

Praise for HTML & CSS: The Good Parts

“Ben has an encyclopedic knowledge of web development and makes even the most
obtuse-sounding concepts seem eminently approachable. All while writing a book filled
with charm, wit, and aplomb. (Yeah, I hate him, too. Great book, though.)”

— Ethan Marcotte, coauthor of Designing with Web Standards,
Third Edition

“HTML & CSS: The Good Parts is essential for those who work building web pages and
need to take their understanding and knowledge to the next level. Web developers and
designers of all types need to have solid depth of understanding of how HTML and CSS
work as well as how they interact with the browser. The difference I find between an okay
web designer and developer (including those who work with tools that create and manage
sites) and a really good one is the depth of understanding they have and use of HTML and
CSS. This book provides that depth and understanding.

“In my opinion one of the best pieces for me in this book is the inclusion of the proper
structuring of pages, sites, and the depth of the discussion for integration is essential for
the maintenance, use, and even SEO considerations. This is something that far too often
gets missed and is not understood well. Having this knowledge and these skills in your
tool belt will only lead to much improved outcomes that are easier to build out, manage,
and use.”

— Thomas Vander Wal, founder and senior consultant at
InfoCloud Solutions

“I’ve always said that the beauty (and the frustration) in CSS is that there are so many ways
to do things. Ben has done a fantastic job of homing in on the good, the bad, and the ugly
in the broad CSS realm. His useful real-world approach not only gives you a great refer-
ence to the most commonly used elements, properties, and values, but it also addresses
the advantages (and pitfalls) of various techniques. Whether you’re working on small or
large sites, Ben clearly presents the principles you need to crank your skills up to the next
level.”

— Stephanie Sullivan, author, Mastering CSS with Dreamweaver CS4

,praise.1687 Page i Monday, February 8, 2010 12:03 PM

HTML & CSS: The Good Parts

Ben Henick

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

HTML & CSS: The Good Parts
by Ben Henick

Copyright © 2010 Ben Henick. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Loranah Dimant
Copyeditor: Emily Quill
Proofreader: Sada Preisch

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. HTML & CSS: The Good Parts, the image of a ring-tailed cat, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15760-9

[SB]

1266416276

To the memory of my mother and the patience of
my father—each a wellspring of

love, hope, and knowledge.

Table of Contents

Preface . xvii

1. Hypertext at the Core . 1
The Web Without Links 1
URIs 2

Managing Links 3
Improving the User Experience with Linking 3
Hypertext Implementation Challenges 4

2. Working with HTML Markup . 7
HTML Syntax 7

Tags, Elements, and Attributes 8
Page Structure 10

Rendering Modes, Flavors of HTML, and Document Type Declarations 10
HTML or XHTML? 11
Strict, Transitional, or Frameset? 12
A Tale of Two Box Models 12
Choosing the Right Document Type for Your Project 13

Beautiful Parts: Universal Attributes 14
Providing Stylesheet Hooks with class and id 14
Describing Content with title and lang 15
The contenteditable Attribute in HTML5 17

Separating Content, Structure, Presentation, and Behavior 18
Making Your Sites “Safe As Houses” 18
Separation in Practice 18
Working with Document Trees 19

Browsers, Parsing, and Rendering 20
Dynamic HTML, Ajax, and Rendering 21

3. CSS Overview . 23
Connecting Stylesheets to HTML Documents 23

vii

Referencing a Stylesheet with link 23
Targeting Internet Explorer Versions with Conditional Comments 24
Replacing link with style 25
Using @import 25
Beware of style Attributes! 25
Targeting Rules to Specific Media 26

Choosing the Elements You Want to Style: Writing Selectors 27
Parents, Children, and Siblings: Element/Node Relationships 28
Simple Selectors 29
Multiple and Descendant Selectors 29
Selecting Direct Child Elements 30

Rule Conflicts, Priority, and Precedence 31
Selector Priority 31
Avoiding Rule Conflicts 32
Value Inheritance 33

CSS Property and Value Survey 33
CSS Units 33

Cross-Media Length and Size Units 34
Pitch and the Value of a Pixel 34
Print-Friendly Length Units 36
font-size Keywords 36
Color Units 37

Key CSS Layout Properties 37

4. Developing a Healthy Relationship with Standards . 41
The Broad Landscape of Web-Related Standards 41
Why Web Standards? 42

Interoperability 42
Market Forces 43
Forward Compatibility 43
Accessibility 43
Vendor Priorities 44
Legacy Asset Inertia 44
Best Practices (and Lack Thereof) 44
Strict Constructionism 45

Taking the Middle Road: Standards-Friendliness 45
Benefits of Standards-Friendliness 46
Rules of Standards-Friendly Development 46

5. Effective Style and Structure . 49
The Four Habits of Effective Stylists 49

Habit #1: Keeping It Simple 50
Habit #2: Keeping It Flexible 52

viii | Table of Contents

Habit #3: Keeping to Consistency 55
Habit #4: Keeping Your Bearings 57

CSS Zen and the Stylist’s Experience 59
The Functional Principles of CSS Zen 60

Information Architecture and Web Usability 61
Multidimensionality 62
Navigation: Orientation and Wayfinding 63
Visit Strategies 64
Guideposts for Creating Usable Interfaces 66
Predicting Visitor Behavior with Scenarios and User Testing 67
Taxonomy and Nomenclature 68
Applying Taxonomy Through the Cascade 70
New Structural Elements (HTML5) 72

6. Solving the Puzzle of CSS Layout . 73
The CSS Box Model and Element Size Control 73
Quirks Mode and Strict Mode 73
auto Values 74

The overflow Property 75
Limiting But Not Fixing Element Dimensions 77
Handling the Unpredictable 77

Margins, Borders, and Padding 78
Negative Margins 79
Collapsed Margins 80
Borders 81
Padding 82
The Box Behavior of the Document Root Elements 82
Box Property Dimensions and the % Value 82

Element Flow 83
Inline Elements 83
Block Elements 83
Inline-Block Elements 84

Using the display Property to Change an Element’s Flow 84
The display Property 85

The float and clear Properties 86
The Rules of the float Property 86
Canceling float Values with Corresponding clear Values 87
float Context 88

Implementing Multicolumn Layouts 88
Converting the Two-Column Layout from Markup Tables to CSS 89
How the Two-Column Styles Work 90
Benefits of Confining Layout Specifications to Stylesheets 92
Moving from Two Columns to Three 93

Table of Contents | ix

Dealing with More Than Three Columns 95
Semantically Empty Containers for Multicolumn Layouts 95
Advanced Layout in CSS3 96

CSS Positioning Properties 96
How Positioning Works 96
Bounding Positioned Elements 99

The visibility and z-index Properties 99
Altering Visibility Without Affecting Document Flow 100
Stacking 101

Obtaining Precise Navigation Source Order and Layout 102
Orienting the List 102
Forcing the Navigation List into the Desired Coordinates 104

Layout Types and Canvas Grids 106
Fixed, Proportional, and Flexible Layouts 106
Defining Grids 108
The Rule of Thirds, the Golden Ratio, and the Fibonacci Sequence 110
Implementing a Flexible Page Grid 111

7. Working with Lists . 115
Ordered and Unordered Lists 115

User Agent Default Styles for Ordered and Unordered Lists 115
Creating Valid Ordered and Unordered Lists 116
The list-style-type Property and the type Attribute 116
The nav Element (HTML5) 117
Changing the Range of an Ordered List 119

Other Uses for Lists 120
Outlines 120
Inline Serial Lists 120
Altering the Layout of Footer Links 121
Bullets in Backgrounds? 121

Styling Navigation Elements 121
Placing the Primary Site Navigation Within the Source Order 122
The Primary Navigation Layout Recipe 122
The Footer Navigation Recipe 123

Definition Lists 124
Styling Definition Lists 124
Dictionary Example 125
Dialogue Example 127

8. Headings, Hyperlinks, Inline Elements, and Quotations . 129
Headings and Good Writing 129

Headings in Print 129
Optimal Heading Insertion 131

x | Table of Contents

Styling Heading Elements 131
Heading Sizes and Type Treatments 132
Normalizing Heading Dimensions 132
Heading Accents 133

Link Markup 133
Link Attributes 134
Virtuous Use of the href Attribute 134
Linking to Specific Passages Within Documents 135
Creating Effective Link Content and title Values 136

Styling Links 137
Link Pseudoclasses 137
Using display: block to Increase the Footprint of a Link 138
The text-decoration Property 139
The cursor Property 140

Adding Semantic Value with Inline Elements 140
Quotations 142

9. Colors and Backgrounds . 143
Color Theory and Web Color Practice 143

Usability, Accessibility, and Color 144
The Additive Color Model 144
The HSB Color Model 145
The Subtractive Color Model 145
Design, Contrast, and Complements 146
Identifying Colors, in Brief 147
Display Environments and the Web-Safe Palette 148
Creating Your Own Palettes 149

CSS Backgrounds 150
Setting background-position Values 151
The CSS background Shorthand Property 152

Composing Background Images 152
“Faux Columns” 154
Tiled Background Textures and Patterns 155
Large Background Textures and Nonrepeating Devices 156
Drop Shadows, Gel Effects, and Rounded Corners 157

Bitmapped Copy and Fahrner Image Replacement 157
The FIR Stylesheet Rules 159
Drawbacks of FIR 159

Reducing Server Load with Sprites 160

10. (Data) Tables . 163
The Disadvantages of Layout Tables 163

Source Order: Square Peg, Round Hole 163

Table of Contents | xi

CSS Zen Becomes a Myth 164
Template Slavery Is Unavoidable 164
Positioning Is Rendered Useless 164

The Parts of a Data Table 165
Example: The Full Smash of Table Markup 166

Composing Cells 168
Table and Data Composition 170

Table Headers, Footers, and Heading Cells 172
Attribute and Child Selectors 173
Reducing Header and Footer Contrast 173
Adding Rollover Accents to a Table 175

11. Images and Multimedia . 177
Replaced Elements 177
Preparing Images for Production 178

The alt Attribute Explained 179
Image Dimensions and Borders 179

Image Production 180
Cropping 180
Matting: Creating a Virtual “Frame” 181
Resampling: Altering the Absolute Size of an Image 182
Level Changes: Optimizing the Contrast of Photographs 183
Applying Multiple Adjustments 185

Working with Color Profiles 185
Image Optimization 186

Choosing the Right Image Format 186
Finding the Happy Medium Between Size and Quality 187

Publishing Images 188
Keeping Images Organized 188
Image Publishing and Management in a CMS 189
Image Publication Etiquette 190

Styling Images and Plug-in Content 190
Composing Image Layout Within a Column 190
Captioning Images 191
Working with Previews (Thumbnail Images) in a Gallery
or Slideshow Setting 192
Lightbox: Previews, Galleries, and Slideshows 194
SlideShowPro 194

Adding Motion and Sound: Using SWFObject to Insert Flash Videos
and Presentations 195
Inserting Unwrapped Multimedia 196

A Tale of Three Companies 197
Enter Flash 197

xii | Table of Contents

Using Bare Markup to Publish Multimedia Content 198
A Caveat of Plug-in Content Styling 198
Sidestepping Plug-ins with the HTTP Content-Disposition
Header Field 199
Keeping an Open Mind 199
The video and audio Elements (HTML5) 199
The canvas Element (HTML5) 201

12. Web Typography . 203
A Brief History of Letterforms 203

Origins of Modern Western Letterforms 204
Gutenberg’s Press and the Art of Typography 204
The Emergence of Digital Typesetting 205
Different Limitations Without Changed Expectations 205

A Visual Glossary of Typography 206
Aliasing and Anti-Aliasing 210
Type Styles, Readability, and Legibility 212

Styling for Readability 212
Styling for Legibility 213
“The Fold” and Tiny Type 213

Sizing Type 215
Choosing the Right Units for Sizing Type 216
Em/Percentage Size Telescoping 216
Size Keywords 217

Working with Typefaces and Fonts 217
The Challenge of Limited Choices 217
Applying Type Choices: the font-family Property 220
Finding Canonical Typeface Names 222
Accessing System Default Type with the font Property 222

Character Encoding in Brief 224
What Is Character Encoding? 224
ASCII, ISO 8859-1, Unicode, and UTF-8 225
Choosing an Encoding Scheme 225
Inserting Entities to Provide Non-ASCII Characters 226

Creating Balanced Type Treatments 228
Predictability, Preference, and Panic 228
Assessing Content Scope 229
Distinguishing Type: Face, Size, Weight, Style, Color 230
Setting Type Around Blowouts 232
Styling Passages of Similar Priority 232
Enter Type Treatments 233

Typographical Miscellany in CSS 234
The line-height Property 234

Table of Contents | xiii

The font-variant and text-transform Properties 235
The letter-spacing and word-spacing Properties 236
The white-space Property 236

The Practice of Good Web Typography 236

13. Clean and Accessible Forms . 237
Building Effective Forms 237

Web Applications, User Perspective, and Design Choices 237
Organizing User Interfaces by Function 238
Ten Rules for Effective Web Forms and Applications 239

Assessment and Structure 241
Establishing Requirements 241
Markup and Structure 243

Basic Form Structure, Presentation, and Behavior 246
Form-Originated get Requests 247
The post Method and File Uploads 249
Manipulating the Size and Appearance of Individual Controls 249

Prototyping and Layout 251
Prototyping 101 251
Design Patterns, Style Resets, and Form Layout 252
Grouping Controls by Appearance 254

Required Fields and Other Submission Constraints 255
Identifying Required Fields 255
Discovering and Identifying User Input Errors 256
The disabled and readonly Attributes 257

Creating Accessible Forms 258
Implementing Forms for Accessibility 259
Supporting Keyboard Navigation of Forms 260

Form Features in HTML5 261
New Input Types 262
The required Attribute 262

14. The Bad Parts . 265
The Numbing Nature of Internet Explorer (Especially IE 6) 265

Browser Wars 2.0 266
Absent or Poor Selector Support 267
hasLayout 268
Margin Doubling 268
expression() Values 269
ActiveX Filters and Transitions 269
PNG Support (or Lack Thereof) 270
Poor Property Support 270
Issues with XHTML and XML 271

xiv | Table of Contents

Systemic Ugliness 271
Template Fragility and Third-Party Content 272
Markup Validation As a Prerequisite to Proper Style Implementation 272
“Best Viewed with” 272
Graded Support 273
embed Versus object 274
Form Controls, Plug-in Instances, and Element Stacking 275
Invalid Markup for Stupid Reasons 276

HTML’s Bad Neighborhoods and Cul-de-Sacs 276
Frames 277
The strike Element 278
The name Attribute 279
The noscript and noframes Elements 279
Semantic Contortions and the Limited Vocabulary of HTML 280
Inline Presentation Elements 280
Manipulating Vertical Space: hr and br 281
The pre Element Versus the white-space Property 281

CSS Travesties 282
@-Rules 282
Computed Values and Rounding Differences 282
Vendor-Specific -moz and -webkit Property Prefixes 283
The inherit Value 283
Hiding Stuff: z-index and clip 284
Counters 284
Element Flow Rules 285
Unicode Code Position Values and the content Property 285

The Awful Parts 286
The marquee and blink Elements 286
MSIE User Interface Properties 287
The align Attribute 287
The style Attribute 287
div-itis 288
Event Handler Attributes 288
Gratuitous Underlining 289
The http-equiv Attribute 289

Picking Up the Pieces 290

Appendix: URIs, Client-Server Architecture, and HTTP . 291

Glossary . 297

Index . 303

Table of Contents | xv

Preface

HTML and CSS are old technologies that have seen over a decade of use and continue
to evolve. Web developers celebrating their fifteenth year of work have seen all kinds
of projects built across a wide variety of browsers, experimented with different features,
and noted their successes and failures.

Despite their best efforts, the people who created HTML and CSS didn’t always get it
right. Some experiments didn’t work out very well. At the same time, some pieces
proved even more useful than expected. Mastering these technologies requires figuring
out which pieces of the specs are cruft, in urgent need of abandonment, and which are
gold, deserving maximum use. Focusing on HTML and CSS best practices does more
than help you create sites that work: it lets you build more effective sites more effi-
ciently, with much lighter long-term maintenance costs.

The Who and What of This Book
Hopefully you’re holding this book because you read a glowing review on one of your
favorite websites, or because somebody you know said that you absolutely need to read
it. (An author can dream.)

Still, you need more information than that. Is this book for you?

If you and your priorities are described in the paragraphs that follow, then you should
walk out of the store with this book under your arm, or at least sit down in the nearest
available chair and start reading.

What Are the Good Parts?
There’s no getting around the fact that long stretches of HTML and CSS are boring. I
mean sleep-through-it boring. In this way, web technologies are like a certain class of
movies: viewers find themselves wanting to skip the exposition so they can watch the
good parts.

xvii

This book attempts to cater to that sentiment. All of the exposition—which I do invite
the reader to tackle—is tucked away into Chapters 2 and 3, available for a quick “re-
wind” if you realize that you might have missed something.

The nonexpository parts are about making cool stuff happen: nailing down faithfulness
to composites, getting the upper hand over bugs, building template markup that can
survive redesigns, and manifold other topics.

What You Should Know Before You Read This Book
This book makes one basic assumption: that you’re familiar with the scope of HTML
4.01 elements, CSS selectors, and CSS property/value pairs. The companion website
for this book includes reference tables that link to exhaustive descriptions of HTML
and CSS on third-party sites, but it will be far easier to follow along if you’re already
familiar with the capabilities of HTML and CSS.

In addition, this book will be easier to digest if you’ve gained an understanding of the
separation of behavior, presentation, content, and structure into separate layers within
a site or application.

If you feel uneasy about any of this, O’Reilly’s Definitive Guides and Pocket Referen-
ces for HTML and CSS come highly recommended.

For the benefit of readers who may have overestimated their knowledge, the basics of
page, stylesheet, and element structure are covered as briefly as possible.

The Ideal Reader
You might be an ideal reader of this book if:

• You’re confident when the time comes to start building the server side of an ap-
plication, but redesigns get on your nerves because you’re forced to dive back into
the code and revise the bits of markup that are interspersed within it. The most
effective solution to this problem is called the “CSS Zen” technique, exemplified
by Dave Shea’s CSS Zen Garden. This book explains CSS Zen—structuring pro-
duction of markup so that redesign efforts can be confined to stylesheets—from a
perspective suited to engineers.

• You’re skilled at the use of a web-centric Integrated Development Environment
(IDE) such as Adobe Dreamweaver or Microsoft Visual Studio, but your expecta-
tions routinely collide with its limitations. Left unattended, an IDE typically inserts
all manner of cruft (i.e., “excess; superfluous junk”) into web materials, egregiously
violating the KISS (Keep It Simple, Stupid) Principle. This occurs because IDEs are
one-size-fits-all solutions. This book explains HTML and CSS in enough detail that
you can start configuring your tools of choice to handle the specific cases you work
with every day.

xviii | Preface

• You have—for whatever reason—a lot of bad habits that need to be superseded
by good ones. Some of you probably still use HTML to manage presentation as
well as structure, and CSS meanwhile is terse to the point of impenetrability. This
book’s perspective places CSS in a useful light.

• You’re a print-trained graphic designer who needs to understand the strengths and
limitations of the web medium in order to avoid career stagnation. You’ve looked
at HTML, you’ve looked at CSS, and you believe they fit together—but you just
don’t understand how. This book takes a close look at the connection between the
two, so that you can get the hang of putting design elements exactly where you
want them.

• Your professional role encourages or perhaps even requires you to develop to stat-
utory accessibility requirements, or internally mandated cross-media usability
requirements. Without CSS-ready markup, there’s little hope of developing cross-
media-friendly sites, much less sites accessible to impaired users. This book ex-
plains how to develop a site so that accessibility requirements can be met without
needing to build multiple sites in parallel.

• You’re already a specialist in some skill set outside of the presentation layer, and
you want to make your job easier. Put simply, narrower specialization leads to
reduced skill overlap, which in turn poses barriers to intrateam communication.
This book lays out the priorities of the developers whose work lies closest to site
visitors, and in so doing gives you the information you need to communicate more
effectively with your teammates.

• You’re tired of beating your head against the brick wall more commonly known
as Internet Explorer 6. Several sites, particularly Position Is Everything, delve into
solutions for the nightmare that is stylesheet authoring for legacy versions of In-
ternet Explorer. However, most online resources are tuned to specific bugs and
behaviors. In Chapter 14, you’ll find condensed explanations of the quirks “under
the hood” that cause unwanted collisions and blowouts, as well as a cookbook of
practices and techniques that will help you avoid many such problems altogether.

A Warning About Familiarity (or Lack Thereof)
Chances are that you are already familiar with some of the contents of this book. Be-
cause its audience comprises a wide range of specialists, there may be times when ma-
terial meant for engineers is painfully obvious to designers, and vice versa. There may
also be times when the discussion begins to remind you of a contentious argument.
Creative and implementation decisions are too often made from a position of political
strength instead of merit, and it’s my hope that this book can be used to support merit-
based arguments against Bad Ideas.

If instead everything in this book is new, it’s possible that you’ve gotten a bit ahead of
yourself. The book’s companion website is built in large part to meet the needs of folks
like you, by way of ensuring that all purchasers of this book will be able to get some

Preface | xix

value from it. However, if the material does seem a bit advanced, you can expect some
difficulty. The best way of dealing with that is to be patient, and ask lots of questions
of colleagues and associates.

Objectives of This Book
This book is meant to translate into plain English the quirks of HTML, CSS, and the
document tree that are hard to grasp without guidance or experience:

• Choosing and using the ideal version of HTML for your project

• Removing the obstacles between your current practice and consistently valid
markup

• Using HTML to implement for structure, rather than presentation, in ways that
get the best out of CSS

• Obscure-yet-useful HTML elements

• Getting-plug-in-content-to-work-dammit

• Using tables properly, and getting the most out of them

• The method behind the madness of CSS selectors, particularly descendant selectors

• CSS selector precedence

• The CSS block layout context

• CSS margin collapsing

• Bugs and other oddities imposed by Internet Explorer 6

• Wrangling form presentation

• The history behind the bugginess of web browsers

• What HTTP does when your back is turned (and why it’s important)

This book tries to cover what all presentation layer developers should know. It aims to
describe the many relationships between layers of the web technology stack that are
touched by designers and presentation layer developers, and also to present the
strengths of HTML and CSS.

This book will also introduce the less experienced reader to a long list of CSS layout
“tricks” essential to the demands of presentation, accessibility, and Search Engine Op-
timization (SEO). These include:

• Centering content

• Using enhanced Fahrner Image Replacement to implement bitmapped heading
type

• Creating well-aligned columns of equal (or apparently equal) height

• Using the CSS float property to get the best of both column presentation and
markup source order

xx | Preface

• Building versatile, visually rich navigation interfaces

• Developing work habits that will make your sites Ajax-ready

• Getting the most out of the CSS position property

• Creating versatile grid systems for your sites

A full reading of this book should imbue the reader with the majority of the knowledge
needed to transform nearly any consistent set of composites—no matter how far-out
their apparent requirements—into the presentation and content layers of an accessible,
usable, and “crawl”-able website.

What Is Not In This Book
This book focuses tightly on practices that maximize the effectiveness of markup and
stylesheets. For that reason, a number of things are not included in this book:

Sparsely supported bits of advanced and platform-specific CSS
You can do a lot of fun stuff with CSS…but unfortunately, some of it relies on
unevenly supported CSS selectors and properties. Such cases will be handled in
terms of desired results: if an ActiveX filter supported in Internet Explorer has an
analog in Firefox, it might be mentioned, or vice versa for -moz-* properties that
have analogs in the IE runtime environment. The minimum requirement for dis-
cussion of implementation techniques in this book is reliable support in both Fire-
fox 3 and Internet Explorer 8, and broader platform support for techniques that
render obscure accents.

CSS properties targeted at comparatively obscure media types
This book will cover production techniques well suited to the creation of highly
accessible sites, but it is only intended as an introduction to implementing sites that
are accessible to impaired visitors.

JavaScript and the Document Object Model (DOM)
While this book will mention JavaScript at times and even occasionally show a bit
of code, its focus on HTML and CSS means that it doesn’t cover how to manipulate
HTML and CSS with JavaScript or the DOM.

Integration with frameworks such as jQuery and YUI
Many people have many beautiful things to say about JavaScript frameworks, but
you won’t find any mention of them in this book. Despite their usefulness in a
variety of environments, JavaScript frameworks are neglected here for reasons of
scope. The best resources for learning about the interaction of JavaScript frame-
works, styles, and markup are to be found in web resources and books that focus
on frameworks specifically.

Comprehensive discussion of CSS frameworks such as YUI Grids and Blueprint
The goal of this book is to help you burnish your skills in good faith so that the
results on your résumé are pleasing not only to Human Resources evaluators, but
to hiring managers as well. Therefore, reading this book should help you to better

Preface | xxi

understand any CSS framework that you might be called upon to use, instead of
instructing you on the use of any framework in particular.

Web server configuration techniques
Typical web server runtime configurations neglect a number of settings that can
ease the achievement of usability, accessibility, and standards compliance objec-
tives. However, these oversights fall more into the domain of system administra-
tors. A number of other O’Reilly titles, particularly Webmaster in a Nutshell and
Website Optimization, address this area of interest. A number of online commun-
ities and blogs also explore this topic from time to time.

Developing for the mobile web
This book has the misfortune of being written by a lifetime resident of the U.S.,
where the feature set and reliability of mobile web access has plenty of room for
improvement. The iPhone’s popularity has improved the situation, but still has not
made it entirely tolerable. As it stands, only a minority of the mobile device users
in the U.S. can hold any realistic expectation of using the same Web as personal
computer users. Meanwhile, the expense of prepaid device connectivity found in
the U.S., and the wildly uneven availability of unencumbered emulators for mobile
device platforms, further exacerbates the problems faced when developing mobile
content for U.S. visitors. It is my hope that the next edition of this book will be
able to include development techniques intended to benefit site visitors who use
mobile devices.

Any mention of the Opera desktop browser
If there is one omission from this book over which I agonize, it’s the omission of
the Opera desktop browser from all discussions of browser behavior. Unfortu-
nately, when I weighed Opera’s market share against the amount of testing its
inclusion in the book would require, the results of the comparison were superla-
tively discouraging. Since I owe Chris Mills of Opera direct thanks for his role in
helping me to secure the contract for this book, rest assured that I did not make
my decision lightly. Given any more than the barest amount of reader interest, I
won’t hesitate to discuss the Opera desktop browser at length on this book’s
companion website.

About Web Standards
Last but not least, there is the question of compliance with World Wide Web Consor-
tium (W3C) Recommendations in commercial settings, particularly those environ-
ments that are nurtured in large enterprises.

I’ve always made it a point to distinguish between “standards friendliness” and
“standards compliance.” The first obeys the spirit of so-called web standards and is
easy to achieve with practice, while the second focuses on obeying the letter of the
Recommendations and can prove impossible to achieve.

xxii | Preface

The effectiveness of a website is enhanced far more by standards friendliness than by
standards compliance, with the greatest enhancements coming from adherence to both
objectives. This book embraces the compromises and fallbacks that preserve standards
friendliness in spite of adverse development conditions, with only the occasional twis-
ted grimace.

You may have noticed that I referred to “so-called” web standards earlier. The under-
lying irony is that web standards…aren’t, at least not literally.

Standardization requires conscientious use of a formally defined system across an entire
industry, typically (if not always) by standards bodies whose work contributes directly
or indirectly to policies and publications of the International Organization for
Standardization (ISO).

Another hallmark of true standards is an objective set of criteria and processes by which
claims of compliance can be enforced—an asset that the W3C’s products very much
lack.

For these reasons the popular definition of W3C Recommendations as standards is
reasonable in spirit, but has no basis in literal fact.

That said, the practice of web standards development has evolved tremendously since
the go-go era of the 1990s, a point that’s explored in greater detail on this book’s
companion website.

About Photoshop
Chapters 9 and 11 discuss image production techniques in some detail, and the pro-
cedures described there are based on the Adobe Photoshop user interface. I took this
approach because in any moderately sized group of web professionals, you’ll find a
wide diversity of preferred tools and implementation techniques…until you get to the
question of working with graphics. Alternatives to Photoshop (particularly Fireworks,
another Adobe product) claim their devotees, but even those operators will agree that
a working knowledge of Photoshop’s toolset and user interface is immensely useful.

My choice was also based on slanted experience; I haven’t used anything other than
Photoshop to manipulate web images since I was a full-on novice. My hope is that
visitors to this book’s companion site will submit their own alternative-title cookbooks
for the image manipulation techniques discussed in the book.

The matter of relying on Photoshop also illuminates the importance of tool choice with
respect to team effectiveness. Chapter 4 introduces the value of production standards
and code libraries, but the benefits of tool uniformity also extend to off-the-shelf soft-
ware choices.

Preface | xxiii

What You’ll Find on the Companion Website
The companion website to this book, www.htmlcssgoodparts.net, contains a wealth of
information. Among the goodies you’ll find are:

• Errata and corrections

• Blog entries about reader questions, current technical developments, and best
practices

• Staged demonstrations of techniques discussed in the book, complete with source
markup and stylesheet rules and indexed to page numbers

• Boilerplate and/or templates for multicolumn layouts and other widgets

• HTML and CSS reference tables that link to multiple third-party documentation
sources

• Visitor-submitted reviews of books and software of interest to this book’s audience

Nomenclature
Names for the various pieces of web technology sometimes vary from shop to shop and
from place to place. To minimize the potential for confusion, the terms spelled out
below in emphasis are used consistently throughout the book.

Files are discrete nodes on a server host’s native filesystem, while resources are docu-
ments or document fragments referenced by discrete Uniform Resource Identifier
(URIs). Not all files are URIs, and not all URIs are files; a URI might contain several
files, database query results, or data streams, while a file might amount to nothing more
than the logic that determines the content of multiple URIs.

Pages or documents contain one or more resources of arbitrary classification and are
the visitor-facing output of a request for a single URI (or perhaps multiple URIs, on
sites where Ajax has been deployed). Finally, this book treats the differences between
the terms “URI” and “URL” as minor to the point of insignificance, in part because the
term “resource” itself has been so muddled it’s become functionally meaningless in the
face of rapid evolution.

Content is the matter around which websites are built.

HTML, XHTML, and XML tags are referred to in sum as markup.

Stylesheets are the content of CSS files or style elements. Stylesheet rules assign pre-
sentation to one or several elements within a page. A stylesheet rule contains a selec-
tor, which defines the element(s) on the page to which one or more property/value
pairs are to be applied.

Browsers are also known as user agents, UAs, or clients.

HTML and CSS are parsed in serial fashion, and according to the results of that process
the browser renders a page.

xxiv | Preface

JavaScript is a registered trademark of Sun Microsystems that refers here to the pro-
gramming language used to script data processing and interactivity within browsers.
Different vendors refer to it by different names to avoid court trouble, but where there’s
a browser, there’s usually a JavaScript interpreter.

The Document Object Model (or DOM) is both the representation of a web document’s
structure, and the definition of how that structure ought to be organized, queried, and
altered programmatically. Several DOM specifications for web documents exist,
though only one is developed and sanctioned by the World Wide Web Consortium as
a body.

The stack of web-related services is colloquially and commonly understood to include
an operating system, a web service, a relational database service, a server-side scripting
language, HTML, CSS, and JavaScript. The platforms used in the first four layers of
the stack vary from shop to shop. Of the layers on this notional stack, the first four
layers refer to the server-side environment, and the latter three to the client-side
environment.

The client-side environment is artificially divided into four sublayers: structure (defined
by markup), content (enclosed by markup), presentation (defined by CSS), and behav-
ior (defined by JavaScript). Together these form a second Model-View-Controller
(MVC) architecture that mirrors and interacts with the MVC architecture on the server
side.

Ajax is an acronym representing Asynchronous JavaScript And XML, an implementa-
tion approach made convenient by the ubiquity of the GetXMLHttpRequest Application
Programming Interface (API).

HTML elements are the principal items in the HTML namespace; tags are literal
markup, which might well contain attributes with values, and most often enclose
content.

Copy and illustrations are to content what text and images are to data.

A doctype declaration can (and usually should) appear at the beginning of a given web
document and identifies the version of HTML against which that document should
validate. The document type definition (also called a DTD) is a machine-readable series
of statements that defines validity for the applicable version of HTML. The values
contained in a doctype declaration directly reference a specific DTD.

W3C Recommendations are official documents that serve as specifications for web
technology platforms and best practices associated with the use of those platforms.

Preface | xxv

Project managers minimize the obstacles standing between a project team and the
completion of their deliverables. Designers create the look, feel, and user experience of
sites. Engineers and application developers design and write the code that makes sites
go. Presentation layer developers as a group deliver everything that directly faces site
visitors; of these, stylists create templates and stylesheets, and producers ensure that
content gets placed into production. Most other roles commonly found in web project
teams are titled here as they would be in an advertising/marketing environment.

Current browsers or user agents refer to the mass-market browser versions current when
this book went to press: Internet Explorer 6–8, Firefox 3.x, and Safari 3.x–4.x.

Several of the terms listed here point to obscure processes with an impact on the web
user experience; these processes will be discussed in more detail throughout this book.

“Read the Source, Luke!”
When I first started working with the web platform in 1995, “Read the Source, Luke!”
was easily the most popular advice given to the greenest newbies on mailing lists. This
hearkens back to the climactic moments of Star Wars: A New Hope, and exhorts the
petitioner to read through the source markup (and now, 13 years later, the stylesheet
rules) of results they find admirable.

There’s more to this advice than sci-fi nerd humor. The best understanding of effective
passages of markup and styles comes from reading through them without filters—in
much the same way that “Force-sensitives” of the Star Wars milieu get the most out of
their talents by letting go of their prejudicial thoughts.

If you try to puzzle out how somebody accomplished a presentation goal before you
read his source, you might be badly disappointed…and if you never read his source,
you might never figure it out for yourself.

However, before we can get into the finer points of learning from source markup and
CSS, it’s best to look at the Web as a system—the relationships between the underlying
conventions and technologies that make it go.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; also Internet addresses, such
as domain names and URLs

Constant width
Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags

xxvi | Preface

Constant width bold
Indicates emphasis in program code lines

Constant width italic
Indicates text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML & CSS: The Good Parts, by Ben
Henick. Copyright 2010 Ben Henick, 978-059615760-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

Preface | xxvii

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact O’Reilly
We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made a few mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

O’Reilly’s catalog page for this book, which lists errata, examples, and any additional
information, is at:

http://www.oreilly.com/catalog/9780596157609/

The author has a companion website for this book at:

http://www.htmlcssgoodparts.net

To comment or ask technical questions about this book, send email to the following,
quoting the book’s ISBN (9780596157609):

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
When I reflect upon my experiences of 15 years as a site builder, the quality that im-
presses me most is ignorance. There’s plenty of it to go around, and like many site
builders, I often take opportunities to castigate the ignorance of others less skilled…but
not in this book.

Why?

Of greater concern still is my own ignorance, which is no less deserving of criticism.
Close on the heels of ignorance are trepidation and obstinacy, both of which were

xxviii | Preface

regular contributors to my internal dialogue during the year that I took to write this
book.

Given that attitude, this book attempts to exemplify the belief that one should light a
candle for others to find their way, instead of cursing the darkness. I give fair due to
the comfort engendered by continued reliance upon legacy production techniques, and
where best practices are mentioned, I make a point of selling them as softly as I can
without muddling my message.

In sum, I tried to fill this book with the advice that would have stood me in good stead
eight or nine years ago, that instead many people (including myself) sorted out only by
trial, error, and accident, and thence shared one iota at a time as they became able.

I hope that this book will be as useful to you now, as it would’ve been to me when I
was working toward CSS mastery.

There are a number of people whose involvement in my life brought me far enough to
achieve that state of mastery and to write this book. Since this is my first chance to call
them out fully in public, I feel that I ought to mention them by name. Apart from my
family, these benefactors include Christian Cepel, Steven Champeon, Sumin Chou,
Teddi Deppner, Nick Finck, David Hemphill, Molly Holzschlag, Brenda Houston,
Ethan Marcotte, Doug Petersen, Lance Taylor, Thomas Vander Wal, Peter Zale, and
Jeffrey Zeldman. These individuals have each made significant contributions to my life,
and without all of them, it’s likely that this book would never have been written.

There are also several people named in the book itself. Of these, Chris Mills of Opera
Software has my special thanks. Chris has never been far from this project—he’s the
one who suggested me to O’Reilly Media as an author candidate. In fact, Chris started
me down this road in the first place, by inviting me to contribute to the Opera Web
Standards Curriculum.

The contents and quality of this book are not owed to my work alone. In fact, it was
kept from the precipice of failure by the indefatigable patience of Simon St.Laurent, my
editor at O’Reilly Media. My words might be on these pages and my name might be
on the cover, but Simon’s constant support of this project bridged the long gap between
my effort and a successful conclusion.

Michael Smith is ultimately responsible for this book’s contents on the subject of
HTML5, and the absence of his name from its cover makes poor thanks for his will-
ingness to rescue me from lurching through that proverbial minefield.

I had the opportunity to handpick three technical reviewers: Kimberly Blessing, Gez
Lemon, and Chris Van Domelen. Each of them made categorically critical contributions
to the accuracy and currency of this book, any remaining lack of which is my respon-
sibility alone.

Kimberly and Chris have also been stalwart associates and sources of technical advice
for several years, and I find myself unable (as in so many other cases) to thank them in
adequate measure for their help.

Preface | xxix

O’Reilly Media was gracious enough to provide three additional technical reviewers:
Edd Dumbill, Elaine Nelson, and Shelley Powers. Their contributions helped find many
more glitches and improve the structure of the book.

While I might’ve written this book someday, you wouldn’t be reading it now without
the outstanding work of Douglas Crockford, which proved that a “Good Parts” series
would find enthusiastic readers.

I believe strongly that things really work on account of the work done by “backstage”
folks, and this project confirmed that belief. Especially high praise goes to Emily Quill,
who untangled the unwieldy parts of this book’s draft, and in doing so, ensured that
you will get your money’s worth for this book. Loranah Dimant tirelessly addressed
my last-minute edits and ensured a bright polish for the book.

My final thanks here go to Eric Meyer, who sets the bar high for the rest of us who take
a hand at developer education.

In closing, I hope that the knowledge you gain from this book will lead you to
achievements that are no less impressive in degree than those of the people mentioned
here.

xxx | Preface

CHAPTER 1

Hypertext at the Core

A properly built website is far more than the sum of its markup, stylesheets, scripting,
and multimedia resources. Well-built websites take full advantage of their hypertext
medium, making a once obscure technology central to the way we consume informa-
tion. Without easily activated links, the Web wouldn’t be the Web; it would be just a
rigidly organized heap of documents.

While hypertext offers tremendous flexibility, it also requires developers to help visitors
find their way. Visitors will take unexpected paths even within a site, and will arrive
from sites or bookmarks that you don’t control. The power that hypertext provides
also comes with the responsibility to structure your site in ways that visitors will be
able to comprehend and navigate.

The Web Without Links
The Web’s use of links to connect information makes it different from previous media.
Today, when the Web is so familiar, it’s easy to forget those differences, but they pave
the way to developing successful websites. So what happens when you remove hyper-
links from a site?

• The first and most significant result of excising hypertext from a networked infor-
mation system is that content becomes strictly linear: one must first read through a
given amount of content before reaching the object of his interest. Take the links
out of hypermedia and the result is nearly useless without a concerted attempt at
imposing internal order and structure.

• Linear resources are designed and structured on different assumptions, expecting
that a reader has examined (or at least referred to) previous passages of content.
Take this book as an example. You can jump around within it, but chapters are
still ordered by the descending importance of the subjects that they cover. Also, if
the companion website for this book did not exist, there would be plenty of verbose
markup examples between its covers.

1

• The visitor’s sense of location is informed by standard cues. Most books and other
linear information resources have some sort of header or footer content on every
page (or on the title bar of the reader application), and a visitor’s state of progress
through a networked information resource, like a large Portable Document Format
(PDF) file, is cued by a vertical scroll bar.

These distinctions illustrate how hyperlinks add new dimensions to documents. While
this gives the Web tremendous flexibility, it also creates challenges. The added navi-
gational possibilities result in systems that make it difficult to maintain a sense of place.
While the consumer of a linear resource can count on traditional cues and her own
critical thinking skills to enforce her sense of place, the consumer of hyperlinked re-
sources needs the help of designers and implementers to maintain her sense of location.

Notions of “beginning” and “end” are artificial if not entirely absent from web media.
This is a marked departure from the fundamental nature of nonhyperlinked resources,
which are bounded by definition.

URIs
In a perfect system, Uniform Resource Identifiers, or URIs (formerly Uniform Resource
Locators, or URLs) would be hidden from the site visitor. They aren’t especially
human-readable, comprised as they are of a protocol token, a host alias, and something
that looks like a filesystem reference but isn’t. URIs often end in token/value pairs that
are deliberately designed to be computer-readable, as opposed to visitor-friendly.

We’re all familiar with simple URIs like http://www.example.com/ that point to the
home page of a site. These appear in advertisements and on business cards, and the
http:// has come to mean “type this in to find the website.” However, well-crafted
URIs can contain a lot of information—look at commonly encountered URIs at your
favorite search site or news site, and you’ll see a lot more going on. Google search result
URIs, for example, can contain a parameter named start that specifies the number of
results ranked higher than those displayed, as in http://www.google.com/?q=hyper
text&hl=en&start=10. In a similar vein, popular Content Management System (CMS)
platforms and e-commerce catalog platforms allow the same resource to be associated
with multiple URIs, where the longer URIs enhance a resource’s searchability or specify
that additional content be served along with the core resource (e.g., a product listing
or the summary of a weblog entry).

Browsers and other tools use the HTTP protocol to process URIs and
retrieve information. If you want to know more about how this pro-
cessing works, and how its features and limitations might affect your
pages, see the appendix.

2 | Chapter 1: Hypertext at the Core

Managing Links
Hypertext as we understand it today was first implemented at Stanford University in
the 1960s, but didn’t become an everyday tool until the advent of affordable commercial
Internet access three decades later. The “explosion” of the Internet not only provided
a way for hyperlinks to connect across a broad network, but it also nurtured an un-
derstanding that web hyperlinks should be simple and tolerant of failure.

HTML link conventions assume that the person creating a link knows what will be at
the URI at the end of it. That doesn’t necessarily mean that link creators control what
is at the end of the link, however. In fact, the ability to link to any content without
having to ask its creator beforehand is a critical aspect of the Web’s success. If it has a
URI, you can link to it. If a URI doesn’t work, a well-built site will report an error (like
the ubiquitous “404 Not Found”) and present a page that can help the lost visitors find
their way again.

The power and immediacy of web links raised all kinds of cultural (and in some cases
legal) questions about what it means to be able to link directly to someone else’s ma-
terial, but over time a simpler and probably more intractable issue arose: link rot. Cre-
ating links to information you don’t control eventually means that over time those links
break, as information and even sites change or disappear. It also means that you may
have visitors arriving at your site who are confused and frustrated because they didn’t
find what they wanted immediately.

To some degree, link rot is inevitable, and even automated systems (like search engines)
have a difficult time keeping up with it. Even if links still point to useful pages, they
may evolve over time into something very different. Within your own sites, you have
somewhat more control, though major site redesigns can make this difficult. Caution,
well-built error pages, and clear navigation can help minimize these problems.

While visitors can usually deal with regular links that send them to the
wrong place, it may be more difficult for your pages to recover from
missing images, code, stylesheets, or other components that are sup-
posed to be inserted via accurate href and src values. The more impor-
tant the component to your page, the more you will want to link to it at
a stable location under your control.

Improving the User Experience with Linking
Links are part of HTML, the means by which URIs are most commonly exposed within
the Web’s application layer, at the point where HTML and HTTP intersect. At the
application level, there isn’t much difference between following a link and accessing a
given URI through the Location bar of a browser.

URIs | 3

Links provide infinite opportunities to site builders—opportunities that are usually
passed over. Anything can link to anything else. Hyperlinks in documents aren’t
constrained to site navigation, stylesheet references, and syndication references; they
can also point to an unlimited number of related documents and all kinds of alternative
content. Hyperlinks that respond to user interaction can be placed anywhere, point to
anything, and trigger behavior limited only by platform constraints, good sense, and a
site builder’s imagination. Well-implemented hypertext enhances information with the
following benefits, among many:

Broadened accessibility to and control of information
Hyperlinks can always reference every part of the Web that is not access-controlled.
Rather than delivering long chunks of exposition out of necessity (as this book
does) or referring to other matters that must then be physically obtained, hyper-
links allow the users to decide for themselves which information resources they
will access and how.

Creation of multiple narratives from a single body of content
Hyperlinks make it possible for a visitor’s “journey” to take any and all forms that
he desires…within reason.

Community-driven attention flow
Incoming hyperlinks lend credibility to destination content without the need for
subject matter–expert intervention—a fact that defines a number of systems al-
ready in use, especially Google’s PageRank algorithm. It remains possible for the
“wisdom of crowds” to be qualitatively poor, but accuracy tends to increase over
time since subject matter experts remain closely involved with the process.

Hypertext Implementation Challenges
Web technology allows users to direct their own experience in ways that until 1992
had been the stuff of science fiction. No single person or entity has unqualified control
over a given user’s web experience (although not for lack of trying). A single user session
can result in requests for content from multiple unaffiliated authors, on tangential or
unrelated subjects, and require an arbitrary amount of user interaction.

This seeming anarchy places new demands on implementers:

1. Context (i.e., steady “You Are Here” and “That’s Over There” signaling) is the
most important part of an effective site, apart from the actual site content.

2. Untested assumptions about a visitor’s goals and knowledge create a short, straight
path to folly and disaster.

4 | Chapter 1: Hypertext at the Core

3. Duplication of content adds needless burdens to the user experience (and to the
site building process).

4. The Web’s lack of bounds, assumptions, and context can create user impairments
out of thin air, and often these impairments must be addressed. The Web’s
tremendous openness creates the need for specialist disciplines in web information
architecture and usability.

Because the Web breaks the linear structure of traditional media outright, implementers
must never forget that their tools define context, first and foremost.

URIs | 5

CHAPTER 2

Working with HTML Markup

When building a site, one of the most important tasks that you perform is link creation,
but HyperText Markup Language (HTML) offers a heap of features beyond links.
HTML documents describe the hypertext and contain much of the content users ex-
plore while visiting the Web, connecting them to other resources including presentation
style, scripts, images, video, sound, and much more. As you’ll see, a key part of working
with HTML is knowing when to let other technologies (and sometimes people) do their
work.

HTML has been in constant development since its invention in 1992, and web software
(like browsers and web-focused IDEs) have evolved apace. As HTML nears its third
decade, clear best practices for markup have emerged both from HTML markup itself
and from the technical and business ecosystems that interact with it. Clear HTML
syntax lets you build a reliable document tree to hold your content and support addi-
tional layers of style and behavior. Chapter 5 is devoted to the features of CSS that
interact with the document tree.

HTML Syntax
HTML and its stricter sibling XHTML define a set of rules for marking up documents,
as well as rules for how that markup should be structured. HTML parsers (but not
XHTML parsers) usually follow a principle referred to as “Postel’s Law,” stated as
follows:

Be conservative in what you send, and liberal in what you accept.

Where XHTML requires the creator of the document to write very precise markup,
HTML parsers will liberally repair omissions and remove empty elements that are
present in markup. This makes the document valid from the visitor’s perspective,
though not necessarily using the structure originally intended by the stylist. (HTML5
is defining this behavior formally, but in the past it has varied from browser to browser.)

7

Tags, Elements, and Attributes
HTML defines a number of elements, each of which falls within a particular semantic
domain and takes a name derived or borrowed whole from English. Elements define
the structure of the document and lay the foundation for its presentation and
manipulation.

Each element reference in a document is contained within one or two tags—tokens
enclosed by angle brackets (< and >) containing the name of the element being used.
Opening tags always begin with < immediately followed by the element name, and
reference all attributes and values associated with the element; closing tags are feature-
less apart from the element name, which is preceded by a forward slash.

Elements without discrete closing tags are handled in different ways:

• HTML elements with optional closing tags—most notably li (list item) and p
(paragraph) elements—allow for complete omission of the closing tag.

• HTML elements that forbid a closing tag are indistinguishable from opening tags
of other elements.

• XHTML elements always either forbid or require closing tags; “optional” doesn’t
get much traction in XHTML.

• Tags referencing XHTML elements that forbid closing tags terminate not with >,
but with />. This token is usually preceded by a space, to prevent parsing failures
at the hands of legacy user agents.

Tags can contain an arbitrary amount of whitespace, and attributes can be listed in any
order within an opening tag.

All element instances can be modified through the use of attributes, most of which
should in turn be followed by values. In plain HTML, elements and attributes are case
insensitive, but in XHTML, they should be written entirely in lowercase characters. As
a dialect of XML, XHTML poses two additional rules:

• XHTML is broadly case sensitive, which can matter with respect to values, while
HTML enforces the case sensitivity of values only for the class and id attributes.

• Where an attribute is applied within an XHTML tag, it must be followed with a
value. In the case of attributes that are typically deprived of a value in HTML, the
common practice is to duplicate the name of the attribute in the value (e.g.,
checked="checked" instead of simply checked).

Example 2-1 shows some valid XHTML 1.0 Transitional markup.

Example 2-1. XHTML 1.0 snippet

<div id="header"><h1>AcmeStore.com</h1></div>

<img src="/images/portrait.gif" width="144" height="180" alt="This is a random portrait
of somebody." />

8 | Chapter 2: Working with HTML Markup

The first line of Example 2-1 contains three elements, one inside another, not unlike
a matryoshka doll. It’s important to remember that when elements are nested, they
should be closed in the reverse order in which they were opened, to create the
nesting shown in Figure 2-1. Inadvertent failure to follow this rule is a common cause
of blowouts.

Figure 2-1. Well-formed HTML tags nest in exactly the same way as matryoshka dolls

Example 2-1 also treats attribute values according to XHTML rules. XHTML values
are always quoted. HTML values follow a different rule:

In certain cases, authors may specify the value of an attribute without any quotation
marks. The attribute value may only contain letters (a–z and A–Z), digits (0–9), hyphens
(ASCII decimal 45), periods (ASCII decimal 46), underscores (ASCII decimal 95), and
colons (ASCII decimal 58). We recommend using quotation marks even when it is possible
to eliminate them [emphasis].

—HTML 4.01 specification, World Wide Web Consortium

HTML Syntax | 9

Character references within attribute values are discussed in “Inserting
Entities to Provide Non-ASCII Characters” on page 226 and “The Fine
Print of URL Encoding: ASCII Entities” on page 248.

Page Structure
When a browser receives content it believes to be HTML, it will attempt to process the
content based on what it can figure out from the markup contained in the document.
Even if that markup has missing parts, is structured strangely, or is otherwise not
standards-compliant, the browser can usually display something resembling what its
creator had in mind.

If a web document is to be valid, however, it must contain a number of properly struc-
tured elements with appropriate content. A valid HTML document contains the fol-
lowing components, in order:

1. The document type declaration

2. The document’s html element

3. Within the html element, the document’s head element

4. Within the head element, a title element and any necessary link, script, base,
and meta elements

5. Within the html element and after the head element, the document’s body element,
which represents everything on the page that might be directly user-facing

6. Within the document’s body element, at least one block element

Rendering Modes, Flavors of HTML, and Document Type
Declarations
As of this writing, HTML has been steadily evolving for 17 years. Five versions have
been developed, and HTML5, the most recent of these, is steadily making its way to
popular use though it is not yet complete. The World Wide Web Consortium (W3C)
has also published a Recommendation for XHTML, the XML-conformant version of
HTML 4.01.

While it is still too early to know what the “good parts” of HTML5 will
be, throughout this book we will cover new HTML5 functionality where
it might change best practices.

Since version 1.0, HTML has included something called the document type declara-
tion at the very beginning of the document. This identifies the version of HTML used

10 | Chapter 2: Working with HTML Markup

in a document to a user agent, but was generally ignored by web browsers until 2001.
For example, the document type declaration for HTML 4.01 Strict would look like the
following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

The most significant impact of the document type declaration is its influence on the
way that element footprints are rendered. Different DOCTYPEs lead to different ren-
dering modes. (They also set expectations for HTML validators.)

You’ve probably seen the acronym “DTD,” which expands to “Docu-
ment Type Definition.” The DTD is the machine-readable definition
that the document type declaration is intended to reference. At any rate,
the declaration and definition are different matters; the former ideally
points to the latter, and only the latter is referred to as a DTD. This
book’s companion website examines the finer points of DTDs and
document type declarations in greater detail.

HTML or XHTML?
The currently popular “flavors” of HTML are variants of HTML 4.01. The widest divide
lies between those variants that follow traditional HTML syntax, and those redefined
to meet XML’s requirements for well formedness. When served with the correct MIME
type (see Table A-1 in the appendix), XHTML is also parsed according to the stricter
syntactical requirements of XML.

Normal HTML enforces somewhat looser rules, allowing things like the omission of
closing tags, and is case insensitive. XHTML, meanwhile, requires all elements to be
properly closed with a complete tag or /> as needed, and named entirely in lowercase
characters.

XHTML suffers one substantial disadvantage—its canonical MIME type isn’t suppor-
ted by Internet Explorer, a problem discussed in greater detail in Chapter 14.

However, carefully formatted XHTML (or HTML written under the constraints of
XHTML) offers an even greater advantage that has led to its selection for markup ex-
amples in this book and its related materials. Because XHTML’s required syntax is
more rigid, XHTML source fragments are measurably easier to read than their HTML
analogs, and the rules defining valid XHTML are less confusing.

HTML5 includes support for an XML syntax, but does not require its
use.

Rendering Modes, Flavors of HTML, and Document Type Declarations | 11

Strict, Transitional, or Frameset?
As HTML has evolved, a number of elements have been deprecated: that is, officially
designated as obsolescent or out of scope. In addition, many elements have circum-
scribed scope—they must appear within certain elements or contain certain elements.

In brief, the differences between the Strict, Transitional, and Frameset subtypes of
HTML can be defined in terms of permissiveness and rigidity. Strict variants have the
narrowest requirements with respect to the contents or containers of certain elements,
and are less relaxed about the use of deprecated elements.

The Frameset subtype, meanwhile, is meant to be used in one circumstance: for docu-
ments that define a series of frame elements. Framesets and frames will be discussed in
more detail in Chapter 14.

Finally, note that iframe elements fall within the scope of the Transitional document
types, not the Frameset document types.

HTML5 offers only one choice for document type, which is effectively
Strict plus new HTML5 features.

CSS3 allows those definitions to be made independently of the document type with the
box-sizing property, which has two values: content-box and border-box. The layout
behaviors associated with these values are given close attention in Chapter 6.

A Tale of Two Box Models
Current web browsers use document type declarations as a “switch” that can determine
the “box model” used to define the underlying measurements that will inform the page
layout.

The dimensions of an element box defined by HTML can be modified with various CSS
properties that control its content footprint, gutters (padding, etc.), borders, and
margins as separate components. Older browsers calculate these dimensions subtrac-
tively: custom footprint dimensions include associated gutters and borders. Margins
are also treated differently with respect to containing elements.

However, the CSS 2.1 specification requires that footprint calculations be handled
additively, so that gutters, borders, and margins are rendered as an addition to any
custom footprint dimensions. Of course, there is still a lot of content on the Web that
was styled to accommodate the older layout approach.

By including a document type declaration in a document, a page author sets a switch
that defines the layout model that will be applied to a page’s block elements by default.
Some declarations cause rendering engines to behave according to the technical

12 | Chapter 2: Working with HTML Markup

standard set in the CSS 2.1 specification, while others cause rendering engines to behave
according to the legacy approach (frequently referred to as “quirks mode”). Where a
document type declaration is omitted, the legacy box model is applied.

In cases where the distinction might be important, source examples in this book and
its companion materials will be framed in terms of the box model defined in the CSS
2.1 specification.

For a thorough list of DOCTYPEs and the modes that various browsers
use to render them, see http://hsivonen.iki.fi/doctype/.

Choosing the Right Document Type for Your Project
In the hands of experienced developers, document type choices are a question of per-
sonal preference. I always use XHTML 1.0 Transitional for new projects and redesigns-
from-scratch—thanks to the consistency of XML’s rules, I find that the resulting
markup is easier to comprehend during the production and quality assurance phases
of a project.

However, my needs are not yours. In order to address your most important needs, you
should ask the following questions before choosing the document type to be used on
a particular project:

What “flavor” of HTML does the project sponsor use on its other online properties, or use
as a matter of course?

Generally speaking, it’s best to stick with conventions established by materials
already in production.

Does anyone hold the expectation that content will be stored in a datastore meant to be
accessed by multiple systems?

In this case, XHTML—which is a dialect of XML—might well be a better choice,
since portability is perhaps the greatest strength of XML.

How likely is it that your work product will be processed by transformation algorithms
such as search-and-replace functions?

Strict document types will hold up better in the face of transformation algorithms.

Finally, on a somewhat different note, there is the question of how you use your tools.
It’s generally best to hang onto the tools you’re already using, unless you have an ob-
vious need to change.

Rendering Modes, Flavors of HTML, and Document Type Declarations | 13

Beautiful Parts: Universal Attributes
You’ll be seeing a lot of the class and id attributes throughout this book. These are
universal attributes—they can be used by any element in the HTML vocabulary that’s
valid as well as body itself.

In addition to class and id, there are four other attributes that are similarly versatile:

• title

• lang/xml:lang

• dir

• style

dir specifies which direction type should run. style will be described in Chapter 14.

Providing Stylesheet Hooks with class and id
Two attributes that can be assigned to all elements are class and id. Several class values
but only one id value can be assigned to a given element. Multiple class values are
separated by spaces, e.g., class="alternate callToAction".

Valid class and id values should contain only letters, numbers, hyphens, and under-
scores. These values should begin only with letters and numbers. However, Internet
Explorer 6 parses and applies stylesheet values that are associated with class values,
id values, and property names that begin with underscores—an oversight that provides
stylists with a low-pass filtering technique.

A more important question is where to put classes and ids. As a rule, classes should
be assigned to those frequently encountered elements that share both design purpose
and presentation peculiarities, but aren’t used predictably. On many sites, classes are
also assigned to the body elements of pages that fall within a single section of the site’s
architecture, such as the common “About” and “Contact” sections.

The overall structure of site templates tends to inform where and how id and class
values are assigned. I typically assign the following ids to the appropriate elements of
every site template that I build:

• main

• header

• primaryNav

• bodyCopy

• sidebar

• footer

• secondaryNav

14 | Chapter 2: Working with HTML Markup

If you look carefully at that list, you’ll note the total absence of page- or site-specific
values that refer to page coordinates (e.g., left or right columns), color, or specific sizes.
A similar reliance upon context is used for class values as well; section values and hints
to purpose such as error make frequent appearances, but references to absolute di-
mensions or colors do not. The closest thing to an exception in this regard is made for
form styles, where minimally subjective class values like short, medium, and long turn
up with regularity in order to avoid styling label/field pairs one by one.

Describing Content with title and lang
In addition to id and class, HTML 4.x and XHTML 1.x added two other universal
attributes that are used to provide metadata about the language and general nature of
the content related to the elements to which they are applied.

Of these, title is more commonly used. Its value is an arbitrary string that provides a
brief description of an element’s content. It can also include the title of a link’s desti-
nation, a technique used extensively on Wikipedia. Finally, browsers can put aside
title values and display them as document metadata. If implemented and used well,
title values can be a tremendous help to visitors trying to find needle-sized bits of
information in haystack-sized information stores.

The title attribute is comparable to the alt attribute used for images, but is distin-
guished from alt by the fact that alt is meant to be displayed as a substitute for an
image that cannot be displayed, whereas title describes content instead of serving as
a fallback for it.

In current desktop browsers, the value of the title attribute is displayed in a tool tip
when the associated element is moused over, as shown in Figure 2-2. These tool tips
are truncated by some browsers when they run long, though the truncation point varies
from one browser to the next.

Figure 2-2. A title tool tip, as displayed by Internet Explorer 8 on Vista/Aero

The lang attribute, meanwhile, is a meaningful nod to the “World Wide” part of the
Web. In much the same way that the title attribute can be used to supply supplemental
information about the content of an element or the destination of a link, lang does
exactly the same for foreign-language content.

Beautiful Parts: Universal Attributes | 15

You are supremely polite when you use the lang attribute, because it aids visitors in the
task of understanding the context of foreign-language content even when they cannot
make out its exact meaning. Furthermore, screen readers need an accurate lang or
Content-Language response header value to pronounce foreign-language content
accurately.

The hreflang attribute exists as a counterpart to the lang attribute and
is used to signal that a hyperlink points to content written in a language
other than that specified for the current document.

Finally, note that XHTML served with the application/xhtml+xml MIME type should
use the xml:lang attribute in place of the lang attribute.

When the the lang or xml:lang attributes are used to describe an entire
document, they should be attached to the html element, instead of the
html element.

The value that you provide for the lang attribute (and the Content-Language HTTP
response header field) is chosen from a list composed from various ISO-sanctioned
codes and structured according to rules maintained by the IETF.

Table 2-1. Frequently encountered Content-Language values

Language lang/Content-language value

English en

English (American) en-US

English (British) en-GB

Chinese (Simplified) zh-Hans

Chinese (Traditional) zh-Hant

Chinese (Taiwanese, no script specified) zh-TW

Spanish es

Japanese ja

French fr

Portuguese pt

Portuguese (Brazilian) pt-BR

German de

Arabic ar

Russian ru

Korean ko

16 | Chapter 2: Working with HTML Markup

To learn more about effectively using the title attribute in links, read “Creating Ef-
fective Link Content and title Values” on page 136. lang values of interest are listed in
Table 2-1.

The contenteditable Attribute in HTML5
The HTML5 specification adds a number of new global attributes to HTML, including
contenteditable, which is already supported by most modern browsers. It’s mainly
intended for providing in-browser rich-text/WYSIWYG editors—the kind of editing
interfaces you might find in browser-based blog-authoring tools, for example.

The contenteditable attribute essentially enables you as an author to specify that par-
ticular parts of a page (the contents of particular elements) are editable. Within those
editable parts of the page, users can potentially perform actions like selecting text,
cutting and pasting, and moving text (including by dragging and dropping it), as well
as changing the character formatting of text to appear bold or italic, or in a different
color, or even actions like adding hyperlinks.

Just setting the contenteditable attribute on a particular element won’t cause a browser
to actually expose any obvious editing controls to the users. However, it generally
will enable users to at least perform actions that have common, familiar keyboard
shortcuts (for example, Ctrl-X to cut, Ctrl-V to paste, or Ctrl-B and Ctrl-I for bold and
italic). Some browsers even provide a text-editing context menu that’s available by
right-clicking in a contenteditable area; this may add a few additional character-for-
matting actions that don’t have common keyboard shortcuts, such as changing the font
size or color of selected text.

It’s possible that other browsers will follow suit and expose more contenteditable text-
editing actions (such as, say, an action for easily adding hyperlinks) through a related
context menu. However, all that being said, if you want to provide an in-browser user
interface for performing editing actions in contenteditable content, you’ll also need to
write some programming (scripting) in JavaScript. For example, you can easily add a
button to a page allowing users to make selected text bold (rather than forcing them
to use a keyboard shortcut), but to make it work, you’ll need to add some scripting
that associates your button with the action you expect it to perform. (The HTML5
specification provides a number of APIs to facilitate scripting in combination with the
contenteditable attribute, but I won’t go into the details here.)

Another limitation of contenteditable is that, on its own, it provides no means for users
to actually save the contents of any pages they’ve edited. That’s something else for
which you, as an author, will need to provide an interface.

Beautiful Parts: Universal Attributes | 17

Separating Content, Structure, Presentation, and Behavior

Making Your Sites “Safe As Houses”
Imagine a dwelling. The simplest such structure meant to stand for any length of time
will have some kind of durable structural frame anchored to the ground and covered
with some kind of paneling.

For the client side of a website, that frame and cover are the structural layer, the markup:
it defines the overall form of the result.

When you start getting fancy with your house, you can add things like siding, paint,
trim, and shingles. This is like the presentation layer of your website, driven on the
whole by CSS. In the same way that the walls and roof will fall off of a poorly framed
house, CSS will be difficult to use if the markup is not properly assembled.

A good house has things like climate-control hardware, doors, windows, electricity,
and plumbing. In many cases, things like this are what make the house truly enjoyable
to live in. Likewise, the behavior layer of a website is the part that most clearly responds
to user activity. However, without the other parts of the architecture and engineering
properly installed, the behavior layer will most likely be ineffective.

And what about the content? Well, as the point of a house is to shelter people and their
stuff, so the point of a website is to serve as the ideal vessel of a heap of content. Each
HTML page holds a markup structure wrapped around content.

Separation in Practice
When a developer works under the principle of separation, the likely result is that each
client-side layer of the site enjoys tremendous independence from the particulars of the
other layers. That independence will never be complete; at best, it will enable in new
properties the reuse of assets that already exist. At any rate, the principle of separation
assumes the following dependencies:

1. A site’s behavior loses its punch without the presence of an effective presentation.

2. A site’s presentation is dependent upon the underlying quality of its structure.

3. Without thoughtfully assembled content, creating a solid site structure becomes a
fool’s errand.

However, it's easy to achieve a level of “layer independence” that will minimize the
impact of changes—so that, by defining a class that is only assigned to an element
when a visitor interacts with it, you can make unlimited changes to the presentation of
an element without also needing to alter any JavaScript that defines its behavior. Like-
wise, you can give yourself free rein to fiddle with a stylesheet and completely revise a
site’s presentation without being forced to dig into any of the site’s structure or

18 | Chapter 2: Working with HTML Markup

content—the “CSS Zen” approach (see the section “The Functional Principles of CSS
Zen” on page 60).

Working with Document Trees
Much of the work at the beginning of a website development project revolves around
developing a simple HTML structure that CSS and perhaps eventually JavaScript can
use as a framework for their presentation and behavior activity. This work focuses on
creating a basic structure that many documents can use as their foundation and possibly
as their template. At this point in the process, the focus is less on content and more on
common structures that wrap that content. Example 2-2 shows the body element of a
simple HTML document structure.

Example 2-2. A simple HTML document structure

<body>
 <h1>...</h1>
 <div id="main">
 <div id="priorityContent">
 <div id="bodyCopy">

 <h2>...</h2>
 <div class="section">
 ...
 </div>

 <h2>...</h2>
 <div class="section">
 ...
 </div>
 </div>

 <div id="sidebar">

 ...
 </div>

 <ul id="primaryNav">
 ...

 <div id="footer"
 <ul id="secondaryNav">
 ...

 <p id="colophon">...</p>
 </div>

 </div>
 </div>
</body>

Separating Content, Structure, Presentation, and Behavior | 19

This sample provides more than just a template. Its nested and labeled elements also
define a structure that CSS (and JavaScript) can build on, creating a tree (labeled using
for ids and . for classes) that looks something like:

The production standards enforced at many workplaces generally rely
on class values in templates more heavily than suggested in Exam-
ple 2-2 and the document tree outline below.

• body

○ h1

○ div#main

■ div#priorityContent

■ div#bodyCopy

■ h2

■ div.section

■ ...

■ div#sidebar

■ ...

■ ul#primaryNav

■ div#footer

■ ul#secondaryNav

■ p#colophon

Sketching your document tree as a nested list and then creating markup from the struc-
ture you’ve defined may make it easier to see and manipulate the tree structure you’ll
need. The tree shown here is relatively simple, and doesn’t reach down into individual
paragraphs or other forms of content. As you fill documents with additional content,
you will be constantly extending the document tree, and expanding the amount of
material that your stylesheets and perhaps your JavaScript code can modify.

Browsers, Parsing, and Rendering
Current web browsers typically parse and render content piecemeal, quite often starting
the process before a page has been received in full by the browser. HTML browsers—
or more generically, user agents—will process an HTML or XHTML document serially
from the beginning of a document’s source, working out the relationships between the
various elements it contains and filling in gaps if necessary to create a document tree.
Meanwhile, they read any CSS specified by the HTML in a similar fashion, matching

20 | Chapter 2: Working with HTML Markup

up stylesheet selectors to the elements contained in the page as described in the next
chapter.

The serial nature of these processes is important for three reasons:

The only way in which user intervention can affect parsing is to halt it
The markup, CSS, JavaScript, session data, and user data received by the browser
in the scope of a single page set the stage for everything that happens until the page
is completely rendered.

Until a page and its related media are completely received, parsed, and rendered, their
appearance is subject to change at the hands of the browser’s rendering engine

In high-latency environments, slow arrivals can create visually disconcerting results
as the page shifts over time to accommodate recently arrived components. This
behavior can lead to the dreaded “Flash of Unstyled Content,” which is explored
briefly on this book’s companion website.

There is no strict rule as to what a web browser should or should not parse, as long as the
data in question can be interpreted

Browsers are permissive about what they attempt to download and parse. This
permissiveness leaves it to the discretion of a site’s developers to conserve resour-
ces, a task best accomplished by ensuring that stylesheet data is matched with care
to the requirements of the current document. This is a potential cause for concern
to those who need to account for performance in marginal environments.

Because Ajax uses the W3C Document Object Model Application Programming In-
terface (DOM API) to update the contents of arbitrary elements within a page, it’s
absolutely vital that markup within any page intended to contain the output of Ajax
calls be syntactically correct. This is particularly true with respect to sibling elements
of those meant to be updated.

Markup syntax errors alter the document tree and element boundaries into a configu-
ration different than what’s intended, which can make it unnecessarily difficult to find
the cause of JavaScript errors in Ajax-oriented code.

Dynamic HTML, Ajax, and Rendering
First- and second-generation desktop browsers only ran a single set of rendering passes
per page request, so that additional rendering would only take place after another page
request had been sent to a server. All subsequent desktop browsing platforms have
made it possible to insert additional content after the initial “page load,” a feature that
was called “Dynamic HTML” until the XMLHttpRequest API became popular. The
ability of this new API to asynchronously request and insert new content without load-
ing an entirely new page eventually led to the adoption of the term “Ajax.”

Browsers, Parsing, and Rendering | 21

CHAPTER 3

CSS Overview

Like in a cinematic or musical work, the “Good Parts” of CSS are easier to find if you
have a basic understanding of what’s going on. This chapter lays the foundation for
what’s to come in the rest of this book—it explores the role of CSS in creating successful
websites, and provides a survey of its basic components.

If you’re in a hurry to get to the Good Parts, you can skip ahead. There
are some mentions of Bad Parts and Awful Parts here worth noting,
though, and CSS is complicated enough that a quick review can be
helpful.

Connecting Stylesheets to HTML Documents
HTML documents can specify the stylesheets that are applied to them, using the link
element, the style element, or the @import declaration.

Go to http://www.htmlcssgoodparts.net/ for an interactive demonstra-
tion of the relationships between stylesheet rules and elements in a typ-
ical page.

Referencing a Stylesheet with link
The most common method of associating styles with your document is to use a link
element within the head of a document. The source of link elements usually looks
something like this:

<link rel="stylesheet" href="/styles.css" media="screen" title="Primary Stylesheet" />

This approach also supports stylesheet choices: a stylist can create multiple stylesheets,
assign a title to each, and assign a second rel (relation) value of alternate to all but
one of the referenced stylesheets. (Multiple rel values should be separated by spaces.)

23

Users will then be able to choose which stylesheet they want to associate with your site.
This feature is supported by Firefox, recent versions of Safari, and Internet Explorer 8.

Targeting Internet Explorer Versions with Conditional Comments
Internet Explorer’s partial support for CSS has created a variety of problems for devel-
opers. However, one of Internet Explorer’s other nonstandard features makes it pos-
sible to specify stylesheets only for Internet Explorer, even to the degree of specifying
particular versions of that browser.

Updates made to Windows in late 2009 disabled Internet Explorer 8’s
support for conditional comments when operating in “IE8 Standards”
mode.

Internet Explorer defines HTML comments differently than other browsers, which al-
lows you to include source that only Internet Explorer will parse as proper markup.

One possible example that references a stylesheet is:

<!-- [if lt IE 8]><link rel="stylesheet"
href="/styles.ie.css" media="screen" /><![endif]-->

The <![endif]--> closing “tag” is a constant feature of such markup. The opening
matter is written in the following format, with user-supplied values in emphasis:

<!-- [if version_constraint IE version]>

The user-supplied values work as follows:

version_constraint
This item is optional, but where present can take one of four forms:

• gt: greater than [>]

• gte: greater than or equal to [≥]

• lt: less than [<]

• lte: less than or equal to [≤]

version
This item is also optional, and where used corresponds to a major release: 5, 5.5,
6, 7, or 8.

The Internet Explorer conditional comment syntax also supports Boolean AND, OR,
and NOT operators, which are explained in more detail at the Microsoft Developer
Network site.

Low-pass and high-pass rule filters can serve as fit alternatives to stylesheets condi-
tionally targeted to legacy versions of Internet Explorer. These rule filters are discussed
in more detail in Chapter 14.

24 | Chapter 3: CSS Overview

Replacing link with style
When the style element is used, it can contain any quantity of valid CSS. One effective
use of style blocks is to serve CSS rules that are specific to a single page; I make a
regular habit of using this technique. Many developers use style elements to reference
stylesheets requested via the @import rule, which is discussed in more detail next.

The conditional comments described earlier can also enclose a style element or its
content.

It’s generally best to keep style blocks short, as their presence affects
the proportion of keyword-rich content in a page, thus having the po-
tential for a slightly negative impact on Search Engine Optimization
(SEO) efforts.

When a page marked up in XHTML is served with the correct MIME type (application/
xhtml+xml), style content must be placed inside a <![CDATA[...]]> (character data)
block.

Using @import
The @import statement first became popular in the late 1990s, when developers dis-
covered that Netscape 4 wouldn’t parse it. This made it easy to include more advanced
stylesheets that would work with other browsers, while leaving Netscape 4 alone.

In contemporary use, @import declarations are reduced to their original intended func-
tion, which is to serve as an analog to an include function that is applied specifically
to stylesheets.

@import declarations must always appear at the top of a stylesheet’s source order, valid
@import declarations can only be preceded by an @charset declaration. The browser
parses and applies the styles in an @imported stylesheet as though they were in the place
of the @import declaration that referenced them, a fact that can affect rule priority.

For the sake of consistency with other bits of CSS syntax, only the parenthetical method
of reference will be demonstrated:

@import url(/form_styles.css);

It is also possible to apply stylesheets called @import to specific media, which is dis-
cussed shortly.

Beware of style Attributes!
The first rule of standards-friendly development (see “Rules of Standards-Friendly De-
velopment” on page 46) demands that you keep presentation details out of your
markup, so avoid the style attribute however and whenever possible. In those

Connecting Stylesheets to HTML Documents | 25

(extremely) rare instances where it must be used (for example, Content Management
Systems that lock out stylesheets), it should contain the desired series of valid property/
value pairs, just as if those same pairs were being included in a stylesheet rule applying
only to that element.

The style attribute is further discussed (and subjected to passionate abuse) in “The
Awful Parts” on page 286.

Targeting Rules to Specific Media
HTML and CSS allow you to create different stylesheets for different media, most
commonly screen and print. A single document might have several stylesheets, each
targeted at one or more media. There are three approaches to applying styles to specific
media:

Add an optional media attribute/value pair to an appropriate link or style element
Adding a media attribute to one of these elements will cause the valid rules con-
tained within that element’s scope to apply only to the desired media. Therefore,
if you want a linked stylesheet to apply only to printed pages, you would include
media="print" in the applicable link tag.

Add an @media block to a style block that hasn’t already been assigned a mutually exclusive
media value

For example, @media print { body { font-size: 12pt; } } will cause the default
type size of a given page or site to be changed to 12 points.

Add a media value to an @import declaration that isn’t already placed within a mutually
exclusive media scope

In the same way that the @media selector trails with the names of one
or more recognized media, the file reference in an @import declaration can be fol-
lowed with the names of one or more recognized media, for example,
@import(/styles.print.css) print;. This approach targets all of the rules in that
stylesheet to the desired medium or media.

Note that @import declarations placed inside @media blocks are
invalid.

Where multiple media are named, they should be comma-separated.

The following media type values are described in the CSS 2.1 specification and claim
greater-than-insignificant support from browser and other user agent vendors:

all
All devices

26 | Chapter 3: CSS Overview

screen
Monitor-type displays attached to personal computers, typically cathode ray tube
(CRT; “TV-type”) or liquid crystal diode (LCD; “flat panel”) displays; often ap-
plicable mobile device displays as well, at vendors’ discretion

print
Paper sheets of arbitrary number and area, coated with ink, pigment, or toner

handheld
Mobile devices and personal digital assistants (PDAs); poorly supported by all but
very recently marketed devices, as of 2009

projection
Tabletop projectors; poorly supported by nearly all vendors

speech
Screen reader and text-to-phone platforms; poorly supported

The remaining media types described in the CSS 2.1 specification are functionally
unsupported:

braille
Braille terminals

embossed
Braille printers

tty
Two-dimensional fixed pitch display environments (usually a monochrome CRT
display or command-line client software); accurately cognate to the traditional
Unix designation for dumb terminals

tv
Television browsers, like the erstwhile WebTV

Choosing the Elements You Want to Style: Writing Selectors
A typical stylesheet, regardless of its scope, is a series of rules structured as follows:

selector { property: value; property: value; [...] }

The bad news—and the bane of many newcomers to CSS—is that this structure is terse
to the point of impenetrability.

The steep learning curve of CSS syntax is rewarded with the ability to affect a page’s
presentation with a superlative degree of granularity. Any selector can point to any
arbitrary set of elements within a page, and CSS properties can accomplish anything
within the limits of an implementer’s experience and imagination, when put to thought-
ful use.

Choosing the Elements You Want to Style: Writing Selectors | 27

The concepts explained briefly here are taken up in much greater detail
in “Applying Taxonomy Through the Cascade” on page 70.

Parents, Children, and Siblings: Element/Node Relationships
The section “Tags, Elements, and Attributes” on page 8 introduced the idea of element
nesting for the purpose of explaining how tags-inside-tags need to be written. Element
nesting opens to door to one of the most important aspects of applied HTML and CSS:

It is not only allowed but actually encouraged to “wrap” stretches of clearly related con-
tent in elements set aside for just that purpose, and to assign descriptive ids and/or
classes to such wrappers.

When such “semantically appropriate” elements are used to enclose content, new re-
lationships are created in the document tree, thereby increasing the number of CSS
selectors that can be used in the course of implementing a design.

Multiple nested elements have what are referred to as parent, child, and sibling
relationships:

Document tree
The notional branching structure of all elements in a document. Synonymous with
“Document Object Model” as applied to a specific document.

Parent
The element that directly contains the element at the focus of concern.

Ancestor
An element higher in the document tree, possibly many levels higher, that contains
the element in question.

Child
The element that is directly contained by the element at the focus of concern.

Descendant
An element contained by the element in question which is deeper in the document
tree.

Sibling
An element that shares a common immediate parent with the element at the focus
of concern.

CSS makes a clear distinction made between generic parent and child elements, and
those that are immediate or direct. For example, an li element in a valid document
claims some ul or ol element as its direct parent, but will also have at least one—if not
two—other parent elements within its document tree: body (which is required by the
DTD for the various flavors of HTML 4.x) and quite likely another block element.

28 | Chapter 3: CSS Overview

Simple Selectors
Typically, selectors interface with markup at three main points: element names,
class attribute values, and id attribute values.

Elements
p { ... }

classes
.about { ... }

ids
#corporatehistory { ... }

The following fragment of markup includes hooks for all of the example selectors just
shown:

<body class="about" ... >
...
 <div id="corporatehistory" ... >
 ...
 <p>The 1990s were a time of drastic change throughout the industry.<p>
 ...
 </div>
...
</body>

The p { ... } selector will apply to the p element in code fragment just shown.
The .about { ... } selector will apply to the body element, whose class value is
"about". And finally, the #corporatehistory { ... } selector will apply to the div ele-
ment with an id of "corporatehistory".

Beyond these three foundations, CSS 2.1 specifies other selector types, including
universal selectors (*), child selectors (div > p), descendant selectors (div p), adjacent
selectors (ol + p), and attribute selectors (p[lang], p[lang="en"] or a number of
other variants). It also includes the :first-line, :first-letter, :before, and :after
pseudoelements, as well as a variety of pseudoclasses: :first-
child, :link, :visited, :active, :hover, :focus, and :lang. CSS3 adds even more pseu-
doclasses and pseudoelements, but is still in development.

Multiple and Descendant Selectors
The capacity to combine multiple selectors in a single rule is by far the greatest con-
tributor to the versatility of CSS. Selectors can be combined and comma-separated to
apply the same characteristics to multiple arbitrary elements, whitespace-separated to
reference child elements, and concatenated to enforce a high degree of granularity.
There is no limit on the number or type of selectors that can be associated with a single
stylesheet rule.

Choosing the Elements You Want to Style: Writing Selectors | 29

The examples shown in Table 3-1 are assumed to be in a stylesheet that applies to an
entire site.

Table 3-1. CSS selectors scoped in plain English

Selector Applies to

p All paragraphs in the document

.about All elements in the document with a class value of about

#corporatehistory The element in the document with an id value of corporatehis
tory (if present)

h1,h2,h3 All first-, second-, and third-level headings in the document

.privacy,.copyright All elements with a class of privacy or copyright

#header,#footer The element assigned an id of header, and the element assigned an id of
footer

p.footnote All paragraphs assigned a class of footnote

#bodycopy.usergenerated An element that has been assigned both an id of bodycopy and a
class of usergenerated

.navigation a All links with an ancestor parent assigned a class of navigation

#primarynavigation li.current All list items with a class of current and an ancestor parent with an
id of primarynavigation

.about #bodycopy Any element on the site with an id of bodycopy and an ancestor parent
assigned a class of about

body#personalproducts,

body#proproducts,

body#enterpriseproducts

The body elements within the site assigned the ids personalprod
ucts, proproducts, and enterpriseproducts

body#personalproducts #bodycopy,

body#proproducts #bodycopy,

body#enterpriseproducts #bodycopy

The elements assigned an id of bodycopy, within the documents sug-
gested by the previous example

ol li ol li ol li A list item in the third level of a nested ordered list (such as an outline)

Selecting Direct Child Elements
CSS provides the > selector to create selectors for elements with an immediate child
relationship, so that:

#bodycopy>p { ... }

refers to the paragraph element in:

<div id="bodycopy"><p>...</p></div>

30 | Chapter 3: CSS Overview

but not the paragraph element in:

<div id="bodycopy"> ... <blockquote><p> ... </p></blockquote> ... </div>

The > selector is discussed as one of the Bad Parts—not because there’s anything wrong
with it, but rather because it’s not supported by Internet Explorer 6.

Rule Conflicts, Priority, and Precedence
The cascade allows well-written selectors to target any range of elements in the docu-
ment, without respect to the level of the document tree in which that range of elements
lies.

A close look at the selector examples presented so far reveals that conflicts seem inevi-
table. A rule such as p { ... } would apply to the preceding source example, but
presumably so would #bodycopy p { ... }. When there is a conflict, which value gets
applied?

Selector Priority
The types of selectors used in a rule dictate that rule’s priority. In ascending order of
weight, they are:

1. User agent stylesheet selectors

2. User stylesheet selectors

3. The universal selector (*)

4. Elements and pseudoelements (e.g., first-letter)

5. Classes, pseudoclasses (e.g., :hover), and attributes ([selected="selected"])

6. ids

7. Values of inline style attributes, as explained in “The Awful Parts” on page 286

Given any two rules, the one with the highest-priority selector will automatically take
precedence. In cases where two rules contain selectors of equal priority, it then becomes
necessary to count the number of selectors in each rule—a rule with two id selectors
takes priority over a rule with one id selector and four (or eighteen) class selectors, for
example.

When any two selectors claim identical priority and weight, it then becomes necessary
to consider the presence of any !important values that they contain, as well as their
relative position in the source order of the styles applied to a document. The importance
of rule source order is explained in the following section, and taken up directly in the
explanation of link pseudoclasses (see “Link Pseudoclasses” on page 137).

Rule Conflicts, Priority, and Precedence | 31

Avoiding Rule Conflicts
Where two conflicting rules claim an identical priority, the browser applies the latter
of those two rules, considered in terms of style source order. Style source order is de-
termined by the order in which external stylesheets and style element content are
inserted into a document, so that given the following fragment of markup:

<link rel="stylesheet" type="text/css" href="/styles.css" media="all" />
<style type="text/css">@import (/styles.signup.css);</style>

The contents of /styles.signup.css are assigned a later source order than the contents
of /styles.css. Placing the @import declaration in /styles.css would instead give the
contents of /styles.signup.css an earlier source order.

There are two other methods of increasing the priority of property/value declarations:
the !important value and overloaded selectors. The former is best applied to general
cases, while the latter is best applied to edge cases.

The !important value follows a normal property/value pair, like so:

color: #f00 !important;

In practice the values supplanted with !important are given absolute priority in all
stylesheet rule conflicts, unless a user stylesheet also addresses the same conflict with
an !important value of its own.

In its turn, selector overloading relies on the fact that all selectors attached to a rule
contribute to that rule’s priority, even if the elements they specify are completely absent
from the document to which the styles are being applied.

Consider the following two rules in the context of the same page and stylesheet:

a:visited { color: rgb(128,0,128); }
.sidebar a { color: rgb(0,0,255); }

Given the requirements of the specification, both rules acquire the same priority. To
have any hope of being applied, the second of the two rules just given must be inserted
later in the stylesheet. However, if project requirements deny that outcome, it might
be practical to overload the rule with an additional bogus selector.

This scenario is fairly unlikely. Instead, selector overloading demonstrates its greatest
value when a rule assigns style values to several sections of a site or page at once, and
in so doing makes it otherwise impossible to give priority to values in even narrower
contexts.

Overloaded selectors should be embellished by accompanying comments whenever
possible, in order to make them more accessible to automated search/replace functions.

32 | Chapter 3: CSS Overview

Value Inheritance
Only font/text and foreground color values are preserved within an element’s descend-
ants. Background properties often appear to be inherited, and this illusion works be-
cause where two elements share a context and overlap in the layout—as is always the
case with descendant elements that share a stacking context. The latter element in the
source order is always stacked above its immediate parent or other ancestor.

Element stacking contexts are discussed in greater detail in Chapter 6.

Meanwhile, there are two types of elements that do not inherit the font/text and fore-
ground color values of their parent elements:

Form controls
The type in form controls is set in the fonts and colors specified by the operating
system defaults, unless it is deliberately reset in the stylesheet.

iframes
Since an iframe is populated by its own separate document, its font/text and fore-
ground color properties are defined by stylesheet rules associated with that
document.

CSS Property and Value Survey
Figuring out how to specify the element you want to style is probably the hardest part
of learning CSS and writing production stylesheets. However, climbing that learning
curve doesn’t lead to results until you know how to supply style properties and values
to the elements that you’ve carefully chosen.

CSS Units
While CSS supports a seemingly endless list of properties, the scheme for setting values
is fairly predictable. Table 3-2 describes the most frequently used values.

Table 3-2. Commonly encountered CSS length/size, keyword, and color units

Unit Type Example

px (pixels) length width: 744px;

em (ems) length margin-left; 1.25em;

% (percent) length left: 34%;

pt (points) length font-size: 12pt;

CSS Units | 33

Unit Type Example

in (inches) length margin-top: .75in;

cm (centimeters) length margin-top: 1.905cm;

xx-small ... xx-large font size font-size: large;

rgb(r,g,b) color (decimal) background-color: rgb(221,204,187);

#rrggbb color (hexadecimal) background-color: #ddccbb;

#rgb color (hexadecimal, reduced depth) background-color: #dcb;

Cross-Media Length and Size Units
There are three commonly used units in stylesheets intended for screen display:

px (pixels)
Pixels are absolute units, equal to one pixel on the user’s screen display; always
expressed as an integer.

em (ems)
In digital typesetting environments (including CSS), an em is equivalent to the
greatest possible height of a glyph (letter) in the applicable font and size combi-
nation. The contemporary definition contrasts with the historical definition: the
width of a capital “M” in the font and size of the type to which it is applied as a
measurement. This unit is usually expressed with a floating-point value.

% (percent)
Percentage units are computed relative to some baseline measurement, which var-
ies according to property and context. Floating-point percentage values are
allowed.

em and % units are discussed in “Layout Types and Canvas Grids” on page 106.

Pitch and the Value of a Pixel
The screen, handheld, and projection media types all support the px unit, but CSS
provides no standard mechanism for defining display pitch.

Since the pixel is the atomic unit of screen displays, all page elements must be computed
in terms of pixels before rendering can take place. Because of this requirement, display
pitch will determine the literal size of everything presented by the browser. The smaller
the display pitch, the smaller everything will be when a page is rendered and displayed.

Table 3-3 shows the approximate arithmetic behind common display resolutions and
pitches, as found on both contemporary backlit LCD and older CRT displays. Com-
monly encountered form factors are shown in bold.

34 | Chapter 3: CSS Overview

Table 3-3. Commonly encountered screen display form factors, resolutions, and display pitches

Size (viewable) Resolution Aspect ratio Width (mm) Height (mm) Pitch (mm) px/in

10.2″ 1024×600 ≈17:10 224 130 0.218 116

12″ (CRT) 640×480 4:3 244 183 0.381 66

12″ 1024×768 4:3 244 183 0.238 106

13″ 1280×800 16:10 280 175 0.219 116

14″ (CRT) 800×600 4:3 284 213 0.355 71

15″ 1024×768 4:3 305 229 0.298 85

16″ (CRT) 1024×768 4:3 325 245 0.318 80

17″ 1280×1024 5:4 337 270 0.263 96

17″ 1366×768 ≈16:9 376 212 0.276 92

17″ 1440×900 16:10 366 229 0.254 100

19″ 1440×900 16:10 409 256 0.284 89

22″ 1680×1050 16:10 474 296 0.282 90

23″ (CRT) 1600×1200 4:3 447 335 0.279 91

As of this writing, two types of displays (19″, 1440×900; and 22″, 1680×1050) are par-
ticularly high sellers on Amazon.com (though both types are outsold by netbooks).
Going by this table, the pitches of these two types of displays differ by only 2μm (less
than 1%), averaging out at nearly 90 pixels per inch.

Considering that Windows assumes a display pitch of 96 pixels per inch for the purpose
of displaying print documents onscreen, it would appear at first that stylists have little
to worry about when it comes to predicting the literal size of their product on the screen
display of the typical user.

In most cases, default assumptions offer few caveats to trouble the conscientious stylist.
However, consider the fact that a pixel on a netbook contains less than two-thirds of
the area of a pixel on one of the high-selling displays mentioned earlier. This means
that the physical dimensions of a layout will decrease by one quarter on each axis when
viewed on a netbook, as compared to the most popular types of desktop monitors.

The physically variable nature of pixels leads to a concept that every web developer
would do well to keep in mind:

Designers who fail to account for the range of conditions under which their sites are
visited will likely experience shock when exposed to their work in an unexpected setting.
Stylists are among the reviewers who can prevent such surprises.

CSS Units | 35

Print-Friendly Length Units
Chapter 1 pointed out that unlike its predecessors, the Web is an unbounded medium.
That lack of constraints applies not only to the Web’s domain of information, but also
to its interface—when viewed on most hardware platforms, web documents can be
scrolled, minimized, maximized, and otherwise manipulated within browser windows
to the limits of the designer’s imagination and the visitor’s patience.

The print medium yields with greater ease to assumptions about environment, since
readers of printed pages typically read from sheets of US Letter (8½″ × 11″) or ISO A4
paper, which are similar in size.

Print stylesheets can make good use of additional units, all of which can be specified
in floating-point values:

pt
Type is traditionally measured in points; there are 72 in an inch. Expressed in
Système International (SI) units, a point is roughly equivalent to 353 μm, yielding
slightly less than 28.35 points per centimeter.

in
One inch is defined by international treaty as being equal to 2.54 cm. By way of
comparison, a row of four hexagonal wooden pencils laid side by side and flush
will measure nine-eighths of an inch (1.125″) across.

cm
Centimeters. One sheet of A4 paper measures 21 cm × 29.7 cm.

This list is not comprehensive; additional units are described on this book’s companion
website. Also, note that line-height values can be specified with floating-point num-
bers and without a unit. In such cases, a value of 1 is equivalent to 1em.

font-size Keywords
In situations where the priority of accessibility outweighs the need to express design
composites precisely, font-size keywords can be used to surrender presentation con-
trol to the visitor. The domain of font-size keywords contains seven values, listed
below from largest to smallest:

• xx-large

• x-large

• large

• medium (default)

• small

• x-small

• xx-small

36 | Chapter 3: CSS Overview

font-size keyword values are also discussed in “Size Keywords” on page 217.

Color Units
CSS supports a three-channel (red, green, blue) color space with eight bits of color
depth per channel. Such a space yields 16.7 million (224) possible colors.

Wherever there’s a need to reference a color, stylists have at their disposal three styles
of notation:

rgb(r,g,b)
Three channels, decimal; each channel takes a range of 0–255.

#rrggbb
Three channels, hexadecimal; each channel takes a range of 00–ff.

#rgb
Three channels, hexadecimal, reduced depth; each channel takes a range of 0–f.
The equivalent color in full-depth notation is found by doubling each hexadecimal
digit, so that #6cf and #66ccff are identical.

When creating stylesheets, it’s important to choose the most appropriate color notation
and use it with ironbound consistency for the sake of stylesheet legibility. The advan-
tages and disadvantages of each are described in Table 3-4.

Table 3-4. Advantages and disadvantages of the three styles of CSS color notation

Style Advantages Disadvantages

Six-digit hex • Precision

• Ease of migration from legacy markup

• Difficulty of visualization

• Illegibility

24-bit decimal • Human readability

• Accessibility to scripted transitions

• Vulnerability to input errors

• Lack of copy+paste functionality in third-party tools

Truncated hex • Simplicity

• Suitability for prototyping

• Lack of depth

Chapter 9 goes into greater detail about working with color.

Key CSS Layout Properties
In order to implement all but the simplest layouts, it becomes necessary to use a number
of layout properties that alter the flow of elements within a document. The most func-
tionally useful properties and values are described in Table 3-5 (defaults are in bold).
These properties and values will be explained in greater detail in Chapter 6.

Key CSS Layout Properties | 37

Table 3-5. Commonly supported CSS layout properties and values

Property Values

display • block

• inline

• inline-block

• none

width/height • [length]

• auto

float • left

• none

• right

clear • both

• left

• none

• right

position • absolute

• fixed

• relative

• static

top/right/bottom/left • [length]

The functions of the properties listed in Table 3-5 are described next and shown in
Figure 3-1.

display
HTML specifies that elements exhibit one of several kinds of layout behavior.
Normally this behavior is set by the element’s definition in the DTD, but that
behavior will correspond to and may be overridden by the value of the CSS
display property. inline describes elements that flow without deliberate line-
breaks on a (usually) common baseline, and have limited interaction with CSS
layout and box properties. block describes elements that are followed and preceded
by linebreaks, and expand to fill the entire width of the containing element (unless
otherwise specified). inline-block describes elements that flow like inline ele-
ments, but interact with the full range of CSS layout and block properties, like
block elements. The none value is cognate to elements that are hidden by default,
and supplying this value will remove the affected element from the document flow
entirely.

width and height
Describes the dimensions of block and inline-block elements. A width value of
auto causes the affected element to expand to the full width of its containing

38 | Chapter 3: CSS Overview

element, while a height value of auto causes the affected element to expand to the
full height of its nonfloated content.

float
When changed, specifies that an element should hew to the specified margin of its
containing element, and allow following elements to flow around it. A float prop-
erty/value pair must always appear in tandem with an explicit width property/value
pair, unless it’s assigned to an element (such as an image) that has an intrinsic width.

clear
Describes the containing element margin(s) to which an element should be
anchored, thus ensuring that it will be placed below any nearby preceding elements
that have a comparable float value.

position, top, right, bottom, and left
Alters the location of the specified content border(s) of the affected element, when
a position value other than static is supplied. As layout tools go, these properties
are spectacularly powerful—powerful enough that they’re explained at exhaustive
length in “CSS Positioning Properties” on page 96. Figure 3-2 describes the re-
lationships between various types of positioned elements.

The layout properties described here are a small subset of the full body of CSS layout
properties. The others are described throughout the rest of this book.

Figure 3-1. The use of the float and clear properties changes the relationship between the affected
element and the element(s) that follow it

Key CSS Layout Properties | 39

Figure 3-2. A position value other than static changes the positioning context, as shown here

40 | Chapter 3: CSS Overview

CHAPTER 4

Developing a Healthy Relationship
with Standards

The Web as practiced is not the same as the Web as specified. While the Web is built
on standards and specifications, adherence to the rules is sporadic at best. Software
developers often extend functionality, leave out functionality, or implement things in-
correctly. Web developers often create sites that more or less conform to the specifi-
cations, but they may also tune their work to run on a particular browser, with all of
its idiosyncrasies, or leave their slightly broken markup at the mercy of a browser’s
rendering engine.

Ignoring or abandoning standards to focus exclusively on browser results leads to a
maze of constant testing on every imaginable browser, and possibly a powerless sense
of resignation when you recognize the inevitability of alienated site visitors. On the
other hand, sticking to the spirit, the letter, and the fine details of specifications may
limit your ability to reach visitors through the tools they have, rather than the tools you
wish they had. Fortunately, there is a middle way.

The Broad Landscape of Web-Related Standards
While HTML and CSS are the focus of this book, there are a number of significant
standards that relate directly to web development. These include:

HTTP 1.x
Hypertext Transfer Protocol—already explained in brief earlier—claims both the
W3C and the IETF as custodians. This partnership is appropriate, as the IETF is
the body responsible for the ongoing development of the protocols used on the
Internet as a whole. The appendix outlines aspects of HTTP that HTML and CSS
developers should understand.

Web Content Accessibility Guidelines (WCAG)
Two versions of the Web Content Accessibility Guidelines have been published.
The first became a W3C Recommendation in May 1999, and is referenced directly

41

in the United States Government regulations that define websites that are accessible
to the functionally impaired. The latest version achieved Recommendation status
in December 2008, and applies not only to traditionally designed websites, but
web platforms in general.

ECMA-262
The syntax, grammar, and core objects of the language usually referred to as Java-
Script are defined in a standard endorsed by Ecma International (originally
chartered as the European Computer Manufacturers Association).

Document Object Model (DOM) Levels 1–3
Valid web documents have a coherent, tree-like structure, and the DOM specifi-
cations define the programmatic interfaces to that structure.

The vendor-specific DOM APIs used when Dynamic HTML was first supported
are sometimes referred to as “DOM Level 0.” Levels 1 through 3 are defined in a
number of W3C Recommendations and Drafts.

ISO 639, 8859, and 10646
The W3C and vendors currently rely on these standards for implementing char-
acter encodings and language references. The last of these is called Unicode, and
is encoded using one of the Unicode Transformation Format (UTF) schemes.
Nonlogographic writing is often encoded using UTF-8. For more information
about character encoding, consult “Character Encoding in Brief” on page 224.

The Web also relies on standards for things like image formats (JPEG, GIF, PNG, SVG)
and other content that might be included in pages.

Why Web Standards?
Since the publication of the first IETF draft specification for HTML, browser vendors
and site developers have made a frequent bad habit of disregarding published web
standards. At the same time, the community of developers who make a point of re-
specting those standards (of which this author considers himself a devoted if usually
quiet member) has never been anything but vocal and predictable, if not actually dis-
ciplined. There are a number of issues at work behind the scenes of the ongoing debate.

This section addresses web standards as they are typically promoted.

Interoperability
Untested assumptions about visitors are a big mistake. Common adherence to
standards would reduce the number of assumptions. Developers could build their sites
and deploy them with a minimum of platform testing. And who doesn’t want that?

42 | Chapter 4: Developing a Healthy Relationship with Standards

Market Forces
The virtues of interoperability do not, however, harmonize easily with the hot desire
for bells, whistles, and pretty things often felt by artists and marketers. Browser vendors
cannot ignore the imperative to innovate, and the market usually works on a shorter
life cycle than the standards acceptance process.

Market forces are what drove the prospect of common standards compliance off the
rails in the first place. In early 1995, table support was introduced in Netscape 1.1,
while codification of earlier enhancements brought to market by Mosaic 2.0 was still
awaiting acceptance. In effect, Netscape—then still deserving of the “startup” label and
two years from its groundbreaking entry into the equity markets—was capable of run-
ning circles around the standards adoption process, and the market responded. The
resulting conditions nurtured a diffident attitude toward web standards that persists
more than a decade later.

Forward Compatibility
It is often argued that standards compliance ensures the longevity of sites that respect
it; while features are often added to user agent platforms, they are rarely removed or
disabled (the blink element being a notable but absurd exception). Older standards,
meanwhile, tend to lie within the lowest common denominator of features supported
by all user agents. The upshot of these two facts is that standards compliance allows
sites to better survive across browser versions.

Accessibility
Standards compliance tends to make materials more accessible to impaired users, many
of whom rely on various forms of third-party assistive technology to ensure a mean-
ingful experience. The standards are a useful guide in this respect for a number of
reasons:

• While not enforced by an impartial body, W3C Recommendations are authorita-
tive and as such are incorporated into requirements of statute law relating to ac-
cessibility, especially in the United States.

• The published Recommendations provide vendors of assistive technology with
baseline expectations for their customers’ browsing environments, even when that
baseline follows lowest common denominators.

• From the beginning, one of the principal design goals of HTML has been cross-
media compatibility, which makes it easier to create technology.

Why Web Standards? | 43

Vendor Priorities
After the release of Internet Explorer 6 in 2001, Microsoft’s attention to the web user
experience entered an era of somnolence that has only just definitively ended with the
release of Internet Explorer 8, a substantial upgrade.

IE6 was released at a time when market shares of competing user agent platforms were
on the wane, and the public understanding is that Microsoft made a strategic decision
to rest on its laurels until developer community outcry—driven by an official United
States Government recommendation to stop using Internet Explorer altogether, among
other factors—encouraged it to resume significant ongoing development of Internet
Explorer.

A similar incident illuminates Netscape 4’s poor support for CSS. When CSS 1.0 was
in development, Netscape and Microsoft offered competing proposals to the W3C, and
Netscape’s proposal was rejected outright. It’s apocryphally understood that because
Netscape 4 was about to pass its RTM (release to manufacturing) milestone, frantic
last-minute engineering of Netscape 4’s rendering engine was required in order to pro-
vide any support whatsoever for the W3C-mandated CSS—a necessarily slapdash effort
that had long-term consequences for the quality of the browser, to say nothing of Net-
scape’s viability.

Legacy Asset Inertia
During the era of the Web’s fastest growth, standards were barely on the proverbial
radar, and the cost of putting sites into production was high because the tools available
at the time were quite primitive.

As a result of those adverse conditions, tremendous investments were made in poorly
built web properties and the software that made them go. These properties continue
to be nurtured because the cost of replacing them—measured in terms of institutional
politics and capital investment—is seen as too high.

This phenomenon most strongly affects typical web developers in the area of third-
party content and solutions, particularly news publishing and advertising platforms.

Best Practices (and Lack Thereof)
Web shops and solo web developers can be found under a wide variety of institutional
umbrellas: solo freelancers, specialist boutiques, large advertising agencies, mass media
outlets, online businesses, medium-size businesses, information technology and infor-
mation services departments of every imaginable size, and departments that have one
or two developers fully responsible for the breadth of that unit’s web presence. In ad-
dition, there are legions of do-it-yourself-ers, who can be undercapitalized, bloody-
minded, or both. Websites are built by all kinds of people, and everyone has different
notions of what makes a website good or bad. That difference in judgment of quality

44 | Chapter 4: Developing a Healthy Relationship with Standards

and choice of tools, which in large enterprises is compounded by interdepartmental
confusion and infighting, results in widely varying ideas of best practices.

An individual’s most valuable web development qualification is neither her level of skill
nor her degree of talent, but instead her ability to interact agreeably with teammates
and others in order to be effective at her job, a quality frequently called “team fit.” That
dynamic is made still more complex by the fact that there is a high incidence of introvert
personality traits amongst the population of professional web developers. Finally, the
reluctance of many employers to take responsibility for their employees’ ongoing skill
development puts considerable drag on the momentum of median skills growth—
sometimes to the point of eliminating that momentum completely.

As you can imagine, such an environment can result in wildly differing opinions re-
garding good and bad.

Strict Constructionism
The most passionate dispute that many developers have with the prospect of standards
compliance is that it’s an all-or-nothing affair. The most visible requirement of
standards compliance is valid markup, which is too often impossible to publish because
of the many challenges explained earlier.

In addition to meeting the extreme challenge of genuine standards compliance, well-
intentioned development teams must tolerate the rather shrill and morally superior
attitude of many self-styled standards advocates, and the result is a large cadre of pro-
fessionals who couldn’t possibly care less about standards compliance.

Taking the Middle Road: Standards-Friendliness
Even when work product can’t stand up perfectly to the test of validation, the good
intentions that underlie web standards remain relevant.

The primary goal of standards-friendliness is to allow iterative enhancement of work
product, a significant aspect of which is forward compatibility. Standards-friendliness
leads to syntactically correct markup in good source order that strictly enforces sepa-
ration of structure from presentation, while minimizing the amount of time spent
struggling with the minutiae of validation. While this practice concedes more to adverse
circumstances than many web standards advocates feel is appropriate—since after all,
the project sponsor is the one who signs the paychecks—it still yields many benefits.

Taking the Middle Road: Standards-Friendliness | 45

Benefits of Standards-Friendliness
What do you get in return for the extra effort of a standards-friendly approach?

Standards-friendly deliverables follow the Pareto (80/20) Rule, creating optimal benefit
for the amount of time invested

The alternatives are unmaintainable assets, lack of scalability, and inflexibility.
Such outcomes increase delivery times over the long term, since there’s little in
standards-ignorant work product on which to base modular assets.

Accessible assets become much easier to create
When the source order of content is easily human-readable and developers use
appropriate elements—especially lists, in the case of navigation functionality—the
result presents few if any challenges for users of assistive technology.

Users of alternative media also benefit from these accessibility improvements
Standards-friendly development offers the best opportunities to apply separate
presentation layers to content on a per-media (e.g., screen, print, mobile) basis
without being forced to create multiple instances of the same content, saving huge
amounts of time and other resources.

Data becomes more portable
When datastores are designed in the spirit of standards-friendliness, their contents
can be transformed for use in other information systems, perhaps even systems
that aren’t web-based. Microformats advocates are especially ebullient about this
benefit.

Rules of Standards-Friendly Development
Following some basic rules of standards-friendly development can simplify creating
and developing your sites in the long run:

1. Avoid presentation-oriented markup (especially inline style attributes) at all rea-
sonable cost.

2. Keep the source order of page content easily human-readable at all times.

3. Overbuild markup relating to overall document structure, but otherwise keep
markup to the minimum required by the circumstances.

4. Relegate the use of table markup to data presentation only.

5. Ensure that all elements are properly closed, nested, populated, and supplied with
required attributes; relegate all other validity concerns to a lower priority.

6. If possible, assign a distinctive id or class (or even one of each) to each body element
within a site’s scope, to account for edge cases.

7. Give all ids and classes names that are driven by context, rather than presentation.
If you find yourself unable to follow this rule, you’re probably breaking Rule #1;

46 | Chapter 4: Developing a Healthy Relationship with Standards

if you’re able to follow it, you’re probably doing a good job of following Rules #2
and #3.

8. Always use lists and headings where called for, even though it can be challenging
to put the latter inside the former.

9. Relegate all images intended to provide design accents to the CSS background-
image property.

10. Draft separate stylesheets for Internet Explorer, limited to the scope of addressing
layout bugs.

Like all rules, these have their exceptions—and because it de-emphasizes the value of
completely valid markup, Rule #5 breaks a few broader rules itself.

The guiding principle of these practices is not perfection but practicality: it’s often im-
possible to maintain perfect control over the entirety of a complex site, once poor third-
party content and other flaws are taken into account.

Taking the Middle Road: Standards-Friendliness | 47

CHAPTER 5

Effective Style and Structure

One can read markup like music and gain an appreciation for a document as a complete
product—but when the presentation is completely removed into its own dedicated
scope, the only way to make sense of the result is to ride two trains of thought in parallel.
For most people, that kind of perfectly balanced multitasking takes practice.

However, there are tools and habits that make it easier. Among the tools are the de-
veloper interfaces provided with every major browser, all designed to display related
markup and stylesheet rules in context.

Habits are a different matter. Remember that the Web is a multidimensional space: if
you see markup or CSS and your thought process is still constrained to only two (or
even three) dimensions, you’re not seeing the whole picture.

Most of this section deals with presentation-layer development
practice on a theoretical level. If you want to skip to the “climax” of this
material, you should read “Taxonomy and Nomencla-
ture” on page 68.

The Four Habits of Effective Stylists
The Web has no beginning and no end. Individual pages might be bounded, but even
those usually contain links to other sources of information, and visitors could have
arrived from any context. Even when a document ends, the user experience doesn’t.

Working in this unbounded environment requires a tight focus on information in pref-
erence to any notion of the finished site. Everything else takes lower priority: designers’
hangups, branding guidelines, even release schedules don’t matter when you’re in the
early stages of a project. A stylist who keeps an effective focus on the information is
able to accommodate most of his team’s priorities as a matter of course.

49

Successful stylists need to adopt four habits to give information its due:

1. Keep It Simple, Stupid.

2. Keep it flexible.

3. Keep to consistency.

4. Keep your bearings.

These four habits enhance process and product, making it possible to create better work
product in less time than is possible without a thoughtfully disciplined approach. De-
velopers of large sites especially have need of the resource savings implied by these
habits.

The perspective that complements and aids these habits leads eventually to the concept
of “CSS Zen.” For more information about this concept, see “The Functional Principles
of CSS Zen” on page 60.

Habit #1: Keeping It Simple
Simplicity of design—otherwise known as “the KISS Principle” (Keep It Simple,
Stupid)—can take several forms in a developer’s work product: less markup, shorter
pipelines, less-ornate application objects, and fewer features are all results of a push
for simplicity.

More parts means more things that move, more things that interact, more dependen-
cies, more things that can break, and more ways in which things can break.

Successful practitioners of simplicity remove everything that doesn’t need to be there.

The first challenge, then, is to set criteria of necessity. Most excess markup serves one
of two objectives: futureproofing or precision of layout. In the latter case, its presence
should be considered necessary only if your workplace culture is tuned to give the
clueless what they want. This even goes for optional-yet-desirable accents like rounded
corners, for which simple and complex implementations are shown below:

/* *** simple styles *** */

.someElementWithCorners { padding: 1em; background-color: #ccc; -moz-border-radius:

.75em; -webkit-border-radius: .75em; }

.someElementWithCorners b { display: none; }

/* *** ...but if EVERYBODY MUST have the same presentation, these rules will go in
the IE conditional stylesheets... *** */

.someElementWithCorners { position: relative; }

.someElementWithCorners b.trc,

.someElementWithCorners b.brc,

.someElementWithCorners b.blc,

.someElementWithCorners b.tlc { display: block; position: absolute; z-index: 0; width:

.75em; height: .75em; overflow: hidden; background-image:

50 | Chapter 5: Effective Style and Structure

url(/images/corner_circle.png); }

.someElementWithCorners b.trc { top: 0; right: 0; background-position: 100% 0; }

.someElementWithCorners b.brc { bottom: 0; right: 0; background-position: 100% 100%; }

.someElementWithCorners b.blc { bottom: 0: left: 0; background-position: 0 100%; }

.someElementWithCorners b.tlc { top: 0; left: 0; }

.someElementWithCorners p,

.someElementWithCorners h4 { position: relative; z-index: 1; }

...

<!-- ...And now for the markup: -->

<div class="someElementWithCorners">
 <h4>Lorem Ipsum Dolor Sit Amet</h4>
 <p>This is filler content for a source example. In it the quick red fox jumps over
 the lazy brown dog.</p><b class="trc"> <b class="brc"> <b
 class="blc"> <b class="tlc">
</div>

In the simple implementation, only the first stylesheet rule is used, the four b elements
are omitted, there’s no need for an extra background image, and on account of Internet
Explorer’s absent support for rounded corners, its users just don’t see them. (Although
yes, it does rely on the nonstandard -webkit-border-radius and -moz-border-radius
properties.)

The more complex, rounded-corners implementation works, but with experience its
problems become glaring:

• The markup is irrevocably tied to presentation; removing the rounded corners from
the design will suggest (if not require) work to remove the presentation-specific
matter.

• position, z-index, and the hassles that attend their use are particular to this im-
plementation of flexible rounded corners, but most unnecessarily complex styling
carries comparable baggage. The result of this extraneous stuff is always the same:
the additional markup and styles decrease the flexibility of the site’s presentation
by introducing unintended design constraints.

• More markup and more styles increase the likelihood of input errors and rendering
bugs.

Something to keep in mind about simplicity—and its absence—is that benefits and
hassles tend to multiply. If you use a single complex implementation in your templates
the consequences will probably be negligible, but complexity beyond the first or second
instance leads ultimately to templates that collapse under their own weight in irresolv-
able conflicts, rendering bugs, and maintenance needs.

If instead one practices simplicity faithfully, the application of CSS Zen in redesigns
and new projects is nearly effortless. Once you strip a template down to its essentials,
there’s nothing to get in the way.

The Four Habits of Effective Stylists | 51

The most significant task in enforcing simplicity is to establish firmly what is—or will
be—essential.

Simplicity and huge sites

The nature of “simple” may change, however, as the scale of the project grows. Devel-
opment teams responsible for large sites find it extremely difficult to handle all of the
special presentation cases and other accents that often achieve approval on smaller
sites. Among other things, the demand for improved manageability forces those teams
to greatly reduce the number of ids in their product compared to the source examples
used in this book, and to rigidly standardize the ids that remain.

In practice, designers are the ones who perform this “trimming” at the encouragement
of developers, with the goal of aligning three requirements: business objectives, antici-
pated visitor objectives, and delivery dates. Such collaboration usually results in the
creation of a small number of templates that are themselves often based on a single,
very simple template—scaffolding, if you will. The basic layout is divided into smaller,
discrete server components, each placed within a container that’s assigned an id and
often one or more classes, such as:

• #header

• ul#nav

• #content

• #footer

Components inserted into the page can then be populated automatically. The resulting
content choices are typically based on the goal to be facilitated by the requested re-
source, the authentication status of the visitor, and the need for third-party content.

When compared to the source examples found in this book, the source markup of large
sites differs especially with respect to its treatment of navigation, which is vastly sim-
plified out of necessity. For example, you’ll rarely see any kind of image replacement
on large sites, because such sites support such a broad variety of use requirements that
the resource cost of image replacement techniques is prohibitively high.

Off-the-shelf Content Management Systems and blogging platforms also rely on this
design approach. Their use cases cover such a broad spectrum not because of the needs
of visitors to the sites that run on these platforms, but instead because of the varying
objectives of the site operators who install them.

Habit #2: Keeping It Flexible
Maintaining flexibility requires the right balance between near- and long-term defini-
tions of necessity. This habit is far more about people than anything else: every project
has (well, should have) a unique combination of sponsors, audience, requirements, time
line, and expectations of longevity.

52 | Chapter 5: Effective Style and Structure

Within such a shifting landscape, definitions change. Flexibility in a web application
is different from flexibility in a data archive. Event promotion sites are entirely different
from both of those; where the first two will focus on flexibility in the face of distant
work iterations or outlying use cases, highly time-sensitive sites are most flexible if their
assets (including markup) can be used for later, similar projects.

The most significant factors that inform the need for flexibility are process, site objec-
tives, and workplace culture. Successful stylists take all of these into account before
starting work. In terms of results:

A stylist’s work product is most flexible when its production values accurately reflect the
real reasons why it was commissioned in the first place.

The practice of flexibility rests mainly upon two pillars: progressive enhancement, and
overbuilding.

Effective implementation of progressive enhancement in web applica-
tions often requires that developers write and maintain parallel code-
bases, one run on the client to reduce server load, and the other run on
the server to suit use cases where the user has disabled client-side
scripting.

Progressive enhancement was implicitly described in “Separating Content, Structure,
Presentation, and Behavior” on page 18. Content rests inside markup, upon which a
presentation layer reliant on CSS is laid, and all of those are topped with a final layer
of scripting that provides behaviors like error handling and interactivity. When those
assets are implemented correctly, the dependencies are unidirectional: implementa-
tions of presentation and behavior point back to requirements in content and markup,
but if the presentation and behavior “layers” are removed, the site should still be usable.

Some entrenched practices and flaws in the design of the Web increase
the difficulty of building flexible work product through progressive en-
hancement. Those bits of ugliness are described in Chapter 14.

The second pillar of flexibility is overbuilding. There are places where markup might be
inserted into a template to ease the application of things like class-based rules and
absolute positioning, and whether to add them depends on the long-term needs of the
project, or your shop’s need to create reusable assets.

In my own deliverables, class values such as section and postMetadata make frequent
appearances, even on sites where design requirements are consistent enough to allow
their omission. They’re applied with an eye on the aesthetic and structural evolution
of the site: initial requirements might not demand that special styles be added in section
or metadata scopes, but such requirements may be added over the medium to long term.

The Four Habits of Effective Stylists | 53

The downside of overbuilding is that it can conflict directly with the goal of simplicity,
which illuminates the need to find a good balance. The best test involves three
questions:

1. Can a relevant and descriptive class or id value be added to each “extra” element?

2. Is the extra markup meant to support a range of possible presentation require-
ments, or just one?

3. Is there a reasonable expectation that the site will undergo a gradual and extended
evolution over an extended period of time?

If the answers to all three of the preceding questions are “yes,” then it’s not only ac-
ceptable but actually desirable to insert the additional markup into your templates. The
key to managing the extra structural markup is to practice thoughtful triage, and to
normalize the results.

Flexibility, internal libraries, and code reuse

When developers start planning for the long term, they generate the greatest resource
savings in template-based approaches like those described earlier with respect to flexi-
bility. Teams that operate without significant external support might well attempt to
gain that savings by adopting an off-the-shelf publishing system, and develop an in-
ternal process for modifying its output.

Longtime freelance developers who prefer to work with web technologies directly often
take a different approach: they develop unique libraries of markup, stylesheets, and
code over time. Still others, myself included, fall into narrowly defined yet effective
production techniques, starting each project from a blank slate (when possible) so that
the prototyping process (see “Prototyping and Layout” on page 251) is done manually,
but with so little mental effort that the leftover brainpower can instead be devoted to
understanding the unique requirements of a given project.

Teams with access to external support and tasked to large sites have the opportunity
to get the best of both worlds: for them the best approach is to build new “modules”
when new requirements are presented, but otherwise to repurpose existing products.
Internal production standards and style guides are critical to such an approach, and
those tools affect stylists’ work in the following ways:

• Most (if not all) presentation support is stuffed into classes, enjoys the benefit of
extensive documentation, and can only be altered or extended after an arduous
approval process that is deliberately designed to discourage individual team mem-
bers from cheerleading for edge case support.

• Individual, interchangeable site components are often more “anonymous” than
the ideal, and their use cases are documented barely, if at all, within the product
itself. This circumstance is owed half to necessity, half to inertia: until CSS gained
wide acceptance, table nesting (which gained no benefit from inline documenta-
tion) was essential to achieving effective site component layout.

54 | Chapter 5: Effective Style and Structure

• Unavoidable disconnects between graded support requirements (see “Graded Sup-
port” on page 273) and browser capabilities are resolved with the brute force
provided by JavaScript frameworks and inline stylesheet hacks.

• Overbuilding is comparatively rare, and where present is usually found within
smaller content components.

All of these steps lend themselves to the aforementioned need for balance. When a team
of four to six developers is called upon to accommodate the work of multiple content
authors who are far better versed in the editorial and art direction specialties than in
web technologies, the latter group’s needs must be given lower priority for the sake of
preserving developers’ availability to quality assurance work and other projects.

Habit #3: Keeping to Consistency
Ideally, a stylist can adapt the deliverables from an earlier project to a current project
with minimal changes to markup and layout CSS; such an outcome is one example of
CSS Zen in action (see “The Functional Principles of CSS Zen” on page 60). To ach-
ieve that, a stylist must adopt consistent ways of drawing up and embellishing templates
for similar cases. This kind of consistency is harder to achieve in practice than in theory;
lack of discipline and manipulative behavior on the part of managers often force line
developers (and the stylists among them) to reinvent the proverbial wheel on every
project.

Therefore, the habit of consistency demands that a stylist recognize familiar circum-
stances, prepare for them, and act on them with fortitude whenever possible.

Consistency is the result of observation, reflection, and preparation.

There are two scopes in which consistency works to your advantage: within a site, and
across multiple sites.

Intrasite consistency is one of the central benefits of the cascade. Consider a three-
column template; the simplest layout styles for that outline will be contained in com-
paratively few rules. If you then have a two-column presentation that relies on the same
template, or have a few pages where the presentation order of two columns is reversed,
it becomes necessary to write additional styles to handle those cases, like so:

 #main #priorityContent { width: 42em; float: left; }
 #priorityContent #bodyCopy { float: right; width: 24em;
 padding: 0 1.5em 0 1.5em; }
 #priorityContent #sidebar { margin-right: 27em; }
 #main #tertiary { margin-left: 42em; }
 body.mySpecialCase #main #priorityContent { width: auto; }
body.mySpecialCase #priorityContent #bodyCopy { width: 34.5em; }
 body.mySpecialCase #priorityContent #sidebar { margin-right: 37.5em; }
 body.mySpecialCase #main #tertiary { display: none; }

The Four Habits of Effective Stylists | 55

The selectors in this CSS source code example are overloaded, to provide
the reader with an idea of elements’ parent-child relationships.

The previous styles describe the suggested three-column layout in the first four rules.
The rest remove #tertiary from the document flow and adjust the layout of the re-
maining elements to account for the absent column. If there are no special cases, only
the first three rules will be necessary.

The extra rules illuminate the benefits of simplicity, which are still enhanced in this
example when compared to the prospect of building separate templates for two- and
three-column presentation cases. (The compromise, and the most search-friendly prac-
tice, is to put the volatile column within a scripted include that’s invoked only when
needed.)

A stylist who writes the preceding styles assumes that the same template will be used
for both two- and three-column presentations, which speaks for one kind of consis-
tency. An additional template introduces a number of hazards, the foremost being a
requirement for more testing. Another notable hazard of implementing separate tem-
plates is code forking, where each template is changed as needed, perhaps for wildly
variable reasons. Given enough time, the assumptions of the two templates’ designs
may drift so far apart that the styles used to normalize their presentation multiply far
out of proportion to what would be required for a single template.

Another expression of consistency in this scenario is consistency of design. As suggested
by the passage of CSS just shown, the styles needed to realize inconsistent design de-
cisions are far greater in number and scope than those used when consistency of design
is a priority, thus imposing more unintended interaction between elements, more po-
tential for rendering bugs, and more testing.

The final, highest expression of consistency is expressed through reuse. If you have a
library of templates and stylesheets to account for common layout cases, it becomes
possible over time to get any styling project off to a quick start: open the template file,
alter class and id values as needed, and adjust the stylesheet’s various box and layout
properties to account for the designer’s idea of the wireframe. After a fraction of an
hour’s work, you can focus on typesetting, accents, and other finer details, instead of
taking hours to gin up new markup and styles from scratch.

When you are certain of your document and template structure from the start, you are
freed from the burden of minutiae, having instead the wherewithal to give your undi-
vided attention to the site’s user experience design. These benefits will also provide
more wherewithal to design good location cues from design accents.

56 | Chapter 5: Effective Style and Structure

Managing templates to achieve consistency

The explicit discussion of templates in this section of the book refers to the idea of
scaffolding: a simple collection of markup with at most four or five page sections. This
outer “frame” accommodates all of the other page or section templates used by a site,
so that the context of any layout column or other page component is easily understood
by the stylist who is called upon to provide its presentation.

Designers are usually the greatest danger to this “telescoping” approach, because they
can be susceptible to the mistaken belief that the resource investment in template man-
agement is measured arithmetically. In practice, the effort required to manage and
document templates is actually logarithmic—if two templates require almost twice the
effort to manage as one, it’s certain that a third will require not twice the effort, but
somewhat more.

This outsized growth in resource demand occurs because a given template is best cre-
ated to meet specific business objectives that are mostly or entirely unique. This leads
to a unique set of component relationships, making it likely that each new template
will reveal new bugs and presentation requirements, in addition to the challenges that
are expected when a new template is originally signed off on.

Apart from conscientiously reducing the use of class and id values to intermediate
levels, the best way to manage this growth in resource investment is through process—
to prototype and test each new template only after a preponderance of stakeholders
agree upon the need for a new template.

The alternative is to leap to the step of template creation at every opportunity, which
inevitably leads to the diffusion and forking described earlier.

Habit #4: Keeping Your Bearings

The page structure, markup, and nomenclature conventions introduced
in this section and used throughout the book are sharply at odds with
the production practices encouraged for large sites, a matter discussed
later in this section.

The hardest habit to develop is maintaining a sense of place within your deliverables,
mostly because it comes only with practice.

The seed of this habit is planted by remembering that all web documents exist in mul-
tiple contexts and multiple information spaces, and that your project team can only
control some of them. The point will be made that ease of wayfinding (see “Navigation:
Orientation and Wayfinding” on page 63) and clear sense of place are critical to a
positive web user experience; if you cannot maintain a similar grasp of your work
product, you stand little or no hope of being able to convey them to visitors.

The Four Habits of Effective Stylists | 57

More to the point, the notion of place is the beginning and end of the cascade: elements
lie within other elements, which lie within documents, which exist on sites, which are
part of a larger system or universe of sites, which itself is in a contestant state of change.
The more accurately you can pinpoint where your current task lies within that universe,
the easier it will be to write high-quality CSS.

A skilled web user needs merely to grasp and act upon location cues. A skilled web
developer needs to know exactly what he’s doing and where he’s doing it before he can
build the location cues that users need.

Consider the following element tree:

• body

○ h1

○ div#main

■ div#priorityContent

■ div#bodyCopy

■ h2

■ div.section

■ ...

■ div#sidebar

■ ...

■ div#tertiary

■ ...

■ ul#primaryNav

■ div#footer

■ ul#secondaryNav

■ p#colophon

This tree presents a minimum of 16 simple contexts in which presentation can be ap-
plied. To these are almost certainly added some indication of a document’s scope of
content, by way of class and id values that can be added to the body element (and
possibly others).

When a stylist notes and combines these signals of element, document, and site scope,
she gains the ability to define the context of any element on the site without respect to
its location in source order, its frequency of occurrence, or the significance of its
content.

If an arbitrary element can be defined, it can be styled—and if it can be styled, it can
serve as a location cue to the visitor. (That’s not to say that all elements should serve as
location cues, just that any element can.)

58 | Chapter 5: Effective Style and Structure

Product documentation as an effective “compass”

The ideal stylesheet documents an entire site by relying on context-dependent selectors
and thoughtfully designed document trees, but even the smallest projects benefit from
some degree of external product documentation. Much of this documentation ad-
dresses design, especially type treatments and grid specifications. There are three other
documentation components that prove valuable over time:

Cascade descriptions
These are typically the easiest to create, but place the greatest demands on a stylist’s
memory. Any sufficiently complex collection of stylesheet rules falls into rule pat-
terns; the cascade descriptions briefly delineate these rule patterns in one place and
point to the site resources that rely on them.

Code/product standards
These build on the cascade description by describing the markup patterns and
types of selectors that are generally applicable to a given type of content. For ex-
ample, one might call my habit of using h1 (without an id) for the sole purpose of
containing the site identity, and using h2 for the first heading of page content, to
be product standards.

Style guides
These embellish the balance of site documentation by explaining in plain English
not only how things are done, but also why a given approach was taken to the
structure and presentation of a given class or item of content.

Effective external documentation holds especially high value for developers who are
new to the site that they’re working on so that they can quickly form an accurate
“mental picture” of a site’s information architecture and template structures. The al-
ternative is to throw newcomers head-first into staged product, which forces them to
infer and make assumptions about the various objectives that led to a site’s design.

Perhaps the greatest value of external documentation is to be found in its raw volume—
or more appropriately, its lack thereof. The less need there is for documentation, the
more effectively you are applying the four habits introduced in this section.

CSS Zen and the Stylist’s Experience
As terms go, “CSS Zen” is something of a misnomer. The practice of Buddhism (of
which Zen is one subbranch) emphasizes the interdependence of all things, especially
living things, among many points of faith.

CSS Zen and the Stylist’s Experience | 59

As applied to web development, the term is derived from a common English nickname
for the Japanese karesansui rock gardens, which serve a dedicated aesthetic purpose:
demonstrating tangible harmony and precision in spite of evolving surroundings and
Nature’s unpredictability. The value of karesansui to Buddhist meditation (in the
course of reflection or upkeep) leads to the moniker “Zen garden,” which inspired the
name of Dave Shea’s immensely popular site, http://www.csszengarden.com.

The “CSS Zen Garden” seeks to demonstrate one important idea:

A single, well-built markup template can support a practically infinite range of design
requirements, to a high degree of precision. When done well, such templates create the
capacity that enables design to be altered while leaving markup untouched in all cases
except significant changes to the structure of information published in a document or
on a site.

Like karesansui, sites that exemplify CSS Zen are molded to their circumstances,
particularly project objectives. Moreover, such sites allow their underlying markup
templates to remain functionally static, analogous to the rock-stable arrangement of
karesansui in the midst of seeming chaos.

The Functional Principles of CSS Zen
The habits and ideas discussed in the previous sections are virtuous on account of the
efficiency and quality they afford to the stylist’s process and work product. On the other
hand, the ideal of CSS Zen fits within a framework of principles that encourage a specific
perspective on web content and its structure:

1. Information and presentation are distinct from one another, to the point that it
cannot be declared with any certainty that the nature of one depends upon the
nature of the other.

2. It is axiomatic that the flow of information (and therefore of web content) is dic-
tated not by location, but instead by relationships.

3. Web content is divisible to degrees that are rarely apparent to the casual visitor.

4. Every intersection of environment and information that might apply to a site begs
its own ideal structure.

Once a stylist integrates these principles into the thought process that he applies at
work, his perspective changes. Table 5-1 is a dialectical comparison of common stylist
attitudes toward markup and styles, given knowledge or ignorance of the principles of
CSS Zen. The order of principles corresponds to the list just given.

60 | Chapter 5: Effective Style and Structure

Table 5-1. Comparison of stylist attitudes toward markup and styles, given knowledge or ignorance
of the principles of CSS Zen

Principle Ignorance Knowledge

Separation Source order and structure are wrangled by
presentation requirements.

Source order and structure are dictated by priority and (where
needed) taxonomy.

Interconnection Any given sum of content is indivisible and
has an ideal flow.

Content can be subdivided, presented in arbitrary contexts,
redesigned, and mashed up; additional context can be pro-
vided via hypertext links and metadata.

Divisibility Markup is informed entirely by presentation
and obvious definitions of content; it’s often
nested, but rarely used to provide additional
meaning to the content that it encloses.

Markup and content follow a logical taxonomy and can be
arranged within a document tree down to the level of indi-
vidual syllables and icons, if needed.

Mutability Document structure is either crammed into
a one-size-fits-all structure, or assembled
on an entirely ad hoc basis.

Content and the arrangement of document trees follow the
spirit of the aphorism “a place for everything, and everything
in its place”; this can be expressed differently in response to
differing project objectives, audiences, and themes.

The faithful application of the principles of CSS Zen results in sites where form follows
function on all obvious levels. Since function is what brings in visitors, isn’t that a better
outcome than the reverse?

Information Architecture and Web Usability
This book has proposed a few key ideas about web development:

• Hypertext links are the beginning, middle, and end of the Web.

• Web resources are fundamentally n-dimensional, not linear.

• The infinite number of ways in which content can be linked, cross-linked,
subdivided, and combined brightly illuminates the value of effective wayfinding
facilities on websites.

• Each website or application is actually a multilayered resource that can be made
progressively richer.

• There is no One True Way to build a site, because requirements change according
to business objectives and user environments.

The art of information architecture (IA) attempts to substantiate these ideas and meet
the design challenges posed by them. The principal objective of its practice is to max-
imize the findability and usability of information; after all, what good is information if
it can’t be found and used?

Information Architecture and Web Usability | 61

This section is intended as an introduction, not an education. Those
who desire more information about web information architecture
should take advantage of the following resources:

• Don’t Make Me Think: A Common Sense Approach to Web Usabil-
ity, 2nd Edition, by Steve Krug (New Riders Press).

• Information Architecture for the World Wide Web, 3rd Edition, by
Peter Morville and Louis Rosenfeld (O’Reilly).

• Boxes and Arrows, a site operated by and for Web User Experience
(UX) practitioners at www.boxesandarrows.com.

• The American Society for Information Science and Technology,
which sponsors Special Interest Groups devoted to Human-Com-
puter Interaction (HCI) and Information Architecture. Their site
can be found at www.asis.org.

The information architect who specializes in web content and interfaces must treat the
previous ideas as facts; the alternative verges on nihilism, since without any funda-
mental facts or assumptions, it becomes impossible to organize a site’s content and
human interface in an effectively consistent way.

On a practical level, most sites don’t need dedicated IA specialists, whether by virtue
of limited scope or lack of budget. As a result, conscientious developers should adopt
IA as a secondary skill set.

Multidimensionality
As this book has repeatedly pointed out, while traditional sources of information (print,
video, audio) are mostly linear, the Web is not. The dimensionality of web content
(not presentation) can be bounded as follows:

Length
Analogous to the linear nature of traditional information: the obvious beginning
and end of a single document’s primary content.

Breadth
The position of a web document within the logical domain of all documents that
are directly linked to or from it. Related to (but separate from) “situation.” Mind
maps are a newly popular technique for visualizing this dimension of site design.

Depth
Any of the views that can be taken on content, given a particular range of user
environments. Evident when progressive enhancement is used.

Entropy
Time-sensitive documents, or those composed to any degree of user-contributed
content, can change tremendously during their lifetimes.

62 | Chapter 5: Effective Style and Structure

Situation
The position and context of a document, given its position in the history of a vis-
itor’s browsing session. “Situation” is separate from “breadth” and “entropy” be-
cause it can be perceived and controlled by each visitor.

Use case
The purpose to which content and structure are put—e.g., RSS feed for posting
changes, instead of HTML for normal reading; variant user interfaces in web ap-
plications; Search Engine Result Page (SERP) summaries.

Granularity
The manner in which perception of content changes when parts are subtracted,
added, exported, and imported.

Just as changes in our perception of a tangible object’s length, breadth, depth, and
entropy alter our understanding of that object, so too is our understanding of web
content altered by our perception of its characteristics as just described.

People are comfortable thinking in terms of two dimensions, can usually handle think-
ing in terms of three, and are aware of four. It falls to information architects, site de-
signers, and stylists to decide how many (and which) of the seven dimensions described
previously to use to define location cues and other navigation guidance.

This is simply a rough description of web content and document structure that refer-
ences not only the four tangible dimensions, but three others as well. When compared
to the bounds of traditional media, it’s no wonder that web content can provide people
with a good living—even when their principal skill is something so esoteric as helping
people find their way through it.

Navigation: Orientation and Wayfinding

Advice about writing effective link text is provided not here, but in
“Creating Effective Link Content and title Values” on page 136.

Given the infinitely mutable nature of web content and interfaces, it follows that the
most valuable help for the visitor illuminates her location and direction of travel
through the site.

Sites typically rely on any of six approaches to giving users their bearings:

Primary and secondary navigation
Links are set aside in one or two stretches of the page layout, each pointing to a
particular document of potential interest to the visitor. These might well be nested
in two or more levels according to a hierarchy; in all cases, the displayed document

Information Architecture and Web Usability | 63

is ideally identified not only by title, but also by its unlinked nature and contrast
against the still-active links in the same design element.

Well-designed breadcrumbs
Like nested navigation, these links are pinned to some hierarchical organization of
the site, but are presented in series from highest to lowest level of assigned signif-
icance. This approach typically does not provide a clear idea of where a document
lies within the information space of an entire site, but it is an excellent addition to
printed pages, since breadcrumbs tell the reader of printed content exactly how to
navigate to the printed page.

Tags
Documents are assigned keywords, and the aggregate list of keyword links is dis-
played on each page of the site. Following a keyword link delivers a list of links to
relevant documents, which can be sorted by one of several criteria (e.g., character
set order, date, popularity).

Site maps
The principal difference between nested navigation and a site map is that in the
case of a site map, a single page contains links to all of the documents and appli-
cations on a site.

Inline links
Conscientious content producers will often insert links to relevant material around
obvious keywords and phrases, or at least those on the first few “levels” of the site.

Search
Like Google to some degree, only on a much smaller scale. The same content au-
thoring challenges that turn SEO into a chore are no less relevant on a site that
provides local search functionality.

The areas of wayfinding implementation that rest on the client side are discussed further
in other parts of this book: primary and secondary navigation in the materials about
layout and lists.

Like context-specific navigation, site maps are marked up with lists, and sometimes in
multiple columns. Tag lists are also marked up within lists with the display value of
their constituent items set to inline, and might be marked up with classes set aside to
reflect a site’s keyword frequency.

Visit Strategies
The broadest generalizations that can be made about visitors are these:

• The visitor’s objective can fall into one (or more) of four categories: information,
services, salable products, or entertainment.

• Visitors have two basic methods by which they can reach their goal: browsing or
full-text search.

64 | Chapter 5: Effective Style and Structure

Visitors often prefer third-party search engines because they offer precise information
within a range of results among which comparisons can be made. Most visitors also
know that some sites—particularly the big social media communities—can satisfy
multiple types of session goals.

One of the most significant choices to be made during the design process is to choose
deliberately how the design and implementation of the site’s human interface will ac-
commodate these common goals and strategies.

It’s feasible, if not always easy, to implement all of the wayfinding strategies discussed
here. However, it’s important for stylists to know where each one is usually located in
page layouts so that they can best apprehend the ideal way to style the cues that will
alert site visitors:

Primary navigation
Horizontally oriented, immediately below the header; sublevel links are often lo-
cated along the grid row immediately beneath the main “section” links. A site’s
home page is often linked from the site’s identity (i.e., logo), which itself is usually
located in the upper-left corner of the layout (in the header).

Footer links
Laid out across the footer in a list with items set to display: inline or inline-
block and often centered. Type is typically set at a smaller size than that used for
body copy.

Breadcrumbs
Horizontally oriented and placed immediately below the primary navigation, or in
lieu of it on print-specific pages.

Tag lists
To the right of the primary content in a three-column layout; at the bottom of the
secondary content in a two-column layout. Immediately below the primary content
in those rare instances of single-column layout, but deserving of its own column
when used frequently.

Site maps
Linked from the footer of each page on the site and laid out as primary content on
a page of their own, often in columns.

Search
In the upper-right corner of the header, and sometimes duplicated in the right
margin of the footer. Result pages often have single-column layouts, even on sites
that rely on a multiple-column layout for regular content. Such output is usually
owed to a lack of flexibility in the output of the extension module or appliance
deployed to generate search results.

Information Architecture and Web Usability | 65

Guideposts for Creating Usable Interfaces
Declaring that “X goes here” is a start: by following established practice, you can take
advantage of visitor expectations. However, simply following the crowd is not the only
thing you need to do to get it right.

The first and most important goal to follow—again!—is consistency. Given a history
of pages that are all scrolled to their respective top margins, the ideal situation for a
visitor is one in which everything of wayfinding interest is in exactly the same place on
each page: the navigation links, the tag links, the search box, the page title, and so on.
Still better is the (far more difficult) case in which you maintain that consistency across
a broad section of the page’s length, which gives visitors the ability to find their bearings
within the page quickly—and just as quickly home in on the nearest wayfinding facility
on the page.

When it comes to the various wayfinding techniques, there are design techniques that
will make visitors’ goals easier to achieve, at least incrementally.

• Navigation and tag link footprints should be made reasonably large, at a minimum
by giving each a display value of block and extra padding as discussed in Chap-
ter 8. The same technique also benefits the usability of submit buttons on search
forms.

• “Flying” menus that present sublevel links when moused over, like those in the
Applications folder of the Windows Start menu, should be avoided with alacrity
since they require enormous amounts of fine motor control. Microsoft can get away
with it because they need to conserve display space for the sake of lowest-common-
denominator hardware configurations; Windows also provides keyboard support
for the Start menu and users with the ability to put links to programs directly on
the Desktop, which are far more often used by the typical user. Follow the example
set by the Desktop and style your wayfinding links so that they’re easily visible.

• Many sites’ primary navigation links are set smaller than their body copy, and some
sites even reduce the contrast of those links as well. Instead, every effort should be
made to increase the size and contrast of wayfinding facilities, short of overwhelm-
ing actual page content.

• Label everything clearly. The alternative is what storied web pundit Vincent
Flanders calls “Mystery Meat Navigation”—you know that there’s something in
there, but what is it? Do you want to find out and risk going down a blind alley?

• Avoid miniature input type="text" fields on search forms, or really any forms.
Decreased field size results in less-legible field values, and few things are more
frustrating than being unable to read your own input! That’s not to say that text
inputs should always be huge, just that their contents should always be clearly
legible.

66 | Chapter 5: Effective Style and Structure

• Where the identity of the current document is displayed in a navigation context,
distinguish it clearly from its neighbors. If at all possible, remove the a element
while preserving its contents.

Disabling links to the current document

Disabling browser behavior related to links is a poor man’s way of fooling a user into
believing that a document doesn’t contain any links to itself, in lieu of running a proper
search-and-replace function to remove the anchor tags altogether. You can appa-
rently disable a link in two steps.

First, by whatever means, create a class for the purpose of referencing links that
should appear inactive. This includes changing a link’s cursor property to an appro-
priate value, which can be found in Chapter 8 and on this book’s companion web
site. In the example that follows, the class value in question is selfLink.

Next, if you are working within a document served with a MIME type of text/html,
add the following JavaScript to a function that is ultimately invoked onload:

for (var i = 0; i < document.getElementsByTagName("a").length; i++) {
 if (document.getElementsByTagName("a")[i].href) {
 if (document.getElementsByTagName("a")[i].href == document.location.href) {
 document.getElementsByTagName("a").className = "selfLink";
 document.getElementsByTagName("a")[i].onclick = return false;
 }
 }
 }

The same class assignment technique suggested earlier is also preferred for notifying
users of form input errors.

Finally, note that for security reasons, status bar messages indicating destination URIs
cannot be cleared in current browsers—which is why disabling link behavior in the
browser is considered a poor man’s way of altering the user experience.

Predicting Visitor Behavior with Scenarios and User Testing
While broad site navigation speaks for direction of travel, where does that leave loca-
tion? Typical practice relies upon fairly basic design choices:

• Prominent page or article titles

• Navigation highlights, hopefully in combination with a deactivated link

• Color-coded backgrounds and page accents

• Unambiguous visited-link styles

As you’re probably beginning to realize, current practice is very poor when it comes to
offering visitors an instant and precise understanding of their location within a site. In
practice, the typical user experience gives an indication of the scope of the current page,

Information Architecture and Web Usability | 67

and otherwise leaves visitors with an impression that they’re getting “warmer” or
“colder” with respect to any specific objective they might have while browsing the site.

This poverty of precision is an artifact of the Web’s absence of boundaries. Beyond a
certain point, experienced visitors know better than to form initial expectations of their
user experience.

Consider how orienteering works in the real world. Given a map of sufficiently large
scale and adequate visibility, someone with sufficient knowledge of his immediate sur-
roundings, map-reading skills, and orienteering skills can ascertain his location, quickly
and to within several meters.

Note the way in which that statement is qualified: to get that near a fix on his location,
he must know the lay of the land, and must also possess reasonably detailed information
in a broader context—conditions that are applicable to anyone’s survival in extreme
conditions.

On the websites discussed in this book, personal survival is not an issue, and there is
absolutely no way that a random visitor can be expected to know the virtual lay of the
land. That leaves designers and stylists with the same solution that trained rescuers use
to find people: a search pattern of their own.

On the Web, the “search” and “find” tasks are accomplished by testing user behavior.
The two main approaches used are scenarios and full-smash user testing.

Scenarios draw conclusions when project team members role-play the decisions taken
by archetypal, fictional users and record the results of the entire process.

User testing amounts to putting real users in front of functional prototypes. This de-
livers more accurate results, but also requires significant investment in design before it
can be attempted.

Both scenarios and user testing improve the opportunity cost of applying taxonomy to
your site. When done well, taxonomy makes it possible for a visitor to develop a mind
map of a site’s internal organization after a few page requests.

Taxonomy and Nomenclature
Taxonomy is the practice of creating taxa (rigid and hierarchical forms of classification).
The first universally accepted use of taxa was by the Swedish life scientist Carl Linnaeus,
who devised a system for categorizing life forms that today functions on seven tele-
scoping levels. Table 5-2 shows these levels as applied to human beings.

68 | Chapter 5: Effective Style and Structure

Table 5-2. An example of the taxonomy used in biological classification

Level Nomenclature Vernacular

Kingdom Animalia animals

Phylum Chordata possessing a spinal column

Classis Mammalia and mammary endocrine tissue

Order Primates “of the first order”

Family Hominidae “like human beings” (cf. “humanoid” as used in science fiction)

Genus Homo human

Species sapiens “knowing”

Taxa can also be applied to information in general, and to vocabularies that reference
any specific context. Many residents of the United States are familiar with the Library
of Congress Classification and the North American Industry Classification System,
both of which are broadly agreed-upon systems for organizing information in a tele-
scoping, hierarchical manner.

“Nomenclature,” meanwhile, is a fancy word for “jargon.” Less colloquially, a nomen-
clature is a specialized vocabulary on which many users agree: a system of naming
things. It can be said that taxonomy organizes nomenclature, though it also organizes
vocabularies that aren’t controlled. (“Controlled vocabulary” is a synonym for “no-
menclature” often used by professional information scientists.)

Take the following terms:

• Content

• Sidebar

• Hero shot

• Font

• Spacer

• Client

and consider that, in all likelihood, most web developers will understand you perfectly
if you use them.

Used effectively, taxonomy and (to a lesser extent) nomenclature can give you the vo-
cabulary you need to create appropriate context for your cascade, particularly with
respect to maintaining the habit of flexibility.

Information Architecture and Web Usability | 69

Applying Taxonomy Through the Cascade
Taxa can be worked into sites on two different levels: with respect to a site’s body of
content, and to the structure of its template markup.

Applying taxa to site content points back to the previous discussion of scenarios and
user testing: by performing tests, you can learn how a site will be used, and thus how
to prioritize the information that it contains.

Consider a small- to medium-size retail business. Its site will likely be used to:

• Find business locations and hours of operation

• Retrieve telephone numbers or other means of contacting store representatives

• Learn about sales and promotions

• Determine the availability and prices of specific goods or classes of goods

As a result, if I’m building a site for a small retailer, I’ll recommend the following main
categories:

• Store Locations

• Contact Us

• Sales & Events

• Shop Online

On the site’s home page, I will attempt to present information from all of these cate-
gories by including the following content:

• The street address and operating hours of the company’s flagship store

• The main telephone number, customer service email address, and social media
points of contact

• Their most significant discount, accompanied by eligibility dates

• Brief product listings and “Add to Cart” facilities for three or four of the most
popular products sold in the e-commerce area of the site

If the online store has a particularly large catalog, I’ll strongly consider adding links to
product category pages in a secondary navigation list as well.

Pages deeper within the site focus on each of the four categories of information, in
progressively greater degrees of detail. For example, the destination of the “Shop On-
line” link will contain a full listing of product categories, and the destination of the
“Contact Us” link will contain a reasonably detailed directory of telephone numbers
and other points of contact.

Each section of the site—and of all well-designed sites—will provide location cues.
Adequately signaling the context of these cues will suggest class and id values on an
element at or near the root of your templates’ element trees, such as:

<body class="stores" id="KCDetails">

70 | Chapter 5: Effective Style and Structure

Other body elements on the site that reference .stores might be assigned id values like
StLouisDetails, SpringfieldDetails, ColumbiaDetails, and so on. These happen to re-
fer to prominent cities on the Interstate highways of Missouri—a larger site designed
along similar lines might introduce an intermediate level of detail based upon the states
or regions in which the retailer does business.

This method of assigning class and id values to individual pages allows you to target
your selectors to an extremely narrow scope, which reduces the work involved in cre-
ating specific accents on things like article headings, for example:

#KCDetails h2 { background-image: url(/images/heading_kc_store.gif); }

Or, consider what can be done for navigation layout, since sublevels are unlikely to
have the same number of items from one section to the next:

/* #navOnlineStore actually holds two lines of links, #navStores only one */

.stores #nav #navStores { height: 1.5em; padding-bottom: 1.5em; }

/* make the unneeded sublevels GO AWAY */

 .stores #nav #navContact,
 .stores #nav #navPromo,
.stores #nav #navOnlineStore { display: none; }

The previous example also deserves notice because it illustrates how elements are nes-
ted on the page, like so:

<body class="stores" id="StLouisStore">
...
<ul id="nav">
 <li id="navStores">Our Stores
 <ul id="subNavStores">
 <li id="#navKCDetails">Kansas City
 <li id="navStLouisDetails">St. Louis
 ...

...
</body>

The point is that there is every reason to incorporate your site’s content organization
into your cascade.

At the page level, taxonomy and nomenclature are more subjective: one man’s
#sidebar is another man’s #highlights, for example.

The good news is that if consistency is practiced with respect to the site’s document
design, the functions, interrelationships, and typical nesting of a site’s various types of
content within a single page or template can be assigned documented nomenclature
and taxa of their own. My own approach to defining document structure is shown

Information Architecture and Web Usability | 71

throughout the book, though different projects naturally present differing requirements
that may need to be addressed in uncommon ways.

Achieving Granularity on Larger Sites
Especially large sites, or sites operated by large enterprises, are usually unable (for rea-
sons of policy) to make heavy use of ids as shown here. In many workplaces, ids
might be replaced with classes, but in others even that option will be denied to stylists.
Less-complex designs are the trade-off for these constraints. If however you find your-
self forced to style a design that makes a poor fit with the constraints imposed by policy,
you might perhaps meet your challenge by applying styles via a JavaScript framework
such as jQuery.

New Structural Elements (HTML5)
Along with the nav element, which will be discussed in Chapter 7, there are several
other new proposed structural elements in HTML5:

• section

• article

• header

• footer

• aside

• figure

At the time of writing, there is no native support in current browsers for any of these
elements. That said, not much needs to be added to browsers in order to support them,
because none of these elements have any special rendering or processing behavior as-
sociated with them. Because of that, they are also not features that are likely to have
much direct impact on end users; instead, their primary utility is to provide naming
convenience to authors.

It’s also not clear at this point which of these proposed structural elements will make
the cut and actually end up in the HTML5 specification as it makes its way through
the standards process. For example, there is general agreement that the section element
is a useful addition to the language, but much less agreement about the article and
aside elements. There is also some level of agreement in principle about the header and
footer elements being useful for marking up the header and footer parts of pages, but
much less agreement about the utility of allowing them within sections. The current
HTML5 draft allows section elements to have header and footer children, but page
subsections with their own individual headers and footers are not commonly found in
existing content.

72 | Chapter 5: Effective Style and Structure

CHAPTER 6

Solving the Puzzle of CSS Layout

When you create site layouts depending upon CSS, your first and greatest challenge is
to put the various pieces of your layout exactly where you want them. CSS offers three
basic tools for creating layouts: positioning, float, and width/margin. Unfortunately,
the models underlying the use of those techniques are notoriously hard to master.

The CSS Box Model and Element Size Control
When the browser renders block elements, such as div or p, each element has four
telescoping components: content, padding, borders, and margins (from the inside out),
as shown in Figure 6-1. In current implementations, the dimensions of such boxes are
computed by adding three of those four components, so that if a width or height value
is applied to an element, that element’s borders and padding (as such) make it yet wider.
Margins also affect this process, but only after neighboring margins are taken into
consideration.

There are two exceptions to this definition of browsers’ layout behavior: mode resets,
and the use of auto values for content boxes.

Quirks Mode and Strict Mode
Web browsers use two general types of rendering modes: “quirks” mode and “strict”
mode. They are invoked by the presence or absence of certain document type declara-
tions, which are described generally in Chapter 2 and listed on this book’s companion
website.

Instead of treating box properties additively, as strict mode does and the CSS 2.1 box
model suggests, quirks mode rendering uses stated width and height as the primary
reference for computing element dimensions, and subtracts the other box values from
those as appropriate. These behaviors are analogous to the behavior of the CSS3 box-
sizing property, which has two values: content-box and border-box.

73

Quirks mode rendering is the only rendering mode available in versions
of Internet Explorer prior to IE 6.

auto Values
The default value of both width and height is auto. When the browser applies the
computed width of an element with this literal (if implied) value, that means an affected
element will expand to fill the width of its container. For height, the affected element
will only expand to fit the length of the content, but only if that element’s float value
is none (the default).

However, when the border and/or padding values of an element with a width of auto
are set, those values are subtracted from the computed width value of that element’s
content, as are any relevant margin values that don’t collapse into the margins of other
elements.

If you instead assign a discrete width value to a block element and change the values of
its left and right margins to auto, that element will be centered within its container as
pictured in Figure 6-2.

This section makes occasional references to “computed” width and
height: the dimensions of an element after the user agent has rendered
the page. This concept is also mentioned in Chapter 14.

Figure 6-1. The computed width and height of an element are subdivided into four constituent parts:
margins, borders, padding, and content

74 | Chapter 6: Solving the Puzzle of CSS Layout

The overflow Property
An element narrower than its container can be centered horizontally without regard to
its specified or computed width, but this doesn’t work for element height. The literal
height of an element and its container must both be known in advance, before CSS can
be used to center one within the other, and then only explicitly.

height: auto (whether expressed or implied) tells the browser, “Let this element ex-
pand to fully enclose its content, but no further.” Because text content will never
certainly have an intrinsic height, extending the behavior of margin: auto to the y-axis
by default is more resource-intensive than it’s worth.

While vertical centering is a challenge, expanding an element to fill the entire height of
its container can be accomplished with the overflow property.

The overflow property describes how content should be rendered when it’s larger than
its containing element. In fact, overflow is the first property mentioned here that enables
block elements to overlap one another, allowing the stylist to “break” the rules for block
element flow that are spelled out in “Element Flow” on page 83.

The four valid values of the overflow property, shown in Figure 6-3, are:

visible (default)
All content is visible, regardless of the dimensions of the element. If the dimensions
of both the element and any of its content have values other than auto, overflowing
content will bleed as needed into any elements adjacent to the container, but will
not change the dimensions of the container itself or the flow behavior of adjacent
elements.

hidden
Overflowing content is removed from the view of the visitor, and the container’s
dimensions are respected without exception.

Figure 6-2. Centering a block of text, as margins are automatically set outside the border

auto Values | 75

scroll
Vertical and horizontal scroll bars will always be placed on the affected element,
and scrolling controls added as needed. The supplied dimensions of the affected
element are respected.

auto (often the user agent value for html or body)
Expressed dimensions are respected, and scrolling controls are placed on the ele-
ment if necessary. Any scroll bars that are added to the element are placed within
its expressed dimensions, rather than increasing the element’s area.

Figure 6-3. The overflow property can take on one of four values

76 | Chapter 6: Solving the Puzzle of CSS Layout

This last value presents an obscure but potentially useful opportunity. If an element
with an overflow value of auto is also assigned a small percentage height value (e.g.,
1%), it will expand to encompass the computed height of its content, including any
margins that are placed on that content. Note, however, that width values do not trigger
the same behavior.

overflow values are also applied to the x-axes of block elements, but evidence of that
is rarely seen since height: auto is almost always arbitrary. Cases where evidence of an
element’s overflow value is visible on the x-axis include:

• The presence of uncommonly long lines of text, whether held together by non-
breaking spaces, a containing pre element, or the white-space property.

• The inclusion of replaced elements, particularly images.

• Unexpected insertion of a child element with a computed or intrinsic width value
greater than the width of the containing element itself. Especially complex web
applications or poorly written CSS can trigger this scenario more easily than you
might think.

Limiting But Not Fixing Element Dimensions
From time to time, you will encounter situations where you want an element to fill the
available space, but only to a point. In other situations, you might want to accommo-
date a given width or height, while still ensuring that an element will accommodate its
intended content. For example:

.articleContainer { width: 80%; max-width: 50em; margin: auto; }
 .sidebarItem { float: right; width: 16.667%; min-width: 288px; }

The first rule in this example accounts for a scenario in which an element should provide
negative space to either side, but still must not grow too wide for the sake of content
readability (an issue raised explicitly in Chapter 12). The second rule demands a box
that occupies one-sixth of its container’s width, but that might also contain an image
sized according to house style guidelines, and thus must always occupy a minimum
amount of horizontal space for the sake of rendering the entire image.

Note that both rules specify the max-* property after its general counterpart, since the
relationship between source order and priority remains operative not only within the
document scope, but within the rule scope as well.

Handling the Unpredictable
A stylist is most likely to apply the overflow property in a multicolumn layout in sit-
uations where a column container (see the section “Implementing Multicolumn Lay-
outs” on page 88) includes background or box properties (see the section “Margins,
Borders, and Padding” on page 78) that must be rendered.

auto Values | 77

However, there are a number of site and application design scenarios where content
bounds cannot be predicted, and the overflow property will be put to practical use:

Prevention of blowouts in static layouts
When layout elements are given fixed dimensions (usually specified in pixel units,
as described in “Cross-Media Length and Size Units” on page 34) visitor-resized
text can cause all kinds of blowouts. Typical users’ lack of knowledge of text re-
sizing functionality, and the availability of page zoom interfaces, make this a rare
contingency, but one that can be predicted and resolved quickly by experienced
stylists. The best solution is to use grid-based layouts instead of fixed layouts, but
if that’s not possible, overflow: hidden can serve as an excellent fallback.

Narrowly defined Content Management System (CMS) layouts with overly permissive
content bounds

Consider the possibility that an item with inherent space constraints—say, a text
advertisement or sidebar panel—might be populated with more content than ac-
counted for by the approved design. The application of overflow: hidden to such
elements can discourage disregard of a site’s content guidelines. (Such scenarios
usually arise as a result of an undisciplined design process.)

Normalizing form layouts
The juxtaposition of form controls and their associated labels can easily create a
situation in which the container of a label/control pair is overrun by one of its child
elements. By using the auto/1% solution just described, a stylist can ensure that a
site’s forms will follow the grid suggested by the approved site design.

Bounding the footprint of an Ajax-driven application interface
When users execute read and update functions in a web application, there may
well be occasions when user-generated data (especially images) threaten blowouts.
In these cases, overflow: auto can account for the outsized content without causing
blowouts throughout the application interface.

Current browsers also offer the overflow-x and overflow-y properties specified by
CSS3, which alter behavior with respect to the named axis. Setting differing
overflow-x and overflow-y values might not yield the expected results. A test suite for
these properties can be found at this book’s companion site.

Finally, stylists should note that when a scroll or auto value yields a scroll bar, the
resulting control is rendered inside the specified footprint of the element. Among other
possible results, this might cause two scroll bars to appear where only one was expected.

Margins, Borders, and Padding
Composites are often drafted in exhaustive detail, and contract terms can require re-
production of comped layouts at pixel-level accuracy, or at least pixel-level consistency.
Element size control is only part of the solution; whitespace and rule (border) control

78 | Chapter 6: Solving the Puzzle of CSS Layout

is no less important, and the properties used to effect that control carry a few caveats
with their use.

Negative Margins
Apart from values assigned to the properties used to control element positioning, the
only layout values that can take on negative values are those attached to the various
margin properties.

When an affected element is assigned a negative margin value, the element’s computed
box bleeds into whatever element box might lie adjacent to the negative margin.

As implied by their nature, negative margins remove whitespace from a layout instead
of adding it. This capacity is more important than it may seem at first glance. For
example, consider a heading trailed by interposed whitespace and a custom rule, pre-
sumably added with the background-image property. If the site design intends this
heading to appear in tandem with metadata—as might well be the case with the title
of a blog post—the metadata most likely will follow the heading immediately in the
markup, and will in turn be followed by the post content itself, as shown in Figure 6-4.

Figure 6-4. Tandem title and metadata using negative margin values

Margins, Borders, and Padding | 79

In such a case, the approach that uses the least markup will require a negative margin-
bottom on the heading or a negative margin-top on the metadata, to ensure that the
metadata will appear in the intermediate space between the heading copy and the cus-
tom rule.

A more likely case for using negative margins is on site footers. If a site footer in a two-
column layout is centered within the body copy column rather than the entire
document canvas, it will need to exist within the document container, but needs to be
placed at the end of it. Therefore, a negative margin-bottom will need to be placed on
the sidebar element, to ensure that the apparent bottom margin of the sidebar is flush
with the apparent top margin of the footer.

The usefulness of these techniques might seem limited. However, if you’re to obtain
the best results from the source order and faithfulness to composites, you’ll find yourself
using negative margins more often than you might think now.

Collapsed Margins
HTML elements start with default display types. Those various elements are further
grouped into subtypes. For example, div and heading elements are both block elements
by default, but the six heading levels also fall into their own discrete heading
classification.

When two block elements also lack or share a subtype, their flush margins will always
collapse. This behavior is most evident in paragraph elements, with user agent styles
that look something like the following:

 p { margin-top: 1.25em; margin-bottom: 1.25em; }
p:first-child { margin-top: 0; }
 p:last-child { margin-bottom: 0; }
 p+p { margin-top: 0; }

The last of the four rules presented is included solely for the sake of illustration; in
practice, the browser’s rendering engine identifies two sequential paragraph elements
as block elements without a subtype and collapses their margins as a matter of course.

In the sequential paragraph situation described here, the rendered margin between
paragraphs is 1.25em (i.e., the likely default height of one line of copy). If their margins
were not collapsed, the rendered margin between them would expand to 2.5em, an
amount that would jar the reader and likely reduce the legibility of the related passage.

The inverse behavior can be tested by alternating a different block element between
paragraphs, such as div. The top and bottom margins suggested in the preceding rule
block will be preserved, and in fact a simple element swap involving the same content
will look the same, in spite of the fact that div elements have default margins of zero
on all four sides.

The display classifications suggested by the HTML 4 specification are provided in the
reference tables on this book’s companion site.

80 | Chapter 6: Solving the Puzzle of CSS Layout

Borders
The CSS property space offers an extraordinary number of properties that can be used
to describe borders (20, in fact). Borders are difficult-to-impossible to avoid and have
their own quirks.

The focus on borders in this section of the book pertains not to the presentation effects
that require them, but rather to their effect on layout—especially with respect to pro-
portional (i.e., “fluid”) layouts.

Borders make a mess when they cross with the greatest limitation of the so-called strict
rendering mode: creating fixed-width rules that hew to the visible margins of elements
with proportional dimensions.

Consider three design elements arranged from left to right in thirds:

#attractSection .promo { float: left; width: 32%; height: 11.417em; margin: 3.125%; }

In the absence of rendering bugs and rounding problems, the preceding rule will arrange
three equally wide elements from left to right across the page, with a margin on both
sides of all three equivalent to 1% of the width of #attractSection.

Now suppose that the composite insists on a one-pixel border around each of those
elements. The addition of those borders will cause the third element to be pushed below
its predecessors, since the values applied can’t tolerate the addition of six pixels to
#attractSection’s element box. The solution to the layout problem just got harder.

If the width of #attractSection always resolves to a static number of pixels, the easiest
solution to the problem is to restate the width and margin values appropriately in pixel
units, then add the borders. If #attractSection is instead sized proportionally and its
width isn’t static, the stylist is left with one of two choices:

Relying on the interior elements
In this scenario, the .promo elements are likely to contain a heading and a second
element for copy. If the vertical margins and padding of those paired elements are
effectively manipulated, their element boxes will both be equal in height (less two
pixels) to their containers, and each element can be assigned one-pixel borders on
two sides.

Using background images
Instead of being assigned as CSS properties, the borders can be rendered as back-
ground images, then positioned within the .promo elements and their child ele-
ments as needed. This technique is explained in detail in Chapter 9.

Margins, Borders, and Padding | 81

Padding
The greatest design value of padding is that it creates gutters—strips of negative space
where the only thing visible is an element’s background (if any). Apart from cases of
unit-mixing, like those described previously with respect to borders, padding properties
rarely cause grief for stylists.

Gutters aside, CSS padding has another useful characteristic: when present in two flush
element boxes, it never collapses. For this reason, layout objects such as columns often
have padding applied to them in situations where margins at first glance seem more
intuitive. When dealing with complex layouts, it’s easier to visualize the effects of
properties that don’t interact with one another than it is to visualize the effects of prop-
erties that do.

The Box Behavior of the Document Root Elements
The box properties of the browser canvas and the body element behave differently than
other elements, especially when documents are served as XML.

By default, all desktop browsers render text/html documents with 10 pixels of negative
space on each side, a value assigned to the margin of the body element in nearly all cases.

In current browsers, box properties can be assigned not only to the body element, but
also to the html element—and it’s common for stylists to reset them as follows:

html, body { margin: 0; padding: 0; }

Apart from such resets, the assignment of box values to the body and html elements
should be handled carefully or avoided altogether, for a number of reasons:

• Box values applied to the html element will not be applied by Internet Explorer 6.

• Altering the box properties of the body element has no effect on the composition
of the document’s background colors and background images, which are always
applied to the document in the context of the entire browser canvas.

• Altering the box properties of the html element will alter the edge coordinates of
the body element, which affects the location of positioned elements in atypical ways.

Box Property Dimensions and the % Value
If you supply any box property except height with a percentage value, the result will
be proportional to the computed width of the associated element (or of the parent
element, if the property in question is width).

height values set with the % unit are more difficult to apply, because they always resolve
to auto unless there are one or more elements higher in the cascade (in practice, usually
just an immediate parent element) that all resolve to discrete height values.

82 | Chapter 6: Solving the Puzzle of CSS Layout

Element Flow
You can lay out elements among their neighbors by specifying one of three types of
flow behavior: inline, block, and inline-block, illustrated in Figure 6-5. The HTML
specifications are the source for these definitions, and dictate the default flow behavior
of all elements.

Figure 6-5. The three principal flow types are inline, block, and inline-block

The stylist can further modify these flow behaviors—or in some cases negate them—
by applying the float or position property.

Inline Elements
Inline elements, for example strong, are laid out like normal text. The baselines of inline
element content are common to those of neighboring text, and linebreaks are arbitrarily
applied to their content by default. In current browsers, custom margins, borders, and
padding can be applied to inline elements, but those values do not affect the layout of
adjacent content.

Most importantly, layout characteristics other than margins, borders, padding, and
positioning cannot be applied effectively to inline elements.

Text that isn’t enclosed by inline markup behaves like inline content, but can only be
referenced in a stylesheet via their parent element.

Block Elements
Default block element flow follows four simple rules:

1. Block elements expand to fill the available horizontal space within their containing
element.

Element Flow | 83

2. They never overlap or are overlapped by other elements, except those that they
contain.

3. The content of a given block element must be composed entirely of block elements
or entirely by text, inline, and inline-block elements..

4. All CSS layout properties can be applied effectively to block elements.

The fourth rule allows you to break the first two rules deliberately.

The third rule introduces the prospect of “anonymous” content boxes, which can cause
stretches of content to behave like block elements, yet remain inaccessible to CSS. For
this reason, many developers recommend that given a source fragment like this:

<div>
 <p>Lorem ipsum dolor sit amet,</p>
 Consectetur adipiscing elit.
</div>

the passage outside the paragraph element should be “repaired” by placing it within
an explicit block element of its own, thus making it fully accessible to CSS.

It’s unnecessary to do the same to inline content, unless styling is altered within entirely
arbitrary points within an element.

Inline-Block Elements
Many inline-block elements are called “replaced” elements in the W3C’s technical lit-
erature, because the runtime population of such elements includes images, form con-
trols, and other objects that are usually rendered with the assistance of the operating
system underlying the browser.

Inline-block elements acquire the flow characteristics of inline elements, which means
that they line up on a common baseline. Most notably, source whitespace around and
within inline-block elements is rendered on the browser canvas, just as with inline
elements. In spite of their flow behavior, inline-block elements can take on the full range
of layout properties, just like block elements.

Peculiarities of inline-block flow behavior are raised in the following discussion of the
display property.

Using the display Property to Change an Element’s Flow
The CSS display property reliably accepts a range of values corresponding to the flow
types explained previously, as well as none. The resulting behavior produces a range of
desirable effects, all of which are demonstrated on this book’s companion site:

• Primary navigation links on “brochure” sites most often assume a horizontal ori-
entation. This is done by changing the display value of their constituent list items
to block (resolving an ambiguity in the HTML Document Type Definitions) and

84 | Chapter 6: Solving the Puzzle of CSS Layout

applying a number of other layout properties, particularly float. In tandem with
assigning display: block to hyperlinks, this solution is preferred to applying #nav
li { display: inline; } in situations where navigation link footprints need to be
equally or statically sized.

• Once given a display value of block, links can be assigned arbitrary width and
height values, which makes them easier to compose within a web application in-
terface. This technique can also be used to increase their footprint, putting into
practice the principle of human-computer interaction (HCI) known as Fitts’s Law.
This asserts that larger interface objects are easier to activate with a pointer device
than smaller ones.

• The manner in which ordered and unordered lists are normally arranged with re-
spect to their neighbors can be altered, so that they can be presented serially within
other copy.

• By changing the display value of form controls to block, it becomes possible to lay
them out within a predictable grid.

• display: none; can be used to enforce template normalization, in the rare but not
unheard-of circumstance that an element cannot be removed from a page
altogether and preserve legible source markup formatting.

• A series of similar text fragments or inline elements that need to run along a com-
mon baseline can be assigned a display value of inline-block. This gives the stylist
a double advantage: a common baseline and access to all of the CSS layout
properties.

The display Property
The most salient details of the display property are associated with its none value:

• With respect to layout, elements with a display value of none are treated by graph-
ical user agents as if they simply do not exist.

• The broad “invisibility” imposed by display: none is applied by assistive
technology.

The inline-block value also creates ample opportunity for unintended consequences.
Since inline-block elements have inline flow, source whitespace between inline-block
elements and their nonblock neighbors is rendered on the browser canvas, making it
impossible to align inline-block elements flush to one another in the absence of ad-
justments to source formatting. Such adjustments in their turn violate the principle of
layer separation, the nature and benefits of which were discussed in Chapters 2 and 3.

In addition to rendering interstitial source whitespace, the inline flow of inline-block
elements can force the insertion of soft linebreaks in content when such elements are
of an arbitrary width, or when text is resized in a static-width layout.

Using the display Property to Change an Element’s Flow | 85

Finally, the inline-block value of the display property is supported inconsistently (or
not at all) in many older browsing platforms.

The float and clear Properties
The primary effect of the float property couldn’t be simpler to explain: an element to
which it’s applied hews to the nearest available margin suggested by that property’s
value, and following content flows around its element box instead of being forced below
it. The clear property, on the other hand, negates the “flow-around” effects of float.
These effects are described visually in Figure 6-6.

Figure 6-6. A demonstration of the float and clear properties: (1) has a float value of left, (2) has a
float value of none, and (3) has a clear value of left

That’s the theory, at least. The practice is another story. Because float is the only
presentation-specific implementation technique that can be used to create variable-
height columnar page layouts in CSS 2.1, knowledge of float context is actually a vital
item in any stylist’s toolbox.

The Rules of the float Property
To predict the behavior of an element to which a custom float value has been applied,
you need to understand the rules that rendering engines follow.

The following is a brief discussion of rules explained in Sections 9 and
10 of the CSS 2.1 specification.

86 | Chapter 6: Solving the Puzzle of CSS Layout

An element with a float value of left or right must:

• Have a discrete width (whether expressed or implied) if the value is to be effective.

• Appear entirely within the content block of its containing element, unless it is
intrinsically wider or taller than that container (a state that will cause it to affect
the layout of other elements in the document).

• Not overlap by more than one line any non-floated element that precedes it in the
source order. This is relevant when nearby elements are assigned complementary
float values.

• Hew first to the highest possible line, then to the one furthest left (or right).

• Be contiguous with the element boxes of affected non-floated elements that it
precedes in the source order, but not the contents of those elements. This behavior
is quite relevant when composing multicolumn layouts.

Containing elements are significant in these rules when they have float values of their
own, as discussed in the following section.

As for float: none, one reason why it might be applied explicitly is to supersede a value
assigned elsewhere in the stylesheet, thus avoiding the layout chaos that can arise when
floated elements are far too large or small to fit easily into the layout specified by a
site’s designer.

Figure 11-7 in Chapter 11 further illuminates these rules.

This book’s companion website describes these rules in still greater detail.

Canceling float Values with Corresponding clear Values
The clear property is provided to ensure that an element will not flow around a
floated predecessor, but will instead be pushed below it.

The most effective application of the clear property is to force the margin of an element
to align with, or justify to, a margin of an antecedent element.

Table 6-1. The values of the clear property and their results

Value Result

none Affected element flows around floated predecessors per stated rules (default).

left Affected element is pushed below any predecessor with a float value of left that would otherwise affect the
flow of its contents.

right Analogous to left; applied in relation to any predecessor elements with a float value of right.

both Affected element is pushed below all floated elements that would otherwise affect the flow of its contents. Default
margins change accordingly.

The easiest way to grasp the behavior of float and clear is to hack at multicolumn
layouts, which are explained shortly.

The float and clear Properties | 87

float Context
Like other box and layout properties, the float and clear properties are applied in a
scope determined by the presence of float values that are further up the cascade.

The practice of wrapping two columns in a floated element is suggested in the dis-
cussions of three-column layout that follow. One effect of this technique is to place
those two “wrapped” columns in a float context defined by their parent element, al-
tering the visual scope in which the rules of the float and clear properties are applied.
Working from the same three-column, four-container scenario, this means that any
clear: both assignment to an element within the two-column wrapper element will
reset the margins of content to the margins of the two-column wrapper, rather than to
the page container.

Implementing Multicolumn Layouts
The two- and three-column layouts we see in such abundance and in Figure 6-7 are a
result of inertia, to a degree. Before CSS became reasonably well supported, markup
tables were the only available means of exercising any control whatsoever over page
layout, short of abusing Flash or images with mapped links.

Figure 6-7. The source order of those elements is #main–#header–#bodyCopy–#sidebar–#footer;
each ordinal is mated with the float and clear values that apply to that element

88 | Chapter 6: Solving the Puzzle of CSS Layout

Once simplified, typical layout table markup often looked something like this:

<div align="center">

<table width="768">
 <tr>
 <td colspan="2">This is the page header.</td>
 </tr>
 <tr>
 <td width="160">This is the sidebar.</td>
 <td>This is the principal content.</td>
 </tr>
 <tr>
 <td colspan="2">This is the footer.</td>
 </tr>
</table>

</div>

In practice, the tables that were put into production were vastly more complicated. For
one thing, they would include extra rows and cells populated with shim content and
inserted to create negative space in page layouts. For example, in early 2002 I drew up
a table intended for use in an email campaign that had 40 columns in it, although no
section of the layout had more than 4 physical columns. The balance was required to
account for rules and changes to the layout grid that were made from one section to
the next.

Experienced markup technologists who work on email campaigns are still writing that
sort of markup, since the extent of CSS support in popular email clients remains egre-
giously inadequate (with no relief in sight).

Converting the Two-Column Layout from Markup Tables to CSS
If you’ve experimented at all with multiple-column layouts on your own, it quickly
becomes clear that there are lots of ways to fail:

• The presence of float and width values on all columns appears at first glance to
force a relationship between source order and presentation order. This approach
also presents a high risk of blowouts, especially in Internet Explorer 6.

• Applying position: absolute to your columns reduces the risk of blowouts, but
to allow for a proper footer you also need to know the relative lengths of your
columns in advance—an unreasonable expectation in the real world.

The solution to the first problem is to place float values only on the columns that
must be floated, and control the remaining columns with judicious use of margin prop-
erties. For their part, positioning properties have limited application to multicolumn
layouts; there is a good chance that you’ll apply them to navigation links, but not to
columns of actual content.

Implementing Multicolumn Layouts | 89

Moving to CSS in a simple case like the one illustrated seems at first to involve extra
work: the element names change, and you use fewer of them—but in the place of the
excised elements, you’re called upon to write a heap of CSS rules!

Here’s the markup (which is also available on this book’s companion website):

<div id="header">This is the header.</div>

<div id="main">

 <div id="bodycopy">This is the principal content.</div>
 <div id="sidebar">This is the sidebar.</div>

</div>

<div id="footer">This is the footer.</div>

and then the styles:

 #main { height: 1%; overflow: auto; }
#main, #header, #footer { width: 768px; margin: auto; }
 #bodycopy { float: right; width: 598px; }
 #sidebar { margin-right: 608px; }
 #footer { clear: both; }

Figure 6-8 presents this markup in a wireframe context.

How the Two-Column Styles Work
As you can tell from the first rule, the markup and style examples just shown presume
a fixed-width layout, just as most table-based layouts take a fixed width. Setting margin:
auto on the page’s three container elements ensures that they will be centered on the
browser canvas.

The principal content is assigned an id of bodycopy. Since it’s the first element in
#main it takes the needed float and width values. You will also notice that the overflow:
auto technique described previously is used here; however, it is really only necessary if
background properties are applied directly to #main.

The secondary (site-meta) content follows next, assigned the token #sidebar. Its
width value remains at auto since it lacks a float value, and width control is achieved
with margin-right. This approach to width control is preferred by virtue of the flexi-
bility that margin collapsing affords: if layout values were instead provided with mu-
table units like em, compound width values would make the layout more susceptible to
rounding variations in computed width, thus increasing the risk of blowouts. Setting
the margin-right value instead risks slight differences in content width, which are still
undesirable but less jarring.

Finally, the assignment of clear: both to #footer is strictly unnecessary given the ap-
plication of overflow: auto to #main—a state of affairs that changes the instant the
overflow value is removed from the stylesheet. At that turn the footprint of #main

90 | Chapter 6: Solving the Puzzle of CSS Layout

terminates on the lower edge of #sidebar; by adding clear: both to #footer, it becomes
completely certain that the latter element will always be rendered below both columns
of #main, regardless of which column is taller. This effect is illustrated in Figure 6-8.

Two issues are left to the imagination in the styles provided earlier. The first of these
concerns the navigation that is surely present on the page. In all likelihood, it’s con-
tained by either #header or #sidebar, but a more progressive approach is to place it
between #main and #footer in the source order, while keeping it close to the top of the
layout. However, this requires the application of positioning properties, as well as

Figure 6-8. The cumulative effect of the style rules applied to the two-column markup example, one
rule at a time

Implementing Multicolumn Layouts | 91

vertical margins (or a padding-top value for #sidebar, if the site navigation is to appear
at the top of that column).

The second neglected point of interest points to the likelihood of negative margins
somewhere nearby #footer, particularly if the secondary navigation is outside
#footer. In practice the regions flush to the interior edges of #header and #footer are
lousy with margins, padding, and oftentimes borders. On account of these various
combined values, it can become necessary to apply minute adjustments to the margin
values associated with those layout regions, a process that as often as not results in at
least one negative margin value.

It is also possible to apply opposing float values to the two columns, while setting
overflow: auto and height: 1% on #bodycopy, an approach given short shrift here be-
cause of its annoying tendency to trigger rendering bugs in Internet Explorer 6.

Benefits of Confining Layout Specifications to Stylesheets
Given the umpteen interrelationships and caveats that were just covered, you’re wise
to question the opportunity cost of relying on advanced CSS for layout.

The answer runs entirely to simplification, counterintuitive though that may at first
seem. The effort expended on stylesheet authoring gets paid back in the form of lighter
markup, which carries a number of benefits. Some of those benefits include:

Content falls in its logical order
Since there’s a direct relationship between the source order of table content and
its position on a page, the sidebar and the navigation (which usually finds its way
into the header or the sidebar on a visual level) are present near the top of the
markup. The page’s principal content—what is summarized in search results is
the likely goal of the visitor—is relegated below these passages of meta-content.
The long ubiquity of table-based layout means that to this day, users of assistive
platforms still expect to find site navigation near what they perceive as the top of
the page, since their tools “present” the content in source order.

Elements are added or removed from the body content of templates only when there is
content to add or remove

Less-frequent changes usually mean fewer changes, which in turn mean less work
to approve and document. Finally, the increased simplicity that results from these
differences makes for easier maintenance in the long run.

The simplified markup carries strong benefits with respect to portability and accessibility
The most obvious application of this fact has to do with printing: if you feel the
need to include a “Print This Page” widget, the document at the far end of that link
can use exactly the same template as the screen-optimized document. The elements
in need of removal will relate to navigation, which can be quickly clobbered with
judicious application of display: none (or better yet, by wrapping the navigation
markup in an appropriate template structure that can be toggled).

92 | Chapter 6: Solving the Puzzle of CSS Layout

For good or ill, presentation outliers can be handled by building a reasonable oversupply
of class and id tokens into template markup and code

In exchange for the increased use of class and id tokens, developers are called
upon to create and maintain fewer templates (or template fragments) on a given
site.

Confining presentation in a location separate from the site templates greatly eases devel-
opment and deployment of enhancements and redesigns

If your site layout needs a new section of any kind, it can be added to the template
quickly, while most of the details are resolved by changes to the stylesheet. Given
clean stylesheet rules, it might be possible to remove sections simply by comment-
ing out the relevant template blocks. Compare these abbreviated processes with
the sort of extensive changes that need to be made to templates driven by table-
based layout: which approach makes more sense, really?

In addition to these benefits, there seems to be considerable faith that reducing the ratio
of markup to content—a certain consequence of implementing well-written CSS, as
demonstrated in brief by the source examples shown earlier—provides benefits to
Search Engine Optimization (SEO) practitioners as well. In the absence of direct com-
parisons utilizing otherwise equal documents, I’m reluctant to subscribe to that belief
without skepticism. However, the willingness of so many experienced people to believe
in the SEO benefits of lighter markup must count for something, right?

Moving from Two Columns to Three
Two-column layouts are easy: as long as your backgrounds aren’t intricate, you can
apply a float value here and a margin value there, and still place your footer at the
bottom of the page without risking odd results. There are other ways to a two-column
layout; some people like to use float values on both columns.

The techniques that make these layouts work are a combination of Faux Columns and
assignment of clear: both to the footer.

When you move to a three-column layout, however, the number of possible basic float/
margin combinations balloons to six. This increase in the number of outcomes is ac-
companied by the requirement to place two of those columns in a functionally empty
container element for the sake of width control. As a rule you’ll want to put that con-
tainer around the first two columns in the source order, though that will be difficult in
two of the six possible cases since those columns will not be contiguous in the layout.

There are a total of six ways to arrange and style the columns of a three-column layout.
These options are displayed in Figure 6-9 and described in terms of float and margin
values in Table 6-2.

Implementing Multicolumn Layouts | 93

Table 6-2. Column ordering (from left to right) and float/margina property/value assignment.
Columns are numbered by source order; brackets indicate intercolumn container elements

Display order Container layout Source column layout

 Col. 1 Col. 2 Col. 3

[[2, 1], 3] float: left; float: right; margin-right: x;b margin-left: x;

[3, [1, 2]] float: right; float: left; margin-left: x; margin-right: x;

[[1, 2], 3] float: left; float: left; margin-left: x; margin-left: x;

[1, [3, 2]] margin-left: x; float: left; float: right; margin-right: x;

[[2, 3], 1] margin-right: x; float: right; float: left; margin-left: x;

[3, [2, 1]] float: right; float: right; margin-right: x; margin-right: x;
a Remember that elements assigned a float value need a corresponding width value, while properties assigned a margin-* value

should omit a width value in most cases.
b x refers here to a variable length, not a length that remains constant within a given layout.

Figure 6-9. Wireframes with source order and float value annotation of the six possible three-column
layouts

94 | Chapter 6: Solving the Puzzle of CSS Layout

If you need to maintain consistent intercolumn container scope between the two “odd”
cases and any of the other four that were described in Figure 6-9, the desired results
can be achieved in the following steps:

1. Move the intercolumn container to enclose the first two source columns.

2. Unset the width property of the intercolumn container.

3. Assign complementary float and width values to the first two columns.

4. Assign appropriate margin values to the third column, given that the margin values
are greater than or equal to the sum of the two width values set in step 3.

The two approaches to avoiding collision between main content and footers—
overflow: auto combined with height: 1% on the element containing your columns,
and setting clear: both on the footer—are viable without regard to the number of
columns in your template.

Stylesheets and templates for the six layouts described in Table 6-2 are provided on
this book’s companion website.

Dealing with More Than Three Columns
As the number of columns in a layout grows, the prospect of using overflow: auto; on
one or more containers becomes increasingly attractive. Using multiple float values in
series—and risking blowouts as a result of rounding variations or Internet Explorer
bugs—also becomes viable, because once you’re past three columns, any successful
approach to solving layout problems can be considered good enough.

Semantically Empty Containers for Multicolumn Layouts
If you conduct independent investigations into the results that can be obtained with
multiple float values and positioning, you’ll discover that many of the multicolumn
layouts discussed here don’t require intercolumn containers. (Those who want to skip
the investigation can visit this book’s companion website instead.)

Creating empty container elements is often assumed to introduce junk markup, which
by definition is a poor addition to any page. That’s certainly the case if you use one of
the three-column templates described earlier, and subsequently need to run a search-
and-replace on a series of three-column templates so that the principal content can be
moved from an edge to the center of the layout—a step that according to CSS Zen
should be entirely unnecessary.

However, the intercolumn container offers the best protection against blowouts and
the greatest flexibility with respect to providing distinct, full-height backgrounds for
all three columns.

Implementing Multicolumn Layouts | 95

Advanced Layout in CSS3
The current CSS3 module drafts specify support for sequential columns and properties
that allow stylists to specify layout behavior like that found in tables.

The multicolumn layout module includes properties that allow a single element to be
divided into multiple columns of arbitrary width, height, content length, and gutter
width, running from left to right. There is also the column-span property, which forces
an element into typical block flow, then resumes column rendering from the left edge
of the following element’s content block.

The template layout module as currently written specifies extensions to the display
and position properties that allow stylists to define a layout grid that mimics the be-
havior of layout tables like those described in “Implementing Multicolumn Lay-
outs” on page 88.

The display extension supports variables encoded within the alphabetic subset of
ASCII, as well as two constants. The first constant is @, where elements in the “template”
context should go, if they aren’t explicitly assigned to a position in the defined grid.
The second constant is . (period; %2E), which defines gutters within a layout.

The jQuery JavaScript framework includes a module that allows stylists to emulate this
template module behavior by defining a prefix token for custom display and
position properties (e.g., -mygrid-display) and the name of the CSS file containing the
template layout rules.

CSS Positioning Properties
The position property takes one of four values (of which static is the default) and
allows the stylist to place any element anywhere in the layout.

More importantly, the assignment of any position value other than static alters the
positioning context of elements, which is briefly described in Chapter 3.

How Positioning Works
Consider the following values:

#someDiv { ... left: 160px; top: 96px; }

Suppose that those styles are applied to the following markup:

... <body><div id="main"> ... <div id="someDiv">The quick
 red fox jumps over the lazy brown dog.</div> ... </div></body>

The four position values that can be applied to #someDiv will yield the following results:

static
left and top values are not applied; the element retains its expected position in the
layout flow of the document.

96 | Chapter 6: Solving the Puzzle of CSS Layout

absolute
The upper-left corner of #someDiv appears 96 pixels below and 160 pixels to the
right of the upper-left corner of the browser canvas. The margin applied to body is
disregarded. The element is removed from the layout flow of the document.

fixed
Yields the same result as position: absolute, except that the element will retain
its position on the browser canvas regardless of any content scrolling. The element
is removed from the layout flow of the document.

relative
Instead of being offset from the upper-left corner of the browser canvas,
#someDiv is offset from where it would normally appear in the document layout.
The element retains its expected position in the layout flow of the document, apart
from the changes imposed by the left and top values supplied in the stylesheet.

Let’s add the following stylesheet rule:

#main { position: relative; margin: 20px; }

The top, right, bottom, and left properties of #main default to zero, but the assignment
of position: relative changes the positioning context of #someDiv so that instead of
being offset from the upper-left corner of the browser canvas, #someDiv is instead offset
from the upper-left corner of #main, yielding a displacement of 20 pixels rightward and
downward when compared to the first set of examples, as suggested by the upper-right
panel in Figure 6-10. The storyboard in the figure is based on the markup and styles
used for the two-column layout demonstration (see “Converting the Two-Column
Layout from Markup Tables to CSS” on page 89).

A bit more about the effects of element positioning on the flow of surrounding elements.
An element that is removed has the same effect as an element with a display value of
none, except that the element remains visible at the coordinates specified by the stylist.
Retained flow behavior means that while the position of the element might be altered
(in the case of position: relative), it still affects the layout of nearby elements ac-
cording to the behavior suggested by its display value.

Finally, note that Internet Explorer 6 and 7 render margins differently than other
browsers when position: relative is used to reset positioning context, as in the nav-
igation layout techniques discussed later. In practice, these deviations should be re-
paired by providing appropriate reset values in a conditionally requested stylesheet.

CSS Positioning Properties | 97

Figure 6-10. A storyboard displaying from left to right the behavior of the elements and styles described
in this section

98 | Chapter 6: Solving the Puzzle of CSS Layout

Bounding Positioned Elements
The top and left properties—which can be set with the same units as the box
properties—are accompanied by the right and bottom properties, which tend to be less
frequently used due to the unpredictability of browser canvas size.

However, in all current browsers, complementary values can be assigned together in
lieu of assigning width (or less often height) values. Consider the following:

#someDiv { position: absolute; left: 25%; right: 25%; }

which yields the same result as:

#someDiv { position: absolute; left: 25%; width: 50%; }

This bounding technique can prove helpful in the execution of variable-width layouts
that require margin offsets in units other than percentages.

As with top and left, negative right and bottom values move corresponding margins
outside the margins of the element that sets the positioning context, as described in
Figure 6-11.

width: auto and Nondefault position/float Values
In the absence of an assigned width value, elements with a position value of absolute
or static will expand to fill the horizontal space available, just as normal elements will.
This means that given a set left or right value, the unset complement has a functional
value of zero.

Things become more interesting if an absolutely positioned or floated element contains
nothing but content of an intrinsic width (e.g., images and form controls). In these
cases, the containing element with a width value of auto will “shrink to fit” the contents
at their widest point.

Section 10.3 of the CSS 2.1 specification goes into seemingly interminable detail about
the rules applied to the calculation of element widths.

The visibility and z-index Properties
The various box and positioning properties speak for manipulating page layout in two
dimensions, and there are two additional properties that stylists need to manipulate
layout in three dimensions.

The visibility and z-index Properties | 99

Altering Visibility Without Affecting Document Flow
display: none is tremendously useful, but it affects the overall flow of documents in
which it’s used. The visibility property and its single well-supported custom value—
namely, hidden—make it possible to remove content from view without affecting the
overall flow of the document’s layout. Where the assignment of display: none to an
element causes its neighbors to be rendered as if it didn’t exist, visibility: hidden
merely removes that element’s contents from view and renders its (apparently empty)
element box.

visibility: hidden and opacity: 0 deliver the same result. The primary difference
between them is with respect to support. visibility was part of an addendum to the
original CSS specification drafted in 1996, while opacity is unevenly supported, al-
though part of the CSS3 feature set.

Figure 6-11. Negative right and bottom values move affected elements outside (rather than inside)
their default position

100 | Chapter 6: Solving the Puzzle of CSS Layout

Stacking
Where two elements overlap—in the simplest case, because one is contained by
another—the latter element in the source order will be displayed over its predecessor.
That’s all well and good, but matters are complicated by the nature of positioning and
by the fact that any element contains at least two layers of its own.

For a normal block element, matter is stacked in the following order, from bottom to
top:

1. Background color

2. Background image

3. Borders

4. Inline content

5. Floated content

Inline and floated elements can have their own backgrounds, borders, and contents,
which gives them their own stacking order.

Trailing and distinct from that list are elements with any position value other than
static. Each of these takes on its own stacking context, which is shared in the same
manner as positioning context. Where two positioned elements share a stacking con-
text, their stacking order will be determined by their source order as suggested earlier.

The z-index property serves the purpose of manipulating the stacking order of posi-
tioned elements. Suppose that you have a series of deliberately positioned elements
with the same positioning context; if they overlap at all, the element visible in the
intersecting region will be the last in the document source order by default.

If those elements need to be stacked “out of order,” z-index values (which default to
auto) can be assigned, yielding the following changes to the stacking order:

• Elements are stacked according to negative z-index value, below...

• Elements with z-index values of zero and auto, which are stacked in source order
but below...

• Elements with z-index values greater than zero, which are stacked likewise ac-
cording to their z-index value.

In general, elements with identical positioning context and identical z-index values will
be stacked in source order, again with the earliest on the bottom of the stack.

The most significant limitation of the z-index property is that elements must share a
positioning context before they can be arranged arbitrarily with respect to one another
along a document’s notional z-axis.

Finally, note that if you ever need to stack “normal” content over a floated neighbor,
you can move it to a higher position in the stacking order by assigning to it a
position value of relative.

The visibility and z-index Properties | 101

Obtaining Precise Navigation Source Order and Layout
“Styling Navigation Elements” on page 121 describes list markup and styling and in-
cludes a list of steps that explains how to lay out a site’s primary navigation elements.
Step 5 avoids details, however—it simply suggests that navigation item layout involves
a heap of box and layout properties.

All selectors used in this section are deliberately written in the most
generic manner possible.

The following material assumes that the first four steps of the process have been fol-
lowed, resulting in a reset list with all of its items set to display: block.

Chapter 13 also discusses complex page layouts in fine detail.

Orienting the List
Regardless of where the primary navigation has been placed in a template’s source
order, it’s easiest to explain the layout process by first orienting the navigation as a
whole, as shown in Figure 6-12.

Three issues affect navigation list item orientation:

• Overall horizontal or vertical orientation

• Presence or absence of sublevels

• Overall orientation of sublevel items

Establishing a horizontal orientation—the most prevalent orientation for primary site
navigation on commercial English-language sites—is best accomplished by writing
stylesheet rules similar to the following, with length values altered as needed:

 #nav { display: block; height: 1.5em; overflow: hidden; }
#nav li { width: 8.333em; float: left; overflow: hidden; }

The result is displayed in Figure 6-12. Note that #nav actually takes its positioning
context from #main, thus allowing it to lie below the principal content in the source
order. The space in which #nav lies is provided by padding that has been added to
#main, as indicated by the gray negative space present on each side—space that is needed
to account for rounding differences between browsing platforms.

If the use of float fails to yield acceptable results due to cross-browser rounding
differences or Internet Explorer rendering bugs, another approach is to assign

102 | Chapter 6: Solving the Puzzle of CSS Layout

position: relative to the containing list (unless position: absolute has already been
applied to work around source order), then assign position: absolute to each of the
individual list items, along with the desired layout coordinates.

The reason for preferring float: left to position: absolute when laying out naviga-
tion list items goes back to the “stacking context” issues described earlier. Elements
that have odd stacking characteristics tend to encourage the proliferation of position
and z-index values in arbitrary parts of a document—an outcome that usually brings
trouble during the testing phase of a project. That trouble grows even worse when
encountered in the context of brokered advertising or content contributed to a CMS
by untrained users.

Figure 6-12. Horizontally oriented navigation

Obtaining Precise Navigation Source Order and Layout | 103

Vertically oriented navigation is categorically easier to style. The biggest challenge lies
in accounting for items that run onto two lines of link text rather than one; however,
the practice of assigning an id to each list item contained in the primary navigation (if
possible) simplifies the requirement to account for that case.

Where the horizontally oriented navigation is bounded in terms of height, the vertically
oriented navigation is bounded in terms of width and sheds all need for float values,
yielding simpler rules; for example:

 #nav { display: block; width: 10em; overflow: hidden; }
#nav li { height: 1.5em; overflow: hidden; }

Forcing the Navigation List into the Desired Coordinates
In typical cases, the list containing your primary navigation links will fall at one of two
locations in the template source, and at one of two locations in the template layout. In
addition, the depth of the primary navigation list in the document tree is significant.
The first two scenarios presented here assume the following page structure:

1. Document root

A. Content container

I. Header

II. Primary navigation

i. Individual links

a. Sublevels

III. Content columns

IV. Footer

i. Secondary navigation

a. Individual links

ii. Rights statements, etc.

The latter two scenarios assume that 1.A.II. and 1.A.III. (the primary navigation and
content columns) are transposed with respect to the source order just outlined.

The apparent (layout) location of primary navigation links always lies within or adja-
cent to the header except in the rarest of cases; the principal question is whether they’re
oriented in a column flush to the left margin of the entire layout (and probably above
secondary content), or oriented horizontally along a line contiguous to the bottom of
the header (and likely spanning all columns in the layout).

The particulars of laying out navigation links within their parent list are discussed in
the previous section and in Chapter 7; the question answered here is how to put them
in the desired place on the visible page.

104 | Chapter 6: Solving the Puzzle of CSS Layout

In keeping with the examples used in the rest of this chapter, Figure 6-13 assumes that
the navigation list will be placed at the end of #main. This approach is not without its
disadvantages, but it leads to the most logical ordering of content according to priority.

Figure 6-13. The layout of a vertically oriented navigation list, presented step by step

Things get a little more complicated if the links are vertically oriented, as shown in
Figure 6-13, and contiguous with the left column of the layout. Using Figure 6-13 as a
guide, consider the default disposition of a vertically oriented navigation list at that
position in the source order, and think through the following steps:

1. Reset the list by applying list-style-type: none to the list and setting padding-
left: 0 on the list items.

Obtaining Precise Navigation Source Order and Layout | 105

2. Set the desired box properties on the list items, and on the list itself. In this case,
padding and two borders have been applied to all four sides of each list item, and
two borders to the list, in a manner similar to that suggested by Figure 10-3 (shown
in Chapter 10).

3. Relying on the positioning context established by @main, the navigation list is
moved over the top of the left column.

4. An appropriate padding-top value is applied to the left column.

Layout Types and Canvas Grids
You must address two concerns when you create a page layout: the width of the layout
in relation to the browser canvas, and the grid that will be applied within the layout.
There are three popular approaches to linking layout width and canvas width, and two
levels at which layout grids are applied.

You’ll find warnings about the dangers of mixing fixed units with per-
centages. The most frequently encountered involve borders and roun-
ded corners, both of which tend to work far better when resolved to
static units, notwithstanding the desirability of applying them to ele-
ments of proportional width.

Fixed, Proportional, and Flexible Layouts
Even in the ever-changing web browser environment, a site’s designer must ask three
questions before starting work on a wireframe or (perhaps) a composite:

• How much space do I need to communicate the site’s message?

• How much space can fit within the browser canvas of the site’s typical visitors?

• Will it serve visitors’ needs to use the entire canvas?

To some extent, these questions should also be answered with respect to separate
components of a site’s design: “How much space do I need in x, and for what reasons?”

Because the answers to these questions vary from one project to the next and from one
designer to the next, there are no universally correct answers. However, there are a
number of design concepts that affect the horizontal composition of a layout:

Type sizes
Since there is an ideal number of words per line, and since the most frequently used
words in a given language are well known, it follows that narrower layouts best
accommodate small type sizes, while wider layouts are needed for larger type sizes.

Image sizes
If photographs or other illustrations are to comprise a significant portion of the
site’s content, their aspect ratios and sizes will have a strong impact on the design

106 | Chapter 6: Solving the Puzzle of CSS Layout

of the site as a whole—particularly since they cannot be sized proportionally within
proportional layouts on account of their fixed size.

Negative space and contrast
Apart from the negative space created in a wide browser window that contains a
proportionally narrow layout, there remains the need to place negative space (e.g.,
gutters and paragraph margins) in various parts of the layout. Regions of high
contrast also benefit from being padded with generous amounts of negative space
around content.

Browser constraints
Inexperienced stylists will encounter significant rendering bugs when implement-
ing proportional and flexible layouts.

The Rule of Thirds, the Golden Ratio, and the Fibonacci Sequence
When composing the “over-the-fold” space of a landing page or the area of a page
section, you can rely on these ubiquitous series of numbers to establish column
widths and other metrics.

The characteristics, advantages, and disadvantages of the three basic layout types are
summarized in Table 6-3.

Table 6-3. Layout types: their characteristics, advantages, and disadvantages

Layout Type Characteristics Advantages Disadvantages

Fixed All layouts are as-
signed in px units;
columns probably
will be as well

• Most accommodating to gutters,
rules, and detailed accents

• Least vulnerable to rendering
bugs

• Well suited to image-heavy sites

• Least accessible to visually impaired
users

• Most vulnerable to blowouts at all
levels

Proportional Most or all layout
values are as-
signed in % units

• Layouts remain consistent regard-
less of the size of a visitor’s browser
canvas

• Most accessible to visually im-
paired users

• floated elements are difficult to
manage when fixed units are provi-
ded for gutters and borders

• Especially long lines are rendered
within wide browser windows, lead-
ing to a loss of content readability

Flexible Most or all layout
values are as-
signed in em units

• Offers the best compromise be-
tween accessibility and readabil-
ity; handles Text Zoom well

• Essential to successful grid man-
agement

• Little or no need for unit-mixing;
all length/size values can be as-
signed in em units without fear of
blowouts

• Extensive fraction-to-decimal con-
version and multiplicative calcula-
tion of type sizes required on the part
of the stylist

• Fares poorly on small canvases when
combined with type sizes greater
than 12px (or its equivalent)

Layout Types and Canvas Grids | 107

In practice, the most significant contributor to your decisions about layout width and
type will be driven by the expectation that most of your visitors will be browsing at a
particular canvas size and display resolution. As I write this, the lowest common de-
nominator is usually 1024×768 fully maximized, which yields a smallest likely canvas
of roughly 1000×600 (in Internet Explorer 7 with multiple tabs and toolbars enabled).
Most page layouts are then centered to account for larger browser windows in larger
displays, like the 1280×800 window I run within a 1680×1050 display.

If your site has especially broad or ambitious objectives (and a desired audience to
match), it might also pay to account for 800×600 display resolution. This can be han-
dled in one of two ways:

• Shrink the width of your layout to fit within an 800×600 display, while taking into
account the requirements of accommodating ideal line length.

• Maintain 1024×768 as your lowest common denominator for browser window
dimensions, but set the column widths of your site to fit primary page content
within the space made available at 800×600.

The Web Developer Toolbar extension for Firefox offers the best “poor man’s solution”
for testing layouts at various window sizes; it supports a dialog that allows you to specify
an arbitrary number of window sizes, and then creates menu items that you can select
to switch between the sizes that you’ve provided. For their part, accessibility and user
experience experts will advocate that you test display resolutions natively, in no small
part because of the variations in display pitch that are described in Table 3-3.

Defining Grids
Consistency is often considered the highest virtue of effective graphic design, and the
Web offers few excuses to ignore the value of consistency to the user experience. In
fact, the nature of the cascade (see “Applying Taxonomy Through the Cas-
cade” on page 70) greatly promotes consistency in design.

In its turn, consistency is greatly aided by the creation of grids. Grids are applied at all
levels of a site’s design, most notably at the atomic level and the page/template level.

An atomic grid is exactly what its name suggests: the division of a layout into a pattern
of small, identical rectangles, which are often (but not always) squares. Many design
platforms, including and especially Adobe Photoshop, include support for square grids
as a matter of course. Grids can be activated in Photoshop by navigating to View →
Show Grid or pressing Ctrl/Cmd-[apostrophe]. Those grid lines can and should inform
the distance between lines of text and the possible locations of column stops.

Page grids are more arbitrary, but in their way no less consistent. A page’s grid specifies
the widths of the columns in the layout, offers a preferred height for blocks of content,
and specifies the circumstances under which the clear property should be used.

108 | Chapter 6: Solving the Puzzle of CSS Layout

The alternative to a page grid—dumping content into one or more columns without
regard for the vertical space it occupies, building page sections with different column
widths, and eschewing consistency with respect to assets such as images or heading
composition—results in a patchwork effect, as demonstrated by Figure 6-14, which
shows the Weather Channel and Weather Underground home pages as they appeared
at the same time. (Note the amount of clutter between gridlines in the capture of
Weather Underground, displayed at the top.) Neither layout is superlative in its ad-
herence to a page grid, but in the case of the Weather Channel’s site, it’s apparent even
to the casual visitor that at least somebody tried to follow a page grid.

Figure 6-14. Two similar sites, with gridlines drawn

Layout Types and Canvas Grids | 109

Not so with Weather Underground. Content on that site is also poured into three
columns, but with far less attention to the y-axis of the page layout. On both sites,
advertising is piled up between the page content and the footer, and again the difference
is apparent: the Weather Channel site divides the main column to position its text ads,
while Weather Underground divides its entire content area for the same purpose.

Note that most of the visible problems at Weather Underground point to ads that are
dumped into outsized footprints. Thus:

If you intend to sell advertising on a site, design for its presence from the beginning.

Because it can be difficult to predict the height of a block of content, vertical compo-
sition challenges need to be met with editorial discipline and planning. In situations
where height control is critical to the execution of a page layout, you should consider
the prospect of using overflow: hidden.

The Rule of Thirds, the Golden Ratio, and the Fibonacci Sequence
The similar concepts of the Rule of Thirds, the Golden Ratio, and the Fibonacci se-
quence are particularly relevant to page layout. The Rule of Thirds is the easiest to
comprehend and calculate; it proposes that given an arbitrary composition, viewer
focus is most easily maintained at the four points that rest at one-third of the distance
between its edges.

The Golden Ratio or ϕ is a constant approximately equal to 1.618034, such that if it is
divided into 1 and that quotient subsequently added to 1, the resulting sum will equal
ϕ.

The Fibonacci sequence is the series of numbers such that xn + x(n + 1) = x(n + 2), given
that the lowest possible value of x(n + 2) is 1 (i.e., 0 + 1). Starting with the second instance
of 1, the first 10 numbers in the Fibonacci sequence are 1, 2, 3, 5, 8, 13, 21, 34, 55, and
89.

The Rule of Thirds yields a ratio of 3:2, which is an extremely rough approximation of
the Golden Ratio, and that in turn is the number toward which the ratios of successive
Fibonacci numbers trend.

Figure 6-15 describes the Rule of Thirds and the Fibonacci sequence. Those grids make
excellent starting points for determining your own layout grids, specifically with respect
to column widths and the proportion of the target canvas height that will be occupied
by the site header and footer.

110 | Chapter 6: Solving the Puzzle of CSS Layout

Figure 6-15. The grids suggested by the Rule of Thirds and the Fibonacci sequence

Implementing a Flexible Page Grid

One part of the standards track work on CSS3 is a method for defining
atomic grid units of an arbitrary size. The relevant draft specification is
linked from this book’s companion website.

Most atomic grids that are applied to page layouts follow one basic rule: the height of
the grid’s rows are equivalent to one line of text with leading. If I put the following into
a stylesheet:

body { ... font-size: 14px; line-height: 1.714em; ... }

I’m suggesting a grid that will have rows 24 pixels in height unless some sort of zoom
is applied—and even if Text Zoom is applied, the leading of my copy will remain pro-
portionally constant.

Layout Types and Canvas Grids | 111

Text Zoom is mentioned here because it’s a valuable accessibility aid, and because it
tends to wreak havoc on the composition of layouts that aren’t tightly em- and grid-
based. A summary of zoom support in current browsers is provided in Table 6-4.

Table 6-4. Summary of zoom support in web browsers

Zoom type IE 8 IE 7 IE 6a Firefox 3 Firefox 2 Safari 4 Safari 3

Text Zoom ✓ ✓ ✓ ✓ ✓ ✓ ✓
Page Zoom ✓ ✓ n/a ✓ n/a ✓ n/a

a Unsupported for text that inherits its font-size from a value stated in px units.

Atomic column width can take any value. Column width that yields squares seems
logical, but doesn’t always yield pleasant gutter widths. Other candidates include:

• Row height divided (or multiplied) by ϕ
• 1em or multiples of ems

• The width of a common word in your default typeface

When implementing an atomic grid, again the main thing to remember is consistency.
Your column widths and any other lines on your page layout grid should correspond
to lines on your atomic grid, and if you’re trying for a flexible layout, all values should
be expressed in em units.

For example, suppose that I use the Fibonacci sequence as the basis for a two-column
layout on a square grid. This will yield the following proportions before gutters and
margins are inserted:

Header and footer height 8x

Sidebar width 13x

Primary content width 21x

Likely width of inline photos 8x

Likely heading sizes (with leading) 3x and/or 5x

The task before me is to solve for x. Given the proportion of the body copy width to
the sidebar width, I’ll want a line length at the shorter end of the optimal range: 12
words, which resolves to something like 36em in many typefaces. That yields a value for
x of .618em.

Since I can’t very well have lines that are .618em high, I can double that coefficient,
leading to a line-height value of 1.235em (which turns out to be pretty close to the
default for many typefaces). If I move onto the next item in the Fibonacci series I obtain
a line-height value of 1.853em, which is probably too large.

112 | Chapter 6: Solving the Puzzle of CSS Layout

Alternatively I can look at my layout in terms of proportions (13:21 sidebar:body ratio,
yielding a total width of 34 units) and divide that into my canvas width. The result of
that arithmetic will fall somewhere in the range of 28–30 pixels per grid unit, which in
its turn suggests larger type on shorter lines of copy.

Regardless of which value I choose, I can codify the results into my stylesheet by simply
deciding on grid dimensions, assigning dimensions to each significant class of content
on the site, and getting the most from stylesheet selectors in the course of assigning my
layout and composition values.

Layout Types and Canvas Grids | 113

CHAPTER 7

Working with Lists

Lists are everywhere: checklists, shopping lists, to-do lists, “Best of” and “Worst of”
lists, procedure lists, and simple rankings turn up every day. Lists are pretty easy to
find in web markup, too, used for all of those purposes and often for navigation. HTML
supports three types of lists: ordered, unordered, and definition lists.

Ordered and Unordered Lists
The principal difference between ordered and unordered lists is semantics: sometimes
there’s a need to rank items by some criterion (e.g., importance, order of execution,
time, order of addition, alphabetic order), and sometimes a list contains nothing more
than a group of data with something in common.

User Agent Default Styles for Ordered and Unordered Lists
At first glance, unstyled lists look like block elements (which they are) containing a
series of still more block elements, each of which is offset from the apparent left margin
of the list. However, current browsers apply different user agent styles to lists than their
legacy counterparts, as shown in Table 7-1.

Table 7-1. User agent styles for unordered, ordered, and definition lists (ul, ol, dl)

User agents User agent style

• Firefox 2+

• Internet Explorer 7+

• Safari 3+

margin: 1em auto 1em 0; padding-left: 40px;

• Firefox 1.0.x–1.4.x

• Internet Explorer 6

• Quirks rendering modes

margin: 1em auto 1em 40px;

115

Note the 40px values. Their consequence is that if type is especially large and an ordered
list runs long, list item markers are likely to be obscured in part at the left margin. Such
an outcome can be avoided when necessary, by increasing the appropriate margin-
left and padding-left values and supplying them in em rather than px units.

A list layout behavior test suite can be found at this book’s companion site.

Creating Valid Ordered and Unordered Lists
Building valid lists isn’t difficult, but there are a few key rules to follow:

• A list must contain at least one item.

• A list cannot contain anything other than items.

• The direct parent of a list item must be a list.

• All elements that are valid children of divs are also valid children of list items,
including bare text and other lists.

• HTML 4.01 permits list items without closing tags.

• The start attribute of ol, the value attribute of li within ol, and the type attribute
of both are valid within Transitional document types, but not Strict document
types.

• Ordered list item counters do not increment on items that have a display value of
none.

The list-style-type Property and the type Attribute
Ordered list items can be annotated with a full range of cardinal markers. The default
is decimal numbers, while both Latin letters and Roman numerals are available in
lower- and uppercase forms.

Unordered lists nominally have three types of item markers: discs (i.e., bullets), circles,
and squares.

Well-supported values for the list-style-type property are shown below, followed by
their analogous HTML type values in parentheses:

• circle (type="circle")

• disc (type="disc") [default for unnested unordered lists]

• decimal (type="1") [default for ordered lists]

• lower-alpha (type="a")

• lower-roman (type="i")

• none

• square (type="square")

• upper-alpha (type="A")

116 | Chapter 7: Working with Lists

• upper-roman (type="I")

The none value turns up frequently, because site navigation rarely appears with list
bullets intact—especially when image replacement (see “Bitmapped Copy and Fahrner
Image Replacement” on page 157) techniques are used.

There is also limited support for a list-style-image attribute, which replaces the gen-
erated marker with a custom image. However, the results of using this property are
almost universally disappointing, so it’s usually better to include such custom markers
via the background-image and background-repeat properties, discussed in Chapter 9.

CSS 2.1 also provides for lower-latin, upper-latin, lower-greek, and upper-greek
markers, but these are unevenly supported.

The nav Element (HTML5)
Among the new elements in HTML5 intended for adding richer structure to HTML
documents, the nav element is arguably the most important. While the other proposed
structural elements, such as the section element, are great features for authors, they
don’t have much direct impact on end users. The nav element, on the other hand, is a
different case. It is important in that it gives you a standard way to mark up navigational
content so that user agents can identify it and handle it differently if they choose to—
which means that user agents can use nav to significantly improve the user experience.

Navigational content—that is, the lists of hyperlinks that each page of a website or web
application provides for the purpose of navigating to other parts of a site, other features
of an application, or specific parts of a page—can appear in a variety of places in a page
or application. For example, in a page that uses a multicolumn layout, you might put
primary navigation in the leftmost column of the page and secondary navigation in the
rightmost column. Or, in another page design or a web application, you might put
primary navigation in menus at the top of the page that expand to show their contents
when the user selects them, and secondary navigation in the footer of the page.

Lacking the nav element, you would most likely mark up navigational content using
a div with a particular class attribute. The class value “nav” is in fact one of the twenty
or so most commonly used class values on the Web. Sites also use values like primary
Nav and secondaryNav to further distinguish between separate classes of navigational
content.

The problem with using class values exclusively to mark up navigational content is the
lack of agreed-upon standard values that are used consistently across different sites.
The nav element solves that problem by providing a common standard element that all
web authors can use for the same purpose. In turn, having a standard nav element helps
with a common dilemma that faces many authors: the need to decide where to place
navigational content in the source order of a document to try to ensure it does not
negatively affect document accessibility, or limit usability on small-screen mobile
devices.

Ordered and Unordered Lists | 117

Accessibility and usability concerns

A number of accessibility issues affect the decision about where to place navigational
content in the source order of the document. For example:

1. There is a common concern that if you don’t place primary navigation near the top
of a document, the document will be less accessible to users of AT (accessibility
technology) products such as screen readers. The worry is that such users are ac-
customed to finding the primary navigation at the top of any given document and
won’t be able to locate it elsewhere.

2. Paradoxically, there is a conflicting concern that if you place primary navigation
at the top of a document in source order, it will make your content less accessible.
That’s because in a typical site design, most every page of the site will have the
same long set of navigational links that users of AT tools need to wade through to
get to the main content. This can be frustrating and time-consuming.

3. Closely related to the second concern is the question of usability of content in
browsers on small-screen mobile devices. A number of mobile browsers have a
built-in means for intelligently reformatting content into a single column to make
it more usable on a small screen. Mobile browsers typically do that reformatting
based on the source order of the content, so if the primary navigation appears at
the top of each page in source order, users of such browsers end up facing the same
problem that users of AT tools face. On each and every page they are confronted
with a long list of primary navigation that they then need to scroll through to get
to the main content.

In practice, a common way that authors address the second and third concerns is to
provide something like a “Skip to main content” or “Skip past navigation” hyperlink
on each page prior to the primary navigation. This helps, but it is essentially a hack to
work around the fact that prior to HTML5 there was no standard way (without using
heuristics) that a screen reader or a browser on a mobile device could determine what
part of document is navigation and what part is actual content.

Enabling user agents to present navigation through alternate means

With the addition of the nav element to HTML5, user agents now have a standard
element to look for that they know contains navigational content. They can then pro-
vide alternative means for presenting that navigational content to users, as a note in
the current draft of the HTML5 specification explains:

User agents (such as screen readers) that are targeted at users who can benefit from
navigation information being omitted in the initial rendering, or who can benefit from
navigation information being immediately available, can use this element as a way to
determine what content on the page to initially skip and/or provide on request.

Screen readers are not the only type of user agent for which nav is especially useful; it
is extremely useful for browsers on small-screen mobile devices as well. Such browsers

118 | Chapter 7: Working with Lists

might, for example, make nav content accessible through a soft-key menu rather than
rendering it within the main text flow of a page.

Of course, all the wonderful utility of the nav element is just a pipe dream unless AT
tools, browsers on mobile devices, and other user agents actually add some features to
their user interfaces to take advantage it.

Changing the Range of an Ordered List
Consider an ordered list like the following:

Greater Wavelengths

1. Red

2. Orange

3. Yellow

4. Green

Shorter Wavelengths

5. Blue

6. Indigo

7. Violet

The literal source of these lists is written as follows:

<h5>Greater Wavelengths</h5>

 Red
 Orange
 Yellow
 Green

<h5>Shorter Wavelengths</h5>
<ol start="5">
 Blue
 Indigo
 Violet

The relationship between these two lists should be obvious, as should their layout.
However, note the use of the start attribute; only Transitional types of HTML will
validate the implementation shown here, because the only reliable way to interrupt and
then resume an ordered list is with HTML 4’s deprecated start and value attributes.
The value attribute arbitrarily increments or decrements a list’s item counter on a one-
time basis.

CSS 2.1 specifies a counter implementation, but it’s difficult to understand and can
only be activated via the :before pseudoclass. In the case of a list, this prevents content

Ordered and Unordered Lists | 119

and item markers from being justified to a common margin. In addition, the counter
implementation is currently unsupported by Internet Explorer.

To start an ordered list at an arbitrary point, apply the start attribute to the list, or the
value attribute to its first item. The values provided for both must be Arabic integers,
regardless of the list’s associated type or list-style-type value (which will be
preserved).

Other Uses for Lists
Lists have two other fairly straightforward uses: outlines and inline serial lists.

Outlines
At its simplest, an HTML outline is nothing more than a series of appropriately nested
ordered lists, accompanied by the following styles:

 ol { list-style-type: upper-roman; }
 ol ol { list-style-type: upper-alpha; }
 ol ol ol { list-style-type: decimal; }
 ol ol ol ol { list-style-type: lower-alpha; }
ol ol ol ol ol { list-style-type: lower-roman; }

Outline levels 6–10 repeat the same sequence as needed, though the second pass should
probably involve deemphasized type (whether smaller or lighter) in tandem with the
default indentation.

Inline Serial Lists
An uncommon but not unheard-of scenario involves the extensive use of the serial
comma to separate several items in a list. There are a number of reasons why this
approach might be taken in a web document, the most likely being to save space. Almost
as likely is an editor’s insistence on seeing that list presented in serial format.

To implement an inline list, place your source paragraph within a div that’s been as-
signed a class of your choosing and split it on the list, which should leave you with
two separate paragraphs separated by a list. Then add the following styles:

.foo p, .foo ul, .foo li { display: inline; }
 .foo ul { list-style-type: none; }

If the content of each list item ends properly with a comma and a space (or the penul-
timate “and”, as needed), the result will satisfy both severe editorial and severe semantic
requirements. The apparently extra div isn’t superfluous, as the content in question
started life as a single paragraph anyway.

120 | Chapter 7: Working with Lists

Altering the Layout of Footer Links
The behavior of inline-block layout was discussed in Chapter 6, and that behavior is
especially valuable when working with footer links. Instead of mucking about with
float solutions, you can settle for the following, simpler approach, given appropriate
reset styles:

#footer ul { list-style-type: none; text-align: center; }
#footer li { display: inline-block; }

If custom bullets on footer links are desired, you can change the padding-left value of
the list items and use a background image as needed.

Bullets in Backgrounds?
Yes, you read that right. The CSS list-style-image property is set aside specifically for
inserting custom bullets, but it suffers from three serious drawbacks.

The first drawback of list-style-image is that the image it calls is always rendered on
the baseline, forcing the stylist to execute the composition of the intended bullet in
their graphics editor on a pixel-by-pixel basis—a requirement that roundly defeats the
goal of separating content from presentation.

The second drawback follows from the first: if the visitor zooms in on the page, bullets
are composed in odd proportion to their accompanying text.

The third drawback is the fact that without composition values like those that a stylist
can supply for background properties, there is no hope of applying sprites—fraught
with danger though their implementation might be in this case—to custom bullets
specified by the list-style-image property.

Styling Navigation Elements
In this section, the shorthand term “nav” will be used to refer both to the list containing
the separate primary site navigation items (“nav items”), and to the analogous design
element as it will appear on the production site. The links within the nav will be referred
to explicitly.

There are two basic orientations for primary site navigation: vertical and
horizontal. The latter has its constituent items floated left-to-right,
while the former is stacked into a column. The other steps to creating
navigation are fairly similar for both orientations.

Styling Navigation Elements | 121

Placing the Primary Site Navigation Within the Source Order
The first question to ask is: “Where does my nav go in the source order of the template
markup?” There are a number of issues to consider when answering this question:

Users of assistive software usually expect to see (or hear) the nav early in the source order
This expectation is an artifact of 1990s design trends and tools, when the primary
nav was almost certain to comprise the second chunk of a page’s source order (after
the site header).

However, it’s marginally more respectful of an assistive technology user’s time to place a
page’s unique content as close as possible to the beginning of that page’s source order

The need to act on this criterion is mitigated by list-skipping functionality and user
expectations, but should not be ignored. Pushing down the primary nav might also
provide incidental Search Engine Optimization (SEO) benefits.

Placing the nav just below the header section will permit you to apply styles that are simpler
(to a point)

Placing the primary nav at the end of a page’s source order offers a near-absolute
guarantee that you’ll be forced to rely on positioning context to put it where you
want it on the page—a requirement that will add complexity to your stylesheet.

Navigation is more easily maintained when it’s amalgamated into a single include file
Also, your template setup might reduce the number of included files by one—not
a big deal on most sites, but on a high-volume site, even one include file means less
performance drag.

The Primary Navigation Layout Recipe
Once you’ve composed your primary nav and decided upon its location in the source
order, you can finish plugging it into your site layout:

1. Append ids to the nav and its constituent items. The question of how to name the
ids is addressed in “Applying Taxonomy Through the Cascade” on page 70.

2. Strip the user agent styles from your nav and its constituent items. This is as simple
as inserting something like…{ margin: 0; padding: 0; list-style-type:
none; } into your stylesheet.

3. Place the nav list where it will appear in the layout. The styles used to accomplish
this step will vary according to the orientation, source order position, and layout
position of the nav, as well as the overall page layout scheme. The method most
likely to be bug-proof requires that the nav be inside the page’s content container,
which is then relatively positioned so that the nav itself can be positioned absolutely
within the page container’s margins.

4. Assign new display and box values to the nav items, as needed. On most sites, the
links will have equal footprints and a horizontal orientation, so many of your item
styles will be contained within #nav li.

122 | Chapter 7: Working with Lists

5. Arrange the nav items as needed. For horizontally oriented nav items, this can be
done with float: left or position: relative. The latter approach results in a
stylesheet that is more difficult to adapt to design changes, while the former is more
prone to bugs in Internet Explorer 6. Vertically oriented nav items will likely only
require display: block during this step, but are more likely to be nested. If a ver-
tically oriented nav contains more than one level, the lists that contain sublevels
should be assigned their own ids, (e.g., #navSubAbout). More details about this step
are explained in “Obtaining Precise Navigation Source Order and Lay-
out” on page 102.

6. Expand the nav links to the full width and height of their containing items. This is
done by first setting the links to display: block, a step with benefits that are fully
explained in Chapter 8. Finding the right width, height, and padding values will
probably take some number crunching, and it might be wise to add overflow:
hidden to the containing items as well.

7. Implement Fahrner Image Replacement on your items and links, if desired. Fahrner
Image Replacement is described in Chapter 9. If this step is taken, background
images might well be assigned to both the nav items and the nav links, so that a
link in hover state displays a different background image than its containing (and
underlying) list item.

The Footer Navigation Recipe
Secondary navigation is typically easier to style than primary navigation; for one thing,
there’s usually little doubt as to its position in the source order (nearly at the bottom,
just above the rights-and-terms statement). For another, its constituent links are rarely
set to constant dimensions.

It’s most likely that your site’s secondary navigation will be laid out in one of three ways:

Centered within the overall page layout, given generous negative space on all sides, and
allowed to flow as deeply as needed

One example of this layout can be found on PayPal’s public pages. In this approach,
list items are set to display: inline and given borders to one side (either right or
left).

More or less flush to one bottom corner of the page layout
This approach can be seen on Facebook user pages. The main differences between
this approach and the centering approach lie with justification (text-align:
right instead of text-align: center) and vertical footprint (confined to one line,
rather than sometimes breaking onto two or more lines).

As a minimally styled list at the end of the site’s tertiary content
This approach has been growing in popularity on weblogs. Such secondary nav
elements might well be inside the tertiary column’s markup as well as its footprint.

Styling Navigation Elements | 123

The last layout described is no challenge at all; the other two offer minor obstacles with
respect to dividers and whitespace. Here’s how they’re assembled and styled:

1. Set list-style-type: none on the list or its items.

2. If the list is to be centered, assign it appropriate width and x-axis margins.

3. Set the desired text-align value on the nav list, and display: inline on its separate
items.

4. Set appropriate padding and line-height values on both the list and the list items—
unless display: inline-block has been assigned to your links, in which case the
links should take the box and text properties in question. Setting equal padding
values for both left and right sides of each item will be easier in the long run, even
if it doesn’t seem that way at first.

5. Add your item separators. If these are bullets of any kind, they should probably be
reset as background images.

6. Add whatever classes or ids that are required to remove separators on apparent
initial and terminal items, and to break the list into the desired number of lines. In
many cases, the white-space property might be a good fit for the latter task, though
if items on common lines also share some discernible semantic quality, there’s
nothing wrong with breaking them into multiple lists.

7. Adjust as needed to meet the balance of the composite’s requirements.

Definition Lists
Where ordered and unordered lists are simple heaps of data with members that share
a vague classification, definition lists imply definite relationships between their terms
(indicated by dt elements) and their definitions (indicated by dd elements). Each term
is followed by one or more definitions, which are understood to relate strictly to the
term.

To be valid, a definition list must contain at least one dt or dd element; to be semantically
useful, it must contain at least one of each. dt elements may only contain text and inline
elements, while dd elements can contain the same broad range of content as li elements.
There is no restriction on the number or arrangement of dd and dt elements within a
given definition list; it’s left to content authors to ensure that definition list elements
are arranged sensibly.

Styling Definition Lists
The user agent styles applied to definition lists are minimal, and can be described as
follows:

• dt elements are not unlike paragraphs without margins.

• dd elements are offset with margin-left, but never take a marker.

124 | Chapter 7: Working with Lists

• dd elements have the same (lack of) constraints on valid contents as li elements.

• Definition list text content is set in unstyled type by default.

The most common uses for a definition list are lexica (e.g., glossaries, dictionaries) and
transcribed dialogue. The first of these is fairly straightforward, and the user agent styles
will usually be adequate to that purpose, with the caveat that a particularly typography-
conscious designer might prefer to see dt elements set in bold type.

Dialogue styling requires different values. The changes to make are as follows:

• The width of dt elements should be set to a discrete and constant value, and clear:
left applied as well.

• dd elements should take a margin-left value slightly greater than the width of the
dt elements.

• Some kind of variant typesetting (e.g., font-weight: bold or text-transform:
uppercase) should be applied to the dt elements.

Since the forms just described are directly inspired by print, there’s every good reason
to duplicate them in the following sections.

Dictionary Example
Adapted from the American Heritage® Dictionary of the English Language, Fourth
Edition:

e·con·o·my n. Inflected forms: pl. e·con·o·mies 1. a. Careful, thrifty management of re-
sources, such as money, materials, or labor: learned to practice economy in making out
the household budget. b. An example or result of such management; a saving. 2. a. The
system or range of economic activity in a country, region, or community: Effects of in-
flation were felt at every level of the economy. b. A specific type of economic system: an
industrial economy; a planned economy. 3. An orderly, functional arrangement of parts;
an organized system: “the sense that there is a moral economy in the world, that good is
rewarded and evil is punished” (George F. Will). 4. Efficient, sparing, or conservative use:
wrote with an economy of language. 5. The least expensive class of accommodations,
especially on an airplane. 6. Theology The method of God’s government of and activity
within the world. adj. Economical or inexpensive to buy or use: an economy car; an
economy motel.

Here’s the source markup for the dictionary passage:

<dl>
 <dt>e·con·o·my</dt>
 <dd>
 <abbr title="noun">n.</abbr>
 Inflected forms: <abbr
 title="plural">pl.</abbr> e·con·o·mies

 Careful, thrifty management of resources, such as money, materials,

Definition Lists | 125

 or labor:
 learned to practice economy in making out the
 household budget.
 An example or result of such management; a saving.

 The system or range of economic activity in a country, region, or
 community: Effects of inflation were felt at
 every level of the economy.
 A specific type of economic system: an
 industrial economy; a planned economy.

 An orderly, functional arrangement of parts; an organized system: <q>the sense that there is a moral economy in the world,
 that good is rewarded and evil is punished</q> <cite>(George F. Will).
 </cite>
 Efficient, sparing, or conservative use: wrote with an
 economy of language.
 The least expensive class of accommodations, especially on an airplane.
 Theology The method of God’s
 government of and activity within the world.

 <abbr title="adjective">adj.</abbr> Economical
 or inexpensive to buy or use: an economy car; an economy
 motel.
 </dd>
</dl>

The styles that accompany this example are available on this book’s companion
website.

This markup reveals some interesting quirks:

The various definitions are enclosed within ordered lists rather than sequential dd elements
This was done because the stylist—that is to say, I—decided that it was better to
preserve the numbering than to get stuck on an incredibly fine semantic point. If
Internet Explorer supported generated numbering like its competitors, I would not
have been forced to make that choice, but support shortcomings in various brows-
ers force skilled stylists to make these kinds of choices every working day.

Users of browsers other than Internet Explorer will see the various definitions presented
inline

However, assigning a value of display: inline to list items causes their item mark-
ers to disappear, so those items must be assigned markers all over again via the
counter() function that can be supplied as a value for the content property. If a
stylist adds an appropriate reset rule in a conditional stylesheet, Internet Explorer
users see ordinary ordered lists.

126 | Chapter 7: Working with Lists

The source is littered with instances of spans and classes.
The abundance of inline markup illuminates the case made by microformats ad-
vocates, who propose that if something can be given a semantic label, in many cases
it should be. From a stylist’s perspective, the extra markup allows differing labels
(in the case) to be styled in different ways.

If the numbering and finer details are omitted, a more typical dt/dd structure can be
used:

<dt>economy</dt>
 <dd>Careful, thrifty management of resources, such as money, materials, or labor:
 learned to practice economy in making out the household
 budget.</dd>
 <dd>An example or result of such management; a saving. The system or range of
 economic activity in a country, region, or community:
 Effects of inflation were felt at every level of the economy.</dd>
 <dd>A specific type of economic system: an industrial economy; a planned economy.
 An orderly, functional arrangement of parts; an organized system:
 “the sense that there is a moral economy in
 the world,
 that good is rewarded and evil is punished” (George F. Will).</dd>
 <dd>Efficient, sparing, or conservative use: wrote with an
 economy of language.</dd>
 <dd>The least expensive class of accommodations, especially on an airplane.</dd>
 <dd>The method of God’s government of and activity within the world.</dd>
 <dd>Economical or inexpensive to buy or use: an economy car; an economy motel.</dd>
...

Dialogue Example
A dialogue isn’t quite the same as a definition list, but the parts fit easily together. Here’s
a passage from Pygmalion, Act IV, by George Bernard Shaw.

HIGGINS: [In despairing wrath outside] What the devil have I done with my slippers?
[He appears at the door]

LIZA: [Snatching up the slippers, and hurling them at him one after the other with all her
force] There are your slippers. And there. Take your slippers; and may you never have a
day’s luck with them!

HIGGINS: [Astounded] What on earth—! [He comes to her] What’s the matter? Get up.
[He pulls her up] Anything wrong?

LIZA: [Breathless] Nothing wrong—with you. I’ve won your bet for you, haven’t I? That’s
enough for you. I don’t matter, I suppose.

HIGGINS: You won my bet! You! Presumptuous insect! I won it. What did you throw
those slippers at me for?

LIZA: Because I wanted to smash your face. I’d like to kill you, you selfish brute. Why
didn’t you leave me where you picked me out of—in the gutter? You thank God it’s all
over, and that now you can throw me back again there, do you? [She crisps her fingers
frantically]

Definition Lists | 127

The source markup is shown below:

<dl>
 <dt>Higgins</dt>
 <dd>In despairing wrath outside What the devil have
 I done with my slippers? He appears at the door</dd>
 <dt>Liza</dt>
 <dd>Snatching up the slippers, and hurling them at him one
 after the other with all her force There are your slippers. And there.
 Take your slippers; and may you never have a day’s luck with them!</dd>
 <dt>Higgins</dt>
 <dd>Astounded What on earth—!

 He comes to her What’s the matter? Get up.
 He pulls her up Anything wrong?</dd>
 <dt>Liza</dt>
 <dd>Breathless Nothing wrong — with
 you.
 I’ve won your bet for you, hav’n’t I? That’s enough
 for you. Idon’t matter, I suppose.</dd>
 <dt>Higgins</dt>
 <dd>You won my bet! You! Presumptuous insect! I won it. What did you throw
 those slippers at me for?</dd>
 <dt>Liza</dt>
 <dd>Because I wanted to smash your face. I’d like to kill you, you selfish
 brute. Why didn’t you leave me where you picked me out of — in the
 gutter? You thank God it’s all over, and that now you can throw me back
 again there, do you? She crisps her fingers
 frantically
</dl>

Like the dictionary example, this one relies on spans and classes to convey an additional
layer of information, in this case stage direction.

With respect to styling, the general approach is indistinguishable from the one
described earlier, except for the addition of clear: left to the dt elements. The
last significant difference between the rendered play and the source markup is the ap-
pearance of the characters’ names in uppercase. This accent is handled by the
text-transform property, which is described in Chapter 12.

The exact stylesheet rules for the dialogue example are available on this book’s
companion website.

At one point, HTML5 had proposed a dialog element for these cases,
but it was removed from the specification.

It’s only when web developers pay attention to the use of lists in their work product
that they gain an understanding of their ubiquity. As it turns out, the only thing greater
than the utility and ubiquity of lists is the challenge that sometimes must be met when
styling them.

128 | Chapter 7: Working with Lists

CHAPTER 8

Headings, Hyperlinks, Inline Elements,
and Quotations

The need for powerful site styling definitely begins with layout, but it ends with accents.
HTML and CSS offer no shortage of accents, particularly with respect to headings and
hyperlinks.

HTML also defines a number of inline elements that can lend useful shades of meaning
to their content.

Headings and Good Writing
HTML provides six levels of headings: h1 (most significant) through h6 (least signifi-
cant), as displayed in Figure 8-1. (The sizes and margins shown are rendered in Internet
Explorer 8’s user agent styles.) To the uninitiated, headings are painful to use: user
agent styles for the three most significant heading levels result in type so large that it
jars the casual reader, and managing headings’ top and bottom margins can turn into
a major chore.

HTML and CSS are well equipped by design to mitigate all of the problems a developer
might face when working with headings. When headings are properly associated with
the elements used to delineate sections of content, they illuminate potentially important
details of document structure and allow the stylist more opportunities to “zero in” on
specific groups of headings as needed.

Headings in Print
Putting aside for the moment the matter of how to style headings, questions remain.
How should they be used to identify content, and why would anyone want to use them?
The use of headings in print provides a good explanation.

129

All but the briefest print content can be broken up into smaller parts, which are labeled
singly and in aggregate by headings. In the case of a nonfiction book—such as this
one—each larger section of the book (which contains one or more chapters) takes a
first-order heading or “A-head” (i.e., h1), since the book title itself has a unique context
in publication design. B-heads (h2) are reserved for chapter titles, C-heads (h3) for main
sections within a chapter, and so on. In other books, sections are treated like books of
their own, which means that each section gets a title page while individual chapters
take the A-heads. In any case, in addition to giving the reader an idea of a passage’s
relationship to the document as a whole and signaling changes in focus, this approach
also breaks copy into easily digested parts.

All of these section and heading assignments are handled in the context of the book as
a whole; things like data tables and illustrations are captioned, but those captions don’t
qualify as headings, since they’re considered labels for tertiary (albeit valuable)
material.

In HTML, the h1–h6 hierarchy corresponds to headings as they’re used in print books
and articles, with two additional considerations:

The only place where the content of the title element is persistently rendered is on the
browser’s title bar

This forces conscientious developers to repeat that information within an h1 (or
perhaps an h2) near the beginning of a given document’s source order, even if the
document title introduces a broad scope like that suggested in the following
section.

Figure 8-1. Headings can be assigned to one of six levels, as rendered by Internet Explorer 7

130 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

If the site operator’s online identity is especially valuable, as in cases where visitors fre-
quently run web searches against the operator’s name, a site will benefit slightly by in-
serting that identity within h1

This point of interest relies on the assumption that each page contains only a single
instance of h1, positioned at or near the top of the page’s source order.

Optimal Heading Insertion
Traditionally, the higher the level of a heading, the broader the scope of the content it
introduces to the reader.

Heading use is a counterpart to the “wrapper elements” suggested by the source frag-
ments in “Working with Document Trees” on page 19 and “Habit #4: Keeping Your
Bearings” on page 57. Each properly assigned wrapper points to the context of a pas-
sage, and enhances the modularity of content. On the Web, the highest purpose of
headings is to identify those modular bits at a human-readable level.

If a stylist or developer uses heading elements assiduously, it follows that each “scop-
ing” div will lead with a heading of the appropriate level.

Since all of this markup is meant to signal scope from broad to narrow, it’s usually
assumed that the first heading should be an h1 element, followed by h2, h3, and so on
with each narrowing of scope. Up-level headings should be used at appropriate loca-
tions and levels; meanwhile, skipping levels when inserting down-level headings is
strongly discouraged. Cross-media and assistive tools can organize documents accord-
ing to their heading arrangement, and that functionality suffers when heading levels
are skipped.

My own approach to headings is to enclose the site title and home page link in an h1
element (print practice notwithstanding), the page headline or title in an h2 element,
and the various section headings in the other four heading elements, as needed.

Even if you don’t use div elements to indicate scope, software can use heading ar-
rangement to infer the scope of intervening content, at least well enough to generate a
table of contents on the fly.

Finally, the content of heading elements—particularly h1 and h2—has an outsized in-
fluence on search result ranking, the degree of which varies from one search provider
to the next.

Styling Heading Elements
Headings present different margin behavior than most block elements, which makes
their composition one of the more annoying tasks stylists face.

Styling Heading Elements | 131

Heading Sizes and Type Treatments
Almost every high-value design is going to specify heading sizes that differ from the
user agent defaults, in no small part because—let’s face it—the user agent styles for
headings make them universally big and ugly.

The first step to attractive headings involves a type treatment. This will specify the size,
leading (line-height), font, color, and box behavior of all the type used on the site.

In the case of headings, at minimum the type treatment will specify a different gradu-
ation of sizes that will be based on the number of scope levels in the content and the
intent of the site’s designers.

Type treatments are explored at length in Chapter 12.

Normalizing Heading Dimensions
The very first thing stylists should do before working with headings is to reset their user
agent default styles, making sure to set all box and font-size values. For box values, I
recommend something like:

h2 { margin: 0 0 1.5em 0; padding: 0; border: 0; ... }

However, that work won’t resolve potential composition issues by itself. line-height
will likely also need to be taken into account, and still more important will be the
position of headings within the page’s overall structure. If each heading is mated to a
section container with custom box values of its own, the work that goes into heading
resets is reduced; otherwise, the relationship between headings and adjacent block
predecessors will also require resets. Given stringent composition demands, the stylist
can even address these resets on a case-by-case basis with the + (next sibling) selector,
for the sake of browsers that parse it correctly.

An even greater challenge is posed when attempting to control heading height in en-
vironments where strict grid obedience or space constraints are critical. The cheapest
solution is to set a discrete height on headings and enforce a length limitation with
overflow: hidden, but the inflexibility of this approach makes it impractical for the sites
that make the best use of headings.

Yet another approach to controlling heading height values in a grid is to set large body
copy line-height values, so that all type sizes can be accommodated in one line with
varying line-height values. However, this approach is ill-suited to sites that pose min-
imal scrolling as a requirement.

Another possible solution is to rely on a combination of size and contrast adjustments,
with the intent of reducing variability in type size (and thus leading).

The best approach to heading height control varies from project to project, and from
designer to designer. However, this goal of controlling heading height also serves as an

132 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

excellent example of the need for effective collaboration between stylists, designers,
and content producers.

Heading Accents
A site’s headings may also contain rules: lines of arbitrary length, color, and style that
are placed in tandem with a block of copy, usually along one of its margins or, in the
case of headings, sometimes on its baseline. In the case of simple, solid lines placed on
a heading’s margin, rules can be created easily enough by setting a heading’s
border-bottom (or perhaps border-top) property, for example, h3 { border-bottom: 1px
solid rgb(85,170,255); }.

Most of the other accents likely to find their way into headings are controlled through
the use of background images, which are discussed in Chapter 9.

Link Markup

All instances of “link” as used in this section refer to arbitrary hyperlinks
that are created with the a element. Readers who are interested in the
link attribute should consult Chapter 3 and this book’s companion
website.

HTML’s inline elements as a group provide nuances of meaning to words, phrases, or
short passages within longer blocks of content. Apart from hyperlinks—which are the
point to the whole endeavor, of course—and form elements, the best known of these
are used to provide emphasis.

Form elements are explained in Chapter 13, and the semantically oriented inline ele-
ments will be explained at the end of this chapter.

There are a number of reasons to give close attention to the implementation of links:

• Links are categorically interactive; by activating a link, the user causes something
new to happen. For this reason alone, links should always be easy to distinguish
from surrounding content.

• The design cues styled into links can imply relationships to particular visitor
objectives.

• The user agent styles provided for links are based on antiquated environmental
assumptions that rarely apply on contemporary sites.

Link Markup | 133

Link Attributes
Link elements support the following notable attributes:

href
The beating heart of the Web’s application layer. This specifies the destination of
the link, saving the user the trouble of typing or pasting URIs into the browser’s
Location bar.

target
This attribute takes as its value the name of the window, tab, or frame in which
the destination of the link should load. It is unsupported in Strict DTDs, which
relegate the associated functionality to the site’s behavior layer. This attribute is
also a vital component of links that exist in the context of a frame, which is discussed
in Chapter 14.

rel
As with link elements, this attribute briefly describes the relationship between the
current document and the destination of the link. Its most common use in hyper-
links appends the custom value "nofollow", which signals to search engine crawler
agents that the destination URI link should not be indexed. The "nofollow" facility
was created by Google as a means for site operators to ensure that spam links in
their user-generated content are assigned null weight in result ranking algorithms.
It should be noted that with the possible exception of "nofollow", the rel attribute
as used in hyperlinks does not have any universally agreed-upon values.

There are also universal attributes, among which title is especially relevant to links.

Virtuous Use of the href Attribute
Since they’re so ubiquitous, href attributes are easy to overlook—you supply their
values, then move on. However, there are four principles that should be followed when
creating links:

Accuracy
Input errors and links have a long, sick, and twisted relationship, so it’s critical to
proofread and activate links in staged copy before a site is put into production.

Validity
URIs are structured according to a detailed specification (IETF RFC 2396, http://
www.ietf.org/rfc/rfc2396.txt) that guides how their contents should be arranged.
Certain characters within URIs need to be escaped if valid documents are a priority;
this escaping process is called URL encoding and is discussed in “The Fine Print of
URL Encoding: ASCII Entities” on page 248.

Currency
Over time, web documents have a tendency to disappear or move, which results
in a phenomenon known as “link rot.” Good web citizenship insists that site

134 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

operators set up redirects or other fallbacks for documents that they move, clobber,
or put out of reach—but sadly, good web citizenship is actually uncommon. In any
case, someone needs to take responsibility for checking the currency of links; I
recommend that deliberate currency checks be performed once per quarter, if at
all possible. Problems and solutions related to link currency—for example, the
feasibility of automated link checks—are discussed on this book’s companion
website.

Brevity
Unless Search Engine Optimization (SEO) is a concern, href values should be kept
as short as possible without obscuring all hints about the nature of the destination
content. Shorter href values result in increased markup legibility and a reduction
in the likelihood of input errors.

Linking to Specific Passages Within Documents
Readers whose knowledge of HTML is based principally on dated sources will be fa-
miliar with the name attribute, which is discussed at length in Chapter 14. Current
practice lends greater simplicity and meaning to inline link destinations by relying on
id values, so that:

 ...

will cause the browser to automatically scroll to the element with the id value of
european if the link is activated and if swallow_airspeed.html finishes loading.

If visitors need to know that such a link destination exists (e.g., “permalinks”), one
popular approach that works in most current browsers is to add a “self-link” at the end
of its immediate block-level parent, populate that link with a consistently used symbol,
and add styles and markup like the following:

 p.containsInlineLink a { color: #fff; } /* same as background color, actually */
p.containsInlineLink:hover a { color: #999; } /* some contrast, but not as much given
 to the body copy */
...
<p class="containsInlineLink" id="european">The airspeed of an unladen European
swallow is the subject of extensive speculation, much of it ironic. <a href=
"#european" title="Permalink to the discussion of the airspeed of an unladen
European swallow.">→</p>

Given this facility, visitors who are familiar with the site can then copy the href value
of the inline link for insertion into their own web content.

Link Markup | 135

Creating Effective Link Content and title Values
Ideal link content can be difficult to publish for a number of reasons:

• Many links are framed as part of a site’s interface rather than its content, which
encourages designers to fill links with ideographic content or the briefest of
keywords.

• On pages created specifically to facilitate purchases or user account creation, many
links will be—for good reason—populated with calls to action (e.g., “click here”),
rather than properly descriptive language.

• Sometimes, a site (or part of a site) will be designed around the assumption that
the user is able to examine its content in a particular context.

• A designer may choose to use a logo or some other image for link content.

When such circumstances can be avoided, the best link content attains three of the four
virtues described for href values: brevity, accuracy, and currency, in that order.

The frequent circumstances that make fully descriptive links impossible will lead you
to the title attribute, which is particularly helpful to users of assistive technology.

Working from the scenarios just given, effective link title values might appear respec-
tively, as follows:

Interface keywords

<a href="/contact/"
title="Telephone numbers, e-mail addresses, and driving directions.">Contact

Calls to action

...To add your name to our mailing list, <a href="/promo/signup.php"
title="Mailing list signup form.">click here.

Single context

<a href="/gallery.php?user=persist1&imgfile=DSC2112.JPG"
title="See 'Playing Frisbee' in Ben's 'Day at the Dog Park' photoset."><img
src="/persist1/images/DSC2111.JPG" alt="A Shih Tzu makes scary faces at
the camera." class="lggallerypic" />

Logo image as link content

<h4>This item is available at:</h4>

...

Take special notice of the “calls to action” example, which actually relies upon the
link’s title value for context. The copywriting technique used here is frequently held
up as an example of something to avoid, but even so, effective landing pages need to

136 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

contain succinct calls to action. If possible, copywriters should try to find concise
alternatives to “click here.”

An additional benefit of the title attribute is that conscientious use allows a docu-
ment’s content and outgoing links to be summarized programmatically. Just as head-
ings speak for the broader structure of a document, the values of title attributes can
speak for content at even finer levels of detail.

Along with the benefits discussed here, the title attribute also carries some limitations.
The most significant is its inaccessibility to users who rely on the keyboard for page
navigation, which can only be repaired (after a fashion) with custom JavaScript. For
this reason and others, content critical to reader comprehension should always be pre-
sented in plain view.

Styling Links
As the elements that most readily respond to user interactivity—even without the ben-
efit of scripting—links deserve a proportionally large amount of a stylist’s attention.

When rendered with user agent styles, links suffer from two serious flaws:

• The colors assigned to links by default are at worst unattractive, and at best ill-
suited to most color palettes.

• As inline-level elements, links only occupy as much canvas area as needed. If there’s
no graceful way to fill important links with ideal amounts of content, they can be
difficult for users to find and activate, or disruptively large and ragged.

Because of their interactivity, links require greater effort to style than most elements.
Much of this effort relies on rules written around pseudoclasses.

Link Pseudoclasses
Because links can express several states, it’s logical but not really feasible to assign styles
to links with the element selector alone.

To account for the various link states, CSS offers the :link, :visited, :hover,
and :active pseudoclasses. The first two describe usable links and those that point to
already-visited destinations, respectively; the latter two describe the link under the
mouse pointer, and that same link while the primary mouse button is depressed.

In a stylesheet, selectors with common scope that include these pseudoclasses should
apply them in the order :link–:visited–:hover–:active, all preceded by the analogous
rule that lacks pseudoclasses. I suggest the following mnemonic: Life’s Very Hurried
Always.

The reason for this ordering follows the rules of selector weight—specifically the rule
that selectors with equal weight are given priority in reverse source order. Links are

Styling Links | 137

unvisited at first, but that changes—and in any case neither state involves a hovering
mouse pointer. Chances are that you want hover states to stand out from the others,
and of course a link can’t be activated by a pointer unless it’s already in a hover state.

If you were to consider the negative case and place the pseudoclass-oriented rules in
the reverse of the suggested order, the hover and active states would always be ignored
by the rendering engine, because in that order the “usable” state takes priority over the
“hover” and “active” states, even when one of the latter states is true.

There are no special constraints on the validity of property/value pairs that are assigned
to rules defined with selectors that contain pseudoclasses.

There is one important exception to the normal expectations of selector priority. If a
property is set in a rule that references a without any pseudoclasses, conflicting refer-
ences to that property in rules with pseudoclasses in their selectors will not be applied
in Firefox and Internet Explorer. In other words, if you apply a { color: #00f; }, then
a:visited { color: #808; } will be ignored. If a:link { color: #00f; } is supplied
instead, then the a:visited rule is not ignored.

Finally, CSS specifies the :focus pseudoclass, to be applied when an element is in active
focus but is not actually being activated. This is also unsupported in all versions of
Internet Explorer before IE 8. The :focus use case arises when the visitor relies on a
keyboard, or drags the mouse pointer off a link mid-click. When used, it should fall
between the :hover and :active selectors.

Using display: block to Increase the Footprint of a Link
When a link is part of a site’s interface (i.e., navigation) or is intended to convey a call
to action, implementing a button-like behavior can be a useful interface enhancement.

The relationship between link interactivity and the cursor is also discussed briefly in
“Disabling links to the current document” on page 67.

The first step in achieving this effect is to assign display: block to the link. With the
link’s display value changed, the balance of formatting is handled with the width and
height elements for basic dimensions, and perhaps the padding property or the various
background properties (via Fahrner Image Replacement) for formatting (see “Bitmap-
ped Copy and Fahrner Image Replacement” on page 157).

Before composing such interface-style links, the stylist needs to take the following con-
ditions into account:

Container display value
To produce the desired behavior, these links need to be placed within elements
with a display value of block or inline-block.

138 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

Static versus flexible layouts
Background images (whether for backgrounds alone, or as part of Fahrner Image
Replacement need little attention to positioning in static layouts. In proportional
or grid layouts, however, they are best centered within their containing link.

Calculating link dimensions
In the simplest case, links can be assigned a height of 100%. If finer attention to
detail is called for, a link’s dimensions, borders (if present), and padding can be
calculated and assigned separately.

Link formatting techniques are also discussed in the context of navigation in Chapters
5 and 7, and the behavior of the cursor property is demonstrated on this book’s
companion website.

Styling :hover and :active Links
When you’re starting to work with CSS, it can be tempting to change the weight, text
size, or dimensions of links that are in the midst of user-initiated events.

In a word: don’t. Styles that change the footprint of an element without warning turn
the entire page layout into a moving target, which can frustrate user attempts to interact
with (or even merely follow) the page.

This rule can be relaxed if both links and their surrounding content are reliably anch-
ored to static points in the layout, but excellent results in this regard require high levels
of training and experience from both designers and developers.

The text-decoration Property
On certain occasions, it can be useful to place lines under, over, or through brief
passages.

The text-decoration property supports the following values:

underline
The default value for the a and ins elements

line-through
The default value for the del attribute

overline
The counterpart to underline; rarely used

The blink value is also referenced in CSS 2.1 but is only supported by Firefox, and only
if it’s deliberately enabled via the about:config pane.

Styling Links | 139

The cursor Property
CSS provides an interface to its host operating system’s library of mouse pointer objects
via the cursor property, the default value of which is auto. Custom values include:

• default (the arrow pointer)

• pointer (the default for links)

• crosshair

• text (the default for plain-text content)

• help

• progress

• wait

Of these, the help pointer is most often used to cue the visitor to wait for an element’s
associated tool tip to appear. It can also be used to indicate links that point to Frequently
Asked Questions and other visitor support resources.

Custom uses for the other values are best confined to web applications, and the efficacy
of those custom uses should be verified through user testing.

Adding Semantic Value with Inline Elements
In addition to links, there are a number of other inline elements that can lend nuances
of meaning to content. These elements are summarized in Table 8-1.

Table 8-1. A survey of HTML 4 inline elements

Element Long name “Presentation” equivalent Notes

em emphasis i, u

strong strong emphasis b

cite source citation i Applied to titles of books, periodicals, broadcast program
series, and long form audio/visual media, but not to other
proper names

code code passage tt cf. kbd, samp

kbd user-supplied
keyboard input

tt

samp program output
sample

tt According to the HTML 4.01 specification, distinguished
from code by the fact that code content implies execut-
ability, while samp refers to program output

abbr abbreviation [none]

acronym acronym [none] Acronyms and abbreviations expand in mutually exclusive
ways; acronyms are formatted differently from one country
to the next

140 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

Element Long name “Presentation” equivalent Notes

sup superscript [none] Best assigned an infinitesimal line-height value

sub subscript [none]

ins insertion [none] Styled with an underline, by default

del deletion strike Best followed by content within ins, in cases where “back-
space and overstrike” is implied

q inline quote [none] Behavior varies by user agent; prefer blockquote for long
quoted passages

var variable; irra-
tional number

i E.g., 2πr, (sin2θ + cos2θ) = 1

dfn definition i and em (in context) Marks up terms that are presented inline to their definition,
as a complement to definition lists (“Definition
Lists” on page 124); especially effective when assigned an
id value for the purpose of being a link destination unto
itself

Most of the elements in Table 8-1 are fairly straightfoward, once their user agent styles
are taken into account. Two in particular take no user agent styles at all, and deserve
special attention: abbr and acronym.

As mentioned previously (see “Creating Effective Link Content and title Val-
ues” on page 136), users will sometimes find themselves viewing web content out of
context. This becomes an issue when using abbreviations and acronyms, which often
run to the technical (or colloquial) and pose a mystery to site visitors who aren’t familiar
with their contexts, to the point of making site copy incomprehensible.

On the other hand, if you include clues to the expansions of acronyms and abbrevia-
tions by using effective title values, copy becomes more accessible to all comers. In
recent versions of Firefox, the following rules are included in the user agent stylesheet:

acronym, abbr { border-bottom: 1px dotted; }

It’s accepted, if somewhat rare, to add cursor: help to rules like this one. The benefits
of this practice are explained in “The cursor Property” on page 140.

The support state of the abbr and acronym elements is described in Table 8-2.

Table 8-2. Support state of the abbr and acronym elements as of Q2 2009

Element Features IE 6 IE 7 IE 8 FF 2 FF 3 Safari 3 Safari 4

abbr DOM ✓ ✓ ✓ ✓ ✓ ✓
Styles ✓ ✓ ✓ ✓ ✓ ✓

acronym DOM ✓ ✓ ✓ ✓ ✓ ✓ ✓
Styles ✓ ✓ ✓ ✓ ✓

Adding Semantic Value with Inline Elements | 141

Quotations
HTML provides the inline-level q and block-level blockquote elements for quotations.
The HTML 4.01 specification declares that these elements are supposed to support the
cite attribute, which is meant to store a URI that qualifies as a primary source. In
practice, this requirement is ignored by all browsers except Internet Explorer 8, and
thus forces user-facing citations to be crammed into the cite and a elements. However,
for the sake of preserving metadata, the URI values that are valid for the cite attribute
should still be provided.

The blockquote element has three salient characteristics: user agent styles apply a dis-
cernible margin-left value to it, quotation marks must be added deliberately to its
content, and Strict DTDs require that it contain at least one block element (usually a
paragraph).

Quotation markup provides only limited support for the :before and :after pseu-
doelements, which are unsupported by all versions of Internet Explorer except 8. In
browsers that do support :before and :after pseudoelements, opening and closing
quotes are specified by the user agent stylesheet for the content of the q element; in no
current environment is the blockquote element likewise endowed. To add typograph-
ically appropriate quotation marks to blockquote elements in those browsers, you
should add the following lines to a style block:

blockquote:before { content: open-quote; }
blockquote:after { content: close-quote; }

The :before and :after pseudoelements are used as a matter of course in the same
fashion as they’re used for the q element; without the content property, they’re useless.
As much to the point, the content property can only be applied with these selectors.

content values can also be used to nullify user agent defaults like those set for the q
element, which leaves content producers free to reintroduce literal characters into con-
tent. This production method is more labor-intensive, but improves compatibility with
the requirements of assistive technology.

The content property itself consistently takes as its value open-quote, close-quote, or
an arbitrary quoted string of ASCII characters. Higher-bit characters, literal generic
quotes, and encoded newlines need to be escaped, a requirement explained in detail in
Chapter 14.

142 | Chapter 8: Headings, Hyperlinks, Inline Elements, and Quotations

CHAPTER 9

Colors and Backgrounds

Most of us take color for granted. For web professionals, it’s a big heap of details.
Experienced developers need to know how to relate color data to their literal counter-
parts, and the body of related knowledge gets trickier and more subjective from there.
Web color is about the numbers and the art, and it never hurts to understand the two
together.

Backgrounds offer challenges of their own. Assigning a flat background color to an
element is a straightforward task, but once images enter the picture the implementation
questions start to multiply.

This book doesn’t cover web color and graphics in depth, but there are
plenty of good resources out there. A number of sites are linked from
this book’s companion site. I also recommend the following books:

• Web Style Guide, Third Edition, by Sarah Horton and Patrick
Lynch (Yale University Press)

• Painting the Web by Shelley Powers (O’Reilly)

Color Theory and Web Color Practice
The CSS 2.1 properties that can take color values are the various background and border
properties. There’s also the color property, which sets the text and underline colors of
the elements to which it is applied.

143

Usability, Accessibility, and Color
When assigning colors and background colors to two elements, adhere to the following:

• Where background or background-color is used in a stylesheet rule, color should
follow—and a background color reference should always precede a color value.
This prevents odd user agent or user stylesheet defaults from making copy illegible.

• Where background images are used, a compatible background color should be
assigned deliberately, also for reasons of legibility.

• Accessibility is maximized when there’s significant contrast between the fore-
ground and background colors of an element, particularly with respect to
brightness.

You should also consider the visual acuity of older site visitors. As people age, the
structures of the eye become less adaptable, making it more difficult to discern detail
and color. This loss is especially noticeable at close ranges, and is the result of a con-
dition called presbyopia.

Color blindness is another vision condition that can be accommodated by the creation
of high-contrast designs. Consider the following:

• The most prevalent form of color blindness by far is red-green color blindness,
which is experienced by at least 7% of American men (HHMI, 2002).

• The functional effect of color blindness is to render certain wavelengths of light
completely dark. Much as infrared and ultraviolet wavelengths of light cannot be
detected directly by the human eye, color-blind visitors are likewise deficient with
respect to bands of the ordinarily visible spectrum.

• Red-deficient visitors see ordinarily red hues with a strong blue or green tint, while
green-deficient visitors will see ordinarily green hues with a strong red or blue tint.
In cases where the deficiency is total, all evidence of the color at issue is absent
from the sufferer’s vision, which can also affect the brightness of the remaining
colors.

• The remaining wavelengths that are visible to the color-blind can still combine into
something they will perceive as white light; however, the range of light so perceived
will be broader than for visitors with normal color vision. The inverse is true with
respect to black.

Links to color-blindness simulators and other contrast evaluation resources are avail-
able on this book’s companion site.

The Additive Color Model
Additive color is named for the process of steady addition of materials. It’s the model
taught in art instruction, since it applies to paints and other pigments. When applied

144 | Chapter 9: Colors and Backgrounds

to a white or off-white medium, approximately blue, red, and yellow pigments are
mixed to create other hues, so that:

• blue + red = purple

• blue + yellow = green

• red + yellow = orange

To these a black or white pigment (classically, charcoal and treated lead, respectively)
can be added to create the desired color on a moment’s notice. In color printing, the
lightness of a color is controlled by pigment (e.g., ink, toner) coverage and saturation.

The HSB Color Model
For the task of rapidly identifying colors in the absence of experience with paints, the
HSB (hue, saturation, and brightness) model is the most accessible. It arranges all of
the visible hues (from red to violet and everything in between) in descending order of
wavelength, usually on a 360-degree scale since there are three primary colors. In HSB
notation 0° refers to red, 120° to green, and 240° to blue.

When identifying colors according to their HSB values, the important rules to remem-
ber are:

• Hue values progress through the rainbow, with red at the lowest end and violet (in
application, hot pink) at the highest.

• Saturation values progress from neutral to the most intense hue possible at a given
position on the color wheel; to yield white or any shade of gray, the saturation
value of a color must be zero.

• Brightness values progress from zero to 100%. A brightness value of zero always
yields black, but a brightness value of 100% can yield white or any variety of colors.

The Subtractive Color Model
In the United States the additive color model is taught in grade school, and the sub-
tractive color model is taught in high school physics. That fact by itself should give you
some idea of the subtractive color model’s underlying complexity.

In the physical world, all visible light is reflected. Where a pigment is present (whether
deliberately laid on a substrate, naturally present on a surface, or created by a natural
process), it absorbs all wavelengths of light that don’t correspond to its color. The darker
or more saturated the color, the less light it reflects—thus the term “subtractive.”

Modern display hardware works through emission rather than reflection, however. A
cathode ray tube (CRT) or liquid crystal diode (LCD) projects a given pixel in narrow
red, green, or blue wavelength bands, at varying levels of intensity. White is the result
when all three channels are at maximum intensity, while black is displayed when all

Color Theory and Web Color Practice | 145

three channels are at minimum intensity. If two channels are active at full intensity, the
secondary colors are displayed:

• red + green = yellow

• green + blue = cyan

• blue + red = magenta

Colors that are neither primary nor secondary are yielded when all three color channels
are at different levels of intensity.

The 24-bit color space currently supported by web browsers’ CSS implementations
gives the stylist access to more than 16 million colors, based on 256 intensity gradua-
tions of each channel. The closer the aggregate color value is to zero— i.e., rgb(0,0,0)—
the darker the color. The values of the 256 grays are easy to distinguish because their
channel values are always equal.

More detailed demonstrations of subtractive color are provided on this book’s
companion website.

Design, Contrast, and Complements
A well-designed site is typically founded on the basis of design briefs and requirements
documents, which are drafted to summarize many of the known facts and opinions
about likely visitor and business objectives. The functional nature of design is a signif-
icant driver of the process: unlike fine art, effective graphic design endeavors to com-
municate concise ideas and help its beholder achieve (or decide upon) concrete goals.
Aesthetics do play a vital role in design, but that role is entirely in the service of com-
municating the ideas behind a design.

Ideally, once briefs are in hand and there’s some agreement on how a site will be built,
motifs and other design guidelines are determined, keeping in mind the expectations
of customers and vendors in addition to visitor and business goals.

A significant visual component of any site design (and its underlying motifs) is its
palette: the colors used by the design to communicate ideas. Palettes almost always
have at least three colors or grays: foreground, background, and accent colors. Palettes
of six colors or more are not unheard of.

In the discussion of vision dysfunction, it was mentioned that contrast is desirable. This
fact also holds true for users with full visual acuity. To obtain high contrast, oftentimes
designers will choose complements for foreground and background colors. Comple-
ments can be defined broadly in terms of hues, or precisely in terms of colors; given a
hue, its complement is found at the opposite end of the color wheel defined by the HSB
model—yellow is the complement of blue, for example. Complementary colors ac-
count for saturation and brightness as well, and can be found in the subtractive model
by inverting a color’s channel values as demonstrated in Table 9-1.

146 | Chapter 9: Colors and Backgrounds

Table 9-1. Examples of complementary colors, as defined by the subtractive/RGB model

Base color Complement

Red Green Blue Red Green Blue

255 255 255 0 0 0

255 255 0 0 0 255

51 102 153 204 153 102

43 61 21 212 194 234

143 34 69 112 221 186

192 114 12 63 141 243

“Inverse” refers to the value obtained when the first value is subtracted from 255 (the
maximum decimal value for a single channel in 24-bit color). If you look at the two
values for each channel in a given row, you’ll notice that they create a sum of 255.

Identifying Colors, in Brief
It’s possible to get the hang of identifying colors on sight, both from display and from
stylesheet rule fragments. Unfortunately, plain old practice is the only way to do it; all
you can gain here is general guidance:

• An experienced eye can look at a six-digit hexadecimal color value and break it
into three channels without effort.

• The ability to convert hexadecimal numbers into decimal numbers in one’s head
is nice, but hardly necessary. If you can get used to the idea of A, B, C, D, E, and
F as numbers, you’ll do fine. To paraphrase Tom Lehrer, “Don’t panic—base 16
is just like base 10, really…if you’ve got six extra fingers.”

• The higher a color value across all three channels, the brighter it is.

• The greater the aggregate proportional differences between channel values, the
greater the saturation of the color.

• Mentally separating the color wheel into subspectra between primary and secon-
dary colors often makes color identification easier; the rest is just arithmetic.

• When all else fails, use an eyedropper tool, copy, and paste.

A Firefox extension called ColorZilla, shown in Figure 9-1, can help. Once installed,
ColorZilla places a hotspot at the left edge of the Firefox status bar that turns the mouse
pointer into an eyedropper tool when clicked. Macintosh users can also run a compa-
rable (albeit less usable) application called DigitalColor Meter, found in the Utilities
folder.

Color Theory and Web Color Practice | 147

Display Environments and the Web-Safe Palette
The passage about CSS Units (see “CSS Units” on page 33) covers the variability of
display pitches in the wild and explains how to include color values in a stylesheet, but
says nothing about the likely results.

Every display technology in existence reproduces color according to assumptions about
the environment in which it will be used. The faithfulness of a display’s color repro-
duction is influenced by its era of manufacture, quality of components, and quality of
assembly.

Figure 9-1. ColorZilla activates an eyedropper tool, allowing you to sample and copy colors

148 | Chapter 9: Colors and Backgrounds

Because of these display variances, most people will see mostly inaccurate colors, most
of the time. This raises the profile of three-digit hexadecimal color values, of which a
tiny fraction comprise the range of the web-safe palette. To create so-called web-safe
colors, use the channel intensities described in Table 9-2.

Table 9-2. “Web-safe” channel values

Hexadecimal 8-bit decimal Percentagea

00 0 0%

33 51 20%

66 102 40%

99 153 60%

cc 204 80%

ff 255 100%
a Provided here for reference; though originally slated for implementation as part of CSS1, percentage values never caught on.

The web-safe palette first got its name because its space of 216 colors was the domain
most likely to be reproduced faithfully by the weak graphics hardware of the 1990s.
Today, the web-safe palette is still relevant, but for an entirely different reason: older
consumer-grade LCD displays are incapable of reproducing the full depth of 24-bit
gradients (see Figure 9-2).

HD-capable monitors and CRT displays connected to capable graphics hardware usu-
ally do not suffer from the same color reproduction deficits as cheaper LCD displays,
but are used by only half of the developed world’s web user base, at best.

The challenges of faithful color reproduction also affect images and their embedded
color profiles (see “Working with Color Profiles” on page 185).

Creating Your Own Palettes
If you’re doing commissioned work or working full-time for an established company,
there’s an excellent chance that at least two of your palette colors have already been
chosen for you. There are two popular-yet-systematic methods for making the balance
of your choices: relying on math, and using found colors.

The “math” approach creates what are called dyads, triads, and tetrads: sets of hues
with obvious relationships to an original color. In the case of triads, one can suppose
that two palette colors have already been chosen. For this example, let’s assume hues
close to the ever-popular blue and green—205° and 105°, which are more or less teal
and chartreuse.

The angle that bisects those two is 155°, where the hue is described as an aquamarine
or sea green. Either this hue or its complement (335°, violet) can be used for the third
hue in the triad. The challenges that remain are to choose a color in that hue that has
compatible saturation and brightness, and to integrate that color into your design.

Color Theory and Web Color Practice | 149

The most popular alternative to playing with angles is to use found colors. In this
approach, you take an attractive photo, use an eyedropper tool to take colors from it,
and decide for yourself which of those colors will make the most desirable palette.

The subject of palette creation is discussed in much greater detail on this book’s
companion website.

CSS Backgrounds
You can use CSS background images in many places. If it has an element box, you can
almost always apply a background to it.

The best place to start is with a survey of the CSS properties that affect background
appearance, shown in Table 9-3.

Figure 9-2. Older consumer-grade LCD displays do a poor job of representing gradients

150 | Chapter 9: Colors and Backgrounds

Table 9-3. CSS background properties (default values shown in boldface)

Property Purpose Values

background Shorthand property, aggregates property/value pairs

background-attachment Prevents backgrounds of elements with scroll bars from scrolling
along with content

• fixed

• scroll

background-color Defines the background color • [color]

• transparent

background-image Specifies the background image to be applied to the element,
which will be stacked over any background color

• none

• [url]

background-position Contains horizontal and vertical values separated by a space; de-
fines the relationship between the edges of the element and the
edges of a background image

• [length]

• [percentage]

• bottom

• center

• left

• right

• top

background-repeat Specifies the axes along which the background image should re-
peat, if at all

• no-repeat

• repeat

• repeat-x

• repeat-y

Setting background-position Values
When a background-position value is provided, it should contain two components: the
left offset and the top offset. When length units such as px or em are used, the results
are straightforward: the background image is offset to the element coordinates speci-
fied. If any of the values are negative, the top-left corner of the “first” instance of the
background image will be laid out of view.

If percentage or keyword values are used instead, the behavior of the
background-position property changes. Instead of placing the image a specific distance
from the upper-left corner of its element, the rendering engine lines up the stated co-
ordinate of the image with the stated coordinate of the element. A value of 33% 33% will
align the image coordinates one-third from its upper left corner with the same coordi-
nates of the element. This “mutual alignment” is diagrammed in Figure 9-3.

The keyword values of the background-position property correspond exactly to values
of zero, 50%, and 100%, each as called for.

For designers who want to utilize the Rule of Thirds or the Golden Ratio in their designs,
this approach can pose real challenges. For example, what if the image in Figure 9-3
ought to be centered at the 33% coordinates?

CSS Backgrounds | 151

The only effective way to meet this challenge is to fix the dimensions of your layout,
which carries challenges of its own and probably isn’t worth it, if your only goal is to
put background images exactly where you want them.

CSS3 calls for a background-size property, but this is currently unsupported by the
mass-market web browsers.

The CSS background Shorthand Property
Just as margin, border, padding, and font are all shorthand properties, so is
background. Its values are space-separated, in the following order:

background-color background-image background-repeat background-position
background-attachment

Like the other shorthand properties, background is a wonderful space-saver, but has one
severe drawback: when individual values are omitted from a reference to the back
ground property, the results can be inconsistent.

Composing Background Images
As it turns out, composing background images can be even more challenging than put-
ting them into production on a website. For starters, there are a number of different
types of background images, as shown in Figure 9-4, which poses its own technical
challenges.

“Faux Columns”
Faux Columns are wide and narrow bands of color, one of which might actually
be transparent. In the discussion of multicolumn layouts (see “Implementing Mul-
ticolumn Layouts” on page 88), it was pointed out that forcing an element to

Figure 9-3. A background image with its background-position value set to 33% 33%; lines were added
for illustration purposes

152 | Chapter 9: Colors and Backgrounds

expand to the height of its contents is not strictly impossible, but often more trouble
than it’s worth. If a column container is assigned a background image that mimics
those columns, the result is a convenient illusion.

In cases where the heights of the columns in a layout can’t be predicted with any
certainty, this technique might also be used to place vertical rules between col-
umns, as an alternative to using the border-left or border-right properties.

Background textures and patterns
Textured and distressed backgrounds are brilliantly popular—more so in some
years than others—because they lend a flavor of wear to a design, as if to say that
the associated content claims great longevity or justifies heavy use. These might
consist of tiled (repeating elements), or be composed as single large images.

Nonrepeating motifs and devices
Devices are usually far less detailed than patterns, and are typically anchored to a
corner of the browser canvas.

Drop shadows and gel effects
Drop shadows give an element the appearance of being closer to the visitor than
the surrounding canvas, and have enjoyed the same kind of popularity as textured
backgrounds. Gel effects are often used on links and buttons—especially on sites

Figure 9-4. Popular styles for background images

Composing Background Images | 153

operated by companies that self-identify as being part of the “Web 2.0”
movement—and require similar image composition techniques.

Rounded corners
While the composition techniques used to create rounded corners are entirely dif-
ferent from those used for drop shadows, the implementation challenges they im-
pose on stylists are not.

To these background implementations we can add bitmapped copy, which is often
“typeset” with a technique called Fahrner Image Replacement, discussed in “Bitmap-
ped Copy and Fahrner Image Replacement” on page 157.

“Faux Columns”
Consider a two-column design with variable-height columns. Regardless of the CSS
rules that you use to implement the layout, one challenge remains constant: one column
will almost certainly have less content than the other. Using ... { overflow: auto;
height: 1%; } on the element containing the columns gives you another element to
which you can usefully apply backgrounds, but the original challenge remains: making
it appear to the visitor as if there are two (or more) full-height columns in your layout.

When you are presented with a requirement for two columns that have a banded back-
ground behind them, follow these steps:

1. Assign ... { overflow: auto; height: 1%; } to your column container. This step
isn’t strictly necessary, but increases the flexibility with which you can approach
the layout markup.

2. The background image should always be wider than your layout, to account for
rounding errors, user-initiated changes to the browsing environment, and future
layout tweaks. The actual width will vary according to the characteristics of your
layout, and the means by which you’re applying the background image to the lay-
out. If you’re using one of the flexible layout approaches, you’ll probably want to
make your background image considerably larger than the intended width of your
layout.

3. To conserve bandwidth, background images that effect patterns should be no taller
than needed to produce the desired tiling effect.

4. In most cases you’ll want to calculate the proportional width of your columns,
unless you intend for one column to assume a static width at all times without
regard to user manipulation of the browsing environment.

5. Paint/fill your bands proportionally for flexible layouts. For layouts with at least
one fixed column, calculate the width of the band corresponding to the fixed col-
umn by adding the column width (in pixels) and the bleed width. In cases where
you’re applying a custom full-height rule rather than column bands, simply place
that rule at the X-coordinate where color bands would normally meet.

154 | Chapter 9: Colors and Backgrounds

6. Your supplemental property/value pairs should work out as follows:

background-color
In most cases, the background color should be the same as the color intended
for the most prominent column.

background-repeat
If you want to be cautious, repeat-y is recommended.

background-position
Apply a similar X value (the first of the two provided here) to the one you used
to decide on the width of the color bands in the image, whether static or pro-
portional. In the case of fixed layouts, that value will be the inverse of the bleed,
so that a bleed of five pixels would yield background-position: −5px 0.

Normally, your column background won’t contain any transparent pixels, and the
background-color of your column container will be assigned to suit the colors used in
the primary column. The only likely exception to this practice arises when column
colors are used as a location cue; in many of those cases, resources can be conserved
by using a single background image that utilizes transparent pixels in the “adaptive”
column, and relegating that column’s background-color to the stylesheet rules that ad-
dress the column container (on a location-by-location basis).

This advice works well for two-column layouts, but three-column variable-width lay-
outs provide additional challenges. (Fixed-width backgrounds can usually be confined
to the body element.) In instances where a three-column layout needs three distinct
background bands, you’ll be applying two background images: one to the body or the
broadest container element, and another to the intercolumn container (explained in
Chapter 6). The steps just suggested can then be executed twice in succession.

Tiled Background Textures and Patterns
The default behavior of background images is to tile themselves across and down the
browser canvas, with top and left edges flush to the top and left edges of the affected
element box.

Tiled backgrounds are more difficult to create from asymmetrical source images, but
offer the advantage of reduced bandwidth. To create and apply them, Adobe Photoshop
users can use the following (zoom- and squint-heavy) process:

1. Apply Filters → Other → Offset to center the “seams” that result from the source
image’s lack of symmetry. These seams should form the illusion of a cross.

2. Abut your source image with two duplicates (one on each axis). Use of a custom
grid (View → Grid → Snap To → Grid) will take much of the tedium out of this task.

3. Merge the three copies of the source image into a single layer.

4. Use a combination of clone, healing, smudge, and move tools to obscure the seams.
Avoid Blur filters, which create as many problems as they solve unless they’re only

Composing Background Images | 155

applied to a tiny area of the image. Your tool choice will come about as a result of
experimentation and experience.

This step should first be performed on the regions where the seams intersect with
the edges of your source image. Some of those repairs will apply only to the du-
plicates; paste and merge those repairs into the corresponding regions of the
original.

5. Crop your working image back to its original size.

6. Repeat step 2–4 on the seams in the central region of the image. Plan on frequent
use of the Undo command and History palette.

7. Save the image, upload it, and apply it to the element. The remaining user agent
default styles for backgrounds should be adequate to the task.

Images that are symmetrical should still be offset, either at creation, or with the
background-position property. Otherwise, “rivers” of negative space will appear along
the top and left edges of the element.

Large Background Textures and Nonrepeating Devices
Larger background images can be adapted from existing stock with a minimum of
effort, but usually consume logarithmically larger amounts of bandwidth. The trick to
working with large backgrounds is to find the best compromise between image file size,
image dimensions, and useful detail; the first of these is always reduced at the expense
of the other two.

When the background in question is applied to the body element, the challenge of
compromise grows still more difficult, since the dimensions of your background image
need to be at least 1680×1050 pixels. Dimensions of 1920×1200 pixels will cover all
but a tiny fraction of use cases.

Except in those rare cases where your large background image is either several times
taller than the element to which it is applied, or carefully mated to an element with
certainly fixed dimensions, the related stylesheet rule fragment should resemble the
following:

#foo {
 background-image: url(/my/path/bar.ext);
 background-attachment: fixed;
 background-position: 50% 50%; }

If you create a background image that incorporates a device (e.g., an ideogram, geo-
metric shape, famous public domain illustration, or some part of the site sponsor’s
visual identity), it will almost certainly be smaller than a texture. The composition of
this background image and the CSS associated with it should follow the guidelines
below:

• Apply more contrast than you would to a texture, but not so much that the legibility
of overlying content is compromised.

156 | Chapter 9: Colors and Backgrounds

• If the size of the background image is far smaller than the footprint of its element,
anchor it to one edge or corner of that element; the results will be more predictable.

• In most cases, background-attachment: fixed will be most appropriate.

• Safeguard the content legibility of an element with a bottom-fixed background
image by setting that element’s padding-bottom value roughly equal to the native
height of your background image.

Drop Shadows, Gel Effects, and Rounded Corners
To create drop shadows, gel effects, and rounded corners, Photoshop users can use the
Effects dialog of the Layers palette, or a tedious combination of tools and filters.

These three background effects are discussed separately from others because the de-
signer who employs them relies on a fixed-width layout, pushes corners of drop shad-
ows across the visible margin of the layout (usually the top and bottom of the browser
canvas), or likely forces the stylist to write junk markup.

The reality behind these choices points back to one of the fundamental characteristics
of element flow: it’s impossible to predict the height of any element other than a plug-
in instance or an image with any certainty. Since background images can’t be arbitrarily
scaled by current browsers, effects that need to appear at predictable layout coordinates
(i.e., corners, as is the case with rounded corners and the corner regions of drop shad-
ows) within an element of unpredictable dimensions must be placed one at a time. The
markup and styles used for rounded corners are described at the beginning of “Habit
#1: Keeping It Simple” on page 50, as part of a negative demonstration of the value of
simplicity.

Firefox and Safari support their own CSS extensions to specify rounded corners (-moz-
border-radius and -webkit-border-radius, respectively), but Internet Explorer offers
nothing similar. The unextended border-radius property is specified by CSS3.

Bitmapped Copy and Fahrner Image Replacement
Chapter 12 discusses the wilderness of letterforms at a minute level of detail. Two
hazards of this wilderness are relevant to any discussion of background images: the
narrow range of universally available typefaces for use on the Web, and the benefits
gained by heavily anti-aliasing instances of large type.

Inline and background images guarantee designers’ access to attractive web typogra-
phy, a state of affairs that has held true since web browsers began supporting inline
images in 1993. In the first half of 2002, several CSS experts (myself included) inde-
pendently worked out techniques that made it possible to move bitmapped type out of
markup and into stylesheets. The application of the simplest of these techniques is
summarized in Figure 9-5. Collectively these techniques are called Fahrner Image

Bitmapped Copy and Fahrner Image Replacement | 157

Replacement (FIR), in honor of Todd Fahrner, an early pioneer of applied CSS who
was among the first to work out and publicize the underlying ideas.

Figure 9-5. The three steps from a plain heading to a FIR-enhanced heading, (1) shows the plain
heading, (2) shows the heading with its new background image, and (3) shows the final result after a
text-indent value has been applied

The basic point to FIR is that an image shouldn’t exist in the content layer of a site
unless it’s actually content. How, then, does one retain the benefits of images, while
moving the images themselves into the presentation layer where they belong?

The obvious part of the solution is to use the background properties. However, that
step alone does nothing for the text that still lives in an element to which FIR is applied.
To solve that problem, a stylist must use one of the modalities for moving content out
of view, without affecting the composition of the principal element.

The first of these approaches to gain notice was to place a junk span within the principal
element, then apply display: none to it. However, this approach creates a problem of
its own: assistive technology platforms parse the display: none pair (media type con-
flicts notwithstanding) and ignore it, just like a browser rendering content for screen
display.

Several other junk-markup-dependent approaches to the FIR concept were tested by
various developers, each depending on a different means of using CSS (such as visibility

158 | Chapter 9: Colors and Backgrounds

and positioning) to move text content out of view. After a while, one developer by the
name of Mike Rundle hit on the idea of using the text-indent property to move text
off-canvas, while another named Russ Weakley suggested hiding tiny (and I mean
tiny) text against a background of the same color and simultaneously providing enough
of a gutter on the edge of the element to render that text completely invisible.

The FIR Stylesheet Rules
The CSS source for the Rundle and Weakley methods, which assumes <h2>Lorem ipsum
dolor sit amet, consectetur adipiscing elit</h2> and a background image of 30
pixels in height, is displayed below:

/* *** Rundle (Phark) Method *** */
h2 {
 height: 30px;
 margin: 0;
 text-indent: −10000px;
 background-image: url(/my/path/foo.ext);
 background-repeat: no-repeat;
}

/* *** Weakley Method *** */

h2 {
 height: 1px;
 margin-bottom: −1px;
 padding-top: 30px;
 color: #fff;
 background-color: #fff;
 background-image: url(/my/path/foo.ext);
 background-repeat: no-repeat;
 font-size: 1px;
 line-height: 1;
}

The Weakley method is far more verbose, but sidesteps a brutal rendering problem in
Internet Explorer 6 that’s exposed when text-indent is applied to a link with a float
value: the text itself responds to the text-indent value, but the underline doesn’t.

It should also be noted that small, obscured text like that employed by the Weakley
method, can gain a website a spot on search providers’ blacklists when used solely for
the sake of Search Engine Optimization (SEO).

Drawbacks of FIR
Fahrner Image Replacement has two major drawbacks: stylists have no control over
the appearance of the background images on the printed page (where they probably
won’t render at all), and the small population of users who run their browsers with
images disabled will be at a loss to read copy that you enhance by using FIR.

Bitmapped Copy and Fahrner Image Replacement | 159

A lesser concern relating to bitmapped type in general is that most users are unaware
that underlying content or alt values of bitmapped text can still be copied to the system
clipboard. For this reason, content that is at all likely to be copied—such as contact
information—should always be presented in normal text, or at least repeated in normal
text.

Reducing Server Load with Sprites
A year after FIR started to gain notice, the webzine A List Apart published an article
by Dave Shea that invoked an artifact of 8-bit gaming history: sprites. In retro gaming,
these are the groups of images that together form the “landscape” of an older side-
scrolling, platform-type, or overhead-view video game, and that are arranged as
needed by the console hardware that runs the game.

A similar design approach can be used by stylists to combine several similar background
images into a single file, with the goal of reducing server traffic and maintenance
requirements.

Sprites have obvious application to navigation links. In many circumstances, site nav-
igation can be exported to combined link and hover state bitmaps exactly as comped.

Consider a navigation setup like the one in Figure 9-6: its various items are set in bit-
maps and rendered with the assistance of FIR, because the desired typeface is well
outside the families of “web fonts” supported by various operating system vendors.

Figure 9-6. The intended result of applying sprites to a navigation list, as described here

The layout of bitmap exports like these can be arbitrary; in a case like this I would
probably place the hover state bitmap under the default state bitmap, but you might
arrange things differently. The important thing is to record the origin coordinates of
each bitmap fragment, which are needed for later use as background-position values.

To apply normal state and hover state FIR bitmaps from a single image to a site navi-
gation, proceed through the following steps:

1. Apply the layout to your navigation described in “The Primary Navigation Layout
Recipe” on page 122.

160 | Chapter 9: Colors and Backgrounds

2. Set the same background-image value for both the list items that contain your nav-
igation links and the hover states of the links themselves. At this point your navi-
gation should display the same bitmapped type in each item (see Figure 9-7).

3. Provide unique background-position values for the various normal and hover state
rules (e.g., #nav li { ... } and #nav li a:hover { ... }). The relevant styles used
for the demonstration available at this book’s companion website are reproduced
in this section.

 #nav li { background-image: url(/images/bg_nav.gif); }
 #nav li a { display: block; width: 100%; height: 100%; }
 #nav li,
 #nav li a { text-indent: −10000px; }
 #nav li a:link,
#nav li a:visited { background-image: none; }

 #navAbout { background-position: 0 0; }
#navContact { background-position: −144px 0; }
 #navForum { background-position: −288px 0; }
#navGallery { background-position: −432px 0; }

 #navAbout a:hover { background-position: 0 −24px; }
#navContact a:hover { background-position: −144px −24px; }
 #navForum a:hover { background-position: −288px −24px; }
#navGallery a:hover { background-position: −432px −24px; }

Figure 9-7. The background image used for a sprite-equipped navigation list

Reducing Server Load with Sprites | 161

CHAPTER 10

(Data) Tables

If you’ve been doing web design for a few years, chances are good that you own a book
that recommends the use of table elements for layout. Once upon a time, this was the
only reliable page layout mechanism that web browsers offered—and as the discussion
of multicolumn layouts suggested (see the section “Implementing Multicolumn Lay-
outs” on page 88), layout tables are comparatively easy to implement.

But in a word, don’t.

The Disadvantages of Layout Tables
Layout tables offer few unpleasant surprises on launch day, but using them means
surrendering opportunities to make your sites more usable and maintainable. Table-
based layout might be easier to develop when you first build a new site, but maintenance
and extension quickly become major headaches.

Source Order: Square Peg, Round Hole
When you use tables for page layout, you’re forced to implement your entire site around
the table-rendering algorithm. This algorithm was always intended to display data, and
as a result calls for content structure that’s better suited to spreadsheets than to docu-
ments containing text passages. (Would you write a school paper or an interoffice
memo in Microsoft Excel? Didn’t think so.)

The first class of users disadvantaged by such an outcome are users of assistive tech-
nology, who rely on their tools to make sense of the Web. Since the creators of assistive
software cannot read web designers’ minds in aggregate, much less singly, table content
is displayed in source order. One consequence of this approach is that 15 years after
table support was first unleashed on unwary web users, assistive technology users
still expect to encounter site navigation at the top of the page, regardless of its real
importance.

163

On sites where sidebar content is contained in a leftward column, content priority is
inverted further. Imagine being forced to wade through three hundred disjointed words
of tertiary crap before you even encounter the title, to say nothing of the body copy, of
the article that led you to the site…and you have a small idea of what impaired users
deal with every time they use the Web.

CSS Zen Becomes a Myth
When faithfully applied, the paradigm of CSS Zen (see “The Functional Principles of
CSS Zen” on page 60) creates unlimited opportunities for quick redesigns. Structurally
driven markup and class/id values make that flexibility possible. In turn, that flexibility
drastically reduces implementation time—for example, three of my last four redesigns
of henick.net were each executed in a significant fraction of one day.

Even on a huge site, careful attention to site structure, page structure, and the virtues
of thoughtful overbuilding makes it possible for a team to implement an entirely new
look and feel in the space of days.

But when tables are used for layout, you can’t do that—the design is supposed to em-
bellish the markup, while layout tables dictate the markup. The practical consequence
is that any redesign undertaken with existing markup winds up being confined to colors
and accents; new content, deletions of old content, and broad layout changes would
force the creation of brand-new site templates.

Template Slavery Is Unavoidable
Unless you use heaps of templates on a site, the layout flexibility of table-driven markup
trends toward zero. If you work in a larger shop that insists on detailed approval pro-
cesses, the result is a site design that might as well be etched into stone on launch day.
This is categorically frustrating—and what happens if there’s some broad problem with
the site? Users affected by these problems are the second group of disadvantaged users,
and failure to respond quickly to their problems with your site can be costly.

Chances are that within weeks of launch, the team that produced a table-based site will
take a look at the problems revealed by visitor feedback and start thinking about the
next design, which will hold the promise of no less travail. In fact, when the time comes
for a team to make the leap to CSS, the work will actually be more difficult as team
members acclimate themselves to the terseness and reference points of CSS.

What better time is there than the present to get that over with?

Positioning Is Rendered Useless
If float carries most of the hassles in CSS-driven layout, position lends many of its
virtues.

164 | Chapter 10: (Data) Tables

When you use tables for layout, positioning properties lose practically all of their power.
Layout tension, content stacking, and a host of useful layout tweaks are put out of
reach. Table layout leaves designers absolutely no choice but to think inside the box,
because the display characteristics of table cells leave no alternative.

And that’s enough doom and gloom!

The Parts of a Data Table
The best understanding of data table markup begins with an examination of the smaller
parts of a table, as illustrated in Figure 10-1.

Figure 10-1. Data table anatomy

Rows and cells: tr and td
These will typically contain all of the data points that relate to a single item. Rows
are themselves divided into cells (td), and analogous cells in separate rows are
always rendered into consistent columns. Apart from tbody, rows and cells are the
two elements that must be present in a table.

Readers who are familiar with relational databases will recognize that tr elements
signal the bounds of a single record.

Columns and column groups: col and colgroup
Just as a row relates to a single item, a column relates to a common class of data.
Each column in a table corresponds to the table cells found at an interval of n, given
that n equals the number of cells in each row.

Row and column headings: th
th functions as an alternative to td, and defines the character of data found in a
particular row or column.

The Parts of a Data Table | 165

th elements are distinct from td elements not only in terms of presentation, but
also because they are set aside specifically to create table cells that do not contain
actual data.

Captions: caption
Headings are assigned to normal copy; in spite of their name, captions serve an
analogous role for data tables. They are always rendered at the top of tables, as a
heading would be in relation to the copy that it describes.

Table headers and footers: thead and tfoot
These serve as convenient “baskets” for describing the types of data to be found in
a table’s various columns and (less often) rows. They are distinct from plain rows
for two reasons:

• An arbitrary number of rows might be needed to label types of data; for example,
the first row of a table header might group broad data classes, while the second
row defines each type on a column-by-column basis.

• According to the specifications for HTML and CSS, in paged media the thead
and tfoot elements should be present on every page of a multipage table. Sys-
tems of generic rows and columns are ill-suited to this usability enhancement.

Note the thead and tfoot elements are optional with respect to validity, where
tbody is not.

The table body: tbody
The table body contains all of the table cells that have actual data in them, as
opposed to metadata.

Example: The Full Smash of Table Markup
A table that uses all of the elements just described would contain markup not unlike
the following:

<table summary="Trucks, cars, and motorcycles, described according to their number of
axles, vehicle weight, and passenger capacity.">
<caption>Types of gasoline- and diesel-fueled road vehicles.</caption>
<colgroup id="type"></colgroup>
<colgroup id="axlect"></colgroup>
<colgroup id="wt">
 <col id="gvw" />
 <col id="mvw" />
</colgroup>
<colgroup id="pax"></colgroup>
<thead>
 <tr>
 <th rowspan="2" scope="colgroup" abbr="Type">Vehicle type</th>
 <th rowspan="2" scope="colgroup"># of axles</th>
 <th colspan="2" scope="colgroup">Weight</th>
 <th rowspan="2" scope="colgroup" abbr="Passengers">Number of passengers (incl.
 driver)</th>
 </tr>
 <tr>

166 | Chapter 10: (Data) Tables

 <th scope="col">Gross</th>
 <th scope="col"><abbr title="maximum">Max.</abbr></th>
 </tr>
</thead>
<tfoot>
 <tr>
 <th rowspan="2" scope="col" abbr="Type">Vehicle type</th>
 <th rowspan="2" scope="col"># of axles</th>
 <th scope="col">Gross</th>
 <th scope="col"><abbr title="maximum">Max.</abbr></th>
 <th rowspan="2" scope="col" abbr="Passengers">Number of passengers (incl.
 driver)</th>
 </tr>
 <tr>
 <th colspan="2" scope="colgroup">Weight</th>
 </tr>
</tfoot>
<tbody>
 <tr>
 <th scope="row">Truck</th>
 <td>≥2</td>
 <td>>1.5t</td>
 <td>2.5t–25t</td>
 <td>1</td>
 </tr>
 <tr>
 <th scope="row">Car</th>
 <td>2</td>
 <td>0.5t–2.5t</td>
 <td>1.5t–4t</td>
 <td>1–8</td>
 </tr>
 <tr>
 <th scope="row">Motorcycle</th>
 <td>2</td>
 <td><0.25t</td>
 <td>0.3t–0.5t</td>
 <td>1–2</td>
 </tr>
</tbody>
</table>

A close look at the previous markup illuminates some interesting details:

• caption is a direct child of table, and appears at the top of the table. caption ele-
ments are optional, but when used must be the first immediate child of table when
used, if the table is to validate.

• summary takes the functional place of title, when it’s used at all.

• colgroup can be used to identify column “groups” with only one member apiece,
while col is reserved for individual columns that share scope.

The Parts of a Data Table | 167

• colgroup elements without contents still include a closing tag, due to the require-
ments of valid XHTML. In HTML documents, closing tags are optional on
colgroup elements.

• The rowspan and colspan elements make it easier (in the case of a data table) to
indicate that a datum is repeated across several records or fields, and in thead
organization to better reflect field grouping.

• Each of the column and column group elements has been assigned an id so that
CSS width values can be assigned to columns, rather than to the cells of the first
row of the table.

• The row and cell presentation of the footer is inverted, compared to that of
the header.

• The use of the scope attribute of each th element in the header and body of the
table make it easier to generate metadata. The td element in turn supports the
headers attribute, which takes a space-separated list of ids attached to that cell’s
associated th elements.

• The markup further embellishes th elements with the abbr element. User agents
can apply its value as an alternative to verbose normal content, in situations where
space and time are at a premium.

• The tfoot element follows thead rather than tbody. This is an obscure requirement
of valid markup that’s also referenced in Chapter 14 .

An attribute not used in the example table is headers. This attribute is attached to td
elements, and takes as its value a space-separated list of the ids assigned to the th
elements corresponding to a given table cell. Browsers with full attribute selector sup-
port thus allow individual cells to be styled according to context, in lieu of forcing stylists
to apply the :nth-child() pseudoelement selector (explained in “Attribute and Child
Selectors” on page 173) to cells without regard for the data that they actually contain.

The various attributes apart from colspan and rowspan that can be used
to control the layout of tables and table parts are still amply supported,
but setting values on those attributes instead of controlling layout from
a stylesheet reduces the flexibility of a proper data table—particularly
one that holds user-generated content.

Composing Cells
Before you nail down details like custom column widths and backgrounds, it’s best to
ensure that individual cells have the desired appearance. The focus here is on cells
because among all the various table elements, cells apply the broadest range of
properties.

The best place to start is with borders. A close look at random passages of legacy markup
reveals many table tags that look like this:

168 | Chapter 10: (Data) Tables

<table border="0" cellspacing="0" cellpadding="0">

Those attribute/value pairs ensure that the various cells of a table will align flush with
their neighbors, an effect that’s achieved with the following CSS fragment:

 table { border-collapse: collapse; }
td, th { padding: 0; }

The result is shown in Figure 10-2.

Figure 10-2. Data table without borders and intracell padding

With that task out of the way, the next step is to differentiate cells by adding borders
to them. Since each cell is flush to its neighbors, only two borders are needed, as shown
in Figure 10-3. Note that all three cells have top and left borders; the border effect on
cell 1 is completed by the borders rendered in cells 2 and 3 by way of the following styles:

td, th { border-top: 1px solid #000; border-left: 1px solid #000; }

Figure 10-3. When borders are only applied to two sides of a table cell (1), the other two borders are
resolved by the flush placement of neighboring cells (2) and (3)

The borders might be removed later; unless a width value is assigned to both the table
and its individual columns (a step that’s discouraged), the presence or absence of cell
borders won’t expose any bugs or layout conflicts. With the borders present in the
meantime, the table now appears as shown in Figure 10-4.

None of the styles used thus far account for bottom or right borders, and the border-
collapse value hides the left borders at the edge of the table. Finally, let’s face it: as it
stands, without negative space the table trends to illegibility (which defeats the whole

Composing Cells | 169

purpose of data tables). Thus, the following styles should be added, with results pic-
tured in Figure 10-5.

table { margin-left: 1px; border-right: 1px solid #000; border-bottom:
1px solid #000; } td, th { padding: 5px; }

Figure 10-5. Previous table render, plus remaining borders and whitespace

Table and Data Composition
The finer points of table rendering are complex to the point of frustration, though
experience does give developers the ability to predict intuitively how an unstyled table
will be laid out. However, stylists can be certain that the ideal layout of a table will be
far different from what the browser provides as a starting point.

The first step of composing table data is to set the alignment of cell contents with respect
to cell margins. The default alignment values for cells and headers are provided in
Table 10-1.

Table 10-1. Default alignment styles for LTR (left-to-right) table data

Element text-align vertical-align

td left middle

th center middle

Figure 10-4. Previous table render, plus cell borders

170 | Chapter 10: (Data) Tables

In general, data composition should obey the following rules:

• Literal data should be left-justified and top-aligned.

• th content within thead should be justified like the data that it describes, and
bottom-aligned.

However, consider that these rules are especially subject to exceptions. There are two
prominent examples:

• Designers often like to justify the first two columns of a table to a common margin,
in order to emphasize the leftmost column of data.

• When several adjacent cells contain duplicate data, it’s not uncommon to apply
the appropriate rowspan or colspan value to the first such instance of data, and
center it within the resulting large cell (at the cost of reducing accessibility).

The challenge inherent to applying table composition standards lies not in values, but
rather in selectors. Internet Explorer lags behind its alternatives (see “Absent or Poor
Selector Support” on page 267) when it comes to supporting the selectors that makes
it possible to provide precise table layout without abusing class values.

In addition to aligning table data, it’s also often necessary to apply custom column
widths. These are best specified via id values attached to colgroup and col elements,
which lead to rules like the following:

 #type { width: 8em; }
#axlect { width: 8em; }
 #gvw { width: 4em; }
 #mvw { width: 4em; }
 #pax { width: 8em; }

Figure 10-6 shows the results. If the policies under which you work make it impossible
to tune tables on a case-by-case basis, you might get approval of a plan to standardize
the column widths of the tables you build. The result would be comparable to the class-
based form field sizes discussed in “Grouping Controls by Appearance” on page 254.

Before you examine Figure 10-6 to consider the results, you’ll probably notice that each
column has been referenced by its own rule. While there’s nothing strictly wrong with
styling multiple columns in a single rule, doing so might create priority conflicts in the
future—thus the separate rules.

Even though width and background properties are the only properties that can be as-
signed to col and colgroup elements with any expectation of positive results, there is
another reason to rely on these elements when applying presentation. If the layout or
contents of a table need to be changed, reliance upon HTML attributes to control
column presentation might fail in the face of overflow conditions or other unexpected
results, forcing extensive revisions to table markup. When instead you confine data
table presentation to a series of styles, markup changes will usually be confined to data
and source order alone.

Composing Cells | 171

Table Headers, Footers, and Heading Cells
When data is aligned to predictable margins, the results tend to be more legible. Fig-
ure 10-7 shows the table when the following text-align and vertical-align styles are
applied to the various heading cells:

 tbody th { text-align: right; }
 thead th { vertical-align: bottom; }
 tfoot th { vertical-align: top; }
thead th, tfoot th { text-align: left; }

thead th[rowspan]:first-child,
tfoot th[rowspan]:first-child {
 text-align: right;
}

Figure 10-7. Previous table render, with well-aligned heading cells

Figure 10-6. Previous table render, with normalized columns

172 | Chapter 10: (Data) Tables

Attribute and Child Selectors
If you look at the stylesheet rules earlier, the last of them is notable for its use of odd
selectors. In English, the selector refers to any th elements that are the initial, direct
child elements of any element within thead or tfoot, and that also have a rowspan value.

It’s entirely possible that you’re looking at those selectors and thinking that they were
pulled from thin air—but they weren’t. When attribute and :nth-child() selectors are
considered, the cascade can account for almost any element you can dream up, without
forcing you to add ids or classes to arbitrary elements.

Of course, Internet Explorer fails to support any of the advanced selectors that are
under discussion, so it becomes necessary to add classes to the markup you want to
style just-so, or let the absent support wear its proverbial boxer shorts in public. In the
case of IE 8 this support gap verges on frustrating, because IE 8 does support the at-
tribute selector by itself—just not in combination with element selectors.

It should also be noted that support for :last-child is absent from all versions of In-
ternet Explorer, while support for :nth-child is a newcomer to Firefox. As a result,
you’ll find yourself adding arbitrary classes to table elements if you want to use striped
background colors (among other effects).

tbody tr:nth-child(2n+1) td { background-color: #ccc; }

The following two steps bring you to the argument of your :nth-child() selector:

1. Define the interval between elements, which falls before n.

2. Determine the ordinal location of the first element to be styled. This value becomes
the addend.

Using the previous selector as the example, the argument provided yields the set of all
odd members counting from an index of one (just as 2n by itself would yield the set of
all even members).

Reducing Header and Footer Contrast
The existing typesetting of the table still has one flaw: the header and footer content
competes with the actual data for the reader’s focus. There are two easy ways to solve
this problem: with reduced contrast and reduced type size—and there’s no reason why
both can’t be applied. To make this happen for the table styled here, the following styles
are applied:

thead th, tfoot th { font-size: .75em; background-color: #ddd; color: #777; }

Another way to increase the contrast of data relative to the rest of the table is to increase
the brightness of the table’s borders. The results of the heading cell and border changes
are displayed in Figure 10-8.

Table Headers, Footers, and Heading Cells | 173

Figure 10-8. Previous table render, reduced size and contrast on heading cells; reduced contrast on
borders

The final steps are to alter the caption and adjust the column widths again, since the
second column is too wide and the third and fourth expand slightly to account for their
content:

caption {
 padding-bottom: .413em;
 color: #777;
 font-size: 75%;
 font-weight: bold;
 text-align: left;
}

 #type { width: 7.5em; }
#axlect { width: 5em; }
 #gvw { width: 5em; }
 #mvw { width: 5em; }
 #pax { width: 5em; }

The applied results of those styles are displayed in Figure 10-9, and a before-and-after
view is shown in Figure 10-10.

Figure 10-9. Previous table render, adjustments to caption and column widths

174 | Chapter 10: (Data) Tables

The point to all of the apparent accent styling should now be clear: of the two table
designs in Figure 10-10, which would you rather see in your web document?

Adding Rollover Accents to a Table
Tables that are especially wide or reliant on rowspan/colspan elements to accurately
display data can benefit from the use of rollover effects. The simplest such effect is a
table row highlight, which can be added in a rule like the following. It will be applied
in every major browser except Internet Explorer 6:

tr:hover { background-color: #fcc; }

However, to apply column highlights it’s necessary to use scripting. Given that a cell
is being moused over, its analogs in other rows of the table body can be sussed out with
the DOM API and altered via their style properties or ad hoc class assignments.

Finally, there are cell titles, which aren’t used in the applied example but can define
the intersection at which a cell lies, e.g., [Range of truck gross vehicle weights]. Such
a detailed approach is verbose, and might decrease the screen-medium usability of small
tables. For larger tables, it will likely reduce the amount of scanning required to make
sense of data.

Whether they interact with user-initiated events or not, there’s a lot more to do with
data tables than stripping their internal negative space—and the stylist tasked with
implementing effective information design will find that CSS has plenty of tools that
are up to the task.

Figure 10-10. Before-and-after view of the table styling demo

Table Headers, Footers, and Heading Cells | 175

CHAPTER 11

Images and Multimedia

It’s hard to imagine today, but the first web pages were just text. You could link to
images and view them in separate windows, but the rest of the page and images were
presented separately. The NCSA Mosaic browser felt revolutionary in large part be-
cause it supported images presented inline with the text, and other inline media fol-
lowed suit shortly thereafter, especially after the authoring platform known today as
Flash was launched in 1996.

Many of the production principles worked out during the Web’s infancy remain rele-
vant after 15 years, in no small part because support for the two basic multimedia
elements—img and object—has evolved slowly since their introduction. Those princi-
ples are applied alongside more recently developed practices intended to minimize the
demands placed upon server and browser software.

Replaced Elements
If you look through the HTML 4.01 and CSS 2.1 specifications, you’ll discover that
some elements are described as “replaced.” However, the specifications are predictably
obtuse about what replaced elements are, and how they behave. Section 3.1 of the CSS
2.1 specification has this to say:

[A replaced element is] an element whose content is outside the scope [emphasis mine]
of the CSS formatting model, such as an image, embedded document, or applet. For
example, the content of the HTML IMG element is often replaced by the image that its
“src” attribute designates. Replaced elements often have intrinsic dimensions: an intrin-
sic width, an intrinsic height, and an intrinsic ratio.

To simplify:

The layout characteristics of a replaced element can only be altered by the direct inter-
vention of a stylist, if at all, regardless of context.

The one thing that’s typical of replaced elements is that their content is rendered by
some component of the local host other than the browser’s rendering engine, which
merely receives the content as input and inserts it in the page layout.

177

As replaced elements, images have discrete width and height; among other things, that
means that if you apply a layout property to an image, the value will work. However,
in the absence of layout values, an image will be laid out as if it were a word in a passage
of text: its bottom margin will be aligned with the baseline of adjoining inline text.

Assigning display: inline-block to any inline nonreplaced element will cause it to
emulate the behavior of replaced elements. This is unreliable in Internet Explorer 6,
however, which only applies display: inline-block to elements that are defined as
inline elements in the HTML 4 specification.

In practice, you’ll discover that most image layout begins with assigning display:
block to the various images you use in your layouts, or to container elements that hold
both images and captions. This puts a halt to the odd baseline-to-margin alignment of
images under default conditions, and enhances source markup readability by making
it possible to leave space characters between images in the source markup, while pre-
serving zero margins between consecutive images.

In this last case, consider three images in a row, i.e., . When
the user agent default styles are applied, those interstitial spaces will be rendered. When
instead those images are assigned a display value of block, they can be lined up in
source order with additional use of a float value, and their margins will lie flush to one
another unless the width of the containing element forces an image to drop below its
predecessor in the document flow. In fact, when both source formatting and pixel-
perfect rendering take high priority, it becomes nearly impossible to achieve both with-
out applying display: block to images.

However, if for any reason image slices are called for—as might be the case with sites
to which legacy technical requirements apply—it’s universally better to ditch the goal
of squeaky-clean source markup formatting and remove the whitespace (including
linebreaks) between image elements. These blocks can still be formatted by starting
each line of source on the first attribute/value pair, rather than at the beginning of each
img tag.

Preparing Images for Production
If your work process begins with a Photoshop document full of assets and layout in-
structions, the most important decision to make is one of purpose: can a given graphic
be defined as a design accent, or is it actual content?

Design accents should generally be relegated to background images, with the possible
(and sometimes likely) exception of bitmapped heading type. For more information
about the composition and styling of such images, consult Chapter 9.

If instead an image is identified as content, such as a photo or an illustration of state-
ments made in the document, it should be referenced in an img element, which will
declare at least the image’s URI and alternative text content.

178 | Chapter 11: Images and Multimedia

The alt Attribute Explained
The alt attribute is critical to the experience of impaired visitors; it diminishes in im-
portance only when images are loaded into the page and viewed exactly as intended.
In all other cases its value is displayed, which is vital to any effort at making sense of
images as content—so an alt value should convey meaningful information, or none at
all. An excellent approach is to treat the alt attribute like a caption, or as an opportunity
to label the image’s subject if a caption already exists.

When inline images are used for design accents that do not have a meaningful text
equivalent (i.e., all such accents except for bitmapped heading type), their alt values
should be set to the null string (alt=""). In the case of text browsers and screen readers
this will remove all evidence of those images, as if they had been assigned a display
value of none.

Image Dimensions and Borders
In the earliest browsers, the inclusion of width, height, and border values became best
practice with respect to publishing images. This habit evolved from the fact that early
browsers were unable to display any part of the page until its entire layout had been
computed—a process that could not be completed without explicit data for image
dimensions. In the absence of workable width, height, and border values, all images
needed to finish downloading before the page could be displayed, a wait that could
take several minutes on the 56 kbps connections that were once common.

Improvements in rendering technology spare site visitors from having to wait for the
browser canvas to be displayed. Even so it’s a good idea to provide image size data in
your markup or CSS so that layouts don’t shift about unexpectedly while the page loads.
The results can be jarring, regardless of connection speed.

The question for a developer is how to reference those values: in the stylesheet, or the
markup? The advantages and disadvantages of each approach are summarized in Ta-
ble 11-1.

Table 11-1. Advantages and disadvantages of setting image dimensions in markup and CSS

Modality Advantages Disadvantages

Markup • Layout behavior remains intact regardless
of network or server reliability issues

• Attribute/value pairs serve as wholly ap-
propriate metadata

• Markup must be altered directly after images are
changed

• Markup values override any desirable styles that con-
tradict those values

Stylesheet • Detail-conscious art direction is rewarded
with reduced production time

• Image layouts are more easily exposed to
the cascade

• Separation of image characteristics from rendered
image data can make images less usable in different
contexts

• Poor art direction necessitates the use of heaps of
class and/or id tokens

Preparing Images for Production | 179

A close reading of Table 11-1 raises the profile of solid art direction. Perhaps more so
than any other web-related technology, CSS rewards consistency of design. Consider
a design in which all images with a common subject grouping, or within a single section
of the page share characteristics of presentation. Rather than heaping on all kinds of
width, height, class, and id values, one can take shortcuts and write rules like:

#bodyCopy img {
 float: right;
 clear: right;
 width: 288px;
 height: 144px;
 border: 0;
}

or:

body.annualReports .graph {
 display: block;
 width: 478px;
 height: 200px;
 margin: 1em auto 1em auto;
 border: 0;
}

and then start uploading images with no need for further attention to image layout.

The mention of borders is also conspicuous in its own right, and is compounded by
the fact that borders can usually be added to images directly. However, the habit that
some user agents have of putting a five-pixel border around linked images cannot be
ignored, so that the presence of:

a img (border: 0; }

is usually welcome among the rules of any stylesheet.

Image Production
Images that stand on their own as page content usually benefit from the application of
the same composition fundamentals as any other graphics of the same type (such as
fine art, commercial art, or infographics). While the original assets you receive might
well be excellent, you will often want to utilize any number of simple image production
techniques before uploading images to a site repository, staging environment, or pro-
duction environment. The following passages about composition and production are
aimed principally at readers with a strong bias toward technical experience.

Cropping
You’ll often be dealing with a folder of images that all differ with respect to aspect
ratios, quality of composition, or both. To fit all of these into a design, you will likely
need to perform a considerable amount of cropping.

180 | Chapter 11: Images and Multimedia

The following instructions reference detailed workflows used in Adobe
Photoshop. For the sake of brevity, the transformation functions pro-
vided by the Crop Tool, Edit → Transform, and Image → Rotate Image
are not included.

In this situation it’s best to use the Rectangular Marquee Tool (the uppermost item in
the left column of the two-column toolbar, and the second item in the one-column
toolbar) to select an area constrained to the Fixed Aspect Ratio that will be retained. If
possible, the selection should be dragged so that the retained image will gain the greatest
benefit from the Rule of Thirds, which is discussed on this book’s companion site.

Once the selection of the retained area is complete, the crop can be finished by selecting
Image → Crop from the application menu.

In this situation, it’s best to use the Rectangular Marquee Tool Options palette as it
appears when the tool is set to a Fixed Aspect Ratio (as shown in Figure 11-1).

Figure 11-1. Photoshop’s Rectangular Marquee Tool Options palette with an active Fixed Aspect
Ratio

The Rectangular Marquee Tool is preferred to the Crop Tool because the latter’s Snap
To behavior is unforgiving of slight user input errors.

Matting: Creating a Virtual “Frame”
If an image cannot be cropped without removing important details, it can be matted
to a desired aspect ratio by using the Canvas Size dialog, shown in Figure 11-2.

Figure 11-2. Detail of the Canvas Size dialog used for matting

Image Production | 181

To mat an image using the Canvas Size dialog, take the following steps:

1. Verify that the current background color displayed on the toolbar is the desired
matte color of your image.

2. Taking into account the desired aspect ratio of the image, calculate its new
dimensions.

3. Use Image → Canvas Size... to open the Canvas Size dialog, and replace the dis-
played (current) values with the new values.

4. Anchor the existing image area to the appropriate corner or edge, if necessary.

5. Repeat steps 2–4 as needed until the desired matting has been added to the image.

The Canvas Size dialog can also be used to add a border to an image. To obtain that
result, set the desired background color, activate the “Relative” checkbox, and supply
values equal to the weight of the border that you want to apply.

Resampling: Altering the Absolute Size of an Image
The Image Size dialog is similar to the Canvas Size dialog, except that it effectively alters
the resolution of an image. I offer the following guidelines for its use:

• Unless you intend to “squish” an image, leave the Constrain Proportions option
selected.

• Alter the Width and Height values in the dialog, not the Resolution value.

• Avoid upsampling (enlarging) images whenever possible. If you must upsample an
image, minimize the upsampling factor. Any factor greater than +10% will create
obvious blurring in areas of high contrast.

• If you downsample an image by a factor more than –20%, use the Unsharp Mask
Filter (Filters → Sharpen → Unsharp Mask) to reduce the blurring that will occur
in regions of high contrast, as demonstrated in Figure 11-3. With experimentation,
you’ll hit upon an appropriate combination of Amount, Radius, and Levels values.

• If you’re working with an image that is free of obvious compression artifacts, use
the bicubic algorithm for resampling images. When there are obvious compression
artifacts, use the bilinear algorithm instead. The Nearest Neighbor algorithm is
provided specifically for creating a “zoomed” (and thus pixellated) appearance at
nonfractional factors of amplification.

Figure 11-2 shows these guidelines in action. In all cases, it’s best to create a copy of
an image resampled to the resolution at which you expect to display it on a site, instead
of letting the browser or the server do that work for you. Offline image processing tools
allow you to set output quality as the guiding parameter for resampling an image, while
both browsers and servers will instead attempt to resample images at the lowest possible
resource cost at the expense of quality.

182 | Chapter 11: Images and Multimedia

Level Changes: Optimizing the Contrast of Photographs
A perfect photograph straight from the camera is a rarity, because at the moment the
shutter opens, there are so many environmental factors at work that are beyond the
photographer’s control.

One of the most important tools used to correct flaws in Photoshop is the Levels dialog
(Image → Levels), which is used to directly alter the channel balance of digital photos.
There are five sliders on the dialog, each of which alters the gamut (i.e., range) of a
given channel: the upper three by increasing it, and the lower two by reducing it. These
are functional contrast and brightness controls, but the presence of the histogram in
the dialog makes it possible to discover exactly where the limits of a photo’s color gamut
should lie, instead of applying changes on a static (and essentially arbitrary) scale.

Levels dialog examples are shown in Figure 11-4. The first instance shows the levels
histogram of an unaltered photograph, the second shows the gamut adjustments made
with the guidance of the first histogram, and the third shows the appearance of the
histogram after the gamut adjustments have been applied. The banding in the last
capture is owed to the rounding used to apply the gamut increase, and the best way to

Figure 11-3. Three views of a single inset: at original size, at one-third original size, and at one-third
original size after an application of the Unsharp Mask filter

Image Production | 183

correct that is to resample the photo. When the photo is resampled regions of high
contrast are interpolated, which tends to fill in the empty bands.

A good guideline for optimizing photo contrast can be stated as follows:

When a levels histogram peaks somewhere in the middle, the most effective contrast
adjustments are made by pinching the graph by its “shoulders.”

Figure 11-4. Three instances of the Photoshop Levels dialog that reflect an increase in image contrast

184 | Chapter 11: Images and Multimedia

Applying Multiple Adjustments
When more than one of the adjustments described earlier need to be applied to an
image, they should be applied in the following order:

1. Cropping: If the levels of an image are adjusted before it is cropped, the adjustments
will be made to fit to a different histogram than the one that describes the cropped
image.

2. Levels: Without subsequent resampling, the gaps in a photo’s gamut will simply
be shuffled around, not removed.

3. Resampling: Resampling an image after a level adjustment allows an image pro-
cessing program to interpolate high-contrast regions of an image, an opportunity
that is lost if resampling is done first.

4. Matting: The same interpolation that fills gaps in a resampled image’s histogram
will also blur the interior edges of a matted image, unless the resampling is the first
of those two actions to occur.

Working with Color Profiles
As was pointed out in Chapter 9, what you see when creating or implementing a site
design is not necessarily what your visitors will see. Hardware quality is the most sig-
nificant contributor to such deviations, but the assumptions under which hardware is
configured also play a role.

Every medium commonly used to display web documents—e.g., liquid crystal diode
(LCD) screens, cathode ray tube (CRT, TV-type) screens, projectors, sheets of multi-
purpose paper, coated paper—has different physical characteristics that define how it
displays color. These media are all manufactured under certain assumptions about the
gamut of colors they will display, and the level of ambient light available to the viewer.
All of these factors (and others) affect the colors seen by the consumer of your content,
so graphics files often contain color profiles that define the color reproduction charac-
teristics of the tools used to create them. Figure 11-5 describes the relationship between
device and media color profiles.

In the mid-1990s, Microsoft and Hewlett-Packard approached the challenge of differing
display media by publishing the sRGB color space, a physical description of color that
can be used in the design and calibration of electronic display hardware. The sRGB
color space is endorsed by the W3C, and is incorporated into the specification of Scal-
able Vector Graphics (SVG), one of two graphics file formats created in the course of
the W3C’s activities.

sRGB is not the only color space in use, but it’s the most common one on the Web.
Apple’s Safari browser applies International Color Consortium (ICC) profiles as a mat-
ter of course, and Firefox 3 offers ICC profile support that ships in a disabled state.

Working with Color Profiles | 185

Consider the following guidelines when working with color profiles:

• If your display includes an sRGB color setting in addition to a list of white points,
set the sRGB option. Otherwise, maintain the white point set at the factory.

• If an original image file contains an embedded profile, convert its color space to
sRGB when you open the image for manipulation.

• In Photoshop, the Save for Web dialog strips color profile data before writing an
image to disk. Avoid its use if image quality takes priority over file size.

It’s safe to assume that an image without color profile data will be displayed in the
sRGB color space. This is why images should always be converted to the sRGB color
space before they’re uploaded to a web server.

Image Optimization

Choosing the Right Image Format
Three image file formats are reliably supported on the Web:

Graphics Interchange Format (GIF)
GIF is the oldest of three file formats in use on the Web, and is typically used for
images with large areas of flat color.

Joint Photographic Experts Group (JPEG) File Interchange Format
As suggested by its name, the JPEG format is especially well-suited to photographs,
and is supported by all digital still cameras. The JPEG format is also the only pop-
ular format that reliably supports embedded color profile data.

Portable Network Graphics (PNG)
The PNG specification was drafted and approved by the W3C as a direct response
to the technical and patent limitations of GIF. In fact, PNG is superior to GIF in

Figure 11-5. Five stages of color management: creation, upload, alteration, transmission, and
consumption

186 | Chapter 11: Images and Multimedia

nearly all respects except for one—Internet Explorer 6 does not support PNG alpha
channels as a matter of course. This issue is discussed in Chapter 14.

A fourth format, called Scalable Vector Graphics (SVG), is actually a dialect of XML.
While SVG offers a number of impressive features—and, like PNG, is a categorically
open format—it’s incompletely supported by common web browsers (and in Internet
Explorer’s case, not at all).

If an image is a line drawing, or contains large areas of flat color, it should be saved in
GIF or PNG format. PNG is preferable if more than one level of transparency (i.e., on
or off) is required.

Photos should always be saved in JPEG format. Applying JFIF encoding to nonpho-
torealistic images is a trickier proposition, as JFIF is a “lossy” compression format that
assumes gradual but large contrast gradients between regions of an image. An image
that fails to meet these assumptions will be populated with jarring compression
artifacts.

Finding the Happy Medium Between Size and Quality
Before compression is applied, there are two easy ways to reduce an image’s file size:
by reducing its footprint (downsampling), and by reducing its contrast. Both of these
have a direct and almost universally negative effect on image quality, so they should be
applied carefully.

The two methods reduce image file size in different ways. In downsampling, the number
of pixels that need to be compressed are reduced logarithmically—in other words,
quickly in relation to the incremental decrease in an image’s dimensions. Reducing
contrast slightly to moderately is also effective because it reduces the brightness range
of the image, which is suited to the strengths of both lossy (JPEG) and lossless (GIF,
PNG) compression formats. This assertion is discussed at greater length on this book’s
companion website.

Given a running instance of Photoshop and a stack of images that need to be manipu-
lated for site production, the remaining question is one of the quality index of the
output. In the case of JPEG images, quality indices are controlled transparently by the
JFIF codec. In the case of GIF and PNG images, quality is more subjective; a technician
reduces the quality of these images by reducing color depth and indexing the colors
that remain, which may introduce a requirement to dither an image. Generally speak-
ing, the best settings for GIF and low-quality PNG images are to be found in an Indexed
Color mode, at a depth of 2, 16, 64, or 256 colors.

Once you choose a color depth for a production image that will be subjected to lossless
compression, you’ll then need to choose a dithering method. Photoshop offers four
options when you index an image’s colors, listed here in typical rank of output quality
at low color depth:

Image Optimization | 187

1. Pattern

2. Diffusion

3. Noise

4. None

These rankings are somewhat subjective; the lower an image’s contrast or number of
significant colors, the less likely a casual visitor will be to notice an apparent misjudg-
ment of palette and dithering settings.

Publishing Images
Publishing images might seem like a straightforward task, but that’s not always the
case. Destination folders, filenaming conventions, and Content Management System
(CMS) behavior are relevant to image publication, to degrees that vary on a per-project
basis.

Keeping Images Organized
If a site has reasonably high production values, it will likely incorporate dozens or
hundreds of images. Larger sites, especially those operated by social networking serv-
ices, often store hundreds of thousands or even millions of individual image files.

So if you’re the one who needs to keep them all organized, what do you do?

In some ways, the organization of a site’s image assets is a mirror of the organization
of the site itself; the only major cognitive challenge of image management arises when
you have so many images to organize that you need to spread them across multiple
directories. For small sites, my approach is to upload files to an /images directory and
name them with series of tokens, for example:

/images/bg_sidebar_contact.jpg

When generalized, that comes across as:

type_pagescope_sitescope.ext

There are other tokens you can add: subject descriptors, artist surnames, and produc-
tion dates all offer legible clues about an image’s content, at least to a maintainer who
is familiar with the site.

Filename tokens can follow whatever order you feel is most appropriate. I choose to
put a type token first, because in my experience it makes file listings easier to scan.

On larger sites, it may be better to create an images directory for each major section of
the site. So that instead of /images/article_photo_reports_2009q2_factoryfloor.jpg, you
might instead use an src value like /reports/images/article_photo_2009q2_factory-
floor.jpg while reserving the root /images directory for accents that are common to
multiple sections of the site.

188 | Chapter 11: Images and Multimedia

Another challenge is handling the disposition of content that’s been revised. On large
sites your best choice is to store all content in a Revision Control System (RCS) such
as Subversion or Git. When revising smaller sites, you can usually manage by creating
a directory that includes some kind of time reference (such as a datestamp or an iteration
codename), copying the “old” files into that directory, and uploading the “new” files
in their place.

Image Publishing and Management in a CMS
Many images on user-managed sites will be stored in a location that can only be accessed
safely from a Content Management System (CMS) control panel. At first glance this
doesn’t seem like a bad outcome; when image manipulation extensions are installed,
the CMS can automate src values and create image previews on demand. However,
there are a number of downsides that site operators need to take into account:

• Preview gallery interfaces are tedious to use.

• File naming conventions are either too strict or too lax, compounding the tedium
of management via preview galleries.

• Implementation and behavior vary from one site to the next, depending upon the
underlying CMS and its installed extensions.

• Image styling is unforgivingly strict out of necessity, a reality that many casual users
are unable or unwilling to accept.

Managing these downsides calls for a number of strategies:

When possible, use publishing tools that store images themselves in an accessible directory
of the host filesystem

This approach poses its own share of drawbacks, and in fact the question of how
to store images within a CMS is one of the most contentious among CMS devel-
opers. However, storing images in the filesystem makes it far easier for professional
maintainers to update images quickly and on short notice.

Use publishing tools with control panels that support fulltext search against image names
and descriptions

In practice, such search tools are slow and often return badly sorted or unreliable
results, but when the alternative is constantly paging through hundreds of gallery
preview pages, you take what you can get.

Develop expertise in one CMS platform in preference to others
Such a step is a matter of developing good habits; every tool has its bugs and pe-
culiarities, and your best weapon is experience.

Write a strict guide for house style, and ensure its enforcement
For many readers this is impractical, but others will discover that educating casual
users about the “Garbage In, Garbage Out” principle to site presentation will reap
benefits far out of proportion to the time invested. The concept of style guides is

Publishing Images | 189

introduced in Chapter 5, and discussed in greater detail on this book’s companion
site.

Maintaining the production values of user-managed content is among the more daunt-
ing tasks faced by the conscientious developer, and it’s best done in cooperation with
trained users and reasonably powerful Content Management Systems. In less carefully
managed environments it might be necessary to let things lie, which usually means
letting users correct their own mistakes whenever possible.

Image Publication Etiquette
Since images fall in the same access regime as pages, the practice of assigning src values
is no different from the practice of assigning href values. The simplicity of this imple-
mentation beguiles the inexperienced and unscrupulous into publishing images on
their own sites that are actually hosted on the sites of others.

When it comes to images, be sure that you’re neither unscrupulous nor naive.

Best practice of image publication requires that the following conditions be met:

1. Permission, whether expressed or implied, to publish an image in the context of a
URI under your control has been granted by its rights holder.

2. Appropriately conspicuous credit is given to images’ creators, or at least to their
rights holders.

3. Image files published in the context of URIs under your control are also hosted
from URIs under your control.

Failure to meet the first condition violates copyright law, failure to meet the second is
supremely rude, and failure to meet the third consumes network resources that some-
one else is paying for (which amounts to theft).

The request header of any image requested via the img element includes the relevant
document URI in its referrer field. If you find yourself the victim of a site operator who
is violating the third condition, you can reconfigure the web server to check the referrers
of image requests, and issue a 3xx–5xx series reply to requests not referred by URIs
under your control.

Styling Images and Plug-in Content
The layout behavior of inline-block elements, such as images, makes it rarely ideal to
publish images without the benefit of at least some styling.

Composing Image Layout Within a Column
In practice, it will become a habit to justify images to column margins, or center them
within their parent column; the styles used are shown in Figure 11-6.

190 | Chapter 11: Images and Multimedia

The property/value pairs shown include an explicit reference to display: block, which
is provided to normalize layout behavior. When used with a class selector, it can also
reduce the work required to style accompanying captions.

Captioning Images
Adding a caption to images formatted like those suggested by Figure 11-6 is most easily
done in one of two ways:

• Mat the original image, set bitmapped type in the new negative space, and supply
values for the alt and title attributes that reflect the caption text.

• Follow the image with the caption text, and enclose both in a div element (or less
often a paragraph) that’s supplied with layout styles similar to those suggested in
the figure.

The first of these captioning implementations requires less markup than the alternative,
and ensures that the image will always be presented in an apparent context. Its principal
drawback is that it increases bandwidth use out of proportion to the amount of added
content. That bandwidth increase is worse with respect to photos compared to other
types of images, because the mixture of flat color and photorealism means that you’ll
need to use a higher-quality index than you would for the photo alone.

In the event that a caption integrated with an image needs to be hidden, the image as a
whole can be enclosed in an element that has its height and overflow values set to
truncate the caption. For example:

div#altProductPhoto {
 float: left;
 width: auto;
 height: 176px;
 overflow: hidden;
}

Figure 11-6. Typical CSS property/value pairs for formatting inline images

Styling Images and Plug-in Content | 191

If instead you choose to provide a caption in plain text, you would assign styles like the
following:

div#productPhotoWithCaption {
 float: left;
 width: 176px;
 margin: 0 9px 9px 0;
 font-size: small;
 font-style: italic;
}

In all cases where a plain-text caption is published, its parent div should be assigned
a class or id value that reflects the presence of a caption.

Working with Previews (Thumbnail Images) in a Gallery
or Slideshow Setting
There are two common resource types that offer similar layout challenges: gallery/
slideshow previews, and application interfaces. Their implementation poses challenges
at both the theoretical and practical levels, mostly because of the peculiar behavior of
replaced elements. There are plenty of solutions to these challenges; you can use div
elements with classes, lists, or even tables, and not go (too) wrong.

In my experience, the best compromise between anonymity and brevity utilizes ordered
or unordered lists, especially if the page design intends an entirely arbitrary number of
images within a given set of previews. Definition lists are also a possibility for captioned
images, if you can predict the exact dimensions of your layout in advance. By relatively
positioning the containing dl and absolutely positioning its various dt and dd elements,
you can nail down each image and caption to precise coordinates with little trouble.

However, before you can act on this, you need to consider your conditions:

• Do all of the images have the same dimensions?

• If images are differently sized, can they be matted or cropped to force them all to
the same size?

• If not, how do the images and their labels need to be aligned?

The first two questions hint at the desirability of ensuring that all of your preview images
are the same size. Images of the same size create shared margins, which make the re-
sulting layout more legible. Furthermore, ImageMagick, GD2, or other image manip-
ulation libraries can be used to handle the process of cropping or matting images on
the server. The use of ImageMagick for exactly this purpose is discussed in Shelley
Powers’s Painting the Web (O’Reilly).

In general, sound layout of image previews and other float-heavy content follow a
simple guideline:

When working with contiguous, floated elements, you’ll be forced to choose between
predictable dimensions and empty clearing elements to control vertical composition.

192 | Chapter 11: Images and Multimedia

Clearing elements are discussed at length in “Canceling float Values with Correspond-
ing clear Values” on page 87.

By way of illustration, assuming an unordered list and thumbnail images consistently
sized at 240×180, we wind up with styles not unlike those discussed just discussed:

ul#thumbs { margin: 0; padding: 0; list-style-type: none; }
 ... li { display: block; float: left; width: auto; padding: 15px; }
 ... li img { display: block; width: 240px; height: 180px; }

As suggested, identically sized previews are worth the effort when it comes to element
styling; regardless of the size of the images themselves, you should be certain that all
image containers share either a common height or a common width. This is due to the
behavior of elements to which float: left has been applied, as demonstrated in Fig-
ure 11-7.

Figure 11-7. Float behavior demo

In the figure, element 6 is pushed below element 5 because otherwise it would overflow
its container. If it were wider than the space available between element 4’s element box
and the right margin of their shared container, it would be pushed below element 2
instead.

Element 7 would overflow its container if placed adjacent to element 6 in the default
flow, so it’s instead placed immediately below element 6 and pushed as far to the left
as necessary under the circumstances—all the way to the left margin of its container.
In the absence of an overflow or overlap condition, an element box must share a top
margin with a floated predecessor, which explains the location of elements 2–5 and
8–12.

By ensuring that series of contiguous floated elements share common dimensions,
their layout behavior can be reliably predicted, which minimizes the difficulty of trying
to avoid layouts like the one shown in the figure.

Styling Images and Plug-in Content | 193

Lightbox: Previews, Galleries, and Slideshows
Content specialists and designers who are bereft of JavaScript skills or who require a
third-party tool to manage large numbers of image-heavy content should investigate a
tool called Lightbox. Lightbox is an ongoing project undertaken by an independent
designer/developer Lokesh Dhakar.

There’s a good chance that you’ve seen Lightbox (or one of its imitators or spinoffs)
used on other sites. If you’ve ever clicked on a preview image to see a windowshade
effect open onto an image over a darkened canvas, you were likely interacting with a
production instance of Lightbox.

Lightbox runs entirely within the browser, and its current version also relies on public
JavaScript libraries. Implementing Lightbox is straightforward:

1. Upload your full-size images to the directory of your choice.

2. Upload and reference the various CSS and JavaScript files associated with Lightbox
as directed.

3. Insert the markup for your previews as a series of a elements that link to the images
uploaded in step 1, specifying rel="lightbox" on each.

Lightbox is not an ideal solution for all projects, but if you have a need for shiny effects,
a lack of JavaScript knowledge, and a tight deadline, it can be an excellent tool for
presenting previews, galleries, and slideshows.

SlideShowPro
If Lightbox and custom-built slideshow code libraries are inadequate your needs—for
example, in the face of a requirement to make slides maintainable by nonspecialist
users—you can take things a step further by licensing and installing a tool called
SlideShowPro, a popular slideshow presentation platform for enterprise sites.

Created by Todd Dominey and marketed through his company Dominey Design,
SlideShowPro plays to the strengths of Flash by providing a simplified platform for the
kinds of transitions and effects that are especially appropriate to slide presentations.
It’s true that vendor extensions to JavaScript provide much of the same functionality,
but usually at a higher resource cost, since JavaScript deployment requires that each
browsing platform be tested separately and at length. By comparison, SlideShowPro is
exhaustively documented and on average easier to use for slideshow and gallery pre-
sentations. In the face of these benefits, the only justification for using a pure JavaScript
solution is to reduce dependencies (i.e., on Flash in addition to the various browser
platforms on which you develop your sites).

Successful implementation of SlideShowPro requires that you are able to create or ob-
tain a Flash file and load SlideShowPro-specific assets into it. Once those steps have
been taken, there are a number of ways to create and reference slides:

194 | Chapter 11: Images and Multimedia

• Upload the files directly to your site via FTP and reference them via XML

• Use a Really Simple Syndication (RSS) vocabulary to reference materials that are
already online

• Install a sister application called SlideShowPro Director that will accept web up-
loads, insert your images into a database, and generate the needed XML files on
demand

Adding Motion and Sound: Using SWFObject to Insert Flash
Videos and Presentations
Apart from the traditional web stack, Adobe’s Shockwave Flash platform is currently
the most popular tool used to integrate audio and video with traditional web content.

Those who want to simplify the process of publishing compiled Flash presentations on
their sites should consider using a piece of openly available JavaScript called
SWFObject, created by Geoff Stearns. SWFObject uses the DOM API and other inter-
faces to work around the hassles that accompany Flash content, in particular version
detection.

Given production-ready Flash content and the current swfobject.js file on the web
server, a developer need only call the swfobject.js file via a script element in the head
of the document, insert a line of markup into the production document, and follow
that markup with another brief fragment of JavaScript that creates an application-
specific SWFObject object. That object in its turn modifies the preceding markup to
create and populate the element that contains the desired Flash presentation.

It is also possible to write your own standards-compliant object markup and execute
the SWFObject script solely to gain access to version detection and other features.

As you’ll see near the end of the chapter, HTML5 is introducing new
solutions to address audio and video more directly, without Flash.

If you have a bare video file that needs to be placed online and you choose Flash as
your playback environment, simply using SWFObject to publish a presentation isn’t
enough. You’ll need to take the following additional steps to prepare your footage:

1. Store to disk

2. Resample

3. Re-encode

4. Create or license the SWF used for playback

5. Upload both the finished FLV and its SWF playback container as needed

Adding Motion and Sound: Using SWFObject to Insert Flash Videos and Presentations | 195

At a practical level, many of the particulars of steps 1–3 are governed by your choice
of postproduction software. The subject of web video postproduction easily warrants
a book of its own (which I look forward to seeing in bookstores someday).

In most professional settings, you will use an SWF file that can serve as a wrapper for
multiple FLV files; the details of how to fit those together also differ from one setting
to the next.

Inserting Unwrapped Multimedia
If you look around the Web, you’ll notice that every site offers its own instructions for
embedding multimedia into your own content. YouTube offers markup like this:

<object width="425" height="344">
 <param name="movie"
 value="http://www.youtube.com/v/iG9CE55wbtY&hl=en&fs=1&rel=0"></param>
 <param name="allowFullScreen" value="true"></param>
 <param name="allowscriptaccess" value="always"></param>
 <embed src="http://www.youtube.com/v/iG9CE55wbtY&hl=en&fs=1&rel=0"
 type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen=
 "true"
 width="425" height="344"></embed>
</object>

Vimeo offers markup like this:

<object width="400" height="270">
 <param name="allowfullscreen" value="true" />
 <param name="allowscriptaccess" value="always" />
 <param name="movie" value="http://vimeo.com/moogaloop.swf?clip_id=4841397&
 server=vimeo.com&show_title=1&show_byline=1&show_portrait=
 0&color=&
 fullscreen=1" />
 <embed src="http://vimeo.com/moogaloop.swf?clip_id=4841397&server=vimeo.com&
 show_title=1&show_byline=1&show_portrait=0&color=&fullscreen=1"
 type="application/x-shockwave-flash" allowfullscreen="true" allowscriptaccess=
 "always"
 width="400" height="270"></embed>
</object>

And Odeo offers markup like this:

<object type="application/x-shockwave-flash"
 data="http://static.odeo.com/flash/player_audio_embed_v2.swf" width="325"
 height="60"
 id="odeo_audio">
 <param name="movie" value=
 "http://static.odeo.com/flash/player_audio_embed_v2.swf" />
 <param name="FlashVars" value="jStr=[{'id': 24363363}]" />
</object>

All three examples nest an embed element (which lies entirely beyond the scope of the
HTML 4 specification) within an object element (which doesn’t). This is done because
in addition to param elements, object elements can contain fallback content that will

196 | Chapter 11: Images and Multimedia

be loaded if the browser cannot load the content specified in an object element. Ideally
this fallback content will be nothing more than an image with a touch of explanatory
text, but thanks to the application of Postel’s Law (be conservative in what you send,
and liberal in what you accept), there’s no practical reason why embed elements cannot
also be used for fallback purposes.

A Tale of Three Companies
In the founding era of the Web, one browser vendor—Netscape—came out especially
strong, while Microsoft and smaller players took their time getting up to speed. The
role of CSS in the resulting battle for market share was discussed in “Vendor Priori-
ties” on page 44; a similar schism developed with respect to multimedia embedding,
with a similar result: Microsoft’s implementation won the day on paper, but Netscape’s
proposal (or rather its consequences) hung on for the next several years. Only recently
has the W3C-defined element for multimedia publishing—object—enjoyed anything
remotely like a workable level of cross-browser support. The embed element, on the
other hand, was the first out of the gate, and was the only multimedia-embedding
element supported on Netscape’s original rendering platform.

Atop the hassles of cross-browser support, a corporation called Eolas, which exists
solely to obtain intellectual property and license its use, successfully sued Microsoft in
1999, on the grounds that Microsoft’s implementation of the object element infringed
on Eolas’s corporate rights. That litigation further clouded the issue, and forced
Microsoft to change the way that Internet Explorer behaved when loading multimedia
content.

Finally, Microsoft’s support for the object and param elements is closely tied to its own
APIs, so that in practice developers who are called upon to rely on Windows Media
Player for playback facilities are best off subscribing to Microsoft vendor programs for
the sake of gaining access to complete documentation. Larger shops can easily afford
that degree of support, but individual freelancers who need to spread their focus across
multiple operating system platforms cannot necessarily justify such costs, which can
run into the hundreds of dollars per year.

Enter Flash
Most problems with audio/video content on the Web are exposed to the end user in
terms of encoding, which is almost, but not entirely, synonymous with compression.
Imagine how much grief would be caused if each operating system vendor had its own
peculiar approach to compressing image content; this is why video is such a burden to
implement. There’s exactly one A/V encoding format (MPEG1) that’s broadly suppor-
ted on all systems out of the box, and it happens to be the oldest and least efficient
encoding format in popular use. All other encoding formats are supported by specific
software titles, and one of those is Adobe Shockwave Flash.

Inserting Unwrapped Multimedia | 197

The virtue of Flash is that it has an uncommonly high penetration rate—roughly 99%
on desktop platforms, according to Adobe. No other single software title is nearly as
ubiquitous on personal computers; even Microsoft Windows (without respect to its
versions or accompanying web browsers) has a U.S. market share that can be generously
estimated in the 90–95th percentile at the time of publication.

YouTube and other sites built to capitalize on the demand for opportunities to publish
and view user-generated A/V content served to demonstrate that Flash video was not
only practicable but easy, which more or less vaulted Flash to its preeminent position
among A/V playback platforms.

SWFObject (which was originally written by one of YouTube’s engineers) gets Flash
into web documents without any trouble—but what about other programs such as
QuickTime and Windows Media Player? What’s to be done when you don’t have access
to an appropriate SWF container for a Flash video? How do you embed plug-in content
without writing invalid markup?

Using Bare Markup to Publish Multimedia Content
Avoiding the embed element when embedding A/V content is difficult when you’re
working from scratch, but as it turns out, someone has already done the testing-and-
tweaking required to work with plug-in content and write valid markup.

Our benefactor is a gentleman by the name of Simon Jessey, who since 2006 has been
maintaining a set of tested and valid object markup examples at the Dreamhost wiki.
The samples available at the time of publication include markup appropriate to:

• Flash

• QuickTime

• Windows Media Player

This list might seem short at first, but those three playback environments manage in
aggregate to cover nearly the entire web user population.

The current iteration of Jessey’s work is available at http://wiki.dreamhost.com/Object
_Embedding.

A Caveat of Plug-in Content Styling
The problem with plug-in styling is that by their very nature, plug-in instances resemble
modal dialogs more than typical elements; a plug-in instance is more like a window
inside of a window, and less like normal web content. If you decide to use advanced
layout techniques on pages that display plug-in content, the best way to deal with that
peculiarity is to ensure that in all cases the plug-in content does not overlap onto other
elements or select controls. Otherwise, you might well discover that your other content
is hidden without recourse.

198 | Chapter 11: Images and Multimedia

Sidestepping Plug-ins with the HTTP Content-Disposition Header Field
It’s not unheard of for a site operator to recommend that visitors use their context menu
options to initiate a file-saving action. This option is called “Save Target As...” in In-
ternet Explorer, “Save Link As...” in Firefox, and “Save Linked File As...” in Safari.
Better yet, situations like this can be handled without the need to provide user
instructions.

If you don’t want to annoy your users or stumble into support issues, you can force a
file download dialog in lieu of presenting content for playback in the browser canvas.
This is accomplished by sending a line like the following in a reply header:

Content-Disposition: attachment; file=/video/developers.avi

As with other custom header data like Content-Type, this is usually best handled by
using the HTTP API of your preferred server scripting language. The result is that along
with a normal page, the browser will begin to save an additional file (developers.avi in
these case) in the preferred destination folder specified by the visitor’s browsing pref-
erences, or will present a Save As dialog. One extremely popular site that presents this
behavior is download.com.

With careful planning, you can also use the return value of an XMLHttpRequest function
to obtain this behavior without forcing a complete page redraw; the critical action is
to add a proper Content-Disposition field to the HTTP response.

Keeping an Open Mind
Despite its obvious value, multimedia publishing has been the target of significant
venom throughout the Web’s history. Much of that is owed to the ubiquity of poor
presentation design practices. Even so, the people who order the work and write the
checks tend to be fond of the bells and whistles found in multimedia presentations. It
is the web developer’s job to ensure that multimedia content is published with com-
patible standards of usability, resource cost, production values, and forward-
compatibility.

The video and audio Elements (HTML5)
The video and audio elements finally make video and audio first-class citizens of the
Web. Elevating video and audio to first-class citizenship means:

• It’s as easy to put video and audio content into web documents as it is to put in
text, hyperlinks, and images.

• It’s possible to use video and audio in combination with other core web technol-
ogies; for example, applying SVG filters and CSS styling to video content.

The video and audio elements help achieve these goals by enabling video and
audio content to be directly embedded in web documents without needing to rely on

Inserting Unwrapped Multimedia | 199

plug-ins. And the associated HTMLMediaElement interface that both elements share allows
audio and video content to be programmatically manipulated through DOM scripting,
just as other first-class web content can be.

Embedding a video

The following example shows how you can insert video into an HTML5 document,
complete with a set of playback controls:

<video src="video.foo" controls="controls"></video>

In this example, the purpose of the src attribute is analogous to the purpose of the
src attribute on the img element: it provides the URL of the video file to embed. The
purpose of the controls attribute is also straightforward: it tells the browser to expose
a set of playback controls to enable users to play and pause the video, as well as actions
like changing the audio volume level, seeking through the video to any arbitrary point,
and having it play in full-screen mode or in a separate window. In short, the purpose
of the controls attribute is to offer exactly the same kind of controls as a typical em-
bedded media player provided by a third-party plug-in. The difference is that in the
case of the video element, the browser itself generates the controls and directly interacts
with the video content, rather than handing off those tasks to a plug-in.

Supporting alternative video formats

If you’re a particularly sharp reader, you may have noticed that the previous example
uses a video file named parrot.foo, and in your experience there is no commonly used
video format that has a .foo file extension. And you would be right. You are meant to
imagine that instead of .foo, the file ends in some other extension that corresponds to
a standard video format that’s supported across all current browsers.

The problem is that in reality, there currently is no single video format that’s supported
across all browsers—Firefox supports Theora-encoded Ogg Vorbis files, while Safari
appears likely to settle on support for H.264-encoded MPEG4 files. There are some
ongoing efforts among vendors to try to get agreement on a standard video format, but
such efforts will take quite a while to reach resolution.

Making video available to the widest number of users will require encoding the video
in multiple formats and, in place of using the src attribute on the video element itself,
putting source elements as its contents, as in the following example:

<video controls="controls">
 <source src="parrot.ogg"/>
 <source src="parrot.mov"/>
 <source src="parrot.wmv"/>
 <source src="parrot.3gp"/>
</video>

A browser will look through each source element provided until it finds a video file in
a format that it’s capable of playing.

200 | Chapter 11: Images and Multimedia

Providing video content for browsers that don’t support the video element

Another case you’ll need to consider is how to provide video content to older browsers
that don’t support the video element. One way is to also include an object element that
embeds content by way of a third-party plug-in, as in the following example:

<video controls="controls">
 <source src="parrot.ogg"/>
 <source src="parrot.mov"/>
 <source src="parrot.wmv"/>
 <source src="parrot.3gp"/>
 <object data="parrot.swf" type="application/x-shockwave-flash">
 <param name="movie" value="parrot.swf"/>
 </object>
</video>

Of course, users who don’t have the necessary plug-in installed (or have it disabled)
won’t be able to view the content referenced by the object element either.

The canvas Element (HTML5)
No introduction to HTML5 would be complete without some mention of the canvas
element.

The canvas element is essentially an img element that’s dynamic instead of static. It is
a particular place in a page, with specific dimensions, where you can dynamically
(which is to say, programmatically) draw images and display animations and so on. It
can be used for things like dynamically generating charts and graphs, making in-
browser drawing/painting applications (or even in-browser text-editing applications),
and creating in-browser games—basically, the kinds of things that various browser
plug-in runtime environments like Flash currently deliver.

The CanvasRenderingContext2D API

Another way to look at the canvas element is essentially as one part of a two-part “Can-
vas feature” that also includes a programming interface, the CanvasRenderingCon
text2D API, which in practice is a necessary part of actually making use of the feature.
Contrast that with the case of other interactive elements that are new to HTML5, such
as the video element, which can be perfectly useful without needing to be scripted using
their related APIs. But you really can’t do anything with the canvas element, without
using it in conjunction with the CanvasRenderingContext2D API.

The details of actually developing canvas content basically boil down to details about
programming with the CanvasRenderingContext2D API in JavaScript, which is beyond
this scope of this book. The canvas element is less of a markup feature and more of
markup “hook” for hanging some programming on. There are plenty of examples and
write-ups elsewhere to help you get started, including a chapter in Painting the Web.

Inserting Unwrapped Multimedia | 201

SVG as an alternative to canvas

If you’re not already an experienced JavaScript programmer, canvas should perhaps
not be your first choice for delivering animations and interactive images as part of your
content. Instead, you might want to consider looking into SVG, and seeing if that does
the trick. If you’re primarily a markup author or designer, you’ll probably find the
declarative-programming approach that SVG uses—which is actually quite similar to
the declarative approach of CSS—much more familiar than the imperative-
programming approach on which canvas relies.

202 | Chapter 11: Images and Multimedia

CHAPTER 12

Web Typography

While certain parts of CSS—especially the float property—can be charitably described
as difficult, there are other parts that offer a terrific return on the investment of time
required to learn them. Font and text properties are among these easier aspects.

The material that follows is not intended as a complete property survey.
For a full overview of CSS properties and values, please consult this
book’s companion website. The following O’Reilly books, both by Eric
Meyer, might also prove useful:

• CSS: The Definitive Guide

• CSS Pocket Reference

This chapter starts with an introduction to the art of traditional Western printing,
which will go a long way to helping you understand why untrained stakeholders often
develop unrealistic expectations of the Web’s capacity for controlling presentation.

A Brief History of Letterforms
In the present day, when functional literacy lies within the reach of all but the most
impoverished and isolated, it’s easy to take writing for granted. In fact, writing systems
claim 5,000 years of steady evolution, and much of that change has taken place within
living memory.

The history of writing and printing teaches control—artists and designers have centu-
ries-long traditions of being able to exercise complete control over the impressions that
make their way onto the printed page. This is a far cry from the state of the Web, which
places many absolute limits on design control. The use of Adobe Flash to create web
content can lessen design constraints, but imposes burdens of its own, and no tech-
nology can make up for the fact that user environments vary widely.

203

Given the influence of formally trained graphic designers on the Web, it’s helpful to
know how their product has evolved, particularly with respect to type.

Origins of Modern Western Letterforms
Most of the world’s ancient civilizations developed writing independently, working to
preserve a permanent record of events—in effect, to augment memory.

This discussion of printing history blithely neglects Asian contributions,
due to a paucity of high-quality English language sources, ignorance on
the part of the author, and the fact that industrial-scale printing was
largely a European invention.

The Western alphabets in use today can be traced back ultimately to the diffusion of
Egyptian hieroglyphs to the Levant, about 3,500 years ago. This diffusion led to the
Phoenician alphabet, which in its turn formed the basis of the Greek alphabet. Greek
eventually led to Latin and Cyrillic.

The form of the classical Latin alphabet chiseled into Roman monuments is a subset
of modern print majuscules (uppercase or “capital” letters), while the later miniscules
(lowercase letters) evolved from Roman cursive in the early Middle Ages.

Written literature as we know it today did not start to take shape in the West until the
late Middle Ages, not long before Johannes Gutenberg invented his printing press. Until
then, writing continued to be performed almost exclusively by hand, mostly for making
and copying records.

Gutenberg’s Press and the Art of Typography
Gutenberg’s construction of the first mechanical press designed to use movable cast-
metal type changed the economics of publishing and led directly to the practice of
typography: the design of letterforms designed for specific purposes and specific du-
plication methods, usually according to the ebb and flow of artistic tastes among the
well-read. Among its many benefits, cast-metal type afforded a previously unheard-of
degree of consistency in the appearance of printed matter—consistency that we take
for granted today.

Press design, papermaking, and bookbinding enjoyed their share of innovations in the
centuries after the introduction of Gutenberg’s press, but innovation in typography was
slower: in the last quarter of the 19th century, printers were setting type just as
Gutenberg did.

The pace of innovation picked up with the introduction of hot type, which is cast in
lines on demand from molten lead ingots in a machine built for that purpose, then
arranged on the working surface of the press. The term “leading,” which is still

204 | Chapter 12: Web Typography

commonly used by contemporary graphic designers and prepress techs, is directly
comparable to the CSS line-height attribute, and takes its etymology from the strips
of cold lead inserted between fresh type castings to create negative space between lines
of type—a practice inherited from earlier centuries.

Later in the 20th century came the introduction of phototypesetting, which uses pho-
tosensitive compounds to create printing plates—an innovation of the lithography
process that by then had been used by printmakers for several centuries.

The Emergence of Digital Typesetting
The development of workable computerized typesetting happened within a few years
of the invention of the laser printer, and those two innovations were followed shortly
by the appearance of affordable computers that were capable of running software to
compose type.

The final pieces of the digital type puzzle were put in place by affordable laser printers
and user-friendly word processing titles with graphical user interfaces, which were fol-
lowed a few years later by full-featured desktop publishing suites. In the space of 20
years, computerized typesetting had evolved from single-column systems for cold
type—which did little more than duplicate the (rare) skills of an experienced hot type
operator—to off-the-shelf software suites that could run on broadly capable computers
and compose entire page layouts with graphics. By the early 1990s, both workstations
and printers were capable enough to set not only film-ready type, but film-ready graph-
ics as well.

In current offset printing practice, these digitally typeset layouts are exported directly
to a machine called a platesetter that creates resinous printing plates from the exported
raster data. Less frequently, layouts are laser-printed, photographed—thus the term
“film-ready”—and then fed manually as photographic negatives into a platesetter.

The accents of today’s digital typesetting landscape were added in 1991, when the
TrueType font format was licensed for use in Microsoft Windows. The TrueType for-
mat has since been joined in common use by the OpenType format, though as of this
writing, the distinction between the two is minimal with respect to web design.

Different Limitations Without Changed Expectations
For centuries, typesetting and printing have been tangible processes, and during most
of that time design limitations have been imposed far more by tools than by media. The
assumptions of web browser engineering turn this paradigm on its head: now the me-
dium itself poses nearly all of the limitations, while tools in the hands of an experienced
operator can produce almost anything imaginable.

A Brief History of Letterforms | 205

A Visual Glossary of Typography
Figure 12-1 shows a heap of terms that describe the parts and varieties of type, exploring
the physiognomy of individual letters.

Figure 12-1. Typography jargon for letterforms

There are many more terms site stylists should be aware of:

Blackletter
A style of type inspired by German calligraphy of the late Middle Ages, and strongly
identified with Germany to the present day. Sometimes called “Gothic,” but this
is an anachronism (see the entry for Gothic).

Condensed
A style of sans-serif font distinguished from others in its typeface by its narrow and
tightly spaced nature. Opposite of extended.

Copy
The generic term for a writer’s work product. Different from “text” since the latter
refers only to nonnumeric data in the most general sense; all copy is text, but not
all text is copy.

Diacritic
A glyph added to a letter to indicate altered inflection or pronunciation. Commonly
encountered examples include the acute accent (´), umlaut (¨), and cedilla (¸).

Dingbats
A collection (usually comprising a well-populated font) of characters that are sim-
ple drawings (e.g., musical notes, circuitry symbols) rather than members of a
standardized orthography.

Extended
The complement to condensed fonts. Letters are wider than in the normal fonts,
and letterspacing is usually more generous. Also referred to as “wide” and/or “extra
wide.”

Glyph
The atomic unit of a font, a single mark that contributes some degree of meaning.
(Many characters are composed of a single glyph, while others combine more than
one.)

206 | Chapter 12: Web Typography

Gothic
For the past century, reliably synonymous with sans-serif, so named because most
of the early sans-serif typefaces originated in Germany and the German-speaking
regions of Switzerland.

Gutter
Negative space between a text margin and rule, between two columns, or between
two passages of text, in many cases, controlled with the CSS padding properties.

Italic
A font evolved from its upright serif counterpart, through the addition of calli-
graphic accents. Usually skewed 5–10° clockwise from the upright. (cf. oblique).
So named because the earliest designs for these fonts were developed in Italy. Italic
fonts are drawn more narrowly than their “Roman” counterparts with the intent
of increasing the number of words that can be placed on one line.

Kerning
Atypical letterspacing in the middle of specific pairs of glyphs, particularly ones
that include A, f, j, J, L, T, V, W, w, and y. When neglected, enforces an illusion
that the letters in a given pair seem uncommonly (and distressingly) far apart. Some
combinations of operating systems, software, and fonts call for frequent manual
kerning of high-quality rasterized type.

Justification
Refers to the margin (or margins) to which lines of type are hewed. A left-justified
column starts all lines at a common left margin, a right-justified column ends all
lines at a common right margin, and all lines of a fully justified paragraph except
the last begin and end at common margins. This aspect of layout is controlled in
CSS with the text-align property. Oppose ragging.

Leading
As described earlier, the negative space between lines of type, so named and pro-
nounced because hot type castings were separated on the press by strips of cold
lead to create that space. Cognate (but not identical) to the CSS line-height
property.

Letterspacing
Consistent space inserted between individual glyphs within a passage of text. Con-
trolled by the CSS letter-spacing property (and to a degree by the word-spacing
property).

Lower-/uppercase
Synonymous with miniscule and majuscule letterforms, respectively. So called be-
cause printers once stored individual letters of a given cast type font in upper (ma-
juscule) and lower (miniscule) drawers.

Mono
An appellation used to distinguish fixed-width typefaces from their variable-width
counterparts.

A Visual Glossary of Typography | 207

Negative space (whitespace)
Any space on a page or canvas not occupied by type, illustrations, or rules. The
use of “whitespace” as a design term illuminates, but is a generalization, of its use
as a computing term.

Oblique
The sans-serif counterpart to italic, without calligraphic accents.

Orthography
The study and practice of writing; a single system of writing.

Ragging
The practice of removing all letter and word spacing from a passage so that text
does not justify to a margin. By default, web text that is left-justified is right-ragged,
and vice versa.

Roman
When used to refer to a typeface, “Roman” is generally synonymous with serif.

Rule
A line placed to one side of a block of text. Usually controlled with the CSS border
properties.

Sans-serif
A class of typefaces distinguished by their reliance on obviously geometric shapes,
consistently weighted strokes, and unadorned terminals.

Script
A class of typeface also referred to as cursive and designed to resemble continuous
handwriting; usually decorative.

Serif
Inspired by classical incised letters, serif typefaces are characterized by variable
weight strokes and the presence of serifs—slight feet or flanges, if you will—on
terminals.

Weight
The width of a rule, stroke, or font. When applied to text, weight is controlled by
the CSS font-weight property. Common font weights for print applications range
from hairline (lightest) to extra black (heaviest); the typical body copy weight is
sometimes assigned the appellation of “Medium” or “Book,” but usually takes no
special appellation at all. Figures 12-2 and 12-3 display specimens of these font
components in use. Figure 12-2 shows the Microsoft Core Fonts for the Web, while
Figure 12-3 shows the Safari/Macintosh and IE7/Windows system defaults for the
various font-family keyword values.

The nomenclature of character encoding is discussed later in this
chapter.

208 | Chapter 12: Web Typography

Figure 12-2. Commonly available Microsoft core font families

Figure 12-3. Defaults in various browsers for the serif, sans-serif, monospace, cursive, and fantasy
font-family keywords

A Visual Glossary of Typography | 209

Aliasing and Anti-Aliasing
The good news is that for centuries, typography has been a cornerstone of high aesthetic
standards.

The bad news is that during those centuries, it never occurred to anyone that their work
might need to be pixellated, as on an electronic display.

To make a long story extremely short, that means that most traditional typefaces look
awful on-screen. This is caused by aliasing, which is described visually in Figure 12-4.

Figure 12-4. An illustration of aliasing and anti-aliasing applied to 16px/12pt Helvetica: (1) original
against a pixel grid, (2) aliased, (3) anti-aliased at the OSX Medium setting, and (4) anti-aliased in
ClearType/Vista

Aliasing approximates the strokes of a letterform, which leads to an obviously “blocky”
appearance. For this reason, fonts that are not designed to account for aliasing tend to
look much different—and frankly uglier—than their print counterparts, an effect ex-
acerbated by the fact that human eyesight is keyed to differences in brightness.

210 | Chapter 12: Web Typography

Anti-aliasing attempts to undo some of aliasing’s damage to the ideal appearance of
on-screen lettering by smoothing edges, as shown in Figure 12-4. Anti-aliasing algo-
rithms create regions along the edges of letters where the difference between foreground
and background is interpolated gradually, which obscures the true degree of contrast
and allows more of the type’s hinting to be applied.

Hinting is the introduction of slight deviations to the outlines of letters. In print typog-
raphy, the most obvious hinting is applied to the crotches of letters like “k” and “v”
that would otherwise become obscured by bleeding ink during printing. By compari-
son, type designed for screen display is usually hinted to account for the effects of
aliasing and anti-aliasing.

The strongest disadvantage of anti-aliasing is that it tends to make small type nearly
illegible. Just as a downsampled image is subjected to considerable blurring, small type
with its low resolution becomes nothing but regions of contrast, as shown in Fig-
ure 12-5.

Figure 12-5. The functional result of reducing type size to decrease its resolution on electronic displays;
when anti-aliasing is applied to type at these small sizes, the results can be illegible

Aliasing and Anti-Aliasing | 211

One drawback of fonts designed for screen display is that they tend to
be more attractive at smaller sizes than larger ones. The reason for this
is revealed by common sense: since most copy is set at 12-point/16-pixel
and similar sizes, it makes the most sense to ensure that a typeface is
most readable at those sizes. For this reason the hinting, interior curves,
and stroke variations of screen-optimized type tend to be less complex.

On the other hand, optimization for display at smaller sizes makes
screen-optimized fonts seem excessively simple when rendered at larger
sizes and compared to their traditional counterparts. So goes one of the
principal reasons why designers often choose to use bitmapped head-
ings set in traditional fonts: the increased detail of print-originated type-
faces is preserved (and in some cases, actually enhanced) at larger sizes,
making them more attractive than their screen-optimized counterparts.

Type Styles, Readability, and Legibility
In publication design there are two complementary concepts that drive many typeset-
ting choices: readability and legibility. Readability is the quality of copy that makes it
easy to read in volume, for extended periods of time; legibility refers to the ease with
which data, words, and short phrases can picked out while a passage is being scanned.

Styling for Readability
Our expectations of book design illuminate the definition of readability:

• Serif typefaces

• 12–15 words per line

• Fully justified lines

• Moderate and consistent letterspacing

Upmarket press runs also often employ increased leading (20% or more of the body
copy size) and more detailed fonts, to ease the task of making out margins, lines, and
letters. This is due to the fact that profit margins on downmarket editions range from
poor to outright lousy, which creates a strong incentive to minimize manufacturing and
distribution costs—in other words, to reduce net paper costs.

In their turn, paper costs are reduced by using lower grades of paper in smaller quan-
tities. That being the case, there are more lines on each page, smaller page margins,
and—on account of paper quality—less-detailed fonts, which suffer less from the ink
bleeds that occur when lower grades of paper are used.

Paper costs aren’t a concern on the Web, so we can use the full arsenal of available tools
to enhance readability. For screen display, the result might be something like the
following:

212 | Chapter 12: Web Typography

#bodycopy p {
 width: 50em;
 font-family: Georgia,'Times New Roman',serif;
 font-size: 14px;
 line-height: 17px;
 text-align: justify;
}

However, the screen environment presents a challenge not found in books: the re-
quirement to scroll content means that lines of text actually move up the canvas. For
that reason, the default left-justification of body copy is usually maintained on websites;
when ragged right margins are used, it’s easier to pick out specific lines, a necessity for
tracking lines that actually move around.

Styling for Legibility
While readability is desirable for long passages of text, legibility is better suited to things
like headlines, brief passages, and data. Newspaper infographic (table) design provides
us with an excellent case study of legibility, and tends to obey some or all of the fol-
lowing principles:

• Sans-serif typefaces

• Larger type for headlines, smaller type for data

• Strict adherence to a grid

• Extensive use of rules at the margins of text/data, on one or both axes

• Row (or less often, column) background banding

• Flush justification—related columns of content are justified on their shared margin

Chapters 10 and 13 offer a number of detailed recommendations for styling legible
content in table and form contexts.

When working with left-to-right writing systems (as in English and European lan-
guages), the most legible text is typically left-justified and right-ragged, except in cases
where there’s a significant difference between the right margins of lines within a par-
ticular block of text. In such cases, legibility can be enforced by breaking lines with
the white-space attribute (explained in more detail shortly), right-justifying text, or
applying both solutions at once.

“The Fold” and Tiny Type
Imagine, if you will, a folded newspaper, displayed in a vending box or a newsstand
rack with the top half of the front page oriented toward the purchaser. The assured
visibility of the headlines and content to be found there force careful layout choices,
and stories “above the fold” are agreed to carry special cachet.

Type Styles, Readability, and Legibility | 213

The analogous space on a website is the immediately visible fraction of a home page or
landing page (see Figure 12-6), also called “above the fold” by many web user experi-
ence professionals.

Figure 12-6. A 1920×1080 browser window overlaid with the footprints of the area above the fold
under differing circumstances of browser window geometry

Many people consider the space above the fold to be the most valuable on a website,
and it can be tempting to crowd it—the logic being that with more content above the
fold, the more opportunities to entice a visitor.

This conclusion is misguided for the following reasons:

Clutter actually discourages visitors who are seeking specific information
The above-the-fold paradigm supposes that the typical visitor would rather leave
than scroll, a position that is sometimes carried to absurd extremes like ensuring
that none of the pages on a site require vertical scroll bars. However, scrolling is a
function of effort, and attempting to find the proverbial needle in a haystack of
home page clutter can easily consume more effort than scrolling.

Clutter reduces content differentiation
The presence of so many items within a layout ultimately leaves color as the only
means by which content can be differentiated. The founding attitude of the above-
the-fold paradigm may well lead to the use of many equally saturated colors, re-
sulting in epic ugliness.

214 | Chapter 12: Web Typography

The use of small type to cram content above the fold renders pages unusable to those
without excellent eyesight

You don’t even need to go online to test this assertion: just read through an entire
page of fine print on a contract, and ask yourself if the result is any more acceptable
on a website.

The variance in popular display resolutions means that content above the fold for one
group of users will be a thin strip for other groups

For visitors viewing higher-resolution displays, attempts to emphasize the area
above the fold at lower resolutions are completely overwhelmed by the surrounding
canvas space.

The insight gained from an examination of the above-the-fold fallacy is that smaller
body copy type should never be made part of a design, except for carefully considered
aesthetic reasons that will resonate with a majority of the site’s audience. Put more
directly, itsy-bitsy letters are neither cool nor useful, except in situations few and far
between.

Of course, this does not mean that content shouldn’t be carefully prioritized, with the
most important still at the top. Instead, the effort should be made to “layer” content
in levels on a grid.

Sizing Type
If there’s one thing that gets trained designers excited, it’s control over type. CSS de-
livers, for the most part; if a font can be rendered by a visitor’s browser, its character-
istics can be controlled by the stylist. This is especially important with respect to the
size of type, which follows some fairly basic rules:

• Trained designers who are stuck in a print-media mindset fail to grasp the degree
of control that most users have over type sizes. For this reason, it’s usually best to
set your baseline type size in pixels, for example:

body { font-size: 14px; ... }

and then control type size down the cascade with em or percentage units (which
are functionally identical). Stylists who work on sites targeted at large numbers of
IE 6 users may need to disregard this recommendation for usability reasons, which
become important because of IE 6’s complete inability to zoom text ultimately set
in px units.

• Heading sizes are set by the browser as a proportion of the base font size. It’s usually
best to preserve this behavior by relying on a comparable approach when assigning
heading resets, a step that allows headings to better withstand layout changes. If
you’re implementing bitmapped headings, you might find yourself adding
background-position values to your image replacement rules to account for this
change in approach.

Sizing Type | 215

• If you need absolute control over the dimensions of an element, set its content as
an image and supply the actual text in that image’s alt value. Such situations are
best avoided, but are sometimes inevitable in the real world.

• Avoid setting line-height values in pixels, unless you intend to pair each instance
of font-size with a companion that references line-height. Heading size values
are handled automatically in the cascade, and so are line-height values. This
means that if you set a line-height value in pixels for the benefit of your body copy,
the same static leading might be applied to larger type and produce illegibly solid
typesetting.

Choosing the Right Units for Sizing Type
When styling type for display in the browser, you can use one of four units to set its
size: pixels, ems, percentages, or keywords.

• Pixels (px) are absolute units, to a point; under normal circumstances, text sized
in pixels will have the same footprint in all environments regardless of the user’s
default text size or values established higher in the cascade. There are two pitfalls
to using pixel units: the first has to do with the limitations of Internet Explorer 6,
and the second is the risk of blowouts when text size is increased by the user beyond
the footprint of underlying background images or element boxes.

• Ems (em) and percentages (%) are relative; the value specified will be applied mul-
tiplicatively according to the value that is next highest in the cascade, even if that
value is the browser default. These multiplicative results are explained next for the
benefit of the math-impaired.

• Keywords can take one of seven values, and are related to default heading sizes.
The important thing to remember about size keywords is that they always render
type at sizes relative to the browser default established in the browser’s preferences
pane, with medium being equal to the explicit default (usually 16 pixels).

Em/Percentage Size Telescoping
When a font-size value expressed in ems or percentages is subject to the cascade, the
value applied is a multiple of the inherited size. Consider:

 body { font-size: 15px; }
.lede { font-size: 1.4em; }
.note { font-size: .667em; }

In the absence of intervening font-size values, the functional size of copy in .lede will
be 21px, and 10px in the context of .note.

For the sake of demonstration, suppose there’s another rule like this:

.lede em { font-size: 1.429em; font-style: normal; }

216 | Chapter 12: Web Typography

The suggested effect is to enlarge rather than italicize emphasized passages—the sort
of art direction that might be applied if the intent of the design is to convey whimsy or
brashness. Aesthetics and psychology aside, the two font-size values are multiplied
rather than added:

(15 × 1.4 × 1.429) ≈ (15 × 2) ≈ 30

The same telescoping effect works with respect to decreasing values as well. For that
reason, when I participate in forum discussions with newcomers to CSS, I intently (and
controversially) discourage people from using em or % units for font-size values of
the body element, because careless additions of progressively smaller font-size values
to descending stylesheet rules can lead quickly to illegible copy.

Size Keywords
According to the CSS 2.1 Specification, the seven font-size values relate to heading
sizes as described in Table 12-1.

Table 12-1. The relationship between font-size keyword values and heading sizes

Keyword xx-small x-small small medium (default) large x-large xx-large

Heading h6 — h5 h4 h3 h2 h1

Support for font-size keyword values evokes the size attribute of the legacy font ele-
ment, and the two share cognate values in practice.

Given vendor default text size settings in Firefox 3, Internet Explorer 8, and Safari 3/4,
the sizes of text set using font-size keyword values are described in Table 12-2.

Table 12-2. Default sizes (in px) of text set with font-size keyword values

xx-small x-small small medium large x-large xx-large

9 10 13 16 18 24 32

Working with Typefaces and Fonts
The ability to specify typefaces outside of markup is one of the greatest strengths of
CSS. On account of this, presentation of typography on the web medium is now a far
cry from where it was in its infancy, when all pages were set in a single typeface chosen
by the visitor.

The Challenge of Limited Choices
To make another long story extremely short, there are all of 16 typefaces available to
Windows XP that are appropriate for web use—and of those, 3 are functionally useless,
each for its own reasons. OS X offers a broader range of choices, but given its market

Working with Typefaces and Fonts | 217

share, the best thing a designer can do is choose one of the XP typefaces as a fallback,
in addition to choosing an OS X font, as shown in Table 12-3.

The ubiquity of Microsoft Office (and its bundled fonts) is a bright spot in this otherwise
bleak typography landscape, but most of those fonts are intended for print use, not
web use.

Table 12-3. Latin typefaces a commonly available to web users, according to operating system. Broadly
available fonts are highlighted; fallbacks b are spelled out.

Typeface

Operating system

Windows XP Windows Vista & 7 Mac OS X 10.3 Mac OS X 10.5

American Typewriter Courier New Courier New ✓ ✓
Andale Mono c ✓ ✓ Monaco ✓
Apple Gothic Microsoft Sans Serif Microsoft Sans Serif ✓ ✓
Arial c ✓ ✓ ✓ ✓
Arial Black d ✓ ✓ ✓ ✓
Arial Narrow d ✓ ✓ ✓ ✓
Arial Rounded Arial Arial ✓ ✓
Arial Unicode Arial Unicode MS Arial Unicode MS Arial ×

Arial Unicode MS ✓ ✓ Arial Unicode ✓
Baskerville Palatino Linotype Palatino Linotype ✓ ✓
Big Caslon Bookman Old Style × ✓ ✓
Book Antiqua d ✓ ✓ ✓ ✓
Bookman Old Style d ✓ ✓ ✓ ✓
Brush Script cursive cursive ✓ ✓
Calibri Trebuchet MS ✓ Trebuchet MS Trebuchet MS

Century Gothicd ✓ ✓ ✓ ✓
Cambria serif ✓ serif Plantagenet Cher-

okee

Cambria Math × ✓ × ×

Candara Tahoma ✓ Tahoma Tahoma

Chalkboard Comic Sans MS Comic Sans MS ✓ ✓
Cochin serif serif ✓ ✓
Comic Sans MS c ✓ ✓ ✓ ✓
Consolas Lucida Console ✓ Monaco ×

Constantia Book Antiqua ✓ Book Antiqua ×

Corbel Tahoma ✓ Tahoma ×

Courier New c ✓ ✓ ✓ ✓

218 | Chapter 12: Web Typography

Typeface

Operating system

Windows XP Windows Vista & 7 Mac OS X 10.3 Mac OS X 10.5

Didot serif serif ✓ ✓
Franklin Gothic sans-serif ✓ Gill Sans Gill Sans

Futura Century Gothic Century Gothic ✓ ✓
Garamond d ✓ ✓ ✓ ✓
Georgiac ✓ ✓ ✓ ✓
Gill Sans e sans-serif Franklin Gothic ✓ ✓
Helvetica Arial Arial ✓ ✓
Helvetica Neue Arial Arial ✓ ✓
Herculanum fantasy fantasy ✓ ✓
Hoefler Text Georgia Georgia ✓ ✓
Impactc ✓ × ✓ ×

Lucida Console ✓ ✓ Monaco Monaco

Lucida Grande Lucida Sans Unicode Lucida Sans Unicode ✓ ✓
Lucida Handwritingd ✓ ✓ ✓ ✓
Lucida Sans Unicode ✓ ✓ Lucida Grande Lucida Grande

Marker Felt cursive cursive ✓ ✓
Microsoft Sans Serif ✓ ✓ Apple Gothic ✓
Mistral cursive ✓ Brush Script Brush Script

Monaco Lucida Console Lucida Console ✓ ✓
Monotype Corsiva d ✓ ✓ ✓ ✓
Nyala fantasy ✓ Papyrus Papyrus

Optima sans-serif sans-serif ✓ ✓
Palatino Linotype ✓ ✓ Baskerville Baskerville

Papyrusd ✓ ✓ ✓ ✓
Plantagenet Cherokee f serif ✓ serif ✓
Segoe Print Lucida Handwriting ✓ Lucida Handwrit-

ing
Lucida Handwriting

Segoe Script cursive ✓ cursive cursive

Segoe UI sans-serif ✓ Gill Sans Gill Sans

Skia sans-serif sans-serif ✓ ✓
Sylfaen ✓ ✓ Baskerville Baskerville

Tahoma ✓ ✓ ✓ ✓
Times Times New Roman Times New Roman ✓ ✓
Times New Romanc ✓ ✓ ✓ ✓

Working with Typefaces and Fonts | 219

Typeface

Operating system

Windows XP Windows Vista & 7 Mac OS X 10.3 Mac OS X 10.5

Trebuchet MS c ✓ ✓ ✓ ✓
Verdanac ✓ ✓ ✓ ✓
Zapfino cursive cursive × ✓
Dingbats

Apple Symbols × × ✓ ✓
Marlett g ✓ ✓ × ×

Symbol ✓ ✓ ✓ ✓
Webdingsc ✓ ✓ ✓ ✓
Wingdings ✓ ✓ × ×

Zapf Dingbats × × ✓ ✓
a All of the operating systems described include a number of Cyrillic and Asian fonts that also provide limited Latin support. In addition, not

all faces listed are supported with a complete collection of fonts.
b The fallbacks suggested here are entirely subjective. Some, though not all, of these fallbacks work across operating systems.
c Included in the Microsoft Core Fonts for the Web collection: Arial, Arial Black, Comic Sans MS, Courier New, Georgia, Impact, Tahoma, Times,

New Roman, Trebuchet MS, and Verdana.
d Some of the typefaces listed in this table are provided not with Windows, but instead with Microsoft Office, which is installed as trial

software on most OEM (i.e., “brand-name”) systems, including Macs. Even when the Office trial ends or is uninstalled, the associated fonts
are left behind on the system—in the case of Macs, if the trial software was run at least once. Since many of these fonts are better suited×
to print, their use should be considered with care.

e Gill Sans is the typeface used by OS X for user interface text labels.
f Includes Latin, symbol (e.g., currency), and Cherokee syllabary glyphs.
g Includes many of the glyphs used to label Windows interface controls.

Representative specimens of the typefaces listed in Table 12-3 are available at a number
of sources, including this book’s companion website.

Applying Type Choices: the font-family Property
If you’ve taken a close look at CSS source, the font-family property seems pretty
straightforward: property, colon, face, comma, face, comma, face, comma. It seems
like something an especially bright chimpanzee with touch-typing skills could manage.

In fact, font-family has many rules:

1. All typefaces specified should refer to the exact family names found in the font
libraries of client hosts, including initial capitalization and any foundry name or
encoding designation that’s present. For example, Arial is an entirely different
family from 'Arial Unicode MS', which refers to both its licensor and its encoding
scheme. Bear in mind that this requirement may force you to name multiple in-
stances of the same typeface.

2. If a family name includes spaces, it must enclosed by single or double quotes.

220 | Chapter 12: Web Typography

3. A full comma-separated list of family names should be ordered from most to least
desirable, even if a given font in that list is likely unavailable. Therefore, if you want
visitors with capable systems to see text set in Futura, you should specify font-
family: Futura,'Century Gothic',sans-serif in the applicable stylesheet rule.

4. All font-family values should end with the desired generic name. Valid generic
family names (refer to Figure 12-3, shown earlier) include:

serif
Roman faces; designated as “Latin,” “Old Style,” “Antiqua,” and
“Copperplate.”

sans-serif
Gothic faces; designated as “Geometric” and “Grotesk.”

monospace
Fixed-width faces such as Courier New; sometimes found with the appellation
“Mono” or “Typewriter.” Fonts with names that end in “10,” “12,” and “15”
are usually fixed-width fonts; those numbers refer to the character pitch per
inch at a 12-point size.

cursive
Calligraphic or continuous faces, which often include “Calligraphic” or “Cur-
sive” in their names. To be distinguished from italic fonts, which can be con-
tinuous, but usually aren’t.

fantasy
Decorative faces apart from calligraphic/cursive faces.

5. Newer browsers that encounter valid Content-Type, Content-Language, and charset
HTTP header values can be counted upon to render properly implemented fonts
as desired. Such is not the case with legacy browsers—developers stuck supporting
legacy browsers should specify fonts that are encoded out of the box for their de-
clared charset (if any) (see “What Is Character Encoding?” on page 224). For pages
written in Latin alphabets, the safest “legacy” approach is to deliberately identify
and serve content that’s encoded according to the appropriate ISO 8859-x code
page.

Although outstanding in many respects, Internet Explorer 8 pro-
duces unpredictable—and often unacceptable—results when
forced to rely on a generic font-family value. For this reason, the
wisest course of action is to ensure that every list of font names
used in a font-family or font value precedes the generic name with
at least one appropriate font that will render as intended on Win-
dows systems. See this book’s companion website for more details
on this evolving issue.

Working with Typefaces and Fonts | 221

Finding Canonical Typeface Names
Rule 1 stipulates that font-family values need to refer exactly to the name of the type-
face used by the client host. To find this name on a Windows system:

1. Open the system Control Panel, which is found in the Start menu under the heading
“Settings” or “Control Panel.” Alternatively, go to C:\WINDOWS in Windows
Explorer.

2. In both the Control Panel and the \\%WINDOWS folder there is an item labeled
Fonts (the former is a hard link to the latter). Open it and browse to one of the font
files you expect to use to render type in your document.

3. Open the desired font. The first line of the viewer record will describe the parent
family name.

On Macs, the process is even easier. Open Font Book from the Applications folder,
select “All Fonts” in the leftmost pane, and browse the items listed in the middle pane
until you find your desired typeface. The name displayed is the one that should be
referenced in your stylesheet rules.

Figure 12-7 displays captures of the system UI in the final steps of these procedures.

Accessing System Default Type with the font Property
I usually discourage use of the font property, because it can force the stylist to apply
otherwise unnecessary typesetting values that might need to be countermanded in other
rules, effectively increasing the complexity of the stylesheet. The most significant ex-
ception occurs when you need to reference system default fonts, which can only be
accessed via the font property.

The structure of a valid font value is as follows:

font-style font-variant font-weight font-size/line-height
 [font-family|UI text type designation]

Fragments of font values, where present, should be arranged in the order shown. In
cases where an explicit line-height value is unnecessary, the slash that would separate
it from its companion font-size value can be omitted.

The font-family fragment should be supplied just as it would be for a normal font-
family instance, or replaced with a keyword relating to an object type within the client
host’s user interface. These keywords are described in Table 12-4 according to corre-
sponding form controls and browser window geometry.

222 | Chapter 12: Web Typography

Table 12-4. Font UI keyword fragment values, corresponding to browser controls that use them by
default

Keyword Corresponding form control or browser window label type

caption input type="submit"

icon Toolbar button labels; sidebar item text

menu option

message-box window.alert() arguments

small-caption Window geometry matter; usually dingbats

status-bar Self-explanatory

As of this writing, it’s not entirely certain that UI font keyword support will be main-
tained in CSS3.

Figure 12-7. A canonical type name

Working with Typefaces and Fonts | 223

Character Encoding in Brief
The last rule for applying font-family values can create some confusion, as HTTP
response headers aren’t always under the control of stylists.

Every properly configured web server that runs an adequate implementation of
HTTP—which is to say, nearly all of them—specifies the language and character set
of each document that it sends to client hosts. Additional interfaces such as the meta
element and the PHP Header() function allow developers to alter or override those
assignments on a case-by-case basis.

What Is Character Encoding?
Hopefully you’re familiar with the concept of bits and bytes; a bit ultimately represents
the state of a single circuit in system RAM, and a byte is equal to eight of those in a
logical row, which can arranged in one of 256 ways.

The technicians of the English-speaking world have grown accustomed to the repre-
sentation of a single Latin character—or glyph, in typography jargon—within a single
byte. That example has been followed for other alphabets as well.

Consider the example of Morse Code: its character representations are composed of
variable-length series of dits (analogous to unset bits) and dahs (analogous to set bits).
In this case, the assignment of a character’s unique sequence of dits and dahs is in-
formed by its typical frequency in telegraphic messages.

In the guts of a computer, however, a more systematic means of assignment can be
afforded. The definition of “systematic” encompasses the following questions:

• Should the uppercase letters be placed before or after the lowercase letters?

• Do control signals belong at the beginning or end of the character set?

• Does the encoding scheme specify that the first bit of a given character references
code positions zero and one, or the entire lower or upper half of the 0–255 range?

• What host system constraints might affect the final encoding scheme?

• Which code positions should remain unassigned to account for future develop-
ments, like the introduction of new currency symbols?

• What assignment logic should be used for logographic writing systems like hanzi
and kanji, or complex syllabaries like Hangul?

• Will a given encoding be practical for all users of a given orthography?

The profusion of character sets in use today can be explained by the many different
answers engineers have to these questions. On the Web, many of these need to be
supported as a matter of course.

224 | Chapter 12: Web Typography

ASCII, ISO 8859-1, Unicode, and UTF-8
In the mid-1960s several parties collaborated to develop a basic, static-width, 7-bit
(128-position) encoding scheme for Latin characters as used in American English,
called ASCII (American Standard Code for Information Interchange) and based on
earlier teleprinter encoding schemes. A few years later, it was mandated that all com-
puters, storage, and transmission hardware configurations purchased by the U.S.
government support ASCII—and in fairly short order, ASCII was ubiquitous in the
English-speaking world.

In the 1980s, the International Standards Organization (ISO) published a standard for
encoding several European and Near Eastern alphabets, many of which were variants
of the basic Latin alphabet. All of these encoding schemes—which remain in popular
use today as the ISO 8859 code pages—were half-populated by ASCII.

While all of this activity was transpiring in the West, comparable work was being un-
dertaken to advance standard encoding schemes for writing systems used elsewhere,
particularly in Japan. In the early 1990s all of this work was independently amended
and amalgamated into the Unicode standard, which has since been progressively ex-
panded with the goal of representing all known writing systems, including dead systems
that are used in historical records.

The Unicode code charts presently comprise a total of more than 100,000 characters.
On the Web, the characters needed in any given document are usually encoded using
a scheme called UTF-8 (8-bit Unicode Transformation Format), a variable-width
scheme that encodes all ASCII characters in a single byte (out of a maximum of four),
thus ensuring backward data compatibility with all but the earliest ASCII-reliant
systems.

Choosing an Encoding Scheme
By default, web server software typically serves documents encoded as UTF-8. If your
content is written in English and you use HTML entities (discussed later in this section)
to declare instances of characters outside the ASCII character set, there is no need to
manipulate the server configuration, or add custom HTTP header output to server-side
scripts for the sole purpose of declaring an appropriate character set. This is true for
two reasons.

The first reason has to do with the efficiency of the encoding scheme: ASCII-reliant
content uses one byte per character, and the added load of entity references is negligible
when compared to the hassle of including high-bit characters of uncertain encoding.

The second reason why UTF-8 is acceptable for primarily English-language content is
owed to the way that modern browsers handle fonts. The default encoding setting of
modern browsers is “Auto,” which in the case of ASCII characters means little. How-
ever, that same setting allows the browser to render entities regardless of the native
encoding of the specified fonts, since the relationships between Unicode code positions

Character Encoding in Brief | 225

and code positions in other schemes are well documented. The browser transparently
translates code positions as needed, and the desired character is rendered.

UTF-8 and the “Auto” setting are not the beginning and end of type rendering, however.

A number of scenarios result in the insertion of odd characters into a document. The
most common are form submissions from user agents that are set to a custom text
encoding setting, and publication of content pasted directly from word processing
programs (which tends to be encoded as static-length, 8-bit characters when written in
the Latin alphabet).

When these “odd” characters make their way into production, they present proverbial
“bumps” in the character stream that a visitor’s browser may fail to render properly. If
such bumps are a frequent occurrence, you should consider changing the encoding of
documents to ISO 8859-x or Windows-1252 (which are almost identical). Developers
who work with content written in Asian languages should consider a comparable
course of action.

Inserting Entities to Provide Non-ASCII Characters
There are a number of diacritics used in European languages. The only one used in
English (for English words) is the umlaut (¨), which was briefly popular in the 1960s
and 1970s as a signal to the reader that the second vowel in a pair should be pronounced
distinctly as a short vowel, e.g., “coördination.” That usage has since been supplanted
by the practice of inserting a hyphen in the midst of such pairs, and only then as a
matter of house style.

Many house styles also require that loanwords with English homographs (among which
“résumé” is a familiar example) include the diacritics used in the originating language.

Many common European diacritics are referenced in the HTML 4 character entity ref-
erence list, and displayed alphabetically by English name in Table 12-5.

Table 12-5. Common Western European diacritics referenced by HTML 4

Name Diacritic glyph Entity pattern Example

acute ´ &?acute; é, í

cedilla ¸ &?cedil; ç

circumflex ˆ &?circ; ô

grave ` &?grave; à

tilde ˜ &?tilde; ñ, ã

umlaut; diaresis ¨ &?uml; ö

Not all diacritics will combine with all letters; those that do combine with a given letter
can be applied to both the lower- and uppercase instances. Consult this book’s
companion website for a link to a complete table of HTML entities. That list, compiled

226 | Chapter 12: Web Typography

by Adrian Roselli, also includes the decimal codes for the high-bit IS0 8859-x glyphs
that are not supported by properly served XHTML. In addition to letters with diacritics,
there are a number of specialized characters that will be of value to stylists required to
produce content adhering to a high standard of typography. Many of these are displayed
in Table 12-6.

Table 12-6. Useful HTML entities, listed by common English name in alphabetical order

Character(s) Literal(s)
Alphanumeric
value(s) Unicode value(s)a Prefer to

Approximately equal to ≈ ≈ ≈ ~

Bullet • • • (U+2022) *

Cent (currency) ¢ ¢ ¢

Copyright © © © (c)

Daggers, single and double † ‡ †
‡

†
‡

* and ** for some annotations

Degree(s) ° ° ° (U+00B0)

Division sign ÷ ÷ ÷ / in noncomputing contexts

Ellipsis ... … … (U+2026) ...

Em dash — — — - enclosed by spaces, or --

En dash – – – - for ranges

Eszett ß ß ß "ss" substitution (German lan-
guage)

Euro sign € € € (U+20AC)

Fractional halfb ½ ½ ¼ 1/2

Guillemets « » «
»

« » (U
+00AB, U+00BB)

" in some languages

Inequality (not equal to) ≠ ≠ ≠ !=

Inverted exclamation point
and question mark

¡ ¿ ¡
¿

¡ ¿

Less than/greater than or
equal to

≤ ≥ ≤ ≥ ≤
≥

<=, >= in noncomputing con-
texts

Middle dot · · ·

Multiplication sign × × × x, X; * in noncomputing con-
texts

Per millec ‰ ‰ ‰

Pilcrow (paragraph) ¶ ¶ ¶ (U+00B6)

Plus/minus ± ± ± +/-

Pound (currency) £ £ £ (U+00A3)

Character Encoding in Brief | 227

Character(s) Literal(s)
Alphanumeric
value(s) Unicode value(s)a Prefer to

Primes, single and double ′ ″ ′
″

′
″

', '', ', ",
m:s elapsed

Quote, double low „ „ „ " or ,, in some lan-
guages

Quote, single low ‚ ‚ ‚ ' or comma in some languages

Quotes, double " " “
”

“
” (U+201C,
U+201D)

", '', or ``

Quote, double [generic]d " " " (U+0022)

Quotes, single ' ‘
’

‘
’ (U+2018,
U+2019)

' or '

Registered trademark ® ® ® (R)

Section § § § (U+00A7)

Space, nonbreakingd

Trademark ™ ™ ™ (tm), etc.

Yen; yuan; renminbi ¥ ¥ ¥ (U+00A5) RMB for PRC currency amounts
a Some symbols might find their way into content values associated with English-language content; these are annotated with both decimal

entity and hexadecimal Unicode code position values. For more details, consult the discussion of the content property in the Bad Parts.
b One-quarter and three-quarters fractions can also be referenced with the same pattern as the one shown here.
c The permyriad (basis point) symbol (‱) is found at the next code point, but isn’t referenced in the HTML 4 specification.
d The only named entities supported by XML are &, <, and > (&, <, and >, respectively). All of the entities described in this

table should be referenced by their decimal value when served as XML.

Finally, note that the Unicode code point references provided in the fourth column of
Table 12-6 are unreliable when the declared document encoding is anything other than
UTF-8.

Creating Balanced Type Treatments
If you’ve designed or produced documents for any length of time, you almost certainly
know to avoid what has been called the “ransom note effect”—the juxtaposition of too
many typefaces in a given document.

However, the ransom note effect on the Web is not a matter of font abuse alone; it’s
also a function of the colors, sizes, and styles in which you set type.

Predictability, Preference, and Panic
A site is arranged into sections, and each section contains one or more pages. The ease
with which web documents can be organized hierarchically means that it’s not only

228 | Chapter 12: Web Typography

possible but easy to enforce a degree of consistency in a site’s presentation that pays
ongoing dividends. The workload of the designer and stylist can be reduced, and it
becomes easy to identify and stake out the parts of the site’s page layouts that serve as
signposts for visitors.

The bad news is that like most aspects of the Web, this consistency has limits: in many
cases, particularly those involving user-generated content, it becomes impossible to
predict the amount of content that will be present on a given page. With that unpre-
dictability comes a certain loss of control—and from that follows panicked attempts
to manipulate the presence, behavior, and content coverage of a site’s layouts.

One common reaction to this panic is to make slight adjustments to gutters, rules, and
type size throughout the site, which at first glance makes it easier to resolve each “spe-
cial” layout case as it comes up.

Assessing Content Scope
The first step in the process of tightening control over typesetting is to scope your
content using the cascade. On a given site, you might have some or all of the following
elements:

• Site identity

• Body copy

• Titles/headings

• Ledes

• Sidebar content

• Asides

• Navigation:

— Primary

— Secondary

— Outgoing/tertiary

— “Breadcrumbs”

• Attractors and/or advertising (multimedia content that encourages visitors to fol-
low a link to a landing page elsewhere)

• Forms

• Application functionality

• Last but not least, hypertext links

When presented with so many different functional elements, designers are vulnerable
to two colossal mistakes. The first of these has already been mentioned: surrendering
to the desire to “tweak” on a case-by-case basis, which turns the stylist’s job into a

Creating Balanced Type Treatments | 229

mockery of the intent behind CSS. So many ids, classes, and junk elements wind up
being added that the resulting work product is a hash of nonsense.

The second mistake is to design for the requirement that each significant element of
the design needs its own type, which tends not to be the case.

In practice, you have six notional classes of type on a site that must be made distinct
from one another:

• Identity

• Titles (A-heads)

• Subsidiary headings

• Body copy

• Navigation

• Hypertext links

Many designs also call for secondary content—such as long quotes and sidebars—to
be set in different fonts.

When considering this list, much less adding to it, the question to ask is:

Why does this item need to be different?

In the list, each case represents a fundamental part of a site, providing vital intrapage
or intrasite signposts, or serving as primary content—thus accounting for its need to
stand out.

Distinguishing Type: Face, Size, Weight, Style, Color

While the information covered in this section may seem obvious, its
inclusion is meant to provide a framework for the process of making
design decisions.

Once you’ve worked out your content classification as it relates to typesetting, you need
to decide how to execute and implement your design decisions.

Face, size, weight, style, and color: when you need to make text stand out, these mo-
dalities are the ones that you can choose from. The opportunity to stake out specific
areas of a layout with a distinct background color (or shade) can aid your decision, but
doesn’t actually make that decision for you.

In light of tradition and other factors, these modalities all signal different cues to the
casual reader:

230 | Chapter 12: Web Typography

Face
Differing typefaces provide cues for content classification; for example, some
newspapers set headlines in sans-serif type and body copy in serif type. However,
this approach isn’t as popular as you might think, either for headlines nor ancillary
content, or for reasons both arbitrary (tradition) and practical (differences in font
metrics).

Size
Enlarged or reduced type offers an idea of a passage’s relative importance. It’s also
the origin of most stylesheet edge cases. Each case that calls for differing type sizes
also calls for changes to composition, which in turn create many of the edge cases
that keep stylists awake far past bedtime.

Weight
Setting bold text amplifies content, but only when its boldness is discernible rela-
tive to that of neighboring content. Increased weight is best framed as a half-step
increase, while obvious size changes signal full steps.

Style
The use of an italic/oblique font signals momentary changes in editorial voice,
usually in the form of emphasis. These fonts are also used to set apart some proper
nouns, such as titles of periodicals, titles of creative works, ships, named aircraft,
and very rarely famous accommodations. Small-caps fonts and wide letterspacing
are also used for emphasis, but far more rarely.

Color
Using color to style type for contrast is a far easier task on the Web than in other
media, but it puts visitors with impaired color perception at a disadvantage. For
this reason, color use should rely on brightness as well as hue, whether it’s applied
to links or to other text in need of emphasis. Ideally, the use of color in type styling
will be paired with other forms of differentiation. Chapter 9 examines these con-
siderations in detail.

Generally, it’s preferable to reduce the number of tools you use to differentiate your
type, as well as the range of presentations that will result from their use. When too
many changes are applied in combination to the same passage, the result tends to
overwhelm the visitor.

Once you’ve narrowed down your tool choices, your next task is to work out the details
of composition. Most of the difficulty of this task lies in addressing what happens when
unusual cases are encountered:

• What happens to content that takes up more space than expected, particularly with
respect to any grid that’s being used?

• How do you distinguish passages of content with similar levels of priority but dif-
fering function, such as the title of a body copy passage and the title of a sidebar
item?

Creating Balanced Type Treatments | 231

• If the designer has taken a print-inspired approach to the comps and introduced
slight differences from each comp to the next, how does the stylist corral the re-
sulting herd of rules?

Setting Type Around Blowouts
The latter two of the three questions just posed can be answered in a well-written
stylesheet.

The easiest solution to the problem of potential blowouts is to set text and box prop-
erties on the target elements with the fewest possible rules, then add
overflow: hidden to the box properties with the understanding that avoiding blowouts
becomes the responsibility of content producers. In settings where the absence of rea-
sonable constraints on content is a frequent but avoidable fact, I actually advocate this
approach. (Constraining the amount of space available for content tends to encourage
simplicity and clarity, a fact that every habitual user of Twitter knows well.)

If that easy solution to avoiding blowouts is either impractical or impossible—which
is sadly often the case—then it becomes the stylist’s responsibility to account for de-
viation from what was comped. Take a heading that was comped to one line; how do
you deal with headings that are two lines long? Reducing type size probably isn’t an
option, but altering line-height to fit the long heading into the grid very well might be.

Another case is a hyphenated word that is too long to fit into a column; Internet Ex-
plorer will break the line on the hyphen, but other browsers will not. The insertion of
a zero-width nonjoiner (‌, most commonly used to indicate logical but invisible
space between two glyphs) also fails to yield a break.

In all cases, typesetting to avoid blowouts should:

• Follow the grid laid down for the layout as a whole

• Fit logically within the sizes set in the existing styles and/or type treatment

• Respect the space available, with a minimum of process changes

Styling Passages of Similar Priority
The stylist’s job is easiest when the designer starts out with one basic style for type and
“branches out” from that baseline; CSS itself is tailored to that approach. In a simple
two-column site, the result might be something like this:

Body copy
12px Georgia; black

Headings
Increased from h4 (usually sized identically to default text) in four-pixel increments

Sidebar
All copy lightened to 75% black

232 | Chapter 12: Web Typography

Navigation
Four-pixel size increase for primary navigation, normal text size for secondary
navigation; colors handled via link pseudoelements

A stylesheet reflecting this approach would contain the following rules and property/
value pairs:

body { color: rgb(0,0,0); font-size: 12px; font-family: Georgia, serif; }

h1 { font-size: 2em; }
h2 { font-size: 1.667em; }
h3 { font-size: 1.333em; }

#sidebar { color: rgb(64,64,64); }

 #navPrimary a:link { color: rgb(0,0,192); }
#navSecondary a:link { color: rgb(0,192,0); }

 #navPrimary a:active,
#navSecondary a:active { color: rgb(192,0,0); }

Additional work and additional selectors are usually required to differentiate the vari-
ous sections of a site, but the basic principle should be clear.

The challenges start to spiral out of control when a print-trained designer starts tweak-
ing things. Suppose that the title of a column can’t be made any shorter horizontally,
so the designer reduces the type size on the headings in that column to preserve
consistency.

Duplicate that event three or four times on the same site. Before long, you’re forced to
write rules with selectors that look like this:

body.about#contact #sidebar h3.telephoneContact

It’s also quite likely that if you’re writing selectors like that, you’re also writing selectors
for many of the elements in between body and body.about#contact #sidebar
h3.telephoneContact.

Enter Type Treatments
The scenario just described could have been avoided if it had been agreed upon in
advance that sidebar headings could grow onto two lines. This is the sort of thing
handled in a style guide. Adjunct to a style guide is a type treatment, which basically
displays all of the type used in a project.

When I create a type treatment, the result usually looks something like Figure 12-8, a
chart divided into three columns as follows:

1. The function, and perhaps the selector(s), of a given type choice (e.g., identity,
A-head, lede, body copy)

2. A specimen of the type in its intended state

Creating Balanced Type Treatments | 233

3. The actual metrics of the type, either in English or in the form of CSS property/
value pairs

If a site’s designer has weighed down the product with exceptions and outliers, the type
treatment will run to several pages in length and illuminate the fact that certain aspects
of the design process have gone out of control.

Even more importantly, an effective type treatment documents many design decisions
in a more human-readable format than what’s found in the stylesheet, and can become
a tremendous time-saver in the face of challenges like staff turnover and neglect of
site maintenance.

Typographical Miscellany in CSS
There are a number of obscure CSS properties that demonstrate the limits of what
designers can control with CSS, but also introduce many of the accents that stand
between the plain and the elegant.

The line-height Property
As suggested earlier, the line-height property inserts negative space between lines,
making it analogous to leading in print. However, as shown in Figure 12-9, the result
is applied equally to both sides of each line of type to which it applies. The good news

Figure 12-8. An inset of a type treatment formatted in three columns (created by the author)

234 | Chapter 12: Web Typography

is that in current browsers this behavior is consistent; older versions placed all of the
additional negative space above the type (as in Internet Explorer 6), or below it, as
shown in Figure 12-9.

The other notable detail of the line-height property is that its range of valid values
includes numbers without units, such as:

line-height: 1.5;

which is functionally similar to a value of 150% or 1.5em.

For the sake of consistency and discipline, I find that it’s usually better to use the same
size units for line-height values that you apply to the rest of your font and text
properties.

Default line-height values are specified with a normal value, vary from one font/plat-
form combination to the next, and tend to be very small, in the range of 120%–125%.

The font-variant and text-transform Properties
The most common functional purpose of the font-variant and text-transform prop-
erties is to provide odd forms of emphasis—for example, for capitalizing a trademark
or a quoted passage delivered in a raised voice.

The text-transform property is uncommonly used, and its values (among which
uppercase is the most common) are unremarkable. The font-variant property and its
single nondefault value—small-caps—are another story.

Actual fonts that render uppercase letterforms at varying sizes to indicate capitalization
are often redrawn so that the strokes of capital letters are comparable to others in the
same font. When instead the font-variant property is used, the normal lowercase let-
terforms are replaced with appropriately smaller uppercase letterforms, so that the
capitals appear to be a bit on the “fat” side. The same result is visible with some normal
fonts, especially those designed exclusively for print use, but is particularly obvious in
text to which font-variant: small-caps has been applied.

Figure 12-9. Behavior of the line-height property in various browsers (specimen used is 16px Times
New Roman at a line-height value of 32px)

Typographical Miscellany in CSS | 235

The letter-spacing and word-spacing Properties
Letterspacing and wordspacing are typically best avoided, but sometimes a design re-
quires their use to ensure that a bit of composition is just right. Another uncommon
use of these properties is to provide emphasis—as if the speaker was dr-a-a-a-w-i-i-i-
ng out every syllable of a word. Letterspacing helps convey the same voice outside
passages of dialogue.

letter-spacing and word-spacing values are typically provided in tiny fractions of ems,
but there’s a hitch: on the Mac, that value is rounded to whole pixels before it’s applied
to the rendered page. Windows is more flexible when ClearType is enabled, however.

The white-space Property
The pre element is unusual in that it can indicate content with semantically important
characteristics of appearance—for example, email excerpts. On the other hand, its
capacity to control linebreak behavior without requiring the insertion of br or child
div elements is too easily abused.

When applied to an element, the white-space property and its pre value cause content
to render as if they were placed within a pre element. The use of that property/value
pair also offers additional flexibility for developers who distinguish true preformatted
content from content that needs to be subjected to a high degree of presentation control.

Apart from normal (the default), the white-space property has three other values, which
vary from pre in the way they handle soft and hard linebreaks in content.

The Practice of Good Web Typography
Once visitors take in the color palette of a site (see the section “Creating Your Own
Palettes” on page 149), their next strongest impression is formed around the appearance
of its copy. In response to the high expectations of modern-day visitors, the web plat-
form finally offers the tools to adjust a broad variety of type characteristics, and raises
the reality of web typography far closer to visitors’ expectations of aesthetic quality
than was previously the case.

The bad news about these raised expectations is that first-rate practice of web typog-
raphy requires considerable knowledge of theory…and the good news is that once the
theory is out of the way, the practice is easy to master!

236 | Chapter 12: Web Typography

CHAPTER 13

Clean and Accessible Forms

Web application development requires more than CSS layout and typography. While
sites may simply present information to their visitors, applications need to get infor-
mation from their visitors. Web applications thrive or wither on the strength of their
form design and implementation.

Wherever there’s a need for user-generated content, there’s a form—and wherever
there’s a form, there are ample opportunities to foul the user experience.

This chapter introduces form design and implementation techniques that minimize the
risk of ruinous mistakes.

Building Effective Forms
Creating useful forms requires more than knowing form markup. Understanding what
makes a form work for its users is a critical part of the web developer’s skill set.

Web Applications, User Perspective, and Design Choices
Imagine a heap of data—say, a collection of poetry.

A website that presents these poems will likely store them in an SQL database, which
by design offers countless ways to sort and arrange its contents on demand. The heart
of that imaginary site is described in the following MySQL table creation command,
shared here because it’s more or less human-readable:

CREATE TABLE poems(
 id SERIAL,
 author_id MEDIUMINT,
 date_added DATETIME,
 date_pub DATETIME,
 discussion TEXT,
 editor_id SMALLINT,
 folio_id MEDIUMINT,
 lang_id SMALLINT,
 lang_source_id SMALLINT,

237

 marginalia TEXT,
 title VARCHAR(1024),
 translator_id MEDIUMINT,
 verse MEDIUMTEXT
);

For the sake of further readability, additional constraints have been omitted from this
table structure.

Just by examining the table structure, a skilled application developer can discern some
of the assumptions underlying the design of the site’s backend—for example, that data
about authors, translators, and site maintainers is stored in other tables within the same
database.

When considered with respect to user experience design, the structure reveals the
views that can be taken on the hypothetical site’s content without imposing high re-
source demands. Those views will then influence everything else to do with the site,
especially its information architecture and development process.

The views that can be taken on the site’s primary content with simple SELECT queries
can be framed in terms of:

• Author

• Original publication date

• Original folio/collection

• Display language

• Source language

• Title

• Translator

In addition to these views, the date_pub field allows new content to be exported to RSS
easily, and other fields—particularly verse, the field containing the actual poetry—
provide their own scopes for full-text search.

For each of those views, there are several ways to build the forms and tables of contents
that might be used to find content. If the content in question is user-generated, the
design choices that can be made for the forms needed to publish it will be just as varied.

The simplest approach to design is to organize the CRUD.

Organizing User Interfaces by Function
When we consider content in terms of records—the smallest collections of data that
can be presented out of context—tradition offers four actions that can taken on each.
CRUD stands for create, read, update, and delete; the corresponding literal SQL queries
for each action follow in parentheses:

238 | Chapter 13: Clean and Accessible Forms

Create (INSERT, CREATE)
Instantiate records or collections of records that previously did not exist. Forms
designed around this function will have fields that are empty or filled with default
values.

Read (SELECT)
Retrieve and display extant records in a read-only state. The simplest forms de-
signed around this function are provided for the sake of full-text search; on sites
that are designed to be browsed but not searched, the user interface to this function
is provided entirely by hypertext links.

Update (UPDATE)
Change the contents of a record partially or entirely. Well-designed applications,
whether system-resident or based on the client-server architecture, will present
forms similar or identical to those used for the “Create” function, but will first read
the existing record and insert its values into those forms.

Delete (DELETE, DROP)
Remove a record or collection of records entirely. Web applications rarely expose
true Delete functions to members of the general public, but instead mark “deleted”
records as out-of-view for legal and practical reasons, while leaving actual deletion
to the discretion of the site operator’s data retention and privacy policies. A com-
mon (but not universal) user interface design for this function is a list of records,
each with its own input type="checkbox" control, assembled into a table that is
accompanied by a link or button labeled “Delete” or “Remove.”

There is common sense to heed when designing applications and forms around these
functions. Several of the following guidelines relate directly to interface design and
implementation; any stylesheet that addresses forms should take at least some of the
issues raised into account.

Ten Rules for Effective Web Forms and Applications
Effective web applications uphold three virtues above all others: security, simplicity,
and transparency. The 10 rules listed here are essential to realizing those virtues in
production:

1. Don’t request, much less require, more information than you absolutely need. A vis-
itor might have plenty of bandwidth and system memory, but the resource likely
in shortest supply is time. Respect visitors’ time (and enhance security) by empha-
sizing brevity in your form design. Additional forms can be visited later, and user
records updated as needed.

2. Distinguish required fields from optional fields. Use two cues, one visual and the
other text-based, to indicate that a particular field must be properly filled in to
ensure successful submission of a form. If all fields need to be filled, state that
clearly in the instructions.

Building Effective Forms | 239

3. Provide clear instructions and failure/error messages. If your web application—even
the simplest mail form—fails when the visitor doesn’t respect submission con-
straints, describe those constraints prominently and in the clearest language
possible.

4. Explain the consequences of a successful form submission in advance. In many cases,
particularly search, the consequences of a successful form submission are implied,
or can be inferred from common practice. Unless you are designing for one of those
common visitor objectives—and especially if you are asking for information of
value—the visitor will want to know in advance, “what’s in it for me?” Answer that
question clearly. For the same reason, you should provide advance warning if the
results of a submission are atypical.

5. Be RESTful: don’t base your application on unreliable assumptions about the state
of the visitor’s browser and session. HTTP, as described in the appendix, is a stateless
protocol; REST (REpresentational State Transfer) is a practice around which
HTTP-based services can be engineered to respect that statelessness. In particular,
don’t assume that the visitor has been to other parts of an application during the
current session, unless you first provide a mechanism (such as a session hash) by
which such assumptions can be proven in advance.

6. Choose field types that minimize the demands placed upon a visitor’s fine motor con-
trol. Use select, checkbox, and radio input for nonarbitrary values like Booleans
and region lists. When using a checkbox control to supply a Boolean value, use only
one. Lay out your controls so that all nonarbitrary choices are visible, unless the
list of choices is long (and predictable) enough to justify the use of the scroll wheel
or Page Down key to navigate to a specific option field. Avoid select multiple
altogether.

7. Always use labels in tandem with form controls. The label element goes well beyond
semantic nonsense: it is an active part of the interface associated with a specific
form control via the for attribute. When a user interacts with a label by clicking
on it with a mouse, the form control with the id corresponding to that label’s
for value is brought into focus.

8. Make user input as legible as possible. Keep forms as short as possible, style text
controls to fit the greatest practicable amount of input, and style text within the
form at sizes equal to or larger than the size of your body copy. On the other hand,
do not paginate your form amidst required fields—doing so introduces unneces-
sary dependencies into your application that lead to abandoned sessions.

9. Obey rigidly consistent field sizes, justification, and column stops. When controls are
consistently sized and justified, the typical user’s need to visually scan and mouse
around a form is kept to a minimum. Small sets of field lengths and styles are
preferable, by way of enhancing input legibility.

10. Focus user activity on one of the four basic actions: Create, Read, Update, Delete.
By confining each application interface to specific combinations of action and

240 | Chapter 13: Clean and Accessible Forms

scope, the risk of user error is greatly reduced, as is the need for confirmation
dialogs.

These 10 rules are not the only rules worth following; they’re just the ones that can be
applied to nearly all cases.

For deeper insight about improving the user experience of visitors who
use the forms that you build, I suggest the following books:

• Web Form Design: Filling in the Blanks, by Luke Wrobleski
(Rosenfeld Media)

• Don’t Make Me Think: A Common Sense Approach to Web Usabil-
ity (Second Edition), by Steve Krug (New Riders Press)

Assessment and Structure
Excellent form implementations exemplify priority and simplicity.

To move toward this goal, the first step is to define exactly what a form needs to request
from the visitor. In some cases these requirements and the design patterns used to fulfill
them are well established by tradition and common sense, but in others there are too
many mitigating factors—such as institutional culture, legal requirements, visitor ex-
pectations, and the use or neglect of Ajax—to rush directly into implementation.

I point all this out in order to encourage thoughtfulness and caution in design; the critical
importance of forms does not easily tolerate foolish design choices made while leaping
blindly.

Application security is beyond the scope of this book, but well worth
addressing in detail. Please be certain to follow common security prac-
tices, especially sanitizing form input against SQL injection attacks.

Establishing Requirements
Before attempting to design visual assets such as wireframes or composites, you need
first to determine the form and function (if you will) of a form interface. The tasks
involved can be divided and ordered as follows:

Assessment
Determine the benefits and requirements of the form, for both visitor and operator.
It may seem ingenuous to point this out, but in fact it’s far too easy for developers
to consider forms only from their own perspective. When visitor requirements are
taken into account, an entirely different set of design choices might be illuminated.

Assessment and Structure | 241

Scoping
In the case of web applications and other assets that demand large amounts of
information from the visitor, it becomes necessary to divide tasks into manageable
pieces or steps. By providing a well-defined scope for each form on your site, you
improve your chances of achieving the “Goldilocks zone” of form length: not too
long, not too short, but just right.

Triage
Ask the question:

Who benefits by receiving the requested information, and how?

This process defines three possible beneficiaries: the visitor, the site operator, or
both. Fields that request information of benefit only to the site operator should be
removed, paired with an incentive, or relegated.

Prioritization
In most cases, the visitor’s objective can be stated as a simple imperative with a
single object. “Send the message,” “create the account,” and “get the promo code”
are all examples of common visitor objectives. If a form includes fields that don’t
relate clearly to the primary visitor objective, define the benefits of filling them and
put them nearer to the bottom of the form.

Typing
Establish the type of data that needs to be provided in each field and assign the
element to be used. Table 13-1 provides some guidance for this task.

Table 13-1. Form elements described by data type

Type Element Additional considerations

Arbitrary text or num-
bers (short)

input type="text" Best for words, phrases, and string fragments (e.g., URIs).

Arbitrary text (long) textarea Best for sentences, paragraphs, and arbitrarily long lists
of newline-separated reference data such as URIs and
tracking numbers; ampersands must be escaped to
&amp; before serving textarea content in an
update context.

Passwords input type="password" Styled like input type="text"; data is submitted in
the clear and must be encrypted through a separate
mechanism.

Identities input type="checkbox" checked="checked" required for activated element
in XHTML; opt-out choices should always be reflected by
an unactivated element.

Binary/trinary choices input type="radio" Contained within a single fieldset;
checked="checked" required for activated element
in XHTML; mutually exclusive choices must have the same
name value.

242 | Chapter 13: Clean and Accessible Forms

Type Element Additional considerations

Large static domain
(single value)

select selected="selected" required for activated
option in XHTML; value domains unfamiliar to the vis-
itor should be immediately legible without scrolling.

Large static domain
(multiple values)

select multiple

input type="checkbox"

Best contained within a single fieldset, which may
benefit from carefully chosen width and overflow
values; cf. “Identities” and “Large static domain (single
value)” entries above.

File uploads input type="file" See “The post Method and File Uploads” on page 249.

Static, ASCII-encoded,
session- or
user-specific data

input type="hidden" Alternative to session cookies, with the caveat that data
does not completely expire until the browser window is
closed and the cached page is deleted.

Interface
manipulation buttons

input type="button", button Best inserted via client-side script, since it can only fire
events; benefits from assignment to a class reserved
for button-style controls; CSS background properties can
be assigned to present an image in lieu of a button;
button has more granular support for presentation than
its counterparts, but is unreliably supported.

Plain-text submit
controls

input type="submit" Benefits from assignment to a class reserved for
button-style controls.

Rasterized submit
controls

input type="image" Use alt values with these elements as you would with
normal inline images; when activated in a graphical web
browser, this element encodes x and y values corre-
sponding to the pixel coordinates that received the but-
ton’s onclick event, and scripts that utilize those values
should include a default case to serve users of assistive
technology and text-only platforms (if you don’t take the
more-accessible course of avoiding that feature
altogether).

There are exceptions to the guidance provided in Table 13-1. For example, the mech-
anism for making a rating on a 7- or 10-point scale could be implemented with input
type="radio" elements instead of a select element.

Markup and Structure
Once you establish the identity and source order of the fields to be used in a particular
form, you can move on to the markup.

In addition to form and the field elements described in Table 13-1, you’ll be using four
other elements:

fieldset
fieldset only validates in the context of a form. Its purpose is in line with its name:
to provide a specific context for similar sequential elements, to which detail is

Assessment and Structure | 243

added with the content of an accompanying legend element, only one of which
must be present in a fieldset when obeying the requirements of a normal HTML
document type. input type="radio" elements are an obvious candidate for
fieldset content; other possibilities include related checkbox fields, date/time
fields, and series of input type="text" fields that ask the user to provide multiple
arbitrary choices.

legend
legend only validates when inserted into a fieldset element, and is paired with
clearly related label/control pairs in the same way that label is paired with a
standalone control.

ul and li
Most form markup exists in notional pairs: label paired with a single control, or
a legend paired with a series of label and control elements. In the former case,
there’s usually a need to wrap the pair in a common parent element. Since any
block element can be inserted into a form, the best choice for the binding element
is li, and that choice in turn begs the inclusion of ul.

The last of these choices is controversial; some implementers prefer to contain form
objects within an element that expresses some degree of content indivisibility, while
others prefer to settle for implying that quality. Note that screen readers and other
assistive technologies add functionality to lists that may increase the time needed for
an impaired visitor to examine and use the form.

As a direct result of these element choices, the markup used for a simple login form
might look like this:

<form id="loginForm" ... >
 <fieldset><legend>Sign In</legend></fieldset>

 <label for="username">Username:</label>
 <input type="text" name="user" id="username" value="" />

 <label for="password">Password:</label>
 <input type="password" name="pass" id="password" value="" />

 <input type="submit" class="button terminalButton" value="Log in" />
</form>

A more complicated form—say, one with a series of input type="radio" fields—will
place such fields and their accompanying label elements within a fieldset, which is
then placed within the source order where an unembellished input type="text" or
select element would ordinarily go, as shown in Figure 13-1. A legend element will
also be inserted into such fieldset elements, as explained shortly.

244 | Chapter 13: Clean and Accessible Forms

Figure 13-1. The arrangement of typical label/field pairs; contrast use cases that require the fieldset
element

Online examples of this latter approach can be found on this book’s companion web
site, and at the Opera Web Standards Curriculum advanced forms tutorial, which can
be found at http://dev.opera.com/articles/view/34-styling-forms/.

In the previous markup example, there are several key details that may not be readily
apparent to the casual reader:

The length and maxlength attributes have been omitted
The use of the CSS width property supplants the length attribute on most plat-
forms, and maxlength offers limited usefulness as a security measure. On the other
hand, these attributes can be inserted into markup without harming the user ex-
perience, and may enhance it in some cases.

There is an anonymous span within the form’s legend
The legend element is infamously resistant to styling attempts, but fortunately
span is not.

The form source is carefully formatted, which at first glance seems at odds with the be-
havior of the many inline and inline-block elements used

On the other hand, source legibility is especially important with respect to forms,
and the various elements are going to be assigned display: block during the style-
sheet authoring process anyhow.

Assessment and Structure | 245

The submit button is not contained within the list markup used for scaffolding, and has
two class values that point directly to its function

The function of this element and its value make the li/label/control arrangement
superfluous. However, special styles are needed to align such controls to the ap-
propriate column stops, and Internet Explorer’s poor support for attribute selec-
tors demands an unusual degree of brute force to achieve ideal screen layout results.

The form itself has been assigned an id value
The id associated with the form might well be unnecessary, but if you’re using Ajax
or placing more than one form on the page, including the id will reduce develop-
ment time and code verbosity in the long run.

In some work environments, it might also be appropriate to add id values to the li
elements and the submit button present in a form, especially if the design of the form’s
client-side error handling requires complex styles.

Forms that distinguish between required and optional data should also include class
values on any li (container) elements that enclose fields intended for required data.

In summary, when you structure and mark up a form, you’re trying to achieve the
following for three goals:

• Ensure that each label/field pair has ample points of reference to the cascade,
DOM API, and requirements for compatibility with assistive technology
environments

• Overengineer the form to combat rendering bugs in Internet Explorer, particularly
version 6

• Make it as easy as possible for application engineers to create normalized, modular
output

The last of these goals is particularly difficult to achieve, but well worth the effort when
the objective is to build a complete web application. Well-normalized and modular
markup is far easier to process via object-oriented scripting code than are its ad hoc
equivalents.

Before moving on to the presentation aspects of forms, there are some details—some
obscure, some important—worth pointing out that relate directly to form markup and
behavior.

Basic Form Structure, Presentation, and Behavior
Those of you coming to this book from a design or editorial background may be anxious
to know: how the heck do forms work on a round-trip basis? (That was my first question
when I started on my first big web application project in 1999, anyway.) There are also
some oddities of form markup and behavior that are well known to experienced de-
velopers, but might not be familiar to all readers.

246 | Chapter 13: Clean and Accessible Forms

Form-Originated get Requests
If you’ve spent much time around form markup, you’ve surely noticed that every
form element has an action attribute, and every field element has a name attribute. The
latter are paired with their companion value values, and encoded by the browser in the
following manner:

content=Hello+World%21

That’s the literal submission to the web server, which in normal language reads “Hello
World!”

There are two reliable methods for sending this data to the server: get and post. get
appends the encoded data to the URI specified in the form’s action attribute, resulting
in a destination such as:

http://example.com/printmystuff.php?content=Hello+World%21

Note the literal ? that separates the data submission from the name of the requested
resource—in this case, a script named printmystuff.php in the root folder of the host’s
public filesystem.

Additional name/value pairs are separated by literal & (ampersand) characters, as
follows:

http://example.com/printmystuff.php?content=Hello+World%21&color=red&size=xx-large

Even though the resulting URIs are substantively no different from URIs without form
data, the advantage to submitting the data via a form is that the browser encodes the
data without the need for tedious human intervention (like requiring the user to mem-
orize half of the ASCII code table).

Because ampersands play a unique role, they must be escaped before they can be used
as valid href and src values:

http://example.com/printmystuff.php?content=Hello+World%21&color=red&
size=xx-large

This odd requirement has led to the industry term “damnpersands.” The genesis of
that term is owed to the presence of unescaped ampersands in the content submissions
of (understandably) clueless casual users, and the comparably wretched output of leg-
acy third-party plug-ins…and these ampersands are often the only things standing be-
tween carefully written markup and the successful validation of a document.

If the script that accepts the encoded data as input is also set as the directory default
resource (referenced as DirectoryIndex in Apache), and the appropriate server script
interpreter is also properly configured, the name of the script can be dropped altogether:

http://example.com/?content=Hello+World%21&color=red&size=xx-large

Finally, Internet Explorer limits URIs to 2,083 characters, of which no more than 2,048
can refer to any combination of filesystem locations and encoded form data. When a
URI overruns this limit, Internet Explorer reports an error to the user.

Basic Form Structure, Presentation, and Behavior | 247

The Fine Print of URL Encoding: ASCII Entities
In the preceding examples you probably noticed the presence of the %21 encoding in
lieu of !, which is listed in RFC 3986 as a reserved character. The full list of reserved
characters is provided in Table 13-2.

Table 13-2. Reserved characters in URIs and their ASCII encodings

Literal character Long name Encoding Decimal value

 space %20 32

! exclamation point %21 33

pound sign %23 35

% percent sign %25 37

& ampersand %26 38

$ dollar sign %24 36

' apostrophe %27 39

(left parenthesis %28 40

) right parenthesis %29 41

* asterisk %2A 42

+ plus sign %2B 43

, comma %2C 44

/ slash %2F 47

: colon %3A 58

; semicolon %3B 59

= equals sign %3D 61

? question mark %3F 63

@ commercial at %40 64

[left square bracket %5B 91

] right square bracket %5D 93

Literal spaces are always encoded—with %20 in actual URI paths, and with a literal +
in URL-encoded values like those shown above. This leads to some unfortunate but
necessary mangling: for example, if one wanted to submit 2 + 2 = 4 from a form, that
data would be encoded to 2+%2B+2+%3D+4 before submission.

Some of the other characters described in Table 13-2 are posed literally in paths, but
encoded when submitted as form data.

Browsers URL-encode user input without the need for developer intervention. How-
ever, the various scripting languages in common use on the Web all include functions
that will convert user input to or from a URL-encoded format.

248 | Chapter 13: Clean and Accessible Forms

The post Method and File Uploads
When the request method associated with a form is changed to post, encoded form
data is appended to the request body instead of the URI. Apart from serving as a way
of getting around the practical 2,083 character limit on URIs, post submissions are
more difficult for users to manipulate in ways not accounted for by a form’s design.
For these reasons, post is the request method required for file uploads.

While the default enctype attribute of form elements is application/x-www-form-urlen
coded, forms that support file uploads must instead have a declared enctype of
multipart/form-data.

Unfortunately for stylists, the input type="file" element interacts inconsistently with
CSS. Its most significant characteristic with respect to layout is that it actually draws
two UI objects on the canvas: a text input analog and a button. For this reason, the only
CSS properties that you can apply to a file upload control with any expectation of
gaining the desired results are color, background-color, and the properties that affect
layout flow (such as margin properties and position). This unyielding nature applies
especially to the button control, which in most cases cannot be changed from its
operating-system-dependent appearance.

If you apply custom visual styles to form elements, your composites and designs should
take a conservative approach to file upload controls, by assuming that they cannot be
altered from their default appearance.

Manipulating the Size and Appearance of Individual Controls
Form controls behave a little differently from other HTML components:

• Font and text property values in form controls are not inherited via the cascade,
but instead must be assigned those values via selectors that reference form controls
directly.

• Unlike normal elements, form controls are rendered according to “quirks mode”—
all box properties (except margins) lie within the control’s specified width and
height (if any).

• Form controls (except textarea) tend to disregard any line-height value that is
assigned to them.

• With the exception of input type="file" elements and the contents of select el-
ements, form controls can take on transparent backgrounds and custom back-
ground colors.

• The computed width of input type="text" is suggested by any length value it’s
been supplied. The best control of presentation is afforded by avoiding length and
instead applying width values in the stylesheet, as in the source examples provided
earlier.

Basic Form Structure, Presentation, and Behavior | 249

• The apparent size of checkbox/radio controls is controlled not by width or
height values, but instead by font-size values.

It’s easy to resolve the box-model deviation in current browsers, all of which support
the CSS3 box-sizing property (albeit as extensions in Firefox and Safari). It can be set
to one of two values:

content-box
Forces the element to be defined according to the “Strict” box model: the element’s
width value does not include its border or padding values. If you intend for form
controls to be rendered according to the “Normal” box model, they should be
assigned this value.

border-box
The element is rendered according to the “Quirks” box model: its computed width
includes any borders and padding that are set.

Finally, the select element has its own peculiarities:

• Under normal circumstances, a select control with a width value of auto will ex-
pand to the width of its longest option.

• If the width of a select control is less than that of its longest option, the “drop-
down” box will still expand to that greater width when the control is activated,
provided that it can do so without overflowing its parent viewport.

• The width and font-size values of select controls can be assigned in Safari, but
all other aspects of their appearance are influenced by the specifics of their under-
lying interface library and cannot be altered.

• option elements can be grouped within optgroup elements, as shown in Fig-
ure 13-2. Especially long lists of options should rely on optgroup to provide
separators, instead of including meaningless option elements where group sepa-
rators are desired.

• If an option that lacks a nonnull value is selected by the user, the user-facing content
of that option will be encoded and sent to the server instead.

Figure 13-2. A rendered select control with optgroup members, as shown in IE, Firefox, and Safari

250 | Chapter 13: Clean and Accessible Forms

This book’s companion website includes a test suite that demonstrates the behavior of
select in greater detail.

Prototyping and Layout
Once a form has been designed at the functional level and implemented, the next step
is to lay out the form so that it can be tested as a prototype.

Prototyping 101
A web application prototype serves the same function as any tangible product of an
engineer’s labor: to ensure that the product works as its designers intended. Much of
the effort of prototyping an application goes into ensuring that executable code is bug-
and hassle-free, but prototyping is also an opportunity to verify the usability of that
application’s human interface.

The user-facing aspects of prototype testing should answer the following questions:

• Are the application’s forms adequately easy for the target users to follow?

• Does the draft design of any form appear to lead to any habitual or typical user
errors?

• Do users routinely neglect certain fields, or intuitively invest extraordinary effort
in others?

• Are there any aspects of the application’s visual design and layout that require a
labor investment out of proportion to the benefits gained from the resulting pro-
duction values?

All of the information gleaned from the prototype testing process can have effects on
the user experience of an application, but the aspects discussed here focus on markup
and CSS.

Stylists need to avoid creating situations in which:

• The relationship between a form’s fields and their associated labels is unclear or
inadequate.

• Fields have been assigned a source or presentation order that poorly reflects user
priorities.

• Instructions and warnings are poorly laid out, obtusely written, or lacking neces-
sary detail.

• Specific design requirements expose egregious rendering bugs.

For a form to serve as an effective prototype, it needs to meet the following presentation
requirements:

Prototyping and Layout | 251

• The layout of the form should follow the conventions defined by the wireframes
and composites.

• While accents are unnecessary, the foreground and background colors should
supply adequate contrast.

• Instructions and required-data cues should be presented as similarly as possible to
their intended appearance on the production site.

• If Ajax is to be used in the production application, it should be implemented in the
prototypes as well, at least with respect to critical tasks. It falls to the stylist to
ensure that Ajax output meets the requirements described here.

Some basic design patterns for form layout are described in the next section.

Design Patterns, Style Resets, and Form Layout
By default, form controls follow inline-block flow, and labels follow inline flow. Be-
cause these elements will in many cases be assigned float values, and since the presence
of whitespace within source markup alters the layout of inline-block elements, these
elements are usually far easier to work with when they’re assigned a display value of
block. Once other elements are taken into consideration, conservative reset rules for
forms will look something like this:

form, form ul, form li,
 fieldset, textarea { margin: 0; padding: 0; }
 label, input, select,
textarea, form li span { display: block; }
 form ul, form li { list-style-type: none; }
 form li { clear: both; height: 1%; overflow: auto; }
 fieldset { border: 0; }

The layout patterns recommended for web forms are listed below, in order of desira-
bility. Each pattern is accompanied by sample styles that rely on the markup patterns
discussed in “Assessment and Structure” on page 241.

In the following style examples, the width and box values were chosen
for demonstration purposes only. Note that field margin values tend to
complement the width values of corresponding label elements.

Labels to the left of fields

label, form li span { float: left; width: 9em; padding-right: 1em; }
 input, select, textarea { float: left; margin-left: 10em; }
fieldset label, fieldset input { float: left; }
 fieldset label { clear: left; width: 4.25em; padding-right:
 .75em; }
 fieldset input { margin-left: 5em; margin-right: 1.5em; }

252 | Chapter 13: Clean and Accessible Forms

Same as the previous, with labels and fields justified to a common margin, in addition to
the previous set of rules

label, form li span { text-align: right; }

Fields below labels

form li { clear: both; height: auto !important;
 overflow: visible !important; }
fieldset label, fieldset input { float: left; }
 fieldset label { clear: left; width: 4.25em; padding-right: .75em; }
 fieldset input { margin-left: 5em; margin-right: 1.5em; }

Labels to the right of fields
Use the same styles as those applied to make labels fall to the left of their associated
fields, but invert applicable float and margin values.

Multiple columns of label control pairs
Divide your label/control sets into an appropriate number of separate lists, and
rely on the properties already discussed to achieve the desired layout for each col-
umn. To achieve the best results, add the following rules to your reset styles:

form { height: 1%; overflow: auto; }
form ul { float: left; width: 45%; margin-right: 5%; }

When you try to apply these examples to a working prototype, you’ll discover that
things aren’t quite grid-perfect, particularly with respect to input type="radio" and
input type="checkbox" controls. This is due partly to the tendency of most browsers
to borrow form control rendering from the user interface library of the underlying op-
erating system. The implications of this are raised in Chapter 14.

The second—and more straightforward—reason why things never seem to go accord-
ing to plan on the first styling pass involves the position of forms in the cascade: at the
top, for all intents and purposes. In order to influence form control sizes, you’ll be called
upon to set their width and height values on a case-by-case basis, an effort that also
requires you to set a custom font-size value for each form (or all forms) if you intend
to use the em-based approach to atomic grids that’s described in “Layout Types and
Canvas Grids” on page 106.

In practice, the work required to implement a production-ready form layout will involve
many adjustments and tests. You’ll find yourself creating class-scoped rules, setting a
lot of box values, and making minute adjustments to specific types of controls. Espe-
cially complex form layouts might demand that you make minute layout changes to
specific fields, such as:

form#supportTicket li#severity input { padding-top: .333em; }

In this example, you can discern the function of the affected fields from the selector
applied—a support ticket submission form containing a row of controls that allow the
visitor to define the severity of the problem, most likely a row of input type="radio"
controls (given the use of input rather than select in the selector).

Prototyping and Layout | 253

Explaining every potential form layout challenge that you’re likely to encounter would
result in an extremely long book. Additional test suites, library rules, and advice can
be found on this book’s companion website.

Grouping Controls by Appearance
Forms present several layout challenges, some of which are posed with great frequency:

• input type="text", textarea, and select elements that are meant to handle variable
amounts of input, e.g., street addresses and zipcodes.

• input type="submit" elements at the end of forms

• Rules such as input { border: 1px solid rgb(0,0,0); ... }, which must then be
reset for input type="checkbox" and input type="radio" controls

• Unlabeled (or oddly labeled) controls that appear in series, such as dates, rating
scales, and telephone numbers divided into their constituent parts

• Margin resets for input type="checkbox" and input type="radio" controls

Internet Explorer’s lagging selector support, especially with respect to
attribute, sibling, and immediate child selectors, is actually one of the
Bad Parts. The consequences are particularly bad with respect to style-
sheet authoring for form presentation.

The use cases just listed are best handled by choosing selectors named according to use
or to the length of the data to be contained in a given field:

For Text/select field dimensions, use:

• .short

• .medium

• .long

• .small

• .large

Choose the dimensions of select/option content carefully; fields that are too narrow can
obscure option content, in some cases irretrievably. For Submit button and image controls,
use:

• .terminalButton

• .submitButton

To differentiate between text and pointer-toggled input elements, apply the appropriate
class to the less-frequent type of:

• .textControl

• .buttonControl

• .boolControl

254 | Chapter 13: Clean and Accessible Forms

• .enumControl

And for the “hidden”:
Hiding or omitting labels is a bad idea, but if they must not be visible to screen
media users, use negative left values in tandem with position: absolute; to move
them out of view of screen media users. To label fields that are meant to store
arbitrary choices in series (e.g., after a legend that instructs visitors to list three of
their favorite things), use label content that references ordinal values (1st, 2nd,
3rd...) without respect to label elements’ visibility within the form interface.

The fieldset element appears in many of the cases described; use it wisely in both your
markup and your stylesheets.

Required Fields and Other Submission Constraints
There are a few occasions when a field needs to be filled, and the need is self-evident:
search and login forms obviously meet that description.

Most of the time, however, it’s only obvious to the developer of a form or an application
that a given field must be populated by the visitor prior to submission, even in common-
sense cases such as forms to collect mailing addresses (and titled as such). In these cases,
form elements need to be marked as “required,” and the corresponding checks need to
be written into the site logic.

In other cases, user-submitted data might fall within certain constraints, as is the case
with telephone numbers and email addresses especially. Handling these cases will re-
quire the use of string value checks and regular expressions.

Stylists have their own work to do in these cases: required fields must be marked ap-
propriately, submission constraints identified in the clear for the visitor, and errors
styled (preferably with accompanying feedback on the nature of the error).

Identifying Required Fields
Consider one of the label/control pairs described earlier in Figure 13-1, which delin-
eates the footprints of li container elements, fieldsets, labels, and actual form con-
trols. Assuming that you’re laying out your forms with the styles provided elsewhere
in this section, you’ll likely be adding rules comparable to the following:

 .required { position: relative; padding-right: 3.3em; }
.required label span.warning { position: absolute; right: 0; width:
auto; color: rgb(192,0,0); }

Required Fields and Other Submission Constraints | 255

Styles like these correspond with markup such as:

...
<li id="ZIPControl" class="required">
 <label for="zipcode">ZIP Code [required]:</label>
 <input type="text" name="zip" id="zipcode" length="5" value="" />

...

When used together, the result will be a “[required]” label on the right margin of the
label/control pair, set in a color with an H/S/B value of 0°/100%/63% (trending toward
maroon). The label is styled in such a way that the same rule can be applied to all
required fields in the document with a reduced risk of blowouts, provided that li and
fieldset elements have a functional width value of auto.

The drawback of this technique is that it can be missed by some screen magnifiers,
particularly the one included with all installs of Windows. When designing for this
case, the “required” tags should instead lie flush with the left margin of the associated
field, and either above or below it. The effects of such a change are easy to work out,
though it’s likely to result in a layout grid with far more vertical negative space than
the one implied here.

Many form designs will suggest required-field tagging that can be accomplished with
more “natural” element flow, but in cases such as these it’s helpful to know that posi-
tioning context (see “CSS Positioning Properties” on page 96) is there when you need it!

Discovering and Identifying User Input Errors
The next step in ensuring the validity of user input is to check it for errors, a task that
is best accomplished with both client- and server-side logic. The pipeline works some-
thing like this:

1. User input is tested against the appropriate combination of checks
against .length, indexOf(), parseInt(), and RegExp objects on the client side.

2. If JavaScript is enabled, user input that contains errors is flagged by the validation
script; an appropriate class such as error is appended to the existing value (if any)
of the appropriate li or fieldset container, and content is added to indicate the
nature of the error. If the user input meets requirements, the extra round trips of
transactions between client and server can be avoided.

3. The submission is received by the server and sanitized to prevent injection of ma-
licious SQL statements, executable code, and markup.

4. The sanitized input is checked against server-side logic similar to that executed in
the browser; if user input errors are found, the submission response includes the
same altered markup that should have been effected by the browser.

5. Steps 1, 3, and 4 are repeated until user input is free of errors.

256 | Chapter 13: Clean and Accessible Forms

The error description should be appended either at the top of the form, or at the
beginning of the li associated with the control that contains the erroneous user input.
It’s best to use both content positions, or else the latter alone; error messages placed
solely at the top of the form will force many users to scroll back and forth between the
notifications and the errors—if they can recognize the errors at all, under the
circumstances.

To handle error descriptions, you can attempt rules like the following to complement
the .required span.warning styles provided earlier:

.error .warning { display: block; background-color: rgb(160,0,0);
color: rgb(255,255,255); font-weight: bold; }
 .error input { border: 1px solid rgb(160,0,0); background-color: rgb(255,160,160);
}

In addition to these styles (which are provided entirely for the sake of illustration),
clear, width, and margin values can be added to ensure that the error notification will
lie horizontally flush to its associated input control or fieldset.

The disabled and readonly Attributes
If you’ve ever installed an operating system, especially one that requires a license key,
you are familiar with the notion of disabled controls. In software installation scenarios
configuration is often handled in several steps, each of which must be completed before
the next can begin, and the “Next” control at the end of each step is “grayed out” until
all parts of a step are completed.

You can impose similar bottlenecks on web forms with the disabled attribute, or less
often with the readonly attribute. Both are supported by the various form elements as
suggested in Table 13-3.

Table 13-3. Summary of disabled and readonly support

Attribute button input option select textarea

disabled ✓ ✓ ✓ ✓ ✓
readonly ✓ ✓

While the use of these attributes can lead to more elegant user experience designs—
mostly by preventing a visitor from setting values on controls until dependencies have
been satisfied—their values can only be changed with the assistance of JavaScript. For
this reason, you should avoid applying these attributes in the absence of alternative
solutions to the problem of satisfying dependencies within user input.

If you decide to obscure fields that need to be filled to satisfy intraform dependencies,
preserve the space that those fields are meant to occupy when fully visible, loading them
via Ajax or altering CSS properties other than display. Sole reliance upon display to

Required Fields and Other Submission Constraints | 257

effect field availability is jarring, and may reduce the quality of the user experience for
users of assistive technology platforms.

Creating Accessible Forms
Since forms are the beginning and end of many sites’ business objectives, it’s important
to consider the likelihood that a significant proportion of your visitors cope with re-
duced physical or mental function that complicates their efforts to use the Web.
Impairments relevant to the design of websites can be grouped into several basic cate-
gories, each illustrated with common examples:

Motor dysfunction
If users’ range of motion is limited, so is their ability to use a mouse, keyboard, or
perhaps both.

• Broken arms and/or fingers

• Chronic tendinitis or repetitive strain injury

• Peripheral neuropathy

• Paraplegia and quadriplegia

Impaired eyesight
The user interface design of personal computers and mobile devices is largely pre-
dicated on users’ ability to respond using their senses of sight, hearing, and touch.
Of these, eyesight is most significant to the design of websites, particularly those
that rely on forms to meet their business objectives. If users can’t see a form or the
data they’re putting into it, their ability to use such sites is greatly reduced.

• Myopia

• Astigmatism

• Age-related degeneration of visual acuity

• Macular degeneration

• Glaucoma

• Di- and monochromaticity (color blindness)

• Profound blindness

Cognitive dysfunction
The perception of value in media content, including web content, is entirely a
function of the brain and mind. A user who can’t concentrate on a site or quickly
comprehend its value is unlikely to stick around—thus the emphasis on brevity.

• Attention deficit disorders

• Dyslexia

• Auditory processing disorder

• Symptomatic brain injury

258 | Chapter 13: Clean and Accessible Forms

• Acute vitamin B deficiency

There are many other conditions that affect a person’s ability to use the Web. Shortage
of time, for example, is not among the types of impairment listed above, but is a com-
mon affliction.

It’s almost certain that you and people you know are familiar with at least a few of the
disorders listed here. I have extensive personal experience with three of them, two of
which I cope with on a daily basis—yet I still use the Web.

How about that!

Implementing Forms for Accessibility
You can make your site usable by practically all visitors by following some basic
practices:

Consult the Web Content Accessibility Guidelines (WCAG) during the design and test
phases of each project

This recommendation points more to habits than actual process; as you become
more familiar with the techniques described in the WCAG, you’ll get into the habit
of implementing them with progressively less effort.

Never rely on a single modality for signaling context or accepting user input
Where you use text, supply a purely visual cue as well (and vice versa). Ensure that
a visitor can interact with your site with a pointing device or a keyboard alone,
while still allowing the choice of using one device in preference to the other.

Always order source markup and content so that it reads coherently without the benefit
of CSS support

This goal requires that you consistently put the most important stuff first.

If you require a user to do something more demanding than “go wherever you want and
provide whatever data you please,” ensure that those requirements are clear and easy to
understand

Provide succinct instructions. You want to respect users’ intelligence within rea-
son, so don’t “talk down” to your visitors. However, it can often damage the user
experience when you assume that visitors share your depth of knowledge and your
perspective.

Avoid applying display: none and visibility: hidden at runtime, unless you’re willing
to accept that impaired users may never see the associated content

Since assistive technology platforms run on the assumption that the only styles
available are written for screen media, those property/value pairs suggest that af-
fected content should be ignored.

Creating Accessible Forms | 259

Do your best to ensure that users can read their own input under reasonable circumstances
Failure to style to this requirement results in unnecessary squinting, scrolling, and
cursor manipulation on the part of the user, activities that are never easy for visitors
with motor or visual impairments.

Consistency makes your site more predictable; design and implement layouts accordingly
Use steady margins and control sizes. Keep label content brief, without leaving it
completely bereft of meaning. Place label/control pairs in columns, so that each
control follows its predecessor in the same way that lines of copy flow from top to
bottom.

Where you use techniques such as Ajax and display value toggles, implement WAI-ARIA
(W3C Web Accessibility Initiative Accessible Rich Internet Applications) support via a
JavaScript framework

More information about WAI-ARIA can be found on this book’s companion
website.

Write valid markup to the spirit, rather than the letter, of the HTML and CSS
specifications

This means that you never use table elements to lay out page content, and that
you always include alt attributes with your images. Furthermore, it means that
you use the elements intended for your task if they’re supported, and that you use id
and class to impart context if they’re not. Most importantly, you should structure
markup in general to impart context, rather than using it to wrangle presentation.

Supporting Keyboard Navigation of Forms
Form elements and links in particular can be focused through the use of the Tab key
alone; the Enter key can be used to follow links and submit forms. This functionality
is exposed at the structural level through the tabindex attribute, which can be used to
change the order in which elements are focused by pressing the Tab key.

Under normal circumstances, use of the Tab key moves focus from one element to the
next in source order. When values are provided for applicable elements’ tabindex at-
tributes, the focusing order changes so that elements with a tabindex are focused from
lowest value to highest, followed by unassigned attributes in source order. Elements
with identical tabindex values are focused according their source order relative to one
another.

However, the tabindex attribute has two drawbacks: first, when tabindex is poorly
implemented on long pages, the scroll bar can leap great distances, leading to disori-
entation. And second, as a site goes through revisions, tabindex values are rarely up-
dated in practice.

On the other hand, a page with proper source order can benefit from the addition of
tabindex="0" to important elements that would not ordinarily receive focus early in the

260 | Chapter 13: Clean and Accessible Forms

visit (or in some cases, under any circumstances). You can also add negative tabindex
values to elements that you want to exclude from a document’s tabbing order.

The accesskey attribute supplants tab order by allowing users to bypass it entirely. Valid
values for the accesskey attribute are single characters, i.e., any normally unshifted,
printable character. These values can be activated by the user when they are pressed in
combination with one of the shift keys listed in Table 13-4.

Table 13-4. Activating accesskey assignments in the major browsers

Browser Key combination

Firefox/Windows Alt+Shift+?

Internet Explorer Alt+?

Safari and Firefox/Mac Ctrl+?

Two of the platforms described in the table carry special implications for user expect-
ations. The first of these is the OS X environment, where Ctrl rather than Cmd is the
key used to shift to an access key. Since Cmd is normally used to execute application
commands from the keyboard of a Macintosh (and the Ctrl key is neglected outside of
command-line environments), the assignment makes sense and poses reduced risk of
conflicts.

In contrast to this happy situation, there is the matter of the Internet Explorer acces
skey implementation. Windows applications focus their main application menus with
a press of the Alt key, the same key used as the accesskey shift—thus, Alt+F activates
the File menu, Alt+E activates the Edit menu, and so on. It’s important to remember
that if a conflicting value is supplied for an accesskey attribute, the corresponding
application interface trigger is typically overridden and thus disabled.

Given Internet Explorer’s preponderance of market share, use of the F, E, V, A, T, and
H values for the accesskey attribute is strongly discouraged. Some toolbars and browser
extensions may suggest similar exclusions for Windows browsers in general.

Form Features in HTML5
HTML5 initially focused on adding new features for HTML forms. It may be the area
where HTML5 makes the largest changes, but it’s still in development. This section
gives an overview of the form features, and supplies details about a couple of features
that, while currently not as well known as some other new features, nonetheless have
great potential to have significant impact on end users.

Form Features in HTML5 | 261

New Input Types
HTML5 forms improve on HTML 4 forms through the addition of the following 13
new types of input controls:

• datetime (global date-and-time input)

• datetime-local (local date-and-time input)

• date (date)

• month (year-and-month input)

• time (time input)

• week (year-and-week input)

• number (number input)

• range (imprecise number input)

• email (email address input)

• url (URL input)

• search (search field)

• tel (telephone-number input)

• color (color-well control)

These new input types offer a major improvement to authors: in the case of any of the
new types that have a special user interface associated with them, the user interface is
handled natively by browsers, instead of requiring authors to write their own JavaScript
code or use JavaScript libraries. For example, for color input, the browser generates a
color picker that allows users to select a color by pointing and clicking; for date input,
the browser generates a calendar picker. Providing users with a GUI control for those
kinds of input types also provides a built-in (as opposed to bolt-on) mechanism to
ensure that users can only enter valid values.

The big improvement for end users is also the provision of that kind of automatic client-
side validation—to either ensure that users can’t input invalid data to begin with, or
to quickly alert users when they do. (In HTML5 form implementations, client-side form
validation is always on by default, and can only be turned off by a user option in the
browser or by a page author explicitly setting a formnovalidate attribute on the entire
form or on a specific control.)

The required Attribute
The required attribute is a new form-related HTML5 feature whose purpose is relatively
simple yet very powerful. Specifying required on an input or textarea element in a
particular form indicates that users must provide a value for that element in order to
submit the form.

262 | Chapter 13: Clean and Accessible Forms

For the case where proper processing of a form requires that certain fields have non-
empty values such as the name field in an account-creation form, it’s necessary to check
the form contents and alert users when they attempt to submit the form with empty
values for those fields. That checking is currently done in one of two ways. The first
way is to do the check on the server side after the user submits the form; this is sub-
optimal because it means an extra network pass, and extra time for the user. The sec-
ond, better way is to do the checking on the client side, before the browser sends the
form to the server. However, the current downside is that this requires authors to do
the checking using custom JavaScript code or a JavaScript library of some kind.

Enter the required attribute. The benefit of the required attribute to you as an author
is that it eliminates the need to rely on JavaScript code to do client-side checking of
form fields for which values are required. Instead, all you need to do is set the
required attribute on the form field, which causes the browser to automatically do the
checking.

The benefit of the required attribute to end users is that it can save them time and
trouble; it also gives them a consistent user experience, across all web applications, for
being alerted in the case of a form with missing values for required fields. It also enables
them to get localized “missing form value” messages from their browsers in their pre-
ferred languages (instead of being limited to the language a particular web application
uses for its error messages).

Form Features in HTML5 | 263

CHAPTER 14

The Bad Parts

The Web is a wonder of modern civilization. Unlike any other time in history, it’s now
possible for people to instantly publish without the need for external approval, and the
Web is a key part of how we achieved that state of affairs.

Unfortunately, like any system, the Web has flaws, technical limitations, and vulner-
abilities. These are the Bad Parts. I discuss a number of them in this chapter, along with
a brief explanation of how they should be used, if at all.

This chapter concludes with “The Awful Parts” on page 286, which should be avoided
almost without exception.

The Numbing Nature of Internet Explorer (Especially IE 6)
The trouble with Internet Explorer is less a flaw of HTML and CSS than of an imple-
mentation, but the flaws in that implementation cast very long shadows. When Internet
Explorer 6 was released in 2001, it was categorically the best web browser available.
Why?

• It offered more and better support for web standards than any of its predecessors,
mated with what was then the best DOM API support.

• The rendering technology underlying Firefox, codenamed Gecko, was more than
two years from maturity.

• Internet Explorer 5 for Macintosh claimed the most standards-compliant CSS im-
plementation, but it used its own rendering engine and was hampered by a lack of
market penetration and internal support.

• Netscape was dying…because its best was to be found in Netscape 4.

• Safari was unheard of at the time, and wouldn’t reach full maturity for four years.
It took another year beyond that for Safari to become functionally similar to its
contemporaries with respect to rendering behavior and capability.

265

In other words, Internet Explorer 6 wasn’t too shabby in its own right when it was first
released, and it enjoyed a wide-open market.

Originally spurred on by Netscape’s initial dominance in the web space, Microsoft did
an incredible job of releasing terrific web browsers for four consecutive years, but in
the end, it became the napping Hare.

Apple, Inc., and the Mozilla Foundation fell collectively into the role of the slow-yet-
indefatigable Tortoise: they built and released their browsers, bit by painful bit, until
in 2005 there was no denying that Internet Explorer was showing its age.

Browser Wars 2.0
In mid-2005 the U.S. Government recommended that web users avoid Internet Ex-
plorer altogether, for reasons of security. Open-software advocates and anti-
monoculture gadflies enthusiastically began extolling the virtues of alternative brows-
ing platforms, and the results of that effort nibbled at Internet Explorer’s market share,
month after month.

Shaken out of somnolence, Microsoft has since released two new versions of Internet
Explorer that stand well above their offering of 2001, but that dinosaur—eight years
old as I write this—continues to hold on. There are a number of reasons beyond simple
network effects that explain the persistence of IE 6:

• When first released, the menu bar of Internet Explorer 7 was hidden by default,
confusing and alienating many casual users.

• Since enterprise information technology shops (the beating heart of Microsoft’s
recurring revenue) are viewed as cost centers in spite of the efficiency they make
possible, their best intentions are hobbled by the maxim “if it ain’t broke, don’t
fix it.” For this reason, Internet Explorer upgrade deployments are viewed by many
as imposing unnecessary hassles.

• Since its release, Windows XP, which includes Internet Explorer 6 out of the box,
has garnered more user goodwill than any of Microsoft’s more recent operating
system offerings. Windows 7 has been on the market since October 2009 and
shows great promise of outclassing Windows XP, but it will claim a smaller market
share than its predecessor for some time to come.

• It’s quite easy to set low-pass filters for CSS, thus hiding many of Internet Explorer
6’s flaws from casual users—at least to a point.

• Between 2001 and 2005, a number of service providers, especially banks, launched
customer-facing sites that were tuned to Internet Explorer for Windows, or were
perceived as such because the teams that built them didn’t know any better. This
profusion of platform-specific services created an unintended heap of Fear, Un-
certainty, and Doubt (FUD) about the credibility of alternative browsers.

266 | Chapter 14: The Bad Parts

• Security, filters, and platform specificity notwithstanding, most casual users quite
frankly don’t give a damn which browser they use, as long as it’s usable and seems
to work.

That said, Internet Explorer 6 is considered a Bad Part unto itself not because it’s a
burden on the user experience, but instead because it’s ubiquitous. Where it fails to
support something, all web users are denied access to newer web technologies, since
most commercial clients will not expend resources on products that can only be enjoyed
by a fraction of their intended audience.

In other cases, Internet Explorer provides support for specific features, but only through
methods so convoluted that developers consider it burdensome to implement them.

The following sections comprise a survey of Internet Explorer’s flaws. Where work-
arounds can be applied, they are described as well.

Absent or Poor Selector Support
Table 14-1 describes the shortcomings of selector support in Internet Explorer.

Table 14-1. Significant shortcomings in Internet Explorer’s selector support

Selector
Earliest supported
version Notes

> (direct descendant) 7

[foo] (attribute) 8 Simple attribute selectors work in IE 8, but efforts to further
narrow their scope fail to show results.

:first-child, :last-child 8

:nth-child() n/a

:before 8 Counters are ignored.

:after n/a

.foo.bar 7 IE 6 reads this selector as .bar.

:hover 3 The :hover pseudoclass was only applied to elements other
than a as of version 7; in the case of :active, as of version 8.

If top-tier support for IE 6 is a priority, it’s generally best to avoid these selectors.
Alternatively, their behavior can be duplicated with JavaScript, but that solution re-
quires code that accomplishes the desired results through a different kind of brute force.

Verdict
Use these selectors where called for, but educate stakeholders and designers about
what to expect. Replace :first-child, :last-child, and > selectors with classes
where needed.

The Numbing Nature of Internet Explorer (Especially IE 6) | 267

To track and solve layout issues caused by Internet Explorer rendering
bugs, consult the following resources:

• “Position Is Everything,” http://www.positioniseverything.net/

• The css-discuss mailing list’s wiki and archive, http://css-discuss.in
cutio.com/

hasLayout
hasLayout is an odd property, specific to Internet Explorer, that evaluates to true or
false when queried via the DOM API. When hasLayout evaluates to true, the applicable
element’s presentation characteristics are defined somewhere within the rendering en-
gine’s logic, rather than being polled. The latter outcome leads to many of the layout
bugs that stylists encounter when testing their work product in IE 6.

If you need to repair a layout bug by forcing the value of hasLayout to true, then you
must ensure that the “blown” element will assume defined dimensions on at least one
axis. This is most often accomplished by setting position and height values to anything
other than static and auto, respectively. This technique is called the “Holly Hack”
after Holly Bergevin, the developer who first popularized it.

Applying zoom: 1 is another way to force hasLayout = true and is preferred by many
stylists, as it does not introduce the stacking issues inherent to positioned elements (see
“Stacking” on page 101).

When used in tandem with a font-size value set in px higher in the cascade, use of
flexible/grid layout techniques (see “Layout Types and Canvas Grids” on page 106)
largely obviates these problems. The downside is that it can put vision-impaired users
of Internet Explorer 6 at a severe disadvantage, since the text sizes in the IE 6 View
menu are useless with respect to px-sized text.

Verdict
Blowouts are sadly inevitable. Resolve them by whatever means necessary, pref-
erably with a conditional stylesheet targeted to Internet Explorer and in combina-
tion with the * html low-pass filter.

Margin Doubling
Consider the following rule:

#someDiv { display: block; float: left; width: 20em; margin-left: 10em; }

Here, the margin and float values hew to the same edge of the parent element, and
inexplicably, Internet Explorer doubles that margin-left value to 20em, precisely because
the margin and float properties are applied to the same edge.

Half of the fix to this problem is documented by the W3C in Section 9.7 of the CSS 2.1
specification. The other half of the solution is counterintuitive: set the display value of

268 | Chapter 14: The Bad Parts

the element to inline. This works because given width and float values, the display
value of the applicable element will be block as a matter of course.

Positioniseverything.net gives credit for this solution to Steve Clason.

Verdict
The fix to the margin doubling problem, while obscure and counterintuitive, is just
the sort of unobtrusive business that we would wish from all workarounds. Move
on. Nothing to see here.

expression() Values
Did you know that JavaScript can be inserted into stylesheets, and Internet Explorer
will parse it?

If you set an expression() object as the value of a CSS property and provide a valid
JavaScript expression as its sole argument, Internet Explorer will evaluate that expres-
sion and treat the result of this execution as the value assigned to the applicable prop-
erty. This feature is eminently practical, but so thoroughly violates the spirit of pro-
gressive enhancement that I can’t discourage its use vehemently enough.

Additional discouragement is offered by the fact that you cannot effectively reference
document nodes in expression() statements unless you use the defer attribute on a
script that in turn loads the stylesheet with the expression() value. This is tantamount
to deliberate implementation of a Flash of Unstyled Content.

Verdict
Avoid this with great prejudice, for reasons of structural integrity and security.
Filter it to a fare-thee-well when you can’t avoid it. (This doesn’t rate as an “Awful
Part” only because somewhere, someday, it might well save your proverbial bacon.)

ActiveX Filters and Transitions
The ActiveX platform gives Internet Explorer access to a number of filters and transi-
tions, most notably an Alpha() filter that serves as IE’s analog to the opac
ity/-moz-opacity properties. A related filter is also critical to rendering the alpha chan-
nel of Portable Network Graphics (PNG) files in Internet Explorer 6, an issue discussed
in the next section.

To effect any sort of transparency on an element in Internet Explorer, assign it the
following style:

#foo { filter: progid:DXImageTransform.Microsoft.Alpha(opacity=xxx); }

The Numbing Nature of Internet Explorer (Especially IE 6) | 269

In this case, opacity takes on an integer value between 0 and 100, rather than a floating-
point value between 0 and 1 as with opacity and -moz-opacity.

Verdict
Use of this feature—and its CSS3-derived counterparts—is best limited to two
cases: scripted alpha channel transitions via the DOM API, and layout cases that
disallow the possibility of visibly combining two overlapping background images
into a parent element’s background. In all other cases this feature should be avoided
until the opacity property is broadly supported as defined in the CSS3
documentation.

PNG Support (or Lack Thereof)
In reality, all of the versions of Internet Explorer in common use will render PNGs. But
with IE 6, there’s a bit of a hitch.

At full bit depth, PNG images support 24 bits per pixel of color data (8 bits per channel,
just like JPEG, Photoshop, web color, and sRGB) and an additional 8 bits per pixel
(256 levels) of transparency.

However, when Internet Explorer 6 encounters a pixel with any alpha value other than
FF (full opacity), it renders a gray pixel instead of the intended result.

The AlphaImageLoader “procedural surface” was introduced to help resolve this prob-
lem. In this case, it works by altering the relationship of inline images to the rest of their
stacking context, and requires all manner of DOM API hacking be effective with back-
ground images.

The best solution to this problem (from a stylist’s perspective) involves the use of an
HTML Component file written by Angus Turnbull of http://www.twinhelix.com/. The
documentation is linked (along with several alternatives, including JavaScript-
framework-based solutions) from this book’s companion website.

Verdict
Most of the time, most designs allow workarounds to this issue by other means,
in other image encoding formats—happily, intellectual property disputes about
image encoding formats no longer generate the furor that they did when Internet
Explorer 6 was first released. Wait until IE 6’s market share drops into the mid-to-
low single digits, then use PNGs as desired and see what happens when you pro-
pose to let four-channel PNGs render as-is. (If enough vendors do this, stakeholders
will finally start getting the hint that IE 6 is ancient in Internet years.)

Poor Property Support
There are a few property/value combinations that have been of particular interest to
skilled stylists for a long time.

270 | Chapter 14: The Bad Parts

To put it bluntly, it’s just too bad that IE 6 doesn’t support these values as it should,
but there’s not much to be done.

Verdict
Write alternative styles—without creating extra elements, if at all possible—that
will reliably present the desired results on all platforms without the need for ex-
cessive filtering or other cerebral gymnastics. If support for position: fixed is
particularly relevant, you’re simply out of luck.

Issues with XHTML and XML
The lack of support for properly served XHTML is quite vexing, as it negates XHTML’s
practical advantages. To heap irony atop frustration, Microsoft was the first popular
browser vendor to attempt useful support for XML at all.

The advantages that accrue to XHTML in the absence of proper platform support are
still beneficial to developers’ work habits. However, plain old web projects should be
undertaken under the assumption that your visitors don’t have support for all of
XHTML’s features. If you want to split the difference, you can parse the User-Agent
field in the request header and send the most appropriate Content-Type in the reply,
but this approach leads to unintended consequences of its own (e.g., sending the wrong
Content-Type value to visitors who browse the Web from the far side of caching proxies).

Another drawback to serving your content as XML is that the XML specification is
unforgiving in the treatment of malformed markup on the part of user agents; if you
run a site or a datastore that relies to any degree on third-party content, you’re beg-
ging for trouble if you serve your documents as text/xhtml+xml.

Verdict
The ideal environment for XHTML opens the door to results of the shiniest
kind—but unfortunately, the Web in everyday use is not that ideal environment.
Darn. Use XHTML 1.0 and serve it with a Content-Type of text/html, or just revert
to HTML.

Systemic Ugliness
People have adapted their habits and attitudes to the design of the Web and the Internet
in general…up to a point. The world of the Web is a lot bigger than the subjective worlds
in which most of its users live—it’s worldwide, in fact!—which makes for some inter-
esting quirks in the system.

Systemic Ugliness | 271

Template Fragility and Third-Party Content
Given brokered advertising, blog comments, social media snippets, and the avalanche
of third-party content that may well end up on your website, you can’t realistically hope
that documents will remain as pristine as they were when you put them into production.

Put more bluntly, not everybody has your chops.

Unfortunately, this is a challenge that cannot be avoided or solved, even though it can
be attenuated by relying on Transitional document types. Sometimes garbage will find
its way onto your sites. Live with it.

Verdict
Educate as many visitors and third-party content providers as you can without
damaging your workflow and lifestyle, and in the meantime use the sturdiest
markdown tools you can find to process things like user comments.

Markup Validation As a Prerequisite to Proper Style Implementation
This is among the worst of the Bad Parts—not because it exemplifies a practice to be
avoided, but because it illuminates one of the most intractable flaws of the HTML+CSS
system.

Put simply, when you fail to insert a closing tag or foul an id/class value, you also
inadvertently cause the working cascade to deviate from the one that you’ve designed.
While vendors’ obedience to Postel’s Law (see “HTML Syntax” on page 7) often hides
cascade flaws, you cannot reasonably expect that to happen in all cases…and if your
markup is especially complex, the best way to find any flaws in your working cascade
is to validate your markup.

Verdict
This one’s a necessary evil that some strict constructionists laud for being one of
the few barriers to entry for novice web developers.

“Best Viewed with”
The platform specificity of the Web’s infancy—when Netscape was far better than
Mosaic, but was soon supplanted by Internet Explorer 3.0x, which had much better
presentation support than anything Netscape was publishing at the time—isn’t really
common anymore. What’s important is your development platform, which should be
Firefox (thanks to its unequaled standards support) unless you build assets for an au-
dience that uses Internet Explorer exclusively.

The good news is that nobody cares about your choice of development platform, and
nobody needs to care.

272 | Chapter 14: The Bad Parts

Still, you will encounter stakeholders who want things to look just so at their worksta-
tions, even if they use ancient hardware and work with their backs to the sun in the
afternoons.

Verdict
Of the battles you’ll be asked to fight, this one is probably worth it. Educate. Per-
sonally drag stakeholders away from their desks and ask them to look at your
product in some other environment. Play at politics if necessary. Advocate graded
support, which is discussed next. Don’t be a doormat.

Graded Support
If you’ve been paying attention—or if you really care about Apple’s design decisions—
you’ve probably noticed that 64-bit personal computing is finally inching toward ubiq-
uity. This constitutes the first major leap in software design in several years. On the other
hand, even now web developers aren’t confronted with the broad range of support
requirements they faced as recently as 10 years ago, when a two-year-old workstation
faced a good chance of being obsolescent.

The greatest variation stylists are likely to find among their audience relates to display
resolutions. Some visitors might be browsing from dial-up connections or 2.5G mobile
phones, but at least with respect to web browsing, most site visitors will be capable of
running reasonably current software.

Even so, between the apathy of most casual web users and the comparatively slow
progress of feature support, you will need to support a broad range of browsing plat-
forms. Some stylists face greater challenges than others; internal site developers work-
ing in Windows shops don’t need to worry about it at all, unless they use off-the-shelf
software written by small publishers.

When it comes to variety, the companies that are forced to deal with the broadest range
of browsing capabilities are the household names, such as Yahoo!; Amazon; major news
sites; big social media networks like Facebook; and service providers like utilities,
banks, and payment processors.

Yahoo! was mentioned first for a reason: they were the first organization to design,
implement, and popularize a testing system that held all browsers to appropriate
standards of performance.

Each combination of browser and operating system platform is tested by Yahoo!’s
Quality Assurance department against one of three grades of performance:

“A” Grade
These platforms are current, common, and capable of supporting popular-yet-
recent features and offer comparatively excellent support for standards-compliant
implementation techniques. They allow user experience to remain true to the intent
of the original site design more or less perfectly.

Systemic Ugliness | 273

“C” Grade
Platforms receive the most significant benefit of progressive enhancement; while
they lose access to the full depth of the intended user experience, they are still able
to use the site effectively.

“X” Grade
These platforms are kept out of the other grades on purpose. Many of them are
capable, at least to a point. The most visible of their cohort tend to be recently
released, and the ones that aren’t have thin slices of market share. Support tickets
for these platforms are ignored unless and until their market share grows to a level
high enough to justify formal testing.

In addition to Yahoo!’s support grades, I introduce my prospective clients to a “B”
Grade, which removes behavior support while preserving a reasonable amount of pre-
sentation support. Other shops might wish to reverse those priorities.

Since I’ve performed most of my work as a sole proprietor and usually enjoy little in
the way of third-party support of my testing efforts, I place far more platforms in the
“X” Grade than any large development shop might.

One point that I make in all of my project specifications, but that seems to be neglected
in Yahoo!’s description of their graded support method, is that all user experience at a
given support grade should be consistent for each individual visitor, and in the case of
“A” Grade platforms, broadly consistent without respect to the platform used.

At this point, you may be asking: “Why is this a Bad Part?”

There are several reasons for the classification as a Bad Part. Most importantly, graded
support legitimizes the market role of hangers-on like Internet Explorer 6 (and Netscape
4 before it)—browsers that are popular solely by virtue of inertia and network effects,
rather than any merits they might have. The other major reason is the fact that quality
assurance testing is the closest web teams get to making sausage: the customers like
the results, but they’d never want to see it being done.

Verdict
Apply support grades well and often, and act on test results with the best interests
of your site visitors in mind. You may not like it, but your visitors do.

embed Versus object
The continued survival of the embed element is perhaps the most egregious example of
applied network effects. Back when Windows Media Player was an afterthought, Flash
was best known because of a site called Gabocorp, and RealNetworks’ player was well
on its way to helping pay for a United States Senate seat, Netscape was the first out of
the gate with audio/video plug-in support. It merrily leapfrogged and disregarded the
W3C’s work on HTML 4.

274 | Chapter 14: The Bad Parts

At the same time, Microsoft was furiously trying to catch up, and took it upon itself to
support the element the W3C had specified for supporting plug-in content.

The latecomers all got caught in the middle, and because Netscape’s browsers had been
everywhere, Mozilla and Apple focused on providing the best support for the existing
population of embed media invocations—a choice that even Microsoft’s ultimate market
share could not undo.

Refer to Chapter 11 for an in-depth discussion of how to handle plug-in markup.

Verdict
From a forward-compatibility perspective, object rules and embed drools. Avoid
embed if you have any choice in the matter. Broad support for the object element
has finally scraped its way to the point where it can be considered reliable in all
likely use cases.

Form Controls, Plug-in Instances, and Element Stacking
The problem of plug-in instances and form controls appearing above all other elements
in utter disregard of absolute positioning and z-index values is less prevalent than in
the past, but still pops up (if you’ll pardon the phrase) from time to time.

The unintended prominence of form controls and plug-in instances results from the
way those elements are rendered by the browser. In many cases the user-facing objects
are created and inserted not by the browser’s rendering engine, but directly by operating
system components. In the case of Internet Explorer, these include the .NET Frame-
work and ActiveX, the latter of which inserts object elements into a page as if they were
modal dialogs.

This problem borders on being an Awful Part because the incidents that do occur are
intractable; z-index offers no respite.

The brute-force solutions are:

• Revise your layout so that nothing is called upon to stack over the offending
element.

• Place the topmost content within an iframe that lies further down the source order
than the offending element.

Verdict
This problem is incrementally worse in Internet Explorer as compared to other
browsers. Unfortunately, like many of the IE-derived Bad Parts, this one can’t just
be easily fixed without browser vendors changing their software.

Systemic Ugliness | 275

Invalid Markup for Stupid Reasons
The most obvious Stupid Reason for a failure to validate is the appearance of a “damn-
persand” in your markup, as discussed in Chapter 13.

However, there are other reasons that are far more frustrating. My favorite example of
HTML’s odd requirements comes from 2002, at the beginning of my tenure as the
proverbial “utility pitcher” at Webstandards.org. I’d just followed up an incoming
email with a related post on the site’s blog, so naturally—given the mission and audi-
ence of the site—my next move was to validate my work.

It didn’t validate, which is how the Stupid Reason made itself known.

Webstandards.org validates to a Strict document type, and my post contained a
blockquote element. What I did not know (by virtue of being firmly attached to Tran-
sitional document types) was that in Strict document types, a blockquote must contain
at least one block element—probably a paragraph, maybe a div.

Another obscure validation requirement was raised during the technical review of this
book’s draft manuscript: to be valid, thead and tfoot must precede tbody instead of
being placed at either end of it.

These odd requirements and others are described in a comprehensive chart on this
book’s companion website.

Verdict
Once you take it upon yourself to produce valid markup, you’ll be introduced to
some fairly strange requirements that impose limitations on element children, pa-
rents, siblings, attributes, values, and content. Save yourself the stress of being
annoyed and just fix it.

HTML’s Bad Neighborhoods and Cul-de-Sacs
HTML as we know it is almost 20 years old, and was originally designed to fulfill the
objective of exchanging academic papers and other written matter. The circus of Flash,
Ajax, podcasts, and social media was the furthest thing from anyone’s mind.

As a result, features have been tacked on to the language, one piece at a time—and
until the end of 1997, the “official” standing of contemporary additions to the language
was provisional at best.

Between the evolution of HTML, the evolution of the infrastructure that delivers its
content, and the changing expectations of web users, HTML shows off a fair share of
vestigial bits and ideas-that-seemed-good-at-the-time. The Awful Parts are all vestigial
bits of HTML (see the section “The Awful Parts” on page 286). The ones that might
actually be useful on rare occasions are discussed next.

276 | Chapter 14: The Bad Parts

Frames
The Frameset Document Type Definitions refer to two elements that were all the rage
in 1996, but are an embarrassment now: frameset and frame.

frameset is a substitute for body where it appears, and it supports the rows and cols
attributes. Each of the rows or columns specified—as a comma-separated list of pixel
or percentage values, of which there should always be at least one and preferably two
or more—in turn corresponds to a frame within the same document. Each of those
frame elements has an src attribute, which references another document. That child
document will be either a typical page or another frameset.

Finally, each frame can be assigned a name, which can in turn be a target on any of the
links that might appear within the frameset. This arrangement makes it possible for
the content of one viewport to alter the content of other viewports.

A visual description of nested framesets and their constituent documents is provided
in Figure 14-1.

Frames are really quite whizzy and full of extra-special 20th-century flashiness, but
that’s not a feature—it’s a bug. Assistive technology can’t hope to offer the same view
on framed content that typically functional visitors can take as a matter of course, and
even more importantly, consider that the multidimensionality of web documents grows
exponentially with each frame that’s added. It’s a rare designer who can impart any-
thing useful to the complexity facing the visitor in that case; more likely than not, a
designer who tries to make frames coherent will fail.

The one decent use of frames is to put your site navigation into one document and one
frame, while the site’s content is presented in the other frame. However, apart from the
accessibility hassles, this approach also increases the complexity of the mechanisms
required to preserve the “You Are Here” cues for all visitors. That’s because you need
to use JavaScript to convey the state of the “content” frame to the “navigation” frame,
which in its turn must execute still more JavaScript to effect the appropriate cues.

There are also iframe (inline frame) elements, which are defined in the Transitional
DTDs and distinguished from images at the markup level only by the fact that they can
load documents of any MIME type that the browser recognizes. At the user interface
level, they share with frames the capacity to display or deny scroll bars with the
scrolling attribute.

You’re much more likely to need inline frames than external frames, especially if you
place brokered advertising on any of your sites. Inline frames also provide a platform
for asynchronous transactions—a “poor man’s Ajax,” if you will. Instead of managing
asynchronous transactions with XMLHttpRequest objects and copying new document
nodes from their output, a developer can instead load serial documents into an offscreen
iframe and then copy document nodes from that iframe for attachment to the user-
facing document.

HTML’s Bad Neighborhoods and Cul-de-Sacs | 277

Verdict
Just don’t—not today, not tomorrow, not ever. You can be excused (barely!) for
deploying iframes if your ad vendors rely on them (and in so doing insist that you
offer criminals another vector for attacking your site), but otherwise you can rely
on server-side functionality and XMLHttpRequest to answer for the inoffensive func-
tionality that frames and inline frames provide.

The strike Element
In short, the del element does what the strike element was always meant for, and it’s
consistently supported.

Verdict
Use the del element. Blogging platform developers take note.

Figure 14-1. A working frameset and its corresponding markup

278 | Chapter 14: The Bad Parts

The name Attribute
The name attribute turns up on many elements, as described in Table 14-2.

Table 14-2. Elements that take the name attribute, and their associated functions

Element Function

a Specifies a link destination in the midst of the document

form controls Specifies the name of a given name/value pair; vital to effective encoding of form data

frame and
iframe

Uniquely identifies a single frame object so that it can be accessed by the target attribute of a given link
within the same presentation

link Specifies a name by which the linked object (e.g., an alternate stylesheet) can be referenced from within
the browser’s persistent user interface

map References the map element associated with a specific image

meta The alternative to http-equiv, the value of this attribute specifies the name of an arbitrary name/value
pair specifying document metadata such as keywords

Verdict
The use of the name attribute is largely deprecated in preference to the techniques
referenced in Table 14-3.

These caveats leave link and form control elements as the only elements with which
the name attribute reasonably can (in the case of link) or must (in the case of form
controls) be used.

Table 14-3. Preferred alternatives to the name attribute

Element Preferred alternative

a id values are supported as link hash values in all current browsers.

iframe Implement the desired behavior with JavaScript (in cases where the same-domain policy allows access to the object)
and create a fallback implementation if possible.

map Between consistent support of the x and y values of input type="submit" and other contemporary browser
features, this element is deprecated altogether in practice.

meta Avoid entirely, as the most popular name value of the meta element ("keywords") is completely disregarded
by its primary “audience,” search engines.

The noscript and noframes Elements
noscript content is only needed if you’re up to a ton of no good by disregarding the
virtues of progressive enhancement. You should instead design sites and applications
on the assumption that scripting isn’t available, and rely on scripting to enrich the user
experience beyond what can be encountered at the notional “default” level of func-
tionality. In fact, any other design philosophy begs you to violate the spirit of web
accessibility guidelines and legislation.

HTML’s Bad Neighborhoods and Cul-de-Sacs | 279

In its turn, the noframes element channels just as much Inner Bunk as the elements it’s
intended to supplant.

Verdict
These elements exist to provide a fail-safe, which was good design practice on the
part of the guys at Netscape who originally decided to implement the script and
frame elements. However, you’re leaning into bad design practice if you need either
of these elements. If you must use them, do so for the sake of enriching the “low-
fidelity” experience. In the case of noframes, the only acceptable use I can think of
is to provide a link to a decent site map.

Semantic Contortions and the Limited Vocabulary of HTML
It’s been pointed out that HTML has exploded far beyond its original design purpose,
which often leaves semantically minded stylists struggling to shove square pegs into
round holes.

The good news is that the folks in charge of HTML5 and the microformats advocates
are all putting tremendous effort into making life easier for the semantically (and lit-
erally) minded.

In the meantime, the best we can do is get by with the tools we have; wring every drop
of significance possible from the cascade, taxonomies, and universal attributes; and err
on the side of overengineering our work product.

Verdict
Avoid inappropriate elements, lean hard on the universal attributes, and wait
breathlessly for HTML5 to catch on.

Inline Presentation Elements
While HTML 4 might be semantically limited, its presentation elements are officially
deprecated for good reason.

The strong, em, and code elements exist precisely to fulfill the typical functions of the
inline presentation elements (b, i, kbd, font, etc.). The only remaining use of these
elements is to follow typographic conventions of several generations’ standing, for ex-
ample the italicization of foreign words.

Verdict
Use these elements if and only if:

• The purpose of the markup is not better suited to semantically oriented elements
as a matter of course.

• There are established typesetting conventions that categorically support your
usage.

280 | Chapter 14: The Bad Parts

• You’re happy to attach to the element the appropriate universal attributes that
illuminate the relationship between the element, the applicable typesetting con-
vention, and the element’s content.

• You can get more benefit from the cascade by using presentation elements in
preference to span.

For its part, font is invalid in Strict document types and really shouldn’t be used
at all. If you encounter it in legacy content, you would do well to move its
attributes, add a class value, and remove its presentation to the stylesheet
(where it belongs).

Manipulating Vertical Space: hr and br
The hr (horizontal rule) and br (linebreak) elements are among the oldest in the com-
monly used HTML namespace, but they’re artifacts of the era before stylesheets.

Even so, they turn up in some odd cases. hr is at times relatively positioned out of view
and used to enforce a clear value other than none. br can very occasionally be useful in
situations where application of the white-space property causes more problems than
it solves, and the content in question can’t be formatted as needed through div or
span abuse.

Verdict
It’s quite likely that you can find a better way to skin the proverbial cat, but there’s
always the possibility that sometime, somewhere you might need to call upon these
elements as a last resort. Use a better way if you can find one, but don’t think too
hard about it if you don’t have the time to spare.

The pre Element Versus the white-space Property
The highest virtue of the pre element is its user agent default style, which offers exactly
the same benefit as inserting the following rule into your stylesheet:

p.preformatted { white-space: pre; }

In other words, it’s less work to insert pre elements than it is to underscore their se-
mantic meaninglessness by deploying the style just described.

Meanwhile, one purpose to which pre is frequently and inappropriately put is format-
ting the line/stanza structure of traditional poetry, for which it is disastrously ill-suited.
Far better solutions to that objective exist, and I’ve even gone to the trouble of writing
about one on this book’s companion website.

Verdict
You really shouldn’t use pre, unless you’re monumentally lazy or so severely
pressed for time that you’re content to build crap and fix it later.

HTML’s Bad Neighborhoods and Cul-de-Sacs | 281

CSS Travesties
Those of us who were around and hard at work in the mid-1990s knew about CSS and
prayed fervently for it to be implemented sooner and more effectively than it was. To
make a long story extremely short, programming for the Web in the late ’90s sucked
because it wasn’t.

Ten years on from the ultimate peak of “irrational exuberance,” we now have better
CSS. Still, it’s not always so good at coping with the requirements of the contemporary
Web. Its truly rough patches are described in the following sections.

@-Rules
As design elements go, @-rules are elegant. They provide an additional mechanism for
narrowing scope via the cascade, which is awfully elegant on its own.

Unfortunately, they’re poorly supported. Consider:

• @import rules might or might not be applied by a given browser, depending on how
they’re written and where they’re located in the source order of a document or
stylesheet.

• @import and @media rules can take on additional, vendor-defined, arbitrary
attributes that usually want for clear documentation.

• Support for alternative media properties leaves a great deal to be desired, as dis-
cussed in Chapter 3.

Verdict
When @-rules work, they’re great, but when they don’t, they…don’t. Some of the
features discussed here might pop serendipitously into your psyche and save you
several hours of labor during a death march, but it’s very unlikely that @-rules will
ever be among them.

Computed Values and Rounding Differences
Every visual display medium has a fundamental unit of length, as was explained in
detail in Chapter 3. During the rendering process, the browser needs to translate values
expressed in other units, such as em, to baseline quantities (e.g., px in screen media).
Particularly with respect to length measurements, the resulting values are referred to
as being “computed.” Odd rules can also cause stated values to be reflected by entirely
different computed values, as in the case of the double margin bug discussed earlier in
this chapter.

Variation among the visual characteristics and font rendering algorithms of the various
popular browsing environments will occasionally result in rounding errors that are too
obvious to ignore—for example, a fractional-pixel letter-spacing value will not be
applied on the Mac, an outcome that carries implications for element dimensions.

282 | Chapter 14: The Bad Parts

When these variations lead to significant layout differences across platforms—as might
be the case with designs that suffer from low fault tolerance—the outcome can be
frustrating.

Verdict
When designs require a degree of precision that turns rounding errors into a bur-
den, two habits can minimize the potential for damage. First, specify floating-point
length values at high degrees of precision, like 10-3 if not 10-4. Second, limit your
stylesheets to a single medium and specify length units in a static unit suited to that
medium, such as px for screen presentations and pt/in/cm for print presentations.

Vendor-Specific -moz and -webkit Property Prefixes
Because users of Firefox and Safari tend to be conscientious about their web use habits
and are likely to be early adopters of new technologies, there are good reasons for the
developers of these browsers to nudge their product toward the bleeding edge.

At the same time, proper support for CSS 2.1 and other “official” standards is top-billed
in the marketing of these browsers, and the CSS3 properties supported by these brows-
ers are still subject to change. In fact, most of the CSS3 modules haven’t even achieved
Last Call Working Draft status—the last stage of the W3C Recommendation (de facto
standardization) process during which members of the general public can influence a
web technology’s development.

Because CSS3 is still maturing, its property support is best modularized into its own
sandbox by browser engineers. This is why the -moz and -webkit prefixes exist.

The desirability of using those properties is another question. This is something that
every development team must answer for itself, according to their development phi-
losophies and the objectives of their projects.

Verdict
Use these if you want to, but be prepared for unintended consequences when you
do—especially when new browser versions are released after CSS3 modules begin
to pass the full W3C Recommendation milestone.

The inherit Value
Inheritance is a tricky matter. In most cases, foreground colors and type sizes are in-
herited by child elements from parent elements, but box properties and the like aren’t.
There are scenarios where you might want to force box values and other layout prop-
erties to be inherited, though they’re rare.

On the other hand lies the travesty: browsers don’t really support the inherit value.

CSS Travesties | 283

Verdict
This would be nice to have someday, though it will require a light touch to use
well. In the meantime, we’re stuck repeating literal values.

Hiding Stuff: z-index and clip
At first glance, the z-index and clip properties are both eminently useful. One changes
an element’s relationship in the vertical scheme of things, while the other affects its
visibility to partial degrees.

In practice, both of these properties are far more difficult to use than you might think.

The trick to using z-index well is to remember that a document’s stacking context is
organized into strata; from bottom to top the layers are:

1. The page canvas

2. Block elements without float or position values

3. Elements with float values; and finally

4. Elements with position values other than static

Each element is overlaid by its background properties, then its content, and finally any
overlapping elements in the same stratum that lie further down the document’s source
order. That stacking order is then repeated for each stratum.

The clip value, meanwhile, is broken. Its intent is laudable: to pad an element without
shrinking its content box, leaving its values available for later manipulation via the
DOM API. However, unlike the padding property, all of its values are measured from
the top and left edges of the element, meaning that it’s functionally useless unless you
know all of the applicable element’s dimensions at runtime.

Verdict
Great in theory, lousy in practice, these properties are among the shortcomings
that keep stylists working late into the night.

Counters
The prospect of automatic counting in CSS, while obscure, is still worth contemplating.
The bad news is that the whole system is a wreck, because the use guidelines are im-
penetrable and the functionality isn’t supported by Internet Explorer.

Verdict
Rather than messing around with notional variables as the existing rules do, it
would be far better if the functionality were replaced with a single counter value
that is implied by its antecedent element’s state and takes two arguments: a starting
value and a level of significance. Most stylists—myself included—would rather

284 | Chapter 14: The Bad Parts

have limited automatic numbering, instead of powerful automatic numbering
that’s impossible to implement.

Element Flow Rules
Do you sometimes sit slackjawed in front of your display, wondering how the browser
took your stylesheet and created those results? It’s probably due to the heaps of intense
lawyering in the CSS specifications. Consider the following:

A line box is always tall enough for all of the boxes it contains. However, it may be taller
than the tallest box it contains (if, for example, boxes are aligned so that baselines line
up). When the height of a box B is less than the height of the line box containing it, the
vertical alignment of B within the line box is determined by the 'vertical-align' property.
When several inline boxes cannot fit horizontally within a single line box, they are dis-
tributed among two or more vertically-stacked line boxes. Thus, a paragraph is a vertical
stack of line boxes. Line boxes are stacked with no vertical separation and they never
overlap.

In general, the left edge of a line box touches the left edge of its containing block and the
right edge touches the right edge of its containing block. However, floating boxes may
come between the containing block edge and the line box edge. Thus, although line boxes
in the same inline formatting context generally have the same width (that of the con-
taining block), they may vary in width if available horizontal space is reduced due to
floats. Line boxes in the same inline formatting context generally vary in height (e.g., one
line might contain a tall image while the others contain only text).

—CSS 2.1 specification: Section 9.4.2, “Inline formatting context”

Got that?

Meanwhile, some unfortunate software engineer was forced to comprehend that pas-
sage and implement software that did what it said. You use that software every day.

This is one of the flaws in CSS that illustrates the virtue of communities—if you’re able
to join an active community of fellow practitioners, you’ll likely encounter at least one
person who has found the Zen in passages like the one quoted above.

Verdict
Enlightenment is just as much a process as a state of being. Pursue your professional
education accordingly, even if you’re forced to grind your teeth and try again at
times.

Unicode Code Position Values and the content Property
The content property, which was introduced in Chapter 7 and addressed again at the
end of Chapter 8, has an odd shortcoming: it doesn’t support entities.
If :before/:after and content are present in your stylesheet, you have three “safe” ways
to reference symbols outside of the 7-bit ASCII range:

CSS Travesties | 285

• Ensure that both your production tool and your web server are set to the same
character encoding before pasting in the literal character.

• Set the appropriate @charset declaration in your stylesheet and paste in the literal
character.

• Use backslash-escaped Unicode code positions to indicate the desired content.

In current practice, all three of these choices have pitfalls. The first choice is dangerous
unless you have absolute control over your editing environment and server, more than
most people reliably have. The second is impractical because some extant versions of
Internet Explorer and Safari choke on @charset declarations, each in its own annoying
way. The third lacks reliable support, but has the virtue of being both forward com-
patible and immune to changes in server configuration and network conditions.

When you attempt to reference Unicode code position values in the content property,
the value you want to supply is a Unicode code position expressed in base 16 preceded
by a backslash; for example:

blockquote>p:before { content: '\201C'; }

This will cause a proper English open (double) quotation mark to be placed at the
beginning of every paragraph that claims a blockquote element as a direct parent, since
0×201C = 8220.

Verdict
Paste UTF-8 characters as needed, and ensure that the server agrees with your
approach.

The Awful Parts
It gets worse from here.

HTML and CSS are full of stuff that is deprecated, ill-considered, and pitilessly inevi-
table, each iota unto its own end…yet still with a strong claim on redeeming social value.

And then there’s the misbegotten matter that inexplicably made it from the back of
someone’s mind, onto the back of a BevNap, through meetings, into the Action Item
List of a manager’s manager, around and within code, and finally came to life in the
steaming bowels of a working web browser. Never use the tools described in this final
passage, unless your refusal will get you sacked.

The marquee and blink Elements
These elements are really artifacts of the Web’s late childhood—in fact the blink ele-
ment is disabled by default in Firefox, if still supported—but they force visitors to divide
their attention. As an added bonus, they also put some epileptics at risk for seizures.

286 | Chapter 14: The Bad Parts

Verdict
Animations are different from content—and they’re behavior, not structure or
presentation. If you must animate, do so with JavaScript or Flash, and be a good
citizen about it.

MSIE User Interface Properties
It so happens that Internet Explorer gives stylists access to scroll bars and the chrome
of windows that they instantiate. This creates an opportunity to extend branding into
other parts of the user experience, which might be seen as a win in the eyes of some
people.

But it’s not. When you mess around with the user interface that in every other appli-
cation stays constant, you’re violating user expectations and possibly leading your more
skittish visitors to believe that their system has been infected with a virus.

Instead
Build a proper Adobe AIR app already. It’ll force you to reinvent a number of
wheels, but you’ll definitely earn a living.

The align Attribute
Back in the Bad Old Days when CSS didn’t exist—or couldn’t be counted upon to work
where it did—web producers had table markup and align to work with.

If you’ve been reading, you’ve probably noticed that the technology’s improved a little
in the years since.

Instead
Remove it where you find it, and use the appropriate float, margin, or text-
align value instead.

The style Attribute
So…we have this universal attribute that allows you to apply CSS properties in the
narrowest possible scope, in complete confidence that the specified values will be
applied.

Some people probably also have a case of the flu. You don’t see them going out of their
way to propagate it.

When you use the style attribute, you destroy the cascade, media type declarations,
and any hope of being able to maintain your deliverables.

Just don’t.

The Awful Parts | 287

Verdict
Sit down, leaf backward through this book, read “Rule Conflicts, Priority, and
Precedence” on page 31, and finally apply what you learn. The style attribute
might be easier to comprehend if you can’t see past markup, but it’s the web de-
veloper’s analog to a thermonuclear bunker-buster.

div-itis
Developers unfamiliar with the idea of “CSS Zen” too often and too easily fall into the
trap of wrangling their markup to their presentation, just as they would if they were
using table markup for layout. This habit—called “div-itis” for obvious reasons—
results in markup full of elements emplaced not for the sake of overbuilding, but instead
to ensure a specific result in the presentation.

These elements are easy to spot because they usually have class or (more rarely) id
values that refer not to the purpose of the content they contain, but instead to that
content’s presentation characteristics. class and id fragments that refer to relative
bearings, such as right and left, make regular appearances in such markup.

Verdict
A number of techniques eliminate any call for div-itis. The fundamental practice
of all such alternatives is to assign class and id values that reflect the purpose of a
given element, rather than its relationship to the presentation of a document. Other
important techniques include:

• Moderate structural overbuilding (see the section “The Four Habits of Effective
Stylists” on page 49)

• Altered positioning context (see the section “CSS Positioning Proper-
ties” on page 96)

• Careful application of background images (see the section “Composing Back-
ground Images” on page 152)

• Effective use of all box properties (see the section “Margins, Borders, and Pad-
ding” on page 78)

Event Handler Attributes
Event handlers in markup are not so different from the style attribute, and they’re even
more unnecessary (if that’s possible). When you attach them directly to tags, you thrust
behavior into the structural layer of your work product, which begs trouble down the
line (and makes your markup much harder to read). An “unobtrusive JavaScript” ap-
proach will be much easier to manage over the long run.

288 | Chapter 14: The Bad Parts

Verdict

1. Assess the elements to which you want to attach events, and add any universal
attributes necessary to ensure that you can access them via the DOM API ac-
cording to your needs.

2. Create and reference a function that fires onload, e.g.:

window.onload = assignEvents;

3. Within that onload function, walk through the various elements that you as-
sessed in step 1, assigning event handlers and associated code as needed.

4. If your needs exist on a time line or have multiple dependencies, you might
need to implement closures for the sake of handling your events. Links to
discussions of JavaScript closures are provided on this book’s companion
website.

Gratuitous Underlining
If you like underlines, you need to do a reality check: underlines are for links, only links,
and nothing but links. That’s what visitors expect, and it’s one of the more important
expectations to meet—unless you want visitors who are randomly clicking around,
trying to visit another page on your site.

Verdict
There are two meaningful uses for underlines beyond links: ins content (for which
it is the user agent default style), and emphasis in copy that’s styled to take on a
typewritten appearance. In the first case, ensure at least that the underlined inser-
tions have entirely different color and luminosity than any of your links; in the
second, style the em element appropriately and place your “typewritten” content
in a visual plane entirely separate from the rest of your page copy.

The http-equiv Attribute

Some readers work with system administrators who take an extreme—
and often counterproductive—approach to “locking down” every pos-
sible web server configuration option. If you’re one of those readers, the
following passage doesn’t apply to you.

When members of the general public started publishing their own websites, virtual
domains were a proverbial lightbulb over someone’s head. Server-side scripting support
was both expensive and difficult to utilize. At that time, some 15 years ago, web server
APIs were guru-only territory.

The Awful Parts | 289

The http-equiv attribute, like frames, was made available so that site publishers could
mimic site behavior that otherwise could only be implemented after the expenditure
of considerable money, time, and effort.

Verdict
Thankfully, the Web is well past the stone-knives-and-bearskins stage. If you want
to influence the behavior of the web server that keeps your site going, you can just
as easily use the HTTP API modules of the scripting languages that are supported
by your hosting plan, or utilize Apache and its .htaccess platform. It’s easier than
it sounds, and there’s plenty of sample code online; see this book’s companion
website for more.

Picking Up the Pieces
HTML and CSS have Good Parts that deliver terrific results. They have Bad Parts that
you probably wish you didn’t need to struggle with. Finally, like any technology, HTML
and CSS have their share of outright Awful Parts that never should have seen the light
of day.

By knowing which is which, and knowing when to use a given tool, you can sweep
most of the damage out of your work product and get the best maintainability out of
the sites that you build.

290 | Chapter 14: The Bad Parts

APPENDIX

URIs, Client-Server
Architecture, and HTTP

While hypertext brings into being a (virtual) landscape unlike anything else in human
experience, its reliance on the underlying Internet often goes unnoticed. Web devel-
opers don’t need to know much about the deep plumbing of the Internet—parts like
TCP, IP, and DNS. Hypertext Transfer Protocol (HTTP), though, is critical to website
construction, as it provides the foundation for all those http:// URIs scattered in links
and references.

The Underlying Client-Server Architecture
Client-server protocols (including HTTP) typically work through the steps shown in
Figure A-1 over the course of a transaction.

Figure A-1. Client-server architecture as a flow of six steps

291

1. The client looks up the IP address of the server from a nameserver if necessary.

2. The client looks up and opens a transport layer connection to the server; in the
case of HTTP, this is done via TCP/IP.

3. The client then sends data to the server over that connection that is adequate to
the requirements of receiving a reply from the server. That broadcast is usually
termed a request.

4. The server receives the request and processes it by running all related executable
code, then packaging the resulting output.

5. The server sends that packaged data back along the connection opened by the client
in step 1. This is usually referred to as the response.

6. The client receives the data and—if it’s sufficiently well-formed—stores and pro-
cesses it locally. In the case of a web transaction, the “processing” often results in
the rendering of a page.

This flow includes a number of opportunities for failure. The best-known such failure
is HTTP’s dreaded 404 Not Found error, which is caused by a problem encountered
during step 3 of the process.

What Every Web Developer Should Know About HTTP
The finer points of HTTP and web server operation are beyond the scope of this book,
but there are a few things about HTTP that every site builder should know, regardless
of her particular specialty.

There are minimal provisions for excessive network latency, and the few that exist involve
session termination (better known as a timeout)

Since it’s impossible to predict in all cases the state and extent of the network
between server and browser, one can never assume the order in which page com-
ponents will load, or the length of time it will take for a page to finish loading.

Any request for a single page will usually result in a series of requests pointed at multi-
ple URIs

Pages contain images, multimedia, code libraries, and other external resources, as
shown in Figure A-2. In high-latency environments, delays can create or compound
user experience issues, and in high-volume environments, improper resource man-
agement can overtax a web server. As a result, it’s a good idea to actively seek the
best trade-off between server resource utilization and network utilization—a
search that is at least partly the responsibility of the HTML/CSS practitioner.

HTTP is functionally stateless
“Stateless” in this case means that each transaction between web server and client
takes place separately, without a surrounding context. Workarounds, such as
cookies, make it possible for the server to keep track of context if desired. URIs
can also be appended with session-specific encoded data, but at the cost of making

292 | Appendix: URIs, Client-Server Architecture, and HTTP

those URIs extremely verbose. The biggest consequence of statelessness for the
HTML/CSS practitioner is that it becomes impossible to predict with any certainty
the state of a visitor’s client environment. This makes it difficult to assume anything
about the user’s experience during the current session, which has broad implica-
tions for site optimization efforts.

An HTTP request typically takes one of two forms, called GET and POST
It’s fair to say that most server requests are GET requests, but there are plenty of
occasions—especially those involving form submissions containing visitor data—
when a POST operation will be preferable for technical or security reasons. A more
detailed explanation of the difference between GET and POST requests is presented
in Chapter 13. (HTTP does support additional operations, but GET and POST do
most of the work.)

MIME Types, in Brief
In addition to the document type declaration supplied by a page author at the top of a
page’s source, the server sends its own data about the formats it serves. This information
is sent in MIME (Multipurpose Internet Mail Extensions) format, and it’s included for
security reasons. Some commonly encountered MIME types are described in Table A-1.

Figure A-2. A page request including additional requests for stylesheets, script files, and images

MIME Types, in Brief | 293

Table A-1. Commonly encountered MIME types

Resource type Literal MIME type

HTML text/html

Properly served XHTML application/xhtml+xml

Images image/gif, image/jpeg, image/png, image/svg+xml

Adobe Portable Document Format application/pdf

Adobe Flash application/x-shockwave-flash

MP3 audio audio/mpeg

Windows Media video/x-ms-wmv, audio/x-ms-wma

There are three universally meaningful ways to specify the MIME type of a file or server
response:

Default server response header
Web server configuration facilities provide mechanisms for mapping MIME types
to filename extensions.

Custom scripted response header
The HTTP functions of the major web server scripting languages provide interfaces
for specifying MIME types on a case-by-case basis: for example, Header("Content-
Type: text/xhtml+xml\r\n"); in PHP.

Filename extension
Web browsers make several checks on the content they receive, first by checking
the MIME type specified in the response header, then by checking its filename
extension, and finally by reading file headers.

Note that reliance on browser behavior is discouraged, because it offers no guidance
about how to handle corrupted data like that occasionally found in video files and
streams.

Controlling Request Volume
Overly complex stylesheets cause only some of the difficulties up to that are exposed
when designers and developers fail to optimize their designs for the benefit of server
and client host performance. Most relevant to stylists’ work are the following
considerations:

When possible, serve all of the files related to a single document request from a single
server or local group of servers

This advice is usually impossible to follow if your project includes advertising or
third-party content (i.e., multimedia files and social media tools). However, con-
centrating a site’s resources on a single server or network reduces the risk that a
site might be rendered inoperable by failures beyond its operator’s control.

294 | Appendix: URIs, Client-Server Architecture, and HTTP

In general, reduce the number of server requests
A properly configured server host with adequate connectivity can easily honor
several hundred thousand HTTP requests per hour—but that’s not the same as
handling several hundred thousand visitors per hour. Even a simple, static page
can imply dozens of requests for stylesheets, JavaScript files, and images. Techni-
ques that can reduce request load include sprites, use of the style element for
unique stylesheet rules, and cached concatenation of server-side markup and CSS
resources via include and output buffer functions.

Place JavaScript files at the end of the page source order whenever possible
This allows all network requests and execution time required for JavaScript to be
delayed until the page’s actual content has loaded, which can lead to a significant
improvement in page rendering time.

A second here, a second there, and pretty soon you’re talking about some real time.

O’Reilly Media offers several books that explore performance in greater
depth:

• High-Performance Web Sites, by Steve Souders

• Even Faster Web Sites, by Steve Souders

• Website Optimization: Speed, Search Engine, and Conversion Rate
Secrets, by Andrew B. King

Controlling Request Volume | 295

Glossary

Ancestor
An element higher in the document tree,
possibly many levels higher, that contains
the element in question. Cf. Child.

ANSI
American National Standards Institute. In
the U.S. technology industries, ANSI can be
considered an analog to Ecma International
(formerly known as ECMA). Its name is
raised in relation to fonts because the early
Windows character encodings were based
on a draft standard that was first advanced
by ANSI before being taken up and pub-
lished by the ISO (International Standards
Organization). Cf. Windows-1252 and ISO
8859-x.

ASCII
American Standard Code for Information
Interchange: the earliest character set that
had a viable claim to universal support in the
English-speaking world, and ubiquitous al-
most 50 years after its introduction. Limited
to simple Latin glyphs used in English,
whitespace characters, and teletype-specific
control and transmission characters. Practi-
cally all Latin letterforms and punctuation
without diacritics are encoded to ASCII
code positions.

Attribute
Additional information about an element,
presented as name/value pairs within the
opening tag.

Basic Multilingual Plane
The range of Unicode code positions from
U+0000 to U+FFFF (0–65535 decimal). Con-
tains nearly all orthography used on a daily
basis, without regard to origin.

Blackletter
A style of type inspired by German calligra-
phy of the late Middle Ages, and strongly
identified with Germany to the present day.
Sometimes called “Gothic,” but this is an
anachronism.

See also Gothic.

Browser
The most common user interface to the web,
software which presents web content on a
computer’s display.

Cascading Style Sheets (CSS)
The most commonly used stylesheet format
for declaring how HTML documents should
be presented.

Character
An encoded letter, number, symbol, or
whitespace datum. The content of a single
code position within a character set; can
comprise a glyph, multiple glyphs, white-
space, a control character, or a transmission
character.

Character encoding
The stream representation of character data,
i.e., the bit sequence used to represent a
character for transmission and/or storage.
Cf. code position; one refers to the literal se-
quence of bits used to represent a character

297

in a data stream, while the other refers to its
position within a character set.

Child
An element directly contained by another
element.

Client
The side of an HTTP transaction that makes
requests and does something, typically ren-
dering, with the response that comes back.

Code position
A single position in a given character set. The
character referenced at a specific code posi-
tion can change from one character set to the
next, though in practice the initial 256 code
positions used to identify a considerable
fraction of the Web’s text content are mostly
or entirely identical across character sets.
Even when the relationship between a char-
acter’s code position and encoding is not
1:1, the transformation that defines that re-
lationship is well documented.

Condensed
A style of sans-serif font distinguished from
others in its typeface by its narrow and
tightly spaced nature. Opposite of extended.

Control character
A sequence of bits representing a signal to
be sent from a user interface device to a ter-
minal or host, for the purpose of demanding
action on the part of the destination device
(e.g., Escape, Tab, Carriage Return).

Copy
The generic term for a writer’s work prod-
uct. Different from “text” since the latter re-
fers only to nonnumeric data in the most
general sense; all copy is text, but not all text
is copy.

Descendant
An element contained by the element in
question even if it is deeper in the document
tree.

Diacritic
A glyph added to a letter to indicate altered
inflection or pronunciation. Commonly en-

countered examples include the acute ac-
cent (´), umlaut (¨), and cedilla (¸).

Dingbats
A collection (usually comprising a well-
populated font) of characters that are simple
drawings (e.g., musical notes, circuitry sym-
bols) rather than members of a standardized
orthography.

Document tree
The notional branching structure of all ele-
ments in a document. Synonymous with
“Document Object Model” as applied to a
specific document.

Document Type Definition (DTD)
A machine-readable formal definition of a
given markup vocabulary.

Element
Structures in an HTML, XHTML, or XML
document whose beginning and end are
marked with tags.

Entity reference
A reference to a named piece of content,
typically a special character, that begins
with an ampersand (&) and ends with a
semicolon.

Extended
The complement to condensed fonts. Let-
ters are wider than in the normal fonts, and
letterspacing is usually more generous. Also
referred to as “Wide” and/or “Extra Wide.”

File
A discrete node on a server host’s native
filesystem.

Font
A collection of glyphs in a consistent visual
style; one component of a typeface or font
family. Fonts are structured according to the
details of the character set that they support.

Font family
A collection of fonts that vary only in respect
to weight (e.g., light, medium, book, demi,
bold, extra bold, black) and style (e.g., nor-
mal, italic, small caps). Raster font formats
like those used by Windows and early laser

Child

298 | Glossary

printers also contain separate instances for
each supported type size.

Glyph
The atomic unit of a font’s human-readable
contents. Usually, but not always, synony-
mous with character (and vice versa). Mul-
tiple glyphs are combined into single char-
acters when required by the specification of
the font’s underlying character set, while
multiple characters are combined into a sin-
gle glyph through the use of zero-width non-
joiners and other esoteric interstitial
characters.

Gothic
For the past century, reliably synonymous
with sans-serif, so named because most of
the early sans-serif typefaces originated in
Germany and the German-speaking regions
of Switzerland.

Gutter
Negative space between a text margin and
rule, between two columns, or between two
paragraphs. In many cases controlled with
the CSS padding properties.

HyperText Markup Language (HTML)
The ubiquitous document markup format
used to create web pages.

HyperText Transfer Protocol (HTTP)
The request-response network protocol un-
derlying the Web.

ISO 8859-x
A series of character sets introduced after
Windows-1252 but prior to Unicode, sup-
porting practically all contemporary Euro-
pean orthography and the orthography of
Hebrew, Turkish, and Thai.

Italic
A font evolved from its upright serif coun-
terpart, through the addition of calligraphic
accents. Usually skewed 5–10° clockwise
from the upright. Cf. oblique. So named be-
cause the earliest designs for these fonts
were developed in Italy, made narrower
than their “Roman” counterparts with the

intent of increasing the number of words
that could be placed on one line.

JavaScript
The most common programming language
for data processing and interactivity within
browsers.

Justification
Refers to the margin (or margins) to which
lines of type are hewed. A left-justified col-
umn starts all lines at a common left margin,
a right-justified column ends all lines at a
common right margin, and all lines of a fully
justified paragraph except the last begin
and end at common margins. This aspect of
layout is controlled in CSS with the text-
align property. Oppose ragging.

Kerning
Atypical letterspacing in the middle of spe-
cific pairs of glyphs, particularly ones that
include A, f, j, J, L, T, V, W, w, and y. When
neglected, enforces an illusion by which the
letters in a given pair seem uncommonly
(and distressingly) far apart. Some combi-
nations of operating systems, software, and
fonts call for frequent manual kerning of
high-quality bitmapped type.

Leading
The negative space between lines of type, so
named and pronounced because hot type
castings were separated on the press by
strips of cold lead to create that space. Re-
lated (but not identical) to the line-height
property.

Letterspacing
Consistent space inserted between individ-
ual glyphs within a passage of text.
Controlled by the CSS letter-spacing prop-
erty (and to a degree by the word-spacing
property).

Lower-/uppercase
Synonymous with miniscule and majuscule
letterforms, respectively. So called because
printers once stored individual letters of a
given cast type font in upper (majuscule)
and lower (miniscule) drawers.

Lower-/uppercase

Glossary | 299

Markup
Structural information mixed with the con-
tent being structured. HTML, XHTML, and
XML are all forms of markup.

Microsoft Core Fonts for the Web
In the late 1990s, Microsoft made available
a collection of fonts, designed by Matthew
Carter and others, that was distributed with
Windows, Internet Explorer, and as a stand-
alone, free-to-use download. These fonts
have been broadly available for several years
on Windows systems, and to a differing de-
gree on Apple Macintosh systems as well;
according to Apple’s support documenta-
tion, OS X 10.5 is the first version of Mac
OS to include all of them. The Core Fonts
collection is not supported by Microsoft as
a specific product at this time, but remains
available for download on a variety of third-
party websites.

Mind maps
They are a newly popular technique for vis-
ualizing this dimension of site design.

Mono
An appellation used to distinguish fixed-
width typefaces from their variable-width
counterparts.

Negative space (whitespace)
Any space on a page or canvas not occupied
by type, illustrations, or rules. The use of
“whitespace” as a design term illuminates
but is a generalization of its use as a com-
puting term.

Oblique
The sans-serif counterpart to italic—
without calligraphic accents.

Orthography
The study and practice of writing; a single
system of writing.

Page
The visitor-facing output produced in re-
sponse to a request for a URI.

Parent
Element that directly contains another
element.

Parse
The initial pass made by a user agent as it
reads in HTML and CSS content, turning
text into an internal structure that it may
later use to render the content.

Property
In CSS, an aspect of presentation. Some
properties, called shorthand properties, let
you specify multiple related aspects in one
pass.

Ragging
The practice of removing all extra letter and
word spacing from a passage so that text
does not justify to a margin. By default, web
text that is left-justified is right-ragged, and
vice versa.

Recommendation
Official documents of the W3C that provide
stable specifications. Commonly referred to
as “web standards.”

Render
Creating a presentable view from the mate-
rial parsed by a user agent.

Resource
A document or document fragment refer-
enced by a discrete Uniform Resource Iden-
tifier (URI) over the Web.

Roman
When used to refer to a typeface, “Roman”
is generally synonymous with serif.

Rule
A line placed to one side of a block of text.
Usually controlled with the CSS border
properties.

Sans-serif
A class of typefaces distinguished by reli-
ance on obviously geometric shapes, evenly
weighted strokes, and unadorned terminals.

Markup

300 | Glossary

Script
A class of typeface also referred to as cur-
sive and designed to resemble continuous
handwriting; usually decorative.

Selector
In CSS, a terse description which identifies
structures in a page to which a specified pre-
sentation form should be applied.

Serif
Inspired by classical incised letters, serif
typefaces are characterized by variable-
weight strokes and the presence of serifs—
slight feet or flanges—on terminals.

Server
The side of an HTTP transaction that re-
sponds to requests with content.

Sibling
Element that shares a common parent with
the element at the focus of concern. Siblings
are often described as prior, if they came
earlier in the document, or following, if they
came late.

String
An arbitrary sequence of characters of vari-
able validity requirements (depending on
the platform in use).

Stylesheets
Descriptions of how markup structures
should be presented. Cascading Style Sheets
(CSS) is the dominant stylesheet form on the
Web.

Tags
Markup, enclosed by < and >, to define el-
ements in an HTML, XHTML, or XML
document.

Transmission character
A sequence of bits included for reasons of
legacy support, indicating data stream sta-
tus and meant to be sent from a terminal
(usually a teletype) to a host computer, re-
mote storage device, or remote output de-
vice such as a printer or cardpunch. The
range of control and transmission charac-
ters is represented in ASCII by the 00–1F

(0–31 decimal) code position range, as well
as code position 7F/127 (Delete). The inclu-
sion of control and transmission characters
in ASCII was a historically significant step
toward the commoditization of user inter-
face hardware.

Typeface
An entire family of letterforms with close
commonalities of design; functionally syn-
onymous with font family, though in appli-
cation the latter refers primarily to the vector
data used to describe a typeface.

Unicode
An encoding scheme devised by a broad
consortium in the early 1990s, for the pur-
pose of serving as a framework for support-
ing the electronic storage and transmission
of all known writing systems in aggregate.
Unicode fonts reference Unicode code po-
sitions, but rarely support the breadth of
Unicode. Unicode code positions U+0000–
U+007F (0–127 decimal) are identical to
ASCII, and Unicode code positions U+0080–
U+00FF (128–255 decimal) are identical to
their counterparts in ISO 8859-1.

User agent
Any software which consumes content from
the web. May be a browser, or some other
kind of software process.

UTF-8
A popular encoding scheme for Unicode-
supported text, especially for web content
written in European languages. ASCII char-
acters are encoded with one bit apiece, the
ISO 8859-x characters outside of ASCII with
two bits apiece, the remaining breadth of the
Basic Multilingual Plane with three bits
apiece, and all remaining Unicode charac-
ters with four bits apiece. Cf. variable width
encoding.

Variable-width encoding
Character encoding schemes such as UTF-8
that can use a variable number of bytes to
represent a single character. In the case of
UTF-8, the byte width of a character is sig-
naled by the number of initial bits that are

Variable-width encoding

Glossary | 301

set on a given character: zero for 1-byte char-
acters, otherwise n for the number of bytes
used to represent the character.

Weight
The width of a rule, stroke, or font. When
applied to entire passages of text, weight is
controlled by the CSS font-weight property.
Common font weights for print applications
range from hairline (lightest) to extra black
(heaviest); the typical body copy weight is
sometimes assigned the appellation of “Me-
dium” or “Book,” but usually takes no spe-
cial appellation at all.

Whitespace
Characters such as spaces and tabs that rep-
resent the absence of data and text. Among
these, tabs and line feeds are included in the
range of control characters, because when
these characters were first included in
ASCII, analog teleprinters were understood
to be a primary output device for ASCII-
encoded data. Additionally, the amount of
literal whitespace to be inserted by these
characters is dependent upon hardware-,
software-, or operator-controlled configura-
tion, rather than the underlying character
set specification.

Windows-1252
The 8-bit character set originally used by
Windows to represent the orthography of
English and Western European languages,
and used as the encoding for older Windows
system fonts and Microsoft’s older Core
Fonts for the Web. Similar but not identical
to ISO 8859-1. The lower half of both
Windows-1252 and the ISO 8859-x charac-
ter sets is identical to the ASCII character
set.

World Wide Web Consortium (W3C)
An organization that serves as the primary
forum for specifying open web-oriented
technologies.

Weight

302 | Glossary

Index

Symbols
& (ampersand), 247
? (question mark), 247

A
a element, 279
abbr element, 140, 168
accesskey attribute, 261
acronym element, 140
action attribute, 247
:active pseudoclass, 137, 139
ActiveX platform, 269
additive color model, 144
adjacent selectors, 29
Adobe Photoshop

applying multiple adjustments, 185
background textures/patterns, 155
color profiles, 186
cropping images, 180
downsampling images, 187
Layers palette, 157
matting images, 181
optimizing photo contrast, 183
preparing images, 178
resampling images, 182

Adobe Shockwave Flash platform, 195, 197
:after pseudoelement, 142
Ajax (Asynchronous JavaScript And XML),

xxv
aliasing, 210
align attribute, 287
all media type, 26
AlphaImageLoader filter, 270
alt attribute

about, 15, 179
captioning images, 191
FIR considerations, 160
form accessibility and, 260
sizing type, 216

Amazon.com, 273
ampersand (&), 247
ancestors, 28
anti-aliasing, 210
article element, 72
ASCII standard

about, 225
choosing an encoding scheme, 225
reserved characters, 248

aside element, 72
assistive technology, 163
atomic grids, 108
attribute selectors, 29, 173
attributes

about, xxv, 8
universal, 14–17
XHTML rules, 8

audio element, 199–201

B
background images

composing, 152–157
drop shadows, 153, 157
Faux Columns, 152, 154
FIR and, 123, 139, 154, 157–160
gel effects, 153, 157
nonrepeating motifs, 153, 156
properties supported, 150
rounded corners, 154, 157
setting values, 151

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

303

textures and patterns, 153, 155–157
background property, 144, 151, 152
background-attachment property

about, 151
nonrepeating motifs, 157

background-color property
about, 151
Faux Columns, 155
file upload controls and, 249
stylesheet rules, 144

background-image property
about, 151
lists and, 117
negative margins and, 79
sprites and, 161

background-position property
about, 151
Faux Columns, 155
setting values, 151
sizing type, 215
sprites and, 160, 161

background-repeat property
about, 151
Faux Columns, 155
lists and, 117

background-size property, 152
:before pseudoelement, 142
behavior

forms and, 246–251
JavaScript support, xxv
separation considerations, 18–20

Bergevin, Holly, 268
biological classification, 68
blink element, 286
block element

collapsed margins, 80
flow behavior, 83
increasing link footprint, 138
layout properties and, 38
positioning, 86–88
stacking, 101

blockquote element, 142, 276
blowouts, 232, 268
body element

assigning box properties, 82
background images, 156
location cues, 71
multicolumned layouts, 92
relationship examples, 28

selector support, 30
sizing type, 217

border-bottom property, 133
border-collapse property, 169
border-left property, 153
border-radius property, 157
border-right property, 153
border-top property, 133
borders

composing table cells, 168
element size control, 73
image, 179–180
layout properties, 81

bottom property
about, 38, 39
positioning elements, 97, 99

box model (see CSS box model)
box-sizing property, 73, 250
br element, 281
braille media type, 27
breadcrumbs

defined, 64
orientation of, 65, 103

brightness values (color), 145
browsers

box behavior of root elements, 82
collapsed margins, 80
defined, xxiv
disabling document links, 67
graded support, 273
list default styles, 115
navigating forms, 261
parsing content, 20
pseudoclasses and, 138
recent browser wars, 266
rendering content, 20
rounded corners, 157
selector considerations, 173
sizing type, 216, 235
targeting with conditional comments, 24
URI limitations, 247
URI support, 2
viewing recommendations, 272
XHTML limitations, 11

bullets, inserting custom, 121

C
canvas element, 201
canvas grids

304 | Index

defining, 108
Fibonacci sequence, 110
flexible, 111–113
Golden Ratio, 110
Rule of Thirds, 110

CanvasRenderingContext2D API, 201
caption element

about, 166
sample table markup, 167

captioning images, 191
cascade

applying taxonomy via, 70–72
conflict resolution, 31
deviations in, 272

case sensitivity, HTML markup, 8
cathode ray tube (CRT), 145, 149
character encoding

about, 224
choosing encoding scheme, 225
inserting non-ASCII characters, 226–228
literal spaces, 248
reserved characters, 248
standards for, 225

charset attribute, 221
@charset declaration, 286
child elements

defined, 28
selecting, 30

child selectors, 29, 173
cite element, 140, 142
Clason, Steve, 269
class attribute

about, 14
aligning data, 171
captioning images, 192
consistency considerations, 56
definition lists, 127, 128
flexibility considerations, 53
form accessibility and, 260
form markup, 246
fouling values, 272
inline lists, 120
location cues, 70
multicolumned layouts, 93
navigation and, 117, 124
referencing links, 67
scope of content, 58
selector support, 29
simplicity considerations, 52

table composition, 173
clear property

about, 38, 39, 86
applying, 88
definition lists, 128
grids and, 108
multicolumned layouts, 90, 93
styling definition lists, 125

client-side environment
about, xxv
architecture, 291
layers supported, xxv

clients (see browsers)
clip property, 284
closing tags

defined, 8
failure to insert, 272

cm unit, 34, 36
CMS (Content Management System)

handling unpredictable, 78
publishing images, 188–190
URI support, 2

code element, 140, 280
col element

about, 165
aligning data, 171
sample table markup, 167

colgroup element
about, 165
aligning data, 171
sample table markup, 167

collapsed margins, 80
color blindness, 144
color profiles, 185
color property

about, 143
file upload controls and, 249

color theory
about, 143
additional information, 143
additive color model, 144
complementary colors, 146
contrast considerations, 146
design considerations, 146
display environments, 148–149
HSB color model, 145, 256
identifying colors, 147
RGB color model, 146
subtractive color model, 145, 146

Index | 305

vision conditions and, 144
color units, 34, 37
ColorZilla extension (Firefox), 147
colspan element

aligning data, 171
rollover effects, 175
sample table markup, 168

column-span property, 96
comments, conditional, 24
complementary colors, 146
conditional comments, 24
conflict resolution, 31, 32
content

assessing scope, 229
creating effective link, 136–137
defined, xxiv
describing with attributes, 15
element size control, 73
markup support, xxv
multidimensionality of, 62
parsing, 20
plug-in, 190–195
progressive enhancement, 53
rendering, 20
replaced elements and, 177
scenario without links, 1
secondary, 230
separation considerations, 18–20

Content Management System (CMS)
handling unpredictable, 78
publishing images, 188–190
URI support, 2

content property
definition lists, 126
quotation markup and, 142
usage considerations, 285

contenteditable attribute, 17
contrast

color theory on, 146
optimizing for photos, 183
table header/footer, 173–175

controls (see form controls)
controls attribute, 200
counters, 284
CREATE statement (SQL), 239
CREATE TABLE statement (SQL), 237
cropping images, 180, 185
CRT (cathode ray tube), 145, 149
CRUD acronym, 238, 240

CSS box model
determining, 12
element size control, 73

CSS layout
@-rules, 282
advanced, 96
auto values for properties, 74–78
borders, 81
boundaries on element dimensions, 77
box property considerations, 82
commonly supported properties, 37, 38
content property and, 285
counters, 284
disadvantages of tables, 163–165
element flow, 83–86, 285
element size control, 73
forms and, 252–254
handling unpredictable, 77
hiding stuff, 284
inherit value, 283
margins, 78–80
multicolumned layouts, 88–96
navigation considerations, 102–106
overflow property, 75–77
padding, 82
popular approaches, 106–113
positioning block elements, 86–88
positioning properties, 96–99
property prefixes, 283
rendering modes, 73
rounding differences, 282
Unicode considerations, 285
visibility property, 99
z-index property, 99

CSS Zen
about, 59
achieving consistency, 55–57
divisibility principle, 61
functional principles, 60
habits of effective stylists, 49–59
interconnection principle, 61
KISS principle, 50–52
maintaining bearings, 57–59
maintaining flexibility, 52–55
mutability principle, 61
separation principle, 61

CSS3 module, 96
cursor property, 67, 140

306 | Index

D
damnpersands, 247, 276
data tables (see tables)
dd element

about, 124
dictionary example, 126
thumbnail images and, 192

def element, 141
definition lists

defined, 124
dialogue example, 127–128
dictionary example, 125–127
styling, 124

del element, 141, 278
DELETE statement (SQL), 239
deprecated elements, 12
descendant selectors, 29
descendants, 28
design considerations

assessing content scope, 229
color theory, 146
distinguishing type, 230
entering type treatments, 233
for forms, 237, 239, 252–254
hierarchy in, 228
secondary content, 230
setting type around blowouts, 232
styling passages of similar priority, 232

Dhakar, Lokesh, 194
diacritics, 226
digital typesetting, 205
DigitalColor Meter application, 147
dir attribute, 14
DirectoryIndex directory, 247
disabled attribute, 257
display property

about, 38
changing element flow, 84–86
creating lists, 116
definition lists, 126
element positioning and, 97
FIR considerations, 158
form accessibility and, 259
form markup, 245, 252
increasing link footprint, 138
margin doubling and, 268
multicolumned layouts, 92, 96
navigation considerations, 66, 122, 123
replaced elements and, 178

div element
cautions using, 288
collapsed margins, 80
inline lists, 120
navigation and, 117

dl element, 192
doctype declaration

defined, 10
doctype declarations

additional information, 13
box models, 12
choosing right type, 13
defined, xxv

Document Object Model (see DOM)
document trees

defined, 28
working with, 19

documentation as compass, 59
documents

box behavior of root elements, 82
connecting stylesheets to, 23–39
defined, xxiv
disabling links, 67
life cycle overview, 20
links to specific passages, 135
scenario without links, 2
scope of content, 58

DOM (Document Object Model)
about, xxv
defined, 42
SWFObject support, 195

Dominey, Todd, 194
downsampling, 187
Dreamhost Wiki, 198
drop shadows, 153, 157
DROP statement (SQL), 239
dt element

about, 124
dialogue example, 128
thumbnail images and, 192

DTD (document type definition), xxv, 11
dyads, 149

E
ECMA-262 standard, 42
elements

changing flow behavior, 84–86
choosing to style, 27
default flow behavior, 83

Index | 307

defined, xxv, 8
deprecated, 12
dimension boundaries, 77
flow rules, 285
nesting, 28
page structure, 10
parts of tables, 165–168
positioning, 96–99
replaced, 177
selector support, 29
size control, 73
stacking, 101, 275
structural, 72
styling for navigation, 121–124
styling heading, 131–133
universal hooks, 14
value inheritance, 33

em element, 140, 280
em unit

about, 33, 34
background-position property and, 151
sizing type, 215, 216

embed element
embedding multimedia, 196, 197, 198
object element versus, 274

embedding multimedia, 196
embossed media type, 27
enctype attribute, 249
Eolas, 197
error messages, 240
event handler attributes, 288
expression function (JavaScript), 269

F
Facebook website, 123, 273
Fahrner Image Replacement

about, 154
bitmapped copy and, 157–160
drawbacks, 159
implementing, 123
layout considerations, 139
sprite considerations, 160–161
stylesheet rules, 159

Fahrner, Todd, 158
Faux Columns, 152, 154
Fibonacci sequence, 107, 110, 112
fields

form rules for, 239, 240
identifying required, 255

fieldset element
about, 243
form layout and, 255
identifying required fields, 255
identifying user input errors, 256

figure element, 72
files

defined, xxiv
uploading, 249

Firebug extension (Firefox), 108, 147
Firefox browser

ColorZilla extension, 147
navigating forms, 261
pseudoclasses and, 138
rounded corners, 157
selector considerations, 173
Web Developer Toolbar extension, 108,

147
Fitts’s Law, 85
fixed layouts, 106–108, 139
flexible layouts, 106–108, 139
float property

about, 38, 39, 86
applying, 88
canceling values, 87
converting two-column layout, 89
FIR considerations, 159
form markup, 252
margin doubling and, 268
multicolumned layouts, 90, 93, 95
navigation and, 102, 105, 123
styling navigation elements, 121
thumbnail images and, 192
usage rules, 86

:focus pseudoclass, 138
font element, 217
font property, 222–223
font-family property

applying choices, 220–221
character encoding, 224
finding typeface names, 222
system default types and, 222

font-size property
about, 34
form controls, 250, 253
hasLayout property and, 268
setting values, 132
sizing type, 216
system default types and, 222

308 | Index

values supported, 36, 217
font-variant property, 235
font-weight property, 125, 208
fonts (see Web typography)
footer element, 72
footer links, 121
form controls

grouping by appearance, 254
HTML5 supported, 262
manipulating, 249–251
name attribute, 279
plug-ins and, 275
rules for effective, 240
value inheritance and, 33

form elements
enctype attribute, 249
links and, 133

formnovalidate attribute, 262
forms

additional information, 241
behavior and, 246–251
building effective, 237–241
creating accessible, 258–263
establishing requirements, 241–243
get requests, 247
identifying required fields, 255
keyboard navigation, 260
layout and, 252–254
markup and, 243–246
organizing UI by function, 238
presentation and, 246–251
prototyping, 251–252
rules for effective, 239–241
structure and, 243–246–251
submission constraints, 255–258
URL encoding, 248

frame element, 277, 279
frameset element, 277
Frameset HTML subtype, 12

G
gallery, image

Lightbox tool, 194
working with previews, 192–193

gel effects, 153, 157
get method, 247
GetXMLHttpRequest API, xxv
GIF format, 186, 187
Git RCS, 189

Golden Ratio, 107, 110
grids (see canvas grids)
Gutenberg’s press, 204
gutters, 82

H
handheld media type, 27, 34
hasLayout property, 268
HCI (human-computer interaction), 62, 85
header element, 72
Header function (PHP), 224
headers attribute, 168
headings

creating rules, 133
levels supported, 129
normalizing dimensions, 132
optimal insertion, 131
size considerations, 132
styling elements, 131–133
type treatment, 132
usage in print materials, 129

height property
about, 38
auto value, 74
captioning images, 191
form controls, 249
grids and, 110
image dimensions, 179
link dimensions, 138, 139
multicolumned layouts, 95
navigation and, 104, 123

Hewlett-Packard, 185
hinting (typography), 211
Holly Hack, 268
:hover pseudoclass, 137, 139
hr element, 281
href attribute

about, 134
ampersand and, 247
creating effective link content, 136–137
image publication, 190
linking to specific passages, 135

HSB color model, 145, 256
HTML documents (see documents)
html element, 82
HTML markup

avoiding legacy attributes in tables, 168
case sensitivity, 8
failure to validate, 276

Index | 309

forms and, 243–246
frame considerations, 277
HTML variants, 11, 12–13
image dimensions, 179
KISS principle, 50
links and, 133
rendering modes, 10
separation considerations, 18–20
syntax overview, 7–10
typical selector interface, 29
universal attributes, 14–17
usage suggestions, 278–281
validation and implementation, 272

HTML5 specification
canvas element, 201
contenteditable attribute, 17
form features, 261–263
new structural elements, 72
video/audio elements, 199–201

HTMLMediaElement interface, 200
HTTP (Hypertext Transfer Protocol)

about, 41, 292
client-server architecture, 291
Content-Disposition header, 199
Content-Language header, 16, 221
Content-Type header, 199, 221, 271
controlling request volume, 294
MIME types, 293
REST support, 240

http-equiv attribute, 289
hue values (color), 145, 149
human-computer interaction (HCI), 62, 85
hyperlinks

contenteditable attribute, 17
creating effective content, 136–137
disabling for documents, 67
to document passages, 135
implementation challenges, 4
improving user experience via, 3
increasing footprint, 138
inline links, 64
managing, 3
markup considerations, 133
scenarios without links, 1
styling, 137–140
URIs in, 2

Hypertext Transfer Protocol (see HTTP)

I
ICC (International Color Consortium), 185
id attribute

about, 14
captioning images, 192
consistency considerations, 56
flexibility considerations, 54
form accessibility and, 260
form markup, 246
fouling values, 272
linking to specific passages, 135
location cues, 70
multicolumned layouts, 90, 93
navigation and, 104, 122, 124
sample table markup, 168
scope of content, 58
simplicity considerations, 52
table composition, 173

id attribute selector support, 29
iframe element

about, 12, 277
form controls and plug-ins, 275
name attribute, 279
value inheritance and, 33

ImageMagick, 192
images, 177

(see also background images)
additional information, 180
alt attribute, 179
applying multiple adjustments, 185
captioning, 191
cropping, 180, 185
dimensions and borders, 179–180
downsampling, 187
layouts within columns, 190
level changes, 183, 185
matting, 181, 185
optimizing, 186–188
optimizing contrast, 183
organizing, 188
preparing for production, 178–180
production process, 180–185
publishing, 188–190
replaced elements and, 178
resampling, 182, 185
styling, 190–195
thumbnail, 192–193
working with color profiles, 185

images directory, 188

310 | Index

img element
about, 178
embedding video, 200
evolution of, 177
image publication, 190
replaced elements and, 178

@import declaration
about, 25
adding media values, 26
connecting stylesheets, 23
usage suggestions, 282

in unit, 34, 36
include function, 25
information architecture

additional information, 62
applying taxonomy through cascade, 70–

72
creating usable interfaces, 66–67
defined, 61
multidimensionality of content, 62
scenarios and user testing, 67
site navigation, 63
taxonomy and nomenclature, 68
visit strategies, 64

information, presentation and, 60
inheritance

CSS considerations, 283
value, 33

inline elements
about, 83
link markup and, 133
table of supported, 140
usage suggestions, 280

inline images, 190
inline links, 64
inline lists, 120
inline-block element

flow behavior, 84, 85
footer link layouts, 121
increasing link footprint, 138
layout properties and, 38
thumbnail images and, 193

input element
about, 242
CSS interactions, 249
form controls and, 249, 253, 255
required attribute, 262
SQL statements and, 239
usage suggestions, 66

ins element, 141, 289
INSERT statement (SQL), 239
International Color Consortium (ICC), 185
Internet Explorer

about, 265
ActiveX filters/transitions, 269
browser wars, 266
expression function and, 269
hasLayout property, 268
margin doubling, 268
navigating forms, 261
PNG support, 270
poor selector support, 267
property support, 270
pseudoclasses and, 138
selector considerations, 173
sizing type, 216
targeting with conditional comments, 24
thumbnail images and, 193
URI limitations, 247
user interface properties, 287
XHMTL/XML issues, 271

ISO 8859 standard, 42, 225, 226

J
JavaScript

about, xxv
behavior support, xxv
expression function, 269
identifying user input errors, 256
SWFObject support, 195

Jessey, Simon, 198
JPEG format, 186, 187, 270
jQuery framework, 96

K
kbd element, 140
KISS principle, 50–52

L
label element

form markup, 240, 246, 253
identifying required fields, 255

lang attribute, 14, 15
layout (see CSS layout)
LCD (liquid crystal diode), 145, 149
left property

about, 38, 39

Index | 311

positioning elements, 97, 99
legend element

about, 244
form markup, 245, 255

Lehrer, Tom, 147
length attribute, 245, 249
letter-spacing property, 207, 236
letterforms

aliasing and, 210
history of, 203–205

li element
creating lists, 116
form markup, 244, 246
identifying required fields, 255
identifying user input errors, 256
relationship examples, 28
styling definition lists, 125

Lightbox tool, 194
line-height property

about, 207
form controls, 249
secondary navigation, 124
setting type around blowouts, 232
sizing type, 216, 234
styling headings, 132
system default types and, 222

link element
attributes supported, 134
connecting stylesheets, 23
media attribute, 26
name attribute, 279
referencing stylesheets, 23
replacing with style element, 25

:link pseudoclass, 137
link rot, 3
liquid crystal diode (LCD), 145, 149
list-style-image property, 117, 121
list-style-type property, 116, 120, 124
lossless compression, 187
lossy compression, 187

M
map element, 279
margin doubling, 268
margin-bottom property, 80
margin-left property, 116, 124, 142
margin-right property, 90
margin-top property, 80
margins

collapsed, 80
element size control, 73
multicolumned layouts, 90
negative, 79
table cells, 170

markup, 7
(see also HTML markup)
content support, xxv
defined, xxiv
structure support, xxv, 7

marquee element, 286
matting images, 181, 185
max-* property, 77
maxlength attribute, 245
media attribute, 26
@media declaration

style blocks, 26
usage suggestions, 282

media types
color management, 185
targeting rules, 26

meta element, 224, 279
Meyer, Eric, 203
Microsoft Corporation, 185, 197, 205, 266
MIME types, 293
Model-View-Controller architecture, xxv
Morse Code, 224
Mosaic browser, 177
multicolumned layout module (CSS3), 96
multicolumned layouts

advanced, 96
converting two-column layout, 89
empty containers and, 95
Faux Columns, 155
implementing, 88–96
moving to three columns, 93–95
stylesheets and, 92
two-column overview, 90–92

multimedia
adding motion/sound, 195
embedding, 196–202

multiple selectors, 29

N
name attribute, 247, 279
name/value pairs, 247
nav element

about, 72, 117
accessibility/usability, 118

312 | Index

alternative navigation, 118
determining source order, 122

navigation
alternative means, 118
creating usable interfaces, 66–67
forcing into desired coordinates, 104–106
KISS principle, 52
orienting the list, 102–104
primary layout, 122
secondary, 123
sprites and, 160
styling elements, 121–124
supporting for forms, 260
typical approaches, 63
visit strategies, 65

negative margins, 79
nesting

elements, 28
ordered lists, 120

Netscape, 197, 266, 272
newspaper design, 213–215
noframes element, 279
noscript element, 279

O
object element

embed element versus, 274
embedding multimedia, 196, 197, 201
evolution of, 177
publishing multimedia content, 198

Odeo markup, 196
ol element

creating lists, 116
relationship examples, 28

opacity property, 269
opening tags, 8
OpenType format, 205
Opera Web Standards Curriculum, 245
optgroup element, 250
optimizing

images, 186–188
photo contrast, 183

option element, 250
ordered lists

changing ranges, 119
creating, 116
list-style-type property, 116
nav element, 117–119
nesting, 120

outline support, 120
selectors and, 30
thumbnail images and, 192
UA default styles, 115

outlines, 120
overbuilding, 53
overflow property

aligning data, 171
captioning images, 191
Faux Columns, 154
handling unpredictable, 77
heading dimensions, 132
multicolumned layouts, 90, 95
navigation and, 123
setting type around blowouts, 232
values supported, 75–77

overflow-x property, 78
overflow-y property, 78

P
p selector, 30
padding

about, 82
element size control, 73
navigation and, 123, 124

padding-bottom property, 157
padding-left property, 116, 121
padding-top property, 92, 106
Page Zoom functionality, 112
pages

above the fold, 214
defined, xxiv
grid considerations, 109
rendering, xxiv
structure considerations, 10

palettes
creating, 149
grays in, 146
web-safe, 148–149

param element, 196, 197
parent elements, 28
parsing

about, xxiv
content, 20

% unit
about, 33, 34
sizing type, 217

percentage value, 82
photographs, optimizing contrast, 183

Index | 313

platesetter, 205
plug-ins, 190–195, 275
PNG format, 186, 187, 269, 270
position property

about, 38, 39, 96
converting two-column layout, 89
disadvantages of tables, 164
file upload controls and, 249
form layout and, 255
multicolumned layouts, 96
navigation and, 102, 106, 123
positioning elements, 99
simplicity considerations, 51
stacking elements and, 101
values supported, 96

post method, 247, 249
Postel’s Law, 197, 272
pre element, 236, 281
presbyopia, 144
presentation

CSS support, xxv
forms and, 246–251
information and, 60
inline elements, 280
separation considerations, 18–20
style attribute cautions, 25

print media type, 27, 36
projection media type, 27, 34
property/value pairs

canceling values, 87
defined, xxiv
Faux Columns, 155
font-size keywords, 36, 217
formatting inline images, 191
inheritance considerations, 33

proportional layouts, 106–108
prototyping forms, 251–252
pseudoclasses, 137
pt unit, 33, 36
publishing images, 188–190
px unit

about, 33, 34
background-position property and, 151
display pitch and, 34
hasLayout property and, 268
sizing type, 216

Q
q element, 141, 142

question mark (?), 247
quirks mode rendering, 73, 249
quotation marks, 9

R
ransom note effect, 228
RCS (Revision Control System), 189
readonly attribute, 257
Really Simple Syndication (RSS), 195
RealNetworks, 274
rel attribute, 134
rendering

about, xxiv
content, 20
modes supported, 10, 73
tables, 170

replaced elements, 177
required attribute, 262
required fields, form rules for, 239
resampling images, 182, 185
reserved characters, 248
resources

defined, xxiv
scenario without links, 1

REST (REpresentational State Transfer), 240
Revision Control System (RCS), 189
RFC 2396, 134
RFC 3986, 248
RGB color model, 146
right property

about, 38, 39
positioning elements, 97, 99

rollover effects, 175
rounded corners, 154, 157
rounding differences, 282
rowspan element

aligning data, 171
rollover effects, 175
sample table markup, 168
selector considerations, 173

RSS (Really Simple Syndication), 195
Rule of Thirds, 107, 110
rules

conflict resolution, 31, 32
CSS layout, 282
defined, xxiv
effective web forms/applications, 239–241
element flow, 285
image dimensions/borders, 180

314 | Index

selector weight, 31
targeting to specific media, 26
XHTML, 8

Rundle, Mike, 159

S
Safari browser

ICC support, 185
navigating forms, 261
rounded corners, 157

Saint-Exupéry, Antoine de, 230
samp element, 140
saturation values (color), 145
Scalable Vector Graphics (SVG), 185, 187,

202
scope attribute, 168
screen media type

commonly used units, 34
defined, 27
px unit support, 34

screen readers, 118
search capability, navigation and, 64, 65
Search Engine Optimization (SEO), 93, 135,

159
Search Engine Result Page (SERP), 63
section element, 72
select element

about, 243
form controls and, 250, 254
plug-in content and, 198

SELECT statement (SQL), 239
selector weights, 31, 137
selectors

conflict resolution, 31, 32
CSS-supported types, 29
defined, xxiv
IE limitations, 267
pseudoclasses and, 137
rule priority, 31
table composition, 173
typical markup interface, 29
writing, 27

SEO (Search Engine Optimization), 93, 135,
159

SERP (Search Engine Result Page), 63
server-side environment

about, xxv
architecture, 291

Shea, Dave, 60, 160

sibling elements, 28
site maps, 64, 65
size attribute, 217
slideshow presentations

Lightbox tool, 194
SlideShowPro tool, 194
working with previews, 192–193

SlideShowPro tool, 194
source element, 200
span element

definition lists, 127, 128
FIR considerations, 158
form markup, 245

speech media type, 27
sprites, 160–161
SQL databases, 237–239
src attribute

ampersand and, 247
embedding video, 200
image publication, 189, 190

sRGB color space, 185, 270
stacking elements, 101, 275
standards (see web standards)
start attribute

changing list ranges, 119
creating lists, 116

Stearns, Geoff, 195
Strict HTML subtype, 12
strict mode rendering, 73
strike element, 278
strong element, 83, 140, 280
structure, 61

(see also information architecture)
forms and, 243–246–251
markup support, xxv, 7
new elements, 72
processing content, 10
scenario without links, 1
separation considerations, 18–20

style attribute
about, 14
cautions using, 25, 287

style element
connecting stylesheets, 23
media attribute, 26
replacing link element, 25

stylesheets
color property and, 144
commonly used units, 34

Index | 315

connecting to documents, 23–39
defined, xxiv
Fahrner Image Replacement rules, 159
image dimensions, 179
multicolumned layouts, 92
pseudoclasses and, 137
referencing with link element, 23
universal hooks, 14

sub element, 141
subtractive color model, 145, 146
Subversion RCS, 189
summary element, 167
sup element, 141
SVG (Scalable Vector Graphics), 185, 187,

202
SWFObject, 195, 198

T
tabindex attribute, 260
table element

composing cells, 168
form accessibility and, 260
multicolumned layouts, 92
sample markup, 167

tables
adding rollover accents, 175
aligning, 172–175
composing cells, 168–171
disadvantages, 163–165
parts of, 165–168
reducing header/footer contrast, 173–175
rendering, 170
sample markup, 166

tags
closing, 8
defined, xxv, 8
navigation and, 64, 65
opening, 8

target attribute, 134
taxonomy

applying through cascade, 70–72
defined, 68

tbody element
about, 166
invalid markup, 276

td element
about, 165
aligning data, 170
sample table markup, 168

template layout module (CSS3), 96
templates

achieving consistency with, 56, 57
disadvantages of tables, 164
flexibility considerations, 54
fragility of, 272
layout types supported, 106–108

testing
prototypes, 251–252
scenarios, 67

tetrads, 149
Text Zoom functionality, 112
text-align property

about, 207
secondary navigation, 123
table composition, 170, 172

text-decoration property, 139
text-indent property, 159
text-transform property, 125, 128, 235
textarea element

about, 242
form controls, 249
required attribute, 262

tfoot element
about, 166
invalid markup, 276
reducing contrast, 173–175
sample table markup, 168
selector considerations, 173

th element
about, 165
aligning data, 170
sample table markup, 168
selector considerations, 173

thead element
about, 166
aligning data, 171
invalid markup, 276
reducing contrast, 173–175
sample table markup, 168
selector considerations, 173

thumbnail images, 192–193
title attribute

about, 14, 15
captioning images, 191
creating effective content, 136–137
hyperlinks and, 134

title element
about, 130

316 | Index

rollover effects, 175
sample table markup, 167

tool tips, 15
top property

about, 38, 39
positioning elements, 97, 99

tr element, 165
Transitional HTML subtype, 12
triads, 149
TrueType format, 205
tty media type, 27
Turnbull, Angus, 270
tv media type, 27
type attribute

about, 116
changing list ranges, 120
creating lists, 116

typography (see web typography)

U
ul element

form markup, 244
relationship examples, 28

underlines, gratuitous, 289
Unicode standard

about, 225
choosing an encoding scheme, 225
CSS considerations, 285
inserting non-ASCII characters, 227–228

Unicode Transformation Format (UTF), 42
Uniform Resource Identifiers (see URIs)
universal attributes

contenteditable attribute, 17
defined, 14
describing content, 15
stylesheet hooks, 14

universal selectors, 29
unordered lists

creating, 116
list-style-type property, 116
nav element, 117–119
thumbnail images and, 192
UA default styles, 115

UPDATE statement (SQL), 239
uploading files, 249
URIs (Uniform Resource Identifiers)

browser limitations, 247
defined, 2
href attribute and, 134

hyperlink implementation challenges, 4
improving user experience via, 3
managing links, 3
reserved characters, 248

user agents
alternative navigation, 118
defined, xxiv
list default styles, 115
stripping styles, 122
styling definition lists, 124

user testing, 67
user-generated content (see forms)
UTF (Unicode Transformation Format), 42
UTF-8 encoding scheme, 225

V
value attribute

changing list ranges, 119
creating lists, 116
form markup, 246, 250

values
about, xxv, 8
canceling for float property, 87
common units, 33
computed, 282
inheriting, 33, 283
percentage, 82

var element, 141
vertical-align property, 170, 172
video element, 199–201
Vimeo markup, 196
visibility property, 100, 259
vision conditions, 144, 258
:visited pseudoclass, 137

W
W3C Recommendations, xxv, 10
WAI-ARIA, 260
wayfinding (see navigation)
WCAG (Web Content Accessibility

Guidelines), 41, 259
Weakley, Russ, 159
web application rules, 239–241
Web Content Accessibility Guidelines

(WCAG), 41, 259
Web Developer Toolbar extension (Firefox),

108, 147
web forms (see forms)

Index | 317

web standards
accessibility, 43
benefits of, 46
best practices, 44
debated issues, 42–45
development rules, 46
forward compatibility, 43
interoperability, 42
legacy asset inertia, 44
listed, 41
market forces, 43
strict constructionism, 45
vendor priorities, 44

web typography
aliasing, 210
anti-aliasing, 210
applying choices, 220–221
balanced type treatments, 228–234
character encoding, 224–228
good practices, 236
hinting, 211
history of letterforms, 203–205
legibility, 213
limited choices, 217–220
readability, 212
sizing type, 215–217
type styles, 212–215
typographical properties, 234–236
visual glossary, 206–208
working with typefaces/fonts, 217–223

web usability (see information architecture)
web-safe palettes, 148–149
weblogs, 123
websites

simplicity and, 52
typical navigation approaches, 63

Webstandards.org, 276
white-space property

about, 77, 236
secondary navigation, 124
styling for legibility, 213
usage suggestions, 281

width property
about, 38
aligning data, 171
auto value, 74
composing table cells, 169
converting two-column layout, 89
form markup, 245, 249, 252

image dimensions, 179
increasing link footprint, 138
multicolumned layouts, 90
navigation and, 104, 123
percentage value, 82
positioning elements, 99
sample table markup, 168
styling definition lists, 125

Windows Media Player, 197, 274
Windows-1252 standard, 226
word-spacing property, 207, 236

X
XHTML

about, 11
attribute rules, 8
case sensitivity, 8
Internet Explorer issues, 271
quotation mark rules, 9

XML, IE issues, 271
xml:lang attribute, 14, 16
XMLHttpRequest object, 199, 277

Y
Yahoo!, 273
YouTube markup, 196

Z
z-index property

CSS considerations, 284
navigation and, 103
simplicity considerations, 51
stacking elements and, 101

318 | Index

About the Author
Ben Henick has been building websites since September 1995, when he took on his
first web project as an academic volunteer. He has worked on nearly every aspect of
site design and development, from foundation HTML to finicky CSS to larger-scale
architecture and content management. He has written for A List Apart, the Web Stand-
ards Project, and most recently for Opera Software’s Web Standards Curriculum.

Colophon
The animal on the cover of HTML & CSS: The Good Parts is a ring-tailed cat (Bassariscus
astutus). Its Latin name means “cunning little fox,” though it is neither a cat nor a fox;
it’s a mammal in the raccoon family. The ring-tailed cat is native to the southwestern
United States and Mexico and prefers rocky, semiarid habitats, including deserts. It
can also be found in woodland areas.

True to its name, the animal’s tail—which is longer than the rest of its body—displays
rings of black and white fur, contrasting with its body’s dark brown color. It is nocturnal
and omnivorous, foraging for fruits and berries and preying on small rodents, lizards,
and birds after dusk. To help in these tasks, it boasts incredibly flexible ankle joints—
capable of rotating over 180 degrees that allow it to climb and move along narrow
ledges quickly.

Ringtails are easily tamed if found when young. Settlers in the American southwest
often kept them as pets, using them to keep their homes free of rodents, earning them
the nickname “miner’s cat.”

The cover image is from The Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Oreilly - HTML and CSS The Good Parts (2010) (ATTiCA)
	Table of Contents
	Preface
	The Who and What of This Book
	What Are the Good Parts?
	What You Should Know Before You Read This Book
	The Ideal Reader
	A Warning About Familiarity (or Lack Thereof)

	Objectives of This Book
	What Is Not In This Book
	About Web Standards
	About Photoshop
	What You’ll Find on the Companion Website
	Nomenclature
	“Read the Source, Luke!”

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact O’Reilly
	Acknowledgments

	Chapter 1. Hypertext at the Core
	The Web Without Links
	URIs
	Managing Links
	Improving the User Experience with Linking
	Hypertext Implementation Challenges

	Chapter 2. Working with HTML Markup
	HTML Syntax
	Tags, Elements, and Attributes
	Page Structure

	Rendering Modes, Flavors of HTML, and Document Type Declarations
	HTML or XHTML?
	Strict, Transitional, or Frameset?
	A Tale of Two Box Models
	Choosing the Right Document Type for Your Project

	Beautiful Parts: Universal Attributes
	Providing Stylesheet Hooks with class and id
	Describing Content with title and lang
	The contenteditable Attribute in HTML5

	Separating Content, Structure, Presentation, and Behavior
	Making Your Sites “Safe As Houses”
	Separation in Practice
	Working with Document Trees

	Browsers, Parsing, and Rendering
	Dynamic HTML, Ajax, and Rendering

	Chapter 3. CSS Overview
	Connecting Stylesheets to HTML Documents
	Referencing a Stylesheet with link
	Targeting Internet Explorer Versions with Conditional Comments
	Replacing link with style
	Using @import
	Beware of style Attributes!
	Targeting Rules to Specific Media

	Choosing the Elements You Want to Style: Writing Selectors
	Parents, Children, and Siblings: Element/Node Relationships
	Simple Selectors
	Multiple and Descendant Selectors
	Selecting Direct Child Elements

	Rule Conflicts, Priority, and Precedence
	Selector Priority
	Avoiding Rule Conflicts
	Value Inheritance

	CSS Property and Value Survey
	CSS Units
	Cross-Media Length and Size Units
	Pitch and the Value of a Pixel
	Print-Friendly Length Units
	font-size Keywords
	Color Units

	Key CSS Layout Properties

	Chapter 4. Developing a Healthy Relationship with Standards
	The Broad Landscape of Web-Related Standards
	Why Web Standards?
	Interoperability
	Market Forces
	Forward Compatibility
	Accessibility
	Vendor Priorities
	Legacy Asset Inertia
	Best Practices (and Lack Thereof)
	Strict Constructionism

	Taking the Middle Road: Standards-Friendliness
	Benefits of Standards-Friendliness
	Rules of Standards-Friendly Development

	Chapter 5. Effective Style and Structure
	The Four Habits of Effective Stylists
	Habit #1: Keeping It Simple
	Simplicity and huge sites

	Habit #2: Keeping It Flexible
	Flexibility, internal libraries, and code reuse

	Habit #3: Keeping to Consistency
	Managing templates to achieve consistency

	Habit #4: Keeping Your Bearings
	Product documentation as an effective “compass”

	CSS Zen and the Stylist’s Experience
	The Functional Principles of CSS Zen

	Information Architecture and Web Usability
	Multidimensionality
	Navigation: Orientation and Wayfinding
	Visit Strategies
	Guideposts for Creating Usable Interfaces
	Disabling links to the current document

	Predicting Visitor Behavior with Scenarios and User Testing
	Taxonomy and Nomenclature
	Applying Taxonomy Through the Cascade
	New Structural Elements (HTML5)

	Chapter 6. Solving the Puzzle of CSS Layout
	The CSS Box Model and Element Size Control
	Quirks Mode and Strict Mode
	auto Values
	The overflow Property
	Limiting But Not Fixing Element Dimensions
	Handling the Unpredictable

	Margins, Borders, and Padding
	Negative Margins
	Collapsed Margins
	Borders
	Padding
	The Box Behavior of the Document Root Elements
	Box Property Dimensions and the % Value

	Element Flow
	Inline Elements
	Block Elements
	Inline-Block Elements

	Using the display Property to Change an Element’s Flow
	The display Property

	The float and clear Properties
	The Rules of the float Property
	Canceling float Values with Corresponding clear Values
	float Context

	Implementing Multicolumn Layouts
	Converting the Two-Column Layout from Markup Tables to CSS
	How the Two-Column Styles Work
	Benefits of Confining Layout Specifications to Stylesheets
	Moving from Two Columns to Three
	Dealing with More Than Three Columns
	Semantically Empty Containers for Multicolumn Layouts
	Advanced Layout in CSS3

	CSS Positioning Properties
	How Positioning Works
	Bounding Positioned Elements

	The visibility and z-index Properties
	Altering Visibility Without Affecting Document Flow
	Stacking

	Obtaining Precise Navigation Source Order and Layout
	Orienting the List
	Forcing the Navigation List into the Desired Coordinates

	Layout Types and Canvas Grids
	Fixed, Proportional, and Flexible Layouts
	Defining Grids
	The Rule of Thirds, the Golden Ratio, and the Fibonacci Sequence
	Implementing a Flexible Page Grid

	Chapter 7. Working with Lists
	Ordered and Unordered Lists
	User Agent Default Styles for Ordered and Unordered Lists
	Creating Valid Ordered and Unordered Lists
	The list-style-type Property and the type Attribute
	The nav Element (HTML5)
	Accessibility and usability concerns
	Enabling user agents to present navigation through alternate means

	Changing the Range of an Ordered List
	Greater Wavelengths
	Shorter Wavelengths

	Other Uses for Lists
	Outlines
	Inline Serial Lists
	Altering the Layout of Footer Links
	Bullets in Backgrounds?

	Styling Navigation Elements
	Placing the Primary Site Navigation Within the Source Order
	The Primary Navigation Layout Recipe
	The Footer Navigation Recipe

	Definition Lists
	Styling Definition Lists
	Dictionary Example
	Dialogue Example

	Chapter 8. Headings, Hyperlinks, Inline Elements, and Quotations
	Headings and Good Writing
	Headings in Print
	Optimal Heading Insertion

	Styling Heading Elements
	Heading Sizes and Type Treatments
	Normalizing Heading Dimensions
	Heading Accents

	Link Markup
	Link Attributes
	Virtuous Use of the href Attribute
	Linking to Specific Passages Within Documents
	Creating Effective Link Content and title Values

	Styling Links
	Link Pseudoclasses
	Using display: block to Increase the Footprint of a Link
	The text-decoration Property
	The cursor Property

	Adding Semantic Value with Inline Elements
	Quotations

	Chapter 9. Colors and Backgrounds
	Color Theory and Web Color Practice
	Usability, Accessibility, and Color
	The Additive Color Model
	The HSB Color Model
	The Subtractive Color Model
	Design, Contrast, and Complements
	Identifying Colors, in Brief
	Display Environments and the Web-Safe Palette
	Creating Your Own Palettes

	CSS Backgrounds
	Setting background-position Values
	The CSS background Shorthand Property

	Composing Background Images
	“Faux Columns”
	Tiled Background Textures and Patterns
	Large Background Textures and Nonrepeating Devices
	Drop Shadows, Gel Effects, and Rounded Corners

	Bitmapped Copy and Fahrner Image Replacement
	The FIR Stylesheet Rules
	Drawbacks of FIR

	Reducing Server Load with Sprites

	Chapter 10. (Data) Tables
	The Disadvantages of Layout Tables
	Source Order: Square Peg, Round Hole
	CSS Zen Becomes a Myth
	Template Slavery Is Unavoidable
	Positioning Is Rendered Useless

	The Parts of a Data Table
	Example: The Full Smash of Table Markup

	Composing Cells
	Table and Data Composition

	Table Headers, Footers, and Heading Cells
	Attribute and Child Selectors
	Reducing Header and Footer Contrast
	Adding Rollover Accents to a Table

	Chapter 11. Images and Multimedia
	Replaced Elements
	Preparing Images for Production
	The alt Attribute Explained
	Image Dimensions and Borders

	Image Production
	Cropping
	Matting: Creating a Virtual “Frame”
	Resampling: Altering the Absolute Size of an Image
	Level Changes: Optimizing the Contrast of Photographs
	Applying Multiple Adjustments

	Working with Color Profiles
	Image Optimization
	Choosing the Right Image Format
	Finding the Happy Medium Between Size and Quality

	Publishing Images
	Keeping Images Organized
	Image Publishing and Management in a CMS
	Image Publication Etiquette

	Styling Images and Plug-in Content
	Composing Image Layout Within a Column
	Captioning Images
	Working with Previews (Thumbnail Images) in a Gallery or Slideshow Setting
	Lightbox: Previews, Galleries, and Slideshows
	SlideShowPro

	Adding Motion and Sound: Using SWFObject to Insert Flash Videos and Presentations
	Inserting Unwrapped Multimedia
	A Tale of Three Companies
	Enter Flash
	Using Bare Markup to Publish Multimedia Content
	A Caveat of Plug-in Content Styling
	Sidestepping Plug-ins with the HTTP Content-Disposition Header Field
	Keeping an Open Mind
	The video and audio Elements (HTML5)
	Embedding a video
	Supporting alternative video formats
	Providing video content for browsers that don’t support the video element

	The canvas Element (HTML5)
	The CanvasRenderingContext2D API
	SVG as an alternative to canvas

	Chapter 12. Web Typography
	A Brief History of Letterforms
	Origins of Modern Western Letterforms
	Gutenberg’s Press and the Art of Typography
	The Emergence of Digital Typesetting
	Different Limitations Without Changed Expectations

	A Visual Glossary of Typography
	Aliasing and Anti-Aliasing
	Type Styles, Readability, and Legibility
	Styling for Readability
	Styling for Legibility
	“The Fold” and Tiny Type

	Sizing Type
	Choosing the Right Units for Sizing Type
	Em/Percentage Size Telescoping
	Size Keywords

	Working with Typefaces and Fonts
	The Challenge of Limited Choices
	Applying Type Choices: the font-family Property
	Finding Canonical Typeface Names
	Accessing System Default Type with the font Property

	Character Encoding in Brief
	What Is Character Encoding?
	ASCII, ISO 8859-1, Unicode, and UTF-8
	Choosing an Encoding Scheme
	Inserting Entities to Provide Non-ASCII Characters

	Creating Balanced Type Treatments
	Predictability, Preference, and Panic
	Assessing Content Scope
	Distinguishing Type: Face, Size, Weight, Style, Color
	Setting Type Around Blowouts
	Styling Passages of Similar Priority
	Enter Type Treatments

	Typographical Miscellany in CSS
	The line-height Property
	The font-variant and text-transform Properties
	The letter-spacing and word-spacing Properties
	The white-space Property

	The Practice of Good Web Typography

	Chapter 13. Clean and Accessible Forms
	Building Effective Forms
	Web Applications, User Perspective, and Design Choices
	Organizing User Interfaces by Function
	Ten Rules for Effective Web Forms and Applications

	Assessment and Structure
	Establishing Requirements
	Markup and Structure

	Basic Form Structure, Presentation, and Behavior
	Form-Originated get Requests
	The post Method and File Uploads
	Manipulating the Size and Appearance of Individual Controls

	Prototyping and Layout
	Prototyping 101
	Design Patterns, Style Resets, and Form Layout
	Grouping Controls by Appearance

	Required Fields and Other Submission Constraints
	Identifying Required Fields
	Discovering and Identifying User Input Errors
	The disabled and readonly Attributes

	Creating Accessible Forms
	Implementing Forms for Accessibility
	Supporting Keyboard Navigation of Forms

	Form Features in HTML5
	New Input Types
	The required Attribute

	Chapter 14. The Bad Parts
	The Numbing Nature of Internet Explorer (Especially IE 6)
	Browser Wars 2.0
	Absent or Poor Selector Support
	hasLayout
	Margin Doubling
	expression() Values
	ActiveX Filters and Transitions
	PNG Support (or Lack Thereof)
	Poor Property Support
	Issues with XHTML and XML

	Systemic Ugliness
	Template Fragility and Third-Party Content
	Markup Validation As a Prerequisite to Proper Style Implementation
	“Best Viewed with”
	Graded Support
	embed Versus object
	Form Controls, Plug-in Instances, and Element Stacking
	Invalid Markup for Stupid Reasons

	HTML’s Bad Neighborhoods and Cul-de-Sacs
	Frames
	The strike Element
	The name Attribute
	The noscript and noframes Elements
	Semantic Contortions and the Limited Vocabulary of HTML
	Inline Presentation Elements
	Manipulating Vertical Space: hr and br
	The pre Element Versus the white-space Property

	CSS Travesties
	@-Rules
	Computed Values and Rounding Differences
	Vendor-Specific -moz and -webkit Property Prefixes
	The inherit Value
	Hiding Stuff: z-index and clip
	Counters
	Element Flow Rules
	Unicode Code Position Values and the content Property

	The Awful Parts
	The marquee and blink Elements
	MSIE User Interface Properties
	The align Attribute
	The style Attribute
	div-itis
	Event Handler Attributes
	Gratuitous Underlining
	The http-equiv Attribute

	Picking Up the Pieces

	Appendix. URIs, Client-Server Architecture, and
 HTTP
	The Underlying Client-Server Architecture
	What Every Web Developer Should Know About HTTP
	MIME Types, in Brief
	Controlling Request Volume

	Glossary
	Index

