
Ed Tittel
Jeff Noble
Foreword by Eric Meyer

• Develop and build Web pages using
HTML, XHTML, and CSS

• Work with content management
systems like Drupal®, WordPress®,
and Joomla!®

• Plan and design Web pages with
mobile devices in mind

Learn to:

HTML, XHTML & CSS

7th Edition
Introduces HTML5 and CSS3!

 Open the book and find:

• How to plan, build, test, and
publish Web pages

• Steps for formatting Web pages
with (X)HTML

• Advice on planning a problem-
free Web site

• Solutions for adding inter-
activity with JavaScript

• Ways to embed content from
Flickr®, Twitter®, YouTube®,
and Google Maps™

• Tips for enhancing your Web
site’s capabilities

• How to design for smartphones,
iPads, and other mobile devices

• Techniques for eliminating bugs
in your Web pages

Ed Tittel is a 28-year veteran of the computer industry. A seasoned author

and consultant, Ed has more than 140 books to his credit. Jeff Noble is a

principle user experience designer at CA Technologies. He specializes in

designing, building, optimizing, and explaining all aspects of Web sites

and enterprise software applications.

Programming Languages/HTML

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-91659-9

You don’t have to be an expert programmer to build great
Web pages. If you can follow driving directions to a friend’s
house, you have what it takes to build a useful Web document.
This book will not only show you the design and technical
elements you need to create good-looking, readable Web
pages — it will give you the confidence to get started!

• Speak the language — master HTML, XHTML, and CSS syntax,
create and view a Web page, and plan your site

• Gather the building blocks — learn how to work with text and lists,
create and customize links, and add images to your Web site

• Build it correctly — take precise control with Cascading Style Sheets
(CSS) and get creative with colors and fonts

• Juice it up with JavaScript — integrate scripts, add dynamic content
with (X)HTML, CSS, and JavaScript, and get familiar with popular
content management systems

• Go mobile — design your site for optimal viewing on mobile devices
with HTML and CSS

• Out with the old, in with the new — find out what elements are
deprecated and look ahead to HTML5 and CSS3

Build your Web pages and
get them uploaded and published
with (X)HTML and CSS!

In
Color

H
TM

L, X
H

TM
L &

 C
SS

H
TM

L, X
H

TM
L &

 C
SS

Tittel
Noble

Spine: .82”

IN FULL COLOR!

7th Edition

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Visit the companion Web site at
dummieshtml.com for downloads,
source code, and more.

Making Everything Easier!™

Spine: .82”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/html

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

www.dummies.com/cheatsheet/html

by Ed Tittel and Jeff Noble

Foreword by Eric A. Meyer

HTML, XHTML & CSS
FOR

DUMmIES
‰

7TH EDITION

01_9780470916599-ffirs.indd i01_9780470916599-ffirs.indd i 11/30/10 12:29 AM11/30/10 12:29 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

HTML, XHTML & CSS For Dummies®, 7th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010941511

ISBN: 978-0-470-91659-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_9780470916599-ffirs.indd ii01_9780470916599-ffirs.indd ii 11/30/10 12:29 AM11/30/10 12:29 AM

www.wiley.com
http://www.wiley.com/go/permissions

About the Authors
Ed Tittel is a freelance writer, consultant, and occasional expert legal witness
on Web technologies who works at home near beautiful Austin, Texas. Ed
has written for the trade press since 1986 and has worked on more than 140
books. Ed has worked on many other titles for Wiley, too, including Windows
Server 2008 For Dummies, XML For Dummies, and Networking with NetWare For
Dummies. Lately, he’s worked on various For Dummies custom titles, includ-
ing booklets on clustered computing, mobile backhaul, XBRL Markup, and
carrier Ethernet.

Ed blogs, provides expert Q&A, and writes for several TechTarget.com Web
sites, such as SearchNetworking.com and SearchWindows.com. He also
writes for ITExpertVoice, Tom’s Hardware, Tom’s Guide, and more. When
he’s not busy working, Ed likes to travel, shoot pool, and spend time with his
family. He also loves to spend time in the kitchen cooking like mad, or sous-
cheffi n’ for his cuisine-crazy wife, Dina. Contact Ed by e-mail at etittel@
yahoo.com.

Jeff Noble somehow manages to juggle being a principal user designer at
a global software company, CA Technologies, associate editor of UItrends.
com (a blog about the good, the bad, and the ugly of user interface design),
and owner of Conquest Media (www.conquestmedia.com), a small Web
and application design company in Austin, Texas. Jeff has more than twelve
years of design experience and specializes in all aspects of Web sites and
enterprise software applications (designing, building, optimizing, explain-
ing, and so on). In addition to this title, he’s handled technical editing on six
other For Dummies Web design and programming titles for Wiley. In what
little spare time he has away from the computer, Jeff enjoys childish activi-
ties like eating unhealthy amounts of candy and breaking things, as well as
relaxing hobbies like hiking, traveling, and gardening. Jeff is available for
Web site and enterprise application consulting. You can contact him by
e-mail at jeff@conquestmedia.com.

01_9780470916599-ffirs.indd iii01_9780470916599-ffirs.indd iii 11/30/10 12:29 AM11/30/10 12:29 AM

Authors’ Acknowledgments
Wow! It’s hard to believe we’ve hit the “lucky 13th edition” for HTML For
Dummies. Of all the books I’ve worked on, this one’s covered more time and
versions than the rest. So thanks again readers, for keeping this book going
strong. We’d also like to thank our readers and the Wiley editors for provid-
ing welcome feedback to drive continuing improvement of this book. Don’t
stop now — keep telling us what you want. Especially, tell us what you liked
and didn’t like about this second full-color edition.

Let me also thank some people from previous editions, including J. Michael
Stewart, Natanya Anderson, Dori Smith, Tom Negrino, Mary Burmeister,
Brock Kyle, Chelsea Valentine, Dawn Davidson, and Kim Lindros. And, for the
second time, I’m indebted to my co-author and friend, Jeff Noble, for infus-
ing insight and enthusiasm. I am grateful for your ideas, your hard work, and
your experience in reaching budding Web experts. Thanks, too, to Mary Kyle
Inks, who expertly project-managed this effort.

At Wiley, I must thank Bob Woerner and Jean Nelson for their outstanding
efforts, and Brian Walls, Teresa Artman, and Christopher McGee for their
efforts on design, layout, content, and coverage. A special shout-out to the
friendly folks in Composition Services for artful page layouts, and for keeping
all the color-coded elements straight.

Thanks to my lovely wife, Dina Kutueva-Tittel, and inquisitive son, Gregory,
for putting up with my sometimes whacky and intense schedule. I’m not
always as easy to live with as I could be, but hopefully, I’ll improve with time
and effort. Also, thanks to my Dad, Al Tittel, for all he’s done for my family
and me, and for dropping in more frequently. I hope you’re around to see
our 14th edition come to print! Finally, profound thanks and remembrances
to Cecilia Katherine Kociolek Tittel (4/3/1919–9/11/2009). Thanks, Mom, for
encouraging my love of words and writing: I still miss you every day.

Ed Tittel

01_9780470916599-ffirs.indd iv01_9780470916599-ffirs.indd iv 11/30/10 12:29 AM11/30/10 12:29 AM

I’d like to thank my girlfriend, Dr. Alison Marr, for generally putting up with
me and giving me time and space to work on titles like this. I’d like note that
according to my calculations, Alison is approximately 15 times smarter than I
am but somehow still allows me to pretend that I’m right all the time. I know
she has tried to explain magic graphs at least a dozen times to me but I still
don’t get it — evidently it’s not about warlocks and magical fairies. Special
thanks to Ida F. Orengo, M.D. and the rest of the staff from the Baylor College
of Medicine in Houston, Texas. Without all of you, there is a decent chance I
wouldn’t even be alive now.

Thanks to Ed Tittel for allowing me to sit in again and handle even more
responsibility with this latest edition. This title has been one of the biggest
accomplishments in my life and has opened up incredible opportunities to
me and I thank you sincerely. To Slade Deliberto, it seems like only yesterday
you taught me how to design my fi rst Web site. Technology and software
changes over time, but a lot of what I’ve accomplished so far professionally
goes all the way back to your initial design and Photoshop lessons more than
twelve years ago.

Big thanks to my boss and mentor Russell Wilson, you’ve always supported
and believed in me and without a doubt have made me a better designer and
a better person. I don’t say it as much as I should, I owe you big time and I
appreciate everything you have done for me — there, you have it in writing.

To CSS master Eric Meyer, thanks for agreeing to write the Foreword to this
book. I’ve learned a lot from your volume of work over the years and having
my name noted on a book with yours is a huge honor. I’d also like to dedicate
this book in memory of my friend Zach Beatty who was tragically killed by a
drunk driver in 1997. Please don’t drink and drive, you might kill someone a
lot cooler than you.

Jeff Noble

01_9780470916599-ffirs.indd v01_9780470916599-ffirs.indd v 11/30/10 12:29 AM11/30/10 12:29 AM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project Editor: Jean Nelson

Executive Editor: Bob Woerner

Copy Editor: Brian Walls

Technical Editor: Christopher McGee

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project Manager:

Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel, Douglas Kuhn,
and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Kristie Rees

Layout and Graphics: Samantha K. Cherolis,
Joyce Haughey, Lavonne Roberts

Proofreaders: Laura Bowman, Lindsay Littrell

Indexer: BIM Indexing & Proofreading Services

Special Help: Teresa Artman

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_9780470916599-ffirs.indd vi01_9780470916599-ffirs.indd vi 11/30/10 12:29 AM11/30/10 12:29 AM

Contents at a Glance
Foreword ..xix

Introduction .. 1

Part I: Getting to Know (X)HTML and CSS 7
Chapter 1: The Least You Need to Know about HTML, CSS, and the Web................. 9
Chapter 2: Creating and Viewing a Web Page .. 31
Chapter 3: Proper Planning Prevents Poor Page Performance.................................. 43

Part II: Formatting Web Pages with (X)HTML 61
Chapter 4: Creating (X)HTML Document Structure .. 63
Chapter 5: Text and Lists .. 73
Chapter 6: Linking to Online Resources ... 91
Chapter 7: Finding and Using Images .. 105

Part III: Taking Precise Control over
Web Pages and Styles .. 119
Chapter 8: Deprecated (X)HTML Markup ... 121
Chapter 9: Introducing Cascading Style Sheets ... 129
Chapter 10: Using Cascading Style Sheets .. 147
Chapter 11: Getting Creative with Colors and Fonts ... 169

Part IV: Scripting and (X)HTML 189
Chapter 12: Top 20 CSS Properties.. 191
Chapter 13: Scripting Web Pages ... 211
Chapter 14: Working with Forms ... 221
Chapter 15: Bring the Best of the Web to Your Web Site ... 251
Chapter 16: Fun with Client-Side Scripts... 265
Chapter 17: Content Management Systems .. 279

Part V: The Future of (X)HTML 291
Chapter 18: Mobile Web Design ... 293
Chapter 19: Party On with HTML5 .. 305
Chapter 20: CSS3 .. 325

02_9780470916599-ftoc.indd vii02_9780470916599-ftoc.indd vii 11/30/10 12:30 AM11/30/10 12:30 AM

Part VI: The Part of Tens .. 343
Chapter 21: Ten HTML Do’s and Don’ts .. 345
Chapter 22: Ten Ways to Exterminate Web Bugs .. 353
Chapter 23: Ten Cool HTML Tools and Technologies .. 361

Appendix A: Twitter Supporters 373

Index .. 377

02_9780470916599-ftoc.indd viii02_9780470916599-ftoc.indd viii 11/30/10 12:30 AM11/30/10 12:30 AM

Table of Contents

Foreword ...xix

Introduction ... 1
About This Book .. 1
How to Use This Book ... 2
Three Presumptuous Assumptions ... 3
How This Book Is Organized .. 3

Part I: Getting to Know (X)HTML and CSS .. 4
Part II: Formatting Web Pages with (X)HTML 4
Part III: Taking Precise Control over Web Pages and Styles 4
Part IV: Scripting and (X)HTML ... 5
Part V: The Future of (X)HTML .. 5
Part VI: The Part of Tens ... 6

Icons Used in This Book ... 6
Where to Go from Here ... 6

Part I: Getting to Know (X)HTML and CSS 7

Chapter 1: The Least You Need to Know about
HTML, CSS, and the Web .9

Web Pages in Their Natural Habitat .. 10
Hypertext .. 10
Browsers ... 13
Web servers .. 14

Anatomy of a URL .. 15
 (X)HTML’s Component Parts .. 16

HTML and XHTML: What’s the difference? 16
Syntax and rules ... 17
Markup color-coding ... 18
Elements .. 18
Attributes .. 21
Entities .. 22

Parts Is Parts: What Web Pages Are Made Of .. 25
Organizing HTML text ... 26
Images in HTML Documents ... 27
Links and navigation tools .. 27

Listing 1-1: Meet an Author! .. 28

02_9780470916599-ftoc.indd ix02_9780470916599-ftoc.indd ix 11/30/10 12:30 AM11/30/10 12:30 AM

x HTML, XHTML & CSS For Dummies, 7th Edition

Chapter 2: Creating and Viewing a Web Page .31

Before You Get Started ... 31
Creating a Page from Scratch ... 32

Step 1: Planning a simple design .. 33
Step 2: Writing some HTML .. 34
Step 3: Saving your page ... 37
Step 4: Viewing your page ... 38

Editing an Existing Web Page ... 40
Posting Your Page Online ... 41

Chapter 3: Proper Planning Prevents Poor Page Performance43

Planning Your Site ... 44
Design matters ... 45
Mapping your site .. 46
Building solid navigation .. 49
Planning outside links ... 53

Hosting Your Web Site .. 54
Hosting your own Web site... 55
Using a hosting provider ... 56
Obtaining your own domain ... 57
Moving fi les to your Web server .. 57

Part II: Formatting Web Pages with (X)HTML 61

Chapter 4: Creating (X)HTML Document Structure 63

Establishing a Document Structure ... 63
Labeling Your (X)HTML Document ... 64

Adding an HTML DOCTYPE declaration ... 64
Adding an XHTML DOCTYPE declaration... 65
The <html> element ... 65
Adding the XHTML namespace .. 65

Adding a Document Header ... 66
Giving your page a title ... 66
Defi ning metadata .. 67
Redirecting users to another page .. 69

Creating the (X)HTML Document Body .. 71

Chapter 5: Text and Lists .73

Formatting Text ... 73
Paragraphs .. 74
Headings.. 75

Controlling Text Blocks .. 77
Block quotes ... 77
Preformatted text ... 78
Horizontal rules.. 80

02_9780470916599-ftoc.indd x02_9780470916599-ftoc.indd x 11/30/10 12:30 AM11/30/10 12:30 AM

xi Table of Contents

Organizing Information ... 82
Numbered lists ... 82
Bulleted lists ... 85
Defi nition lists .. 87
Nesting lists .. 89

Chapter 6: Linking to Online Resources. .91

Basic Links .. 91
Link options .. 92
Common mistakes ... 95

Customizing Links ... 97
New windows.. 97
Locations in Web pages .. 99
Non-HTML resources... 102

Chapter 7: Finding and Using Images .105

The Role of Images in a Web Page ... 105
Creating Web-Friendly Images ... 106
Adding an Image to a Web Page ... 108

Image location .. 108
Using the element .. 108
Adding alternative and title text .. 110
Specifying image size ... 112
Image borders and alignment... 114

Images That Link .. 115
Triggering links .. 115
Building image maps ... 116

Part III: Taking Precise Control over
Web Pages and Styles ... 119

Chapter 8: Deprecated (X)HTML Markup. .121

And Now, A Word from Our Sponsor .. 122
Deprecated Elements .. 123
Deprecated Attributes .. 124
How to Handle Deprecated Markup .. 127

Chapter 9: Introducing Cascading Style Sheets129

Advantages of Style Sheets ... 130
What CSS can do for a Web page ... 131
What you can do with CSS .. 132
Property measurement values ... 133

02_9780470916599-ftoc.indd xi02_9780470916599-ftoc.indd xi 11/30/10 12:30 AM11/30/10 12:30 AM

xii HTML, XHTML & CSS For Dummies, 7th Edition

CSS Structure and Syntax ... 134
Selectors and declarations ... 136
Working with style classes ... 138
Working with style IDs .. 140
Inheriting styles ... 141

Using Different Kinds of Style Sheets .. 142
Internal style sheets .. 143
External style sheets ... 144

Understanding the Cascade ... 145

Chapter 10: Using Cascading Style Sheets .147

Managing Layout and Positioning ... 148
Visual layouts ... 149
Positioning .. 151

Changing Fonts for Visual Interest and Better Readability 153
Body text ... 154
Headings.. 155
Hyperlinks ... 155

Externalizing Style Sheets ... 157
Using CSS with Multimedia ... 158

Visual media styles .. 159
Paged media styles .. 165

Chapter 11: Getting Creative with Colors and Fonts 169

Color Values ... 170
Color names .. 170
Color numbers.. 171

Color Defi nitions .. 172
Text .. 173
Links .. 173
Backgrounds ... 175

Fonts .. 176
Font family .. 176
Sizing ... 178

Positioning Blocks of Text .. 182
Aligning text .. 182
Indenting text ... 183

Text Treatments .. 184
Embolden with bold .. 184
Emphasizing with italic ... 184
Changing capitalization ... 185
Getting fancy with the text-decoration property 187

The Catchall Font Property .. 187

02_9780470916599-ftoc.indd xii02_9780470916599-ftoc.indd xii 11/30/10 12:30 AM11/30/10 12:30 AM

xiii Table of Contents

Part IV: Scripting and (X)HTML 189

Chapter 12: Top 20 CSS Properties .191

Background Properties ... 191
background-color ... 192
background-image ... 192

Border and Outline Properties .. 193
border .. 195

Dimension ... 195
height and width .. 196

Fonts and Font Properties .. 197
font-family ... 197
font-weight .. 198
font-size ... 198

Spacing Properties: Margin and Padding ... 199
margin ... 200
padding ... 200

Positioning .. 201
fl oat .. 202
z-index ... 202
clear ... 203
cursor .. 204

Text .. 204
color... 206
line-height ... 206

Pseudo Classes .. 207
:hover, :link, and :visited ... 207

Best CSS Resources ... 208
W3Schools.com .. 208
Firebug .. 209
Eric Meyer’s Reset ... 209
Spoon Browser Sandbox ... 209
W3C CSS Validation Service.. 209
Web-Developer’s Handbook ... 210
YSlow ... 210

Chapter 13: Scripting Web Pages .211

Finding Out What JavaScript Can Do for Your Pages 212
Using JavaScript to Arrange Content Dynamically 214
Working with Browser Windows ... 216
Soliciting and Verifying User Input .. 217
But Wait . . . There’s More! ... 219

02_9780470916599-ftoc.indd xiii02_9780470916599-ftoc.indd xiii 11/30/10 12:30 AM11/30/10 12:30 AM

xiv HTML, XHTML & CSS For Dummies, 7th Edition

Chapter 14: Working with Forms .221

Uses for Forms ... 221
Search forms ... 222
Data collection forms .. 223

Creating Forms ... 224
Structure ... 225
Input tags .. 226
Input fi elds .. 227
Form validation .. 241

Processing Data ... 241
Processing forms on your pages .. 242
Sending form data by e-mail ... 243

Designing User-Friendly Forms .. 244
Other Noteworthy Forms-Related Markup ... 246
Form Frameworks .. 248
CAPTCHA This! .. 249

Chapter 15: Bring the Best of the Web to Your Web Site 251

What’s Up with Content Embedding? ... 252
Using a Twitter widget .. 252
Working with Flickr.. 255
Creating a map ... 256
Other embeddings to check out .. 258

Mashups: Two or More Sites .. 258
Creating a Yelp/Google Maps mashup .. 259
Crafting a Twitter/Google Maps mashup .. 262

Chapter 16: Fun with Client-Side Scripts. .265

Adding Rollovers to Your Pages .. 265
Text rollovers with CSS ... 266
Image rollovers with CSS .. 268
Custom button rollovers with CSS... 271

Working with Cookies ... 272
Working with jQuery and FancyBox Lightbox ... 274

Chapter 17: Content Management Systems. .279

Comparing CMS Sites to HTML Sites ... 279
Popular CMS Sites and Programs .. 280

WordPress .. 281
Drupal .. 281
Joomla! .. 282

Customizing CSS on a CMS ... 283
WordPress and CSS ... 283
Drupal and CSS ... 285
Joomla and CSS .. 287

Pssst! Hey Buddy! Wanna See Some CMS? ... 289

02_9780470916599-ftoc.indd xiv02_9780470916599-ftoc.indd xiv 11/30/10 12:30 AM11/30/10 12:30 AM

xv Table of Contents

Part V: The Future of (X)HTML 291

Chapter 18: Mobile Web Design .293

Understanding Different Mobile Devices .. 293
Optimizing Mobile Web Site Design .. 296

Designing for small screens .. 297
Optimizing for low bandwidth ... 297
Navigating on mobile devices .. 298
Designing for distracted surfers .. 299
Surfi ng the Web on many mobile devices....................................... 299

Best Practices for Mobile Web Sites ... 299
Set up mobile Web addresses .. 300
Create a virtual demo or showcase ... 300
Location, location, location .. 300
Don’t make users type or click too much 301

Mobile Frameworks ... 301
Sencha Touch ... 302
jQTouch... 302

Additional Resources .. 303

Chapter 19: Party On with HTML5 .305

HTML5 Highlights: Why It’s Important ... 306
HTML5 and Flash ... 307

Simplifi ed and Enhanced HTML5 Markup .. 308
Simplifi ed doctype ... 309
Simplifi ed character encoding ... 309

What’s New and Improved in HTML5 ... 310
Elements new in HTML5.. 311
Attributes new in HTML5 .. 312
Deprecated elements gone from HTML5 .. 315
Absent and removed HTML5 attributes ... 316

New Input Types in HTML5 .. 318
HTML5 Web APIs ... 320
Limits to HTML5 Access and Use .. 320
Additional HTML5 Resources .. 322
Introducing HTML5 ... 323

Chapter 20: CSS3. .325

About the CSS3 “Standard” .. 325
CSS3 Highlights Hint at Riches Available .. 330

Fonts .. 331
Borders .. 332
Backgrounds ... 334
Shadows .. 334

02_9780470916599-ftoc.indd xv02_9780470916599-ftoc.indd xv 11/30/10 12:30 AM11/30/10 12:30 AM

xvi HTML, XHTML & CSS For Dummies, 7th Edition

CSS3 Transitions and Animations ... 337
Transitions .. 337
Animations .. 338

Transform Your Content .. 339
CSS3 Limitations .. 340
Finding More on CSS3 ... 341

Part VI: The Part of Tens ... 343

Chapter 21: Ten HTML Do’s and Don’ts .345

Don’t Lose Sight of Your Content .. 345
Do Structure Your Documents and Your Site .. 346
Do Make the Most from the Least ... 346
Do Build Attractive Pages ... 347
Don’t Lose Track of Those Tags .. 347
Do Avoid Browser Dependencies .. 349
Don’t Make It Hard to Navigate Your Wild and Woolly Web 349
Don’t Think Revolution, Think Evolution ... 350
Don’t Get Stuck in the Two-Dimensional-Text Trap 351
Don’t Let Inertia Overcome You .. 351

Chapter 22: Ten Ways to Exterminate Web Bugs.353

Make a List and Check It — Twice ... 353
Master Text Mechanics ... 354
Lack of Live Links — A Loathsome Legacy .. 355
When Old Links Must Linger .. 356
Make Your Content Mirror Your World .. 356
Look for Trouble in all the Right Places ... 357
Cover all the Bases with Peer Reviews ... 358
Use the Best Tools of the Testing Trade .. 358
Schedule Site Reviews ... 358
Foster User Feedback .. 359
If You Give to Them, They’ll Give to You! .. 360

Chapter 23: Ten Cool HTML Tools and Technologies 361

WYSIWYG HTML Editors .. 362
Dreamweaver.. 362
Other WYSIWYG editors ... 363

Helper HTML Editors .. 363
Aptana Studio ... 364
Other helper editors .. 364

Inexpensive Graphics Editors .. 365
Professional Graphics Editors ... 366

Adobe Photoshop .. 366
Adobe Fireworks .. 367

02_9780470916599-ftoc.indd xvi02_9780470916599-ftoc.indd xvi 11/30/10 12:30 AM11/30/10 12:30 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xvii Table of Contents

W3C Link Checker .. 367
Other Link Checkers .. 368
HTML Validators .. 368
FTP Clients .. 370
Miscellaneous Helpful Web Tools ... 370

Appendix A: Twitter Supporters 373

Index ... 377

02_9780470916599-ftoc.indd xvii02_9780470916599-ftoc.indd xvii 11/30/10 12:30 AM11/30/10 12:30 AM

xviii HTML, XHTML & CSS For Dummies, 7th Edition

02_9780470916599-ftoc.indd xviii02_9780470916599-ftoc.indd xviii 11/30/10 12:30 AM11/30/10 12:30 AM

Foreword

What you hold in your hands is the fi rst step into a larger world.

How so? It’s an introduction to the fundamental underpinnings of the Web.
With the knowledge gained from this book, you can start building your own
Web pages — and what’s more, look at Web pages that already exist and
understand how they were assembled. It’s like having a second sight, a magic
crystal ball, or X-ray vision. What’s more, it’s all a lot easier than you think.

That may sound crazy, but it really isn’t. The entire list of HTML elements
can be written on a piece of paper, and the 80% of elements you need to work
with on a daily basis are easy to understand. You can pick them up in well
under an hour. CSS is a bit more complicated than that — writing all its prop-
erties on one piece of paper might require legal-disclaimer-sized type — but
the basics are very straightforward and the rest of it comes with experience.

Why, you may wonder, do you need to learn all this stuff when there are
programs like Dreamweaver that will do it for you? For the same reason a
sculptor needs to know how to chisel rock or an auto mechanic needs to
understand how engines and transmissions work. When something goes
wrong, you need to have the skills to get in there and fi x it. And eventu-
ally, with practice, you’ll get to the point where you can build pages from
scratch much more effi ciently and elegantly than any point-and-click tool can
manage.

And that’s why, even if you’re not usually comfortable with code listings and
other monospaced-font text, you should relax. (Come on, deep breath. Hold
it — and release. Good.) Think of the things you learn about in this book
as Lego pieces. Each piece on its own is very simple, but you can put them
together in all kinds of interesting and sometimes astonishing ways. That’s
the fun of it!

Every epic journey starts with a single step. Your fi rst steps await in the
pages that follow. Savor them. You’ll never look at the Web in the same way
again.

Eric A. Meyer

03_9780470916599-flast.indd xix03_9780470916599-flast.indd xix 11/30/10 12:30 AM11/30/10 12:30 AM

xx HTML, XHTML & CSS For Dummies, 7th Edition

03_9780470916599-flast.indd xx03_9780470916599-flast.indd xx 11/30/10 12:30 AM11/30/10 12:30 AM

Introduction

Welcome to the wild, wacky, and wonderful possibilities of the World
Wide Web, or more simply, the Web. In this book, we reveal the

ins and outs of the markup languages that are the Web’s lifeblood — the
Hypertext Markup Language (HTML) and its cousin, XHTML, along with the
Cascading Style Sheet (CSS) language used to make other stuff look good.
Because HTML and XHTML (we use (X)HTML in this book to refer to both)
and CSS are used to build Web pages, learning to use them brings you into
the fold of Web authors and content developers.

If you’ve tried to build your own Web pages but found it too forbidding, now
you can relax. If you can dial a telephone or find your keys in the morning,
you too can become an (X)HTML author. No kidding!

This book keeps the technobabble to a minimum and sticks with plain
English whenever possible. Besides plain talk about hypertext, (X)HTML, and
the Web, we include lots of examples, plus tag-by-tag instructions to help
you build Web pages with minimum of fuss. We also provide examples about
what to do with your Web pages after they’re created so you can publish
them. We explain the differences between HTML4, HTML5, and XHTML as
well, so you can decide whether you want to stick with the best-known and
longest-lived Web markup language (HTML) or its later and greater successor
(XHTML).

This book has a companion Web site that contains (X)HTML and CSS exam-
ples from its chapters in usable form — plus pointers to cool widgets you can
use to embellish your own documents and amaze your friends. Visit www.
dummieshtml.com and start browsing from there.

About This Book
Think of this book as a friendly, approachable guide to taking up (X)HTML
and CSS and building readable, attractive Web pages. These things aren’t
hard to learn, but they pack lots of details that you must handle as you build
your own Web pages. Topics in this book include:

04_9780470916599-intro.indd 104_9780470916599-intro.indd 1 11/30/10 10:47 AM11/30/10 10:47 AM

2 HTML, XHTML & CSS For Dummies, 7th Edition

 ✓ Designing and building Web pages

 ✓ Uploading and publishing Web pages for the world to see

 ✓ Testing and debugging your Web pages

 ✓ Introducing HTML5 and Cascading Style Sheets 3

You can build Web pages without years of arduous training, advanced aes-
thetic talents, or ritual ablutions in ice-cold streams. If you can tell someone
how to drive to your house, you can build a useful Web document. The pur-
pose of this book isn’t to turn you into a rocket scientist (or, for that matter,
rocket science into (X)HTML). The purpose is to show you the design and
technical elements needed for a good-looking, readable Web page and to give
you the confidence to build one!

How to Use This Book
This book tells you how to use (X)HTML and CSS to get your Web pages up
and running on the World Wide Web. We tell you what’s involved in designing
and building effective Web documents that can bring your ideas and informa-
tion to the online world — if that’s what you want to do — and maybe have
some high-tech fun communicating them.

To make this book easier to read, we use some conventions with the text. For
example, all (X)HTML and CSS code appears in monospaced type like this:

<head><title>What’s in a Title?</title></head>...

When you type (X)HTML code, CSS, or other related stuff, be sure to copy
the information exactly as you see it, including the angle brackets (< and >),
because that’s part of the magic that makes (X)HTML and CSS work. Other-
wise, you learn how to marshal and manage the content that makes your
pages special, and we tell you exactly what to do to mix elements of (X)HTML
and CSS with your own work.

The margins on a book page don’t have the same room as the vast reaches
of cyberspace. Therefore, long lines of (X)HTML and CSS markup, or designa-
tions for Web sites (called URLs, for Uniform Resource Locators), may wrap
across two or more lines. Remember, your computer shows such lines as a
single line of (X)HTML or CSS, or as a single URL — so if you type that hunk of
code, do it on one line. Don’t insert any hard returns if you see the line wrap.
We clue you in that the markup is supposed to be all one line by breaking the
line at a punctuation character and by indenting the overage, like this:

http://www.infocadabra.transylvania.com/nexus/plexus/lexus/praxis/okay/this/
 is/a/make-believe/URL/but/some/real/ones/are/SERIOUSLY/long-too.html

04_9780470916599-intro.indd 204_9780470916599-intro.indd 2 11/30/10 10:47 AM11/30/10 10:47 AM

3 Introduction

HTML4 doesn’t care if you type tag text in uppercase, lowercase, or both
(except for character entities, also known as character codes). HTML5,
XHTML, and CSS, however, want tag text in lowercase only. Thus, to make
your work look like ours as much as possible, enter all (X)HTML and CSS tag
text, and all other code, in lowercase only.

 If you have an older edition of this book, this reverses earlier instructions.
The keepers of the eternal and ever-awesome HTML standard, the World
Wide Web Consortium (W3C), have changed the rules, so we follow their
lead. We don’t make the rules, but we do know how to play the game!

Our code listings are color-coded where specific colors signify different types
of markup. We explain this in Chapter 1 in the section about color-coding
markup. (Notice all the illustrations use pretty colors, too!)

Three Presumptuous Assumptions
They say that making assumptions makes a fool out of the person who makes
them and the person who is subject to those assumptions. (And just who are
they, anyway? We assume we know, but . . . never mind.)

You don’t need to be a wizard in the arcane arts of programming, nor do you
need a PhD in computer science. You don’t even need a detailed sense of
what’s going on in the innards of your computer to deal with the material in
this book.

Even so, practicality demands us to make a few assumptions about you,
gentle reader: You can turn your computer on and off; you do know how to
use a mouse and a keyboard; and you want to build your own Web pages for
fun, profit, or some esoteric reason entirely of your own. We also assume you
have a working Internet connection and a Web browser.

If you can write a sentence and know the difference between a heading and a
paragraph, you can build and publish your own documents on the Web. The
rest consists of details — and we help you with those!

How This Book Is Organized
This book contains six major parts, arranged like Russian Matrioshki (nesting
dolls). Parts contain at least three chapters, and each chapter contains sev-
eral modular sections. This way, you can use this book to jump around, find
topics or keywords in the index or table of contents, or read the whole book
from cover to cover.

04_9780470916599-intro.indd 304_9780470916599-intro.indd 3 11/30/10 10:47 AM11/30/10 10:47 AM

4 HTML, XHTML & CSS For Dummies, 7th Edition

Part I: Getting to Know (X)HTML and CSS
This part sets the stage for, overviews, and introduces the Web and the
software that people use to mine its treasures. It also explains how the Web
works, including the (X)HTML and CSS that this book covers, and the server-
side software and services that deliver these goods to end users (when we
aren’t preoccupied with the innards of our systems).

(X)HTML documents, also called Web pages, are the fundamental units of
information, organization, and delivery on the Web. Here, you also discover
what HTML is about, how hypertext can enrich ordinary text, and what CSS
does to modify and manage how that text looks on display. Next you take a
walk on the Web side and build your very first (X)HTML document.

Part II: Formatting Web Pages with (X)HTML
HTML mixes ordinary text with special characters called markup, used to
instruct browsers how to display (X)HTML documents. In this part, you find
out about markup in general and (X)HTML in particular. We start with a fasci-
nating discussion of (X)HTML document organization and structure. (Well . . .
we think it’s fascinating, and we hope you do, too.) Next we explain how text
can be organized into blocks and lists. Then we tackle how the hyperlinks
that put the H into (X)HTML work. After that, we discuss how you can find
and use graphical images in your Web pages and make some fancy formatting
maneuvers to spruce up those pages.

Throughout this part, we include discussion of (X)HTML markup elements
(tags) and how they work. By the time you finish Part II, expect to have a
good overall idea of what HTML is and how to use it. Heck, we even include
a chapter at the end of Part II that steers you clear of obsolete or no-longer-
recommended markup so you’ll know it when you see it (and avoid using that
stale dross yourself).

Part III: Taking Precise Control
over Web Pages and Styles
Part III starts with a discussion of Cascading Style Sheets (CSS) — another
form of markup language that lets (X)HTML deal purely with content while
it deals with how Web pages look when they’re displayed in a Web browser
or as rendered on other devices (PDAs, mobile phones, and special assis-
tive devices for visually impaired users). After exploring CSS syntax and
structures and discovering how to use them, you find out how to manipu-
late color and typefaces for text, backgrounds, and more on your Web

04_9780470916599-intro.indd 404_9780470916599-intro.indd 4 11/30/10 10:47 AM11/30/10 10:47 AM

5 Introduction

pages. We give you lots of examples to help you design and build commer-
cial-grade (X)HTML documents. You can get started working with related
(X)HTML tag syntax and structures that you need to know so you can build
complex Web pages.

Part IV: Scripting and (X)HTML
(X)HTML isn’t good at snazzing up text and graphics when they’re on display
(that’s where CSS excels). And (X)HTML really can’t do much by itself. Web
designers often build interactive, dynamic Web pages using scripting tools to
add interactivity to an (X)HTML framework.

In this part, you find out about scripting languages that enable Web pages to
interact with users and that also provide ways to respond to user input or
actions and to grab and massage data along the way. You’re introduced to
general scripting languages, and we jump directly into the most popular such
language — JavaScript. You discover the basic elements of this scripting
language and how to add interactivity to Web pages. You also explore typical
uses for scripting that you can extend and add to your own Web site. We go
on to explore how you can embed content from third parties into your Web
pages, leverage other people’s dynamic content, spruce up your site with
very little effort, and get lots of nice returns from services like Flickr, Twitter,
YouTube, and Google Maps.

Throughout this part, examples, advice, and details show you how scripting
and embedded components can enhance your Web site’s capabilities — and
your users’ experiences when visiting your pages.

Part V: The Future of (X)HTML
Big things are happening in the (X)HTML world, with lots of changes on the
way. In this part, we lay the new stuff on you, show you how it looks and
what it can do (when browsers cooperate, that is), and tell you what to soon
expect.

You find a chapter on (X)HTML for mobile devices, such as smartphones,
iPads, and other portable electronic doo-dads with Web access. You also
find a chapter on a new and improved version of HTML — namely, HTML5 —
coming soon to a browser near you and maybe to your Web site. Plus, there’s
another chapter on an upcoming version of CSS — namely, CSS3. We provide
cool examples, all of which you can view on our companion Web site at www.
dummieshtml.com (or not, as your Web browser permits).

04_9780470916599-intro.indd 504_9780470916599-intro.indd 5 11/30/10 10:47 AM11/30/10 10:47 AM

6 HTML, XHTML & CSS For Dummies, 7th Edition

Part VI: The Part of Tens
In this part, we sum up and distill the very essence of the mystic secrets of
(X)HTML. Here you can read further about cool Web tools, review top do’s
and don’ts for HTML markup, and review how to catch and kill potential bugs
and errors in your pages before anybody else sees them.

Icons Used in This Book

 This icon signals technical details that are informative and interesting but
aren’t absolutely critical to writing HTML.

 This icon flags useful information that makes HTML markup or other impor-
tant stuff even less complicated than you feared it might be.

 This icon calls out stuff you shouldn’t pass by — don’t overlook these gentle
reminders (the life, sanity, or page you save could be your own).

 Watch out when you see this icon. It warns you of things you shouldn’t do;
consequences can be severe if you ignore accompanying bits of wisdom.

 Information highlighted with this icon gives best practices — advice we wish
we’d had when we first started out! These techniques can save you time and
money on migraine medication.

Where to Go from Here
This is where you pick a direction and hit the road! Where you start out
doesn’t matter. Don’t worry. You can handle it. We know you’re getting ready
to have the time of your life. Enjoy!

04_9780470916599-intro.indd 604_9780470916599-intro.indd 6 11/30/10 10:47 AM11/30/10 10:47 AM

Part I
Getting to Know

(X)HTML and CSS

05_9780470916599-pp01.indd 705_9780470916599-pp01.indd 7 11/30/10 12:23 AM11/30/10 12:23 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

In this part . . .

Here, we explore and explain basic HTML document
links and structures. We also explain the role that

Web browsers play in delivering all this stuff to people’s
desktops. We even explain where the (X) comes from —
namely, a reworking of the original description of HTML
markup using XML syntax to create (X)HTML — and go
on to help you understand what makes (X)HTML different
(and possibly better, according to some) than plain old
HTML. We also look at general Web page anatomy, the
various pieces and parts that make a Web page, and how
CSS helps manage their presentation, placement, and even
color when they appear on somebody’s display.

Next, we take you through the exercise of creating and
viewing a simple Web page so you can understand what’s
involved. We also explain making changes to an existing
Web page and how to post your changes (or a new page)
online.

This part concludes with a rousing exhortation to figure
out what you’re doing before making too much markup
happen. A well built house starts with a set of blueprints
and architectural drawings, and a Web page (and site)
should start with a plan or a map, too, with some idea
of where your pages will reside in cyberspace and how
hordes of users can find their way to them.

05_9780470916599-pp01.indd 805_9780470916599-pp01.indd 8 11/30/10 12:23 AM11/30/10 12:23 AM

Chapter 1

The Least You Need to Know about
HTML, CSS, and the Web

In This Chapter
▶ Creating HTML in text files

▶ Serving and browsing Web pages

▶ Understanding links and URLs

▶ Understanding basic HTML syntax

▶ Understanding basic CSS

Welcome to the wonderful world of the Web, (X)HTML, and CSS. With
just a little knowledge, some practice, and something to say, you can

build your own little piece of cyberspace or improve on existing work.

 You’ll notice we use (X)HTML throughout this book. This is an acronym we
made up to stand for “either HTML or XHTML,” where HTML is Hypertext
Markup Language, and XHTML is Extensible Hypertext Markup Language.
Although HTML and XHTML aren’t exactly identical, they’re enough like each
other for this reference to make sense.

This book is your down-and-dirty guide to understanding Web documents,
sprucing up an existing page, or creating complex and exciting pages that
integrate intricate designs, multimedia, and scripting.

The best way to start working with HTML is to jump right in, so that’s what
this chapter does: It brings you up to speed on the basics of how (X)HTML
and CSS work behind the scenes inside Web pages, introducing you to their
underlying building blocks. When you’re done with this chapter, you’ll know
how (X)HTML and CSS work so you can start creating or editing Web pages
right away.

06_9780470916599-ch01.indd 906_9780470916599-ch01.indd 9 11/30/10 12:23 AM11/30/10 12:23 AM

10 Part I: Getting to Know (X)HTML and CSS

Web Pages in Their Natural Habitat
Web pages can accommodate many kinds of content, such as text, graphics,
forms, audio and video files, and even interactive games.

Browse the Web for only a moment, and you see a buffet of information
and content displayed in many ways. Every Web site is different, but most
have one thing in common: the Hypertext Markup Language (also known as
HTML). You’ll also run into Extensible Hypertext Markup Language (XHTML)
and Cascading Style Sheets (CSS) pretty regularly, too.

Whatever information a Web page contains, every Web page is created using
HTML (or some reasonable facsimile). HTML is the mortar that holds Web
pages together; graphics, content, and other information are the bricks; CSS
tells Web pages how they should look when on display.

 HTML files that produce Web pages are just text documents, as are XHTML
and CSS files. This use of text documents is why the Web works as well as it
does. Text is a universal language for computers. Any text file you create on
a Windows computer — including any HTML, XHTML, or CSS file — works
equally well on a Mac or any other operating system.

But Web pages aren’t merely text documents. Web pages are made with spe-
cial, attention-deprived, sugar-loaded text called HTML, XHTML, or CSS. Each
uses its own specific set of instructions that you include (along with your
content) inside text files to specify how a page should look and behave.

Stick with us to discover everything you need to know about (X)HTML and CSS!

Hypertext
Special instructions in HTML permit lines of text to point (that is, link) to
something else in cyberspace. Such pointers are called hyperlinks. Hyperlinks
are the glue that holds the World Wide Web together. In your Web browser,
hyperlinks usually appear in blue and are underlined. When you click a
hyperlink, it takes you somewhere else.

 Hypertext or not, a Web page is a text file, which means you can create and
edit a Web page in any application that creates plain text (such as Notepad or
TextEdit). Some software tools offer fancy options and applications (covered
in Chapter 23) to help you create Web pages, but they generate the same text
files that you create with plain-text editors. We’re of the opinion, though, that
those just getting started with HTML are best served by a simple text editor.
Just break out Notepad on the PC (or TextEdit on the Mac), and you’re ready
to go.

06_9780470916599-ch01.indd 1006_9780470916599-ch01.indd 10 11/30/10 12:23 AM11/30/10 12:23 AM

11 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

 Steer clear of word processors like WordPad or Microsoft Word when creat-
ing HTML. They introduce all kinds of extra code to Web pages that you may
neither want nor need.

The World Wide Web comes by its name honestly. It’s quite literally a web of
online pages hosted on Web servers around the world, connected in trillions
of ways by hyperlinks that tie pages together. Without such links, the Web
would be just a bunch of standalone pages.

Much of the Web’s value comes from its ability to link to pages and other
resources (such as images, downloadable files, and media presentations) on
either the same Web site or at another site. For example, USA.gov (www.usa.
gov) is a gateway Web site — its sole function is to provide access to other
Web sites. If you aren’t sure which government agency handles first-time
loans for homebuyers, or you want to arrange a tour of the Capitol, visit the
site shown in Figure 1-1 to find out.

Figure 1-1: USA.gov uses hyperlinks to help visitors find government information.

Web browsers were created specifically for the purpose of reading HTML
instructions (known as markup) and displaying the resulting Web page.

06_9780470916599-ch01.indd 1106_9780470916599-ch01.indd 11 11/30/10 12:23 AM11/30/10 12:23 AM

12 Part I: Getting to Know (X)HTML and CSS

Markup lives in a text file (with your content) to give orders to a browser. For
example, look at the page shown in Figure 1-2. You can see how the page is
made up and how it is formatted by examining its underlying HTML.

Figure 1-2: To achieve its present good looks, this Web page incorporates multiple parts and
numerous bits of HTML and CSS markup.

This page includes an image, a heading that describes the page, several para-
graphs of text about one of your authors, and an address block with links to a
résumé and a list of publications.

However, different components of the page use different formatting:

 ✓ The heading at the top of the page is larger than text in the paragraphs.

 ✓ Blocks of text are separated by more blank space than between contigu-
ous lines of text within blocks.

 ✓ Some text is in white, some orange, and some light blue.

06_9780470916599-ch01.indd 1206_9780470916599-ch01.indd 12 11/30/10 12:23 AM11/30/10 12:23 AM

13 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

The browser knows to display these components of the page in specific ways
thanks to the HTML markup, shown in Listing 1-1. (You’ll see Listing 1-1 in all
its glory at the end of the chapter.)

Any text enclosed between angle brackets (less-than and greater-than signs:
< >) is an HTML tag (often called the markup). For example, a p within brack-
ets (<p>…</p> tags) identifies text inside paragraphs. The markup between
<style> and </style> tags at the head of the file uses CSS to define the
look and feel for various HTML elements used on this page. That’s really all
there is to it. You embed the markup in a text file, along with text for readers
to view, to tell the browser how to display your Web page.

 Tags and the content between (and within) the tags are collectively called
elements. Angle brackets < > enclose HTML and XHTML markup, curly braces
{ } enclose CSS markup.

Browsers
The user’s piece in the Web puzzle is a Web browser. Web browsers read
instructions written in HTML, XHTML, and CSS, and use those instructions to
display Web page content on your screen.

 You should always write your HTML with the idea that people will view the
content using a Web browser. Just remember that there’s more than one kind
of browser out there, and each one comes in several versions.

Usually, Web browsers request and display Web pages available via the
Internet from a Web server. You can also display HTML pages you’ve saved
on your own computer before making them available on a Web server on
the Internet. When you’re developing your own HTML pages, you view these
pages (called local pages) in your browser. You can use local pages to get a
good idea of what people see after the page goes live on the Internet.

 Each Web browser interprets HTML in its own way. The same HTML may not
look exactly alike from one browser to the next. When you work with basic
HTML, variations will be minor, but as you add other elements (such as
scripting and multimedia), rendering markup gets hairy.

Chapter 2 shows how to use a Web browser to view a local copy of your first
Web page.

 Some people use text-only Web browsers, such as Lynx, because either

 ✓ They’re visually impaired and can’t use a graphical display.

 ✓ They like a lean, fast Web browser that displays only text.

06_9780470916599-ch01.indd 1306_9780470916599-ch01.indd 13 11/30/10 12:23 AM11/30/10 12:23 AM

14 Part I: Getting to Know (X)HTML and CSS

Web servers
Your HTML pages aren’t much good if you can’t share them with the world.
Web servers make that possible. A Web server is a computer that

 ✓ Connects to the Internet

 ✓ Runs Web-server software

 ✓ Responds to requests from Web browsers for Web pages

Almost any computer can be a Web server, including your home computer.
But Web servers generally are computers dedicated to the task. You don’t
need to be an Internet or computer guru to publish your Web pages, but you
must find a Web server to serve your pages:

 ✓ If you’re building pages for a company Web site, your IT department
may have a Web server. (Ask your IT guru for the information.)

 ✓ If you’re starting a new site, you need a host for your Web pages.

 Finding an inexpensive host is easy — all it takes is a simple Google
search. One inexpensive host is GoDaddy (www.godaddy.com), with
current monthly fees as low as $1.99 a month. You can even find free

A bevy of browsers
The Web world is full of browsers of many shapes and sizes — or rather versions and feature sets.
Some popular browsers are Microsoft Internet Explorer, Mozilla Firefox, Apple Safari, and Google
Chrome. Other browsers, such as Opera and Lynx, are also widely used. As an HTML developer,
you must think beyond your own browser experience and preferences. Every user has his or her
personal browser preferences and settings.

Each browser renders HTML a bit differently. Every browser handles JavaScript, multimedia, style
sheets, and other HTML add-ins differently too. Throw different operating systems into the mix, and
things get really fun.

Usually differences between browsers are minor. But sometimes a combination of HTML, text, and
media brings a specific browser to its knees. When you work with HTML, test your pages on as
many different browsers as you can. Install at least three different browsers on your own system
for testing. We recommend the latest versions of Internet Explorer, Firefox, and Chrome.

Yahoo! has a fairly complete list of browsers at

http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/
Browsers

06_9780470916599-ch01.indd 1406_9780470916599-ch01.indd 14 11/30/10 12:23 AM11/30/10 12:23 AM

15 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

hosts for your Web site with a little effort. Free Web Hosts maintains a
list of free host providers. Check them out at www.free-webhosts.
com. Chapter 3 shows how to determine your hosting needs and find the
perfect provider.

Anatomy of a URL
The Web is made up of billions of resources, each of them linkable. A
resource’s exact location is the key to linking to it. Without an exact address
(a Uniform Resource Locator, or URL), you can’t use the Address bar in a Web
browser to visit a Web page directly.

 URLs are the standard addressing system for Web resources. Each resource
(Web page, site, or individual file) has a unique URL. URLs work a lot like
your postal address. Figure 1-3 identifies the components of a URL.

Protocol

Domain

http://www.domain.com/mainfolder/subfolder/file.html

Path

Filename

Figure 1-3: The components of a URL help it define an exact location for a file
on the Web.

Introducing Internet protocols
Interactions between browsers and servers
are made possible by a set of computer-
communication instructions: Hypertext Transfer
Protocol (HTTP). This protocol defines how
browsers should request Web pages and how
Web servers should respond to those requests.

HTTP isn’t the only protocol at work on the
Internet. The Simple Mail Transfer Protocol
(SMTP) and Post Office Protocol (POP) make
e-mail exchange possible, and the File Transfer
Protocol (FTP) allows you to upload, download,
move, copy, and delete files and folders across

the Internet. The good news is that Web brows-
ers and servers do all the HTTP work for you, so
you only have to put your pages on a server or
type a Web address into a browser.

To see how HTTP works, check out David
Gourley and Brian Totty’s chapter on HTTP
Messages, available through Google book
search with “understanding http transac-
tions” as the search string. Start your search at
http://books.google.com, then scroll
down until you see the link to “HTTP: the defini-
tive guide” and check out Page 80.

06_9780470916599-ch01.indd 1506_9780470916599-ch01.indd 15 11/30/10 12:23 AM11/30/10 12:23 AM

16 Part I: Getting to Know (X)HTML and CSS

Each URL component helps define the location of a Web page or resource:

 ✓ Protocol: Specifies the protocol the browser follows to request the file.

 The Web page protocol is http:// (the usual start to most URLs).

 ✓ Domain: Points to the general Web site (such as www.sun.com) where
the file resides. A domain may host a few files (like a personal Web site)
or millions of files (like a large corporate site, such as www.sun.com).

 ✓ Path: Names the sequence of folders through which you must navigate
to get to a specific file.

 For example, to get to a file in the evangcentral folder that resides in
the developers folder, you use the /developers/evangcentral/
path.

 ✓ Filename: Specifies which file in a directory path the browser accesses.

Although the URL shown in Figure 1-3 is not publicly accessible, it points to
the domain and offers a path that leads to a specific file named file.html:

http://www.domain.com/mainfolder/subfolder/file.html

 Chapter 6 provides the complete details on how you use HTML and URLs to
add hyperlinks to your Web pages, and Chapter 3 shows how to obtain a URL
for your own Web site after you’re ready to move it to a Web server.

 (X)HTML’s Component Parts
The following section removes the mystery from the X. This section shows

 ✓ The differences between HTML and XHTML

 ✓ How HTML is written (its syntax)

 ✓ Rules that govern use of HTML (and XHTML)

 ✓ Names for important pieces and parts of HTML (and XHTML) markup

 ✓ How to make the best, most correct use of (X)HTML capabilities

HTML and XHTML: What’s the difference?
HTML is Hypertext Markup Language, markup developed in the late 1980s
and early 1990s to describe Web pages. HTML is now enshrined in numerous
standard descriptions (specifications) from the World Wide Web Consortium
(W3C). The last HTML specification was done in 1999.

06_9780470916599-ch01.indd 1606_9780470916599-ch01.indd 16 11/30/10 12:23 AM11/30/10 12:23 AM

17 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

When you put an X in front of HTML to get XHTML, you get a new, improved
version of HTML based on the eXtensible Markup Language (XML). XML
is designed to work and behave well with computers, software, and the
Internet.

The original formulation of HTML has some irregularities that can cause
heartburn for software that reads HTML documents. XHTML, on the other
hand, uses an extremely regular and predictable syntax that’s easier for soft-
ware to handle. XHTML will replace HTML someday, but HTML keeps on tick-
ing. This book covers both varieties and shows you the steps to put the X in
front of your own HTML documents and turn them into XHTML.

 ✓ Most HTML and XHTML markup is identical.

 ✓ In a few cases, HTML and XHTML markup looks a little different.

 ✓ In a few cases, HTML and XHTML markup must be used differently.

This book shows how to create code that works in both HTML and XHTML.

Syntax and rules
 HTML is a straightforward language for describing Web page contents.

XHTML is even less demanding. Their components are easy to use — when
you know how to use a little bit of (X)HTML. Both HTML and XHTML markup
have three types of components:

 ✓ Elements: Identify different parts of an HTML page by using tags.

 ✓ Attributes: Information about an instance of an element.

 ✓ Entities: Non-ASCII text characters, such as copyright symbols (©)
and accented letters (É). Entities originate from the Standard Generic
Markup Language, or SGML.

Every bit of HTML and/or XHTML markup that describes a Web page’s con-
tent includes some combination of elements, attributes, and entities.

 This chapter covers basic form and syntax for elements, attributes, and enti-
ties. Parts II and III of the book show how elements and attributes:

 ✓ Describe kinds of text (such as paragraphs or tables)

 ✓ Create an effect on the page (such as changing a font style)

 ✓ Add images and links to a page

06_9780470916599-ch01.indd 1706_9780470916599-ch01.indd 17 11/30/10 12:23 AM11/30/10 12:23 AM

18 Part I: Getting to Know (X)HTML and CSS

Markup color-coding
As we present HTML, XHTML, and CSS information in our code samples, we
use color-coding to help you distinguish what’s what by way of markup. Here is
a color key that you should keep in mind as you read all of our code listings:

 ✓ Purple Indicates the DOCTYPE declaration used in (X)HTML docu-
ments. This is actually a totally different markup language known as the
Standard Generalized Markup Language, or SGML. SGML is used to iden-
tify what specific set of rules that (X)HTML documents follow in their
construction and content. It also applies to codes for character entities,
such as the following:

&pos;
&123;

 ✓ Light green Indicates ordinary garden variety XHTML and HTML
markup

 ✓ Dark green Indicates XML markup

 ✓ Orange Indicates Cascading Style Sheet, or CSS, markup

 ✓ Blue Indicates JavaScript

We only colorize markup in code listings and code blocks because it affects
readability too much when code appears in body copy. In that case, we
simply use a different, monospaced font — as you’ll see in the discussions of
the <html>, <head>, and <title> elements in our first paragraph that dis-
cusses HTML markup here.

One more thing: If you use an HTML editor, such as HTML Kit, Dreamweaver,
Kompozer, or whatever, you find these tools also use text color to help you
identify different kinds of markup. The thing is that none of these tools do
this the same way, and none of them match the way we do it here — we
picked out colors that would be easy to see (and distinguish) when viewed
on a four-color printed page; whereas others picked their colors to look good
on LCD displays.

Elements
Elements are the building blocks of (X)HTML. You use them to describe
every piece of text on your page. Elements are made up of tags and the con-
tent within those tags. There are two main types of elements:

 ✓ Elements with content made up of a tag pair and whatever content sits
between the opening and closing tags in the pair

 ✓ Elements that insert something into the page, using a single tag

06_9780470916599-ch01.indd 1806_9780470916599-ch01.indd 18 11/30/10 12:23 AM11/30/10 12:23 AM

19 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Tag pairs
Elements that describe content use a tag pair to mark the beginning and the
end of the element. Start and end tag pairs look like this:

<tag>...</tag>

 Content — such as paragraphs, headings, tables, and lists — always uses a tag
pair:

 ✓ The start tag (<tag>) tells the browser, “The element begins here.”

 ✓ The end tag (</tag>) tells the browser, “The element ends here.”

Actual content is what occurs between a start tag and an end tag. For exam-
ple, the Ed Tittel page in Listing 1-1 uses a paragraph element (<p>) to sur-
round text for a paragraph (we omit CSS inline markup for clarity):

<p>Ed started writing about computing subjects in 1986 for a
Macintosh oriented monthly magazine. By 1989 he had contributed to such
publications as LAN Times, Network World, Mac World, and LAN Magazine. He worked
on his first book in 1991, and by 1994 had contributed to over a dozen different
titles.</p>

Single tags
Elements that insert something into the page are called empty elements
(because they enclose no content) and use just a single tag, like this:

<tag />

 Images and line breaks insert something into the HTML file, so they use
one tag.

One key difference between XHTML and HTML is that, in XHTML, all empty
elements must end with a slash before the closing greater-than symbol. This
is because XHTML is based on XML, and the XML rule is that you close empty
elements with a slash, like this:

<tag/>

However, to make this kind of markup readable inside older browsers, you
should insert a space before the closing slash, like this:

<tag />

06_9780470916599-ch01.indd 1906_9780470916599-ch01.indd 19 11/30/10 12:23 AM11/30/10 12:23 AM

20 Part I: Getting to Know (X)HTML and CSS

This space allows older browsers to ignore the closing slash (because they
don’t know about XHTML). Newer browsers that understand XHTML ignore the
space and interpret the tag exactly, which is <tag/> (as per the XML rules).

 HTML doesn’t require a slash with empty elements, but this markup is dep-
recated (that is, identified as obsolete even though it still occurs in some
markup). An HTML empty element looks like this:

<tag />

Listing 1-1 uses the image element () to include an image on the
page:

The element references an image. When the browser displays the
page, it replaces the element with the file that it points to (an attri-
bute does the pointing, as shown in the next section). Following the XHTML
rule introduced earlier, what appears in HTML as appears in XHTML
as (and this applies to all single tag elements).

 You can’t make up HTML or XHTML elements. Legal elements for (X)HTML
belong to a very specific set — if you use elements that aren’t part of that
set, every browser ignores them. The elements you can use are defined in
the HTML 4.01 or XHTML 1.0 specifications. (The specs for HTML 4.01 can
be found at www.w3.org/TR/html4, while the specs for XHTML 1.0 can be
found at www.w3.org/TR/xhtml1.)

Nesting
Many page structures combine nested elements. Think of your nested ele-
ments as suitcases that fit neatly inside one another.

For example, a bulleted list uses two kinds of elements:

 ✓ The element specifies that the list is unordered (bulleted).

 ✓ The elements mark each item in the list.

When you combine elements by using this method, be sure you close the
inside element completely before you close the outside element:

 Item 1
 Item 2

06_9780470916599-ch01.indd 2006_9780470916599-ch01.indd 20 11/30/10 12:23 AM11/30/10 12:23 AM

21 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Attributes
Attributes allow variety in how an element describes content or works.
Attributes let you use elements differently depending on circumstances. For
example, the element uses the src attribute to specify the location
of the image you want to include on your page:

In this bit of HTML, the element itself is a general flag to the browser
that you want to include an image; the src attribute provides the specifics
on the image you want to include — header.gif in this instance. Other
attributes (such as width and height) provide information about how to
display that image, while the alt attribute provides a text alternative to the
image that a text-only browser can display (or a text-to-speech reader can
read aloud, for the visually impaired).

 Chapter 7 describes the element and its attributes in detail.

You include attributes within the start tag of the element you want them
with — after the element name but before the ending sign, like this:

<tag attribute=”value” attribute=”value”>

 XML syntax rules decree that attribute values must always appear in quota-
tion marks, but you can include the attributes and their values in any order
within the start tag or within a single tag.

Every (X)HTML element has a collection of attributes that can be used with
it, but you can’t mix and match attributes and elements however you please.
Some attributes can take any text as a value because the value could be any-
thing, like the location of an image or a page you want to link to. Others have
a specific list of values the attribute can take, such as your options for align-
ing text in a table cell.

The HTML 4.01 and XHTML 1.0 specifications define exactly which attributes
you can use with any given element and which values (if explicitly defined)
each attribute can take.

 Each chapter in Parts II and III covers which attributes you can use with each
(X)HTML element. Also, see our online content for complete lists of depre-
cated (X)HTML tags and attributes.

06_9780470916599-ch01.indd 2106_9780470916599-ch01.indd 21 11/30/10 12:23 AM11/30/10 12:23 AM

22 Part I: Getting to Know (X)HTML and CSS

Entities
Text makes the Web possible, but it has limitations. Entities are special char-
acters that you can display on your Web page.

Non-ASCII characters
Basic American Standard Code for Information Interchange (ASCII) text
defines a fairly small number of characters. It doesn’t include some special
characters, such as trademark symbols, fractions, and accented characters.

For example, if we translate a paragraph of text from the page in Figure 1-2
into German, the result includes three u characters with umlauts (ü), as
shown in Figure 1-4.

Figure 1-4: ASCII text can’t represent all text characters, so HTML
entities do the job instead.

ASCII text doesn’t include an umlauted u, so HTML uses entities to represent
such characters. The browser replaces the entity with the character it refer-
ences. Each entity begins with an ampersand (&) and ends with a semicolon
(;); entities come originally from SGML, so we color-code them in purple to
reflect their origins. The following markup shows entities in bold:

<html>
<head>
<style type=”text/css”>
 body {
 font-family: sans-serif;
 font-size: large;
 }
 cite {
 font-family: serif;
 font-style: italic;
 }

06_9780470916599-ch01.indd 2206_9780470916599-ch01.indd 22 11/30/10 12:23 AM11/30/10 12:23 AM

23 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

</style>
<title>Ed auf Deutsch</title>
</head>
<body>
<p>Ed Tittel hat seinen technischen Schriften im Jahre 1986 angefangen, als er
für einen Macintosh monatlichen Zeitschrift Artikeln schrieb. In drei mehr
Jahren, hat er auch für anderen Journalen wie <cite>LAN Times</cite>,
<cite>Network World</cite>, und <cite>LAN Magazine</cite> merhrere Artikeln
beigetragen. Er fertigte seinen ersten Buch im Jarhe 1991, und beim Ende des
Jahres 1994 hat er auf ein Dutzend Bücher gearbeitet.</p>
</body>
</html>

The entity that represents the umlauted u is ü.

(X)HTML character codes
The encodings for the ISO-Latin-1 character set are supplied by default, and
related entities (a pointer to a complete table appears in Chapter 24) can be
invoked and used without special contortions. But using other encodings
mentioned earlier requires inclusion of special markup to tell the browser
it must interpret Unicode character codes. (Unicode is an international
standard — ISO standard 10646, in fact — that embraces enough charac-
ter codes to handle most unique alphabets, plus plenty of other symbols
and nonalphabetic characters as well.) This special markup takes the
form <meta http-equiv=”Content-Type” content=”text/html;
charset=UTF 8”>; because the value for charset reads UTF-8, you can
reference common Unicode values that appear in Chapter 24.

 Although today’s browsers support UTF-8 across the board, you can expect
to see support for UTF-16 character codes showing up in the next year or
two. This will let browsers deal more effectively with non-Roman alphabets
like Arabic, kata kana (Japanese), or Hangul (Korean), which some browsers
struggle to render correctly today.

Tag characters
HTML-savvy software assumes that some HTML characters, such as the
greater-than and less-than signs, are meant to be hidden and not displayed
on your finished Web page. If you actually want to show a greater-than or
less-than sign on your page, you’re going to have to make your wishes clear
to the browser. The following entities let you display characters that nor-
mally are part of the hidden HTML markup:

 ✓ less-than sign (<): <

 ✓ greater-than sign (>): >

 ✓ ampersand (&): &

06_9780470916599-ch01.indd 2306_9780470916599-ch01.indd 23 11/30/10 12:23 AM11/30/10 12:23 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

24 Part I: Getting to Know (X)HTML and CSS

 The < and > signs are used in markup, but these symbols are instructions to
the browser and won’t show up on the page. If you need these symbols on the
Web page, include the entities for them in your markup, like this:

<p>The paragraph element identifies some text as a paragraph:</p>
<p><p>This is a paragraph.</p></p>

In the preceding markup, the first line uses tags to describe a paragraph, and
the second line shows how entities describe the < and > symbols.

Figure 1-5 shows these entities as characters in a browser window.

Figure 1-5: Entities let <, >, and & symbols appear in a browser window.

Parts Is Parts: What Web Pages Are Made Of
Comments include text in (X)HTML files that isn’t displayed in the final page.
Each comment is identified with two special sequences of markup characters:

 ✓ Begin each comment with the string <!--

 ✓ End each comment with the string -->

In the following code, comments explain how each markup element functions
and where it fits into the HTML markup hierarchy.

Elements are organized into a structure:

 ✓ Some elements can occur only inside other elements.

 ✓ Some elements are required for a well-structured (X)HTML document.

<html> <!-- This tag should always occur at or near the beginning of any
 well-formed HTML document -->
<head> <!-- The head element supplies information to label the whole HTML
 document -->

06_9780470916599-ch01.indd 2406_9780470916599-ch01.indd 24 11/30/10 12:23 AM11/30/10 12:23 AM

25 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

<title>Welcome to Ed Tittel.com</title> <!-- The text in the title element
 appears in the title bar of the browser window when the page
 is viewed -->
</head> <!-- closes the head element -->

<body> <!-- The content that appears on any Web page appears or is
 invoked from inside the body element -->
 <!-- Skip a bunch of copy here . . . -->
<!-- Subtitle text -->
 <h1>Contact:</h1>
 <!-- List -->

 Email: etittel at yahoo dot com
 Address: 2443 Arbor Drive, Round Rock, TX 78681-2160
 Phone: 512-252-7497 (No solicitors, please)
 List of publications available in: <a href=”docs/v_et.doc”
 target=”_blank”>MS Word
 Resume available in: <a href=”docs/Resu-et13.doc” target=”_

blank”>
 MS Word
 </body> <!-- End of the body section -->
</html> <!-- End of the HTML document -->

The preceding document is broken into a head and a body. Within each sec-
tion, certain kinds of elements appear. Many combinations are possible —
and that’s what you see throughout this book!

 To see complete, valid HTML files for any and all screen captures of pages
we build in this book, visit the Web site at www.dummieshtml.com and
check the area for each chapter. The preceding markup appears therein as
01Listing01.html, for example.

Organizing HTML text
Beyond the division into head and body sections, text can be organized in
plenty of ways in HTML documents.

Document heads
Inside the head section, you can define all kinds of labels and information
besides a title, primarily to describe the document that follows, such as the
character sets used, meta data about the current document, scripts to be
invoked, and style information. The body section is where real content lives
and most (X)HTML elements appear.

06_9780470916599-ch01.indd 2506_9780470916599-ch01.indd 25 11/30/10 12:23 AM11/30/10 12:23 AM

26 Part I: Getting to Know (X)HTML and CSS

Document headings
Headings (denoted using elements h1 through h6) are different from the
HTML document head. Individual headings structure the text that follows
them, whereas the head identifies or describes the whole document.

 In the Ed Tittel page example, the h1 element sets off the Contact block at
the bottom of the page.

Paragraphs and more
When you want running text on a Web page, the paragraph element, p (which
includes the <p> and </p> tags), breaks text into paragraphs. You can also
create horizontal rules (lines) by using the <hr /> element.

HTML also includes all kinds of ways to emphasize or identify text inside
paragraphs; Parts II and III of this book show a few of them.

Lists
HTML permits easy definition of unordered or bulleted lists. Various mecha-
nisms to create other kinds of lists, including numbered lists, are also avail-
able. Lists can be nested within lists to create as many levels of hierarchy as
your list might need (perhaps when outlining a complex subject or model-
ing a table of contents with several heading levels you want to represent).
Chapter 5 covers creating lists in more detail.

Tables
In addition to providing a variety of listing mechanisms, HTML also includes
markup for defining tables. (Tables were really popular at one time in HTML
design, and they were used for all kinds of page layouts; today, they’re used
for tables, as they should be.) Structure is part of how markup works, so
within the definition of a table, you can

 ✓ Distinguish between column heads and table data

 ✓ Manage how rows and columns are laid out

Cascading Style Sheet markup
CSS markup can occur in separate style-sheet documents, in a block of text
in the head of an HTML document, or appended in the style attribute within
individual HTML elements — and even in some combination of all three
such forms! What CSS does is provide much more detailed control over

06_9780470916599-ch01.indd 2606_9780470916599-ch01.indd 26 11/30/10 12:23 AM11/30/10 12:23 AM

27 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

font selection, use of color for text and backgrounds, positioning of text
and other elements on the page, and (as the old Ronco ad intones) “much,
much more.”

You delve into CSS in detail in Part III of this book, but we cover bits and
pieces of CSS throughout the book as appropriate for the subject matter at
hand. You can build a Web site without using CSS (using CSS makes more
work), but it’s the right tool for precise control over look and layout!

Images in HTML Documents
Adding an image to any HTML document is easy. Careful and well-planned
use of images adds greatly to Web pages. Chapter 7 shows how to grab
images from files. Chapter 9 shows how to use complex markup to posi-
tion and flow text around graphics. Along the way, you also discover how
to select and use interesting and compelling images to add both allure and
information to your Web pages.

Links and navigation tools
Web page structure should help visitors find their way around collections
of pages, look for (and hopefully, find) items of interest, and get where they
most want to go quickly and easily. Links provide the mechanism to bring
people into your Web pages, so Chapter 6 shows how to

 ✓ Reference external items or resources

 ✓ Jump from one page to the next

 ✓ Jump around inside a page

 ✓ Add structure and organization to your pages

 The importance of structure and organization increases in relation to
the amount of information that you want to present to your visitors.

Navigation tools (which establish standard mechanisms and tools for moving
around inside a Web site) provide ways to create and present your Web page
(and site) structure to visitors as well as mechanisms for users to grab and
use organized menus of choices

When you add everything up, your result should be a well-organized set of
information and images that are easy to understand, use, and navigate.

06_9780470916599-ch01.indd 2706_9780470916599-ch01.indd 27 11/30/10 12:23 AM11/30/10 12:23 AM

28 Part I: Getting to Know (X)HTML and CSS

Listing 1-1: Meet an Author!
Listing 1-1 is reproduced in its entirety here, color-coded to distinguish the
various types of markup it uses. Lest you think this is mere vanity on Ed’s
part, we also hasten to point out that this is the basis for the “About me”
page described in Chapter 16 of this book, which we hope only makes it more
interesting, rather than the reverse!

Listing 1-1: Ed Tittel’s “About Me” Web Page
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>Ed Tittel - Edtittel.com</title>
<style type=”text/css”>

body {
 background-image: url(images/background_page.gif);
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: .9em;
 line-height: 1.3;
 color: #FFF;
 margin: 0px;
 padding: 0px; }
#container{
 width: 794px;
 margin: 0px auto; }
#headerGraphic{
 background-image: url(images/header.gif);
;
 width: 794px;
 height: 160px; }
b {
 font-weight: bold;
 }
h2 {
 font-weight: bold;
 font-size: 1.5em;
 color:#96CDFF;
 border-bottom: 1px solid white; }

h1 {
 font-weight: bold;
 font-size: 1.2em;
 color:#96CDFF; }
ul{
 list-style-type: none;
 margin: 0px;
 padding: 0px; }

06_9780470916599-ch01.indd 2806_9780470916599-ch01.indd 28 11/30/10 12:23 AM11/30/10 12:23 AM

29 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

a:link {
 font-weight : bold;
 text-decoration : none;
 color: #FF7A00;
 background: transparent; }
a:visited {
 font-weight : bold;
 text-decoration : none;
 color: #91a3b4;
 background: transparent; }
a:hover {
 color: #FA0000;
 background: transparent;
 text-decoration : underline; }
a:active {
 color: #494949;
 background: transparent;
 font-weight : bold;
 text-decoration : underline; }
</style>
</head>

<body>
<div id=”container”>
<!-- Top graphic of Ed and title -->
<div id=”headerGraphic”></div>
<!-- Header text -->
 <h2>About me</h2>
 <!-- Paragraphs -->
 <p>Ed Tittel has been working in and around the computer industry since the
 early 1980s, at which point he left academia to work as a programmer. After
 seven years of writing code and managing development projects, he switched
 to the softer side of the industry in pre-sales technical and marketing
 roles. In the period from 1981 to 1994 he worked for 6 companies that
 included Information Research Associates, Burroughs, Schlumberger, and
 Novell.</p>
 <p>Ed started writing about computing subjects in 1986 for a Macintosh
 oriented monthly magazine. By 1989 he had contributed to such publications
 as LAN Times, Network World, Mac World, and LAN Magazine. He worked on his
 first book in 1991, and by 1994 had contributed to over a dozen different
 titles.</p>
 <p>Ed has been freelancing full-time since 1994, with two
 brief stints of other employment interspersed therein (1987-8 at Tivoli,
 and 2006 at NetQoS, Inc.). He has contributed to over 140 computer
 books, including numerous ...For Dummies titles, college textbooks,
 certification preparation materials, and more. These days, Ed revises an
 occasional book, writes for Tom’s Hardware, TechTarget, and ITExpertVoice,
 and teaches online courses for large corporations such as HP.</p>
 <p>To learn more about Ed’s professional history, please
 read his professional bio.</p>

(continued)

06_9780470916599-ch01.indd 2906_9780470916599-ch01.indd 29 11/30/10 12:23 AM11/30/10 12:23 AM

30 Part I: Getting to Know (X)HTML and CSS

Listing 1-1 (continued)
 <!-- Subtitle text -->
 <h1>Contact:</h1>
 <!-- List -->

 Email: etittel at yahoo dot com
 Address: 2443 Arbor Drive, Round Rock, TX 78681-2160
 Phone: 512-252-7497 (No solicitors, please)
 List of publications available in: <a href=”docs/v_et.doc”
 target=”_blank”>MS Word
 Resume available in:
 MS Word

</div>
</body>
</html>

That’s a huge amount of HTML to pore over at the very beginning of this
book. Please take our word for it, though: If you read enough of this book’s
contents, all of it makes perfect sense!

 If you check out our Web site for this book (www.dummieshtml.com), you
find it’s broken down chapter by chapter. If you grab the downloads for
Chapter 1, you find the source code for the page shown in Listing 1-1, named
aboutme.html. You also want to grab two image files — background_
page.gif and header.gif. The HTML files for various other screen shots
in this chapter depicting Web pages we’ve built are also part of the Chapter 1
downloads (there’s no file named 01fig01.html in this collection — that’s
Uncle Sam’s page! — but you will find pages named 01fig04.html and
01fig05.html).

06_9780470916599-ch01.indd 3006_9780470916599-ch01.indd 30 11/30/10 12:23 AM11/30/10 12:23 AM

Chapter 2

Creating and Viewing a Web Page
In This Chapter
▶ Planning your Web page

▶ Writing some HTML

▶ Saving your page

▶ Viewing your page offline and online

Creating your very own Web page may seem daunting, but it’s definitely
fun, and experience tells us that the best way to get started is to jump

right in with both feet. You might splash around a bit at first, but you can
keep your head above water without too much thrashing.

This chapter walks you through the basic steps to create a Web page. We
don’t stop and explain every bit of markup you use — we save that for other
chapters. Instead, we want to make you comfortable working with markup
and content to create and view a suitably simple Web page.

Before You Get Started
Creating HTML documents differs from creating word processor documents
using an application like Microsoft Word because you end up having to use
two applications:

 ✓ You create the Web pages in your text or HTML editor.

 ✓ You view the results in your Web browser.

Even though many HTML editors, such as Dreamweaver and HTML-Kit,
provide a browser preview, it’s still important to preview your Web pages
inside actual Web browsers (such as Internet Explorer, Firefox, or Safari) so
you can see them as your end users do. Editing inside one application and
then switching to another to look at your work might feel odd, but you’ll
be switching from text or HTML editor to browser and back like a pro in
(almost) no time.

07_9780470916599-ch02.indd 3107_9780470916599-ch02.indd 31 11/30/10 12:23 AM11/30/10 12:23 AM

32 Part I: Getting to Know (X)HTML and CSS

 Because not all Web browsers are created equal (or identical), your Web
pages may look different depending on which Web browser you use. Get in
the habit and regular practice of previewing Web pages in multiple browsers
so that you see what your end users see when they open the same page.

To get started on your first Web page, you need two types of software:

 ✓ A text editor, such as Notepad, TextPad, or SimpleText

 We discuss these tools in more detail in Chapter 23, but here’s the
thumbnail sketch. Notepad is a native text editor in Windows. TextPad is
a shareware text editor available from www.textpad.com. SimpleText
is part of the Macintosh operating system.

 ✓ A Web browser

We’re going to recommend that you use a plain text editor for your first Web
page and here’s why:

 ✓ An advanced HTML editor, such as Expression Web or Dreamweaver,
often hides your HTML from you. For your first page, you want to see
your HTML in all of its (limited) glory.

 You can easily view your HTML if you are using Dreamweaver CS5 or
later. Simply click the Code tab and your hidden HTML appears. You
can also set Dreamweaver to permanently view HTML by specifying the
default to Code View in the Preferences file.

 You can make a smooth transition to a more advanced editor after you
become familiar with HTML, XHTML, and CSS markup, syntax, and docu-
ment structure.

 ✓ Word processors decked out with bells and whistles (such as Microsoft
Word, in other words) often insert extra file information behind the
scenes (for example, formatting instructions to display or print files).
You can’t see or change that extra information while you’re editing, but
what’s worse, it interferes with your HTML or XHTML.

Creating a Page from Scratch
Using HTML to create a Web page from scratch takes four basic steps:

 1. Plan your page design.

 2. Combine HTML and text in a text editor to make that design a reality.

07_9780470916599-ch02.indd 3207_9780470916599-ch02.indd 32 11/30/10 12:23 AM11/30/10 12:23 AM

33 Chapter 2: Creating and Viewing a Web Page

 3. Save your page.

 4. View your page in a Web browser.

Break out your text editor and Web browser — and roll up your sleeves.

Step 1: Planning a simple design
We’ve discovered that a few minutes spent planning a general approach to
the page at the outset of work makes the creation process faster and easier.

You don’t have to create a complicated diagram or elaborate graphical dis-
play in this step. Just jot down some ideas for what you want on the page and
how you want it arranged.

 You don’t even have to be at your desk to plan a simple design. Take a note-
pad and pencil outside and design in the sun, or scribble on a napkin while
you’re having lunch. Remember, this is supposed to be fun!

The example in this chapter is our take on the traditional “Hello World” exer-
cise used in just about every existing programming language: The first thing
you learn when tackling a new programming language is how to display Hello
World onscreen. In our example, we create a short letter to the world instead,
so the page is more substantial with more text to work with. Figure 2-1 shows
our basic design for this page.

Title – Hello World

Notes: Teal background
White text

Letter Paragraphs

Sincerely,
Jeff Noble
Ed Tittel

Figure 2-1: Taking a few minutes to sketch your
page design makes writing HTML easier.

07_9780470916599-ch02.indd 3307_9780470916599-ch02.indd 33 11/30/10 12:23 AM11/30/10 12:23 AM

34 Part I: Getting to Know (X)HTML and CSS

The design for the page includes four components:

 ✓ A serviceable title: Hello World

 ✓ A few paragraphs explaining how HTML can help you communicate with
the whole world

 ✓ A closing: Sincerely

 ✓ A signature

 Jot down some notes about the color scheme you want to use on the page.
For our example page, we use a teal background and white text with the title
HTML Makes the Web Go Round.

When you know what kind of information you want on the page, you can
move on to Step 2 — writing the markup.

Step 2: Writing some HTML
You have a couple of different options when you’re ready to create your
HTML. In the end, you’ll probably use some combination of these options:

 ✓ If you already have some text that you just want to describe with HTML,
save that text as a plain text file and add HTML markup around it.

 ✓ Start creating markup and add the content while you go.

 Our example in this chapter starts with some text in Word 2007 document
format. We saved the content as a text file, opened the text file in our text
editor, and added markup around the text.

To save a Word 2007 file as a text document, choose File➪Save As. In the
dialog box that appears, choose Text Only (*.txt) from the Save As Type
drop-down list. (In older versions of Word, the file type name may be slightly
different. For example, in Word 2003, you’ll choose Plain Text (*.txt) from the
Save As Type drop-down list. Just make certain you choose the text or *.txt
option in older versions of Word.)

Figure 2-2 shows how our draft letter appears in Microsoft Word before we
convert it to text for our page.

Listing 2-1 shows you what you must add to the prose from Microsoft Word
to turn it into a fully functional HTML file.

07_9780470916599-ch02.indd 3407_9780470916599-ch02.indd 34 11/30/10 12:23 AM11/30/10 12:23 AM

35 Chapter 2: Creating and Viewing a Web Page

Figure 2-2: The letter that is the text for our page, in word
processing form.

Listing 2-1: The Complete HTML Page for the “Hello World!” Letter
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

 <head>
 <title>HTML Makes the Web Go Round</title>
 <meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” />
 </head>

 <body style=”color: white;
 background-color: teal;
 font-size: 12pt;
 font-family: sans-serif;”>

 <h1>Hello World!</h1>

 <p>We sincerely believe that basic HTML knowledge is essential to
 designing, building, and maintaining readable and workable Web
 pages. Our goal in this book is to explain what HTML, XHTML, and
 CSS are and how they work, and then to show you exactly how to
 use them to best advantage.
 </p>

(continued)

07_9780470916599-ch02.indd 3507_9780470916599-ch02.indd 35 11/30/10 12:23 AM11/30/10 12:23 AM

36 Part I: Getting to Know (X)HTML and CSS

Listing 2-1 (continued)
 <p>Along the way, we will examine the principles and best practices
 that govern Web page design and construction, and help you
 understand how to make your content accessible to the broadest
 possible audience.
 </p>

 <p>By the time you work your way through this book’s contents, you
 should feel comfortable with creating and managing your own Web
 site. You should also understand what it takes to identify your
 audience, communicate with that audience, and keep your content
 fresh and interesting to keep them coming back for more.
 </p>

 <p>Sincerely,</p>
 <p>Jeff Noble and Ed Tittel, your humble authors</p>

 </body>
</html>

The HTML markup includes a collection of markup elements and attributes
that describe the letter’s contents:

 ✓ The <html> element defines the document as an HTML document.

 ✓ The <head> element creates a header section for the document.

 ✓ The <title> element defines a document title that is displayed in the
browser’s title bar.

 The <title> element is inside the <head> element.

 ✓ The <body> element holds the text that appears in the browser window.

 The markup that follows the style=” “ attribute inside the <body>
element is CSS, otherwise known as the Cascading Style Sheet markup
language. CSS says we want white text on a teal background, where the
text is larger than usual, and in a sans-serif font. (You find out all about
styles and attributes in Chapters 9 and 10.)

 ✓ The <h1> element marks the Hello World text as a first-level heading.

 ✓ The <p> elements identify each paragraph of the document.

 Don’t worry about the ins and outs of how the HTML elements work. They
are covered in detail in Chapters 4 and 5. Also, a Web page includes graphics,
scripts, and other elements that we deliberately avoid in this contrived and
simple example to keep things, well, simple! We cover all these things in pro-
fuse detail later in the book, though.

07_9780470916599-ch02.indd 3607_9780470916599-ch02.indd 36 11/30/10 12:23 AM11/30/10 12:23 AM

37 Chapter 2: Creating and Viewing a Web Page

After you create an HTML page (or the first chunk of it that you want to
review), you must save it before you can see your work in a browser.

Step 3: Saving your page
You use a text editor to create HTML documents and a Web browser to view
them. Before you can let your browser loose on your HTML page, you must
save that page. When you’re just building a page, you should save a copy of it
to your local hard drive and view it locally with your browser.

Choosing a location and name for your file
When you save your file to your hard drive, keep the following in mind:

 ✓ You need to be able to find it again.

 ✓ The name should make sense to you so you can identify file contents
without actually opening the file.

 ✓ The name should work well in a Web browser.

 Create a folder on your hard drive especially for your Web pages. Call it
Web Pages or HTML (or any other name that makes sense to you), and
be sure to put it somewhere easy to find.

 Don’t use spaces in page names. Some operating systems — most nota-
bly Unix and Linux (the most popular Web-hosting operating systems
around) — don’t tolerate spaces in filenames; use an underscore (_) or
hyphen (-) instead. Avoiding other punctuation characters in filenames
and generally keeping them as short as you can is also a good idea.

In our example, we saved our file in a folder called Web-Pages and named it
(drum roll, please) html-letter.html, as shown in Figure 2-3.

Figure 2-3: Use a handy location and a logical filename for HTML pages.

07_9780470916599-ch02.indd 3707_9780470916599-ch02.indd 37 11/30/10 12:23 AM11/30/10 12:23 AM

38 Part I: Getting to Know (X)HTML and CSS

.htm or .html
You can actually choose from one of two suffixes for your pages: .html or
.htm. (Our example filename, html-letter.html, uses the .html suffix.)

 The shorter .htm is a relic from the “8.3” DOS days when filenames could
only include eight characters plus a three-character suffix that described the
file’s type. Today, operating systems can support long filenames and suffixes
that are longer than three letters, so we suggest you stick with .html.

Web servers and Web browsers handle both .htm and .html equally well.

 Stick with one filename option. .html and .htm files are treated the same by
browsers and servers, but they’re actually different suffixes, so they create
different filenames. (The name html-letter.html is different from html-
letter.htm.) This difference matters a lot when you create hyperlinks (cov-
ered in Chapter 6).

Step 4: Viewing your page
After you save a copy of your Web page, you’re ready to view it in a Web
browser. Follow these steps to view your Web page in Internet Explorer.
(Steps may be different if you’re using a different browser.)

 1. If you haven’t opened your browser, do that now.

 2. Choose File➪Open.

 3. In the Open dialog box that appears, click the Browse button.

 4. In the new dialog that appears, navigate your file system until you find
your HTML file, and then select it so it appears in the File Name area.

 Figure 2-4 shows a highlighted HTML file ready to be opened.

 5. Click the Open button.

 You are brought to the Open dialog box. (Note: If you’re already con-
nected to the Internet, some versions of Internet Explorer warn you that
for security reasons they must open a new browser window for your
local file; this is perfectly okay.)

 6. Click OK.

 The page appears in your Web browser in all its glory, as shown in
Figure 2-5.

 You aren’t actually viewing this file on the Web just yet; you’re just viewing
a copy of it saved on your local hard drive. So don’t give anyone the URL for
this file — but do feel free to edit the HTML source file and view any changes
you make.

07_9780470916599-ch02.indd 3807_9780470916599-ch02.indd 38 11/30/10 12:23 AM11/30/10 12:23 AM

39 Chapter 2: Creating and Viewing a Web Page

Figure 2-4: Use Internet Explorer to navigate to your Web pages.

 An even faster way to view a Web page locally in a browser is to drag and
drop the HTML file into an open browser window. You can do this from
Windows Explorer or any program that gives you file-level access.

Figure 2-5: Viewing a local file in your Web browser.

07_9780470916599-ch02.indd 3907_9780470916599-ch02.indd 39 11/30/10 12:23 AM11/30/10 12:23 AM

40 Part I: Getting to Know (X)HTML and CSS

Editing an Existing Web Page
Chances are you’ll want to change one thing (at least) about your page after
you view it in a Web browser for the first time. After all, you can’t really see
how the page looks when you’re creating the markup. You might decide that
a first-level heading is too big or that you really want purple text on a green
background (horrible idea, actually).

To make changes to the Web page you’ve created in a text editor and are view-
ing in a browser, repeat these steps until you’re happy with its final appearance:

 1. Leave the browser window with the HTML page display open, and go
back to the text editor.

 2. If the HTML page isn’t open in the text editor, open it.

 You should have the same file open in both the browser and the text
editor, as shown in Figure 2-6.

 3. Make your changes to the HTML and its content in the text editor.

 4. Save the changes.

 This is an important step. If you don’t save your changes, you won’t see
them in the Web browser.

 5. Move back to the Web browser and click the Refresh button.

Figure 2-6: Viewing an HTML file in your text editor and Web browser at the same time.

07_9780470916599-ch02.indd 4007_9780470916599-ch02.indd 40 11/30/10 12:23 AM11/30/10 12:23 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

41 Chapter 2: Creating and Viewing a Web Page

 If you keep an HTML file open in both a text editor and a browser while you
work, checking changes is a breeze. You can quickly save a change in the
editor, flip to the browser and refresh, flip back to the editor to make more
changes, save, then flip back to the browser and refresh again, and so on.

In our example letter, we decided — after our initial draft of the HTML page —
that we should add a date to the letter. Figure 2-7 shows the change we made
to the HTML to add the date, and the resulting display in the Web browser.

 This approach to editing an HTML page applies only to pages saved on
your local hard drive. If you want to edit a page that you’ve stored on a Web
server, you have to save a copy of the page to your hard drive, edit it, verify
your changes, and then upload the file again to the server, as discussed in
the following section.

Figure 2-7: A change in the HTML displays in a browser after a quick save and refresh.

Posting Your Page Online
After you’re happy with your Web page, it’s time to put it online. Chapter 3
includes a detailed discussion of what you need to do to put your page
online, but to sum it up in a few quick steps:

07_9780470916599-ch02.indd 4107_9780470916599-ch02.indd 41 11/30/10 12:23 AM11/30/10 12:23 AM

42 Part I: Getting to Know (X)HTML and CSS

 1. Find a Web hosting provider to proffer your Web pages.

 Your Web host might be a company Web server or a server that you pay
an Internet service provider (ISP) to use. If you don’t have a host yet,
double-check with your Internet ISP to find out whether you get Web-
server access along with your service package. Regardless of where you
find space, get details from the provider on where to move your site’s
files and what URL to use.

 2. Use an FTP client or a Web browser to make a connection to your
Web server.

 Use the username and password, as specified in the information from
your hosting provider, to transfer files to your Web server.

 3. Copy the HTML file from your hard drive to the Web server.

 4. Use your Web browser to view the file via the Internet.

For example, to host our letter online at www.dummieshtml.com/examples/
ch02, we used Internet Explorer to access the site and provided the appropri-
ate name and password, which we got from our ISP. A collection of folders and
files appeared.

We copied the file to the server with a simple drag-and-drop operation from
Windows Explorer to Internet Explorer.

The URL for this page is http://www.dummieshtml.com/examples/
ch02/html-letter.html, and the page is now served from the Web
browser instead of from a local file system, as shown in Figure 2-8.

Chapter 3 has details on how to serve your Web pages to the world.

Figure 2-8: A file on a Web server is available to anyone with an
Internet connection.

07_9780470916599-ch02.indd 4207_9780470916599-ch02.indd 42 11/30/10 12:23 AM11/30/10 12:23 AM

Chapter 3

Proper Planning Prevents
Poor Page Performance

In This Chapter
▶ Planning your Web page

▶ Defining your Web site hierarchy

▶ Creating user-friendly navigation

▶ Hosting your site

▶ Uploading and editing your Web site

The overall design of a site defines its user interface (UI). When you design
a good UI, you provide tools to move through your site with minimum

fuss. This chapter outlines standard Web site design principles for (X)HTML
and CSS. These principles ensure a usable and effective UI.

The UI is the mechanism that gives users access to information on your site.
Each UI is unique but made from the same elements (text, graphics, and
media files) and held together with (X)HTML.

 Visitors probably won’t return to your site if

 ✓ It’s hard to navigate.

 ✓ It’s cluttered with flashing text and clashing colors.

 ✓ It doesn’t help people find what they’re looking for.

 You’ve created a solid UI if

 ✓ Your site’s navigation is intuitive.

 ✓ Images and media accent your design without overpowering it.

 ✓ You do all you can to help people find the information they want.

This chapter walks you through simple steps to design a Web site and your
basic Web page. (Other chapters explain every nuance of the markup.)

08_9780470916599-ch03.indd 4308_9780470916599-ch03.indd 43 11/30/10 12:23 AM11/30/10 12:23 AM

44 Part I: Getting to Know (X)HTML and CSS

Planning Your Site
One important first step in creating an effective site UI has nothing to do with
markup, but everything to do with planning. Before your site grows too large
(or before you build your site if you haven’t yet started), scope out your
site’s exact purpose and goals. When you know your site’s scope and goals,
you can create a better interface to embody them.

Before designing your site, ask yourself these questions:

 ✓ Why are you creating this site?

 ✓ What do you want to convey to users?

 ✓ Who is your target audience? For example:

 • What’s the average age of your users?

 • How well does your audience work with the Internet?

 ✓ How many pages do you need in your site?

 ✓ What kind of hierarchy will you use to organize your pages? For example:

 • Will users go through your site linearly?

 • Will users jump from topic to topic?

After you answer these questions, you can better understand your site’s
goals and needs. For example, an online store might have these goals:

 ✓ Let visitors browse an online catalog and put items in a shopping cart.

 ✓ Provide visitors a way to purchase the items in their cart.

 ✓ Help users make smart purchasing decisions.

 ✓ Ease merchandise returns and exchanges.

 ✓ Solicit feedback from users about products they want to see in the cata-
log or ways to make the site better.

 ✓ Enable users to comment on and rate products.

Stating clear goals helps you get a better sense of what you must do on your
Web site to fulfill these goals. To do the things an online store does, for exam-
ple, your site is going to need the following:

 ✓ An online catalog, complete with shopping cart

 ✓ Buying guides or other information that can help users make better pur-
chasing decisions

08_9780470916599-ch03.indd 4408_9780470916599-ch03.indd 44 11/30/10 12:24 AM11/30/10 12:24 AM

45 Chapter 3: Proper Planning Prevents Poor Page Performance

 ✓ Help and feedback sections, perhaps with message forums to let users
and experts interact

 ✓ A set of tools to expedite returns and exchanges

When you establish goals for your site, you can identify those elements best
suited for inclusion, such as

 ✓ A navigation system, such as a site map, navigation menu, or bread-
crumbs to identify major areas of the site, to help users

 • Quickly identify what part of the site they’re in

 • Move from one part of the site to others without getting lost

 ✓ A set of standard design elements, such as buttons, page-title styles, and
color specifications, to keep users oriented while they move from page
to page on the same site

 ✓ A standard display for catalog items, including product-related infor-
mation, such as product images and descriptions, prices, and availabil-
ity data

 ✓ Well-designed forms to help users find products in the catalog, put items
in their shopping carts and purchase them, request a refund or return
an item, and submit comments to the site

 ✓ Pages that explain purchasing options, product returns, and other help-
ful information but are still easy to read and to navigate

 Your site’s goals should dictate your site’s

 ✓ UI elements

 When you add to an existing site, identify UI elements that

 • Meet the goals of the new section of the site

 • Complement the overall site UI design

 ✓ Design

 ✓ Organization

Design matters
This chapter recommends good design principles, but it’s up to you to
choose color schemes and the overall look and feel for your site. What looks
great to one person may be ugly to someone else.

08_9780470916599-ch03.indd 4508_9780470916599-ch03.indd 45 11/30/10 12:24 AM11/30/10 12:24 AM

46 Part I: Getting to Know (X)HTML and CSS

A site built for a business, which provides a first impression for potential cus-
tomers or clients, should reflect your business style. If you run an architec-
ture firm, for example, strong lines and a clean look may be the best way to
present the company image. If you run a flower shop, your site may be a bit
more organic (okay, flowery) and decorated to remind visitors what to expect
when they walk into your store.

If you’re new to Web design or graphics and you need a site that stamps your
business presence on the Web, consider getting help from a Web design pro-
fessional. Use the images, layouts, and navigational aids he creates to build
and manage the site yourself. Once established, a distinctive and consistent
look and feel for a site is easy to maintain.

Regardless of who designs your site, take the time to get critiques from
peers, friends, family members, and anyone else who is willing to be honest
about how good (and even how bad) it looks. A negative-but-constructive cri-
tique from someone who knows and respects you beats a “Gee, that’s ugly”
from someone whose business you are trying to acquire. Plus, it’s always less
stressful to get beat up in private than to take a licking in public!

Mapping your site
It’s easier to get where you’re going if you know how to get there. Mapping
your Web site can be a vital step in planning — and later running — that site.
This process involves two creative phases:

 ✓ Creating a visual guide on paper or electronically that you can use to
guide the development of your site

 ✓ Creating a visual guide on your Web site to help visitors find their
way around after it’s up and running

Both have a place in good UI design, so each gets its own section.

Using a map for site development
A site map is a supplemental navigational tool to give users a different way to
find what they seek. A site map lays out all contents of your site so visitors
can see all their options at once.

When you create and use a site map during the development of a Web site —
even a Web site that includes only a few pages — you can identify

08_9780470916599-ch03.indd 4608_9780470916599-ch03.indd 46 11/30/10 12:24 AM11/30/10 12:24 AM

47 Chapter 3: Proper Planning Prevents Poor Page Performance

 ✓ Pages that you need to build

 ✓ How pages relate to each other

 ✓ Navigation elements that you need

 As a bonus, a site map provides you with a checklist of pages.

For example, Figure 3-1 shows part of the site map for the Internal Revenue
Service (IRS) Web site (www.irs.gov/sitemap).

Navigation bar

Main section

Subsections

Figure 3-1: The site map for the Internal Revenue Service Web site.

This map shows that the IRS site includes numerous main sections. Each main
sections displays anywhere from 2 to 26 subsections. Each subsection links to
a page or a document pertinent to that subsection’s topics and coverage.

08_9780470916599-ch03.indd 4708_9780470916599-ch03.indd 47 11/30/10 12:24 AM11/30/10 12:24 AM

48 Part I: Getting to Know (X)HTML and CSS

 Don’t create under construction sections that don’t include anything except a
hint that something might appear someday. Users are disappointed if your
site hints at information it doesn’t really offer. Instead, consider using a small
section of your home page to highlight “coming soon” items so visitors know
new information will be available later, but don’t integrate anything that’s
inaccessible into your navigation bar or buttons.

Use a map as a visual user guide
Give visitors as many options as you (realistically) can to help them navigate
around your site because people use many approaches to find stuff:

 ✓ Some people like to be led.

 ✓ Some people like to rummage around.

 ✓ Some people like to see every possible option and choose one.

 Site maps grow as your site grows. If your site is large and complex, your map
may take several screens to display. When you surf the Web, massive sites,
such as www.microsoft.com, www.hp.com, and www.amazon.com, don’t
offer site maps because maps of their sites would be huge and unwieldy. But
smaller Web sites (such as www.symantec.com) use site maps effectively.

 You need to decide whether a site map is a good navigation tool for your site.
Here are some points to ponder as you make this decision:

If you build your site one piece at a time . . .
If you plan to build your Web site a page or
section at a time, you can create a map of the
final site and then decide which pages make
the most sense to build first. When you have a
good working idea of how your site will grow,
you can plan for further expansion during each
stage. For example, suppose you create a site
map for your company’s Web site and the site
needs an FAQ section. If the FAQ section isn’t
quite finished when the site launches, disaster
need not ensue — provided someone planned
ahead to accommodate new sections and built
that capability into the site. Just leave out links

to (and mentions of) the FAQ section when you
launch the site.

When the FAQ section is ready:

 ✓ Add the section to the site

 ✓ Add a link to the main navigation elements

If you know resources are coming, you can
create a navigation scheme that accommo-
dates the FAQ section when it’s ready to go.
Without a site map and a complete plan for the
site, however, integrating new sections can
require lots of time and effort.

08_9780470916599-ch03.indd 4808_9780470916599-ch03.indd 48 11/30/10 12:24 AM11/30/10 12:24 AM

49 Chapter 3: Proper Planning Prevents Poor Page Performance

 ✓ A site map may be unnecessary if you have only a few pages.

 ✓ A site map may be the best choice if

 • Your site has several sections.

 • You can’t think of other easy ways to access your content.

Many experts believe that site maps are always good. They’re especially
good for visitors who surf the Web using assistive devices (screen read-
ers, Braille printers, and so forth). Site maps are also handy for navigating
a site that lacks footer links or that uses graphics instead of HTML markup
as a navigation technique. Site maps also help users who’ve turned their
browser’s JavaScript functions off (sites that use rollover images for naviga-
tion become unusable in that case). As an added bonus, site maps also help
search engines map all the pages on a site, too.

Building solid navigation
The navigation you use on a site can make it or break it. If visitors can’t find
what they’re looking for on your site, they’ll probably leave and never come
back. The type of navigation you use on your site depends on:

 ✓ How many pages your site has: If there are only a few pages, navigation
might use a simple list of links on the home page to help users jump to
each of the other pages.

 ✓ How you organize your pages: If your site has many pages organized
into different sections, your home page might link only to section heads
(not to each individual page).

The www.dummies.com site houses a large collection of pages organized as
a variety of sections; therefore, it is impractical to link to all the pages in any
navigation scheme. Also, the site includes articles, cheat sheets, and videos
on a wide variety of topics, as well as book information. This site could be
organized into books, articles, cheat sheets, and videos, but visitors are more
likely to look for information on specific subjects, so the organization is topi-
cal. The home page (see Figure 3-2) displays these topic areas proudly.

If you click a topic area, you can still access all topic areas by clicking the See
All Topics button at the top left (shown in Figure 3-3). You needn’t return to
the home page just to choose a new topic; you can open the pop-up menu
shown any time you like.

08_9780470916599-ch03.indd 4908_9780470916599-ch03.indd 49 11/30/10 12:24 AM11/30/10 12:24 AM

50 Part I: Getting to Know (X)HTML and CSS

Topics link to information (books, videos, articles, and cheatsheets)

Figure 3-2: The Dummies.com site is organized by topic.

Figure 3-3: The main topic areas
for this site remain accessible
via a See All Topics button.

08_9780470916599-ch03.indd 5008_9780470916599-ch03.indd 50 11/30/10 12:24 AM11/30/10 12:24 AM

51 Chapter 3: Proper Planning Prevents Poor Page Performance

Figure 3-4 shows the Games Topics navigation area (at left, echoing the home
page layout) for its subtopics. The links differ, but the general navigation
scheme is consistent throughout the site. A Cheat Sheets area appears below
the local Topics, and Most Popular articles appear in the center column
based on user access. That shows visitors what to expect as they move
around the site.

Figure 3-4: The Games area includes subtopics, cheat sheets, and
popular articles.

The topmost navigation area on each page includes a regular collection of
links that appear on every page of the site to help visitors quickly access
important areas from anywhere: a search box plus Store (shopping) and
Help buttons. At the bottom of every page is a set of links to information on
the Dummies.com Web site: Subscribe or Unsubscribe to E-Mail Newsletters,
My Account, Store (shopping), Privacy Policy, Contact Us, and so forth (see
Figure 3-5). Like a shopping cart and help links, links such as these (and a
site copyright statement) must be on every page, but need not be displayed
prominently. Including the links in a consistent site footer keeps them around
without obscuring key content for given topics or subtopics.

08_9780470916599-ch03.indd 5108_9780470916599-ch03.indd 51 11/30/10 12:24 AM11/30/10 12:24 AM

52 Part I: Getting to Know (X)HTML and CSS

Figure 3-5: The bottom of the page provides further navigation aids to visitors.

 If you build a map to aid site development, it can help you design your site
navigation, too. Consider each page on the map in turn; list the links that
each page must include. Normally, a pattern emerges to help you identify
main navigation elements (such as links to main topic areas and copyright
notice) and sub-navigation elements (links to subtopics on the topic pages)
for your site.

After you know what you need, you can design a visual scheme for your UI.
Do you want to use buttons across the top, buttons down the side, or both?
Do you need a footer that links to copyright or privacy information? If you
have sections within sections within sections, how can you best help people
navigate through them? Answering questions like these is the route to a solid
navigation system that helps users find their way around your site — letting
them focus on what they came for, not on how to get there.

 Whatever navigation scheme you devise, always give your visitors a way
back to your home page from anywhere on the site. Your site’s home page
is the gateway to the rest of the site. If visitors get lost or want to start over,
make sure they can get back to Square One without trouble.

 After you design a site navigation scheme and put together a few pages, ask
someone who isn’t familiar with your site to use it. To help that person along,
provide a list of three or four tasks you’d like to see completed — pages to
visit or a form to fill out, perhaps. If your test visitor gets lost or has lots of
questions about navigation, rework your scheme. A reviewer can also sug-
gest ways to make navigation features clearer and easier to use. You might
know your site and its content too well to see navigation issues that a first-
time user will discover immediately. Ignorance may not always be bliss, but it
sure can be informative!

08_9780470916599-ch03.indd 5208_9780470916599-ch03.indd 52 11/30/10 12:24 AM11/30/10 12:24 AM

53 Chapter 3: Proper Planning Prevents Poor Page Performance

Planning outside links
The Web wouldn’t be the Web without hyperlinks. After all, hyperlinks con-
nect your site to the rest of the Web and turn a collection of pages into a
cohesive site. But overusing or misusing links detracts from a site — and may
even cost you some business.

Choose off-site links wisely
Internal linking is a walk in the park compared to external linking; after all,
when you link to pages on your own site, all such pages are under your con-
trol. You know what’s on them today, whether they will exist tomorrow, and
what will be on them. When you link to resources on someone else’s site,
however, all bets are off:

 ✓ You don’t maintain the pages.

 ✓ You can’t modify the page’s content.

 ✓ You certainly don’t know whether the pages will disappear.

 Neither will your visitors — until they slam into a 404 File or Directory
Not Found message (the usual sign of a broken link that now goes
nowhere). The text in 404 messages varies depending on the server that
hosts the Web site with the broken link.

 Links to other sites are more useful when they’re stable and have less chance
of breaking. We recommend these guidelines:

 ✓ Link to a section of a site, not to a specific page. Pages come and go,
but general organization lasts longer.

 ✓ Link to corporate Web sites. Corporate sites have more staying power
than sites maintained by an individual.

 ✓ Don’t link directly to media files, such as PDFs and images. If you want
to link to resources on another Web site, link to the page that links to
those resources instead of the actual media files. Sites often update
resources or give them new names. The page that links to the resource,
however, is almost always certain to be updated to reflect new names.
Therefore the resource page is a safer linking bet.

 Linking to other sites implies your support or endorsement of those sites.
When visitors follow links from your site to other sites, they assume you
approve of that new site. That implied approval makes a couple of guidelines
necessary:

08_9780470916599-ch03.indd 5308_9780470916599-ch03.indd 53 11/30/10 12:24 AM11/30/10 12:24 AM

54 Part I: Getting to Know (X)HTML and CSS

 ✓ If you don’t want to be associated with content on another site, don’t
link to that site. The only way to find out whether you approve of a
seemingly relevant site is to visit it and check it out before you link.

 ✓ Periodically review your links. Be sure that

 • The sites’ owners are the same.

 • The content remains appropriate.

 When domain names expire, new owners may take them over and post
new content that’s

 • Completely irrelevant

 • Damaging to your image (by showing pornography, for example)

Craft useful link text
The text you associate with links is as important as the links you use. That
text tells users about where a link takes them so they can decide to go along
for the ride. Thus, Visit Dummies.com to read more about this book is more
helpful than Read more about this book.

The first example tells visitors that they’re going to leave the current site to
visit Dummies.com and read more about a book there. The second example
just tells visitors they’re going to read more about the book — they may be
surprised to find themselves flung from one site onto another.

Generally, when you create link text, let users know the following:

 ✓ Whether they’re leaving your site

 ✓ What kind of information the page they’re linking to contains

 ✓ How the linked site relates to the current content or page

The goal of your link text should be to inform users and build their trust. If
your link text doesn’t give them solid clues about what to expect from your
links, they just won’t trust your links or follow them.

 Don’t use Click here to label a link. If your link text is well-crafted, you don’t
need those extra words to prompt the user to click. Link text must speak for
itself: Let it invite a click; it needn’t demand one.

Hosting Your Web Site
The first (and most important) step in putting your pages online is finding
someplace on the Web to display them — a host. Generally, you have two
choices when it comes to hosting your pages:

08_9780470916599-ch03.indd 5408_9780470916599-ch03.indd 54 11/30/10 12:24 AM11/30/10 12:24 AM

55 Chapter 3: Proper Planning Prevents Poor Page Performance

 ✓ Host them yourself.

 ✓ Pay someone else to host them.

 Host is used in the Web industry to mean a Web server set up to hold Web
pages (and related files) that can be accessed by the rest of the world. This
chapter (and the industry) uses host in the following ways:

 ✓ Host as a noun: The physical machine that holds the Web pages

 ✓ Host as a verb: The act of serving up the Web pages

You must decide whether to host your own pages or pay someone else to
host them. This chapter describes both approaches and gives you the skinny
on each one so you can decide which option is best for you.

 You aren’t stuck with a hosting decision for life. If you find hosting your own
pages overwhelming, you can move your files to a service provider (or vice
versa, if the provider’s service is underwhelming). To decide which host-
ing option is best for you, consider your needs for the next year, but plan to
review your needs in no more than six months.

Hosting your own Web site
This section illustrates an average-size site (up to about 100 pages) that
doesn’t include more than a couple of multimedia files and doesn’t have any
special security or electronic commerce (e-commerce) applications.

 If you need to run a complex site, such as a large corporate site or an online
store, you need more expertise, equipment, and software than this section
outlines. The following resources can help:

 ✓ Books such as E-Commerce For Dummies and Webmastering For
Dummies, 2nd Edition, can get you started setting up e-commerce and
other complex sites.

 ✓ Consult a Web professional who has practical experience building and
maintaining complex Web sites.

You can set up your own Web server and host your Web pages. To do this,
you need:

 ✓ A computer designated as your Web server: Web servers are often
dedicated to this task, leaving word processing and other activities to a
different computer.

 ✓ Web server software: Common Web server software packages include
Apache and Microsoft Internet Information Server (IIS), called Internet
Information Services in modern Windows versions.

08_9780470916599-ch03.indd 5508_9780470916599-ch03.indd 55 11/30/10 12:24 AM11/30/10 12:24 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

56 Part I: Getting to Know (X)HTML and CSS

 In the Web world, Web server refers to both

 • A dedicated computer (the actual hardware)

 • Web server software

 You can’t use one without the other.

 ✓ A dedicated, high-speed Internet connection: A Web server isn’t useful
or reliable if it connects to the Internet only when you fire up a dialup
link. It can also be painful to use if the Internet link to which it’s con-
nected is slow (these days, slow is T-1 speeds of 1.544 Mbps or less).

If hosting a Web site yourself sounds complicated and expensive, you’re
right. Not only do you have to pay for the equipment and an Internet connec-
tion, but you also have to know how to set up and administer a Web server
and keep all its pieces working 24/7. Defending against hackers and protect-
ing either your data or your customers’ information (credit card numbers,
names, addresses, and so on) can also be problematic for the Web hosting
novice. On top of these problems, you also have to worry about how to
keep your Web hosting system running during power outages or when your
Internet service provider goes down. All these Web hosting problems add up
to a pile of frustration and headaches that most people would rather avoid.
Whenever possible, consider a hosting provider first.

Using a hosting provider
A hosting provider manages all the technical aspects of Web hosting, from
hardware to software to Internet connections. You just manage your Web
pages. Back when the Web was young, hosting provider options were
scarce, and what was available was expensive. Times have changed — and
needs have grown — so reasonably priced hosting providers are abundant
nowadays.

If someone else hosts your pages, two choices cover all costs:

 ✓ Nothing: Some services actually host your pages for free. That’s it; you
pay zip, zero, nada to put pages on the Web. What’s the catch? You have
to “pay” in other ways, usually by letting advertising onto your site.

 ✓ Something: Most Web hosting services, however, do charge a fee, from
a few dollars to triple digits per month. The trick to making the most of
your budget is to find the right service to meet your needs.

 Read more about inexpensive Web hosting options at www.
thehostingchart.com.

08_9780470916599-ch03.indd 5608_9780470916599-ch03.indd 56 11/30/10 12:24 AM11/30/10 12:24 AM

57 Chapter 3: Proper Planning Prevents Poor Page Performance

Obtaining your own domain
A domain name is a high-level address for a Web site. Examples of domain
names are microsoft.com, apple.com, w3c.org, and dummies.com.

You might want your own domain name (and your own domain) to reflect
your business name (or even your personality). If you don’t get a domain
name of your own, your pages will be part of someone else’s domain name —
usually your hosting provider’s. For example, a hypothetical personal Web
site hosted without a domain name at io.com could use this URL

http://www.io.com/~edtittel

With the domain name edtittel.com, the same Web site becomes

http://www.edtittel.com

One domain name is easier to remember than the other. Is that a good
enough reason to have your own domain? Maybe . . . maybe not. Businesses
or other entities that want to maintain a constant Web presence should prob-
ably invest in a domain name; hobbyists or enthusiasts don’t need one.

 Any good hosting provider can give detailed instructions on how to register
a domain name in the provider’s system or attach your domain name to a
Web site on its computers. If you’re changing from one hosting provider to
another, the new provider should help you transfer your domain. Most pro-
viders either give you this information up front or offer online help to walk
you through the process. If it isn’t immediately clear how to set up a domain,
ask for help. If you don’t get it, change providers.

Moving files to your Web server
After you secure a Web host or decide to put up your own Web server, you
need a way to move the Web pages you create on your local computer to that
server. This isn’t a one-time activity, either. While you maintain your Web
site, you constantly move files you’ve built on your local computer to the
Web server to refresh your site’s contents.

How you move files to your Web server and manage the files when they’re on
the server depends entirely on how your Web server is set up. Normally, you
have a couple of transfer options:

 ✓ Using File Transfer Protocol (FTP)

 ✓ Using a Web interface provided by your hosting provider

08_9780470916599-ch03.indd 5708_9780470916599-ch03.indd 57 11/30/10 12:24 AM11/30/10 12:24 AM

58 Part I: Getting to Know (X)HTML and CSS

Using FTP to transfer files
Of these two options, FTP is nearly always a possibility. FTP is a standard
way to transfer files on the Internet, and any hosting provider should offer
FTP access to your Web server. When you set up your site with a provider, it
usually gives you written documentation (either on paper or on the Web) to
tell you how to transfer files to your Web server. Included in that information
will be an FTP URL that usually takes the form ftp://ftp.domain.com.

UI design resources
We recommend these Web sites and books on
site and interface design if you want to create
great UIs:

 ✓ For a crash course on design basics, read
the “Basics” and “Design Process” articles
at www.webdesignfromscratch.
com.

 ✓ Jakob Nielsen is committed to creating
accessible Web content, which means
that all content is available to all visitors,
including those with various handicaps that
might prevent them from following visual or
audible cues for navigation. His Web site,
http://useit.com, is chock-full of
resources and articles on creating acces-
sible sites.

 ✓ One of this book’s authors, Jeff Noble, is
the Associate Editor for the UI Trends Web
site (http://uitrends.com), which
covers interesting user interface designs
and trends as they relate to Web site and
Web application designs.

 ✓ Hey, negative examples are useful too. Web
Pages That Suck guides you to good design
by evaluating bad design. Be sure your site
doesn’t look like any of those featured at
www.webpagesthatsuck.com.

 ✓ Web Design For Dummies, 2nd Edition, by
Lisa Lopuck, is another step in the direction
of a sophisticated Web site with a knockout
look.

 ✓ Web Usability For Dummies, by Richard
Mander and Bud Smith, can help you fine-
tune your site to make it amazingly easy to
use, which is a great help in keeping your
visitors coming back for more.

 ✓ Web Designer Depot (www.webdesigner
depot.com) is a community site dedi-
cated to all things related to Web site
design — typography, design techniques,
coding (to name a few). This is a great place
to come and find answers to all your design
questions.

 ✓ Smashing Magazine (www.smashing
magazine.com) can help you find
anything you need from inspiration
(photos, examples, showcases) to design
(Photoshop Documents, also commonly
referred to as PSD, fonts) to coding (CSS,
JavaScript, WordPress) to graphics (wall-
papers, backgrounds, icons) and everything
in between.

08_9780470916599-ch03.indd 5808_9780470916599-ch03.indd 58 11/30/10 12:24 AM11/30/10 12:24 AM

59 Chapter 3: Proper Planning Prevents Poor Page Performance

You can use an FTP client, such as SmartFTP (www.smartftp.com), WS_FTP
(www.ipswitch.com/Products/WS_FTP), and the free FileZilla (filezilla-
project.org), to open a connection to the FTP URL. (Macintosh users will
probably prefer Fetch at www.fetchsoftworks.com or Cyberduck at cyber
duck.ch.) Your provider will give you a username and password to use to
access your Web server directory via FTP. Then you can move files to your site
using the client interface. It’s really that easy. If you want to grab a copy of a file
from your Web site and modify it, you can do so in three steps:

 1. Use the FTP client’s interface to download a copy.

 2. Make your modification.

 3. Use the FTP client’s interface to upload the changed file.

 Each FTP client’s interface is different, but they’re all pretty simple. Chapter
23 includes more information on finding a good FTP client; so when you do
find one, spend a few minutes reading its documentation.

You might not need FTP software to move files to your Web server:

 ✓ Many browsers, such as current versions of Internet Explorer and
Firefox, include basic, built-in FTP support. You can upload or download
files, but you may be unable to create or delete directories.

 ✓ Many Web utilities, such as Dreamweaver, also include file-management
capabilities.

Using your hosting provider’s Web site to transfer files
To enhance usability and reduce technical support calls, many Web hosting
providers offer Web pages to help you upload and manage your Web site files
without using a separate FTP utility or even the FTP tools inside (X)HTML
editors. Most of these tools let you manage your site in various ways, such as

 ✓ Uploading and downloading files

 ✓ Creating and deleting directories

 ✓ Moving files around

 ✓ Deleting files

If you work with a hosting provider, find out whether it has a set of Web-
based tools for managing your site.

08_9780470916599-ch03.indd 5908_9780470916599-ch03.indd 59 11/30/10 12:24 AM11/30/10 12:24 AM

60 Part I: Getting to Know (X)HTML and CSS

Keep these thoughts in mind while you decide on a provider:

 ✓ Read the provider’s documentation before you start to transfer your
files. Every provider’s interface is different.

 ✓ Most providers who offer Web interfaces won’t stop you from managing
your site with FTP.

 Use FTP if a provider’s interface is tricky, or if you prefer FTP.

08_9780470916599-ch03.indd 6008_9780470916599-ch03.indd 60 11/30/10 12:24 AM11/30/10 12:24 AM

Part II
Formatting Web

Pages with (X)HTML

09_9780470916599-pp02.indd 6109_9780470916599-pp02.indd 61 11/30/10 12:24 AM11/30/10 12:24 AM

In this part . . .

Here, we describe the markup and document struc-
tures that make Web pages workable and attractive.

We examine HTML document structure (including docu-
ment headers and bodies) and show you how to put the
pieces together correctly. After that, we talk about orga-
nizing text in blocks and lists.

Next, we explain how linking in (X)HTML provides the
glue that ties the entire World Wide Web together. To
help you illustrate your words, we explain adding graph-
ics to your pages, too. Thus, we cover the basic building
blocks for well-constructed, properly proportioned Web
pages — and not by coincidence, either.

The final chapter in Part II deals with deprecated markup —
namely, HTML elements and attributes that are no longer
safe or smart to use. Although these deprecated elements
and attributes work in HTML4, only some of them work in
XHTML, and none of them work in HTML5. That’s why we
want you to know them when you see them, and why we
advise you to avoid them when creating your Web pages.

09_9780470916599-pp02.indd 6209_9780470916599-pp02.indd 62 11/30/10 12:24 AM11/30/10 12:24 AM

Chapter 4

Creating (X)HTML
Document Structure

In This Chapter
▶ Creating a basic (X)HTML document structure

▶ Defining the (X)HTML document header

▶ Creating a full-bodied (X)HTML document

The framework for a simple (X)HTML document consists of a head
and body. The head provides information about the document to the

browser, and the body contains content that appears in the browser window.
The first step in creating any (X)HTML document is to define its framework.

This chapter covers all major elements needed to craft the basic structure
of an (X)HTML document — including its head and body. We also show
you how to tell a browser which version of HTML or XHTML you’re using.
Although version information isn’t necessary for users, browsers use it to
make sure they display document content correctly.

Establishing a Document Structure
Although no two (X)HTML pages are alike — each employs a unique com-
bination of content and elements to define a page — every properly con-
structed (X)HTML page follows the same basic document structure:

 ✓ A statement that identifies the document as an (X)HTML document

 ✓ A document header

 ✓ A document body

Each time you create an (X)HTML document, you start with these elements.
Then you fill in your content and markup to create an individual page.

10_9780470916599-ch04.indd 6310_9780470916599-ch04.indd 63 11/30/10 12:24 AM11/30/10 12:24 AM

64 Part II: Formatting Web Pages with (X)HTML

 Although a basic document structure is a requirement for every (X)HTML
document, creating it over and over again can get monotonous. Most
(X)HTML-editing tools set up basic document structure automatically when-
ever you create a new document.

Labeling Your (X)HTML Document
First up in any (X)HTML document sits a Document Type Declaration (DTD),
or DOCTYPE declaration. This line of markup specifies which version of HTML
or XHTML you’re using and also lets browsers know how to interpret what
follows. We use the XHTML 1.0 specification in this chapter because that’s
what most browsers and editing tools expect to see.

Adding an HTML DOCTYPE declaration
If you choose to create an HTML 4.01 document instead of an XHTML docu-
ment, you can pick from three possible DOCTYPE declarations:

 ✓ HTML 4.01 Transitional: This is the most inclusive version of HTML
4.01, and it incorporates all HTML structural elements as well as all pre-
sentation elements:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>

 ✓ HTML 4.01 Strict: This streamlined version of HTML excludes all pre-
sentation-related elements in favor of style sheets as the means to drive
page display:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

 ✓ HTML 4.01 Frameset: This version begins with HTML 4.01 Transitional
and adds all the elements that make frames possible:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
 “http://www.w3.org/TR/html4/frameset.dtd”>

 Although using HTML 4.01 Frameset is still a perfectly valid way to create
your DOCTYPE declaration, framesets are no longer considered a best prac-
tice, and caution should be exercised before deciding to use framesets.

Adding an XHTML DOCTYPE declaration
To create an XHTML document, use one of the following DOCTYPE
declarations:

10_9780470916599-ch04.indd 6410_9780470916599-ch04.indd 64 11/30/10 12:24 AM11/30/10 12:24 AM

65 Chapter 4: Creating (X)HTML Document Structure

 ✓ XHTML 1.0 Transitional:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 ✓ XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

 ✓ XHTML 1.0 Frameset:

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

 Like with HTML framesets, using XHTML framesets is no longer considered a
best practice.

 The XHTML DTD descriptions are similar to the HTML DTD descriptions
defined in Chapter 1. The HTML DTDs are documented in detail at www.
w3.org/TR/html401/sgml/dtd.html; the XHTML DTDs are documented
at www.w3.org/TR/xhtml1/dtds.html.

The <html> element
After you specify which version of (X)HTML the document follows, add an
<html> element to contain all other (X)HTML elements in your page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

</html>

Adding the XHTML namespace
A namespace is a collection of names used by the elements and attributes in
an XML document. XHTML uses a special collection of names; therefore, it
needs an XML namespace definition that looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

</html>

10_9780470916599-ch04.indd 6510_9780470916599-ch04.indd 65 11/30/10 12:24 AM11/30/10 12:24 AM

66 Part II: Formatting Web Pages with (X)HTML

 Don’t get bogged down by namespaces. If you work with other XML vocabu-
laries, you need to know about namespaces. For simple XHTML documents,
you just need to remember to include the XHTML namespace. The preceding
code snippet shows you exactly how to do so! If you skip this step, though,
your XHTML files will not validate at validator.w3.org.

Adding a Document Header
The head of an (X)HTML document is one of two main components in any
such document; the body is the other main component. The head, or header,
provides basic information about the document, including its title and meta-
data (information about information), such as keywords, character encoding,
author information, and a description. If you wish to use a style sheet within
a page, information about that style sheet also goes into the header.

 Chapter 9 provides a complete overview of creating Cascading Style Sheets
(CSS) and shows how to include them in (X)HTML documents.

The <head> element, which defines the page header, immediately follows the
<html> opening tag:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 </head>
</html>

The metadata element for character encoding

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

is also required for a Web page to validate at validator.w3.org. Don’t
leave it out!

Giving your page a title
Every (X)HTML page needs a descriptive title to tell visitors what the page
is about. This text appears in the title bar at the very top of the browser
window, as shown in Figure 4-1. A page title should be concise yet informa-
tive. (For example, My home page isn’t as informative as Jeff’s Web Design
Services.)

10_9780470916599-ch04.indd 6610_9780470916599-ch04.indd 66 11/30/10 12:24 AM11/30/10 12:24 AM

67 Chapter 4: Creating (X)HTML Document Structure

Define a page title by using the <title> element inside the <head> element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <title>Jeff’s Web Design Services</title>
 </head>

</html>

Figure 4-1: (X)HTML page titles appear in a Web browser’s title bar.

 Search engines use <title> content to list Web pages in response to a
query. A page title may be the first thing a Web surfer reads about your page,
especially if she finds it via a search engine. In fact, a search engine will prob-
ably list your page title among many others on a results page, which gives
you only one chance to grab a surfer’s attention and convince her to choose
your page. A well-crafted title can do just that.

 The title is also used for Bookmarks and in a browser’s History, so keep your
titles short and sweet.

Defining metadata
Metadata refers to data about data. In the context of the Web, that means
data that describes your Web page. Metadata for a page may include

 ✓ Keywords

 ✓ A description of your page

 ✓ Information about the page author

 ✓ The software application you used to create the page

10_9780470916599-ch04.indd 6710_9780470916599-ch04.indd 67 11/30/10 12:24 AM11/30/10 12:24 AM

68 Part II: Formatting Web Pages with (X)HTML

Elements and attributes
You define each piece of metadata for your (X)HTML page with

 ✓ The <meta /> element

 ✓ The name and content attributes

For example, the following elements create a list of keywords and a descrip-
tion for a consulting-service page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <meta name=”keywords”
 content=”Web consulting, page design, site construction” />
 <meta name=”description”
 content=”Synopsis of Jeff’s skills and services” />
 </head>
</html>

Custom names
The (X)HTML specification doesn’t

 ✓ Predefine what kinds of metadata you can include in your page

 ✓ Specify how to name different bits of metadata, such as keywords and
descriptions

So, for example, instead of using keywords and description as names
for keyword and description metadata, you can just as easily use kwrd and
desc, as in the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <meta name=”kwrd”
 content=” Web consulting, page design, site construction “ />
 <meta name=”desc” content=”Synopsis of Jeff’s skills and services” />
 </head>
</html>

10_9780470916599-ch04.indd 6810_9780470916599-ch04.indd 68 11/30/10 12:24 AM11/30/10 12:24 AM

69 Chapter 4: Creating (X)HTML Document Structure

 If you can use just any old values for <meta> name and content attributes,
how do systems know what to do with metadata? The answer is that they
don’t. Each search engine works differently. Although keywords and descrip-
tion are commonly used names, search engines may not recognize or use
other metadata names that you include. Despite an occasional failure of
search engines to recognize any metadata names you might include, their use
remains an effective way to increase the chance that your Web site will be
found in a search engine.

 Many developers use metadata to either

 ✓ Leave messages for those who look at source code for the page

 ✓ Prepare for future browsers and search engines to use such metadata

 Although keywords and page descriptions are optional, search engines use
them to collect information about your Web site. In the past, some people
would completely overload their Web site <meta /> tags in an attempt
to try to have their Web site show up as many times as possible. Modern
search engines are “smart” enough to take this into account, though, and
will either de-emphasize the <meta /> tags or ignore them completely
for rankings. Be sure to include detailed and concise information in your
<meta /> tag if you want your Web site discovered by search engine
robots, or bots for short.

Redirecting users to another page
You can use metadata in your header to send messages to Web browsers
about how they should display (or otherwise handle) your Web page. Web
builders commonly use the <meta /> element this way to redirect page
visitors from one page to another automatically. For example, if you’ve ever
come across a page that reads This page has moved. Please wait 10
seconds to be automatically sent to the new location. (or
something similar), you’ve seen this trick at work.

To use the <meta /> element to send messages to the browser, here are the
general steps you need to follow:

 1. Use the http-equiv attribute in place of the name attribute.

 2. Choose from a predefined list of values that represent instructions for
the browser.

 These values use instructions that you can send to a browser in the
HTTP header, but changing the HTTP header for a document is harder
than embedding the instructions into the Web page itself.

10_9780470916599-ch04.indd 6910_9780470916599-ch04.indd 69 11/30/10 12:24 AM11/30/10 12:24 AM

70 Part II: Formatting Web Pages with (X)HTML

To instruct a browser to redirect users from one page to another, here’s what
you need to do in particular:

 1. Use the <meta /> element with http-equiv=”refresh”.

 2. Adjust the value of content to specify how many seconds before the
refresh happens and what URL you want to jump to.

For example, the <meta /> element line in the following markup creates a
refresh that jumps to www.w3.org after 15 seconds:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>All About Markup</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <meta http-equiv=”refresh” content=”15; url= http://www.w3.org/” />
 </head>

 <body>
 <p>This page is still in development. Until we are done, please visit
 the W3C Website for the definitive
 collection of markup-related resources.
 </p>

 <p>Please wait 10 seconds to be automatically redirected to the W3C.</p>
 </body>
</html>

 Use metadata with caution when redirecting a Web page. When some
search engines see metadata redirects in use, they think the site is trying
to spam. This could result in your Web site or page being delisted, or
removed from the search engine’s listings. When you become a pro at using
metadata to redirect, you can step up to the next level and try redirecting
using the HTTP code number 301 to force a server-based redirect from an
*.htaccess file located in the root directory on your Web server. While
server-based 301 redirects are outside the scope of this book, a simple
Google search can lead you to a number of good resources such as the
.htaccess file Redirect/Rewrite Tutorial on Master Site Manager located
at www.mastersitemanager.com/857/301-htaccess-redirect-
tutorial.

 Older Web browsers may not know what to do with <meta /> elements that
use the http-equiv element to redirect a page. Be sure to include some text
and a link on the page so a visitor can link manually to your new target page
if your <meta /> element fails to work. Linking, which uses the anchor (<a>)
element, is discussed in Chapter 3.

10_9780470916599-ch04.indd 7010_9780470916599-ch04.indd 70 11/30/10 12:24 AM11/30/10 12:24 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

71 Chapter 4: Creating (X)HTML Document Structure

If a user’s browser doesn’t know what to do with your redirect, the user
simply clicks a link on the page to go to the new page, as in Figure 4-2.

Figure 4-2: When you use a <meta /> element to create a page
redirector, include a link in case the redirector fails.

 You can use the http-equiv attribute with the <meta /> element for
a variety of purposes, such as setting an expiration date for a page and
specifying a character set (the language) for the page to use. To find out
what your http-equiv options are (and how to use them), check out this
Dictionary of HTML META Tags at the following URL:

http://vancouver-webpages.com/META/metatags.detail.html

Creating the (X)HTML Document Body
After you set up a page header, create a title, and define some metadata,
you’re ready to create (X)HTML markup and content that will show up in a
browser window. The <body> element holds your document content.

 If you want to see something in your browser window, put it in the <body>
element, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <title>Jeff’s Web Design Services</title>
 <meta name=”kwrd”
 content=” Web consulting, page design, site construction “ />
 <meta name=”desc” content=”Synopsis of Jeff’s skills and services” />
 </head>

<body style=”color: white;
 background-color: teal;

10_9780470916599-ch04.indd 7110_9780470916599-ch04.indd 71 11/30/10 12:24 AM11/30/10 12:24 AM

72 Part II: Formatting Web Pages with (X)HTML

 font-size: 1.2;
 font-family: sans-serif”>
 <h1>Jeff’s Web Design Services</h1>
 <p>Jeff has helped many Texas clients, large and small, to design and
 publish their company and professional Web sites. He specializes in
 cutting-edge Web designs, dynamic multimedia, and companion print-
 design solutions to suit all business needs.</p>

 <p>For more information, e-mail
 Jeff Noble</p>
 </body>
</html>

Figure 4-3 shows how a browser displays this complete (X)HTML page:

 ✓ The content of the <title> element is in the window’s title bar.

 ✓ The <meta /> elements don’t affect the page appearance at all.

 ✓ Only the paragraph text contained in the <h1> and <p> elements (in the
<body> element) actually appears in the browser window.

Figure 4-3: Only content in the <body> element appears in
the browser window.

10_9780470916599-ch04.indd 7210_9780470916599-ch04.indd 72 11/30/10 12:24 AM11/30/10 12:24 AM

Chapter 5

Text and Lists
In This Chapter
▶ Working with basic blocks of text

▶ Manipulating text blocks

▶ Creating bulleted, numbered, and definition lists

HTML documents include text, images, multimedia files, links, and other
bits of content that you mold into a Web page by using markup ele-

ments and attributes. You use blocks of text to create such things as head-
ings, paragraphs, and lists. The first step in creating a solid HTML document
is laying a firm foundation to establish the document’s structure.

Formatting Text
Here’s an ultra-technical definition of a block of text: some chunk of content
that fills one or more lines inside an HTML element.

In fact, any HTML page is a collection of blocks of text:

 ✓ Every bit of content on your page must be part of some block element.

 ✓ Every block element sits inside the <body> element on your page.

HTML recognizes several kinds of text blocks that you can use in your docu-
ment, including (but not limited to)

 ✓ Paragraphs

 ✓ Headings

 ✓ Block quotes

 ✓ Lists

 ✓ Tables

 ✓ Forms

11_9780470916599-ch05.indd 7311_9780470916599-ch05.indd 73 11/30/10 12:24 AM11/30/10 12:24 AM

74 Part II: Formatting Web Pages with (X)HTML

Paragraphs
Paragraphs appear more often than any other text block in Web pages.

 HTML browsers don’t recognize hard returns that you enter when you create
your page inside an editor. You must use a <p> element to tell the browser to
package all text up to the closing </p> tag as a paragraph.

Formatting
To create a paragraph, follow these steps:

 1. Add <p> in the body of the document.

 2. Type the content of the paragraph.

 3. Add </p> to close that paragraph.

Here’s what it looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>All About Blocks</title>
 </head>

 <body>
 <p>This is a paragraph. It’s a very simple structure that you will use
 time and again in your Web pages.</p>
 <p>This is another paragraph. What could be simpler to create?</p>
 </body>
</html>

This HTML page includes two paragraphs, each marked with a separate <p>
element. Most Web browsers add a line break and a full line of white space
after every paragraph on your page, as shown in Figure 5-1.

Inline elements versus text blocks
The difference between inline elements and
a block of text is important. HTML elements in
this chapter describe blocks of text. An inline
element is a word or string of words inside a
block element (for example, text-emphasis ele-
ments, such as or). Inline
elements must be nested within a block element;

otherwise, your HTML document isn’t syntacti-
cally correct.

Inline elements, such as linking and formatting
elements, are designed to link from (or change
the appearance of) a few words or lines of con-
tent found inside those blocks.

11_9780470916599-ch05.indd 7411_9780470916599-ch05.indd 74 11/30/10 12:24 AM11/30/10 12:24 AM

75 Chapter 5: Text and Lists

Figure 5-1: Web browsers delineate paragraphs
with line breaks.

 Sloppy HTML coders don’t use the closing </p> tag when they create para-
graphs. Although some browsers permit this dubious practice without yell-
ing, omitting the closing tag isn’t good practice because it:

 ✓ Isn’t correct syntax

 ✓ Causes problems with style sheets

 ✓ Can cause a page to appear inconsistently from one browser to another

You can control paragraph formatting (color, style, size, and alignment) with
Cascading Style Sheets (CSS), covered in Chapters 9–12.

Headings
Headings break a document into sections. This book uses headings and sub-
headings to divide each chapter into sections, and you can do the same with
your Web page. Headings

 ✓ Create an organizational structure

 ✓ Break up the text flow on the page

 ✓ Provide visual cues as to how pieces of content are grouped

HTML includes six elements for different heading levels in documents:

 ✓ <h1> is the most prominent heading (Heading 1)

 ✓ <h6> is the least prominent heading (Heading 6)

 Follow numerical order from lowest to highest as you use HTML heading
levels. That is, don’t use a second-level heading until you use a first-level
heading, don’t use a third-level heading until you use a second, and so on. If
you want to change how headings look, Chapters 10 and 11 show you how to
use style sheets for that purpose.

11_9780470916599-ch05.indd 7511_9780470916599-ch05.indd 75 11/30/10 12:24 AM11/30/10 12:24 AM

76 Part II: Formatting Web Pages with (X)HTML

Formatting
To create a heading, follow these steps:

 1. Add <hn> in the body of your document.

 2. Type the content for the heading.

 3. Add </hn>.

 When used in this context, n means the number of the heading level you want
to create. For example, to create a level 1 heading, you would substitute the
number 1 for n and would add <h1> to your page, for a level 2 heading, add
<h2>, and so forth.

Browser displays
Every browser has a different way of displaying heading levels, as you see in
the next two sections.

Graphical browsers
Most graphical browsers use a distinctive size and typeface for headings:

 ✓ First-level headings (<h1>) are the largest (usually two or three font
sizes larger than the default text size for paragraphs).

 ✓ All headings use boldface type by default, and paragraph text uses plain
(nonbold) type by default.

 ✓ Sixth-level headings (<h6>) are the smallest and may be two or three
font sizes smaller than the default paragraph text.

The following snippet of HTML markup shows all six headings at work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>All About Blocks</title>
 </head>

 <body>
 <h1>First-level heading</h1>
 <h2>Second-level heading</h2>
 <h3>Third-level heading</h3>
 <h4>Fourth-level heading</h4>
 <h5>Fifth-level heading</h5>
 <h6>Sixth-level heading</h6>
 </body>
</html>

11_9780470916599-ch05.indd 7611_9780470916599-ch05.indd 76 11/30/10 12:24 AM11/30/10 12:24 AM

77 Chapter 5: Text and Lists

Figure 5-2 shows the headings in the HTML page as rendered in a browser.

Figure 5-2: Web browsers display headings
from level one to level six.

 Use CSS to control how headings look, including color, size, spacing, and
alignment.

 By default, most browsers use Times Roman fonts for headings. The font size
decreases as the heading level increases. (Default sizes for first- through
sixth-level headings are, respectively, 24, 18, 14, 12, 10, and 8 point font.) You
can override any of this formatting by using CSS.

Text browsers
Text-only browsers use heading conventions different from those of graphi-
cal browsers because text-only browsers use a single character size and font
to display all content. Some good text-only browsers to consider include
Lynx, ELinks, Cygwin, and MIRA.

Controlling Text Blocks
Blocks of text build the foundation of your page. You can break those blocks
into smaller pieces to better guide readers through your content.

Block quotes
A block quote is a quotation, or an excerpt from a copyrighted source,
that you set apart on a page. Use the <blockquote> element to enclose
quotations:

11_9780470916599-ch05.indd 7711_9780470916599-ch05.indd 77 11/30/10 12:24 AM11/30/10 12:24 AM

78 Part II: Formatting Web Pages with (X)HTML

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Famous Quotations</title>
 </head>

 <body>
 <h1>An Inspiring Quote</h1>
 <p>When I need a little inspiration to remind me of why I spend my days
 in the classroom, I just remember what Lee Iococca said:</p>
 <blockquote>
 In a completely rational society, the best of us would be teachers
 and the rest of us would have to settle for something else.
 </blockquote>
 </body>
</html>

Most Web browsers display block quote content with a slight left indent, as
shown in Figure 5-3.

Figure 5-3: Web browsers typically indent a
block quote to separate it from paragraphs.

Preformatted text
Ordinarily, HTML ignores white space inside documents. A browser won’t
display a block element’s

 ✓ Hard returns

 ✓ Line breaks

 ✓ Large white spaces

The following markup includes various hard returns, line breaks, and lots of
spaces. Figure 5-4 shows that the Web browser ignores all of this.

11_9780470916599-ch05.indd 7811_9780470916599-ch05.indd 78 11/30/10 12:24 AM11/30/10 12:24 AM

79 Chapter 5: Text and Lists

<p>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).</p>

Figure 5-4: Web browsers routinely ignore
white space.

The preformatted text element (<pre>) instructs browsers to keep all white
space intact while it displays your content (see the following sample). Use
the <pre> element in place of the <p> element to make the browser apply all
your white space, as shown in Figure 5-5.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>White Space</title>
 </head>

 <body>
 <pre>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).
 </pre>
 </body>
</html>

 You may want the browser to display white spaces in an HTML page where
proper spacing is important, such as for

 ✓ Code samples

 ✓ Columnar data, numbers, or other format-sensitive text

 ✓ Text tables

11_9780470916599-ch05.indd 7911_9780470916599-ch05.indd 79 11/30/10 12:24 AM11/30/10 12:24 AM

80 Part II: Formatting Web Pages with (X)HTML

Figure 5-5: Use preformatted text to force
browsers to recognize white space.

 You can nest <pre> elements inside <blockquote> elements to carefully
control how lines of quoted text appear on the page. Or better still, forget
about these tags and use CSS to position text blocks inside <div> elements.

Horizontal rules
Using a horizontal rule element (<hr />) helps you include solid straight
lines (rules) on your page.

 The browser creates the rule based on the <hr /> element, so users don’t
wait for a graphic to download. A horizontal rule is a good option to

 ✓ Break a page into logical sections.

 ✓ Separate headers and footers from the rest of the page.

Formatting
When you include an <hr /> element on your page, as in the following
XHTML, the browser replaces it with a line, as shown in Figure 5-6.

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Horizontal Rules</title>
 </head>

 <body>
 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr />

 <p>This is a paragraph preceded by a horizontal rule.</p>
 </body>
</html>

11_9780470916599-ch05.indd 8011_9780470916599-ch05.indd 80 11/30/10 12:24 AM11/30/10 12:24 AM

81 Chapter 5: Text and Lists

Figure 5-6: Use the <hr /> element to add
horizontal lines to your page.

 A horizontal rule always sits on a line by itself; you can’t add the <hr /> ele-
ment in the middle of a paragraph (or other block element) and expect the
rule to appear in the middle of the block.

This bit of HTML creates a horizontal rule that takes up 45 percent of the
page width, is 4 pixels (px) high, is aligned to the center, and has shading
turned off:

 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr width=”45%” size=”4” align=”center” noshade=”noshade” />

 <p>This is a paragraph preceded by a horizontal rule.</p>

Figure 5-7 shows how adding these attributes alters how the rule is displayed.
(Note: These attributes are deprecated, and are better replaced with CSS
equivalents as described in Chapters 9–12. Deprecated attributes are covered
in Chapter 8.)

Figure 5-7: Horizontal rule markup enables a
browser to display a rule sized to the current
page display.

Figure 5-8 shows how you can use horizontal rules in the real world to high-
light important content. The EdTittel.com home page uses a colored hard
rule to separate the footer from the rest of the page.

11_9780470916599-ch05.indd 8111_9780470916599-ch05.indd 81 11/30/10 12:24 AM11/30/10 12:24 AM

82 Part II: Formatting Web Pages with (X)HTML

Figure 5-8: The EdTittel.com home page uses a
colored rule to separate page content from
page-footer information.

 As the <style> section in the file header clearly illustrates, CSS gives you
great control over color, width, and page coverage for horizontal rules.

Organizing Information
Lists are powerful tools to group similar elements, and lists give visitors to
your site an easy way to zoom in on groups of information. Just about any-
thing fits in a list, from sets of instructions to collections of links.

Lists use a combination of elements — at least two components:

 ✓ A markup element that says, “Hey browser! The following items go in a
list.”

 ✓ Markup elements that say, “Hey browser! This is an item in the list.”

HTML supports three types of lists:

 ✓ Numbered lists

 ✓ Bulleted lists

 ✓ Definition lists

Numbered lists
A numbered list consists of at least two items, each prefaced by a number.
Use a numbered list when the order or priority of items is important.

You use two kinds of elements for a numbered list:

 ✓ The ordered list element () specifies a numbered list.

 ✓ List item elements () mark each item in the list.

11_9780470916599-ch05.indd 8211_9780470916599-ch05.indd 82 11/30/10 12:24 AM11/30/10 12:24 AM

83 Chapter 5: Text and Lists

Formatting
A numbered list with three items requires elements and content in the follow-
ing order:

 1.

 2.

 3. Content for the first list item

 4.

 5.

 6. Content for the second list item

 7.

 8.

 9. Content for the third list item

 10.

 11.

The following markup defines a three-item numbered list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Numbered Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-9 shows how a browser renders this markup. You don’t actually
have to specify a number for each item in the list; the browser identifies the
list items from the markup and adds the numbers, including a period after
each list number by default.

11_9780470916599-ch05.indd 8311_9780470916599-ch05.indd 83 11/30/10 12:24 AM11/30/10 12:24 AM

84 Part II: Formatting Web Pages with (X)HTML

Figure 5-9: Use and tags to
create a numbered list.

If you swap the first two items in the list, they’re still numbered in order
when the page appears, as shown in Figure 5-10.

 Wash car
 Feed cat
 Grocery shopping

Figure 5-10: Web browsers set numbers for
your list according to order of appearance.

Numbering
Two different attributes control the appearance of a numbered list:

 ✓ start: Specifies the first number in the list.

 • The default starting number is 1, although you can specify any
number as the start number for the new list.

 Specify a start number when you resume a list after an unnum-
bered paragraph or some other block element.

11_9780470916599-ch05.indd 8411_9780470916599-ch05.indd 84 11/30/10 12:24 AM11/30/10 12:24 AM

85 Chapter 5: Text and Lists

 ✓ type: Specifies the numbering style from the list. You can choose from
five predefined numbering styles:

 • 1: Decimal numbers

 • a: Lowercase Romans letters

 • A: Uppercase Roman letters

 • i: Lowercase Roman numerals

 • I: Uppercase Roman numerals

The following markup uses ordered elements and attributes to build a list
that uses uppercase Roman numerals starting at 5 (V in Roman numerals):

 <ol start=”5” type=”I”>
 Wash car
 Feed cat
 Grocery shopping

Figure 5-11 shows how attributes affect the list’s appearance in a browser.

Figure 5-11: The start and type attributes
guide the appearance of a numbered list in
a browser.

 You have more control over your lists if you use CSS to define formatting.
That’s why the start and type attributes for list markup are deprecated
(that is, abandoned as outmoded in the current version of HTML).

Bulleted lists
A bulleted list consists of one or more items each prefaced by a bullet (often a
big dot; this book sometimes uses check marks as bullets).

You use this type of list if the items’ order of presentation isn’t necessary for
understanding the information presented.

11_9780470916599-ch05.indd 8511_9780470916599-ch05.indd 85 11/30/10 12:24 AM11/30/10 12:24 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

86 Part II: Formatting Web Pages with (X)HTML

Formatting
A bulleted list requires the following:

 ✓ The unordered list element () specifies a bulleted list.

 ✓ A list item element () marks each item in the list.

 ✓ The closing tag for the unordered list element () indicates that the
list has come to its end.

An unordered list (another name for bulleted list) with three items requires
elements and content in the following order:

 1.

 2.

 3. Content for the first list item

 4.

 5.

 6. Content for the second list item

 7.

 8.

 9. Content for the third list item

 10.

 11.

The following markup formats a three-item list as a bulleted list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Bulleted Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-12 shows how a browser renders this with bullets.

11_9780470916599-ch05.indd 8611_9780470916599-ch05.indd 86 11/30/10 12:24 AM11/30/10 12:24 AM

87 Chapter 5: Text and Lists

Figure 5-12: An unordered list uses bullets
instead of numbers to mark items.

 Use CSS if you want to exert more control over the formatting of your lists,
including the ability to use your own graphics as bullet symbols.

Definition lists
Definition lists group terms and definitions into a single list and require three
different elements to complete the list:

 ✓ <dl>: Holds the list definitions (dl = definition list)

 ✓ <dt>: Defines a term in the list (dt = definition term)

 ✓ <dd>: Defines a definition for a term (dd = definition list definition)

You can have as many terms (defined by <dt>) in a list (<dl>) as you need.
Each term can have one or more definitions (defined by <dd>).

Creating a definition list with two items requires elements and content in the
following order:

 1. <dl>

 2. <dt>

 3. First term name

 4. </dt>

 5. <dd>

 6. Content for the definition of the first item

 7. </dd>

 8. <dt>

 9. Second term name

 10. </dt>

11_9780470916599-ch05.indd 8711_9780470916599-ch05.indd 87 11/30/10 12:24 AM11/30/10 12:24 AM

88 Part II: Formatting Web Pages with (X)HTML

 11. <dd>

 12. Content for the definition of the second item

 13. </dd>

 14. </dl>

The following definition list includes three terms, one of which has two
definitions:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Definition Lists</title>
 </head>

 <body>
 <h1>Markup Language Definitions</h1>
 <dl>
 <dt>SGML</dt>
 <dd>The Standard Generalized Markup Language</dd>
 <dt>HTML</dt>
 <dd>The Hypertext Markup Language</dd>
 <dd>The markup language you use to create Web pages.</dd>
 <dt>XML</dt>
 <dd>The Extensible Markup Language</dd>
 </dl>
 </body>
</html>

Figure 5-13 shows how a browser displays this HTML.

Figure 5-13: Definition lists group terms and
their related definitions into one list.

 If you think items in a list are too close together, you can use CSS styles to
carefully control all aspects of list appearance, as shown in Chapter 9.

11_9780470916599-ch05.indd 8811_9780470916599-ch05.indd 88 11/30/10 12:24 AM11/30/10 12:24 AM

89 Chapter 5: Text and Lists

Note that definition lists often display differently inside different browsers,
and they aren’t always handled the same by search engines or text-to-speech
translators. About.com has a nice discussion of definition lists at http://
webdesign.about.com/od/htmltags/a/aa112006.htm. Alas, this
means that definition lists may not be the best choice of formatting for lists
you create (even lists of definitions). See the excellent coverage of this topic
at www.maxdesign.com.au/articles/definition for a more detailed
discussion.

Nesting lists
You can create subcategories by nesting lists within lists. Some common uses
for nested lists include

 ✓ Site maps and other navigation tools

 ✓ Tables of content for online books and papers

 ✓ Outlines

You can combine any of the three kinds of lists to create nested lists, such as
a multilevel table of contents or an outline that mixes numbered headings
with bulleted list items as the lowest outline level.

The following example starts with a numbered list that defines a list of things
to do for the day and uses three bulleted lists to break down those items fur-
ther, into specific tasks:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<html>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
 <title>Nested Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat

 Rinse bowl
 Open cat food
 Mix dry and wet food in bowl
 Deliver on a silver platter to Pixel

 Wash car

 Vacuum interior
 Wash exterior

11_9780470916599-ch05.indd 8911_9780470916599-ch05.indd 89 11/30/10 12:24 AM11/30/10 12:24 AM

90 Part II: Formatting Web Pages with (X)HTML

 Wax exterior

 Grocery shopping

 Plan meals
 Clean out fridge
 Make list
 Go to store

 </body>
</html>

All nested lists follow the same markup pattern:

 ✓ Each list item in the top-level ordered list is followed by a complete
second-level list.

 ✓ The second-level lists sit inside the top-level list, not in the list items.

Figure 5-14 shows how a browser reflects this nesting in its display.

Figure 5-14: Nested lists combine lists for
multilevel organization of information.

 While you build nested lists, watch opening and closing tags carefully. Close
first what you opened last is an important axiom. If you don’t open and close
tags properly, lists might not use consistent indents or numbers, or text
might be indented incorrectly because a list somewhere was never properly
closed.

11_9780470916599-ch05.indd 9011_9780470916599-ch05.indd 90 11/30/10 12:24 AM11/30/10 12:24 AM

Chapter 6

Linking to Online Resources
In This Chapter
▶ Creating simple links

▶ Opening linked pages in new windows

▶ Setting up links to locations within a Web page

▶ Creating links to things other than Web pages

Hyperlinks, or simply links, connect (X)HTML pages and other resources
on the Web. When you include a link on your page, you enable visitors

to travel from your page to another Web site, another page on your site, or
even another location on the same page. Without links, a page stands alone,
disconnected from the rest of the Web. With links, that page becomes part of
an almost boundless collection of information that is the World Wide Web.

Basic Links
To create a link, you need

 ✓ The Web address (called a Uniform Resource Locator; URL) for the Web
site or file that’s your link target. This usually starts with http://.

 ✓ Some text in your Web page to label or describe the link.

 Try to ensure that the text you use says something useful about the
resource being linked.

 ✓ An anchor element (<a>) with an href attribute to bring it all together.

 The element to create links is called an anchor element because you use
it to anchor a URL to some text on your page. When users view your
page in a browser, they can click the text to activate the link and visit
the page whose URL you specified in that link. You insert the full URL in
the href attribute. This tells the link where to go.

12_9780470916599-ch06.indd 9112_9780470916599-ch06.indd 91 11/30/10 12:24 AM11/30/10 12:24 AM

92 Part II: Formatting Web Pages with (X)HTML

 You can think of the structure of a basic link as a cheeseburger (or your pre-
ferred vegan substitute). The URL is the cheese, the link text is the patty, and
the anchor tags are the buns. Tasty, yes?

For example, if you have a Web page that describes HTML standards, you
may want to refer Web surfers to the World Wide Web Consortium (W3C) —
the organization that governs all things related to (X)HTML standards. A
basic link to the W3C Web site, www.w3.org, looks like this:

<p>The World Wide Web Consortium is the
 standards body that oversees the ongoing development of the XHTML
 specification.</p>

You specify the link URL (http://www.w3.org) in the anchor element’s
href attribute. The text (World Wide Web Consortium) between the
anchor element’s open and close tags (<a> and) labels or describes
the link.

Figure 6-1 shows how a browser displays this bit of markup.

Figure 6-1: A paragraph with a link to the W3C.

 You can also anchor URLs to images so that users can click an image to acti-
vate a link. For more about creating images that link, see Chapter 7. For a
detailed discussion of the ins and outs of URLs, see Chapter 1.

Link options
You can link to a variety of online resources:

 ✓ Other (X)HTML pages (either on your Web site or on another Web site)

 ✓ Different locations on the same (X)HTML page

 ✓ Resources that aren’t even (X)HTML pages at all, such as e-mail
addresses, pictures, and text files

12_9780470916599-ch06.indd 9212_9780470916599-ch06.indd 92 11/30/10 12:24 AM11/30/10 12:24 AM

93 Chapter 6: Linking to Online Resources

 Link locations, captions, and destinations exert huge influence on how site
visitors perceive links. Chapter 3 covers best practices for using links in your
site design.

The kind of link you create is determined by where you link.

Absolute links
An absolute link uses a complete URL to connect browsers to a Web page or
online resource.

Links that use a complete URL to point to a resource are called absolute
because they provide a complete, standalone path to another Web resource.
When you link to a page on someone else’s Web site, the Web browser needs
every bit of information in the URL to find the page. The browser starts with
the domain in the URL and works its way through the path to a specific file.

 When you link to files on someone else’s site, you must always use absolute
URLs in the href attribute of the anchor element. Here’s an example:

http://www.website.com/directory/page.html

Relative links
A relative link uses a kind of shorthand to specify a URL for a resource you’re
pointing to.

Anchor elements aren’t block elements
Anchor elements are inline elements — that is,
they apply to a few words or characters within
a block of text (the text that you want to use as
a link) instead of defining formatting for blocks
of text. The anchor element typically sits inside
a paragraph (<p>) or other block element, such
as a paragraph or list item. When you create a
link, you should always create it within a block
element, such as a paragraph, list item, head-
ing, or even a table cell. Turn to Chapter 5 for
more information on block elements.

Although many Web browsers display anchors
just fine even if you don’t nest them in block

elements, some browsers (such as the follow-
ing) don’t handle this breach of (X)HTML syntax
very well:

 ✓ Text-only browsers for handheld devices or
mobile phones

 ✓ Text-to-speech readers for the visually
impaired

Text-based browsers rely on block elements
to properly divide up the sections of your page.
Without a block element, these browsers might
display your links in the wrong places.

12_9780470916599-ch06.indd 9312_9780470916599-ch06.indd 93 11/30/10 12:24 AM11/30/10 12:24 AM

94 Part II: Formatting Web Pages with (X)HTML

Use the following guidelines with relative links in your (X)HTML pages:

 ✓ Create relative links between resources in the same domain.

 ✓ Because both resources are in the same domain, omit domain informa-
tion from the URL.

 A relative URL uses the location of the resource you’re linking from
to identify the location of the resource you’re linking to (for example,
page.html).

A relative link is similar to telling someone that he or she needs to go to the
Eastside Mall. If the person already knows where the Eastside Mall is, he or
she doesn’t need additional directions. Web browsers behave the same way.

 If you use relative links on your site, your links still work if you change

 ✓ Servers

 ✓ Domain names

Simple links
You can take advantage of relative URLs when you create a link between
pages on the same Web site. If you want to make a link from http://www.
mysite.com/home.html to http://www.mysite.com/about.html, you
can use this simplified, relative URL in an anchor element on home.html:

<p>Learn more about our company.</p>

 When a browser sees a link without a domain name, the browser assumes
that the link is relative and uses the domain and path from the linking page
to find the linked page. The preceding example works only if home.html and
about.html are in the same directory, though.

Site links
As your site grows more complex and you organize your files into various
folders, you can still use relative links. However, you must provide additional
information in the relative URL to help the browser find files that don’t reside
in the same directory as the file from which you’re linking.

Use ../ (two periods and a slash) before the filename to indicate that the
browser should move up one level in the directory structure.

The markup for this process looks like this:

Documentation home

12_9780470916599-ch06.indd 9412_9780470916599-ch06.indd 94 11/30/10 12:24 AM11/30/10 12:24 AM

95 Chapter 6: Linking to Online Resources

The notation in this anchor element instructs the browser to

 1. Move up one folder from the folder the linking document is stored in.

 2. Find a folder called docs.

 3. Find a file called home.html.

 When you create a relative link, the location of the file to which you link is
always relative to the file from which you link. As you create a relative URL,
trace the path a browser takes if it starts on the page you’re linking from to
get to the page to which you’re linking. That path defines the URL you need.

Common mistakes
Every Web resource — site, page, or image — has a unique URL. Even one
incorrect letter in a URL creates a broken link, which leads to an error page
(usually the HTTP error 404 File or directory not found).

 URLs are so finicky that a simple typo breaks a link.

If a URL doesn’t work, try these tactics:

 ✓ Check the capitalization. Some Web servers (Linux and Unix, most
notably) are case-sensitive (they distinguish between capital and lower-
case letters). For example, such servers treat the filenames Bios.html
and bios.html as different files on the Web server. That means any
browser looking for a particular URL must use uppercase and lower-
case letters when necessary. Be sure that the capitalization in the link
matches the capitalization of the URL.

The importance of http:// in (X)HTML links
Browsers make surfing the Web as easy as
possible. If you type www.sun.com, sun.
com, or often even just sun in your browser’s
address window, the browser obligingly brings
up http://www.sun.com. Although this
technique works when you type URLs into your
browser window, it doesn’t work when you’re
writing markup.

The URLs that you use in your HTML markup
must be fully formed (complete in every detail).
Browsers won’t interpret URLs that don’t
include the page protocol. If you forget the
http://, your link may not work!

12_9780470916599-ch06.indd 9512_9780470916599-ch06.indd 95 11/30/10 12:24 AM11/30/10 12:24 AM

96 Part II: Formatting Web Pages with (X)HTML

 To avoid problems with files on your Web site, follow a standard naming
convention. Often, using only lowercase letters can simplify your life.

 ✓ Check the extension. Bios.htm and Bios.html are two different
files. If your link’s URL uses one extension and the actual filename uses
another, your link won’t work.

 To avoid problems with extensions on your Web site, pick either .html
or .htm and stick to that extension.

 ✓ Check the filename. For example, bio.html and bios.html are two
different files.

 ✓ Copy and paste. Avoid retyping a URL if you can copy it. The best and
most foolproof way to create a URL that works is as follows:

 a. Load a page in your browser.

 b. Copy the URL from the browser’s address or link text box.

 c. Paste the URL into your (X)HTML markup.

 The copy-and-paste method for grabbing URLs presumes that you’re grab-
bing them from a Web site somewhere. If you open a local file on your PC in
a browser, you’ll see something that looks like this: file:\\\I:\H4D6e\
html_letter.html. Here’s how to decipher it all:

 ✓ file:\\\ is an Internet Explorer convention used to identify the docu-
ment as a file in your local file system.

 ✓ I:\ is a drive letter.

 ✓ H4D6e\ is a folder or directory on that drive.

 ✓ html_letter.html — the rightmost text element, in this case — is the
name of the HTML file you opened.

You can’t use URLs like this on a Web site, so please — don’t try to!

 Most of us have had a letter returned to us at least once marked undeliver-
able because of an incomplete or inaccurate address. When the address isn’t
correct, the post office has no way of knowing how to locate the intended
recipient. The same is true for URLs. Without a fully formed URL, Web serv-
ers don’t know how to locate the target Web page. URLs generally take the
following form:

 ✓ Protocol identifier followed by a colon (:) — This is generally either
http for Hypertext Transport Protocol, https for secure-server sites,
or ftp for file transfer sites.

12_9780470916599-ch06.indd 9612_9780470916599-ch06.indd 96 11/30/10 12:24 AM11/30/10 12:24 AM

97 Chapter 6: Linking to Online Resources

 ✓ Hostname — This is generally either a domain name such as edtittel.
com or an IP address. The hostname is always preceded by two slashes
(//).

 ✓ Directory path — Directory paths are preceded by a forward slash (/),
and they direct the user to the specific Web page being sought.

Thus, the form of a fully formed URL is <protocolidentifier>://
<hostname>/<directorypath> or http://www.mywebsite.com/
mywebpage.

Customizing Links
You can customize links to

 ✓ Open linked documents in new windows

 ✓ Link to specific locations within a Web page of your own

 ✓ Link to items other than (X)HTML pages, such as

 • Portable Document Format (PDF) files

 • Compressed files

 • Word processing documents

New windows
The Web works because you can link pages on your Web site to pages on
other people’s Web sites by using a simple anchor element. When you link to
someone else’s site, though, you send users away from your own site.

To keep users on your site, HTML can open the linked page in a new window
or in a new tab inside the same browser window. (Internet Explorer, Firefox,
Chrome, and other browsers open new tabs. You can set Internet Explorer
and other browser preferences to open in a new window instead of a new tab
if you prefer.) The simple addition of the target attribute to an anchor ele-
ment opens that link in a new browser window (or tab) instead of opening it
in the current window:

<p>The World Wide Web Consortium
is the standards body that oversees the ongoing development of the XHTML
specification.</p>

12_9780470916599-ch06.indd 9712_9780470916599-ch06.indd 97 11/30/10 12:24 AM11/30/10 12:24 AM

98 Part II: Formatting Web Pages with (X)HTML

When you give a target attribute a _blank value, this tells the browser to

 1. Keep the linking page open in the current window.

 2. Open the linked page in a new window or tab.

 Whatever document type (DTD) you use (Strict or Transitional) may make
your code invalid if you add a target to an anchor. If you’re using the strict
DTD, then a new window, or any use of the target attribute, will make your
markup invalid. If you know which document type you’re using before you
add targets to an anchor, this can save you hours of time (not to mention
the headaches!) later when your markup won’t validate and you’re trying to
figure out why! DTDs are addressed in detail in Chapter 4, so scope it out for
more information.

The result of using the target=”_blank” attribute is shown in Figure 6-2.

Figure 6-2: Use the target attribute to open a new Internet Explorer
window for a linked file.

 Pop-up windows irritate some users. Use this technique with care — and
sparingly. Also, using the target attribute won’t validate with the XHTML
Strict DTD (it works fine with Transitional, though).

12_9780470916599-ch06.indd 9812_9780470916599-ch06.indd 98 11/30/10 12:24 AM11/30/10 12:24 AM

99 Chapter 6: Linking to Online Resources

You can use JavaScript to control the size, location, and appearance of
pop-up windows as well as to put buttons on them to help users close them
quickly. Chapter 13 covers pop-up windows in more detail — including
JavaScript details.

Locations in Web pages
Locations within Web pages can be marked for direct access by links on

 ✓ The same page

 ✓ The same Web site

 ✓ Other Web sites

Keep these considerations in mind when adding links to Web pages:

 ✓ Several short pages may present information more conveniently for
readers than one long page with internal links.

 Links within large pages work nicely for quick access to directories,
tables of contents, and glossaries.

 ✓ Intradocument linking works best on your own Web site, where you can
create and control the markup.

 When you link to spots on someone else’s Web site, you’re at its manag-
er’s mercy because that person controls linkable spots. Your links will
break if the site designer removes or renames any spot to which you link.

Naming link locations
To identify and create a location within a page for direct access from other
links, use an empty anchor element with the name attribute, like this:

 The anchor element that marks the spot doesn’t affect the appearance of any
surrounding content. You can mark spots wherever you need them without
worrying about how your pages look (or change) as a result.

Linking to named locations
As we mention earlier, you can mark locations for direct access by links

 ✓ Within the same page

 ✓ Within the same Web site

 ✓ On other Web sites

12_9780470916599-ch06.indd 9912_9780470916599-ch06.indd 99 11/30/10 12:24 AM11/30/10 12:24 AM

100 Part II: Formatting Web Pages with (X)HTML

Within the same page
Links can help users navigate a single Web page. Intradocument hyperlinks
include such familiar features as

 ✓ Back to Top links

 ✓ Tables of contents

An intradocument hyperlink, also known as a named document link, uses a
URL like this:

Back to top

 The pound sign (#) indicates that you’re pointing to a spot on the same page,
not on another page.

Listing 6-1 shows how two anchor elements combine to link to a spot on the
same page. (Documents that use intradocument links are usually longer.
This document is short so you can easily see how to use the top anchor
element.)

Listing 6-1: Intradocument Hyperlinks
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Intradocument hyperlinks at work</title>
 </head>

 <body>
 <h1>Web-Based Training</h1>

 <p>Given the importance of the Web to businesses and other organizations,
 individuals who seek to improve job skills, or fulfill essential job
 functions, are turning to HTML and XML for training. We believe this
 provides an outstanding opportunity for participation in an active and
 lucrative adult and continuing education market.</p>

 <p>Back to top</p>

 </body>
</html>

12_9780470916599-ch06.indd 10012_9780470916599-ch06.indd 100 11/30/10 12:24 AM11/30/10 12:24 AM

101 Chapter 6: Linking to Online Resources

Figure 6-3 shows how this HTML markup appears in a Web browser. If the
user clicks the Back to Top link, the browser jumps back to the top spot —
marked by . The text for this example is short, but
you can see how it works by resizing your browser window to display only
two or three words per line of text.

Figure 6-3: Use anchor elements to mark and
link spots on a page.

Within the same Web site
You can combine intradocument and interdocument links to send visitors
to a spot on a different Web page on your site. Thus, to link to a spot named
descriptions on a page named home.html on your site, use this markup:

<p>Review the document descriptions
 to find the documentation for your particular product.</p>

On other Web sites
If you know that a page on another site has spots marked, you can use an
absolute URL to point to a particular spot on that page, like this:

<p>Find out how to

register for upcoming training courses led by our instructors.</p>

 Be sure to check all links regularly to catch and fix the broken ones.

The Open Directory Project provides a laundry list of free and commercial
tools you can use to make finding and fixing broken links easier:

http://www.dmoz.org/Computers/Software/Internet/Site_Management/Link_Management/

12_9780470916599-ch06.indd 10112_9780470916599-ch06.indd 101 11/30/10 12:24 AM11/30/10 12:24 AM

102 Part II: Formatting Web Pages with (X)HTML

Non-HTML resources
Links can connect to virtually any kind of file, such as

 ✓ Word processing documents

 ✓ Spreadsheets

 ✓ PDFs

 ✓ Compressed files

 ✓ Multimedia

Two great uses for non-HTML links are for software and PDF download pages.

File downloads
Non-Web files must nevertheless be accessed via the Internet, so they pos-
sess unique URLs, just like HTML pages. Any file on a Web server (regardless
of its type) can be linked using a URL.

For instance, if you want your users to download a PDF file named doc.pdf
and a Zip archive called software.zip from a Web page, you use this HTML:

<h1>Download the new version of our software</h1>
<p>Software</p>
<p>Documentation</p>

 You can’t know how any user’s browser will respond to a click on a link that
leads to a non-Web file. The browser may

 ✓ Prompt the user to save the file

 ✓ Display the file without downloading it (common for PDFs)

 ✓ Display an error message (if the browser can’t handle or doesn’t recog-
nize the type of file involved)

 To help users download files successfully, you should provide your users with

 ✓ As much information as possible about the file formats in use

 ✓ Any special tools they need to work with the files

 • Compressed files: To work with the contents of a Zip file, the users
need a compression utility, such as WinZip or ZipIt, if their operat-
ing systems do not natively support Zip files.

 • PDFs: To view a PDF file, users need the free Adobe Acrobat
Reader.

12_9780470916599-ch06.indd 10212_9780470916599-ch06.indd 102 11/30/10 12:24 AM11/30/10 12:24 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

103 Chapter 6: Linking to Online Resources

You can make download markup more user-friendly by adding supporting
text and links, like this:

<h1>Download our new software</h1>
<p> Software <\p>
 <p>Note:
 You need a zip utility such as
7Zip (Windows) or
ZipIt (Macintosh)
 to open this file.</p>
<p>Documentation <\p>
 <p>Note:You need the free
Adobe Reader
 to view this file.</p>

Figure 6-4 shows how a browser renders this HTML — and the dialog box it
displays when you click the Software link.

Figure 6-4: This browser prompts you to save or view the Zip file.

E-mail addresses
A link to an e-mail address can automatically open a new e-mail addressed to
exactly the right person.

 This is a great way to help users send you e-mail with comments and
requests.

12_9780470916599-ch06.indd 10312_9780470916599-ch06.indd 103 11/30/10 12:24 AM11/30/10 12:24 AM

104 Part II: Formatting Web Pages with (X)HTML

An e-mail link uses the standard anchor element and an href attribute. The
value of the href attribute is the receiving e-mail address, prefaced with
mailto:.

<p>Send us your
 comments.</p>

 The user’s browser configuration controls how the browser handles an e-mail
link. Most browsers follow these two basic steps automatically:

 1. Open a new message window in the default e-mail program.

 2. Insert the address from the href attribute into the To field of the
message.

 Unfortunately, Web page mailto: links are a prime source of e-mail
addresses for spammers. Creating a form to receive feedback is often a better
idea; better still, use JavaScript encryption on the e-mail address. (For more
info, see Steven Chapman’s great article, “Hiding Your Email Address,” at
http://javascript.about.com/library/blemail1.htm.) We gener-
ally tend to provide our e-mail addresses in the form: jeff at conquest
media dot com, knowing that people are smart enough to substitute @ for
at and . for dot, but that address-harvesters usually aren’t that canny. If
you do elect to use a form instead, be aware that this too can present secu-
rity issues — always be sure to check your input, or take steps to avoid
so-called SQL injection attacks. For more info, see Colin Mackay’s article,
“SQL Injection Attacks and Some Tips on How to Prevent Them,” at www.
codeproject.com/KB/database/SQLInjectionAttacks.aspx.

12_9780470916599-ch06.indd 10412_9780470916599-ch06.indd 104 11/30/10 12:24 AM11/30/10 12:24 AM

Chapter 7

Finding and Using Images
In This Chapter
▶ Determining the right format for your images

▶ Adding images to Web pages

▶ Creating images and image maps that trigger links

Web-page designers use images to deliver important information, direct
site navigation, and contribute to the overall look and feel of a Web

page. However, you have to use images properly, or you risk reducing their
effectiveness.

 When used well, images are a key element of page design. When used poorly,
though, they can make a page unreadable, unintelligible, or inaccessible.

This chapter is a crash course in using images on Web pages. You find out
which image formats are Web-friendly and how to use (X)HTML elements to
add images to your Web pages. You also discover how to attach links to an
image and how to create image maps for a Web page.

The Role of Images in a Web Page
Images in Web sites may be logos or clickable navigation aids, or they may
display content; they can also make a page look prettier or serve to unify
or illustrate a page’s theme. A perfect example of the many different ways
images can enhance and contribute to Web pages is the White House home
page at www.whitehouse.gov, shown in Figure 7-1, where the White House
logo, photos, and even the Great Seal of the United States are used to good
effect.

13_9780470916599-ch07.indd 10513_9780470916599-ch07.indd 105 11/30/10 12:24 AM11/30/10 12:24 AM

106 Part II: Formatting Web Pages with (X)HTML

Figure 7-1: The White House Web page uses images in a variety of ways.

Creating Web-Friendly Images
You can create and save graphics in many ways, but only a few formats are
actually appropriate for images you intend to use on the Web. As you create
Web-friendly images, you must pay attention to file formats and sizes.

Often, graphics file formats are specific to operating systems or software
applications. Because you can’t predict what a visitor’s computer and soft-
ware will be (other than he or she will use some sort of Web browser), you
need images that anyone can view with any browser. This means you need
to use cross-platform file formats that users can view with any version of
Microsoft Windows, the Mac OS, or Linux.

These three compressed graphics formats are best for general use on the Web:

 ✓ Graphics Interchange Format (GIF): Images saved as GIFs often are
smaller than those saved in other file formats. GIF supports up to 256
colors only, so if you try to save an image created with millions of colors
as a GIF, you lose image quality. GIF is the best format for less-complex,
nonphotographic images, such as line art and clip art.

13_9780470916599-ch07.indd 10613_9780470916599-ch07.indd 106 11/30/10 12:24 AM11/30/10 12:24 AM

107 Chapter 7: Finding and Using Images

 ✓ Joint Photographic Experts Group (JPEG): The JPEG file format sup-
ports 24-bit color (millions of colors) and complex images, such as pho-
tographs. JPEG is cross-platform and application-independent. A good
image editing tool can help you tweak the compression so you can strike
an optimum balance between the image’s quality and its file size.

 ✓ Portable Network Graphics (PNG): PNG is the latest cross-platform and
application-independent image file format. It was developed to bring
together the best aspects of GIF and JPEG. PNG has the same compres-
sion as GIF but supports 24-bit color (and even 32-bit color) like JPEG.

Any good graphics editing tool, such as those mentioned in Chapter 23, allows
you to save images in any of these formats. Experiment with them to see how
converting a graphic from one format to another changes its appearance and
file size, and then choose whichever format produces the best results.

Table 7-1 shows guidelines for choosing a file format for images by type.

Table 7-1 Choosing the Right File Format for an Image

File
Format

Best Used For Watch Out

GIF Line art and other images with
few colors and less detail

Don’t use this format if you have a
complex image or photo.

JPEG Photos and other images with
millions of colors and lots of
detail

Don’t use with line art. This format
compromises too much quality when
you compress the file.

PNG Photos and other images with
millions of colors and lots of
detail

Don’t use with line art. PNG offers
the best balance between quality
and file size.

Optimizing images
As you build graphics for your Web page, maintain a healthy balance between file quality and file
size. If you poke around with your favorite search engine, you can find good tutorials on trimming
image file sizes and optimizing entire sites for fast download. For tips and tricks to help you build
pages that download quickly, review these handy resources:

 ✓ Optimizing images: www.yourhtmlsource.com/optimisation/image
optimisation.html

 ✓ Optimizing Web graphics: www.websiteoptimization.com/speed/12

13_9780470916599-ch07.indd 10713_9780470916599-ch07.indd 107 11/30/10 12:24 AM11/30/10 12:24 AM

108 Part II: Formatting Web Pages with (X)HTML

 For a complete overview of graphics formats, visit

 ✓ W3C’s “Graphics on the Web” article at www.w3.org/Graphics

 ✓ Quackit.com’s Web Graphics Tutorial at www.quackit.com/web_
graphics/tutorial

Adding an Image to a Web Page
When an image is ready for the Web, you need to use the correct markup to
add it to your page, but you need to know where to store your image as well.

Image location
You can store images for your Web site in several places. Image storage
works best if it uses relative URLs — stored somewhere on the Web site with
your other (X)HTML files. You can store images in the same root as your
(X)HTML files, which gets confusing if you have a lot of files, or you can
create a graphics or images directory in the root file for your Web site.

 Relative links connect resources from the same Web site. You use absolute
links between resources on two different Web sites. Turn to Chapter 6 for a
complete discussion of the differences between relative and absolute links.

 Here are three compelling reasons to store images on your own site:

 ✓ Control: When images are stored on your site, you keep complete
control over them. You know your images aren’t going to disappear or
change, and you can work to optimize them.

 ✓ Speed: If you link to images on someone else’s site, you never know
when that site may go down or respond unbelievably slowly. Linking to
images on someone else’s site also causes the other site’s owner to pay
for bandwidth required to display it on your pages — on another site!

 ✓ Copyright: If you link to images on another site to display them on your
pages, you may violate copyright laws. If you must do this, obtain per-
mission from the copyright holder to store and display images on your
Web site.

Using the element
The image () element is an empty element (sometimes called a sin-
gleton tag) that you place on the page where you want your image to go.

 An empty element uses only one tag, with neither a distinct opening nor a
distinct closing tag.

13_9780470916599-ch07.indd 10813_9780470916599-ch07.indd 108 11/30/10 12:24 AM11/30/10 12:24 AM

109 Chapter 7: Finding and Using Images

The following markup places an image named 07fg02-cd.jpg, which is
saved in the same directory as the (X)HTML file, between two paragraphs:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Optical Disks at Work</title>
</head>
 <body>
 <h1>CD/DVD as a Storage Medium</h1>
 <p>CD-ROMs and DVDs have become a standard storage option in today’s computing
 world because they are inexpensive and easy to use.</p>

 <p>To read from a CD or DVD, you only need a standard CD-ROM drive, but to
 create CDs or DVDs, you need a DVD burner (all DVD burners can read
 and write CDs as well).</p>
 </body>
</html>

A Web browser replaces the element with the image file provided
as the value for the src attribute, as shown in Figure 7-2.

Figure 7-2: Use the element to place graphics in
a Web page.

13_9780470916599-ch07.indd 10913_9780470916599-ch07.indd 109 11/30/10 12:24 AM11/30/10 12:24 AM

110 Part II: Formatting Web Pages with (X)HTML

The src attribute is like the href attribute that you use with an anchor
(<a>) element. The src attribute specifies the location for the image you
want to display on your page. The preceding example points to an image file
in the same folder as the HTML file referencing it.

Adding alternative and title text
Alternative text describes an image so those who can’t see the images for
some reason can access that text to learn more about the image. Adding
alternative text (often referred to by HTMLers as “alt text”) is a good practice
because it accounts for

 ✓ Visually impaired users who may not be able to see images and must
rely on alternative text for a text-to-speech reader to read to them

 ✓ Users who access the Web site from a phone browser with limited
graphics capabilities

 ✓ Users with slow modem connections who don’t display images

 Some search engines and cataloguing tools use alternative text to index
images.

Most of your users will see your images, but be prepared for those who won’t.
The (X)HTML specifications require that you provide alternative text to
describe each image on a Web page. Use the alt attribute with the
element to add this information to your markup, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Inside the Orchestra</title>
</head>

<body>
 <p>Among the different sections of the orchestra you will find:</p>
 <p> Strings</p>
 <p> Brass</p>
 <p><img src=”07fg03-woodwinds.jpg” alt=”clarinet and saxophone”
 title=“clarinet and saxophone”/> Woodwinds</p>
</body>
</html>

When browsers don’t display an image (or can’t, as in text-only browsers such
as Lynx), they display the alternative text instead, as shown in Figure 7-3. (We
turned images off in Internet Explorer to produce the screenshot.)

13_9780470916599-ch07.indd 11013_9780470916599-ch07.indd 110 11/30/10 12:24 AM11/30/10 12:24 AM

111 Chapter 7: Finding and Using Images

Figure 7-3: When a browser doesn’t show an image, it shows
alternative text.

When browsers show an image, browsers — including Internet Explorer,
Firefox, Chrome, Safari, and Opera — show title text as pop-up tips when
you hover your mouse pointer over an image for a few seconds, as shown in
Figure 7-4. This requires adding a title attribute to each element,
which is why it’s also included in the preceding markup. Note: alt text is
required for a page to validate, but title text is not required.

Figure 7-4: A browser displays title text as a
pop-up tip.

13_9780470916599-ch07.indd 11113_9780470916599-ch07.indd 111 11/30/10 12:24 AM11/30/10 12:24 AM

112 Part II: Formatting Web Pages with (X)HTML

This means you can use alternative text to describe the image to those who
can’t see it and/or title text to provide useful (or amusing) information about
the same image.

 The W3C’s Web Accessibility Initiative (WAI) includes helpful tips for creat-
ing useful and usable alternatives to visual content at www.w3.org/TR/
WCAG10-TECHS/#gl-provide-equivalents.

Specifying image size
You can use the height and width attributes with the element to
let the browser know just how tall and wide an image is (in pixels; px):

<p><img src=”07fg03-trumpet.jpg”
 width=”50” height=”70” alt=”trumpet” />Brass</p>

Most browsers download the HTML and text associated with a page before
they download the page graphics. Instead of making users wait for the whole
page to download, browsers typically display the text first and then fill in
graphics as they become available. If you tell the browser how big a graphic
is, the browser can reserve a spot for it in the page display. This speeds the
process of adding graphics to the Web page.

 You can check the width and height of an image in pixels in any image editing
program, or in the image viewers built into Windows and the Mac OS. (You
might be able simply to view the properties of the image in either Windows
or the Mac OS to see its height and width.)

Another good use of the height and width attributes is to create colored
lines on a page by using just a small colored square. For example, this
markup adds a 10-x-10-px blue box to a Web page:

Use the element height and width attributes to set image height
and width. Thus we use these values to create a 10-x-10-px blue box in a
browser window (shown at the top of Figure 7-5) even though the original
image is 600 x 600 px. In general, it’s safe to reduce image dimensions using
these attributes although you’ll always want to check the results carefully
during testing. With any kind of aspect sensitive image, you want to maintain
its aspect ratio by dividing the original dimensions by some common value.

13_9780470916599-ch07.indd 11213_9780470916599-ch07.indd 112 11/30/10 12:24 AM11/30/10 12:24 AM

113 Chapter 7: Finding and Using Images

Figure 7-5: A series of small blue boxes.

Figure 7-5 also shows boxes with dimensions of 20 x 20 and 50 x 50 px. Here
are the changes to the values for height and width in the markup to pro-
duce the other two boxes:

 Using this technique, you can turn a single image like the blue box (only
2.39K in size) into a variety of lines — and even boxes:

 ✓ This can ensure that all dividers and other border elements on your
page use the same color because they’re all based on the same graphic.

 ✓ If you decide you want to change all your blue lines to green, you just
change the image. Every line you created changes colors.

 When you specify an image’s height and width that are different from the
image’s actual height and width, you rely on the browser to scale the image
display. This works great for single-color images (such as the blue box), but
it doesn’t work well for images with multiple colors or images that contain
actual photos. The browser doesn’t size images well, and you wind up with a
distorted picture. Figure 7-6 shows how badly a browser handles enlarging a
trumpet image when the markup multiplies the image height by four and its
width by two (note the resemblance to a flugelhorn!):

<p><img src=”07fg03-trumpet.jpg” width=”200” height=”124” alt=”trumpet”
Title = “trumpet” />Brass</p>

13_9780470916599-ch07.indd 11313_9780470916599-ch07.indd 113 11/30/10 12:24 AM11/30/10 12:24 AM

114 Part II: Formatting Web Pages with (X)HTML

Figure 7-6: Don’t use a browser to resize complex
images; use a graphics editor.

 If you need several sizes for the same image — as for a logo or navigation
button — use a large image as the master for that graphic, and make smaller
versions; doing so gives you better control over the final look and feel of each
image.

Image borders and alignment
The image element supports a border attribute, and numerous options for
aligning images are supported in (X)HTML markup, but they are deprecated
in favor of working with CSS. Although you can use these controls if you
must, we cover them only in passing in our discussion of deprecated markup
in Chapter 8, and explain how to use CSS to control image borders, position-
ing, alignment, spacing, text flow, and more in Chapter 10. In case we haven’t
made this sufficiently clear already, we strongly urge you to use CSS for bor-
ders, positioning, and alignment for both text and images, and let (X)HTML
do the job it does best: represent and point to actual content.

13_9780470916599-ch07.indd 11413_9780470916599-ch07.indd 114 11/30/10 12:24 AM11/30/10 12:24 AM

115 Chapter 7: Finding and Using Images

Images That Link
Web pages often use images for navigation. They’re prettier than plain-text
links, and you can add both form and function on your page with one element.

Triggering links
To create an image that triggers a link, you substitute an element in
place of text to which you would anchor your link. This markup links text:

<p>Visit the W3C</p>

This markup replaces the text Visit the W3C with an appropriate icon:

<p><img src=”w3.jpg”
 alt=”Visit the W3C Web Site” title = “Visit the W3C Web Site”
 height=”75” width=”131” border=”2” />

</p>

The preceding markup creates a linked image to http://www.w3.org. In
the preceding example, the alternative text now reads Visit the W3C Web
Site so users who can’t see the image know where the link goes. When a
user moves the mouse pointer over the image, the cursor changes from an
arrow into a pointing hand (or any icon the browser uses for a link).

We include a 2px border around this image as a visual cue to let users know
it also serves as a link. The border appears as a light blue outline (as shown
in Figure 7-7) until the link is followed. After that, the blue outline turns
purple to let users know this link has been visited.

Figure 7-7: Combine image and anchor elements
to create a linked image.

13_9780470916599-ch07.indd 11513_9780470916599-ch07.indd 115 11/30/10 12:24 AM11/30/10 12:24 AM

116 Part II: Formatting Web Pages with (X)HTML

A quick click of the image launches the W3C Web site. It’s as simple as that.

 As shown earlier in the chapter, you should set the border of any image you
use in a link to 0 if you want to keep the browser from surrounding your
image with a blue line. Without the line, however, users need other visual
(or alternative text) clues so they know that an image is a link. Be sure
images that serve as links scream to the user (tastefully of course) “I’m a
link!” In all cases, if the automatic outline is eliminated, you should build an
outline into the graphic itself or add a caption that indicates that the image
serves as a link.

Building image maps
When you use an element with an anchor element to create a link-
ing image, you can attach only one link to that image. To create a larger
image that connects links to different regions on the page, you need an
image map.

To create an image map, you need two things:

 ✓ An image with distinct areas obvious to users

 For example, an image of a park might show a playground, a picnic area,
and a pond area.

 ✓ Markup to map the different regions on the map to different URLs

Elements and attributes
Use the element to add the map image into your page, just as you
would any other image. In addition, include the usemap attribute to let the
browser know that image map information should go with that image. The
value of the usemap attribute is the name of your map.

You use two elements and a collection of attributes to define the image map:

 ✓ <map> holds the map information. The <map> element uses the name
attribute to identify the map. The value of name should match the value
of usemap in the element that goes with the map.

 ✓ <area /> links specific parts of the map to URLs. The <area />
element takes these attributes to define the specifics for each section
of the map:

 • shape: Specifies the shape of the region (a clickable hot spot that
makes the image map work). You can choose from rect (rectangle),
circle, and poly (a triangle or polygon).

13_9780470916599-ch07.indd 11613_9780470916599-ch07.indd 116 11/30/10 12:24 AM11/30/10 12:24 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

117 Chapter 7: Finding and Using Images

 • coords: Defines the region’s coordinates.

 A rectangle’s coordinates include the left, right, top, and bottom
points.

 A circle’s coordinates include the x and y coordinates for the
center of the circle as well as the circle’s radius.

 A polygon’s coordinates are a collection of x and y coordinates for
every vertex in the polygon.

 You can use an image map editor like Mapedit from www.
boutell.com/mapedit, or a graphics editor such as PaintShop
Photo Pro from www.corel.com, to determine image coordinates;
Mapedit also records them for you.

 • href: Specifies the URL to which the region links (can be absolute
or relative).

 • alt: Provides alternative text for the image region.

Markup
The following defines a three-region map called NavMap linked to the graph-
ics file named 07fg07-navmap.gif:

<img src=”07fg09-navmap.gif” width=”302” height=”30” usemap=”#NavMap” border=”0”
/>

<map name=”NavMap” />
 <area shape=”rect” coords=”0,0,99,30” href=”home.html” alt=”Home”
 title=”Home” />
 <area shape=”rect” coords=”102,0,202,30” href=”about.html” alt=”About”
 title=”About” />
 <area shape=”rect” coords=”202,0,301,30” href=”products.html”
 alt=”Products” title=”Products” />
</map>

Figure 7-8 shows how a browser displays this markup.

 When the mouse sits over a region in the map, the cursor turns into a point-
ing hand (just as it changes over any other hyperlink). So take advantage of
the title text to include useful information about the link and to make the map
more accessible to the visually impaired, too.

 A common use for image maps is to turn maps of places (states, countries,
cities, and such) into linkable maps. About.com’s image map tutorial at
http://webdesign.about.com/od/imagemaps/a/aabg051899a.htm
provides more details on building image maps by hand. HTML Goodies has a

13_9780470916599-ch07.indd 11713_9780470916599-ch07.indd 117 11/30/10 12:24 AM11/30/10 12:24 AM

118 Part II: Formatting Web Pages with (X)HTML

great collection of image map tutorials and information at www.htmlgoodies.
com/tutorials/image_maps/index.php. For a more fully fleshed HTML
file that implements the preceding image map example, see this book’s Web
site at www.dummieshtml.com/examples/ch07/07fg09-validx.html.

Figure 7-8: Image maps turn different areas of an image into
linking regions.

Creating image maps by hand can be tricky. Use an image editor to identify
each point in your map, and then create the proper markup for it. Most
(X)HTML tools include utilities to help you make image maps. If you take
advantage of such a tool, you can create image maps quickly and with few
errors. Find out more about (X)HTML tools in Chapter 23.

 Exercise caution when using image maps. If you’re creating a visual aid
(something like a map with links to different countries shown therein, for
example), using an image map makes perfect sense. On the other hand, you
should never use a graphic with image maps for your main navigation. (Well,
you could, but you wouldn’t like the results!) Always use (X)HTML and CSS
for your main Web site navigation, or if you must use a graphical image map,
include a text-based alternative along with that map so that visually impaired
visitors to your site can also navigate successfully by using the alternate con-
trols instead.

 In general, the best thing for navigation is to use text for button labels, and to
let CSS handle the work involved in making buttons look good. This comes in
for further discussion in Chapter 20 on CSS3, but you could simply use CSS
2.1 to make some pretty good looking buttons as well.

13_9780470916599-ch07.indd 11813_9780470916599-ch07.indd 118 11/30/10 12:24 AM11/30/10 12:24 AM

Part III
Taking Precise

Control over Web
Pages and Styles

14_9780470916599-pp03.indd 11914_9780470916599-pp03.indd 119 11/30/10 12:25 AM11/30/10 12:25 AM

In this part . . .

Here, we introduce and describe Cascading Style
Sheets (CSS), a powerful markup language designed

to supplement (X)HTML and to manage the way pages
look inside a Web browser. (X)HTML can reference CSS
by including either an external style sheet or inline CSS
markup within an (X)HTML document.

You start by familiarizing yourself with the many and vari-
ous capabilities of CSS, by looking at different kinds of
style sheets, and by getting acquainted with the rules for
handling multiple style sheets when they’re applied to a
single Web page (that’s where the Cascading in CSS comes
from). Of course, you also find out how to build and use
CSS for such things as creating visual layouts, position-
ing individual items, and handling fonts. Because CSS
also provides controls for modifying how color and text
appears on the page, we show you how to deal with these
capabilities, too.

14_9780470916599-pp03.indd 12014_9780470916599-pp03.indd 120 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 8

Deprecated (X)HTML Markup
In This Chapter
▶ Understanding deprecation

▶ Finding deprecated markup

▶ Running down the deprecated elements

▶ Listing the deprecated attributes

▶ Cleaning up after deprecated markup

By definition, to deprecate means either “to express disapproval of, to
deplore” or “to declare something obsolete or superseded.” When

(X)HTML talk turns to deprecated markup — and you’ll find this term applied
to both markup elements and attributes — however deplorable such markup
may be, rest assured that the term is used in the second sense! That is,
using deprecated markup is not recommended because the World Wide Web
Consortium (W3C) is convinced that it won’t be around forever, and because
using deprecated markup leads to all kinds of unsavory coding habits, bad
behavior, and possible jail time (just kidding on the last bit).

To understand why markup is deprecated, you need to think about the funda-
mental role of (X)HTML and how CSS plays into a thoroughly modern view of
the Web. First and foremost, (X)HTML’s job is to capture and deliver content
including both graphical and textual information, plus pointers galore (hyper-
links put the “hyper” in hypertext, after all).

Early implementations of HTML included plenty of presentation controls as
well as content elements and linking mechanisms. Over time, Web designers
came to understand that separating content from presentation was highly
desirable. CSS has come to take over the presentation role much more capa-
bly and effectively than HTML ever could. As you look at the deprecated
markup elements and attributes covered in this chapter, you’ll see that the
vast majority deal with presentation controls best turned over to CSS, along
with historical remnants of now-obsolete tools, technologies, and page
design approaches.

15_9780470916599-ch08.indd 12115_9780470916599-ch08.indd 121 11/30/10 12:25 AM11/30/10 12:25 AM

122 Part III: Taking Precise Control Over Web Pages and Styles

 Sure, you can find plenty of sites that use deprecated markup, and you may
even find some deprecated markup in your own work here and there. Use
this markup at your own risk, though, and do yourself a favor: As old pages
give way to new, take the time and expend the effort to get that nasty old
deprecated markup out of your pages!

And Now, A Word from Our Sponsor
If you look at the current HTML 4 specification at the W3C Website (available
at www.w3.org/TR/REC-html40/conform.html), you’ll find the following
language used to explain deprecated and obsolete markup:

Deprecated

A deprecated element or attribute is one that has been outdated by newer
constructs. Deprecated elements are defined in the reference manual in
appropriate locations, but are clearly marked as deprecated. Deprecated
elements may become obsolete in future versions of HTML.

User agents should continue to support deprecated elements for reasons of
backward compatibility.

Definitions of elements and attributes clearly indicate which are
deprecated.

This specification includes examples that illustrate how to avoid using
deprecated elements. In most cases these depend on user agent support
for style sheets. In general, authors should use style sheets to achieve
stylistic and formatting effects rather than HTML presentational attributes.
HTML presentational attributes have been deprecated when style sheet
alternatives exist. . . .

Obsolete

An obsolete element or attribute is one for which there is no guarantee of
support by a user agent. Obsolete elements are no longer defined in the
specification, but are listed for historical purposes in the changes section of
the reference manual.

As you read through this language, the term “user agent” is a technical term
for any program that reads and interprets (X)HTML markup. Primarily, this
means a Web browser of some kind, although lots of other programs read
markup, too (think search engine, validator, editor, and so forth). Note that
most programs will support deprecated markup, but its use is best avoided
through — you guessed it — style sheets, or CSS.

15_9780470916599-ch08.indd 12215_9780470916599-ch08.indd 122 11/30/10 12:25 AM11/30/10 12:25 AM

123 Chapter 8: Deprecated (X)HTML Markup

Obsolete markup may still hang around on certain old and moldy Web pages,
but that markup doesn’t work in newer Web browsers. We don’t even cover
it in this book. If your curiosity about such markup must be satiated, please
read the older HTML specifications!

On the other hand, if you want to dig deeper into markup details, check
out the latest HTML 4.01 specification at www.w3.org/TR/html4/cover.
html#minitoc.

If you want to jump right to deprecation, it’s covered in Appendix A of the
HTML 4.01 specification. The real action, however, is in the sections named
“Index of Elements” and “Index of Attributes.” In fact, extract the items
marked D for deprecated in those two indices, and that’s the basic skeleton
for the next two sections that follow.

Deprecated Elements
We present these deprecated elements in alphabetical order in Table 8-1.
Where replacement markup or alternate techniques (can you say “CSS”?)
exist, we point that out, too. If the type is pair, that means you need opening
and closing tags for the element (for example, <center>this</center>);
if the type is empty, that means there’s only one tag for the element (for
example, <isindex … />).

Table 8-1 Deprecated HTML Markup Elements

Name Type Description Alternative

applet pair Invoke Java applets Object

basefont pair Base font size CSS font controls

center pair Shorthand for <div
align=”center”>

CSS text alignment controls

dir pair Directory list type with CSS formatting

font pair Local font assignment CSS font-family

isindex empty Single line input
prompt

HTML forms markup

menu pair List type for menu
options

 with CSS formatting

s pair Strikethrough text CSS text-decoration

strike pair Strikethrough text CSS text-decoration

u pair Underline text CSS text-decoration

15_9780470916599-ch08.indd 12315_9780470916599-ch08.indd 123 11/30/10 12:25 AM11/30/10 12:25 AM

124 Part III: Taking Precise Control Over Web Pages and Styles

As you look over Table 8-1, only two markup elements are nonpresentational:

 ✓ applet: The applet tag hearkens back to an era when the Java pro-
gramming language represented the primary means for adding code ele-
ments directly into Web pages. Today, the object element allows page
developers to work with all kinds of programming languages, including
Java, through a single uniform (X)HTML element.

 ✓ isindex: The isindex element was designed to enable quick-and-dirty
access to a single line of input text from users. Today, the various ele-
ments that go into HTML forms (covered in Chapter 14 of this book) are
used instead.

Deprecated Attributes
Whereas only 10 elements are deprecated in (X)HTML, a great many more
attributes are deprecated — 44 of them are shown in Table 8-2, in fact (of
which 32 are unique, and the rest repeats). Indeed, some attributes appear
more than once in this table because they have different meanings when
associated with specific (X)HTML elements. We use the W3C shorthand for
values that attributes take, and explain those type entries in a list that fol-
lows the table. Here, we don’t discuss alternatives or replacements because
CSS supersedes the vast majority of deprecated elements.

Table 8-2 Deprecated HTML Attributes

Name Related
Elements

Type Description

Align Caption %CAlign Table caption alignment

Align applet,
iframe,
img, input,
object

%IAlign Vertical or horizontal
alignment

Align Legend %LAlign Form fieldset control

Align Table %TAlign Table position relative to
window

Align Hr LCR Horizontal rule alignment

Align div,h1...
h6,p

LCRJ Text block alignment

15_9780470916599-ch08.indd 12415_9780470916599-ch08.indd 124 11/30/10 12:25 AM11/30/10 12:25 AM

125 Chapter 8: Deprecated (X)HTML Markup

Name Related
Elements

Type Description

Align col,
colgroup,
tbody, td,
tfoot, th,
thead, tr

LCRJ Table alignment

Alink Body %Color Color for selected (high-
lighted) links

Alt Applet %Text Short description for
applet function

Archive Applet CDATA Comma separated java
archive (.jar) list

background Body %URI Image file for document
background

Bgcolor table, tr,
td, th

%Color Table element back-
ground color

Bgcolor Body %Color General document back-
ground color

Border img, object %Pixels Width for link border

Clear Br LRAN Control of text flow after
line break

Code Applet CDATA Applet Java class file

codebase Applet %URI Base location for classid,
data, and archive files

Color basefont,
font

%Color Text color

Compact dir, dl,
menu, ol, ul

*self Reduced interword
spacing

Face basefont,
font

CDATA Comma-separated list of
font names

Height td, th %Length Table cell height

Height Applet %Length Initial height for applet
window

Hspace applet,
img, object

%Pixels Horizontal gutter around
box

Language Script CDATA Predefined script lan-
guage name

(continued)

15_9780470916599-ch08.indd 12515_9780470916599-ch08.indd 125 11/30/10 12:25 AM11/30/10 12:25 AM

126 Part III: Taking Precise Control Over Web Pages and Styles

Table 8-2 (continued)

Name Related
Elements

Type Description

Link Body %Color Color for links in docu-
ment body

Name Applet CDATA Provides id so applets
can find each other

Noshade Hr *self Turn off dropshadow on
horizontal rule

Nowrap td, th *self Suppress word wrap in
table cells

Object Applet CDATA Serialized applet file
(read in pieces)

Prompt Isindex %text Prompt message to
solicit input

Size Hr %Pixels Size of horizontal rule

Size Font CDATA Various positive integer
values for font size

Size Basefont CDATA Base font size for all font
elements

Start Ol Number Starting value for num-
bered list

Text Body %Color Document text color

Type li, ol, ul ListStyle List item, numbering, and
bullet styles

Value Li Number Reset list sequence
number

Version Html CDATA HTML version number for
DTD in use

Vlink Body %Color Color for visited links

Vspace applet,
img, object

%Pixels Vertical gutter around
box

Width Hr %Length Horizontal rule width

Width td,th %Length Table cell width

Width Applet %Length Initial width of applet
window/box

Width Pre Number Width of preformatted
text area in characters

15_9780470916599-ch08.indd 12615_9780470916599-ch08.indd 126 11/30/10 12:25 AM11/30/10 12:25 AM

127 Chapter 8: Deprecated (X)HTML Markup

The following list describes the attribute type abbreviations and values in
Table 8-2:

 ✓ %CAlign: Column alignment in table

 ✓ CDATA: SGML (Standard Generalized Markup Language) data type for
general character data

 ✓ %Color: Color name or hexcode

 ✓ %IAlign: Alignment for iframes: top, middle, bottom, left, right

 ✓ %LAlign: Alignment for legends: top, bottom, left, right

 ✓ LCR: Left, Center, Right

 ✓ LCRJ: Left, Center, Right, Justified

 ✓ %Length: Length in pixels or percentages, or relative length

 ✓ ListStyle: List item styles, list bullet styles, list numbering styles

 ✓ LRAN: Left, All, Right, None

 ✓ Number: A string of one or more digits (values from 0 to 9)

 ✓ %Pixel: Integer representing length in pixels

 ✓ *self: Attribute name repeated as value (compact=”compact”)

 ✓ %TAlign: Alignment for table cells: left, center, right, justify, char

 ✓ %Text: Character data

 ✓ %URI: Uniform Resource Identifier, usually a URL

 Iframe is an HTML construct that functions like a window frame within a
Web page but is used to insert one HTML document inside another, where
the iFrame occupies only a specified area and scrolls like any other static
page element. Content in an iFrame scrolls only within the specified display
area if it is larger than the iFrame window itself. Unlike typical HTML frames
used to divide the browser window into multiple display areas, an iFrame
serves to insert an external element — often, an advertisement or an external
text block — into a specific area on a Web page.

How to Handle Deprecated Markup
The short, sweet admonition of how to handle deprecated markup in your
code is, “Get rid of it!” In practice, though, replacing the vast majority of dep-
recated elements and attributes will come quite naturally upon developing
familiarity — and hopefully, even comfort — with Cascading Style Sheets (CSS).
After you learn how to position items on a page, and to work with margins and
padding, you can dispense entirely with most of the items in Table 8-2, and
many of those in Table 8-1 as well.

15_9780470916599-ch08.indd 12715_9780470916599-ch08.indd 127 11/30/10 12:25 AM11/30/10 12:25 AM

128 Part III: Taking Precise Control Over Web Pages and Styles

A more serious question might be voiced as “What do I do when an
(X)HTML editing tool uses deprecated markup?” If a third-party tool is gen-
erating markup on your behalf, at your behest, and to help you realize your
page designs, we urge you to find and use tools that don’t use deprecated
markup. It’s the only way to be sure your pages can stand the test of time.
Fortunately, the tools that we recommend in Chapter 23 — as well as a great
many more (X)HTML editors and development environments — have already
eliminated deprecated markup, so hopefully you won’t have to worry about
it, either.

In general, when it comes to dealing with deprecated markup, you must
decide what to do with the markup you need to remove from the Web page
currently under consideration. In many cases, you’ll simply remove HTML
presentational markup and replace it with a CSS equivalent. Thus, for exam-
ple, if you wanted text for a paragraph to be justified, you would take the
markup shown in the next code snippet (commented to help you tell things
apart) and replace it with the markup shown in the following snippet:

<!-- This markup uses the deprecated align=”justify” code -->
<p align=”justify”>This sample paragraph needs enough text to be
at least three lines long, to show the effects of justification
at work. In fact, the longer the better, which is why we’ve
stretched this example out as far as we can make it go.</p>

<!-- This markup uses in-line style for a quick&dirty contrast -->
<p style=”text-align: justify;”>This sample paragraph needs enough
text to be at least three lines long, to show the effects of
justification at work. In fact, the longer the better, which is why
we’ve stretched this example out as far as we can make it go.</p>

Not all replacements for deprecated markup are quite so simple and straight-
forward as the one just shown. Interestingly, all of the presentation markup
replacements are generally just that easy, but some other things have no real
counterparts (or don’t have counterparts yet, though HTML5 and CSS3 will
remedy a few such things). That’s why some planning and thought are often
required when deciding what to do to remove deprecated markup. A bit of
redesign or rework is often necessary to put things back together properly.

15_9780470916599-ch08.indd 12815_9780470916599-ch08.indd 128 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 9

Introducing Cascading
Style Sheets

In This Chapter
▶ Understanding CSS

▶ Creating style rules

▶ Linking style rules to Web pages

▶ Introducing CSS properties

▶ Understanding inheritance and the style cascade

The goal of Cascading Style Sheets (CSS) is to separate a Web page’s style
from its structure, to make it easier to maintain Web pages you created.

The structural elements of a page, such as headings (<h1> through <h6>)
and body text, don’t affect how those elements look. By applying styles to
those elements, though, you can specify an element’s layout on the page and
add design attributes (such as fonts, colors, and text indentation).

Style sheets give you precise control over how structural elements appear
on a Web page. Better yet, you can create one style sheet for an entire Web
site to keep the layout and look of your content consistent from page to page.
And here’s the icing on this cake: Style sheets are easy to build and even
easier to integrate into Web pages. In fact, with style sheets, you can

 ✓ Add style markup to individual (X)HTML elements (called inline style).

 ✓ Create sequences of style instructions in the head of an (X)HTML docu-
ment (called an internal style sheet).

 ✓ Refer to a separate standalone style sheet via a link or other reference
(called an external style sheet) inside your (X)HTML document.

In short, there are lots of ways to add style to a Web page!

16_9780470916599-ch09.indd 12916_9780470916599-ch09.indd 129 11/30/10 12:25 AM11/30/10 12:25 AM

130 Part III: Taking Precise Control Over Web Pages and Styles

 As more Web sites transition to XHTML, the goal of the markup powers-that-
be is to eventually deprecate (make obsolete) all formatting markup, such as
the element, from HTML’s collection of elements. Someday, all pre-
sentation will belong to CSS. We cover this stale, old deprecated markup in
Chapter 8 of this book.

When you want tight control over the display of your Web pages, style sheets
are the way to go:

 ✓ Generally, style sheets give you more flexibility than markup can.

 ✓ Future HTML and XHTML elements will no longer include display-
oriented attributes.

 Most modern browsers handle CSS well. However, older browsers — such
as Internet Explorer 4.0 and Netscape Navigator — have trouble displaying
CSS correctly. Earlier browsers can’t display CSS at all. If many of your site’s
users still use one or more of these obsolete browsers, test your pages inside
those browsers; make sure your site’s users can read your pages.

Advantages of Style Sheets
HTML’s formatting capabilities are limited, to say the least. When you design
a page layout in HTML, you’re limited to tables, font controls, and a few inline
styles, such as bold and italic. Style sheets supply lots of tools to format Web
pages with precise controls. With style sheets, you can

 ✓ Control every aspect of page display. Specify the amount of space
between lines, character spacing, page margins, image placement, and
more. You can also specify positioning of elements on your pages.

 ✓ Apply changes globally. Ensure consistent design across an entire Web
site by applying the same style sheet to every Web page.

 You can modify the look and feel of an entire site by changing just one
document (the style sheet) instead of the markup on every page. Need
to change the look for a heading? Redefine that heading’s style attri-
butes in the style sheet and save the sheet. The heading’s look changes
throughout your site. You can imagine one page after rapidly adopting
the new look in a “cascade” of changes (hence the name) although that
moniker is just a metaphor because the cascade is instantaneous.

 ✓ Instruct browsers to control appearance. Provide Web browsers with
more information about how you want your pages to appear than you
can communicate using HTML.

 ✓ Create dynamic pages. Use JavaScript or another scripting language
along with style sheets to create text and other content that moves,
appears, or hides in response to user actions.

16_9780470916599-ch09.indd 13016_9780470916599-ch09.indd 130 11/30/10 12:25 AM11/30/10 12:25 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

131 Chapter 9: Introducing Cascading Style Sheets

What CSS can do for a Web page
The gist of how style sheets work is as follows:

 1. You define rules in a style sheet that specify how you want content that
is described by a set of markup to appear.

 For example, you could specify that every first-level heading (<h1>) be
displayed in purple Garamond 24-point type with a yellow background
(not that you would, but you could).

 2. You link style rules and markup.

 3. The browser does the rest.

With the current specification, CSS2.1, you can

 ✓ Specify font type, size, color, and effects.

 ✓ Set background colors and images.

 ✓ Control many aspects of text layout, including alignment and spacing.

 ✓ Set margins and borders.

 ✓ Control list display.

 ✓ Define table layout and display.

 ✓ Automatically generate content for standard page elements, such as
counters and footers.

 ✓ Control cursor display.

 ✓ Define aural style sheets for text-to-speech readers.

CSS3: Next-generation style sheets
The next generation of CSS — CSS3, that is —
is a collection of modules that address differ-
ent aspects of Web-page formatting, such as
fonts, background colors, lists, and text colors.
The first of these modules became standards
(officially called Candidate Recommendations)
in mid-2004. As of mid-2010, though, the major-
ity of CSS3 modules haven’t reached Candidate
Recommendations status, and few browsers
implement CSS3 features. In short, you don’t
need to worry about CSS3 — at least, not yet.

The W3C devotes an entire section of its Web
site to CSS at www.w3.org/Style/CSS/
current-work. You can find general CSS
information there, as well as keep up with the
status of CSS3. The site links to good CSS ref-
erences and tutorials, and includes information
on software packages that can make your style
sheet endeavors easier.

16_9780470916599-ch09.indd 13116_9780470916599-ch09.indd 131 11/30/10 12:25 AM11/30/10 12:25 AM

132 Part III: Taking Precise Control Over Web Pages and Styles

What you can do with CSS
You have a healthy collection of properties to work with as you write your
style rules. You can control just about every aspect of a page’s display —
from borders to font sizes and everything in-between:

 ✓ Background properties control the background colors associated with
blocks of text and with images. You can also use these properties to
attach background colors to your page or to individual elements, such
as horizontal rules.

 ✓ Border properties control borders associated with a page, lists, tables,
images, and block elements (such as paragraphs). You can specify
border width, color, style, and distance from element content.

 ✓ Classification properties control how elements (such as images) flow
on the page relative to other elements. You can use these properties to
integrate images and tables with the text on your page.

 ✓ List properties control how lists appear on your page, such as

 • Managing list markers

 • Using images in place of bullets

 ✓ Margin properties control the margins of the page and margins around
block elements, tables, and images. These properties extend ultimate
control over the white space on your page.

 ✓ Padding properties control the amount of white space around any block
element on the page. When you use these with margin and border prop-
erties, you can create complex layouts.

 ✓ Positioning properties control where elements sit on the page; you can
use them to put elements in specific places on the page.

 ✓ Size properties control how much space (in height and width) your ele-
ments (both text and images) take up on your page. They’re especially
handy for limiting the size of text boxes and images.

 ✓ Table properties control the layout of tables. You can use them to con-
trol cell spacing and other table-layout specifics.

 ✓ Text properties control how text appears on a page. You can set such
properties as font size, font family, height, text color, letter and line
spacing, alignment, and white space. These properties give you more
control over text with style sheets than the font HTML element can.

 Entire books and Web sites are devoted to the fine details of using each and
every property in these categories. We suggest one of these references:

16_9780470916599-ch09.indd 13216_9780470916599-ch09.indd 132 11/30/10 12:25 AM11/30/10 12:25 AM

133 Chapter 9: Introducing Cascading Style Sheets

 ✓ CSS Web Design For Dummies by Richard Mansfield.

 ✓ Westciv’s CSS2 reference on the Web at www.westciv.com/style_
master/academy/css_tutorial/index.html.

 Although CSS syntax is straightforward, combining CSS styles with markup to
fine-tune a page layout can get a little complicated. To become a CSS guru,
you just need to

 ✓ Know how the different properties work.

 ✓ Experiment, to observe how browsers handle CSS.

 ✓ Practice, to learn how to convey your message on the Web using CSS.

Property measurement values
Many HTML properties use measurement values. We tell you which measure-
ment values go with which properties throughout this book. Standard prop-
erty measurements dictate the size of a property in two ways.

Absolute value measurements can dictate a specific length or height using
one of these values:

 ✓ Inches, such as .5in

 ✓ Centimeters, such as 3cm

 ✓ Millimeters, such as 4mm

 ✓ Picas, such as 1pc

 There are six picas in an inch.

 ✓ Points, such as 16pt

 There are 12 points in a pica.

 ✓ Pixels, such as 13px (these match up to individual dots on your com-
puter display).

Relative value measurements base length or height on a parent element value
in the document:

 ✓ p%: A percentage of the current font-size value, such as 150%.

 For example, you can define a font size of 80% for all paragraphs. If your
document body is defined with a 15-pt font, the font size of the para-
graphs is 12 pt (80% of 15).

16_9780470916599-ch09.indd 13316_9780470916599-ch09.indd 133 11/30/10 12:25 AM11/30/10 12:25 AM

134 Part III: Taking Precise Control Over Web Pages and Styles

 ✓ ex: A value that is relative to the x-height of the current font. An x-height
is the equivalent of the height of the lowercase character of a font, such
as 1.5ex.

 ✓ em: A value that is relative to the current font size, such as 2em. For any
given typeface, 1 em is equivalent to its point size. (Thus, a 16pt font has
an em size of 16pt: Get it?)

 In fact, both 1em and 100% equal the current size.

 Be careful when using these values; certain properties support only some
measurement values — length values, say, but not relative values. Don’t let
this jargon scare you. Just define the size in a value you’re familiar with. If
that doesn’t work, try something else.

CSS Structure and Syntax
A style sheet is made of style rules. Each style rule has two parts:

 ✓ Selector: Specifies the markup element to which style rules apply

 ✓ Declaration: Specifies how content described by the markup looks

You use a set of punctuation marks and special characters to define a style
rule. The syntax for a style rule always follows this pattern:

selector {declaration;}

A semicolon always follows each declaration to make it easier for computers
to distinguish them. A single selector can include one or more declarations,
as we explain later in this chapter. Furthermore, each declaration breaks
down into two sub-items:

 ✓ Properties are aspects of how the computer displays text and graphics
(for example, font size or background color).

 ✓ Values provide data to specify how you want text and images to look on
your page (for example, a 24pt font size or a yellow background).

You separate the property from the value in a declaration with a colon.

 Each declaration ends with a semicolon.

selector {property: value;}

16_9780470916599-ch09.indd 13416_9780470916599-ch09.indd 134 11/30/10 12:25 AM11/30/10 12:25 AM

135 Chapter 9: Introducing Cascading Style Sheets

For example, these three style rules set the colors for first-, second-, and
third-level headings:

h1 {color: teal;}
h2 {color: maroon;}
h3 {color: black;}

The CSS specification lists exactly which properties you can work with in
your style rules and different values they can take. Most are pretty self-
explanatory (color and border, for example). See “What you can do with
CSS,” earlier in this chapter, for a quick rundown of properties included in
the CSS2 specification.

Style sheets override a browser’s internal display rules; your style decla-
rations affect the final appearance of the page in the user’s browser. This
means that you can control how your content looks and create a more con-
sistent and appropriate experience for visitors.

For example, the following style rules specify font sizes (in percentages, rela-
tive to the base font) for first-, second-, and third-level headings:

h1 {font-size: 300%;}
h2 {font-size: 200%;}
h3 {font-size: 150%;}

Figure 9-1 shows a simple HTML page with all three heading levels (plus
some body text) without the style sheet applied. The browser uses its default
settings to display the headings in different font sizes.

Figure 9-1: An HTML page without style specifications.

16_9780470916599-ch09.indd 13516_9780470916599-ch09.indd 135 11/30/10 12:25 AM11/30/10 12:25 AM

136 Part III: Taking Precise Control Over Web Pages and Styles

Figure 9-2 shows the same Web page with a style sheet applied. Things look
very different because the body text is changed to a sans serif font, header
titles are set for different colors, paragraph text is italic, and heading sizes
are magnified beyond their usual settings.

Figure 9-2: An HTML page with style specifications in effect.

 Users can change their preferences so that their browsers ignore your style
sheets (although most users will use your sheets). Test Web pages with style
sheets turned off to be sure they look good (or acceptable) without your
style sheets.

For detailed instructions on disabling or altering style sheets, see Jim Hatcher’s
discussion “Reading Web Pages without CSS” at www.jimthatcher.com/
webcourseb.htm. The instructions vary by Web browser, but you can use
accessibility plug-ins to manage or disable style sheets.

Selectors and declarations
You probably want a style rule to affect the display of more than one prop-
erty for any given selector. You can create several style rules for a single
selector, each with one declaration, like this:

h1 {color: teal;}
h1 {font-family: Arial;}
h1 {font-size: 36px;}

16_9780470916599-ch09.indd 13616_9780470916599-ch09.indd 136 11/30/10 12:25 AM11/30/10 12:25 AM

137 Chapter 9: Introducing Cascading Style Sheets

However, such a large collection of style rules can be hard to manage. CSS
allows you to combine several declarations in a single style rule that affects
multiple display characteristics for a single selector, like this:

h1 {color: teal;
 font-family: Arial;
 font-size: 36px;}

All the declarations for the h1 selector are within the same set of brackets
({}) and are separated by semicolons (;). You can put as many declarations
as you want in a style rule; just end each declaration with a semicolon.

 The semicolon at the end of the last declaration is optional. Some people
include it to be consistent and end every declaration with a semicolon, but
it’s not necessary. We use it both ways throughout this book, but when you
stop to think about it, it’s a good idea to be consistent and always use a semi-
colon for each and every declaration.

 From a purely technical standpoint, white space is irrelevant in style sheets
(just as it is in HTML), but you should use a consistent spacing scheme to
make it easy to read and edit your style sheets. One exception to this white
space rule occurs when you declare multiple font names in the font-family
declaration. See the “Font family” sidebar for more information.

You can make the same set of declarations apply to a collection of selectors,
too: You just separate the selectors with commas. The following style rule
applies the declarations for text color, font family, and font size to the h1, h2,
and h3 selectors:

h1, h2, h3 {color: teal;
 font-family: Arial;
 font-size: 300%;}

Font family
When assigning values to the font-family
property, you can use a list of comma-sepa-
rated font names. These names must match
fonts available to a user’s Web browser. If a
font name includes spaces — such as Times
New Roman — enclose it in quotation marks.

h1 {font-family: Verdana, “Times New
Roman”, serif;}

In the preceding rule, the browser knows to use
Verdana first; if that’s not available, it looks for
Times New Roman, and then uses a generic
serif font as its last option. Chapter 11 covers
fonts in CSS.

16_9780470916599-ch09.indd 13716_9780470916599-ch09.indd 137 11/30/10 12:25 AM11/30/10 12:25 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

138 Part III: Taking Precise Control Over Web Pages and Styles

 Sample style rules in this section show that style sheet syntax relies heavily
on punctuation. When a style rule doesn’t work exactly as you expect, make
sure that you’re not using a semicolon where you need a colon, or a paren-
thesis where you need a curly bracket. Watch out for commas and semi-
colons, too! Validation tools help catch these lapses: Use them.

 The W3C CSS validation service at http://jigsaw.w3.org/css-validator
helps find problems in your style sheets.

Working with style classes
Sometimes you need style rules that apply only to specific instances of an
HTML markup element. For example, if you want a style rule that applies only
to paragraphs that hold copyright information, you need a way to tell the
browser that a rule has a limited scope.

To target a style rule closely, combine the class attribute with a markup ele-
ment. The following examples show HTML for two kinds of paragraphs:

 ✓ A regular paragraph (without a class attribute)

<p>This is a regular paragraph.</p>

 ✓ A class attribute with the value of copyright

<p class=”copyright”>This is a paragraph of class copyright © 2011.
</p>

To create a style rule that applies only to the copyright paragraph, follow the
paragraph selector in the style rule with

 ✓ A period (.)

 ✓ The value of the class attribute, such as copyright

The resulting rule looks like this:

p.copyright {font-family: Arial;
 font-size: 12px;
 color: white;
 background: teal;}

This style rule specifies that all paragraphs of class copyright display white
text on a teal background in 12px Arial font. Figure 9-3 shows how a browser
applies this style only to a paragraph where class equals copyright.

16_9780470916599-ch09.indd 13816_9780470916599-ch09.indd 138 11/30/10 12:25 AM11/30/10 12:25 AM

139 Chapter 9: Introducing Cascading Style Sheets

Figure 9-3: Classes can target your style rules more precisely.

You can also create style-rule classes that aren’t associated with any ele-
ment, like the following example:

.warning {font-family: Arial;
 font-size: 14px;
 background: blue;
 color: white;}

You can use this style class with any element by adding class=”warning”
to that element. Figure 9-4 shows how a browser applies the warning style to
the paragraph and heading, but not to the block quote, in this HTML:

<p>This is a paragraph without the warning class applied.</p>
<blockquote>This is a block quote without a defined class.</blockquote>
<h1 class=”warning”>Warnings</h1>
<p class=”warning”>This is a paragraph with the warning class applied.</p>

You can also use the span element to selectively apply custom styles to
inline content (or to create arbitrary content containers that extend from the
opening tag to its closing counterpart):

<p>This is a paragraph without the warning class
 applied only to the words “warning class.”</p>

16_9780470916599-ch09.indd 13916_9780470916599-ch09.indd 139 11/30/10 12:25 AM11/30/10 12:25 AM

140 Part III: Taking Precise Control Over Web Pages and Styles

Figure 9-4: You can use classes to create style rules that
work with any element.

Working with style IDs
You can also use the id=”name” attribute with style markup when you want
to create rules that apply only to certain instances of markup elements. Say
you want to define a style that applies only to the first paragraph on each
Web page so that it gets handled differently from other ordinary paragraphs,
which might also have their own style settings.

To do this, you create an ID selector in your style definitions (either in the
head of an (X)HTML document in an internal style sheet, or in a standalone
CSS-only external style sheet), like this:

#first-graph {font-style: bold;
 text-indent: -0.25in;}

Then, whenever you write markup for a Web page, you craft the (X)HTML
each initial paragraph as follows:

<p id=”first-graph”>The initial paragraph on will feature an 0.15 inch
 “hanging indent” and the typeface will be in heavy bold.</p>
<p>Subsequent paragraphs will use whatever style you have (or haven’t) defined
 for the base paragraph style. In this case, this means ragged right
 justification and plain, unbolded text.</p>

Figure 9-5 illustrates how the Web page looks when using ID selectors to
apply CSS definitions. ID selectors are useful because they can apply to all
kinds of different markup elements (they’re not tied to a single element as
with class definitions) and they apply only when and as they’re used. Very
handy!

16_9780470916599-ch09.indd 14016_9780470916599-ch09.indd 140 11/30/10 12:25 AM11/30/10 12:25 AM

141 Chapter 9: Introducing Cascading Style Sheets

Figure 9-5: ID selectors apply to many kinds of markup elements.

Inheriting styles
A basic concept in HTML (and markup in general) is nesting tags:

 ✓ Every valid HTML document nests within <html> and </html> tags.

 ✓ Everything a browser displays in a window is nested within <body> and
</body> tags. (That’s just the beginning, really.)

The CSS specification recognizes that you often nest one element inside
another and wants to be sure that styles associated with the parent element
find their way to the child element. This mechanism is called inheritance.

When you assign a style to an element, the same style applies to all elements
nested inside that element. For example, a style rule for the body element
that sets page background, text color, font size, font family, and margins
looks like this:

Pay attention to inheritance!
When you build complex style sheets to guide
the appearance of every aspect of a page, keep
inheritance in mind. For instance, if you set mar-
gins for a page in a body style rule, all margins
you set for every other element on the page are
based on margins set for the body. If you know
how your style rules work together, you can use
inheritance to minimize style rule repetition and
create a cohesive display for your page.

This chapter covers basic CSS syntax, but you
can fine-tune your style rules with advanced
techniques. A complete overview of CSS
syntax rules is available in the “CSS Structure
and Rules” tutorial by the Web Design Group at
www.htmlhelp.com/reference/css/
structure.html.

16_9780470916599-ch09.indd 14116_9780470916599-ch09.indd 141 11/30/10 12:25 AM11/30/10 12:25 AM

142 Part III: Taking Precise Control Over Web Pages and Styles

body {background: teal;
 color: white;
 font-size: 18px;
 font-family: Garamond;
 margin-left: 72px;
 margin-right: 72px;
 margin-top: 72px;}

 To set style rules for the entire document, set them in the body element.
Changing the font for the entire page, for example, is much easier to do that
way; it beats changing every single element, one at a time.

When you link the following HTML to the preceding style rule, which applies
only to the body element, that formatting is inherited by all subordinate
elements:

<body>
 <p>This paragraph inherits the page styles.</p>
 <h1>As does this heading</h1>

 As do the items in this list
 Item
 Item

</body>

Using Different Kinds of Style Sheets
When you finish creating your style rules, you’re ready to connect them to
your HTML page using one of these options:

 ✓ Insert style information into your document. You can either

 • Use the <style> element to build a style sheet into a Web page.

 This is an internal style sheet.

 • Use the style attribute to add style information directly to a tag.

 This is an inline style.

 ✓ Use an external style sheet. You can either

 • Use the <link> tag to link your Web page to an external style
sheet.

 • Use the CSS @import statement to import an external style sheet
into the Web page.

16_9780470916599-ch09.indd 14216_9780470916599-ch09.indd 142 11/30/10 12:25 AM11/30/10 12:25 AM

143 Chapter 9: Introducing Cascading Style Sheets

Internal style sheets
An internal style sheet lives in your HTML page. Just add style rules to the
<style> element in the document header. You can include as many (or as
few) style rules as you want in an internal style sheet. (See Listing 9-1.)

Listing 9-1: Adding an Internal Style Sheet to an HTML Document
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Internal Style Sheet Example</title>
 <style type=”text/css”>
 body {background: black;
 color: white;
 font-size: 16px;
 font-family: Garamond;
 margin-left: 72px;
 margin-right: 72px;
 margin-top: 72px;}

 h1, h2, h3 {color: teal;
 font-family: Arial;
 font-size: 36px;}

 p.copyright {font-family: Arial;
 font-size: 12px;
 font-color: white;
 background: black;}

 .warning {font-family: Arial;
 font-size: 16px;
 font-color: orange;}
 </style>
</head>
<body>

<!-- Document content goes here -->

</body>
</html>

 The benefit of using an internal style sheet is convenience: Your style rules
are on the same page as your markup, so you can tweak both quickly. And
if you want the same style rules to control the appearance of more than one
HTML page, move those styles from individual Web pages to an external style
sheet.

16_9780470916599-ch09.indd 14316_9780470916599-ch09.indd 143 11/30/10 12:25 AM11/30/10 12:25 AM

144 Part III: Taking Precise Control Over Web Pages and Styles

External style sheets
An external style sheet holds all your style rules in a separate text document
that you can reference from any HTML file on your site. You must maintain a
separate style sheet file, but an external style sheet offers benefits for over-
all site maintenance. If your site’s pages use the same style sheet, you can
change any formatting characteristic on all pages with a change to the style
sheet.

 We recommend using external style sheets on your sites.

Linking
To reference an external style sheet, use the link element in the Web page
header, like this:

<html>
<head>
 <title>External Style Sheet Example</title>
 <link rel=”stylesheet” type=”text/css” href=”styles.css” />
<head>
<body>

<!-- Document content goes here -->

</body>
</html>

Use inline styles carefully
You can attach individual style rules, called an inline style, to individual elements in an HTML docu-
ment. An inline style rule attached to an element looks like this:

<p style=”color: green;”>Green text.</p>

Adding style rules to an element isn’t really the best approach. We generally recommend that you
choose either internal or (preferably) external style sheets for your rules instead of attaching the
rules to individual elements in your document. Here are a few reasons:

 ✓ Your style rules get mixed up in the page and are hard to find.

 ✓ You must place the entire rule in the value of the style attribute, which makes complex rules
hard to write and edit.

 ✓ You lose all the benefits that come with grouping selectors and reusing style rules in external
style sheets.

16_9780470916599-ch09.indd 14416_9780470916599-ch09.indd 144 11/30/10 12:25 AM11/30/10 12:25 AM

145 Chapter 9: Introducing Cascading Style Sheets

The href attribute in the <link> element can take either

 ✓ A relative link (a style sheet on your own site)

 ✓ An absolute link (a style sheet that doesn’t reside on your own site)

 Usually, you shouldn’t use a style sheet that doesn’t reside on your Web
site because you want control of your site’s look and feel.

To quickly add style to your Web page (or to experiment to see how brows-
ers handle different styles), use an absolute URL to point to one of the W3C’s
Core Style sheets. Read more about them at www.w3.org/StyleSheets/
Core.

 Chapter 6 covers the difference between relative and absolute links.

Importing
The @import statement instructs the browser to load an external style sheet
and use its styles. You use it within the <style> element but before any of
the individual style rules, like so:

<style>
 @import “http://www.somesite.edu/stylesheet.css”;
</style>

 Style rules in an imported style sheet take precedence over any rules that
come before the @import statement. So, if you have multiple external style
sheets referenced with more than one @import statement on your page,
rules apply from the later style sheets (the ones farther down the page).

Understanding the Cascade
Multiple style sheets can affect page elements and build upon each other. It’s
like inheriting styles within a Web page. This is the cascading part of CSS.

Take this real-world example of a Web site for a university English depart-
ment. The English department is part of the School of Humanities, which
is one school in the university. Each of these entities — the university, the
school, and the English department — has its own style sheet.

 1. The university’s style sheet provides style rules for all pages in the site.

 2. The school’s style sheet links to the university’s style sheet (using an
@import statement), and adds more style rules specific to the look the
school wants for its own site.

16_9780470916599-ch09.indd 14516_9780470916599-ch09.indd 145 11/30/10 12:25 AM11/30/10 12:25 AM

146 Part III: Taking Precise Control Over Web Pages and Styles

 3. The English department’s style sheet links to the school’s style sheet.

 Thus, the department’s pages both have their own style rules and inherit
the style rules from both the school’s and the university’s style sheets.

But what if multiple style sheets define rules for the same element? What if,
for example, all three style sheets specify a rule for the h1 element? In that
case, the nearest rule to the page or element you’re working on wins:

 ✓ If an h1 rule exists on the department’s style sheet, it takes precedence
over the school and university h1 styles.

 ✓ If an individual page within the department applies a style rule to h1 in a
<style> tag, that rule applies.

16_9780470916599-ch09.indd 14616_9780470916599-ch09.indd 146 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 10

Using Cascading Style Sheets
In This Chapter
▶ Getting a handle on using CSS

▶ Positioning objects on a page

▶ Creating font rules

▶ Creating style sheets for print

▶ Understanding aural style sheets

Understanding the structure and syntax of CSS is easy. Learning about
the properties that CSS can apply to (X)HTML documents takes a little

more time and effort, though. However, where the learning curve really gets
interesting is when it comes to learning how to use CSS to take a plain or
ordinary Web page and kick it up a notch. This chapter deals with how to put
CSS to work, rather than focusing on its structure and inner workings.

If you need a refresher of CSS style rules and properties, read Chapter 9 (a
high-level overview of CSS and how it works). Then you can return to this
chapter and put CSS into action.

Now it’s time to make a page and give it some style!

 To use CSS efficiently, follow these general guidelines:

 ✓ When you test how a page looks, use internal styles so you can tweak
to your heart’s delight. (This chapter shows internal style sheets, but
Chapter 9 covers internal and external style sheets in greater detail.)

 ✓ When your test page looks just right, move those internal styles to an
external sheet, and then apply them throughout your site, or to as many
pages in that site as make sense.

17_9780470916599-ch10.indd 14717_9780470916599-ch10.indd 147 11/30/10 12:25 AM11/30/10 12:25 AM

148 Part III: Taking Precise Control Over Web Pages and Styles

Managing Layout and Positioning
You can use CSS to lay out your pages so that images and blocks of text

 ✓ Appear exactly where you want them to

 ✓ Fit exactly within the amount of space you want them to occupy

After you create styles within a document, you can create an external style
sheet to apply the same styles to any page.

Listing 10-1 shows a Web page without any defined styles. This basic page is
shown in Figure 10-1.

Listing 10-1: A Fairly Dull Page
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <title>Pixel’s Page</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
 <body>
 <h1>I’m Pixel the Cat. Welcome to my page.</h1>
 <div id=”navBar”>
 <p>Links of interest:</p>
 <p>Google</p>
 <p>Amazon</p>
 <p>Bing</p>
 </div>
 <img src=”/images/pixel1.jpg” alt=”The Cat” width=”320” height=”240”
 id=”theCat” />
 </body>
</html>

 Creating links for your Web pages is covered in detail in Chapter 6. There,
you’ll find everything you need to know about creating great links. For ques-
tions regarding Cascading Style Sheets and the power they can bring to your
Web site content, turn to Chapter 9.

The cat looks great, but the page certainly doesn’t show off his possibilities.
The addition of some styles improves this page immensely. Here’s how!

17_9780470916599-ch10.indd 14817_9780470916599-ch10.indd 148 11/30/10 12:25 AM11/30/10 12:25 AM

149 Chapter 10: Using Cascading Style Sheets

Figure 10-1: This style-free page doesn’t
maximize this cat’s possibilities.

Visual layouts
Instead of the links appearing above the image, as they do in Figure 10-1, we
want them on the left, a typical location for navigation tools. The following
markup floats the text for the search site links to the left of the image (see
Figure 10-2):

<style type=”text/css”>
 #navBar {
 background-color: #CCC;
 border-bottom: #999;
 border-left: #999;
 border-width: 0 0 thin thin;
 border-style: none none groove groove;
 display: block;
 float: left;
 margin: 0 0 0 10px;
 padding: 0 10px 0 10px;
 width: 107px;
 line-height: 0.2em;
 }
</style>

17_9780470916599-ch10.indd 14917_9780470916599-ch10.indd 149 11/30/10 12:25 AM11/30/10 12:25 AM

150 Part III: Taking Precise Control Over Web Pages and Styles

Figure 10-2: The navigation bar now looks more like standard
left-hand navigation.

In the preceding rules, we

 ✓ Added a <style> element

 ✓ Defined the navBar id inside the <style> element

 ✓ Used the navBar id to instruct the content to float to the left of images,
which causes them to appear in the same part of the page to the left,
rather than above the graphic

This rule says that anything on the page that belongs to the navBar id (as
shown in Figure 10-2) should display with

 ✓ A light-gray background

 ✓ A thin, grooved-line border at bottom and left, in a darker gray

 ✓ No top or right border

 ✓ A block that floats to the left (so everything else on the page moves
right, as with the image in Figure 10-2)

 ✓ A left margin of 10 pixels (px)

 ✓ Padding at top and bottom of 10px each

 ✓ A navbar area 100px wide

17_9780470916599-ch10.indd 15017_9780470916599-ch10.indd 150 11/30/10 12:25 AM11/30/10 12:25 AM

151 Chapter 10: Using Cascading Style Sheets

You’ll note that we also set the line-height at 0.2em. This ensures that menu
line entries are compact, without too much white space between individual
elements.

 Note that several properties in the declaration, called shorthand properties,
take multiple values, such as margin and padding. Shorthand properties col-
lect values from multiple related CSS properties (such as margin-height,
margin-width, and so forth). See our online materials for a complete list.
Those values correspond to settings for the top, right, bottom, and left edges
of the navbar’s box. margin creates an empty zone around the box, and
padding defines the space between the edges or borders of the box and the
content inside the box. Here are the rules that explain how to associate values
with properties that deal with margins, borders, padding, and so forth:

 ✓ If all the sides have the same value, a single value works.

 ✓ If any side is different from the others, every side needs a separate value.
It’s okay to set some or all of these values to 0 (zero) as you see fit; this
can often help to ensure that pages display consistently across a wider
range of browsers (and browser versions).

 To remember what’s what, think of the edges of an element box in clock-
wise order, starting with the top edge: top, right, bottom, and then left.
Notice that we define margins and padding using px (pixels) rather than pt
(points) or em (default character m’s width) as our unit of measure. This is
a deliberate departure from best practices that we recommend elsewhere in
this book (Chapter 11). That’s because margins and padding usually involve
small increments or values and because those things relate very strongly to
individual actual displays within specific browsers. Experiment with these
values to get them just right, and be sure to check them on as many different
browsers and platforms as you can to ensure that visitors to your Web site
see what you intended.

Positioning
CSS provides several ways to specify exactly where an element should
appear on a page. These controls use various kinds of positioning based on
the relationships between an element’s box and its parent element’s box
to help page designers put page elements where they want them to go. The
kinds of properties involved are discussed in the following sections.

Location
You can control the horizontal and vertical locations of an image. However,
when you use absolute positioning with any page element, you specify
exactly where that element must sit, relative to the upper-left corner of the

17_9780470916599-ch10.indd 15117_9780470916599-ch10.indd 151 11/30/10 12:25 AM11/30/10 12:25 AM

152 Part III: Taking Precise Control Over Web Pages and Styles

browser window. Thus, instead of letting it be drawn automatically to the
right of the navigation bar, you can place an image down and to the left, as
in Figure 10-3. But absolutely positioned items always percolate to the top
layer when items overlap, which is why Pixel’s picture shows up on top. We
change this default order later in the chapter.

#theCat {position: absolute; top: 120px; left: 107px;}

Figure 10-3: The image is more striking in this
location.

 You might be wondering why the navbar rule (defined in the listing in the
earlier section, “Visual layouts”) and the theCat rule (in the code snip-
pet immediately preceding Figure 10-3) both start with a pound symbol
(also known as a hash mark or octothorpe). That’s because the pound
symbol applies to an id attribute. You use a period to start a class rule,
and it will apply to every instance of that class wherever it appears on a
page. Thus, although you can apply either a class or an id to specific
elements, the difference between these two is that a class can be used
repeatedly. Comparatively, an id can appear only once on a page. You
can’t have anything else on the page that uses theCat as its id. The differ-
ence, quite simply, is that a class lets you refer to every instance of some
(X)HTML element with a single reference, but an id can address only a
single instance for an element.

Overlapping
Two objects can be assigned to the same position in a Web page. Although
this may sound like a problem, overlap can produce interesting design

17_9780470916599-ch10.indd 15217_9780470916599-ch10.indd 152 11/30/10 12:25 AM11/30/10 12:25 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

153 Chapter 10: Using Cascading Style Sheets

effects — as you’ll see with our navbar and photo in code and screenshots
that follow. When overlap occurs, the browser must determine the display
order and which objects to show and which ones to hide.

Using z-index, added to any rule, tells CSS how you want any object stacked
over and under other objects that occupy the same space on the page:

 ✓ Lower numbers move down the stack.

 ✓ Higher numbers move up the stack.

 ✓ The default value for z-index is auto, which means it’s the same as for
its parent element.

Giving theCat a z-index value of -1 automatically puts it behind everything
else on the page (as shown in Figure 10-4) for which the z-index isn’t set (see
the HTML source for Figure 10-4 on the book’s Web site for the details).

Figure 10-4: The cat is peeking out from behind
the navigation bar.

Changing Fonts for Visual Interest
and Better Readability

You can make a page more interesting by replacing old, boring, default fonts.
Start by specifying a generic body font as well as setting some other default
rules, such as background color and text color.

17_9780470916599-ch10.indd 15317_9780470916599-ch10.indd 153 11/30/10 12:25 AM11/30/10 12:25 AM

154 Part III: Taking Precise Control Over Web Pages and Styles

Body text
Here’s an example that sets the style for text within the body element:

body {font-family: verdana, geneva, arial, helvetica, sans-serif;
 font-size: 1em; line-height: 1.33em; background-color: white;
 color: teal;}

Because the body element holds all content for any Web page, this affects
everything on the page. The preceding rule instructs the browser to show all
text that appears within the body element as follows:

 ✓ The text is rendered using one of the fonts listed. We placed Verdana
at the head of the list because it’s the preferred choice, and browsers
check for available fonts in the order listed. Note: A generic font — in
this case, sans-serif — almost always appears last in such lists
because the browser can almost always supply such a font itself.

 You can list more than one font. The browser uses the first font from
your list that’s available in the browser. For example, the browser looks
for fonts from our list in this order:

 1. Verdana

 2. Geneva

 3. Arial

 4. Helvetica

 5. The browser’s default sans serif font

 ✓ 1.33em line height

 The lines are spaced as though the fonts are 1em high, so there’s more
vertical space between lines.

Figure 10-5 shows that

 ✓ All changes apply to the entire page, including the navigation bar.

 ✓ The font-family changes in the h1 heading.

 Because headers have specific defaults for font-size and line-
height, another rule is needed to modify them.

 In shooting Figure 10-5, the HTML used for our screen capture includes an
additional tweak for Internet Explorer (IE). That’s because a bug in Internet
Explorer for Windows that doesn’t occur in other browsers causes heading
(h1) text to get truncated at the top. (Try the source (X)HTML for Figure 10-5

17_9780470916599-ch10.indd 15417_9780470916599-ch10.indd 154 11/30/10 12:25 AM11/30/10 12:25 AM

155 Chapter 10: Using Cascading Style Sheets

in IE to see what we mean; we had to add CSS markup that set line-
height: 105%; for h1 to create this display.) Unfortunately, CSS rendering
can be unpredictable enough that you must test style rules in various brows-
ers to see how they look — and then tweak accordingly.

Figure 10-5: The fonts are nicer, but they could
still use a little more work.

Headings
If we explicitly assign style properties to the h1 element, display results are
more predictable. Here’s a sample set of styles:

h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-serif;
 font-size: 2em; line-height: w.167em;}

Figure 10-6 shows a first-level heading using the font family and type size that
we want: 2em Trebuchet MS, with a 21⁄6 em line height. If we didn’t have the
Trebuchet MS font on our system, the heading would appear in Verdana.

 When a font name includes spaces (like trebuchet ms or times new
roman), the full name must be within quotation marks. (See Chapter 11 for
more information.)

Hyperlinks
We think that having the hyperlinks underlined — which is normal — makes
the menu look a little cluttered. Luckily, we can turn underlines off with CSS,
but we still want the hyperlinks to look like hyperlinks, so we tell CSS to

17_9780470916599-ch10.indd 15517_9780470916599-ch10.indd 155 11/30/10 12:25 AM11/30/10 12:25 AM

156 Part III: Taking Precise Control Over Web Pages and Styles

 ✓ Make links bold.

 ✓ Make underlines appear when the cursor is over a link.

 ✓ Show links in specific colors.

Figure 10-6: Declaring a rule for h1 makes it
appear just how we like it.

The following style rules define how a browser should display hyperlinks:

a {text-decoration: none; font-weight: bold}
a:link {color: blue}
a:visited {color: #93C}
a:hover {text-decoration: underline}

What’s going on here? Starting from the top, we’re setting two rules for the
<a> tag that apply to all links on the page:

 ✓ The text-decoration declaration sets its value to none.

 This gets rid of the underlining for all the links.

 ✓ The font-weight declaration has a value of bold.

 This makes all the links on the page appear in bold.

The remaining rules in the preceding code are pseudo class selectors. Their
most common usage is to modify how links appear in their different states.
(For more information on pseudo classes, see Chapter 11.) Here we change
the color when a link has been visited. We also turn on underlining when the
mouse pointer hovers over link text to identify hyperlinks when the cursor is
in clicking range. Figure 10-7 shows how the page appears when the previous
style rules are applied.

17_9780470916599-ch10.indd 15617_9780470916599-ch10.indd 156 11/30/10 12:25 AM11/30/10 12:25 AM

157 Chapter 10: Using Cascading Style Sheets

Figure 10-7: The final version of our page.

Externalizing Style Sheets
When the final page is the way you want it, you’re ready to cut and paste
your tested, approved, internal style sheet into an external style sheet. The
benefits of using an external style sheet are that

 ✓ Every page of the site can use the whole style sheet with the addition of
only one line of code to each page.

 ✓ Changes can be made site-wide with one change in the external style sheet.

To create an external style sheet from a well-tested internal style sheet,
follow these steps:

 1. Copy all text that sits between the <style> and </style> tags.

 2. Paste that text into its own new document.

 This text should include only CSS markup, without any HTML tags or
markup.

 3. Append a .css suffix to the document’s name (for example,
myStyles.css) when saving.

 The suffix shows at a glance that it’s a CSS file.

So you have your external style sheet. Time now to link your HTML file to
said external style sheet. You have two options available to you:

17_9780470916599-ch10.indd 15717_9780470916599-ch10.indd 157 11/30/10 12:25 AM11/30/10 12:25 AM

158 Part III: Taking Precise Control Over Web Pages and Styles

 ✓ Use the <link> tag.

 All CSS-capable browsers understand the link tag.

 ✓ Use the <style> tag with the @import keyword.

 Only newer browsers understand the <style> and @import combination.

See Chapter 9 for more on these two methods.

 Sometimes style sheets can get complicated and long. That’s when the
@import keyword comes in handiest: You can create a master stylesheet and
then use multiple @import statements to bring in individual stylesheets for
headers, footers, body copy, menus, and so forth. Each @import references
a subsidiary style sheet for one of those various categories for page content.
This is probably overkill for most small-scale or personal Web sites, but as
sites get “big and hairy,” this technique can be very helpful.

Using CSS with Multimedia
You can specify how you want your Web pages to look or behave on different
media types depending on the medium.

Table 10-1 lists all the media types and their uses.

Table 10-1 Recognized Media Types

Media Type Description

All Suitable for all devices

aural For speech synthesizers

braille For Braille tactile-feedback devices

embossed For paged Braille printers

handheld For handheld devices (such as those with a small screen, mono-
chrome monitor, and limited bandwidth)

print For paged, opaque material and for documents viewed onscreen
but in Print Preview mode

projection For projected presentations, such as projectors or transparencies

screen For color computer screens

Tty For media that use a fixed-pitch character grid, such as teletypes,
terminals, or portable devices with limited display capabilities

Tv For television-type devices (such as those with low resolution,
color capability, limited-scrollability screens, and some sound
available)

17_9780470916599-ch10.indd 15817_9780470916599-ch10.indd 158 11/30/10 12:25 AM11/30/10 12:25 AM

159 Chapter 10: Using Cascading Style Sheets

CSS can make changes to customize how the same pages

 ✓ Render onscreen

 ✓ Print

 A nifty color background might make your page a mess when it’s printed
on a black-and-white laser printer, but proper use of print-media styles
can keep this sort of thing from happening!

 ✓ Sound when read out loud

Visual media styles
Table 10-2 lists the CSS properties that you’re most likely to use in a typical
Web page. Our online content for this book includes brief descriptions of the
most commonly used CSS properties and (X)HTML tags and attributes.

Table 10-2 Visual Media Styles

Property Values Default Value Description

Background-
color

Any color, by name
or hex code

transparent Background
color of the
associated
element

Background-
image

URL none Image URL as
background
for element

Color Any color, by name
or hex code

Up to you! Color of the
foreground text

font-family Any named font,
cursive
fantasy
monospace
sans-serif
serif

Up to you! (Stick
to common fonts.)

Font for ren-
dering related
element
content

font-size Number + unit,
xx-small
x-small
small smaller
medium large
larger
x-large
xx-large
% Length
(px, em, cm)

medium Size of the font
for rendering
related ele-
ment content

(continued)

17_9780470916599-ch10.indd 15917_9780470916599-ch10.indd 159 11/30/10 12:25 AM11/30/10 12:25 AM

160 Part III: Taking Precise Control Over Web Pages and Styles

Table 10-2 (continued)

Property Values Default Value Description

font-weight normal bold
bolder
lighter 100
200 300 400
500 600 700
800 900

normal 400
is the same
as normal
700 is the
same as bold

Weight (how
bold or light)
the font should
appear

line-height Normal number
+ unit % Length
(px, em, cm)

normal Vertical spac-
ing between
lines of text

text-align left right
center
justify

Up to you; normal
text direction

Determines
how text on
the page gets
aligned

text-
decoration

None
underline
overline
line-through
blink

none Special text
effects

list-style-
image

URL none URL for an
image to dis-
play as a list
bullet

list-style-
position

Inside
outside

outside Wrap list
text inside or
outside bullet
points

list-style-
type

Disc circle
square
decimal
decimal-
leading-zero
lower-alpha
upper-
alpha none
armenian
georgian
lower-greek
lower-latin
lower-roman
upper-latin
upper-roman

disc Bullet type on
lists

17_9780470916599-ch10.indd 16017_9780470916599-ch10.indd 160 11/30/10 12:25 AM11/30/10 12:25 AM

161 Chapter 10: Using Cascading Style Sheets

Property Values Default Value Description

Display block inline
none

inline Format of a
defined sec-
tion for a block
element

Top Number and unit
auto

auto Absolute posi-
tioning: sets
top edge of
element above/
below top edge
of containing
element; rela-
tive positioning:
sets top edge
of an element
above/below
its normal
position

Right Percentage
number + unit
auto

Auto Absolute posi-
tioning: sets
right edge of
element to
width next to
right edge of
containing ele-
ment; relative
positioning:
sets right edge
of element
to width next
to right edge
of its normal
position

Bottom Percentage
number + unit
auto

Auto Absolute posi-
tioning: sets
bottom edge of
element below
bottom edge of
its containing
element; rela-
tive positioning:
sets bottom
edge of below
its normal
position

(continued)

17_9780470916599-ch10.indd 16117_9780470916599-ch10.indd 161 11/30/10 12:25 AM11/30/10 12:25 AM

162 Part III: Taking Precise Control Over Web Pages and Styles

Table 10-2 (continued)

Property Values Default Value Description

Left Percentage
number + unit
auto

Auto Absolute posi-
tioning: sets
left edge of ele-
ment to right of
left edge of its
containing
element; rela-
tive positioning:
sets top edge
of above/below
its normal
position

Position Static abso-
lute rela-
tive fixed

static Method by
which element
box is laid
out, relative
to positioning
context

Visibility Collapse
visible
hidden
inherit

inherit Indicates
whether object
will display on
the page

z-index Number auto Auto Stacking order
for objects
(–1 always
puts object at
the very back)

border-style none dotted
dashed solid
double
groove ridge
inset outset

Not defined Style displayed
for object
borders. Can
be broken out
into border-
top-style,
border-
right-
style,
border-
bottom-
style, and
border-
left-style

17_9780470916599-ch10.indd 16217_9780470916599-ch10.indd 162 11/30/10 12:25 AM11/30/10 12:25 AM

163 Chapter 10: Using Cascading Style Sheets

Property Values Default Value Description

border-width Thin medium
thick Number

Not defined Width of
border around
an object. Can
be broken out
into border-
top-width,
border-
right-
width,
border-
bottom-
width, and
border-
left-width

border-color Any color, by
name or hex code
transparent

Not defined Color of
object’s
border. Can
be broken out
into border-
top-color,
border-
right-
color,
border-
bottom-
color, and
border-
left-color

Border Border-width
+ border-
style + bor-
der-color

Not defined Combined
features for
border around
object. Can be
broken out into
border-top,
border-
right,
border-
bottom, and
border-left

Float left right
none

none Specifies
whether object
should float
to one side or
other for
document

(continued)

17_9780470916599-ch10.indd 16317_9780470916599-ch10.indd 163 11/30/10 12:25 AM11/30/10 12:25 AM

164 Part III: Taking Precise Control Over Web Pages and Styles

Table 10-2 (continued)

Property Values Default Value Description

Height Number + unit
auto

Auto Display height
for object

Width Number + unit
auto

Auto Display width
for object

Margin Number + unit
auto

Not defined Display mar-
gins for object.
Can be broken
out into
margin-top,
margin-
right,
margin-
bottom, and
margin-
left

Padding Number + unit
auto

Not defined Display blank
space around
object. Can
be broken out
into pad-
ding-top,
padding-
right,
padding-
bottom, and
padding-
left

Cursor Auto cross-
hair default
pointer move
text help
URL e-resize
n-resize
ne-resize
nw-resize
progress
s-resize
se-resize
sw-resize
w-resize
inherit

Auto Cursor
appearance
in browser
window

17_9780470916599-ch10.indd 16417_9780470916599-ch10.indd 164 11/30/10 12:25 AM11/30/10 12:25 AM

165 Chapter 10: Using Cascading Style Sheets

 Some browsers don’t support all CSS properties. If you’re using CSS fea-
tures, test your pages with the browsers that you expect your visitors will
use. Use the CSS features that work on as many browsers as possible, and
ignore the rest.

 If you want to take an extremely thorough guide to CSS everywhere you go,
put it on your iPod! Westciv’s free podGuide is a folder of small text files.
Download the zipped file and follow the instructions on how to install it,
and you have complete documentation with you at all times. (You also
win the title of “World’s Biggest CSS Geek.”) The podGuide is online at www.
westciv.com/news/podguide.html.

Paged media styles
CSS can customize how a page looks when it’s printed. We recommend these
guidelines:

 ✓ Replace sans serif fonts with serif fonts.

 Serif fonts are easier to read than sans serif fonts.

 ✓ Insert advertisements that

 • Make sense when they aren’t animated

 • Are useful without clicking

In general, paged media styles help ensure that text looks as good when it’s
printed as it does in a Web browser. Paged media styles also help you hide
irrelevant content when pages are printed (banners, ads, and so forth), thus
reducing wasted paper and user frustration. See Table 10-3 for an explanation
of paged media properties in CSS that you can use to help your users make
the most when printing Web pages.

Table 10-3 Paged Media Styles

Property Values Default
Value

Description

orphans Number 2 The minimum number of lines in a
paragraph that must be left at the
bottom of a page

page-
break-
after

Auto always
avoid left
right

auto The page-breaking behavior after
an element

page-
break-
before

Auto always
avoid left
right

auto The page-breaking behavior
before an element

(continued)

17_9780470916599-ch10.indd 16517_9780470916599-ch10.indd 165 11/30/10 12:25 AM11/30/10 12:25 AM

166 Part III: Taking Precise Control Over Web Pages and Styles

Table 10-3 (continued)

Property Values Default
Value

Description

page-
break-
inside

Auto avoid auto The page-breaking behavior
inside an element

widows Number 2 The minimum number of lines in
a paragraph that must be left at
the top of a page

The example in Listing 10-2 uses these options for paged media styles:

 ✓ Make the output black text on a white background.

 ✓ Replace sans serif fonts with serif fonts.

Listing 10-2: Adding a Print Style Sheet
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
<title>This is my page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style type=”text/css”>
 body {background-color: black; color: white; font-family: sans-serif;}

 @media print {
 body {background-color: white; color: black; font-family: serif}
 }
</style>
</head>
<body>
 This page will look very different when sent to the printer.
</body>
</html>

If you’re now wondering why none of the properties in Table 10-3 were
set but other properties were, it’s because (in this example) their defaults
worked fine. And just because those page properties can be set doesn’t mean
that you can’t set other properties also — it isn’t an either/or.

17_9780470916599-ch10.indd 16617_9780470916599-ch10.indd 166 11/30/10 12:25 AM11/30/10 12:25 AM

167 Chapter 10: Using Cascading Style Sheets

Aural (speech-sound) styles
Aural browsers and styles aren’t just for the
visually impaired. They’re also useful for Web
users who

 ✓ Have reading problems

 ✓ Need information while driving

The following example recommends voices to
be played using male and female characters to
make it clear which characters are speaking:

<style>
 @media aural {
 p.stanley {voice-family: male;}
 p.stella {voice-family: female;}
 }

</style>

Usually, you don’t have to worry much about
adding aural styles to your page. The default
readers should work just fine if

 ✓ Your page is mostly text.

 ✓ You don’t have a strong opinion about how
it sounds, so that any clearly male or female
voice will do.

That said, you can find a complete listing of all
aural style properties on this book’s companion
Web site.

17_9780470916599-ch10.indd 16717_9780470916599-ch10.indd 167 11/30/10 12:25 AM11/30/10 12:25 AM

168 Part III: Taking Precise Control Over Web Pages and Styles

17_9780470916599-ch10.indd 16817_9780470916599-ch10.indd 168 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 11

Getting Creative
with Colors and Fonts

In This Chapter
▶ Using CSS to define text formatting

▶ Working with page colors and backgrounds

▶ Changing font display

▶ Adding text treatments

Before style sheets came along, Web designers had to rely on HTML
markup to control backgrounds, colors, fonts, and text sizes on Web

pages. With style sheets on the scene, however, designers could separate
style information from content — meaning they could use Cascading Style
Sheets (CSS) to control font, color, and other style information.

Why bother? Simple. When you use CSS, you get the following:

 ✓ Better control when updating or editing formatting information.

 ✓ No more HTML documents cluttered with tags.

 ✓ More options for formatting text (such as defining line height, font
weight, and text alignment) and for converting text to uppercase or
lowercase characters.

 (X)HTML still includes various formatting elements, such as <tt>, <i>,
<big>, , and <small>; however, all remaining formatting elements, such
as , are deprecated. That is, they’re no longer recommended for use
(although they still work, and most browsers recognize them). We don’t think
you should use them anymore, but that decision is yours to make. If you
want to read more about deprecated formatting elements, we cover that in
Chapter 8.

18_9780470916599-ch11.indd 16918_9780470916599-ch11.indd 169 11/30/10 10:42 AM11/30/10 10:42 AM

170 Part III: Taking Precise Control Over Web Pages and Styles

Color Values
(X)HTML defines color values in two ways:

 ✓ Name: You choose from a limited list.

 ✓ Number: Harder to remember, but you have many more options.

Color names
The HTML specification includes 16 color names that you can use to define
colors in your pages. Table 11-1 shows these colors. The numbers that start
with a hash mark (#) are in hexadecimal notation, a mix of the letters A–F (for
10–15) and the more typical 0–9 we all know and love from decimal numbers.

Table 11-1 Named Color Values in (X)HTML

Name #RGB Code Color Name #RGB Code Color

Black #000000 Silver #C0C0C0

Gray #808080 White #FFFFF

Maroon #800000 Red #FF0000

Purple #800080 Fuchsia #FF00FF

Green #008000 Lime #00FF00

Olive #808000 Yellow #FFFF00

Navy #000080 Blue #0000FF

Teal #008080 Aqua #00FFFF

18_9780470916599-ch11.indd 17018_9780470916599-ch11.indd 170 11/30/10 10:42 AM11/30/10 10:42 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

171 Chapter 11: Getting Creative with Colors and Fonts

You can safely use color names in your CSS markup and be confident that
browsers will recognize them and use the correct colors in your Web pages.
You can also compare the colors that you see onscreen to those you see on
this printed page to see how print and digital displays can sometimes differ.
(In some cases, it may be the color balance on your screen that’s off; in
others, the color the printer tried to match on the page may not be precisely
correct — it’s not as easy as you might think!)

 Visit www.htmlhelp.com/reference/html40/values.html#color to
see how your browser displays these colors. If you can, view this page on
two or three different computers to see how a different browser, operating
system, graphics card, and monitor can subtly change the display.

The following CSS style declaration says that all text within <p> tags should
be blue:

p {color: blue;}

 If you’re looking for burnt umber, chartreuse, or salmon, you’re out of luck.
This list is not a box of 64 crayons! You can, however, also find hex codes
for Web-safe colors, along with color swatches, on the online Cheat Sheet at
www.dummies.com/cheatsheet/html. These colors, though unnamed, are
Web-safe because they reproduce pretty reliably on most color computer dis-
play devices and printers.

Color numbers
Color numbers allow you to use any color (even salmon) on your Web page.

Hexadecimal color codes
 Hexadecimal notation uses six characters — a combination of numbers and

letters — to define color. If you know a color’s hexadecimal code (often
called its hex code for short), you have all you need to use that color in your
HTML page.

 When you use hexadecimal code to define a color, you should always pre-
cede it with a pound sign (#). Otherwise, it may not display properly in some
Web browsers.

The following CSS style declaration makes all text contained by <p> tags
blue:

p {color: #0000FF;}

18_9780470916599-ch11.indd 17118_9780470916599-ch11.indd 171 12/2/10 10:46 PM12/2/10 10:46 PM

172 Part III: Taking Precise Control Over Web Pages and Styles

RGB values
You can use two decimal RGB values to define color. These value types aren’t
as common as hexadecimal values, but they’re just as effective:

 ✓ rgb(r,g,b): The r, g, and b are integers between 0 and 255 that
(respectively) represent the red, green, and blue levels of the color.

 ✓ rgb(r%,g%,b%): The r%, g%, and b% represent (respectively) the per-
centage of red, green, and blue of the color.

 Every color can be defined as a mixture of red, green, and blue (RGB). You
can use either an RGB value or the equivalent hex code to describe a color’s
RGB value to a Web browser. For more information about hexadecimal nota-
tion, please visit the “Tutorial on Hexadecimal Color” at www.lts.com/
class/hextoc.htm.

Color Definitions
You can define individual colors for any text on the Web page, as well as
define a background color for the entire Web page or some portion thereof.

CSS uses the following properties to define colors:

Finding any color’s hex code
You can’t just wave your magic wand and come up with the hex code for any color, but that doesn’t
mean that you can’t find the hex code through less magical means. Color converters follow a pre-
cise formula that changes a color’s standard RGB notation into hexadecimal notation. Because
you have better things to do with your time than compute hex codes, you have several options
for figuring out the code for your color of choice, including Web-safe colors shown on this book’s
online Cheat Sheet (www.dummies.com/cheatsheet/html). None of these make you use
a calculator:

 ✓ On the Web: Some good sources for hexadecimal color charts are

http://www.webmonkey.com/2010/02/color_charts

www.colorschemer.com/online.html

 You simply find a color you like and type the hex code listed next to it into your HTML.

 ✓ Using image editing software: Many image editing applications, such as Adobe Photoshop
or Adobe Fireworks, display the hexadecimal notation for any color. Even the Microsoft Word
color picker shows you hex codes for colors in an image. If you have an image you like that you
want to use as a color source for your Web page, open the image in your favorite editor and
find out what the colors’ hex codes are.

18_9780470916599-ch11.indd 17218_9780470916599-ch11.indd 172 12/2/10 10:46 PM12/2/10 10:46 PM

173 Chapter 11: Getting Creative with Colors and Fonts

 ✓ color defines the font color and is also used to define colors for links
in their various states (link, active, focus, visited, and hover; see
the upcoming section, “Links”).

 ✓ background or background-color defines the background color for
the entire page or defines the background for a particular element (for
example, a background color for all first-level headings, similar to the
idea of highlighting something in a Word document).

Text
You can change the color of text on your Web page with three steps:

 1. Determine the selector.

 For example, will the color apply to all first-level headings, to all para-
graphs, or to a specific paragraph?

 2. Use the color property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is

selector {color: value;}

Here is a collection of style declarations where we use the color property
to assign text color to the body element (and hence, to all other subsidiary
HTML elements that can occur in a document body, except where other spec-
ifications override that selection as with the h1 element):

body {color: olive; font-family: Verdana, sans-serif;
 background-color: #FFFFFF; font-size: 85%;}
hr {text-align: center;}
.navbar {font-size: 75%; text-align: center;}
h1 {color: #808000;}
p.chapternav {text-align: center;}
.footer {font-size: 80%;}

Note that in the preceding CSS rules, the color for all text on the page is
defined by using a body selector. Color is applied to all text in the body of
the document unless otherwise defined. To illustrate this at work, the first-
level heading is defined as forest green, using hexadecimal notation.

Links
Pseudo classes allow you to define style rules based on information outside
the document tree.

18_9780470916599-ch11.indd 17318_9780470916599-ch11.indd 173 11/30/10 10:42 AM11/30/10 10:42 AM

174 Part III: Taking Precise Control Over Web Pages and Styles

 The most common CSS use of pseudo classes is to define a style rule for a
given element in the document tree — a technical term that just means the
browser builds a hierarchical representation for all elements in a document,
much like a family tree, where every element has a parent and may contain a
child. For example, :link is a pseudo class that defines style rules for any
link that hasn’t yet been visited.

The five common pseudo classes that you can use with hyperlinks are

 ✓ :link defines formatting for links that haven’t been visited.

 ✓ :visited defines formatting for links that have been visited.

 ✓ :focus defines formatting for links that are selected by the keyboard
(for example, by using the Tab key) and are about to be activated by
using the Enter key.

 ✓ :hover defines formatting for links when the mouse cursor hovers over
them.

 ✓ :active defines formatting for links when they are selected (clicked by
the mouse, or activated by pressing Enter).

 The pseudo class name is preceded by a colon (:).

Pseudo classes can be used with

 ✓ Elements (such as the <a> element that defines hyperlinks)

 ✓ Classes

 ✓ IDs

For example, to define the style rules for visited and unvisited links, use the
following syntax:

 ✓ The following sets the color of any hyperlink pointing to an unvisited
URL to red by using its hexadecimal value:

a:link {color: #FF0000;}

 ✓ The following sets any hyperlink that points to a visited URL to appear
in the named color green:

a:visited {color: green;}

 ✓ The following designates unvisited links with a class of internal to
appear in (named color) yellow: (See Chapter 9 for a discussion of CSS
classes.)

a.internal:link {color: yellow;}

18_9780470916599-ch11.indd 17418_9780470916599-ch11.indd 174 11/30/10 10:42 AM11/30/10 10:42 AM

175 Chapter 11: Getting Creative with Colors and Fonts

 Links can occupy multiple states at one time. For example, a link can be vis-
ited and hovered over at the same time. Always define link style rules in the
following order: :link, :visited, :visible, :focus, :hover, :active.

 CSS applies “last rule seen” to display your page. Thus, if you put the pseudo
class selectors in the wrong order, your results may not be what you want.
For example, if visited follows hover and the two have overlapping rules,
hover effects apply only to links that haven’t yet been visited.

The following CSS rules render the document with olive, as the color for links
that haven’t been visited, and with yellow, as the color of visited links:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive;}
a:visited {color: yellow;}

 The CSS specification defines :link and :visited as mutually exclusive,
and it’s up to the browser application to determine when to change the state
(visited versus unvisited) for any given link. For example, a browser might
determine that a link is unvisited if you clear your history data.

Backgrounds
To change the background color for your Web page, or for a section of that
page, follow these steps:

 1. Determine the selector.

 For example, will the color apply to the entire background, or will it
apply only to a specific section?

 2. Use the background-color or background property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is

selector {background-color: value;}

In the following collection of style declarations, the first style declaration
uses the background-color property and sets it to light green by using
hexadecimal notation:

body {color: #808000; font-family: Verdana, sans-serif;
 background-color: #EAF3DA; font-size: 85%;}

18_9780470916599-ch11.indd 17518_9780470916599-ch11.indd 175 11/30/10 10:42 AM11/30/10 10:42 AM

176 Part III: Taking Precise Control Over Web Pages and Styles

 You can apply a background color to a block of text — for example, a
paragraph — just like you define a background color for the entire page.

 You use background as a shorthand property for all individual background
properties, or use background-color to set just the color, like this:

selector {background: value value value;}

See Chapter 9 or “The Shorthand Property” section of Webmonkey’s
“Mulder’s Stylesheets Tutorial” for more information at www.webmonkey.
com/2010/02/mulders_stylesheets_tutorial.

Fonts
You can define individual font properties for different HTML elements with

 ✓ Individual CSS properties, such as font-family, line-height, and
font-size

 ✓ A group of font properties in the catchall shorthand font property

Font family
To define the font face (a named and often copyrighted set of specific char-
acter designs, such as Times Roman, Arial, or Helvetica) by using the CSS
font-family property:

 1. Identify the selector for the style declaration.

 For example, making p the selector defines a font family for all <p> tags.

 2. Add the property name font-family.

 Not all font families are supported by every browser. CSS allows you to
specify multiple font families in case a browser doesn’t support the font
family you prefer. You can list multiple font family names, separated
by commas. The browser uses the first name in the list available on the
computer on which it’s running. You can check out a list of Web-safe
font families at FontTester.com at www.fonttester.com/help/list_
of_web_safe_fonts.html.

 3. Define a value for the property (the name of the font family).

 Use single or double quotation marks around any font family names that
include spaces.

18_9780470916599-ch11.indd 17618_9780470916599-ch11.indd 176 11/30/10 10:42 AM11/30/10 10:42 AM

177 Chapter 11: Getting Creative with Colors and Fonts

To format all first-level headings to use the Verdana font, use a style declara-
tion like this:

h1 {font-family: Verdana, Helvetica, sans-serif;}

In the preceding declaration, two more font families appear in case some-
one’s browser doesn’t support the Verdana font family.

 We recommend including these font families in your style declarations:

 ✓ Common: At least one of these common font families:

 • Arial: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Helvetica: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Times New Roman: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Verdana: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 ✓ Generic: At least one of these generic font families:

 • Serif: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Sans serif: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Cursive: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Fantasy: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

 • Monospace: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Different elements may be formatted using different font families. These rules
define a different font family for hyperlinks (see Figure 11-1):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
hr {text-align: center;}
a {font-family: Courier, “Courier New”, monospace;}

18_9780470916599-ch11.indd 17718_9780470916599-ch11.indd 177 11/30/10 10:42 AM11/30/10 10:42 AM

178 Part III: Taking Precise Control Over Web Pages and Styles

Figure 11-1: The font family for hyperlinks differs from the
font family for the rest of the text.

Sizing
The following properties allow you to control the dimensions of your text.

Font size
The style declaration to specify the size of text is

selector {font-size: value;}

The value of the declaration can be

 ✓ One of the standard font-property measurement values (listed in
Chapter 9)

 ✓ One of these user-defined keywords:

 xx-small, x-small, small, medium, large, x-large, or xx-large

 The value of each keyword is determined by the browser, not by the
style rule.

The rules listed in upcoming subsections define

 ✓ A relative font value for all text

 ✓ An absolute value for the font size for all first-level headings

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica,
sans-serif; font-size: 2em; line-height: 2.5em; color: teal;}

18_9780470916599-ch11.indd 17818_9780470916599-ch11.indd 178 11/30/10 10:42 AM11/30/10 10:42 AM

179 Chapter 11: Getting Creative with Colors and Fonts

The result appears in Figure 11-2.

Figure 11-2: First-level headings are twice as big as the base
font; font size for other text is relative.

Line height
The line height of a paragraph is the amount of space between each line
within the paragraph.

 Line height is like line spacing in a word processor.

Sizing text fonts with CSS
In addition to the font size names (xx-small,
x-small , small , medium , large ,
x-large, or xx-large), you can also assign
font sizes by using the following CSS units
of measure: px (pixels), pt (points), or em (the
m-height for the font in use, whatever it may be).
Pixels depend on the size of an individual pixel
on your user’s display and will vary too much
from screen to screen to be truly useful. Points
are very small units of measure and may require
too much experimentation to get just right. That

probably explains why em is the most widely
used unit in sizing fonts in CSS nowadays, and
why this approach is considered a best prac-
tice for sizing fonts using stylesheets. Choosing
em units won’t free you from experimentation,
but it will make it quick and easy for you to size
type relative to your underlying font. For more
information on using these units, which take the
form font-size: 2em; (to double font size)
or font-size: 0.8em; (to reduce a font to
80 percent of the base), see Chapter 9.

18_9780470916599-ch11.indd 17918_9780470916599-ch11.indd 179 11/30/10 10:42 AM11/30/10 10:42 AM

180 Part III: Taking Precise Control Over Web Pages and Styles

To alter the amount of space between lines of a paragraph, use the line-
height property:

selector {line-height: value;}

The value of the line-height property can be either

 ✓ One of the standard font property measurement values (listed in Chapter 9)

 ✓ A number that multiplies the element’s font size, such as 1.5

We assign a quotation class to the first paragraph throughout this chapter
so you can see the changes. This allows us to apply these styles to the first
paragraph by using

<p class=”quotation”>

in the HTML document.

The following rules style the first paragraph in italics, indent that paragraph,
and increase the line height to increase readability (see Figure 11-3):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
 h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-

serif;
 font-size: 2em; line-height: 2.5em; color: teal;}
 .quotation {font-style: italic; text-indent: 2em; line-height: 150%;}

Character spacing
You can increase or reduce the amount of spacing between letters or words
by using these properties:

 ✓ word-spacing: The style declaration for word-spacing is

selector {word-spacing: value;}

 Designers call the space between words tracking.

 ✓ letter-spacing: The style declaration for letter-spacing is

selector {letter-spacing: value;}

 Designers call the space between letters kerning.

The value of either spacing property must be a length defined by a standard
font property measurement value (listed in Chapter 9).

18_9780470916599-ch11.indd 18018_9780470916599-ch11.indd 180 11/30/10 10:42 AM11/30/10 10:42 AM

181 Chapter 11: Getting Creative with Colors and Fonts

Figure 11-3: Any element that belongs to the quotation class
gets the same formatting.

The following code increases the letter spacing (kerning) of the first para-
graph (see Figure 11-4):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
 h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-

serif;
 font-size: 2em; line-height: 2.5em; color: teal;}
 .quotation {font-style: italic; text-indent: 10pt; line-height: 150%;

letter-spacing: 0.2em;}

Figure 11-4: Kerning can be larger or smaller than the font’s
normal spacing.

18_9780470916599-ch11.indd 18118_9780470916599-ch11.indd 181 11/30/10 10:42 AM11/30/10 10:42 AM

182 Part III: Taking Precise Control Over Web Pages and Styles

Positioning Blocks of Text
Alignment properties allow you to control how the edges of text blocks line
up against one another (otherwise known as “edge alignment”).

Aligning text
Alignment determines whether the left and right sides of a text block are

 ✓ Flush: Starting or ending together

 ✓ Ragged: Starting or ending at different points

Syntax for text alignment
Alignment is defined with the text-align property. The style declaration to
align text is as follows:

selector {text-align: value;}

The value of the text-align property must be one of the following keywords:

 ✓ left: Aligns the text to the left. The right side of the text block is
ragged.

 ✓ right: Aligns the text to the right. The left side of the text block is
ragged.

 ✓ center: Centers the text in the middle of the window. Both sides of the
text block are ragged.

 ✓ justify: Aligns the text for both the left and right side. The spacing
within the text in each line is adjusted so both sides of the text block are
flush.

 Justifying text affects letter or word spacing in the paragraph. Test the
results before displaying your Web pages to the world.

Markup for text alignment
The following example defines the alignment for the first-level heading and
the first paragraph (see Figure 11-5):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: teal; font-family: “Trebuchet MS”, Verdana, Geneva, Arial, Helvetica,
 sans-serif;
 font-size: 2em; line-height: 2.5em; color: teal; text-align: center}
.quotation {font-style: italic; text-indent: 2em; text-align: left;}

18_9780470916599-ch11.indd 18218_9780470916599-ch11.indd 182 11/30/10 10:42 AM11/30/10 10:42 AM

183 Chapter 11: Getting Creative with Colors and Fonts

Figure 11-5: The first-level heading is centered; the first
paragraph is indented and left-aligned.

Indenting text
You can define the amount of space that should precede the first line of a
paragraph by using the text-indent property.

 Using the text-indent property doesn’t indent the whole paragraph —
only the first line. To accomplish indenting a whole paragraph, you need
to use CSS box properties, such as margin-left and margin-right (see
Chapter 10).

Syntax for indenting text
The style declaration used to indent text is

selector {text-indent: value;}

Here, value must be one of the standard length-property measurement
values (listed in Chapter 9).

Markup for indenting text
As seen in this chapter, the quotation class has a text-indent of 2em.

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 2em;}

18_9780470916599-ch11.indd 18318_9780470916599-ch11.indd 183 11/30/10 10:42 AM11/30/10 10:42 AM

184 Part III: Taking Precise Control Over Web Pages and Styles

Text Treatments
CSS allows you to decorate your text by using boldface, italics, underline,
overline, or line-through, and even allows your text to blink (when that’s sup-
ported by browsers).

Embolden with bold
Using a boldface font is one of the more common text embellishments a
designer uses. To apply boldface in HTML, use the tag. However, CSS
provides you with more control over the font weight of the bolded text.

Syntax for applying bold
This style declaration uses the font-weight property:

selector {font-weight: value;}

The value of the font-weight property may be one of the following:

 ✓ bold: Renders the text in an average bold weight

 ✓ bolder: Relative value that renders a font weight bolder than the cur-
rent weight (possibly assigned by a parent element)

 ✓ lighter: Relative value that renders a font weight lighter than the cur-
rent weight (possibly assigned by a parent element)

 ✓ normal: Removes any bold formatting

 ✓ One of these integer values: 100 (lightest), 200, 300, 400 (normal), 500,
600, 700 (standard bold), 800, 900 (darkest)

Markup for applying bold
The following example bolds hyperlinks (see Figure 11-6), turns the underline
off, and changes the color to green once a link is visited (we did this to the
Company History item to show you what it looks like):

body {color: black; font-family: Arial, sans-serif; font-size: 85%;}
a {font-weight: bold;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: green; text-decoration: none;}

Emphasizing with italic
Italics are commonly used to set off quotations or to emphasize text. To
apply italics in HTML, use the <i> tag. However, CSS provides you with more
control over the font style of text through the font-style property.

18_9780470916599-ch11.indd 18418_9780470916599-ch11.indd 184 11/30/10 10:42 AM11/30/10 10:42 AM

185 Chapter 11: Getting Creative with Colors and Fonts

Figure 11-6: All hyperlinks are bolded.

Syntax for applying italic
This style declaration uses the font-style property:

selector {font-style: value;}

The value of the font-style property may be one of the following:

 ✓ italic: Renders the text in italics (a special font that usually slopes to
the right)

 ✓ oblique: Renders the text as oblique (a different slanted version of a
normal font; seldom if ever used for font definitions)

 ✓ normal: Removes any italic or oblique formatting

Markup for applying italic
The following example assigns an italic font style to the first-level heading:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: teal; font-family: “MS Trebuchet”, Arial, Helvetica, sans-serif;
 text-transform: uppercase; font-style: italic; font-weight: 800;
 font-size: 2em; line-height: 30pt; text-align: center;}

Changing capitalization
You use the text-transform property to set capitalization in your document.

18_9780470916599-ch11.indd 18518_9780470916599-ch11.indd 185 11/30/10 10:42 AM11/30/10 10:42 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

186 Part III: Taking Precise Control Over Web Pages and Styles

Syntax for changing capitalization
This style declaration uses the text-transform property:

selector {text-transform: value;}

The value of the text-transform property may be one of the following:

 ✓ capitalize: Capitalizes the first character in every word

 ✓ uppercase: Renders all letters of the text of the specified element in
uppercase

 ✓ lowercase: Renders all letters of the text of the specified element in
lowercase

 ✓ none: Keeps the value of the inherited element

Markup for changing capitalization
The following example renders the first-level heading in uppercase (shown in
Figure 11-7):

body {color: black; font-family: Arial, sans-serif; font-size: 85%;}
 a {font-weight: bold;}
 a:link {color: olive; text-decoration: underline;}
 a:visited {color: green; text-decoration: none;}
 h1 {font-family: “Trebuchet MS”, verdana, geneva, arial, helvetica, sans-

serif;
 font-size: 2em; line-height: 2.5em; color: teal; text-transform: uppercase;
 text-align: center}

Figure 11-7: The first-level heading is rendered in all uppercase.

18_9780470916599-ch11.indd 18618_9780470916599-ch11.indd 186 11/30/10 10:42 AM11/30/10 10:42 AM

187 Chapter 11: Getting Creative with Colors and Fonts

Getting fancy with the text-decoration property
The text-decoration property allows for text formatting that’s a tad cra-
zier. It isn’t used often.

Syntax for text decoration
This style declaration uses the text-decoration property:

selector {text-decoration: value;}

The value of the text-decoration property may be one of the following:

 ✓ underline: Underlines text

 ✓ overline: Renders the text with a line over it

 ✓ line-through: Renders the text with a line through it

 ✓ blink: Blinks the text onscreen

 Are you sure you want blinking text?

 • blink isn’t supported by all browsers.

 • blink can be dreadfully annoying and distracting.

 ✓ none: Removes any text decoration

Markup for text decoration
The following example changes the link when the mouse hovers over it. In
this case, it turns off any underlining for a link:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: olive; text-decoration: underline;}
a:hover {color: olive; text-decoration: none;}

The Catchall Font Property
Many font properties can be summarized in one style declaration by using
the shorthand font property. When it’s used, only one style rule is needed
to define a combination of font properties:

selector {font: value value value;}

18_9780470916599-ch11.indd 18718_9780470916599-ch11.indd 187 11/30/10 10:42 AM11/30/10 10:42 AM

188 Part III: Taking Precise Control Over Web Pages and Styles

The value of the font property is a list of any values that correspond to the
various font properties:

 ✓ The following values must be defined in the following order although
they don’t have to be consecutive:

 • font-size (required)

 • line-height (optional)

 • font-family (required)

 The font-family value list must end with a semicolon.

 Use commas to separate multiple font family names. For example, you
can use the following style declaration to create a specific style for para-
graph text that specifies font-size, line-height, and font-family in that
(required) order:

p {font: 1.5em bold 150% Arial, Helvetica, sans-serif;}

 ✓ The following values are optional and may occur in any order within the
declaration. Individual values are separated by spaces:

 • font-style

 • font-variant

 • font-weight

For example, you can use the following style declaration to create a specific
style for a first-level heading that mixes the optional values in among the
required ones (font-style and font-weight before line-height and font-family in
this case, with font-size and font-variant omitted):

h1 {font: italic bold 150% Arial, Helvetica, sans-serif;}

18_9780470916599-ch11.indd 18818_9780470916599-ch11.indd 188 11/30/10 10:42 AM11/30/10 10:42 AM

Part IV
Scripting and (X)HTML

19_9780470916599-pp04.indd 18919_9780470916599-pp04.indd 189 11/30/10 12:25 AM11/30/10 12:25 AM

In this part . . .

Here, we introduce and describe the types of script-
ing languages that work on Web pages, and dig

lightly into JavaScript — by far the most popular of all
Web-scripting languages. Scripting languages help static,
unchanging Web pages become active, dynamic docu-
ments that can solicit and respond to user input.

Next, you dig more deeply into working with forms so you
can understand how to solicit — and deal with — input
from your users. The following chapter shows how to
embed third-party services and information — such as
Flickr, Twitter, Google Maps, and YouTube — to make
your pages more dynamic and interesting while leveraging
the work of others.

The next chapter shows you ways to put JavaScript to
work in your Web pages. You pick up the basic concepts
and techniques for creating dynamic HTML (sometimes
called DHTML) and using client-side JavaScripts and pre-
fabricated code to perform basic tasks, such as displaying
date and time information, counting site visitors, or tabu-
lating current statistics. Part IV concludes with an over-
view of Web-based content management systems (CMS),
including WordPress, Joomla!, and Drupal.

19_9780470916599-pp04.indd 19019_9780470916599-pp04.indd 190 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 12

Top 20 CSS Properties
In This Chapter
▶ Digging into backgrounds and borders

▶ Fiddling with fonts, spacing, and positioning

▶ Managing text color and line-height

▶ Linking up with pseudo classes

▶ Making the most of online CSS resources

As you can see in Chapters 9–11, there’s an awful lot you can do with
Cascading Style Sheet (CSS) markup to manage and control how Web

pages behave inside users’ browsers. In this chapter, we single out a small
subset of 20 specific CSS properties that you’re most likely to encounter —
and use — on even fairly simple Web pages. Of course, we know this won’t
be enough for real Web-heads, or even aspiring ones, so this chapter also
includes a tasty set of nonpareil CSS references where you can dig up more
details and learn about other properties to your heart’s content.

 Eric A. Meyer not only wrote the Foreword for this book, but he’s also
authored numerous gems of his own on the subject of CSS. Be sure to check
out his many CSS-related titles, especially the invaluable Smashing CSS:
Professional Techniques for Modern Layout (Wiley).

Background Properties
As a CSS concept, background refers to numerous properties (six in all)
introduced with CSS 1.0 to manage what goes behind elements on display in
a Web page. Table 12-1 lists all the background properties, after which we
provide examples and details for two of the properties. To read more about
background properties and other CSS markup, visit the “Best CSS Resources”
section at the end of this chapter for additional information and useful tips.

20_9780470916599-ch12.indd 19120_9780470916599-ch12.indd 191 11/30/10 12:25 AM11/30/10 12:25 AM

192 Part IV: Scripting and (X)HTML

Table 12-1 Background Properties

Property Description

background Shorthand placeholder for all background
properties

background-attachment Determines whether background image
remains fixed or scrolls with the page

background-color Sets background color for related element

background-image Supplies background image for related ele-
ment as URL

background-position Sets starting position for background image

background-repeat Determines how background image repeats
on page

background-color
The background-color property allows you to establish a solid color for an
element’s background, including any associated padding and border settings
that go with it. Colors may be assigned by name, as described and illustrated
on the online Cheat Sheet at www.dummies.com/cheatsheet/html (aqua,
black, blue, fuchsia, and so forth) or by hex code number. (Color values and
hex code numbers are discussed in more detail in Chapter 11.)

In the code for the Web page displayed in Figure 12-1, we set the text color
for the body element to olive (#808000) for text. We then define a basic
style rule for the default level one (h1) heading shown at the top with a
gray background-color, and black text. The second heading uses a class
instance named alt-h1 to set large margins, padding, and borders to create
a large silver background area around the text and an indent to the left.

 Visit the Web site for this book at www.dummieshtml.com, and then check
the listings for Chapter 12 for easy access to all source code used to pro-
duce screenshots in this book (find links for figures by number: 12-1, 12-2,
and so on).

background-image
Use the background-image property to use an image instead of a solid
color as the background for an element. We take the code from Figure 12-1,
make alt-h1 text italic, and replace background-color: silver; with
background-image: url(texture.jpg);, where a photographic texture
is the background (see Figure 12-2).

20_9780470916599-ch12.indd 19220_9780470916599-ch12.indd 192 12/2/10 10:47 PM12/2/10 10:47 PM

193 Chapter 12: Top 20 CSS Properties

Figure 12-1: A general style rule defines h1
appearance, further refined by instance alt-h1.

 When using images as background, repetitive textures or relatively quiet
abstract images work best, particularly if you want users to be able to read
foreground text.

Figure 12-2: This time, the alt-h1 instance
picks up a photo as the background.

Border and Outline Properties
Borders and outlines define the edges and help to make boundaries around
elements visible. You’ll find all kinds of controls for individual edges as
well as for color, style, and width. To keep the jargon straight, a border falls

20_9780470916599-ch12.indd 19320_9780470916599-ch12.indd 193 11/30/10 12:25 AM11/30/10 12:25 AM

194 Part IV: Scripting and (X)HTML

just inside the edge of an element box, whereas an outline includes that
edge. Table 12-2 lists the various border and outline properties along with a
description of what they do.

Table 12-2 Border and Outline Properties

Property Description

border Shorthand for all border properties

border-bottom Sets all bottom border properties

border-bottom-color Sets bottom border color

border-bottom-style Sets bottom border style

border-bottom-width Sets bottom border width

border-color Sets color for all four borders

border-left Sets all left border properties

border-left-color Sets left border color

border-left-style Sets left border style

border-left-width Sets left border width

border-right Sets all right border properties

border-right-color Sets right border color

border-right-style Sets right border style

border-right-width Sets right border width

border-style Sets style for all four borders

border-top Sets all top border properties

border-top-color Sets top border color

border-top-style Sets top border style

border-top-width Sets top border width

border-width Sets width for all four borders

outline Sets all outline properties

outline-color Sets outline color

outline-style Sets outline style

outline-width Sets outline width

20_9780470916599-ch12.indd 19420_9780470916599-ch12.indd 194 11/30/10 12:25 AM11/30/10 12:25 AM

195 Chapter 12: Top 20 CSS Properties

border
For CSS, border is a shorthand property: That is, it combines width, style, and
color in a single declaration. Each of these three components applies to the
top, right, bottom, and left edges of an element box, in that order. Here’s a
mnemonic: We use TRBL — that’s right, trouble — as shorthand for the order
of top, right, bottom, and left.

This single CSS property actually permits as many as 12 subsidiary proper-
ties to be set at the same time. In the example shown in Figure 12-3, we sur-
round paragraphs with thin dashed purple lines, thereby addressing width
(thin), color (purple), and style (dashed) in a single declaration. Although
you can control settings for each such characteristic per edge (in TRBL
order), it’s seldom necessary to do so.

Figure 12-3: Paragraphs get a thin purple
dashed outline on this page.

Feel free to explore other border and outline properties as you see fit. There
are quite a few of them, so give yourself some time to learn and play.

Dimension
Dimension properties define size information — namely, height and width —
to control where elements are placed on a Web page. In addition to basic
height and width, maximum and minimum values for such properties can
also be set. Sometimes called “min-max” properties, using these can be help-
ful to ensure that display areas are always at least as large as some minimum
value to make sure visual information doesn’t get lost. Min-max can be espe-
cially useful when text or images must float on a page. (Also check out the
CSS overflow, overflow-clip, clip, and visibility properties later
in this chapter, in Chapter 20, and on www.dummieshtml.com to see how to
handle odd, unexpected, or unwanted floating behavior.) Table 12-3 provides
a listing of dimension properties.

20_9780470916599-ch12.indd 19520_9780470916599-ch12.indd 195 11/30/10 12:25 AM11/30/10 12:25 AM

196 Part IV: Scripting and (X)HTML

Table 12-3 Dimension Properties

Property Description

height Sets element height

max-height Sets maximum element height

max-width Sets maximum element width

min-height Sets minimum element height

min-width Sets minimum element width

width Sets element width

height and width
We handle both height and width in a single example, where the image
(img) element is sized to occupy 10 percent of a paragraph for each of these
properties. This resizes the image to occupy no more than 10 percent of
the horizontal dimension of the browser’s display window, where height is
maintained to preserve the original aspect ratio (see Figure 12-4). Height and
width can also be specified using various absolute units of measure (pixels,
points, picas, ems, and so forth). Min-max values make sure that elements
never get too big or too small.

Figure 12-4: Use height and width properties to set element
size and preserve aspect ratio.

 These properties are best played within an editor, along with resizing your
browser window, to best understand how things work.

20_9780470916599-ch12.indd 19620_9780470916599-ch12.indd 196 11/30/10 12:25 AM11/30/10 12:25 AM

197 Chapter 12: Top 20 CSS Properties

Fonts and Font Properties
CSS not only allows you to manage font properties galore, it also allows you
to associate fonts with specific (X)HTML elements, and even define arbitrary
sequences of fonts to use for those elements.

 If you want to reference a font whose name includes any embedded spaces,
enclose that name in double quotation marks (not smart quotes) so that
browsers can identify and use them if available on their host machines.

As you can see in Table 12-4, the shortcut font property covers a huge range
of values, so dig into this carefully and master to use it!

Table 12-4 Font Properties

Property Description

font Shortcut for all font properties

font-family Sets font family (generic or by name)

font-size Sets font size (using typical units of measure)

font-style Sets font style (normal, italic, oblique)

font-variant Turns small caps on or off (small-caps, normal)

font-weight Sets font weight (bold, bolder, lighter, 100-900)

font-family
Use the font-family property to select fonts by name from your users’
installed collection. You can assign multiple comma-separated values (CVSs)
to this property in CSS markup. The browser will use the first match it finds,
starting from the leftmost specification. Always end a string of font speci-
fications with a generic font name, such as serif or sans-serif, so that
a local system can always use a default selection should all else fail (or be
absent). In Figure 12-5, we select Arial as our level one heading font, and we
use Lucida Console as our body (paragraph) font, but also show off a variety
of fonts including also Arial Black, Book Antiqua, Tahoma, Times New Roman,
Comic Sans, and Cooper Black.

20_9780470916599-ch12.indd 19720_9780470916599-ch12.indd 197 11/30/10 12:25 AM11/30/10 12:25 AM

198 Part IV: Scripting and (X)HTML

Figure 12-5: Fonts on display include heavy black fonts (Cooper and
Arial) plus other serif and sans serif choices.

font-weight
The font-weight property determines how light or heavy type is drawn
on a page. In our example in Figure 12-6, we identify all the named font-
weights as well as all the recognizable numeric font-weight values. Notice
that you really can’t tell much difference between bold and bolder, and that
the numeric values don’t show uniform gradations either. For most page
designers, bold is bold enough, and numbers 200–500 and 600–900 appear
interchangeable. Font designers often build black versions of font faces (for
example, Arial Black or Cooper Black), which might be better used with its
plain-vanilla counterpart (Arial or Cooper) to create heavier font weights or
more weight variations.

font-size
The font-size property is the setting that manages how big or small a font
looks onscreen. For truly small type, use points (pt) for sizing; most normal
paragraph fonts are usually 10pt to 12pt. Fonts smaller than 6pt are hard to
see onscreen. Sizing fonts in whole ems can get out of hand pretty quickly.
You can use the source page for the example shown in Figure 12-7 to conduct
your own font-sizing experiments pretty quickly, if you like.

20_9780470916599-ch12.indd 19820_9780470916599-ch12.indd 198 11/30/10 12:25 AM11/30/10 12:25 AM

199 Chapter 12: Top 20 CSS Properties

Figure 12-6: Although font weights are many, there isn’t
much difference onscreen.

Figure 12-7: Usable font sizes must be big enough to see,
and small enough not to overwhelm the page.

20_9780470916599-ch12.indd 19920_9780470916599-ch12.indd 199 11/30/10 12:25 AM11/30/10 12:25 AM

200 Part IV: Scripting and (X)HTML

Spacing Properties: Margin and Padding
Margins define space around the edges for block elements that background
colors don’t fill. Padding defines space around the edges for block elements
that background colors do fill. Table 12-5 holds these properties. Although
we discuss these two shorthand properties and their constituent properties
separately in the text that follows, we combine them in a single example in
Figure 12-8 to better compare and contrast them and also to show how they
work together. We also include borders to show where element box outlines
reside as well.

Table 12-5 Margin and Padding Properties

Property Description

margin Shortcut for all margin properties (TRBL)

margin-bottom Sets element bottom margin

margin-left Sets element left margin

margin-right Sets element right margin

margin-top Sets element top margin

padding Shortcut for all padding properties (TRBL)

padding-bottom Sets element bottom padding

padding-left Sets element left padding

padding-right Sets element right padding

padding-top Sets element top padding

margin
Like padding, margin is a shortcut property, where the constituent values
address TRBL (as we discuss earlier: top, right, bottom, and left) edges, in
that order. If you supply a single value for margin, it applies to all four edges
alike. Thus, for example, the CSS margin: 0.5em; is identical to margin-
top: 0.5em; margin-right: 0.5em; margin-bottom: 0.5em;
margin-left: 0.5em;.

padding
Like margin, padding is a shortcut property, where the constituent values
address TRBL edges, in that order. If you supply a single value for padding,
it applies to all four edges alike. Here again, the CSS padding: 0.5em; is

20_9780470916599-ch12.indd 20020_9780470916599-ch12.indd 200 11/30/10 12:25 AM11/30/10 12:25 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

201 Chapter 12: Top 20 CSS Properties

identical to padding-top: 0.5em; padding-right: 0.5em; padding-
bottom: 0.5em; padding-left: 0.5em;.

Close inspection of the figure shows that padding extends the text box around
the element, including the background. Using margin, on the other hand,
moves the edges of the text box away from the edge of the parent text box so
that content is indented all the way around. The combination of the two (see
the final pair of elements in Figure 12-8) extends the background around the
elements (padding) and moves the edges to accommodate their margins.

Figure 12-8: Margin and padding at work separately and together.

Positioning
Positioning controls (see Table 12-6) define where elements appear on a page,
how elements relate to one another, and how text flows (or doesn’t) around
various elements. The TRBL properties (top, right, bottom, and left) come
into play here, and elements may be positioned absolutely (with reference to
the origin, or upper-left corner of the page) or relatively (with reference to
whatever element encloses them).

 HTML source code for all of the figures in this chapter (and the rest of the
book) are available at www.dummieshtml.com. There, you can find the rel-
evant source in the Chapter 12 section (labeled Figure 12-1, Figure 12-2, and
so on).

20_9780470916599-ch12.indd 20120_9780470916599-ch12.indd 201 11/30/10 12:25 AM11/30/10 12:25 AM

202 Part IV: Scripting and (X)HTML

Table 12-6 Positioning Properties

Property Description

bottom Sets bottom margin edge for positioned box

clear Blocks element edges to other floating elements

clip Clips absolutely positioned element

cursor Selects type of cursor for display

display Selects what box type an element should generate

float Turns box float on or off

left Sets left margin edge for positioned box

overflow Controls how content overflows an element box

overlow-clip Controls how content overflows an element box

position Selects positioning type for an element

right Sets right margin edge for a positioned box

top Sets top margin edge for a positioned box

visibility Turns element visibility on or off

z-index Assigns stack order for an element (numeric)

float
Use float to direct how text flows around an element. Floating has been
around ever since the days when various Web browsers provided nonstan-
dard HTML “extensions” to permit page designers to “float” images to the
right- or left-hand side of a Web page. CSS makes this standard, and applies it
equally to text blocks (such as paragraphs or lists) and to images. float can
take the values left, right, or none (the default) as we show in Figure 12-9.

Notice that both left and right float push atop the background for the h1
headings in Figure 12-9. (We show you how to fix this in the upcoming sec-
tion, “clear.”) This illustrates that managing float (and where img elements
get placed in paragraphs) can be important. Our final paragraph with no float
shows how graphics can plop onto the page wherever they’re called: That’s
not ideal, either, even if it doesn’t overlap with other elements on the page.

z-index
When you start positioning multiple elements on a page (as we did in Chapter
10 with a menu and a photograph), overlap can occur, and may sometimes
even be desirable. The z-index adds a third dimension for positioning,
along the lines of depth as in 3D coordinates (x, y, and z). On a Web page, the

20_9780470916599-ch12.indd 20220_9780470916599-ch12.indd 202 11/30/10 12:25 AM11/30/10 12:25 AM

203 Chapter 12: Top 20 CSS Properties

z-index value is purely relative. It’s used to manage display order, so higher
values sit “closer” to the front of the screen, and lower ones sit closer to the
back. In other words, when drawing boxes in which elements sit, a browser
gives precedence to those with higher numbers when some boxes with
lower numbers occupy the same space. In Chapter 10, we show how to use
z-index with a menu and a photo, and explain in the markup for Figure 10-4
that a negative z-index goes behind everything with a positive z-index.
For a quick illustration, check it out!

Figure 12-9: Float settings make it easy to move
items inside text blocks, but also show why
other positioning tools are absolutely necessary.

 Exercise caution when using z-index, and make certain it’s defined for your
CSS menu (or anything else with dynamic properties that might overlap an
embedded object when performing a function call). Furthermore, an unde-
fined z-index can cause display issues when using CSS with Flash. Flash
often includes a default z-index in its action-script that may conflict.

clear
To solve the problem illustrated in Figure 12-9, where the images floated into
the heading backgrounds in the second and third paragraphs, using clear
enables designers to prevent such impingement. clear can take these
values: left, right, both, and none (the default). Because overlap occurs
after an image and text flows from left to right, adding clear: right; to
image markup fixes this problem, as shown in Figure 12-10.

20_9780470916599-ch12.indd 20320_9780470916599-ch12.indd 203 11/30/10 12:25 AM11/30/10 12:25 AM

204 Part IV: Scripting and (X)HTML

Figure 12-10: Use clear to enforce the margin
around an element.

cursor
Using the cursor property changes the appearance of the mouse cursor in
a Web browser as it hovers over specific elements. Numerous values can
be assigned to this property, so experiment to see how they look in various
browsers and whether you can use them to good effect. Figure 12-11 uses
four texture images, each with a different cursor so you can see how this
looks for yourself onscreen. (It’s hard to show dynamic behavior in a book,
so we made a collage of screenshots from the same underlying page.)

CSS supports as many as 17 different cursor styles, so be sure to spend some
time experimenting with different values that the cursor property can take.

Text
Some people might argue that text properties are the most important ele-
ments in the CSS collection. We don’t want to fight about this, for sure, but
instead recommend that you dig into Table 12-7 to see what’s available for
controlling text appearance and behavior while it’s on display using CSS. We
think you’ll be amazed, but we hope you’ll also be pleased.

20_9780470916599-ch12.indd 20420_9780470916599-ch12.indd 204 11/30/10 12:25 AM11/30/10 12:25 AM

205 Chapter 12: Top 20 CSS Properties

Figure 12-11: A composite of multiple
screenshots shows various cursor styles.

Table 12-7 Text Properties

Property Description

color Sets text color of text (name or hex code)

direction Specifies text/writing direction (ltr or rtl)

letter-spacing Manages space between characters in text

line-height Sets line height

text-align Sets horizontal alignment (left, right, justify,
center)

text-decoration Specifies decoration added to text

text-indent Sets indent for first line in a text-block

text-shadow Sets text shadow effect added

text-transform Controls text capitalization

vertical-align Sets vertical element alignment

white-space Manages space between words in text

word-spacing Manages space between words in text

20_9780470916599-ch12.indd 20520_9780470916599-ch12.indd 205 11/30/10 12:25 AM11/30/10 12:25 AM

206 Part IV: Scripting and (X)HTML

color
Use color to, um, establish color for text within elements, where colors
may be assigned by using names or hex codes. (See the online Cheat Sheet at
www.dummies.com/cheatsheet/html for a sizable list of such names and
values.) We show this capability throughout Chapters 9–11, and this chapter
as well, so we don’t illustrate it here.

line-height
The line-height property sets the height for the inline boxes (those allo-
cated for each line of text) in a text block of some kind. Use line-height as
an easy way to expand or compress the space between lines of text, as the
example in Figure 12-12 shows.

Figure 12-12: Various line heights show the
effects of varying this property.

20_9780470916599-ch12.indd 20620_9780470916599-ch12.indd 206 12/2/10 10:47 PM12/2/10 10:47 PM

207 Chapter 12: Top 20 CSS Properties

Pseudo Classes
Pseudo classes in CSS may seem a little strange at first: They take some get-
ting used to because they modify (X)HTML elements. That explains why Table
12-8 starts each pseudo class name with a colon (it acts as a delimiter with
the element it modifies, and it signals the presence of a CSS pseudo class).
Generally, pseudo classes serve to make content on Web pages more dynamic
and interactive, as you’ll discover when you get comfortable with them.

Table 12-8 CSS Pseudo Classes

Pseudo Class Description

:active Adds a style to an activated element

:after Adds content following an element

:before Adds content preceding an element

:first-child Adds a style to first child element inside another element

:first-letter Adds a style to first character in a text sequence

:first-line Adds a style to first line in a text sequence

:focus Adds a style to element with keyboard input focus

:hover Adds a style to element as you mouse over it

:lang Adds a style to any element with a specific language
attribute

:link Adds a style to unvisited link

:visited Adds a style to visited link

By far, the most widely used pseudo classes apply to (X)HTML links. In the
example in the next section, we combine :hover, :link, and :visited to
show how this works (and looks).

:hover, :link, and :visited
The pseudo classes :hover, :link, and :visited all apply to hyperlinks.

 ✓ :hover comes into play when the mouse cursor hovers over a hyperlink.

 ✓ :link applies style to a hyperlink that has not yet been visited.

 ✓ :visited applies style to a hyperlink that has been visited.

20_9780470916599-ch12.indd 20720_9780470916599-ch12.indd 207 11/30/10 12:25 AM11/30/10 12:25 AM

208 Part IV: Scripting and (X)HTML

All these behaviors are readily visible in the code created for Figure 12-13.

In our example, we change font-variant for visited links to small caps, and
use the linethrough (strikethrough) text decoration. Unvisited links use a
larger font with an underline. When you hover over a link, it turns bold and
red, and the cursor changes from a pointer to a hand.

Figure 12-13: Link-related pseudo classes change
the appearance of hyperlinks in response to
visitation state and mouse activity.

Best CSS Resources
The following collection of Web sites offers some outstanding references on
CSS and its proper use on well-crafted Web pages. The very first reference
from W3Schools.com is terrific, and provided much of the raw material on
which Tables 12-1 through 12-8 were based.

W3Schools.com
www.w3schools.com/css/css_reference.asp

This is a great online resource that offers CSS definitions and usage, related
pages, browsers supported, examples, and even the ability to “try it yourself”
in a controlled environment (beats fiddling HTML documents manually) at
www.w3schools.com/css/tryit.asp?filename=trycss_background.

20_9780470916599-ch12.indd 20820_9780470916599-ch12.indd 208 11/30/10 12:25 AM11/30/10 12:25 AM

209 Chapter 12: Top 20 CSS Properties

Firebug
http://getfirebug.com

This is by far the best browser resource for debugging and figuring out why
in the world your CSS or HTML pages aren’t behaving like you think they
should. Using this Firefox plugin, you can select elements on a page and see
which CSS properties are currently assigned, by file (if you have multiple
style sheets) or even by specific line in the source document. You can also
instruct this tool to temporarily add or ignore CSS declarations, which makes
it very easy to experiment with and debug your CSS markup.

Eric Meyer’s Reset
http://meyerweb.com/eric/tools/css/reset/reset.css

This URL above is a great example of a reset style sheet. A reset style sheet
seeks to reduce browser inconsistencies for settings that include default
line heights, margins, font sizes in headings, and so on. The general reason-
ing behind reset is discussed in Meyer’s May 2007 blog post entitled “Reset
Reloaded” (http://meyerweb.com/eric/thoughts/2007/05/01/
reset-reloaded). Reset styles appear quite often in CSS frameworks, and
Meyer’s original “meyerweb reset” was incorporated into the Blueprint
home page (www.blueprintcss.org), among many others. Reset style
sheets are definitely worth learning about as well as applying to your own
Web design efforts. If you click the preceding link, you’ll see a text listing of
the entire reset.css style sheet.

Spoon Browser Sandbox
www.spoon.net/browsers

Unfortunately, CSS sometimes displays differently in different browsers.
To avoid designing what you think is a really great site only to discover
that everything gets jumbled in some other browser you didn’t try out, use
this site. Right now, Spoon Browser Sandbox is PC-only, but it allows you
to remotely launch Web browsers that aren’t even installed on your com-
puter. Use it to see what your pages look like in multiple versions of Internet
Explorer, Firefox, Opera, Chrome, and Safari.

W3C CSS Validation Service
http://jigsaw.w3.org/css-validator

Check CSS and (X)HTML documents with style sheets with this fine, free,
online tool. Point it at publicly accessible Web pages, upload files to it, or
drop code into a text box to check its contents.

20_9780470916599-ch12.indd 20920_9780470916599-ch12.indd 209 11/30/10 12:25 AM11/30/10 12:25 AM

210 Part IV: Scripting and (X)HTML

Web-Developer’s Handbook
www.alvit.de/handbook

This site is almost overkill, featuring a really big directory of CSS links and
general links related to Web design. Numerous sections on CSS cover daily
reading, showcases and galleries, tools and services, specifications, and
lots, lots more. Give yourself some time to chew through this compendium;
there’s an amazing amount of good stuff to masticate here!

YSlow
https://addons.mozilla.org/en-US/firefox/addon/5369

Drawing from a set of rules used on high-performance Web pages, YSlow ana-
lyzes Web pages to suggest ways to improve their performance. YSlow is a
Firefox add-on for the Firebug Web development tool. It grades Web pages by
using one of three predefined rulesets or a user-defined ruleset. In addition,
YSlow also offers suggestions to improve page performance, summarizes
page components, displays page statistics, and provides performance analy-
ses such as Smush.it and JSLint.

20_9780470916599-ch12.indd 21020_9780470916599-ch12.indd 210 11/30/10 12:25 AM11/30/10 12:25 AM

Chapter 13

Scripting Web Pages
In This Chapter
▶ Exploring what JavaScript can do for your Web pages

▶ Arranging content

▶ Opening new windows

▶ Checking user input

▶ Exploring more uses for JavaScript

When used in conjunction with your HTML markup, scripts — small
programs that you add to your Web page — help your Web pages

respond to user actions. Scripts create the interactive and dynamic effects
you see on the Web, such as images that automatically change when visitors
move mouse pointers over them, additional browser windows that pop up
when a page loads, and animated or interactive navigation bars.

Because scripts are mini-programs, they’re often written in a programming
language called JavaScript. If you’re unfamiliar with the term, JavaScript may
sound like a Hollywood screenplay doused with coffee. However, it is actually
a scripting language built right into all popular Web browsers.

Fortunately, because of the Nobel Prize–worthy invention of “copy and
paste,” you don’t need to be a technoguru to add scripting to your Web sites.
The Web has many sites that feature canned JavaScript elements that you
can freely copy and then paste right into your Web page. (Chapter 14 lists
several of the best JavaScript sites.)

 Many good Web page editors (such as Adobe Dreamweaver and Adobe
Fireworks) include built-in tools to help you create scripts — even if you
don’t know anything about programming.

In this chapter, you explore how scripting works inside your Web page by
dissecting three sample scripts written in JavaScript. If you’re interested in
learning more about JavaScript and how it works, please check out JavaScript
For Dummies, 5th Edition, by Emily Vander Veer, for more information and to
dive a little deeper into the JavaScript language itself.

21_9780470916599-ch13.indd 21121_9780470916599-ch13.indd 211 11/30/10 12:25 AM11/30/10 12:25 AM

212 Part IV: Scripting and (X)HTML

Finding Out What JavaScript
Can Do for Your Pages

Adding scripts to your Web site is much like those reality-TV makeover
shows that transform a house or a person’s appearance into something
completely new and wonderful. The same is true with JavaScript. You can
transform a plain, dull Web page into an interactive and dynamic Web extrav-
aganza to bring joy to your visitors for years to come. (Okay, maybe we’re
exaggerating just a tad, but you get the point.)

For example, if you visit Dummies.com (www.dummies.com) and click the
blue Search button next to the Start Exploring box without entering a term to
search on, the browser displays a nice warning box that reminds you to enter
a search term before you actually search, as shown in Figure 13-1.

Figure 13-1: The search term is empty — that is, missing.

A short script verifies whether you entered a search term before the engine
runs the query:

 ✓ If you enter a search term, you don’t see the warning.

 ✓ If you don’t enter a search term, the script built into the page prompts
the dialog box to appear.

21_9780470916599-ch13.indd 21221_9780470916599-ch13.indd 212 11/30/10 12:25 AM11/30/10 12:25 AM

213 Chapter 13: Scripting Web Pages

This bit of scripting makes the page dynamic, which means that it adds pro-
grammed functionality to your Web pages, allowing them to respond to what
users do on the page (for example, filling out a form or moving the mouse
pointer over an image). When you add scripts to your page, the page inter-
acts with users and changes its display or its behavior in response to what
users do.

 The page URL doesn’t change, and another browser window doesn’t open
when you try to search on nothing. The page responds to what you do with-
out sending a request back to the Web server for a new page. This is why the
page is considered dynamic.

If you try this trick without using a script (that is, without dynamic func-
tionality), the browser would send the empty search string back to the Web
server. Then the server would return a warning page reminding the user to
enter a search term. All the work would be done on the Web server instead
of in the Web browser. This is slower because the request must first go to
the server, and then the server must transmit the warning page back to your
browser — and thus the server feels much less fluid to the user. It’s much
better to just click a button on the page and have an alert pop up instantly to
help the user.

In the following sections, we showcase three common ways in which
JavaScript can be used in your Web pages.

JavaScript is not Java
In the late 1990s, the originators of the
JavaScript scripting language wanted to ride
the coattails of the massive popularity of the
Java programming language, so they gave it
a catchy name — JavaScript. However, when
they made this decision, they also introduced a
lot of confusion given the similarity of the two
names. To clarify, the full-featured Java pro-
gramming language isn’t a scripting language
on the Web. Java is a descendent of the C and
C++ programming languages. Programmers
can create Java applications that can run on

Windows, Macintosh, Linux, and other com-
puter platforms:

 ✓ On the client side, Java is used to create
applets (small programs that download
over the Net and run inside Web browsers).
Because Java is designed to be cross-
platform, these applets should run identi-
cally on any Java-enabled browser.

 ✓ On the server side, Java is used to create
many Web-based applications.

21_9780470916599-ch13.indd 21321_9780470916599-ch13.indd 213 11/30/10 12:25 AM11/30/10 12:25 AM

214 Part IV: Scripting and (X)HTML

 Don’t worry about the details of the JavaScript code in the following exam-
ples. Just focus on how JavaScript scripts can be pasted into your Web page
to work alongside your HTML markup.

Using JavaScript to Arrange
Content Dynamically

JavaScript can be used with Cascading Style Sheets (CSS; covered in Chapters
9–12) to change the look of a page’s content in response to a user action.
Here’s an example: Two writers share a blog named Backup Brain (www.
backupbrain.com). One of the writers prefers small, sans serif type, and
the other one finds it easier to read larger, serif type, so the blog has buttons
that change the look of the site to match each person’s preference. Of course,
site visitors can use the buttons to switch the look of the type, too, and the
site remembers the visitor’s choice for future visits by setting a cookie (a
small preference file written to the user’s computer). Figure 13-2 shows the
two looks for the page.

Figure 13-2: Change how text displays.

21_9780470916599-ch13.indd 21421_9780470916599-ch13.indd 214 11/30/10 12:25 AM11/30/10 12:25 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

215 Chapter 13: Scripting Web Pages

JavaScript and CSS create this effect by switching between two style sheets:

 ✓ The sans serif style sheet, sansStyle.css

 ✓ The serif style sheet, serifStyle.css

Listing 13-1 shows the source code for an example page that contains the
switching mechanism shown in Figure 13-2:

 ✓ When a user clicks the Sm Sans button on the page, the
styleSwitcher.js script referenced in the <head> element runs
and switches the active style sheet to sansStyle.css. (.js is the file
extension that’s used with JavaScript files, as in the src value for the
script element in Listing 13-1.)

 ✓ When the user clicks the Lg Serif button, the same script switches to the
serifStyle.css style sheet.

Listing 13-1: Style Switching
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <title>Style Changer</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <link href=”simpleStyle.css” rel=”stylesheet” rev=”stylesheet” />
 <link href=”sansStyle.css” rel=”stylesheet” rev=”stylesheet”
 title=”default” />
 <link href=”serifStyle.css” rel=”alternate stylesheet”
 rev=”alternate stylesheet” title=”serif” />
 <style type=”text/css” media=”all”>@import url(“complexStyle.css”);</style>
 <script src=”styleSwitcher.js” language=”javascript1.5”
 type=”text/javascript”></script>
</head>
<body>
<div class=”navBar”>

Change your font:
<form action=”none”>
 <input type=”button” class=”typeBtn” value=”Sm Sans”
 onclick=”setActiveStylesheet(‘default’)” />
 <input type=”button” class=”typeBtn2” value=”Lg Serif”
 onclick=”setActiveStylesheet(‘serif’)” />
</form>
</div>

<div class=”content” id=”headContent”>
<p>Replace this paragraph with your own content.</p>
</div>
</body>
</html>

21_9780470916599-ch13.indd 21521_9780470916599-ch13.indd 215 11/30/10 12:25 AM11/30/10 12:25 AM

216 Part IV: Scripting and (X)HTML

You can see the example page for yourself at www.javascriptworld.com/
js5e/scripts/chap16/ex6/index.html.

 This example relies on several different files (HTML, CSS, and JavaScript).
You can download all these files, if you’d like, from www.javascriptworld.
com/js5e/scripts/index.html.

The Font Style Changer files appear in the Chapter 16.

Working with Browser Windows
JavaScript can tell your browser to open and close windows.

 You’ve probably seen an annoying version of this trick: advertising pop-up
windows that appear when you try to leave a site. (Let’s not go there.) This
technology can be used for good as well as evil, though. For example, you
can preview a set of big image files with small thumbnail versions. Clicking a
thumbnail image can perform such actions as

 ✓ Opening a window with a larger version of the image.

 ✓ Opening a page with a text link that opens a window with an illustration
of that text, as shown in Figure 13-3.

Figure 13-3: When you click the link, a pop-up window appears with
a picture in it.

21_9780470916599-ch13.indd 21621_9780470916599-ch13.indd 216 11/30/10 12:26 AM11/30/10 12:26 AM

217 Chapter 13: Scripting Web Pages

The code required to do this sort of pop-up window is fairly straightforward,
as Listing 13-2 shows with its invocation of the window.open function.

Listing 13-2: Pop-up Windows
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Opening a Window</title>
 <script language=”Javascript” type=”text/javascript”>

 function newWindow() {
 catWindow = window.open(“images/pixel2.jpg”, “catWin”,
 “width=330,height=250”)
 }
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House</h1>
 <h2>Click on His name to behold He Who Must Be Adored

 Pixel</h2>
</body>
</html>

 Pop-up windows are no longer a best practice and should be used with cau-
tion. Overuse of pop-up windows can backfire on you. Many Web sites use
pop-up windows to deliver ads, so users are becoming desensitized (or hos-
tile) to them and simply ignore them (or install software that prevents them).
Also, some Web browsers — such as Firefox, Safari, and Internet Explorer —
automatically block pop-up windows by default these days. Before you add
a pop-up window to your site, be sure that it’s absolutely necessary. Then,
alert your visitors that you’ll be using pop-ups so they can instruct their Web
browsers to permit them to appear.

Soliciting and Verifying User Input
A common use for JavaScript is to verify that users have filled out all the
required fields in a form before the browser actually submits the form to
the form processing program on the Web server. Listing 13-3 places a form-
checking function, checkSubmit, in the <script> element of the HTML
page and references it in the onsubmit attribute of the <form> element.

21_9780470916599-ch13.indd 21721_9780470916599-ch13.indd 217 11/30/10 12:26 AM11/30/10 12:26 AM

218 Part IV: Scripting and (X)HTML

Listing 13-3: Form Validation
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <title>Linking scripts to HTML pages</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
 function checkSubmit (thisForm) {
 if (thisForm.FirstName.value == ‘’) {
 alert(‘Please enter your First Name.’);
 return false;
 }

 if (thisForm.LastName.value == ‘’) {
 alert(‘Please enter your Last Name.’);
 return false;
 }

 return true;
 }
</script>
</head>

<body>
 <form method=”post” action=”/cgi-bin/form_processor.cgi”
 onsubmit=”return checkSubmit(this);”>
 <p>
 First Name: <input type=”text” name=”FirstName” />

 Last Name: <input type=”text” name=”LastName” />

 <input type=”submit” />
 </p>
 </form>
</body>
</html>

This script performs one of two operations if either form field isn’t filled in
when the user clicks the Submit button:

 ✓ It instructs the browser to display a warning to let the user know that he
forgot to fill in a field.

 ✓ It returns a value of false to the browser, which prevents the browser
from submitting the form to the form processing application.

If the fields are filled in correctly, the browser displays no alerts and returns
a value of true, which tells the browser that the form is ready for the Web
server. Figure 13-4 shows how the browser displays an alert if the first name
field is empty.

21_9780470916599-ch13.indd 21821_9780470916599-ch13.indd 218 11/30/10 12:26 AM11/30/10 12:26 AM

219 Chapter 13: Scripting Web Pages

Figure 13-4: A good use of JavaScript is to validate form data.

 Although this example only verifies whether users filled out the form fields,
you can create more advanced scripts that check for specific data formats,
such as using @ signs in e-mail addresses and using only numbers in phone
number fields.

 When you create forms that include required fields, we recommend that you
always include JavaScript field validation to catch missing data before the
script finds its way back to the server. Visitors get frustrated when they take
the time to fill out a form only to be told to click the Back button to provide
missing information. When you use JavaScript, the script catches any missing
information before the form page disappears, which allows users to quickly
make changes and try to submit again.

But Wait . . . There’s More!
You can do much more with JavaScript. The following list highlights several
common uses of the scripting language:

 ✓ Detect whether a user has a browser plug-in installed that handles multi-
media content

 ✓ Build slide shows of images

 ✓ Automatically redirect the user to a different Web page

 ✓ Add conditional logic to your page so that if the user performs a certain
action, other actions are triggered

 ✓ Create, position, and scroll new browser windows

 ✓ Create navigation bars and change the menus on those bars dynamically

 ✓ Automatically put the current date and time on your page

 ✓ Combine JavaScript and CSS to animate page elements

21_9780470916599-ch13.indd 21921_9780470916599-ch13.indd 219 11/30/10 12:26 AM11/30/10 12:26 AM

220 Part IV: Scripting and (X)HTML

An innovative use of JavaScript occurs in Gmail, the free Web-based e-mail
service from Google, which you can find at www.gmail.com. Gmail uses
JavaScript to load an entire e-mail user interface into the user’s browser,
which makes Gmail much more responsive to user actions than most other
Web-based mail programs. Gmail uses JavaScript to keep to an absolute mini-
mum the number of times the page has to fetch additional information from
the servers. By doing much of the processing in the user’s browser, the Gmail
Web application feels more like an e-mail program that runs on your com-
puter. Figure 13-5 shows the JavaScript-powered Gmail interface. It’s a great
example of the power of JavaScript.

Figure 13-5: The Gmail interface is powered by JavaScript.

Server-side scripting
JavaScript is a scripting language that runs
inside the browser, but there are other script-
ing languages that run on the server side, such
as Perl, ASP (Active Server Pages), PHP (PHP
Hypertext Preprocessor, an (X)HTML embedded
scripting language), Python, .NET, and others.
Programs written in these languages reside
on the server and are called by the Web page,
usually in response to a form filled out by the
user. People who write these Web pages may
include snippets of code that pass bits of infor-
mation from the HTML page to the program on

the server. When called, the program runs and
then returns a result of some sort to the user.

Amazon (www.amazon.com) runs a familiar
e-commerce Web application that runs mostly
on the server side, using server scripts. Web
pages displayed by the browser when you visit
Amazon result from processing server-side
scripts, all of which take place before the page
ever hits your browser. If you’d like more infor-
mation on JavaScript and what it can do for
you, check out JavaScript For Dummies, Quick
Reference by Emily A. Vander Veer.

21_9780470916599-ch13.indd 22021_9780470916599-ch13.indd 220 11/30/10 12:26 AM11/30/10 12:26 AM

Chapter 14

Working with Forms
In This Chapter
▶ Using forms in your Web pages

▶ Creating forms

▶ Working with form data

▶ Designing easy-to-use forms

▶ Making forms easy with a form framework

Most of the HTML you write helps you display content and information
for your users. Sometimes, however, you want a Web page to gather

information from users instead of giving static information to them. HTML
form markup elements give you a healthy collection of tags and attributes for
creating forms to collect information from visitors to your site.

This chapter covers the many different uses for forms. It also shows you how
to use form markup tags to create just the right form for soliciting informa-
tion from your users, reviews your options for working with the data you
receive, and gives you some tips for creating easy-to-use forms that really
help your users provide the information you’re looking for.

Uses for Forms
The Web contains millions of forms, but every form is driven by the same set
of markup tags. Web forms can be short or long, simple or complex, and they
have myriad uses. But forms all fall into one of two broad categories:

 ✓ Search forms that let users search a site or the entire Web

 ✓ Data collection forms that provide information for online shopping,
technical support, site preferences, and personalization

 Before you create any form markup, you need to determine what kind of data
your visitors will search for on your site and/or what kind of data you need to
collect from visitors. Your data drives the form elements that you use as well
as how you put them together on a page.

22_9780470916599-ch14.indd 22122_9780470916599-ch14.indd 221 11/30/10 12:26 AM11/30/10 12:26 AM

222 Part IV: Scripting and (X)HTML

Search forms
Search forms help you give visitors information.

The following search forms are from the friendly folks at the Internal Revenue
Service (IRS). The difference between these search forms is the data the IRS
site needs from you for its search:

 ✓ The IRS home page (shown in Figure 14-1) is a simple, multifaceted
search form featuring various layout areas to help visitors easily search
for tax forms and publications, online services, filing and payment infor-
mation, task-oriented instructions, and general information. This type of
page can produce dozens of relevant responses. Visitors can both

 • Choose the best option.

 • Look at more than one option.

Figure 14-1: The IRS home page offers easy access to forms,
publications, and information.

 ✓ A more complicated search form, such as the Get Refund Status page
(as shown in Figure 14-2), produces only one specific response: namely,
IRS records for the status of your income tax refund. Because this page
demands detailed information — and after all, because the IRS doesn’t
want you to see anyone else’s refund — it serves dual purposes:

 • Finding data that visitors need

 • Hiding data that visitors shouldn’t see

22_9780470916599-ch14.indd 22222_9780470916599-ch14.indd 222 11/30/10 12:26 AM11/30/10 12:26 AM

223 Chapter 14: Working with Forms

Figure 14-2: Something like a refund status search form is a little more
complex.

 Searches come in all shapes and sizes, so the search forms that drive those
searches come in all shapes and sizes, too. A short keyword search might do
the trick, or you might need a more sophisticated search method.

Data collection forms
Data collection forms receive information you want to process or save. When
you create a form that collects information, the information you need is what
drives the structure and complexity of the form:

 ✓ Just a little: If you need just a little information, the form may be short
and (relatively) sweet.

 Example: The Library of Congress (LoC) uses a form to collect informa-
tion from teachers to subscribe to a free electronic newsletter, as shown
in Figure 14-3. The LoC doesn’t need much information to set up the sub-
scription, so the form is short and simple.

 ✓ Lots: If you need a lot of information, your form may be several pages long.

 Example: RateGenius uses long and detailed forms to gather the informa-
tion it needs to help customers get the best possible loan rate. The page
in Figure 14-4 is just the first of several that a visitor must fill out to pro-
vide all the necessary information.

22_9780470916599-ch14.indd 22322_9780470916599-ch14.indd 223 11/30/10 12:26 AM11/30/10 12:26 AM

224 Part IV: Scripting and (X)HTML

Figure 14-3: A free subscription form collects basic information.

Figure 14-4: Some sites use many detailed forms to collect necessary
data.

Creating Forms
HTML forms can present information to users, using text and images. But
it can also proffer various types of text input fields (in-line, single line, or
multiple lines) as well as various types of data selection tools, such as radio

22_9780470916599-ch14.indd 22422_9780470916599-ch14.indd 224 11/30/10 12:26 AM11/30/10 12:26 AM

225 Chapter 14: Working with Forms

buttons (which let you pick one option from a group), pick lists (which let
you fill in a value from a pre-defined set of options), or check boxes (which
enable you to pick zero, one, or more values from a predefined set of inputs).
All in all, HTML form markup tags and attributes help you

 ✓ Define the overall form structure.

 ✓ Tell the Web browser how to handle the form data.

 ✓ Create input objects, such as text fields and drop-down lists.

 Every form has the same basic structure. Also, which input elements you use
depends upon the data you’re presenting and collecting.

Structure
The form element is a content (and input) container, and it works much like
the paragraph (p) element (which contains paragraph text) or the division
(div) element (which contains various types of sub-elements in a logical
document section). Thus, all input elements associated with a single form are

 ✓ Contained within a <form> tag

 ✓ Processed by the same form handler

 A form handler is a program on the Web server (or a simple mailto: URL)
that manages the data a user sends to you through the form. A Web browser
can only gather information through forms; it doesn’t know what to do with
the information after it has it. You must provide some other mechanism to
actually do something useful with the data you collect in any form. (This
chapter covers form handlers in detail later in the “Processing Data” section.)

Attributes
You always use these two key attributes with the <form> tag:

 ✓ action: The URL of the form handler

 ✓ method: How you want the form data to be sent to the form handler

 Your form handler dictates which of these values to use for method
(your hosting or service provider probably has a document that
describes how to invoke your local Web server’s form handler, including
those oh-so-necessary details — and probably some examples, too):

 • get sends the form data to the form handler on the URL.

 • post sends the form data in the HyperText Transfer Protocol
(HTTP) header.

22_9780470916599-ch14.indd 22522_9780470916599-ch14.indd 225 11/30/10 12:26 AM11/30/10 12:26 AM

226 Part IV: Scripting and (X)HTML

 Webmonkey offers a good overview of the difference between get and post
in its “Add HTML Forms to Your Site” article at www.webmonkey.
com/2010/02/add_html_forms_to_your_site.

Markup
The markup in Listing 14-1 creates a form that uses the post method to send
user-entered information to a form handler (guestbook.php) to be pro-
cessed on the Web server.

Listing 14-1: A Simple Form Processed by a Form Handler
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Forms</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
<body>
 <form action=”cgi-bin/guestbook.php” method=”post”>

 <!-- form input elements go here -->

 </form>
</body>
</html>

 The value of the action attribute is a URL, so you can use absolute or rela-
tive URLs to point to a form handler on your server. Absolute and relative
URLs are covered in more detail in Chapter 6.

Input tags
The tags you use to solicit input from your site visitors make up the bulk of
any form. HTML supports a variety of different input options — from text
fields to radio buttons and from files to images.

Every input control associates some value with a name:

 ✓ When you create the control, you give it a name.

 ✓ The control sends back a value based on what the user does in the form.

For example, if you create a text field that collects a user’s first name, you
might name the field firstname. When the user types her first name in the
field and submits the form, the value associated with firstname is whatever
name the user typed in the field.

22_9780470916599-ch14.indd 22622_9780470916599-ch14.indd 226 11/30/10 12:26 AM11/30/10 12:26 AM

227 Chapter 14: Working with Forms

 The whole point of a form is to gather values associated with input controls,
so how you set the name and value for each control is important. The follow-
ing sections explain how you should work with names and values for each of
the input controls.

The input element (and by extension, the empty <input … /> tag) is the
major player when it comes to using HTML forms to solicit user input. Inside
the input element is where you define the kinds of input you want to collect,
and how you package and present the input fields and cues you present to
users so they can give you what you’re asking for.

Input fields
You can use a variety of input fields in your forms, such as text, password,
radio buttons/check boxes, hidden, and more. Not all fields require values for
name and type attributes (for example, text box or password fields), but it’s
a good idea to provide users with explanatory labels and examples of input
data any time they might have questions about formats — as when ponder-
ing whether or not to include dashes or spaces in credit card or telephone
numbers. Check boxes and radio buttons, on the other hand, require such
information so they can be properly labeled when the browser shows users
what selections are available.

 For input elements that require a user to select an option (a check box or
radio button) rather than typing something into a field, you define both the
name and the value. When the user selects a check box or a radio button and
then clicks the Submit button, the form returns the name and value assigned
to the element.

We discuss these two types of input fields in the upcoming section, “Check
boxes and radio buttons.”

Text fields
Text fields are single-line fields in which users type information. When you
need to offer the user the opportunity to fill in more than one line, you use a
text box, as we discuss in the upcoming section, “Multiline text boxes.”

Here’s how to create a single-line text field:

 1. Define the input type as a text field by using the <input /> element
with the type attribute set to text.

<input type=”text” />

 2. Then use the name attribute to give the input field a name.

<input type=”text” name=”firstname” />

 The user supplies the value when she types in the field.

22_9780470916599-ch14.indd 22722_9780470916599-ch14.indd 227 11/30/10 12:26 AM11/30/10 12:26 AM

228 Part IV: Scripting and (X)HTML

The following markup creates two text input fields — one for a first name and
one for a last name:

<form action=”cgi-bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” />
 Last Name: <input type=”text” name=”lastname” />

</form>

 In addition to the <input /> elements, the preceding markup includes list
(and) elements and some text to label each of the fields. By them-
selves, most form elements don’t give the user many clues about the type
of information you want them to enter. Lists are covered in more detail in
Chapter 5.

You must use HTML block and inline elements to format the appearance of
your form and also to supply the necessary text. Figure 14-5 shows how a
browser displays this kind of HTML. (To see the HTML source that produced
this figure, visit our Web site at www.dummieshtml.com, pick Chapter 14,
and look at the source code for Figure 14-5.)

Figure 14-5: Text entry fields in a form.

You can control the size of a text field with these attributes:

 ✓ size: The length (in characters) of the text field

 ✓ maxlength: The maximum number of characters the user can type into
the field

The following markup creates a form that sets both fields to a size of 30
(characters long) and a maxlength of 25 (characters long). Even though
each field will be about 30 characters long, a user can type only 25 characters
into each field, as shown in Figure 14-6. (Setting the size attribute greater

22_9780470916599-ch14.indd 22822_9780470916599-ch14.indd 228 11/30/10 12:26 AM11/30/10 12:26 AM

229 Chapter 14: Working with Forms

than maxlength ensures that the text field will always have some white
space between the user input and the end of the field box on display; you
don’t have to do this yourself, but we find it visually pleasing.)

<form action=”cgi-bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” />
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25” />

</form>

Figure 14-6: You can specify the length and maximum number
of characters for a text field.

Password fields
A password field is a special text field that doesn’t display what the user
types. Each keystroke is represented on the screen by a placeholder char-
acter, such as an asterisk or bullet, so that someone looking over the user’s
shoulder can’t see sensitive information.

You create a password field by using the <input /> element with the type
attribute set to password, as follows:

<form action=”cgi-bin/guestbook.php” method=”post”>
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” />
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25” />
 Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25” />

</form>

22_9780470916599-ch14.indd 22922_9780470916599-ch14.indd 229 11/30/10 12:26 AM11/30/10 12:26 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

230 Part IV: Scripting and (X)HTML

 Password fields are programmed like text fields.

Figure 14-7 shows how a browser replaces what you type with bullets. Note:
Depending on the browser’s default settings, some browsers will replace the
text with asterisks or some other character.

Figure 14-7: Password fields mask the text a user enters.

Check boxes and radio buttons
If only a finite set of possible values is available to the user, you can give him
a collection of options to choose from:

 ✓ Check boxes: Choose more than one option.

 ✓ Radio buttons: Choose only one option.

 Radio buttons differ from check boxes in an important way: Users can
select a single radio button from a set of options but can select any
number of check boxes (including none, one, or more than one).

 If many choices are available (more than half-a-dozen or so), use a drop-down
list instead of radio buttons or check boxes. We show you how to create
those in the upcoming section, “Drop-down list fields.”

To create radio buttons and check boxes, you

 1. Use the <input /> element with the type attribute set to radio or
checkbox.

 2. Create each option with these attributes:

 • name: Give the option a name.

 • value: Specify what value is returned if the user selects the
option.

22_9780470916599-ch14.indd 23022_9780470916599-ch14.indd 230 11/30/10 12:26 AM11/30/10 12:26 AM

231 Chapter 14: Working with Forms

 You can also use the checked attribute (with a value of checked) to specify
that an option should be already selected when the browser displays the
form. This is a good way to specify a default selection in a list.

The following markup shows how to format check box and radio button
options:

<form action=”cgi-bin/guestbook.cgi” method=”post”>
<p>What are some of your favorite foods?</p>
<ul style=”list-style-type: none;”>
 <input type=”checkbox” name=”food” value=”pizza” checked=”checked” />
 Pizza
 <input type=”checkbox” name=”food” value=”icecream” />Ice Cream
 <input type=”checkbox” name=”food” value=”eggsham” />Green Eggs
 and Ham

<p>What is your gender?</p>
<ul style=”list-style-type: none;”>
 <input type=”radio” name=”gender” value=”male” />Male
 <input type=”radio” name=”gender” value=”female” checked=”checked” />
 Female

</form>

In the preceding code, each set of options uses the same name for each input
control but gives a different value to each option. You give each item in a set
of options the same name to let the browser know they’re part of a set. Figure
14-8 shows how a browser displays this markup, where we also checked the
box for Pizza and left the default check next to Ice Cream as-is. If you want
to, in fact, you can check as many boxes as you like by default in the page
markup, simply by including checked=”checked” in each <input … />
element you choose to check in advance.

Hidden fields
A hidden field gives you a way to collect name and value information that the
user can’t see along with the rest of the form data. Hidden fields are useful
for keeping track of information associated with the form, such as its version
or name.

 If your Internet service provider (ISP) provides a generic application for a
guest book or feedback form, you might have to put your name and e-mail
address in the form’s hidden fields so that the data goes specifically to you.

22_9780470916599-ch14.indd 23122_9780470916599-ch14.indd 231 11/30/10 12:26 AM11/30/10 12:26 AM

232 Part IV: Scripting and (X)HTML

Figure 14-8: Check boxes and radio buttons offer choices.

To create a hidden field, you

 ✓ Use the <input /> element with its type attribute set to hidden.

 ✓ Supply the name and value pair you want to send to the form handler.

Here’s an example of markup for a hidden field:

<form action=”cgi-bin/guestbook.php” method=”post”>
<input type=”hidden” name=”e-mail” value=”me@mysite.com” />
<ul style=”list-style-type: none;”>
 First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” />
 Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25” />
 Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25” />

</form>

 As a general rule, using your e-mail address in a hidden field is just asking for
your address to be picked up by spammers. If your ISP says that this is how
you should do your feedback form, ask for suggestions as to how you can
minimize the damage. Surfers to your page can’t see your e-mail address, but
spammers’ spiders can read the underlying tags. At a minimum, you would
hope that your ISP supports one of the many JavaScript encryption tools
available to obscure e-mail addresses from harvesters.

22_9780470916599-ch14.indd 23222_9780470916599-ch14.indd 232 11/30/10 12:26 AM11/30/10 12:26 AM

233 Chapter 14: Working with Forms

File upload fields
A form can receive documents and other files, such as images, from users.
When the user submits the form, the browser grabs a copy of the file and
sends it with the other form data. To create this file upload field

 ✓ Use the <input /> element with the type attribute set to file.

 The file itself is the form field value.

 ✓ Use the name attribute to give the control a name.

Here’s an example of markup for a file upload field:

<form action=”cgi-bin/guestbook.php” method=”post”>
<p>Please submit your resume in Microsoft Word or plain text format:

 <input type=”file” name=”resume” />
</p>
</form>

Browsers render a file upload field with a Browse button that allows a user to
navigate a local hard drive and select a file to send, as shown in Figure 14-9.

Figure 14-9: A file upload field.

22_9780470916599-ch14.indd 23322_9780470916599-ch14.indd 233 11/30/10 12:26 AM11/30/10 12:26 AM

234 Part IV: Scripting and (X)HTML

 When you accept users’ files through a form, you may receive files that are
either huge or perhaps virus-infected. Consult with whomever is program-
ming your form handler to discuss options to protect the system where files
get saved. Several barriers can help minimize your risks, including

 ✓ Virus-scanning software

 ✓ Restrictions on file size

 ✓ Restrictions on file type

Drop-down list fields
Drop-down lists are a great way to give users lots of options in a small amount
of screen space. You use two different tags to create a drop-down list:

 ✓ <select> creates the list.

 Use a name attribute with the <select> element to name your list.

 ✓ A collection of <option> elements identifies individual list options.

 The value attribute assigns a unique value for each <option> element.

Here’s a markup example for a drop-down list:

<form action=”cgi-bin/guestbook.cgi” method=”post”>
<p>What is your favorite food?</p>
 <select name=”food”>
 <option value=”pizza”>Pizza</option>
 <option value=”icecream”>Ice Cream</option>
 <option value=”eggsham”>Green Eggs and Ham</option>
 </select>
</form>

The browser turns this markup into a drop-down list with three items, as
shown in Figure 14-10.

 You can also enable users to select more than one item from a drop-down list
by changing the default settings of your list:

 ✓ If you want your users to be able to choose more than one option (by
holding down the Ctrl [Windows] or Ô [Mac] key while clicking options
in the list), add the multiple attribute to the <select> tag. The value
of multiple is multiple.

 Because of XHTML rules, standalone attributes cannot stand alone;
therefore, the value is the same as the name for the attribute.

22_9780470916599-ch14.indd 23422_9780470916599-ch14.indd 234 11/30/10 12:26 AM11/30/10 12:26 AM

235 Chapter 14: Working with Forms

 ✓ By default, the browser displays only one option until the user clicks the
drop-down menu arrow to display the rest of the list. Use the size attri-
bute with the <select> tag to specify how many options to show.

 If you specify fewer than the total number of options, the browser
includes a scroll bar with the drop-down list.

Figure 14-10: A drop-down list.

You can specify that one of the options in the drop-down list be already
selected when the browser loads the page, just as you can specify a check
box or radio button to be checked. Simply add the selected attribute to
have a value of selected for the <option> tag you want as the default. Use
this when one choice is very likely, but don’t worry — users can override
your default selection quickly and easily.

The following markup example

 ✓ Allows the user to choose more than one option from the list

 ✓ Displays two options

 ✓ Selects the third option in the list by default

<form action=”cgi-bin/guestbook.cgi” method=”post”>
<p>What are some of your favorite foods?</p>
<select name=”food” size=”2” multiple=”multiple”>
 <option value=”pizza”>Pizza</option>
 <option value=”icecream”>Ice Cream</option>
 <option value=”eggsham” selected=”selected”>Green Eggs and Ham</option>
</select>
</form>

22_9780470916599-ch14.indd 23522_9780470916599-ch14.indd 235 11/30/10 12:26 AM11/30/10 12:26 AM

236 Part IV: Scripting and (X)HTML

Figure 14-11 shows how adding these attributes modifies the appearance of
the list in a browser.

Figure 14-11: A drop-down list with modifications.

Multiline text boxes
If a single-line text field doesn’t offer enough room for a response, create a
text box instead of a text field:

 ✓ The <textarea> element defines the box and its parameters.

 ✓ The rows attribute specifies the height of the box in rows based on the
font in the text box.

 ✓ The cols attribute specifies the width of the box in columns based on
the font in the text box.

The text that the user types into the box provides the value, so you need only
give the box a name with the name attribute:

<form action=”cgi-bin/guestbook.cgi” method=”post”>
 <p> Please include any comments here.</p>
 <textarea rows=”10” cols=”40” name=”comments”>
...comments here...
 </textarea>
</form>

 Any text you include between the <textarea> and </textarea> tags
appears in the text box in the browser, as shown in Figure 14-12 (and con-
trary to expectation, default text does not appear flush left in a text box: It’s
slightly offset to the right, but not centered, either). The user then enters
information in the text box and overwrites your text.

22_9780470916599-ch14.indd 23622_9780470916599-ch14.indd 236 11/30/10 12:26 AM11/30/10 12:26 AM

237 Chapter 14: Working with Forms

Figure 14-12: A text box.

Submit and Reset buttons
Submit and Reset buttons help the user tell the browser what to do with the
form. You can create buttons to either submit or reset your form, using the
<input /> element with the following type and value attributes:

 ✓ Submit

 Visitors have to tell a browser when they’re done with a form and want
to send the contents. You create a button to submit the form to you by
using the following markup:

<input type=”submit” value=”Submit” />

 You don’t use the name attribute for the Submit and Reset buttons.
Instead, you use the value attribute to specify how the browser labels
the buttons for display.

 ✓ Reset

 Visitors need to clear the form if they want to start all over again or
decide not to fill it out. You create a button to reset (clear) the form by
using the following markup:

<input type=”reset” value=”Clear” />

 You can set the value to anything you want to appear on the button. In our
example, we set ours to Clear. Of course, you can use something that’s
more appropriate to your Web site if you’d like.

Listing 14-2 shows an example of markup to create Submit and Reset buttons
named Send and Clear, respectively:

22_9780470916599-ch14.indd 23722_9780470916599-ch14.indd 237 11/30/10 12:26 AM11/30/10 12:26 AM

238 Part IV: Scripting and (X)HTML

Listing 14-2: A Complete Multi-Part Form
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <title>Basic Form Markup</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 h1 {background-color: silver;
 color: black;
 font-size: 1.2em;
 font-family: Arial, Verdana, sans-serif;}
 hr {color: blue;
 width: thick;}
 body {font-size: 12pt;
 color: brown;
 font-family: Tahoma, Bodoni, sans-serif;
 line-height: 0.8em;}
 </style>

</head>
<body>
 <h1>Multi-Part Form</h1>
 <hr />
 <div>
 <form action=”cgi-bin/guestbook.cgi” method=”post”>
 <h1>Name and Password</h1>
 <p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” /></p>
 <p>Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25” /></p>
 <p>Password: <input type=”password” name=”psswd” size=”30”
 maxlength=”25” /></p>
 <h1>Favorite Foods</h1>
 <p>What are some of your favorite foods?</p>
 <p><input type=”checkbox” name=”food” value=”pizza”
 checked=”checked” />Pizza</p>
 <p><input type=”checkbox” name=”food” value=”icecream” />
 Ice Cream</p>
 <p><input type=”checkbox” name=”food” value=”eggsham” />
 Green Eggs and Ham</p>
 <h1>Gender Information</h1>
 <p>What is your gender?</p>
 <p><input type=”radio” name=”gender” value=”male” />Male</p>
 <p><input type=”radio” name=”gender” value=”female” />Female</p>

 <p style=”line-height: 2em; margin: 2em;”>

22_9780470916599-ch14.indd 23822_9780470916599-ch14.indd 238 11/30/10 12:26 AM11/30/10 12:26 AM

239 Chapter 14: Working with Forms

 <input type=”submit” value=”Send” />
 <input type=”reset” value=”Clear” />
 </p>
 </form>
 </div>
 <hr />
</body>
</html>

Figure 14-13 shows how a browser renders these buttons in a form.

Figure 14-13: Submit and reset buttons labeled as Send and Clear.

Customizing Submit and Reset buttons
If you don’t like the default Submit and Reset buttons that a browser creates,
you can monkey with the CSS style definitions to your heart’s content, as we
did here:

22_9780470916599-ch14.indd 23922_9780470916599-ch14.indd 239 11/30/10 12:26 AM11/30/10 12:26 AM

240 Part IV: Scripting and (X)HTML

 input {background-color: teal;
 font-family: Lucida Console, Arial, sans-serif;
 padding: 6px;
 margin: 0.2em;
 font-size: 1.2em;
 color: white;
 border-left-color: gray;
 border-top-color: gray;
 border-bottom-color: black;
 border-right-color: black;
 border-style: double;
 font-weight: bold;}

In about ten minutes of fooling around, we created the snazzy-looking but-
tons you see in Figure 14-14.

Figure 14-14: A little creative CSS goes a long
way toward snazzing up your buttons.

On the other hand, if you desire something more sophisticated, you can sub-
stitute your own graphical buttons by using

 ✓ The <input /> element with a type of image.

 ✓ An src attribute that specifies the image’s location.

 ✓ A value that defines the result of the field:

 • For an image that submits the form, set value to submit.

 • For an image that clears the form, set value to reset.

 Use the alt attribute to provide alternative text for browsers that don’t
show images (or for users who can’t see them). This will allow you to use
fancy buttons with rounded corners, dropshadows, and other cool effects
like those available at www.buttongenerator.com.

22_9780470916599-ch14.indd 24022_9780470916599-ch14.indd 240 11/30/10 12:26 AM11/30/10 12:26 AM

241 Chapter 14: Working with Forms

The following markup creates customized Submit and Reset buttons:

<p>
 <input type=”image” value=”submit” src=”submit_button.gif” alt=”Submit” />
 <input type=”image” value=”reset” src=”reset_button.gif” alt=”Clear” />
</p>

Form validation
No matter how brilliant your site’s visitors may be, there’s always a chance
that they’ll enter data you aren’t expecting. JavaScript to the rescue!

Form validation is the process of checking data the user enters before it’s
put into your database. Check the data with both JavaScript and Common
Gateway Interface (CGI) scripts on your server.

JavaScript
You can validate entries in JavaScript before data goes to the server. This
means that visitors don’t wait for your server to check the data. They’re told
quickly (before they click Submit, if you want) if there’s a problem.

 If you want to use JavaScript in your forms and on your Web site, you can
read more about it in Chapter 13 of this book, or online at

 ✓ www.w3schools.com/js/default.asp

 ✓ www.quirksmode.org/js/forms.html

 ✓ http://www.webmonkey.com/2010/02/javascript_tutorial

CGI
You need to validate your form data on the server side because users can
surf with JavaScript turned off. (They’ll have a slower validation process.)
Find out more about CGI in the next section and at

 ✓ www.4guysfromrolla.com/webtech/LearnMore/Validation.asp

 ✓ www.cgi101.com/book

Processing Data
Getting form data is really only half the form battle. You create form elements
to get data from users, but then you have to do something with that data. Of
course, your form and your data are unique every time, so no single, generic

22_9780470916599-ch14.indd 24122_9780470916599-ch14.indd 241 11/30/10 12:26 AM11/30/10 12:26 AM

242 Part IV: Scripting and (X)HTML

form handler can manage the data for every form. Before you can find (or
write) a program that handles your form data, you must know what you want
to do with it. For example:

 ✓ If you just want to receive comments from a Web form by e-mail, you
might need only a simple mailto: URL.

 ✓ If a form gathers information from users to display in a guest book, you

 • Add the data to a text file or a small database that holds the
entries.

 • Create a Web page that displays the guest-book entries.

 ✓ If you want to use a shopping cart, you need programs and a database
that can handle inventory, customer order information, shipping data,
and cost calculations.

 Your Web-hosting provider — whether it’s an internal IT group or an ISP to
which you pay a monthly fee — has the final say in what kind of applications
you can use on your Web site to handle form data. If you want to use forms
on your site, be sure that your hosting provider supports the applications
you need to run on the server to process form input data (which will nor-
mally use the post or get method that we discuss earlier in this chapter).
Chapter 3 includes more information on finding the right ISP to host your
pages.

Processing forms on your pages
Typically, form data is processed in some way or another by some kind of
program running on a Web server. It might be a CGI script written in some
programming language such as Perl, Java, or AppleScript, or a different han-
dler program written using PHP, Apache, Java Server Pages (JSP), ASP, or
other programs that run on Web servers to process user input. These pro-
grams make data from your form useful by

 ✓ Putting it into a database or sharing it with some other kind of program

 ✓ Creating customized HTML based on the data

 ✓ Writing the data to a flat file

 Flat file is computer-geek speak for a plain, unadorned text file, or one
that uses commas or tab characters on individual lines of text to sepa-
rate field values (also known as CSV for comma-separated values or TSV
for tab-separated values).

You don’t have to be a programmer to make the most of forms. Many ISPs
support (and provide) scripts for processing common forms, such as guest
books, comment forms, and even shopping carts. Your ISP may give you

22_9780470916599-ch14.indd 24222_9780470916599-ch14.indd 242 11/30/10 12:26 AM11/30/10 12:26 AM

243 Chapter 14: Working with Forms

 ✓ All the information you need to get an input-processing program up and
running

 ✓ HTML to include in your pages so they can interact with that program

 You can tweak the markup that manages how the form appears in the canned
HTML you get from an ISP, but don’t change the form itself — especially the
form tag names and values. The Web-server program uses these to make the
entire process work.

Several online script repositories provide free scripts that you can download
and use along with your forms. Many of these also come with some generic
HTML you can dress up and tweak to fit your Web site. You simply drop
the program that processes the form into the folder on your site that holds
programs (sometimes called cgi-bin, often something else), add the HTML
to your page, and you’re good to go. Some choice places on the Web to find
scripts you can download and put to work immediately are

 ✓ Matt’s Script archive: www.scriptarchive.com/nms.html

 ✓ The CGI Resource Index: http://cgi.resourceindex.com

 ✓ ScriptSearch.com: www.scriptsearch.com

 If you want to use programs that aren’t provided by your ISP on your Web
site, you need complete access to your site’s scripts or processing programs
folder (sometimes named cgi-bin). Every ISP setup is different, so read
your documentation to find out

 ✓ Whether your ISP allows you to use programs or scripts in your Web
pages

 ✓ Which languages the ISP supports

 Perl and PHP are generally safe bets, but it’s best to be sure.

Sending form data by e-mail
You can opt to receive your form data from e-mail instead of using a script
or other utility to process a form’s data. You get just a collection of name-
and-value pairs tucked into a text file sent to your e-mail address, but that
isn’t necessarily a bad thing. You can include a short contact form on your
Web site that asks people to send you feedback (a feature that always looks
professional); then you can simply include, in the action URL, the e-mail
address where you want the data sent:

<form action=”mailto:me@mysite.com” action=”post”>

22_9780470916599-ch14.indd 24322_9780470916599-ch14.indd 243 11/30/10 12:26 AM11/30/10 12:26 AM

244 Part IV: Scripting and (X)HTML

 Many spam companies grab e-mail addresses by trolling Web sites for
mailto: URLs. Consider setting up a special e-mail account just for com-
ments so that your regular e-mail address won’t get pulled onto spam
mailing lists. On the other hand, you can also use JavaScript-based e-mail
address encryption tools that will garble and disguise the contents of such
addresses — as long as they can be un-encrypted on the receiving end,
that is!

Designing User-Friendly Forms
Designing useful forms is a different undertaking from designing easy-to-use
forms. Your form may gather the data that you need, but if your form is dif-
ficult for visitors to use, they may abandon it before they’re done.

 As you use the markup elements from this chapter, along with the other ele-
ments that drive page layout, keep the following guidelines in mind:

 ✓ Provide textual cues for all your forms. Be clear about

 • Information you want

 • Format you need

 For example, tell users details such as whether

 • Dates must be entered as mm/dd/yy (versus mm/dd/yyyy).

 • The number of characters a field can take is limited.

 As you learned earlier in this chapter, character length can be lim-
ited by using the maxlength attribute.

 ✓ Use field width and character limits to provide visual clues. For exam-
ple, if users should enter a phone number as xxx-xxx-xxxx, consider cre-
ating three text fields — one for each part of the phone number.

 ✓ Group similar fields. A logical grouping of fields makes filling out a form
easier. It’s confusing if you ask for the visitor’s first name, then birthday,
and then last name.

 ✓ Break long forms into easy-to-manage sections. Forms in short chunks
are less intimidating and more likely to be completed.

 Major online retailers (such as Amazon.com — www.amazon.com) use
this method to get the detail they need for orders without making the
process too painful.

 ✓ Mark required fields clearly. If some parts of your form can’t be left
blank when users submit the form, mark those fields clearly.

22_9780470916599-ch14.indd 24422_9780470916599-ch14.indd 244 11/30/10 12:26 AM11/30/10 12:26 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

245 Chapter 14: Working with Forms

 You can identify required fields by

 • Making them bold

 • Using a different color

 • Placing an asterisk beside them

 ✓ Tell users what kind of information they need for the form. If users
need any information in their hands before they fill out your form, a form
gateway page can detail everything users should have before they start
filling out the form.

 The RateGenius page (shown in Figure 14-15) lays out clearly for visitors
about to fill out a long form exactly what information to prepare before
starting.

Figure 14-15: A form gateway page helps users prepare to fill out a long form.

 The series of forms that RateGenius uses to gather information for car loans
and loan refinancing are excellent examples of long forms that collect a vari-
ety of different kinds of data by using all the available form markup elements.
Visit www.rategenius.com to review its form techniques.

22_9780470916599-ch14.indd 24522_9780470916599-ch14.indd 245 11/30/10 12:26 AM11/30/10 12:26 AM

246 Part IV: Scripting and (X)HTML

Other Noteworthy Forms-Related Markup
Table 14-1 lists other forms-related (X)HTML markup attributes that you
might find in HTML files.

Table 14-1 Other Forms-Related (X)HTML Attributes

Name Function/Value
Equals

Value Types Related
Element(s)

Accept Lists acceptable
MIME types for
file upload

CS Media types <form>
<input />

Accept-
charset

Lists character
encodings

character set
encodings

<form>

Checked Preselects option
for select lists

“checked” <input />

MIMDisabled Disables form ele-
ments

“disabled” <button>
<input>
<optgroup>
<option>
<select>
<textarea>

Enctype Specifies encod-
ing method for
form input data

Media type <form>

For Points to ID refer-
ence from other
attributes

Idref <label>

Label Identifies a group
of options in a
form

Text <optgroup>

Label Specifies an
option name in a
form

Text <option>

Method HTTP method to
use when submit-
ting a form

{“get”|
”put”}

<form>

Multiple Permits selection
of multiple options
in a form

“multiple” <select>

22_9780470916599-ch14.indd 24622_9780470916599-ch14.indd 246 11/30/10 12:26 AM11/30/10 12:26 AM

247 Chapter 14: Working with Forms

Name Function/Value
Equals

Value Types Related
Element(s)

Name Names a specific
form control

CDATA <button>
<textarea>

Name Names a specific
form input field

CDATA <select>

Name Names a form for
script access

CDATA <form>

Readonly Blocks editing of
text fields within
a form

“readonly” <input />
<textarea

Size Specifies number
of lines of text to
display for a drop-
down menu

Number <select>

Tabindex Defines tabbing
order for form
fields

Number <a><area />
<button>
<input />
<object>
<select>
<textarea>

Type Defines button
function in a form

{“button”|
”reset”|
”submit”}

<button>

Type Specifies type of
input required for
form input field

{“button”|
”checkbox”|
”file”|
”hidden”|
”image”|
”password”|
”radio”|
”reset”|
”submit”|
”text”}

<input />

Value Supplies a value
to send to the
server when
clicked

CDATA <button>

Value Associates
values with radio
buttons and
check boxes

CDATA <input />

22_9780470916599-ch14.indd 24722_9780470916599-ch14.indd 247 11/30/10 12:26 AM11/30/10 12:26 AM

248 Part IV: Scripting and (X)HTML

Key for the Value Types Column in Table 14-1:

 ✓ CDATA: SGML character data type permits all keyboard characters to
be used

 ✓ CS Media Types: Case-sensitive type names such as “text/html” “image/
gif” or “text/css”

 ✓ Character set encodings: Usually UTF-8, ISO-LATIN-1, or ISO-8859-1; for a
more complete list, see www.w3schools.com/TAGS/ref_character
sets.asp

 ✓ MIME: Abbreviation for Multi-part Internet Mail Extensions, a standard
method to encode various document and data types for e-mail attach-
ments and for HTTP; for more info see http://en.wikipedia.org/
wiki/MIME.

Form Frameworks
Form frameworks basically put all the building blocks for building, validating,
and processing forms data together into a single coherent collection of tools
and code. When you learn how to use a framework, it’s trivial to build com-
plex robust forms of your own — at least, as long as that framework is avail-
able on your Web server!

 ✓ Wufoo (http://wufoo.com): Wufoo is an HTML form builder that
helps you to create contact forms, online surveys, and invitations so you
can collect data, registrations, and online payments you need without
writing a single line of code. Quick and easy!

 ✓ jQuery Validation Plugins (http://docs.jquery.com/Plugins/
Validation): Even though jQuery makes it easy to write your own vali-
dation plugins, there are still a lot of subtleties you must worry about.
For example, you need a standard library of validation methods (think of
e-mails, URLs, and credit card numbers). You need to place error mes-
sages into Web documents, and then show and hide them when appro-
priate. You want to react to more than just a submit event, like keyup or
blur. You may need different ways to specify validation rules, based on
the server-side environment in use for a particular project. And after all,
you don’t want to reinvent the wheel, do you?

 ✓ Validatious (http://validatious.org/learn/examples):
Validatious offers easy form validation with unobtrusive JavaScript sup-
port, using a predefined CSS class named validate. This makes valida-
tions simply a matter of adding validator names to form elements, such
as input, select, textarea, and so forth. It’s not a complete forms
framework but does make the validation part — often the trickiest for
newbies and professionals alike — smooth and straightforward.

22_9780470916599-ch14.indd 24822_9780470916599-ch14.indd 248 11/30/10 12:26 AM11/30/10 12:26 AM

249 Chapter 14: Working with Forms

In addition, many Web-oriented development environments, such as Visual
Studio, Web Expressions, ASP.NET, and so forth also include extensive form
design and processing components. These work like frameworks, too, but
generally require you to work within their overall environments to take
advantage of their often awesome capabilities.

CAPTCHA This!
CAPTCHA stands for completely automated public turing test to tell computers
and humans apart — in other words, it’s a way of interacting on the Web that
permits developers to assume (with great assurance) that the entity typing
input on the other end of a remote connection is a person and not a program.
CAPTCHA is an important technique used to verify that a person is providing
input (especially, updating sensitive or valuable information) to a Web form
or other user input mechanism. The reason for this technology is to stymie
spammers and phishers from creating bogus e-mail addresses and Web
accounts that they can then use to pursue their own malicious ends. You
may not need to use CAPTCHA on your Web pages, but you need to know
what it is and why it’s important.

Basically, CAPTCHA works by bending text in wavy lines and overlaying
extra strokes or black marks, so that while humans can read the copy they
must enter at the keyboard to prove their intelligence is at work, computer
programs generally can’t decipher and regurgitate the text involved. The
standard example from www.captcha.net appears as Figure 14-16 with the
words “overlooks inquiry” subjected to the aforementioned treatment.

Figure 14-16: The CAPTCHA
example from the home page
at www.captcha.net.

The Web site at www.captcha.net explains the technology in more detail,
and goes on to describe how you can use it to add another level of authenti-
cation to your Web pages. It’s not necessary for simple forms, but any time
you let users set up accounts, manage account info, or access sensitive data
(personally identifiable information, or PII, such as Social Security numbers,
credit card numbers, account numbers, and so forth, are prime targets for
such protection), it’s a good idea to put CAPTCHA in the way of would-be
evildoers.

22_9780470916599-ch14.indd 24922_9780470916599-ch14.indd 249 11/30/10 12:26 AM11/30/10 12:26 AM

250 Part IV: Scripting and (X)HTML

22_9780470916599-ch14.indd 25022_9780470916599-ch14.indd 250 11/30/10 12:26 AM11/30/10 12:26 AM

Chapter 15

Bring the Best of the Web
to Your Web Site

In This Chapter
▶ Understanding what embedding can do for your page content (and your workload)

▶ Embedding Twitter feeds, Flickr photos, and Google maps

▶ Making the most of multiple embeddings via mashups

▶ Mashing up maps and restaurant reviews, plus maps and Twitter feeds

To this point in the book, we cover a lot of the basics with HTML, XHTML,
and CSS on how to create your own Web site. Before you rush off and

start creating oodles of content, though, you might first want to find out
whether anything like what you want already exists. The great thing about
the Internet is that lots of excellent content is already out there, ripe for
(proper) reuse. With some practice, you can easily “grab” this content and
use it on your Web site. Harnessing the power of such services can save tons
of time and effort you would otherwise have to expend on your own, rein-
venting well-worn wheels. After all, nobody wants to reinvent the wheel: Sure,
it’s okay improve upon it, but no need to start over from scratch.

For example, if you want to give a friend directions to your house, you could
spend lots of time painstakingly drawing or photographing your entire neigh-
borhood. Next, you could put all those images together and figure out how
to display them effectively. After all that work, you’d finally be ready to put
everything together inside a graphical interface so your site can provide
directions. That’s a big chunk of time working on a solution that might be
inaccurate owing to changes in the landscape by the time you finish, if you
finish at all. Sure, you can do all that, but who wants to? Numerous existing
solutions are readily available to handle this for you (such as Google or Bing
Maps, or perhaps MapQuest). Sometimes, getting things done is more about
embedding other content that works for your site so you can use your pre-
cious time, energy, and money more wisely.

23_9780470916599-ch15.indd 25123_9780470916599-ch15.indd 251 11/30/10 12:26 AM11/30/10 12:26 AM

252 Part IV: Scripting and (X)HTML

Bringing the best of Web content to your site is an easy way to harness the
power of services that others have already created and want to make avail-
able to you. And that means more than maps, including photo galleries, lists
of local restaurants with reviews, content-categorized videos with comments,
and countless combinations of two or more such things. This chapter is
about grabbing and using such stuff on your Web pages, not just to make
your life easier but also to add valuable information to your site, all the while
leaving the hard work of keeping things current to somebody else. Trust us: It
just doesn’t get any better than that on the Web!

What’s Up with Content Embedding?
When we talk about content embedding, we aren’t talking about stealing or
breaking any sort of other Internet taboos. Rather, we simply mean following
established rules provided by other companies, individuals, or organizations
that specifically allow others — like you, for instance — to present their
work on your site without requiring you to reinvent their particular wheels.
In other words, embedding seeks to take advantage of news, services, and
information (maps at Google, Bing, or MapQuest are great examples) that are
freely offered to the public for access and reuse.

The really neat thing about content embedding is that if you look around
carefully, you can find lots of cool elements that you are invited — nay,
encouraged — to use on your own site. These things save time and effort, but
that’s not all: They also help you to design and deliver a more dynamic Web
site that does some of the hard maintenance and upkeep work for you, with-
out forcing you to spend every waking moment working on it!

In the sections that follow, you find examples to help you better understand
what’s involved in embedding content in a Web page, how it works, and what
it looks like.

Using a Twitter widget
If you still haven’t heard of (or been on) Twitter, we’d like to congratulate
you on waking up out of your long nap or coma, and welcome you to the 21st
century. Yes, hover boards haven’t yet been invented yet, but Twitter and
other social media services are taking over the Internet.

In a nutshell, Twitter is a communications tool interface inside which users
update their status or posts in the form of tiny messages (140 characters or
less) called tweets. Individual collections of tweets from a particular sender
are called Twitter feeds, and Internet users generally sign up to follow one or
more such feeds to catch all the tweets that each feed contains.

23_9780470916599-ch15.indd 25223_9780470916599-ch15.indd 252 11/30/10 12:26 AM11/30/10 12:26 AM

253 Chapter 15: Bring the Best of the Web to Your Web Site

Certain Twitter posters can (and many do) continually post trivial information
(what they ate for breakfast or what they’re wearing), which may not be too
helpful (or interesting) to some readers. Others Twitter posters, though — like
us, for instance — use Twitter to help build community, answer questions,
interact with readers, stay in touch with friends, and so forth. (And no lectures,
please, on spelling, grammar, punctuation, and cryptic shorthand. After all, 140
characters is 140 characters.)

Depending on how Twitter is used (as with many technologies), it can add
value to a Web site. A perfect example involves embedding your own (or
even someone else’s) Twitter feed on your site. This feed updates automati-
cally with new tweets without requiring you to do any manual updating,
saving, or uploading. Even better, Twitter offers custom widgets so you can
embed feeds on a page quite easily.

As with our earlier map example, one example is to embed our own Twitter
feed for this book into an HTML page. Then, whenever we issue a tweet, that
message not only displays within Twitter, it also automatically updates our
Web page with zero additional effort on our part.

First, we must craft a Twitter profile widget to describe our feed, and share it
with the world. This happens at http://twitter.com/goodies/widget_
profile.

You can see a Twitter profile page illustrated in Figure 15-1, but first, briefly
review the profile widget that resides at the preceding URL. To get this
party started, start at the preceding Twitter link. (Note: If you already have
a Twitter account, your username is supplied automatically. If you have no
such account, you can easily change the name to whatever moniker you’d
like to use on your Web page. By default, you’ll see a base account named
“Twitter” appear, unless you’ve already grabbed or used a name for yourself.
You must, however, set up an account and login before you can see and use
Twitter widgets, or the buttons that appear at the bottom of Figure 15-1.)

We don’t cover everything in depth, but you can update Preferences,
Appearance, and Dimensions for your Twitter feed widget to customize its
look and feel on your Web page.

Second, after adjusting any or all of those items, click the Finish & Grab Code
button also shown in Figure 15-1. (You can cut and paste that script into
Notepad or your favorite text editor for safe keeping.)

Then, all you need to do is paste that code into the body section of an (X)
HTML page, save the file, and pull up the page in any Web browser. Figure 15-2
shows the Twitter feed on the Web site for this book. It’s really just that easy!
Check it out at www.dummieshtml.com/examples/ch15/twitter (and
view the source to see how we pasted the script right into the body section).

23_9780470916599-ch15.indd 25323_9780470916599-ch15.indd 253 11/30/10 12:26 AM11/30/10 12:26 AM

254 Part IV: Scripting and (X)HTML

Figure 15-1: The dummieshtml profile widget page.

Figure 15-2: The dummieshtml Twitter feed page.

23_9780470916599-ch15.indd 25423_9780470916599-ch15.indd 254 11/30/10 12:26 AM11/30/10 12:26 AM

255 Chapter 15: Bring the Best of the Web to Your Web Site

For more Twitter widgets, check out http://twitter.com/widgets.
There, you’ll find various widgets that work on general Websites (My
Website) and on Facebook. These include additional items such as a search
widget, a faves widget, and a list widget to let users look for tweets, show off
their favorites, or list specific tweet items on a page.

 You can always check out our Twitter page to stay up to date with what we
are doing with this book, or send us questions or comments.

Working with Flickr
In our opinion, and that of many other experts and aficionados, Flickr is one
of the best online photo management and sharing applications around. One
of its greatest features is that you can easily upload and aggregate photos,
create your own slide shows, or even share your photos in an automated
slide show. Why are we telling you all this? Because you can also embed
Flickr photos into your own Web pages.

Yahoo! owns Flickr so all you need is a Yahoo! ID and password to log in. If
you don’t have one, you must create a Yahoo! Account before you can use
Flickr. (Yahoo! Accounts are free and available to the general public, with
no hidden gotchas involved.) We skip over the account stuff and assume
that you can log in without our help. Then, after you log in and upload some
photos, you can view your photostream, as shown in Figure 15-3.

Click Slideshow, the hyperlinked gray text at the upper-right corner of the
Flickr window, right under the Search box (see Figure 15-3). Upon clicking
this item, you go to a new page that displays larger scaled versions of photos
from the photostream. These photos auto advance through the entire col-
lection but also provide various controls. For example, you can jump around
those photos by clicking on any thumbnail image, pause the slide show at
any time, or make the images show in full screen mode.

Undoubtedly, this is good stuff. Given a gaggle of snaps, you can send a link
to your friends and family so they can enjoy them, too. But here, our con-
cern is to explain how to embed a Flickr photostream on your site. As with
Twitter, that process is both simple and easy. Here’s how you do it:

 1. Click the Share This menu item at the top right.

 Make certain you do this while the slide show is playing.

 2. Click the Copy to Clipboard button under the Grab the Embedded
HTML text box.

 3. Open your target Web page and paste the object element from the
Clipboard inside the body section of that page.

 It’s easy! Check it out at www.dummieshtml.com/examples/ch15/
flickr.

23_9780470916599-ch15.indd 25523_9780470916599-ch15.indd 255 11/30/10 12:26 AM11/30/10 12:26 AM

256 Part IV: Scripting and (X)HTML

Figure 15-3: A Flickr photostream page.

If you look at the markup for that page, you’ll see that we customized some
of the HTML to fit the overall design for that page, and you can easily do like-
wise for yourself. In our case, we created a div section with an id value of
“content” so that we could set up a background color and margin controls.

 The real value of embedding Flickr on a page is that every time you upload a
new photo to Flickr into your photostream, it automatically displays in the
gallery on your new HTML page as well!

Creating a map
Another good example to illustrate the power of embedding content is a
simple map. Say that Ed is having a party, and he creates a Web site for
the party information and to give some of his out of town friends a map of
Austin, TX, in case they get lost. He can do something like what’s shown in
Figure 15-4 (also available at www.dummieshtml.com/examples/ch15/
map-image.html).

23_9780470916599-ch15.indd 25623_9780470916599-ch15.indd 256 11/30/10 12:26 AM11/30/10 12:26 AM

257 Chapter 15: Bring the Best of the Web to Your Web Site

In our initial discussion in this chapter, we explain how you could spend
hours drawing a new map, such as the one we drew of Austin (and a not very
good one at that). We exported that image onto a static Web page using the
 element. Visitors to this page saw a crude map of Austin with
zero interactivity, as shown in Figure 15-4.

Figure 15-4: You could use a quick-and-dirty hand-drawn map.

As a more powerful alternative (check out www.dummieshtml.com/examples/
ch15/map-google.html), we can sign up for a Google Maps API key, and
follow the steps in its free tutorial to create a sample map. (For brevity, we’ll
skip those steps here.) After creating the sample map, we can customize the
map’s latitude and longitude for Austin. This is absolutely essential because,
by default, Google pulls up a map from Australia! That’s very much the long
way around for Ed’s party.

Visitors to this page can view four different map versions: a 2D map, a satel-
lite view, a hybrid map (satellite overlaid with 2D), or terrain views of Austin.
They can also use the map interface to pan left, right, up, or down, as well
as zoom in or out to whatever level of detail they like (from the tiniest nooks
and crannies to the whole continent).

23_9780470916599-ch15.indd 25723_9780470916599-ch15.indd 257 11/30/10 12:26 AM11/30/10 12:26 AM

258 Part IV: Scripting and (X)HTML

If you look at the code, you’ll notice some new elements. In this example, the
latest Google Maps API (Version 3, also known as V3) now uses HTML 5. For
more information on HTML 5, check out Chapter 19: It won’t tell you every-
thing, but it will tell you enough to understand what’s going on here.

For more information on creating your own Google map, visit http://code.
google.com/apis/maps/documentation/javascript/tutorial.
html.

 For those of you who don’t already know the latitude and longitude for your
chosen location (who does?), plenty of Web sites can provide this informa-
tion. We prefer http://stevemorse.org/jcal/latlon.php.

Other embeddings to check out
The preceding examples represent only a few services you can freely and
enthusiastically embed onto your Web site. That’s just the beginning,
though: You could also include literally hundreds of others, should you
wish to do so. In fact, here are a few more “best of the Web” items that we
recommend visiting:

 ✓ YouTube (www.youtube.com) for online video streaming

 ✓ Picasa (http://picasa.google.com) for online photo management

 ✓ Scribd (www.scribd.com) for sharing Web documents

 ✓ SlideShare (www.slideshare.net) for uploading and sharing
presentations

 ✓ AddThis (http://addthis.com) for sharing content on your Web site

Honestly, we certainly can’t cover even the very best of the best of the Web
in depth given the many, many sites that qualify for this status. Some would
argue that each of these services deserves a book the size of this one to
fully master its concepts and capabilities. Here, our goal is just to show you
what’s possible, and to let you know there’s a world of other similar things
out there on the Web.

Mashups: Two or More Sites
In the music industry, a mashup is a song or composition created by blend-
ing two or more songs to create something new and different. For example,
in 2004, the critically acclaimed The Grey Album from DJ Danger Mouse dis-
tinguished itself by combining samples from The Beatles’ White Album and
vocals from rapper Jay-Z’s The Black Album. Neither of these artists had ever

23_9780470916599-ch15.indd 25823_9780470916599-ch15.indd 258 11/30/10 12:26 AM11/30/10 12:26 AM

259 Chapter 15: Bring the Best of the Web to Your Web Site

worked together, nor do they share a common musical genre, nor is there
even any historical overlap between the two works. Nevertheless, DJ Danger
Mouse took each of these albums, put them together, and used them to
create something interesting and new.

Returning to the topic for this book — namely, Web development — a
mashup is something like what’s found in the music industry except that
samples and vocals are replaced with data or functionality from two (or
more) external services to create something new and interesting online.

In short, mashups provide a way to combine and extend various individual
Web site services to create new functionality that didn’t exist before. Why
would anybody want to do this? Some might say “Just because you can” or
“Just for the thrill.” Others might enjoy tackling the same kind of challenge on
the Web that DJ Danger Mouse took on in the studio in 2004.

In writing this book, we make the assumption that you’re learning your way
around HTML and CSS. Consequently, we don’t expect you to be able to use
every line of code in every mashup. However, we do think you need to know
that mashups exist, and that they are a popular and growing portion of the
Web. Our goal here is to help you understand what mashups are, and to
expose you to just a little about how mashups work.

As you progress with your coding skills, you can tackle projects like building
your own mashups. The real beauty of mashups stems from the trend that
more and more applications and Web sites keep opening (a least a portion of)
their services through special application programming interfaces (APIs) for
embedding and reuse on other sites. Even better, whole online communities,
tutorials, and documentation explain how to access APIs and the data and
services they deliver from the best of the Web’s providers. (Just remember:
Some services are better than others, and some APIs and tools are easier to
work with than others, too. The best of the best is just that because both the
services and the tools you use to access them are pretty darn good indeed.)

Again, please don’t feel overwhelmed. For the moment, be happy understand-
ing that mashups exist and are pretty darn cool. To get a better idea why we
think this is worth knowing, check out some of the following examples.

Creating a Yelp/Google Maps mashup
In the earlier section, “Creating a map,” we walk you through building a
Google map for some out-of-town friends attending a party in Austin. If you’ve
never been to Austin, one particular food item worth discussing (at least
briefly) is breakfast tacos. Depending on where you live, you may not have
heard of these delectable treats. For those who don’t know, in its simplest

23_9780470916599-ch15.indd 25923_9780470916599-ch15.indd 259 11/30/10 12:26 AM11/30/10 12:26 AM

260 Part IV: Scripting and (X)HTML

form, a breakfast taco holds beloved breakfast items (eggs, potatoes, bacon,
and so forth), plus salsa (mild, hot, green, or whatever), rolled up inside a
tortilla (whole wheat, white, or corn are common, but other variations can
and do pop up). Now that we think about it, a breakfast taco is a great sub-
ject here because you could say it’s a food mashup!

Say those out-of-town guests will benefit from a list of breakfast taco res-
taurants during their visit for the party. In case they’re not inclined to trust
our culinary judgment, we can create a mashup that lets them see what a
whole bunch of people in Austin think about various breakfast taco restau-
rants all over town. Here’s a search at Yelp that proffers this kind of info:
www.yelp.com/search?find_desc=breakfast+tacos&ns=1&find_
loc=Austin%2C+TX.

We could send our friends a link to Yelp, which provides 600-plus results (at
the moment) with reviews and comments from real people. This helpful info
is bound to provide our friends with lots of opinions and data on the break-
fast taco restaurants in Austin.

The Yelp list also includes addresses and phone numbers to help our friends
find each and every location. By itself, though, this Yelp list alone doesn’t
actually show where each restaurant is located. Adding this capability is
what mashups are about, and what gives them their value. So we do that very
thing and give our friends a map to go along with the address so they don’t
get lost (or too terribly hungry) while on their quest for breakfast tacos.

In Figure 15-5, notice the little map on the right side of that page for a perfect
example of a mashup. Here, Yelp is presenting its data (Yelp already stores
the address for each location) on a Google Map of Austin. Just as in the pre-
vious section’s map, our friends can zoom and pan this map, but here, they
also get Yelp overlays for each location from Yelp’s own site data. The com-
bination is better than either part by itself, see?

Clicking the Mo’ Map hyperlink expands the tiny default map to show loca-
tion data better. Click Less Map to see a smaller map but with more restau-
rant info (the default view). Pretty neat, isn’t it? It may not be revolutionary,
but if you hover ahead on a few of the markers on the map, you see informa-
tion about each location from Yelp by using the Google Map. Double-click
any such marker, and you jump to the Yelp detail page for the correspond-
ing location. In all these ways, Yelp has “mashed up” its breakfast taco data
(locations, reviews, comments, addresses, hours, and so forth) and made it
all accessible through a Google Map to create the best of both worlds.

At this point, you’re probably saying: “Gee, that’s great but this is Yelp’s
work. I’m sure they have great programmers who simply rolled up their
sleeves and figured this out for themselves.” That’s true, but you can take a
similar approach to build something for yourself.

23_9780470916599-ch15.indd 26023_9780470916599-ch15.indd 260 11/30/10 12:26 AM11/30/10 12:26 AM

261 Chapter 15: Bring the Best of the Web to Your Web Site

Figure 15-5: Yelp mashes its location and review info with Google
Maps for a tasty combo.

We decided to expand on this idea (as shown in Figure 15-6) in a Web site
that author Jeff Noble and his friend Ron Norman created just for grins.
Taking the same approach as Yelp, they accessed its API (remember,
that’s application programming interface, fancy talk for programming links
that let services talk to one another through a Web page) to display Yelp
information about breakfast taco joints inside a Google satellite map. The
results are displayed in Figure 15-6 below or check it out online at www.
breakfasttacomap.com.

Notice how we updated the map markers with little breakfast taco icons? You
can do this, too! All sorts of neat customizations are possible when you make
your own mashups. No salsa needed, either!

For more information, check out these resources:

 ✓ The Google Maps JavaScript API V3 at http://code.google.com/
apis/maps/documentation/javascript/examples/index.html

 ✓ Yelp for Developers at www.yelp.com/developers/documentation

23_9780470916599-ch15.indd 26123_9780470916599-ch15.indd 261 11/30/10 12:26 AM11/30/10 12:26 AM

262 Part IV: Scripting and (X)HTML

Figure 15-6: Homemade breakfast taco map mashup

Crafting a Twitter/Google Maps mashup
In earlier sections, we covered how to embed a single map as well as how
to embed data from Yelp into a Google Maps mashup. We even covered
embedding Twitter in a page before that, so now let’s create a Twitter/map
mashup, too.

For example, you might want to build a mashup that displays a map of Round
Rock, Texas (which is where author Ed Tittel lives), that shows locations for
people’s tweets and what they said, as a way to keep up with what’s going on
around town. We’ve also said that the beauty of mashups and embedded con-
tent comes by not reinventing the wheel. And, in fact, that’s what brings the
work of map guru Adam DuVander and his interesting Twitter/map mashup
into this discussion. Check it out at http://mapscripting.com/twitter.

In our example (see Figure 15-7), Adam automatically loads a Google map
with your current location (or your current Internet service provider’s loca-
tion, as the case may be for people living out in the sticks) and recent tweets
from that area, helpfully circled on the map. In Figure 15-7, we clicked on one
map marker to display a tweet from someone in the Austin area with an elec-
trical problem by searching on the word half.

23_9780470916599-ch15.indd 26223_9780470916599-ch15.indd 262 11/30/10 12:26 AM11/30/10 12:26 AM

263 Chapter 15: Bring the Best of the Web to Your Web Site

Figure 15-7: You can search by topic and location.

To add more capability, Adam includes controls on this map/tweet mashup.
Using these controls, visitors can search around other locations for all tweets
(the location controls enable distance selections underneath the map, or by
location at the lower right). You can also search for a specific tweet topic, as
we did in Figure 15-7 where we were looking for Half Price Books (a popular
used book store in our area), using the tweet search box at the lower left of
the mashup where we entered the word “half” to pull up any mentions of the
store.

Here again, we recognize that Adam is an expert, and illustrations like his
tweet/map mashup are meant to inspire and to show you what’s possible. If
you build on the basics presented in this book, you too can one day use your
XHTML, CSS, and JavaScript skills to build cool mashups like this one.

For more information on building your own maps, we urge you to dig
into Adam’s online book: Map Scripting 101, available at http://
mapscripting.com/book. To see other mapping mashups by Adam, visit
http://mapscripting.com/example-maps. For still more mashup info,
visit this Web page entitled “How to make your own Web mashup” available
at www.programmableweb.com/howto.

23_9780470916599-ch15.indd 26323_9780470916599-ch15.indd 263 11/30/10 12:26 AM11/30/10 12:26 AM

264 Part IV: Scripting and (X)HTML

23_9780470916599-ch15.indd 26423_9780470916599-ch15.indd 264 11/30/10 12:26 AM11/30/10 12:26 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 16

Fun with Client-Side Scripts
In This Chapter
▶ Using image and text rollovers

▶ Adding dynamic content

▶ Using Web cookies

▶ Showing pop-up windows

If you’re the outdoor type, you can get an adrenaline rush by climbing a
mountain, mountain biking, or perhaps inventing a new sport, such as

parafishing or sewer snorkeling. If you are reading this book, chances are
you’re sitting in front of your computer trying to create a Web site. If so, we
have a different idea for a Web adrenaline rush: Dynamic HTML!

Dynamic HTML, also known as DHTML, is techie talk for a useful and power-
ful set of technologies. It’s the combination of HTML, Cascading Style Sheets
(CSS), the Document Object Model (the DOM), and JavaScript. If you use
these four technologies together, you’re creating DHTML.

DHTML is like a printed document in which the DOM acts as the nouns,
JavaScript as the verbs, CSS as the adjectives, and HTML as the paper itself.
The individual parts are useful, but it’s in combination that they become
truly powerful. If you can put them all together, you can speak DHTML.

In this chapter, we explore how to use DHTML and its component technolo-
gies to bring active content to your Web pages. Specifically, we explore how
to create rollovers, add dynamic content to your page, display pop-up win-
dows, and tap into the power of cookies.

Adding Rollovers to Your Pages
If you’re new to HTML, a rollover probably sounds like a pet trick. In actual-
ity, though, a rollover is perhaps the most common use of DHTML on the
Web. It’s an instruction that brings your Web page to life when a mouse

24_9780470916599-ch16.indd 26524_9780470916599-ch16.indd 265 11/30/10 12:26 AM11/30/10 12:26 AM

266 Part IV: Scripting and (X)HTML

pointer hovers over an image or text. In the past, it was common to address
rollovers with JavaScript/HTML/CSS solutions, but now all you really need is
CSS. With that observation in mind, it’s time to start the fun!

Text rollovers with CSS
For years, the only option available for creating a rollover was to create
button images and then “activate” them with JavaScript. However, now that
CSS has gained acceptance in newer browser versions, here’s an alternative
way to create rollovers without using images at all.

Text rollovers have advantages and disadvantages when compared with
JavaScript image rollovers:

 ✓ Good news: Text is faster and more meaningful to search engines, and
it’s always easier to add plain text to a page than it is to create two
images and add them both to a page, with an image rollover. Plus, you
don’t need to worry about preloading, tracking, and maintaining images.

 ✓ Bad news: Although you can control the text font, style, and border for
your image using CSS, you currently can’t do all the nifty visual tricks
that you can do to images using a program like Adobe Photoshop (or
some reasonable facsimile thereof). These tricks include visual effects
such as anti-aliasing, drop shadows, and animation. (You can, however,
apply such visual effects using HTML 5 and CSS3, which we discuss in
Chapters 19 and 20, respectively.) In addition, this method works only
in reasonably current browsers. If your target viewing audience uses a
browser released in this century, that should be fine.

Figure 16-1 shows a plain-Jane Web page with two rollover text links: Home
and About Me. Moving the cursor over one of the images, as shown in Figure
16-2, causes the rolled-over version of the text to display white text on a
black background, instead of teal-on-white for unvisited links and gray-on-
white for visited links. Listing 16-1 displays the HTML and CSS required for
this rollover effect.

Figure 16-1: A page with text rollovers handled
with CSS.

24_9780470916599-ch16.indd 26624_9780470916599-ch16.indd 266 11/30/10 12:26 AM11/30/10 12:26 AM

267 Chapter 16: Fun with Client-Side Scripts

Figure 16-2: Moving the cursor over the link text
changes the text and background colors.

The link text still shows up onscreen regardless of whether you visited the
linked page. Figure 16-3 shows how the page appears after you visit this site’s
home page. Although that text is grayed out, it’s still a link, so rolling over it
still produces the same effect shown in Figure 16-2.

Listing 16-1: A Text Rollover with CSS
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>CSS Text Rollover</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 h4 {font: 18pt geneva, sans-serif; margin: 0; color: teal;
 background: white;}
 a {text-decoration: none;}
 div#navbar {width: 200px;}
 div#navbar a {display: block; margin: 0; padding: 0.3em;}
 div#navbar a:link {color: #008080; background-color: transparent;}
 div#navbar a:visited {color: #C0C0C0; background-color: transparent;}
 div#navbar a:hover {background: black; color: white;}
 </style>
</head>
<body>
<div id=”navbar”>
 <h4>Home</h4>
 <h4>About Me</h4>
</div>
</body>
</html>

 In this example, we change the text from teal-on-white to white-on-black when
the cursor hovers over the link; that way, it’s easy for you to see what’s going
on in the screenshots. You may want to use a different approach on your site
(or a different color scheme). The link goes gray after being visited.

24_9780470916599-ch16.indd 26724_9780470916599-ch16.indd 267 11/30/10 12:26 AM11/30/10 12:26 AM

268 Part IV: Scripting and (X)HTML

Figure 16-3: After you visit a page, the link text
color shows that the page was visited.

Adding this type of navigation to your site couldn’t be simpler:

 1. Within the <head> tags, add the preceding code (from Listing 16-1)
inside and including the <style> and </style> tags.

 2. Add links inside individual <h4> tags.

 3. Make sure that the entire menu is inside a <div> tag with an id attri-
bute of navbar.

If you add the CSS to your site via a link to a site-wide external style sheet
(see Chapters 9 and 10 for more information on style sheets), you can add,
change, or delete menu-bar links on your site at any time without having to
touch a single line of CSS or JavaScript. You simply add or modify your <a
href> tags. Slick, huh?

Image rollovers with CSS
With text rollovers under your belt, kick things up a notch and move on
to image rollovers. Say you have a basic image that you want to change to
some different image when a visitor to your Web site rolls over its display
frame. In the past, you needed JavaScript to handle the mechanics for
image rollovers. Lucky for you, this can all easily be done with CSS now.
Check out this sample page where you can mess with Jeff’s head (literally)
www.dummieshtml.com/examples/ch16/image%20rollover.

Here, we use some CSS trickery to apparently take one image and replace it
with another. Actually, it’s really a single image that was created by stacking
two separate images together, one next to the other. We use some format
tricks to handle the rollover behavior using CSS by shifting our frame of refer-
ence to the right as we hover over that image.

Figure 16-4 shows the sample image (notice how it’s really two images).
Figure 16-5 shows the Web page of the formatted image with part of the
image hidden from view. Hovering the cursor over the black-and-white part
of the image, as shown in Figure 16-6, causes the rolled-over version of the

24_9780470916599-ch16.indd 26824_9780470916599-ch16.indd 268 11/30/10 12:26 AM11/30/10 12:26 AM

269 Chapter 16: Fun with Client-Side Scripts

image to display (it’s in color). Listing 16-2 displays the HTML and CSS that
we use to produce this rollover effect.

Figure 16-4: One image composed of two pictures
of intrepid author, Jeff Noble.

Figure 16-5: The page showing the base (black-
and-white) image of Jeff.

24_9780470916599-ch16.indd 26924_9780470916599-ch16.indd 269 11/30/10 12:26 AM11/30/10 12:26 AM

270 Part IV: Scripting and (X)HTML

Figure 16-6: Hovering over Jeff’s head calls up
the color image of Jeff as a rollover.

Listing 16-2: HTML and CSS Creating a Rollover Effect
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
 <title>Image Roll Over</title>
 <style type=”text/css”>
 body{margin: 0px; padding: 0px;
 background-image:url(images/background-page.gif);}
 #top{width: 580px; height: 351px; background-image:url(images/header.gif)}
 #container{margin: 0px auto; width: 580px}
 #content{ background-color:#001021; margin-left: 6px; margin-right: 5px;}
 .jeffPhoto {width: 251px; height: 376px;
 background-image:url(images/jeff.jpg);margin: 0px auto;}
 .jeffPhoto:hover{ background-position: -251px 0px}
 .caption{color:#FFF; width: 251px; margin: 0px auto; text-align:center;
 font-family:Verdana, Geneva, sans-serif}
 </style>
</head>

24_9780470916599-ch16.indd 27024_9780470916599-ch16.indd 270 11/30/10 12:26 AM11/30/10 12:26 AM

271 Chapter 16: Fun with Client-Side Scripts

<body>
 <div id=”container”>
 <div id=”top”></div>
 <div id=”content”>
 <div class=”jeffPhoto”></div>
 <div class=”caption”>Roll over my head!</div>
 </div>
 </div>
</body>
</html>

It’s the trick with the background position on the hover that switches the
image over from the black-and-white part on the left to the color part on the
right. By changing the first value to –251px, the image shifts all the way to
the right edge, which shows us the right-hand “half” (in color).

Custom button rollovers with CSS
When you’re familiar with text and image rollovers, you can really ramp up
your Web site by combining aspects of both to create your own custom
buttons.

In the old days, people often created buttons using images with text on them.
This method worked, but it also required creating a bunch of individual
graphics with rollovers. This not only takes a long time to build and maintain,
but images also take time to load when visitors come to your site.

No more! You can create standard buttons using CSS to change their pre-
sentation, as we show in Chapter 12. While this works, it doesn’t provide
the push that takes your site’s power level up to “11” (as the special ampli-
fiers did for that famous but fictional rock band, Spinal Tap). A snazzier way
to create buttons is to use a CSS “Sliding Doors” technique, which involves
using multiple images that scale with the width of your HTML text.

We challenge you to take your new-found skills and attempt this technique
on your own. We defer to Janko Jovanovic, a true master of fancy buttons for
the sliding doors technique. Be sure to check out his tutorial and try it your-
self. You may even be able to improve it using your new skills! Visit “Janko At
Warp Speed” at www.jankoatwarpspeed.com/post/2008/04/30/make-
fancy-buttons-using-css-sliding-doors-technique.aspx.

24_9780470916599-ch16.indd 27124_9780470916599-ch16.indd 271 11/30/10 12:26 AM11/30/10 12:26 AM

272 Part IV: Scripting and (X)HTML

Working with Cookies
Every time we start talking about cookies, we’re tempted to grab a glass of
milk and get ready for dipping. Then we remind ourselves that Web cookies,
as useful as they can be, are actually tasteless. (We imagine they’d taste more
like chicken than cookies made from the Toll House recipe.) Although they
may not be tasty, you may find cookies helpful as you create your Web site.

A cookie allows you to store information on visitors’ computers that you can
revisit later. Cookies offer a powerful way to maintain “state” within Web
pages. The code in Listing 16-3 reads and writes two cookies as a visitor
loads the page:

 ✓ pageHit contains a count of the number of times the visitor has loaded
the page.

 ✓ pageVisit contains the last date and time the visitor visited.

Figure 16-7 shows how the page appears on the initial visit, and Figure 16-8
shows how it looks on subsequent visits.

Figure 16-7: This cookie knows you’ve never
been to this page before.

Figure 16-8: These cookies know not only that
you’ve been here before, but when.

24_9780470916599-ch16.indd 27224_9780470916599-ch16.indd 272 11/30/10 12:26 AM11/30/10 12:26 AM

273 Chapter 16: Fun with Client-Side Scripts

Listing 16-3: Cookie-handling Script
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Cookie Demo</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
<!--
 now = new Date
 expireDate = new Date
 expireDate.setMonth(expireDate.getMonth()+6)

 hitCt = parseInt(cookieVal(“pageHit”))
 hitCt++
 lastVisit = cookieVal(“pageVisit”)
 if (lastVisit == 0) {
 lastVisit = “”
 }

 document.cookie = “pageHit=”+hitCt+”;expires=” + expireDate.toGMTString()
 document.cookie = “pageVisit=”+now+”;expires=” + expireDate.toGMTString()

 function cookieVal(cookieName) {
 thisCookie = document.cookie.split(“; “)
 for (i=0; i<thisCookie.length; i++) {
 if (cookieName == thisCookie[i].split(“=”)[0]) {
 return thisCookie[i].split(“=”)[1]
 }
 }
 return 0
 }
-->
 </script>
</head>
<body>
<h2>
 <script type=”text/javascript” language=”javascript”>
<!--
 document.write(“You have visited this page “ + hitCt + “ times.”)
 if (lastVisit != “”) {
 document.write(“
Your last visit was “ + lastVisit)
 }
-->
 </script>
</h2>
</body>
</html>

24_9780470916599-ch16.indd 27324_9780470916599-ch16.indd 273 11/30/10 12:26 AM11/30/10 12:26 AM

274 Part IV: Scripting and (X)HTML

Unlike preceding examples, Listing 16-3 has a <script> section in both the
head and the body:

 ✓ Cookies are read and written in the header script when the page loads.

 ✓ The body script dynamically writes out the contents of the page itself.

Follow these steps to add the cookie-handling script to your page:

 1. Copy both <script> sections and put them into the appropriate parts
of your page.

 2. Change the <body> section to contain the text that you want the page
to display.

 The lines inside the document.write() statements write the text out
to the document on the fly.

 A cookie has an expiration date, after which it’s no longer available. This
example creates cookies that expire in six months. If you want your cookies
to live longer (or not so long), adjust the JavaScript code near the top that
sets a value for expireDate. Thus, the following example increases the cur-
rent expiration date by six months:

expireDate.setMonth(expireDate.getMonth()+6)

Working with jQuery and FancyBox Lightbox
In days of yore, it was commonplace to use browser pop-ups to present addi-
tional information about your Web site. In fact, we even used this technique
in the last edition of this book. Owing to overuse at some unscrupulous
Web sites, plus their annoying in-your-face nature, pop-ups are now mostly
blocked by major browsers . . . and that’s probably a good thing!

Instead of pop-ups, we now recommend using lightboxes. This may sound
like a weapon out of Star Wars or a tool used by photographers (that last
guess is close). In this case, however, a lightbox is a tool that displays images,
HTML content, and multimedia atop of a Web page.

Dozens of different lightboxes are available on the Internet. Please use your
favorite search engine to check those out if you want to know more. Here, we
only discuss jQuery and FancyBox.

If you’re unfamiliar with jQuery, think of it as a popular JavaScript library
that you can reference without writing much real code yourself. (We don’t
dig much into jQuery in this book, but you need only do a Web search on this

24_9780470916599-ch16.indd 27424_9780470916599-ch16.indd 274 11/30/10 12:26 AM11/30/10 12:26 AM

275 Chapter 16: Fun with Client-Side Scripts

term to find more information than you can read in an entire Sunday after-
noon.) jQuery can be extended for many different uses — say for example, a
lightbox — by no coincidence whatsover!

To create a lightbox, such as the one at www.dummieshtml.com/examples/
ch16/lightbox, follow these steps:

 1. Download FancyBox at http://fancybox.googlecode.com/files/
jquery.fancybox-1.3.1.zip.

 The FancyBox home page is shown in Figure 16-9.

Figure 16-9: The FancyBox home page.

 2. Unzip its files into your Web site folder.

 3. Create a blank HTML page, and then add the necessary JavaScript
files along with the Fancy Box CSS File (see Figure 16-10).

 4. Include the following code in that document (inside the head part):

<script type=”text/javascript”
 src=”http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js”>
</script>
<script type=”text/javascript”
 src=”fancybox/jquery.fancybox-1.3.1.pack.js”></script>
<link rel=”stylesheet” href=”fancybox/jquery.fancybox-1.3.1.css”

 type=”text/css” media=”screen” />

24_9780470916599-ch16.indd 27524_9780470916599-ch16.indd 275 11/30/10 12:26 AM11/30/10 12:26 AM

276 Part IV: Scripting and (X)HTML

Figure 16-10: HTML source code for our lightbox example.

 5. Create a link to launch the lightbox.

 In this example (see Figure 16-11), we use a small image to launch a
larger one.

<img src=”images/oldCoverSmall.jpg” alt=”Our Old Book Cover”

 border=”0” />

 Figure 16-11 shows how the lightbox looks on the Web page when
completed. You can also view it online at www.dummieshtml.com/
examples/ch16/lightbox.

 Here’s the magic part: We add some JavaScript to enable the lightbox to
work with jQuery.

 6. Enter the following code into the head section of your document:

<script type=”text/javascript”>
$(document).ready(function() {
 $(“a#example”).fancybox({
 ‘titleShow’: true
 });
});
</script>

24_9780470916599-ch16.indd 27624_9780470916599-ch16.indd 276 11/30/10 12:26 AM11/30/10 12:26 AM

277 Chapter 16: Fun with Client-Side Scripts

Figure 16-11: The lightbox example from the HTML For Dummies Web site.

This example is intended to showcase what’s possible using these tools.
Check out the sample code on our site and give it a shot! (You can also visit
www.dummieshtml.com/examples/ch16/lightbox, and then choose
View➪Source in Internet Explorer or View➪Page Source in Firefox.)

For additional resources for this example, visit the following sites:

 ✓ jQuery: http://docs.jquery.com/How_jQuery_Works

 ✓ FancyBox: http://fancybox.net/howto

To find alternative lightbox plugins, check the following sites:

 ✓ 6 Lightbox Plugins for WordPress: http://franklinbishop.net/6-
lightbox-plugins-for-wordpress

 ✓ jQuery lightBox: http://leandrovieira.com/projects/jquery/
lightbox

You can find more about JavaScript libraries at the following sites:

 ✓ jQuery: www.jquery.com

 ✓ script.aculo.us: http://script.aculo.us

 ✓ MooTools: http://mootools.net

24_9780470916599-ch16.indd 27724_9780470916599-ch16.indd 277 11/30/10 12:26 AM11/30/10 12:26 AM

278 Part IV: Scripting and (X)HTML

 If you try to follow along with the various techniques we illustrate in these
chapters, you’ll realize that we didn’t describe every single step in complete
detail. You will need to load image files into the various environments (Flickr,
for example), and in general, you must make sure that file paths and other
resource references are absolutely correct (or images and objects won’t
show up where they should). Our skeleton approach is designed to help you
understand what you must do in general. If you need more help in completing
the steps, drop us an e-mail (etittel@yahoo.com, jeff@conquestmedia.
com) or send us a tweet (@dummieshtml), and we’ll add a step-by-step tuto-
rial to the Web site.

24_9780470916599-ch16.indd 27824_9780470916599-ch16.indd 278 11/30/10 12:26 AM11/30/10 12:26 AM

Chapter 17

Content Management Systems
In This Chapter
▶ Understanding the differences between content management systems and HTML

▶ Introducing WordPress, Drupal, and Joomla!

▶ Customizing CSS using content management systems

Acontent management system (CMS) is a Web application designed to
make life easy for nontechnical users to add, edit, and (wait for it . . .)

manage a Web site. A CMS is like a Web site on steroids: bigger, stronger, and
with more abilities. However, a CMS might be overkill for what many folks
need — and there are side effects.

Well, that’s it for us: You can now put this book down and just use a CMS
instead of HTML. Cue the music and thanks very much: The End. Alas, if only
that were true. Many people start with HTML, XHTML, and CSS, and eventu-
ally graduate to their very own CMS Web site, whereas others jump directly
into CMS and move ahead from there. It really just depends on what makes
you comfortable and happy. Regardless of whether you start out with or
graduate to a CMS, learning HTML, XHTML, and CSS will help (not hurt) as
you prepare for life with a CMS (if you choose that option).

Comparing CMS Sites to HTML Sites
Table 17-1 describes a few ways in which a CMS-based site compares with a
basic HTML Web site.

25_9780470916599-ch17.indd 27925_9780470916599-ch17.indd 279 11/30/10 12:26 AM11/30/10 12:26 AM

280 Part IV: Scripting and (X)HTML

Table 17-1 HTML-Only and CMS-Based Web Sites Compared

CMS-Based Site HTML-Only Site

Edit anywhere using a Web browser
and an Internet link

Edit local files and upload to a Web
server

HTML, XHTML, and CSS knowledge not
required, but helpful for customization

HTML, XHTML, and CSS required
unless using a WYSIWYG editing tool
(such as Dreamweaver)

Access can be restricted on a per-user
basis

Anyone with write access to the right
server folder can add, change, or delete
HTML files

Hard to set up unless assisted by Web
host

Easy to set up

Easy to update, lots of automation
support

Easy to update, little or no automation
support

Requires a database to store
information

A database is possible but not required

Popular CMS Sites and Programs
There are probably more CMS options available than pages in this book.
Supporters of any particular CMS are a lot like most of the mixed martial
arts fans that we know — all of them think whoever or whatever they sup-
port is the absolute best and no amount of arguing can change that — until
one party takes the other party out! We don’t cover any particular CMS in
depth in this chapter. Rather, we identify three of the most popular CMS
choices available — WordPress, Drupal, and Joomla! — and introduce them
with some high-level exploration. For those who might want to find out
more about any or all of these systems, whole books are dedicated to each.
We recommend checking them out so you can pick one to explore further
on your own, without any threat of someone putting you into the infamous
“kimura hold.”

If it looks like we’re avoiding in-depth coverage of these CMS options, this is
a case where looks do not deceive. There’s no way we can cover everything
about CMS systems and capabilities in a single chapter, nor can we provide
much useful information or detail about any single CMS in the same space.
However, we can tell you what makes them useful, interesting, and popular,
so that’s what we do instead.

25_9780470916599-ch17.indd 28025_9780470916599-ch17.indd 280 11/30/10 12:26 AM11/30/10 12:26 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

281 Chapter 17: Content Management Systems

 Lots of Web hosts offer the CMS systems we cover briefly here — namely,
WordPress, Drupal, and Joomla! — to their customers (often for free; some-
times, for a slightly higher monthly fee). For the companion site for this book,
we were able to set up the sample sites we use as examples in the following
sections using all three of these CMS options for no extra cost. Hmmm . . .
something else you might want to think about using when selecting a Web
hosting provider, especially if you find one or more of these CMS offerings
appealing.

WordPress
WordPress is widely known as a blogging system but has evolved into a full-
blown CMS. It’s offered as a multi-platform CMS in a hosted solution from
its developers (www.wordpress.com) and in a self-hosted solution (www.
wordpress.org). The differences between these two varieties of WordPress
are minor, and your choice will depend on your intentions and the amount of
control you will need over your site.

For the most part, the hosted solution involves an easier setup and requires
neither a download nor an installation to some specific Web server. On the
other hand, the self-hosted solution offers many more customization options
and confers complete control to its operators. Either way, a basic setup
is free (and the self-hosted version is open source, so you can download,
install, modify, and share the WordPress code for free). With a user commu-
nity in the millions, thousands of optional features are available with plugins
and themes that you can use to extend WordPress and add to its already
formidable list of features and functions. (Most plugins and themes are free,
though some commercial products also play on this field.)

WordPress distinguishes itself from other CMS because it is

 ✓ Extremely easy to use

 ✓ Highly extensible

 ✓ Home to strong and passionate user and developer communities

 Our companion site for this book (www.dummieshtml.com) is built atop a
WordPress self-hosted solution for which we’ve done a fair amount of custom
CSS development.

Drupal
Drupal is an open source CMS. According to the Drupal Web site (www.
drupal.org), Drupal is a “free software package that allows an individual or
community of users to easily publish, manage, and organize a wide variety of

25_9780470916599-ch17.indd 28125_9780470916599-ch17.indd 281 11/30/10 12:26 AM11/30/10 12:26 AM

282 Part IV: Scripting and (X)HTML

content on a Web site.” Drupal is known to most as a solid and well-thought-
out CMS, but it is hampered with a somewhat difficult installation, and its
management interface can also be a bit confusing. Like WordPress, Drupal
offers additional modules that you can add to a Web site to extend its func-
tionality. Also like WordPress, thousands of these modules are available for
you to download and install.

Drupal’s strengths include the following:

 ✓ It’s free

 ✓ It supports highly flexible layout and page creation capabilities

 ✓ It’s also highly extensible

There is no hosted version of Drupal available at a single centralized site, but
you can download Drupal from www.drupal.org and install it anywhere you
might like!

Joomla!
In discussing this CMS, we drop the exclamation point from its proper name,
Joomla!, following the same convention in other books. We think this makes
the name more readable, if less emphatic.

Joomla is an open source CMS that gives its users total control over the Web
sites under its management. Joomla is extremely powerful and offers “out of
the box” features that include user (account) management, multi-language
support, template management, and an integrated help and support system.
As with WordPress and Drupal, Joomla supports a plethora of add-on fea-
tures (called extensions) that you can download and install.

Joomla is known for the following characteristics:

 ✓ It’s free

 ✓ It’s easy for site designers and operators to use to set up individual Web
sites

 ✓ It’s highly extensible, and it offers a comprehensive set of management
and support tools

You can download Joomla from www.joomla.org. However, Joomla’s great
power also puts the burden of great responsibility on its operators (who run
the servers on which Joomla is used to set up and manage individual Web
sites), if not also on its operators (who build and manage those individual
sites).

25_9780470916599-ch17.indd 28225_9780470916599-ch17.indd 282 11/30/10 12:26 AM11/30/10 12:26 AM

283 Chapter 17: Content Management Systems

Customizing CSS on a CMS
Sure, reading about CMS is nice and all that, but this is an HTML (plus
XHTML and CSS) book, so we have to dive in a little deeper. Here again, we
won’t swim all the way down to the bottom of this pool — we just cover some
areas within the individual CMS packages introduced in the previous section
and explain how you might go about updating the HTML/CSS in each one.

Each of the three systems — namely, WordPress, Drupal, and Joomla — uses
different methods to edit CSS. However, for all the systems, changing the
“theme” is the key to accessing and managing page presentation for the sites
under their control.

WordPress and CSS
Installing and managing themes in WordPress is easy. With the CSS skills we
provide you in this book, you should find it even easier to update and tweak
the look and feel for any predefined theme you might like. In fact, you can use
what you know to create your own themes, using a predefined WordPress
theme as your point of departure.

First, log in to your site’s WordPress administration view. Then, from the
main dashboard, click the Appearance link in the panel to the left (the one
with a small icon that looks like some sections on a page). This screen shows
your current theme and how to activate other themes, and lets you install
new ones, as shown in Figure 17-1.

Figure 17-1: Basic theme management in WordPress.

25_9780470916599-ch17.indd 28325_9780470916599-ch17.indd 283 11/30/10 12:26 AM11/30/10 12:26 AM

284 Part IV: Scripting and (X)HTML

To edit the current theme, click the Editor link in the Appearance panel.
The main stylesheet contents open in a text input area in the main screen.
Alternatively, you can select the style you want to work on under the Styles
category on the right side of the page.

After you handle these preliminaries, all you must do to update the CSS is
to choose some element in the current stylesheet, modify it, and then click
the Update File button (under the input area). This saves your changes and
makes them part of the theme, so be prepared to spend some time tweaking
and tuning to get things just right.

In our simple example, we want to increase the font size for the body text
in our Web site (this actually requires changing a stylesheet entry named
#content, so be sure to make your changes for that element in particular).
To do this, we scroll to the #content element, then bump the font size up
from .76em to 1em, and then click the Update File button. See Figure 17-2 for
the before (top) and after (bottom) results of changing the font size.

 When you’re working on style sheets from any of these CMSs, you may find
it easier to grab them and import them to your local machine, where you can
use a CSS-savvy editor (or at least a text editor with search-and-replace func-
tionality) instead of the waaaay-too-basic text editing any of these systems
gives you.

You can also update the CSS in WordPress using an entirely different method.
Here’s how:

 1. Log in to your Web site with an FTP client.

 (See Chapter 23 for information on FTP clients.)

 2. Navigate to the CSS folder (usually found in /www/wp-content/
themes).

 3. Select your current theme folder.

 4. Download the main stylesheet.

 Be careful — there may be multiple styles with a .css file extension.

 5. Modify the file using a Web site editor.

 (For recommendations, see Chapter 23.)

 6. Upload the main stylesheet file back to the location from which you
downloaded it.

For more information about updating CSS and tons of other features about
WordPress, we suggest latching on to a copy of WordPress For Dummies, 3rd
Edition, by Lisa Sabin-Wilson.

25_9780470916599-ch17.indd 28425_9780470916599-ch17.indd 284 11/30/10 12:26 AM11/30/10 12:26 AM

285 Chapter 17: Content Management Systems

Figure 17-2: Before (top) and after (bottom) changing the font size on
the WordPress site.

Drupal and CSS
Themes in Drupal are a bit more involved and require more effort to update
than in WordPress. Even so, we think the process is pretty fascinating!

First, you must know which theme is designated as the default Drupal theme.
To make this determination, follow these steps:

 1. Log in to your Drupal administration page.

 2. In the Administrator panel, choose Site Building➪Themes.

 3. On the Themes page, scroll down to find the name of the theme that’s
currently enabled. (Look for the selected check box in the Enabled
column, as shown in Figure 17-3.)

 Remember this name.

25_9780470916599-ch17.indd 28525_9780470916599-ch17.indd 285 11/30/10 12:26 AM11/30/10 12:26 AM

286 Part IV: Scripting and (X)HTML

Figure 17-3: The Themes page in Drupal shows that the Garland theme
is selected.

 4. Log in to your Web site with an FTP client and navigate to the CSS
folder.

 This folder is usually found in the /httpdocs/themes folder; for our
site, the directory specification is …/cms/drupal/themes/garland,
where Garland is the name for our default theme.

 5. Select your current theme folder and download the main stylesheet (it
lives in a file named style.css).

 In this example, we want to make the body text in our Web site bigger,
so we open up the main stylesheet. (Be careful — you’ll find many files
that end in .css in any theme directory.)

 6. Modify that file in a Web editor.

 We opened the style.css file with a Web site editor, and then found
the <body> tag and changed the font-size from 12px to 16px.

 7. Upload the edited file back to the same location.

Figure 17-4 shows the original page (top) and the edited page (bottom).

For more information about Drupal, we suggest checking out Drupal For
Dummies by Lynn Beighley.

25_9780470916599-ch17.indd 28625_9780470916599-ch17.indd 286 11/30/10 12:26 AM11/30/10 12:26 AM

287 Chapter 17: Content Management Systems

Figure 17-4: Before (top) and after (bottom) with Drupal and a font size
enlargement.

Joomla and CSS
While not as quite as user friendly as WordPress, editing themes in Joomla is
much easier than in Drupal — but at least, it’s not FTP based!

To edit a theme using CSS in Joomla, follow these steps:

 1. Log in to Joomla.

 2. On the Administration page, choose Extensions➪Template Manager.

 The template manager is where you select your (drum roll please)
template — which is a lot like selecting a theme in WordPress or Drupal.

 You see a list of installed templates, and the default template in effect
for your Web site is tagged with a yellow star in the Default column, as
shown in Figure 17-5.

25_9780470916599-ch17.indd 28725_9780470916599-ch17.indd 287 11/30/10 12:26 AM11/30/10 12:26 AM

288 Part IV: Scripting and (X)HTML

Figure 17-5: The Joomla Template Manager marks the current template
with a yellow star.

 3. Click the template name that’s designated with the star (that is, you’ll
want to click the left-most column in the table of entries) for an over-
view of that template.

 4. Click the Edit CSS icon at the upper right.

 A list of CSS files appears.

 5. To edit any of these files, click the radio button on the left to select
a particular file, and then click the Edit icon above the table on the
right.

 In this example, we want to make the body text in our Web site bigger,
so we click the radio button to the left of the main CSS template called
template.css. Then we click the Edit icon above the table. The CSS for
the selected template file opens in a text input box.

 6. Edit the CSS code in the text input box.

 For example, we scrolled to the <body> tag and changed font-size
from 12px to 16px.

 7. Click the Save icon above the text input box to commit your changes
to the template file.

 That’s it! See Figure 17-6 to view the site before (top) and after (bottom)
changing the font size.

For more information about Joomla, we suggest checking out Joomla! For
Dummies by Steven Holzner and Nancy Conner.

25_9780470916599-ch17.indd 28825_9780470916599-ch17.indd 288 11/30/10 12:26 AM11/30/10 12:26 AM

289 Chapter 17: Content Management Systems

Figure 17-6: Before (top) and after (bottom) changing the default Joomla
body font size.

Pssst! Hey Buddy! Wanna See Some CMS?
As exciting as this section heading may seem, the reality actually both
exceeds its floridity and promise. We built three sample sites for each of the
CMS options we cover in this chapter (WordPress, Drupal, and Joomla), so
you can drop by the companion site for this book (in the CMS section, if you
must know) to visit any or all of them.

Don’t get your hopes up too high, though — we’re permitting you read-only
access to these offerings, so you can look but you can’t touch. As the pro-
tagonist himself said to Robin Hood in Shrek 1: “Hey, that’s my princess. Go
find your own!”

Here are the URLs for the various CMS versions:

 ✓ http://dummieshtml.com/cms/wordpress

 ✓ http://dummieshtml.com/cms/drupal

 ✓ http://dummieshtml.com/cms/joomla

25_9780470916599-ch17.indd 28925_9780470916599-ch17.indd 289 11/30/10 12:26 AM11/30/10 12:26 AM

290 Part IV: Scripting and (X)HTML

25_9780470916599-ch17.indd 29025_9780470916599-ch17.indd 290 11/30/10 12:26 AM11/30/10 12:26 AM

Part V
The Future of

(X)HTML

26_9780470916599-pp05.indd 29126_9780470916599-pp05.indd 291 11/30/10 12:26 AM11/30/10 12:26 AM

In this part . . .

Here, we look at several looming and important
developments in (X)HTML that aren’t quite com-

pletely cooked. While you must know about these works
in progress, incorporate them into your work very care-
fully (if at all) and plan to weather the inevitable changes
that time will bring to them.

We introduce you to (X)HTML for mobile devices, a
“markup dialect” especially tailored to work well (and
look good) on such mobile devices as smartphones, GPSs,
and iPads. After that, we give you an overview of HTML5,
a very cool and emerging remake of HTML to improve
work and life for Web developers and Web users. Part V
concludes with a look at the Cascading Style Sheet
Language Level 3 (better known as CSS3), which builds on
existing CSS capabilities to bring cool looks and dynamic
behaviors to the Web pages it graces.

One word of warning: Different Web browsers offer differ-
ing degrees of support for all the topics we cover in this
part. Depending on the browser you use, be prepared to
read about things you can’t see, or to find things working
differently than the way we describe them. Currently, not
all browsers can handle or display all this stuff properly.

26_9780470916599-pp05.indd 29226_9780470916599-pp05.indd 292 11/30/10 12:26 AM11/30/10 12:26 AM

Chapter 18

Mobile Web Design
In This Chapter
▶ Understanding mobile access devices and their special display environments

▶ Making the most of limited screen real estate

▶ Learning best practices and principles for mobile Web site design

▶ Building usable, friendly mobile Web sites

There’s no doubt today that mobile devices have gone mainstream.
Today’s marketplace boasts a wide array of products, many compet-

ing manufacturers, and oodles of innovative features. However, before we
wax too eloquent, we should clarify that we aren’t talking about ski mobiles,
mobile homes, or even Mobile, Alabama. For this book, the mobile Web
serves those portable multi-use phones and other devices (such as the iPad
or a Wi-Fi-connected portable GPS) that are so easy to carry around and inte-
grate into our everyday lives.

Mobile devices are unbeatable for quick access to directions and maps, to
check out product reviews or comparisons, to find contact information, or
to simply surf the Internet while on the go. Because of this, we think under-
standing mobile Web design is important, too. That way, you can utilize your
new skills and knowledge to account for the many unique challenges that
mobile access can pose, and perhaps build a better Web site as a result.

Understanding Different Mobile Devices
Unfortunately, the more you look around at the different types of mobile
devices, the more it seems like there’s no ready way to categorize them all or
no single approach to implement Web pages in their limited display space.

For example, you typically find mobile devices categorized by one or more of
the following characteristics:

27_9780470916599-ch18.indd 29327_9780470916599-ch18.indd 293 11/30/10 12:27 AM11/30/10 12:27 AM

294 Part V: The Future of (X)HTML

 ✓ Input device (touchscreen, stylus, keyboard, or touchpad)

 ✓ Operating system (Symbian, Windows Mobile, Apple iOS, Android)

 ✓ Processor and memory

 ✓ Screen size

 ✓ Internet access

 ✓ Connectivity (Bluetooth, USB)

 ✓ Other cool features (camera, video, ringtones, games)

This list could go on and on . . . you get the idea that there are almost as
many ways to profile mobile devices as there are mobile devices themselves.

 On the most basic level, the safest and easiest way to classify mobile devices
is by smartphone versus feature phone. A smartphone is usually characterized
by its computerlike features, such as an operating system integrated into the
phone, a more powerful processor and memory, the capability to install and
run custom applications, wireless access, color display, advanced input capa-
bilities, and higher costs (more expensive to buy and costlier to use, in fact).
The iPhone, shown in Figure 18-1, is one of the most popular smartphones.

Figure 18-1: Apple iPhone.

Feature phones usually incorporate less powerful processors and memory,
have a basic and proprietary operating system, offer limited application pos-
sibilities (if any), and, of course, cost less (feature phones often cost less

27_9780470916599-ch18.indd 29427_9780470916599-ch18.indd 294 11/30/10 12:27 AM11/30/10 12:27 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

295 Chapter 18: Mobile Web Design

than half of what smartphones do and, with more limited data handling capa-
bilities, often cost about half as much for monthly service as well). A typical
example of a feature phone is the Nokia phone shown in Figure 18-2.

Figure 18-2: Standard Nokia feature phone.

27_9780470916599-ch18.indd 29527_9780470916599-ch18.indd 295 11/30/10 12:27 AM11/30/10 12:27 AM

296 Part V: The Future of (X)HTML

 Here’s the bad news: Not only do these types of phones differ in features
and prices, they also display Web sites differently. Feature phones have
extremely limited CSS and JavaScript support, if they have any such support
at all. However, before you throw your hands up in the air (and wave them
like you just don’t care), we recommend learning more about mobile Web
site design in the following sections. Feature phones aren’t all bad, nor are
smartphones all good. For both types of devices, some Web site compro-
mises will prove necessary.

Optimizing Mobile Web Site Design
When you start thinking about how to design mobile version(s) of your Web
site, and produce the best possible results for visitors who employ mobile
devices to visit your pages, you need to ponder the unique challenges that
the mobile Web can pose for your site’s design and implementation.

 Considerations to keep in mind when you design sites for the mobile Web
include:

 ✓ Limited screen real estate: Mobile designs must fit on small screens (for
example, 320 x 240 pixels).

 ✓ Low bandwidth: Limit images and text to ensure that pages load quickly
even at slow connection speeds (2G data rates seldom exceed 500 Kbps;
even 3G rates under 600 Kbps are common).

 ✓ Interface limitations: Create links and other navigation options that are
easy to click with a (fat) finger, stylus, or other limited input options.

 ✓ Limited processing power and memory: Large files and scripts that
require fast processors don’t work well (or at all) on many mobile
devices.

 ✓ Distracted users: Mobile device users often are on the go or multitask-
ing, so aim for stark, simple designs with extremely easy navigation.

 ✓ Urgent need for information: Many people turn to the mobile Web
because they must, because they’re lost or late, or because they really
need to know who won the Super Bowl in 1987 to win a bet.

 ✓ Time and place: Mobile device users’ actions are likely affected by
where they are, the time of day, and even whether it’s raining or not. Be
sure to include location-specific information, such as maps, and con-
sider adding geographic location features, like those incorporated into
the new HTML5 specification (such as the geolocation API).

The Geolocation API Specification is available at www.w3.org/TR/
geolocation-API. You might also want to check out this nifty HTML 5
Geolocation Demo, too: http://maxheapsize.com/static/
html5geolocationdemo.html. Maxheap.com isn’t viewable using

27_9780470916599-ch18.indd 29627_9780470916599-ch18.indd 296 11/30/10 12:27 AM11/30/10 12:27 AM

297 Chapter 18: Mobile Web Design

Internet Explorer because it requires a GeoLocation-aware browser to work.
You’ll need to use FireFox3.1b3, or greater, or perhaps Safari or Chrome, to
view the Maxheap.com demo.

Designing for small screens
If every mobile phone had the same screen size, we might not have had to
write about mobile Web design for this book. While there are many other
considerations to think about when creating mobile Web sites or pages, lim-
ited display real estate is one of the most important to keep in mind.

 Creating a single design with a fixed width doesn’t work if you want to take
best advantage of real estate available on each screen. Also, remember that
many smartphones can be rotated, so the user may view your page in both
landscape and portrait views!

Optimizing for low bandwidth
Smaller screen size isn’t the only thing that limits how well you can dis-
play images and multimedia on a cellphone; limited bandwidth also figures
importantly when designing and building a Web site for mobile access. And
although a growing number of mobile users can take advantage of faster 3G
and 4G mobile networks, many mobile device users are still hampered by
connections best described as painfully slow.

The same challenges with limited bandwidth that throttled early Web design
and access for pioneering users in the early to mid-1990s now slow the
mobile Internet. It lags far behind high-speed DSL and cable modem connec-
tions from a desktop or notebook computer.

 While you design a mobile version of your site, the following tips will help your
site provide tolerable service for visitors with low-bandwidth connections:

 ✓ Be ruthless with images and multimedia files. Limit your mobile site
to a precious few images to help tell your story and add visual interest.
Keep things small and simple.

 ✓ Replace banners and button images with text links. These work on any
device and consume only minimal storage space and bandwidth.

 ✓ Be careful when including multimedia. For example, don’t put video or
audio files on the front page of a mobile site. Instead, link to multimedia
files so they’re optional for mobile browsers. Also, include warnings
about file size and the way the media displays on different devices.

 ✓ Keep the total size of your front page to 7K or less for low-end mobile
devices. Yes, you read that right, 7K — that’s one tiny image and a few
links, and no more.

27_9780470916599-ch18.indd 29727_9780470916599-ch18.indd 297 11/30/10 12:27 AM11/30/10 12:27 AM

298 Part V: The Future of (X)HTML

Navigating on mobile devices
Mobile visitors are most likely to interact with their devices by

 ✓ Touching the screen with a finger

 ✓ Tapping the screen with a stylus

 ✓ Entering information using buttons, a wheel, or a teeny-tiny keypad

 That means you need to

 ✓ Make links easy to see and click. If you design multiple versions of your
site, be sure to optimize for the input options on each device. If visitors
use a stylus, they can click links relatively close together, but if they use
a touchscreen, put enough space between links to make it easy to tap
them with a fat fingertip.

 ✓ Limit the total number of links, especially on the low-end version of
your site. Help people move through your site by leading them from
one short list of links to another until they reach the content that serves
them best.

 ✓ Organize link levels. Don’t include too many levels with your links, and
consider adding breadcrumbs to help users find their way back through
your site. Breadcrumbs are a list of links, usually at the top of a page,
that help users identify where they are in the structure of the site. The
links to each section and subsection are ahead of the current page in
the site’s structure, from the home page all the way down to the current
page (which is accessible through the browser’s address box).

 ✓ Use a navigation menu, not a navigation bar. Although most desktop
Web sites include a navigation bar that links to all main sections in a site
at the top of every page, that’s generally not the best use for real estate
on a small screen. Instead, consider including one link at the top of
every page with a name like Menu, and then link it to a navigation bar.

 Including a list of links to all the main pages of your site on every page
may not be worth the download time, but creating a small site map and
including a link to that page from every other page on the site provides
a similar option without lots of extra overhead. Use this strategy to
include a list of links at the bottom of each page, too, with a Menu link
up top that jumps visitors to the links at the bottom.

 ✓ Consider back and forward buttons. Back and forward buttons help
users move through many pages of content or images.

 ✓ Link from one site version to another. It’s always a good practice to
include a link on the front page of your mobile site to the desktop ver-
sion and vice versa. Visitors to your mobile site may already be familiar
with your desktop version and prefer to visit that full site, especially if
they are using an iPhone or Droid.

27_9780470916599-ch18.indd 29827_9780470916599-ch18.indd 298 11/30/10 12:27 AM11/30/10 12:27 AM

299 Chapter 18: Mobile Web Design

Designing for distracted surfers
When people visit a mobile site, they’re often doing something else at the
same time, and they’re often under pressure to find information quickly.

Here are a few quick tips to make your mobile site easier for distracted visi-
tors to use:

 ✓ Make key information, such as your address and phone number, easy to
find right away.

 ✓ Make all links big and easy to click.

 ✓ Use text and contrasting background colors so the text is easy to read,
even in low light (or on a display that’s hard to read in strong sunlight).

Surfing the Web on many mobile devices
To appreciate the challenges of the mobile Web, surf to your Web site on a
mobile phone. However, don’t stop at one phone, especially if you have an
iPhone or Android. The iPhone and Android may get all the headlines (and
a majority of the traffic on the mobile Web), but they’re not the only phones
likely to visit your site. Those same sites viewed on a BlackBerry or, worse, a
Razr, may be completely unreadable.

Although you can test your mobile site using online emulators, such as the
high-end testing site at DeviceAnywhere (www.deviceanywhere.com), the
best way is to hold a device in your hand so you can see how your site feels
and looks on that phone.

 Visit a mobile phone store and be really nice to the salespeople while you
test your sites on their phones. Better yet, compare notes with friends and
family. Ask people to visit your Web site on different phones and watch what
they do, how they find their way around (or where they get lost), and how
hard it is for them to get to the information they need when they interact
with your site.

Best Practices for Mobile Web Sites
In the following sections, we explore some best practices to help you name
your mobile Web site to make it easy for mobile device users to type your
site’s name. We also describe some common ways in which you may want to
make use of a mobile version of your Web site.

27_9780470916599-ch18.indd 29927_9780470916599-ch18.indd 299 11/30/10 12:27 AM11/30/10 12:27 AM

300 Part V: The Future of (X)HTML

Set up mobile Web addresses
So that everyone with a mobile phone can easily get to the URL of your
mobile site (by typing as little as possible), set up multiple mobile addresses
and direct them all to the mobile version of your site.

Until a clear winner appears in the mobile URL game, use all the most
common addresses to increase the odds that your visitors find you on their
first try.

The following are typical mobile URLs in common use on the mobile Web:

 ✓ m.yourdomain.com: Recommended for ease of typing

 ✓ wap.yourdomain.com: This is a common address for sites created
using the WML (Wireless Markup Language)

 ✓ yourdomain.com/mobile: Common alternative because of easy server
setup

 ✓ yourdomain.com/i: For versions built specifically for the iPhone

 ✓ yourdomain.mobi: Requires registering a .mobi version of your
domain name, which many sites don’t seem to bother with

Whatever you do, drop the www. — no one should ever have to type those
three letters and that dot again on the modern Web.

Create a virtual demo or showcase
Consider what’s most important to your audience. If you don’t have a physi-
cal location but want to use your mobile site to showcase your work, create a
portfolio that displays well on the small screen. Then, the next time you’re at
a party or business event, your mobile phone will be everything you (or your
sales and marketing staff) need to present an impromptu demo of your prod-
ucts or services anywhere, anytime.

Location, location, location
Mobile Web surfers can be anywhere, including in front of your restaurant,
office, or store, or worse, lost on the road trying to find you.

When you consider how to design a mobile version of your Web site, con-
sider not just how to make things smaller but also how to present the infor-
mation most likely to be useful to someone using a mobile device, wherever
he or she might be. And while you’re at it, make it quick, easy to find, and
easy to use, too.

27_9780470916599-ch18.indd 30027_9780470916599-ch18.indd 300 11/30/10 12:27 AM11/30/10 12:27 AM

301 Chapter 18: Mobile Web Design

 One of the most common uses of mobile phones is still the most obvious —
making phone calls. Be sure your phone number is easy to find on the first
screen of any mobile site, and include your street address and links to maps
for those who might be lost and trying to make their way to your location.

 Include a link to a Google map on your home page. This makes it easy to find
you. For best results, link to Google Maps for Mobile at www.google.com/
mobile/maps.

Both Yahoo! and Google let you prioritize searches for local matches on
their mobile sites. Take the time to optimize your mobile site and be sure to
include location-specific keywords: the names of the cities, states, or even
local neighborhoods that you serve.

Don’t make users type or click too much
Even on the best mobile devices, typing and clicking links can be a challenge.
Always make links big and easy to click for mobile visitors, and don’t over-
load any page with too many options.

The best approach is to lead users through a series of simple choices, limit-
ing options to no more than five to seven big links at any stage. Directing
visitors to increasingly specific sets of links is best until users can choose the
information they want or need.

 Avoid drop-down lists, or anything else that uses AJAX or JavaScript around
links. That’s because many mobile devices don’t support these Web technol-
ogies, therefore making these links impossible to use.

Some information, such as contact information, should never be more than
one click away. In nearly all cases, including your phone number on the main
page of your mobile site is good practice — after all, you know your visitor
has a phone handy!

Mobile Frameworks
After reading our various lists of mobile design considerations earlier in this
chapter, you may feel inclined to jump into your modified DeLorean and head
back to simpler times with Marty McFly. However, before you hit 88 mph and
activate the flux capacitor, you might want to check out some interesting new
approaches to Web and application development based on HTML, CSS, and
JavaScript. Just like Doc Brown in Back to the Future, the following frameworks
aren’t perfect, but they do provide a good indication of what the future is
likely to hold when it comes to mobile Web design and related technologies.

27_9780470916599-ch18.indd 30127_9780470916599-ch18.indd 301 11/30/10 12:27 AM11/30/10 12:27 AM

302 Part V: The Future of (X)HTML

Sencha Touch
www.sencha.com/products/touch

Sencha Touch is the First HTML5 Mobile App Framework that allows you to
develop Web apps that look and feel native on Apple iOS and Google Android
touchscreen devices.

Visit the Get Started with Sencha Touch page at http://dev.sencha.com/
deploy/touch/getting-started.html to find out more about using
Sencha Touch to develop Web apps.

To try some demos, as shown in Figure 18-3, visit www.sencha.com/
products/touch/demos.php.

Figure 18-3: Sencha Touch demo on an iPad.

jQTouch
www.jqtouch.com

jQTouch is a beta jQuery plugin for mobile Web development on the iPhone,
iPod Touch, and “other forward-thinking devices.”

27_9780470916599-ch18.indd 30227_9780470916599-ch18.indd 302 11/30/10 12:27 AM11/30/10 12:27 AM

303 Chapter 18: Mobile Web Design

Visit the Getting Started page at http://wiki.github.com/senchalabs/
jQTouch/gettingstarted to find out more about developing plugins for
mobile Web sites.

To view the jQTouch demo for the iPhone, shown in Figure 18-4, go to www.
jqtouch.com/preview/demos/main.

Figure 18-4: jQTouch demo on
a simulated iPhone.

Additional Resources
For additional information, we highly recommend checking out Mobile Web
Design For Dummies by Janine Warner and David LaFontaine. It covers all
the popular cellphone and smartphone platforms, and the tools needed for
mobile design, with particular emphasis on XHTML and CSS.

The W3C mobileOK Checker (shown in Figure 18-5) is a free service from the
World Wide Web Consortium that helps check the level of mobile-friendliness
in Web documents and, in particular, determine whether a Web document is
“mobile okay.” Visit the mobileOK Checker at http://validator.w3.org/
mobile.

27_9780470916599-ch18.indd 30327_9780470916599-ch18.indd 303 11/30/10 12:27 AM11/30/10 12:27 AM

304 Part V: The Future of (X)HTML

Figure 18-5: The W3C mobileOK Checker.

27_9780470916599-ch18.indd 30427_9780470916599-ch18.indd 304 11/30/10 12:27 AM11/30/10 12:27 AM

Chapter 19

Party On with HTML5
In This Chapter
▶ Understanding HTML5 and what it could mean for your Web site

▶ Making the Web more interoperable with HTML5

▶ Simplifying markup with HTML5

▶ Losing deprecated elements and attributes with HTML5

▶ Adding snazzy new input types with HTML5

▶ Watching HTML5 at work

Chances are good that you’ve heard of HTML5, the most widely hyped
markup development to hit the Web in a long, long time. Everybody

seems to have an opinion about it. Some folks tout HTML5 as a magic elixir
to relieve all the pains and annoyances from existing Web problems, while
others are more skeptical and want to reserve judgment until there’s more
substance upon which to base an evaluation. One thing’s for sure: HTML5
promises to give authors more flexibility and greater interoperability by
introducing enhancements to form controls, APIs, multimedia, structure, and
semantics. Before moving into those topics, we cover the basics first.

HTML5 is the latest iteration of the HyperText Markup Language (HTML)
from the World Wide Web Consortium. Go ahead, try saying that three times
quickly, and you will understand why it’s better known as the W3C. (The W3C
was established in October 1994 to lead the World Wide Web to its full poten-
tial by developing common protocols and services to promote its evolution
and ensure its interoperability. Essentially, the W3C is an international group
of experts that helps to set the rules the rest of us must follow to design Web
sites.)

The W3C developed HTML5 to address issues with previous versions (this
means HTML4 and XHTML — which we cover in this book) to simplify and
enhance authoring of Web pages. Another noteworthy aspect of HTML5 is
that it attempts to bridge the gap between the experience Web users obtain
from previous versions and the interactions they’d like to achieve, especially
considering the tools and techniques available to Web designers and devel-
opers to help users reach those goals. Today’s world is different from what

28_9780470916599-ch19.indd 30528_9780470916599-ch19.indd 305 11/30/10 12:27 AM11/30/10 12:27 AM

306 Part V: The Future of (X)HTML

it was when earlier HTML implementations and a host of other supporting
environments appeared. HTML5 seeks to catch up the markup and its sur-
rounding Web and browser environment with the dynamic, interactive, and
media-rich environment that users expect to find and use online.

HTML5 Highlights: Why It’s Important
To begin, let’s get something straight: HTML5 incorporates and continues to
use nearly all the markup associated with HTML4 and XHTML. Everything
in this book — for the most part — is as relevant to HTML5 as it is to older
versions. In fact, this observation applies even after HTML5 gets past its
draft and candidate recommendation stages, and achieves full-blown status
as an official W3C standard. And guess what: It’s nearly guaranteed that all
the elements and attributes deprecated in HTML4 and XHTML (documented
in Chapter 8) will not be part of HTML5. The HTML5 specification tells it
like this: “The majority of presentational features from previous versions of
HTML are no longer allowed.”

 Don’t hold your breath waiting for a finalized version of HTML5. Best guesses
as to when that might happen fall between 2020 and 2022, with a candidate
recommendation expected no sooner than 2012. Despite the long wait for a
finalized version, many aspects of the HTML5 draft specification (the most
recent draft posted August 27, 2010, at the W3C site) are already quite stable,
and developers and browser makers are adding HTML5 features to their
offerings. To look over the latest version of the HTML5 specification, visit
http://dev.w3.org/html5/spec/Overview.html. (The address is case
sensitive, so make certain you type Overview and not overview when enter-
ing the URL; otherwise, you’ll get a File Not Found error message.)

A short quote from Section 1.4 in the latest HTML5 specification is helpful
when it comes to understanding why HTML5 has proven itself necessary to
many Web designers and developers:

The WHATWG [the working group formed to pursue the development of
HTML5 when the W3C initially chose not to participate] was based on sev-
eral core principles, in particular that technologies need to be backwards
compatible, that specifications and implementations need to match even if
this means changing the specification rather than the implementations, and
that specifications need to be detailed enough that implementations can
achieve complete interoperability without reverse-engineering each other.

The original members of the WHATWG group — namely, Apple Computer,
Mozilla (the organization behind the Mozilla Web browser and Firefox),
and Opera (the company behind the terrific Opera Web browser) — have
been joined by representatives from companies like Google and Microsoft

28_9780470916599-ch19.indd 30628_9780470916599-ch19.indd 306 11/30/10 12:27 AM11/30/10 12:27 AM

307 Chapter 19: Party On with HTML5

in efforts to develop HTML5, under the renewed auspices of the W3C since
2007. HTML5 is chugging along and is already showing up in pages you can
visit. It will become more widespread, and will start making sense to brows-
ers that you and your site’s visitors are likely to use, no later than 2012 or
2013 at the outside. Heck, we even show you an HTML5 page on our compan-
ion Web site for this book!

What makes HTML5 attractive is that it seeks to eliminate any need for pro-
prietary Web technologies — such as Adobe Flash (discussed in the next
section) — by offering equivalent standards-based functionality that is free,
open, and designed to look and act the same inside all compliant Web brows-
ers. The technology areas that HTML5 seeks to address in particular include
animation, rich media (streaming video, music, live video, and so forth),
simplified and enhanced markup, forms and user interactions, and various
application hooks (APIs) for all kinds of things. The following section takes a
closer look at a specific item in this grab bag of topics.

HTML5 and Flash
On today’s Web, Adobe Flash is a major tool in the content developer’s arse-
nal, particularly when he or she wants to build something highly animated,
interactive, or visually complex. It’s true that the Adobe Flash player is
free to any Web user who wants to download a browser plugin for Internet
Explorer, Firefox, Safari, Chrome, or Opera, but it’s not available to any and
all browsers. Alas, the tools that developers use to create Flash content
are by no means free: They embody proprietary technology that belongs to
Adobe, and developers who want to exercise that technology must pay for
that privilege. Developers spend thousands or even tens of thousands of dol-
lars on Adobe technologies they use to build their Web sites.

To some extent, HTML5 seeks to break the Web out of what’s sometimes
called the “proprietary trap” that some Web technologies impose on content
development. A leading notion that drives HTML5 development, as the quote
from the specification in the preceding section shows, is a desire for multiple
implementations (from different builders, different vendors, and, presum-
ably, different owners) to work together without difficulty or restriction,
including a need to license proprietary tools or technologies.

What do we think is going to happen? We think some of the features for
which developers must turn to Flash and other proprietary technologies
will gradually appear in HTML5, but Flash won’t go away any time soon. It’s
hard to say exactly how things will turn out, but we guess that Flash will
stick around for some time, losing market share as HTML5 takes over basic
animation and interaction, but continuing on in other, more complicated Web
arenas, like online gaming (where users accept proprietary technologies).

28_9780470916599-ch19.indd 30728_9780470916599-ch19.indd 307 11/30/10 12:27 AM11/30/10 12:27 AM

308 Part V: The Future of (X)HTML

Here’s the kicker: Even if Flash does go away (and that’s a long shot), the
advancement of the Web doesn’t stop with HTML5. HTML5 is no perfect
solution. It’s sure to have its faults, even if we’re just guessing as to what
they might be right now. Just as with the versions that preceded it — which
means HTML4 and XHTML — there will be something new that we will all
debate in the future to take its place (HTML6 anyone?) . . . and that’s the way
it should be.

Simplified and Enhanced HTML5 Markup
One interesting development that’s underway in HTML5 is an attempt to sim-
plify and normalize the way markup is expressed. This means leaving some
old, gnarly roots behind (see the following section that explains how HTML’s
roots in Standard Generalized Markup Language, or SGML, are fading into the
background), and taking complex expressions and making them shorter and
easier to specify (as you see in the later section, “Simplified character encod-
ing”). Finally, there will be some interesting markup additions to HTML5, as
we describe in a series of tables in sections that deal with new markup and
input types on their way in, and old deprecated elements and attributes on
their way out.

The Adobe-Apple controversy heats up
Some vendors — most notably, Apple — have
taken a hard line regarding Adobe Flash and
won’t allow it onto their platforms, period.
Although the iPhone and iPad are themselves
no paragons of openness, Apple’s participa-
tion in the HTML5 initiative is meant to bring
interoperability and rich media to those devices
without requiring Apple to support (or use) Flash
technology. Apple’s exclusion of Flash from
its products has led to speculation and rumor
that HTML5 is “in” and Flash is “out.” Adobe,
as you can imagine, hasn’t responded warmly
to Apple’s exclusion of Flash, and the resulting
negative attention to the Flash product lead to a
media feud between Apple and Adobe. Adobe
plans to release a mobile device version of
Flash in late 2010 to prove that Flash is here to
stay.

The insults and finger pointing from Apple and
Adobe in flashy (pun intended) press confer-
ences and slickly worded public relations
memos don’t seem to presage an end to the
Adobe-Apple debacle anytime soon. Both
companies make relevant points, but whatever
eventually happens, we would like to point out
that such companies exist to make money sell-
ing proprietary products.

This situation leaves us lacking something we
desperately want: legitimately installed Flash on
an iPhone or iPad. Perhaps we can get some
help from the Feds. (Or maybe Adobe and Apple
can settle this in Judge Judy’s court or on a
reality TV show where the victor is granted The
Future of the Web award.) Okay, these are all
terrible ideas, but you get the point. It’s a dif-
ficult, tricky situation with no immediate con-
sumer gains in sight.

28_9780470916599-ch19.indd 30828_9780470916599-ch19.indd 308 11/30/10 12:27 AM11/30/10 12:27 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

309 Chapter 19: Party On with HTML5

Simplified doctype
The SGML document type, or doctype, declaration is usually the first text
element in any HTML document; it even precedes the opening <html> tag.
However, a doctype declaration itself is not HTML: Rather it’s an instruction
to the Web browser about the version of markup language in which a page
is written. In fact, the doctype statement harkens back to the SGML and its
document type definitions, or DTDs. SGML originated at IBM in the 1970s
with Charles Goldfarb and his crew. Today, SGML still serves as the inspira-
tion for and parent to both HTML and XML.

In this book, we use the following doctype declarations for the transitional
versions of HTML4 and XHTML, respectively (there are other declarations for
strict and frameset DTD versions as well, covered in Chapter 4):

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

The doctype declaration for HTML5 looks like this instead

<!DOCTYPE HTML>

Tell us: Which one is easier to remember and reproduce? Hint: It’s neither
the HTML 4.01 nor the XHTML 1.0 DTD references reproduced above! With its
SGML heritage no longer on display, HTML5 is more svelte and simple.

Simplified character encoding
When you create any HTML document, a browser (or other software) that
parses that document so it can show it to you (or do something else with it,
like add it to a search database, validate its syntax and structure, or what-
ever) must be able to interpret its contents. Without explicitly specifying a
character encoding for an HTML document, you take the risk that characters
in your content might be interpreted incorrectly.

Though this doesn’t happen terribly often, interpretation errors could cause
the text on your page to look mangled when it shows up in a browser (or
other software). Before you pooh-pooh this notion, stop to consider that
there are more than a dozen encodings for the ISO-Latin-1 character set tra-
ditionally used for Web pages (denoted ISO-8859-1 through ISO-8859-
15). Many other encodings are allowed besides those, too, including UTF-8,
UTF-16, and more. For the record, UTF-8 is recommended in the HTML5 draft
specification, and it’s designated as the default character set that authoring
tools should use automatically when creating new documents.

28_9780470916599-ch19.indd 30928_9780470916599-ch19.indd 309 11/30/10 12:27 AM11/30/10 12:27 AM

310 Part V: The Future of (X)HTML

In previous versions of HTML and XHTML, character-encoding statements
appear inside the document head and look like this (the value for the charset
attribute may change, but this statement remains exactly the same):

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />

In XML documents, character encoding appears in the xml element that kicks
off all such items and takes the form:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

In HTML5, this declaration uses the following short string, which draws on
XML’s simplicity while sticking with traditional HTML terminology:

<meta charset=”UTF-8”>

Here again, the value for the charset attribute may change (though it prob-
ably won’t differ very often), but the statement otherwise stays the same.

In HTML5, you can set a document’s character encoding in three ways. We
prefer the markup shown in the preceding HTML snippet, thanks to its brev-
ity and simplicity. For backward compatibility — a big deal for HTML5, by
the way — the old methods for HTML4 and XHTML still work. It’s possible
to insert a Unicode Byte Order Mark (BOM) at the start of a file to identify an
encoding. (This is something that an editing or content creation tool does
on a content creator’s behalf, unless that content creator decides to edit a
document file using a bit-level editor. It’s unlikely that you’ll encounter this
method.) Our advice: Use the short, revised meta markup shown above.

 The HTML5 specification requires all meta elements to appear within the
first 512 bytes of a document. This makes it a best practice to place character
encoding (and other meta) elements right after the <head> tag, as close to
the start of the document as they can get!

What’s New and Improved in HTML5
Whenever HTML goes into a new version (so far, we’ve seen the specification
go from major version numbers 2 to 4, and we are now getting to know 5),
there’s always new stuff involved. In the sections that follow, we lay out new
elements and attributes that are on the HTML5 drawing board. Most of these
are likely to survive into the official standard, but a handful or so may not get
that far. Only time, and the foibles of the W3C’s standards-making process,
will tell.

28_9780470916599-ch19.indd 31028_9780470916599-ch19.indd 310 11/30/10 12:27 AM11/30/10 12:27 AM

311 Chapter 19: Party On with HTML5

Elements new in HTML5
HTML5 adds some exciting new elements that did not exist in previous ver-
sions. Here are the highlights, with all 25 new elements listed in alphabetical
order along with brief descriptions:

 ✓ <article> — an independent piece of content, such as a blog entry or
news article

 ✓ <aside> — a piece of content that relates only slightly to the rest of a
page

 ✓ <audio> — provides a standard way to handle audio information for
multimedia content (this also ties into the new APIs that HTML5 makes
available, but Web browsers will also include a built-in default audio
interface as well)

 ✓ <canvas> — used to render bitmap graphics on the fly, for graphs,
games, or other dynamic elements (this also ties into the new APIs that
HTML5 makes available)

 ✓ <command> — a command that a user can invoke inside the page or
document

 ✓ <datalist> — use this with a new list attribute for the input ele-
ment to create lists of elements for pull-down menus in combo boxes

 ✓ <details> — additional information or controls available to users on
demand

 ✓ <embed> — used for plug-in content, to reference external code and
capabilities

 ✓ <figcaption> — provides a caption for a figure element in HTML5
(optional)

 ✓ <figure> — a standalone piece of flow content, which may be a static
graphic or a multimedia content element, referenced as a single unit
inside a document’s main flow

 ✓ <footer> — the concluding information for a section; can contain
author, copyright, or other information used to identify content and con-
trol its re-use

 ✓ <header> — a collection of introductory or navigational aids at the
start of any page

 ✓ <hgroup> — a header for a section, or a collection of pages

 ✓ <keygen> — a user accessible control for generating private, public key
pairs for security and encryption purposes

28_9780470916599-ch19.indd 31128_9780470916599-ch19.indd 311 11/30/10 12:27 AM11/30/10 12:27 AM

312 Part V: The Future of (X)HTML

 ✓ <mark> — a run of text in a document marked or highlighted for easy
reference, owing to its relevance to or citation in some other document

 ✓ <meter> — a visual indicator for some measurement (disk usage, for
example)

 ✓ <nav> — a section of a document that provides navigation aids and
information

 ✓ <output> — some type of output, perhaps from a script-based calcula-
tion or API-based program call

 ✓ <progress> — a visual meter for task completion (downloading a file,
performing some series of calculations or operations)

 ✓ <ruby>, <rt>, <rp> — markup designed to accommodate annotations
created in the Ruby (also known as “Ruby on Rails”) Web programming
language

 ✓ <section> — a generic document or application section, which may be
used with h1–h6 elements to delineate document structure

 ✓ <summary> — a summary, legend, or caption for details information

 ✓ <time> — a value for representing a date and/or a time

 ✓ <video> — provides a standard way to handle video information for
multimedia content (also ties into the new APIs that HTML5 makes avail-
able, and likewise browsers will offer a built-in, default video interface as
well)

 ✓ <wbr> — denotes a possible or potential line break point for text flow

To learn more about these new elements, visit this portion of the HTML5
specification: http://dev.w3.org/ HTML5/html4-differences/#new-
elements.

Attributes new in HTML5
A variety of new attributes are introduced for HTML5, some for improved
consistency with other, pre-existing HTML elements, and others to add new
(or extend existing) functionality. As in the previous section, we present
these attributes in alphabetical order in the following two sections.

New element-specific attributes for HTML5
For the following list, we follow the attribute name with the HTML5 element
(or elements) in parentheses to which that attribute applies. Here are the
new element-specific attributes for HTML5:

28_9780470916599-ch19.indd 31228_9780470916599-ch19.indd 312 11/30/10 12:27 AM11/30/10 12:27 AM

313 Chapter 19: Party On with HTML5

 ✓ async (script) — influences script loading and execution, allowing
these activities to proceed asynchronously (not in lockstep, and not at a
specific time)

 ✓ autocomplete (input) — supplies known or guessed input values in
data fields

 ✓ autofocus (input, select, textarea, button) — provides a declar-
ative way to focus a form control during page load (user can turn it off if
desired; does not apply to input when the hidden attribute is enabled)

 ✓ charset (meta) — widely supported outside the spec in many tools for
HTML4, a better way to specify character encoding for HTML5

 ✓ disabled (fieldset) — disables all descendant controls in a field
set when specified

 ✓ form (input, output, select, textarea, button, fieldset) —
allows controls to be associated with a form, so that elements can
appear anywhere on a page, not just inside a form element

 ✓ formaction (input, button) — identifies special handling for forms
(overrides action, attribute for the form element)

 ✓ formenctype (input, button) — identifies special handling for forms
(overrides enctype attribute for the form element)

 ✓ formmethod (input, button) — identifies special handling for forms
(overrides method attribute for the form element)

 ✓ formnovalidate (input, button) — identifies special handling for
forms (overrides novalidate attribute for the form element)

 ✓ formtarget (input, button) — identifies special handling for forms
(overrides target attribute for the form element)

 ✓ hreflang (area) — added for consistency to match a and link elements

 ✓ label (menu) — allows element to transform into a menu as in a typical
GUI, and to provide context menus working with the global context
menu attribute

 ✓ manifest (html) — points to an application cache manifest for use
with the API for offline Web applications

 ✓ max (input) — specifies a maximum value when input values fall
within some range

 ✓ media (a, area) — added for consistency with the link element

 ✓ min (input) — specifies a minimum value when input values fall
within some range

 ✓ multiple (input) — indicates that multiple input, comma-separated
input values are allowed

28_9780470916599-ch19.indd 31328_9780470916599-ch19.indd 313 11/30/10 12:27 AM11/30/10 12:27 AM

314 Part V: The Future of (X)HTML

 ✓ novalidate (input) — used to disable form validation upon submission

 ✓ pattern (input) — specifies some specific pattern for input values
(for example nnn-nnn-nnnn indicates the pattern for U.S. telephone num-
bers, where n is an integer from 0 to 9)

 ✓ ping (a, area) — specifies a space-separated list of URLs to ping when
a hyperlink is followed; allows browsers (or other agent programs) to
inform users which URLs will be pinged, and gives users a way to turn
ping off if desired

 ✓ placeholder (input, textarea) — presents a hint to aid users with
data entry

 ✓ rel (area) — added for consistency to match a and link elements

 ✓ required (input, textarea) — indicates that users must supply a
value to submit a form (does not apply to input if type is hidden,
image, or a button type such as submit)

 ✓ reversed (ol) — used to indicate that list order is descending (from
higher to lower numbered values)

 ✓ sandbox (iframe) — works with seamless and srcdoc attributes to
sandbox frame content and keep it from interacting with the external
runtime environment

 ✓ scoped (style) — allows scoped style sheets to be enabled, where
style rules within a scoped style element apply only to the local docu-
ment tree

 ✓ seamless (iframe) — works with sandbox and srcdoc attributes to
sandbox frame content and keep it from interacting with the external
runtime environment

 ✓ sizes (link) — used in conjunction with the icon relationship (set
using the rel attribute) to set the size of a referenced icon (supports
use of different icon sizes)

 ✓ srcdoc (iframe) — works with sandbox and seamless attributes to
sandbox frame content and keep it from interacting with the external
runtime environment

 ✓ start (ol) — no longer deprecated (not presentational)

 ✓ step (input) — specifies a minimum increment between pairs of
input values

 ✓ target (base, a, area) — added to base, and no longer deprecated for
a and area (helpful in conjunction with iframe element)

 ✓ type (menu) — allows element to transform into a menu as in a typical
GUI, and to provide context menus working with the global contextmenu
attribute

 ✓ value (li) — no longer deprecated (not presentational)

28_9780470916599-ch19.indd 31428_9780470916599-ch19.indd 314 11/30/10 12:27 AM11/30/10 12:27 AM

315 Chapter 19: Party On with HTML5

Global HTML5 Attributes
Not all of these global attributes are new (we mark new ones with an asterisk
in the following list), but we include every last one of them because they’re
important to know and because there aren’t that many of them:

 ✓ aria-* — collection attributes useful for instructing assistive technolo-
gies for readers with visual or audio impairments

 ✓ class — an identifier for element instances throughout an entire HTML
document

 ✓ contenteditable* — indicates that element content is editable, so
that users can change element contents and subsidiary markup therein

 ✓ contextmenu* — points to a context menu provided by the content
creator

 ✓ data-* — a collection of user defined attributes where the prefix lets
users create their own attributes to avoid clashes with future HTML ver-
sions (such attributes may not be used to extend user agent/browser
functionality: they’re non-standard)

 ✓ dir — establish text direction for element content display

 ✓ draggable* — works with HTML5’s new drag-and-drop element con-
tent manipulation API

 ✓ hidden* — indicates an element is not relevant to current page content
(change as needed to hide/display elements, or take them out of or put
them into play)

 ✓ id — an identifier for a single element instance somewhere in an HTML
document

 ✓ lang — identifies the language in which element content is expressed

 ✓ role* — collection attributes useful for instructing assistive technolo-
gies for readers with visual or audio impairments

 ✓ spellcheck* — lets content developers hint whether or not element
content may be checked for spelling

 ✓ style — use to add inline style rules within an HTML document body

 ✓ tabindex — indicates the order in which fields or other user-accessible
information in an HTML document may be accessed using the Tab key

 ✓ title — provides a text label for any HTML element instance

Deprecated elements gone from HTML5
In the following list, we indicate whether an element is purely presentational
and its job has been passed off to CSS; whether that element usage had a
negative impact on usability or accessibility of page content for users; or
whether it is being dropped because that markup was used only rarely.

28_9780470916599-ch19.indd 31528_9780470916599-ch19.indd 315 11/30/10 12:27 AM11/30/10 12:27 AM

316 Part V: The Future of (X)HTML

The following elements have been dropped from HTML5. Here again, we pres-
ent these elements in alphabetical order:

 ✓ acronym (rarely used) — created confusion with the abbr (abbrevia-
tion) element; authors should use only the abbr element going forward

 ✓ applet (rarely used) — obsolete, the generic object element replaces
this Java-specific reference

 ✓ basefont (presentational) — establish base document font; use CSS
font-family rules instead

 ✓ big (presentational) — establish a larger font size in a document, use
CSS font-size rules instead

 ✓ center (presentational) — center content in a document, use CSS
text-align rules instead

 ✓ dir (rarely used) — creates directory lists, use unordered lists (ul)
instead

 ✓ font (presentational) — sets running or in-line document fonts, use CSS
font-family rules instead

 ✓ frame (negative usage) — breaks up the browser display area into sub-
areas called frames, no longer used (or recommended)

 ✓ frameset (negative usage) — manages the relationship between
specific URLs and frame areas for frame display, no longer used (or
recommended)

 ✓ isindex (rarely used) — obsolete, general form input mechanisms pro-
vide a more capable and general purpose replacement

 ✓ noframes (negative usage) — provides display instructions for brows-
ers that cannot render frames, no longer used (or recommended; does
not work with XML anyway)

 ✓ s (presentational) — demarks strikethrough text, use CSS text-
decoration rules instead

 ✓ strike (presentational) — demarks strikethrough text, use CSS text-
decoration rules instead

 ✓ tt (presentational) — demarks monospace text as from a teletype
machine, use CSS font-family rules instead and select a monospace font

 ✓ u (presentational) — demarks underlined text, use CSS text-decoration
rules instead

Absent and removed HTML5 attributes
The attributes described in Table 19-1 are no longer present in HTML5
because they’ve been disallowed because of disuse or a negative impact on
the user experience.

28_9780470916599-ch19.indd 31628_9780470916599-ch19.indd 316 11/30/10 12:27 AM11/30/10 12:27 AM

317 Chapter 19: Party On with HTML5

Table 19-1 Disallowed HTML5 Attributes

Attribute Parent Element

rev, charset link, a

shape, cords a

longdesc img, iframe

target link

nohref area

profile head

version html

name img (use id instead)

scheme meta

archive, classid, codebase,
codetype, declare, standby

object

valuetype, type param

axis, abbr td, th

scope td

The attributes described in Table 19-2 are deprecated and removed from
HTML5 primarily because they addressed presentational functions now del-
egated to CSS.

Table 19-2 Deprecated HTML5 Attributes

Attribute Parent HTML Element

Align caption, iframe, img, input, object, legend,
table, hr, div, h1, h2, h3, h4, h5, h6, p, col,
colgroup, tbody, td, tfoot, th, thead, tr

alink, link, text,
and vlink

body

background body

bgcolor table, tr, td, th, body

border table, object

cellpadding,
cellspacing

table

char, charoff col, colgroup, tbody, td, tfoot, th, thead, tr

clear br

(continued)

28_9780470916599-ch19.indd 31728_9780470916599-ch19.indd 317 11/30/10 12:27 AM11/30/10 12:27 AM

318 Part V: The Future of (X)HTML

Table 19-2 (continued)

Attribute Parent HTML Element

compact dl, menu, ol, ul

frame table

frameborder iframe

height td, th

hspace, vspace img, object

marginheight iframe

noshade hr

nowrap td, th

rules table

scrolling iframe

size hr

type li, ol, ul

valign col, colgroup, tbody, td, tfoot, th, thead, tr

width hr, table, td, th, col, colgroup, pre

 Find a complete list of disallowed (22 total) and presentational (also no
longer supported, 29 total) attributes no longer in the HTML5 picture in the
HTML5 Differences from HTML4 document’s “Absent Attributes” section at
www.w3.org/TR/HTML5-diff/#absent-attributes.

New Input Types in HTML5
The impetus for these new input types is to permit user agents (Web brows-
ers as far as most of us are concerned, though other programs can interpret
and render or analyze HTML markup) to solicit input and provide a user
interface inside Web pages. This is how content designers can gain easy
access to standard capabilities for ready re-use, such as a calendar-oriented
date picker or integration with an address book to access name, street
address, e-mail address, phone numbers, and so forth. These Application
Program Interfaces (APIs for short) can interact with related systems or ser-
vices, obtain input, and submit data in a carefully defined format to a Web
server. This approach gives users a better experience because their input
can be checked and validated before sending it on to the server. Generally,
this also means faster handling because pre-checked input requires less pro-
cessing on the server side and less time devoted to waiting for feedback from
the server.

28_9780470916599-ch19.indd 31828_9780470916599-ch19.indd 318 11/30/10 12:27 AM11/30/10 12:27 AM

319 Chapter 19: Party On with HTML5

These new input types differ from various new HTML5 elements mentioned
earlier in this chapter because they apply only to the input element (they
aren’t independent markup elements). These input types identify specific
kinds of input data and, generally, play the same role for HTML5 input data
that data types play for variables in conventional programming languages
(they tell you what kind of data they can represent). Table 19-3 spells out
these new options.

Table 19-3 HTML5 Input Types

Keyword State Control Description

color Color A color well An sRGB color with 8-bit red,
green, and blue components

date Date A date control A date (year, month, day) with
no time zone

datetime Date and
Time

A date and
time control

A date and time (year, month,
day, hour, minute, second,
fraction of a second) with the
time zone set to UTC

datetime-
local

Local Date
and Time

A date and
time control

A date and time (year, month,
day, hour, minute, second,
fraction of a second) with no
time zone

email E-mail A text field An e-mail address or list of
e-mail addresses

month Month A month
control

A date consisting of a year and
a month with no time zone

number Number A text field or
spinner control

A numerical value

range Range A slider con-
trol or similar

A numerical value, with the
extra semantic that the exact
value is not important

search Search Search field Text with no line breaks

tel Telephone A text field Text with no line breaks

time Time A time control A time (hour, minute, seconds,
fractional seconds) with no
time zone

url URL A text field An absolute IRI

week Week A week
control

Date consisting of a week-
year number and a week
number with no time zone

28_9780470916599-ch19.indd 31928_9780470916599-ch19.indd 319 11/30/10 12:27 AM11/30/10 12:27 AM

320 Part V: The Future of (X)HTML

HTML5 Web APIs
An API defines rules for communication and interaction with other programs
from inside a specific program. For most people, the Web APIs of greatest
import for HTML5 are those that are called from inside HTML documents, to
invoke special functionality for things like playing audio, playing video, and
interacting with other applications, and that help to add to the Web browser
user interface (dragging and dropping objects in Web pages, for example).

Here’s a list of APIs that HTML5 incorporates with the intent of providing
“help in creating Web applications” (this quote comes directly from the
“APIs” section in the “W3C HTML5 Differences from HTML4” document cited
two sections earlier):

 ✓ Video and audio playback API, for use with the new video and audio
elements

 ✓ Access to offline Web applications through a special API

 ✓ An API designed for Web applications to register themselves to receive
certain protocols and media types

 ✓ An API to permit page visitors to edit content and markup in concert
with the new global contenteditable attribute.

 ✓ A drag-and-drop API used with the draggable attribute to permit users
to drag and drop items onto Web pages to provide input

 ✓ An API that exposes browser history data and that permits pages to add
to that data to prevent breaking the Back button.

Mostly, these APIs are where the significant action is for HTML5 (think about
the Adobe Flash controversy we covered earlier in this chapter) and where
change is nearly inevitable between the draft version and whatever more
final form(s) HTML5 takes. APIs are the keys to user interaction and dynamic
page behavior, and they will figure heavily into future uses for (and applica-
tions of) the Web and the Internet, especially in an era when many people are
coming to believe that the Web and the Internet are more interchangeable
than otherwise.

Limits to HTML5 Access and Use
Most Web browsers support HTML5 features in some form or fashion, with
varying degrees of support and enthusiasm. Currently, Apple Safari and
Google Chrome appear to be leading the way, followed by Mozilla Firefox,
and then Opera, with Microsoft Internet Explorer dead last among the Top 5.
This is entirely understandable, because not all these companies can release
products overnight.

28_9780470916599-ch19.indd 32028_9780470916599-ch19.indd 320 11/30/10 12:27 AM11/30/10 12:27 AM

321 Chapter 19: Party On with HTML5

To us, what’s absolutely fascinating is that in the preceding list, the most
popular browsers — namely, Mozilla Firefox and Internet Explorer — do
not support as many HTML5 features as do their less popular, less widely
adopted competitors. Although HTML5 is meant to degrade nicely (this is
Web-speak for “keeps working even in the face of missing markup elements
and attributes”), it’s vexing for Web designers and developers to figure out
which features work in what browsers.

Likewise, it’s annoying for Web site visitors to miss out on cool HTML5 fea-
tures because of the browser they choose to employ. For instance, Internet
Explorer 8 does not recognize the canvas element, and these two don’t
play together at all right now. Most seasoned Web observers believe that
this somewhat fragmentary state of affairs is only transitory and that when
Internet Explorer 9 is released, it will address this and other HTML5-related
shortcomings. The same is no doubt also true for Firefox.

 In the short term, we recommend trying out HTML5 Shiv, a JavaScript script
you can include on your HTML5 Web pages that helps browsers (such as
Internet Explorer) work properly with HTML5. Our special thanks to Remy
Sharp for creating this script, and for making it available to the world through
the Google Code project. Download HTML5 Shiv from http://HTML5shiv.
googlecode.com/svn/trunk/html5.js. (The address is case sensitive,
so make certain you type in the URL exactly as presented or you’ll receive an
error code.)

The HTML5 Shiv page is at http://code.google.com/p/html5shiv,
where you need to copy and paste a three-line script from that page to a
target Web page as follows:

<!--[if lt IE 9]>
<script src=”http://html5shiv.googlecode.com/svn/trunk/html5.js”></script>
<![endif]-->

To extend our discussion of HTML5 browser support, one of the most limiting
and confusing aspects of HTML5 is the purported date for a finalized specifica-
tion (in W3C terms this is a “recommended specification”). Everyone wants to
know whether HTML5 is ready or not. However, there’s widespread disagree-
ment on this topic within the industry. The existence of Web sites like those
shown in Figure 19-1 perfectly illustrates the degree of madness and mayhem
that surrounds HTML5’s fitness of purpose and suitability for use.

Here’s how nutty things are when it comes to timing HTML5. On one hand,
Web software developers and designers agree that all the important features
of and functions in HTML5 will be supported by 2012. On the other hand, the
W3C (which owns and controls the HTML5 standard) estimates the delivery
date for an HTML5 recommendation — that is, a final, finished, and official
specification — at 2022. This looks like a complete disconnect — or perhaps
the opening salvoes in a bargaining round between hostile and suspicious
parties purportedly seeking agreement — but it’s no joke!

28_9780470916599-ch19.indd 32128_9780470916599-ch19.indd 321 11/30/10 12:27 AM11/30/10 12:27 AM

322 Part V: The Future of (X)HTML

Figure 19-1: Two different — and diametrically opposed — views on HTML5.

By our estimates, we will all be zipping around on hover boards by the next
decade. We suspect that in the delivery of HTML5, as in reaching a difficult
bargain, the actual date will fall somewhere between the 2012 date that
industry insiders predict and the 2022 date that the W3C is currently pushing
forward. Does that mean we must all wait for a recommended HTML5 speci-
fication from the W3C to start using HTML5? Heck, no: We will all probably
start using HTML5 on or before 2012, and the industry will move through
many other tools and technologies by the time 2022 rolls around.

Additional HTML5 Resources
Assuming you’d like to read more about HTML5, here are some nice resources
we’ve found helpful. If you’re still jonesing for more about HTML5, use your
favorite search engine to search for HTML5 reference, HTML5 tutorial, or HTML5
introduction, and you’ll soon be up to your ears in reading material.

We recommend the following resources for more about all things HTML5:

 ✓ A List Apart — A Preview of HTML5: http://www.alistapart.com/
articles/previewofhtml5

 ✓ eWeek — 20 Essential Things to Know about the HTML5 Web Language:
www.eweek.com/c/a/Application-Development/20-Essential-
Things-to-Know-About-the-HTML5-Web-Language-329684

 ✓ W3Schoools HTML5 Tutorial (includes handy and complete reference
guides, forms coverage, and lots, lots more): www.w3schools.com/
HTML5

28_9780470916599-ch19.indd 32228_9780470916599-ch19.indd 322 11/30/10 12:27 AM11/30/10 12:27 AM

323 Chapter 19: Party On with HTML5

Introducing HTML5
We’ve also put a couple of nice Web pages together for your examination on
the companion site for this book. Dig into and explore these two pages. You
can even supply their URLs to the W3C Markup Validation Service to see that
it recognizes HTML5, and that our pages pass the validation test (though you
will get a pro forma warning that the HTML5 Conformance Checker is still
experimental and “may be unreliable, or not perfectly up to date with the
latest development of some cutting-edge technologies”).

Find the basic layout page shown in Figure 19-2 at www.dummieshtml.com/
examples/ch19.

Figure 19-2: A simple sample HTML5 page with lots of new markup
elements on display.

For those in need of some more serious demonstration, check out the use of
the experimental RGraph HTML5 canvas graph library in the more complex
HTML5 page (see Figure 19-3) available online at www.dummieshtml.com/
examples/ch19/complete.html.

28_9780470916599-ch19.indd 32328_9780470916599-ch19.indd 323 11/30/10 12:27 AM11/30/10 12:27 AM

324 Part V: The Future of (X)HTML

Figure 19-3: A more complex HTML5 page uses the canvas element to
display a pie chart.

At the HTML5 gallery (http://html5gallery.com), you find pointers to
more than 600 HTML5-based Web sites. If you want to see more, you only
need to look. Enjoy!

28_9780470916599-ch19.indd 32428_9780470916599-ch19.indd 324 11/30/10 12:27 AM11/30/10 12:27 AM

Chapter 20

CSS3
In This Chapter
▶ Understanding what’s important about CSS3

▶ Using new CSS3 properties for Web fonts, transitions, borders, and shadows

▶ Turning CSS3 loose with transitions and animation

▶ Finding the edge of the road: Where CSS3 stops

CSS3 supports exciting new features that make some current styling
techniques almost laughable. From fonts and borders to transitions and

transforms, CSS3 is a wonderful collection of tools to make your Web pages
over into something chic and downright stylish. We can’t cover all these new
CSS introductions (at least not in this book) but we can — and do — highlight
some of the most interesting ones.

About the CSS3 “Standard”
Whereas both CSS1 and CSS2 were proposed, debated, and finally recom-
mended as big, monolithic standards for Cascading Style Sheets, CSS3 is a
collection of many individual modules. If you visit the CSS Level 3 (the formal
name for what we and others blithely call CSS3 instead) works-in-progress
page at the W3C Web site (www.w3.org/Style/CSS/current-work.
html), you can count 45 modules in varying stages of completion. In Table
20-1, we lay these modules out with brief descriptions and use two-letter
codes to describe their standardization status. CR stands for Candidate
Recommendation, meaning the module is nearing standardization; LC stands
for Last Call (for comments, prior to attaining CR status); N/A stands for
None, no date or status available; and WD stands for Working Draft (standard
and documentation still under discussion and development).

29_9780470916599-ch20.indd 32529_9780470916599-ch20.indd 325 11/30/10 12:27 AM11/30/10 12:27 AM

326 Part V: The Future of (X)HTML

Table 20-1 CSS Level 3 Modules, Descriptions,
 and Standards Status

Name Status Description

Template Layout WD Describes a new method for positioning elements
using constraints on their mutual alignment and
flexibility of motion, where a layout grid defines the
basic template

Aural Style
Sheets

N/A An audio module that includes properties to attach
background sounds to elements, sound effects to
state transitions (hover, onclick), and more

Backgrounds
and Borders

CR Describes background colors and images, and
border styles, including background image stretch,
images for borders, rounded corners, and shadows

Basic User
Interface

CR Features for styling interactive, dynamic Web page
aspects, including form element appearance to
denote state, plus cursors and colors for GUI use

Box Model WD Describes block-level content in normal flow,
where document elements are laid out as rect-
angular boxes in sequence or nested orders that
together comprise a horizontal or vertical (for
Chinese and Japanese) flow

Extended Box
Model

N/A Provides extra control over positioning of floats and
box sizing

Marquee CR Contains properties to control speed and direction
of a marquee area, a scrolling mechanism that
moves text through a region with no user interven-
tion involved; used mostly on mobile devices

Cascading and
Inheritance

WD Describes how values are assigned to properties,
where cascading describes how multiple style
sheets are combined, and inheritance involves
parent value assignments or initial value settings

Color LC Specifies color-related CSS controls, including
transparency and notations for the color
value-type

Fonts WD Properties to select and adjust fonts, including
emboss and outline effects, kerning, smoothing,
and anti-aliasing

Generated
Content for
Paged Media

WD Advanced printing properties that go beyond the
Paged Media module, including creating footnotes,
cross-references, and generation of running head-
ers from section titles

29_9780470916599-ch20.indd 32629_9780470916599-ch20.indd 326 11/30/10 12:27 AM11/30/10 12:27 AM

327 Chapter 20: CSS3

Name Status Description

Generated
and Replaced
Content

WD Defines how to deposit content on a page before,
after, or instead of some element, where content
can be text or an image or some other external
object

Hyperlink
Presentation

WD Properties to control how hyperlinks are presented,
including controls on which hyperlinks are active,
where targets are shown when a user traverses a
link, and more

Introduction WD A summary of all CSS3 modules (can’t be finished
until all modules are complete so the W3C status
table remains the place to look for CSS3 module
and status info)

Line Layout WD Describes alignment of text and other boxes on a
line; expands vertical-align property for
CSS1/2 to support alignment of multiple script types,
including non-Roman alphabets and ideographs

Lists WD Properties for styling lists, especially for bullet
types, numbering systems, and use of images
(especially for bullets) within list displays

Math N/A Properties for styling mathematical formulae, based
on the “presentational” elements in the XML-based
MathML application

Multi-column
Layout

CR New properties to flow content into flexibly defined
columnar layouts

Namespaces N/A Explains how CSS selectors can be extended
to select elements based on XML-derived
namespaces that can distinguish among multiple
uses of the same element name from one another
across multiple style sheets

Object Model N/A The Document Object Model (DOM) specifies
functions used in programming libraries and Web
browsers to manipulate HTML, XML, and CSS docu-
ments; addresses functions for adding and deleting
rules and changing properties in CSS style sheets,
for APIs called the CSS Object Model or CSSOM

CSSOM View
Module

WD Tool APIs to enable authors to inspect and manipu-
late document view information, including position
data for element layout boxes, width of script view-
ports, and element scrolling

Paged Media WD Extends print control properties from CSS2 with
controls for running headers, footers, and page
numbers

(continued)

29_9780470916599-ch20.indd 32729_9780470916599-ch20.indd 327 11/30/10 12:27 AM11/30/10 12:27 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

328 Part V: The Future of (X)HTML

Table 20-1 (continued)

Name Status Description

Positioning N/A Covers properties for absolute, fixed, and relative
positioning of elements, to take them out of normal
document flow and place them elsewhere on a page

Presentation
Levels

WD Tools for stepping forward and backward through
multiple renderings of a document, especially useful
for slide presentations, outline views, and so forth

Reader Media
Type

WD (Dropped in March 2008) Media type used in Media
queries for screen, print, projection, and other device
types to guide display and presentation handling

Ruby CR Properties to manipulate Ruby positions, for small
annotations on top of or next to ideograms or words
in Chinese and Japanese (often used to hint pro-
nunciation or meaning for difficult ideograms)

Scoping N/A Controls to specify sub-trees within a document
tree where identifiable sets of style rules apply

Grid Positioning WD Elements with columns establish an implicit grid;
these CSS controls offer display of explicit grid
lines and define a coordinate system for positioning
floats, plus relative and absolute box placement

Speech WD Properties to specify how document gets rendered
by a speech synthesizer, including settings for
volume, voice, speed, pitch, cues, pauses, and
more (takes over speech elements from CSS2 Aural
module)

Style Attribute
Syntax

LC Rules for expressing CSS markup as part of HTML
and other markup language attributes (SVG)

Syntax WD Generic, forward-compatible grammar which all
levels of CSS must follow; value syntax restrictions
for specific properties are addressed in other
modules

Tables N/A Table layout controls, including rows, columns,
cells, captions, borders, and alignment (same as in
CSS2 but described in more detail in CSS3)

Text WD Text-related properties from CSS2 with new prop-
erties for dealing with text in different languages
and scripts with special emphasis on International
Layout; text properties are also covered in the Text
Layout and Line Grid modules as well.

29_9780470916599-ch20.indd 32829_9780470916599-ch20.indd 328 11/30/10 12:27 AM11/30/10 12:27 AM

329 Chapter 20: CSS3

Name Status Description

Text Layout N/A Properties to control text direction into horizontal or
vertical lines and the way in which they scan or flow

Line Grid N/A Describes text where symbols in a line are aligned
to an invisible grid, so all symbols line up vertically,
commonly used for text composed of ideographs as
in Japanese

Values and Units WD Describes common values and units associated
with CSS properties, along with describing how
specified values from a stylesheet get processed
into computed values or actual values at runtime

Web fonts LC Now merged with the Fonts module, describes how
to download fonts for use within a document (also
used within SVG, an XML-based stroke graphics
rendering markup application)

Behavioral
Extensions

WD Defines the binding property from the XML-based
XML Binding Language, or XBL, to CSS, for asso-
ciating elements in a document with scripts, event
handlers, and CSS

Flexible Box
Layout

WD Defines the box and inline-box keywords for
the CSS display property, which causes an ele-
ment to be displayed as a row or column of child
elements, with controls over order and space
distribution

Image Values WD Defines how properties can refer to images using
URLs; common to all properties that can take
images as a value

2D Transforms WD Defines properties to apply rotations, translations,
or other visual transformations to an element box
(same as in SVG)

3D
Transformations

WD Extends 2D transformations with 3D perspective
transforms (joint project with SVG working group)

Transitions WD Properties to animate transitions between pseudo-
classes, as when an element enters or leaves the
hover state, with values for delay, and value transi-
tions between pairs of values (old/new, on/off, and
so on)

Animations WD Specifies properties that change their values
during an animation, what sequence of values
they take, and how long they hold each value

29_9780470916599-ch20.indd 32929_9780470916599-ch20.indd 329 11/30/10 12:27 AM11/30/10 12:27 AM

330 Part V: The Future of (X)HTML

If you’re interested in more information about current work on CSS3 (or other
related efforts), please visit the W3C’s Current Work page at www.w3.org/
Style/CSS/current-work. There, you’ll find a multi-colored status page
(shown in Figure 20-1) that tells you where the various CSS modules are in
the standards progression. (The Current column refers to CSS2/2.1, and the
Upcoming column refers to CSS3.)

Figure 20-1: For standards, blue is best, and green is good!

CSS3 Highlights Hint at Riches Available
In the sections that follow, we explore some of the new CSS3 markup that
is increasingly finding support in Web browsers. Unlike HTML5, there’s no
big controversy about when these modules will achieve Recommended, or
“final and standard” status. But many of the Medium and Low Priority CSS
modules are in the Working Draft state — which means essentially “under
construction” — so it is likely to be at least three or four years before
the whole slate advances to at least Candidate Recommendation status.
Nevertheless, we think you’ll find a lot to like here, and you’ll want to start
learning more about these style rules and their capabilities.

29_9780470916599-ch20.indd 33029_9780470916599-ch20.indd 330 11/30/10 12:27 AM11/30/10 12:27 AM

331 Chapter 20: CSS3

Fonts
Back in the bad old days on the Web, we had to create custom graphics to
ensure that text on a Web page displayed exactly as we wished. Using CSS3,
that’s no longer the case. We think one of the most exciting additions to CSS3
comes from its new, improved font controls. The primary item of interest is
the @font-face pseudo-class.

The @font-face pseudo-class (a type of style rule that can be invoked for
an arbitrary part of a document, regardless of the element names, attributes,
or content it contains) permits Web page designers to link to fonts that can
be automatically activated when needed. This lets authors bypass the limita-
tions inherent to Web-safe fonts (those that look good in browser windows
and that are generally available on most systems) to support consistent and
predictable rendering of pages whether or not specific fonts are available on
some machine (in some browser).

@font-face lets you specify any font family you like, as long as you can
point to some legitimate (licensed) source for a usable TrueType (.ttf) or
OpenType (.otf) font file. The markup to invoke an external font will down-
load that font to the user’s machine if it is not already available there. The
CSS syntax for this pseudo-class looks like this:

@font-face {
 Font-family: CABNDWebBold;
 Src: url(http://site/fonts/ CABNDWebBold.otf);}
h1,h2,h3,h4,h5,h6 {font-family: CABNDWebBold, sans-serif;}

In most cases, you’ll download fonts to a directory of your choosing, rather
than reference them at some other site, so owners can be sure that users
adhere to font licensing agreements and requirements. If you browse to www.
dummieshtml.com/examples/ch20/font-face and choose View➪Source,
you’ll see that’s just what we did for the CSS3 Fonts page (but this only works
in Safari, Opera, and Chrome as we write this book). See Figure 20-2.

Technically, the @font-face property was originally part of CSS2, but
only Internet Explorer recognized this style rule (until recently, no other
browser supported it because Microsoft implemented it using a proprietary
font format that no one else uses). Now, thanks to the introduction of the
OpenType font files (.otf) to supplement Microsoft’s TrueType font files
(.ttf), @font-face has been resurrected for inclusion in CSS3 and also
enjoys nearly universal browser support in the latest Opera, Chrome, Safari,
and Firefox versions, as well as in Internet Explorer.

 For a nice summary and some useful compatibility information (though it’s
not completely up to date), check out the @font-face overview at http://
reference.sitepoint.com/css/at-fontface.

29_9780470916599-ch20.indd 33129_9780470916599-ch20.indd 331 11/30/10 12:27 AM11/30/10 12:27 AM

332 Part V: The Future of (X)HTML

Figure 20-2: Putting @font-face to work.

Borders
CSS3 adds considerable excitement to drawing borders around boxes with
some new border properties. In our humble opinions, the biggest boon in this
area comes from rounded corners, which until recently had to be elaborately
hand-crafted, using images that fit together like a puzzle (and with nearly
as many pieces and parts involved as the jigsaw puzzles we put together on
rainy days when we were young). Thankfully, round corners have come to
CSS3’s border-building tools, which should save us all a lot of time and effort.

You can do many great things with borders in CSS3, but the main property
related to rounded corners is border-radius. If you browse to www.
dummieshtml.com/examples/ch20/borders and choose View➪Source,
you’ll see the following markup included in the <style> section:

.newRoundCorners {
 -moz-border-radius:15px;
 border-radius: 15px;
 text-align:center;
 }

29_9780470916599-ch20.indd 33229_9780470916599-ch20.indd 332 11/30/10 12:27 AM11/30/10 12:27 AM

333 Chapter 20: CSS3

This markup not only includes the standard CSS3 border-radius property,
it also references a Mozilla/Firefox specific property named -moz-border-
radius. When you approach the bleeding edge of Web markup and technol-
ogy, you often find yourself learning how to invoke non-standard markup. For
experimental kits and APIs related to HTML5 and CSS3, names preceded by
dashes are a common way to invoke non-standard stuff within the markup.
That’s what’s going on here to make sure that things look the same in Firefox
as in Opera, Chrome, Safari, and IE. Visit our rounded corners example page
at www.dummieshtml.com/examples/ch20/borders (see Figure 20-3).

 We only show rounded corners at work in our example, but there are quite a
few different border properties; border-image is another property worth
checking out!

Figure 20-3: Rounded corners for element backgrounds are
surprisingly easy to specify.

 For a nice, example-loaded tutorial on working with all the various border-
radius options (including illustrations that show how to manipulate corner
curvature), visit www.css3.info/preview/rounded-border.

29_9780470916599-ch20.indd 33329_9780470916599-ch20.indd 333 11/30/10 12:27 AM11/30/10 12:27 AM

334 Part V: The Future of (X)HTML

Backgrounds
Lining up multiple elements so that their backgrounds align perfectly
and, likewise, mixing and matching multiple backgrounds can be difficult
to achieve. It might take many lines of markup to get this job done right,
especially working with CSS1 or CSS2. However, with CSS3, you can apply
multiple backgrounds to a single element easily, and then use it to provide
a backdrop for an element or a group of subsidiary elements. For example,
on the backgrounds example page at www.dummieshtml.com/examples/
ch20/backgrounds/index.html, we combine three background images
and apply them to one div.

The relevant CSS3 markup looks like this:

.customBackground {
 margin: 0px auto;
 width: 400px;
 height: 200px;
 border-radius: 10px;
 background:
 url(images/top.gif) top left repeat-x,
 url(images/bottom.gif) bottom left repeat-x,
 url(images/middle.gif) center repeat;
 }

The trick to this markup lies in the background specification, where we refer-
ence URLs for images for the three different backgrounds named top.gif,
bottom.gif, and middle.gif, respectively. We use the repeat-x attribute
to repeat the top and bottom horizontally. Using repeat means that middle.
gif is repeated both horizontally and vertically. Top.gif applies the dark to
medium blue shading at the top of the frame, bottom.gif does likewise from
the bottom, and middle.gif supplies the dots. See Figure 20-4; visit the page
at www.dummieshtml.com/examples/ch20/backgrounds/index.html.

 CSS3.info strikes again in this case with its coverage of multiple backgrounds
(particularly, check out its other background property coverage and excel-
lent CSS3 coverage in general) at www.css3.info/preview/multiple-
backgrounds.

Shadows
Shadows first appeared in CSS2, but they enjoyed only limited browser sup-
port and required various hacks to make them work properly. CSS3 lets
designers apply and manage shadows for borders, images, and text in more
or less the same way. Note that this is another case where some extensions
are needed for the box shadow (around the div element) and image shadow

29_9780470916599-ch20.indd 33429_9780470916599-ch20.indd 334 11/30/10 12:27 AM11/30/10 12:27 AM

335 Chapter 20: CSS3

(around our old book cover) to make sure things work and look the same for
various browsers. Here you encounter the -webkit name that attaches to
the compatibility kit for the Apple Safari Web browser for the first time, too.
The relevant source code looks like this:

.boxShadow{
 height: 25px;
 background-color:#f25e1e;
 border: 5px solid #feb089;
 -moz-box-shadow: 3px 3px 5px #888;
 -webkit-box-shadow: 3px 3px 5px #888;
}
.textShadow{
 text-shadow: 2px 2px 7px #111;
}
.imageShadow{
 -moz-box-shadow: 3px 3px 5px #888;
 -webkit-box-shadow: 3px 3px 5px #888;
}

Figure 20-4: Here we artfully repeat three backgrounds to
blend dots against two shaded backgrounds.

29_9780470916599-ch20.indd 33529_9780470916599-ch20.indd 335 11/30/10 12:28 AM11/30/10 12:28 AM

336 Part V: The Future of (X)HTML

The box-shadow attribute works with element boxes (the rectangular region
that surrounds any kind of HTML element as rendered) and with the bound-
ary around the edge of a graphic. The text-shadow attribute creates a
shadow around individual characters inside some kind of block element (a
paragraph in the following example). See Figure 20-5, and visit our CSS3 shad-
ows example at www.dummieshtml.com/examples/ch20/shadows.

Figure 20-5: Look for shadows around the outlined text box, bare text,
and an image.

Both of the shadow properties take three length values and a color as their
attributes, as shown in text-shadow: 2px 2px 7px #010101; in the pre-
ceding code snippet. The three lengths take the following meanings (and the
color defines the color for the shadow):

 ✓ Shadow horizontal offset, where a positive value falls to the right and a
negative value falls to the left

 ✓ Shadow vertical offset, where a positive value falls below and a negative
one falls above

 ✓ Blur radius, where if the value is zero (0), the shadow is sharp; the
higher the value gets the more blurred the shadow will be

29_9780470916599-ch20.indd 33629_9780470916599-ch20.indd 336 11/30/10 12:28 AM11/30/10 12:28 AM

337 Chapter 20: CSS3

 More kudos to CSS3.info for great tutorials on the box-shadow and text-
shadow properties and attributes at www.css3.info/preview/box-
shadow and www.css3.info/preview/text-shadow.

CSS3 Transitions and Animations
Transitions and animations provide nice visual effects to show changes in
state or behavior for the former, and to liven up images for the latter. CSS3
makes working with both of these capabilities much easier than in previous
versions. Where significant manual labor had been required to set up and run
transitions or animations using CSS1 or CSS2, CSS3 simplifies and streamlines
both of these considerably.

Transitions
Transitions within CSS offer an easy way to add extra polish to a Web site by
instructing CSS to change values smoothly from an initial starting value to a
final stopping value over a specified period of time. For example, when hov-
ering over an item like a link or button, earlier versions of CSS only enabled
switching colors, and the change always occurred instantly. Using CSS3, it’s
possible to transition from one color to another, showing the full range of
colors in between. Our example shows a pretty dramatic and eye-twitch-
inducing transition from blue to hot pink over a one-second period (but it only
works for us in Chrome and Safari as we write this chapter; Internet Explorer,
Opera, and Firefox show only an instant transition and square corners).

See this page in Figure 20-6 and at www.dummieshtml.com/examples/
ch20/transitions/index.html.

A quick peek at the relevant CSS3 markup in the source code shows the
following:

a.coolTransition{
 color:#FFF;
 background:#016ab0;
 padding:8px;
 -webkit-border-radius: 5px;
 -webkit-transition-property: color, background;
 -webkit-transition-duration: 1s, 1s;
 -webkit-transition-timing-function: linear, ease-in;
 }
a.coolTransition:hover{ color:#000;
 background: #f80e6a;}

29_9780470916599-ch20.indd 33729_9780470916599-ch20.indd 337 11/30/10 12:28 AM11/30/10 12:28 AM

338 Part V: The Future of (X)HTML

Figure 20-6: When it works the way it should, you see a noticeable
shift from blue to hot pink while you hover.

 For a terrific tutorial on transitions and animations (covered in the next
section), see the Web article entitled “Going Nuts with CSS Transitions” by
Natalie Downs, where she explains and illustrates both topics with great
discussion, explanation, and examples. Check it out at http://24ways.
org/2009/going-nuts-with-css-transitions.

Animations
Animations within CSS3 provide a cool new way to add interaction with ele-
ments on a page that previous versions of CSS didn’t support. Before CSS3,
Web designers could only fake this sort of movement by using an animated
gif or Adobe Flash, but no more. An easy example of CSS3 animation involves
moving or rotating a document division (div) when hovering over its normal
display area. In our example Web page, the cover art for the previous edi-
tion of this book spins clockwise as long as the cursor hovers on it. (Careful:
Don’t get too dizzy!). Check it out in Figure 20-7 and at www.dummieshtml.
com/examples/ch20/animations/index.html.

29_9780470916599-ch20.indd 33829_9780470916599-ch20.indd 338 11/30/10 12:28 AM11/30/10 12:28 AM

339 Chapter 20: CSS3

 Revisit Natalie Downs’s “Going Nuts with CSS Transitions,” where you’ll find
her “Throwing Polaroids at a Table” animation especially interesting and
informative (don’t forget to hover on as many photos as you can). Visit it
directly at http://media.24ways.org/2009/14/3/index.html.

Figure 20-7: Hover on the cover and watch it spin!

Transform Your Content
Transforms allow elements that CSS renders to move around a page in either
two- or three-dimensional space. Previous CSS versions couldn’t support this
kind of interaction at all, so transforms represent an exciting and interesting
new feature in CSS3. In the following example, we transform a book that was
left out in the library to return it back to its shelf (if only we could do this for
our real books, too!). See Figure 20-8, and visit the page at www.dummieshtml.
com/examples/ch20/transforms/index.html.

 Visit Rich Bradshaw’s interesting and profusely illustrated tutorial entitled
“Using CSS3 Transitions, Transforms, and Animation” to get another look at
CSS3’s new dynamic side and capabilities (he even checks out your browser
as you come to the site and tells you what features will and won’t work for
you inside its window). Be sure to check out the many cool examples at
http://css3.bradshawenterprises.com.

29_9780470916599-ch20.indd 33929_9780470916599-ch20.indd 339 11/30/10 12:28 AM11/30/10 12:28 AM

340 Part V: The Future of (X)HTML

Figure 20-8: Hover on the book cover image to return it to its shelf.

CSS3 Limitations
Many of CSS3’s new features are great and have been a long time coming.
However, as with any new and relatively untried technology, even with all its
wonderful new capabilities, we recommend taking a cautious approach to
deployment and use. Because CSS3 degrades nicely, it’s not going to ruin an
entire page layout, but not all browsers support all of CSS3’s new features —
especially the really cool ones like transforms, animations, and transitions.

For those browsers that do support some of these snazzy CSS3 features,
there is far too often no single method or markup approach that applies to all
browsers. This leads conscientious developers into creating multiple declara-
tions just to make a shadow, transition, or whatever display correctly in each
browser. This adds extra lines of code to your work, with at least two nega-
tive effects: more work for you to keep up with browser specifics, and more
waiting for users while they download larger files to look at your pages.

 As far as the @font-face pseudo-class is concerned, specifying a font face
for your page displays is pretty neat. Nevertheless, be aware that there can
be questions about the legality of including fonts that belong to others on
your pages. First, be sure to check license terms and conditions when you

29_9780470916599-ch20.indd 34029_9780470916599-ch20.indd 340 11/30/10 12:28 AM11/30/10 12:28 AM

341 Chapter 20: CSS3

download any .ttf or .otf files you wish to use. Second, check for multiple
sources of permission to avoid unwanted and illegal propagation of stolen or
cracked fonts. On the plus side, OpenType fonts are a step in the right direc-
tion and shouldn’t be subject to legal action or difficulty. On the minus side,
the potential for abuse of TrueType fonts is very real: Although it may be fun
and easy to take and embed fonts we like, their creators should be recog-
nized and fairly compensated where that’s called for. Please don’t steal fonts,
either knowingly or by accident!

 Finally, just because you can add a shadow, a border, and a border radius
(for rounded corners), then choose a fancy font and layer multiple back-
grounds behind the content in a document section or division, and then
transform the entire element to dance around the screen doesn’t mean you
should. As with Photoshop, Flash, or any other Web tool, CSS3 can be mis-
used, overused, and even abused if you don’t keep communication as your
primary goal, with all the cool stuff purely in a supporting role.

Finding More on CSS3
Many great resources are available online where you can get more infor-
mation about CSS3, starting with the W3C’s own CSS3 Road Map at www.
w3.org/TR/css3-roadmap.

Don’t forget the CSS3 specifications and other materials available at the W3C,
too (we referenced those earlier in this chapter, but you can find most of
what you’ll need through the preceding Road Map link as well).

Two of our other favorite CSS3 sites are CSS3.info (www.css3.info) and
CSS3.com (www.css3.com), both of which include tutorials, reference mate-
rials, rafts of examples, and other good stuff that can help you learn the
details necessary to use CSS3 on your Web site. When you get to know CSS3,
you can’t help but want to put its cool capabilities to work.

29_9780470916599-ch20.indd 34129_9780470916599-ch20.indd 341 11/30/10 12:28 AM11/30/10 12:28 AM

342 Part V: The Future of (X)HTML

29_9780470916599-ch20.indd 34229_9780470916599-ch20.indd 342 11/30/10 12:28 AM11/30/10 12:28 AM

Part VI
The Part of Tens

30_9780470916599-pp06.indd 34330_9780470916599-pp06.indd 343 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

In this part . . .

Here, we point you toward some undeniably cool
HTML tools, cover top do’s and don’ts for HTML

markup, and help you catch potential bugs and errors in
your Web pages. We also bring some killer HTML, XHTML,
and CSS specification and resource sites to your attention.
Enjoy!

30_9780470916599-pp06.indd 34430_9780470916599-pp06.indd 344 11/30/10 12:28 AM11/30/10 12:28 AM

Chapter 21

Ten HTML Do’s and Don’ts
In This Chapter
▶ Concentrating on content

▶ Going easy on the graphics, bells, whistles, and roaring dinosaurs

▶ Creating well-formulated HTML and then testing, testing, testing

▶ Keeping it interesting after the building is ovah!

By themselves, HTML and XHTML are neither particularly complex nor
overwhelmingly difficult. HTML ain’t rocket science, as some high-tech

wags (including a few rocket scientists) have put it. Nevertheless, important
do’s and don’ts can make or break the Web pages you build with HTML,
XHTML, and CSS. Consider these humble admonishments as guidelines for
making the most of your markup without losing touch with your users (or
watching your page blow up on its launch pad).

If points we make throughout this book seem to crop up here, too —
especially regarding proper and improper use of (X)HTML — it’s no acci-
dent. Heed ye well the prescriptions and avoid ye the maledictions. But hey,
they’re your pages. You can do what you want. Your users will decide the
ultimate outcome. (We’d never say, “We told you so.”)

Don’t Lose Sight of Your Content
Any Web site lives or dies by its content. That a site is meaningful, that it
delivers information directly, easily, and efficiently, and that a user can rea-
sonably expect to find something new and interesting there with each new
visit — all are pluses. But all those things (and more) rest on solid, useful
content that gives visitors a reason to come (and return) to your site.

So we return to the crucial question of payload: page content. Why? Well, as
Darrell Royal (legendary football coach of the University of Texas Longhorns
in the ’60s and ’70s) is rumored to have said to his players, “Dance with who
brung ya.” In normal English (as opposed to Texan), this means that you
should stick with the people who’ve supported you all along, and give your
loyalty to those who’ve given it to you.

31_9780470916599-ch21.indd 34531_9780470916599-ch21.indd 345 11/30/10 12:28 AM11/30/10 12:28 AM

346 Part VI: The Part of Tens

We’re not sure what this means for football, but for Web pages it means keep-
ing faith with your users and keeping content paramount. If you don’t have
strong, solid, informative content, users quickly get that empty feeling that
hits when Web pages are content-free. When that happens, they’ll be off to
richer hunting grounds on the Web, looking for content wherever it can be
found.

 To satisfy user hunger, put your most important content on your site’s major
pages. Save the frills and supplementary materials for secondary pages. The
short statement of this principle for any kind of markup is “Tags are impor-
tant, but what’s between the tags — the content — is what really counts.”
Chapter 3 covers making your content the best it can be.

Do Structure Your Documents and Your Site
For users, a clear road map of your content is as important for a single home
page as it is for an online encyclopedia. When longer or more complex docu-
ments grow into a full-fledged Web site, a road map becomes more important
still. This map ideally takes the form of (you guessed it) a flow chart of page
organization and links. If you like pictures with a purpose, the chart could
appear in graphic form in an explicitly labeled site map.

We’re strong advocates of top-down page design: Don’t start writing content
or placing tags until you understand what you want to say and how you
want to organize your material. Start building your (X)HTML document or
documents using paper and pencil (or your modeling tool of choice). Sketch
out relationships within the content and among your pages. Know what and
where you’re building before rolling out the heavy equipment.

 Good content flows from good organization. It helps you stay on track during
page design, testing, delivery, and maintenance. Organization helps users
find their way through your site. Need we say more? Well, yes: Don’t forget
that organization changes over time. Revisit and critique your organization
and structure on a regular basis — and don’t be afraid to change either one
to keep up with changes in your Web site’s content or focus.

Do Make the Most from the Least
Markup, scripting, and style sheets make much possible, but not all possibili-
ties deserve implementation — Web sites can’t live by snazzy graphics, spe-
cial effects, and blinking marquees alone. Let your design and content drive
the markup, the graphics, and interaction. With good design and content,
your site will do its job without over-dazzling (or confusing) visitors.

31_9780470916599-ch21.indd 34631_9780470916599-ch21.indd 346 11/30/10 12:28 AM11/30/10 12:28 AM

347 Chapter 21: Ten HTML Do’s and Don’ts

More is not always better, especially when it comes to Web pages. Try to
design and build your pages using minimal ornaments and simple layouts.
Don’t overload pages with graphics or cram in as many levels of headings
as you can fit. Instead, do everything you can to make sure your content is
easy to read and follow. Keep distractions and departures to a minimum, and
make sure any hyperlinks you include add real value to your site.

 Gratuitous links to useless information are nobody’s friend; if you’re tempted
to link to a Webcam that shows a dripping faucet — resist, resist, resist!

 Structure and images exist to highlight content. The more bells, whistles, and
dinosaur yowls dominate a page, the more they distract visitors from content.
Use structure and graphics sparingly, wisely, and carefully. Anything more
impedes content delivery. Go easy on animations, links, and layout tags, or
risk having your message (even your page) devoured by a hungry T. Rex.

Do Build Attractive Pages
When users visit Web pages with a consistent framework that focuses on
content, they’re likely to feel welcome. The important thing is to supplement
content with graphics and links — don’t overwhelm users with a surfeit of
pictures and links. Making Web pages pretty and easy to navigate only adds
to a site’s basic appeal and makes your cybercampers even happier.

 If you need inspiration, cruise the Web and look for layouts and graphics that
work for you. If you take the time to analyze what you like, you can work from
other people’s design principles without having to steal details from their lay-
outs or looks (which isn’t a good idea anyway).

When designing Web documents, start with a basic, standard page layout.
Pick a small, interesting set of graphical symbols or icons and adopt a consis-
tent navigation style. Use graphics sparingly (yes, you’ve heard this before);
make them as small as possible — limit size, number of colors, shading, and
so on, while retaining visual appeal. After you build simple, consistent naviga-
tion tools, label them clearly and use them everywhere. Your pages can be
both appealing and informative if you invest enough time and effort.

Don’t Lose Track of Those Tags
If you start with solid markup and good content — and then plow through
what you’ve built to make sure everything works the way it should (and com-
municates what it ought) — you’re on your way to a great Web site. But after
construction is over, testing begins. And only when testing produces positive
results should you open your virtual doors to the public.

31_9780470916599-ch21.indd 34731_9780470916599-ch21.indd 347 11/30/10 12:28 AM11/30/10 12:28 AM

348 Part VI: The Part of Tens

Although you’re building documents, it’s easy to forget to use closing tags,
even when they’re required (for example, the that closes the opening
anchor tag <a>). When you’re testing Web pages, some browsers can com-
pensate for such errors, leaving you with a false sense of security.

 The Web is no place to depend on the kindness of strangers. Scrutinize your
tags to head off possible problems from browsers that might not be quite
so understanding (or lax, as the case may be). Validation (using http://
validator.w3.org) is always a good idea, too!

As for claims that some HTML authoring tool vendors make (“You don’t have
to know any HTML!”), all we can say is, “Uh-huh, suuurre. . . .” HTML is a big
part of what makes Web pages work; if you understand it, you can trouble-
shoot with minimal fuss. Also, only you can ensure that your pages’ inner
workings are correct and complete, whether you build them yourself or a
program builds them for you.

We could go on and on about this, but we’ll exercise some mercy and confine
our remarks to the most pertinent items:

 ✓ Keep track of tags yourself while you write or edit HTML by hand. If
you open a tag — be it an anchor, a text area, or whatever — create the
closing tag for it right then and there, even if you have content to add.
Most HTML editors do this for you.

 ✓ Use a syntax checker to validate your work during the testing process.
Syntax checkers are automatic tools that find missing tags or errors. Use
these syntax checkers whether you build pages by hand or with soft-
ware. The W3C’s (free) validator lives at http://validator.w3.org.

 ✓ Test pages with as many browsers as you can. This not only alerts you
to missing tags, but can also reveal potential design flaws or browser
issues (covered in the later section, “Do Avoid Browser Dependencies”).
This exercise also emphasizes the need for alternate text. That’s why we
check our pages with Lynx (a character-only browser). Ask friends, col-
leagues, and co-workers to check out your work, and tell them to use as
many browsers as they can, too. Please!

 ✓ Always follow HTML document syntax and layout rules. Just because
browsers don’t require elements such as <html>, <head>, and <body>
doesn’t mean you can omit them. It means browsers don’t care whether
you use them or not. But browsers per se are not your audience. Your
users (and future browsers) may indeed care.

 Although HTML isn’t exactly a programming language, it makes sense to treat
it like one. Following formats and syntax helps you avoid trouble, and careful
testing and rechecking of your work ensures a high degree of quality, compli-
ance with standards, and a relatively trouble-free Web site.

31_9780470916599-ch21.indd 34831_9780470916599-ch21.indd 348 11/30/10 12:28 AM11/30/10 12:28 AM

349 Chapter 21: Ten HTML Do’s and Don’ts

Do Avoid Browser Dependencies
When building Web pages, the temptation to view the Web only in terms
of your favorite browser is hard to avoid. That’s why you must recall that
users view the Web in general (and your pages in particular) from many
perspectives — and through many different browsers.

During the design and writing phases, you’ll probably hop between HTML
and a browser view of your work. At that point, you should switch among
browsers and test your pages using different ones (including at least one
text-only browser like Lynx). This helps you visualize your pages better, and
also helps keep you focused on content. Using a text-only browser is also a
great way to ensure that visually impaired visitors can still relate to your site.

 Check out the Spoon Browser Sandbox page at www.spoon.net/browsers.
It lets you emulate numerous browsers on a Windows PC, including multiple
versions of IE, Firefox, Chrome, Safari, and Opera. Additionally, you can use
free public Telnet servers with Lynx (a character-mode browser) installed.
Otherwise, visit http://brainstormsandraves.com/articles/
browsers/lynx for a good discussion of using Lynx when testing Web
pages (you’ll also find pointers to Lynx downloads for Windows, DOS, Mac
OS, and other platforms there). There’s even a free Firefox plugin for Lynx
previews inside a pop-up window available at https://addons.mozilla.
org/en-US/firefox/addon/1944.

During testing and maintenance, browse your pages from many points of
view. Work from multiple platforms; try both graphical and character-mode
browsers on each page. Testing takes time but repays that effort with pages
that are easy for everyone to read and follow. It also helps viewers who come
at your materials from many platforms, and helps your pages achieve true
independence from any single viewpoint. Why limit your options?

 If several pages on your site use the same basic (X)HTML, create one tem-
plate for those pages. Test that template with as many browsers as you can.
When you’re sure the template is browser-independent, use it to create other
pages. This helps every page look good, regardless of the browser that visi-
tors use, and moves you closer to real HTML enlightenment.

Don’t Make It Hard to Navigate
Your Wild and Woolly Web

Users who view the splendor of your site don’t want to be told you can’t get
there from here. Aids to navigation are vital amenities on a quality Web site.
A navigation bar requires a consistent placement and use of controls to help
users get from A to B. Judicious use of links, and careful observation of what

31_9780470916599-ch21.indd 34931_9780470916599-ch21.indd 349 11/30/10 12:28 AM11/30/10 12:28 AM

350 Part VI: The Part of Tens

constitutes a complete screen (or screenful) of text, help users minimize (or
even avoid) scrolling. Text anchors make it easy to move to previous and
next screens, as well as to the top, index, and bottom of any document. Just
that easy, just that simple — or so it appears to the user.

 We believe in low scroll pages: Users should have to scroll no more than one
screenful from a point of focus or entry to find a navigation aid that lets them
jump (not scroll) to their next point of interest. If users must scroll, vertical
scrolling is okay, but horizontal scrolling is an absolute no-no!

We don’t believe navigation bars are mandatory — nor that names for con-
trols should always be the same. But we do believe that the more control
you give users over their browsing, the better they like it. The longer a docu-
ment gets, the more important controls become; they work best if they occur
about every 30 lines (or in a set of always visible page controls).

Don’t Think Revolution, Think Evolution
The tendency to sit on one’s fundament, if not rest on one’s laurels, after
launching a Web site is nearly irresistible. It’s okay to sit down, but it isn’t
okay to leave things alone for too long or to let them go stale from lack of
attention and refreshment. If you stay interested in what’s on your site after
it’s ready for prime time, your content probably won’t go past its expiration
date. Do what you can (and what you must) to stay on top of things, and
you’ll stay engaged — as should your site visitors!

Over time, Web pages change and grow. Keep a fresh eye on your work and
keep recruiting fresh eyes from the ranks of those who haven’t seen your
work before to avoid what we call “organic acceptance.”

This concept is best explained by the analogy of your face in the mirror: You
see it every day; you know it too well, so you aren’t as sensitive as someone
else to how your face changes over time. Then you see yourself on video, or
in a photograph, or through the eyes of an old friend. At that point, changes
obvious to the world reveal themselves to you as you exclaim, “I’ve gone
completely gray!” or “My spare tire could mount on a semi!”

Changes to Web pages are usually evolutionary, not revolutionary. They
proceed in small daily steps; big leaps are rare. Nevertheless, you must stay
sensitive to the underlying infrastructure and readability of your content
as pages evolve. Maybe the lack of onscreen links to each section of your
Product Catalog didn’t matter when you had only three products — but now
that you offer 25, they’re a must. You’ve heard that form follows function; in
Web terms, the structure of your site needs to follow changes in its content.
If you regularly evaluate your site’s effectiveness at communicating, you
know when it’s time to make changes, large or small.

31_9780470916599-ch21.indd 35031_9780470916599-ch21.indd 350 11/30/10 12:28 AM11/30/10 12:28 AM

351 Chapter 21: Ten HTML Do’s and Don’ts

This is why user feedback is crucial. If you don’t get feedback through forms or
other means, aggressively solicit some from your users. If you’re not sure how
you’re doing, consider this: If you don’t ask for feedback, how can you tell?

Don’t Get Stuck in the Two-Dimensional-Text Trap
Because of centuries of printed material and the linear nature of books, our
mindsets also need adjustment. The nonlinear potentials of hypermedia give
new meaning to the term document, especially on the Web. It can be tempt-
ing to pack pages full of capabilities until they resemble a Pony Express
dynamite shipment that gallops off in many directions at once. Be safe: Judge
hypermedia by whether it

 ✓ Adds interest

 ✓ Expands on your content

 ✓ Makes a serious — and relevant — impact on users

Within these constraints, such material can vastly improve any user’s experi-
ence of your site.

Stepping intelligently outside old-fashioned linear thinking about text can
improve your users’ experience of your site and make your information more
accessible. That’s why we encourage careful use of document indexes, cross-
references, links to related documents, and other tools to help users navigate
your site. Keep thinking about the impact of links as you look at other peo-
ple’s Web materials; it’s the quickest way to escape the linear-text trap. (The
printing press was high-tech for its day, but that was nearly 600 years ago!) If
you’re seeking a model for Web site behavior, don’t use your new trifold four-
color brochure, however eye-popping it may be; think about how customer-
service people talk to new customers by phone. (“How can I help you today?”)

Don’t Let Inertia Overcome You
When dealing with Web materials post-publication, it’s only human to goof
off after finishing a big job. Maintenance isn’t as heroic or inspiring as cre-
ation, but involves most of the activity required to keep any document alive
and well. Sites that aren’t maintained often become ghost sites; users stop
visiting when developers stop working on them. Never fear — a little work
and attention to detail keep pages fresh. If you start with something valuable
and keep adding value, a site’s value appreciates over time — just like any
other property. Start with something valuable and leave it alone and it soon
becomes stale and loses value.

31_9780470916599-ch21.indd 35131_9780470916599-ch21.indd 351 11/30/10 12:28 AM11/30/10 12:28 AM

352 Part VI: The Part of Tens

 Consider your site from the viewpoint of a master aircraft mechanic: Correct
maintenance is a real, vital, and on-going accomplishment, without which you
risk a crash. A Web site, as a vehicle for important information, deserves reg-
ular attention; maintaining a Web site requires discipline and respect. (See
www.disobey.com/ghostsites/index.shtml for a humorous look at
ghost sites.)

 Keeping up with change translates into creating (and adhering to) a regu-
lar maintenance schedule. Make it somebody’s job to spend time on a site
regularly; check to make sure the job’s getting done. If people get tagged to
handle regular site updates, changes, and improvements, they flog other par-
ticipants to give them tasks when scheduled site maintenance rolls around.
Pretty soon, everybody’s involved in keeping information fresh — just as
they should be. This keeps your visitors coming back for more!

31_9780470916599-ch21.indd 35231_9780470916599-ch21.indd 352 11/30/10 12:28 AM11/30/10 12:28 AM

Chapter 22

Ten Ways to Exterminate
Web Bugs

In This Chapter
▶ Avoiding gaffes in markup and spelling

▶ Keeping links hot and fresh

▶ Gathering beta-testers to check, double-check, and triple-check your site

▶ Applying user feedback to your site

After you put the finishing touches on a set of pages (but before you go
public on the Web for the entire world to see), it’s time to put them

through their paces. Testing remains the best way to ensure site quality and
effectiveness.

Thorough testing must include content review, analysis of (X)HTML and CSS
syntax and semantics, link checks, and various sanity checks to make doubly
sure that what’s built is what you really want. Read this chapter for some
gems of testing wisdom (learned from a lifetime of Web adventures) as we
seek to rid your Web pages of bugs, errors, and lurking infelicities. Out! Out!
Darned Spot!

Make a List and Check It — Twice
A sense of urgency that things must work well and look good on a Web site
never fails to goad you to keep your site humming along. That said, if you
work from a visual diagram of how your site is (or should be) organized,
you’ll be well equipped to check structure, organization, and navigation.
Likewise, put your pages through their paces regularly (or at least each time
they change) with a spell checker, and you’ll be able to avoid unwanted tpyos.

32_9780470916599-ch22.indd 35332_9780470916599-ch22.indd 353 11/30/10 12:28 AM11/30/10 12:28 AM

354 Part VI: The Part of Tens

Your design should include a road map (often called a site map) that tells you
what’s where in every individual (X)HTML document and stylesheet in your
site — and clues you into the relationships among its pages. If you’re really
smart, keep this map up to date as you move from design to implementation.
(In our experience, things always change as you go down this path.) If you’re
merely as smart as the rest of us, don’t berate yourself — update that map
now! Be sure to include all intra- and inter-document links.

A site map provides the foundation for a test plan. Yep, that’s right —
effective testing isn’t random. Use your site map to

 ✓ Investigate and check every page and every link systematically.

 ✓ Make sure everything works as you think it should — and that what you
built has some relationship (however surprising) to your design.

 ✓ Define the list of things to check as you go through the testing process.

 ✓ Check everything (at least) twice. (Red suit and reindeer harness
optional.)

Master Text Mechanics
By the time any collection of Web pages comes together, you’re looking at
thousands of words, if not more. Yet many Web pages are published without
a spell check, which is why we suggest — no, demand — that you include a
spell check as a step when testing and checking your materials. (Okay, we
can’t put a gun to your head, but you know it’s for your own good.) Many (X)
HTML tools, such as Expression Web, Kompozer, and Dreamweaver, include
built-in spell checkers, the first spell-check tools you should use. These (X)
HTML editors also know how to ignore markup and just check your text.

Even if you use (X)HTML tools only occasionally, and hack out most of your
markup by hand, do a spell check before posting your documents to the
Web. (For a handy illustration of why this step matters, keep a log of spelling
and grammatical errors you find during your Web travels. Be sure to include
a note on how those gaffes reflect on the people who created the pages
involved. Get the message?)

 You can use your favorite word processor to spell check your pages. Before
you check them, add (X)HTML and CSS markup to your custom dictionary,
and pretty soon the spell checker runs more smoothly — getting stuck only
on URLs and odd strings that occasionally occur in Web documents.

If you prefer a different approach, try any of the many (X)HTML-based spell-
checking services now available on the Web. We like the free Lite Edition of
the CSE HTML Validator (www.htmlvalidator.com).

32_9780470916599-ch22.indd 35432_9780470916599-ch22.indd 354 11/30/10 12:28 AM11/30/10 12:28 AM

355 Chapter 22: Ten Ways to Exterminate Web Bugs

If CSE HTML Validator Lite’s spell checker doesn’t float your boat, visit a
search engine, such as www.yahoo.com or www.google.com, and use web
page spell check as a search string. Doing so lets you produce a list of spell-
checking tools made for Web pages.

One way or another, persist until you root out all typos and misspellings.
Your users may not thank you for your impeccable use of language — but
if they don’t trip over errors while exploring your work, they’ll think more
highly of your pages (and their creator), even if they don’t know why.

 Don’t forget to put your eyeballs on the copy and thoroughly proofread the
text, too. No spell checker in the world will recognize “It’s time two go too
the store” as badly mangled text, although you should catch that right away!
Better yet, hire a professional editor or proofreader to help out during testing.

Lack of Live Links — A Loathsome Legacy
New content and active connections to current, relevant resources are the
hallmarks of a well-tended Web site. You can’t achieve these goals with-
out regular (sometimes, constant) effort, so plan for ongoing activity. The
rewards can be huge — starting with a genuine sense of user excitement at
what new marvels and treasures reveal themselves on their next visit to your
site. Such anticipation is impossible to fake (without doing what you’ll have
to do to keep things fresh in the first place). So please, keep it real, too!

We performed an unscientific, random-sample test to double-check our own
suspicions; users told us that positive impressions of a particular site are
proportional to the number of working links they find there. The moral of
this survey: Always check your links. This is as true after you publish your
pages as it is before they’re made public. Nothing irritates users more than a
link that produces the dreaded 404 File Not Found error instead of the good
stuff they seek! Remember, too, that link checks are as indispensable to page
maintenance as they are to testing.

 If you’re long on 21st-century street smarts, hire a robot to do this job for
you: They work long hours (no coffee breaks), don’t charge much, and check
every last link in your site (and beyond, if you let them). The best thing about
robots is that you schedule them to work at your pleasure: They always show
up on time, always do a good job, and never complain (though we haven’t
found one that brings homemade cookies or remembers birthdays). All you
must do is search online for phrases like link checker. You’ll find lots to
choose from!

32_9780470916599-ch22.indd 35532_9780470916599-ch22.indd 355 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

356 Part VI: The Part of Tens

To begin with, you might use the W3C Link Checker (http://validator.
w3.org/checklink) because it’s easy to use and less work to set up, too.
Another good option is the Free Online Link Checker at www.2bone.com/
links/linkchecker.shtml. The REL Link Checker Light is a free version of
REL Software’s commercial Web Link Validator, and good enough for smaller
hobby, personal, or modest business sites (grab it from www.relsoftware.
com/rlc/downloads). Finally, Xenu’s Link Sleuth is another free package
you can try out from http://home.snafu.de/tilman/xenulink.html.

 If a URL points to one page that simply points to another (a pointer), you
can’t leave that link alone. Sure, it works, but for how long? And how annoy-
ing! Therefore, if your link-checking expedition shows a pointer that merely
points to another pointer (yikes), do yourself (and your users) a favor by
updating the URL to point directly to the real location. You save users time,
reduce Internet traffic, and earn good cyberkarma.

When Old Links Must Linger
If you must leave a URL active after it’s become outdated to give your users
time to bookmark your new location, instruct browsers to jump straight from
the old page to the new by including the following HTML command in the old
doc’s <head>:

<meta http-equiv=”refresh” content=”0”; url=”newurlhere” />

This nifty line of code tells a browser that it should refresh the page. The delay
before switching to the new page is specified by the value of the content attri-
bute, and the destination URL is determined by the value of the url attribute.
If you build such a page, also include a plain-vanilla link in its <body> section,
so users with older browsers can follow that link manually, instead of auto-
matically. You might also want to add text that tells visitors to update their
bookmarks with the new URL. Getting there may not be half the fun, but it’s the
whole objective.

Make Your Content Mirror Your World
When it comes to content, the best way to keep things fresh is to keep up
with the world in which your site resides. When things change, disappear, or
pop up in that world, similar events should occur on your Web site. Because
something new is always happening, and old ways or beliefs are always
fading, reporting on what’s new, and musing on what’s fading from view,

32_9780470916599-ch22.indd 35632_9780470916599-ch22.indd 356 11/30/10 12:28 AM11/30/10 12:28 AM

357 Chapter 22: Ten Ways to Exterminate Web Bugs

provide visitors a reason to keep coming back. What’s more, if you can accu-
rately and honestly reflect (and reflect upon) what’s happening in your world
of interest, you’ll grab loyalty, respect, and continued patronage.

Look for Trouble in all the Right Places
There’s an ongoing need for quality control in any kind of public content, but
that need is particularly acute on the Web, where the whole world can stop
by (and where success often follows the numbers of those who drop in and
return). You must check your work while you’re building the site and con-
tinue to check your work over time. This practice forces you to revisit your
material with new and shifting perspectives, and to evaluate what’s new and
what’s changed in the world around you. That’s why testing and checking are
never really over; they just come and go — preferably, on a regular schedule!

You and a limited group of handpicked users should thoroughly test your
site before you share it with the rest of the world — and more than once.
This process is called beta testing, and it’s a bona fide, five-star must for a
well-built Web site, especially if it’s for business use. When the time comes
to beta-test your site, bring in as rowdy and refractory a crowd as you can
find. If you have picky customers (or colleagues who are pushy, opinionated,
or argumentative), you might have found them a higher calling: Such people
make ideal beta testers — that is, if you can get them to cooperate.

 Don’t wait until the very last minute to test your Web site. Sometimes the
glitches found during the beta-test phase can take weeks to fix. Take heed:
Test early and test often; you’ll thank us in the end!

Beta testers will use your pages in ways you never imagined possible. They
interpret your content to mean things you never intended in a million years.
They drive you crazy and crawl all over your cherished beliefs and principles.
And they do all this before your users do! Trust us, that’s a blessing — even if
it’s in disguise.

These colleagues also find gotchas, big and small, that you never knew
existed. They catch typos that spell checkers couldn’t. They tell you things
you left out and things that you should have omitted. They give you a fresh
perspective on your Web pages, and they help you see them from extreme
points of view.

 The results of all this suffering, believe it or not, are positive. Your pages
will be clearer, more direct, and more correct than they would have had you
tested them by yourself. (If you don’t believe us, of course, you could try skip-
ping this step. And when real users start banging on your site, forgive us if we
don’t watch.)

32_9780470916599-ch22.indd 35732_9780470916599-ch22.indd 357 11/30/10 12:28 AM11/30/10 12:28 AM

358 Part VI: The Part of Tens

Cover all the Bases with Peer Reviews
If you’re creating a simple home page or a collection of facts and figures
about your private obsession, this tip may not apply to you. Feel free to read
it anyway — it just might come in handy down the road.

If your pages express views and content that represent an organization,
chances are, oh, about 100 percent that you should run your pages through
peer-and-management review before publishing them to the world. In fact,
we recommend that you build reviews into each step along the way as you
build your site — starting by getting knowledgeable feedback on such basic
aspects as the overall design, writing copy for each page, and the final
assembly of your pages into a functioning site. These reviews help you avoid
potential stumbling blocks, such as unintentional off-color humor or unin-
tended political statements. If you have any doubts about copyright matters,
references, logo usage, or other important details, bring the legal department
in. (If you don’t have one, you may want to consider a little consulting help
for this purpose. Paying to avoid legal trouble beforehand is always cheaper
than paying to get out of such trouble after the fact.)

 Building a sign-off process into reviews so you can prove that responsible
parties reviewed and approved your materials is a good idea. We hope you
don’t have to be that formal about publishing your Web pages, but it’s far, far
better to be safe than sorry. (This process might best be called covering your
bases, or perhaps it’s really covering something else? You decide.)

Use the Best Tools of the Testing Trade
When you grind through your completed Web pages, checking your links
and your HTML, remember that automated help is available. If you visit the
W3C validator at http://validator.w3.org, you’ll be well on your way to
finding computerized assistance to make your HTML pure as air, clean as the
driven snow, and standards-compliant as, ah, really well-written HTML. (Do we
know how to mix a metaphor, or what?)

Likewise, using link checkers covered earlier in the chapter is smart; run
them regularly to check links on your pages. These faithful servants tell you if
something isn’t current, and they tell you where to find links that need fixing.

Schedule Site Reviews
Every time you change or update your site, you should test its functionality,
run a spell check, perform a beta test, and otherwise jump through important
hoops to put your best foot forward online. But sometimes you’ll make just

32_9780470916599-ch22.indd 35832_9780470916599-ch22.indd 358 11/30/10 12:28 AM11/30/10 12:28 AM

359 Chapter 22: Ten Ways to Exterminate Web Bugs

a small change — a new phone number or address, a single product listing,
a change of name or title to reflect a promotion — and you won’t go through
the whole formal testing process for “just one little thing.”

That’s perfectly understandable — but one thing inevitably leads to another,
and so on. Plus, if you solicit feedback, chances are good that you’ll learn
something that points out a problem you’d never noticed or considered
before. Schedule periodic site reviews, even if you’ve made no big changes
or updates since the last review. Information grows stale, things change, and
tiny errors have a way of creeping in as one small change succeeds another.

If there’s any code on your site (JavaScript, Active Server Pages, Java Server
Pages, or whatever), you’ll want to give it a thorough workout and inspection,
too. A pool-shooting buddy of ours who works in quality control for a major
technology company was recently assigned to review a Web site built to pro-
vide real-time security and error information to developers who use its prod-
ucts. He told me that it was obvious the developers didn’t try everything, in
every possible combination, at the same time — with a rueful shake of his
head — and that when he did so, he broke things they didn’t know could be
broken. Better to do this yourself (or hire somebody to do it for you) and fix
it in advance than to pay the price of public humiliation.

Just as you take your car in for an oil change or replace your air-conditioning
filter, plan to check your Web site regularly. Most big organizations we talk
to do this every three months or so; others do it more often. Although you
might think you have no bugs to catch, errors to fix, or outdated information
to refresh, you’ll often be surprised by what a review turns up. Make this part
of your routine, and your surprises will be less painful — and require less
work to remedy!

Foster User Feedback
Who better to tell you what works and what doesn’t than those who use (and
hopefully, depend on) your site? Who better to say what’s not needed and
what’s missing? But if you want user feedback to foster site growth and evo-
lution, you must not only ask for it, you have to encourage it to flow freely
and honestly in your direction, then act on that feedback to keep those well-
springs working.

Even after you publish your site, testing never ends. (Are you having flash-
backs to high school or college yet? We sure are.) You may not think of user
feedback as a form (or consequence) of testing, but it represents the best
reality check your Web pages are ever likely to get, which is why doing every-
thing you can — including offering prizes or other tangibles — to get users to
fill out HTML forms on your Web site is a good idea.

32_9780470916599-ch22.indd 35932_9780470916599-ch22.indd 359 11/30/10 12:28 AM11/30/10 12:28 AM

360 Part VI: The Part of Tens

This reality check is also why reading all feedback you get is a must. Go out
and solicit as much feedback as you can handle. (Don’t worry; you’ll soon
have more.) But carefully consider all feedback that you read — and imple-
ment the ideas that actually bid fair to improve your Web offerings. Oh, and
it’s a really good idea to respond to feedback with personal e-mail, to make
sure your users know you’re reading what they’re saying. If you don’t have
time to do that, make some!

 The most finicky and picky of users can be an incredible asset: Who better
to pick over your newest pages and to point out the small, subtle errors or
flaws they so revel in finding? Your pages will have contributed mightily to
the advance of society by actually finding a legitimate use for the universal
delight in nitpicking. Your users can develop a real stake in boosting your
site’s success, too. Working with users gets them more involved, and helps
guide the content of your Web pages (if not the rest of your professional or
obsessional life). Who could ask for more? Put it this way: You may yet find
out, and it could be very helpful.

If You Give to Them, They’ll Give to You!
Sometimes, simply asking for feedback or providing surveys for users to fill
out doesn’t produce the results you want — either in quality or in volume.
Remember the days when you’d occasionally get a dollar bill in the mail to
encourage you to fill out a form? It’s hard to deliver cold, hard cash via the
Internet, but a little creativity on your part should make it easy for you to
offer your users something of value in exchange for their time and input. It
could be an extra month on a subscription, discounts on products or ser-
vices, or some kind of freebie by mail. (Maybe you can finally unload those
stuffed Gila monsters you bought for that trade show last year. . . .)

 There’s another way you can give back to your users that might not cost
you too much. An offer to send participants the results of your survey, or to
otherwise share what you learn, may be all the incentive participants need
to take the time to tell you what they think, or to answer your questions. Just
remember that you’re asking your users to give of their time and energy, so
it’s only polite to offer something in return.

32_9780470916599-ch22.indd 36032_9780470916599-ch22.indd 360 11/30/10 12:28 AM11/30/10 12:28 AM

Chapter 23

Ten Cool HTML Tools
and Technologies

In This Chapter
▶ Identifying your HTML toolbox needs

▶ Discovering your favorite HTML editor

▶ Adding a graphics application to your toolbox

▶ Authoring systems for the Web

▶ Understanding essential utilities for Web publishing

HTML documents are made of plain text, which means you can build one
using a no-frills text editor like Notepad. Once upon a time, that was

all Web authors used. But as the Web has evolved, so have the tools used
to create Web pages. Nowadays, Web authoring is complex enough that a
simple text editor doesn’t cut it unless

 ✓ You don’t care (much) about graphics and HTML validation.

 ✓ You’re on a quick in-and-out mission to make small changes to an exist-
ing HTML document.

After you gain more experience with HTML, you’ll build your own HTML tool-
box. This chapter is designed to help you stock that toolbox. In fact, some of
these tools may already be on your system, quietly waiting to help you create
amazing Web pages.

 When you go shopping for items for your HTML toolbox, look for good buys.
Students and educators often qualify for big discounts on major-brand soft-
ware, if they use a search engine to look for “educational software discount.”
But careful shopping can save anybody money on just about any software
purchase. Try comparison-shopping at sites such as CNET Shopper (http://
shopper.cnet.com) or PC Magazine (http://www.pcmag.com/shop).

33_9780470916599-ch23.indd 36133_9780470916599-ch23.indd 361 11/30/10 12:28 AM11/30/10 12:28 AM

362 Part VI: The Part of Tens

WYSIWYG HTML Editors
WYSIWYG (what you see is what you get) editors do everything but your
laundry. Lots of WYSIWYG (pronounced “wiz-eee-wig”) editors offer code
views like the helper editors do (see the following section), plus a lot more.

A WYSIWYG editor creates markup for you while you create and lay out Web
page content on your monitor (often by dragging and dropping visual ele-
ments or working through GUI menus and options), shielding your delicate
eyes from bare markup along the way. These tools are like word processors
or page-layout programs; they do lots of work for you.

 WYSIWYG editors make your work easier and save hours of endless coding —
you have a life, right? — but you should only use WYSIWYG editors during the
design stage. For example, you can use a WYSIWYG editor to create a complex
table in under a minute during initial design work. Later, when the site is live,
you would then use an HTML helper editor to refine and tweak your HTML
markup directly.

Dreamweaver
Dreamweaver is the best WYSIWYG Web development tool for Macintosh
and PC systems. Many (if not most) Web developers use Dreamweaver.
Dreamweaver is an all-in-one product that supports

 ✓ Web site creation

 ✓ Maintenance

 ✓ Content management

The current version, Adobe Dreamweaver CS5, belongs to a suite of products —
Adobe Creative Suite 5, usually abbreviated CS5 — that work together to pro-
vide a full spectrum of Internet solutions. Adobe CS5 comes in many flavors
and includes such components as InDesign, Photoshop, Illustrator, Acrobat
Professional, Dreamweaver, Fireworks, Contribute, After Effects Professional,
Premiere Pro, Soundbooth, Encore, and even OnLocation. For a mere $2,600 or
so, you can buy the Adobe Creative Suite 5 Design Premium Collection and get
all of these things in a single (very expensive) box!

Dreamweaver features an easy-to-follow GUI so you can style Web pages
using CSS without even knowing what a style rule is! Many of the benefits
of Dreamweaver stem from its sleek user interface and its respect for clean
HTML. You can find more information on Dreamweaver by visiting the Adobe
Web site at www.adobe.com/products/dreamweaver.

33_9780470916599-ch23.indd 36233_9780470916599-ch23.indd 362 11/30/10 12:28 AM11/30/10 12:28 AM

363 Chapter 23: Ten Cool HTML Tools and Technologies

 If you’re too low on funds for a top-of-the-line WYSIWYG HTML editor like
Dreamweaver CS5 (suggested retail price is about $400, but discounts of up
to $200 are available), there are other possibilities. You can ponder the sug-
gestions in the next section or go a-searching on the Web (the search string
“WYSIWYG HTML editor” should do nicely).

Other WYSIWYG editors
WYSIWYG editors generate allegiances that can seem as pointless as the
enmity between owners of Ford and Chevy trucks. The following editors have
many fans, and both produce great Web pages:

 ✓ Kompozer is a Web page editor that offers text and WYSIWYG editors,
along with color coding, automatic code completion, HTML validation,
nice site management chops, and more good stuff. Plus, it’s free. Check
it out at http://kompozer.net.

 ✓ Microsoft Expression Web 4 is a Windows-based Web package that
offers a code editor (text) and a visual editor (WYSIWYG), along with
scripting tools, great graphics support, search engine optimization
(SEO) tools, and more. It retails for $149, but, if you shop around,
you can find it for under $100. Check it out at www.microsoft.com/
expression/products/web_overview.aspx.

Helper HTML Editors
An HTML helper works the way it sounds. It helps you create HTML, but it
doesn’t do all the markup work for you. HTML is displayed “raw” — tags and
all. You can reach right into the code and tweak it (provided you have HTML,
XHTML & CSS For Dummies). This is often called a “code view” or “markup
view.”

Good helpers save time and lighten your load. Functions like these make
HTML development easier and more fun:

 ✓ Tags are a different color than content.

 ✓ The spell checker knows tags aren’t misspelled words.

 Use a helper editor when you’re building complex tables or multilevel lists.
The more complex your markup, the more help a helper editor can provide!

33_9780470916599-ch23.indd 36333_9780470916599-ch23.indd 363 11/30/10 12:28 AM11/30/10 12:28 AM

364 Part VI: The Part of Tens

Aptana Studio
Aptana Studio is a full-blown development tool that supports JavaScript,
Personal Home Page (PHP), CSS, and HTML. Aptana also provides a very
full-featured HTML editor that’s well suited for beginners and professionals.
Aptana requires some HTML knowledge to use but assists you at every step.

We like the Aptana interface and its many facilities. You can

 ✓ Automatically sync directories with your FTP server.

 ✓ Incorporate all kinds of cool plugins (Aptana is based on Eclipse, a well
known and widely used integrated development environment, or IDE).
Aptana makes it easy to work with other languages, such as Ruby on
Rails, jQuery, Python, and more, using widely available plugins.

 ✓ Create, edit, and validate CSS, JavaScript, HTML, and PHP.

 ✓ Automatic code completion and text coloring capabilities to separate
HTML, CSS, JavaScript, and so forth.

 ✓ Take advantage of a huge collection of documentation and tutorials and
active community support and interaction.

 Aptana is an open source project, which means it’s free. You can download
Aptana from www.aptana.com. If you’re not inclined to tackle a do-it-yourself
type of Web development environment, check out our other contenders in the
following section.

Other helper editors
You can find lots of great HTML helper editors. Here’s our slate of alternatives:

 ✓ Komodo Edit is a classy, highly functional software package that gets
high ratings from everyday users and experts. It’s not WYSIWIG, but it
gets the job done. Komodo includes lots of great features and functions,
including built-in validators for CSS, HTML, and accessibility features;
color coding and tag completion for HTML and XML; multi-file search
and replace; and support for Web-related languages, such as Perl,
Python, Tcl, PHP, JavaScript, and much more.

 • Komodo Edit is a free, scaled-down version of the $295 Komodo
IDE product from ActiveState.com. Unless you also develop soft-
ware, Komodo Edit should meet your needs well and completely.

 • Download the free version from www.activestate.com/
komodo-edit/downloads. Supports Windows, Mac OS X, and
Linux.

33_9780470916599-ch23.indd 36433_9780470916599-ch23.indd 364 11/30/10 12:28 AM11/30/10 12:28 AM

365 Chapter 23: Ten Cool HTML Tools and Technologies

 ✓ HTML-Kit is a compact Windows tool with

 • Menu-driven support for both HTML and Cascading Style Sheets
(CSS) markup

 • A nice preview window for a browser’s-eye view of your markup

 If you want to download HTML-Kit, go to www.chami.com/html-kit.
You can download a free version or register your copy for $65 and
obtain a bunch of extra tools, including a spiffy table designer, a log ana-
lyzer, and a nifty graphical (X)HTML/XML editor that lets you view and
navigate all those documents through their syntactical structure.

 ✓ Open Source Notepad++ offers useful and functional support for HTML
and CSS, among lots of other languages and markup. Find it at http://
notepad-plus-plus.org.

Inexpensive Graphics Editors
Graphics applications are beasts. They can do marvelous things, but learn-
ing how to use them can be overwhelming at first. Even scaled-down toolsets
(such as Photoshop Elements) take time and genuine effort to learn and use
properly and effectively.

 If you aren’t artistically inclined, consider paying someone else to do your
graphics work. Graphics applications can be pricey and complicated. But
you should have some kind of high-function (if not high-end) graphics pro-
gram to tweak images should you need to. Our highest rating goes to Adobe
Photoshop, but considering its cost and the average newbie HTML hacker’s
budget, we discuss a lower-cost alternative first.

At around $100 (with discounts as low as $60), Adobe Photoshop Elements 9
is an affordable PC- and Mac-based starter version of the full-blown Photoshop
(the gold standard for graphics). You can do almost anything with Photoshop
Elements that you might need for beginner- and intermediate-level graphics
editing.

This product is for you if you want to add images to your site but you don’t
want to work with graphics all the time, or use fancy special effects. To learn
more about Photoshop Elements, visit www.adobe.com/products/photo
shopelwin.

 If you’re really on a tight budget, check out these graphic editors:

33_9780470916599-ch23.indd 36533_9780470916599-ch23.indd 365 11/30/10 12:28 AM11/30/10 12:28 AM

366 Part VI: The Part of Tens

 ✓ Paint Shop Pro Photo X3: This PC-only graphics editor is a good buy
because it does nearly everything that Photoshop does and costs less
than Photoshop Elements. You’ll need to shop around to find the lowest
price, though (Corel charges $80 or $90 for this package).

 ✓ GIMP: If you’re really on a shoestring budget, check out the free GNU
Image Manipulation Program, better known as GIMP. It’s an open source
package whose functionality rivals that of Photoshop without the expen-
sive price tag. GIMP supports a user-customizable interface, offers all
kinds of sophisticated image and photo enhancements, and includes
digital retouching, broad device support, and tons of graphics file for-
mats. It works with Linux, Windows, Mac OS X, Sun OpenSolaris, and
the FreeBSD operating systems, too. Check it out at www.gimp.org and
then download it!

Professional Graphics Editors
If you work with photographs or other high-resolution, high-quality images or
artwork, you may need one of these Web graphics tools.

Adobe Photoshop
If it weren’t so darned expensive, we’d grant top honors to Photoshop CS5.
Alas, $699 is too high for many novices’ budgets. Wondering whether to
upgrade from Photoshop Elements? Adobe mentions these capabilities
among its top reasons to upgrade:

 ✓ Improved file browser: Shows and tells you more about more kinds of
graphics files and gives you more powerful search tools.

 ✓ Shadow/Highlight correction: Powerful built-in tools add or manipulate
shadows and highlights in images.

 ✓ More powerful color controls: Color palettes and color-matching tools
with detailed controls that Elements lacks.

 ✓ Text on a path: Full-blown Photoshop lets you define any kind of path
graphically and then instructs your text to follow that path. This capabil-
ity supports fancy layouts that Elements can’t match.

If you need to use sophisticated visual effects, edits, or tweaks on high-
resolution photorealistic images, full-blown Photoshop is your best bet. For
basic Web sites, however, Photoshop is overkill — it can do just about any-
thing to photos or images of all kinds, which of course is why it’s the most
popular professional graphics editing tool.

33_9780470916599-ch23.indd 36633_9780470916599-ch23.indd 366 11/30/10 12:28 AM11/30/10 12:28 AM

367 Chapter 23: Ten Cool HTML Tools and Technologies

Like its little brother Photoshop Elements, full-blown Photoshop works with
both Macintosh and PC operating systems. The current version is Adobe
Photoshop CS5. It’s included in all of Adobe’s product suites.

 Photoshop CS5 add-ons and plugins provide specialized functions — such
as complex textures or special graphics effects. This extensibility is nice
because graphics professionals who need such capabilities can buy them
(most cost $100 and up, with $300 a pretty typical price) and add them with-
out muss or fuss. But those who don’t need them don’t have to pay extra for
the base-level software.

Adobe Fireworks
Fireworks is a graphics program designed specifically for Web use, so it
offers lots of nice features and functions for that purpose. The current ver-
sion is Adobe Fireworks CS5. Fireworks has one killer feature — it lets you
save portable network graphics (PNG) files with layers defined that work
more or less the same way that Photoshop Document (PSD) files do.

Fireworks is tightly integrated with other Adobe products and therefore is
of potentially great interest if you’re using (or considering) Dreamweaver.
Simply put, this combination of Adobe products makes it very easy to add
graphical spice to Web pages.

For more information about Fireworks and related Adobe products, check
out www.adobe.com/products/fireworks.

W3C Link Checker
A broken link on your site can be embarrassing. To spare your users the
dreaded 404 Object Not Found error message, use a link checker to make
sure your links are correctly formatted before and after you publish on the
Web. Many HTML editors and Web servers include built-in local link check-
ers, and they may even scour the Web to check external links.

 Other Web sites may change or disappear after you publish your site.
Regularly check your site’s links to make sure they still work. The worst
broken link is one that points to a page on your own site which is no longer
there.

The W3C link-checking tool is free, easy to use, and works surprisingly
quickly (thanks to HP, we guess, for the servers they donate to support the
W3C). Here’s how it works: You drop a URL in for a document you want to
check, and the tool comes back to you with information about the links it

33_9780470916599-ch23.indd 36733_9780470916599-ch23.indd 367 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

368 Part VI: The Part of Tens

finds on that page. It will even do recursive checking, if you click the Check
Linked Documents check box on the submission page. Try this champion link
checker for yourself at http://validator.w3.org/checklink.

You can also download a version of this tool that you can run on your own
machine from http://validator.w3.org/docs/checklink.html. You
have a couple of download options:

 ✓ Grab a compiled version for your computer and operating system and
run it as-is.

 ✓ Grab the source code and tweak it for your needs and situation.

Other Link Checkers
The following programs are pretty good link checkers. They just need the
application of a little elbow grease to learn and to use. Better yet, their price
is right: free!

 ✓ LinkScan/QuickCheck: LinkScan offers a real-time, single-page, link
check and a free evaluation software package that can handle sites with
up to 500,000 documents. It creates an annotated, color-coded listing
of each HTML or XHTML document it parses, and makes it easy to find
broken or suspect links, missing image files, and so forth.

 Check it out at www.elsop.com/quick.

 ✓ SourceForge LinkChecker: LinkChecker offers free, complex, and
sophisticated link-checking services, including color-coded output, sup-
port for lots of protocols and services, all kinds of URL filters and link-
checking controls, cookie checks, HTML and CSS syntax checks, and lots
more.

 To find out more, take a look at http://linkchecker.sourceforge.
net/.

HTML Validators
Validation compares a document to a set of document rules — a Document
Type Definition (DTD), an XML Schema, or whatever other rules explicitly
describe its syntax and structure. Simply put, validation checks the actual
markup and content against the rules that govern it and flags any deviations
it finds.

33_9780470916599-ch23.indd 36833_9780470916599-ch23.indd 368 11/30/10 12:28 AM11/30/10 12:28 AM

369 Chapter 23: Ten Cool HTML Tools and Technologies

Typically, a document author follows this process:

 1. Create an HTML document in an HTML editor.

 For example, imaging this step results in a file called mypage.htm.

 2. Submit mypage.htm to an HTML or XHTML validation site for inspec-
tion and validation.

 If any problems or syntax errors are detected, the validator reports such
errors in an annotated version of the original HTML document.

 3. If the validator reports errors, the author corrects those errors and
resubmits the document for validation.

 Sometimes, breaking HTML rules is the only way for your page to look
right in older Web browsers. But document rules exist for a reason:
Nonstandard or incorrect HTML markup often produces odd or unpre-
dictable results.

Browsers usually forgive markup errors. Most browsers identify HTML pages
without an <html> element. But someday, markup languages may be so com-
plex and precise that browsers won’t be able to guess whether you’re pub-
lishing in HTML or another markup language. Get the markup right from the
beginning and save yourself a bunch of trouble later.

 HTML validation is built into many HTML editors, including Dreamweaver,
and all of the other WYSIWIG and HTML Helper tools we mention at the
outset of this chapter. You can find validators at

 ✓ W3C validator: The W3C has a free, Web-based validation system avail-
able at http://validator.w3.org. It will provide copious output
about what errors or inconsistencies it finds in your documents until
you fix them all. It also includes an option for viewing annotated source
code so you can see exactly where it’s finding items it doesn’t like. This
is a great tool, and it is well worth learning and using. This tool is a vital
element in building a solid, well-crafted Web site of any kind, and it will
help you fix errors and address browser inconsistencies with panache
and aplomb.

 ✓ Built-in validators: Many tools in this chapter offer HTML validation.
These include HTML-Kit, HomeSite, Dreamweaver, and BBEdit. Use ’em if
you got ’em; get ’em if you don’t!

33_9780470916599-ch23.indd 36933_9780470916599-ch23.indd 369 11/30/10 12:28 AM11/30/10 12:28 AM

370 Part VI: The Part of Tens

FTP Clients
After you create your Web site on your computer, you have to share it
with the world. So you need a tool to transfer your Web pages to your Web
server. One very convenient way to accomplish this task is through FTP
(File Transfer Protocol). Many HTML editors include FTP support, but you
can also use a separate FTP client to upload and download files to your Web
server. FTP has been around since the early days of the Internet (way before
the Web came along).

After you select a server host and you know how to access a Web server
(your service provider should supply you with this information), you must
upload your pages to that server. That means you need FTP, or some reason-
able facsimile thereof.

All FTP programs are similar and easy to operate. We recommend these:

 ✓ FileZilla is a fast, capable, free, open source FTP program with an
intuitive drag-and-drop user interface. It’s available online at http://
filezilla-project.org.

 ✓ Cyberduck (open source for the Macintosh) at http://cyberduck.ch.

 ✓ Cute FTP Lite (shareware, costs $25, but offers great functionality and
ease of use) at www.cuteftp.com.

 ✓ Fetch for the Mac is located at http://fetchsoftworks.com.

Miscellaneous Helpful Web Tools
Miscellaneous tools can help you manage and control your Web site. Here,
we present you with a collection of items that you can try out to see whether
they deliver functionality that justifies downloading, learning, and using them
(we think they’re nifty, but, ultimately, that’s up to you to decide):

 ✓ HTML-Kit supports plugins to add functions, such as link checks and
spell checks. Most of these plugins are free or inexpensive. Check out
www.chami.com/html-kit/plugins.

 ✓ Easy HTML Construction Kit offers a collection of useful conversion,
reformatting, and template management tools for a paltry $25 at www.
hermetic.ch/html.htm.

 ✓ Firebug is a Firefox plugin you can use to help you debug programs and
Web pages. It lets you click sections of a page and then examine their indi-
vidual properties and behaviors. Find it at http://getfirebug.com.

33_9780470916599-ch23.indd 37033_9780470916599-ch23.indd 370 11/30/10 12:28 AM11/30/10 12:28 AM

371 Chapter 23: Ten Cool HTML Tools and Technologies

 ✓ Browser Sandbox comes from spoon.net; it provides a tool that lets you
run multiple versions of IE, Firefox, Safari, Chrome, and Opera inside the
following browsers: IE (6, 7, 8), Firefox (2, 3, 3.5), Safari (3, 4), Chrome
(all versions), and Opera (9, 10). Browse to http://spoon.net/
browsers.

 ✓ Dropbox makes it easy to synchronize files and directories across mul-
tiple computers anywhere on the Internet. It supports Windows, Mac,
Linux, and various smartphone operating systems. Look it up at www.
dropbox.com.

 ✓ Google Analytics provides a plethora of statistics about visitors to your
Web site, including user origin, operating system (OS), Web browser,
and oodles more. Want to understand your audience? Get Google
Analytics free at www.google.com/analytics.

 ✓ CrazyEgg and ClickDensity offer heat maps that illustrate exactly how
people are using (and moving through) your Web site. No matter what
or how you think your users might be using your site, these tools tell
you what’s really happening. Find them at www.crazyegg.com and
www.clickdensity.com.

 ✓ iPhonetester.com and iPadPeek.com provide helpful tools to see how
your Web site looks on an iPhone and iPad without having to buy or
otherwise obtain one. Check them out at www.iphonetester.com and
www.ipadpeek.com.

33_9780470916599-ch23.indd 37133_9780470916599-ch23.indd 371 11/30/10 12:28 AM11/30/10 12:28 AM

372 Part VI: The Part of Tens

33_9780470916599-ch23.indd 37233_9780470916599-ch23.indd 372 11/30/10 12:28 AM11/30/10 12:28 AM

Appendix A

Twitter Supporters

Thank you to the following people that have inspired and influenced the
direction of this book: Eric Meyer, Janine Warner, Adam DuVander,

Smashing Magazine, and the W3C.

Special thanks to the feedback from Twitter reviewers: Matthew Guay
@maguay; Brent Wheeldon @BeeEmmDoubleU; Bruno Belotti @abulafio; Ray
Mitchell @SixFourWeb; Amber Weinberg @amberweinberg.

Thanks to all our Twitter followers: @tigermain, @robertosolanom, @scotia-
systems, @webalyst, @markhughes, @nationalnet, @quantum_dynamic, @con-
domiami, @apsace, @ivokhin, @anthonyroose, @gusikhwan, @Lorenzo_Vl,
@paulcredmond, @KennthPang, @timmetje1990, @CarHeDa, @web_mint,
@w3Servcies, @theinklog, @Himmathand, @eleeze, @Jooosieeeee,
@Bacterialyrical, @webvana, @Ricksta82, @imaria, @andyhoyland, @hoyland-
web, @csswebsiteaward, @shawncampbell, @matt_neary, @Certo, @noufande-
sign, @jkatke, @viktor_kkk, @_zehro, @saub09, @karezzy, @mstlaurent,
@SMHMAG, @Cleverfidel, @ivy526, @edmossify, @Burton_Boi, @1eme-
lyperez1, @damenleeturks, @etemplesmithson, @Nimadera, @jintexas, @dead-
meta4, @Fulcan, @sourcecraft, @mordrin, @alexconner, @kyleschem,
@Operator1, @shaun_capehart, @cehwitham, @Aanyankah, @Wing_Cheng,
@PoorKidOnCrack, @return1_at, @Iamnegative, @newinyork, @mstandage,
@favz, @downingbryan, @bobrovnikov, @rrahulprasad, @danieladr, @irSteve,
@hidobrado, @Codeclown, @berit_jensen, @Ingenious_mind, @martinbean,
@brianarn, @annemckinnell, @Mammas_Crunk, @urbandave, @mauguar,
@bebraw, @thedesignloft, @em_two, @mandirice, @steddie1, @doslimones,
@wedeacon, @Ade_101, @RedHottopDesign, @marcvangijn, @twahlin,
@Xochi_ALC, @tabithakarcher, @DomDanson, @RichardConroy, @diegobetto,
@jmanzitti, @Lamc82, @danaeaguilar, @jaslorax, @hellomrtaylor, @design328,
@creative_cakery, @hiester, @phlipper, @DejitaruKyonshi, @takingovermiami,
@Robert_Cummings, @scott2211, @helvetious, @wesholing, @bklahrke,
@swkolupailo, @freundedwerbung, @tweetHOOPLA, @caffeinatedsus, @grey-
likeme, @jeclark, @kennydelaney, @POwall, @pyhrus, @cosmive, @sonyaong,
@jaimefoxx, @pbz1912, @gorazdmurnik, @adietz, @RorschachDesign, @timfer-
rell, @bswatson, @prosurf_pl, @MisaAmiya, @MSoregaroli, @blossomingmind,

34_9780470916599-bapp01.indd 37334_9780470916599-bapp01.indd 373 11/30/10 12:28 AM11/30/10 12:28 AM

374 HTML, XHTML & CSS For Dummies, 7th Edition

@nickludwig, @jaymanpandya, @ReneeShupe, @heitortsergent, @hosh-
man6000, @kevinpfab, @jaysonlane, @mrkiji, @viacoffee, @sambang, @law-
rencetaur, @textusstudios, @Pumpki, @andersandersson, @linglau64,
@lookwebdesign, @djbolton, @vtran1, @eddo32, @AmberValDesign,
@XploiteDesigns, @khean, @spikeyekim, @ronaldberner, @romymk, @psy-
chopark, @phatchopolis, @GoddamnNoise, @LadyJ389, @hamptonsmedia,
@stefan_persson, @lesterho, @evanw, @afreehour, @just_tuts, @pgaboury,
@melissapillon, @big_matt_b, @PigOnTheWingDev, @bregtcolpaert, @alistair-
calder, @jeffkan, @mmarnall, @_norrsken_, @Brain_Pulse, @KSSpengler,
@mrstolt, @tolga_ozdemir, @Xand49, @neur0tica, @thaiszorghi, @theart-
stadhsmdl, @danfauver, @VGWyvern, @OakesDesign, @thek1w1, @MattVoran,
@fcastrovazquez, @Jay_Searra, @rnbjunkiie, @Mcroyle, @andymeek, @klaw-
renc, @matthewcarleton, @SixFourWeb, @myCodeHeroes, @mannersand-
poise, @adorephoto, @brightworks, @mikelitchfield, @jonathanbaltz,
@AFFENT0AST, @AliciaLevey, @msteinerweb, @kevinoh, @laraleepalmer,
@justbeingarlyn, @darrinmccann, @KimKritzinger, @nixonmedia, @rock2575,
@dhulk, @fabsn182, @360construct, @ColorStormGD, @sawayaconsult,
@dsellergren, @madhurjain, @ChristinaBruun, @toejklemme, @AndyScherzinger,
@donaldpcook, @arghlex, @buraksarica, @2biazdk, @reiot, @tgummerer,
@SayHidk, @cabellc, @simplybcreative, @arthurbrownjr, @emilyJbro, @freyth-
man, @JayTillman, @Seich, @wilq_, @kylebellamy, @ElliotLings, @srcarli,
@SRotherham, @jaytem, @hollandprdhouse, @MachaSign, @suzannehullah,
@krukinternet, @Gargron, @normnode, @erichoffman, @richardkruk,
@perfectc_nl, @crumenos, @erwinkerk, @geoffcampbell1, @adamayala,
@AndrewChamp, @MatthewCooney, @disseny_web, @Atzimba, @ignacion-
imo, @KineticKimberly, @ruin11, @MarisBunkovskis, @johannesakesson,
@lucky_v, @enkayes, @Revolution1210, @atomrow, @MattTyas, @schofeld,
@damsean102, @jchawner, @henasraf, @jmz360, @george_elias, @ddgll, @avg-
janecrafter, @Vivid_Ness, @Sophie_will_, @AndyMarkle, @thezenmonkey,
@usaps, @robbclarke, @audielle, @woodleader, @dale_moore, @kris860911,
@karolinaszczur, @dustyfields, @leevanlog, @gibbon77, @tomhermans, @bro-
therabstract, @b18269, @sg4380, @JoelCox, @nicolasrauber, @cl_thompson,
@nvartolomei, @aklipz, @delphikit, @renaars, @eduardofaria, @SkyZee,
@stylishpixel, @vi_rox, @christodhunter, @adhipg, @ar_designs, @nickjvm,
@RadDevelopment, @server404, @designpatrol, @HappinessBook, @bbisser,
@lizialexander, @iamrewind, @Angelz, @galovesongs, @attawayUCM,
@Johnathan1707, @jiminizer, @spacepuddle, @emilyrumbelow, @ShunaP,
@iheartrendering, @dren_martin, @NotoriousUSB, @Swrdlw, @aariste,
@LeahFreihaut, @CraigTuffs, @eagleseye, @JJ_Web, @ivonakarajlovic,
@manion, @mikeheaver, @noiserocker, @hmenon, @andyedinborough,
@artrubicon, @MichaelHermus, @dawny_cupcake, @tdwright, @GregHuntoon,
@andrewcairns, @Shane_Howell, @virtualizacia, @neilnand, @the18,
@urosgruber, @Elisje, @marvos, @Davegood86, @lucraak, @sambell111,
@WVMagicDesign, @ValentinoVelez, @datouyL, @Blueys, @Davezilla,
@MathRi, @philteague, @ThalAMorgul, @metslifer, @coldwellbnkr,
@mantebridts, @douglasradburn, @TutZone, @CynthiaSavard, @marzhal,

34_9780470916599-bapp01.indd 37434_9780470916599-bapp01.indd 374 11/30/10 12:28 AM11/30/10 12:28 AM

375 Appendix: Twitter Supporters

@JamesEggers, @BLINDACRE, @thejaycarlson, @meerkw, @zimmiclabs,
@haggen, @narelle, @Didifournier, @sonicdivx, @chillman2, @fievelwill,
@thomasoffinga, @Fubart, @TimoBakx, @prokka, @phelo, @cssgarden,
@aleksandar_k, @SlodiveOnline, @siphilp, @OrionCards, @ZoranJambor,
@jalynish, @sethmsparks, @lollyjayne9, @Lil_Tumbelina, @celinemontheard,
@oursurveysays, @marklkelly, @aminabbasian, @stephenwalcher, @axing,
@ns_museum, @cprowe, @JustinRhodes, @IcarusWingz, @Vinomorph,
@TheHundredth, @sillybear, @persocon, @mschatzler, @StevenHook, @hlash-
brooke, @spaceghost65, @daninacan, @stakey, @andreaDuquette, @DualDev,
@richwilliamsuk, @seanodotcom, @frizzychick, @srikanthpanaman, @ugalem,
@vetler, @mattfroese, @foocode, @TWENTY4e, @trickstah, @cl_audio, @rob_
norman, @GrayJunior, @ryanriatno, @imrelentless, @forensick, @patrickto-
mas, @whatidraggedin, @Ronsend, @donroyco, @SilverbladeNL, @t_films,
@juliegozali, @Zonakusu, @michaelmcguk, @creativeye, @stickyseal,
@ren_riz, @Baztoune, @Series3Graphics, @jcboutkan, @randriese, @apinder,
@aisy, @Grayski, @fireb0x, @edg, @drquesh, @amberweinberg, @crashmas-
ter007, @BrokenMichaela, @Tara_Nielsen_, @svendenotter, @webtischler,
@magalocr, @brettschumann, @orionweb, @viktoralarsson, @shawnhud,
@HannahRampton, @zenom_, @apaatsio, @twit_asim, @piuleony_, @
ameershk, @PatrykNr2010, @nerdylamb, @Moodlegirl, @omersilent, @oogyx,
@SUEL_Design, @CSSOrg, @usingJquery, @ondoordacht, @kaybrex, @macx,
@samswenson, @Jaeesen, @InDieta, @javierland, @RayKayMarketing,
@grfxdznr, @mrandmrsBEAR, @dswtpl, @netmoni, @alphahost, @alfonsomm,
@nurseito, @BreakinRecClark, @stefstivala, @mmahgoub, @evertonht,
@VladanF, @juneja_23ravi, @ayoungh, @Prog5rammer, @gustotech,
@AgsaHosting, @sansansihoke, @xhtmljunction, @infocuswebsolu,
@iAndroid_SA, @dtli, @actionmoviefrea, @techGURUtwit, @OgleMedia,
@smashingmag, @jnelson74, @brandjane, @BKB_mschroeder, @EvernetUK,
@eminaya, @eightfivezero, @Vera2106, @normalnorman, @justinmcgarry,
@danielgrieve, @anaura, @snow_burger, @TotalBodyMgmt, @tim_gleeson,
@moshner, @ryan_yates, @fittrainerchris, @xteban, @noveltysystems,
@almakov, @Vtomatis, @mytwitacct, @1111theatre, @fointypinger, @msux,
@Zabisco, @ryanbarr, @kristerkari, @JeroenEijkhof, @mitsubstanz, @the-
andym, @inxilpro, @bavaga_com, @Dharmangp, @Ed_sin, @twelveofour,
@shiftyp, @misteraj, @equinlan, @vivek2562, @prayagn, @nlronald, @marco-
gallen, @blaneywebdesign, @atatz, @Vrean, @hameedraha, @darkforce_er,
@ReinierButot, @SaraKalinoski, @goncaloborrega, @Designerwitter, @chris_
gg, @torrentroot, @UserStudio, @vherrin, @AhtiK, @marie_luce, @evaryont,
@daniele_360, @eirikhm, @michelgort, @albertlo, @reggielamson, @iambca,
@stewartritchie, @jabridesign, @BurkHufnagel, @siderakis, @edmeehan,
@soyrosa, @schoot, @naamyo, @TechAsNeeded, @amyberger, @neilthurlwell,
@MMudassir, @chimericdream, @metalchic, @chrisajohnso, @the_jchristie,
@piksal, @blueeyesben, @josephj60, @riscaa, @anthonypants, @chucken,
@BeeEmmDoubleU, @mgjesdal, @Fas75, @spyn, @cameronbaney, @intu-
itionhq, @10For2, @mike_o_sullivan, @chrislevy, @javaph, @bslavinator,

34_9780470916599-bapp01.indd 37534_9780470916599-bapp01.indd 375 11/30/10 12:28 AM11/30/10 12:28 AM

376 HTML, XHTML & CSS For Dummies, 7th Edition

@Larsenal, @scans007, @Saucerdk, @rockyroadizme, @davidnilsson, @Sorcix,
@LoudaMedia, @andrewinebarger, @maguay, @jessamazing, @mixrecords,
@iThorning, @AddictToSystems, @anderschdk, @Jeepers1993, @gnoruhs,
@mcgrafics, @jayjdk, @ryankaye, @yellowllama, @LeeTurley, @Jaswinder-
Virdee, @jbayone, @Velehto, @charlesboyung, @mywayhome, @whitbread-
design, @leanderdirkse, @mys7, @mattrogowski, @iconfinder, @coaststudios,
@sunilsk, @MJKilgore, @allanberger, @spodalicious, @TheRealKartik,
@thisiswilson, @shahrilabdullah, @abulafio, @dalesimpson, @racshot653,
@garethspictures, @bretbouchard, @brendadhk, @chucke, @moo_marketing,
@megrw, @Brer, @ghostdog23, @mysticode, @crmunro, @davidvivero,
@LisaWeik, @juarezpaf, @mloweris, @tudorizer, @FrankS, @georgel,
@Kathryn_Wells, @Yuibox, @ronwikso, @_ambrose, @JeffAwesomeribrahimali,
@ryanmargheriti, @tumbledesign, @robbygoodwin, @chrisk_de, @japellerano,
@d_winter, @paulaceva, @BrianBBrian, @CreativeQA, @fabbrikk, @cmaddi-
son, @vgreano, @felipus, @mistercameron, @webtehdas, @NateReid, @hune-
falk, @johncloys, @seengee, @amanaplan, @rmanzanet, @cobradave,
@marcseyon, @illustrationdan, @UncleBumpy, @Danger_Mouse, @kielabok-
kie, @rafaeluzzi, @zitrusfrisch, @sensorsicht, @yummygum, @andrewingram,
@mentalartist, @kworry, @ljohndotnet, @IoNPulse, @IvanSF, @rourkery, @kev-
inhorek, @AnotherAxe, @davidmcooper, @frankwatervoort, @AlwaysTyred,
@ciberch, @cs188, @ekochman, @parisvega, @Gidgidonihah, @yoannjaffre,
@Alec_, @ashleyw, @robrubinoff, @purplehayz, @gregrwilkinson, @rumblepup,
@SachaGreif, @swinefever, @wwfa, @adambrehm, @RedstageMagento,
@AnthonyLatona, @csskarma, @Maximegalon, @edhassinger, @SelAromDotNet,
@douglasrogers, @afxjzs, @brianmark, @tb623, @jhontr, @ruudburger,
@Flash_Rabbit, @web2000, @3ch0, @krusipo, @userintuitive, @slawekp,
@teabass, @bartaz, @yngveh, @middlep, @adomas_s, @maartenmachiels,
@doodlemoonch, @iamntz, @micahbrich, @marele, @hendynz, @petechappell,
@bmcmann88, @Fatherof1, @janinewarner, @_Atticus, @eckermanj, @hagel,
@ImpressiveWebs, @guywithabike, @SonicInteractiv, @Whiskers, @thereal-
geddylee, @csonski, @iAquarian, @benrabicoff, @38thirty, @cinderstudios,
@autodafe, @poneal, @The_Slade, @TexasMonique, @JustinIsADbag,
@ChillyP77, @bloodycheese, @katevanderploeg, @Falcor00, @russwilson,
@tombrokeoff, @AndreaKStout, @JimFl, @bgraesser, @jeffersonnoble,
@gmcbride.

34_9780470916599-bapp01.indd 37634_9780470916599-bapp01.indd 376 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

& (ampersand), 23–24
(#) sign, 100
: (colon), 96
; (semicolon), 137
@ import keyword, 158
@font-face pseudo-class, 331, 340
< (less-than sign), 23–24
> (greater-than sign), 23–24
6 Lightbox Plugins for WordPress

Web site, 277

• A •
A List Apart Magazine Web site, 374
<a> tag, 156
absolute links, 93
absolute value measurements, 133
Accept attribute, 246
Acceptcharset attribute, 246
acronym (rarely used) attribute, 316
action attribute, 225, 226
:active pseudo class, 174, 207
addresses, 300
AddThis Web site, 258
Adobe Fireworks tool, 367
Adobe Flash program, 308
Adobe Photoshop tool, 366–367
:after pseudo class, 207
Align attribute, 317
Align deprecated attribute, 125
aligning

images, 114
text, 182–183

alink attribute, 317
All media type, 158
alt attribute, 117, 125, 240
alternative text, 110–112
American Standard Code for Information

Interchange (ASCII), 22–23

ampersand (&), 23–24
Analytics tool, 371
anchor elements, 91, 93, 101
animations, 338–339
Apple company, 308
applet attribute, 316
applet element, 123–124
applets, 213
Aptana Studio tool, 364
archive attribute, 125, 317
<area /> element, 116
aria-* attribute, 315
<article> element, 311
ASCII (American Standard Code for

Information Interchange), 22–23
<aside> element, 311
async (script) attribute, 313
attributes

element-specifi c attributes, 312–314
forms, 225–226
global HTML5 attributes, 315
images, 116–117
overview, 17
removed from HTML5, 316–318

<audio> element, 311
aural media type, 158
aural styles, 167
autocomplete (input) attribute, 313
autofocus (input, select,

textarea, button) attribute, 313

• B •
background attribute, 125, 176, 317
background property, 132, 192
background-attachment property, 192
Backgroundcolor property, 159, 176, 192
Backgroundimage property, 159, 192
background-position property, 192

Index

35_9780470916599-bindex.indd 37735_9780470916599-bindex.indd 377 11/30/10 12:28 AM11/30/10 12:28 AM

378 HTML, XHTML & CSS For Dummies, 7th Edition

background-repeat property, 192
backgrounds

color, 192
CSS3, 334
image, 192–193
overview, 175–176

bandwidth, 296–297
basefont (presentational)

attribute, 316
basefont deprecated element, 123
:before pseudo class, 207
bgcolor attribute, 125, 317
blank value, 98
blink value, 187
<blockquote> element, 77
blocks of text

aligning text, 182–183
block quotes, 77–78
horizontal rules, 80–82
indenting text, 183
preformatted text, 78–80

<body> element, 36, 71, 154–155, 286
bold text, 184
bolder value, 184
border attribute, 125, 317
Border property, 132, 163, 194
border-bottom property, 194
borders

CSS3, 332–333
images, 114
properties of, 193–195

border-style property, 162
border-width property, 163
bottom property, 161, 202
box-shadow attribute, 336
braille media type, 158
breadcrumbs, 298
broken links, 95
Browser Sandbox tools, 371
browsers

dependencies of, 349
graphical, 76–77
overview, 13–14

text, 77
windows of, 216–217

bugs
live links, 355–356
making site maps, 353–354
old links, 356
peer reviews, 358
revisiting material, 357
scheduling site reviews, 358–359
testing tools, 358
text, 354–355
user feedback, 359–360

bulleted lists, 85–87
buttons, 271

• C •
%CAlign attribute type, 127
Candidate Recommendation (CR), 325
<canvas> element, 311
capitalization

markup for, 186
syntax for, 186
of URLs, 95

CAPTCHA, 249
cascading, 145–146
Cascading Style Sheets. See CSS
CDATA attribute type, 127
cellpadding attribute, 317
cellspacing attribute, 317
center (presentational)

attribute, 316
center deprecated element, 123
centimeters, 133
CGI (Common Gateway Interface), 241
CGI Resource Index, 243
char attribute, 317
characters

(X)HTML, codes, 23
codes, 378
HTML5 encoding, 309–310
non-ASCII, 22–23
spacing, 180–181
tag, 23–24

35_9780470916599-bindex.indd 37835_9780470916599-bindex.indd 378 11/30/10 12:28 AM11/30/10 12:28 AM

379 Index

charset (meta) attribute, 313
check boxes, 230–231
Checked attribute, 246
class attribute, 138, 315
classid attribute, 317
Classifi cation properties, 132
clear attribute, 125, 317
clear property, 202, 203–204
ClickDensity tool, 371
clients, 370
client-side scripts

adding rollovers to pages, 265–271
working with cookies, 272–274
working with jQuery and FancyBox

lightbox, 274–278
clip property, 202
CMS (Content Management System)

customizing CSS on, 283–289
Drupal, 281–282
to HTML sites, 279–280
Joomla, 282
WordPress, 281

CMS-based Web sites, 280
Code deprecated attribute, 125
codebase attribute, 125, 317
codetype attribute, 317
colon (:), 96
color

backgrounds, 175–176
color names, 170–171
hexadecimal color codes, 171–172
links, 173–175
RGB values, 172
text, 173

%Color attribute type, 127
Color deprecated attribute, 125
color keyword, 319
color property, 159, 205, 206
cols attribute, 236
<command> element, 311
comma-separated values (CSV), 242
common font families, 177
Common Gateway Interface (CGI), 241
compact attribute, 125, 318

compressed fi les, 102–103
content attributes, 68
#content element, 284
Content Management System. See CMS
contenteditable* attribute, 315
contextmenu* attribute, 315
cookies

expiration dates of, 274
working with, 272–274

coords attribute, 117
cords attribute, 317
CR (Candidate Recommendation), 325
CrazyEgg tool, 371
cross-platform fi le formats, 106
CSS (Cascading Style Sheets)

background properties, 191–193
border and outline properties, 193–195
cascading, 145–146
changing fonts, 153–157
custom button rollovers with, 271
dimension properties, 195–196
and Drupal, 285–287
Eric Meyer’s reset, 209
external style sheets, 144–145, 157–158
Firebug Web site, 209
fonts and font properties, 197–199
image rollovers with, 268–271
internal style sheets, 143–144
and Joomla, 287–289
margin and padding properties, 200–201
markup, 26–27
positioning, 151–153
positioning properties, 201–204
pseudo classes, 207–208
sizing text fonts with, 179
Spoon Browser Sandbox Web site, 209
structure and syntax, 134–142
style sheets, 130–134
text properties, 204–206
text rollovers with, 266–268
using CSS with multimedia, 158–167
visual layouts, 149–151
W3C CSS validation service, 209
W3Schools Web site, 208

35_9780470916599-bindex.indd 37935_9780470916599-bindex.indd 379 11/30/10 12:28 AM11/30/10 12:28 AM

380 HTML, XHTML & CSS For Dummies, 7th Edition

CSS (Cascading Style Sheets) (continued)

Web-developer’s handbook, 210
and WordPress, 283–285
YSlow add-on, 210

CSS3
animations, 338–339
backgrounds, 334
borders, 332–333
fonts, 331–332
limitations of, 340–341
overview, 325–330
resources for, 341
shadows, 334–337
transforming content, 339–340
transitions, 337–338

CSS-Tricks Web site, 375
CSV (comma-separated values), 242
cursor property, 164, 202, 204
Cute FTP Lite program, 370
Cyberduck program, 370

• D •
data

collection forms of, 223–224
processing, 241–244

data-* attribute, 315
<datalist> element, 311
date keyword, 319
datetime keyword, 319
datetimelocal keyword, 319
declarations

(X)HTML DOCTYPE, 64–65
CCS, 136–138
HTML DOCTYPE, 64

declare attribute, 317
defi nition lists, 87–89
demos, 300
deprecated (X)HTML markup, 121–128

attributes, 124–127
elements, 123–124
overview, 121–123

designing
forms, 244–245
Web pages, 33–34
Web sites, 45–46

<details> element, 311
DHTML (Dynamic HTML), 265
dimension properties, 195–196
dir attribute, 315, 316
dir deprecated element, 123
direction property, 205
directory paths, 97
disabled (fieldset) attribute, 313
Display property, 161, 202
<div> tag, 268
DOCTYPE declarations, 64–65
document tree, 174
Document Type Defi nitions (DTDs),

64, 376–377
documents

(X)HTML, 63–64, 71–72
<html> element, 65
adding (X)HTML DOCTYPE declarations,

64–65
adding (X)HTML namespaces, 65–66
adding headers, 66–71
adding HTML DOCTYPE declarations, 64
headings, 26
heads, 25
images in, 27
structuring, 346

domains, 16, 57
draggable* attribute, 315
Dreamweaver tool, 362–363
Dropbox tool, 371
drop-down list fi elds, 234–236
Drupal CMS, 281–282, 285–287
DTDs (Document Type Defi nitions), 64,

376–377
Dynamic HTML (DHTML), 265
dynamic pages, 213

35_9780470916599-bindex.indd 38035_9780470916599-bindex.indd 380 11/30/10 12:28 AM11/30/10 12:28 AM

381 Index

• E •
Easy HTML Construction Kit, 370
editors

graphics, 365–367
helper HTML, 363–365
WYSIWYG HTML, 362–363

elements
for adding document headers, 68
attributes specifi c to, 312–314
deprecated, 123
images, 116–117
nesting, 20
new in HTML5, 311–312
removed from HTML5, 315–316
single tags, 19–20
tag pairs, 19

 element, 74
e-mail

addresses, 103–104
sending form data by, 243–244

email keyword, 319
<embed> element, 311
embedding

creating maps, 256–258
Flickr, 255–256
using Twitter widgets, 252–255

embossed media type, 158
empty elements, 19, 108
encoding, 309–310
Enctype attribute, 246
entities

(X)HTML character codes, 23
non-ASCII characters, 22–23
overview, 17
tag characters, 23–24

Eric Meyer’s reset, 209
expiration date of cookies, 274
eXtensible Markup Language (XHTML)
<html> element, 65
adding DOCTYPE declarations, 64–65
adding document headers, 66–71

adding HTML DOCTYPE declarations, 64
adding namespaces, 65–66
character codes, 23
creating document body, 71–72
difference from HTML, 16–17
Document Type Defi nitions (DTDs),

376–377
establishing document structure, 63–64
markup, deprecated, 121–128

extensions, 96
external style sheets

importing, 145
linking, 144–145
overview, 129

externalizing style sheets, 157–158

• F •
Face deprecated attribute, 125
FancyBox lightbox, 274–278
feedback, 359–360
Fetch program, 370
<figcaption> element, 311
<figure> element, 311
fi le formats

.htm and .html, 38
GIF, 106
JPEG, 107
PNG, 107

File Transfer Protocol (FTP)
clients, 370
moving fi les with, 58–59
overview, 15

fi le upload fi elds, 233–234
fi lenames, 16, 96
fi les

choosing location and names for, 37
downloads, 102–103
.htm and .html formats, 38
moving to Web servers, 58–60

FileZilla program, 370
Firebug Firefox plugin, 370

35_9780470916599-bindex.indd 38135_9780470916599-bindex.indd 381 11/30/10 12:28 AM11/30/10 12:28 AM

382 HTML, XHTML & CSS For Dummies, 7th Edition

Firebug Web site, 209
Fireworks tool, 367
:first-child pseudo class, 207
:first-letter pseudo class, 207
fi rst-level headings, 76
:first-line pseudo class, 207
Flash tool, 307–308
fl at fi les, 242
Flickr app, 255–256
float property, 202
Float/uO property, 163
fl ush alignment, 182
:focus pseudo class, 174, 207
font (presentational) attribute, 316
font deprecated element, 123
font property, 197
font-family property, 137, 159, 176, 197
font-family value, 188
fonts

body text, 154–155
character spacing, 180–181
CSS3, 331–332
family, 176–178, 197–198
font property, 187–188
headings, 155
hyperlinks, 155–157
line height, 179–180
size of, 178–179, 198–199
weight of, 198

font-size property, 159, 197, 198
font-size value, 188
font-style property, 197
font-style value, 188
font-variant property, 197
font-variant value, 188
font-weight property, 160, 197
font-weight value, 188
<footer> element, 311
For attribute, 246
form (input, output, select,

textarea, button, fieldset)
attribute, 313

form gateway page, 245
form handlers, 225
<form> element, 217, 225

formaction (input, button)
attribute, 313

formatting text
headings, 76–77
paragraphs, 74–75

formenctype (input, button)
attribute, 313

formmethod (input, button)
attribute, 313

formnovalidate (input, button)
attribute, 313

forms
CAPTCHA, 249
check boxes and radio buttons, 230–231
customizing Submit and Reset buttons,

239–241
designing, 244–245
drop-down list fi elds, 234–236
fi le upload fi elds, 233–234
frameworks, 248–249
hidden fi elds, 231–232
input tags, 226–227
markup, 246–248
multiline text boxes, 236–237
password fi elds, 229–230
processing data, 241–244
structure, 225–226
Submit and Reset buttons, 237–239
text fi elds, 227–229
uses for, 221–224
validation of, 241

formtarget (input, button)
attribute, 313

frame (negative usage) attribute, 316
frame attribute, 318
frameborder attribute, 318
frameset (negative usage)

attribute, 316
frameworks

forms, 248–249
mobile, 301–303

FTP (File Transfer Protocol)
clients, 370
moving fi les with, 58–59
overview, 15

35_9780470916599-bindex.indd 38235_9780470916599-bindex.indd 382 11/30/10 12:28 AM11/30/10 12:28 AM

383 Index

• G •
generic font families, 177
GIF (Graphics Interchange Format), 106
global HTML5 attributes, 315
GNU Image Manipulation Program

v(GIMP), 366
Google Analytics tool, 371
Google maps

and Twitter mashup, 262–263
and yelp mashup, 259–262

graphical browsers, 76–77
graphics editors

inexpensive, 365–366
professional, 366–367

Graphics Interchange Format (GIF), 106
greater-than sign (>), 23–24

• H •
<h1> element, 36, 75
<h4> element, 268
<h6> element, 75
handheld media type, 158
hash mark, 152
<head> element, 36, 268
<header> element, 311
headers

CSS, 155
formatting, 76
giving pages titles, 66–67
graphical browsers, 76–77
metadata, 68–69
redirecting users to other pages, 69–71
text browsers, 77

height attribute, 112, 125, 318
height property, 164, 196
helper HTML editors, 363–365
hexadecimal color codes, 171–172
<hgroup> element, 311
hidden fi elds, 231–232
hidden* attribute, 315
horizontal rules, 80–82

hosting Web sites
moving fi les to Web servers, 58–60
obtaining domains, 57
overview, 55–56
using hosting providers, 56

hostname, 97
:hover pseudo class, 174, 207
<hr /> element, 80
href attribute, 104, 117, 145
hreflang (area) attribute, 313
hspace attribute, 125, 318
.htm fi le format, 38
HTML. See also CSS

4.01 Frameset DOCTYPE declaration, 64
4.01 Strict DOCTYPE declaration, 64
4.01 Transitional DOCTYPE declaration, 64
difference with (X)HTML (eXtensible

Markup Language), 16–17
document headings, 26
document heads, 25
lists, 26
paragraphs, 26
sites, comparing to CMS sites, 279–280
tables, 26
validators, 368–369
Web sites based only in, 280

<html> element, 36, 65
HTML references, online

character codes, 378
HTML and (X)HTML Document Type

Defi nitions (DTDs), 376–377
resource sites, 373–375
specifi cations, 375–376

Open Source Notepad++ tool, 365
HTML5

additional resources, 322
attributes removed from, 316–318
elements removed from, 315–316
and Flash, 307–308
limits to access and usage of, 320–322
markup, 308–310
new attributes, 312–316
new elements, 311–312
new input types in, 318–319

35_9780470916599-bindex.indd 38335_9780470916599-bindex.indd 383 11/30/10 12:28 AM11/30/10 12:28 AM

384 HTML, XHTML & CSS For Dummies, 7th Edition

HTML5 (continued)

sample Web pages of, 323–324
Web APIs, 320

HTML-Kit tool, 365, 370
HTTP (Hypertext Transfer Protocol), 15, 95
http-equiv attribute, 71
hyperlinks

absolute, 93
broken, 95
building image maps, 116–118
choosing, 53–54
color of, 173–175
e-mail addresses, 103–104
external style sheets, 144–145
fi le downloads, 102–103
live, 355–356
locations in Web pages, 99–101
new windows, 97–99
old, 356
overview, 27
relative, 93–95
text, 54
triggering, 115–116

hypertext, 10–13
HyperText Markup Language. See HTML
HyperText Transfer Protocol (HTTP), 15, 95

• I •
<i> tag, 184
%IAlign attribute type, 127
icons used in this book, 6
id attribute, 315
id=”name” attribute, 140
images

alignment of, 114
adding alternative and title text, 110–112
borders of, 114
editing software for, 172
in HTML documents, 27
linking, 115–118
location of, 108
maps, 116, 118
optimizing, 107
role of in Web pages, 105–106

rollovers with CSS, 268–271
specifying image size, 112–114
using element, 108–110
Web-friendly, 106–108

 element, 20, 108–110, 112, 116
 element, 257
inches, 133
indenting text, 183
inheriting styles, 141–142
inline elements, 74, 93
inline styles, 129, 142, 144
<input /> element, 227, 229, 232, 240
input fi elds

check boxes and radio buttons, 230–231
customizing Submit and Reset buttons,

239–241
drop-down list fi elds, 234–236
fi le upload fi elds, 233–234
hidden fi elds, 231–232
multiline text boxes, 236–237
password fi elds, 229–230
Submit and Reset buttons, 237–239
text fi elds, 227–229

input tags, 226–227
input types, 318–319
internal style sheets, 129, 143–144
Internet protocols, 15
intradocument hyperlinks, 99, 100
iPadPeek Web site, 371
iPhonetester Web site, 371
isindex attribute, 316
isindex element, 123–124
italics, 185

• J •
Java programming language, 213
JavaScript

arranging content dynamically using,
214–216

forms, 241
libraries, 277
scripting Web pages using, 212–214

Joint Photographic Experts Group (JPEG), 107
Joomla CMS, 282, 287–289

35_9780470916599-bindex.indd 38435_9780470916599-bindex.indd 384 11/30/10 12:28 AM11/30/10 12:28 AM

385 Index

jQTouch framework, 302–303
jQuery library, 274–278
jQuery Validation Plugins Web site, 248
jQuery Web site, 277
justify keyword, 182

• K •
<keygen> element, 311
Komodo Edit software, 364
Kompozer Web page editor, 363

• L •
Label attribute, 246, 313
labeling documents
<html> element, 65
adding (X)HTML DOCTYPE declarations,

64–65
adding (X)HTML namespaces, 65–66
adding HTML DOCTYPE declarations, 64

%LAlign attribute type, 127
lang attribute, 315
:lang pseudo class, 207
Language deprecated attribute, 125
Last Call (LC), 325
LCR attribute type, 127
LCRJ attribute type, 127
left keyword, 182
left property,162, 202
%Length attribute type, 127
less-than sign (<), 23–24
letter-spacing property, 180, 205
 element, 82, 84, 228
lightbox plugins, 277
lighter value, 184
line height, 179–180
line-height property, 160, 205, 206
line-height value, 188
line-through value, 187
link attribute, 317
link checkers, 367–368
Link deprecated attribute, 126
link element, 144
:link pseudo class, 174, 207

links
absolute, 93
broken, 95
building image maps, 116–118
choosing, 53–54
color of, 173–175
e-mail addresses, 103–104
external style sheets, 144–145
fi le downloads, 102–103
live, 355–356
locations in Web pages, 99–101
new windows, 97–99
old, 356
overview, 27
relative, 93–95
text, 54
triggering, 115–116

LinkScan program, 368
List properties, 132
lists

bulleted, 85–87
defi ned, 87–89
formatting, 83–84
nesting, 89–90
numbering, 84–85
overview, 26

ListStyle attribute type, 127
list-styleimage property, 160
list-styleposition property, 160
list-styletype property, 160
local pages, 13
longdesc attribute, 317
lowercase value, 186
LRAN attribute type, 127

• M •
manifest (html) attribute, 313
<map> element, 116
maps

creating, 256–258
elements and attributes, 116–117
markup, 117–118
using as visual user guides, 48–49
using for site development, 46–48

margin properties, 132, 164, 200

35_9780470916599-bindex.indd 38535_9780470916599-bindex.indd 385 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

386 HTML, XHTML & CSS For Dummies, 7th Edition

margin-bottom property, 200
marginheight attribute, 318
margin-left property, 200
margin-right property, 200
margin-top property, 200
<mark> element, 312
Matt’s Script archive, 243
max (input) attribute, 313
max-height property, 196
maxlength attribute, 228
max-width property, 196
media (a, area) attribute, 313
media types, 158
menu deprecated element, 123
<meta /> element, 68
<meta /> tags, 69
metadata

custom names, 68–69
defi ned, 66
elements and attributes, 68

<meter> element, 312
method attribute, 225, 246
Microsoft Expression Web 4 package, 363
millimeters, 133
MIMDisabled attribute, 246
min (input) attribute, 313
min-height property, 196
min-width property, 196
mobile Web design

addresses, 300
designing for distracted surfers, 299
designing for small screens, 297
frameworks, 301–303
location, 300–301
mobile devices, 293–296
navigating on mobile devices, 298
optimizing for low bandwidth, 297
surfi ng the Web on many mobile

devices, 299
typing and clicking, 301
virtual demos or showcases, 300

month keyword, 319
MooTools Web site, 277

multiline text boxes, 236–237
multimedia, 158–167
multiple (input) attribute, 313
Multiple attribute, 246

• N •
N/A (None), 325
name attribute, 126, 230, 236, 247, 317
named locations, 100–101
namespaces, 65–66
naming

fi les, 37
link locations, 99

<nav> element, 312
navBar id, 150
navigation, 27, 49–52, 298
navigation bar, 150
nesting

lists, 89–90
overview, 20
tags, 141

noframes (negative usage)
attribute, 316

nohref attribute, 317
non-ASCII (American Standard Code for

Information Interchange) characters,
22–23

None (N/A), 325
none value, 186, 187
nonpareil CSS references, 191
normal value, 184, 185
noshade attribute, 318
Noshade deprecated attribute, 126
Noupe Web site, 375
novalidate (input) attribute, 314
nowrap attribute, 318
nowrap deprecated attribute, 126
Number attribute type, 127
number keyword, 319
numbered lists

formatting, 83–84
numbering, 84–85

35_9780470916599-bindex.indd 38635_9780470916599-bindex.indd 386 11/30/10 12:28 AM11/30/10 12:28 AM

387 Index

• O •
Object deprecated attribute, 126
oblique text, 185
octothorpe, 152
 attributes, 84–85
 element, 82, 84
online HTML references

character codes, 378
HTML and (X)HTML Document Type

Defi nitions (DTDs), 376–377
resource sites, 373–375
specifi cations, 375–376

Open Source Notepad++ tool, 365
<option> tag, 234
orphans property, 165
outline properties, 193–195
outline-color property, 194
outline-style property, 194
outline-width property, 194
<output> element, 312
outside links

choosing, 53–54
link text, 54

overflow property, 202
overlapping CSS, 152–153
overline value, 187
overlow-clip property, 202

• P •
<p> element, 36, 93
padding property, 132, 164, 200–201
padding-bottom property, 200
padding-left property, 200
padding-right property, 200
padding-top property, 200
pagebreakafter property, 165
pagebreakbefore property, 165
pagebreakinside property, 166
pages

adding alternative and title text, 110–112
adding rollovers to, 265–271

attractiveness of, 347
browsers, 13–14
CSS markup, 26–27
document headings, 26
document heads, 25
editing, 40–41
HTML5, 323–324
hypertext, 10–13
image borders and alignment, 114
image location, 108
images in HTML documents, 27
links and navigation tools, 27
links locations in, 99–101
lists, 26
local, 13
low scroll, 350
mobile Web design, 293–304
paragraphs, 26
planning design, 33–34
posting online, 41–42
processing forms on, 242–243
role of images in, 105–106
saving, 37–38
scripting, 211–220
specifying image size, 112–114
tables, 26
titles, 66–67
using element, 108–110
viewing, 38–39
Web servers, 14–15
writing HTML, 34–37

Paint Shop Pro Photo X3 graphics editor, 366
paragraphs, 26, 74–75
password fi elds, 229–230
paths, 16
pattern (input) attribute, 314
PDF fi les, 102
peer reviews, 358
Photoshop tool, 366–367
picas, 133
Picasa Web site, 258
ping (a, area) attribute, 314
%Pixel attribute type, 127
pixels, 133

35_9780470916599-bindex.indd 38735_9780470916599-bindex.indd 387 11/30/10 12:28 AM11/30/10 12:28 AM

388 HTML, XHTML & CSS For Dummies, 7th Edition

placeholder (input, textarea)
attribute, 314

plugins, 277
PNG (Portable Network Graphics), 107
points, 133
POP (Post Offi ce Protocol), 15
pop-up windows, 98
Portable Network Graphics (PNG), 107
position property, 162, 202
positioning properties
clear, 203–204
CSS, 132
cursor, 204
float, 202
z-index, 202–203

Post Offi ce Protocol (POP), 15
posting Web pages online, 41–42
pound symbol, 152
<pre> element, 79
preformatted text, 78–80
print media type, 158
processing data

processing forms on pages, 242–243
sending form data by e-mail, 243–244

profile attribute, 317
<progress> element, 312
projection media type, 158
Prompt deprecated attribute, 126
properties

background, 191–193
border and outline, 193–195
CSS, 134
dimension, 195–196
fonts and font, 197–199
margin and padding, 200–201
positioning, 201–204
text, 204–206

protocols, 15, 16
pseudo class selectors, 156
pseudo classes, 173–174, 207–208, 331

• Q •
QuickCheck program, 368
quotation class, 180

• R •
radio buttons, 230–231
ragged alignment, 182
range keyword, 319
Readonly attribute, 247
rel (area) attribute, 314
relative links

simple links, 94
site links, 94–95

relative URLs, 94
relative value measurements, 133
required (input, textarea)

attribute, 314
Reset buttons

customizing, 239–241
overview, 237–239

reset style sheets, 209
rev, charset attribute, 317
reversed (ol) attribute, 314
RGB values, 172
right keyword, 182
right property,161, 202
role* attribute, 315
rollovers, 265–271
rows attribute, 236
<rp> element, 312
<rt> element, 312
<ruby> element, 312
rules attribute, 318

• S •
s (presentational) attribute, 316
s deprecated element, 123
sandbox (iframe) attribute, 314
saving Web pages

.htm or .html, 38
choosing location and names for fi les, 37

scheme attribute, 317
scoped (style) attribute, 314
screen media type, 158
screens, 296, 297
Scribd Web site, 258

35_9780470916599-bindex.indd 38835_9780470916599-bindex.indd 388 11/30/10 12:28 AM11/30/10 12:28 AM

389 Index

<script> element, 217
scripting Web pages

JavaScript, 212–214
soliciting and verifying user input, 217–219
using JavaScript to arrange content

dynamically, 214–216
working with browser windows, 216–217

scripts, 211
ScriptSearch Web site, 243
scrolling attribute, 318
scrolling pages, 350
seamless (iframe) attribute, 314
search forms, 222–223
search keyword, 319
<section> element, 312
<select> tag, 234, 235
selectors, 136–138
*self attribute type, 127
semicolons (;), 137
Sencha Touch framework, 302
servers, 58–60
server-side scripting, 220
shadows, 334–337
shape attribute, 116, 317
shorthand properties, 151, 195
showcases, 300
simple links, 94
Simple Mail Transfer Protocol (SMTP), 15
single tags, 19–20
singleton tags, 108
site maps, 354
sites. See also bugs

building navigation, 49–52
comparing HTML to CMS, 279–280
content embedding, 252–258
content of, 345–346
design, 45–46
hosting, 55–60
HTML references, 373–375
links, 94–95
mapping, 46–49
maps, 353–354
mashups, 258–263
navigate, 349–350

planning outside links, 53–54
scheduling reviews, 358–359
structuring documents, 346

6 Lightbox Plugins for WordPress
Web site, 277

sixth-level headings, 76
size attribute, 126, 228, 247, 318
Size properties, 132
sizes (link) attribute, 314
sizing text

character spacing, 180–181
font size, 178–179
line height, 179–180

SlideShare Web site, 258
Smashing Magazine Web site, 374
SMTP (Simple Mail Transfer Protocol), 15
soliciting user input, 217–219
SourceForge LinkChecker program, 368
spacing properties, 200–201
span element, 139
specifi cations, 375–376
spellcheck* attribute, 315
Spoon Browser Sandbox Web site, 209
src attribute, 110, 240
srcdoc (iframe) attribute, 314
standby attribute, 317
start attribute, 84, 314
Start deprecated attribute, 126
step (input) attribute, 314
strike (presentational) attribute, 316
strike deprecated element, 123
 element, 74
style attribute, 315
style classes, 138–140
style IDs, 140–141
style sheets

external, 144–145, 157–158
internal, 143–144
overview, 130–134

<style> element, 143, 150
Submit buttons

customizing, 239–241
overview, 237–239

<summary> element, 312

35_9780470916599-bindex.indd 38935_9780470916599-bindex.indd 389 11/30/10 12:28 AM11/30/10 12:28 AM

390 HTML, XHTML & CSS For Dummies, 7th Edition

syntax
for applying bold, 184
for applying italic, 185
for changing capitalization, 186
for indenting text, 183
overview, 17
for text alignment, 182
for text decoration, 187

• T •
Tabindex attribute, 247, 315
Table properties, 132
tables, 26
tab-separated values (TSV), 242
tag characters, 23–24
tag pairs, 19
tags, 347–348
%TAlign attribute type, 127
target (base, a, area) attribute, 314
target attribute, 317
tel keyword, 319
testing tools, 358
text

aligning, 182–183
alternative, 110–112
body element, 154–155
bold, 184
browsers, 77
bugs, 354–355
changing capitalization, 185–186
color properties, 206
controlling text blocks, 77–82
decoration property, 187
fi elds, 227–229
formatting, 74–77
indenting, 183–184
italic, 184–185
line-height properties, 206
rollovers with CSS, 266–268
sizing, 178–181
title, 110–112
two-dimensional, 351

text, blocks of
block quotes, 77–78
horizontal rules, 80–82
preformatted text, 78–80

text attribute, 317
%Text attribute type, 127
Text deprecated attribute, 126
text-align property, 160, 182, 205
<textarea> element, 236
text-decoration property, 160, 205
text-indent property, 205
text-shadow property, 205
text-transform property, 185, 205
time keyword, 319
<time> element, 312
title attribute, 111, 315
title text, 110–112
<title> element, 36, 67
tools

Adobe Fireworks, 367
Adobe Photoshop, 365–367
Analytics, 371
Aptana Studio, 364
Browser Sandbox, 371
ClickDensity, 371
CrazyEgg, 371
Dreamweaver, 362–363
Dropbox, 371
Flash, 307–308
Google Analytics, 371
HTML-Kit, 365, 370
for navigation, 27
testing, 358
Web, 370–371

Top property, 161, 202
transitions, 337–338
triggering links, 115–116
TSV (tab-separated values), 242
tt (presentational) attribute, 316
Tty media type, 158
tweets, 252

35_9780470916599-bindex.indd 39035_9780470916599-bindex.indd 390 11/30/10 12:28 AM11/30/10 12:28 AM

391 Index

Twitter Web site
mashup with Google maps, 262–263
supporters, 373–376
widgets, 252–255

type attribute, 85, 229, 232, 314
Type deprecated attribute, 126

• U •
u (presentational) attribute, 316
u deprecated element, 123
UI (user inteface), 43, 58
 element, 228
under construction sections, 48
underline value, 187
uppercase value, 186
%URI attribute type, 127
URL (Uniform Resource Locator)

capitalization of, 95
overview, 15–16
relative, 94

url keyword, 319
user agents, 318
user feedback, 359–360
user inteface (UI), 43, 58

• V •
validation, 241, 368–369
Validatious Web site, 248
valign attribute, 318
value attribute, 230, 247, 314
value deprecated attribute, 126
values, 134
version attribute, 317
Version deprecated attribute, 126
vertical-align property, 205
<video> element, 312
virtual demos, 300
visibility property, 162, 202
:visited pseudo class, 174, 207
visual layouts, 149–151
vlink attribute, 317

vlink deprecated attribute, 126
vspace attribute, 318
vspace deprecated attribute, 126

• W •
W3 Schools Web site, 374
W3C CSS validation service, 209
W3C link checker, 367–368
W3C Recommendation, 375
W3C validator, 369
W3Schools Web site, 208
<wbr> element, 312
WD (Working Draft), 325
Web APIs, 320
Web Design Group Web site, 374
Web design, mobile

addresses, 300
designing for distracted surfers, 299
designing for small screens, 297
frameworks, 301–303
location, 300–301
mobile devices, 293–296
navigating on mobile devices, 298
optimizing for low bandwidth, 297
surfi ng the Web on many mobile

devices, 299
typing and clicking, 301
virtual demos or showcases, 300

Web Developer’s Virtual Library
Web site, 374

Web pages
adding alternative and title text, 110–112
adding rollovers to, 265–271
attractiveness of, 347
browsers, 13–14
CSS markup, 26–27
document headings, 26
editing, 40–41
HTML5, 323–324
hypertext, 10–13
image borders and alignment, 114
image location, 108

35_9780470916599-bindex.indd 39135_9780470916599-bindex.indd 391 11/30/10 12:28 AM11/30/10 12:28 AM

392 HTML, XHTML & CSS For Dummies, 7th Edition

Web pages (continued)

images in HTML documents, 27
links and navigation tools, 27
links locations in, 99–101
lists, 26
mobile Web design, 293–304
paragraphs, 26
planning design, 33–34
posting online, 41–42
processing forms on, 242–243
role of images in, 105–106
saving, 37–38
scripting, 211–220
specifying image size, 112–114
tables, 26
titles, 66–67
using element, 108–110
viewing, 38–39
Web servers, 14–15, 58–60
writing HTML, 34–37

Web servers, 14–15, 58–60
Web sites. See also bugs

building navigation, 49–52
comparing HTML to CMS, 279–280
content embedding, 252–258
content of, 345–346
design, 45–46
hosting, 55–60
HTML references, 373–375
links, 94–95
mapping, 46–49
maps, 353–354
mashups, 258–263
navigate, 349–350
planning outside links, 53–54
scheduling reviews, 358–359
structuring documents, 346

Web tools, 370–371
WebDesignerDepot Web site, 374
Web-developer’s handbook, 210
Webmonkey Web site, 374
Web-safe fonts, 331
week keyword, 319
white-space property, 205
widows property, 166

width attributes, 112, 318
Width deprecated attribute, 126
width property, 164, 196
windows

browser, 216–217
new, 97–99

WordPress CMS, 281, 283–285
word-spacing property, 180, 205
Working Draft (WD), 325
World Wide Web Consortium Web site, 373
Wufoo Web site, 248
WYSIWYG HTML editors, 362–363

• X •
XHTML (eXtensible Markup Language)
<html> element, 65
adding DOCTYPE declarations, 64–65
adding document headers, 66–71
adding HTML DOCTYPE declarations, 64
adding namespaces, 65–66
character codes, 23
creating document body, 71–72
difference from HTML, 16–17
Document Type Defi nitions (DTDs),

376–377
establishing document structure, 63–64
markup, deprecated, 121–128

XHTML 1.0 Frameset DOCTYPE declaration, 65
XHTML 1.0 Strict DOCTYPE declaration, 65
XHTML 1.0 Transitional DOCTYPE

declaration, 65

• Y •
Yelp Web site, 259–262
YouTube Web site, 258
YSlow add-on, 210

• Z •
z-index property, 162, 202–203
z-index value, 153
Zip fi les, 102–103

35_9780470916599-bindex.indd 39235_9780470916599-bindex.indd 392 11/30/10 12:28 AM11/30/10 12:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Apple & Macs

iPad For Dummies
978-0-470-58027-1

iPhone For Dummies,
4th Edition
978-0-470-87870-5

MacBook For Dummies, 3rd
Edition
978-0-470-76918-8

Mac OS X Snow Leopard For
Dummies
978-0-470-43543-4

Business

Bookkeeping For Dummies
978-0-7645-9848-7

Job Interviews
For Dummies,
3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Starting an
Online Business
For Dummies,
6th Edition
978-0-470-60210-2

Stock Investing
For Dummies,
3rd Edition
978-0-470-40114-9

Successful
Time Management
For Dummies
978-0-470-29034-7

Computer Hardware

BlackBerry
For Dummies,
4th Edition
978-0-470-60700-8

Computers For Seniors
For Dummies,
2nd Edition
978-0-470-53483-0

PCs For Dummies, Windows
7 Edition
978-0-470-46542-4

Laptops For Dummies,
4th Edition
978-0-470-57829-2

Cooking & Entertaining

Cooking Basics
For Dummies,
3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition

Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,
3rd Edition
978-0-471-76845-6

Digital Photography

Digital SLR Cameras &
Photography For Dummies,
3rd Edition
978-0-470-46606-3

Photoshop Elements 8
For Dummies
978-0-470-52967-6

Gardening

Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,
2nd Edition
978-0-470-43067-5

Green/Sustainable

Raising Chickens
For Dummies
978-0-470-46544-8

Green Cleaning
For Dummies
978-0-470-39106-8

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies,
2nd Edition
978-0-470-58589-4

Hobbies/General

Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing
Cartoons & Comics
For Dummies
978-0-470-42683-8

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing
For Dummies
978-0-7645-5300-4

Su Doku For Dummies
978-0-470-01892-7

Home Improvement

Home Maintenance
For Dummies,
2nd Edition
978-0-470-43063-7

Home Theater
For Dummies,
3rd Edition
978-0-470-41189-6

Living the
Country Lifestyle
All-in-One
For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies,
2nd Edition
978-0-470-59678-4

36_9780470916599-badvert01.indd 39336_9780470916599-badvert01.indd 393 11/30/10 12:28 AM11/30/10 12:28 AM

Internet

Blogging For Dummies,
3rd Edition
978-0-470-61996-4

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies, 3rd
Edition
978-0-470-87804-0

Web Marketing
For Dummies,
2nd Edition
978-0-470-37181-7

WordPress
For Dummies,
3rd Edition
978-0-470-59274-8

Language & Foreign
Language

French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies,
2nd Edition
978-0-470-87855-2

Spanish For Dummies,
Audio Set
978-0-470-09585-0

Math & Science

Algebra I For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2010 For Dummies,
Book + DVD Bundle
978-0-470-62698-6

Word 2010 For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

iPod & iTunes
For Dummies,
8th Edition
978-0-470-87871-2

Piano Exercises
For Dummies
978-0-470-38765-8

Parenting & Education

Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
3rd Edition
978-0-470-60029-0

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship

Anger Management
For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies,
2nd Edition
978-0-470-57441-6

Sports

Baseball
For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball
For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development

Web Design
All-in-One
For Dummies
978-0-470-41796-6

Web Sites
Do-It-Yourself
For Dummies,
2nd Edition
978-0-470-56520-9

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7
For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Learn to:
• Create a Profile, navigate the site,

and use privacy features

• Find friends and post messages

• Add applications and upload
photos to your Facebook page

• Build a fan page or get the word out
about an event

Leah Pearlman
Carolyn Abram

Facebook

3rd Edition
Making Everything Easier!™

Peter Weverka
Author of PowerPoint
All-in-One For Dummies

8 IN 1
BOOKSBOOKS

• Common Office Tools
• Word
• Outlook®
• PowerPoint®
• Excel®
• Access®
• Publisher
• Office 2010 — One Step Beyond

Office 2010
A L L - I N - O N E

Making Everything Easier!™

Microsoft®

ART IS TK

TO BE INSERTED

DURING

ROUTING
Edward C. Baig
Bob “Dr. Mac” LeVitus

• Set up your iPad, use the multitouch
interface, and get connected

• Surf the Web, listen to music, watch
videos, and download apps

• Turn your iPad into a portable game
console

IN FULL COLOR!

Learn to:

iPad
™

Making Everything Easier!™

Andy Rathbone
Author of all previous editions of
Windows For Dummies

Learn to:
• lanosreP ize your Windows 7 desktop

with your own photos

• W pu deepS indows with built-in
shortcuts

• lno ot sgninraw swodniW ezimotsuC y
give the notices you want

• evoM your files from your old PC to a
Windows 7 computer

Windows® 7

™

36_9780470916599-badvert01.indd 39436_9780470916599-badvert01.indd 394 11/30/10 12:28 AM11/30/10 12:28 AM

Wherever you are
in life, Dummies
makes it easier.

Visit us at Dummies.com

From fashion to Facebook®,
wine to Windows®, and everything in between,

Dummies makes it easier.

36_9780470916599-badvert01.indd 39536_9780470916599-badvert01.indd 395 11/30/10 12:28 AM11/30/10 12:28 AM

 Dummies products
 make life easier!

DIY • Consumer Electronics •
Crafts • Software • Cookware •
Hobbies • Videos • Music •
Games • and More!

For more information, go to
Dummies.com® and search
the store by category.

36_9780470916599-badvert01.indd 39636_9780470916599-badvert01.indd 396 11/30/10 12:28 AM11/30/10 12:28 AM

Spine: .82”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/html

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Ed Tittel
Jeff Noble
Foreword by Eric Meyer

• Develop and build Web pages using
HTML, XHTML, and CSS

• Work with content management
systems like Drupal®, WordPress®,
and Joomla!®

• Plan and design Web pages with
mobile devices in mind

Learn to:

HTML, XHTML & CSS

7th Edition
Introduces HTML5 and CSS3!

 Open the book and find:

• How to plan, build, test, and
publish Web pages

• Steps for formatting Web pages
with (X)HTML

• Advice on planning a problem-
free Web site

• Solutions for adding inter-
activity with JavaScript

• Ways to embed content from
Flickr®, Twitter®, YouTube®,
and Google Maps™

• Tips for enhancing your Web
site’s capabilities

• How to design for smartphones,
iPads, and other mobile devices

• Techniques for eliminating bugs
in your Web pages

Ed Tittel is a 28-year veteran of the computer industry. A seasoned author

and consultant, Ed has more than 140 books to his credit. Jeff Noble is a

principle user experience designer at CA Technologies. He specializes in

designing, building, optimizing, and explaining all aspects of Web sites

and enterprise software applications.

Programming Languages/HTML

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-91659-9

You don’t have to be an expert programmer to build great
Web pages. If you can follow driving directions to a friend’s
house, you have what it takes to build a useful Web document.
This book will not only show you the design and technical
elements you need to create good-looking, readable Web
pages — it will give you the confidence to get started!

• Speak the language — master HTML, XHTML, and CSS syntax,
create and view a Web page, and plan your site

• Gather the building blocks — learn how to work with text and lists,
create and customize links, and add images to your Web site

• Build it correctly — take precise control with Cascading Style Sheets
(CSS) and get creative with colors and fonts

• Juice it up with JavaScript — integrate scripts, add dynamic content
with (X)HTML, CSS, and JavaScript, and get familiar with popular
content management systems

• Go mobile — design your site for optimal viewing on mobile devices
with HTML and CSS

• Out with the old, in with the new — find out what elements are
deprecated and look ahead to HTML5 and CSS3

Build your Web pages and
get them uploaded and published
with (X)HTML and CSS!

In
Color

H
TM

L, X
H

TM
L &

 C
SS

H
TM

L, X
H

TM
L &

 C
SS

Tittel
Noble

Spine: .82”

IN FULL COLOR!

7th Edition

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Visit the companion Web site at
dummieshtml.com for downloads,
source code, and more.

Making Everything Easier!™

	HTML, XHTML & CSS For Dummies®, 7th Edition
	About the Authors
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	About This Book
	How to Use This Book
	Three Presumptuous Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know (X)HTML and CSS
	Chapter 1: The Least You Need to Know about HTML, CSS, and the Web
	Web Pages in Their Natural Habitat
	Anatomy of a URL
	(X)HTML’s Component Parts
	Parts Is Parts: What Web Pages Are Made Of
	Listing 1-1: Meet an Author!

	Chapter 2: Creating and Viewing a Web Page
	Before You Get Started
	Creating a Page from Scratch
	Editing an Existing Web Page
	Posting Your Page Online

	Chapter 3: Proper Planning Prevents Poor Page Performance
	Planning Your Site
	Hosting Your Web Site

	Part II: Formatting Web Pages with (X)HTML
	Chapter 4: Creating (X)HTML Document Structure
	Establishing a Document Structure
	Labeling Your (X)HTML Document
	Adding a Document Header
	Creating the (X)HTML Document Body

	Chapter 5: Text and Lists
	Formatting Text
	Controlling Text Blocks
	Organizing Information

	Chapter 6: Linking to Online Resources
	Basic Links
	Customizing Links

	Chapter 7: Finding and Using Images
	The Role of Images in a Web Page
	Creating Web-Friendly Images
	Adding an Image to a Web Page
	Images That Link

	Part III: Taking Precise Control over Web Pages and Styles
	Chapter 8: Deprecated (X)HTML Markup
	And Now, A Word from Our Sponsor
	Deprecated Elements
	Deprecated Attributes
	How to Handle Deprecated Markup

	Chapter 9: Introducing Cascading Style Sheets
	Advantages of Style Sheets
	CSS Structure and Syntax
	Using Different Kinds of Style Sheets
	Understanding the Cascade

	Chapter 10: Using Cascading Style Sheets
	Managing Layout and Positioning
	Changing Fonts for Visual Interest and Better Readability
	Externalizing Style Sheets
	Using CSS with Multimedia

	Chapter 11: Getting Creative with Colors and Fonts
	Color Values
	Color Definitions
	Fonts
	Positioning Blocks of Text
	Text Treatments
	The Catchall Font Property

	Part IV: Scripting and (X)HTML
	Chapter 12: Top 20 CSS Properties
	Background Properties
	Border and Outline Properties
	Dimension
	Fonts and Font Properties
	Spacing Properties: Margin and Padding
	Positioning
	Text
	Pseudo Classes
	Best CSS Resources

	Chapter 13: Scripting Web Pages
	Finding Out What JavaScript Can Do for Your Pages
	Using JavaScript to Arrange Content Dynamically
	Working with Browser Windows
	Soliciting and Verifying User Input
	But Wait...There’s More!

	Chapter 14: Working with Forms
	Uses for Forms
	Creating Forms
	Processing Data
	Designing User-Friendly Forms
	Other Noteworthy Forms-Related Markup
	Form Frameworks
	CAPTCHA This!

	Chapter 15: Bring the Best of the Web to Your Web Site
	What’s Up with Content Embedding?
	Mashups: Two or More Sites

	Chapter 16: Fun with Client-Side Scripts
	Adding Rollovers to Your Pages
	Working with Cookies
	Working with jQuery and FancyBox Lightbox

	Chapter 17: Content Management Systems
	Comparing CMS Sites to HTML Sites
	Popular CMS Sites and Programs
	Customizing CSS on a CMS
	Pssst! Hey Buddy! Wanna See Some CMS?

	Part V: The Future of (X)HTML
	Chapter 18: Mobile Web Design
	Understanding Different Mobile Devices
	Optimizing Mobile Web Site Design
	Best Practices for Mobile Web Sites
	Mobile Frameworks
	Additional Resources

	Chapter 19: Party On with HTML5
	HTML5 Highlights: Why It’s Important
	Simplified and Enhanced HTML5 Markup
	What’s New and Improved in HTML5
	New Input Types in HTML5
	HTML5 Web APIs
	Limits to HTML5 Access and Use
	Additional HTML5 Resources
	Introducing HTML5

	Chapter 20: CSS3
	About the CSS3 “Standard”
	CSS3 Highlights Hint at Riches Available
	CSS3 Transitions and Animations
	Transform Your Content
	CSS3 Limitations
	Finding More on CSS3

	Part VI: The Part of Tens
	Chapter 21: Ten HTML Do’s and Don’ts
	Don’t Lose Sight of Your Content
	Do Structure Your Documents and Your Site
	Do Make the Most from the Least
	Do Build Attractive Pages
	Don’t Lose Track of Those Tags
	Do Avoid Browser Dependencies
	Don’t Make It Hard to Navigate Your Wild and Woolly Web
	Don’t Think Revolution, Think Evolution
	Don’t Get Stuck in the Two-Dimensional-Text Trap
	Don’t Let Inertia Overcome You

	Chapter 22: Ten Ways to Exterminate Web Bugs
	Make a List and Check It—Twice
	Master Text Mechanics
	Lack of Live Links—A Loathsome Legacy
	When Old Links Must Linger
	Make Your Content Mirror Your World
	Look for Trouble in all the Right Places
	Cover all the Bases with Peer Reviews
	Use the Best Tools of the Testing Trade
	Schedule Site Reviews
	Foster User Feedback
	If You Give to Them, They’ll Give to You!

	Chapter 23: Ten Cool HTML Tools and Technologies
	WYSIWYG HTML Editors
	Helper HTML Editors
	Inexpensive Graphics Editors
	Professional Graphics Editors
	W3C Link Checker
	Other Link Checkers
	HTML Validators
	FTP Clients
	Miscellaneous Helpful Web Tools

	Appendix A: Twitter Supporters
	Index

