this.demoSocket_.send(’Hello world!’);

 // Send a JSON-formatted string.
 var testObject = {
 message: ’hello world’,
 active: true
 };
 var testObjectString = JSON.stringify(testObject);
 this.demoSocket_.send(testObjectString);

 // Send a Blob.
 var testBlob = new Blob([’some data’]);
 this.demoSocket_.send(testBlob);

 // Done! Demo over. Close the socket after waiting for
a few seconds for
 // all of the messages to be sent and received. You
might need to adjust
 // this depending on the speed of your connection.
 setTimeout(function() {
 this.demoSocket_.close();
 }.bind(this), 5000);
 };

 /**
 * Runs the demonstration.
 */
 this.run = function() {
 this.initDemo_();
 };
}

// Create the demo and run it.
var myDemo = new WebSocketDemo();
myDemo.run();

 </script>
 </body>
</html>

In this example you’ve encapsulated the demonstration in a class constructor.
Although you’re only running the demonstration once, this is a good pattern to follow
when building complex connections like this because it helps encapsulate their
functionality. It also means you can easily instantiate more than one connection at once if
you want.

Everything that was previously a function or variable in the global scope has been
moved into the class. You’ve also added a new method, sendDataAndClose_,
which demonstrates sending various types of data, and then closes the connection after a
five-second delay. The open event handler calls sendDataAndClose_, so no data
would be sent unless the connection was ready. Anything that the server sends will be
displayed on the page.

Run this example and it will produce a result similar to the screenshot in Figure 3-2.

Figure 3-2. The result of running Listing 3-9

You can also induce an error in the WebSocket connection by specifying an invalid
subprotocol value for this.subProtocol_:

/**
 * The protocol used by the server. If using the server at
echo.websocket.org
 * set this to null, as it does not have a protocol.
 * @private {string|Array<string>}
 */
this.subProtocol_ = ’invalid protocol’;

The WebSocket server will not perform the upgrade and the socket connection will
fail.

Cross Document Messaging/Web
Messaging

SUPPORT LEVEL

Good

All modern browsers support these features.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/web-
messaging.html#crossDocumentMessages

W3C Draft: http://www.w3.org/TR/webmessaging/

When web browsers manufacturers started adopting JavaScript, it quickly became clear
that security was going to be an important issue. Early on, Netscape introduced the
Same Origin Policy, which dictates that a script can only access DOM content from the
same origin as itself. If it weren’t for this policy, malicious scripts from any domain
could run on your browser, then read—and modify—all of the data to which the
browser had access: rendered pages, history, cookies, even saved passwords.

There is no explicit standard for the Same Origin Policy, but it is based largely on
RFC 6454, “The Web Origin Concept.” (You can read this RFC at
http://tools.ietf.org/html/rfc6454.) Roughly speaking, two resources
have the same origin if their protocol (HTTP, HTTPS), host (e.g.,
www.example.com), and port (the default is port 80) all match.

 Note Internet Explorer does not include the port in its origin determinations. Instead
it uses the Security Zone that the resource falls within.

The Same Origin Policy is a cornerstone of web application security, and it is
strictly enforced by browsers. Unfortunately it creates difficulties in building web
applications that utilize multiple resources on different domains or even subdomains
(e.g., www.example.com will have a different origin than
services.example.com, even though they both have the same root domain of
example.com). As a result, web developers have created many different

http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html#crossDocumentMessages
http://www.w3.org/TR/webmessaging/
http://tools.ietf.org/html/rfc6454

workarounds, some more hackish than others.
Web Messaging, also known as Cross Document Messaging, is one of the ways

HTML5 provides a secure method of working within the Same Origin Policy, while
allowing safe communication between resources from different origins. Specifically, the
feature allows scripts in one frame to communicate with scripts in another frame using
events that can be triggered at will.

The specification creates the new method postMessage on the browser’s
window object. You use this method to send a message to a target frame, which in turn
causes a message event to be fired in that window. An event handler in the target
frame can capture the event and receive the message.

The postMessage method takes two parameters:

message: The message you want to transmit to the target frame.

origin: The origin you expect the resources in the target frame to
have. If the resources in the target frame do not have the specified
origin, the event will not be dispatched.

The target frame will dispatch a message event when it receives a message. The
resulting event object will have two important attributes:

Event.data: This attribute will contain the message that was
sent from the other window.

Event.source: This attribute will contain the origin of the
sending window. You should always double-check the origin of
message sources to prevent accidentally capturing and processing
events from unexpected (and possibly malicious) origins.

To create an example, you’ll need two pages, which you should call the Main Page
(Listing 3-10) and the Target Page (Listing 3-11). The Main Page will contain an iframe
that loads the Target Page.

Listing 3-10. Cross-Domain Messaging, Main Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>

 <h1>Cross-Domain Messaging</h1>
 <iframe src="example3-8.html" id="targetFrame">
</iframe>
 <p><button id="clickme">Click to send a message to the
iframe.</button></p>
 <script>
// Message to send to the target window.
var strMessage = "This is a message sent from the main
window.";

// Reference to the button.
var clickme = document.getElementById("clickme");

// Reference to the target frame.
var targetFrame = document.getElementById("targetFrame");

// Add a click event handler to the button.
clickme.addEventListener("click", function() {
 // Send a message to the target frame.
 targetFrame.contentWindow.postMessage(strMessage, "*");
});

/**
 * Handle a cross domain message.
 * @param {Event} event The event object from the cross
domain message.
 */
function handleMessage(event) {
 // Create a message and show it to the user using an
alert.
 var strAlert = "Message event in the main window!\nThe
message was:\n";
 strAlert += event.data;
 alert(strAlert);
}

// Register the handleMessage event handler on the window.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

Listing 3-11. Cross-Domain Messaging, Target Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Target iframe</h1>
 <script>
/**
 * Handles message events dispatched to this window.
 * @param {Event} event The event object from the cross
domain message.
 */
function handleMessage(event) {
 // Create a message and show it to the user using an
alert.
 var strAlert = "Message event in target iframe!\nThe
message was:\n";
 strAlert += event.data;
 alert(strAlert);

 // Post a message back to the parent frame.
 window.top.postMessage("This is a message from the
target iframe.", "*");
}

// Register the message event handler on the window.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

To run this example, save both pages in the same directory. Save the Target Page
under the name “example3-8.html.” When you load the Main Page into your browser, it
will load the Target Page into the iframe. Run the example by clicking the text “Click to
send a message to the iframe.”

Upon load, both documents bind message event handlers to their window
objects. When you click the button, the parent document sends a message to the iframe
using postMessage. This triggers a message event in the iframe, which is handled
there by the handleMessage event handler. This alerts the event data, and then posts

a message back to the parent document. This in turn triggers a message event in the
parent window, which invokes the handleMessage event handler there and causes
the second alert to occur.

In this example you are not taking advantage of the main purpose for this feature,
which is to send messages from resources from different origins. If you have access to
more than one origin, I encourage you to experiment with this example. Upload the
pages to different origins (be sure to alter the URL of the iframe accordingly) and see if
the results work as expected.

Note that in this example, you are not specifying the target origin in your calls to
postMessage, nor are you checking the origin in your event handlers. This is
inherently insecure and I strongly recommend against doing this in production code. You
are only doing it here because this is an example, and the specific domain information
will vary depending on how you are serving the files. I encourage you to modify these
scripts so that they specify the target origin correctly and check the source origin
according to your specific environment. Also, try setting them to different values to
induce origin violations so you can see the results for yourself.

Web Storage
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last three versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/webstorage.html

W3C Draft: http://www.w3.org/TR/webstorage/

I’ve mentioned already that Hypertext Transfer Protocol is stateless. Partly this means
that the server treats each request from a client independently from every other request.
As a result there is no built-in mechanism for maintaining data across web page loads or
reloads. For example, if the first page of an application is a login form and the user
successfully logs in, there is no mechanism to maintain that session as the user navigates
through the rest of the site. Or if you were building a shopping cart application, there is
no way to carry the user’s choices from one page to another.

Of course that makes for terrible user interaction, so in 1995—quite early in the

http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html
http://www.w3.org/TR/webstorage/

history of the Web—Netscape employee Lou Montulli created a specification for
allowing small pieces of data to be communicated between the browser and the server
using special HTTP requests. These pieces would be stored in the client, but the server
could request them as needed. Montulli called these small pieces of data “magic
cookies,” and that is the origin of the term HTTP Cookie. Cookies enabled stateful
communication on the web and quickly became a cornerstone for web applications.
However, HTTP Cookies are a bit clunky. They are quite limited in size (4KB in most
browsers) and are rather difficult to manage directly with JavaScript.

HTML5 introduced the concept of Web Storage as an alternative to HTTP Cookies.
Web Storage allows for significantly more data to be stored in the browser (up to 5MB
per origin in all browsers except Internet Explorer, which allows 10MB per origin).
Web Storage also has a very simple key/value API, making it quite easy to use with
JavaScript. Unlike HTTP Cookies, Web Storage is controlled entirely by the browser,
and the server cannot access the contents directly. If you want to share Web Storage
data with the server, your script will specifically have to transmit the data to the server.

Web Storage defines two different forms of storage: Session Storage and Local
Storage. Session Storage, as its name suggests, only stores data for the current browser
session. When the user closes their browser, the contents of Session Storage are
cleared. Local Storage, on the other hand, is permanent. Once you store data in Local
Storage it will stay there until you remove it, even if the user closes their browser or
reboots their computer or device.

Like HTTP Cookies, Web Storage is limited by origin. Scripts from a given origin
can only access Web Storage for that origin. Cross-origin access is not permitted.
Unlike HTTP Cookies, you cannot set an expiration date or specify a path for Web
Storage data.

Methods and Syntax
Web Storage defines two new objects in the global context: sessionStorage and
localStorage. They both have the same methods:

getItem(key): Returns the data associated with the specified
key.

removeItem(key): Removes the data associated with the
specified key.

setItem(key, data): Stores the data in storage with the
specified key.

clear(): Clears the storage of all contents.

Using Web Storage is quite simple, as shown in Listing 3-12.

Listing 3-12. Using Web Storage

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>localStorage Example</h1>
 <script>
// Check to see if we’ve visited this page before.
var myValue = localStorage.getItem("test");
if (myValue == null) {
 alert(’This is the first time you loaded this page! Now
reload this page.’);
 localStorage.setItem("test", "true");
} else {
 alert(’You have loaded this page before!’);
}
 </script>
 </body>
</html>

This example first tests to see if you have visited this page before. If you haven’t, it
stores some data in Local Storage. When you reload the page, the data should still be
present there.

One of the main limitations of Web Storage is that it can only store primitives (text,
numbers, and booleans). More complex data like arrays or objects cannot be stored in
Web Storage. However, if the desired data can be formatted as a JSON string, it can be
serialized and then stored. Upon retrieval, the JSON string can be parsed and the data
structure restored for use. It’s not hard to write functions to handle this for you:

/**
 * Serializes and stores an object in session storage
under the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and
store.
 */

function setSessionObject(key, value) {
 sessionStorage.setItem(key, JSON.stringify(value));
}

/**
 * Retrieves, deserializes, and returns the object stored
in session
 * storage under the specified key.
 * @param {string} key The key that the object was stored
under.
 * @return {Object} The restored object.
 * /
function getSessionObject(key) {
 var value = sessionStorage.getItem(key);
 return value && JSON.parse(value);
}

Here the setSessionObject wraps the sessionStorage.setItem
method and the getSessionObject method wraps the
sessionStorage.getItem method. You could easily create similar functions for
localStorage as well. But wouldn’t it be great if both sessionStorage and
localStorage had getObject and setObject methods, without having to use
separate functions? Fortunately, that’s quite easy to do thanks to the extendable nature of
JavaScript and its inheritance model.

Without going into prototypal inheritance in detail, here’s the secret: both the
sessionStorage and localStorage objects inherit from the Storage abstract
object. That means that any method available on the prototype object for Storage will
be available to both sessionStorage and localStorage. So all you have to do
is add your new methods to Storage:

/**
 * Serializes and stores an object in web storage under
the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and
store.
 */
Storage.prototype.setObject = function(key, value) {
 this.setItem(key, JSON.stringify(value));
};

/**

 * Retrieves, deserializes, and returns the object stored
in web storage under
 * the specified key.
 * @param {string} key The key that the object was stored
under.
 * @return {Object} The restored object.
 */
Storage.prototype.getObject = function(key) {
 var value = this.getItem(key);
 return value && JSON.parse(value);
};

Again, don’t get too hung up on the syntax, just remember that both
sessionStorage and localStorage are “children” of Storage, so any
improvements you make to Storage will also be available to its children.

Listing 3-13 demonstrates using the new methods.

Listing 3-13. Using Custom Storage Methods

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Web Storage Example</h1>
 <script>
/**
 * Serializes and stores an object in web storage under
the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and
store.
 */
Storage.prototype.setObject = function(key, value) {
 this.setItem(key, JSON.stringify(value));
};

/**
 * Retrieves, deserializes, and returns the object stored
in web storage under
 * the specified key.

 * @param {string} key The key that the object was stored
under.
 * @return {Object} The restored object.
 */
Storage.prototype.getObject = function(key) {
 var value = this.getItem(key);
 return value && JSON.parse(value);
};

// Create a simple test object.
var myObject = {
 test: true
};

// Create a simple test array.
var myArray = [1, ’two’, true];

// Check session storage for the stored data.
if (sessionStorage.getItem(’myObject’) == null) {
 // First time here, so store the data.
 sessionStorage.setObject(’myObject’, myObject);
 sessionStorage.setObject(’myArray’, myArray);
 alert(’Data stored. Reload the page to validate.’);
} else {
 // We have been here before. Get values from storage and
test them.
 var newObject = sessionStorage.getObject(’myObject’);
 var newArray = sessionStorage.getObject(’myArray’);
 alert(myObject.test === newObject.test); // should alert
true.
 alert(myArray[1] === newArray[1]); // should alert true.
}
 </script>
 </body>
</html>

The first step in this example is to extend Storage with your new methods. Next,
create an object and an array for testing the new methods. When you load the page it
checks for the stored value, and if it isn’t there it stores the object and array using your
new methods. If it is there, it gets them using your new methods and then tests to see that
the values are the same.

Privacy and Web Storage
The possibility of extensive, permanent data storage within a browser raises serious
privacy concerns. Though Web Storage is limited by the Single Origin Policy, the same
techniques that can be used for setting third-party HTTP Cookies can also be used for
setting third-party Web Storage data. And while all browsers offer users a great deal of
control over the HTTP Cookies that they store, most browsers have not yet extended
those features to Web Storage. In fact, Web Storage is one of the methods used to create
so-called Evercookies (you can read about Evercookies at
http://samy.pl/evercookie/).

As with HTTP Cookies, you should not regard Web Storage as secure. Do not store
any sensitive information, such as passwords, in Web Storage.

Most browsers implement some form of private browsing. There’s no standard
governing what “private browsing” entails, but in most cases it means that all client-
side storage is limited to the current session. This includes Web Storage. If the user is
using the browser’s private browsing feature, any data stored using Web Storage will
be wiped out when the user closes that tab, even if you stored it using
localStorage. As a result there is no guarantee that what you store in
localStorage will be there the next time the user returns to your application, so
bear that in mind if your application relies heavily on localStorage.

Drag and Drop
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for at least the last three
versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/dnd.html

W3C Draft: http://www.w3.org/TR/html5/editing.html#dnd

One of the most common interactions in a graphical interface is dragging elements from
one place and dropping them in another. Unfortunately there was no easy way to achieve

http://samy.pl/evercookie/
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html
http://www.w3.org/TR/html5/editing.html#dnd

this basic interaction with HTML and JavaScript. You could do it, but it was quite
difficult and required extensive scripting, or the use of an existing library such as
jQuery UI (see http://jqueryui.com/draggable/ for an example).

Now the HTML5 specification brings native drag-and-drop interactions to the
browser. The process is event driven, and follows these simple steps:

Declare one or more objects as draggable, and attach desired event
handlers.

Attach drop event handlers to target elements.

As the user drags items and drops them on targets, the various
events are fired and your handlers are called.

The specification includes several new events, a draggable property for HTML
elements, and a dataTransfer object for safely communicating data between events.

There are typically two reasons why you would want to build a drag-and-drop
interaction into your application. The simplest (and probably the most common) is when
the drag-and-drop operation is a representation of another process that will be
performed by the application. In this situation, the items being dragged and the targets
upon which they’re dropped aren’t themselves important—they’re just elements in the
user interface. Based on the results of the drag-and-drop operation, something else will
happen behind the scenes. An example of this is an interface for a shopping cart system.
You drag items from the page into your shopping cart, but the things you’re dragging,
and the target cart, are just arbitrary HTML elements that have been styled in such a way
that the user recognizes them. Behind the scenes, the data is being manipulated based on
the drag-and-drop operations: the data structure for the cart is being changed as items
are added or removed, and so forth.

The other situation is where the items being dragged and/or the targets on which
they’re being dropped are themselves important. In this situation what is being dragged
actually matters, because it will be processed itself. An example of this is a visual
clipboard, where you can highlight text in a document and then drag it to the clipboard.
The text is actually transferred from one place to another in the DOM via the drag-and-
drop process.

The HTML5 drag-and-drop specification handles both situations easily, and I will
show you both in my examples. Before diving into these, take a look at the process in
detail.

The draggable Property

http://jqueryui.com/draggable/

The first component of the Drag and Drop specification is the new draggable
property. This property is set on any HTML element in the DOM you wish to be
draggable. If an element has the draggable property set to true, the browser will
initiate a drag-and-drop sequence from that element if the user holds down the mouse
button while the pointer is over the element and then moves the pointer.

The draggable property can be set to true (indicating the item is draggable),
false (indicating the item cannot be used to initiate a drag sequence), or auto
(indicating the browser’s default rules apply).

The exception is selected text anywhere in the DOM, including form fields such as
input and textarea fields. Selected text can always initiate a drag sequence.

Drag-and-Drop Events
There are several new drag-and-drop events:

dragstart: Dispatched from the element being dragged.

dragenter: Dispatched from any element when a draggable item
is dragged into it.

dragover: Dispatched continuously from any element as long as
a draggable item is over it. Note that this event fires continuously
regardless of whether or not the draggable item is moving.

dragleave: Dispatched from an element when a draggable item
leaves its boundary.

drag: Dispatched from the element being dragged throughout the
drag sequence. Like dragover, this event is fired continuously
regardless of whether the pointer is being moved.

dragend: Dispatched from the element being dragged when the
mouse button is released.

drop: Dispatched from an element when the user drops a
draggable item on it by releasing the mouse button.

Like other DOM events, you can add event handlers for drag-and-drop events to any
desired element. Remember, though, that drag-and-drop events will only fire while a
drag sequence is underway.

One important quirk about drag-and-drop events is how you specify drop targets.
The HTML5 specification defines a dropzone attribute as a counterpart to the

draggable attribute. The dropzone attribute is supposed to indicate which elements
are valid drop targets. The dropzone attribute is not widely implemented, so instead
you have to indicate valid drop targets by manipulating events.

Generally speaking, the majority of elements in the DOM should not be valid drop
targets, so the default action of the dragover event is to cancel drops. As a result, to
indicate a valid drop target you have to cancel the default action of the dragover
event by calling the preventDefault() method on the event object within the
event handler.

The dataTransfer Object
The final piece of the drag-and-drop puzzle is the dataTransfer object. All of the
drag-and-drop events can be handled with standard event handlers, and those event
handlers will receive an event object as a parameter. One of the properties on drag-
and-drop event objects is the dataTransfer object. This object is used to control
the appearance of the drag-and-drop helper (the ghosted visual element that follows the
cursor during the drag-and-drop operation), to indicate what the drag-and-drop process
is doing, and to easily transfer data from the dragstart event to the drop event.

The dataTransfer object has the following methods:

Event.dataTransfer.addElement(HtmlElement):
Specify the source element of the drag sequence. This affects where
the drag and dragend events are fired from. Ordinarily you
probably won’t need to change this.

Event.dataTransfer.clearData(opt_DataType):
Clear the data associated with a specific DataType (see
setData in this list). If the DataType is not specified, all data
is cleared.

Event.dataTransfer.getData(DataType): Get the
data associated with a specific DataType (see setData, next).

Event.dataTransfer.setData(DataType, data):
Associates the specified data with the DataType. Valid
DataTypes depend on the browser. Internet Explorer only
supports DataTypes of text and url. Other browsers support
standard MIME types and even arbitrary types. The data has to be
a simple string but could conceivably be a JSON-formatted
serialized object.

Event.dataTransfer.setDragImage(HtmlElement,
opt_offsetX, opt_offsetY): Sets the drag helper image
to the specified HTML element. By default the upper left corner of
the helper image is placed under the mouse pointer, but that can be
offset by specifying the optional parameters opt_offsetX and
opt_offsetY, in pixels. This method is not available in Internet
Explorer and apparently never will be—see
http://connect.microsoft.com/IE/feedback/details/804304/implement-
datatransfer-prototype-setdragimage-method.

The dataTransfer object also has the following properties:

Event.dataTransfer.dropEffect: The drop effect that is
being performed by the drag-and-drop sequence. Valid values are
copy, move, link, and none. This value is automatically
initialized in the dragenter and dragover events based on
what interaction the user has requested through a combination of
mouse actions and modifier keys (e.g., Ctrl-drag, Shift-drag,
Option-drag, etc.). These are platform dependent. Only values
specified by effectAllowed (see next) will actually initiate
drag-and-drop sequences.

Event.dataTransfer.effectAllowed: Which
dropEffects are permitted for this drag-and-drop sequence.
Valid values and the effects they permit are as follows:

copy: Allow a copy dropEffect.

move: Allow a move dropEffect.

link: Allow a link dropEffect.

copyLink: Allow both a copy and a link dropEffect.

copyMove: Allow both a copy and a move
dropEffect.

linkMove: Allow both a link and a move dropEffect.

all: All dropEffects are permitted. This is the default
value.

none: No dropEffects are permitted (the item cannot
be dropped).

Event.dataTransfer.files: Contains a list of all the files

http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method

available on the data transfer. Will only have values if files are
being dragged from the desktop to the browser.

Event.dataTransfer.types: Contains a list of all the
DataTypes that have been added to the dataTransfer object,
in the order in which they were added.

Drag-and-Drop API Examples
Listing 3-14 produces the simplest thing imaginable: a set of draggable boxes that can
be dropped on a single target. As the boxes are dropped on the target, a counter
increases to show the number of times a drop has happened.

Listing 3-14. A Simple Drag-and-Drop Interface

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
.draggable {
 margin: 5px;
 width: 100px;
 height: 100px;
 background-color: #ccc;
 border: 1px solid #000;
 display: inline-block;
}

.target {
 border: 10px solid #000;
 width: 315px;
 height: 100px;
 margin-left: 5px;
 margin-top: 50px;
}

.target.over {
 border: 10px solid green;
}
 </style>

 </head>
 <body>
 <div class="draggable" draggable=’true’></div>
 <div class="draggable" draggable=’true’></div>
 <div class="draggable" draggable=’true’></div>
 <div class="target"></div>
 <script>

// Get a reference to the drop target.
var dropTarget = document.querySelector(’.target’);

// Add a dragenter event handler to the drop target.
dropTarget.addEventListener(’dragenter’, function(event) {
 // Add the ’over’ CSS class to the drop target. This
lets the user know that
 // they have dragged something over a valid drop target.
 this.classList.add(’over’);
}, false);

// Add a dragleave event handler to the drop target.
dropTarget.addEventListener(’dragleave’, function(event) {
 // Remove the ’over’ CSS class.
 this.classList.remove(’over’);
}, false);

// Add a dragover event handler to the drop target.
dropTarget.addEventListener(’dragover’, function(event) {
 // Prevent the default event action.
 event.preventDefault();
}, false);

// A counter that indicates how many times something has
been dropped onto the
// drop target.
var counter = 1;

// Add a drop event handler to the drop target.
dropTarget.addEventListener(’drop’, function(event) {
 // Update the counter and remove the ’over’ CSS class.
 this.innerHTML = counter;
 this.classList.remove(’over’);
 counter++;
}, false);

 </script>
 </body>
</html>

In the script, all you did was register dragenter, dragleave, dragover, and
drop event handlers on the drop target. On dragenter you add a CSS class to the
element, and on dragleave you remove the CSS class. This gives visual feedback
that the user has successfully dragged the element over a target that can receive it. Then
you prevent the default action of the dragover event, to prevent drop events. In the
drop event handler you update the innerHTML of the target element and increment the
counter. You also remove the visual feedback CSS class, since at this point you’ll be
terminating the drag-and-drop sequence and a dragleave event will not fire.

This example works great in Internet Explorer and Chrome. It does not work at all in
Firefox. This is because Firefox requires that the dataTransfer object be initialized
on dragstart by specifying some data—any data. To update your script, you have to
add a dragstart event handler to each of your draggable elements and set some
arbitrary data within them so Firefox will initiate drag sequences from them. Listing 3-
15 has the necessary changes to the script (the surrounding HTML and CSS remain the
same as in Listing 3-14).

Listing 3-15. Drag-and-Drop Script Updated to Work in Firefox

// Get a reference to all of the draggable objects.
var draggables = document.querySelectorAll(’.draggable’);

// On each draggable element intialize the dataTransfer object on
dragstart so
// Firefox will initiate drag events with them.
for (var i = 0; i < draggables.length; i++) {
 currEl = draggables[i];
 currEl.addEventListener(’dragstart’, function(event) {
 event.dataTransfer.setData(’text’, ’anything’);
 }, false);
};

// Get a reference to the drop target.
var dropTarget = document.querySelector(’.target’);

// Add a dragenter event handler to the drop target.
dropTarget.addEventListener(’dragenter’, function(event) {
 // Add the ’over’ CSS class to the drop target. This
lets the user know that
 // they have dragged something over a valid drop target.

 this.classList.add(’over’);
}, false);

// Add a dragleave event handler to the drop target.
dropTarget.addEventListener(’dragleave’, function(event) {
 // Remove the ’over’ CSS class.
 this.classList.remove(’over’);
}, false);

// Add a dragover event handler to the drop target.
dropTarget.addEventListener(’dragover’, function(event) {
 // Prevent the default event action.
 event.preventDefault();
}, false);

// A counter that indicates how many times something has
been dropped onto the
// drop target.
var counter = 1;

// Add a drop event handler to the drop target.
dropTarget.addEventListener(’drop’, function(event) {
 // Update the counter and remove the ’over’ CSS class.
 this.innerHTML = counter;
 this.classList.remove(’over’);
 counter++;
}, false);

You’ll notice that the code uses querySelectorAll to get a reference to all of
your draggable elements. Then it loops through each of those elements in a for loop
and applies the dragstart event listener to each one. (Another way to do this would
have been to delegate the dragstart event handler to a containing element.) Now the
elements are draggable in Firefox, and the example works in that browser the same as in
the others.

In practice, you’ll probably be initializing the data for a drag-and-drop sequence
anyway. I mentioned earlier an example of a visual clipboard, which you can see in
Listing 3-16.

Listing 3-16. A Visual Clipboard

<!DOCTYPE html>
<html>

 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
p {
 margin-bottom: 0;
}
div#dropTarget {
 width: 300px;
 height: 300px;
 border: 10px solid black;
}
div#dropTarget.over {
 border: 10px solid green;
}
.draggable {
 width:100px;
 height: 100px;
 background-color: #ccc;
}
 </style>
 </head>
 <body>
 <p>Type some text here, then highlight it and drag it
to the clipboard below.</p>
 <textarea id="dragSource"></textarea>
 <p>Clipboard</p>
 <div id="dropTarget"></div>
 <script>
// Get references to our drag source and drop target.
var dragSource = document.getElementById(’dragSource’);
var dropTarget = document.getElementById(’dropTarget’);

// Add a dragstart event handler to the dragsource
element.
dragSource.addEventListener(’dragstart’, function(event) {
 // Initialize the dataTransfer object with the current
text.
 event.dataTransfer.setData(’text’, this.value);
}, false);

// Add a dragenter event handler to the target.
dropTarget.addEventListener(’dragenter’, function(event) {

 // Add the ’over’ CSS class to the element.
 this.classList.add(’over’);
}, false);

// Add a dragleave event handler to the target.
dropTarget.addEventListener(’dragleave’, function(event) {
 // Remove the ’over’ CSS class from the element.
 this.classList.remove(’over’);
}, false);

// Add a dragover event handler to the target.
dropTarget.addEventListener(’dragover’, function(event) {
 // Prevent the default action of the dragover event.
 event.preventDefault();
}, false);

// Finally, add a drop event handler to the target.
dropTarget.addEventListener(’drop’, function(event) {
 // Append the text in the dataTransfer object to the
clipboard.
 this.innerHTML = event.dataTransfer.getData(’text’);
 // Remove the ’over’ CSS class from the element.
 this.classList.remove(’over’);
}, false);
 </script>
 </body>
</html>

In this example you’ve created a simple textarea where you can enter some text.
You can then highlight the text and drag it to the clipboard. Behind the scenes, the code
sets the text as data on the dataTransfer object during the dragstart event, and
then gets the text from the dataTransfer object on the drop event.

This example works great in almost all browsers, except once again Firefox has a
small problem. When you drop text onto the clipboard area, Firefox fires a default
action on drop that tries to update the URL of the page to the text that was dropped. To
prevent this, you will need to call event.preventDefault() in the drop event
handler. By adding that line, the example will work the same in all browsers.

For a final example, consider the need to restrict the movement of the draggable
item to a specific area. You don’t want to allow it to leave a containing element. Or
perhaps you want to limit the movement to a single axis. Unfortunately, the HTML5
Drag and Drop API doesn’t provide a ready-made solution for this fairly common use
case, but you can build one with the tools it does provide.

The core of the problem is you have no way to limit the mouse pointer with
JavaScript. This makes sense; being able to manipulate mouse pointer actions with
JavaScript would pose a large security risk. The way the drag-and-drop sequence is set
up, wherever the pointer goes, the helper image follows, so if you can’t limit the
pointer, you can’t limit the location of the helper image.

This means the first thing you’ll have to do is remove the default helper image using
dataTransfer.setDragImage(), and that means this example won’t work in
Internet Explorer because it doesn’t implement that method. But the example does work
in other browsers, and it’s a worthwhile example to demonstrate some more complex
interactions with the API.

The next step is to build your own helper image that can be manipulated as needed.
Once that’s done, it’s just a matter of listening to events.

Listing 3-17 provides the full example.

Listing 3-17. Limiting Drag and Drop to a Specific Region

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
.container {
 width:200px;
 height:500px;
 border: 1px solid #000;
 position: relative;
}
#dragTarget {
 height: 20px;
 background-color: #ccc;
}
.drag-helper {
 opacity: 0.5;
 position: absolute;
 width: 200px;
 height: 20px;
 background-color: #ccc;
}
.hidden {
 display: none;
}

 </style>
 </head>
 <body>
 <div class="container">
 <div id="dragTarget" draggable="true">Drag me!
</div>
 </div>
 <div id="helper" style="width: 1px;height: 1px;">
</div>
 <script>
// Get references to the drag target and container.
var dragTarget = document.getElementById(’dragTarget’);
var dragContainer = document.querySelector(’.container’);

// This variable will hold the new helper when we build
it.
var dragHelper;

// Add a dragstart event handler to the drag target.
dragTarget.addEventListener(’dragstart’, function(event) {
 // Initialize the dataTransfer object for Firefox.
 event.dataTransfer.setData(’text’, ’Fix for Firefox’);

 // Replace the default drag image with a small,
transparent DIV.
 var dragImage = document.getElementById(’helper’);
 event.dataTransfer.setDragImage(dragImage, 0, 0);

 if (dragHelper == null) {
 // Create our own drag helper by cloning the target
element. Note that when
 // we clone the element we need to do some cleanup,
like removing the clone’s
 // id attribute (so we do not introduce duplicate ids
even temporarily) and
 // making not draggable.
 dragHelper = this.cloneNode(true);
 dragHelper.id = ’’;
 dragHelper.classList.add(’drag-helper’);
 dragHelper.draggable = false;
 dragContainer.appendChild(dragHelper);
 } else {
 // We’ve already created a clone, so let’s just use

it.
 dragHelper.classList.remove(’hidden’);
 }
}, false);

// Add a dragover event handler to the drag container.
dragContainer.addEventListener(’dragover’, function(event)
{
 // Prevent the default action of the event.
 event.preventDefault();

 // Move the helper to the desired location.
 if (event.clientY < 485) {
 dragHelper.style.top = event.clientY + ’px’;
 }
}, false);

// Add a dragend event handler to the target.
dragTarget.addEventListener(’dragend’, function(event) {
 // Dragging is done, so hide the clone.
 dragHelper.classList.add(’hidden’);
}, false);

// Add a drop event to the drag container.
dragContainer.addEventListener(’drop’, function(event) {
 event.preventDefault();
}, false);
 </script>
 </body>
</html>

You’ll do all of your setup in the dragstart event handler. First is the fix for
Firefox, otherwise the example wouldn’t work in that browser. Then you hide the
default helper image by getting a reference to a small transparent div and using that as
the new helper image. Next you clone the target element and set the clone up to be your
new helper, and append it to the DOM.

In your dragover event handler, all you have to do is move the helper to the
desired position. Remember that since the dragover event fires continuously
throughout the drag process, you should keep its event handler as lightweight as
possible. That’s why you’re using a cached reference to the drag helper, so you don’t
have to query for it every time the event fires. As you use the example you’ll notice that
because you’re only listening for dragover events in the containing element, when

you move the pointer outside of that element the helper will stop moving. You could
have delegated the dragover event handler to the body element, which would allow
the user to move the element from anywhere on the page.

You hide the custom helper in your dragend event handler. This is done so the
helper will be hidden regardless of where the user releases the mouse button. This is a
common use of the dragend event.

As mentioned, this example won’t work in Internet Explorer, so while this example
is interesting it’s not very practical for the majority of situations. Unfortunately there’s
no way to polyfill the setDragImage method, either. So if this is the sort of
interaction you need and you have to support Internet Explorer, you probably need to
look for another solution besides the HTML5 native Drag and Drop API.

Web Workers
SUPPORT LEVEL

Good

All modern browsers support these features and have for at least the last two
versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/workers.html

W3C Draft: http://dev.w3.org/html5/workers/

One of the biggest criticisms leveled at web-based applications is speed: they’re
just not fast enough, particularly on mobile devices. And as much as I’m a fan of web
technologies (and building applications with those technologies), speed is admittedly a
legitimate concern.

There are many reasons why web applications can run slowly, but one of the main
issues is that scripts running in the web browser can only do one thing at a time. For
example, consider the common example of fetching and parsing (or otherwise
manipulating) a large file from the server. Using XMLHttpRequest it’s easy to set up
an asynchronous request that will load the file and then execute a callback function
when ready. Up until the callback function is called, your scripts can perform other
tasks. But once the callback function begins execution, everything has to wait while it
handles the data in the way you specified. Your scripts can’t update the UI or respond to

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://dev.w3.org/html5/workers/

user interaction or anything. This can be very frustrating for users.
The asynchronous environment of web browsers helped us create web applications

that were more responsive, but still didn’t allow us to perform multiple tasks at once.
The HTML5 specification addresses this limitation with Web Workers, which give us
the ability to create and manipulate multiple separate tasks simultaneously.

Under the hood, Web Workers give us access to the multithreading capabilities of
modern browsers and their host systems. A thread is a combination of operating system
and program resources needed to perform a specific task and manage the status of that
task by starting, pausing, and stopping it and handling its completion. Modern operating
systems running on modern hardware with multiple processor cores can handle many
threads simultaneously. When you create a new Web Worker, the browser spawns a
separate thread for that task, and it executes at the same time as the main browser
thread.

Multithreading is a powerful tool, and like all powerful tools it has some dangers.
Web Workers have some important restrictions designed to reduce those dangers:

A Web Worker runs in its own independent JavaScript context. It
has no direct access to anything in any of the other execution
contexts like other Web Workers, or the main JavaScript thread.

Communication between Web Worker contexts and the main
JavaScript thread is done via a postMessage interface similar to
that used by Web Messaging. This enables you to pass data into and
out of Web Worker contexts, but because all contexts are
independent, any data passed between contexts is copied, not
shared.

A Web Worker cannot access the DOM. The only DOM methods
available to a Web Worker are atob, btoa, clearInterval,
clearTimeout, dump, setInterval, and setTimeout.

Web Workers are bound by the Same Origin Policy, so you cannot
load a worker script from a different origin than the original script.

These are strong restrictions (particularly the lack of access to the DOM), but they
help make Web Workers a safer tool for you to use. If you’ve ever built multithreaded
applications in other languages, you’re probably familiar with all of the dangers
inherent in that capability: concurrency, security, and so forth. Because of their
restrictions, Web Workers are mostly free of those dangers.

Another important feature of Web Workers is the fact that you have to manage your
workers yourself. You are responsible for creating them, starting them, stopping them,
and disposing of them when their tasks are done. Because Web Workers consume host

system resources, it’s important that you manage them correctly to avoid impacting the
performance of the entire system.

Creating Web Workers
Creating and managing Web Workers follows three basic steps:

1. Create the new Web Worker.

2. Attach a message event handler to the new worker, assuming
you are expecting it to communicate results. You should also
attach an error event handler so that your script can react to
any errors that happen during the worker’s execution.

3. Start the worker instance by posting a message to it. This will
cause the worker to start running, and will also trigger a
message event within it so the worker can process the message
you just posted.

Step 1 is easy. The Web Workers specification creates a new Worker constructor
in the global context. You create a new instance of a Worker by specifying a
JavaScript program for it to load and execute:

var myNewWorker = new Worker(’my-new-worker.js’);

The file ’my-new-worker.js’ must be a valid JavaScript file, and it will be
loaded as soon as the worker is created.

The Worker instance myNewWorker will publish message and error events as
it goes about its business, so you can attach event handlers for those events. Listing 3-18
shows the basic pattern with stubbed functions.

Listing 3-18. Stubbed Error and Message Event Handlers for a Web Worker

/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 // Handle the error here.
 console.warn(’Error in web worker: ’, event.message);
}

/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event
object.
 */
function handleWorkerMessage(event) {
 // Handle the message here.
 console.log(’Message from worker: ’, event.data);
}

// Create a new worker.
var myNewWorker = new Worker(’my-new-worker.js’);

// Register error and message event handlers.
myNewWorker.addEventListener(’error’, handleWorkerError);
myNewWorker.addEventListener(’message’,
handleWorkerMessage);

In this basic example you have simple functions for handling the error and
message events that simply display the results in the JavaScript console. You register
them as handlers using the addEventListener method on the Worker instance
myNewWorker. Note that you should always register your event handlers before
starting the worker. If you start the worker and then register the event handlers,
something could happen in the few milliseconds it takes to complete the registration and
you could miss a message or an error.

To start the worker, simply post a message to it using the postMessage method:

myNewWorker.postMessage(’start’);

When you post the message to the worker instance, it will begin executing the script,
and will also trigger a message event within the worker’s execution context for the
start message. (Note that while the Worker.postMessage method is similar to the
window.postMessage method you would use for Web Messaging, it does not have
the optional domain parameter of the latter.)

Inside a Web Worker
Inside a Web Worker, the environment for your script is a little different than in the
main execution context. As mentioned, the Web Worker has no access to the DOM, so
any attempt to access the window object or its children (such as the document object

or any element in the DOM) will fail. Web Workers do have access to the following
standard properties and methods:

The DOM methods atob, btoa, clearInterval,
clearTimeout, dump, setInterval, and setTimeout.

The XMLHttpRequest constructor, so Web Workers can
perform asynchronous network tasks.

The WebSocket constructor, so Web Workers can create and
manage WebSockets (as of this writing, Firefox does not enable
WebSocket for Web Workers; however, this feature is being
implemented and you can track its status at
https://bugzilla.mozilla.org/show_bug.cgi?
id=504553)

The Worker constructor, so Web Workers can spawn their own
workers (which are referred to as subworkers). As of this writing,
Chrome and Safari do not implement the Worker constructor for
Web Workers. There is a bug filed for Chrome at
https://code.google.com/p/chromium/issues/detail?
id=31666 and for Safari’s WebKit at
https://bugs.webkit.org/show_bug.cgi?
id=22723. Internet Explorer does support subworkers as of
version 10.

The EventSource constructor, so Web Workers can subscribe to
Server-sent Event streams. This appears to be a nonstandard
feature, but seems to be available in all major browsers as of this
writing.

A special subset of the Navigator properties, available through
the navigator object:

navigator.language: Returns the current language
the browser is using.

navigator.onLine: Returns a boolean indicating
whether or not the browser is online.

navigator.platform: Returns a string indicating the
platform of the host system.

navigator.product: Returns a string with the name of
the current browser.

https://bugzilla.mozilla.org/show_bug.cgi?id=504553
https://code.google.com/p/chromium/issues/detail?id=31666
https://bugs.webkit.org/show_bug.cgi?id=22723

navigator.userAgent: Returns the user agent string
for the browser.

The implementation of these properties varies from browser
to browser, so it might be better to pass needed
Navigator information into the Web Worker from the
main thread.

A special subset of Location properties, available on the
location object:

location.href: The full URL of the script being
executed by the Web Worker.

location.protocol: The protocol scheme of the URL
of the script being executed by the Web Worker, including
the final “:”.

location.host: The host part of the URL (the hostname
and port) of the script being executed by the Web Worker.

location.hostname: The hostname part of the URL of
the script being executed by the Web Worker.

location.port: The port part of the URL of the script
being executed by the Web Worker.

location.pathname: The initial ‘/’ followed by the
path of the script being executed by the Web Worker.

location.search: The initial ‘?’ followed by the
parameters (if any) of the URL of the script being executed
by the Web Worker.

location.hash: The initial ‘#’ followed by the
fragment identifier (if any) of the URL of the script being
executed by the Web Worker.

There is also a method location.toString() that simply
returns location.href.

The Web Worker execution context also has one new method available to it:
importScripts. The importScripts method takes a comma-separated list of
one or more JavaScript file names that will be loaded and executed in order. For
example, this line

importScripts(’script1.js’, ’script2.js’,
’subdirectory/script3.js’);

will load and execute the three scripts specified, in order. Relative URLs are resolved
as relative to the URL of the script that was specified when you created the Web
Worker instance. The importScripts method is also bound by the Same Origin
Policy, so you cannot import scripts from a different origin than the origin that served
the parent script for the Web Worker instance.

The importScripts method is a blocking method, meaning each script will be
loaded and executed, in order, and the worker will not continue to the next line until the
last script has finished loading and executing. If one of the scripts fails to load due to a
network problem, or it loads but fails to run due to an internal error, the Web Worker
will stop executing and publish an error event.

Scripts loaded with importScripts are executed in the same context as the Web
Worker. They cannot access the DOM, but they do have access to all of the standard
properties and methods listed above as well as the importScripts method, so it is
possible for imported scripts to import other scripts.

When a Web Worker is started, it follows these steps:

It executes the script from start to finish, including any
asynchronous tasks (such as XMLHttpRequest calls).

If part of its execution was to register a message event handler, it
then goes into a wait loop for incoming messages. The first message
it receives will be the message that was posted to start the worker.
The worker will remain in wait mode until you manually terminate
it, or it terminates itself.

If no message event handlers were registered, the worker thread
will terminate automatically.

This is an important point: if your Web Worker registers a message event handler,
it will remain in wait mode forever unless you terminate it. Again, because Web
Workers consume system resources, you should be sure to terminate any unneeded
workers. You can terminate a worker in one of two ways:

You can call the terminate method on the Worker instance:
myWebWorker.terminate();.

The Web Worker can terminate itself by calling its close
method:self.close();.

Either method stops the worker immediately.

A Simple Example of a Web Worker
Listing 3-19 expands on the stubbed example in Listing 3-18.

 Note The examples in this section will need to be run from a server.

Listing 3-19. Creating A Web Worker

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Web Workers</h1>
 <div id="message-box"></div>
 <script>
// Get a reference to the target element.
var messageBox = document.getElementById(’message-box’);

/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 console.warn(’Error in web worker: ’, event.message);
}

/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event
object.
 */
function handleWorkerMessage(event) {
 messageBox.innerHTML = ’Message received from worker:
’ + event.data;
}

// Create a new worker.
var myNewWorker = new Worker(’web-worker.js’);

// Register error and message event handlers on the
worker.
myNewWorker.addEventListener(’error’, handleWorkerError);
myNewWorker.addEventListener(’message’,
handleWorkerMessage);

// Start the worker.
myNewWorker.postMessage(’begin’);
 </script>
 </body>
</html>

As before, create two event handlers, one for an error event and one for a message
event. The error event handler simply logs the error to the console, while the message
event handler appends the message text to the DOM. Then create a new Web Worker,
register your event handlers on it, and finally, post a message to it to start it.

Listing 3-20 shows the code for the worker itself.

Listing 3-20. A Trivial Web Worker Script

/**
 * Handles a message event from the main context.
 * @param {WorkerMessageEvent} event The message event.
 */
function handleMessageEvent(event) {
 // Do something with the message.
 console.log(’Worker received message:’, event.data);

 // Send the message back to the main context.
 self.postMessage(’Your message was received.’);
}

// Register the message event handler.
self.addEventListener(’message’, handleMessageEvent);

This Web Worker creates a message event handler that logs the message to the
console. It then sends a confirmation message back to the parent thread, and registers the
event handler on the execution context.

When you run this example, it will pass messages back and forth, but won’t
demonstrate the true power of Web Workers, which is that they execute at the same time
as the main thread.

Common Use Cases
Web Workers allow you to restructure your applications in such a way that you have a
single main thread that handles the UI, and any other intensive or asynchronous action is
handled by Web Worker threads. Good examples include:

Asynchronous Activities: Because Web Workers have access the
XMLHttpRequest constructor as well as WebSockets and
theimportScripts method, they can be used to load and parse
data, or (even better) to send large amounts of data back to the
server.

Computation-Intensive Activities: Anything that requires a great
deal of computation is an ideal candidate for a Web Worker.
Cryptography is a great example, as are physics engines for games.

Image Processing: If you have a large amount of data to process
from a canvas element, you can make use of Web Workers to handle
the number crunching.

Divide and Conquer: I’ve already mentioned using Web Workers to
handle processing of large amounts of data. If you can divide the
data in question up into smaller pieces, you can give each piece its
own Web Worker to process, thus making things go even faster.

Summary
In this chapter I’ve covered several of the HTML5 JavaScript APIs. Using these new
APIs, your applications can:

Communicate more efficiently and securely with the server. Rather
than relying on just XmlHttpRequest, your applications can
now subscribe to Server-sent Event streams, or even set up two-
way communication with a server using WebSockets. You can also
use Cross Document Messaging for more secure communications

between script origins.

Store information more efficiently on the client. Using the new Web
Storage features, your applications can easily store and retrieve
information, including serialized objects and data structures.

Efficiently implement drag-and-drop interactions using the new
Drag and Drop API. Dragging and dropping items is a very common
user interaction metaphor, and now it’s easier to accomplish with
the new API.

Create and manage threads. Using Web Workers, your applications
can now be multithreaded.

Using these new APIs, your applications can be more efficient and easier to use as
well as simpler to create and maintain.

In the next chapter you will dive into one of the most exciting features of HTML5:
the canvas element.

CHAPTER 4

Canvas

When HTML5 was first announced, the feature that drew the most excitement was
probably the new canvas element—an area on the page upon which you can draw
bitmap graphics using the various commands present in the drawing context API. This
meant that for the first time there was an official way to create dynamic graphics with
JavaScript.

The canvas element was originally created by Apple in 2004 as a proprietary
addition to WebKit. It was later adopted by other browser manufacturers, and then by
the W3C as a part of HTML5. Today, canvas enjoys wide support in modern
browsers.

SUPPORT LEVEL

Excellent

All modern browsers have supported canvas elements and all of the features
covered in this chapter for at least the last three versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-
apps/current-work/multipage/the-canvas-element.html

W3C Draft:
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/

The Canvas Drawing Mode
If you’re familiar with graphics libraries, you probably have heard the terms immediate

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/

mode and retained mode as descriptions for how things are rendered on the screen. In
immediate-mode rendering, graphics are rendered as the API calls are initiated, and
nothing about them is stored by the drawing context.

In retained-mode rendering, calls to the API do not cause immediate rendering on
the screen. Rather, the results of the APIs are stored in an internal model maintained by
the library, thus allowing the library to do various optimizations when it does draw
everything.

The canvas tag renders in immediate mode: as soon as you make a call to the API,
the results will be rendered on the screen, and the canvas will not store any
information about whatever was just drawn. If you wish to redraw the same thing, you
will have to issue the same command(s) over again.

The Canvas Drawing Context
Canvas elements are accessible through the DOM just like any other HTML element.
However, each canvas element exposes one or more drawing contexts that can be
used to draw on the canvas in various ways. At the moment the only context specified
in the standard and supported by browsers is the 2-dimensional (or 2d) context.

The 2d context exposes an impressive API for drawing lines, curves, shapes, text,
and so forth on the canvas element. Each canvas has a coordinate system with the
origin (0, 0) in the upper left corner. The 2d drawing context uses an imaginary pen
metaphor for its basic drawing functions, so the commands to draw on the canvas are
something like, “Move the pen to these coordinates, then draw this thing.” In addition,
drawing things and filling them in or stroking them are separate concepts and are carried
out by separate commands. When you first draw a path, it is not shown on the screen—
you must apply a fill or stroke to make it visible. This is for efficiency, because this
way you can draw a complex path consisting of many parts, and then stroke or fill the
entire thing at once.

To get started, draw a simple line. The syntax for this is quite straightforward, as
demonstrated in Listing 4-1.

Listing 4-1. The Basic Drawing Syntax for canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>

canvas {
 border: 1px solid #000;
 width: 200px;
 height: 200px;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas"></canvas>
 <script>
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = ’#000’;
myContext.stroke();
 </script>
 </body>
</html>

This example has a basic canvas element on the page. It uses CSS to give the
canvas dimensions and a border so you can see it. The script gets a reference to the
canvas element and then uses that reference to get the drawing context. It then uses the
moveTo method to move the pen to the upper left corner of the canvas, and then
instructs the context to draw a line (as a path) to the lower right corner at (200, 200).
Last, it sets the stroke style to black and instructs the context to stroke the path.

The results shown in Figure 4-1 are somewhat unexpected.

Figure 4-1. The results of Listing 4-1

You expected the line to go from 0, 0 to 200, 200 . . . and actually it did. The default
size for a canvas element is 200 pixels high by 400 pixels wide. You used CSS to
specify the dimensions of the canvas, which just made the canvas adjust its aspect
ratio rather than actually reduce its default width. This brings us to an important detail:
in a canvas, the coordinate system does not necessarily correspond with screen
pixels.

This is a common mistake with canvases, and it happens because we’re all trained
to use CSS to change the appearance of HTML elements. In the case of the canvas
element, though, you need to specify its dimensions using its width and height
properties. Listing 4-2 adds those to the markup.

Listing 4-2. Specifying the Width and Height for a Canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>

 <canvas id="myCanvas" width="200" height="200"></canvas>
 <script>
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = ’#000’;
myContext.stroke();
 </script>
 </body>
</html>

As you can see, this removed the width and height declarations from the CSS rule
and instead directly applied the dimensions to the canvas element using the width
and height properties. Then it drew and stroked the path, and the results were as
expected, as shown in Figure 4-2.

Figure 4-2. Small victories

As you can see, the canvas is now truly 200 pixels by 200 pixels, and your line
draws exactly as you expected.

The canvas tag is not self-closing, so the closing tag is mandatory. You can
include alternate content inside of the canvas tag, which will render if the browser
does not support the canvas element. You can easily extend this simple example to
include some alternate content for older browsers, as shown in Listing 4-3.

Listing 4-3. Alternate Content for Browsers That Don’t Support Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = ’#000’;
myContext.stroke();
 </script>
 </body>
</html>

As you can see, we should all think of the kittens.
Now that you have a basic idea of the canvas tag and the drawing context, you’ll

dive into the available drawing commands.

Basic Drawing Commands
Canvas provides a set of drawing commands that can be used to build complex
graphics. Most of the drawing commands are for building paths. In fact, canvas only
includes commands for one shape primitive: the rectangle. You will have to build any
other shapes using a combination of simpler curves.

Given a drawing Context, the basic curves are:

Context.lineTo(x, y): Draws a line from the current pen
position to the specified coordinates.

Context.arc(x, y, radius, startAngle,
endAngle, anticlockwise): Draws an arc along a circle
centered at (x, y) with the specified radius. The startAngle
and endAngle parameters are the start and end angles in radians,
and the optional anticlockwise parameter is a boolean
indicating whether the curve should be drawn anticlockwise (the
default is false, so arcs by default are drawn clockwise).

Context.quadraticCurveTo(cp1x, cp1y, x, y):
Draws a quadratic curve starting at the current pen location and
ending at the coordinates (x, y), with the control point at
(cp1x, cp1y).

Context.bezierCurveTo(cp1x, cp1y, cp2x,
cp2y, x, y): Draw a bezier curve starting at the current pen
location and ending at the coordinates (x, y), with control point
1 specified by (cp1x, cp1y) and control point 2 specified by
(cp2x, cp2y).

Context.rect(x, y, width, height): Draw a
rectangle starting at (x, y) with the width and height specified.

Declaring paths is done using two simple commands:

Context.beginPath(): Starts a new path definition. All
curves that follow until the path is closed will be included in the
path.

Context.closePath(): Ends the path definition, and closes
the path by drawing a straight line from the current pen position to
the starting point of the path.

By themselves, paths are invisible. You have to tell the canvas to either stroke
them or fill them:

Context.strokeStyle: This property defines the style that
will be stroked on the current path when the stroke method is
called. This property can take any valid CSS color string (e.g.,

’red’, ’#000’, or ’rgb(30, 50, 100)’), a gradient
object, or a pattern object.

Context.stroke(): Strokes the current path with the style
specified in Context.strokeStyle.

Context.fillStyle: This property defines the style that will
be filled into the current path when the fill method is called. This
property can take a CSS color string, a gradient object, or a pattern
object.

Context.fill(): Fills the current path with the style specified
in Context.fillStyle.

Context.lineWidth: This property defines the thickness of
the stroke applied to paths. Defaults to 1 unit.

Context.lineCap: This property defines how lines are
capped. Valid values are:

butt: The line ends are squared off and end precisely at
the specified endpoint. This is the default value.

round: The line ends are rounded and end slightly over the
specified endpoint.

square: The line ends are squared by adding a box to the
end of the line whose width is equal to the width of the line
and whose height is half of the width of the line.

Context.lineJoin: This property defines how connecting
lines are joined together. Valid values are:

bevel: The joint is beveled.

miter: The joint is mitered.

round: The joint is rounded.

Listing 4-4 gives an illustration of the lineCap property.

Listing 4-4. Line Caps

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>

 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.lineWidth = 20;

// Set up an array of valid ending types.
var arrEndings = [’round’, ’square’, ’butt’];
var i = 0, arrEndingsLength = arrEndings.length;

for (i = 0; i < arrEndingsLength; i++){
 myContext.lineCap = arrEndings[i];
 myContext.beginPath();
 myContext.moveTo(50 + (i * 50), 35);
 myContext.lineTo(50 + (i * 50), 170);
 myContext.stroke();
}
 </script>
 </body>
</html>

This example uses the canvas to draw thick lines to better illustrate line caps. As
always, begin by getting the drawing context of your target canvas, and setting the
lineWidth for the drawing. Then make use of an array of line ending values and loop
through the array to draw a line for each one, as shown in Figure 4-3.

Figure 4-3. Canvas line caps

You can see that the rounded and squared caps take the line a bit over the actual end
of the line. Sometimes this can cause strange effects if your strokes need to be
particularly tight. If that’s the case, just reduce the length of the path a bit to account for
the extra stroke.

Listing 4-5 illustrates the various values of the lineJoin property.

Listing 4-5. Line Joins

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!

 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.lineWidth = 20;

// Set up an array of valid ending types.
var arrJoins = [’round’, ’miter’, ’bevel’];
var i = 0, arrJoinsLength = arrJoins.length;

for (i = 0; i < arrJoinsLength; i++){
 myContext.lineJoin = arrJoins[i];
 myContext.beginPath();
 myContext.moveTo(55, 60 + (i * 60));
 myContext.lineTo(95, 20 + (i * 60));
 myContext.lineTo(135, 60 + (i * 60));
 myContext.stroke();
}
 </script>
 </body>
</html>

Similar to the previous example, Listing 4-5 uses an array of valid join values to
provide the structure for this demonstration. It loops through the array and draws an
example of each one, as shown in Figure 4-4.

Figure 4-4. Canvas line joins

You can see that the round join provides a slightly rounded cap on the obtuse side
of the joint, while the miter join slightly squares the obtuse side.

Listing 4-6 shows using the stroke properties on arcs.

Listing 4-6. Random Circle Generator

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a loop that will draw a random circle on the
canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 var randX = getRandomIntegerBetween(50, 150);
 var randY = getRandomIntegerBetween(50, 150);
 var randRadius = getRandomIntegerBetween(10, 100);
 myContext.beginPath();
 myContext.arc(randX, randY, randRadius, 0, 6.3);
 randStroke();
}

/**
 * Returns a random integer between the specified minimum
and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 */
function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
}

/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {
 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return ’rgb(’ + randRed + ’, ’ + randGreen + ’, ’ +
randBlue + ’)’;
}

/**
 * Performs a randomized stroke on the current path.
 */
function randStroke() {
 myContext.lineWidth = getRandomIntegerBetween(1, 10);
 myContext.strokeStyle = getRandRGB();
 myContext.stroke();
}
 </script>
 </body>
</html>

In this example you are creating ten random circles on the canvas, each at a
random location, with a random radius, line width, and stroke color. The
getRandomIntegerBetween function makes it easy to get the numbers you need.

You also have a randStroke function for stroking the current path with a random
width and color. The results are shown in Figure 4-5.

Figure 4-5. The results of Listing 4-6

I mentioned before that canvas can also draw rectangles. The commands are
simple:

Context.fillRect(x, y, width, height): Draw a
rectangle at the specified coordinates and with the specified width
and height filled with the current fill style.

Context.strokeRect(x, y, width, height): Draw
a rectangle at the specified coordinates and with the specified
width and height stroked with the current stroke style.

Context.clearRect(x, y, width, height): Clears
the specified rectangular area of any other drawing.

Listing 4-7 illustrates drawing rectangles.

Listing 4-7. Drawing Rectangles in a Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>

 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Set a stroke style and stroke a rectangle.
myContext.strokeStyle = ’green’;
myContext.strokeRect(30, 30, 50, 100);

// Set a fill style and fill a rectangle.
myContext.fillStyle = ’rgba(200, 100, 75, 0.5)’;
myContext.fillRect(20, 20, 50, 50);

// Clear a rectangle.
myContext.clearRect(25, 25, 25, 25);
 </script>
 </body>
</html>

You’re not doing anything fancy with this example, just stroking, filling, and clearing
rectangles. The results look as you would expect (Figure 4-6).

Figure 4-6. Rectangles—yay!

Gradients and Patterns
You’ve seen how canvas can set different stroke and fill styles, and I mentioned that
those styles can be any valid CSS color string (e.g. green or rgba(100, 100,
100, 0.3)). In addition, canvas can define gradient and pattern objects that
can be used to fill and stroke paths.

Gradients
Canvas can create both linear and radial gradients:

Context.createLinearGradient(x, y, x1, y1):
Creates a linear gradient starting at coordinates (x, y) and
ending at coordinates (x1, y1). Returns a Gradient object
that can be used as a stroke or fill style.

Context.createRadialGradient(x, y, r, x1,
y1, r1): Creates a radial gradient consisting of two circles, the
first one centered at (x, y) with radius r, and the other centered
at (x1, y1) with radius r1. Returns a Gradient object that
can be used as a stroke or fill style.

Gradient.addColorStop(position, color): Adds a
color stop to the Gradient. The position parameter must be
between 0 and 1; it defines the relative position within the gradient
of the color stop. You can add as many color stops as you want to a
particular Gradient.

Listing 4-8 shows a simple three-stop gradient being used to stroke rectangles.

Listing 4-8. A Three-Stop Gradient

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a gradient object and add color stops.
var myGradient = myContext.createLinearGradient(0, 0, 200,
200);
myGradient.addColorStop(0, ’#000’);
myGradient.addColorStop(0.6, ’green’);
myGradient.addColorStop(1, ’blue’);

// Set the stroke styles and stroke some rectangles.
myContext.strokeStyle = myGradient;
myContext.lineWidth = 20;

myContext.strokeRect(10, 10, 110, 110);
myContext.strokeRect(80, 80, 110, 110);
 </script>
 </body>
</html>

This example creates a linear gradient object and adds three color stops to it,
then uses it as the stroke style for two rectangles. The results are shown in Figure 4-7.

Figure 4-7. A linear gradient

Patterns
Canvas also supports the concept of a pattern as a fill or stroke style:

Context.createPattern(Image, repeat): Creates a
Pattern object that can be used as a fill or stroke style. The
Image parameter must be any valid Image (see “Images” section,
next, for details). The repeat parameter specifies how the pattern
image is repeated.ust be one of the following:

repeat: Tiles the image both horizontally and vertically.

repeat-x: Repeats the image only horizontally.

repeat-y: Repeats the image only vertically.

no-repeat: Does not repeat the image at all.

Listing 4-9 illustrates using a simple image as a pattern.

Listing 4-9. Creating a Pattern

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = ’http://www.placekitten.com/g/50/50’;

// We can’t do anything until the image has successfully
loaded.
myImage.onload = function() {
 // Create a pattern with the image and use it as the
fill style.
 var myPattern = myContext.createPattern(myImage,
’repeat’);
 myContext.fillStyle = myPattern;
 myContext.fillRect(5, 5, 150, 150);
};

http://www.placekitten.com/g/50/50

 </script>
 </body>
</html>

This example creates a new image element and sets its URL to a placeholder
image service. You have to wait for the image to finish loading before continuing, so
you attach an onload event handler to it, in which you create the pattern and use it
as the fill style for a rectangle.

The results look as cute as you would expect, as shown in Figure 4-8.

Figure 4-8. A kitten as a pattern

Images
The canvas element can also load and manipulate images. Once an image is loaded
into a canvas, you can also draw on it with the drawing commands.

The canvas element can use these sources for images:

an img element,

a video element, and

another canvas element.

Canvas has one method for drawing images, but it can take many different
parameters and thus has multiple capabilities:

Context.drawImage(CanvasImageSource, x, y):
Draw the image from CanvasImageSource at the coordinates
(x, y).

Context.drawImage(CanvasImageSource, x, y,
width, height): Draw the image at coordinates (x, y),
scaling the image to the specified width and height.

Context.drawImage(CanvasImageSource, sliceX,
sliceY, sliceWidth, sliceHeight, x, y,
width, height): Slice the area from the image specified by
the rectangle starting at (sliceX, sliceY) with
sliceWidth and sliceHeight, and then draw that slice on
the canvas at (x, y), scaling the slice to the specified width and
height.

Listing 4-10 demonstrates the basic functionality of drawImage.

Listing 4-10. Drawing an Image on a Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.

var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = ’http://www.placekitten.com/g/150/150’;

// We can’t do anything until the image has successfully
loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25);
};
 </script>
 </body>
</html>

In this example all you’re doing is creating a new img element of a placeholder
image. Once the image is loaded, draw it on your canvas, as shown in Figure 4-9.

Figure 4-9. An image drawn in a canvas

Listing 4-11 demonstrates scaling an image on a canvas.

Listing 4-11. Image Scaling with Canvas

<!DOCTYPE html>
<html>

http://www.placekitten.com/g/150/150

 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = ’http://www.placekitten.com/g/50/50’;

// We can’t do anything until the image has successfully
loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25, 50, 150);
};
 </script>
 </body>
</html>

This example gives you a 100px by 100px placeholder, but when you draw it on the
canvas, you scale it to be 50px × 150px, as shown in Figure 4-10.

http://www.placekitten.com/g/50/50

Figure 4-10. Scaling an image in canvas

Finally, Listing 4-12 shows slicing a larger image and scaling the slice on the
canvas.

Listing 4-12. Slicing and Scaling an Image on canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.

var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = ’http://www.placekitten.com/g/300/300’;

// We can’t do anything until the image has successfully
loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25, 150, 150, 0, 0,
150, 50);
};
 </script>
 </body>
</html>

Here you are loading a 300px × 300px placeholder image, but slicing only a 75px ×
75px portion of it starting at (25, 25). Then you’re taking that slice and rendering it
in the canvas, scaling it to be 150px × 50px. The result is rather distorted, as Figure
4-11 shows.

Figure 4-11. Poor kitty

Saving Canvas Contents

http://www.placekitten.com/g/300/300

Once you have a drawing on a canvas, you might want to save it somehow. This
would involve grabbing the image data and transmitting it to a server from which it can
be reconstituted and displayed. The canvas API does provide a method for saving a
rendered bitmap:

Context.toDataUrl(opt_type, opt_quality):
Translates the rendered bitmap to a data URI. Data URIs are a way
of embedding data directly into web pages and are defined in RFC
2397, which you can read at
http://tools.ietf.org/html/rfc2397. Valid types
include image/png (the default), image/jpeg, and (for
Chrome and Chromium-based browsers, image/webp). If the
type is image/jpeg or image/webp, an optional second
parameter of between 0 and 1 can be provided to indicate the
quality. This method returns the rendered bitmap encoded as a data
URI, which you can then transmit back to the server, or even use
elsewhere in the same page.

Note that if you have loaded an image into the canvas that is from a different
origin than the hosting page, or if you have loaded an image from your hard drive into
the canvas, this method will throw a security error. This is done to prevent
information leakage via careless or malicious scripts.

Text
In addition to drawing and images, the canvas element can render text. The methods
and properties for text rendering are as follows:

Context.fillText(textString, x, y,
opt_maxWidth): Fills the textString on the canvas
starting at (x, y) with the current fill style. If the optional
maxWidth parameter is specified, and the rendered text would
exceed that width, the browser will attempt to render the text in
such a way as to fit it within the specified width (e.g., use a
condensed font face if available, use a smaller font size, etc.).

Context.measureText(textString): Measures the
width that would result if the specified textString were to be
rendered using the current style. Returns a TextMetrics object,

http://tools.ietf.org/html/rfc2397

which has a width property that contains the value.

Context.strokeText(textString, x, y,
opt_maxWidth): Strokes the textString on the canvas
starting at (x, y) with the current stroke style. If the optional
maxWidth parameter is specified, and the rendered text would
exceed that width, the browser will attempt to render the text in
such a way as to fit it within the specified width (e.g., use a
condensed font face if available, use a smaller font size, etc.).

Context.font: Sets the font that the text will be rendered in.
Any valid CSS font string is permitted.

Context.textAlign: Aligns the text as specified. Valid
values are:

left: Left-aligns the text.

right: Right-aligns the text.

center: Centers the text.

start: Aligns the text at the starting side for the current
locale (i.e., left for left-to-right languages and right for
right-to-left languages). This is the default value.

end: Aligns the text at the ending side for the current
locale.

Context.textBaseline: Sets the baseline for the text as
specified. Valid values are:

alphabetic: Uses the normal alphabetic baseline for the
text. This is the default value.

bottom: The baseline is the bottom of the em square.

hanging: Uses the hanging baseline for the text.

ideographic: Uses the bottom of the body of characters
(assuming they protrude beneath the alphabetic baseline).

middle: The text baseline is the middle of the em square.

top: The text baseline is the top of the em square.

Listing 4-13 demonstrates how easy it is to draw text on a canvas.

Listing 4-13. Rendering Text on Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Draw some text!
myContext.font = ’35px sans-serif’;
myContext.strokeStyle = ’#000’;
myContext.strokeText(’Hello World’, 0, 40);
myContext.textAlign = ’center’;
myContext.fillStyle = ’rgba(200, 50, 25, 0.8)’;
myContext.fillText(’HTML5’, 100, 100);
 </script>
 </body>
</html>

This example both strokes and fills some text on the canvas. The font size is large
enough to reveal the actual stroke around the edges of the letters, as shown in Figure 4-
12.

Figure 4-12. Text rendered on a canvas

Shadows
The canvas element can also cast shadows based on the elements drawn upon it. This
is most often used with text, but it also works with shapes and paths. If you’re already
familiar with CSS drop shadows, then the parameters for canvas shadows will be
very familiar:

Context.shadowBlur: The size of the blurring effect. The
default value is 0.

Context.shadowColor: The color of the shadow. Can be any
valid CSS color string. The default is ’rgba(0, 0, 0, 0)’.

Context.shadowOffsetX: The x-offset of the shadow. The
default value is 0.

Context.shadowOffsetY: The y-offset of the shadow. The
default value is 0.

Listing 4-14 demonstrates casting drop shadows on some text.

Listing 4-14. Drop Shadows

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Add some shadow!
myContext.shadowOffsetX = 2;
myContext.shadowOffsetY = 2;
myContext.shadowBlur = 2;
myContext.shadowColor = "rgba(0, 0, 0, 0.8)";

// Draw some text!
myContext.font = ’35px sans-serif’;
myContext.strokeStyle = ’#000’;
myContext.strokeText(’Hello World’, 0, 40);
myContext.textAlign = ’center’;
myContext.fillStyle = ’rgba(200, 50, 25, 0.8)’;
myContext.shadowOffsetX = 4;
myContext.shadowOffsetY = 4;
myContext.fillText(’HTML5’, 100, 100);
 </script>
 </body>
</html>

This example simply adds drop shadows to the code in Listing 4-13. It adds two

different shadow offsets, one quite close and then one farther away, as shown in Figure
4-13.

Figure 4-13. Shadows rendered on canvas

Saving Drawing State
The canvas API provides a way to store some information about the current state of
the drawing context. The information is stored in a stack, and you can push and pull
states from the stack as needed. The drawing context properties that can be stored are as
follows:

The current value for globalAlpha

The current strokeStyle and fillStyle

The current line settings in lineCap, lineJoin, lineWidth,
and miterLimit

The current shadow settings in shadowBlur, shadowColor,
shadowOffsetX, and shadowOffsetY

The current compositing operation set in
globalCompositeOperation

The current clipping path

Any transformations that have been applied to the drawing context

Together these values all make up the drawing state. The methods for saving and
restoring state are simple:

Context.save(): Takes a snapshot of the current drawing state
and save the values in the stack.

Context.restore(): Removes the most recently stored
drawing state from the stack and restores it to the context.

The drawing state is saved in a first-in, first-out stack. The save and restore methods
are the only two methods for accessing the stack and the states stored within.

Listing 4-15 provides a somewhat contrived demonstration of saving and restoring
the drawing state.

Listing 4-15. Saving and Restoring Drawing States

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="210">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create an array of colors to load into the stack.
var allTheColors = [’#ff0000’, ’#ff8800’, ’#ffff00’,

’#00ff00’, ’#0000ff’,
 ’#4b0082’, ’#8f00ff’];

// Load the colors and stroke style into the stack.
for (var i = 0; i < allTheColors.length; i++) {
 myContext.strokeStyle = allTheColors[i];
 myContext.lineWidth = 30;
 myContext.save();
}

// Restore colors from the stack and draw.
for (var i = 0; i < 8; i++) {
 myContext.restore();
 myContext.beginPath();
 myContext.moveTo(0, ((30 * i) + 15));
 myContext.lineTo(200, ((30 * i) + 15));
 myContext.stroke();
}
 </script>
 </body>
</html>

This example programmatically creates a set of drawing states with different colors
and a specific line width. Then it restores each state one at a time and draws a line.

You’ll notice the y-coordinate for each line is based on the loop index. Each line is
stroked 30 units wide: 15 units above the line and 15 units below the line. If you just
drew the first line from (0, 0) to (200, 0) and then stroked it, you would not see
the top 15 units of the stroke. Shifting each line down by 15 units assures that you will
see the full stroke width of the first line and each subsequent line.

Compositing
In all of your canvas examples so far, when you have drawn multiple items on the
canvas they have just layered one on top of the other. The canvas API provides the
ability to composite items as they are drawn, which gives you the ability to do some
fairly sophisticated manipulations.

Whenever you draw a new element on the canvas, the compositor looks at what is
already present on the canvas. This current content is referred to as the destination.
The new content is referred to as the source. Then the compositor draws the source in
reference to the destination according to the currently active compositor.

Compositors are specified using the globalCompositeOperation property
of the current context. The available compositors are as follows:

source-over: Draws source content over destination content.
This is the default compositor.

source-atop: Source content is only drawn where it overlaps
the destination content.

source-in: Source content is only drawn where both source and
destination content overlap. Everything else is made transparent.

source-out: Source content is only drawn where it does not
overlap destination content. Everything else is made transparent.

destination-over: Source content is drawn underneath
destination content.

destination-atop: Source content is only kept where it
overlaps the destination content. The destination content is drawn
underneath the source. Everything else is made transparent.

destination-in: Source content is only kept where it overlaps
with the destination content. Everything else is made transparent.

destination-out: Source content is only kept where it does
not overlap with the destination content. Everything else is made
transparent.

copy: Only draws the destination content. Everything else is made
transparent.

lighter: Where destination content and source content overlap,
the color is determined by adding the values of the two contents.

xor: The destination content is rendered normally except where it
overlaps with source content, in which case both are rendered
transparent.

To specify a compositor, simply set
Context.globalCompositeOperation to the desired value:

var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.globalCompositeOperation = ’lighter’;

Listing 4-16 provides a way to view the different compositors in action.

Listing 4-16. Canvas Compositor Demonstration

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>

 <select id="compositor">
 <option value="source-over" selected>source-
over</option>
 <option value="destination-atop">destination-
atop</option>
 <option value="destination-in">destination-
in</option>
 <option value="destination-out">destination-
out</option>
 <option value="destination-over">destination-
over</option>
 <option value="source-atop">source-atop</option>
 <option value="source-in">source-in</option>
 <option value="source-out">source-out</option>
 <option value="copy">copy</option>
 <option value="lighter">lighter</option>
 <option value="xor">xor</option>
 </select>
 <button id="toggle-triangle">Toggle Triangle</button>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);

var myContext = myCanvas.getContext(’2d’);

// Get references to the form elements.
var mySelector = document.getElementById(’compositor’);
var toggleTriangle = document.getElementById(’toggle-
triangle’);

/**
 * Draws the example shapes with the specified compositor.
 */
function drawExample() {
 // First set the compositing to source-over so we can
guarantee drawing the
 // first shape.
 myContext.globalCompositeOperation = ’source-over’;
 myContext.clearRect(0, 0, 200, 200);
 myContext.beginPath();

 // Draw the circle first.
 myContext.arc(60, 100, 40, 0, 7);
 myContext.fillStyle = ’#ff0000’;
 myContext.fill();

 // Change the compositing to the chosen value.
 myContext.globalCompositeOperation = mySelector.value;

 // Draw a rectangle on top of the circle.
 myContext.beginPath();
 myContext.fillStyle = ’#0000ff’;
 myContext.rect(60, 60, 80, 80);
 myContext.fill();
}

/**
 * Whether or not to show the triangle.
 * @type {boolean}
 */
var showTriangle = false;

/**
 * Shows or hides the triangle.
 */
function showHideTriangle() {

 if (showTriangle) {
 myContext.fillStyle = ’#00ff00’;
 myContext.beginPath();
 myContext.moveTo(40, 80);
 myContext.lineTo(170, 100);
 myContext.lineTo(40, 120);
 myContext.lineTo(40, 80);
 myContext.fill();
 } else {
 drawExample();
 }
}

// Draw the example for the first time.
drawExample();

// Add a change event handler to the selector to redraw
the example with the
// chosen compositor.
mySelector.addEventListener(’change’, function() {
 showTriangle = false;
 drawExample();
}, false);

// Add a click event handler to the toggle button to show
or hide the triangle.
toggleTriangle.addEventListener(’click’, function() {
 showTriangle = showTriangle ? false : true;
 showHideTriangle();
}, false);
 </script>
 </body>
</html>

This example has created a simple select field with all of the available compositors
to choose from. When you choose a compositor, shapes will redraw. The first shape
(the red circle) will always draw with source-over. The second shape (the blue
square) will draw with the newly chosen compositor. You can toggle the green triangle
on and off to see how it will composite with the result of the first composition.

The compositors apply to anything that can be drawn on the canvas, even images,
as demonstrated in Listing 4-17.

Listing 4-17. Compositing a Photograph

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = ’http://www.placekitten.com/g/150/150’;

// We can’t do anything until the image has successfully
loaded.
myImage.onload = function() {
 // Create a simple gray linear gradient and set it to
the fill style.
 var myGradient = myContext.createLinearGradient(25, 25,
25, 175);
 myGradient.addColorStop(0.1, ’#000’);
 myGradient.addColorStop(1, ’rgba(200, 200, 200, 1)’);
 myContext.fillStyle = myGradient;

 // Draw a square that almost fills the region where the
image will be rendered
 // and fill it with the gradient.

http://www.placekitten.com/g/150/150

 myContext.beginPath();
 myContext.rect(30, 30, 140, 140);
 myContext.fill();

 // Set the compositor to lighter.
 myContext.globalCompositeOperation = ’lighter’;

 // Draw the kitten.
 myContext.drawImage(myImage, 25, 25);
};
 </script>
 </body>
</html>

This example creates a simple linear gradient and uses it as the fill style for a
square, then composites the image of a kitten on top of it using the lighter compositor.
An example of the results is shown in Figure 4-14.

Figure 4-14. The results of compositing a gradient with an image

Using compositors with gradients, patterns, and images, you can create some very
complex effects with your canvas drawings.

Clipping
You can limit the drawing area of the canvas to any closed path that you have defined.

This is referred to as clipping. You create a clipping area by first drawing a path on the
canvas, and then calling the Context.clip() method, which will limit drawing
to that area. You can still stroke and fill the path, or you can create new paths or other
drawings. Visibility will be limited to the clipping area.

There are three ways to reset the clipping area:

You can define a path that encompasses the entire canvas, and
then clip to that.

You can restore to a previous drawing state with a different
clipping area.

You can reset the entire canvas by resizing it.

Listing 4-18 demonstrates creating a clipping area to limit drawing.

Listing 4-18. Creating a Clipping Area

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Create a square clipping area.
myContext.beginPath();

myContext.rect(50, 50, 50, 50);
myContext.clip();

// Draw a large circle in the canvas and fill it. Only the
portion within
// the clipping area will be visible.
myContext.beginPath();
myContext.arc(75, 75, 100, 0, 7);
myContext.fillStyle = ’red’;
myContext.fill();
 </script>
 </body>
</html>

This simple example first creates a square path using the rect method, and then
sets it as the clipping area. Then it draws a large circle and fills it with red, but the only
area that is visible is within the clipping area, as shown in Figure 4-15.

Figure 4-15. The effects of clipping

Transformations
The canvas API includes a set of methods for changing the way drawings are
rendered upon the canvas: rotating them, scaling them, or even arbitrary changes like
reflection or shearing. These changes are referred to as transformations. When a
transformation is set, further drawings will be modified in the specified way. The

canvas API has a set of shorthand methods for a few common transformations:

Context.translate(translateX, translateY):
Moves the origin of the canvas from its current position to the
new x position translateX units from the current origin and the
new y position translateY units from the current origin.

Context.rotate(angle): Rotates the canvas around the
origin by the specified angle in radians.

Context.scale (scaleX, scaleY): Scales the canvas
units by scaleX horizontally and scaleY vertically.

In addition, you can specify an arbitrary transformation matrix using the transform
method:

Context.transform(scaleX, skewX, skewY,
scaleY, translateX, translateY): Transform the
canvas by applying a transformation matrix specified as:

.

The rotate, translate, and scale shorthand methods all map to
transformation matrices and thus calls to the transform method. For example,
Context.translate(translateX, translateY) maps to
Context.transform(1, 0, 0, 1, translateX, translateY) and
Context.scale(scaleX, scaleY) maps to
Context.transform(scaleX, 0, 0, scaleY, 0, 0).

 Note If you’re a linear algebra buff, all canvas transforms are Affine transforms.

The important thing to remember about canvas transformations is that they affect
the entire canvas—once a transformation has been implemented, it affects everything
that is drawn from that point on. Canvas transformations also “stack” in that when you
apply two different transforms, the second will base its results on the first. This can
lead to some unexpected results if you don’t carefully manage the active transformations
and reset them as needed. You can reset the transformation in one of three ways:

Specify a special transform called the “unit transform matrix,”

which has no effect on drawing. You can specify this matrix using
the transform method: Context.transform(1, 0, 0, 1,
0, 0).

Restore a previously saved drawing state, which will set the
transform to the one for that state.

Reset the entire canvas by resizing it.

Take a look at some simple examples before exploring some of the more complex
transformations. Listing 4-19 demonstrates a simple translate transformation:

Listing 4-19. A Simple Translate Transformation

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

/**
 * Draws a 100x100 square at (0, 0) in the specified
color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */

function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = ’#000’;
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}

// Draw a square, fill it with red.
drawSquare(’rgba(255, 0, 0, 0.5)’);

// Translate the canvas.
myContext.translate(20, 40);

// Draw the same square again, fill it with blue.
drawSquare(’rgba(0, 0, 255, 0.5)’);

// Translate the canvas again.
myContext.translate(50, -20);

// Draw the same square again, fill it with green.
drawSquare(’rgba(0, 255, 0, 0.5)’);

 </script>
 </body>
</html>

This example (which will form the basis of the next few examples) creates a simple
method for drawing a square at the origin of the canvas. The function fills the square
with the specified color (or you could pass in any valid fillStyle). To help keep
track of the origin, the function also creates a small back notch in the corner of the
square at the origin.

First it draws a square at the origin and colors it red. Then it translates the
canvas, and draw a blue square. Finally, it translates the canvas again and draws a
green square. The results are shown in Figure 4-16.

Figure 4-16. The results of Listing 4-18

As you can see, the translation causes the origin of the canvas to move as
specified.

Next, Listing 4-20 builds on this example by applying a rotation as well as a
transformation:

Listing 4-20. Stacking a Rotation on a Translation

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>

// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

/**
 * Draws a 100x100 square at (0, 0) in the specified
color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = ’#000’;
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}

// Draw a square, fill it with red.
drawSquare(’rgba(255, 0, 0, 0.5)’);

// Translate the canvas.
myContext.translate(20, 40);

// Rotate the canvas 45 degrees (about 0.785 radians).
myContext.rotate(0.785);

// Draw the same square again, fill it with blue.
drawSquare(’rgba(0, 0, 255, 0.5)’);

// Translate the canvas again.
myContext.translate(50, -20);

// Rotate the canvas 45 degrees (about 0.785 radians).
myContext.rotate(0.785);

// Draw the same square again, fill it with green.
drawSquare(’rgba(0, 255, 0, 0.5)’);
 </script>
 </body>

</html>

It uses the same translations as before, but adds a rotation as well before drawing
the new squares. The results are shown in Figure 4-17.

Figure 4-17. Rotations and translations

Here you can see the same translations, along with the rotations. You can see each
square is rotated around its origin corner.

Finally, you can look at some scale transformations in Listing 4-21.

Listing 4-21. Scale and Translate Transformations

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,

somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

/**
 * Draws a 100x100 square at (0, 0) in the specified
color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = ’#000’;
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}

// Draw a square, fill it with red.
drawSquare(’rgba(255, 0, 0, 0.5)’);

// Translate the canvas.
myContext.translate(20, 40);

// Scale the canvas.
myContext.scale(1, 1.5);

// Draw the same square again, fill it with blue.
drawSquare(’rgba(0, 0, 255, 0.5)’);

// Translate the canvas again.
myContext.translate(50, -20);

// Scale the canvas again.
myContext.scale(1.5, 1);

// Draw the same square again, fill it with green.
drawSquare(’rgba(0, 255, 0, 0.5)’);
 </script>
 </body>
</html>

Again this example builds on Listing 4-19 and uses the same function and
translations. This time it adds in a scale translation before drawing the second and third
squares, as shown in Figure 4-18.

Figure 4-18. Scaling and translating

If you look closely, you can see that the origin marker for the blue square is slightly
elongated as per the scale transformation you applied to it. And if you compare the
origin marker for the green square with that of the red square, you’ll see that the former
is twice the size of the latter.

For a more practical example, consider creating dynamic reflections of elements.
It’s quite easy with transforms, as demonstrated in Listing 4-22.

Listing 4-22. A Simple Text Reflection

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {

 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Draw some text!
myContext.font = ’35px sans-serif’;
myContext.fillStyle = ’#000’;
myContext.fillText(’Hello World’, 10, 100);

// Set a reflection transform.
myContext.setTransform(1, 0, 0, -1, 0, 0);

// Set a slight scale transform.
myContext.scale(1, 1.2);

// Draw the text again with the transforms in place and
a light gray fill style.
myContext.fillStyle = ’rgba(100, 100, 100, 0.4)’;
myContext.fillText(’Hello World’, 10, -85);
 </script>
 </body>
</html>

This example draws some text, then applies a reflection transform and a scale
transform to the canvas, and then redraws the same text in a light gray. The result is
shown in Figure 4-19.

Figure 4-19. Text reflection

You could even use a gradient as the fill style for the reflected text, resulting in a
shadow that fades from top to bottom

Animation
The canvas API doesn’t offer any native support for animation. It has no methods for
incrementally animating its contents, and as you have seen it provides no way to
reference the contents once they have been rendered. However, the drawing tools that
canvas does provide are so low-level and efficient that you can create animations
with canvas by literally drawing each animation frame separately.

As you will see in “Animation Timing” in Chapter 5, most JavaScript-based
animation is done in timed loops, and animating with canvas is no different. In fact, to
simplify the animation examples, you will use the DrawCycle constructor you built in
Listing 5-5. That will allow you to create a draw cycle manager that uses
requestAnimationFrame for maximizing the efficiency of your animations. For
details on requestAnimationFrame, see “Animation Timing” in Chapter 5.

To animate with canvas you must draw each frame of your animation separately,
clearing the canvas (and saving/restoring animation state if needed) between frames.
Listing 4-23 illustrates this cycle.

Listing 4-23. Animating with Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="500" height="500">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script src="drawcycle.js"></script>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);

// Set the stroke style.
myContext.strokeStyle = ’#000’;

// Create a new draw cycle object that we can use for our
animation.
var myDrawCycle = new DrawCycle();

/**
 * Draws a circle of specified radius at the specified
coordinates.
 * @param {number} x The x-coordinate of the center of the
circle.
 * @param {number} y The y-coordinate of the center of the
circle.
 * @param {number} rad The radius of the circle.
 */
function drawCircle(x, y, rad) {
 myContext.beginPath();
 myContext.moveTo(x + rad, y);

 myContext.arc(x, y, rad, 0, 7);
 myContext.stroke();
}

// Counter for the x-coordinate.
var x = 0;

/**
 * Animates a circle from one corner of the canvas to
another. Used as an
 * animation function for the draw cycle object.
 */
function animateCircle() {
 if (x < 500) {
 myContext.clearRect(0, 0, 500, 500);
 drawCircle(x, x, 10);
 x++;
 } else {
 myDrawCycle.stopAnimation();
 }
}

// Add the animation function to the draw cycle object.
myDrawCycle.addAnimation(animateCircle);

// Begin the animation.
myDrawCycle.startAnimation();
 </script>
 </body>
</html>

As mentioned, you’ll load your draw cycle constructor before doing any animation.
For details on how the draw cycle constructor works, see Chapter 5. This example
creates a new instance of the draw cycle, and uses it to manage your animation timing
for you.

Start by creating a function that draws a circle at a specified location. Then create
your actual animation function that draws the circle in a new location with each cycle.
You then register that animation function with the draw cycle, and start the animation.
This example simply animates a circle from one corner of the canvas to the other.

Because you have to draw each frame separately on the canvas, and because the
timing of animation frames is so fast, you will quickly run up against efficiency limits.
To do complex animations you’ll typically need a framework to help you manage

efficiency, provide basic animation functions like physics functions for movement,
bouncing, and friction, and to just make it easier to create and manage individual
animations.

Interaction
Since canvas is an element in the DOM, users can interact with it just like any other
DOM element. A canvas element will dispatch all of the usual DOM events like
mouse events and touch events; you can attach event handlers just as with any other
element. However, canvas does not dispatch any new events, nor does it provide a
way to access anything drawn within.

Using mouse events, it’s very easy to create an application that enables users to
draw on a canvas, as shown in Listing 4-24.

Listing 4-24. Drawing on a Canvas with the Mouse

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
 cursor: crosshair;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="500" height="500">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById(’myCanvas’);
var myContext = myCanvas.getContext(’2d’);
myContext.strokeStyle = ’#000’;

// Whether or not the mouse button is being pressed.
var isMouseDown = false;

// Add a mousedown event listener that will set the
isMouseDown flag to true,
// and move the pen to the new starting location.
myCanvas.addEventListener(’mousedown’, function(event) {
 myContext.moveTo(event.clientX, event.clientY);
 isMouseDown = true;
}, false);

// Add a mouseup event handler that will set the
isMouseDown flag to false.
myCanvas.addEventListener(’mouseup’, function(event) {
 isMouseDown = false;
}, false);

// Add a mousemove event handler that will draw a line to
the current mouse
// coordinates.
myCanvas.addEventListener(’mousemove’, function(event) {
 if (isMouseDown) {
 window.requestAnimationFrame(function() {
 myContext.lineTo(event.clientX, event.clientY);
 myContext.stroke();
 });
 }
}, false);
 </script>
 </body>
</html>

To draw on the canvas, you want to start drawing when the user presses the
mouse button, and stop drawing when they release it. So you need mousedown and
mouseup event handlers that set a flag indicating the state of the mouse button. The
mousedown event handler also moves the pen to the new location, so that you don’t
accidentally draw a line from the last stopping point to the new starting point. Then you
need a mousemove event handler that draws a line to the current mouse pointer
coordinates, assuming that the user is holding the mouse button down. To keep things
efficient, use the requestAnimationFrame method; see “Animation Timing” in
Chapter 5 for details on how this method works. Finally, you use a CSS to change the

cursor to a crosshair for the canvas element.
As you use the example, you’ll notice that it doesn’t draw right at the middle of the

cursor. Instead, it draws near the lower right corner of the cursor. The mousemove event
handler receives its coordinates from the event object that is passed to it by the DOM,
and those coordinates are off a bit because the size of the cursor itself is nonzero. To
account for this, all you have to do is offset the coordinates by a few pixels—half the
width and height of the cursor, to be precise. The new event handler looks like this:

// Add a mousemove event handler that will draw a line to
the current mouse
// coordinates, with a slight offset.
myCanvas.addEventListener(’mousemove’, function(event) {
 if (isMouseDown) {
 window.requestAnimationFrame(function() {
 myContext.lineTo(event.clientX - 7, event.clientY
- 7);
 myContext.stroke();
 });
 }
}, false);

Now the example will draw directly under the crosshairs.

Summary
This chapter dove deep into the HTML5 canvas element. It covered all of the
important features, including:

drawing shapes and lines

drawing text

using canvas elements with images

clipping and masking

transformations

basic animation with canvas elements

handling user interactions with canvas elements

The HTML5 canvas element provides a fairly low-level but flexible API for

drawing directly on web pages. It also enjoys wide support in both desktop and mobile
browsers, making it a great candidate for mobile applications.

In Chapter 5 you’ll take a look at some JavaScript APIs that are related to HTML5
but not a direct part of the specification.

CHAPTER 5

Related Standards

The HTML5 standard covers a great deal of ground, but it isn’t the only new web
technology that is being developed by the W3C. There are a family of technologies that
are also enhancements to the web platform but don’t fall into the category of HTML5. In
this chapter, I will cover some of the more exciting new technologies, with a special
focus on technologies designed for mobile devices.

Geolocation
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last three versions.

W3C Recommendation: http://www.w3.org/TR/geolocation-API/

Geolocation is the ability to determine the physical location of the device hosting
the browser, typically in terms of latitude and longitude. Geolocation is very important
for mobile devices, where it is used in conjunction with mapping applications,
reminders, emergency transponders, and even games (like Ingress; see
https://www.ingress.com/).

Devices can determine your location using a combination of technologies:

GPS satellites: Almost all modern smartphones and other mobile
devices have transceivers capable of communicating with Global
Positioning System satellites.

http://www.w3.org/TR/geolocation-API/
https://www.ingress.com/

Cellular towers: Using triangulation algorithms, it’s possible to
determine the location (broadly) of a cellular device based on its
communications with cellular towers.

Wi-Fi mapping: Wi-Fi access points tend to be quite stationary and
limited in range, so it is possible to create a “map” of Wi-Fi access
points by simply driving around with a Wi-Fi–enabled device.
Using such a map, one can determine the approximate location of a
given device based on what Wi-Fi access points it has in range.

Bluetooth mapping: Similar to Wi-Fi mapping; best for very
close-range geolocation.

IP address mapping: For non-mobile devices, it is possible to
determine their location based on their external IP address. Several
companies offer IP address mapping services.

All of these methods are imprecise and have their own limitations, but when
employed together they can provide an accurate location of the device. However, there
is no guarantee that they will return the actual location of the device, or do so with a
useful level of accuracy.

When they work well together, though, it’s possible to locate devices quite
accurately. This is why most mobile devices will warn you when your Wi-Fi is off that
geolocation accuracy will be affected. For example, when you turn off the Wi-Fi radio
on an iPhone, iOS will warn you that your location accuracy will be reduced, as shown
in Figure 5-1.

Figure 5-1. iOS location accuracy

Privacy Considerations
Clearly geolocation has serious privacy implications. Locating and tracking devices—
and the people carrying them—is a powerful feature. As a result all browsers have
implemented a warning system to inform users that their location is about to be tracked.
When your application first accesses the Geolocation API, the browser will inform the
user and give them the option to prevent location. These warnings are designed to be
conspicuous, but vary from browser to browser (Figure 5-2)

Figure 5-2. Geolocation warnings from various browsers

In all browsers, your script will pause and wait for the user to respond to the dialog.
If the user opts to allow geolocation, the script will continue. If the user decides to
block geolocation, the API will throw an error.

As you are building a geolocation-capable application, it’s important that you
consider the privacy and security needs of your users:

You should only request location data as needed. This is important
for both privacy/security and mobile device battery life, as
geolocation queries activate multiple radios in a mobile device and
can thus be very draining on the battery.

You should only request just enough geolocation information as
needed to fulfill your specific purpose.

You should only use the information for a specific purpose, and
once the purpose is fulfilled you should clear the geolocation data
from memory.

You should be careful how your application shares and transmits
geolocation data. Any transmission of geolocation data across any
network should be secure to prevent unauthorized access.

If your application involves sending geolocation data to a server for
further processing, you should be even more careful how your
server software handles and stores the data, bearing in mind
physical security and legal ramifications.

These may seem like obvious guidelines, and in fact they are the basic guidelines for
handling any sensitive information. But it’s easy to lose sight of these simple ideas
while you’re busy coding, so be sure to include them in your work from the start.

You should also be transparent with your users that your application collects and
processes geolocation data. You should tell them:

what data you collect;

why you collect it;

whether or not you share or transmit the data, and what security
measures you take to secure that communication; and

whether or not you store the data, and what security measures you
take to secure that storage. If you do store the information, you
should tell them how you secure it and how a user may remove their
information from your storage.

If at all possible, you should also provide a way for users to opt out of the
geolocation features of your application. Sometimes that’s not practical, of course, but
providing a way for users to control this feature will do a great deal for establishing
trust.

Geolocation API
The Geolocation API specifies a new navigator.geolocation object. This
object has three new methods that access the geolocation capabilities of the browser
and the hosting device. Since it can take an unknown amount of time to resolve the
location of the device (the script will pause the first time and wait for the user to
respond to the permission dialog before continuing, and then the various location
methods have to be queried, each of which can take an unknown amount of time), the
methods are asynchronous, and provide a way to register success and error callback
functions.

 Tip You can use Promises (which are well-supported in mobile browsers) to help
simplify the code for asynchronous actions. See the section on Promises in Appendix A.

navigator.geolocation.getCurrentPosition(successCallback,
errorCallback, PositionOptions): Calls either the
successCallback when the location is successfully returned or
the errorCallback if an error occurs. When
successCallback is called, it will receive a Position
object as a parameter, and when errorCallback is called it
will receive a PositionError object as a parameter.

navigator.geolocation.watchPosition(successCallback,
errorCallback, PositionOptions): Immediately
returns a PositionWatch identifier, and then calls the
successCallback function every time the device’s position
changes. Calls errorCallback if an attempt to resolve the
location fails. When successCallback is called, it will
receive a Position object as a parameter, and when
errorCallback is called it will receive a PositionError
object as a parameter.

navigator.geolocation.clearWatch(PositionWatch):
Stops a watchPosition call specified by the

PositionWatch value.

In addition, the API defines three new object templates: the PositionOptions
object, the Position object, and the PositionError object. The
PositionOptions object provides an interface for the getCurrentPosition
and watchPosition methods to fine-tune the query and results, as follows.

PositionOptions = {
 // Specifies whether the query should return the most
accurate location possible
 boolean enableHighAccuracy,
 // The number of milliseconds to wait for the device to
return a location
 number timeout,
 // The number of milliseconds a cached value can be
used.
 number maximumAge
}

The Position object defines the response that will be returned by the
getCurrentPosition and watchPosition methods upon successfully
resolving the location of the host device, as follows.

Position = {
 object coords : {
 // The latitude in decimal degrees.
 number latitude,
 // The longitude in decimal degrees.
 number longitude,
 // The altitude in meters above nominal sea level.
 number altitude,
 // The accuracy of the latitude and longitude values,
in meters.
 number accuracy,
 // The accuracy of the altitude value, in meters.
 number altitudeAccuracy,
 // The current heading of the device in degrees
clockwise from true north.
 number heading,
 // The current ground speed, in meters per second.
 number speed,
 },

 // The time when the location query was successfully
created.
 date timestamp
}

Note that depending on the browser’s implementation of the Geolocation standard
and the capabilities of the host device, the values for altitude, accuracy,
altitudeAccuracy, heading, and speed may return as null.

The PositionError object defines the response that will be returned if the user
refuses to allow geolocation, or if somehow the device could not resolve its location, as
shown here.

PositionError = {
 // The numeric code of the error (see table below).
 number code,
 // A human-readable error message.

 string message
}

Valid codes for PositionError.code are integers, as listed in Table 5-1.

Table 5-1. Valid PositionError Codes

Code Constant Description

0 UNKNOWN_ERROR
The device could not resolve its location due to an unknown
error.

1 PERMISSION_DENIED
The application does not have permission to use the geolocation
services, usually due to the user refusing permission.

2 POSITION_UNAVAILABLE

The device could not resolve its location because the services
are unavailable. (Typically returned when the various required
radios are deactivated, as when a mobile device is in “airplane
mode.”)

3 TIMEOUT
The device could not resolve its location within the timeout limit
specified by PositionOptions.timeout.

The simplest example of using this API is to do a simple location query and show
all of the values that are returned, as demonstrated in Listing 5-1.

Listing 5-1. A Basic Query of the Geolocation API

<!DOCTYPE html>

<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Geolocation Example</h1>
 <div id="locationValues">
 </div>
 <div id="error">
 </div>
 <script>
/**
 * The success callback function for getCurrentPosition.
 * @param {Position} position The position object returned
by the geolocation
 * services.
 */
function successCallback(position) {
 console.log(’success’)
 // Get a reference to the div we’re going to be
manipulating.
 var locationValues
= document.getElementById(’locationValues’);

 // Create a new unordered list that we can append new
items to as we enumerate
 // the coords object.
 var myUl = document.createElement(’ul’);

 // Enumerate the properties on the position.coords
object, and create a list
 // item for each one. Append the list item to our
unordered list.
 for (var geoValue in position.coords) {
 var newItem = document.createElement(’li’);
 newItem.innerHTML = geoValue + ’ : ’
+ position.coords[geoValue];
 myUl.appendChild(newItem);
 }

 // Add the timestamp.
 newItem = document.createElement(’li’);

 newItem.innerHTML = ’timestamp : ’ + position.timestamp;
 myUl.appendChild(newItem);

 // Enumeration complete. Append myUl to the DOM.
 locationValues.appendChild(myUl);
}

/**
 * The error callback function for getCurrentPosition.
 * @param {PositionError} error The position error object
returned by the
 * geolocation services.
 */
function errorCallback(error) {
 var myError = document.getElementById(’error’);
 var myParagraph = document.createElement(’p’);
 myParagraph.innerHTML = ’Error code ’ + error.code
+ ’\n’ + error.message;
 myError.appendChild(myParagraph);
}

// Call the geolocation services.
navigator.geolocation.getCurrentPosition(successCallback,
errorCallback);
 </script>
 </body>
</html>

First, this example creates a success callback function that enumerates the properties
of the Position object. As it does so it adds them to an unordered list that is
appended to the DOM so you can see it. The error callback behaves the same way,
except instead of producing a list it simply updates the contents of a paragraph.

The first time you run this example your browser should prompt you for permission
to access the geolocation APIs. The first time through, deny permission, so you can see
what an error condition looks like. Figure 5-3 shows what the resulting page looks like
in Chrome.

Figure 5-3. Error condition for Listing 5-1 in Chrome

You can see that the error handler was called with an error code of 1. The actual
text for the error message varies from browser to browser (Internet Explorer 11, for
example, uses the error message “This site does not have permission to use the
Geolocation API.”) but the error code is the same.

The Geolocation specification does not define the permission model that must be
presented to the user, which is why every browser does it differently. The specification
simply says,

User agents must not send location information to Web sites without the
express permission of the user. User agents must acquire permission
through a user interface, unless they have prearranged trust relationships
with users, as described below. The user interface must include the host
component of the document’s URI. Those permissions that are acquired
through the user interface and that are preserved beyond the current
browsing session (i.e. beyond the time when the browsing context is
navigated to another URL) must be revocable and user agents must respect
revoked permissions.
Some user agents will have prearranged trust relationships that do not
require such user interfaces. For example, while a Web browser will
present a user interface when a Web site performs a geolocation request, a
VOIP telephone may not present any user interface when using location
information to perform an E911 function.

As a result, how a user can grant or refuse geolocation permission, how long that
decision is remembered, and how a user can change their mind later, are all up to the
browser manufacturer to decide and implement.

In Internet Explorer, for example, the user is presented with a pop-up that allows
them some interesting options, as shown in Figure 5-4.

Figure 5-4. Geolocation permission options in Internet Explorer 11

If the user chooses “Allow once” or “Always allow”, the script will continue and
the browser will attempt to resolve the client’s location. The option “Allow once”
should probably read “Allow for this browsing session”, because the permission
remains in effect until the user closes and restarts the browser. At that point, revisiting
the page will reprompt the user. The option “Always allow” functions as you would
expect: once the user picks it, they will never again be prompted for permission. The
option “Always deny and don’t tell me” denies permission at that point and every
subsequent time the user visits that page. They are never reprompted for permission, and
the only way they can undo this decision is to open the Internet Options dialog for
Windows, choose the Privacy tab, and click the “Clear sites” button in the Location
section—which clears all permanent permissions granted or denied to all sites.

Firefox presents a completely different interaction to the user, as shown in Figure 5-
5.

Figure 5-5. Geolocation permission options in Firefox 29

If the user chooses “Share Location” the script will continue and the browser will
attempt to resolve the client’s location. Unlike with Internet Explorer, however, this
permission is not for the current browser session but only for the current visit to the web
site. Reloading the page will immediately prompt the user for permission again. The
user does not have to restart the browser. The “Always Share Location” option grants
permanent permission to share location, and “Never Share Location” acts as a
permanent denial of permission for the page. Choosing “Not Now” or clicking on the ×
icon in the upper right corner of the pop-up, or clicking anywhere outside of the pop-up,
will close the pop-up without either granting or denying permission and will leave your
application hanging. The pop-up can be reopened by clicking the “target” icon next to
the URL, but that’s not necessarily immediately obvious. This behavior is by design; see
the relevant Bugzilla bug,
https://bugzilla.mozilla.org/show_bug.cgi?id=675533, for an
explanation.

Only in Safari Mobile on iOS is the permission pop-up an actual modal pop-up that
requires the user to respond and cannot be dismissed unless they make a choice. In all
other cases, the user can ignore (and in the case of Firefox completely dismiss) the pop-
up and leave your script waiting to execute a callback. To make matters worse, time
spent in this undefined state does not count toward any timeout you may have specified
with PositionOption.timeout—that timer only begins running after the user has

https://bugzilla.mozilla.org/show_bug.cgi?id=675533

granted permission and the browser has begun trying to resolve the location.
To get around this, you need to implement a global timeout timer that starts running

as soon as the script accesses the Geolocation API. If the user does grant (or deny)
permission, our regular callbacks should happen and this global timer should be
canceled. If the user does not grant (or deny) permission, the global timer should
execute a callback that does something—for example, redirect the browser to an error
page that explains to the user what they need to do to continue. Or if your application
doesn’t require GPS, the global timer callback should cancel the success and error
callbacks and your application can continue.

It’s easy to add such a global timer to Listing 5-1, as shown in Listing 5-2.

Listing 5-2. Registering a Global Timeout

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Geolocation Example</h1>
 <div id="locationValues">
 </div>
 <div id="error">
 </div>
 <script>
// Create the variable that will hold the timer reference.
var globalTimeout = null;

/**
 * The success callback function for getCurrentPosition.
 * @param {Position} position The position object returned
by the geolocation
 * services.
 */
function successCallback(position) {
 // Check the state of the global timeout. If it is null,
the application has
 // timed out and we should not continue. If it isn’t
null, the timeout timer
 // is still running, so we should cancel it and
continue.

 if (globalTimeout == null) {
 return;
 } else {
 clearTimeout(globalTimeout);
 }

 // Get a reference to the div we’re going to be
manipulating.
 var locationValues
= document.getElementById(’locationValues’);

 // Create a new unordered list that we can append new
items to as we enumerate
 // the coords object.
 var myUl = document.createElement(’ul’);

 // Enumerate the properties on the position.coords
object, and create a list
 // item for each one. Append the list item to our
unordered list.
 for (var geoValue in position.coords) {
 var newItem = document.createElement(’li’);
 newItem.innerHTML = geoValue + ’ : ’
+ position.coords[geoValue];
 myUl.appendChild(newItem);
 }

 // Add the timestamp.
 newItem = document.createElement(’li’);
 newItem.innerHTML = ’timestamp : ’ + position.timestamp;
 myUl.appendChild(newItem);

 // Enumeration complete. Append myUl to the DOM.
 locationValues.appendChild(myUl);
}

/**
 * The error callback function for getCurrentPosition.
 * @param {PositionError} error The position error object
returned by the
 * geolocation services.
 */
function errorCallback(error) {

 // Check the state of the global timeout. If it is null,
the application has
 // timed out and we should not continue. If it isn’t
null, the timeout timer
 // is still running, so we should cancel it and
continue.
 if (globalTimeout == null) {
 return;
 } else {
 clearTimeout(globalTimeout);
 }
 var myError = document.getElementById(’error’);
 var myParagraph = document.createElement(’p’);
 myParagraph.innerHTML = ’Error code ’ + error.code
+ ’\n’ + error.message;
 myError.appendChild(myParagraph);
}

/**
 * The callback to execute if the whole process times out,
specifically in the
 * situation where a user ignores the permissions pop-ups
long enough.
 */
function globalTimeoutCallback() {
 alert(’Error: GPS permission not given, exiting
application.’);
 globalTimeout = null;
}

// Call the geolocation services.
navigator.geolocation.getCurrentPosition(successCallback,
errorCallback);

// Start the timer for the global timeout call.
globalTimeout
= setTimeout(globalTimeoutCallback.bind(this), 5000);
 </script>
 </body>
</html>

The first thing this example does is define a globalTimeout variable, which
will hold the identifier for the timer it will start when it initiates the geolocation

request. Next, notice that in both the successCallback and errorCallback
functions, it checks the state of the globalTimeout variable. If the variable is
null, the global timeout has expired, and the code should not continue to execute those
functions. If it isn’t null, the timer is still active, so the code should cancel it and
continue.

Next it provides a globalTimeoutCallback function that simply alerts a
message to the user. In an actual application you would want to do something more
useful here—redirect the user to another page, for example. The code also sets the
globalTimeout variable to null so that if either of the callbacks should get
executed somehow, they will not continue past the initial global timeout check.

Finally, it sets the timer running immediately after it calls the geolocation API. The
timer is set to five seconds. When you load this page, you’ll see one of the following:

If you have permanently denied geolocation permission to the page,
the errorCallback will execute and the global timer will be
canceled. No permission pop-up will be displayed.

If you have permanently allowed geolocation permission to the
page, the successCallback will execute and the global timer
will be canceled. No permission pop-up will be displayed.

If you haven’t permanently granted or denied permission, the
permission pop-up will display. You can choose to grant or deny
permission before the global timeout timer expires, in which case
the appropriate callback will execute and the global timer will be
canceled. Or you can do nothing and wait for the global timer to
expire. When that happens, the alert message will appear.

In any case, you cannot programmatically force a permission choice for the user.
They have to make their permission choice through the browser-supplied dialog.

From a user interaction standpoint, this is a somewhat unfortunate state of affairs
because it means your application will cause the browser to display a notification over
which you have no control. Some users might find this alarming and choose to deny
permission, or even shut down the browser entirely and never return to your
application. If you have been transparent with your users about how your application
collects and stores geolocation information, they will be prepared for this interaction
and will be more willing to grant permission, because they know what your application
will be doing with the data.

Animation Timing
SUPPORT LEVEL

Good

All modern browsers support these features and have for the last two versions.

W3C Candidate Recommendation: http://www.w3.org/TR/animation-
timing/

The Animation Timing standard is designed to help you build JavaScript-based visual
animations. If you have ever tried to build an animation by hand using JavaScript,
you’re probably familiar with the simple pattern of a draw cycle:

Create a draw function that is responsible for incrementally
“drawing” the animated items: positioning elements, changing
element properties, drawing on a canvas element, and so forth.
Each time this function is called, it produces an entire animation
“frame,” just as if you were drawing animation frames by hand that
would then be shown in a film.

Call the draw function every few milliseconds.

A JavaScript draw cycle is typically implemented using a timer, which calls a
drawing function every few milliseconds. An example can be seen in Listing 5-3.

Listing 5-3. A JavaScript Implementation of a Timer-Based Draw Cycle

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
#target-element {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;

http://www.w3.org/TR/animation-timing/

 top: 100px;
 left: 0px;
}
 </style>
 </head>
 <body>
 <h1>Simple Animation Example</h1>
 <div id="target-element"></div>
 <script>
// Get a reference to the element we want to move.
var targetEl = document.getElementById(’target-element’);

// Create a variable to keep track of its position.
var currentPosition = 0;

/**
 * Draws the animation by updating the position on the
target element and incrementing
 * the position variable by 1.
 */
function draw() {
 if (currentPosition > 500) {
 // Stop the animation, otherwise it would run
indefinitely.
 clearInterval(animInterval);
 } else {
 // Update the element’s position.
 targetEl.style.left = currentPosition++ + ’px’;
 }
}

// Initiate the animation timer.
var animInterval = setInterval(draw, 17);
 </script>
 </body>
</html>

This example uses a JavaScript timer to update the position of a div on the page.
The interval between updates is 17 milliseconds. That’s not an arbitrary number. Most
monitors refresh at 60Hz, and so most browsers try and limit their screen repaints to no
more than 60Hz. Sixty cycles per second is about 17 milliseconds between cycles. Any
faster than that and you lose “frames.”

Depending on the browser you use to run this example, and the system you are using,
this animation can appear to be quite smooth or somewhat jerky. That’s because this is a
brute-force method of animation, and it doesn’t take into account how the browser
redraws the page. It just commands the screen to be updated, and the browser has to do
the best it can. Also, there’s no guarantee that the time between animation updates will
be 17 milliseconds. The setInterval method just adds the updates to the browser’s
UI queue, which can easily become bogged down if the browser is busy doing
something else (like resizing the window, or possibly fetching and rendering other
content in the background), thus delaying the screen render.

Overall this method doesn’t scale well. As animations increase in number and
complexity, and the pages they are in also increase in complexity and interactive
capability, these timer-based animation queues become more and more inefficient.

The Animation Timing specification addresses the problems with JavaScript-based
timers by providing a new timer: requestAnimationFrame. Syntactically this
method is used similarly to the existing JavaScript timer methods setInterval and
setTimeout. Behind the scenes, though, the new method is tied to the browser’s
screen management algorithms. As a result, requestAnimationFrame has some
important benefits:

Animations queued with requestAnimationFrame are
optimized by the browser into a single reflow/repaint cycle.

Animations queued with requestAnimationFrame play well
with animations from other sources, like CSS transitions.

The browser will stop animations in browser tabs that are not
visible. This is important on mobile devices, where intensive
animations can rapidly consume battery power.

The specification creates two new methods in the global context:

requestAnimationFrame(callback): Request that the
function callback be executed as part of the next animation
cycle. The callback will receive as a parameter a timestamp. Like
setTimeout and setInterval,
requestAnimationFrame returns an identifier that can be
used to stop the cycle.

cancelAnimationFrame(identifier): cancel the
animation frame request identified by the identifier.

Updating Listing 5-3 to use requestAnimationFrame is easy, as shown in

Listing 5-4.

Listing 5-4. Listing 5-3 Rewritten Using requestAnimationFrame

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
#target-element {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;
 top: 100px;
 left: 0px;
}
 </style>
 </head>
 <body>
 <h1>Simple requestAnimationFrame Example</h1>
 <div id="target-element"></div>
 <script>
var targetEl = document.getElementById(’target-element’);
var currentPosition = 0;

/**
 * Updates the position on the target element, the
increments the position
 * counter by 1.
 */
function animateElement() {
 // Stop the animation, otherwise it would run
indefinitely.
 if (currentPosition <= 500) {
 requestAnimationFrame(animateElement);
 }
 // Update the element’s position.
 targetEl.style.left = currentPosition++ + ’px’;
}

// Initiate the animation timer.

animateElement();
 </script>
 </body>
</html>

This example updates the animateElement function to use
requestAnimationFrame. Each time that method is called, it updates the position
of the element and increments the position counter. It also schedules itself for calling
again via requestAnimationFrame. Once the element reaches the position of
500px, the animation stops.

Building a draw cycle manager using Animation Timing is also quite easy. A draw
cycle manager will allow you to register animation functions (like the
animateElement function in Listing 5-4), and start, stop, and pause the draw cycle.
Listing 5-5 shows a simple draw cycle manager.

Listing 5-5. A Draw Cycle Manager

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
.animatable {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;
 top: 110px;
 left: 0px;
}
#elementTwo {
 top: 220px;
}
 </style>
 </head>
 <body>
 <h1>Simple Animation Framework Example</h1>
 <div class="animatable" id="elementOne"></div>
 <div class="animatable" id="elementTwo"></div>
 <button id="startAnimation">Start Animation</button>
 <button id="togglePause">Toggle Pause</button>

 <button id="stopAnimation">Stop Animation</button>
 <button id="registerOne">Register Animation
One</button>
 <button id="unregisterOne">Unregister Animation
One</button>
 <button id="registerTwo">Register Animation
Two</button>
 <button id="unregisterTwo">Unregister Animation
Two</button>
 <script>

// Get references to the elements we will be animating,
and create position
// tracking variables for them.
var elementOne = document.getElementById(’elementOne’);
var elOnePosition = 0;
var elementTwo = document.getElementById(’elementTwo’);
var elTwoPosition = 0;

/**
 * Animates Element One by incrementally updating its left
position. Animation
 * stops at 500px.
 */
function animateElementOne() {
 if (elOnePosition <= 500) {
 elementOne.style.left = elOnePosition++ + ’px’;
 } else {
 // Done animating, so remove this animation from the
draw cycle manager.
 myCycle.removeAnimation(animateElementOne);
 // Reset the counter so we can animate again. The
function can be
 // re-registered and will work as before.
 elOnePosition = 0;
 }
}

/**
 * Animates Element Two by incrementally updating its left
position. Animation
 * stops at 500px.

 */
function animateElementTwo() {
 if (elTwoPosition <= 500) {
 elementTwo.style.left = elTwoPosition++ + ’px’;
 } else {
 // Done animating, so remove this animation from the
draw cycle manager.
 myCycle.removeAnimation(animateElementTwo);
 // Reset the counter so we can animate again. The
function can be
 // re-registered and will work as before.
 elTwoPosition = 0;
 }
}

/**
 * Creates a draw cycle object that will repetitively draw
animation functions.
 * @constructor
 * @returns {Object} A new draw cycle object.
 */
var DrawCycle = function() {
 var newCycle = {
 /**
 * The identifier for the current animation frame
loop.
 * @type {Number}
 */
 animationPointer: null,

 /**
 * @type {Boolean}
 */
 isPaused: false,

 /**
 * The array of animation callbacks.
 * @type {!Array.<Function>}
 */
 arrCallbacks: [],

 /**
 * Starts the animation cycle.

 */
 startAnimation: function() {
 // Like other JavaScript timers,
requestAnimationFrame sets the execution
 // context of its callbacks to the global execution
context (the window
 // object). We need the execution context to be
’this’, the newCycle
 // object we’re creating. By using the bind method
(which exists on
 // Function.prototype) we are able to override the
default execution
 // context with the one we need.
 this.animationPointer
= window.requestAnimationFrame(this.draw.bind(this));
 },

 /**
 * Stops the animation cycle.
 */
 stopAnimation: function() {
 window.cancelAnimationFrame(this.animationPointer);
 },

 /**
 * Pauses the invocation of the animation functions
each draw cycle. If set
 * to true, the animation functions will not be
invoked. If set to false,
 * the functions will be invoked.
 * @type {Boolean}
 */
 pauseAnimation: function(boolPause) {
 this.isPaused = boolPause;
 },

 /**
 * Adds an animation function to the draw cycle.
 * @param {Function}
 */
 addAnimation: function(callback) {
 if (this.arrCallbacks.indexOf(callback) == -1) {

 this.arrCallbacks.push(callback);
 }
 },

 /**
 * Removes an animation function from the draw cycle.
 * @param {Function}
 */
 removeAnimation: function(callback) {
 var targetIndex
= this.arrCallbacks.indexOf(callback);
 if (targetIndex > -1) {
 this.arrCallbacks.splice(targetIndex, 1);
 }
 },

 /**
 * Draws any registered animation functions (assuming
they are not paused)
 * and then kicks off another animation cycle.
 * You should not need to call this method directly.
 * @private
 */
 draw: function() {
 if (!this.isPaused) {
 var i = 0, arrCallbacksLength
= this.arrCallbacks.length;
 for (i = 0; i < arrCallbacksLength; i++) {
 this.arrCallbacks[i]();
 }
 }
 this.startAnimation();
 }
 };
 return newCycle;
};

// Create a new draw cycle object.
var myCycle = new DrawCycle();

// Register a callback for the Start Animation button that
starts the animation
// cycle.

var startAnimation
= document.getElementById(’startAnimation’);
startAnimation.addEventListener(’click’, function() {
 myCycle.startAnimation();
}, false);

// Register a callback for the Pause Animation button that
pauses/unpauses the
// animation cycle.
var pauseAnimation
= document.getElementById(’togglePause’);
pauseAnimation.addEventListener(’click’, function() {
 myCycle.pauseAnimation(!myCycle.isPaused);
}, false);

// Register a callback for the Stop Animation button that
stops the animation
// cycle.
var stopAnimation
= document.getElementById(’stopAnimation’);
stopAnimation.addEventListener(’click’, function() {
 myCycle.stopAnimation();
}, false);

// Register a callback for the Register Animation One
button that adds the
// animation function for element one to the draw cycle
object.
var registerOne = document.getElementById(’registerOne’);
registerOne.addEventListener(’click’, function() {
 myCycle.addAnimation(animateElementOne);
}, false);

// Register a callback for the Unregister Animation One
button that removes the
// animation function for element one from the draw cycle
object.
var unregisterOne
= document.getElementById(’unregisterOne’);
unregisterOne.addEventListener(’click’, function() {
 myCycle.removeAnimation(animateElementOne);
}, false);

// Register a callback for the Register Animation Two
button that adds the
// animation function for element two to the draw cycle
object.
var registerTwo = document.getElementById(’registerTwo’);
registerTwo.addEventListener(’click’, function() {
 myCycle.addAnimation(animateElementTwo);
}, false);

// Register a callback for the Unregister Animation Two
button that removes the
// animation function for element two from the draw cycle
object.
var unregisterTwo
= document.getElementById(’unregisterTwo’);
unregisterTwo.addEventListener(’click’, function() {
 myCycle.removeAnimation(animateElementTwo);
}, false);
 </script>
 </body>
</html>

This example creates a constructor function that gives you a new draw cycle object,
which provides a simplified API for handling animations. The main API methods are:

addAnimation(animationFunction): Registers an
animation function with the draw cycle. Every time the draw cycle
runs, animationFunction will be invoked.

removeAnimation(animationFunction): Deregisters
an animation function with the draw cycle.

startAnimation(): Starts the animation drawing cycle. When
called, this method will call requestAnimationFrame with
the object’s draw method as the callback, thus initiating a single
loop. The method stores the identifier for the loop so that it can
later be cancelled if desired.

stopAnimation(): Stops the animation drawing cycle. When
called, this method calls cancelAnimationFrame with the
identifier stored by startAnimation.

pauseAnimation(boolPause): Pauses or unpauses calling
the registered animation functions. The draw cycle still runs but

none of the animation functions are invoked.

Using this animation API is simple:

1. Create a new instance of a draw cycle using the constructor
function.

2. Register one or more animation callbacks that you want to be
called every draw cycle.

3. Start the animation cycle.

When you call startAnimation it requests an animation frame from the
browser, with draw method as the callback. The browser invokes the draw method at
the appropriate time. The draw method invokes all of the registered animation
functions (assuming animation is not paused), thus completing one cycle. It then calls
startAnimation to kick off a new cycle.

You can dynamically add new animation functions as desired; they will
automatically be invoked in the next draw cycle. You can also remove animation
functions as needed. Each animation method also removes itself from the draw cycle
when it completes, and resets its counter. You can reregister the animation functions at
that point and the animations will happen again. Note that the draw cycle will continue
to run even if there are no animation functions registered, so when you remove the last
animation function you also should be sure to call the stopAnimation method.

Selectors
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last four versions.

W3C Candidate Recommendation: http://www.w3.org/TR/selectors/

The new Selectors standard provides new ways for accessing elements in the DOM.
Previously the main ways for accessing elements in the DOM was either to use the
getElementById method, to use traversal, or some combination of the two. With the
new Selectors standard, you can access elements directly based on their CSS selectors.

http://www.w3.org/TR/selectors/

The Selectors standard took cues from popular JavaScript frameworks like jQuery,
which have made heavy use of selectors. If you’re at all familiar with jQuery,
Prototype, Dojo, or any other JavaScript library that uses selectors, you’ll find the new
Selectors API to be very familiar.

The Selectors standard defines two new methods on the Element abstract class:

querySelector(cssSelectorList): Returns a direct
reference to the first element that matches all of the CSS selectors
in the specified comma-delimited cssSelectorList. If there is
no match, return null.

querySelectorAll(cssSelectorList): Returns a
NodeList object containing all the matches to the CSS selectors
specified in the comma-delimited cssSelectorList. If no
elements match, return a NodeList with no members.

 Note NodeList objects look a lot like arrays, in that they have member elements
that can be accessed via their numeric index, and a length property that reflects the
number of members. However, NodeList objects inherit directly from the Object
prototype, rather than the Array prototype, so they do not have any of the array
methods you might expect (e.g., Array.forEach).

Using the new Selectors API you can easily get direct references to DOM elements
without extensive traversal, and without adding IDs to your markup that are only ever
used for JavaScript selectors. This can help you keep both your markup and JavaScript
code clean. In addition, you’ll often find yourself using the same selectors both in your
JavaScript and in your CSS, because often the elements you need to style are the same
elements your scripts need to access.

I’ve been using the Selectors API throughout examples in the book. Here are some
other examples that help illustrate how powerful the API can be:

Attribute Selectors: [attribute=value] allows you to target
DOM elements based on their assigned attributes. This is
particularly useful in selecting elements that have data attributes
assigned to them. You can also use pattern matching:

[att^=’val’] selects elements whose att attribute
begins with the letters “val”

[att$=’lue’] selects elements whose att attribute

ends with the letters “lue”

[att*=’val’] selects elements whose att attribute
contains the letters “val”

Element State Pseudo-classes allow you to target DOM elements
based on their state pseudo-classes. Particularly useful are
:enabled (selects form fields that are enabled), :disabled
(selects disabled form fields), and :checked (selects checkboxes
and radio buttons that are checked).

Negation Pseudo-class: not(selector) targets DOM elements
that do not match the specified selector.

Structural Pseudo-classes allow you to target DOM elements based
on their location in the DOM structure. Particularly useful are:

:nth-child(n) selects the element that is the nth child
of its parent

:nth-last-child(n) selects the element that is the
nth child of its parent, counting from the last child backward

:nth-of-type(n) selects the element that is the nth
sibling of its type

:nth-last-of-type(n) selects the element that is the
nth sibling of its type, counting from the last sibling
backward

:last-child selects the last child element of a parent
element

:first-of-type and :last-of-type select the
sibling element that is the first or the last of its type

:only-child selects elements that are the only child of
their parents

Since the querySelector and querySelectorAll methods are Element
methods, you can use them on any element. This limits the search for matching selectors
to the descendants of that element, as shown in Listing 5-6.

Listing 5-6. Limiting a Selector Query to a Containing Element

<!DOCTYPE html>

<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <p class="selectme">This has the selectme class, but
will not be clickable.</p>
 <div class="noselect">
 <p class="selectme">This has the selectme class,
but will not be clickable.</p>
 </div>
 <div class="selectable">
 <p class="selectme">This has the selectme class,
and will be clickable.</p>
 </div>
 <script>
// Get a reference to the containing element we want to
search.
var selectable = document.querySelector(’.selectable’);

// Get a reference to the paragraph.
var targetPar = selectable.querySelector(’.selectme’);

// Give the target paragraph an event handler for the
click event.
targetPar.addEventListener(’click’, function() {
 alert(’I was clicked!’);
});
 </script>
 </body>
</html>

This simple example limits the search for the desired selector to the specified div
element. This is the equivalent of using the selector ".selectable .selectme".
This technique is particularly useful for selecting the descendants of event targets.

Device Orientation
SUPPORT LEVEL

Poor

This API is only useful on devices with necessary hardware, which are typically
mobile devices. Support for this API in mobile browsers is quite good, except for
Internet Explorer Mobile, which does not implement the API at all. Internet
Explorer 11 does support the API, as do Chrome and Firefox, but Safari does not.

W3C Working Draft: http://www.w3.org/TR/orientation-event/

Most mobile and handheld devices contain sensitive gyroscopes that enable the
device to be aware of its orientation in space. The Device Orientation API provides a
standard API for host devices to share this information with browser-based
applications.

 Caution This particular standard has undergone frequent changes in response to
industry feedback. As a result, most browser manufacturers have held back on full
implementation. I’m presenting the standard in its current incarnation at press time
because I believe this is an important feature that deserves coverage despite its draft
status.

The standard specifies a new set of events that fire on the window object, as well as
new data properties on the resulting event object. By registering event listeners for these
events, you can gain access to these data properties.

The compassneedscalibration Event
According to the standard, the compassneedscalibration event fires on the
window object “when the user agent determines that a compass used to obtain
orientation data is in need of calibration.” However, there is no instruction for what the
user agent should do to calibrate itself, or how to communicate this to either the
developer or the end users. For this reason, this event is currently disabled in Firefox
(see https://bugzilla.mozilla.org/show_bug.cgi?id=738121).
Other mobile user agents may fire this event, though I have never seen it happen.

Like any other event, you simply register an event handler for it on the window
object, as shown in this code snippet:

window.addEventListener(’compassneedscalibration’,
function(event) {

http://www.w3.org/TR/orientation-event/
https://bugzilla.mozilla.org/show_bug.cgi?id=738121

 alert(’Your compass needs calibration. Wave your device
in a figure-8 motion.’);
}, false);

The deviceorientation Event
According to the standard, the deviceorientation event fires on the window
object “whenever a significant orientation change occurs,” but leaves the definition of
“significant change” up to the browser manufacturer. In practice, this event appears to
fire regularly on the window object, even for devices that are completely at rest on a
table.

The event object for the deviceorientation event is a
DeviceOrientationEvent object, which has the following properties:

DeviceOrientationEvent.alpha: The alpha angle of
rotation.

DeviceOrientationEvent.beta: The beta angle of
rotation.

DeviceOrientationEvent.gamma: The gamma angle of
rotation.

If you’re familiar with Euler Angles, the alpha, beta, and gamma angles are Tait-
Bryan angles of the type Z-X’-Y". To visualize these angles, imagine a device sitting
flat on a table, as shown in Figure 5-6.

Figure 5-6. A device sitting flat on a table

Rotating about the z axis will translate both the x and y axes by the amount of the
rotation, as shown in Figure 5-7.

Figure 5-7. Rotation about the z axis

The resulting angle is referred to as the alpha angle.
Rotating about the x axis will translate both the z and y axes by the amount of the

rotation, as shown in Figure 5-8.

Figure 5-8. Rotation about the x axis

The resulting angle is referred to as the beta angle.
Finally, rotating about the y axis will translate both the x and z axes by the amount of

the rotation, as shown in Figure 5-9.

Figure 5-9. Rotation about the y axis

The resulting angle is referred to as the gamma angle.
The definitive example of how to use these angles is to move a DOM element on the

screen according to the gamma and beta angles. Because the angles vary from positive

to negative, you can simply add the rounded value of the angle to the current value of the
associated ordinate: for the x ordinate you use the gamma angle, and for the y ordinate
you use the beta angle. The more the device is tilted, the larger the angle, the greater the
increment on the coordinate, and the faster the element will move, as shown in Listing
5-7.

Listing 5-7. Moving a Ball on the Screen

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
user-scalable=no">
 <title>The HTML5 Programmer’s Reference</title>
 <style>
#container {
 position: absolute;
 top: 220px;
 left: 50px;
 width: 204px;
 height: 204px;
 border: 1px solid red;
}
#ball {
 width: 10px;
 height: 10px;
 position: absolute;
 top: 0px;
 left: 0px;
 background-color: red;
 border-radius: 50%;
}
 </style>
 </head>
 <body>
 <h1>Device Orientation Demonstration</h1>

 Alpha:
 Beta:
 Gamma
 y-pos

 x-pos

 <div id="container">
 <div id="ball"></div>
 </div>
 <script>
// Get references to the various DOM elements we will be
manipulating.
var alpha = document.getElementById(’alpha’);
var beta = document.getElementById(’beta’);
var gamma = document.getElementById(’gamma’);
var ypos = document.getElementById(’ypos’);
var xpos = document.getElementById(’xpos’);
var ball = document.getElementById(’ball’);

// Initialize x and y coordinates.
var yposit = 0;
var xposit = 0;

/**
 * Handles a deviceorientation event on the window object.
 * @param {DeviceOrientationEvent} event A standard device
orientation event.
 */
function handleDeviceOrientation(event) {
 // Update the DOM with the raw event data.
 alpha.innerHTML = event.alpha;
 beta.innerHTML = event.beta;
 gamma.innerHTML = event.gamma;
 // Use the raw data to get x and y coordinates for the
ball.
 xposit = getCoord(event.gamma, xposit);
 xpos.innerHTML = xposit;
 yposit = getCoord(event.beta, yposit);
 ypos.innerHTML = yposit;
 ball.style.top = yposit + ’px’;
 ball.style.left = xposit + ’px’;
}

/**
 * Increments a coordinate based on an angle from the
device orientation event.

 * @param {number} angle The orientation angle.
 * @param {number} coord The coordinate to increment.
 */
function getCoord(angle, coord) {
 // First, get a delta value from the angle.
 var delta = Math.round(angle);
 var tempVal = coord + delta;
 // Limit the incremented value to between 0 and 194.
 if (tempVal > 0) {
 coord = Math.min(194, tempVal);
 } else {
 coord = 0;
 }
 return coord;
}

// Register the event handler.
window.addEventListener(’deviceorientation’,
handleDeviceOrientation, false);
 </script>
 </body>
</html>

This example displays the raw event data on the screen, and uses that raw event data
to determine the coordinates of the element on the screen. In this case, it limits the
position of the element so that it stays inside of its containing element.

The devicemotion Event
The devicemotion event fires regularly on the window object, and produces an
event of type DeviceMotionEvent. The DeviceMotionEvent has four
properties: acceleration (the values of which represent the acceleration of the
device along the x, y, and z axes, in meters per second squared),
accelerationIncludingGravity (the values of acceleration with the effects of
the Earth’s gravity included, if any), rotationRate (the rate of rotation of the alpha,
beta, and gamma angles in degrees per second), and interval (how often this
information is refreshed from the hardware, in milliseconds). Overall the schema of the
DeviceMotionEvent looks like this:

object DeviceMotionEvent = {
 object acceleration: {

 number x,
 number y,
 number z
 },
 object accelerationIncludingGravity: {
 number x,
 number y,
 number z
 },
 object rotationRate: {
 number alpha,
 number beta,
 number gamma
 }
 number interval
}

You can easily display each of these values, as shown in Listing 5-8.

Listing 5-8. Displaying the Values of a devicemotion Event

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
user-scalable=no">
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Device Motion Demonstration</h1>

 acceleration:

 <li id="accX">x: ,

 max:
 <li id="accY">y: ,

 max:
 <li id="accZ">z: ,

 max:

 accelerationIncludingGravity:

 <li id="aigX">x: ,

 max:
 <li id="aigY">y: ,

 max:
 <li id="aigZ">z: ,

 max:

 rotationRate:

 <li id="rrAlpha">alpha:
,

 max:
 <li id="rrBeta">beta:
,

 max:
 <li id="rrGamma">gamma:
,

 max:

 <script>
// Create a data structure to store the references to the
various DOM elements
// we will be manipulating, as well as associated maximum
values. The structure
// also includes an interface method for processing
incoming data and mapping
// it to the correct DOM elements.
var motionValues = {
 acceleration : {
 x : {
 domCurr : document.querySelector(’#accX .current’),
 domMax : document.querySelector(’#accX .max’),

 maxVal : 0
 },
 y : {
 domCurr : document.querySelector(’#accY .current’),
 domMax : document.querySelector(’#accY .max’),
 maxVal : 0
 },
 z : {
 selector : ’#accZ’,
 domCurr : document.querySelector(’#accZ .current’),
 domMax : document.querySelector(’#accZ .max’),
 maxVal : 0
 }
 },
 accelerationIncludingGravity : {
 x : {
 domCurr : document.querySelector(’#aigX .current’),
 domMax : document.querySelector(’#aigX .max’),
 maxVal : 0
 },
 y : {
 domCurr : document.querySelector(’#aigY .current’),
 domMax : document.querySelector(’#aigY .max’),
 maxVal : 0
 },
 z : {
 selector : ’#accZ’,
 domCurr : document.querySelector(’#aigZ .current’),
 domMax : document.querySelector(’#aigZ .max’),
 maxVal : 0
 }
 },
 rotationRate : {
 alpha : {
 domCurr : document.querySelector(’#rrAlpha
.current’),
 domMax : document.querySelector(’#rrAlpha .max’),
 maxVal : 0
 },
 beta : {
 domCurr : document.querySelector(’#rrBeta .current’),
 domMax : document.querySelector(’#rrBeta .max’),

 maxVal : 0
 },
 gamma : {
 selector : ’#accZ’,
 domCurr : document.querySelector(’#rrGamma
.current’),
 domMax : document.querySelector(’#rrGamma .max’),
 maxVal : 0
 }
 },

 /**
 * Processes an acceleration value object of a specific
type. The values are
 * enumerated and mapped to their associated DOM
elements for display.
 * @param {string} valueType The type of the value
object, one of
 * ’acceleration’, ’accelerationIncludingGravity’,
or ’rotationRate’.
 * @param {object} valueObject The object containing the
acceleration data.
 */
 processValues : function(valueType, valueObject) {
 // First, get a reference to the subproperty of the
motionValues object we
 // will be manipulating.
 var mvRef = this[valueType];
 // Enumerate the valueObject and process each
property.
 for (property in valueObject) {
 // Convenience references to the current values we’re
working with.
 var currMVRef = mvRef[property];
 var currVal = valueObject[property];
 // Update the DOM to display the current value.
 currMVRef.domCurr.innerHTML = currVal;
 // If the current value is larger than the last
stored maximum value,
 // update the stored max value to match and display
it in the DOM.
 if (currVal > currMVRef.maxVal) {

 currMVRef.maxVal = currVal;
 currMVRef.domMax.innerHTML = currVal;
 }
 }
 }
};

/**
 * Handles a devicemotion event on the window object.
 * @param {DeviceMotionEvent} event A standard device
motion event object.
 */
function handleDeviceMotion(event) {
 motionValues.processValues(’acceleration’,
event.acceleration);
 motionValues.processValues(’accelerationIncludingGravity’,
 event.accelerationIncludingGravity);
 motionValues.processValues(’rotationRate’,
event.rotationRate);
}

// Register the event handler.
window.addEventListener(’devicemotion’,
handleDeviceMotion, false);
 </script>
 </body>
</html>

Because there are many values to display, and much of the data is specifically
structured thanks to the DeviceMotionEvent schema, Listing 5-8 begins this
example by creating an object that has a similar schema. For each individual property it
stores a DOM reference to the element that will display its current value, a DOM
reference to the element that will display the maximum value achieved, and the
maximum value itself. It also includes a simple interface method that maps the
DeviceMotionEvent subproperties to their associated subproperties in the object,
and updates the DOM to reflect the new information.

To use this example you need to move your device around. These values are for
acceleration, which is the rate of change of velocity (while velocity is the rate of change
of position). In order to see appreciable values you will need to move your device
fairly quickly. It’s sufficient to shake your device along the various axes of motion. Be
careful to keep a firm grip on your device so you don’t accidentally throw it. The
maximum values of acceleration along the various axes will be recorded for you so you

can see them after you’re done moving your device around. You can also spin the
device to see rotation rates.

WebGL
SUPPORT LEVEL

Good

All modern desktop browsers support these features for at least the last two
versions, with the exception of Internet Explorer, which has only supported them
since version 11. Mobile support is poor, as Mobile Safari for iOS does not
currently support WebGL, though Apple has committed to full support with iOS
version 8.

Specifications: http://www.khronos.org/webgl/

The Web Graphics Library (WebGL) is an API for drawing complex 2d and 3d
graphics in HTML canvas elements. The WebGL API is presented as a drawing
context on a given canvas element, just like the standard drawing context that you
explored in Chapter 4. Just like the standard canvas drawing context, the WebGL
drawing context is accessible in JavaScript via an extensive API. Many WebGL tasks,
such as image processing, are delegated to the host system’s Graphics Processing Unit
and are not handled by the system’s main CPU, thus providing a significant speed boost.

Unlike most of the other standards covered in this book, the WebGL standard is not
maintained by either the W3C or the WHATWG. The standard is maintained by the
nonprofit technology consortium Khronos Group. The language itself is based on the
OpenGL language, and grew out of experiments in 3d rendering done at Mozilla in
2009. The current stable release of WebGL is 1.0.2. Work started on WebGL 2 in 2013.

Initializing a WebGL drawing context is very similar to initializing a standard
drawing context in a canvas element, as shown in Listing 5-9.

Listing 5-9. Initializing a WebGL Drawing Context

<!DOCTYPE html>
<html>
 <head>

http://www.khronos.org/webgl/

 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
var myCanvas = document.getElementById(’myCanvas’);
var myGlContext = myCanvas.getContext(’webgl’);
 </script>
 </body>
</html>

This example uses the getContext method just as you did in Chapter 4. The
difference is that instead of providing a parameter of ’2d’ for a 2d drawing context, it
provides the ’webgl’ parameter to specify a WebGL drawing context. You can easily
expand this to be a function, which even provides a place for initializing the context as
needed, as shown in Listing 5-10.

Listing 5-10. A WebGL Initialization Function

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did

You Know: Every time
 you use a browser that doesn’t support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
/**
 * Returns a WebGL drawing context on a specified canvas
element. If opt_setup
 * is provided and set to true, this method also performs
some basic
 * initialization on the context.
 * @param {!Element} targetCanvas The reference to the
desired canvas element.
 * @param {boolean} opt_setup Whether or not to perform
additional setup on the
 * context.
 * @return {Object} The WebGL drawing context, or null if
WebGL is not supported
 * or was otherwise unavailable.
 */
function initWebGLOnCanvas(targetCanvas, opt_setup) {
 // If opt_setup was not specified, set it to false. In
JavaScript, null and
 // undefined are == to each other and nothing else, so:
 if (opt_setup == null) {
 opt_setup = false;
 }

 // Try and get the context.
 var glContext = targetCanvas.getContext(’webgl’);
 if (glContext == null) {
 // Try falling back to an experimental version, works
on some older browsers.
 glContext = targetCanvas.getContext(’experimental-
webgl’);
 if (glContext == null) {
 // We were unable to get a WebGL context. Provide
a warning diagnostic
 // message on the console, in case anyone is looking.
 console.warn(’WebGL is not supported in this
browser.’);

 }
 }

 // If there is a context and setup was requested, do the
setup.
 if ((opt_setup === true) && (glContext != null)) {
 // Set the clear color to black (rgba).
 glContext.clearColor(0.0, 0.0, 0.0, 1.0);
 // Initialize the depth function so that objects that
are closer in
 // perspective hide things that are further away.
 glContext.depthFunc(glContext.EQUAL);
 // Enable depth testing.
 glContext.enable(glContext.DEPTH_TEST);
 // Clear both the color and the depth buffer.
 glContext.clear(glContext.COLOR_BUFFER_BIT|glContext.DEPTH_BUFFER_BIT);
 }
 return glContext;
}

var myCanvas = document.getElementById(’myCanvas’);
var myGLContext = initWebGLOnCanvas(myCanvas, true);
 </script>
 </body>
</html>

This example expands the initialization function to detect if there has been a
problem getting the WebGL context, with a fallback to an older syntax that is present on
older browsers. If the context cannot be fetched at all, a warning is output to the
console. Running this example will produce a black square in the browser.

As of this writing, Firefox is currently blacklisting a significant number of
Windows, MacOS, Linux, and Android graphics drivers in the WebGL initialization
process. If you have one of these drivers, Firefox by default will not initialize a WebGL
drawing context. If you run this example in Firefox and you see the warning message in
the console, chances are your setup is blacklisted. For details and instructions on how to
override the block, see
https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers
Another alternative is to use a browser that has a less brittle WebGL implementation
(Chrome’s implementation of WebGL is quite solid).

 Note Up until recently, Safari Mobile on iOS did not support WebGL. Safari 8.1

https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers

introduced full WebGL support.

WebGL is an extensive language, and fully covering it and everything you can do
with it is beyond the scope of this book. If you want to learn more, check out Beginning
WebGL for HTML5 by Brian Danchilla (Apress, 2012).

SVG
SUPPORT LEVEL

Excellent

All modern browsers support SVG and have for at least the last three versions.

W3C Recommendation: http://www.w3.org/TR/SVG11/

Scalable Vector Graphics (SVG) is a graphics format for creating raster graphics,
vector graphics, and text. Graphics objects (both defined in SVG and imported from
external files, such as regular image files) can be grouped and manipulated easily using
SVG.

Most graphics formats (like the Portable Network Graphics [PNG] format) consist
of binary data. SVG graphics are defined using XML markup, and so can be easily
created using simple text editors, just like web pages. Since SVG graphics are defined
in XML markup, the contents can easily be scanned and indexed. This gives SVG the
potential to be significantly more accessible than other graphics formats.

As mentioned, SVG markup can produce raster graphics just as canvas elements
can. It can also produce vector graphics, which are graphics defined by mathematical
functions involving points, lines, and curves. The primary difference between raster
graphics and vector graphics is that vector graphics scale better than raster graphics.
SVG-defined vector graphics are therefore a great choice for mobile applications
because they will remain crisp at any resolution and size.

As with WebGL, SVG is a large standard, and fully covering it is beyond the scope
of this text.

Summary

http://www.w3.org/TR/SVG11/

In this chapter, I explored some of the JavaScript APIs that aren’t a part of the HTML5
standard but are often used in conjunction with HTML5 features. Many of them have
exciting mobile uses as well.

The Geolocation API gives your JavaScript applications access to
mobile devices’ geolocation features. You can use this API to write
exciting new mobile apps that are location aware. I also covered
important privacy considerations when using geolocation.

Animation Timing provides tools for making smooth animations by
giving new timers that are directly related to the painting of the
browser window.

The Selectors API provides a way to easily access DOM elements
using CSS selectors.

The Device Orientation API gives your JavaScript applications
access to the orientation features of mobile devices. You can use
this API to create applications that respond to movements of the
hosting mobile device.

Finally, I briefly touched upon two new and exciting technologies,
WebGL and SVG.

Using these APIs with HTML5 features will enable you to build exciting and
dynamic applications on a wide range of devices.

In Chapter 6 you’ll dive into practical development with HTML5, including
building an entire HTML5 mobile game from scratch.

CHAPTER 6

Practical HTML5

Now that I have covered HTML5 and its related technologies, it’s time for you to build
something with them. This chapter will focus on working with HTML5. It will cover
issues of browser compatibility, including feature detection, polyfills and shims, and
libraries designed to work with HTML5. Last, you will work through a full HTML5
project, from start to finish.

I will begin by defining the requirements for the project, work out how best to
implement it, and then break down the implementation method by method.

Browser Support
The biggest barrier to using HTML5 is browser support. If you’re working on a project
that has to support a lot of older browsers, you will rapidly run into lack of support in
your major browsers. This is particularly a problem for desktop browsers; Internet
Explorer didn’t even support the basic semantic tags of HTML5 until version 9. Mobile
browsers have quite good implementation of HTML5 features because they tend to
come from newer code bases. However, even mobile browsers have support issues.
For example, many phones running the Android operating system earlier than version 4
will have browsers that don’t support several modern features.

How your application handles browser support is an important decision. You could
decide to support only the latest version of every browser. This would guarantee that
your application would have access to the widest range of HTML5 features, but might
shut out users who are stuck on older browsers or operating systems.

Far more common is the requirement that your application support browser versions
that go back a few revisions at least. This means your users will be trying to use your
application in browsers that might not support the HTML5 features you need. In such a
situation you will have to choose how your application should behave, but the initial

choice will be based on detecting whether or not the feature is supported. Using scripts
to determine if a given feature is supported is called “feature detection,” and you can
easily test most HTML5 features.

A Crash Course in Feature Detection
Feature detection is an important tool for HTML developers that allows you to
customize your application based on what the current browser is capable of doing.
There are a variety of feature detection techniques based on how the feature in question
is implemented—for example, as a property or method on an existing object or as a new
element type.

Detecting JavaScript Properties and Methods
Many of the new HTML5 JavaScript APIs are implemented as new properties or
methods on existing objects such as window, document, or navigator. If you try
and access these features in browsers that don’t support them, the JavaScript engine
will produce an error and your script will come to a grinding halt, as demonstrated in
Listing 6-1.

Listing 6-1. Invoking a Method That Doesn’t Exist

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Attempt to invoke a fake method foo() on the window
object
window.foo()
 </script>
 </body>
</html>

When you run this example, it will produce an error, which you can see if you have
the browser’s JavaScript console open. If this were in the middle of a larger script, it

would bring the entire script to a halt, which is a pretty catastrophic result.
When you attempt to access a property that doesn’t exist, the result is a little more

subtle. Simply reading a nonexistent property will return the value of undefined but
will not actually crash the script, as shown in Listing 6-2.

Listing 6-2. Accessing a Property That Doesn’t Exist

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Attempt to access a fake property bar on the window
object
alert(window.bar);
 </script>
 </body>
</html>

If you run this script it will work perfectly, and the alert pop-up will contain the text
“undefined.” The script will not throw an error and will continue to run. In JavaScript,
however, undefined is a specific value and its own data type, so if you attempt to
manipulate it further (as you would if you were accessing a real property), the results
can be surprising, as demonstrated in Listing 6-3.

Listing 6-3. What Exactly Is undefined?

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Compare undefined with basic data types
alert(window.bar + 5);
alert(window.bar + ’ is its own data type’);

alert(window.bar == true);
alert(window.bar == false);
if (window.bar) {
 alert(’undefined is equal to true’);
}
if (!window.bar) {
 alert(’undefined is equal to false’);
}
if (window.bar == null) {
 alert(’undefined and null are equal’);
}
if (!(window.bar === null)) {
 alert(’undefined and null are not strictly equal’);
}
 </script>
 </body>
</html>

When you run this script you’ll see that undefined doesn’t play well with
numbers; even a simple addition operation produces the value NaN (for “Not a
Number”). And although undefined doesn’t exist it has a string value of “undefined.”
And while undefined is not equal to either true or false, it evaluates as false
for purposes of flow control. Finally, you can test how undefined and null equate
to each other using both the type-converting or “weak” equality operator (==) and the
strict equality operator (===). The weak equality operator automatically resolves type
differences between the operands, while the strict equality operator does not. In the case
of undefined and null, the two values are equal to one another when using the
weak operator, but since they have different fundamental data types they fail to pass the
strict equality test.

 Tip undefined vs. null: It’s important to remember that while these behaviors
may be counterintuitive, they are in fact well defined by the ECMAScript Standard and
are actual features of the language. Just remember that undefined as a value is meant
to indicate any property that has not been assigned a value, while null is meant to
indicate an intentional absence of value.

To fully explain these behaviors, I’d have to dive into a discussion of JavaScript
data types and how the language resolves data type differences for the weak equality
operator ==, which is a bit beyond the scope of this chapter. Regardless, Listing 6-3
does demonstrate a way to detect the presence of a property on a JavaScript object with

predictable results. As shown in Listing 6-4, this method also works for detecting
methods, and doesn’t throw an error.

Listing 6-4. Detecting Properties and Methods on JavaScript Objects

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// To check for a method foo() on the window object, check
to see if it is
// defined
if (window.foo) {
 alert(’Method foo() is available’);
} else {
 alert(’Method foo() is not available’);
}

// To check for a property bar on the window object use
the same test.
if (window.bar) {
 alert(’Property bar is available’);
} else {
 alert(’Property bar is not available’);
}
 </script>
 </body>
</html>

When you run Listing 6-4 it will show that neither window.foo() nor
window.bar are available, and the script will throw no errors. It’s easy to use this
method to detect real HTML5 features, as shown in Listing 6-5.

Listing 6-5. Detecting HTML5 JavaScript APIs

<!DOCTYPE html>
<html>

 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
if (window.postMessage) {
 alert(’The postMessage feature is available on this
browser!’);
} else {
 alert(’The postMessage feature is not available on this
browser’);
}

if (window.localStorage) {
 alert(’The localStorage feature is available on this
browser!’);
} else {
 alert(’The localStorage feature is not available on this
browser’);
}
 </script>
 </body>
</html>

When you run this example you will find out whether or not the postMessage and
localStorage features are available on your browser.

This same method works to detect the new HTML5 event interfaces, such as the new
device motion and orientation events. Instead of checking for the presence of the event
handler (e.g., ondevicemotion) directly, check to see if the event interface is
present (e.g., window.DeviceMotionEvent as shown in Listing 6-6).

Listing 6-6. Detecting Support for Event Interfaces

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>

if (window.DeviceMotionEvent) {
 alert(’This browser supports the device motion API!’);
} else {
 alert(’This browser does not support the device motion
API.’);
}
 </script>
 </body>
</html>

Detecting Support for New HTML5 Elements
There are two main ways to detect support for the new elements:

Create an instance of the element and then test the result for
expected properties and methods. If the browser does not know
how to implement the element, then the expected properties will be
undefined. This test is useful for elements like canvas and
video, which implement their own unique properties and methods.

Create an instance of the element and then test the interface it
implements. If the browser does not know how to implement the
element, it will implement the HTMLUnknownElement interface
(see hereafter for details). This test is useful for elements that do
not implement unique properties and methods, such as structural
elements.

Listing 6-7 demonstrates the first method.

Listing 6-7. Detecting Support for the Canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>

// Test for canvas support.

var testCanvas = document.createElement(’canvas’);
if (testCanvas.getContext) {
 alert(’This browser supports the canvas element!’);
} else {
 alert(’This browser does not support the canvas
element.’);
}

// We are done with the test element, so delete it.
testCanvas = null;

 </script>
 </body>
</html>

This example creates a canvas element and then tests for the presence of the
getContext method. If the browser knows how to implement the canvas element
properly, the method will be present, otherwise it will be undefined.

 Tip Creating elements for testing without attaching them to the DOM is a fairly safe
thing to do. These elements exist in memory (and thus take up physical memory space)
but are not part of the DOM and will not affect the rest of your document. Because they
take up memory, it’s always a good idea to remove them when they are no longer
needed by setting their reference to null.

Detecting expected properties and methods only works for elements that implement
properties or methods that are unique outside of basic element properties and methods.
What about elements like article or aside that don’t implement unique properties
or methods? The answer lies in the interface hierarchy defined by the HTML standard.

The HTML standard defines a base interface called HTMLElement with a set of
properties and methods common to all HTML elements: title, lang, focus, blur,
and so on. The standard also defines a set of child interfaces that inherit from it, such as
HTMLDivElement, HTMLTitleElement, and the like. Most supported elements
inherit from these child interfaces and so share the base properties and methods of the
HTMLElement interface. The standard also defines a child interface for unsupported
elements called HTMLUnknownElement. You can create any arbitrary element using
document.createElement; if the element is not supported it will inherit from the
HTMLUnknownElement interface.

Determining which interface a particular element implements is a simple matter of
checking the element’s toString method. When you call that method on an element it

will output the name of the interface that it implements, as Listing 6-8 demonstrates.

Listing 6-8. Determining the Interface That an HTML Element Implements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>

// Create a div.
var myDiv = document.createElement(’div’);
alert(myDiv.toString());

// Create a fake element.
var myFake = document.createElement(’itsafake’);
alert(myFake.toString());

// Delete elements now that they are no longer needed.
myDiv = myFake = null;
 </script>
 </body>
</html>

This example creates two elements, a div and a fake element, and then calls each
element’s toString method. As you can see, the itsafake element implements the
HTMLUnknownElement interface. This gives you an easy test for unsupported
elements, as shown in in Listing 6-9.

Listing 6-9. Testing for Supported Elements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>

// Test for support for the article element.
var myArticle = document.createElement(’article’);
if (myArticle.toString().indexOf(’HTMLUnknownElement’) > -
1) {
 alert (’This browser does not support the article
element.’);
} else {
 alert(’This browser supports the article element.’);
}

// Create a fake element and test for support.
var myFake = document.createElement(’itsafake’);
if (myFake.toString().indexOf(’HTMLUnknownElement’) > -1)
{
 alert(’This browser does not support the itsafake
element’);
} else {
 alert(’This browser supports the itsafake element’);
}

myArticle = myFake = null;
 </script>
 </body>
</html>

In this example you test for support for the article element as well as for the
itsafake element by checking for the presence of the substring
’HTMLUnknownElement’ within the value returned by each element’s toString
method.

Detecting Support for New Element Properties
HTML5 also defines a whole new set of properties that can be applied to elements,
such as placeholder or draggable. Detecting support for these properties is
simple: just create an element and set the desired property, then test to see if the
property has maintained its value. When you set the value, be sure to set it to the proper
type; some properties (such as autocomplete and placeholder) will expect
strings as values, and others (such as autofocus and draggable) will require
boolean values. If you set the incorrect type in the test, it will produce a false negative.
Listing 6-10 demonstrates using this technique to test for support for the

placeholder attribute on input elements.

Listing 6-10. Testing for Attribute Support

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>

// Test for support for the new placeholder attribute on
input elements.
var testPlaceholderText = ’Test placeholder text’;
var testInput = document.createElement(’input’);
testInput.setAttribute(’placeholder’,
testPlaceholderText);
if (testInput.placeholder === testPlaceholderText) {
 alert (’This browser supports the placeholder attribute
on input elements’);
} else {
 alert (’This browser does not support the placeholder
attribute on input elements’);
}

// To prove the method works, test for an attribute we
know doesn’t exist.
testInput.setAttribute(’fakeattr’, testPlaceholderText);
if (testInput.fakeattr === testPlaceholderText) {
 alert (’This browser supports the fakeattr attribute on
input elements’);
} else {
 alert (’This browser does not support the fakeattr
attribute on input elements’);
}

// We are done with the test element, so delete it.
testInput = null;

 </script>

 </body>
</html>

This example also includes a demonstration that it will fail in the case of an
unsupported attribute (in this case you just make up a fake attribute and test for it).

Clearly this technique requires the target object to implement a setAttribute
method. As a result it cannot be used to detect features on the window or navigator
elements, which do not have a setAttribute method.

Building a Feature Detection Script
Now that you know how to test for various HTML5 features, you can build a single
script that tests for everything. Start by creating a constructor function that, when called,
will run the feature detection tests and return an object that contains all of the results.
Each result will be a named property on the object set to either true or false
depending on the support for that feature. The object will also have three convenience
methods:

getTests: This method will return an alphabetized array of all of
the features that were tested.

getTestResults: This method will return an array consisting
of all of the results for all of the features that were tested. A single
result will consist of an object with a feature property set to the
name of the feature and an isSupported property that will be set
to true or false depending on whether or not the feature is
supported.

getFailedTestResults: This method will return an array
consisting of all of the results for all of the features that failed their
tests and are not supported in the current browser.

Listing 6-11 gives the full listing of the detection script.

Listing 6-11. HTML5 Feature Detection Script

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 <style>

table {
 font-family: verdana,arial,sans-serif;
 color: #333;
 border-width: 1px;
 border-color: #666;
 border-collapse: collapse;
}
th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666;
 background-color: #dedede;
}
td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666;
 background-color: #fff;
}

 </style>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <table id="supported">
 <tr><th>Feature</th><th>Support</th></tr>
 </table>
 <script>

/**
 * Detects support for various HTML5 features.
 * @constructor
 * @returns {Object} An object with properties for each
feature, each
 * set to true or false depending on support.
 */
function DetectHTML5Support() {
 var returnVal = {};

 // Test for HTML5 APIs on the window object.

 var apisToTest = [’EventSource’, ’postMessage’,
’sessionStorage’,
 ’localStorage’, ’Worker’, ’requestAnimationFrame’,
 ’cancelAnimationFrame’, ’DeviceMotionEvent’,
’DeviceOrientationEvent’];
 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (window[currApi] != undefined);
 }

 // Test for HTML5 APIs on the navigator object.
 var apisToTest = [’geolocation’];
 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (navigator[currApi] !=
undefined);
 }

 // Test for HTML5 APIs on the document object.
 var apisToTest = [’querySelector’, ’querySelectorAll’];
 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (document[currApi] != undefined);
 }

 // Test for suport for the new HTML5 elements.
 var unsupported = ’HTMLUnknownElement’;
 var elementsToTest = [’article’, ’aside’, ’nav’,
’footer’, ’header’,
 ’section’, ’figure’, ’figcaption’, ’main’, ’bdi’,
’data’, ’mark’,
 ’ruby’, ’rp’, ’rt’, ’time’, ’wbr’, ’dialog’,
’details’, ’summary’,
 ’datalist’, ’meter’, ’output’, ’progress’, ’audio’,
’canvas’, ’video’];
 for (i = 0; i < elementsToTest.length; i++) {
 var currItem = elementsToTest[i];
 var testEl = document.createElement(currItem);
 returnVal[currItem]
= (testEl.toString().indexOf(unsupported) == -1);
 testEl = null;
 }

 // Test for support for new input properties that are
booleans.
 var propsToTest = [’autofocus’, ’draggable’];
 var inputEl = document.createElement(’input’);
 // For variety we’ll use Array.forEach to run these
tests instead of an
 // explicit for loop.
 propsToTest.forEach(function(currProp) {
 var testValue = true;
 inputEl.setAttribute(currProp, testValue);
 returnVal[currProp] = (inputEl[currProp] ===
testValue);
 }, this);

 // Test for support for new input properties that are
strings.
 propsToTest = [’autocomplete’, ’placeholder’];
 propsToTest.forEach(function(currProp) {
 var testValue = ’testval’;
 inputEl.setAttribute(currProp, testValue);
 returnVal[currProp] = (inputEl[currProp] ===
testValue);
 }, this);
 inputEl = null;

 /**
 * Returns a sorted array of all features that were
tested for.
 * @returns {Array.<string>}
 */
 returnVal.getTests = function() {
 // Get all of the properties and methods we’ve added
to returnVal and
 // sort them.
 var allPropsAndMethods = Object.keys(this).sort();

 // This list will contain all the properties and
methods, but we only want
 // properties, so filter out the methods.
 var allTests = [];
 allPropsAndMethods.forEach(function(currItem) {
 if (typeof this[currItem] != ’function’) {

 allTests.push(currItem);
 }
 }, this);

 return allTests;
 };

 /**
 * Returns an array consisting of all test results. Each
result is an object
 * with the feature property set to the name of the test
and the isSupported
 * property set to true or false, depending on the
support for that feature.
 * @returns {Array.<Object>}
 */
 returnVal.getTestResults = function() {
 var tests = this.getTests();
 var allResults = [];
 tests.forEach(function(currTest) {
 var currResult = {
 feature: currTest,
 isSupported: this[currTest]
 };
 allResults.push(currResult);
 }, this);
 return allResults;
 };

 /**
 * Returns an array of test results for all failed
tests. Each result is an
 * object as described in getResults.
 * @returns {Array.<Object>}
 */
 returnVal.getFailedTestResults = function() {
 var tests = this.getTests();
 var failures = [];
 tests.forEach(function(currTest) {
 if (!this[currTest]) {
 var currResult = {
 feature: currTest,

 isSupported: this[currTest]
 };
 failures.push(currResult);
 }
 }, this);
 return failures;
 };

 // Return the object with all the results.
 return returnVal;
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

// Fill the table with support information.
var supportTable = document.getElementById(’supported’);
var allResults = supportedFeatures.getFailedTestResults();
allResults.forEach(function (currTest) {
 var newRow = document.createElement(’tr’);
 var featureCell = document.createElement(’td’);
 var supportCell = document.createElement(’td’);
 featureCell.innerHTML = currTest.feature;
 supportCell.innerHTML = currTest.isSupported;
 newRow.appendChild(featureCell);
 newRow.appendChild(supportCell);
 supportTable.appendChild(newRow);
});

 </script>
 </body>
</html>

The script groups together similar tests to make it easier to add or remove tests as
fits your needs. In each case you define a set of things to test as an array of simple
strings that are the names of the feature to test: the name of the API, the name of the
element, or the name of the property. Then each section loops through the arrays and
applies the appropriate test and records the result. Note that throughout these tests you
are making use of the fact that in JavaScript you can access properties either by dot
notation (Object.property) or by bracket notation (Object[’property’]),
as explained in Chapter 2.

The script demonstrates the detection process by calling the constructor to run the

tests and get a new results object, and then uses the getFailedTestResults
method to fetch a list of unsupported features and builds a table to show them. (You
could easily alter this to use the getTestResults method instead to see all the
results.) If you run this in different browsers you’ll see variations in what isn’t
supported, especially if you have access to older versions of browsers . . . or Internet
Explorer, as shown in Figure 6-1.

Figure 6-1. The results of the feature detection script in Chrome, Firefox, and Internet Explorer

As you can see, support for some features is still missing even in modern browsers.
It’s particularly sad that Firefox and Internet Explorer do not support the dialog,
summary, or details elements; that Firefox doesn’t support the autocomplete
property; and that Internet Explorer doesn’t support server-sent events.

Working with Broken or Missing HTML5
Implementations
This brings us neatly to the next question: now that you can detect what HTML5 features
are supported, what do you do with that information? You want to use server-sent

events, but Internet Explorer doesn’t support them. You want to use autocomplete, but
Firefox doesn’t know how to do that. Or a significant portion of your users are stuck on
older systems so you need to support a broad range of legacy browsers.

The bad news is there is no “one size fits all” solution to the problem of broken or
missing implementations. The good news is that many HTML5 features can be mimicked
using JavaScript. A script that reproduces a missing feature in this way is called a shim.

Consider for example the Web Storage feature (see the “Web Storage” section in
Chapter 3). Older browsers will not have the localStorage or
sessionStorage methods available, but you can still store information on the client
using HTTP Cookies. With a bit of work you can implement localStorage and
sessionStorage in older browsers by using HTML Cookies as the storage
mechanism. A solution like this would enable you to use Web Storage in just about any
browser.

Unfortunately, not everything can be completely reproduced with a shim. Features
that require access to underlying hardware, such as the Device Orientation API (see the
“Device Orientation” section in Chapter 5), which requires access to the host device’s
accelerometer and gyroscope, can’t be reproduced with JavaScript.

Returning to the question posed at the beginning of the section, it’s clear that if you
know what isn’t supported, you can load shim scripts to reproduce those features as
needed. To do this, you’ll have to dynamically load JavaScript files on demand. The
technique for this is fairly simple: just create a script element using
document.createElement and then set the source attribute to the URL of the
desired script. When the script element is appended to the DOM, the browser will load
and execute the script. Listing 6-12 demonstrates using this technique along with the
feature detection script.

Listing 6-12. Dynamically Loading Shims Based on Feature Support

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically load a script.
 * @param {string} srcUrl The URL of the script file to
load.

 */
function loadScript(srcUrl) {
 var newScript = document.createElement(script);
 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim.
 loadScript(’../js-lib/webstorage-shim.js’);
}
 </script>
 </body>
</html>

This example saves the feature detection script as a separate file and loads it on its
own. Then it creates a simple function that will dynamically load scripts on demand.
Finally, it detects support for the Web Storage feature, and if it is not present it loads a
hypothetical shim script that reproduces the Web Storage methods.

Unfortunately, this simple technique doesn’t take into account two important issues.
First, the technique doesn’t allow for an error while the script is loading. What if the
script file isn’t found? What if the application is a mobile application and the user drops
off the network? Your script needs to account for these situations. Fortunately, when a
script element encounters an error it publishes an error event for which you can
register an event handler.

The second issue this technique doesn’t account for is that the shim will take time to
load. It may only be a few seconds, but you don’t want to continue running your script
until it has loaded and the methods are available. Otherwise you might access the
feature before it has been shimmed, which could result in a serious error in your
application. As with error conditions, when a script element loads it publishes an event
that you can listen for. Unfortunately, the event type varies depending on the browser.
For Chrome, Firefox, Opera, and Safari, the event is a load event, and you can register
an event handler for it.

For Internet Explorer, however, the event is a readystatechange event. When
the readystatechange event fires, the value of the script element’s readyState
property changes and the new value indicates what stage of loading the script is in:

uninitiated: This is the default state; the script element is

doing nothing.

loading: The script has begun downloading to the browser, but
is not yet done.

loaded: The script has completely downloaded to the browser.

interactive: The script has completely downloaded but isn’t
ready to be used.

complete: The script is ready to be used.

To complicate matters, Internet Explorer doesn’t always dispatch
readystatechange events for each stage of the loading process. You should be
most interested in the loaded and complete states, and Internet Explorer might
publish only one of these or both of them, so your readystatechange event handler
will need to check for both of them, and if one of them occurs the handler will need to
do its job and then unregister itself so that it won’t be called again if the browser fires
another readystatechange event.

Listing 6-13 shows a new loadScript method that provides a way to register
callbacks for both success and error during the loading process.

Listing 6-13. Waiting for a Shim to Load Before Continuing

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically loads a script and invokes an optional
callback.
 * @param {string} srcUrl The URL of the script file to
load.
 * @param {function=} onLoadCallback An optional function
to call when the
 * script is loaded.
 * @param {function=} onErrorCallback An optional function
to call if the script
 * fails to load.

 */
function loadScript(srcUrl, onLoadCallback,
onErrorCallback) {

 // Create a script tag.
 var newScript = document.createElement(’script’);

 // Apply the load callback, if one was provided.
 if (onLoadCallback) {
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == ’loaded’ ||
 newScript.readyState == ’complete’) {
 newScript.onreadystatechange = null;
 onLoadCallback.call();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = onLoadCallback;
 }
 }

 // Apply the error callback, if one was provided.
 if (onErrorCallback) {
 newScript.onerror = onErrorCallback;
 }

 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim.
 loadScript(’../js-lib/webstorage-shim.js’,
 initApplication,
 handleScriptLoadError);
} else {
 // Web Storage was supported, so continue with the

application.
 initApplication();
}

/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log(’Script failed to load.’);
 // Etc.
}

/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log(’Application continues...’);
 // Etc.
}
 </script>
 </body>
</html>

The new loadScript function now takes both onLoadCallback and
onErrorCallback parameters. Call the onLoadCallback function when the
script is done loading, and the onErrorCallback function if the script loading
process fails. Both of these parameters are optional, but most likely you will need them.
The script checks for Web Storage support as before, and if present it simply continues.
If not, it loads the shim and then continues when the load is complete.

This is great if you only need one HTML5 feature, but your project will probably
need to verify support for multiple features. To make this easier, you can create a
simple registry that contains the names of all of the features you need, and the paths to
shims that can be loaded if they’re not supported:

Object featureRegistryEntry {
 string ’featureName’,
 string ’shim’
}

Array featureRegistry[featureRegistryEntry]

This registry then becomes a single place in your code to manage all of the features
you need, making it easier to add or remove features as your application changes and

grows.
However, this means you will be checking multiple features, and could be loading

multiple shims. Each shim could take a different amount of time to load, and you
wouldn’t want your script to continue until all of the shims are done loading. And to
complicate matters, one of the scripts might fail to load for some reason. To keep track
of what is loading and what has succeeded and failed, you will need to build a loading
queue. This queue can be a simple data structure that has a simple success condition
boolean (set to true by default, but as soon as a script fails to load you will set it to
false) and an array that consists of entries for each script currently loading:

Object loadQueue {
 boolean ’noErrorsOccurred’,
 Array.<boolean> ’queue’
}

Each time a script starts loading, it adds an entry to loadQueue.queue. The
actual entry itself doesn’t matter, because we only care when all scripts are done
loading, not when a particular script is done or the order in which they complete. In this
case an entry into the queue will be a simple true value. When a script is done
loading, you will remove an entry from the queue. If the queue is empty at this point, you
know all scripts are done.

When an individual script element load process finishes, it will invoke either the
success callback or the failed callback. In the case of a failed load, set the
loadQueue.noErrorsOccurred value to false. That way, when the queue is
empty, you’ll know which final callback to invoke.

 Tip This simple load queue data structure could be reworked as a formal class with
methods for adding and removing items as well as setting the error state, similar to what
you did with the DrawCycle class in the “Animation Timing” section of Chapter 3.

Listing 6-14 demonstrates these techniques.

Listing 6-14. Loading Multiple Shims and Tracking Process Using a Queue

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>

 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
// Create a registry of HTML features that we need and
shims to apply if they
// are not present. The registry will be an array of
objects; each object will
// consist of a feature name and a path to a shim to apply
if that feature is
// not supported.
var featureRegistry = [
 {
 ’featureName’ : ’localStorage’,
 ’shim’ : ’../js-lib/webstorage-shim.js’
 },
 {
 ’featureName’ : ’requestAnimationFrame’,
 ’shim’ : ’../js-lib/animationframe-shim.js’
 }
];

/**
 * Dynamically loads a script and invokes an optional
callback.
 * @param {string} srcUrl The URL of the script file to
load.
 * @param {function=} onLoadCallback An optional function
to call when the
 * script is loaded.
 * @param {function=} onErrorCallback An optional function
to call if the script
 * fails to load.
 */
function loadScript(srcUrl, onLoadCallback,
onErrorCallback) {

 // Create a script tag.
 var newScript = document.createElement(’script’);

 // Apply the load callback, if one was provided.
 if (onLoadCallback) {
 if (newScript.readyState) {

 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == ’loaded’ ||
 newScript.readyState == ’complete’) {
 newScript.onreadystatechange = null;
 onLoadCallback.call();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = onLoadCallback;
 }
 }

 // Apply the error callback, if one was provided.
 if (onErrorCallback) {
 newScript.onerror = onErrorCallback;
 }

 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
}

/**
 * Verifies all features in the registry and applies shims
as needed.
 * @param {function=} onLoadCallback An optional callback
function. If no shims
 * were loaded this callback will be invoked
immediately, otherwise it will
 * be invoked after all shims have successfully
loaded.
 * @param {function=} onErrorCallback An optional callback
function which will
 * be invoked if even one of the shim scripts fails to
load.
 */
function verifyAllFeatures(onLoadCallback,
onErrorCallback) {

 // Create loading queue. This queue consists of an error
condition boolean
 // and a simple array of entries.

 window.loadQueue = {
 ’noErrorsOccurred’ : true,
 ’queue’ : []
 };

 // Flag for all feature support.
 var allFeaturesSupported = true;

 featureRegistry.forEach(function(currFeature) {
 if (!supportedFeatures[currFeature.featureName]) {
 // A feature is not supported.
 allFeaturesSupported = false;

 // Add an entry to the loading queue.
 window.loadQueue.queue.push(true);

 /**
 * Callback function that is invoked when the shim
script is loaded.
 * Removes an entry from the loading queue and if the
queue is then empty
 * invokes one of the callbacks. If the queue is in
an error condition,
 * the error callback is invoked. Otherwise, the load
callback is invoked.
 */
 var handleThisLoad = function() {
 // Remove entry from the loading queue.
 window.loadQueue.pop();

 // If the queue is empty, all scripts are loaded
and we can invoke the
 // callback.
 if (window.loadQueue.queue.length === 0) {
 // Check for error condition.
 if (window.loadQueue.noErrorsOccurred) {
 // Everything loaded, so call the load callback,
if one was
 // provided.
 if (onLoadCallback) {
 onLoadCallback.call();
 }
 } else {

 // At least one of the scripts failed to load,
so call the error
 // callback, if one was provided.
 if (onErrorCallback) {
 onErrorCallback.call();
 }
 }
 }
 };

 /**
 * Callback function that is invoked when the shim
script fails to load.
 * Places the load queue in an error state and
removes an entry. If the
 * queue is then empty it invokes the final error
callback.
 */
 var handleThisError = function() {
 // Immediately put the load queue into an error
condition.
 window.loadQueue.noErrorsOccurred = false;

 // Remove entry from the loading queue.
 window.loadQueue.pop();

 // If the queue is empty, we need to invoke the
error callback, if one
 // was provided.
 if (window.loadQueue.queue.length === 0 &&
onErrorCallback) {
 onErrorCallback.call();
 }
 };

 // Call the loadScript function with our custom
handlers.
 loadScript(currFeature.shim, handleThisLoad,
handleThisError);
 }
 }, this);
 if (allFeaturesSupported && onLoadCallback) {
 onLoadCallback.call();

 }
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
verifyAllFeatures(initApplication, handleScriptLoadError);

/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log(’A script failed to load.’);
 // Etc.
}

/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log(’Application continues...’);
 // Etc.
}
 </script>
 </body>
</html>

In this example, you start by creating the registry of tests to check and shims to load.
You’ve also added a verifyAllFeatures function that performs the following
operations:

1. It checks each feature for support.

2. For each unsupported feature it does the following:

a. It adds an entry to the loading queue.

b. It creates a load callback function for this script that
removes an entry from the loading queue and then invokes
the final callback if the queue is then empty. If the queue
is in an error state, the final callback that is invoked is the
error callback, otherwise it is the load callback.

c. It creates an error callback function for this script that
immediately sets the queue in an error condition. It then

removes an entry from the queue and, if the queue is then
empty, it invokes the final error callback.

d. Finally, it calls the loadScript function with the
newly created callbacks.

3. If all features were supported, it calls the initApplication
function to continue the application.

When run, this script will verify all of the features specified in the registry and
invoke the appropriate callbacks depending on the results.

This technique has a major disadvantage: for each required shim, it will generate a
separate script tag and thus HTTP request. If you have several shims loading, this alone
can cause a noticeable delay in your application. If any of the shims are resource
intensive, that will slow it further. To complicate this problem, you will generally only
need shims for older browsers, which usually will only be running on older hardware
with older operating systems, so they will already be resource constrained. This is
particularly a problem for mobile applications, where system resources are quite
limited.

If you need the shims, there’s not much you can do about it and you should load them
so your application can work. One way to help mitigate the problem is to make sure you
provide feedback in your user interface that loading is happening, so users know that the
application hasn’t just frozen. Another way to mitigate the expense of loading shims is
to spread it out. In all of these examples so far you’ve been testing all features at once.
However, one of the benefits of using a dynamic technique like this is you can test for
features as you need them. After all, if the user never goes into the part of the
application that needs a particular feature, there’s no need to load the shim for that
feature. This is especially important if the shim is a large file or otherwise resource
intensive.

You can easily add a new function that checks a single feature in the registry, as
shown in Listing 6-15.

Listing 6-15. A Function for Checking a Single Feature

/**
 * Checks a single feature and applies a shim if needed.
 * @param {string} featureName The name of the feature to
check.
 * @param {function=} onLoadCallback An optional function
to call when the shim
 * is loaded.

 * @param {function=} onErrorCallback An optional function
to call if the shim
 * fails to load.
 * @return {boolean} True if the feature was supported
natively, or false if
 * the feature was not supported and a shim was
applied.
 */
function verifyFeature(featureName, onLoadCallback,
onErrorCallback) {
 var returnVal = true;
 featureRegistry.forEach(function(currFeature) {
 if ((currFeature.featureName === featureName) &&
 !supportedFeatures[currFeature.featureName]) {
 loadScript(currFeature.shim, onLoadCallback,
onErrorCallback);
 returnVal = false;
 }
 });
 return returnVal;
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

// Verify the Animation Timing feature.
if (verifyAllFeatures(’requestAnimationFrame’,
initApplication,
 handleScriptLoadError)) {
 initApplication();
}

/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log(’A script failed to load.’);
 // Etc.
}

/**
 * Hypothetical function for initializing the application.
 */

function initApplication() {
 console.log(’Application continues...’);
 // Etc.
}

This function runs through the featureRegistry until it finds the entry
corresponding to the desired feature. It then checks for support and applies a shim if
needed. For this function, if no shim was needed it returns true rather than invoking
the callback itself. This gives more flexibility in how the callback is invoked, allowing
you to call different functions depending on feature support.

Online Resources for Browser Support, Feature
Detection, and Shims
Now that you can detect features and load shims as needed, you need to have shims to
load. Building shims for HTML5 features ranges from the simple (structural element
shims) to the moderate (implementing the Web Storage feature on top of HTTP Cookies)
to the forbiddingly complex (implementing Web Sockets). The good news is that shims
have already been written for most HTML5 features.

Can I Use
The Can I Use database, located at www.caniuse.com, is probably the most
important resource for researching browser support and shims for not only HTML5
features, but also CSS3 and advanced JavaScript features as well. The site has up-to-
date tables of browser support indicating the level of support of the feature in question,
including how far back the browser supported it. Also included are global support
percentages, various ways of visualizing support data, links to relevant specifications,
articles, shims, and a brilliant custom-coded test suite.

Modernizr
Modernizr, located at www.modernizr.com, is a suite of feature detection scripts
that detect support for HTML5 and CSS3 features. Modernizr also implements dynamic
loading of shims using YepNope (www.yepnopejs.com); however, they
recommend dynamically combining required shims on the server into a single file, thus
saving HTTP responses (which are very expensive in terms of application efficiency).
Modernizr also has a page devoted to shims for HTML5, CSS5, and JavaScript

http://www.caniuse.com
http://www.modernizr.com
http://www.yepnopejs.com

functions on their wiki, located at
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-
Browser-Polyfills.

HTML5 Rocks
The HTML5 Rocks website, located at www.html5rocks.com, is a great resource
for articles on HTML5, CSS3, and JavaScript features. Articles include tutorials, best
practices, shims, and more.

Webshim
The Webshim library at http://afarkas.github.io/webshim/demos is a
polyfill library that enables several HTML5 features on older browsers.

Example Project: MobiDex, a Mobile
Dexterity Puzzle
Dexterity puzzles are among the oldest puzzles in history. The simplest version of a
dexterity puzzle consists of a small board held flat in the palm of the hand, with a ball
bearing or marble on top. The goal of the puzzle is to guide the ball from one location to
another without letting it fall through holes in the board. Other dexterity puzzles include
mazes and games with multiple balls where the goal is to get the balls to rest in specific
places, either to score points or to complete a picture.

Using HTML5 technologies, specifically the Device Motion and Animation Timing
APIs, you can easily implement a version of a dexterity puzzle on a mobile device. Your
dexterity puzzle, called MobiDex (for Mobile Dexterity), will consist of a square
playing field. Within the playing field you will draw a “ball” that will be animated as
the user tilts their device. You will also draw a set of targets in the playing field as well
as a set of obstacles. The player will have a limited number of chances to collect all of
the targets while avoiding the obstacles. Every time the player runs into an obstacle, it
will cost them one of their chances. If they can collect all of the targets before running
out of “lives” they win the game.

A game like this sounds pretty simple on the surface, but it has significant
complexity once you think about it. One of the biggest difficulties in a project like this is

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://www.html5rocks.com
http://afarkas.github.io/webshim/demos

successfully capturing all of the requirements so you have some idea of the tasks ahead
of you. Since this project is a game it makes sense to approach defining the project from
a user’s point of view. A great tool for defining a user-centered project from the user’s
point of view is a technique called “user stories.” A user story is a simple statement that
encapsulates a single feature as described from the user’s point of view. User stories
are similar to use cases, but are smaller and more compact, and typically define a single
feature as opposed to a workflow. The typical pattern of a user story goes like this:

As a <type of user>, I want <functionality> so that <desired goal>.

The pattern isn’t set in stone and can be modified to be useful for the given project.
For example, in your project there’s only one type of user (the player), so there’s really
no need to keep repeating it in each user story. And occasionally the functionality
specified is its own goal, so there’s no need for the desired goal clause.

 Tip User stories are a technique often employed in Agile software development.

A set of user stories for your game would be as follows:

As a player, I want there to be a well-defined playing field for the
game, so I know what the boundaries are.

I want the game to have a “ball” that responds to the tilting motion
of my device, so that I can play the game.

I expect the “ball” to never leave the confines of the playing field.

I want the game to have a set of targets on the field for me to pick
up so that I can win the game.

I want the targets to disappear from the playing field when I touch
them with the “ball” so that I know how many targets are left.

I want the game to have a set of obstacles on the field so that the
game is challenging.

I want the targets and obstacles to not be on top of one another, so
that I can successfully gather all of the targets without needing to hit
an obstacle.

I want to have a limited number of chances to collect all of the
targets while avoiding the obstacles, so that the game is more
challenging.

I expect to lose one of my chances each time my “ball” collides
with an obstacle.

I want the game to make it clear when I have collided with an
obstacle.

I expect to be able to see how many chances I have left to win the
current game.

I expect the game to tell me if I have won or lost.

I expect to be able to restart the game when it is over, so that I can
play again.

These user stories define a set of features to build: targets, obstacles, a ball, an
indicator for the number of chances remaining, the interactions the player expects, and
so on.

You’ll need the following features:

A UI capable of displaying a playing field, a ball, obstacles,
targets, and the like.

A method for generating random sets of targets and obstacles. The
only difference between a target and an obstacle is the color, so you
should be able to write one set of code to generate both.

A method for moving the ball around on the screen. This will have
to use the Device Orientation API, similar to what we did in Listing
5-7 in Chapter 5. In your case, though, we don’t want the
deviceorientation event to drive the redrawing of the
screen; we want to use requestAnimationFrame from the
Animation Timing API.

A method for determining collisions between the ball and both
targets and obstacles. There’s a couple of ways you could do this;
the easiest is to keep track of the coordinates of each target and
obstacle and compare them to the ball’s coordinates as the game
progresses.

A unified way of indicating coordinates—you can create a simple
class for this and then instantiate it as needed.

A way of initializing and resetting the game so that it can be
replayed.

The Playing Field UI
To start, build the playing field user interface. The first decision you’ll have to make is
the technology to use to implement game’s UI. You could use Canvas, but you don’t
really need to. Your game has a fairly simple interface; all you need to do is display a
playing field and some items on it. You can easily implement what you need using
HTML and CSS. This also has the virtue of being quite fast, which is good because this
game targets mobile devices.

Start by drawing a simple playing field on the screen. Within that field you’ll lay out
the ball, obstacles, targets, and the game over message. Above the field you’ll display
the number of remaining lives. You’ll also add a title above the playing field. The base
markup is shown in Listing 6-16.

Listing 6-16. Markup for MobiDex Playing Field

<h1>MobiDex</h1>
<div id="remaining-balls"></div>
<div id="container-field">
 <div id="game-field"></div>
 <div id="ball"></div>
 <div id="gameover" class="hidden"></div>
</div>

As you can see, there’s a container for the lives, a ball, the game over message
(which can be used both for winning or losing), and a field where the targets and
obstacles will be drawn.

Keep the styling simple for the sake of efficiency. Start with a field that is 200
pixels wide by 200 pixels high. Draw a simple 1-pixel border around the field (so,
according to the CSS box model, the dimensions for the field will actually need to be
202 pixels wide by 202 pixels high). The field will be absolutely positioned on the
screen, which allows you to absolutely position elements inside of it relative to its
coordinate origin.

The “ball” and the targets and obstacles will be div elements. They will all be 10
pixels wide by 10 pixels high for uniformity. The ball will be blue, the targets will be
green, and the obstacles will be red. Make all of them look round by giving them a
border-radius of 50%.

Each time the player runs into an obstacle it will cost them a ball. Their remaining
number of balls will be shown in the div above the playing field.

One of the user stories specified the requirement that the game distinctly let the

player know when they have hit an obstacle. Of course you’ll remove a ball from the
display of remaining balls, but the player will have their eyes on the playing field and
might not notice that. An easy way to let the player know when they’ve collided with an
obstacle is to change the background color of the playing field while the collision is in
progress. That’s easy enough; all it requires is adding a CSS class to the container.

Finally, you’ll provide some styles to the game over message, and have different
background colors for it: one for winning and one for losing.

Listing 6-17 shows the resulting CSS for the entire game.

Listing 6-17. CSS for MobiDex Playing Field

body {
 font-family: arial, helvetica, sans-serif;
}

h1 {
 text-align: center;
}

#remaining-balls {
 height: 10px;
 left: 50px;
 position: absolute;
 top: 109px;
}

#container-field {
 border: 1px solid red;
 height: 202px;
 left: 50px;
 position: absolute;
 top: 120px;
 width: 202px;
}

#game-field {
 height: 202px;
 left: 0px;
 position: absolute;
 top: 0px;
 width: 202px;
}

#ball,
.life {
 background-color: blue;
 height: 10px;
 left: 0px;
 position: absolute;
 top: 0px;
 width: 10px;
}

#gameover {
 border-radius: 5px;
 font-size: 2em;
 font-weight: bold;
 margin-left: 10px;
 margin-right: 10px;
 margin-top: 80px;
 padding: 5px 0;
 position: relative;
 text-align: center;
}

.obstacle,

.target {
 height: 10px;
 position: absolute;
 width: 10px;
}

.obstacle {
 background-color: red;
}

.target {
 background-color: green;
}

#ball,
.life,
.obstacle,
.target {
 border-radius: 50%;

}

.hidden {
 display: none;
}

.winner {
 background-color: rgb(116, 216, 94);
}

.loser {
 background-color: rgb(255, 85, 85);
}

.collision {
 background-color: rgba(215, 44, 44, 0.4);
}

When you render the game field, including sample targets and obstacles, the result
will look like Figure 6-2.

Figure 6-2. A sample rendering of the MobiDex game

Generating Obstacles and Targets
Probably the easiest place to start is to generate the obstacles and targets. From a high
level, you need to randomly generate a set of coordinates for each obstacle and target.
That’s not hard to do, but if you just generate random numbers chances are pretty good
that some of your obstacles and targets will be very close to one another, if not right on
top of one another. That contravenes one of your user stories, which specifies that
targets and obstacles should not be on top of one another. So you’ll need a way of
detecting when a newly generated obstacle or target is colliding with an existing one.
This is the same functionality you’ll need to determine if the ball is colliding with an

obstacle or target, so this code path can serve both purposes.
Since you’re dealing with coordinates, create a simple Coordinate class that you

can use throughout this process, as shown in Listing 6-18.

Listing 6-18. A Simple Coordinate Class

/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @constructor
 */
function Coordinate(xOrd, yOrd) {
 this.x = xOrd;
 this.y = yOrd;
}

This simple class records the x and y values (corresponding to the CSS properties
left and top, respectively). You could just save a reference to the element itself and
get the left and top CSS properties when you need to, but those properties are actually
strings with units on them (e.g., "5px") so you would need to recast them as numbers
in order to compare them with one another as required for collision detection. And
since you’re generating these numbers ourselves, you can store them and have them
handy whenever you need them, no parsing required.

You’ll need a way to generate random numbers between upper and lower
boundaries. Initially you might think any value between 0 and 200 would be viable
since the playing field is 200 × 200. However that doesn’t take into account the width
and height of the element; if you were to place a 10 × 10 div at (200, 200) it would
be outside the playing field. To avoid accidentally playing a target or obstacle outside
of the playing field, limit your random numbers to integers between 10 and 190. Listing
6-19 shows a utility function for this.

Listing 6-19. A Utility Function for Generating Random Integers Between Two Bounds

/**
 * Returns a random integer between the specified minimum
and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random

number.
 * @return {number}
 */
getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
};

To generate a new Coordinate, do something like the following:

var target = new Coordinate(getRandomIntegerBetween(10,
190), getRandomIntegerBetween(10, 190));

You can store the Coordinates in arrays, one for targets and one for obstacles.
That way you can compare new Coordinates to determine if they’re too close to
existing ones.

Comparing Coordinates
To detect collisions, you’ll need a Coordinate to check and an array of
Coordinates to check it against. If the Coordinate is too close to any of the
Coordinates in the array, you can return a collision.

What determines “too close,” though? There’s a few ways you could determine this,
but for the purposes of your simple game you can just check to see if a given ordinate (x
or y) of the target Coordinate is within a defined range of the Coordinate you’re
checking against. The range is defined by a sensitivity value. So given a target
Coordinate (x.t, y.t) and an original Coordinate (x.o, y.o) and a sensitivity s:

(x.o - s) < x.t < (x.o + s)
(y.o - s) < y.t < (y.o + s)

If both inequalities hold true, the target Coordinate is close enough to the
original Coordinate that their associated elements are visually colliding. This is an
approximation, of course, but for such small elements it should work.

Listing 6-20 shows a function that performs this check.

Listing 6-20. Checking for Collisions Between a Target Coordinate and an Array of
Existing Coordinates

/**
 * Check to see if the specified coordinates collide with

an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to check.
 * @param {number} sensitivity The sensitivity for
a collision. If coordinates
 * are within sensitivity distance of a target
coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array of
target coordinates
 * to check against.
 * @return {number} The index of the member of the target
coordinates array
 * that is being hit, or -1 if no collision is
detected.
 */
checkCollision_ = function(coordinate, sensitivity,
arrTargetCoords) {
 // Loop through each target coordinate and compare the
provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {
 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;

 // If the provided x coordinate is within range of the
obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x) &&
 (coordinate.x < (currObstacle.x + sensitivity))) {
 xcoll = true;
 }

 // If the provided y coordinate is within range of the
obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y) &&
 (coordinate.y < (currObstacle.y + sensitivity))) {
 ycoll = true;
 }

 // If there is both an x and a y collision, then

return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
};

This function takes a Coordinate, a sensitivity value, and an array of
Coordinates to check against. It then loops through each Coordinate in the array
and determines if a collision is occurring.

Now that you have a way of checking collisions, you can build a function for
generating an array of Coordinates. Your game will need two arrays of
Coordinates, one for targets and one for obstacles. And you’ll need to check both
arrays when checking for collisions while generating new Coordinates for either
array.

At this point you should start thinking about how you want to encapsulate these
functions and the data you’re going to be generating. It’s easy to create a simple class
constructor that contains the functions you’ve built so far, and adds in the arrays for
targets and obstacles, as shown in Listing 6-21.

Listing 6-21. The Beginnings of the MobiDex Class

/**
 * Creates a new game. Assumes that the required DOM
elements are present.
 * @constructor
 */
function MobiDex() {

 /**
 * Array of obstacle coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrObstacles_ = [];

 /**
 * Array of target coordinates.
 * @type {Array.<Coordinate>}
 * @private

 */
 this.arrTargets_ = [];

 /**
 * The number of obstacles to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfObstacles_ = 10;

 /**
 * The number of targets to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfTargets_ = 10;

 /**
 * Checks to see if the specified coordinates collide
with an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to
check.
 * @param {number} sensitivity The sensitivity for
a collision. If coordinates
 * are within sensitivity distance of a target
coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array
of target coordinates
 * to check against.
 * @return {number} The index of the member of the
target coordinates array
 * that is being hit, or -1 if no collision is
detected.
 * @private
 */
 this.checkCollision_ = function(coordinate, sensitivity,
arrTargetCoords) {
 // Loop through each target coordinate and compare the
provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {

 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;

 // If the provided x coordinate is within range of
the obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x)
&&
 (coordinate.x < (currObstacle.x + sensitivity)))
{
 xcoll = true;
 }

 // If the provided y coordinate is within range of
the obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y)
&&
 (coordinate.y < (currObstacle.y + sensitivity)))
{
 ycoll = true;
 }

 // If there is both an x and a y collision, then
return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
 };

 /**
 * Generates a set of random coordinates and adds them
to the provided array.
 * Tries to avoid duplicating too closely any
previously-generated
 * coordinates.
 * @param {number} numberOfCoords The number of
coordinates to generate.
 * @param {Array} targetArray The array to fill with the
new coordinates.

 * @private
 */
 this.generateCoords_ = function(numberOfCoords,
targetArray) {
 for (var i = 0; i < numberOfCoords; i++) {
 var newCoord = new
Coordinate(this.getRandomIntegerBetween_(10, 190),
 this.getRandomIntegerBetween_(10, 190));
 while (this.checkCollision_(newCoord, 15,
 this.arrObstacles_.concat(this.arrTargets_)) > -
1) {
 newCoord.x = this.getRandomIntegerBetween_(10,
190);
 newCoord.y = this.getRandomIntegerBetween_(10,
190);
 }
 targetArray.push(newCoord);
 }
 };

 /**
 * Returns a random integer between the specified
minimum and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 * @private
 */
 this.getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
 };
};

/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element} element A reference to the DOM element
for these

 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

The new MobiDex class has your getRandomIntegerBetween and
checkCollision methods, as well as arrays for the obstacles and targets. It also
has constants for the number of obstacles and targets that should be generated.

The class also has a new method: generateCoords. This method takes two
parameters: a number (for the number of Coordinates to generate) and a target array
to fill with the Coordinates it generates. The method automatically checks both the
existing target and obstacle arrays for collisions using the checkCollisions
method. If a collision is detected, a new Coordinate is generated and checked for
collision. The process continues until the new Coordinate is not colliding with any
existing Coordinates.

This is enough functionality to actually generate the targets and obstacles and draw
them in the interface. To do that you’ll add a new method to the class,
drawGameField, as shown in Listing 6-22.

Listing 6-22. The drawGameField Method and Associated Properties

/**
 * Reference to the ’gamefield’ DOM element.
 * @type {Element}
 * @private
 */
this.gameField_ = document.getElementById(’game-field’);

/**
 * Initializes the obstacles and targets and draws the UI.
 * @private
 */
this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = ’’;

 // Fill up the obstacle and target arrays with random

coordinates.
 this.generateCoords_(this.numberOfObstacles_,
this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_,
this.arrTargets_);

 // Create a div that can be used as a template for
cloning.
 var templateDiv = document.createElement(’div’);

 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add(’obstacle’);
 newObstacle.style.left = currCoord.x + ’px’;
 newObstacle.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newObstacle);
 }, this);

 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add(’target’);
 newTarget.style.left = currCoord.x + ’px’;
 newTarget.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newTarget);
 }, this);
};

Here you have added two new items to the class. The first is a reference to the game
field DOM element, since you’ll be using that throughout the game. (Because this class
is going to get fairly large, this example, and future examples, will only show what
you’re adding to the class, rather than repeating everything each time. At the end of the
chapter I’ll provide a full, organized listing for study; you can also download the
examples.)

 Tip Your DOM structure is quite simple. Fetching the element reference every time
you needed it wouldn’t necessarily be a performance problem, but the reference isn’t
something that will change, so you might as well fetch the reference and store it for later
use. You’ll use this technique throughout the class.

The second is the drawGameField method, which clears the game field,
generates the arrays of target and obstacle Coordinates, and then draws them on the
game field. You’ve used the technique of creating a template element and cloning it for
each new Coordinate.

 Tip If you are in a situation where you are creating the same kind of element over
and over again, it’s often faster to make a template element like this and clone it rather
than create each element anew. See http://jsperf.com/clonenode-vs-
createelement-performance/32 for various tests and results.

There’s one other thing you need to do in the drawGameField method, and that’s
draw the initial number of balls left. To do that you’ll create a generic function that you
can call at any time to update that part of the UI, since you’ll need it when collisions
with obstacles occur (see Listing 6-23).

Listing 6-23. The updateRemainingBalls Method

/**
 * Reference to the ’remaining-balls’ DOM element.
 * @type {Element}
 * @private
 */
this.remainingBalls_ = document.getElementById(’remaining-
balls’);

/**
 * The number of balls remaining.
 * @type {number}
 * @private
 */
this.balls_ = 3;

/**
 * Updates the number of remaining balls displayed.
 * @private
 */
this.updateRemainingBalls_ = function() {
 // Clear the current lives.
 this.remainingBalls_.innerHTML = ’’;
 // Create a template that we can clone and use multiple

http://jsperf.com/clonenode-vs-createelement-performance/32

times.
 var lifeTemplate = document.createElement(’div’);
 lifeTemplate.classList.add(’life’);
 // Add an element for each life.
 for (var i = 0; i < this.balls_; i++) {
 var currLife = lifeTemplate.cloneNode();
 currLife.style.left = (i * 15) + ’px’;
 this.remainingBalls_.appendChild(currLife);
 }
};

Here you’ve added two new constants: a reference to the remaining-balls
DOM element (again cached for future use) and the total number of balls each game
starts with. You can add a call to this method at the end of the drawGameField
method.

The deviceorientation Event Handler
You will need to use the deviceorientation event for the Device Motion API to
actually detect changes in the orientation of the mobile device and use it to calculate
where to move the ball. The deviceorientation event fires continuously, so for
the sake of efficiency the event handler for it should be as lean as possible. For
example, you don’t want to do any DOM manipulation within the event handler (that
should be done in the draw cycle, which I’ll discuss in the next section).

The event handler should do two things:

it should determine the new coordinates of the ball and store that
information in the class, and

it should check for collisions at the new coordinates and store that
information in the class.

Then the draw cycle can actually update the position of the ball and react to any
collisions that have occurred. This means the event handler is only doing some
arithmetic and storing the results, which is pretty efficient.

I will borrow a little code from Example 5-7 in Chapter 5, for calculating a new
Coordinate based on the Euler Angles published by the deviceorientation
event. Listing 6-24 shows the new methods and their associated properties.

Listing 6-24. The deviceorientation Event Handler

/**
 * The current coordinate of the ’ball’.
 * @type {Coordinate}
 * @private
 */
this.currCoordinate_ = new Coordinate(0, 0);

/**
 * The index of the obstacle that the ball is currently
colliding with.
 * @type {number}
 * @private
 */
this.currentObstacleIndex_ = -1;

/**
 * The index of the target that the ball is currently
colliding with.
 * @type {number}
 * @private
 */
this.currentTargetIndex_ = -1;

/**
 * Gets an ordinate based on a Euler Angle.
 * @param {number} angle The orientation angle that is
inducing the change.
 * @param {number} ord The previous value of the ordinate.
 * @return {number} The new value of the ordinate.
 * @private
 */
this.getOrd_ = function(angle, ord) {
 var delta = Math.round(angle - (angle * 0.3));
 var tempVal = ord + delta;
 if (tempVal > 0) {
 ord = Math.min(192, tempVal);
 } else {
 ord = 0;
 }
 return ord;
};

/**

 * Handles a deviceorientation event from the window.
 * @param {DeviceOrientationEvent} event The device
orientation event object.
 * @private
 */
this.handleDeviceOrientation_ = function(event) {
 // Get the x and y positions and update the current
coordiate with them.
 this.currCoordinate_.x = this.getOrd_(event.gamma,
this.currCoordinate_.x);
 this.currCoordinate_.y = this.getOrd_(event.beta,
this.currCoordinate_.y);

 // Check for collisions.
 this.currentObstacleIndex_
= this.checkCollision_(this.currCoordinate_, 10,
 this.arrObstacles_);
 this.currentTargetIndex_
= this.checkCollision_(this.currCoordinate_, 10,
 this.arrTargets_);
};

This code adds some new constants: the current position Coordinate of the ball,
which you’ll manipulate with the event handler; and the indexes for the obstacle and
target that are currently being collided with. You’re using the checkCollision
method to determine collisions, just like you did when generating the obstacles and
targets.

 Note The delta calculation in the getOrd method here has been optimized for the
Euler Angles published by Safari Mobile. You might need to tweak the calculation for
your particular browser/platform combination.

The Draw Cycle
Use the DrawCycle class you built in Chapter 5 for an easy way to manage a draw
cycle using requestAnimationFrame.

The draw cycle method will need to do three things:

Position the ball at the Coordinates stored in the

currCoordinate property by the deviceorientation
event handler.

Check for a collision with an obstacle, and if one is happening:

add the collision class to the container,

remove a ball from the user’s remaining number and update
the display, and

if there are no more balls, end the game with a loss.

Check for a collision with a target, and if one is happening,

hide the target element, and

check to see if all elements have been collected—if so, end
the game with a win.

Dealing with obstacle collisions is a little complicated, because you could have a
collision happening with the same obstacle for multiple iterations of the draw cycle
(e.g., imagine the player is being very careful and is moving the ball very slowly, so it
is in collision with an obstacle for a second or so). A collision with an obstacle should
only remove one ball from the user’s total no matter how long the ball is in collision
with that obstacle. To prevent problems like this, store a reference to the obstacle that is
currently in collision when the collision first happens. Then on subsequent draw cycles,
ignore further collisions with the same element. You’ll clear the reference when the
collision ends.

When a collision with a target happens, you need to hide the associated target
element on the game field. The easiest way to do this is to store a DOM reference in the
element’s Coordinate when you generate it in the drawGameField method. This
will require modifications to that method, as well as to the Coordinate class, as
shown in Listing 6-25.

Listing 6-25. The Draw Cycle, the Associated Class Properties, and Updates to Class
Methods

 /**
 * Reference to the ’gameover’ DOM element.
 * @type {Element}
 * @private
 */
this.domGameOver_ = document.getElementById(’gameover’);

/**
 * Reference to the ’gamefield’ DOM element.
 * @type {Element}
 * @private
 */
this.gameField_ = document.getElementById(’game-field’);

/**
 * Reference to the ball DOM element.
 * @type {Element}
 * @private
 */
this.ball_ = document.getElementById(’ball’);

/**
 * The number of targets that have been collected.
 * @type {number}
 * @private
 */
this.collectedTargets_ = 0;

/**
 * Reference to the current obstacle during a collision
event. Stored between
 * draw cycles to prevent firing multiple collisions.
 * @type {Coordinate}
 * @private
 */
this.currObstacle_ = new Coordinate(0, 0);

/**
 * Initializes the obstacles and targets and draws the UI.
 * @private
 */
this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = ’’;

 // Fill up the obstacle and target arrays with random
coordinates.
 this.generateCoords_(this.numberOfObstacles_,
this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_,

this.arrTargets_);

 // Create a div that can be used as a template for
cloning.
 var templateDiv = document.createElement(’div’);

 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add(’obstacle’);
 newObstacle.style.left = currCoord.x + ’px’;
 newObstacle.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newObstacle);
 }, this);

 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord, index) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add(’target’);
 newTarget.style.left = currCoord.x + ’px’;
 newTarget.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newTarget);
 // Store a reference to the new element in the array, we will
need it
 // later.
 currCoord.element = newTarget;
 this.arrTargets_.splice(index, 1, currCoord);
 }, this);

 // Update the lives displayed.
 this.updateRemainingBalls_();
};

/**
 * Draws the screen for the game: positions the ’ball’ and
updates the number
 * of lives as necessary. Registered in the draw cycle.
 * @private
 */
this.drawScreen_ = function() {
 // Move the "ball."
 this.ball_.style.top = this.currCoordinate_.y + ’px’;
 this.ball_.style.left = this.currCoordinate_.x + ’px’;

 // Check for obstacle collisions.

 if (this.currentObstacleIndex_ > -1) {
 // Yes, there is a collision active. Check to see if
it is a new
 // collision.
 var obstacle
= this.arrObstacles_[this.currentObstacleIndex_];
 if ((this.currObstacle_.x != obstacle.x) &&
 (this.currObstacle_.y != obstacle.y)) {
 // It is a new collision.
 // Add the collision class to the game field.
 this.gameField_.classList.add(’collision’);
 // Store the current obstacle for the next check.
 this.currObstacle_ = obstacle;
 // A collision with an obstacle costs a life.
 this.balls_--;
 this.updateRemainingBalls_();
 // If we’re out of lives, the game is over.
 if (this.balls_ <= 0) {
 this.gameOver_(false);
 }
 }
 } else {
 // There is no collision active.
 // Remove the collision class from the game field.
 this.gameField_.classList.remove(’collision’);
 // Clear the current obstacle cache.
 this.currObstacle_ = new Coordinate(0, 0);
 }

 // Check for target collisions.
 if (this.currentTargetIndex_ > -1) {
 // A target has been hit! Get the reference to the DOM
element.
 var hitEl
= this.arrTargets_[this.currentTargetIndex_].element;
 // If the element is not hidden, we need to hide it.
 if (!hitEl.classList.contains(’hidden’)) {
 hitEl.classList.add(’hidden’);
 // Increment the collected targets counter.
 this.collectedTargets_++;
 // If that was the last target, the game is won!
 if (this.collectedTargets_ >= this. numberOfTargets_)

{
 this.gameOver_(true);
 }
 }
 }
};

/**
 * Ends the game.
 * @param {boolean} isWon Whether the game was won or
lost.
 * @private
 */
this.gameOver_ = function(isWon) {
 if (isWon) {
 this.domGameOver_.classList.remove(’loser’);
 this.domGameOver_.classList.add(’winner’);
 this.domGameOver_.innerHTML = ’Winner!’;
 } else {
 this.domGameOver_.classList.remove(’winner’);
 this.domGameOver_.classList.add(’loser’);
 this.domGameOver_.innerHTML = ’Try Again!’;
 }
 this.domGameOver_.classList.remove(’hidden’);
 };
};

/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element=} element A reference to the DOM
element for these
 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

The changes to the drawGameField method have been bolded to make them
easier to see (the rest of the method is the same as before). You’ve also updated the
Coordinate class to include an optional element property, which you use to store a
reference to the element at those coordinates if the element is a target.

The drawScreen method behaves as outlined earlier, and calls the gameOver
method if the user wins or loses the game. The gameOver method shows the game
over DOM element and updates its content and styling to reflect the win or loss.

Initializing the Game
There are a few things missing from the MobiDex class:

You need to register the deviceorientation event handler.

You need to instantiate a DrawCycle object and start the
animation.

You need to publish a public method on the class that can be called
to start the game.

You need to have a way to reset the game so that it can be played
again.

You can use the same public method to start and restart the game because those two
code paths are almost identical. The main difference is that the first two actions
(creating the DrawCycle object and registering the event handler) should only be done
once, the first time the game is started. So you’ll have to break those out into a separate
method and only invoke that method once.

To reset the game, you’ll need to revert several of the class properties to their
default values. To play the game you’ll need to draw the playing field and then start the
draw cycle, as shown in Listing 6-26.

Listing 6-26. Game Initialization

/**
 * Whether or not the game has been initialized.
 * @type {boolean}
 * @private
 */
this.isInitialized_ = false;

/**
 * The draw cycle object for the game.
 * @type {DrawCycle}
 * @private
 */
this.drawCycle_ = new DrawCycle();

/**
 * Start the game. Initializes data structures, draws the
UI, and starts the
 * animation cycle.
 */
this.startGame = function() {
 // Reset the game variables.
 this.reset_();

 // Hide the game over message.
 this.domGameOver_.classList.add(’hidden’);

 // Draw a random game field.
 this.drawGameField_();

 if (!this.isInitialized_) {
 this.init_();
 }

 // Start the draw cycle.
 this.drawCycle_.startAnimation();
};

/**
 * Resets game variables to their base state.
 * @private
 */
this.reset_ = function() {
 this.balls_ = 3;
 this.arrObstacles_ = [];
 this.arrTargets_ = [];
 this.collectedTargets_ = 0;
 this.currCoordinate_ = new Coordinate(0, 0);
 this.currentObstacleIndex_ = -1;
 this.currentTargetIndex_ = -1;
};

/**
 * Initialize the game for the first time.
 * @private
 */
this.init_ = function() {
 // Register the device orientation event handler on the
window object.
 window.addEventListener(’deviceorientation’,
 this.handleDeviceOrientation_.bind(this),
 false);

 // Add the draw method to the draw cycle.
 this.drawCycle_.addAnimation(this.drawScreen_.bind(this));

 this.isInitialized_ = true;
};

Now there is one public method on the class, startGame, that can be called when
you want to start a new game, whether it’s the first or subsequent games. This method
initializes the game if needed, updates the default values, draws the game field, and
kicks off the animation.

Assuming you have saved both the MobiDex and Coordinate classes in the file
mobidex.js, you can now load them into your HTML document, as shown in Listing
6-27.

Listing 6-27. The Finished Game

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
user-scalable=no">
 <title>The HTML5 Programmer’s Reference</title>
 <style>
// [...]
 </style>
 <script src="../js-lib/drawcycle.js"></script>
 <script src="../js-lib/mobidex.js"></script>
 </head>
 <body>
 <h1>MobiDex</h1>

 <div id="remaining-balls"></div>
 <div id="container-field">
 <div id="game-field"></div>
 <div id="ball"></div>
 <div id="gameover" class="hidden"></div>
 </div>
 <script>
// Create a new instance of the game.
var myGame = new MobiDex();

// Attach an event handler to the game over message so
that the user can restart
// the game.
document.getElementById(’gameover’).addEventListener(’click’,
function() {
 myGame.startGame();
}, false);

// Start the game.
myGame.startGame();
 </script>
 </body>
</html>

Here again for the interests of saving space you have elided the CSS, which hasn’t
changed. It not only creates a new MobiDex instance and starts the game, it also fulfills
your last requirement: that the user can tap on the game over element and start a new
game.

Additional Exercises
This is just the beginning for the MobiDex game. Here are some modifications you can
make:

Add scoring: For each target award a point. Carry points over
through subsequent rounds. The first loss ends the game with the
final score. Save the final score in local storage.

Add a timer: Add a global timer to the game that counts down on
screen. The player has to complete as many rounds as possible
before the timer runs out. Save the highest number of rounds in local
storage.

Add customization: Add sliders to customize the delta calculation
and make the ball move faster or slower. Add sliders to control the
number of obstacles and/or targets. Save customizations in local
storage.

The Full Listing
Listing 6-28 provides the entire MobiDex and Coordinate classes.

Listing 6-28. Full Listing of the MobiDex and Coordinate Classes

/**
 * Creates a new game. Assumes that the required DOM
elements are present.
 * @constructor
 */
function MobiDex() {

 /**
 * Whether or not the game has been initialized.
 * @type {boolean}
 * @private
 */
 this.isInitialized_ = false;

 /**
 * Reference to the ’gameover’ DOM element.
 * @type {Element}
 * @private
 */
 this.domGameOver_ = document.getElementById(’gameover’);

 /**
 * Reference to the ’gamefield’ DOM element.
 * @type {Element}
 * @private
 */
 this.gameField_ = document.getElementById(’game-field’);

 /**
 * Reference to the ball DOM element.

 * @type {Element}
 * @private
 */
 this.ball_ = document.getElementById(’ball’);

 /**
 * Reference to the ’remaining-balls’ DOM element.
 * @type {Element}
 * @private
 */
 this.remainingBalls_
= document.getElementById(’remaining-balls’);

 /**
 * The current coordinate of the ’ball’.
 * @type {Coordinate}
 * @private
 */
 this.currCoordinate_ = new Coordinate(0, 0);

 /**
 * The index of the obstacle that the ball is currently
colliding with.
 * @type {number}
 * @private
 */
 this.currentObstacleIndex_ = -1;

 /**
 * The index of the target that the ball is currently
colliding with.
 * @type {number}
 * @private
 */
 this.currentTargetIndex_ = -1;

 /**
 * Reference to the current obstacle during a collision
event. Stored between
 * draw cycles to prevent firing multiple collisions.
 * @type {Coordinate}
 * @private
 */

 this.currObstacle_ = new Coordinate(0, 0);

 /**
 * Array of obstacle coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrObstacles_ = [];

 /**
 * Array of target coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrTargets_ = [];

 /**
 * The number of targets that have been collected.
 * @type {number}
 * @private
 */
 this.collectedTargets_ = 0;

 /**
 * The number of ’lives’ remaining.
 * @type {number}
 * @private
 */
 this.balls_ = 3;

 /**
 * The draw cycle object for the game.
 * @type {DrawCycle}
 * @private
 */
 this.drawCycle_ = new DrawCycle();

 /**
 * The number of obstacles to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfObstacles_ = 10;

 /**
 * The number of targets to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfTargets_ = 10;

 /**
 * Start the game. Initializes data structures, draws
the UI, and starts the
 * animation cycle.
 */
 this.startGame = function() {
 // Reset the game variables.
 this.reset_();

 // Hide the game over message.
 this.domGameOver_.classList.add(’hidden’);

 // Draw a random game field.
 this.drawGameField_();

 if (!this.isInitialized_) {
 this.init_();
 }

 // Start the draw cycle.
 this.drawCycle_.startAnimation();
 };

 /**
 * Resets game variables to their base state.
 * @private
 */
 this.reset_ = function() {
 this.balls_ = 3;
 this.arrObstacles_ = [];
 this.arrTargets_ = [];
 this.collectedTargets_ = 0;
 this.currCoordinate_ = new Coordinate(0, 0);
 this.currentObstacleIndex_ = -1;
 this.currentTargetIndex_ = -1;

 };

 /**
 * Initialize the game for the first time.
 * @private
 */
 this.init_ = function() {
 // Register the device orientation event handler on
the window object.
 window.addEventListener(’deviceorientation’,
 this.handleDeviceOrientation_.bind(this),
 false);

 // Add the draw method to the draw cycle.
 this.drawCycle_.addAnimation(this.drawScreen_.bind(this));

 this.isInitialized_ = true;
 };

 /**
 * Initializes the obstacles and targets and draws the
UI.
 * @private
 */
 this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = ’’;

 // Fill up the obstacle and target arrays with random
coordinates.
 this.generateCoords_(this.numberOfObstacles_,
this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_,
this.arrTargets_);

 // Create a div that can be used as a template for
cloning.
 var templateDiv = document.createElement(’div’);

 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add(’obstacle’);

 newObstacle.style.left = currCoord.x + ’px’;
 newObstacle.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newObstacle);
 }, this);

 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord, index) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add(’target’);
 newTarget.style.left = currCoord.x + ’px’;
 newTarget.style.top = currCoord.y + ’px’;
 this.gameField_.appendChild(newTarget);
 // Store a reference to the new element in the array,
we will need it
 // later.
 currCoord.element = newTarget;
 this.arrTargets_.splice(index, 1, currCoord);
 }, this);

 // Update the lives displayed.
 this.updateRemainingBalls_();
 };

 /**
 * Handles a deviceorientation event from the window.
 * @param {DeviceOrientationEvent} event The device
orientation event object.
 * @private
 */
 this.handleDeviceOrientation_ = function(event) {
 // Get the x and y positions and update the current
coordiate with them.
 this.currCoordinate_.x = this.getOrd_(event.gamma,
this.currCoordinate_.x);
 this.currCoordinate_.y = this.getOrd_(event.beta,
this.currCoordinate_.y);

 // Check for collisions.
 this.currentObstacleIndex_
= this.checkCollision_(this.currCoordinate_, 10,
 this.arrObstacles_);
 this.currentTargetIndex_
= this.checkCollision_(this.currCoordinate_, 10,

 this.arrTargets_);
 };

 /**
 * Draws the screen for the game: positions the ’ball’
and updates the number
 * of lives as necessary. Registered in the draw cycle.
 * @private
 */
 this.drawScreen_ = function() {
 // Move the "ball."
 this.ball_.style.top = this.currCoordinate_.y + ’px’;
 this.ball_.style.left = this.currCoordinate_.x + ’px’;

 // Check for obstacle collisisons.
 if (this.currentObstacleIndex_ > -1) {
 // Yes, there is a collision active. Check to see if
it is a new
 // collision.
 var obstacle
= this.arrObstacles_[this.currentObstacleIndex_];
 if ((this.currObstacle_.x != obstacle.x) &&
 (this.currObstacle_.y != obstacle.y)) {
 // It is a new collision.
 // Add the collision class to the game field.
 this.gameField_.classList.add(’collision’);
 // Store the current obstacle for the next check.
 this.currObstacle_ = obstacle;
 // A collision with an obstacle costs a life.
 this.balls_--;
 this.updateRemainingBalls_();
 // If we’re out of lives, the game is over.
 if (this.balls_ <= 0) {
 this.gameOver_(false);
 }
 }
 } else {
 // There is no collision active.
 // Remove the collision class from the game field.
 this.gameField_.classList.remove(’collision’);
 // Clear the current obstacle stored in the this.
 this.currObstacle_ = new Coordinate(0, 0);

 }

 // Check for target collisions.
 if (this.currentTargetIndex_ > -1) {
 // A target has been hit! Get the reference to the
DOM element.
 var hitEl
= this.arrTargets_[this.currentTargetIndex_].element;
 // If the element is not hidden, we need to hide it.
 if (!hitEl.classList.contains(’hidden’)) {
 hitEl.classList.add(’hidden’);
 // Increment the collected targets counter.
 this.collectedTargets_++;
 if (this.collectedTargets_ >=
this.arrTargets_.length) {
 this.gameOver_(true);
 }
 }
 }
 };

 /**
 * Updates the number of remaining balls displayed.
 * @private
 */
 this.updateRemainingBalls_ = function() {
 // Clear the current lives.
 this.remainingBalls_.innerHTML = ’’;
 // Create a template that we can clone and use
multiple times.
 var lifeTemplate = document.createElement(’div’);
 lifeTemplate.classList.add(’life’);
 // Add an element for each life.
 for (var i = 0; i < this.balls_; i++) {
 var currLife = lifeTemplate.cloneNode();
 currLife.style.left = (i * 15) + ’px’;
 this.remainingBalls_.appendChild(currLife);
 }
 };

 /**
 * Check to see if the specified coordinates collide

with an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to
check.
 * @param {number} sensitivity The sensitivity for
a collision. If coordinates
 * are within sensitivity distance of a target
coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array
of target coordinates
 * to check against.
 * @return {number} The index of the member of the
target coordinates array
 * that is being hit, or -1 if no collision is
detected.
 * @private
 */
 this.checkCollision_ = function(coordinate, sensitivity,
arrTargetCoords) {
 // Loop through each target coordinate and compare the
provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {
 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;

 // If the provided x coordinate is within range of
the obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x)
&&
 (coordinate.x < (currObstacle.x + sensitivity)))
{
 xcoll = true;
 }

 // If the provided y coordinate is within range of
the obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y)
&&

 (coordinate.y < (currObstacle.y + sensitivity)))
{
 ycoll = true;
 }

 // If there is both an x and a y collision, then
return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
 };

 /**
 * Gets an ordinate based on a Euler Angle.
 * @param {number} angle The orientation angle that is
inducing the change.
 * @param {number} ord The previous value of the
ordinate.
 * @return {number} The new value of the ordinate.
 * @private
 */
 this.getOrd_ = function(angle, ord) {
 var delta = Math.round(angle - (angle * 0.3));
 var tempVal = ord + delta;
 if (tempVal > 0) {
 ord = Math.min(192, tempVal);
 } else {
 ord = 0;
 }
 return ord;
 };

 /**
 * Generates a set of random coordinates and adds them
to the provided array.
 * Tries to avoid duplicating too closely any
previously-generated
 * coordinates.
 * @param {number} numberOfCoords The number of
coordinates to generate.

 * @param {Array} targetArray The array to fill with the
new coordinates.
 * @private
 */
 this.generateCoords_ = function(numberOfCoords,
targetArray) {
 for (var i = 0; i < numberOfCoords; i++) {
 var newCoord = new
Coordinate(this.getRandomIntegerBetween_(10, 190),
 this.getRandomIntegerBetween_(10, 190));
 while (this.checkCollision_(newCoord, 15,
 this.arrObstacles_.concat(this.arrTargets_)) > -
1) {
 newCoord.x = this.getRandomIntegerBetween_(10,
190);
 newCoord.y = this.getRandomIntegerBetween_(10,
190);
 }
 targetArray.push(newCoord);
 }
 };

 /**
 * Returns a random integer between the specified
minimum and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 * @private
 */
 this.getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
 };

 /**
 * Ends the game.
 * @param {boolean} isWinner Whether the game was won or
lost.
 * @private

 */
 this.gameOver_ = function(isWon) {
 this.drawCycle_.stopAnimation();
 if (isWon) {
 this.domGameOver_.classList.remove(’loser’);
 this.domGameOver_.classList.add(’winner’);
 this.domGameOver_.innerHTML = ’Winner!’;
 } else {
 this.domGameOver_.classList.remove(’winner’);
 this.domGameOver_.classList.add(’loser’);
 this.domGameOver_.innerHTML = ’Try Again!’;
 }
 this.domGameOver_.classList.remove(’hidden’);
 };
};

/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element} element A reference to the DOM element
for these
 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

Summary
In this chapter I have discussed working with HTML5 in practical projects. I’ve
covered:

feature detection,

dynamically responding to different levels of HTML5 support, and

online resources for researching HTML5 support and locating

shims.

You have also built an entire HTML5 mobile game from scratch, starting with user
stories and ending with working code.

This concludes the discussion chapters for the book. The next chapters will all be
reference chapters for HTML5 features, starting with the HTML5 Element Reference.

PART II

HTML5 Reference

CHAPTER 7

HTML5 Element Reference

This chapter provides a detailed reference for all of the new HTML5 elements. The
elements are grouped semantically, so all of the elements that provide sectioning
semantics are together, all of the elements that provide grouping semantics are together,
etc. Each element entry will have the following:

A brief description of the element and its function.

A Usage section that includes the syntax of the element and a brief
example.

A Properties section that lists all of the properties that can be set on
the element.

A table with all of the relevant standards for the element.

All of these same elements are covered in more detail in Chapter 2. You can find in-
depth discussions there as well as many more examples and browser support at time of
press.

Sections
HTML5 defines several new elements for marking up sections of content within a larger
document. These sections are typically self-contained or distinct groups of content.
Some sections are repeatable within a single document. Section elements help provide
an overall structure to the document.

The article Element

The article element is used to denote a section of self-contained, stand-alone
content within a larger document: a single blog post within a page of blog posts, a single
story within a newspaper page, or a single advertisement on a larger page.

Usage
The element is used to denote a block section of content, and is rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required.

Syntax

<article>...</article>

Listing 7-1. The article Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>First Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 <article>
 <h1>Second Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

translate

Table 7-1. Standards for the article Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-
article-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-article-
element

The aside Element
The aside element denotes content that is tangential or loosely related to its containing
content: a sidebar, note, or comment. Omission of the content within the aside element
should not affect the meaning of the containing content.

Usage
The element is used to denote a block section of content, and is rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required.

Syntax

<aside>...</aside>

Listing 7-2. The aside Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum

http://www.w3.org/TR/html5/sections.html#the-article-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-article-element

 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <aside>
 <h2>Aside Title</h2>
 <p>Lorem ipsum dolor sit amet, consectetur nisi
id gravida.</p>

 Item
 Item
 Item

 </aside>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

contenteditable

contextmenu

dataset

dir

draggable

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-2. Standards for the aside Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-aside-
element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-aside-
element

The footer Element
The footer element is used to denote content that comes at the end of the containing
section. Footers typically provide information about their containing sections. Each
section should have at most one footer.

Usage
The element is used to denote a block section of content, and is rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required. The footer element may not contain header, footer, or main elements.

Syntax

<footer>...</footer>

Listing 7-3. The footer Element

<!DOCTYPE html>
<html>

http://www.w3.org/TR/html5/sections.html#the-aside-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-aside-element

 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <footer>
 <p>Sitemap:</p>

 link
 link
 link

 <p>Copyright notice.</p>
 </footer>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-3. Standards for the footer Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-footer-
element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-footer-
element

The header Element
The header element is used to denote a set of introductory content at the beginning of
a section. Each section should have at most one header.

Usage
The element is used to denote a block section of content, and is rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required. The header element may not contain header, footer, or main elements.

Syntax

http://www.w3.org/TR/html5/sections.html#the-footer-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-footer-element

<header>...</header>

Listing 7-4. The header Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <header>
 <h1>Article Title</h1>

 navlink 1
 navlink 2
 navlink 3

 </header>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-4. Standards for the header Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-header-
element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-header-
element

The nav Element
The nav element is used to denote a navigation section with major navigation links to
other pages or to content or sections within the current document.

Usage
The element is used to denote a block section of content, and is rendered as a block

http://www.w3.org/TR/html5/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-header-element

element in the document flow (like a div or heading element). The closing tag is
required.

Syntax

<nav>...</nav>

Listing 7-5. The nav Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <header>
 <h1>Article Title</h1>
 <nav>

 navlink 1
 navlink 2
 navlink 3

 </nav>
 </header>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-5. Standards for the nav Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-nav-
element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-nav-element

The section Element
The section element is used to indicate a generic group of content, typically covering

http://www.w3.org/TR/html5/sections.html#the-nav-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-nav-element

one specific theme. Often, the theme of the section is denoted by a child header element.

Usage
The usage element is used to denote a block section of content, and is rendered as a
block element in the document flow (like a div or heading element). The closing tag is
required.

Syntax

<section>...</section>

Listing 7-6. The section Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <section>
 <h1>Introduction</h1>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </section>
 <section>
 <h1>First Section</h1>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </section>
 <section>
 <h1>Second Section</h1>

 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </section>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-6. Standards for the section Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/sections.html#the-
section-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-section-
element

Grouping
The HTML5 standard defines a new set of elements to group data together by type, as
distinguished from the section elements, which are used to provide overall document
structure.

The figure and figcaption Elements
The figure element is used to group together a self-contained group of data that is
referenced as a single set from the main content of the document. Typical uses are for
illustrations, diagrams, code samples, and so on. The figcaption element is
optionally used to provide a caption for a figure element.

Usage
The elements are used to denote block sections of content, and are rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required for both elements. The figcaption element is optional, but must be a child
of a figure element.

Syntax

<figure>
 <figcaption>...</figcaption>
 ...
</figure>

Listing 7-7. The figure and figcaption Elements

http://www.w3.org/TR/html5/sections.html#the-section-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-section-element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Title</h1>
 <figure>
 <figcaption>Caption: Source Information</figcaption>
 <img src="diagrams/diagram1-1.png" alt="Schematic
diagram" />
 </figure>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-7. Standards for the figure and figcaption Elements

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/grouping-
content.html#the-figure-element

www.w3.org/TR/html5/grouping-
content.html#the-figcaption-element

WHATWG Living Standard

www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-figure-
element

www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-figcaption-
element

The main Element
The main element is used as a container for the dominant contents of another element.
The main element itself does not provide structure or contribute to the document’s
outline. It only provides a grouping container.

Usage
The element is used to denote a block section of content, and is rendered as a block
element in the document flow (like a div or heading element). The closing tag is
required.

Syntax

<main>...</main>

Listing 7-8. The main Element

<!DOCTYPE html>
<html>
 <head>

http://www.w3.org/TR/html5/grouping-content.html#the-figure-element
http://www.w3.org/TR/html5/grouping-content.html#the-figcaption-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figure-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figcaption-element

 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <main>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla
tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla
tellus.</p>
 </main>
 <aside>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit.</p>
 </aside>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-8. Standards for the main Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/grouping-
content.html#the-main-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-main-
element

Semantics
The HTML5 standard specifies several new elements designed to provide more
capabilities for defining the semantic purposes of portions of data. Because they are
meant to provide semantic detail rather than structure, these tags are rendered as inline
elements.

Unfortunately, there is little support for many of these tags in current browser
implementations.

The bdi Element
The bdi element (bdi is an abbreviation for “bi-directional isolation”) is used to
isolate a portion of text that might be formatted in a different direction than the
surrounding text—for example, when directly including Arabic text in an otherwise

http://www.w3.org/TR/html5/grouping-content.html#the-main-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-main-element

English page.

Usage
The element is used to denote a portion of text contained within other text, and as such is
rendered as an inline element.

Syntax

<bdi>...</bdi>

Listing 7-9. The bdi Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, <bdi>consectetur
adipiscing elit</bdi>. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-9. Standards for the bdi Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-bdi-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-bdi-element

The data Element
The data element is used to denote machine-readable data embedded in a document.
Typically the data will be embedded in the element using a type or data attribute.

Usage
This element is used to embed machine-readable data into a document. It is not typically
rendered. A closing tag is not required.

http://www.w3.org/TR/html5/text-level-semantics.html#the-bdi-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-bdi-element

Syntax

<data value="someval">

Listing 7-10. The data Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>

 <data value="ser-123-456">Serial Number
1
 <data value="ser-123-856">Serial Number
2
 <data value="ser-123-204">Serial Number
3

 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-10. Standards for the data Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-data-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-data-
element

The mark Element
The mark element is used to denote occurrences within a set of data. The occurrence
itself is context specific.

Usage
This element is used to denote portions of data within larger contents, and as such is
rendered as an inline element. The closing tag is required.

Syntax

<mark>...</mark>

http://www.w3.org/TR/html5/text-level-semantics.html#the-data-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-data-element

Listing 7-11. The mark Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet,
<mark>consectetur</mark> adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 <p>Lorem ipsum dolor sit amet,
<mark>consectetur</mark> adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit
tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.
</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-11. Standards for the mark Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-mark-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-mark-
element

The ruby, rp, and rt Elements
The ruby, rp, and rt elements are used for creating Ruby annotations, which are
short runs of text presented next to main text. Typically Ruby annotations are used to
indicate pronunciation in East Asian languages. For details about Ruby annotations, see
www.w3.org/TR/ruby/ and
http://en.wikipedia.org/wiki/Ruby_character.

Usage
A ruby element typically consists of a set of content surrounded by a ruby tag, with
one or more rp or rt annotations.

Syntax

<ruby>base<rt>annotation</ruby>

http://www.w3.org/TR/html5/text-level-semantics.html#the-mark-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-mark-element
http://www.w3.org/TR/ruby/
http://en.wikipedia.org/wiki/Ruby_character

<ruby><rb>base<rt>annotation</ruby>

Listing 7-12. The ruby, rt, and rp Elements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <ruby>B<rt>a<rt>a</ruby><ruby>A<rt>a<rt>a</ruby>
 <ruby>S<rt>a<rt>a</ruby><ruby>E<rt>a<rt>a</ruby>
 <ruby>BASE<rt>annotation 1<rt>annotation 2</ruby>
 </article>
 </body>
</html>

Properties
These elements can have any of the “global” properties, which are standard for all
HTML elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-12. Standards for the ruby, rt, and rp Elements

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-ruby-element

www.w3.org/TR/html5/text-level-
semantics.html#the-rt-element

www.w3.org/TR/html5/text-level-
semantics.html#the-rp-element

WHATWG Living Standard

www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-ruby-
element

www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-rt-element

www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-rp-element

The time Element
Similar to the data element, the time element is used to denote machine-readable
date/time data embedded in a document.

Usage
This element is used to embed machine-readable data into a document. A closing tag is
required.

Syntax

<time>...</time>

Listing 7-13. The time Element

http://www.w3.org/TR/html5/text-level-semantics.html#the-ruby-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-rt-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-rp-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-ruby-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rt-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rp-element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <time>2011-11-12T14:54</time>
 <time>2011-11-12T14:54:39</time>
 <time>2011-11-12T14:54:39.929</time>
 <time>2011-11-12 14:54</time>
 <time>2011-11-12 14:54:39</time>
 <time>2011-11-12 14:54:39.929</time>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-13. Standards for the time Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-time-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-time-
element

The wbr Element
The Word Break Opportunity tag is used to indicate a position in the document flow
where the browser may initiate a line break though its internal rules might not otherwise
do so. It has no effect on bidi-ordering, and if the browser does initiate a break at the
tag, a hyphen is not used.

Usage
This element is used to indicate word break opportunities in text, and so is only
rendered if a word break is needed. As such, it is expected to be contained within other
block elements such as paragraphs. A closing tag is not required.

Syntax

<wbr>

Listing 7-14. The wbr Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>

http://www.w3.org/TR/html5/text-level-semantics.html#the-time-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-time-element

 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Supercali<wbr>fragilistic<wbr>expialidocious and
 antidis<wbr>establishment<wbr>arianism.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML
elements. These properties include:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-14. Standards for the wbr Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-
semantics.html#the-wbr-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-wbr-element

Audio and Video Content

The audio Element
The audio element is used to embed sound content (typically audio files) in web
pages.

In the past, embedding audio content in documents typically required the use of a
plug-in (most typically Flash). This had the benefit of being fairly ubiquitous because as
long as the target browser had the plug-in installed, it would be able to play the content.
All of the complexity around the user interface controls, handling different file formats,
and special features like dynamic streaming were all handled by the plug-in software.

When implementing the ability to embed sound content, web browser manufacturers
had to handle these issues themselves. As a result, the appearance and functionality of
the user interface controls for the audio player vary from browser to browser.

Each browser also supports different file formats due to patent encumbrances, and
some browsers support different file formats on different operating systems depending
on locally installed software. An in-depth discussion of audio file formats, their patent
issues, and operating system support is beyond the scope of this book, but you can find a
great deal of information on the Web. Specifically:

https://developer.mozilla.org/en-
US/docs/Web/HTML/Supported_media_formats The
Mozilla Developer Network has a good page that discusses the
various audio formats and their support in major browsers.

http://hpr.dogphilosophy.net/test/index.php is
a page you can visit to test the support of various audio formats in
your browsers. The page also has some good information on the
various formats and the state of their support in the major browsers.

www.jwplayer.com/html5/formats/ The JW Player is a
proprietary audio/video player based on HTML5 technology (the

http://www.w3.org/TR/html5/text-level-semantics.html#the-wbr-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-wbr-element
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
http://hpr.dogphilosophy.net/test/index.php
http://www.jwplayer.com/html5/formats/

core of the player is open source). The company has an obvious
interest in the state of HTML5 audio and video support, and they
maintain their own statistics on the topic.

There are other sources available on the Web, but many of them seem to be out of
date (or it wasn’t possible to verify when they were last updated).

Usage
The element is used to embed sound content in documents. The content can be specified
using either the src attribute or by using source elements contained within the
audio element. For details on using source elements, see the next section.

The element can also contain zero or more track elements to specify time-based
data for the audio content (such as captions). See the section on the track element for
details.

Additionally, the element can optionally contain other elements that will be
rendered if the browser does not support the audio element.

The <audio> tag is not self-closing so both the start and end tags are required.

Syntax

<audio></audio>

Listing 7-15. The audio Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p>Basic</p>
 <audio controls="true" src="../media/winamp-
llama.mp3">
 <p>Your browser does not support the HTML5 audio
tag.</p>
 </audio>
 <p>Using source Elements</p>
 <audio controls="true">

 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <p>Your browser does not support the HTML5 audio
tag.</p>
 </audio>
 </body>
</html>

Properties
The audio element supports the following properties:

autoplay: This is a boolean flag that, when set (to anything, even
false), will cause the browser to immediately begin playing the
audio content as soon as it can without stopping for buffering.

controls: If this attribute is set, then the browser will display its
default user interface controls for the audio player (volume
controls, progress meter/scrub bar, etc.).

loop: If this attribute is set, the browser will loop playback of the
specified file.

muted: This attribute specifies that the playback should be muted
by default.

preload: This attribute is used to give the browser a hint for how
to provide the best user experience for the specified content. It can
take three values:

none specifies that the author wants to minimize the
download of the audio content, possibly because the content
is optional, or because the server resources are limited.

metadata specifies that the author recommends
downloading the metadata for the audio content (duration,
track list, tags, etc.) and possibly the first few frames of the
content.

auto specifies that the browser can put the user’s needs
first without risk to the server. This means the browser can
begin buffering the content, download all the metadata, and
so on.

src: This attribute specifies the source of the content, just as with
an img element. If desired, this attribute can be omitted in favor of
one or more source elements contained within the audio
element.

In addition, the audio element supports the following global attributes:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-15. Standards for the audio Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/embedded-content-
0.html#the-audio-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-video-
element

http://www.w3.org/TR/html5/embedded-content-0.html#the-audio-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element

The source Element
The source element is used to specify a single content source for its parent element.
As a result, source elements must always be contained within either audio or video
elements. It does not represent anything on its own.

Usage
The source element is used to specify a single content source for an audio or
video element. Multiple source elements are permitted. If multiple source
elements are contained within an audio or video element, the browser will examine
each one in order and fetch and play the first one that specifies content encoded in a
manner it supports. This provides a workaround for the fragmented support for audio
and video formats in various browsers: simply encode the desired content in the
required formats, and specify the location of the different encodings using as many
source elements as are required.

The <source> tag does not require a closing tag, and is not otherwise rendered in
the document. All source elements must come before any track elements.

Syntax

<source src="testfile.mp3">

Listing 7-16. The source Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <audio controls="true">
 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <p>Your browser does not support the HTML5 audio
tag.</p>
 </audio>
 <video controls="true">
 <source src='video.mp4' type='video/mp4;

codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='video.mp4' type='video/mp4;
codecs="avc1.58A01E, mp4a.40.2"'>
 <source src='video.3gp' type='video/3gpp;
codecs="mp4v.20.8, samr"'>
 <p>Your browser does not support the HTML5 video
tag.</p>
 </video>
 </body>
</html>

Properties
A source element has two properties:

src: The src property is used to provide an address of a media
resource appropriate for the containing element. This property is
required.

type: The type property is used to specify the MIME type of the
media resource. This type attribute is used by the browser to
determine if it can play the media resource. If it can’t play the
media resource, the browser will not attempt to fetch it and will
move on to the next source element (if any). The type property
may contain an optional codec parameter that specifies the
codec(s) used to create the specified media. The syntax of the
codec parameter is governed by RFC6381, “The codecs and
profiles Parameters for Bucket Media Types.”

Table 7-16. Standards for the source Element

Specification Status URL

Internet
Engineering
Taskforce (IETF)

Proposed
Standard http://tools.ietf.org/html/rfc6381

W3C Language
Reference www.w3.org/TR/html-markup/source.html

WHATWG Living
Standard

www.whatwg.org/specs/web-apps/current-
work/multipage/embedded-content.html#the-
source-element

http://tools.ietf.org/html/rfc6381
http://www.w3.org/TR/html-markup/source.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-source-element

The track Element
The track element is used to specify time-based data for an audio or video element,
such as closed captioning or subtitles. Like source elements, track elements do not
define any content on their own, and must be children of audio or video elements. The
time-based data specified by the track element could be formatted in any way
supported by the browser; the most common format is the new WebVTT format.

WebVTT-Formatted Data
The Web Video Text Tracks Format (WebVTT) standard specifies a specific schema or
format for a text file (UTF-8 encoded) that associates arbitrary data with points in time.
Typically the data is captioning information, but it could be any data in any desired
format, including XML, HTML, or even JSON.

A valid WebVTT file consists of the WEBVTT declaration, an optional description
next to the declaration, and zero or more cues or comments. Thus the file

WEBVTT

is a valid WebVTT file.
A valid cue consists of an optional cue identifier, followed on the next line by cue

timings (which may also include cue settings), followed on the next line by the contents
of the cue. A simple example would look as shown in Listing 7-17.

Listing 7-17. A Sample WebVTT Closed Captioning File for King Lear

WEBVTT

1 - Act 1, Scene 1
00:00:1.000 --> 00:00:1.500
Scene: King Lear's Palace
Enter Kent, Gloucester, and Edmund.

00:00:1.500 --> 00:00:2.000 position:10% size:50%
<v Kent> I thought the king had more affected the Duke of
Albany than Cornwall.

00:00:2.100 --> 00:00:3.500 position:10% size:50%
<v Gloucester> It did always seem so to us: but now, in
the

division of the kingdom, it appears not which of
the dukes he values most; for equalities are so
weighed, that curiosity in neither can make choice
of either's moiety.

In this example there are three separate cues, each with a timestamp range. As the
video plays, each cue is displayed at the appropriate time. The WebVTT standard
includes the ability to format the resulting captions; in this example the dialog cue boxes
are limited to 50% of the width of the video viewport and are positioned 10% of the
total viewport width away from the left of the viewport.

The WebVTT standard is extensive, and I’m not going to cover it fully here. For
details, see the W3C standard at http://dev.w3.org/html5/webvtt/. There
is also a great tutorial at the HTML5 Doctor web site available at
http://html5doctor.com/video-subtitling-and-webvtt/.

Usage
The track element is used to specify a file containing time-based data for the
containing audio or video element. Multiple track elements are permitted for the same
audio or video element.

The track tag is self-closing and does not require a closing tag, and track tags
must come after any source tags.

Syntax

<track src="karaoki.vtt">

Listing 7-18. The track Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <audio controls="true">
 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <track src="karaoki.vtt" kind="captions"
label="Karaoki Cues">

http://dev.w3.org/html5/webvtt/
http://html5doctor.com/video-subtitling-and-webvtt/

 <p>Your browser does not support the HTML5 audio
tag.</p>
 </audio>
 <video controls="true">
 <source src='thetwotowers.mp4' type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='thetwotowers.mp4' type='video/mp4;
codecs="avc1.58A01E, mp4a.40.2"'>
 <source src='thetwotowers.3gp' type='video/3gpp;
codecs="mp4v.20.8, samr"'>
 <track src="closed-captioning.vtt" kind="captions"
label="Closed Captioning">
 <track src="peter_fran_philippa.vtt"
kind="subtitles" src="en" label="Director and
 Writer Scene Notes">
 <p>Your browser does not support the HTML5 video
tag.</p>
 </video>
 </body>
</html>

Properties
The track element has the following properties:

default: Indicates that this is the default track for the content and
should be the one that is displayed unless overridden by the user.

kind: Indicates what kind of data is contained within the file.
Valid values are:

captions: Indicates that the data is a transcription or
translation of the content (e.g., closed captioning).

chapters: Indicates that the data is a set of chapter titles
or other sectional information used when navigating the
content.

descriptions: The data is a description of the video or
audio content, suitable for people who are blind (in the case
of video) or deaf (in the case of audio).

metadata: The data is meant to be used by scripts and not

shown directly to the user.

subtitles: Subtitles are additional content for the parent
content, such as scene information, extra narrative
background, and so forth. If this kind is specified, the
srclang attribute must also be specified for the content.

label: A user-readable label for the track that can be presented
when the user is browsing available tracks.

src: The URI for the content.

srclang: The language of the track data, in a BCP 47 language
tag (see the BCP 47 standard at
http://tools.ietf.org/html/bcp47). If the kind is
set to subtitles, this attribute must be specified.

Table 7-17. Standards for the track Element

Specification Status URL

IETF
Best
Current
Practice

http://tools.ietf.org/html/bcp47

W3C Editor’s
Draft http://dev.w3.org/html5/webvtt/

W3C Language
Reference

www.w3.org/html/wg/drafts/html/master/embedded-
content.html#the-track-element

WHATWG Living
Standard

www.whatwg.org/specs/web-apps/current-
work/multipage/embedded-content.html#the-track-
element

The video Element
The video element is used to embed video content (typically video files) in web
pages.

In the past, embedding video content in documents typically required the use of a
plug-in (most typically Flash). This had the benefit of being fairly ubiquitous because as
long as the target browser had the plug-in installed, it would be able to play the content.
All of the complexity around the user interface controls, handling different file formats,
and special features like dynamic streaming were all handled by the plug-in software.

When implementing the ability to embed video content, web browser manufacturers
had to handle these issues themselves. As a result, the appearance and functionality of

http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/bcp47
http://dev.w3.org/html5/webvtt/
http://www.w3.org/html/wg/drafts/html/master/embedded-content.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-track-element

the user interface controls for the video player vary from browser to browser.
Each browser also supports different file formats due to patent encumbrances, and

some browsers support different file formats on different operating systems depending
on locally installed software. An in-depth discussion of video file formats, their patent
issues, and operating system support is beyond the scope of this book, but you can find a
great deal of information on the Web. Specifically:

https://developer.mozilla.org/en-
US/docs/Web/HTML/Supported_media_formats The
Mozilla Developer Network has a good page that discusses the
various video formats and their support in major browsers.

blog.zencoder.com/2013/09/13/what-formats-
do-i-need-for-html5-video/ Zencoder is a cloud-based
transcoding service provider. Since their bread and butter is video
transcoding, they have a good understanding of what formats are
necessary for various levels of support.

www.jwplayer.com/html5/formats/ The JW Player is a
proprietary audio/video player based on HTML5 technology (the
core of the player is open source). The company has an obvious
interest in the state of HTML5 audio and video support, and they
maintain their own statistics on the topic.

There are other sources available on the Web, but many of them seem to be out of
date (or it wasn’t possible to verify when they were last updated).

Usage
The element is used to embed video content in documents. The content can be specified
using either the src attribute or by using source elements contained within the
video element. For details on using source elements, see the source Element section
in this chapter.

The element can also contain zero or more track elements to specify time-based
data for the video content (such as captions). For details on using track elements, see the
track Element section in this chapter.

Additionally, the element can optionally contain other elements that will be
rendered if the browser does not support the audio element.

The <video> tag is not self-closing so both the start and end tags are required.

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
http://www.jwplayer.com/html5/formats/

Syntax

<video></video>

Listing 7-19. The video Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p>Basic</p>
 <video controls="true"
src="../media/lotr_thetwotowers.mp4">
 <p>Your browser does not support the HTML5 video
tag.</p>
 </video>
 <p>Using source Elements</p>
 <video controls="true">
 <source src="../media/video-1.mp4"
type="video/mp4">
 <source src="../media/video-1.ogv"
type="video/ogg">
 <p>Your browser does not support the HTML5 video
tag.</p>
 </video>
 </body>
</html>

Properties
The video element supports the following properties:

autoplay: This is a boolean flag that when set (to anything, even
false) will cause the browser to immediately begin playing the
video content as soon as it can without stopping for buffering.

controls: If this attribute is set, then the browser will display its
default user interface controls for the video player (volume
controls, progress meter/scrub bar, etc.).

height: This attribute can be used to specify the height, in pixels,
of the video player.

loop: If this attribute is set, the browser will loop playback of the
specified file.

muted: This attribute specifies that the playback should be muted
by default.

poster: This attribute can be used to specify a URL to a poster to
display before the video is played. If no poster is specified, then the
player will show the first frame of the video by default, once it has
loaded.

preload: This attribute is used to provide to the browser a hint
for how to provide the best user experience for the specified
content. It can take the following values:

none: specifies that the author wants to minimize the
download of the video content, possibly because the content
is optional, or because the server resources are limited.

metadata: specifies that the author recommends
downloading the metadata for the video content (duration,
track list, tags, etc.) and possibly the first few frames of the
content.

auto: specifies that the browser can put the user’s needs
first without risk to the server. This means the browser can
begin buffering the content, download all the metadata, etc.

src: This attribute specifies the source of the content. If desired,
this attribute can be omitted in favor of one or more <source>
tags contained within the <video> tag.

width: This attribute can be used to specify the width of the video
player, in pixels.

In addition, the video element supports the following global attributes:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-18. Standards for the video Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/embedded-content-
0.html#the-video-element

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-video-
element

Interactive Elements

The details and summary Elements
The details and summary elements are used to provide a basic solution for
progressive disclosure. By clicking on the contents of a summary element, the content
within the associated details element is shown (or hidden). This particular kind of
user interface widget is often referred to as an “expando” and is a common UI
component across both web-based and native applications.

There is currently no support for these elements in Internet Explorer, IE Mobile (see
http://status.modern.ie/detailssummary), Firefox, or Firefox for

http://www.w3.org/TR/html5/embedded-content-0.html#the-video-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element
http://status.modern.ie/detailssummary

Android (see https://bugzilla.mozilla.org/show_bug.cgi?
id=591737). However, the IE team is considering implementation, and the Firefox
team is actively developing the feature. Otherwise the feature is well supported in
Chrome, Chrome for Android, Android Browser, Safari, and Safari Mobile.

Usage
The tags are meant to be used together. The details tag is the parent tag, with the
summary tag as the first element. Content that appears after the summary tag (but still
inside the details tag) will be shown or hidden as the user clicks on the contents of
the summary tag.

Both tags are rendered as block elements. The tags are not self-closing, so the
closing tag is required for both elements.

Syntax

<details>
 <summary>...</summary>
 ...
</details>

Listing 7-20. The details and summary Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <summary> and <details>
tags</h1>
 <details>
 <summary>Item 1</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,

https://bugzilla.mozilla.org/show_bug.cgi?id=591737

 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 2</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 <details open>
 <summary>Item 3--this one will be open by
default</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl
rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 3</summary>
 <p>Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis.
Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl

rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate
vestibulum
 faucibus, turpis magna mollis quam, a congue
neque lorem at
 justo.</p>
 </details>
 </article>
 </body>
</html>

Properties
The details element has an open attribute, which when present (even when set to false)
will cause the associated content to be visible by default. Otherwise, both elements
support the following standard global attributes:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-19. Standards for the details and summary Elements

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/html/wg/drafts/html/master/interactive-
elements.html#the-details-element

www.w3.org/html/wg/drafts/html/master/interactive-
elements.html#the-summary-element

WHATWG Living Standard

www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-details-element

www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-summary-element

Form Elements

The datalist Element
The datalist element provides a way of associating a list of data with a standard
input element. As the user begins to type in the input field, the list appears beneath, and
as the user continues to type the choices narrow. At any time the user can use the arrow
keys to select an item from the list.

This sort of input field is typically referred to as a “combobox,” and is a common
user interface element found in web and native applications.

Note that support for this feature is currently quite limited. Internet Explorer lists it
as “shipped” but there are significant bugs in the implementation (see
http://playground.onereason.eu/2013/04/ie10s-lousy-
support-for-datalists/ for a discussion and example). Safari currently does
not support the feature either on desktop or mobile.

Usage
The datalist element provides a way of associating a filterable list of default items
for an input field. As the user types in the field, the list appears and narrows in choices
to those that match the characters that have been entered. The user can select an item
from the list at any time, or keep typing to enter a custom option.

The datalist element takes as children a set of option elements, rather like the
form select element. In browsers that support the element, a datalist element is
not rendered in the document and can appear anywhere in the markup. To associate a

http://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-details-element
http://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-summary-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-details-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-summary-element
http://playground.onereason.eu/2013/04/ie10s-lousy-support-for-datalists/

given datalist with a particular input field, set the input’s list attribute to match the
id attribute of the desired datalist element.

Syntax

<datalist id="example">
 <option value="val1">
 <option value="val2">
 ...
</datalist>
<input list="example" />

Listing 7-21. The datalist Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <!-- Note the datalist can be anywhere -->
 <datalist id="browsers">
 <option value="Chrome">
 <option value="Firefox">
 <option value="Internet Explorer">
 <option value="Opera">
 <option value="Safari">
 </datalist>
 <article>
 <h1>Using the <datalist> tag</h1>
 <input list="browsers" />
 </article>
 </body>
</html>

Properties
The datalist element supports the following properties:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-20. Standards for the datalist Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/html/wg/drafts/html/master/forms.html#the-
datalist-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-datalist-element

The meter Element
The meter element provides a visual meter or gauge as a filled bar on the page. The
bar is meant to model a measurement with a known range, or a fraction of a known
range (e.g., disk usage or volume loudness). It should not be used to show progress; for
that use the progress element.

Usage

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-datalist-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-datalist-element

The meter element provides a way of modeling a measurement, and as such has
attributes that allow you to define the current value as well as minimum and maximum
values and even ranges. The appearance of the bar will vary depending on these
settings.

The <meter> tag is not self-closing and the closing tag is required. The <meter>
tag can contain other content that will be rendered if the browser does not support the
<meter> tag.

Syntax

<meter></meter>

Listing 7-22. The meter Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <meter> tag</h1>
 <p>Simple meter from 1 to 100, value set to 25:

 <meter min="1" max="100" value="25"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, value set to 90:

 <meter min="1" max="100" low="25" high="75"
value="90"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, value set to 10:

 <meter min="1" max="100" low="25" high="75"
value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75"

optimum="10" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to
25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75"
optimum="10" value="90"></meter>
 </p>
 </article>
 </body>
</html>

Attributes
The meter element supports the following attributes:

value: The current value to be displayed. This value must be
within the min and max values, if specified. If no value is set, or
if it is malformed, the browser will default to 0. If specified but the
value is greater than the max attribute, the value will be set to the
value of the max attribute. And if the value is less than the min
attribute, the value will be set to the value of the min attribute.

min: The minimum value of the range. Defaults to 0 if not
specified.

max: The maximum value of the range. Must be greater than the
value of the min attribute (if specified). Defaults to 1.

low: The highest value of the low range. When the value attribute
is within the low range, the bar will render yellow by default.

high: The lowest value of the high range, which ranges from this
value to the value of the max attribute. When the value attribute is
within the high range, the bar will render yellow by default.

optimum: Indicates an optimum value for the range. The value
must be between the min and max values of the range. If the low
and high ranges are used, specifying an optimum value within
one of them will indicate which of those ranges is preferred. When
the value is within the preferred range, the bar will render green.
When it is in the other range, it will render red.

In addition, the meter element supports the following global attributes:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-21. Standards for the meter Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/html/wg/drafts/html/master/forms.html#the-
meter-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-meter-element

The output Element
The output element provides a way of indicating the output of a calculation done as
part of a form (e.g., an interest calculation). The element has no special capabilities and
is merely a way of semantically indicating the output of a calculation.

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-meter-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-meter-element

Usage
The element is rendered as an inline element by default. It is not self-closing and the
closing tag is required.

Syntax

<output>...</output>

Listing 7-23. The output Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <input name="operand1" id="operand1" /> +
 <input name="operand2" id="operand2" /> =
 <output></output>

 <button>Add</button>
 <script>
// Get references to the elements we will need.
var myOutput = document.querySelector('output');
var in1 = document.getElementById('operand1')
var in2 = document.getElementById('operand2')
var myButton = document.querySelector('button');

// Add a click event handler to the button that adds the
contents of the two
// fields. We'll use parseFloat to cast the value to
a number; experiment by
// entering various values including numbers, characters,
and combinations of
// characters and numbers. Especially try combinations
that start with numbers.
myButton.addEventListener('click', function() {
 myOutput.innerText = parseFloat(in1.value)
+ parseFloat(in2.value);
}, false);
 </script>

 </body>
</html>

Properties
The output element supports the following properties:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-22. Standards for the output Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/html/wg/drafts/html/master/forms.html#the-
output-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-output-element

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-output-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-output-element

The progress Element
The progress element is used to provide a progress meter on the page. It is used to
indicate progression or completion of a task, and provides the user with an idea of how
much has been done and what still remains. It should not be used for visualizing a
measurement within a known range; for that use the meter element.

Usage
The progress element provides a way of modeling the completion of an ongoing
process, and as such has attributes that allow you to define the current value as well as a
maximum value. The appearance of the bar will vary depending on these settings.

The <progress> tag is not self-closing and the closing tag is required. The
<progress> tag can contain other content that will be rendered if the browser does
not support the <progress> tag.

Syntax

<progress></progress>

Listing 7-24. The progress Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <progress> tag</h1>
 <p>Downloading file1

 <progress max="100" value="10">10/100</progress>
10%</p>
 </article>
 </body>

Properties

The progress element supports the following properties:

max: The maximum value of the activity. This value must be a valid
positive floating point number. If max is not specified, the
maximum value defaults to 1.

value: The current value of the progress. This value must be a
valid floating point number between 0 and max (if specified) or 1
(if max is not specified). If value is not specified, then the
progress bar is considered indeterminate, meaning the activity it is
modeling is ongoing but gives no indication of how much longer it
will take to complete.

In addition, the progress element supports the standard global properties:

accesskey

class

classlist

contenteditable

contextmenu

dataset

dir

draggable

dropzone

hidden

id

lang

spellcheck

style

tabindex

title

Table 7-23. Standards for the progress Element

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/html/wg/drafts/html/master/forms.html#the-
progress-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/forms.html#the-progress-element

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-progress-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-progress-element

CHAPTER 8

HTML5 API Reference

This chapter provides a detailed reference for all of the new HTML5 JavaScript APIs.
For a detailed discussion of these APIs, including examples and support level at time of
press, see Chapter 3.

Server-sent Events
The Server-sent Events API enables an HTML5 client to subscribe to an event service
published by a server. The server can then transmit events to the HTML5 client.

The API for server-sent events is an EventSource constructor in the global
JavaScript scope. EventSource objects implement the EventTarget interface,
similar to DOM elements (so events can be published on them, and event handlers
registered on them). When a new EventSource is instantiated, a URL for an event
service is specified. This instructs the browser to establish a connection to the specified
URL and begin polling it regularly for new events. When an event is received, the
EventSource object will publish an event containing the data that was transmitted.

The server can publish events to the service by providing a standard HTTP
response to a polling query using the text/event-stream MIME type (if that
MIME type is not used, the EventSource object associated with the service will
publish an error event).

The JavaScript API for the EventSource constructor is:

constructor EventSource(DOMString url)
interface EventSource implements EventTarget: {
 readonly DOMString url;
 readonly unsigned short readyState;
 EventHandler onopen;
 EventHandler onmessage;

 EventHandler onerror;
 void close();
}

Syntax

var myEventSource = new
EventSource('http://www.example.com:8030/event-stream/');

The EventSource constructor takes a single parameter of a valid URL indicating
an event service. The resulting interface has the following properties:

url: The URL for the service.

readyState: The current ready state of the interface in the form
of an integer:

0: Connecting to the service.

1: Connected to the service and actively listening for events.

2: Closed (as in after the close method is called, or a fatal
error has occurred in the connection).

onopen: The open event interface.

onmessage: The message event interface.

onerror: The error event interface.

close(): The close method. Calling this method will close the
connection to the service.

Listing 8-1 shows a basic example of using the EventSource constructor (note
that you will need to run this example from a server, rather than just loading it directly
into the browser).

Listing 8-1. Using the EventSource Constructor

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>

 <h1>Server-sent Events Reference</h1>
 <script>
/**
 * Handles message events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleMessage(event) {
 // Handle message.
 console.log('A message was sent from the server: ',
event.data);
}

/**
 * Handles error events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleError(event) {
 // Handle an error.
 console.error('An error happened on the EventSource: ',
event.data);
}

/**
 * Handles an open event published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleOpen(event) {
 // Handle the open event.
 console.log('The connection is now open.');
}

// Create a new connection to the server.
var targetUrl = 'http://www.service.com/my-event-service';
var myEventSource = new EventSource(targetUrl);

// Attach event handlers. Here we are using the
addEventListener method.
// You could also directly attach the event handlers using
the event interfaces,
// e.g. myEventSource.onmessage = handleMessage.
myEventSource.addEventListener('message', handleMessage);
myEventSource.addEventListener('error', handleError);
myEventSource.addEventListener('open', handleOpen);

http://www.service.com/my-event-service

 </script>
 </body>
</html>

An event sent from the server takes the form of a simple HTTP response sent with
the text/event-stream MIME type. Events consist of multiline key: value pairs, and
are terminated by a double line feed. Valid keys are as follows:

data: Specifies a line of arbitrary data to be sent to the client,
which will receive it as the data property of the event object.
Terminating a data value with a double line feed ('\n\n')
signifies the end of a particular event. Multiple data values are
permitted in a single event; just terminate each one with a single
line feed ('\n') and the last with a double line feed.

event: Specifies an arbitrary event type associated with this
server-sent event. This will cause an event of the same name to be
dispatched from the associated EventTarget object, thus
enabling arbitrary events beyond open, message, and error to
be fired from the server. If no event type is specified, the event will
just trigger a message event on the EventTarget.

id: Specifies an arbitrary ID to associate with the event sequence.
Setting an ID on an event stream enables the browser to keep track
of the last event fired, and if the connection is dropped it will send
a last-event-ID HTTP header to the server.

retry: Specifies the number of milliseconds before the browser
should requery the server for the next event. By default this is set to
3000 (three seconds). This enables the server resource to throttle
browser queries and prevent itself from being swamped.

Any arbitrary text can be transmitted as a server-sent event: HTML, CSS, XML,
JSON, and so on. A single response can contain multiple events, and a given event can
contain multiple data attributes. For example:

event: watch\n
data: {\n
data: "type":"flash flood",\n
data: "counties":"['Jefferson', 'Arapahoe', 'Douglas',
'Broomfield']",\n
data: "from":"12:30 pm June 12, 2015",\n
data: "to":"7:00 am June 13, 2015",\n

data: "details":"The National Weather Service has issued
a flash flood watch."\n
data: }\n
event: warning\n
data: {\n
data: "type":"severe thunderstorm",\n
data: "counties":"['Jefferson']",\n
data: "from":"12:30 pm June 12, 2015",\n
data: "to":"1:00 pm June 12, 2015",\n
data: "details":"The National Weather Service has issued
a severe thunderstorm warning."\n
data: }\n\n

This single server-sent event would trigger both a watch event and a warning
event on the associated EventTarget object. The data for the watch event would
be the JSON-formatted text:

{
 "type":"flash flood",
 "counties":"['Jefferson', 'Arapahoe', 'Douglas',
'Broomfield']",
 "from":"12:30 pm June 12, 2015",
 "to":"7:00 am June 13, 2015",
 "details":"The National Weather Service has issued
a flash flood watch."\n
}

And the data for the warning event would be the JSON-formatted text:

{
 "type":" severe thunderstorm ",
 "counties":"['Jefferson']",
 "from":"12:30 pm June 12, 2015",
 "to":"1:00 pm June 12, 2015",
 "details":" The National Weather Service has issued
a severe thunderstorm warning."\n
}

Table 8-1. Standards for Server-sent Events

Specification Status URL

W3C Draft http://dev.w3.org/html5/eventsource/

Living

http://dev.w3.org/html5/eventsource/

WHATWG Standard www.whatwg.org/specs/web-apps/current-
work/multipage/comms.html#server-sent-events

WebSockets
The WebSockets API provides a way of full duplex communication between client and
server through a maintained network connection.

The API for WebSockets is a WebSocket constructor in the global JavaScript
scope. WebSocket objects implement the EventSource interface, similar to DOM
elements (meaning that events can be dispatched on them, and event handlers registered
on them). The constructor requires a URL (the protocol for which must be either ws://
or wss://), and may also take an optional protocol parameter. The protocol is either a
string or an array of strings, each string representing the name of a protocol.

When a new WebSocket is instantiated, the client immediately sends a standard
HTTP 1.1 GET request to the server, and the server then upgrades the connection from
HTTP to the WebSocket network protocol. The connection is then ready to send and
receive data.

Strings, Blobs, and ArrayBuffers may all be transmitted through the
socket. Communication from the server dispatches events on the EventTarget
interface. Communication to the server is done via the send method of the
WebSocket object.

The definition of the API is:

constructor WebSocket(DOMString url, optional (DOMString
or DOMString[]) protocols)
interface WebSocket implements EventTarget {
 readonly DOMString url;
 readonly unsigned short readyState;
 readonly unsigned long bufferedAmount;
 EventHandler onopen;
 EventHandler onerror;
 EventHandler onclose;
 readonly DOMString extensions;
 readonly DOMString protocol;
 void close(optional unsigned short code, optional
USVString reason);
 EventHandler onmessage;
 BinaryType binaryType;
 void send(USVString|Blob|ArrayBuffer data);
};

http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#server-sent-events

Syntax

// Create a web socket without specifying protocols.
var myWebSocket = new WebSocket('ws://www.example.com/');

// Create a web socket and specify one or more protocols.
var myChatWebSocket = new
WebSocket('ws://www.example.com/', chat');
var myWebSocket = new WebSocket('ws://www.example.com/',
['chat', 'json']);

The properties of the interface are:

url: The URL of the service, set when the WebSocket object
was constructed.

readyState: An integer value representing the communication
state of the connection:

0: The client is still in the process of connecting to the
service.

1: The connection is open and ready to use.

2: The connection is closing.

3: The connection is closed and no longer active.

bufferedAmount: The number of bytes that are queued for
sending back to the server, but haven’t been sent yet.

onopen: The open event interface.

onerror: The error event interface.

onclose: The close event interface.

onmessage: The message event interface.

extensions: The name of any file extensions in use by the
server (e.g., zip)

protocol: The name of the protocol that is in use.

binaryType: What type of data is being transmitted (e.g.
'blob' or 'arraybuffer').

send: The send method, used for transmitting data back to the
server. Takes one parameter, which is the data to be sent.

close: The close method, which closes the connection. Can
take two optional parameters, which are typically defined by the
protocol in use:

code: An optional number representing the closing code.

reason: A string containing the reason for closing the
connection.

Listing 8-2 shows a simple implementation of a WebSocket, including stubbed event
handlers (note that you will need to run this example from a server).

Listing 8-2. Using the WebSocket Constructor

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Sockets Reference</h1>
 <script>
// Create a new web socket connection.
var socketUrl = 'ws://www.fgjkjk4994sdjk.com/';
var validProtocols = ['chat', 'json'];
var myWebSocket = new WebSocket(socketUrl,
validProtocols);

/**
 * Handles an error event on the web socket object.
 */
function handleError() {
 console.log('An error occurred on the web socket.');
}

/**
 * Handles a close event on the web socket object.
 * @param {CloseEvent} event The close event object.
 */
function handleClose(event) {
 console.log('The web socket connection was closed
because ', event.reason);
}

http://www.fgjkjk4994sdjk.com/

/**
 * Handles an open event on the web socket object.
 * @param {OpenEvent} event The open event object.
 */
function handleOpen(event) {
 console.log('The web socket connection is open.');
}

/**
 * Handles a message event on the web socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log('A message event has been sent.');

 // The event object contains the data that was
transmitted from the server.
 // That data is encoded either using the chat protocol
or the json protocol,
 // so we need to deterine which protocol is being used.
 if (myWebSocket.protocol === validProtocols[0]) {
 console.log('The chat protocol is active.');
 console.log('The data the server transmitted is: ',
event.data);
 // etc...
 } else {
 console.log('The json protocol is active.');
 console.log('The data the server transmitted is: ',
event.data);
 // etc...
 }
}

// Register the event handlers on the web socket.
myWebSocket.addEventListener('error', handleError);
myWebSocket.addEventListener('close', handleClose);
myWebSocket.addEventListener('open', handleOpen);
myWebSocket.addEventListener('message', handleMessage);
 </script>
 </body>
</html>

 Tip Building a WebSocket server from scratch is a complex task. There are,
however, several open source web socket servers available that you can use in your
projects. If you would like to tackle building one from scratch, see Sections 4, 5, and 6
in the WebSocket Protocol RFC.

Table 8-2. Standards for WebSockets

Specification Status URL

W3C Candidate
Recommendation www.w3.org/TR/websockets/

WHATWG Living Standard https://html.spec.whatwg.org/multipage/comms.html#network

RFC Complete https://tools.ietf.org/html/rfc6455

Cross-Document Messaging/Web
Messaging
Browsers will allow you to open documents from different origins in iframes, but if a
script from one origin attempts to interact with the content from another origin, the
browser will throw an error. The Cross-Document Messaging API (also known as Web
Messaging) defines a secure way for scripts from one origin in one frame to
communicate with scripts from another origin in another frame. This allows scripts from
multiple origins to more safely interact with one another.

The Cross-Document Messaging specification defines a both a new method and a
new event on the window object. The new method is postMessage, and it takes
three parameters:

message: The message you want to transmit from the current
context to the target context. The message is serialized using the
structured clone algorithm, unless you specify that the objects
should instead be transferred using the transfer parameter.

origin: The origin you expect the resources in the target context
to have. If the resources in the target context do not have the
specified origin, the method will have no effect.

transfer: an array of objects that are part of the message that
should have their ownership transferred to the new context.

http://www.w3.org/TR/websockets/
https://html.spec.whatwg.org/multipage/comms.html#network
https://tools.ietf.org/html/rfc6455

Transferring ownership means that the objects will be bound to the
origin of the target context. Transferring ownership is limited to
ArrayBuffer and MessagePort objects.

 Note The structured clone algorithm is defined as part of the HTML5 specification.
You can read it at www.w3.org/TR/html5/infrastructure.html#safe-
passing-of-structured-data. Basically this algorithm allows you to transmit
just about anything from one context to another. The exceptions are functions, DOM
elements, and Error objects, which will throw a DATA_CLONE_ERROR if you
attempt to transmit them.

The new event is the message event, which is dispatched on the window object
when the postMessage method is used to transmit a message. The resulting event
object will have two important attributes:

data: This attribute will contain the message that was sent from
the other context.

source: This attribute will contain the origin of the sending
context. You should always double-check the origin of message
sources to prevent accidentally capturing and processing events
from unexpected (and possibly malicious) origins.

Syntax

var targetIframe = document.getElementById('my-iframe');
targetIframe.contentWindow.postMessage('hello world',
'apress.com');

window.addEventListener('message', function(event) {
 if (event.source === 'apress.com') {
 console.log('A message was received: ',
event.data);
 }
});

To demonstrate using the API, you need two pages served from different origins: a
host page and a target page. The host page will contain an iframe that will load the
target page. The host page will dispatch events to the target page, and the target page
will listen for message events and alert their contents. Listing 8-3 is the host page.

http://www.w3.org/TR/html5/infrastructure.html#safe-passing-of-structured-data

Listing 8-3. The Host Page

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Cross-Domain Messaging</h1>
 <iframe id="target-iframe" src="target-page.html">
</iframe>
 <p><button id="clickme">Click to send a message to the
iframe.</button></p>
 <script>
// Create some objects to transfer.
var testBlob = new Blob(['some data']);
var testBuffer = new ArrayBuffer(100);
var testBuffer2 = new ArrayBuffer(8);

// To transfer multiple objects, we need to wrap them in
a single carrier. The
// names of the properties don't matter, they're just
serving as a place to
// store references to the buffer objects.
var transferObject = {
 buffer1: testBuffer,
 buffer2: testBuffer2
};

var targetFrame = document.getElementById('target-
iframe');

// Reference to the button.
var clickme = document.getElementById("clickme");

// Add a click event handler to the button.
clickme.addEventListener("click", function() {
 // Send a simple text string to the target frame.
 targetFrame.contentWindow.postMessage('hello world',
'*');
 // Send a Blob to the target frame.
 targetFrame.contentWindow.postMessage(testBlob, '*');
 // Transfer multiple array buffers to the target frame.

 targetFrame.contentWindow.postMessage(transferObject,
'*',
 [transferObject.buffer1, transferObject.buffer2]);
});
 </script>
 </body>
</html>

Note that the iframe element’s src is set to load the target page from the same
context. If you have access to a different domain (or even another web server on the
same domain running on a different port) you can serve the target page from there and
thus fully demonstrate that the API allows for sending messages across origins.

Listing 8-4 contains the target page.

Listing 8-4. The Target Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Target iframe</h1>
 <script>
/**
 * Handles a message event on the window object.
 * @param {MessageEvent} event A message event object.
 */
function handleMessage(event) {
 // Create a string for alerting.
 var strAlert = "Target iframe:\n";

 if (event.data.buffer1) {
 // The two buffers have been transferred.
 strAlert += event.data.buffer1 + '\n';
 strAlert += event.data.buffer2 + '\n';
 } else {
 // Just alert the data.
 strAlert += event.data;
 }
 alert(strAlert);
}

// Register the event handler.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

To run the example, click the button. The host page will send three messages to the
target page, resulting in three alerts.

Table 8-3. Standards for Cross-Document Messaging

Specification Status URL

W3C Candidate
Recommendation www.w3.org/TR/webmessaging/

WHATWG Living Standard
www.whatwg.org/specs/web-apps/current-
work/multipage/web-
messaging.html#crossDocumentMessages

Web Storage
The new Web Storage API specifies a new way to store information on the client.
Before Web Storage, the standard way of storing information on the client was with
HTTP cookies, which was messy and inconvenient. Web Storage provides an easier-to-
use storage feature.

Web Storage defines two new interface objects in the global context:
sessionStorage and localStorage. The sessionStorage interface is for
storing data for a single browsing session. When the user closes their browser, the data
will automatically be deleted. The localStorage interface is for storing data across
sessions. Even if the user closes their browser, the data stored in localStorage will
persist.

 Caution All browsers have implemented some form of “private browsing.” When
using this feature, localStorage data is removed when the user ends the session. In
addition, many browsers now have features that will automatically clear
localStorage when the browser is closed even for regular sessions. Your
application should not assume that any data stored in localStorage will always be
available, and should respond appropriately if the expected data is not present.

http://www.w3.org/TR/webmessaging/
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html#crossDocumentMessages

The API also defines the storage event, which is dispatched on the window
object of all documents that are the same as the document where the storage change
occurred, but not the window document where the change occurred. For other DOM
events, if you have a page loaded and an event is dispatched, it is dispatched on the
current page. The storage event does not dispatch on the current page. If you have
multiple versions of the same page open in tabs, the event will dispatch on every
window object except the one that is currently active.

 Caution Currently Internet Explorer dispatches the storage event in all documents,
not just inactive ones. There is a bug filed for the behavior at
https://connect.microsoft.com/IE/feedback/details/774798/localstorage-
event-fired-in-source-window that is currently postponed.

The API definition is:

interface Storage {
 readonly unsigned long length;
 DOMString? key(unsigned long index);
 getter DOMString? getItem(DOMString key);
 setter creator void setItem(DOMString key, DOMString
value);
 deleter void removeItem(DOMString key);
 void clear();
};
interface WindowSessionStorage {
 readonly attribute Storage sessionStorage;
};
interface WindowLocalStorage {
 readonly attribute Storage localStorage;
};

Both localStorage and sessionStorage implement the Storage
interface, and thus have the same methods:

getItem(key): Returns the data associated with the specified
key.

removeItem(key): Removes the data associated with the
specified key.

setItem(key, data): Stores the data in storage with the

https://connect.microsoft.com/IE/feedback/details/774798/localstorage-event-fired-in-source-window

specified key.

clear(): Clears the storage of all contents.

Whenever localStorage is changed using any of those methods, a storage
event is dispatched on the window object of any document that is the same as the
current document. The associated event object is a StorageEvent object, and it
has the following properties:

target: The target property is a reference to the DOM
element on which the event was dispatched. In this case, that is the
window object.

type: The type property is set to storage.

key: The key property contains the key that had its associated data
changed.

oldValue: The oldValue property contains the previous value
of the data.

newValue: The newValue property contains the new value of
the data.

url: The url property contains the URL of the hosting document.

storageArea: The storageArea property will be a
reference to the actual localStorage object.

Listing 8-5 demonstrates using Web Storage.

Listing 8-5. Using Web Storage

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Storage Example</h1>
 <script>

/**
 * Handles a storage event.
 * @param {StorageEvent} event The storage event object.

 */
function handleStorageEvent(event) {
 var alertMsg = 'Storage event!\n';
 alertMsg += 'key: ' + event.key + '\n';
 alertMsg += 'oldValue: ' + event.oldValue + '\n';
 alertMsg += 'newValue: ' + event.newValue + '\n';
 alert(alertMsg);
}

// Register the event handler on the window object.
window.addEventListener('storage', handleStorageEvent,
false);

// Check to see if we've visited this page before.
var myValue = localStorage.getItem('myKey');
if (myValue == null) {
 alert('This is the first time you loaded this page! Now
reload this page.');
 localStorage.setItem('myKey', 'true');
} else {
 alert('You have loaded this page before!');
 localStorage.removeItem('myKey');
}
 </script>
 </body>
</html>

The first time you load the example, it will tell you this is the first time you have
loaded the page. When you reload, it will detect the stored information and then delete
it, thus resetting the test. If you open the example in two tabs you will see the alerts
resulting from the storage events being dispatched on the inactive tabs.

Table 8-4. Standards for Web Storage

Specification Status URL

W3C Candidate
Recommendation www.w3.org/TR/webstorage/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/webstorage.html

Drag and Drop

http://www.w3.org/TR/webstorage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html

The new HTML5 Drag and Drop specification provides a native API for handling drag-
and-drop interactions in the browser. The API is event driven, and using it involves
these steps:

Declare one or more objects as draggable, and attach desired
event handlers.

Attach drop event handlers to target elements.

As the user drags items and drops them on targets, the various
events are dispatched.

Specifying Draggable Elements: The draggable
Property
The draggable property is a new property for DOM elements that indicates the
availability of the element for being a drag target. The property can be set to three
values:

true: Indicates that the element is draggable.

false: Indicates that the element is not draggable.

auto: The browser’s default rules apply. For most elements, the
default rule is false. (The exception is selected text, which can
always initiate a drag interaction.)

Handling the Interactions: Drag-and-Drop Events
The API specifies several new events that occur on either the dragging element or the
elements it is dragged over:

dragstart: Dispatched from the element being dragged.

dragenter: Dispatched from any element when a draggable item
is dragged into it.

dragover: Dispatched continuously from any element as long as
a draggable item is over it. Note that this event fires continuously
regardless of whether or not the draggable item is moving.

dragleave: Dispatched from an element when a draggable item
leaves its boundary.

drag: Dispatched from the element being dragged throughout the
drag sequence. Like dragover this event is fired continuously
regardless of whether the pointer is being moved.

dragend: Dispatched from the element being dragged when the
mouse button is released.

drop: Dispatched from an element when the user drops a
draggable item on it by releasing the mouse button.

Specifying Drop Targets
The API specifies a dropzone attribute that is supposed to indicate that an element
can be a drop target. However, the dropzone attribute is not widely supported, so the
only way to specify a given element is a valid target is through the event handlers.

Generally speaking, the majority of elements in the DOM should not be valid drop
targets, so the default action of the dragover event is to cancel drops. As a result, to
indicate a valid drop target you have to cancel the default action of the dragover
event by calling the preventDefault() method on the event object within the
event handler.

The dataTransfer Object
All of the drag-and-drop events can be handled with standard event handlers, and those
event handlers will receive an event object as a parameter. One of the properties on
drag-and-drop event objects is the dataTransfer object. This object is used to
control the appearance of the drag-and-drop helper (the ghosted visual element that
follows the cursor during the drag-and-drop operation), to indicate what the drag-and-
drop process is doing, and to easily transfer data from the dragstart event to the
drop event.

The dataTransfer object has the following methods:

Event.dataTransfer.addElement(HtmlElement):
Specify the source element of the drag sequence. This affects where
the drag and dragend events are fired from. This is set
automatically at the beginning of the drag interaction, so you
probably won’t need to change it.

Event.dataTransfer.clearData(opt_DataType):
Clear the data associated with a specific DataType (see
setData in this list). If the DataType is not specified, all data
is cleared.

Event.dataTransfer.getData(DataType): Get the
data associated with a specific DataType (see setData, next).

Event.dataTransfer.setData(DataType, data):
Associates the specified data with the DataType. Valid
DataTypes depend on the browser. Internet Explorer only
supports DataTypes of text and url. Other browsers support
standard MIME types and even arbitrary types. The data has to be
a simple string but could conceivably be a JSON-formatted
serialized object. Note that Firefox requires the dataTransfer
object to be initialized with data during the dragstart event in
order for drag and drop events to fire correctly.

Event.dataTransfer.setDragImage(HtmlElement,
opt_offsetX, opt_offsetY): Sets the drag helper image
to the specified HTML element. By default the upper left corner of
the helper image is placed under the mouse pointer, but that can be
offset by specifying the optional parameters opt_offsetX and
opt_offsetY, in pixels. This method is not available in Internet
Explorer and apparently never will be; see
http://connect.microsoft.com/IE/feedback/details/804304/implement-
datatransfer-prototype-setdragimage-method.

The dataTransfer object also has the following properties:

Event.dataTransfer.dropEffect: The drop effect that is
being performed by the drag-and-drop sequence. Valid values are
copy, move, link, and none. This value is automatically
initialized in the dragenter and dragover events based on
what interaction the user has requested through a combination of
mouse actions and modifier keys (e.g., Ctrl-drag, Shift-drag,
Option-drag, etc.). These are platform dependent. Only values
specified by effectAllowed (see next) will actually initiate
drag-and-drop sequences.

Event.dataTransfer.effectAllowed: Specifies which
dropEffects are permitted for this drag-and-drop sequence.
Valid values and the effects they permit are:

http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method

copy: Allow a copy dropEffect.

move: Allow a move dropEffect.

link: Allow a link dropEffect.

copyLink: Allow both a copy and a link dropEffect.

copyMove: Allow both a copy and a move
dropEffect.

linkMove: Allow both a link and a move dropEffect.

all: All dropEffects are permitted. This is the default
value.

none: No dropEffects are permitted (the item cannot
be dropped).

Event.dataTransfer.files: Contains a list of all the files
available on the data transfer. Will only have values if files are
being dragged from the desktop to the browser.

Event.dataTransfer.types: Contains a list of all the
DataTypes that have been added to the dataTransfer object,
in the order in which they were added.

Listing 8-6 demonstrates the Drag and Drop API.

Listing 8-6. The Drag and Drop API at Work

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style type="text/css">
#drag-target,
#drop-target {
 float: left;
 padding: 10px;
 margin: 10px;
 box-sizing: border-box;
}
#drag-target {
 background-color: #008000;

 width:75px;
 height:75px;
}
#drop-target {
 background-color: #0000FF;
 width:150px;
 height:150px;
}
.drag-over {
 border: 5px solid #FF0000;
}
</style>
 </head>
 <body>
 <h1>Drag and Drop Example</h1>
 <div id="drop-target">Target</div>
 <div id="drag-target" draggable="true">Drag me!</div>
 <script>
/**
 * Handles a dragStart event.
 * @param {DragEvent} event The event object.
 */
function handleDragStart(event) {
 // Set the data in the dataTransfer object to the id of
the element being
 // dragged.
 event.dataTransfer.setData("Text",
event.target.getAttribute('id'));
}

/**
 * Handles a dragenter event.
 * @param {DragEvent} event The event object.
 */
function handleDragEnter(event) {
 // Apply a class to the element.
 event.target.classList.add('drag-over');
}

/**
 * Handles a dragleave event.
 * @param {DragEvent} event The event object.

 */
function handleDragLeave(event) {
 // Remove the class from the element.
 event.target.classList.remove('drag-over');
}

/**
 * Handles a dragover event.
 * @param {DragEvent} event The event object.
 */
function handleDragOver(event) {
 // Indicates this element is a valid drop target.
 event.preventDefault();
}

/**
 * Handles a drop event.
 * @param {DragEvent} event The event object.
 */
function handleDrop(event) {
 // Get a reference to the dragging element and append it
to the drop target.
 var src = event.dataTransfer.getData("Text");
 event.target.appendChild(document.getElementById(src));
 event.preventDefault();
}

// Register event handlers.
var dragTarget = document.getElementById('drag-target');
dragTarget.addEventListener('dragstart', handleDragStart);

var dropTarget = document.getElementById('drop-target');
dropTarget.addEventListener('dragenter', handleDragEnter);
dropTarget.addEventListener('dragleave', handleDragLeave);
dropTarget.addEventListener('dragover', handleDragOver);
dropTarget.addEventListener('drop', handleDrop);
 </script>
 </body>
</html>

When you run this example, you’ll be able to drag the drag target (labeled “Drag
me!”) into the drop target (labeled “Target”). It sets the data in the dataTransfer
object to the ID of the drag target during the dragstart event, and then retrieves it

during the drop event and uses it to fetch a reference to the element and move it in the
DOM. This is a very common use case for the Drag and Drop API.

Table 8-5. Standards for Drag and Drop

Specification Status URL

W3C Recommendation www.w3.org/TR/html5/editing.html#dnd

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/dnd.html

Web Workers
The Web Workers API enables you to create threaded JavaScript applications by
creating (or “spawning”) subprocesses to handle certain tasks. Each of these workers
runs its own JavaScript context and performs whatever tasks you set to it. Web Workers
can also spawn other Web Workers.

Communication between Web Worker contexts and the main JavaScript thread is
done via a postMessage interface similar to that used by Web Messaging. This
enables you to pass data into and out of Web Worker contexts, but because all contexts
are independent, any data passed between contexts is copied unless you specifically
transfer it. (See the “Cross-Document Messaging/Web Messaging” section earlier for
more details on sending and transferring data using postMessage).

When you create a new Web Worker, you specify a JavaScript file for it to load and
run. To start it, send a message to it (any message will do). The worker can post
messages back to the parent context or any other Web Workers it has access to.

Web Workers have some important limitations, which are designed to help avoid
the usual pitfalls inherent in writing multithreaded applications:

A Web Worker runs in its own independent JavaScript context. It
has no direct access to anything in any of the other execution
contexts like other Web Workers, or the main JavaScript thread.

Communication between Web Worker contexts and the main
JavaScript thread is done via a postMessage interface similar to
that used by Web Messaging. This enables you to pass data into and
out of Web Worker contexts, but because all contexts are
independent, any data passed between contexts is copied, not
shared.

A Web Worker cannot access the DOM. The only DOM methods

http://www.w3.org/TR/html5/editing.html#dnd
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html

available to a Web Worker are atob, btoa, clearInterval,
clearTimeout, dump, setInterval, and setTimeout.

Web Workers are bound by the Same Origin Policy, so you cannot
load a worker script from a different origin than the original script.

The Web Workers API takes the form of a new WebWorker constructor in the
global JavaScript scope:

constructor WebWorker(DOMstring url)
interface WebWorker implements EventTarget {
 readonly WorkerLocation location;
 void terminate();
 OnErrorEventHandler onerror;
 EventHandler onlanguagechange;
 EventHandler onoffline;
 EventHandler ononline;
 EventHandler onmessage;
};

Syntax

var myWorker = new WebWorker('worker-script.js');

The constructor returns a WebWorker object, which implements the
EventTarget interface. The properties are:

location: The location property is similar to the
document.location object but contains information specific
to the Web Worker (see hereafter for details).

terminate(): The terminate method will end the thread for
the worker. Once a worker has been terminated it is not possible to
restart it.

onerror: The onerror event handler is called when an error
event is dispatched on the worker.

onlanguagechange: The onlanguagechange handler is
dispatched on the worker when the user changes their preferred
language in the browser.

onoffline: The onoffline event handler is called when an
offline event is dispatched on the worker. This occurs when the

browser loses network connectivity and the value of
navigator.onLine is changed to false.

ononline: The ononline event handler is called when an
online event is dispatched on the worker. This occurs when the
browser regains network connectivity.

onmessage: The onmessage event handler is called when a
message event is dispatched on the worker.

The execution context inside of a Web Worker is significantly different than the
global execution context. Web Workers have no access to the DOM, but they do have
access the following properties and methods:

The DOM methods atob, btoa, clearInterval,
clearTimeout, dump, setInterval, and setTimeout.

The XMLHttpRequest constructor, so Web Workers can
perform asynchronous network tasks.

The WebSocket constructor, so Web Workers can create and
manage Web Sockets (as of this writing, Firefox does not enable
WebSocket for Web Workers; however, this feature is being
implemented and you can track its status at
https://bugzilla.mozilla.org/show_bug.cgi?
id=504553)

The Worker constructor, so Web Workers can spawn their own
workers (which are referred to as “subworkers”). As of this
writing, Chrome and Safari do not implement the Worker
constructor for Web Workers. There is a bug filed for Chrome at
https://code.google.com/p/chromium/issues/detail?
id=31666 and for Safari’s WebKit at
https://bugs.webkit.org/show_bug.cgi?
id=22723. Internet Explorer does support subworkers as of
version 10.

The EventSource constructor, so Web Workers can subscribe to
Server-sent Event streams. This appears to be a nonstandard
feature, but seems to be available in all major browsers as of this
writing.

A special subset of the Navigator properties, available through
the navigator object:

https://bugzilla.mozilla.org/show_bug.cgi?id=504553
https://code.google.com/p/chromium/issues/detail?id=31666
https://bugs.webkit.org/show_bug.cgi?id=22723

navigator.language: Returns the current language
the browser is using.

navigator.onLine: Returns a boolean indicating
whether or not the browser is online.

navigator.platform: Returns a string indicating the
platform of the host system.

navigator.product: Returns a string with the name of
the current browser.

navigator.userAgent: Returns the user agent string
for the browser.

The implementation of these properties varies from browser
to browser, so it might be better to pass needed
Navigator information into the Web Worker from the
main thread.

A special subset of Location properties, available on the
location object:

location.href: The full URL of the script being
executed by the Web Worker.

location.protocol: The protocol scheme of the URL
of the script being executed by the Web Worker, including
the final “:”.

location.host: The host part of the URL (the hostname
and port) of the script being executed by the Web Worker.

location.hostname: The hostname part of the URL of
the script being executed by the Web Worker.

location.port: The port part of the URL of the script
being executed by the Web Worker.

location.pathname: The initial ‘/’ followed by the
path of the script being executed by the Web Worker.

location.search: The initial ‘?’ followed by the
parameters (if any) of the URL of the script being executed
by the Web Worker.

location.hash: The initial ‘#’ followed by the

fragment identifier (if any) of the URL of the script being
executed by the Web Worker.

In addition, Web Workers have one special method available only to them:
importScripts. The method takes either a single URL or a comma-delimited list of
URLs of JavaScript files to load and execute in order. The importScripts method
is a blocking method and is bound by the Same Origin Policy.

Syntax

importScripts('test.js');
importScripts('polymer.js', 'custom-element.js',
'jquery.js');

When a Web Worker is started, it follows these steps:

It executes the script from start to finish, including any
asynchronous tasks (such as XMLHttpRequest calls).

If part of its execution was to register a message event handler, it
then goes into a wait loop for incoming messages. The first
message it receives will be the message that was posted to start the
worker. The worker will remain in wait mode until you manually
terminate it, or it terminates itself.

If no message event handlers were registered, the worker thread
will terminate automatically.

To demonstrate a Web Worker you will need two files: a host page that will create
and run the worker, and a stand-alone JavaScript script for the worker to execute.
Listing 8-7 shows a basic host page.

Listing 8-7. Creating and Using a Web Worker

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Workers</h1>
 <div id="message-box"></div>

 <script>

/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 console.warn('Error in web worker: ', event.message);
}

/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event
object.
 */
function handleWorkerMessage(event) {
 displayMessage('Message received from worker: '
+ event.data);
}

/**
 * Displays a message in the message box.
 * @param {string} message The message to display.
 */
function displayMessage(message) {
 // Get a reference to the target element.
 var messageBox = document.getElementById('message-box');

 // Create a new paragraph and set its content to the
message.
 var newParagraph = document.createElement('p');
 newParagraph.innerHTML = message;

 // Append the new paragraph to the target element.
 messageBox.appendChild(newParagraph);
}

// Create a new worker.
var myNewWorker = new Worker('example8-8.js');

// Register error and message event handlers on the
worker.
myNewWorker.addEventListener('error', handleWorkerError);

myNewWorker.addEventListener('message',
handleWorkerMessage);

// Start the worker.
myNewWorker.postMessage('begin');
 </script>
 </body>
</html>

Listing 8-8 is a very basic stand-alone script for a Web Worker.

Listing 8-8. A Simple Web Worker Script

/**
 * Handles a message event from the main context.
 * @param {WorkerMessageEvent} event The message event.
 */
function handleMessageEvent(event) {
 // Do something with the message.
 console.log('Worker received message:', event.data);

 // Send the message back to the main context.
 self.postMessage('Your message was received.');
}

// Register the message event handler.
self.addEventListener('message', handleMessageEvent);

// Dispatch 10 events to the host document.
var counter = 0;
var timer = setInterval(function() {
 counter++;
 self.postMessage('Message #' + counter);
 if (counter == 10) {
 // Stop the timer.
 clearInterval(timer);

 // Throw an error.
 throw new Error();
 }
}, 1000);

 Note The files for this example will need to be served on a regular server for the
code to function. If you simply load the host file in the browser from the filesystem the
browser will throw a cross origin violation error.

Table 8-6. Standards for Web Workers

Specification Status URL

W3C Recommendation http://dev.w3.org/html5/workers/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/workers.html

http://dev.w3.org/html5/workers/
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

CHAPTER 9

Canvas Reference

This chapter will provide a detailed reference for the canvas element and the 2D
drawing context API. For detailed discussions about these features and more examples,
see Chapter 4.

The canvas Element
The HTML5 canvas element enables you to draw bitmaps on web pages by providing
a blank “canvas” to work on. The canvas element itself is a block-level DOM
element. To use a canvas element for drawing, you have to fetch a drawing context
reference from the element. The context exposes an extensive API for drawing that you
can use in your scripts.

The API definition for the canvas element itself is:

Interface HTMLCanvasElement implements HTMLElement {
 unsigned long width;
 unsigned long height;
 renderingContext? getContext(DOMString contextId);
 DOMString toDataURL(optional DOMString type);
}

Syntax

<canvas id="myCanvas" width="100" height="100"></canvas>

<script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

</script>

The properties are

width: The layout width of the element.

height: The layout height of the element.

getContext(): Returns the requested rendering context. All
browsers support the '2D' context, and many support the
'webgl' (in older browsers, 'experimental-webgl')
context.

toDataURL(): Returns a data URI representation of the canvas
bitmap. The optional type parameter is used to specify the format of
the encoded data. Valid options are "image/jpeg",
"image/gif", or "image/png". If no type parameter is
specified, the default is "image/png". The resolution of the
encoded image is 96dpi.

 Tip The data URI scheme is a way of encoding data directly into a document. You
can encode anything in a data URI, but it is most commonly used to encode images.
When an image is encoded as a data URI you can then use that data URI where you
would use a regular URL (e.g., in the src attribute for an image tag). Data URIs are
defined in RFC 2397, at tools.ietf.org/html/rfc2397.

You need to specify the width and height of a canvas element using the width and
height properties on the tag itself and not with CSS. If you use CSS, the aspect ratio
of the drawing context will be incorrect (unless you are specifying the default size of the
canvas element, which is 200 pixels high by 400 pixels wide).

Listing 9-1 shows a basic implementation of a canvas element.

Listing 9-1. A canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;

}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">
</canvas>
 <script>
// Get a DOM reference to the canvas element.
var myCanvas = document.getElementById('myCanvas');

// Get a reference to the 2d drawing context from the
canvas element.
var myContext = myCanvas.getContext('2d');
 </script>
 </body>
</html>

Table 9-1. Standards for the canvas Element

Specification Status URL

W3C Candidate
Recommendation www.w3.org/TR/2dcontext/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/the-canvas-element.html

The Drawing Context
Once you have created a canvas element and retrieved the drawing context from it,
you can use the API on the drawing context to begin drawing. The 2d drawing context is
the most commonly used drawing context, and its API is what this chapter will cover.
The commands provided by the API are simple but provide all the tools you need to
create complex drawings.

The 2d drawing context uses a pen metaphor for drawing, meaning that most
commands to draw something take the form of “From the current position of the pen,
draw this item” or “Draw this item from this position to the current position of the pen.”
The 2d context also employs the concept of paths. A path is an invisible representation
of the item you have just drawn, whether it be a line, a circle, or complex drawing made
up of multiple items. Paths can be stroked (meaning the path is drawn as if a pen stroke
followed it exactly) or filled (meaning all the area contained by the path is filled). Paths
can be stroked and filled with solid colors, gradients, or patterns generated from

http://www.w3.org/TR/2dcontext/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

images. Paths can be open (different starting and ending points) or closed (same starting
and ending points). They need not be continuous; you can have a single path that has
several “pieces” that do not connect. The 2d drawing context only supports having one
path active at a time.

Defining Paths
The 2d drawing context provides a few simple commands for defining paths.

The beginPath Method
This command specifies that you are defining a new path. The previous path will be
cleared from the drawing context.

Syntax

Context.beginPath();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.beginPath();

The closePath Method
This command closes the current path. If the beginning point and the ending point of the
current path are not identical (in other words, if the current path isn’t already closed
visually), this command will close the path by extending it along a straight line between
the two points.

Syntax

Context.closePath();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.closePath();

The moveTo Method
This command moves the pen to the specified coordinates. This provides a way to
create noncontiguous paths.

Syntax

Context.moveTo(x, y);

Table 9-2. Parameters for the moveTo Method

Parameter Type Explanation

x Number The x coordinate of the new location.

y Number The y coordinate of the new location.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.moveTo(10, 10);

Listing 9-2 demonstrates creating and managing paths in the drawing context.

Listing 9-2. Managing Paths

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>

 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Set the stroke style.
myContext.strokeStyle = '#000000';
myContext.lineWidth = 5;

// Create a closed path.
myContext.beginPath();
// Start the path at (30, 10).
myContext.moveTo(30, 10);
// Draw a line from the current pen location at (30, 10)
to (50, 50).
myContext.lineTo(50, 50);
// Draw a line from current pen location at (50, 50) to
(10, 50);
myContext.lineTo(10, 50);
// The pen is now currently at (10, 50). Closing the path
will draw a straight
// line from (10, 50) back to the beginning point of the
path at (30, 10).
myContext.closePath();
// We can't see the path without stroking it.
myContext.stroke();

// Create a new path.
myContext.beginPath();
// Start the path at (60, 10).
myContext.moveTo(60, 10);
// Draw a line from the current pen location at (60, 10)
to (100, 10).
myContext.lineTo(100, 10);

// Move the pen from its current location at (100, 10) to
(100, 50).
myContext.moveTo(100, 50);
// Draw a line from the current pen location at (100, 50)
to (60, 50).
myContext.lineTo(60, 50);
// Give the new shape a different color.
myContext.strokeStyle = '#ff0000';
myContext.stroke();

// Creating a new path will clear the current path from
memory without closing
// the previous one. We can demonstrate this by changing
the stroke style and
// calling stroke again. The previous shape should remain
red.
myContext.beginPath();
myContext.strokeStyle = '#00ff00';
myContext.stroke();
 </script>
 </body>
</html>

Basic Drawing Commands
The 2d drawing context provides a set of methods for drawing curves: lines, arcs, and
so forth.

The lineTo Method
This command draws a path from the current pen position to the specified coordinates.

Syntax

Context.lineTo(x, y);

Table 9-3. Parameters for the lineTo Method

Parameter Type Explanation

x Number The x coordinate of the desired endpoint.

y Number The y coordinate of the desired endpoint.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.lineTo(10, 10);

The arc Method
Draws an arc from startAngle to endAngle along a circle centered at coordinates
(x, y) with radius radius.

Syntax

Context.arc(x, y, radius, startAngle, endAngle,
opt_isAnticlockwise);

Table 9-4. Parameters for the arc Method

Parameter Type Explanation

x Number The x coordinate of the desired center.

y Number The y coordinate of the desired center.

radius Number The radius of the arc, in pixels.

startAngle Number The start angle in radians.

endAngle Number The end angle in radians.

opt_isAnticlockwise Boolean If true the arc will be drawn anticlockwise. Optional; if not provided
the default is false.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Draw an arc starting from 0 to 3 radians.
myContext.arc(50, 50, 10, 0, 3);

The quadraticCurveTo Method
This command draws a quadratic curve starting at the current pen location and ending at
the coordinates (x, y), with the control point at (cp1x, cp1y).

Syntax

Context.quadraticCurveTo(cplx, cply, x, y);

Table 9-5. Parameters for the quadraticCurveTo Method

Parameter Type Explanation

cplx Number The x coordinate of the control point.

cply Number The y coordinate of the control point.

x Number The x coordinate of the end of the curve.

y Number The y coordinate of the end of the curve.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.quadraticCurveTo(50, 50, 10, 10);

The bezierCurveTo Method
Draws a bezier curve starting at the current pen location and ending at the coordinates
(x, y), with control point 1 specified by (cp1x, cp1y) and control point 2
specified by (cp2x, cp2y).

Syntax

Context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y);

Table 9-6. Parameters for the bezierCurveTo Method

Parameter Type Explanation

cp1x Number The x coordinate of control point 1.

cp1y Number The y coordinate of control point 1.

cp2x Number The x coordinate of control point 2.

cp2y Number The y coordinate of control point 2.

x Number The x coordinate of the end point.

y Number The y coordinate of the end point.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.bezierCurveTo(50, 50, 10, 10);

The rect Method
This comand draws a rectangle starting at coordinates (x, y) with the width and
height specified.

Syntax

Context.rect(x, y, width, height);

Table 9-7. Parameters for the rect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle, in pixels.

height Number The height of the rectangle, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.rect(50, 50, 10, 10);

Stroking and Filling Paths
As mentioned, the basic drawing commands create paths on the canvas that aren’t
visible. To make paths visible, you have to use the commands for stroking or filling.
The 2d drawing context also provides a set of properties for defining the styles of
strokes and fills.

The strokeStyle Property
This property specifies the style that should be applied in subsequent calls to the
stroke method. This property can take any valid CSS color string (e.g., 'red',
'#ff0000', 'rgb(255, 0, 0)', etc.), a Gradient object, or a Pattern
object. (See hereafter for how to define Gradient and Pattern objects.)

Syntax

Context.strokeStyle = StrokeStyleValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.strokeStyle = '#FF0000';

The stroke Method
This command strokes the current path with the currently set stroke style.

Syntax

Context.stroke();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.strokeStyle = '#FF0000';
myContext.strokePath();

The fillStyle Property
This property specifies the style that should be applied in subsequent calls to the fill
method. The property can take any valid CSS color string (e.g., 'red', '#ff0000',
'rgb(255, 0, 0)', etc.), a Gradient object, or a Pattern object. (See
hereafter for how to define Gradient and Pattern objects.)

Syntax

Context.fillStyle = FillStyleValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.fillStyle = '#FF0000';

The fill Method
This command fills the current path with the currently set fill style.

Syntax

Context.fill();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.fillStyle = '#FF0000';
myContext.fillPath();

The lineWidth Property
This property defines the thickness in units of the stroke applied to paths. If not set this
property defaults to 1.

Syntax

Context.lineWidth = Number;

Table 9-8. Values for the lineCap Property

Value Explanation

butt The line ends are squared off and end precisely at the specified endpoint. This is the default value.

round The line ends are rounded and end slightly over the specified endpoint.

square The line ends are squared by adding a box to the end of the line whose width is equal to the width
of the line and whose height is half of the width of the line.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.lineWidth = 2;

The lineCap Property
This property defines how lines are capped. Valid values are 'butt', 'round', or
'square'.

Syntax

Context.lineCap = LineCapValue;

Table 9-9. Values for the lineJoin Property

Value Explanation

bevel The joints are beveled.

miter The joints are mitered.

round The joints are rounded.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.lineCap = 'round';

The lineJoin Property
This property defines how connecting lines are joined together. Valid values are
'bevel', 'miter', or 'round'.

Syntax

Context.lineJoin = LineCapValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.lineJoin = 'round';

Listing 9-3 provides an example of using the basic drawing commands and fill and
stroke commands to create functions that will easily draw circles.

Listing 9-3. Circles Yay

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

/**
 * Draws a circle of the specified dimensions at the
target coordinates and
 * fills it with the current fill style.
 * @param {number} x The x coordinate of the center of the
circle.
 * @param {number} y The y coordinate of the center of the
circle.
 * @param {number} radius The radius of the circle.
 */
function fillCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);
 myContext.fill();
 myContext.closePath();
}

/**
 * Draws a circle of the specified dimensions at the
target coordinates and
 * strokes it with the current stroke style.
 * @param {number} x The x coordinate of the center of the
circle.
 * @param {number} y The y coordinate of the center of the
circle.
 * @param {number} radius The radius of the circle.
 */
function strokeCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);

 myContext.stroke();
 myContext.closePath();
}

// Set a fill style and draw a filled circle.
myContext.fillStyle = 'rgb(0, 0, 0)';
fillCircle(65, 65, 50);

// Set a stroke style and draw a stroked circle.
myContext.strokeStyle = 'rgb(0, 0, 0)';
myContext.lineWidth = 2;
strokeCircle(135, 135, 50);
 </script>
 </body>
</html>

Drawing Rectangles
In addition to basic paths, the 2d drawing context has a few functions for drawing
simple rectangles. You could draw these with the basic path commands, but these
convenience methods make it easier.

The fillRect Method
This command draws a rectangle at the specified coordinates and with the specified
width and height, filled with the current fill style.

Syntax

Context. fillRect(x, y, width, height);

Table 9-10. Parameters for the fillRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.fillStyle = '#000000';
myContext.fillRect(50, 50, 10, 10);

The strokeRect Method
This command draws a rectangle at the specified coordinates and with the specified
width and height stroked with the current stroke style.

Syntax

Context. strokeRect(x, y, width, height);

Table 9-11. Parameters for the strokeRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.strokeStyle = '#000000';
myContext.strokeRect(50, 50, 10, 10);

The clearRect Method
This command clears the specified rectangular area of any other drawing.

Syntax

Context. clearRect(x, y, width, height);

Table 9-12. Parameters for the clearRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.clearRect(50, 50, 10, 10);

Listing 9-4 demonstrates drawing rectangles.

Listing 9-4. Random Rectangles

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');

var myContext = myCanvas.getContext('2d');

// Create a loop that will draw a random rectangle on the
canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 var randX = getRandomIntegerBetween(0, 150);
 var randY = getRandomIntegerBetween(0, 150);
 var randWidth = getRandomIntegerBetween(10, 100);
 var randHeight = getRandomIntegerBetween(10, 100);
 myContext.beginPath();
 myContext.strokeRect(randX, randY, randWidth,
randHeight);
 randStroke();
 myContext.closePath();
}

/**
 * Returns a random integer between the specified minimum
and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 */
function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
}

/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {
 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return 'rgb(' + randRed + ', ' + randGreen + ', '
+ randBlue + ')';

}

/**
 * Performs a randomized stroke on the current path.
 */
function randStroke() {
 myContext.lineWidth = getRandomIntegerBetween(1, 10);
 myContext.strokeStyle = getRandRGB();
 myContext.stroke();
}
 </script>
 </body>
</html>

Gradients and Patterns
Canvas has great support for gradients and patterns. Both patterns
and gradients are represented by objects returned from construction
functions. These objects can then be used as the values for fill or
stroke styles.

The createLinearGradient Method
This method creates a linear gradient starting at coordinates (startX, startY)
and ending at coordinates (endX, endY). Returns a Gradient object that can be
used as a stroke or fill style.

Syntax

Context.createLinearGradient(startX, startY, endX, endY);

Table 9-13. Parameters for the createLinearGradient Method

Parameter Type Explanation

startX Number The x coordinate of the start of the gradient.

startY Number The y coordinate of the start of the gradient.

endX Number The x coordinate of the end of the gradient.

endY Number The y coordinate of the end of the gradient.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

var myGradient = myContext.createLinearGradient(50, 50,
10, 10);

The createRadialGradient Method
This method creates a radial gradient consisting of two circles, the first one centered at
(x, y) with radius r, and the other centered at (x1, y1) with radius r1. Returns a
Gradient object that can be used as a stroke or fill style.

Syntax

Context.createRadialGradient(x, y, r, x1, y1, r1);

Table 9-14. Parameters for the createRadialGradient Method

Parameter Type Explanation

x Number The x coordinate of the center of the first circle.

y Number The y coordinate of the center of the first circle.

r Number The radius of the first circle.

x1 Number The x coordinate of the center of the second circle.

y1 Number The y coordinate of the center of the second circle.

r1 Number The radius of the second circle.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

var myGradient = myContext.createRadialGradient(50, 50,
50, 50, 50, 100);

The addColorStop Method

This command adds a color stop to a Gradient. The position parameter must be
between 0 and 1 and defines the relative position within the gradient of the color stop.
The color can be any valid CSS color value. You can add as many color stops as you
want to a particular Gradient.

Syntax

Gradient.addColorStop(position, color);

Table 9-15. Parameters for the lineTo Method

Parameter Type Explanation

position Number The position of the color stop.

color CssColorValue The color of the color stop.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

var myGradient = myContext.createRadialGradient(50, 50,
50, 50, 50, 100);
myGradient.addColorStop(0, '#FF0000');
myGradient.addColorStop(1, '#000000');

The createPattern Method
This command creates a Pattern object that can be used as a fill or stroke style. The
Image parameter must be any valid Image (see “Images” section next for details).
The repeat parameter specifies how the pattern image is repeated, and must be one of
'repeat', 'repeat-x', 'repeat-y', or 'no-repeat'.

Syntax

Gradient.createPattern(position, color);

Table 9-16. Parameters for the createPattern Method

Parameter Type Explanation

image Image The image to use to create the pattern.

repeat string How to repeat the image to create the pattern.

Table 9-17. Valid Values for the Repeat Parameter

Value Explanation

repeat Tile the image both horizontally and vertically.

repeat-x Repeat the image only horizontally.

repeat-y Repeat the image only vertically.

no-repeat Do not repeat the image at all.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

var myImage = document.getElementById('myImage');

var myPattern = myContext.createPattern(myImage,
'repeat');

Listing 9-5 demonstrates using radial gradients to fill random circles.

Listing 9-5. Generating and Using Radial Gradients to Fill Shapes

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!

 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

/**
 * Draws a circle of the specified dimensions at the
target coordinates and
 * fills it with the current fill style.
 * @param {number} x The x coordinate of the center of the
circle.
 * @param {number} y The y coordinate of the center of the
circle.
 * @param {number} radius The radius of the circle.
 */
function fillCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);
 myContext.fill();
 myContext.closePath();
}

/**
 * Returns a random integer between the specified minimum
and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 */
function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
}

/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {

 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return 'rgb(' + randRed + ', ' + randGreen + ', '
+ randBlue + ')';
}

// Create a loop that will draw a random circle on the
canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 // Get a random set of coordinates for the new circle.
 var randX = getRandomIntegerBetween(50, 150);
 var randY = getRandomIntegerBetween(50, 150);
 // Get a random radius.
 var randRadius = getRandomIntegerBetween(10, 50);
 // Create a gradient object based on the coordinates we
just generated.
 var randGrad = myContext.createRadialGradient(randX,
randY, 0, randX, randY,
 randRadius);
 // Create some random colors and add them as color stops
to the gradient.
 var randColor1 = getRandRGB();
 var randColor2 = getRandRGB();
 randGrad.addColorStop(0, randColor1);
 randGrad.addColorStop(1, randColor2);
 // Set the fill style and draw the circle.
 myContext.fillStyle = randGrad;
 fillCircle(randX, randY, randRadius);
}
 </script>
 </body>
</html>

Images
The 2d drawing context can also load and manipulate images. Valid image sources are
an img element, a video element, or another canvas element. An image source
doesn’t have to be rendered as part of the DOM, so you can dynamically create tags and

load content as needed without necessarily having to attach them to the DOM. Once an
image is loaded into a canvas, you can also draw on it with the drawing commands.

Canvas has one method for drawing images, drawImage, but it can take many
different parameters and thus has multiple capabilities.

Drawing an Image
When you provide drawImage with an image source, an x coordinate, and a y
coordinate, it will draw the image at the coordinates.

Syntax

Context.drawImage(image, x, y);

Table 9-18. Parameters for the drawImage Method When Simply Drawing an
Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

x Number The x coordinate of the image.

y Number The y coordinate of the image.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');

myContext.drawImage(myImage, 10, 10);

Scaling an Image
When you provide drawImage with an image source, an x coordinate, a y coordinate,
a width, and a height, it will draw the image at the coordinates and scale the image to
the specified width and height.

Syntax

Context.drawImage(image, x, y, width, height);

Table 9-19. Parameters for the drawImage Method When Scaling an Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

x Number The x coordinate of the image.

y Number The y coordinate of the image.

width Number The desired width of the image, in pixels.

Height Number The desired height of the image, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');

myContext.drawImage(myImage, 10, 10, 50, 50);

Drawing a Slice of an Image
You can also select a specific area on an image (a “slice”) and draw just that on the
canvas.

Syntax

Context.drawImage(image, sliceX, sliceY, sliceWidth,
sliceHeight, x, y);

Table 9-20. Parameters for the drawImage Method When Drawing a Slice of an
Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

sliceX Number The x coordinate on the image of the upper left corner of the slice.

sliceY Number The y coordinate of the image of the upper left corner of the slice.

sliceWidth Number The desired width of the slice, in pixels.

sliceHeight Number The desired height of the slice, in pixels.

x Number The x coordinate at which to draw the image slice.
y Number The y coordinate at which to draw the image slice.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');

myContext.drawImage(myImage, 10, 10, 50, 50, 0, 0);

Listing 9-6 demonstrates loading an image into our basic canvas template.

Listing 9-6. Loading an Image into a canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://lorempixel.com/g/200/200/cats';

// We can't do anything until the image has successfully

http://lorempixel.com/g/200/200/cats

loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 0, 0);
};
 </script>
 </body>
</html>

Here you’re simply loading a random placeholder image into the canvas at position
(0, 0). Listing 9-7 shows a more complex manipulation of an image.

Listing 9-7. Manipulating an Image Using Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://lorempixel.com/g/300/300/cats';

// We can't do anything until the image has successfully
loaded.
myImage.onload = function() {

http://lorempixel.com/g/300/300/cats

 myContext.drawImage(myImage, 25, 25, 150, 150, 0, 0,
150, 50);
};
 </script>
 </body>
</html>

Here you’re loading a 300 × 300 placeholder image, but slicing only a 75 × 75
portion of it starting at (25, 25). Then you take that slice and render it in the
canvas, scaling it to be 150 × 50.

Text
The 2d drawing context can also be used to render text.

The fillText Method
This method fills the specified text on the canvas starting at the specified coordinates
with the current fill style. If the optional maxWidth parameter is specified, and the
rendered text would exceed that width, the browser will attempt to render the text in
such a way as to fit it within the specified width (use a condensed font face if available,
use a smaller font size, etc.).

Syntax

Context.fillText(textString, x, y, opt_maxWidth);

Table 9-21. Parameters for the fillText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

x Number The x coordinate at which the text should be rendered.

y Number The y coordinate at which the text should be rendered.

opt_maxWidth Number A maximum width, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');

var myContext = myCanvas.getContext('2d');

myContext.fillText('Hello world!', 10, 10, 200);

The measureText Method
This method measures the width that would result if the specified text were to be
rendered using the current style. Returns a TextMetrics object that has a width
property that contains the value. This provides a way for you to test how well text will
fit in a given area without actually having to render it.

Syntax

Context.measureText(textString);

Table 9-22. Parameters for the measureText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

var textMetric = myContext.measureText('Hello world!');
var calculatedWidth = textMetric.width;

The strokeText Method
This method strokes the specified text on the canvas starting at specified coordinates
with the current stroke style. If the optional maxWidth parameter is specified, and the
rendered text would exceed that width, the browser will attempt to render the text in
such a way as to fit it within the specified width (use a condensed font face if available,
use a smaller font size, etc.).

Syntax

Context.strokeText(textString, x, y, opt_maxWidth);

Table 9-23. Parameters for the strokeText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

x Number The x coordinate at which the text should be rendered.

y Number The y coordinate at which the text should be rendered.

opt_maxWidth Number A maximum width, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.strokeText('Hello world!', 10, 10, 200);

The font Property
This property defines the font that the text will be rendered in. Any valid CSS font string
is permitted, but note that the user has to have the specified font installed on their
system.

Syntax

Context.font = CssFontString;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.font = 'arial, helvetica, sans-serif';

The textAlign Property
This property defines how the text is aligned when it is rendered. Valid values are
'left', 'right', 'center', 'start', and 'end'.

Syntax

Context.textAlign = AlignValue;

Table 9-24. Values for the textAlign Property

Value Explanation

left Left-align the text.

right Right-align the text.

center Center the text.

start Align the text at the starting side for the current locale (that is, left for left-to-right languages and
right for right-to-left languages). This is the default value.

end Align the text at the ending side for the current locale.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.textAlign = 'center';

The textBaseline Property
This property defines the baseline of the text when it renders. Valid values are
'alphabetic', 'bottom', 'hanging', 'ideographic', 'middle', and
'top'.

Syntax

Context.textAlign = AlignValue;

Table 9-25. Values for the textBaseline Property

Value Explanation

alphabetic Use the normal alphabetic baseline for the text. This is the default value.

bottom The baseline is the bottom of the em square.

hanging Use the hanging baseline for the text.

ideographic Use the bottom of the body of characters (assuming they protrude beneath the alphabetic
baseline).

middle The text baseline is the middle of the em square.

top The text baseline is the top of the em square.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.textAlign = 'center';

Listing 9-8 demonstrates rendering text using the text commands.

Listing 9-8. Rendering Text in Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.lineWidth = 2;
myContext.textAlign = 'center';
myContext.strokeText('Hello World', 100, 100);

 </script>
 </body>
</html>

Shadows
The canvas element can also cast shadows based on the elements drawn upon it. This
is most often used with text, but it also works with shapes and paths. If you're already
familiar with CSS drop shadows, the parameters for canvas shadows will be very
familiar.

The shadowBlur Property
This property defines the size of the blurring effect. Valid values are 0 (no blur, which
is the default) or any positive integer.

Syntax

Context.shadowBlur = ShadowBlurValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.shadowBlur = 5;

The shadowColor Property
This property defines the color of the shadow. Any CSS color string is a valid value.
The default is 'rgba(0, 0, 0, 0)'.

Syntax

Context.shadowColor = CssColorValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.shadowColor = '#00FF00';

The shadowOffsetX Property
This property defines the x-offset of the shadow. Valid values are any positive or
negative integer, or 0 (which is the default).

Syntax

Context.shadowOffsetX = OffsetValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.shadowOffsetX = 5;

The shadowOffsetY Property
This property defines the y-offset of the shadow. Valid values are any positive or
negative integer, or 0 (which is the default).

Syntax

Context.shadowOffsetY = OffsetValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.shadowOffsetY = 5;

Listing 9-9 demonstrates creating a drop shadow on text.

Listing 9-9. Drop Shadows in Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Define a shadow.
myContext.shadowBlur = 2;
myContext.shadowColor = 'rgba(0, 100, 0, 0.5)';
myContext.shadowOffsetX = 5;
myContext.shadowOffsetY = 5;

myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.lineWidth = 2;
myContext.textAlign = 'center';
myContext.strokeText('Hello World', 100, 100);
 </script>
 </body>
</html>

Compositing

Whenever you draw a new element on the canvas, the compositor looks at what is
already present on the canvas. This current content is referred to as the destination. The
new content is referred to as the source. Then the compositor draws the source in
reference to the destination according to the currently active compositor.

The globalCompositeOperation Property
This property specifies which compositor is currently active.

Syntax

Context.globalCompositeOperation = CompositorValue;

Table 9-26. Values for the globalCompositeOperation Property

Value Explanation

source-
over Draw source content over destination content. This is the default compositor.

source-
atop Source content is only drawn where it overlaps the destination content.

source-in Source content is only drawn where both source and destination content overlap. Everything
else is made transparent.

source-out Source content is only drawn where it does not overlap destination content. Everything else is
made transparent.

destination-
over Source content is drawn underneath destination content.

destination-
atop

Source content is only kept where it overlaps the destination content. The destination content
is drawn underneath the source. Everything else is made transparent.

destination-
in

Source content is only kept where it overlaps with the destination content. Everything else is
made transparent.

destination-
out

Source content is only kept where it does not overlap with the destination content. Everything
else is made transparent.

copy Only draws the destination content. Everything else is made transparent.

lighter Where destination content and source content overlap, the color is determined by adding the
values of the two contents.

xor The destination content is rendered normally except where it overlaps with source content, in
which case both are rendered transparent.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.globalCompositeOperation = 'source-atop';

Listing 4-16 in Chapter 4 provides a dynamic example of all of these properties.

Clipping
You can limit the drawing area of the canvas to any closed path that you have defined.
This is referred to as clipping.

The clip Method
This command allows you to create a clipping area based on the current path. Only
content contained within the clipping area will display. To reset the clipping area, you
can do one of three things:

You can define a path that encompasses the entire canvas, and then
clip to that.

You can restore to a previous drawing state with a different
clipping area. This is the most common solution. You can save the
drawing state before clipping, then restore it when you’re done. See
the “Saving and Restoring Canvas State” section hereafter for
details on how to save state.

You can reset the entire canvas by resizing it.

Syntax

Context.clip();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.clip();

Listing 9-10 demonstrates creating a clipping area and using it to clip off the corners
of a square.

Listing 9-10. Creating a Clipping Area

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Create a circular clipping area.
myContext.beginPath();
myContext.arc(100, 100, 50, 0, 7);
myContext.clip();

// Draw a square in the canvas and fill it. Only the
portion within the clipping
// area will be visible, so the corners will be cut off.
myContext.beginPath();
myContext.rect(60, 60, 80, 80);
myContext.fillStyle = 'black';
myContext.fill();
 </script>
 </body>
</html>

Transformations
The 2d drawing context supports various types of transformations. Once a
transformation is set it will be applied to everything that is rendered from that point on.

The translate Method
This method moves the origin of the canvas from its current position to the new position
specified by the coordinates.

Syntax

Context.translate(translateX, translateY);

Table 9-27. Parameters for the translate Method When Scaling an Image

Parameter Type Explanation

translateX Number The new x coordinate of the origin.

translateY Number The new y coordinate of the origin.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.translate(10, 50);

The rotate Method
This method rotates the canvas clockwise around the origin by the specified angle in
radians.

Syntax

Context.rotate(angle);

Table 9-28. Parameters for the translate Method When Scaling an Image

Parameter Type Explanation

angle Number The angle of the rotation, in radians.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.rotate(2);

The scale Method
This method scales the canvas units by scaleX horizontally and scaleY vertically.

Syntax

Context.scale(scaleX, scaleY);

Table 9-29. Parameters for the scale Method When Scaling an Image

Parameter Type Explanation

scaleX Number The amount to scale the x axis.

scaleY Number The amount to scale the y axis.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

myContext.translate(10, 50);

The transform Method
This method allows you to specify a generic transformation matrix:

.

The rotate, translate, and scale shorthand methods all map to
transformation matrices and thus calls to the transform method. For example,
Context.translate(translateX, translateY) maps to
Context.transform(1, 0, 0, 1, translateX, translateY) and
Context.scale(scaleX, scaleY) maps to
Context.transform(scaleX, 0, 0, scaleY, 0, 0).

Syntax

Context.transform(scaleX, skewX, skewY, scaleY,
translateX, translateY);

Table 9-30. Parameters for the bezierCurveTo Method

Parameter Type Explanation

scaleX Number The amount to scale the x axis.

skewX Number The amount to skew the x axis.

skewY Number The amount to skew the y axis.

scaleY Number The amount to scale the y axis.

translateX Number The x coordinate of the new origin.

translateY Number The y coordinate of the new origin.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Reset all transformations.
myContext.transform(0, 0, 0, 0, 0, 0);

Listing 9-11 demonstrates using the scale and translate transforms.

Listing 9-11. Using the scale and translate Transforms

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>

canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

/**
 * Draws a 100x100 square at (0, 0) in the specified
color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = '#000';
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}

// Draw a square, fill it with red.
drawSquare('rgba(255, 0, 0, 0.5)');

// Translate the canvas.
myContext.translate(20, 40);

// Scale the canvas.
myContext.scale(1, 1.5);

// Draw the same square again, fill it with blue.
drawSquare('rgba(0, 0, 255, 0.5)');

// Translate the canvas again.
myContext.translate(50, -20);

// Scale the canvas again.
myContext.scale(1.5, 1);

// Draw the same square again, fill it with green.
drawSquare('rgba(0, 255, 0, 0.5)');
 </script>
 </body>
</html>

Saving and Restoring Canvas State
The 2d drawing context includes a basic state management system. A given state is
made up of the following properties in the context:

The current value for globalAlpha

The current strokeStyle and fillStyle

The current line settings in lineCap, lineJoin,
lineWidth, and miterLimit

The current shadow settings in shadowBlur, shadowColor,
shadowOffsetX, and shadowOffsetY

The current compositing operation set in
globalCompositeOperation

The current clipping path

Any transformations that have been applied to the drawing context

State is saved in a last-in first-out stack, so the last state you saved will be the first
one available for retrieving. There is no way to skip around in the stack.

The save Method
This command saves the current context to the stack.

Syntax

Context.save();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Saves an initial "blank" canvas state before anything
has been drawn or set.
myContext.save();

The restore Method
This command removes the most recently stored state from the stack and restores it to
the context.

Syntax

Context.restore();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Saves an initial "blank" canvas state before anything
has been drawn or set.
myContext.restore();

Listing 9-12 demonstrates saving and restoring state.

Listing 9-12. Saving and Restoring Drawing Context State

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>

canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="210">Did
You Know: Every time
 you use a browser that doesn't support HTML5,
somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

// Create an array of colors to load into the stack.
var allTheColors = ['#ff0000', '#ff8800', '#ffff00',
'#00ff00', '#0000ff',
 '#4b0082', '#8f00ff'];

// Load the colors and stroke style into the stack.
for (var i = 0; i < allTheColors.length; i++) {
 myContext.strokeStyle = allTheColors[i];
 myContext.lineWidth = 30;
 myContext.save();
}

// Restore colors from the stack and draw.
for (var i = 0; i < 8; i++) {
 myContext.restore();
 myContext.beginPath();
 myContext.moveTo(0, ((30 * i) + 15));
 myContext.lineTo(200, ((30 * i) + 15));
 myContext.stroke();
}
 </script>
 </body>
</html>

APPENDIX A

JavaScript Tips and Techniques

JavaScript is the de facto programming language of the Web, and is the primary tool
you’ll be using to interact with the HTML5 features covered in this book. In this chapter
I’ll cover a few tips on organizing the JavaScript for your applications, and some more
powerful techniques you can use to simplify your scripts. This brief chapter isn’t meant
to be a full JavaScript reference—for that, you can consult other Apress titles, such as
JavaScript Programmer’s Reference.

Code Formatting
Generally speaking, I avoid holy wars about code formatting styles such as bracketing
and indentation. Usually the individual choices don’t matter because what is more
important is consistency throughout your code. You should always use the same
bracketing style, comment style, indentation choice, and so on because it will help keep
your code readable. Even if you’re the only one who will ever look at your code, it’s
still important.

With JavaScript, however, these choices can matter. Bracket placement, for
example, matters in certain cases in JavaScript. Consider this code snippet:

function test1tbs() {
 return {
 objectLiteral: ’value’,
 isExpected: true
 };
}

This example follows the so-called One True Brace Style (occasionally abbreviated
as 1TBS), in which the opening bracket of a function definition (and an object literal) is

on the same line as its declaration. This is the style I’ve used in the examples throughout
the book. However, the same example could be written using Allman-style bracket
placement:

function testAllman()
{
 return
 {
 objectLiteral: ’value’,
 isExpected: false
 };
}

These two functions will have vastly different results. The test1tbs function will
return the object literal that is defined inline as part of the return statement, while code
containing the testAllman function won’t even run (the JavaScript engine will throw
an error). In other languages these two functions would be identical.

In addition, the ECMAScript standard that governs the behavior of JavaScript also
defines rules about how missing semicolons should be interpreted. This is called
Automatic Semicolon Insertion (ASI) and is a feature of the language, but it can
occasionally lead to surprising results. This is why the de facto bracketing style in
JavaScript code is the 1TBS style and not the more spacious Allman style.

JavaScript Rewards Verbosity
As you’ve read the examples throughout this book, you’ve probably noticed that the
code style is fairly verbose. There are expansive comments, variable and function
names tend to be long and descriptive, and so forth. This is partially because the code
samples are designed to be easy to read and understand, but overall this level of
verbosity isn’t that much higher than the code I write on a daily basis.

JavaScript has several convenience features such as ASI, type coercion (which
comes into play when you compare two variables of different types), and so forth.
Sometimes these features can cause surprising results. Verbose code helps avoid these
surprises by reminding you what your variables and functions are supposed to be doing,
and by providing documentation of logical flow and expected behaviors. It also makes
debugging easier, and if you’re collaborating with other people it will help them learn
your code more quickly.

Comment Annotations
Also, in the book’s examples I’ve been annotating code using a specific comment
format. If you’re familiar with either JSDoc or JavaDoc, these comments will look
familiar, because the format is derived from JSDoc. If you’re not familiar with JSDoc,
it’s a standard for comments in JavaScript code that not only provides a great way of
explaining the code, but also allows you to use parsing tools to generate actual
documentation from the comments. In the examples, I haven’t been using the full
capabilities of JSDoc—I’ve just been focusing on providing type annotations. If you’re
familiar with annotating code for the Closure JavaScript compiler, these comments will
be quite familiar.

 Tip To learn more about annotating code for the Closure compiler, and using the
Closure compiler in your projects, see
https://developers.google.com/closure/compiler/docs/js-
for-compiler. You can learn more about JSDoc and automatic documentation
generators at www.usejsdoc.org/.

For every function, the comments specify the following:

A description of what the function is supposed to do.

The expected data type of each parameter for the function (if any).

The data type of the return value (if any).

Whether or not the function is meant to be private (only applicable
for members of a class).

For example, consider this function from Chapter 4:

/**
 * Returns a random integer between the specified minimum
and maximum values.
 * @param {number} min The lower boundary for the random
number.
 * @param {number} max The upper boundary for the random
number.
 * @return {number}
 */

https://developers.google.com/closure/compiler/docs/js-for-compiler
http://www.usejsdoc.org/

function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1))
+ min;
}

You may be wondering what the value is of defining a parameter’s expected type in
a dynamically typed language like JavaScript. Obviously you can pass in any values you
want and the JavaScript engine will coerce the values as best it can, which could
possibly cause the function to return an unexpected result. By defining expected data
types in the function definition, you not only indicate what the function needs in order to
avoid unexpected results—you also make it easier to use the function later after you
have forgotten the details yourself. Further, if you’re collaborating with a team, you
make it easier for them to use the function. In the particular case of this book, my
intention is that the type annotations will help make the examples easier to understand.

JavaScript doesn’t directly support the concept of public or private properties or
methods. Specifying the @private tag on a property or method helps define class
structures in a more traditional way and can make JavaScript code a little more
palatable to people used to languages with more rigorous encapsulation features. I also
find it helpful to keep in mind what interfaces I intend to be public or private, because if
I then find myself needing to change those decisions it often indicates that the underlying
class structure needs revision.

In this book I’ve used these tags:

@private: Indicates that the property or method is considered
private to its context. Typically this isn’t enforced in any way and
only helps clarify intent.

@constructor: Indicates that the function is a JavaScript
constructor, which will instantiate and return the specified object
type when used in conjunction with the new keyword.

@param: Indicates a parameter for a function or method. A
@param definition will include a type definition in brackets, the
name of the parameter as used throughout the function, and an
optional description of what the parameter is. Optional parameters
are indicated with the Optional operator (see hereafter for details).

@return: Indicates that the function returns a value. A @return
tag will include a type definition in brackets, indicating the data
type of the return value.

@type: Indicates the type of a variable or property as it is being
defined.

Type definitions are an important part of the annotations. All type definitions are
enclosed in curly brackets. Since JavaScript is dynamically typed, type annotations can
specify multiple data types, with each data type separated by a vertical slash. For
example:

{boolean}

specifies a boolean type, while

{boolean|number}

specifies that the type can be either a boolean or a number.

Compound types are specified using angular brackets. For example:

{Array<boolean>}

specifies that the type is an array of booleans, while

{Object<string, number>}

specifies that the object has keys that are strings and the associated values are
numbers.

There are also a few operators used in type definitions:

Nullable: The ? operator indicates that the type can be the specified
data type or null. Thus {?Object} is the equivalent of
{Object|null}. I haven’t used the nullable operator in the
examples in this book; instead I’ve made the assumption that all
types are nullable by default unless specified otherwise using the
non-nullable operator.

Non-nullable: The ! operator indicates that the type cannot be null.
For example, {!Array<!string>} specifies that the type must
be an array of strings. An empty array, or an array of other types, is
not permitted.

Optional: The = operator used in a @param type definition
indicates that the parameter is optional. I amplify this by prepending
the prefix opt_ to the name of all optional parameters. For
example, @param {boolean=} opt_isActive specifies
that the parameter opt_isActive is optional, but if it is present
it must be a boolean (or null).

Using Objects as Event Handlers
One of my favorite little-known features of the DOM is the EventListener
interface. We all know how to attach an event listener to a DOM element using
Element.addEventListener method, which takes three parameters:

eventType: a string that indicates the type of event

handler: a function to execute when the event happens

bubble: whether or not to execute the function during the bubble
phase

What’s little known is that the DOM specifies you can use any object as the handler,
as long as it implements the EventListener interface. According to the DOM Level
2 standard:

The EventListener interface is the primary method for handling events.
Users implement the EventListener interface and register their listener on
an EventTarget using the AddEventListener method. The users should also
remove their EventListener from its EventTarget after they have completed
using the listener.

An EventListener interface is defined as a method called handleEvent on
any object:

interface EventListener {
 void handleEvent(in Event evt);
};

This means that any object that implements a handleEvent method can be used
as an event handler, as demonstrated in Listing A-1.

Listing A-1. Using an Object As an Event Handler

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>

 <p id="targetElement">Click me!</p>
 <script>
var targetElement
= document.getElementById(’targetElement’);

var eventObject = {
 handleEvent: function(event) {
 console.log(event.type);
 }
};

targetElement.addEventListener(’click’, eventObject,
true);
 </script>
 </body>
</html>

In this example you’ve created a simple eventObject that implements the
EventListener interface in the form of a method called handleEvent. You then
bind it to the target element’s click event, and when you click on the “click me” text you
will see “click” appear in the console.

This technique is useful for encapsulating event handlers in objects and classes,
rather than having them as separate functions. You can even create a single event
handler object that has multiple event handlers on it, and use the EventListener interface
to delegate activity as needed. For example, recall the WebSockets example (Listing 3-
7) in Chapter 3, which had separate functions for handling error, close, open, and
message events, all bound to the WebSocket interface. You could easily create all of
those event handlers as methods on a single object, as shown in Listing A-2.

Listing A-2. Rewriting Listing 3-7 to use a Generic EventListener Interface

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <h1>Web Sockets Demonstration</h1>
 <script>
// Create a new web socket connection to the chat service.
var chatUrl = ’ws://www.fgjkjk4994sdjk.com/chat’;

http://www.fgjkjk4994sdjk.com/chat

var validProtocols = [’chat’, ’json’];
var chatSocket = new WebSocket(chatUrl, validProtocols);

/**
 * Creates an error handling class that implements the
EventListener interface.
 * @constructor
 * @returns {Object}
 */
function CreateWebSocketEventObject() {
 /**
 * Handles an error event on the chat socket object.
 * @private
 */
 this.handleError_ = function() {
 console.log(’An error occurred on the chat
connection.’);
 };

 /**
 * Handles a close event on the chat socket object.
 * @param {CloseEvent} event The close event object.
 * @private
 */
 this.handleClose_ = function(event) {
 console.log(’The chat connection was closed because ’,
event.reason);
 };

 /**
 * Handles an open event on the chat socket object.
 * @param {OpenEvent} event The open event object.
 * @private
 */
 this.handleOpen_ = function(event) {
 console.log(’The chat connection is open.’);
 };

 /**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 * @private
 */

 this.handleMessage_ = function(event) {
 console.log(’A message event has been sent.’);

 // The event object contains the data that was
transmitted from the server.
 // That data is encoded either using the chat protocol
or the json protocol,
 // so we need to deterine which protocol is being
used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log(’The chat protocol is active.’);
 console.log(’The data the server transmitted is: ’,
event.data);
 // etc...
 } else {
 console.log(’The json protocol is active.’);
 console.log(’The data the server transmitted is: ’,
event.data);
 // etc...
 }
 };

 /**
 * Implements the EventListener interface for the object
and invokes the
 * correct handler based on the event type.
 * @param {SocketEvent} event
 */
 this.handleEvent = function(event) {
 switch (event.type) {
 case ’error’:
 this.handleError_();
 break;
 case ’close’:
 this.handleClose_(event);
 break;
 case ’open’:
 this.handleOpen_(event);
 break;
 case ’message’:
 this.handleMessage_(event);
 break;

 default:
 console.warn(’Unknown event of type ’, event.type);
 }
 };
}

// Create a new event object using the constructor.
var eventHandlerObject = new CreateWebSocketEventObject();

// Bind the event object to the chat socket.
chatSocket.addEventListener(’error’, eventHandlerObject);
chatSocket.addEventListener(’close’, eventHandlerObject);
chatSocket.addEventListener(’open’, eventHandlerObject);
chatSocket.addEventListener(’message’,
eventHandlerObject);
 </script>
 </body>
</html>

In this version of the example you have built a constructor function that returns an
object that implements the EventListener interface. Within that interface method it
checks the incoming event’s type property and invokes the correct handler method. This
gives you better encapsulation of the event handlers, and opens up the possibility of
easily opening multiple Web Sockets and using the same constructor to build event
handlers for all of them.

Promises
Asynchronous activities are quite common in JavaScript applications, and the standard
way of handling them is with callback functions. As an example, consider the dynamic
script loading that you were doing in Chapter 6. Listing A-13 had a function that
dynamically loaded a specified script and executed either a success or error callback
function depending on the result:

/**
 * Dynamically loads a script and invokes an optional
callback.
 * @param {string} srcUrl The URL of the script file to
load.
 * @param {function=} opt_onLoadCallback An optional

function to call when the
 * script is loaded.
 * @param {function=} opt_onErrorCallback An optional
function to call if the
 * script fails to load.
 */
function loadScript(srcUrl, opt_onLoadCallback,
opt_onErrorCallback) {

 // Create a script tag.
 var newScript = document.createElement(’script’);

 // Apply the load callback, if one was provided.
 if (opt_onLoadCallback) {
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == ’loaded’ ||
 newScript.readyState == ’complete’) {
 newScript.onreadystatechange = null;
 opt_onLoadCallback.call();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = opt_onLoadCallback;
 }
 }

 // Apply the error callback, if one was provided.
 if (opt_onErrorCallback) {
 newScript.onerror = opt_onErrorCallback;
 }

 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
}

This function takes three parameters: the URL of the script it needs to load, and the
success and error callback functions.

The problem with using callbacks is that they result in convoluted code. And if you
have nested callbacks—for example, if the success callback function also executes
another asynchronous task—the callbacks can become difficult to manage and the code

difficult to read.
Promises provide a different way of handling asynchronous actions in JavaScript

code. A Promise is an object that represents the result of an asynchronous action. The
actual result (success or failure) doesn’t need to be known at the time that the Promise is
created; instead the asynchronous action will return a Promise object like any other
synchronous action. This allows you to simplify your asynchronous code and reduce or
even eliminate your need for nested callbacks.

A Promise object is in one of four states:

fulfilled: The asynchronous action that the Promise represents has
finished and was successful.

rejected: The asynchronous action that the Promise represents has
finished but resulted in an error.

pending: This is the initial state of the Promise when it is created. A
Promise in the pending state is neither fulfilled nor rejected.

settled: The Promise is no longer pending and has either fulfilled or
rejected.

Once a Promise has entered a fulfilled or rejected state it cannot change, so a
fulfilled promise can never later become rejected and vice versa.

A Promise is created using the Promise constructor:

var myPromise = new Promise(executor)

The executor is a function with two parameters: resolve and reject. When
you create the new Promise, these resolve and reject parameters will be
placeholders for functions you’ll be specifying later. Typically they’re functions that
you will be calling as the asynchronous action succeeds or fails.

A Promise object exposes an API for accessing the state of the asynchronous action
and anything it might return.

Promise.then(resolve, reject): The then method
enables you to specify the resolve and reject functions that
will be called when the Promise is settled.

Promise.catch(reject): The catch method allows you to
specify just the reject function that will be called when the
promise is rejected.

To demonstrate creating a basic Promise and then assigning resolve and reject

handlers, Listing A-3 shows Listing A-13 rewritten to use a Promise.

Listing A-3. Using a Promise to Represent Dynamically Loading a Script

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically loads a script and invokes an optional
callback.
 * @param {string} srcUrl The URL of the script file to
load.
 * @return {Promise<null>}
 */
function loadScript(srcUrl) {
 var myPromise = new Promise(function(resolve, reject) {
 var newScript = document.createElement(’script’);
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == ’loaded’ ||
 newScript.readyState == ’complete’) {
 newScript.onreadystatechange = null;
 resolve();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = resolve;
 }
 newScript.onError = reject;
 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
 });
 return myPromise;
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim. The
loadScript function
 // now returns a Promise.
 loadScript(’../js-lib/webstorage-
shim.js’).then(function() {
 initApplication();
 }, function() {
 console.log(’Script failed to load.’);
 });
} else {
 // Web Storage was supported, so continue with the
application.
 initApplication();
}

/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log(’Application continues...’);
 // Etc.
}
 </script>
 </body>
</html>

You’ll notice that the loadScript function now constructs and returns a Promise
using placeholders for the resolve and reject functions that will be specified
later. When the function is called, the code applies the resolve and reject
functions using the Promise.then method.

Chaining Promises
Promises provide a lot of flexibility for dealing with situations involving multiple
asynchronous actions. For example, if you return a Promise from the Promise.then
method, you can chain Promises together. To illustrate this, you can use the
loadScript function to load three different scripts one after the other. Since the

loadScript function returns a Promise, you can simply chain the calls to
Promise.then together. To do that you’ll need to start the chain with an empty
Promise that will always succeed:

var promiseChain = Promise.resolve();
promiseChain.then(function() {
 return loadScript(’script1.js’);
}).then(function() {
 return loadScript(’script2.js’);
}).then(function() {
 return loadScript(’script3.js’);
}).catch(function() {
 console.log(’An error occurred when loading the
scripts.’);
});

If you use the feature registry pattern mentioned in the “Working with Broken or
Missing HTML5 Implementations” section of Chapter 6, you can reduce this even
further to a simple for loop. Listing A-4 demonstrates using this technique to rewrite
Listing A-14.

Listing A-4. Chaining Promises to Load Multiple Shims in Sequence

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer’s Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
// Create a registry of HTML features that we need and
shims to apply if they
// are not present. The registry will be an array of
objects; each object will
// consist of a feature name and a path to a shim to apply
if that feature is
// not supported.
var featureRegistry = [
 {
 ’featureName’ : ’sessionStorage’,
 ’shim’ : ’../js-lib/webstorage-shim.js’

 },
 {
 ’featureName’ : ’requestAnimationFrame’,
 ’shim’ : ’../js-lib/animationframe-shim.js’
 }
];

/**
 * Dynamically loads a script and invokes an optional
callback.
 * @param {string} srcUrl The URL of the script file to
load.
 * @return {Promise<null>}
 */
function loadScript(srcUrl) {
 var myPromise = new Promise(function(resolve, reject) {
 var newScript = document.createElement(’script’);
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == ’loaded’ ||
 newScript.readyState == ’complete’) {
 newScript.onreadystatechange = null;
 resolve();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = resolve;
 }
 newScript.onError = reject;
 newScript.src = srcUrl;
 document.querySelector(’head’).appendChild(newScript);
 });
 return myPromise;
}

// Test for supported features.
var supportedFeatures = new DetectHTML5Support();

// Go through the registry and for each item load a shim
if it isn’t supported.

var promiseChain = Promise.resolve();
featureRegistry.forEach(function(currFeature) {
 if (!supportedFeatures[currFeature.featureName]) {
 promiseChain = promiseChain.then(function() {
 return loadScript(currFeature.shim);
 });
 }
});

promiseChain.then(function() {
 initApplication();
}, function() {
 console.log(’A shim failed to load.’);
});

/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log(’Application continues...’);
 // Etc.
}

 </script>
 </body>
</html>

The first thing you will probably notice about this example is it is considerably
more compact than the original example in Chapter 6. Simpler code is one of the
benefits of using Promises.

In this example you start by creating a fulfilled Promise as the first link in your
Promise chain. You then loop through the feature registry and test each feature.
Unsupported features have shims loaded, and their Promises added to the chain. When
then use the Promise.then method on the chain. If all the required features are
supported, then the chain will consist of just the initial fulfilled promise, so the
resolve handler will be invoked immediately. If there are unsupported features, then
the chain will consist of multiple Promises, each of which will execute in turn.

Returning Values from Promises
In my examples so far, the asynchronous actions haven’t returned any values. They’ve

just succeeded or failed. Many asynchronous actions will return a value that you’ll need
to access within your resolve and reject methods. To do this, you can specify
parameters for your resolve and reject methods. For example, imagine a situation
where you fetch data from a server using a fetchData method that returns a promise:

function fetchData() {
 var myPromise = new Promise(function(resolve, reject) {
 var client = new XMLHttpRequest();
 client.open(’POST’,
’http://www.fakeservice.com/myservice’);
 client.send();

 client.onload = function () {
 if (this.status == 200) {
 // Successfully fetched information from the
service. Resolve the
 // promise with the information.
 resolve(this.response);
 } else {
 // Did not successfully fetch information from the
service. Reject the
 // promise with the error message.
 reject(this.statusText);
 }
 };
 client.onerror = function () {
 reject(this.statusText);
 };
 });
 return myPromise;
}

fetchData().then(function(serviceResponse) {
 console.log(’The service returned ’, serviceResponse);
}, function(errorMessage) {
 console.error(errorMessage);
});

In this example function you create a new XMLHttpRequest object to
asynchronously fetch data from a server, but return a Promise that wraps the response
value. You can then access the response value in the Promise.then callbacks.

http://www.fakeservice.com/myservice

Browser Support for Promises
Promises are a relatively new feature for JavaScript. As of this writing, all browsers
except Internet Explorer support Promises, and Internet Explorer Edge will have full
support when it is released. In the meantime there is a good shim for Promises available
at https://github.com/jakearchibald/es6-promise.

Further Reading
This is just a brief introduction to Promises. There’s a lot more you can do with them.
Many of the examples in this book can be rewritten using Promises, resulting in simpler
code.

To learn more about Promises, check out these resources:

The Promises/A+ specification at
https://promisesaplus.com/

The Mozilla Developer Network reference for Promises at
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise

The Promises tutorial at HTML5Rocks,
www.html5rocks.com/en/tutorials/es6/promises/

https://github.com/jakearchibald/es6-promise
https://promisesaplus.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://www.html5rocks.com/en/tutorials/es6/promises/

Index

 A
Animation

draw cycle constructor
JavaScript-based
with canvas

Animation timing
API methods
benefits
brute-force method
draw cycle manager
frames
global context
JavaScript implementation of a timer-based draw cycle
requestAnimationFrame
startAnimation

APIs. See Application programming interfaces (APIs)
Application programming interfaces (APIs)

audio and video tags
cross document messaging/web messaging

handleMessage event handler
main and target page
postMessage method
RFC 6454
Same Origin Policy

DOM
Drag and Drop (see Drag-and-Drop interactions, APIs)
Server-sent events

application
EventSource object
handleUpdates method
JSON-formatted text
one-way communication
origin limitations
polling script
race condition
security
stock ticker
stock values
text/event-stream MIME type
timer
timer-based polling scripts
XHR object
XMLHttpRequest

WebSockets (see WebSocket, APIs)
Web storage (see Web storage, APIs)
web worker

asynchronous activity
computation-intensive activity
creation
divide and conquer
image processing
location object and properties
multithreading
navigator object and property
web applications
XMLHttpRequest

Article element
properties
standards
usage

ASI. See Automatic Semicolon Insertion (ASI)
Aside element

properties
standards
usage

Audio and video content, HTML5
codecs parameter
multimedia
Shadow DOM APIs
software capabilities
src attribute

Audio element
global attributes
information, web
properties
standards
usage

Automatic semicolon insertion (ASI)

 B
bdi element

properties
standards
usage

beginPath method
Browser support

broken/missing HTML5 implementations
array featureRegistry
checking single feature
Internet Explorer
loading shims
multiple shims and tracking process
onLoadCallback function

readystatechange event handler
registering callbacks, loading process
unsupported feature
verifyAllFeatures function

Can I Use database
canvas element
feature detection
feature detection script

Chrome, Firefox, and Internet Explorer
getFailedTestResults
getTestResults
listing

HTML5 Rocks website
interface, HTML Element
Internet Explorer
JavaScript properties and methods

detection
event interfaces detection
HTML5 features detection
nonexistent property
non supporting browsers
undefined
undefined vs. null

MobiDex (see MobiDex)
mobile browsers
Modernizr
Promises
testing

attribute support
supported elements

Webshim library
Browser wars

 C
Callback functions
Can I Use database
Canvas

animation
clipping
compositing
drawing commands

arc method
bezierCurveTo method
Context.fill()
Context.fillStyle
Context.lineCap
Context.lineJoin
Context.lineWidth
Context.stroke()
Context.strokeStyle

curves
declaring paths
drawing rectangles
lineCap property
lineJoin property
lineTo method
quadraticCurveTo method
random circle generator
rect method

drawing context
alternate content, older browsers
API
pen metaphor
small victories
syntax
width and height

drawing mode
gradients (see Gradients, HTML5 canvas element)
gradients and patterns

addColorStop method
createLinearGradient method
createPattern method
createRadialGradient method

images (see Images, canvas; Images, HTML5 canvas element)
implementation
interaction

drawing with mouse
event handler
requestAnimationFrame method

patterns (see Patterns, HTML5 canvas element)
properties
restore method
save method
saving
saving and restoring, properties
saving drawing state

and restoring
properties

shadows
shadowBlur property
shadowColor property
shadowOffsetX property
shadowOffsetY property

standards
stroking/filling

clearRect method
drawing rectangles
fill method
fillRect method
fillStyle property
lineCap property

lineJoin property
lineWidth property
stroke method
strokeRect method
strokeStyle property

text (see Text, 2d drawing context; Text, canvas)
Cascading style sheets (CSS)
Clipping

clip method
creation
definition
effects of
resetting

closePath method
Code formatting
Comment annotations

@constructor
@param
@private
@return
@type
type definitions

Compositing
demonstration
destination
globalCompositeOperation property
gradient
photograph

 D
Data element

properties
standards
usage

Datalist element
properties
usage

2D drawing context
API
defining paths

beginPath method
closePath method
moveTo method

drawing commands
arc method
bezierCurveTo method
lineTo method
quadraticCurveTo method
rect method

drawing rectangles

clearRect method
fillRect method
strokeRect method

path
pen metaphor
rendering text

fillText method
transformations (see Transformations)

Details and summary elements
properties
usage

Device orientation
Chrome and Firefox
compassneedscalibration event
devicemotion event
deviceorientation event

Dexterity puzzles (see MobiDex)
Drag-and-Drop interactions, APIs

CSS class
dataTransfer object
dataTransfer.setDragImage()
draggable property
event.preventDefault()
preventDefault()
updation, script
visual clipboard

 E
Embedded audio content

autoplay
Chrome browser
controls
loop
muted
preload
src
web page

Embedded video content
autoplay
controls
height
loop
muted
poster
preload
src
web page
width

 F
Feature detection
Figure and figcaption elements

properties
standards
usage

Footer element
properties
standards
usage

Form element attributes
autocomplete
autofill
autofocus
placeholder text

Form elements
datalist element
meter element
output element
progress element

 G
Generalized markup language (GML)
Geolocation

API
browser and hosting device
callback function
Chrome
globalTimeout variable
globalTimeoutCallback function
navigator.geolocation.clearWatch
navigator.geolocation.getCurrentPosition
navigator.geolocation.watchPosition
object templates
permission options in Firefox 29
permission options, internet explorer
PositionError object
position object
Safari Mobile on iOS
“Share Location”
simple location query
timer running
transparent
user interaction standpoint
valid PositionError codes

application collects and processes
Bluetooth mapping
cellular towers
GPS satellites

iOS location accuracy
IP address mapping
mobile devices
privacy and security
Wi-Fi mapping

Gradients, HTML5 canvas element
Context.createLinearGradient
Context.createRadialGradient
linear gradient object
Gradient.addColorStop
three-stop

Grouping
figure and figcaption elements
main element

 H
Header element

properties
standards
usage

HTML
anchor tags
browser wars

internet explorer
libwww
Lynx browser
Mosaic code
mozilla foundation
NCSA
netscape navigator

document markup languages
ENQUIRE
GML
HTML5
hyperlinks
hypermedia
hypertext
IETF
information sharing
markup languages

descriptive
presentation
procedural

markup tags
oNLine System/NLS
pilot project
Project Xanadu
SGML

applications
tags

simple client/server network protocol
XHTML
zippered lists

HTML5
canvas
browser support (see Browser support)
features
JavaScript APIs
tags

HTML5 API
cross-document dessaging

attributes
host page
parameters
structured clone algorithm
syntax
target page

dataTransfer object
drag and drop
draggable property
drop targets
event.dataTransfer.files and types
server-sent events

EventSource constructor
JSON-formatted text
multiline key
multiple data attributes

WebSockets
API
constructor
communication
full duplex communication
interface

web storage
API definition
interface objects
localStorage and sessionStorage implement
StorageEvent object

web workers
blocking method and origin policy
communication
creation
EventTarget interface
execution context
global JavaScript scope
stand-alone script
threaded JavaScript applications
writing multithreaded applications

HTML5 canvas element (see Canvas)
HTML5 elements

audio, video content (see Audio, video content, HTML5)

automatic rendering, browsers
deprecated elements
functionality
grouping content, tags
interactive elements

CSS rules, progress
CSS styles, web dialogs
data lists
dialogs
forms
meter
output, form
progress bar
progressive disclosure
timer, progress

nonsemantic tags
div-it/divitis
old and busted markup

obsolete parameters
semantic markup
semantic tags

bi-directional isolation
data
hotness markup
line breaks
mark
Ruby annotations
time
word break
words marking, document

HTML5 Rocks website

 I
IETF. See Internet engineering task force (IETF)
Images, canvas

drawing
drawing slice of image
scaling

Images, HTML5 canvas element
Context.drawImage
parameters
scaling
slicing and scaling
sources

Input types
application, Chrome
color
dates and times
email
number

range
search
tel
url

Interactive elements
Internet engineering task force (IETF)

 J, K, L
JavaScript

code formatting
Promises (see Promises)
verbosity

JavaScript APIs

 M
Main element

properties
standards
usage

Mark element
properties
standards
usage

Meter element
attributes
standards
usage

MobiDex
Add a timer
Add customization
Add scoring
comparing coordinates

checking collisions
drawGameField method and associated properties
MobiDex Class
updateRemainingBalls method

deviceorientation event handler
Draw Cycle
finished game
full listing and coordinate classes
game initialization
obstacles and targets

simple coordinate class
generating random integers

playing field UI
CSS
markup
rendering

user story (see User story)

Modernizr
moveTo method
Mozilla foundation

 N
National center for supercomputing applications (NCSA)
Nav element

properties
standards
usage

NCSA. See National center for supercomputing applications (NCSA)
Netscape navigator

 O
Objects, as event handlers
Output element

properties
standards
usage

 P, Q
Patterns

Context.createPattern
creation
kitten as pattern

Progress element
properties
standards
usage

Promises
browser support
chaining

loadScript function
multiple shims loading

constructor
creation
definition
loading script
returning values
states

 R
Ruby, rp, and rt elements

properties
standards
usage

 S
Scalable vector graphics (SVG)
Section elements

article element
aside element
footer element
header element
nav element
properties
standards
usage

Selectors
accessing elements
attribute
element abstract class
element state pseudo-classes
JavaScript frameworks
negation pseudo-class
NodeList objects
querySelector and querySelectorAll methods
structural pseudo-classes

Semantics
bdi element
data element
mark element
ruby, rp, and rt elements
time element
wbr element

Shadows
shadowBlur property
shadowColor property
shadowOffsetX property
shadowOffsetY property

Shadows, canvas
drop shadows
parameters
rendering

Source element
properties
standards
usage

Standard generalized markup language (SGML)
CERN
SGMLguid

stopAnimation method

 T
Text, 2d drawing context

fillText method

font property
measureText method
strokeText method
textAlign property
textBaseline property

Text, canvas
Context.fillText
Context.font
Context.measureText
Context.strokeText
Context.textAlign
Context.textBaseline
rendering

Time element
properties
standards
usage

Track element
properties
standards
usage
WebVTT (see Web Video Text Tracks Format (WebVTT))

Transformations
arbitrary transformation matrix
Context.rotate
Context.scale
Context.translate
definition
resetting
rotate method
scale method
scale and translate
stacking rotation
text reflection
transform method
translate method
translate transformation

Type definitions
non-nullable
nullable
optional

 U
User story

agile software development
definition
features

 V

Verbosity
Video element

global attributes
information, web
properties
standards
usage

 W, X, Y, Z
W3C. See World Wide Web Consortium (W3C)
Wbr element

properties
standards
usage

Web Applications standard
data storage
draft proposal
semantic markup tags
server-pushed events
state management

Web Graphics Library (WebGL)
Web hypertext application technology working group (WHATWG)
Webshim library
WebSocket, APIs

close method
demonstration class
full duplex communication
handshake process

‘chat’ and ‘json’ protocols
GET query
two-way connection

headers
HTTP
information receiving

binary large objects
Blobs and ArrayBuffers
connection object
error event connection
stubbed event handlers

information transmitting
network protocol
sendDataAndClose_
subprotocol
url parameter

Web storage, APIs
custom storage methods
Evercookies
HTTP Cookies
JSON string
localStorage

privacy concerns
sessionStorage
sessionStorage.getItem
sessionStorage.setItem

Web Video Text Tracks Format (WebVTT)
closed captioning file

WebVTT (see Web Video Text Tracks Format (WebVTT))
WHATWG. See Web hypertext application technology working group (WHATWG)
World Wide Web Consortium (W3C)

CSS
HTML 4.0
standards process
XML-based solutions

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Author
	About the Techincal reviewer
	Acknowledgments
	Introduction
	Part I: HTML5 in Depth
	Chapter 1: Welcome to HTML5
	What Is HTML5?
	A Brief History of HTML
	Enter Hypertext
	Enter Markup Languages
	Hypertext Markup Language Is Born
	The Browser Wars
	Standards to the Rescue
	The Continuing Evolution of HTML
	The Formation of the WHATWG and the Creation of HTML5

	HTML5 Features
	New Tags
	JavaScript APIs
	Related Standards

	Summary

	Chapter 2: HTML5 Elements
	Functionality, Semantics, and the Evolution of HTML
	Sections
	Grouping
	Semantics
	Audio and Video Content
	Embedded Audio Content
	Embedded Video Content
	Specifying Multiple Sources

	Interactive Elements
	Dialogs
	Progressive Disclosure

	Forms
	New Form Elements
	New Form Element Attributes
	New Input Types

	Deprecated Elements and Obsolete Parameters
	Summary

	Chapter 3: HTML5 APIs
	Server-sent Events
	Client Setup
	Sending Events from the Server
	Origin Limitations
	Security
	An Example Application

	WebSockets
	Connecting to the Server: Inside the WebSocket Handshake
	Receiving Information from the Server
	Sending Information to the Server
	Closing the Connection
	An Example WebSocket Application

	Cross Document Messaging/Web Messaging
	Web Storage
	Methods and Syntax
	Privacy and Web Storage

	Drag and Drop
	The draggable Property
	Drag-and-Drop Events
	The dataTransfer Object
	Drag-and-Drop API Examples

	Web Workers
	Creating Web Workers
	Inside a Web Worker
	A Simple Example of a Web Worker
	Common Use Cases

	Summary

	Chapter 4: Canvas
	The Canvas Drawing Mode
	The Canvas Drawing Context
	Basic Drawing Commands
	Gradients and Patterns
	Gradients
	Patterns

	Images
	SavingCanvas Contents
	Text
	Shadows
	Saving Drawing State
	Compositing
	Clipping
	Transformations
	Animation
	Interaction
	Summary

	Chapter 5: Related Standards
	Geolocation
	Privacy Considerations
	Geolocation API

	Animation Timing
	Selectors
	Device Orientation
	The compassneedscalibration Event
	The deviceorientation Event
	The devicemotion Event

	WebGL
	SVG
	Summary

	Chapter 6: Practical HTML5
	Browser Support
	A Crash Course in Feature Detection
	Building a Feature Detection Script
	Working with Broken or Missing HTML5 Implementations

	Example Project: MobiDex, a Mobile Dexterity Puzzle
	The Playing Field UI
	Generating Obstacles and Targets

	Summary

	Part II: HTML5 Reference
	Chapter 7: HTML5 Element Reference
	Sections
	The article Element
	The aside Element
	The footer Element
	The header Element
	The nav Element
	The section Element

	Grouping
	The figure and figcaption Elements
	The main Element

	Semantics
	The bdi Element
	The data Element
	The mark Element
	The ruby, rp, and rt Elements
	The time Element
	The wbr Element

	Audio and Video Content
	The audio Element
	The source Element
	The track Element
	The video Element

	Interactive Elements
	The details and summary Elements

	Form Elements
	The datalist Element
	The meter Element
	The output Element
	The progress Element

	Chapter 8: HTML5 API Reference
	Server-sent Events
	WebSockets
	Cross-Document Messaging/Web Messaging
	Web Storage
	Drag and Drop
	Specifying Draggable Elements: The draggable Property
	Handling the Interactions: Drag-and-Drop Events
	Specifying Drop Targets
	The dataTransfer Object

	Web Workers

	Chapter 9: Canvas Reference
	The canvas Element
	The Drawing Context
	Defining Paths
	Basic Drawing Commands
	Stroking and Filling Paths
	Drawing Rectangles
	Gradients and Patterns
	Images
	Text
	Shadows
	Compositing
	Clipping
	Transformations
	Saving and Restoring Canvas State

	Appendix A: JavaScript Tips and Techniques
	Code Formatting
	JavaScript Rewards Verbosity
	Comment Annotations
	Using Objects as Event Handlers
	Promises
	Chaining Promises
	Returning Values from Promises
	Browser Support for Promises
	Further Reading

	Index

