
Eric A. Meyer

Colors,
Backgrounds
& Gradients
ADDING INDIVIDUALIT Y WITH CSS

WEB DEVELOPMENT/DESIGN

Colors, Backgrounds, and Gradients

ISBN: 978-1-491-92765-6

US $14.99	 CAN $17.99

Twitter: @oreillymedia
facebook.com/oreilly

One advantage of using CSS3 is that you can apply colors and backgrounds
to any element in a web document, create your own gradients, and even
apply multiple backgrounds to the same element. This practical guide
shows you many ways to use colors, backgrounds, and gradients to
achieve some pretty awesome effects.

Short and sweet, this book is an excerpt from the upcoming fourth
edition of CSS: The Definitive Guide. When you purchase either the print
or the ebook edition of Colors, Backgrounds, and Gradients, you’ll receive a
discount on the entire Definitive Guide once it’s released. Why wait? Learn
how to bring life to your web pages now.

■■ Define foreground colors for a border or element with the
color property

■■ Combine foreground and background colors to create
interesting effects

■■ Position and repeat one or more images in an element’s
background

■■ Fix an image to a screen’s viewing area, rather than to the
element that contains it

■■ Use color stops to define vertical, horizontal, and diagonal
linear gradients

■■ Create spotlight effects, circular shadows, and other effects
with radial gradients

Eric A. Meyer is an author, speaker, blogger, sometime teacher, and co-founder
of An Event Apart. He’s a two-decade veteran of the Web and web standards,
a past member of the W3C’s Cascading Style Sheets Working Group, and the
author of O’Reilly’s CSS: The Definitive Guide

C
olors, B

ackgrounds, and G
radients

M
eyer

Eric A. Meyer

Colors,
Backgrounds
& Gradients
ADDING INDIVIDUALIT Y WITH CSS

WEB DEVELOPMENT/DESIGN

Colors, Backgrounds, and Gradients

ISBN: 978-1-491-92765-6

US $14.99	 CAN $17.99

Twitter: @oreillymedia
facebook.com/oreilly

One advantage of using CSS3 is that you can apply colors and backgrounds
to any element in a web document, create your own gradients, and even
apply multiple backgrounds to the same element. This practical guide
shows you many ways to use colors, backgrounds, and gradients to
achieve some pretty awesome effects.

Short and sweet, this book is an excerpt from the upcoming fourth
edition of CSS: The Definitive Guide. When you purchase either the print
or the ebook edition of Colors, Backgrounds, and Gradients, you’ll receive a
discount on the entire Definitive Guide once it’s released. Why wait? Learn
how to bring life to your web pages now.

■■ Define foreground colors for a border or element with the
color property

■■ Combine foreground and background colors to create
interesting effects

■■ Position and repeat one or more images in an element’s
background

■■ Fix an image to a screen’s viewing area, rather than to the
element that contains it

■■ Use color stops to define vertical, horizontal, and diagonal
linear gradients

■■ Create spotlight effects, circular shadows, and other effects
with radial gradients

Eric A. Meyer is an author, speaker, blogger, sometime teacher, and co-founder
of An Event Apart. He’s a two-decade veteran of the Web and web standards,
a past member of the W3C’s Cascading Style Sheets Working Group, and the
author of O’Reilly’s CSS: The Definitive Guide

C
olors, B

ackgrounds, and G
radients

M
eyer

Eric A. Meyer

Colors, Backgrounds,
and Gradients

978-1-491-92765-6

[LSI]

Colors, Backgrounds, and Gradients
by Eric A. Meyer

Copyright © 2015 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent and Meg Foley
Production Editor: Colleen Lobner
Copyeditor: Sonia Saruba
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2015: First Edition

Revision History for the First Edition
2015-05-29: First Release
2015-06-22: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927656 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Colors, Backgrounds, and Gradients, the
cover image of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491927656

Table of Contents

Preface. v

Colors and Backgrounds. 1
Colors 1

Foreground Colors 2
Affecting Borders 4
Affecting Form Elements 5
Inheriting Color 6

Backgrounds 6
Background Colors 7
Clipping the Background 10
Background Images 13
Background Positioning 17
Changing the Positioning Box 29
Background Repeating (or Lack Thereof) 32
Getting Attached 43
Sizing Background Images 49
Bringing It All Together 58
Multiple Backgrounds 61

Gradients 67
Linear Gradients 68
Radial Gradients 80
Manipulating Gradient Images 93
Repeating Gradients 96

Summary 100

iii

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

v

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Colors, Backgrounds, and Gradients
by Eric A. Meyer (O’Reilly). Copyright 2015 Eric A. Meyer, 978-1-491-92765-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

vi | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/colors-backgrounds-gradients.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://bit.ly/colors-backgrounds-gradients
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Colors and Backgrounds

Remember the first time you changed the colors of a web page? Instead of the default
black text on a white background with blue links, all of a sudden you could use any
combination of colors you desired—perhaps light blue text on a black background
with lime green hyperlinks. From there, it was just a short hop to colored text and,
eventually, even to multiple colors for the text in a page. Once you could add back‐
ground images, too, just about anything became possible, or so it seemed. Cascading
Style Sheets (CSS) takes color and backgrounds even further, letting you apply many
different colors and backgrounds to a single page or element, and even apply multiple
backgrounds to the same element.

Colors
When you’re designing a page, you need to plan it out before you start. That’s gener‐
ally true in any case, but with colors, it’s even more so. If you’re going to make all
hyperlinks yellow, will that clash with the background color in any part of your docu‐
ment? If you use too many colors, will the user be too overwhelmed? (Hint: yes.) If
you change the default hyperlink colors, will users still be able to figure out where
your links are? (For example, if you make both regular text and hyperlink text the
same color, it will be much harder to spot links—in fact, almost impossible if the links
aren’t underlined.)

There is really only one type of color in CSS, and that’s a plain, solid color. If you set
the color of a document to be red, then the text will be the same shade of red. If you
use CSS to set the color of all hyperlinks (both visited and unvisited) to be blue, then
that’s most likely what they’ll be. In the same way, if you use styles to set the back‐
ground of the body to be green, then the entire body background will be the same
shade of green.

In CSS, you can set both the foreground and background colors of any element.
In order to understand how this works, it’s important to understand what’s in the

1

foreground of an element and what isn’t. Generally speaking, it’s the text of an ele‐
ment, although the foreground also includes the borders around the element. Thus,
there are two ways to directly affect the foreground color of an element: by using the
color property, and by setting the border colors using one of a number of border
properties.

Foreground Colors
The easiest way to set the foreground color of an element is with the property color.

color

Values: <color> | inherit

Initial value: User agent-specific

Applies to: All elements

Inherited: Yes

Computed value: As specified

This property accepts as a value any valid color type, such as #FFCC00 or rgba(100%,
80%,0%,0.5).

For nonreplaced elements, color sets the color of the text in the element, as illustra‐
ted in Figure 1, which is the result of the following code:

<p style="color: gray;">This paragraph has a gray foreground.</p>
<p>This paragraph has the default foreground.</p>

Figure 1. Declared color versus default color

In Figure 1, the default foreground color is black. That doesn’t have to be the case,
since the user might have set her browser (or other user agent) to use a different fore‐
ground (text) color. If the browser’s default text color was set to green, the second

2 | Colors and Backgrounds

paragraph in the preceding example would be green, not black—but the first para‐
graph would still be gray.

You need not restrict yourself to such simple operations, of course. There are plenty
of ways to use color. You might have some paragraphs that contain text warning the
user of a potential problem. In order to make this text stand out more than usual, you
might decide to color it red. Simply apply a class of warn to each paragraph that con‐
tains warning text (<p class="warn">) and the following rule:

p.warn {color: red;}

In the same document, you might decide that any unvisited hyperlinks within a warn‐
ing paragraph should be green:

p.warn {color: red;}
p.warn a:link {color: green;}

Then you change your mind, deciding that warning text should be dark red, and that
unvisited links in such text should be medium purple. The preceding rules need only
be changed to reflect the new values, as illustrated in Figure 2, which is the result of
the following code:

p.warn {color: #600;}
p.warn a:link {color: #400040;}

Figure 2. Changing colors

Another use for color is to draw attention to certain types of text. For example, bold‐
faced text is already fairly obvious, but you could give it a different color to make it
stand out even further—let’s say, maroon:

b, strong {color: maroon;}

Colors | 3

Then you decide that you want all table cells with a class of highlight to contain light
yellow text:

td.highlight {color: #FF9;}

Of course, if you don’t set a background color for any of your text, you run the risk
that a user’s setup won’t combine well with your own. For example, if a user has set
his browser’s background to be a pale yellow, like #FFC, then the previous rule would
generate light yellow text on a pale yellow background. Far more likely is that it’s still
the default background of white, against which light yellow is still going to be hard to
read. It’s therefore generally a good idea to set foreground and background colors
together. (We’ll talk about background colors very shortly.)

Affecting Borders
The value of color can also affect the borders around an element. Let’s assume you’ve
declared these styles, which have the result shown in Figure 3. This is the result of the
following code:

p.aside {color: gray; border-style: solid;}

Figure 3. Border colors are taken from the content’s color

The element <p class="aside"> has gray text and a gray medium-width solid bor‐
der. This is because the foreground color is applied to the borders by default. Should
you desire, you can override this with the property border-color:

p.aside {color: gray; border-style: solid; border-color: black;}

This rule will make the text gray, while the borders will be black in color. Any value
set for border-color will always override the value of color.

The borders, incidentally, allow you to affect the foreground color of images. Since
images are already composed of colors, you can’t really affect them using color, but
you can change the color of any border that appears around the image. This can be

4 | Colors and Backgrounds

done using either color or border-color. Therefore, the following rules will have the
same visual effect on images of class type1 and type2, as shown in Figure 4, which is
the result of the following code:

img.type1 {color: gray; border-style: solid;}
img.type2 {border-color: gray; border-style: solid;}

Figure 4. Setting the border color for images

Affecting Form Elements
Setting a value for color should (in theory, anyway) apply to form elements. Declar‐
ing select elements to have dark gray text should be as simple as this:

select {color: rgb(33%,33%,33%);}

This might also set the color of the borders around the edge of the select element, or
it might not. It all depends on the user agent and its default styles.

You can also set the foreground color of input elements—although, as you can see in
Figure 5, doing so would apply that color to all inputs, from text to radio button to
checkbox inputs:

select {color: rgb(33%,33%,33%);}
input {color: red;}

Figure 5. Changing form element foregrounds

Note in Figure 5 that the text color next to the checkboxes is still black. This is
because the rules shown assign styles only to elements like input and select, not
normal paragraph (or other) text.

Also note that the checkmark in the checkbox is black. This is due to the way form
elements are handled in some web browsers, which typically use the form widgets
built into the base operating system. Thus, when you see a checkbox and checkmark,
they really aren’t content in the HTML document—they’re content that has been
inserted into the document, much as an image would be. In fact, form inputs are,

Colors | 5

like images, replaced elements. In theory, CSS does not style the contents of replaced
elements.

In practice, the line is a lot blurrier than that, as Figure 5 demonstrates. Some form
inputs have the color of their text and even portions of their UI changed, while others
do not. And since the rules aren’t explicitly defined, behavior is inconsistent across
browsers. Some may present a red checkmark, while others will not. In short, form
elements are deeply tricky to style and should be approached with extreme caution.

Inheriting Color
As the definition of color indicates, the property is inherited. This makes sense, since
if you declare p {color: gray;}, you probably expect that any text within that para‐
graph will also be gray, even if it’s emphasized or boldfaced or whatever. Of course, if
you want such elements to be different colors, that’s easy enough, as illustrated in Fig‐
ure 6, which is the result of the following code:

em {color: red;}
p {color: gray;}

Figure 6. Different colors for different elements

Since color is inherited, it’s theoretically possible to set all of the ordinary text in a
document to a color, such as red, by declaring body {color: red;}. This should
make all text that is not otherwise styled (such as anchors, which have their own color
styles) red.

Backgrounds
By default, the background area of an element consists of all of the space behind the
foreground out to the outer edge of the borders; thus, the content box and the pad‐
ding are all part of an element’s background, and the borders are drawn on top of the
background. (You can change that to a degree with CSS, as we’ll see shortly.)

CSS lets you apply a solid color or create moderately sophisticated effects using back‐
ground images, and its capabilities in this area far outstrip those of HTML. And that’s
without even getting into the new ability to apply multiple background images to a
single element, including linear and radial gradients.

6 | Colors and Backgrounds

Background Colors
It’s possible to declare a color for the background of an element, in a fashion very
similar to setting the foreground color. For this, you use the property background-
color, which accepts (unsurprisingly) any valid color or a keyword that makes the
background transparent.

background-color

Values: <color> | transparent | inherit

Initial value: transparent

Applies to: All elements

Inherited: No

Computed value: As specified

If you want the color to extend out a little bit from the text in the element, simply add
some padding to the mix, as illustrated in Figure 7, which is the result of the follow‐
ing code:

p.padded {background-color: #AEA; padding: 1em;}

Figure 7. Backgrounds and padding

You can set a background color for just about any element, from body all the way
down to inline elements such as em and a. The background-color is not inherited. Its
default value is transparent, which makes sense: if an element doesn’t have a defined
color, then its background should be transparent so that the background of its ances‐
tor elements will be visible.

One way to picture what that means is to imagine a clear (i.e., transparent) plastic
sign mounted to a textured wall. The wall is still visible through the sign, but this is
not the background of the sign; it’s the background of the wall (in CSS terms, any‐

Backgrounds | 7

way). Similarly, if you set the page canvas to have a background, it can be seen
through all of the elements in the document that don’t have their own backgrounds.
They don’t inherit the background; it is visible through them. This may seem like an
irrelevant distinction, but as you’ll see when we discuss background images, it’s
actually a critical difference.

Most of the time, you’ll have no reason to use the keyword transparent, since that’s
the default value. On occasion, though, it can be useful. Imagine that a user has set his
browser to make all links have a white background. When you design your page, you
set anchors to have a white foreground, and you don’t want a background on those
anchors. In order to make sure your design choice prevails, you would declare:

a {color: white; background-color: transparent;}

If you left out the background color, your white foreground would combine with the
user’s white background to yield totally unreadable links. This is an unlikely example,
but it’s still possible.

The potential combination of author and reader styles is the reason why a CSS valida‐
tor will generate warnings such as, “You have no background-color with your
color.” It’s trying to remind you that author-user color interaction can occur, and
your rule has not taken this possibility into account. Warnings do not mean your
styles are invalid: only errors prevent validation.

Special effects

Simply by combining color and background-color, you can create some interesting
effects:

h1 {color: white; background-color: rgb(20%,20%,20%);
 font-family: Arial, sans-serif;}

This example is shown in Figure 8.

Of course, there are as many color combinations as there are colors, but I can’t show
all of them here. Still, I’ll try to give you some idea of what you can do.

This stylesheet is a little more complicated, as illustrated by Figure 9, which is the
result of the following code:

body {color: black; background-color: white;}
h1, h2 {color: yellow; background-color: rgb(0,51,0);}
p {color: #555;}
a:link {color: black; background-color: silver;}
a:visited {color: gray; background-color: white;}

8 | Colors and Backgrounds

Figure 8. A reverse-text effect for H1 elements

Figure 9. The results of a more complicated stylesheet

And then there’s the fascinating question of what happens when you apply a back‐
ground to a replaced element, such as an image. I’m not even talking about images
with transparent portions, like a GIF87a or a PNG. Suppose you want to create a two-
tone border around a JPEG. You can pull that off by adding a background color and a
little bit of padding to your image, as illustrated in Figure 10, which is the result of the
following code:

img.twotone {background-color: red; padding: 5px; border: 5px solid gold;}

Backgrounds | 9

Figure 10. Using background and border to two-tone an image

Technically, the background goes to the outer border edge, but since the border is
solid and continuous, we can’t see the background behind it. The one pixel of pad‐
ding allows a thin ring of background to be seen between the image and its border,
creating the visual effect of an “inner border.” This technique could be extended to
create more complicated effects with background images, which we’ll discuss shortly.

Note that there are also much more powerful border options avail‐
able in CSS, so background-and-padding tricks may or may not be
useful, depending on what you want to do and the state of browser
support for the advanced border options.

Remember that form inputs, nearly all of which are replaced elements, are treated as
special, and often applying padding to them will not have the same results as applying
padding to an image, let alone a nonreplaced element like a paragraph. Just as with
most styling of form inputs, adding a background color should be rigorously tested
and avoided if possible.

Clipping the Background
In the previous section, we saw how backgrounds fill out the entire background area
of an element. Historically, that extended all the way to the outer edge of the border
so that any border with transparent parts (like dashed or dotted borders) would have
the background color fill into those transparent parts. Well, there’s a new CSS prop‐

10 | Colors and Backgrounds

erty called background-clip that lets you affect how far out an element’s background
will go.

background-clip

Values: [<box> [, <box>]*] | inherit

Initial value: <box> = border-box | padding-box | content-box

Applies to: All elements

Inherited: No

Computed value: As declared

The default value is the historical value: the background painting area (which is what
background-clip defines) extends out to the outer edge of the border. The back‐
ground will always be drawn behind the visible parts of the border, if any.

If you choose the value padding-box, then the background will only extend to the
outer edge of the padding area (which is also the inner edge of the border). Thus, it
won’t be drawn behind the border. The value content-box, on the other hand,
restricts the background to just the content area of the element.

The effects of these three values is illustrated in Figure 11, which is the result of the
following code:

div[id] {color: navy; background: silver;
 padding: 1em; border: 5px dashed;}
#ex01 {background-clip: border-box;} /* default value */
#ex02 {background-clip: padding-box;}
#ex03 {background-clip: content-box;}

Backgrounds | 11

Figure 11. The three types of background clipping

That seems pretty simple, but there are some caveats. The first is that background-
clip has no effect on the root element (in HTML, that’s either the html or body ele‐
ment, depending on how your styles are written). This has to do with how the
background painting of the root element has to be handled.

The second is that the exact clipping of the background area can be reduced if the
element has rounded corners, thanks to the property border-radius. This is basically
common sense, since if you give your element significantly rounded corners, you
want the background to be clipped by those corners instead of stick out past them.
The way to think of this is that the background painting area is determined by
background-clip, and then any corners that have to be further clipped by rounded
corners are appropriately clipped.

The third caveat is that the value of background-clip can partially override some
of the more interesting values of background-repeat, which we’ll get to a little bit
later on.

The fourth is that background-clip simply defines the clipping area of the
background. It doesn’t affect other background properties. When it comes to flat
background colors, that’s a distinction without meaning; but when it comes to back‐
ground images, which we’ll talk about next, it can make a great deal of difference.

12 | Colors and Backgrounds

Background Images
Having covered the basics of foreground and background colors, we turn now to the
subject of background images. Back in the days of HTML 3.2, it was possible to
associate an image with the background of the document by using the BODY attribute
BACKGROUND:

<BODY BACKGROUND="bg23.gif">

This caused a user agent to load the file bg23.gif and then “tile” it in the document
background, repeating it in both the horizontal and vertical directions to fill up the
entire background of the document. This effect can be easily recreated in CSS, but
CSS can do a great deal more than simple tiling of background images. We’ll start
with the basics and then work our way up.

Using an image
In order to get an image into the background in the first place, use the property
background-image.

background-image

Values: [<image> [, <image>]*] | inherit

Expansion: <image> = [<uri> | <linear-gradient> | <radial-gradient>]

Initial value: None

Applies to: All elements

Inherited: No

Computed value: As specified, but with all URLs made absolute

The default value of none means about what you’d expect: no image is placed in the
background. If you want a background image, you must give this property at least
one URL value, like this:

body {background-image: url(bg23.gif);}

Due to the default values of other background properties, this will cause the image
bg23.gif to be tiled in the document’s background, as shown in Figure 12. As you’ll
discover shortly, though, tiling isn’t the only option.

Backgrounds | 13

Figure 12. Applying a background image in CSS

It’s usually a good idea to specify a background color to go along with your back‐
ground image; we’ll come back to that concept a little later on. (We’ll also talk about
how to have more than one image at the same time, but for now we’re going to stick
to just one background image per element.)

You can apply a background image to any element, block-level or inline:

p.starry {background-image: url(http://www.site.web/pix/stars.gif);
 color: white;}
a.grid {background-image: url(smallgrid.gif);}

<p class="starry">It's the end of autumn, which means the stars will be
brighter than ever! Join us for
a fabulous evening of planets, stars, nebulae, and more...

As you can see in Figure 13, we’ve applied a background to a single paragraph and no
other part of the document. We can customize even further, such as placing back‐
ground images on inline elements like hyperlinks, also depicted in Figure 13. Of
course, if you want to be able to see the tiling pattern, the image will probably need to
be pretty small. After all, individual letters aren’t that large!

14 | Colors and Backgrounds

Figure 13. Applying background images to block and inline elements

There are a number of ways to employ specific background images. You can place an
image in the background of strong elements in order to make them stand out more.
You can fill in the background of headings with a wavy pattern or with little dots.

If you combine simple icons with creative attribute selectors, you can (with use of
some properties we’ll get to in just a bit) mark when a link points to a PDF, Word
document, email address, or other unusual resource, as shown in Figure 14, which is
the result of the following code:

a[href$=".pdf"] {background-image: url(/i/pdf-icon.png);}
a[href$=".doc"] {background-image: url(/i/msword-icon.png);}
a[href^="mailto:"] {background-image: url(/i/email-icon.png);}

Figure 14. Adding link icons as background images

Just like background-color, background-image is not inherited—in fact, not a single
one of the background properties is inherited. Remember also that when specifying
the URL of a background image, it falls under the usual restrictions and caveats for
url() values: a relative URL should be interpreted with respect to the stylesheet.

Why backgrounds aren’t inherited
Earlier, I specifically noted that backgrounds are not inherited. Background images
clearly demonstrate why inherited backgrounds would be a bad thing. Imagine a sit‐
uation where backgrounds were inherited, and you applied a background image to
the body. That image would be used for the background of every element in the docu‐
ment, with each element doing its own tiling, as shown in Figure 15.

Backgrounds | 15

Figure 15. What inherited backgrounds would do to layout

Note how the pattern restarts at the top left of every element, including the links. This
isn’t what most authors would want, and this is why background properties are not
inherited. If you do want this particular effect for some reason, you can make it hap‐
pen with a rule like this:

* {background-image: url(yinyang.png);}

Alternatively, you could use the value inherit like this:

body {background-image: url(yinyang.png);}
* {background-image: inherit;}

Good background practices
Images are laid on top of whatever background color you specify. If you’re completely
tiling a JPEG or other opaque image type, this fact doesn’t really make a difference,
since a fully tiled image will fill up the document background, leaving nowhere for
the color to “peek through,” so to speak. However, image formats with an alpha chan‐
nel, such as GIF87a or PNG, can be partially or wholly transparent, which will cause
the image to be “combined” with the background color. In addition, if the image fails
to load for some reason, then the user agent will use the background color specified
in place of the image. Consider how the “starry paragraph” example would look if the
background image failed to load, as in Figure 16.

16 | Colors and Backgrounds

Figure 16. The consequences of a missing background image

Figure 16 demonstrates why it’s always a good idea to specify a background color
when using a background image, so that you’ll at least get a legible result:

p.starry {background-image: url(http://www.site.web/pix/stars.gif);
 background-color: black; color: white;}
a.grid {background-image: url(smallgrid.gif);}

<p class="starry">It's the end of autumn, which means the stars will be
brighter than ever! Join us for
a fabulous evening of planets, stars, nebulae, and more...

This will fill in a flat-black background if the “starry” image can’t be rendered for
some reason. It will also fill in any transparent areas of the background images, or any
area of the background that the images don’t cover for some reason. (And there are
several reasons they might not, as we’ll soon see.)

Background Positioning
OK, so we can put images in the background of an element. How about being able
to decide exactly how the image is placed? No problem! background-position is here
to help.

Backgrounds | 17

background-position

Values: [<position> [, <position>]*] | inherit

Expansion: <position> = [[left | center | right | top | bottom | <percentage> |
<length>] | [left | center | right | <percentage> | <length>] [top
| center | bottom | <percentage> | <length>] | [center | [left |
right] [<percentage> | <length>]?] && [center | [top | bottom]
[<percentage> | <length>]?]]

Initial value: 0% 0%

Applies to: Block-level and replaced elements

Inherited: No

Percentages: Refer to the corresponding point on both the element and the origin image (see
explanation in “Percentage values” on page 21)

Computed
value:

The absolute length offsets, if <length> is specified; otherwise, percentage values

That value syntax looks pretty horrific, but it isn’t; it’s just what happens when you
try to formalize the fast-and-loose implementations of a new technology into a regu‐
lar syntax and then layer even more features on top of that while trying to reuse parts
of the old syntax. (So, OK, kind of horrific.) In practice, background-position is
pretty simple.

Throughout this section, we’ll be using the rule background-
repeat: no-repeat to prevent tiling of the background image.
You’re not crazy: we haven’t talked about background-repeat yet!
We will soon enough, but for now, just accept that the rule restricts
the background to a single image, and don’t worry about it until we
move on to discussing background-repeat.

18 | Colors and Backgrounds

For example, you can center a background image in the body element, with the result
depicted in Figure 17, which is the result of the following code:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;}

Figure 17. Centering a single background image

You’ve actually placed a single image in the background and then prevented it from
being repeated with background-repeat (which is discussed in an upcoming sec‐
tion). Every background that includes an image starts with a single image. This start‐
ing image is called the origin image.

The placement of the origin image is accomplished with background-position, and
there are several ways to supply values for this property. First off, there are the key‐
words top, bottom, left, right, and center. Usually, these appear in pairs, but (as
the previous example shows) this is not always true. Then there are length values,
such as 50px or 2cm; and finally, percentage values, such as 43%. Each type of value has
a slightly different effect on the placement of the background image.

Keywords
The image placement keywords are easiest to understand. They have the effects you’d
expect from their names; for example, top right would cause the origin image to be
placed in the top-right corner of the element’s background. Let’s go back to the small
yin-yang symbol:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: top right;}

Backgrounds | 19

This will place a nonrepeated origin image in the top-right corner of each paragraph’s
background. Incidentally, the result, shown in Figure 18, would be exactly the same if
the position were declared as right top.

Figure 18. Placing the background image in the top-right corner of paragraphs

Position keywords can appear in any order, as long as there are no more than two of
them—one for the horizontal and one for the vertical. If you use two horizontal
(right right) or two vertical (top top) keywords, the whole value is ignored.

If only one keyword appears, then the other is assumed to be center. Table 1 shows
equivalent keyword statements.

Table 1. Position keyword
equivalents

Single keyword Equivalent keywords

center center center

top top center

center top

bottom bottom center

center bottom

right center right

right center

left center left

left center

So if you want an image to appear in the top center of every paragraph, you need only
declare:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: top;}

20 | Colors and Backgrounds

Percentage values
Percentage values are closely related to the keywords, although they behave in a more
sophisticated way. Let’s say that you want to center an origin image within its element
by using percentage values. That’s easy enough:

p {background-image: url(chrome.jpg);
 background-repeat: no-repeat;
 background-position: 50% 50%;}

This causes the origin image to be placed such that its center is aligned with the cen‐
ter of its element’s background. In other words, the percentage values apply to both
the element and the origin image.

In order to understand what I mean, let’s examine the process in closer detail. When
you center an origin image in an element’s background, the point in the image that
can be described as 50% 50% (the center) is lined up with the point in the background
that can be described the same way. If the image is placed at 0% 0%, its top-left corner
is placed in the top-left corner of the element’s background. 100% 100% causes the
bottom-right corner of the origin image to go into the bottom-right corner of the
background. Figure 19 contains examples of those values, as well as a few others.

Thus, if you want to place a single origin image a third of the way across the back‐
ground and two-thirds of the way down, your declaration would be:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: 33% 66%;}

With these rules, the point in the origin image that is one-third across and two-thirds
down from the top-left corner of the image will be aligned with the point that is far‐
thest from the top-left corner of the background. Note that the horizontal value
always comes first with percentage values. If you were to switch the percentages in the
preceding example, the image would be placed two-thirds of the way across the back‐
ground and one-third of the way down.

Backgrounds | 21

Figure 19. Various percentage positions

If you supply only one percentage value, the single value supplied is taken to be the
horizontal value, and the vertical is assumed to be 50%. For example:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: 25%;}

The origin image is placed one-quarter of the way across the paragraph’s background
and halfway down it, as depicted in Figure 20.

Figure 20. Declaring only one percentage value means the vertical position evaluates to
50%

Table 2 gives a breakdown of keyword and percentage equivalencies.

22 | Colors and Backgrounds

Table 2. Positional equivalents

Keyword(s) Equivalent keywords Equivalent percentages

center center center 50% 50%

50%

right center right

right center

100% 50%

100%

left center left

left center

0% 50%

0%

top top center

center top

50% 0%

bottom bottom center

center bottom

50% 100%

top left left top 0% 0%

top right right top 100% 0%

bottom right right bottom 100% 100%

bottom left left bottom 0% 100%

In case you were wondering, the default values for background-position are 0% 0%,
which is functionally the same as top left. This is why, unless you set different val‐
ues for the position, background images always start tiling from the top-left corner of
the element’s background.

Length values
Finally, we turn to length values for positioning. When you supply lengths for the
position of the origin image, they are interpreted as offsets from the top-left corner of
the element’s background. The offset point is the top-left corner of the origin image;
thus, if you set the values 20px 30px, the top-left corner of the origin image will be 20
pixels to the right of, and 30 pixels below, the top-left corner of the element’s back‐
ground, as shown (along with a few other length examples) in Figure 21, which is the
result of the following code:

background-image: url(chrome.jpg);
background-repeat: no-repeat;
background-position: 20px 30px;

Backgrounds | 23

Figure 21. Offsetting the background image using length measures

This is quite different than percentage values because the offset is simply from one
top-left corner to another. In other words, the top-left corner of the origin image
lines up with the point specified in the background-position declaration.

You can combine length and percentage values, though, to get a “best of both worlds”
effect. Let’s say you need to have a background image that is all the way to the right
side of the background and 10 pixels down from the top, as illustrated in Figure 22.
As always, the horizontal value comes first:

p {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: 100% 10px;
 border: 1px dotted gray;}

Figure 22. Mixing percentages and length values

For that matter, you can get the same result as shown in Figure 22 by using right
10px, since you’re allowed to mix keywords with lengths and percentages. Bear in
mind that the syntax enforces axis order when using nonkeyword values; in other
words, if you use a length of percentage, then the horizontal value must always come
first, and the vertical must always come second. That means right 10px is fine,
whereas 10px right is invalid and will be ignored.

24 | Colors and Backgrounds

Historical note: in versions of CSS prior to 2.1, you could not mix
keywords with other values. Thus, top 75% was not valid. If you
used a keyword, you were stuck using only keywords. CSS2.1
changed this in order to make authoring easier, and also because
typical browsers had already allowed it. It also led to the value syn‐
tax becoming very complicated, as we saw earlier.

If you’re using lengths or percentages, you can use negative values to pull the origin
image outside of the element’s background. Consider the example with the very large
yin-yang symbol for a background. At one point, we centered it, but what if we only
want part of it visible in the top-left corner of the element’s background? No problem,
at least in theory.

First, assume that the origin image is 300 pixels tall by 300 pixels wide. Then, assume
that only the bottom-right third of the image should be visible. You can get the
desired effect (shown in Figure 23) like this:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: -200px -200px;}

Figure 23. Using negative length values to position the origin image

Or, say you want just the right half of it to be visible and vertically centered within the
element’s background area:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: -150px 50%;}

Negative percentages are also possible, although they are somewhat interesting to cal‐
culate. The origin image and the element are likely to be very different sizes, for one
thing, and that can lead to unexpected effects. Consider, for example, the situation
created by the following rule and illustrated in Figure 24:

Backgrounds | 25

p {background-image: url(pix/yinyang.png);
 background-repeat: no-repeat;
 background-position: -10% -10%;
 width: 500px;}

Figure 24. Varying effects of negative percentage values

The rule calls for the point outside the origin image defined by -10% -10% to be
aligned with a similar point for each paragraph. The image is 300 × 300 pixels, so we
know its alignment point can be described as 30 pixels above the top of the image,
and 30 pixels to the left of its left edge (effectively -30px and -30px). The paragraph
elements are all the same width (500px), so the horizontal alignment point is 50 pixels
to the left of the left edge of their backgrounds. This means that each origin image’s
left edge will be 20 pixels to the left of the left padding edge of the paragraphs. This is

26 | Colors and Backgrounds

because the -30px alignment point of the images lines up with the -50px point for the
paragraphs. The difference between the two is 20 pixels.

The paragraphs are of differing heights, however, so the vertical alignment point
changes for each paragraph. If a paragraph’s background area is 300 pixels high, to
pick a semi-random example, then the top of the origin image will line up exactly
with the top of the element’s background, because both will have vertical alignment
points of -30px. If a paragraph is 50 pixels tall, then its alignment point would be
-5px and the top of the origin image will actually be 25 pixels below the top of the
background. This is why you can see all the tops of the background images in Fig‐
ure 24—the paragraphs are all shorter than the background image.

Changing the offset edges
OK, it’s time for a confession: throughout this whole discussion of background posi‐
tioning, I’ve been keeping two things from you. I acted as though the value of
background-position could have no more than two keywords, and that all offsets
were always made from the top-left corner of the background area.

That was certainly the case throughout most of the history of CSS, but it’s not true
any more. In fact, you can have up to four keywords in a very specific pattern to
deliver a very specific feature: changing the edges from which offsets are calculated.

Let’s start with a simple example: placing the origin image a third of the way across
and 30 pixels down from the top-left corner. Using what we saw in previous sections,
that would be:

background-position: 33% 30px;

Now let’s do the same thing with this four-part syntax:

background-position: left 33% top 30px;

What this four-part value says is “from the left edge, have a horizontal offset of 33%;
from the top edge, have an offset of 30px.”

Great, so that’s a more verbose way of getting the default behavior. Now let’s change
things so the origin image is placed a third of the way across and 30 pixels up from
the bottom right corner, as shown in Figure 25 (which assumes no repeating of the
background image for clarity’s sake):

background-position: right 33% bottom 30px;

Backgrounds | 27

Figure 25. Changing the offset edges for the origin image

Here, we have a value that means “from the right edge, have a horizontal offset of
33%; from the bottom edge, have an offset of 30px.”

Thus, the general pattern is edge keyword, offset distance, edge keyword, offset dis‐
tance. You can mix the order of horizontal and vertical information; that is, bottom
30px right 33% works just as well as right 33% bottom 30px. However, you cannot
omit either of the edge keywords; 30px right 33% is invalid and will be ignored.

You can omit an offset distance in cases where you want it to be zero. So right
bottom 30px would put the origin image against the right edge and 30 pixels up from
the bottom of the background area, whereas right 33% bottom would place the ori‐
gin image a third of the way across from the right edge and up against the bottom.
These are both illustrated in Figure 26.

As it happens, you can only define the edges of an element as offset bases, not the
center. A value like center 25% center 25px will be ignored.

28 | Colors and Backgrounds

Figure 26. Inferred zero-length offsets

Changing the Positioning Box
OK, so now we can add an image to the background, and we can even change where
the origin image is placed. But what if we don’t want to have its placement calculated
with respect to the outer padding edge of the element, which is the default? We can
affect that using the property background-origin.

background-origin

Values: [<box> [, <box>]*] | inherit

Expansion: <box> = border-box | padding-box | content-box

Initial value: padding-box

Applies to: All elements

Inherited: No

Computed value: As declared

Backgrounds | 29

This property probably looks very similar to background-clip, and with good rea‐
son, but its effect is pretty distinct. With background-origin, you can determine the
edge that’s used to determine placement of the origin image. This is also known as
defining the background positioning area. (background-clip, you may recall, defined
the background painting area.)

The default, padding-box, means that (absent any other changes) the top-left corner
of the origin image will be placed in the top-left corner of the outer edge of the pad‐
ding, which is just inside the border.

If you use the value border-box, then the top-left corner of the origin image will go
into the top-left corner of the padding area. That does mean that the border, if any,
will be drawn over top of the origin image (assuming the background painting area
wasn’t restricted to be padding-box or content-box, that is).

With content-box, you shift the origin image to be placed in the top-left corner of
the content area. The three different results are illustrated in Figure 27.

div[id] {color: navy; background: silver;
 background-image: url(yinyang.png);
 background-repeat: no-repeat;
 padding: 1em; border: 5px dashed;}
#ex01 {background-origin: border-box;}
#ex02 {background-origin: padding-box;} /* default value */
#ex03 {background-origin: content-box;}

Figure 27. The three types of background origins

30 | Colors and Backgrounds

Remember that this “placed in the top left” behavior is the default behavior, one you
can change with background-position. If the origin image is placed somewhere
other than the top-left corner, its position will be calculated with respect to the box
defined by background-origin: the border edge, the padding edge, or the content
edge. Consider, for example, this variant on our previous example, which is illustrated
in Figure 28.

div[id] {color: navy; background: silver;
 background-image: url(yinyang);
 background-repeat: no-repeat;
 background-position: bottom right;
 padding: 1em; border: 5px dotted;}
#ex01 {background-origin: border-box;}
#ex02 {background-origin: padding-box;} /* default value */
#ex03 {background-origin: content-box;}

Figure 28. The three types of background origins, redux

Where things can get really interesting is if you’ve explicitly defined your background
origin and clipping to be different boxes. Imagine you have the origin placed with
respect to the padding edge but the background clipped to the content area, or vice
versa. This would have the results shown in Figure 29.

Backgrounds | 31

Figure 29. When origin and clipping diverge

In the first example shown in Figure 28, the edges of the origin image are clipped
because it’s been positioned with respect to the padding box, but the background
painting area has been clipped at the edge of the content box. In the second example,
the origin image is placed with respect to the content box, but the painting area
extends into the padding box. Thus, the origin image is visible all the way down to the
bottom padding edge, even though its top is not placed against the top padding edge.

Background Repeating (or Lack Thereof)
In the old days, if you wanted some kind of “sidebar” background effect, you had to
create a very short, but incredibly wide, image to place in the background. At one
time, a favorite size for these images was 10 pixels tall by 1,500 pixels wide. Most of
that image would be blank space, of course; only the left 100 or so pixels contain the
“sidebar” image. The rest of the image was basically wasted.

Wouldn’t it be much more efficient to create a sidebar image that’s 10 pixels tall and
100 pixels wide, with no wasted blank space, and then repeat it only in the vertical
direction? This would certainly make your design job a little easier, and your users’
download times a lot faster. Enter background-repeat.

32 | Colors and Backgrounds

background-repeat

Values: <repeat-style> [, <repeat-style>]*

Expansion: <repeat-style> = repeat-x | repeat-y | [repeat | space | round |
no-repeat] | {1,2}

Initial value: repeat

Applies to: All elements

Inherited: No

Computed value: As specified

The value syntax for background-repeat looks a bit complicated at first glance, but
it’s actually pretty straightforward. In fact, at its base, it’s just four values: repeat, no-
repeat, space, and round. The other two, repeat-x and repeat-y, are considered to
be shorthand for combinations of the others. Table 3 shows how they break down.

Table 3. Repeat keyword equivalents

Single keyword Equivalent keywords

repeat-x repeat no-repeat

repeat-y no-repeat repeat

repeat repeat repeat

no-repeat no-repeat no-repeat

space space space

round round round

The syntax pattern is likely recognizable to anyone familiar with CSS. If two values
are given, the first applies in the horizontal direction, and the second in the vertical. If
there is just one value, it applies in both the horizontal and vertical directions, with
the exception, as shown in Table 3, of repeat-x and repeat-y.

As you might guess, repeat by itself causes the image to tile infinitely in all direc‐
tions, just as background images did when they were first introduced. repeat-x and
repeat-y cause the image to be repeated in the horizontal or vertical directions,
respectively, and no-repeat prevents the image from tiling along a given axis.

Backgrounds | 33

By default, the background image will start from the top-left corner of an element.
Therefore, the following rules will have the effect shown in Figure 30:

body {background-image: url(yinyang-sm.png);
 background-repeat: repeat-y;}

Figure 30. Tiling the background image vertically

Let’s assume, though, that you want the image to repeat across the top of the docu‐
ment. Rather than creating a special image with a whole lot of blank space under‐
neath, you can simply make a small change to that last rule:

body {background-image: url(yinyang-sm.png);
 background-repeat: repeat-x;}

As Figure 31 shows, the image is simply repeated along the x-axis (that is, horizon‐
tally) from its starting position—in this case, the top-left corner of the body element’s
background area.

Figure 31. Tiling the background image horizontally

Finally, you may not want to repeat the background image at all. In this case, you use
the value no-repeat:

34 | Colors and Backgrounds

body {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;}

This value may not seem terribly useful, given that the above declaration would just
drop a small image into the top-left corner of the document, but let’s try it again with
a much bigger symbol, as shown in Figure 32, which is the result of the following
code:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;}

Figure 32. Placing a single large background image

The ability to control the repeat direction dramatically expands the range of possible
effects. For example, let’s say you want a triple border on the left side of each h1 ele‐
ment in your document. You can take that concept further and decide to set a wavy
border along the top of each h2 element. The image is colored in such a way that it
blends with the background color and produces the wavy effect shown in Figure 33,
which is the result of the following code:

h1 {background-image: url(triplebor.gif); background-repeat: repeat-y;}
h2 {background-image: url(wavybord.gif); background-repeat: repeat-x;
 background-color: #CCC;}

Backgrounds | 35

Figure 33. Bordering elements with background images

Repeating and positioning

In the previous section, we explored the values repeat-x, repeat-y, and repeat, and
how they affect the tiling of background images. In each case, the tiling pattern
always started from the top-left corner of the element’s background. That’s because, as
we’ve seen, the default values for background-position are 0% 0%. Given that you
know how to change the position of the origin image, you need to know out how user
agents will handle it.

It will be easier to show an example and then explain it. Consider the following
markup, which is illustrated in Figure 34:

p {background-image: url(yinyang-sm.png);
 background-position: center;
 border: 1px dotted gray;}
p.c1 {background-repeat: repeat-y;}
p.c2 {background-repeat: repeat-x;}

Figure 34. Centering the origin image and repeating it

So there you have it: stripes running through the center of the elements. It may look
wrong, but it isn’t.

36 | Colors and Backgrounds

The examples shown in Figure 34 are correct because the origin image has been
placed in the center of the first p element and then tiled along the y-axis in both direc‐
tions—in other words, both up and down. For the second paragraph, the images are
repeated to the right and left.

Therefore, setting an image in the center of the p and then letting it fully repeat will
cause it to tile in all four directions: up, down, left, and right. The only difference
background-position makes is in where the tiling starts. Figure 35 shows the differ‐
ence between tiling from the center of an element and from its top-left corner.

Figure 35. The difference between centering a repeat and starting it from the top left

Note the differences along the edges of the element. When the background image
repeats from the center, as in the first paragraph, the grid of yin-yang symbols is cen‐
tered within the element, resulting in consistent “clipping” along the edges. In the
second paragraph, the tiling begins at the top-left corner of the padding area, so the
clipping is not consistent.

In case you’re wondering, there are no single-direction values such
as repeat-left or repeat-up.

Spacing and rounding

Beyond the basic tiling patterns we’ve seen thus far, background-repeat has the abil‐
ity to exactly fill out the background area. Consider, for example, what happens if we
use the value space to define the tiling pattern, as shown in Figure 36.

div#example {background-image: url(yinyang.png);
 background-repeat: space;}

Backgrounds | 37

Figure 36. Tiling the background image with filler space

If you look closely, you’ll notice that there are background images in each of the four
corners of the element. Furthermore, the images are spaced out so that they occur at
regular intervals in both the horizontal and vertical directions.

This is what space does: it determines how many repetitions it can fit along a given
axis and then spaces them out at regular intervals so that the repetitions go from one
edge of the background to another. This doesn’t guarantee a regular square grid,
where the intervals are all the same both horizontally and vertically. It just means that
you’ll have what look like columns and rows of background images, with likely differ‐
ent horizontal and vertical separations. You can see some examples of this in Fig‐
ure 37.

38 | Colors and Backgrounds

Figure 37. Spaced-out tiling with different intervals

What happens if you have a really big image that won’t fit more than once along the
given axis? Then it’s only drawn once, and placed as determined by the value of
background-position. The flip side of that is that if more than one repetition of
the image will fit along an axis, then the value of background-position is ignored
along that axis. An example of this is shown in Figure 38, and created using the fol‐
lowing code:

div#example {background-image: url(yinyang.png);
 background-position: center;
 background-repeat: space;}

Figure 38. Spacing along one axis but not the other

Notice that the images are spaced horizontally, and thus override the center position
along that axis, but are not spaced (because there isn’t enough room to do so) and are
still centered vertically. That’s the effect of space overriding center along one axis,
but not the other.

By contrast, the value round will most likely result in some scaling of the background
image as it is repeated, and (strangely enough) it will not override background-
position. If an image won’t quite repeat so that it goes from edge to edge of the back‐
ground, then it will be scaled up or down in order to make it fit a whole number of
times. Furthermore, the images can be scaled differently along each axis. You can see
an example of this in Figure 39, which is the result of the following code:

Backgrounds | 39

body {background-image: url(yinyang.png);
 background-position: top left;
 background-repeat: round;}

Figure 39. Tiling the background image with scaling

Note that if you have a background 850 pixels wide and a horizontally rounded image
that’s 300 pixels wide, then a browser can decide to use three images and scale them
down to fit three-across into the 850 pixel area. (Thus making each instance of the
image 283.333 pixels wide.) With space, it would have to use two images and put 250
pixels of space between them, but round is not so constrained.

Here’s the interesting wrinkle: while round will resize the background images so that
you can fit a whole number of them into the background, it will not move them to
make sure that they actually touch the edges of the background. In other words, the
only way to make sure your repeating pattern fits and no background images are clip‐
ped is to put the origin image in a corner. If the origin image is anywhere else, clip‐
ping will occur, as illustrated in Figure 40, which is the result of the following code:

40 | Colors and Backgrounds

body {background-image: url(yinyang.png);
 background-position: center;
 background-repeat: round;}

Figure 40. Rounded background images that are clipped

The images are still scaled so that they would fit into the background positioning area
a whole number of times. They just aren’t repositioned to actually do so. Thus, if
you’re going to use round and you don’t want to have any clipped background tiles,
make sure you’re starting from one of the four corners (and make sure the back‐
ground positioning and painting areas are the same; see the section “Tiling and clip‐
ping” on page 42 for more).

Backgrounds | 41

On the other hand, you can get some interesting effects from the actual behavior of
round. Suppose you have two elements that are the same size with the same rounded
backgrounds, and you place them right next to each other. The background tiling
should appear to be one continuous pattern.

Tiling and clipping

If you recall, background-clip can alter the area in which the background is drawn,
and background-origin determines the placement of the origin image. So what hap‐
pens when you’ve made the clipping area and the origin area different, and you’re
using either space or round for the tiling pattern?

The basic answer is that if your values for background-origin and background-clip
aren’t the same, you’ll see some clipping. This is because space and round are calcula‐
ted with respect to the background positioning area, not the painting area. Some
examples of what can happen are shown in Figure 41.

This has always been the case, actually, thanks to the historical behavior of CSS,
which positioned elements with respect to the inner border edge but clipped them at
the outer border edge. Thus, even if you very carefully controlled the size of an ele‐
ment so that it would have an even number of background-image tiles, adding a bor‐
der would introduce the possibility of partial clipping of tiles. (Especially if a border
side color ever got set to transparent.)

As for the best value to use, that’s a matter of opinion and circumstance. It’s likely that
in most cases, setting both background-origin and background-clip to padding-
box will get you the results you desire. If you plan to have borders with see-through
bits, though, then border-box might be a better choice.

As of the end of 2014, both space and round were not supported by
the Mozilla family of browsers, and there were many bugs in vari‐
ous other implementations.

42 | Colors and Backgrounds

Figure 41. Clipping due to mismatched clip and origin values

Getting Attached
So, now you can place the origin image for the background anywhere in the back‐
ground of an element, and you can control (to a large degree) how it tiles. As you
may have realized already, placing an image in the center of the body element could
mean, given a sufficiently long document, that the background image won’t be ini‐
tially visible to the reader. After all, a browser provides only a window onto the docu‐
ment. If the document is too long to be displayed in the window, then the user can
scroll back and forth through the document. The center of the body could be two or
three “screens” below the beginning of the document, or just far enough down to
push most of the origin image beyond the bottom of the browser window.

Backgrounds | 43

Furthermore, even if you assume that the origin image is initially visible, it always
scrolls with the document—it’ll vanish every time a user scrolls beyond the location
of the image. Never fear: there is a way to prevent this scrolling.

background-attachment

Values: [<attachment> [, <attachment>]*] | inherit

Expansion: <attachment> = scroll | fixed | local

Initial value: scroll

Applies to: All elements

Inherited: No

Computed value: As specified

Using the property background-attachment, you can declare the origin image to
be fixed with respect to the viewing area and therefore immune to the effects of
scrolling:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-attachment: fixed;}

Doing this has two immediate effects, as you can see in Figure 42. The first is that the
origin image does not scroll along with the document. The second is that the place‐
ment of the origin image is determined by the size of the viewing area, not the size (or
placement within the viewing area) of the element that contains it.

44 | Colors and Backgrounds

Figure 42. Nailing the background in place

In a web browser, the viewing area can change as the user resizes the browser’s win‐
dow. This will cause the background’s origin image to shift position as the window
changes size. Figure 43 depicts another view of the same document, where it’s been
scrolled partway through the text.

Backgrounds | 45

Figure 43. The centering continues to hold

There is only one other value for background-attachment, and that’s the default
value scroll. As you’d expect, this causes the background to scroll along with the rest
of the document when viewed in a web browser, and it doesn’t necessarily change the
position of the origin image as the window is resized. If the document width is fixed
(perhaps by assigning an explicit width to the body element), then resizing the view‐
ing area won’t affect the placement of a scroll-attachment origin image at all.

Interesting effects
In technical terms, when a background image has been fixed, it is positioned with
respect to the viewing area, not the element that contains it. However, the back‐
ground will be visible only within its containing element. This leads to a rather inter‐
esting consequence.

Let’s say you have a document with a tiled background that actually looks like it’s
tiled, and both h1 and h2 elements with the same pattern, only in a different color.
Both the body and heading elements are set to have fixed backgrounds, resulting in
something like Figure 44, which is the result of the following code:

46 | Colors and Backgrounds

body {background-image: url(grid1.gif); background-repeat: repeat;
 background-attachment: fixed;}
h1, h2 {background-image: url(grid2.gif); background-repeat: repeat;
 background-attachment: fixed;}

Figure 44. Perfect alignment of backgrounds

How is this perfect alignment possible? Remember, when a background is fixed, the
origin element is positioned with respect to the viewport. Thus, both background pat‐
terns begin tiling from the top-left corner of the viewport, not from the individual
elements. For the body, you can see the entire repeat pattern. For the h1, however, the
only place you can see its background is in the padding and content of the h1 itself.
Since both background images are the same size, and they have precisely the same
origin, they appear to “line up,” as shown in Figure 44.

This capability can be used to create some very sophisticated effects. One of the most
famous examples is the “complexspiral distorted” demonstration (http://bit.ly/meyer-
complexspiral), shown in Figure 45.

Backgrounds | 47

http://bit.ly/meyer-complexspiral
http://bit.ly/meyer-complexspiral

Figure 45. The complexspiral distorted

The visual effects are caused by assigning different fixed-attachment background
images to nonbody elements. The entire demo is driven by one HTML document,
four JPEG images, and a stylesheet. Because all four images are positioned in the
top-left corner of the browser window but are visible only where they intersect with
their elements, the images effectively interleave to create the illusion of translucent
rippled glass.

It is also the case that in paged media, such as printouts, every page generates its own
viewport. Therefore, a fixed-attachment background should appear on every page of
the printout. This could be used for effects such as watermarking all the pages in a
document, for example.

Unfortunately, placing a fixed-attachment background on each
page in paged media was poorly supported at the end of 2014, and
most browsers don’t print background images by default in any
case.

48 | Colors and Backgrounds

Sizing Background Images
Right, so up to this point, we’ve taken images of varying sizes and dropped them into
element backgrounds to be repeated (or not), positioned, clipped, and attached. In
every case, we just took the image at whatever intrinsic size it was (with the automa‐
ted exception of round repeating). Ready to actually change the size of the origin
image and all the tiled images that spawn from it?

background-size

Values: [<bg-size> [, <bg-size>]*] | inherit

Expansion: <bg-size> = [<length> | <percentage> | auto]]{1,2} | cover |
contain

Initial value: auto

Applies to: All elements

Inherited: No

Computed value: As declared, except all lengths made absolute and any missing auto “keywords” added

Let’s start by explicitly resizing a background image. We’ll drop in an image that’s 200
× 200 pixels and then resize it to be twice as big, as shown in Figure 46, which is the
result of the following code:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: 400px 400px;}

Backgrounds | 49

Figure 46. Resizing the origin image

You could just as easily resize the origin image to be smaller, and you aren’t confined
to pixels. It’s trivial to resize an image with respect to the current text size of an ele‐
ment, for example:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: 4em 4em;}

You can mix things up if you like, and in the process squeeze or stretch the origin
image:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;

50 | Colors and Backgrounds

 background-position: center;
 background-size: 400px 4em;}

And as you might expect, if you allow the image to repeat, then all the repeated
images will be the same size as the origin image. This and the previous example are
both illustrated in Figure 47, which is the result of the following code:

main {background-image: url(yinyang.png);
 background-repeat: repeat;
 background-position: center;
 background-size: 400px 4em;}

Figure 47. Distorting the origin image by resizing it

As that last example shows, when there are two values for background-size, the first
is the horizontal size and the second is the vertical. (As per usual for CSS.)

Percentages are a little more interesting. If you declare a percentage value, then it’s
calculated with respect to the background positioning area; that is, the area defined
by background-origin, and not by background-clip. Suppose you want an image
that’s half as wide and half as tall as its background positioning area, as shown in
Figure 48. Simple:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: 50% 50%;}

Backgrounds | 51

Figure 48. Resizing the origin image with percentages

And yes, you can mix lengths and percentages:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: 25px 100%;}

Negative length and percentage values are not permitted for
background-size.

Now, what about the default value of auto? First off, in a case where the there’s only
one value, it’s taken for the horizontal size, and the vertical size is set to auto. (Thus
background-size: auto is equivalent to background-size: auto auto.) If you want
to size the origin image vertically and leave the horizontal size to be automatic, you
have to write it explicitly, like this:

background-size: auto 333px;

But what does auto actually do? There’s a three-step fallback process:

1. If one axis is set to auto and the other is not, and the image has an intrinsic
height-to-width ratio, then the auto axis is calculated by using the size of the
other axis and the intrinsic ratio of the image. Thus, an image that’s 300 pixels
wide by 200 pixels tall (a 3:2 ratio) and is set to background-size: 100px;,

52 | Colors and Backgrounds

would be resized to be 100 pixels wide and 66.6667 pixels tall. If the declaration is
changed to background-size: auto 100px;, then the image will be resized to
150 pixels wide by 100 pixels tall. This will happen for all raster images (GIF,
JPEG, PNG, and so on), which have intrinsic ratios due to the nature of their
image formats.

2. If the first step fails for some reason, but the image has an intrinsic size, then
auto is set to be the same as the intrinsic size of that axis. Suppose you have an
image with an intrinsic size of 300 pixels wide by 200 pixels tall that somehow
fails to have an intrinsic ratio. In that case, background-size: auto 100px;
would result in a size of 300 pixels wide by 100 pixels tall.

3. If the first and second steps both fail for whatever reason, then auto resolves to
100%. Thus, an image with no intrinsic size that’s set to background-size: auto
100px; would be resized to be as wide as the background positioning area and
100 pixels tall. This can happen fairly easily with vector images like SVGs, and
is always the case for CSS gradient images (covered in detail in “Gradients” on
page 67).

As you can see from this process, in many ways, auto in background-size acts a lot
like the auto values of height and width act when applied to replaced elements such
as images. That is to say, you’d expect roughly similar results from the following two
rules, if they were applied to the same image in different contexts:

img.yinyang {width: 300px; height: auto;}

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-size: 300px auto;}

Covering and containing
Now for the real fun! Suppose you have an image that you want to cover the entire
background of an element, and you don’t care if parts of it stick outside the back‐
ground painting area. In this case, you can use cover, as shown in Figure 49, which is
the result of the following code:

main {background-image: url(yinyang.png);
 background-position: center;
 background-size: cover;}

Backgrounds | 53

Figure 49. Covering the background with the origin image

This scales the origin image so that it completely covers the background positioning
area while still preserving its intrinsic aspect ratio, assuming it has one. You can
see an example of this in Figure 50, where a 200 × 200 pixel image is scaled up to
cover the background of an 800 × 400 pixel element, which is the result of the follow‐
ing code:

main {width: 800px; height: 400px;
 background-image: url(yinyang.png);
 background-position: center;
 background-size: cover;}

54 | Colors and Backgrounds

Figure 50. Covering the background with the origin image, redux

Note that there was no background-repeat in that example. That’s because we expect
the image to fill out the entire background, so whether it’s repeated or not doesn’t
really matter.

You can also see that cover is very much different than 100% 100%. If we’d used 100%
100%, then the origin image would have been stretched to be 800 pixels wide by 400
pixels tall. Instead, cover made it 800 pixels wide and tall, then centered the image
inside the background positioning area. This is the same as if we’d said 100% auto in
this particular case, but the beauty of cover is that it works regardless of whether
your element is wider than it is tall, or taller than it is wide.

By contrast, contain will scale the image so that it fits exactly inside the background
positioning area, even if that leaves some of the rest of the background showing
around it. This is illustrated in Figure 51, which is the result of the following code:

main {width: 800px; height: 400px;
 background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: contain;}

Backgrounds | 55

Figure 51. Containing the origin image within the background

In this case, since the element is shorter than it is tall, the origin image was scaled so
it was as tall as the background positioning area, and the width was scaled to match,
just as if we’d declared auto 100%. Of course, if an element is taller than it is wide,
then contain acts like auto 100%.

You’ll note that we brought no-repeat back to the example so that things wouldn’t
become too visually confusing. Removing that declaration would cause the back‐
ground to repeat, which is no big deal if that’s what you want. The result is shown in
Figure 52.

Figure 52. Repeating a contained origin image

56 | Colors and Backgrounds

Always remember: the sizing of cover and contain images is always with respect to
the background positioning area, which is defined by background-origin. This is
true even if the background painting area defined by background-clip is different!
Consider the following rules, which are depicted in Figure 53:

div {border: 1px solid red;
 background: green url(yinyang-sm.png) center no-repeat;}
.cover {background-size: cover;}
.contain {background-size: contain;}
.clip-content {background-clip: content-box;}
.clip-padding {background-clip: padding-box;}
.origin-content {background-origin: content-box;}
.origin-padding {background-origin: padding-box;}

Figure 53. Covering, containing, positioning, and clipping

Yes, you can see background color around the edges of some of those, and others get
clipped. That’s the difference between the painting area and the positioning area.
You’d think that cover and contain would be sized with respect to the painting area,
but they aren’t. Keep that firmly in mind whenever you use these values.

Backgrounds | 57

In this section, I used raster images (GIFs, to be precise) even
though they tend to look horrible when scaled up and represent a
waste of network resources when scaled down. (I did this so that it
would be extra obvious when lots of up-scaling was happening.)
This is an inherent risk in scaling background raster images. On
the other hand, you can just as easily use SVGs as background
images, and they scale up or down with no loss of quality or waste
of bandwidth. Once upon a time, SVGs were unusable because
browsers didn’t support them, but those days are long past. If
you’re going to be scaling a background image and it doesn’t have
to be a photograph, strongly consider using SVG.

Bringing It All Together
As is often the case with thematic areas of CSS, the background properties can all be
brought together in a single shorthand property: background. Whether you might
want to do that is another question entirely.

background

Values: [[<bg-layer> ,]* <bg-final-layer> | inherit

Expansion: <bg-layer> = <bg-image> || <position> [/ <bg-size>]? || <repeat-
style> || <attachment> || <box> || <box> + <final-bg-layer> =
<bg-image> || <position> [/ <bg-size>]? || <repeat-style> ||
<attachment> || <box> || <box> || <'background-color’>

Initial value: Refer to individual properties

Applies to: All elements

Inherited: No

Percentages: Refer to individual properties

Computed value: Refer to individual properties

The syntax here can get a little crazy. Let’s start simple and work our way up from
there.

58 | Colors and Backgrounds

First off, the following statements are all equivalent and will have the effect shown in
Figure 54:

body {background-color: white;
 background-image: url(yinyang.png);
 background-position: top left;
 background-repeat: repeat-y;
 background-attachment: fixed;
 background-origin: padding-box;
 background-clip: border-box;
 background-size: 50% 50%;}
body {background:
 white url(yinyang.png) repeat-y top left/50% 50% fixed
 padding-box border-box;}
body {background:
 fixed url(yinyang.png) padding-box border-box white repeat-y
 top left/50% 50%;}
body {background:
 url(yinyang.png) top left/50% 50% padding-box white repeat-y
 fixed border-box;}

Figure 54. Using shorthand

You can mostly mix up the order of the values however you like, but there are three
restrictions. The first is that any background-size value must come immediately after
the background-position value, and must be separated from it by a solidus (/, the

Backgrounds | 59

“forward slash”). Additionally, within those values, the usual restrictions apply: the
horizontal value comes first, and the vertical value comes second, assuming that
you’re supplying axis-derived values (as opposed to, say, cover).

The last restriction is that if you supply values for both background-origin and
background-clip, the first of the two you list will be assigned to background-origin,
and the second to background-clip. That means that the following two rules are
functionally identical:

body {background:
 url(yinyang.png) top left/50% 50% padding-box border-box white
 repeat-y fixed;}
body {background:
 url(yinyang.png) top left/50% 50% padding-box white repeat-y
 fixed border-box;}

Related to that, if you only supply one such value, it sets both background-origin
and background-clip. Thus, the following shorthand sets both the background posi‐
tioning area and the background painting area to the padding box:

body {background:
 url(yinyang.png) padding-box top left/50% 50% border-box;}

As is the case for shorthand properties, if you leave out any values, the defaults for the
relevant properties are filled in automatically. Thus, the following two are equivalent:

body {background: white url(yinyang.png;}
body {background: white url(yinyang.png) transparent 0% 0%/auto repeat
 scroll padding-box border-box;}

Even better, there are no required values for background—as long as you have at least
one value present, you can omit the rest. Therefore, it’s possible to set just the back‐
ground color using the shorthand property, which is a very common practice:

body {background: white;}

This is perfectly legal, and in some ways preferred, given the reduced number of key‐
strokes. In addition, it has the effect of setting all of the other background properties
to their defaults, which means that background-image will be set to none.

On that note, remember that background is a shorthand property, and, as such, its
default values can obliterate previously assigned values for a given element. For
example:

h1, h2 {background: gray url(thetrees.jpg) center/contain repeat-x;}
h2 {background: silver;}

60 | Colors and Backgrounds

Given these rules, h1 elements will be styled according to the first rule. h2 elements
will be styled according to the second, which means they’ll just have a flat silver back‐
ground. No image will be applied to h2 backgrounds, let alone centered and repeated
horizontally. It is more likely that the author meant to do this:

h1, h2 {background: gray url(thetrees.jpg) center/contain repeat-x;}
h2 {background-color: silver;}

This lets the background color be changed without wiping out all the other values.

There’s one more restriction that will lead us very neatly into the next section: you
can only supply a background color on the final background layer. No other back‐
ground layer can have a solid color declared. What the heck does that mean? So glad
you asked.

Multiple Backgrounds
Throughout most of this chapter, I’ve been gliding right past the fact that almost all
the background properties accept a comma-separated list of values. For example, if
you wanted to have three different background images, you could do it like this:

section {background-image: url(bg01.png), url(bg02.gif), url(bg03.jpg);
 background-repeat: no-repeat;}

Seriously. It will look like what we see in Figure 55.

Figure 55. Multiple background images

This creates three background layers, one for each image. Technically, it’s two back‐
ground layers and a final background layer, which is the third in this series of three.

As we saw in Figure 55, the three images were piled into the top-left corner of the
element and didn’t repeat. The lack of repetition is because we declared background-
repeat: no-repeat, and the top-left positioning is because the default value of
background-position is 0% 0% (the top-left corner). But suppose we want to put the
first image in the top right, put the second in the center left, and put the last layer in

Backgrounds | 61

the center bottom? We can also layer background-position, as shown in Figure 56,
which is the result of the following code:

section {background-image: url(bg01.png), url(bg02.gif), url(bg03.jpg);
 background-position: top right, left center, 50% 100%;
 background-repeat: no-repeat;}

Figure 56. Individually positioning background images

Now, suppose we want to keep the first two from repeating, but horizontally repeat
the third:

section {background-image: url(bg01.png), url(bg02.gif), url(bg03.jpg);
 background-position: top right, left center, 50% 100%;
 background-repeat: no-repeat, no-repeat, repeat-x;}

Nearly every background property can be comma-listed this way. You can have differ‐
ent origins, clipping boxes, sizes, and just about everything else for each background
layer you create. Technically, there is no limit to the number of layers you can have,
though at a certain point it’s just going to get silly.

Even the shorthand background can be comma-separated. The following example is
exactly equivalent to the previous one, and the result is shown in Figure 57:

section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x;}

62 | Colors and Backgrounds

Figure 57. Multiple background layers via shorthand

The only real restriction on multiple backgrounds is that background-color does not
repeat in this manner, and if you provide a comma-separated list for the background
shorthand, then the color can only appear on the last background layer. Thus, if we
wanted to have a green background fill for the previous example, we’d do it in one of
the following two ways:

section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x green;}
section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x;
 background-color: green;}

The reason for this restriction is pretty straightforward. Imagine if you were able to
add a full background color to the first background layer. It would fill in the whole
background and obscure all the background layers behind it! So if you do supply a
color, it can only be on the last layer, which is “bottom-most.”

This ordering is important to internalize as soon as possible, because it runs counter
to the instincts you’ve likely built up in the course of using CSS. After all, you know
what will happen here: the h1 background will be green:

h1 {background-color: red;}
h1 {background-color: green;}

Contrast that with this multiple-background rule, which will make the h1 background
red, as shown in Figure 58:

h1 {background:
 url(box-red.gif),
 url(box-green.gif) green;}

Backgrounds | 63

Figure 58. The order of background layers

Yes, red. The red GIF is tiled to cover the entire background area, as is the green GIF,
but the red GIF is “on top of ” the green GIF. It’s closer to you. And the effect is exactly
backward from the “last one wins” rules built into the cascade.

I visualize it like this: when there are multiple backgrounds, they’re listed like the lay‐
ers in a drawing program such as Photoshop or Illustrator. In the layer palette of a
drawing program, layers at the top of the palette are drawn over the layers at the bot‐
tom. It’s the same thing here: the layers listed at the top of the list are drawn over the
layers at the bottom of the list.

The odds are pretty good that you will, at some point, set up a bunch of background
layers in the wrong order, because your cascade-order reflexes will kick in. (This error
still gets me from time to time, so don’t beat yourself up if it gets you.)

Another fairly common mistake when you’re getting started with multiple back‐
grounds is to forget to turn off background tiling for your background layers, thus
obscuring all but the top layer. See Figure 59, for example, which is the result of the
following code:

section {background-image: url(bg02.gif), url(bg03.jpg);}

Figure 59. Obscuring layers with repeated images

We can only see the top layer because it’s tiling infinitely, thanks to the default value
of background-repeat. That’s why the example at the beginning of this section had a
background-repeat: no-repeat. But how did the browser know to apply that single
repeat value to all the layers? Because CSS defines an algorithm for filling in the miss‐
ing pieces.

64 | Colors and Backgrounds

Filling in missing values
Multiple backgrounds are cool and all, but what happens if you forget to supply all
the values for all the layers? For example, what happens with background clipping in
this code?

section {background-image: url(bg01.png), url(bg02.gif), url(bg03.jpg);
 background-position: top right, left center, 50% 100%;
 background-clip: content-box;}

What happens is that the declared value is filled in for the missing values, so the
above is functionally equivalent to this:

section {background-image: url(bg01.png), url(bg02.gif), url(bg03.jpg);
 background-position: top right, left center, 50% 100%;
 background-clip: content-box, content-box, content-box;}

All right, great. But then someone comes along and adds a background layer by
adding another image. Now what?

section {background-image:
 url(bg01.png), url(bg02.gif), url(bg03.jpg), url(bg04.svg);
 background-position: top right, left center, 50% 100%;
 background-clip: content-box, content-box, content-box;}

What happens is the declared set of values is repeated as many times as necessary to
fill in the gaps. In this case, that means a result equivalent to declaring the following:

section {background-image:
 url(bg01.png), url(bg02.gif), url(bg03.jpg), url(bg04.svg);
 background-position: top right, left center, 50% 100%, top right;
 background-clip: content-box, content-box, content-box, content-box;}

Notice how the fourth background-position is the same as the first? That‘s also the
case for the fourth background-clip, though it’s not as obvious. Let’s make it even
more clear by setting up two rules that are exactly equivalent, albeit with slightly dif‐
ferent values than we’ve seen before:

body {background-image:
 url(bg01.png), url(bg02.gif), url(bg03.jpg), url(bg04.svg);
 background-position: top left, bottom center, 33% 67%;
 background-origin: border-box, padding-box;
 background-repeat: no-repeat;
 background-color: gray;}
body {background-image:
 url(bg01.png), url(bg02.gif), url(bg03.jpg), url(bg04.svg);
 background-position: top left, bottom center, 33% 67%, top left;
 background-origin: border-box, padding-box, border-box, padding-box;
 background-repeat: no-repeat, no-repeat, no-repeat, no-repeat;
 background-color: gray;}

That’s right: the color didn’t get repeated, because there can only be one background
color!

Backgrounds | 65

If we take away two of the background images, then the leftover values for the others
will be ignored. Again, two rules that are exactly the same in effect:

body {background-image: url(bg01.png), url(bg04.svg);
 background-position: top left, bottom center, 33% 67%;
 background-origin: border-box, padding-box;
 background-repeat: no-repeat;
 background-color: gray;}
body {background-image: url(bg01.png), (bg04.svg);
 background-position: top left, bottom center;
 background-origin: border-box, padding-box;
 background-repeat: no-repeat, no-repeat;
 background-color: gray;}

Notice that I actually removed the second and third images (bg02.gif and
bg03.jpg). Since this left two images, the third value of background-position was
dropped. Of course it was! The browser doesn’t remember what CSS you had last
time, and certainly doesn’t (because it can’t) try to maintain parallelism between the
old values and the new ones. If you cut values out of the middle of background-
image, you have to drop or rearrange values in other properties to keep up.

The easy way to avoid these sorts of situations is just to use background, like so:

body {background:
 url(bg01.png) top left border-box no-repeat,
 url(bg02.gif) bottom center padding-box no-repeat,
 url(bg04.svg) bottom center padding-box no-repeat gray;}

That way, when you add or subtract background layers, the values you meant to apply
specifically to them will come in or go out with them. Of course, this can mean some
annoying repetition if all the backgrounds should have the same value of a given
property, like background-origin. If that’s the situation, you can blend the two
approaches, like so:

body {background:
 url(bg01.png) top left no-repeat,
 url(bg02.gif) bottom center no-repeat,
 url(bg04.svg) bottom center no-repeat gray;
 background-origin: padding-box;}

This works just as long as you don’t need to make any exceptions. The minute you
decide to change the origin of one of those background layers, then you’ll need to
explicitly list them, however you do it.

Remember that the number of layers is determined by the number of background
images, and so, by definition, background-image values are not repeated to equal the
number of comma-separated values given for other properties. You might want to put
the same image in all four corners of an element and think you could do it like this:

66 | Colors and Backgrounds

background-image: url(i/box-red.gif);
background-position: top left, top right, bottom right, bottom left;
background-repeat: no-repeat;

The result, however, would be to place a single red box in the top-left corner of the
element. In order to get images in all four corners, as shown in Figure 60, you’ll have
to list the same image four times:

background-image: url(i/box-red.gif), url(i/box-red.gif),
 url(i/box-red.gif), url(i/box-red.gif);
background-position: top left, top right, bottom right, bottom left;
background-repeat: no-repeat;

Figure 60. Placing the same image in all four corners

Gradients
There are two new image types defined by CSS that are described entirely in CSS: lin‐
ear gradients and radial gradients. These are most often used in backgrounds, which
is why they’re being covered here, though they can be used in any context where an
image is permitted—list-style-image, for example.

A gradient is simply a smooth visual transition from one color to another. For exam‐
ple, a gradient from white to black will start white, run through successively darker
shades of gray, and eventually arrive at black. How gradual or abrupt a transition that
is depends on how much space the gradient has to operate. If you run from white to
black over 100 pixels, then each pixel along the gradient’s progression will be another
1% darker gray. This is diagrammed in Figure 61.

Figure 61. The progression of a simple gradient

Gradients | 67

As we go through the process of exploring gradients, always keep this in mind: gradi‐
ents are images. It doesn’t matter that you describe them by typing CSS—they are
every bit as much images as SVGs, PNG, GIFs, and so on.

What’s interesting about gradients is that they have no intrinsic dimensions, which
means that if the background-size property’s value auto is used, it is treated as if it
were 100%. Thus, if you don’t define a background-size for a background gradient, it
will be set to the default value of auto, which is the same as declaring 100% 100%. So,
by default, background gradients fill in the entire background positioning area.

Linear Gradients
Linear gradients are simply gradient fills that proceed along a linear vector, referred
to as the gradient line. They can be anything but simple, however. Here are a few rela‐
tively simple gradients, with the results shown in Figure 62:

#ex01 {background-image: linear-gradient(purple, gold);}
#ex02 {background-image: linear-gradient(90deg, purple, gold);}
#ex03 {background-image: linear-gradient(to left, purple, gold);}
#ex04 {background-image: linear-gradient(-135deg, purple, gold, navy);}
#ex05 {background-image: linear-gradient(to bottom left, purple, gold, navy);}

Figure 62. Simple linear gradients

The first of these is the most basic that a gradient can be: two colors. This causes a
gradient from the first color at the top of the background positioning area to the sec‐
ond color at the bottom of the background positioning area.

The gradient goes from top to bottom because the default direction for gradients is to
bottom, which is the same as 180deg and its various equivalents (for example,
0.5turn). If you’d like to go a different direction, then you can start the gradient value
with a direction. That’s what was done for all the other gradients shown in Figure 62.

So the basic syntax of a linear gradient is:

linear-gradient(
 [[<angle> | to <side-or-quadrant>] ,]? <color-stop> [, <color-stop>]+]
)

68 | Colors and Backgrounds

While you only use the to keyword if you’re describing a side or quadrant with key‐
words like top and right, the direction you give always describes the direction in
which the gradient line points. In other words, linear-gradient(0deg,red,green)
will have red at the bottom and green at the top because the gradient line points
toward zero degrees (the top of the element) and thus ends with green. Just remem‐
ber to leave out the to if you’re using an angle value because something like to 45deg
is invalid and will be ignored.

Gradient colors
You’re able to use any color value you like, including alpha-channel values such as
rgba() and keywords like transparent. Thus it’s entirely possible to fade out pieces
of your gradient simply by blending to (or from) a color with zero opacity. Consider
the following rules, which are depicted in Figure 63:

#ex01 {background-image:
 linear-gradient(to right, rgb(200,200,200), rgb(255,255,255));}
#ex02 {background-image:
 linear-gradient(to right, rgba(200,200,200,1), rgba(200,200,200,0));}

Figure 63. Fading to white versus fading to transparent

As you can see, the first example fades from light gray to white, whereas the second
example fades the same light gray from opaque to transparent, thus allowing the par‐
ent element’s background to show through.

You’re certainly not restricted to two colors, either. You’re free to add as many colors
as you can stand. Consider the following gradient:

Gradients | 69

#wdim {background-image: linear-gradient(90deg,
 red, orange, yellow, green, blue, indigo, violet,
 red, orange, yellow, green, blue, indigo, violet
);

The gradient line points toward 90 degrees, which is the right side. There are 14 color
stops in all, one for each of the comma-separated color names, and they are dis‐
tributed evenly along the gradient line, with the first at the beginning of the line and
the last at the end. Between the color stops, the colors are blended as smoothly as
possible from one color to the other. This is shown in Figure 64.

Figure 64. The distribution of color stops along the gradient line

So, without any indication of where the color stops should be positioned, they’re
evenly distributed. What happens if you give them positions?

Positioning color stops

The full syntax of a <color-stop> is:

<color> [<length> | <percentage>]?

After every color value, you can (but don’t have to) supply a position value. This gives
you the ability to distort the usual regular progression of color stops into something
else.

Let’s start with lengths, since they’re pretty simple. Let’s take a rainbow progression
(only a single rainbow this time) and have each color of the rainbow occur every 25
pixels, as shown in Figure 65:

#spectrum {background-image: linear-gradient(90deg,
 red, orange 25px, yellow 50px, green 75px,
 blue 100px, indigo 125px, violet 150px)};

Figure 65. Placing color stops every 25 pixels

This worked out just fine, but notice what happened after 150 pixels—the violet just
continued on to the end of the gradient line. That’s what happens if you set up the

70 | Colors and Backgrounds

color stops so they don’t make it to the end of the gradient line: the last color is just
carried onward.

Conversely, if your color stops go beyond the end of the gradient line, then the gradi‐
ent just stops at whatever point it manages to reach when it gets to the end of the
gradient line. This is illustrated in Figure 66:

#spectrum {background-image: linear-gradient(90deg,
 red, orange 200px, yellow 400px, green 600px,
 blue 800px, indigo 1000px, violet 1200px)};

Figure 66. Gradient clipping when colors stops go too far

Since the last color stop is at 1,200 pixels but the gradient line is shorter than that, the
gradient just stops right around the color blue. That’s as far as the gradient gets
before running out of room.

Note that in the preceding two examples and figures, the first color (red) didn’t have a
length value. If the first color has no position, it’s assumed to be the beginning of the
gradient line. Similarly, if you leave a position off the last color stop, it’s assumed to be
the end of the gradient line.

You can use any length value you like, not just pixels. Ems, inches, you name it. You
can even mix different units into the same gradient, although this is not generally rec‐
ommended for reasons we’ll get to in a little bit. You can even have negative length
values if you want; doing so will place a color stop before the beginning of the gradi‐
ent line, and clipping will occur in the same manner as it happens at the end of the
line, as shown in Figure 67:

#spectrum {background-image: linear-gradient(90deg,
 red -200px, orange 200px, yellow 400px, green 600px,
 blue 800px, indigo 1000px, violet 1200px)};

Figure 67. Gradient clipping when color stops have negative positions

Gradients | 71

As for percentages, they’re calculated with respect to the total length of the gradient
line. Therefore, a color stop at 50% will be at the midpoint of the gradient line. Let’s
return to our rainbow example, and instead of having a color stop every 25 pixels,
we’ll have one every 10% of the gradient line’s length. This would look like the follow‐
ing, which has the result shown in Figure 68:

#spectrum {background-image: linear-gradient(90deg,
 red, orange 10%, yellow 20%, green 30%, blue 40%, indigo 50%, violet 60%)};

Figure 68. Placing color stops every 10 percent

As we saw previously, since the last color stop comes before the end of the gradient
line, its color (violet) is carried through to the end of the gradient. These stops are a
bit more spread out than the 25-pixel example we saw earlier, but otherwise things
happen in more or less the same way.

In cases where some color stops have position values and others don’t, the stops
without positions are evenly distributed between the ones that do. Consider the fol‐
lowing:

#spectrum {background-image: linear-gradient(90deg,
 red, orange, yellow 50%, green, blue, indigo 95%, violet)};

Because red and violet don’t have specified position values, they’re taken to be 0%
and 100%, respectively. This means than orange, green, and blue will be evenly dis‐
tributed between the explicitly defined positions to either side.

For orange, that means the point midway between red 0% and yellow 50%, which is
25%. For green and blue, these need to be arranged between yellow 50% and indigo
95%. That’s a 45% difference, which is divided in three, because there are three inter‐
vals between the four values. That means 65% and 80%. In the end, we get the distor‐
ted rainbow shown in Figure 69, exactly as if we’d declared the following:

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange 25%, yellow 50%, green 65%, blue 80%, indigo 95%, violet 100%)};

72 | Colors and Backgrounds

Figure 69. Distributing color stops between explicitly placed stops

This is the same mechanism used to evenly distribute stops along the gradient line
when none of them are given a position, of course. If none of the color stops have
been positioned, the first is assumed to be 0%, the last is assumed to be 100%, and the
other color stops are evenly distributed between those two points.

You might wonder what happens if you mess up and put two color stops at exactly
the same point, like this:

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow, green 50%, blue 50%, indigo, violet)};

All that happens is that the two color stops are put on top of each other. The result is
shown in Figure 70.

Figure 70. The effect of coincident color stops

The gradient blended as usual all along the gradient line, but at the 50% point, it
instantly blended from green to blue over zero length. So the gradient blended from
yellow at the 33.3% point (two-thirds of the way from 0% to 50%) to green at the 50%
point, then blended from green to blue over zero length, then blended from blue at
50% over to indigo at 75% (midway between 50% and 100%).

This “hard-stop” effect can be useful if you want to create a striped effect, like that
shown in Figure 71, which is the result of the following code:

.stripes {background-image: linear-gradient(90deg,
 gray 0%, gray 25%,
 transparent 25%, transparent 50%,
 gray 50%, gray 75%,
 transparent 75%, transparent 100%);}

Gradients | 73

Figure 71. Hard-stop stripes

OK, so that’s what happens if you put color stops right on top of each other, but what
happens if you put one before another? Something like this, say:

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow, green 50%, blue 40%, indigo, violet)};

In that case, the offending color stop (blue in this case) is set to the largest specified
value of a preceding color stop. Here, it would be set to 50%, since the stop before it
had that position. Thus, the effect is the same as we saw earlier in this section, when
the green and blue color stops were placed on top of each other.

The key point here is that the color stop is set to the largest specified position of
the stop that precedes it. Thus, given the following, the indigo color stop would be
set to 50%:

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow 50%, green, blue, indigo 33%, violet)};

In this case, the largest specified position before the indigo stop is the 50% specified at
the yellow stop. Thus, the gradient fades from red to orange to yellow, then has a hard
switch to indigo before fading from indigo to violet. The gradient’s fades from yellow
to green to blue to indigo all take place over zero distance. See Figure 72 for the
results.

Figure 72. Handling color stops that are out of place

This behavior is the reason why mixing units within a single gradient is generally dis‐
couraged. If you mix rems and percentages, for example, you could end up with a sit‐
uation where a color stop positioned with percentages might end up before an earlier
color stop positioned with rems.

As of early 2015, there were bugs in the handling of out-of-place
color stops in the Firefox line of browsers.

74 | Colors and Backgrounds

Gradient lines: the gory details
Now that you have a grasp of the basics of placing color stops, it’s time to look closely
at how gradient lines are actually constructed, and thus how they create the effects
that they do.

First, let’s set up a simple gradient so that we can then dissect how it works:

linear-gradient(
 55deg, #4097FF, #FFBE00, #4097FF
)

Now, how does this one-dimensional construct—a line at 55 degrees on the compass
—create a two-dimensional gradient fill? First, the gradient line is placed and its start
and ending points determined. This is diagrammed in Figure 73, with the final gradi‐
ent shown next to it.

Figure 73. The placement and sizing of the gradient line

The first thing to make very clear is that the box seen here is not an element—it’s the
linear-gradient image itself. (Remember, we’re creating images here.) The size and
shape of that image can depend on a lot of things, whether it’s the size of the element’s
background or the application of properties like background-size, which is a topic
we’ll cover in a bit. For now, we’re just concentrating on the image itself.

OK, so in Figure 73, you can see that the gradient line goes straight through the cen‐
ter of the image. The gradient line always goes through the center of the gradient
image. In this case, we set it to a 55-degree angle, so it’s pointing at 55 degrees on the
compass. What’s interesting are the start and ending points of the gradient line, which
are actually outside the image.

Let’s talk about the start point first. It’s the point on the gradient line where a line per‐
pendicular to the gradient line intersects with the corner of the image furthest away
from the gradient line’s direction (55deg). Conversely, the gradient line’s ending point

Gradients | 75

is the point on the gradient line where a perpendicular line intersects the corner of
the image nearest to the gradient line’s direction.

Bear in mind that the terms “start point” and “ending point” are a little bit misleading
—the gradient line doesn’t actually stop at either point. The gradient line is, in fact,
infinite. However, the start point is where the first color stop will be placed by default,
as it corresponds to position value 0%. Similarly, the ending point corresponds to the
position value 100%.

Therefore, given the gradient we defined before:

linear-gradient(
 55deg, #4097FF, #FFBE00, #4097FF
)

…the color at the start point will be #4097FF, the color at the midpoint (which is also
the center of the image) will be #FFBE00, and the color at the ending point will be
#4097FF, with smooth blending in between. This is illustrated in Figure 74.

Figure 74. The calculation of color along the gradient line

All right, fine so far. But, you may wonder, how do the bottom-left and top-right cor‐
ners of the image get set to the same blue that’s calculated for the start and ending
points, if those points are outside the image? Because the color at each point along the
gradient line is extended out perpendicularly from the gradient line. This is partially
shown in Figure 75 by extending perpendicular lines at the start and ending points, as
well as every 5% of the gradient line between them.

76 | Colors and Backgrounds

Figure 75. The extension of selected colors along the gradient line

That should be enough to let you fill in the rest mentally, so let’s consider what hap‐
pens to the gradient image in various other settings. We’ll use the same gradient defi‐
nition as before, but this time apply it to wide, square, and tall images. These are
shown in Figure 76. Note how the start-point and ending-point colors always make
their way into the corners of the gradient image.

Figure 76. How gradients are constructed for various images

Note how I very carefully said “the start-point and ending-point colors,” and did not
say “the start and end colors.” That’s because, as we saw earlier, color stops can be
placed before the start point and after the ending point, like so:

linear-gradient(
 55deg, #4097FF -25%, #FFBE00, #4097FF 125%
)

The placement of these color stops as well as the start point and ending point, the way
the colors are calculated along the gradient line, and the final gradient are all shown
in Figure 77.

Gradients | 77

Figure 77. A gradient with stops beyond the start and ending points

Once again, we see that the colors in the bottom-left and top-right corners match the
start-point and ending-point colors. It’s just that in this case, since the first color stop
came before the start point, the actual color at the start point is a blend of the first
and second color stops. Likewise for the ending point, which is a blend of the second
and third color stops.

Now here’s where things get a little bit wacky. Remember how you can use directional
keywords, like top and right, to indicate the direction of the gradient line? Suppose
you wanted the gradient line to go toward the top right, so you create a gradient
image like this:

linear-gradient(
 to top right, #4097FF -25%, #FFBE00, #4097FF 125%
)

This does not cause the gradient line to intersect with the top-right corner. Would
that it did! Instead, what happens is a good deal stranger. First, let’s diagram it in Fig‐
ure 78 so that we have something to refer to.

Your eyes do not deceive you: the gradient line is way off from the top-right corner.
On the other hand, it is headed into the top-right quadrant of the image. That’s what
to top right really means: head into the top-right quadrant of the image, not into
the top-right corner.

As Figure 78 shows, the way to find out exactly what that means is to do the follow‐
ing:

1. Shoot a line from the midpoint of the image into the corners adjacent to the cor‐
ner in the quadrant that’s been declared. Thus, for the top-right quadrant, the
adjacent corners are the top left and bottom right.

78 | Colors and Backgrounds

2. Draw the gradient line perpendicular to that line, pointing into the declared
quadrant.

3. Construct the gradient—that is, determine the start and ending points, place or
distribute the color stops, then calculate the entire gradient image, as per usual.

Figure 78. A gradient headed toward the top right

This process has a few interesting side effects. First, it means that the color at the
midpoint will always stretch from one quadrant-adjacent corner to the other. Second,
it means that if the image’s shape changes—that is, if its ratio of height to width
changes—then the gradient line will also change direction, meaning that the gradient
will reorient. So watch out for that if you have flexible elements. Third, a perfectly
square gradient image will have a gradient line that intersects with a corner. Examples
of these three side effects are depicted in Figure 79, using the following gradient defi‐
nition in all three cases:

linear-gradient(
 to top right, purple, green 49.5%, black 50%, green 50.5%, gold
)

Gradients | 79

Figure 79. Examples of the side effects of a quadrant-directed gradient

Sadly, there is no way to say “point the gradient line into the corner of a nonsquare
image” short of calculating the necessary degree heading yourself and declaring it
explicitly, a process that will require JavaScript unless you know the image will always
be an exact size in all cases, forever. It’s an odd oversight, but one we have to live with.

Radial Gradients
Linear gradients are pretty awesome, but there are times when you really want a cir‐
cular gradient. You can use such a gradient to create a spotlight effect, a circular
shadow, a rounded glow, or any number of other effects. The syntax used is similar to
that for linear gradients, but there are some interesting differences:

radial-gradient(
 [[<shape> || <size>] [at <position>]? , | at <position>,]?
 <color-stop> [, <color-stop>]+
)

What this boils down to is you can optionally declare a shape and size, optionally
declare where it center of the gradient is positioned, and then declare two or more
color stops. There are some interesting options in the shape and size bits, so let’s build
up to those.

First, let’s look at a simple radial gradient—the simplest possible, in fact—presented
in a variety of differently shaped elements (Figure 80):

.radial {background-image: radial-gradient(purple, gold);}

80 | Colors and Backgrounds

Figure 80. A simple radial gradient in multiple settings

In all of these cases, because no position was declared, the default of center was used.
Because no shape was declared, the shape is an ellipse for all cases but the square ele‐
ment; in that case, the shape is a circle. Finally, because no color-stop positions were
declared, the first is placed at the beginning of the gradient ray, and the last at the end.

That’s right: the gradient ray, which is the radial equivalent to the gradient line in lin‐
ear gradients. It extends outward from the center of the gradient directly to the right,
and the rest of the gradient is constructed from it. (We’ll get to the details on that in
just a bit.)

Shape and size
First off, there are exactly two possible shape values (and thus two possible shapes)
for a radial gradient: circle and ellipse. The shape of a gradient can be declared
explicitly, or it can be implied by the way you size the gradient image.

So, on to sizing. As always, the simplest way to size a radial gradient is with either one
non-negative length (if you’re sizing a circle) or two non-negative lengths (if it’s an
ellipse). Say you have this radial gradient:

radial-gradient(50px, purple, gold)

This creates a circular radial gradient that fades from purple at the center to gold at a
distance of 50 pixels from the center. If we add another length, then the shape
becomes an ellipse that’s as wide as the first length, and as tall as the second length:

radial-gradient(50px 100px, purple, gold)

These two gradients are illustrated in Figure 81.

Gradients | 81

Figure 81. Simple radial gradients

Notice how the shape of the gradients has nothing to do with the overall size and
shape of the images in which they appear. If you make a gradient a circle, it will be a
circle even if it’s inside a rectangular gradient image. So too will an ellipse always be
an ellipse, even when inside a square gradient image.

You can also use percentage values for the size, but only for ellipses. Circles cannot be
given percentage sizes because there’s no way to indicate the axis to which that per‐
centage refers. (Imagine an image 100 pixels tall by 500 wide. Should 10% mean 10
pixels or 50 pixels?) If you do supply percentages, then as usual, the first refers to the
horizontal axis and the second to the vertical. The following gradient is shown in var‐
ious settings in Figure 82:

radial-gradient(50% 25%, purple, gold)

Figure 82. Percentage-sized elliptical gradients

When it comes to ellipses, you’re also able to mix lengths and percentages, with the
usual caveat to be careful. So if you’re feeling confident, you can absolutely make an
elliptical radial gradient 10 pixels tall and half the element width, like so:

82 | Colors and Backgrounds

radial-gradient(50% 10px, purple, gold)

As it happens, lengths and percentages aren’t the only way to size radial gradients. In
addition to those value types, there are also four keywords available for sizing radial
gradients, the effects of which are summarized in Table 4.

Table 4. Radial gradient sizing keywords

Keyword Meaning

closest-

side
If the radial gradient’s shape is a circle, the gradient is sized so that the end of the gradient ray exactly
touches the edge of the gradient image that is closest to the center point of the radial gradient. If the shape
is an ellipse, then the end of the gradient ray exactly touches the closest edge in each of the horizontal and
vertical axes.

farthest-

side
If the radial gradient’s shape is a circle, the gradient is sized so that the end of the gradient ray exactly
touches the edge of the gradient image that is farthest from the center point of the radial gradient. If the
shape is an ellipse, then the end of the gradient ray exactly touches the farthest edge in each of the
horizontal and vertical axes.

closest-

corner
If the radial gradient’s shape is a circle, the gradient is sized so that the end of the gradient ray exactly
touches the corner of the gradient image that is closest to the center point of the radial gradient. If the
shape is an ellipse, then the end of the gradient ray still touches the corner closest to the center, and the
ellipse has the same aspect ratio that it would have had if closest-side had been specified.

farthest-

corner
If the radial gradient’s shape is a circle, the gradient is sized so that the end of the gradient ray exactly
touches the corner of the gradient image that is farthest from the center point of the radial gradient. If the
shape is an ellipse, then the end of the gradient ray still touches the corner farthest from the center, and the
ellipse has the same aspect ratio that it would have had if farthest-side had been specified. Note: this
is the default size value for a radial gradient and so is used if no size values are declared.

In order to better visualize the results of each keyword, see Figure 83, which depicts
each keyword applied as both a circle and an ellipse.

Gradients | 83

Figure 83. The effects of radial gradient sizing keywords

These keywords cannot be mixed with lengths or percentages in elliptical radial gra‐
dients; thus, closest-side 25px is invalid and will be ignored.

Something you might have noticed in Figure 83 is that the gradients didn’t start at the
center of the image. That’s because they were positioned elsewhere, which is the topic
of the next section.

Positioning radial gradients

If you want to shift the center of a radial gradient away from the default of center,
then you can do so using any position value that would be valid for background-
position. I’m not going to reproduce that rather complicated syntax here; flip back
to the section on background-position (“Background Positioning” on page 17) if
you need a refresher.

When I say “any position value that would be valid,” that means any permitted com‐
bination of lengths, percentages, keywords, and so on. It also means that if you leave
off one of the two position values, it will be inferred just the same as for background-
position. So, just for one example, center is equivalent to center center.

The one difference between radial gradient positions and background positions is the
default: for radial gradients, the default position is center, not 0% 0%. Otherwise,
they’re the same—and that’s really all there is to it.

To give some idea of the possibilities, consider the following rules, illustrated in Fig‐
ure 84:

radial-gradient(at bottom left, purple, gold);
radial-gradient(at center right, purple, gold);
radial-gradient(at 30px 30px, purple, gold);

84 | Colors and Backgrounds

radial-gradient(at 25% 66%, purple, gold);
radial-gradient(at 30px 66%, purple, gold);

Figure 84. Changing the center position of radial gradients

Of course, none of those positioned radial gradients were explicitly sized, so they all
defaulted to farthest-corner. That’s a reasonable guess at the intended default
behavior, but it’s not the only possibility. Let’s mix some sizes into the gradients we
just saw and find out how that changes things (as depicted in Figure 85):

radial-gradient(30px at bottom left, purple, gold);
radial-gradient(30px 15px at center right, purple, gold);
radial-gradient(50% 15% at 30px 30px, purple, gold);
radial-gradient(farthest-side at 25% 66%, purple, gold);
radial-gradient(farthest-corner at 30px 66%, purple, gold);

Figure 85. Changing the center position of explicitly sized radial gradients

Nifty. Now, suppose we want something a little more complicated than a fade from
one color to another. Next stop, color stops!

Radial color stops and the gradient ray
Color stops for radial gradients work in a similar fashion to linear gradients. Let’s
return to the simplest possible radial gradient and follow it with a more explicit
equivalent:

radial-gradient(purple, gold);
radial-gradient(purple 0%, gold 100%);

So the gradient ray extends out from the center point. At 0% (the start point, and also
the center of the gradient), the ray will be purple. At 100% (the ending point), the ray
will be gold. Between the two stops is a smooth blend from purple to gold; beyond
the ending point, solid gold.

Gradients | 85

If we add a stop between purple and gold, but don’t give it a position, then it will be
placed midway between them, and the blending will be altered accordingly, as shown
in Figure 86:

radial-gradient(purple 0%, green, gold 100%);

Figure 86. Adding a color stop

We’d have gotten the same result if we’d added green 50% there, but you get the idea.
The gradient ray’s color goes smoothly from purple to green to gold, and then is solid
gold beyond that point on the ray.

This illustrates one difference between gradient lines (for linear gradients) and gradi‐
ent rays: a linear gradient is derived by extending the color at each point along the
gradient line off perpendicular to the gradient line. A similar behavior occurs with a
radial gradient, except in that case, they aren’t lines that come off the gradient ray.
Instead, they are ellipses that are scaled-up or scaled-down versions of the ellipse at
the ending point. This is illustrated in Figure 87, where an ellipse shows its gradient
ray and then the ellipses that are drawn at various points along that ray.

86 | Colors and Backgrounds

Figure 87. The gradient ray and some of the ellipses it spawns

That brings up an interesting question: how is the ending point (the 100% point, if
you like) determined for each gradient ray? Simply, it’s the point where the gradient
ray intersects with the shape described by the size. In the case of a circle, that’s easy:
the gradient ray’s ending point is however far from the center that the size value
indicates. So for a 25px circle gradient, the ending point of the ray is 25 pixels from
the center.

For an ellipse, it’s essentially the same operation, except that the distance from the
center is dependent on the horizontal axis of the ellipse. Given a radial gradient that’s
a 40px 20px ellipse, the ending point will be 40 pixels from the center and directly
to its right. Figure 88 shows this in some detail.

Gradients | 87

Figure 88. Setting the gradient ray’s ending point

Another difference between linear gradient lines and radial gradient rays is that you
can see beyond the ending point. If you recall, a linear gradient line is always drawn
so that you can see the colors at the 0% and 100% points, but nothing beyond them;
the gradient line can never be any smaller than the longest axis of the gradient image,
and will frequently be longer than that. With a radial gradient, on the other hand, you
can size the radial shape to be smaller than the total gradient image. In that case, the
color at the last color stop is simply extended outward from the ending point. (We’ve
already seen this in several previous figures.)

Conversely, if you set a color stop that’s beyond the ending point of a ray, you might
get to see the color out to that stop. Consider the following gradient, illustrated in
Figure 89:

radial-gradient(50px circle at center, purple, green, gold 80px)

88 | Colors and Backgrounds

Figure 89. Color stops beyond the ending point

The first color stop has no position, so it’s set to 0%, which is the center point. The last
color stop is set to 80px, so it will be 80 pixels away from the center in all directions.
The middle color stop, green, is placed midway between the two (40 pixels from the
center). So we get a gradient that goes out to gold at 80 pixels and then continues gold
beyond that point.

This happens even though the circle was explicitly set to be 50 pixels large. It still is 50
pixels in radius, it’s just that the positioning of the last color stop makes that fact
vaguely irrelevant. Visually, we might as well have declared this:

radial-gradient(80px circle at center, purple, green, gold)

or, more simply, just this:

radial-gradient(80px, purple, green, gold)

The same behaviors apply if you use percentages for your color stops. These are
equivalent to the previous examples, and to each other, visually speaking:

radial-gradient(50px, purple, green, gold 160%)
radial-gradient(80px, purple, green, gold 100%)

Now, what if you set a negative position for a color stop? It’s pretty much the same
result as we saw with linear gradient lines: the negative color stop is used to figure out
the color at the start point, but is otherwise unseen. Thus, the following gradient will
have the result shown in Figure 90:

radial-gradient(80px, purple -40px, green, gold)

Gradients | 89

Figure 90. Handling a negative color-stop position

Given these color-stop positions, the first color stop is at -40px, the last is at 80px
(because, given its lack of an explicit position, it defaults to the ending point), and the
middle is placed midway between them. The result is the same as if we’d explicitly
said:

radial-gradient(80px, purple -40px, green 20px, gold 80px)

That’s why the color at the center of the gradient is a green-purple: it’s a blend of one-
third purple, two-thirds green. From there, it blends the rest of the way to green, and
then on to gold. The rest of the purple-green blend, the part that sits on the “negative
space” of the gradient ray, is invisible.

Degenerate cases
Given that we can declare size and position for a radial gradient, the question arises:
what if a circular gradient has zero radius, or an elliptical gradient has zero height or
width? These conditions aren’t quite as hard to create as you might think: besides
simply explicitly declaring that a radial gradient has zero size using 0px or 0%, you
could also do something like this:

radial-gradient(closest-corner circle at top right, purple, gold)

The gradient’s size is set to closest-corner, and the center has been moved into the
top right corner, so the closest corner is zero pixels away from the center. Now
what?

90 | Colors and Backgrounds

In this case, the specification very explicitly says that the gradient should be rendered
as if it’s “a circle whose radius [is] an arbitrary very small number greater than zero.”
So that might mean as if it had a radius of one-one-billionth of a pixel, or a picometer,
or heck, the Planck length. (Kids, ask your science teacher.) The interesting thing is
that it means the gradient is still a circle. It’s just a very, very, very small circle. Proba‐
bly, it will be too small to actually render anything visible. If so, you’ll just get a solid-
color fill that corresponds to the color of the last color stop instead.

Ellipses with zero-length dimensions have fascinatingly different defined behaviors.
Let’s assume the following:

radial-gradient(0px 50% at center, purple, gold)

The specification states that any ellipse with a zero width is rendered as if it’s “an
ellipse whose height [is] an arbitrary very large number and whose width [is] an arbi‐
trary very small number greater than zero.” In other words, render it as though it’s a
linear gradient mirrored around the vertical axis running through the center of the
ellipse. The specification also says that in such a case, any color stops with percentage
positions resolve to 0px. This will usually result in a solid color matching the color
defined for the last color stop.

On the other hand, if you use lengths to position the color stops, you can get a verti‐
cally mirrored horizontal linear gradient for free. Consider the following gradient,
illustrated in Figure 91:

radial-gradient(0px 50% at center, purple 0px, gold 100px)

Figure 91. The effects of a zero-width ellipse

Gradients | 91

How did this happen? First, remember that the specification says that the 0px hori‐
zontal width is treated as it it’s a tiny non-zero number. For the sake of illustration,
let’s suppose that’s one-one-thousandth of a pixel (0.001px). That means the ellipse
shape is a thousandth of a pixel wide by half the height of the image. Again for the
sake of illustration, let’s suppose that’s a height of 100 pixels. That means the first
ellipse shape is a thousandth of a pixel wide by 100 pixels tall, which is an aspect ratio
of 0.001:100, or 1:100,000.

Okay, so every ellipse drawn along the gradient ray has a 1:100,000 aspect ratio. That
means the ellipse at half a pixel along the gradient ray is one pixel wide and 100,000
pixels tall. At one pixel, it’s two pixels wide and 200,000 pixels tall. At five pixels, the
ellipse is 10 pixels by a million pixels. At fifty pixels along the gradient ray, the ellipse
is 100 pixels wide and ten million tall. And so on. This is diagrammed in Figure 92.

Figure 92. Very, very tall ellipses

So you can see why the visual effect is of a mirrored linear gradient. These ellipses are
effectively drawing vertical lines. Technically they aren’t, but in practical terms they
are. Therefore, the result is as if you have a vertically mirrored horizontal gradient,
because each ellipse is centered on the center of the gradient, and both sides of it get
drawn. While this may be a radial gradient, we can’t see its radial nature.

On the other hand, if the ellipse has width but not height, the results are quite differ‐
ent. You’d think the result would be to have a vertical linear gradient mirrored around
the horizontal axis, but not so! Instead, the result is a solid color equal to the last
color stop. (Unless it’s a repeating gradient, a subject we’ll turn to shortly, in which

92 | Colors and Backgrounds

case it should be a solid color equal to the average color of the gradient.) So, given
either of the following, you’ll get a solid gold:

radial-gradient(50% 0px at center, purple, gold)
radial-gradient(50% 0px at center, purple 0px, gold 100px)

Why the difference? It goes back to how radial gradients are constructed from the
gradient ray. Again, remember that, per the specification, a zero distance here is
treated as a very small non-zero number. As before, we’ll assume that 0px is reas‐
signed to 0.001px, and that the 50% evaluates to 100 pixels. That’s an aspect ratio of
100:0.001, or 100,000:1.

So, to get an ellipse that’s one pixel tall, the width of that ellipse must be 100,000 pix‐
els. But our last color stop is only at 100 pixels! At that point, the ellipse that’s drawn
is 100 pixels wide and a thousandth of a pixel tall. All of the purple-to-gold transition
that happens along the gradient ray has to happen in that thousandth of a pixel.
Everything after that is gold, as per the final color stop. Thus, we can only see the
gold.

You might think that if you increased the position value of the last color stop to
100000px, you’d see a thin sliver of purple-ish color running horizontally across the
image. And you’d be right, if the browser treats 0px as 0.001px in these cases. If it
assumes 0.00000001px instead, you’d have to increase the color stop’s position a lot
further in order to see anything. And that’s assuming the browser was actually caulcu‐
lating and drawing all those ellipses, instead of just hard-coding the special cases. The
latter is a lot more likely, honestly. It’s what I’d do if I were in charge of a browser’s
gradient-rendering code.

And what if an ellipse has zero width and zero height? In that case, the specification is
written such that the zero-width behavior is used; thus, you’ll get the mirrored-linear-
gradient behavior.

As of early 2015, browser support for the defined behavior in these
edge cases was unstable, at best. Some browsers used the last color-
stop’s color in all cases, and others simply refused to draw a gradi‐
ent at all in some cases.

Manipulating Gradient Images
As has been emphasized (possibly to excess), gradients are images. That means you
can size, position, repeat, and otherwise affect them with the various background
properties, just as you would any PNG or SVG.

One way this can be leveraged is to repeat simple gradients. (Repeating in more com‐
plex ways is the subject of the next section.) For example, you could use a hard-stop
radial gradient to give your background a dotted look, as shown in Figure 92:

Gradients | 93

body {background: tan center/25px 25px repeat
 radial-gradient(circle at center,
 rgba(0,0,0,0.1), rgba(0,0,0,0.1) 10px,
 transparent 10px, transparent);}

Figure 93. Tiled radial gradient images

Yes, this is visually pretty much the same as tiling a PNG that has a mostly-
transparent dark circle 10 pixels in diameter. There are three advantages to using a
gradient in this case:

• The CSS is almost certainly smaller in bytes than the PNG would be.
• Even more importantly, the PNG requires an extra hit on the server. This slows

down both page and server performance. A CSS gradient is part of the stylesheet
and so eliminates the extra server hit.

• Changing the gradient is a lot simpler, so experimenting to find exactly the right
size, shape, and darkness is much easier.

Of course, gradients can’t do everything a raster or vector image can, so it’s not as
though you’ll be giving up external images completely now that gradients are a thing.
You can still pull off some pretty impressive effects with gradients, though. Consider
the background effect shown in Figure 94.

94 | Colors and Backgrounds

Figure 94. It’s time to start the music…

That curtain effect was accomplished with just two linear gradients repeated at differ‐
ing intervals, plus a third to create a “glow” effect along the bottom of the back‐
ground. Here’s the code that accomplished it:

background-image:
 linear-gradient(0deg, rgba(255,128,128,0.25), transparent 75%),
 linear-gradient(89deg,
 transparent, transparent 30%,
 #510A0E 35%, #510A0E 40%, #61100F 43%, #B93F3A 50%,
 #4B0408 55%, #6A0F18 60%, #651015 65%, #510A0E 70%,
 #510A0E 75%, rgba(255,128,128,0) 80%, transparent),
 linear-gradient(92deg,
 #510A0E, #510A0E 20%, #61100F 25%, #B93F3A 40%, #4B0408 50%,
 #6A0F18 70%, #651015 80%, #510A0E 90%, #510A0E);
background-size: auto, 300px 100%, 109px 100%;
background-repeat: repeat-x;

The first (and therefore topmost) gradient is just a fade from a 75%-transparent light
red up to full transparency at the 75% point of the gradient line. Then two “fold”
images are created. Figure 95 shows each separately.

With those images defined, they are repeated along the X (horizontal) axis and given
different sizes. The first, which is the “glow” effect, is given auto size in order to let it
cover the entire element background. The second is given a width of 300px and a
height of 100%; thus, it will be as tall as the element background and 300 pixels wide.
This means it will be tiled every 300 pixels along the X axis. The same is true of the
third image, except it tiles every 109 pixels. The end result looks like an irregular
stage curtain.

Gradients | 95

Figure 95. The two “fold” gradients

The beauty of this is that adjusting the tiling intervals is just a matter of editing the
stylesheet. Changing the color-stop positions or the colors is less trivial, but not too
difficult if you know what effect you’re after. And, of course, adding a third set of
repeating folds is no more difficult than just adding another gradient to the stack.

Repeating Gradients
Gradients are pretty awesome by themselves, but because they are images, they can be
subject to strange behaviors when they are tiled. For example, if you declare:

h1.exmpl {background:
 linear-gradient(-45deg, black 0, black 25px, yellow 25px, yellow 50px)
 top left/40px 40px repeat;}

…then you could easily end up with a situation like that shown in Figure 96.

Figure 96. Tiling gradient images with background-repeat

As the figure shows, there is a discontinuity where the images repeat. You could try to
nail down the exact sizes of the element and gradient image and then mess with the
construction of the gradient image in order to try to make the sides line up, but it
would be a lot better if there was just a way to say, “repeat this seamlessly forever.”

Enter repeating gradients. For the previous example, all we need is to convert linear-
gradient to repeating-linear-gradient and drop the background-size value.
Everything else about the code stays the same. The effect is much different, however,
as you can see in Figure 97:

96 | Colors and Backgrounds

h1.exmpl {background: repeating-linear-gradient(-45deg,
 black 0, black 25px, yellow 25px, yellow 50px) top left;}

Figure 97. A repeating gradient image with repeating-linear-gradient

What happens with a repeating linear gradient is that the declared color stops are
repeated on a loop along the gradient line, over and over, forever. Given the previous
example, that means switching between black and yellow every 25 pixels forever.

Now, that example worked because there was supposed to be a hard stop where the
gradient repeated. If you’re using smoother transitions, you need to be careful that
the color value at the last color stop matches the color value at the first color stop.
Consider this:

repeating-linear-gradient(-45deg, purple 0px, gold 50px)

This will produce a smooth gradient from purple to gold at 50 pixels, and then a hard
switch back to purple and another 50-pixel purple-to-gold blend. By adding one
more color stop with the same color as the first color stop, the gradient can be
smoothed out to avoid hard-stop lines. See Figure 98 for a comparison of the two
approaches:

repeating-linear-gradient(-45deg, purple 0px, gold 50px, purple 100px)

Figure 98. Dealing with hard resets in repeating-gradient images

You may have noticed that none of the repeating gradients we’ve seen so far have a
defined size. That means the images are defaulting in size to the full background posi‐
tioning area of the element to which they’re applied, per the default behavior for
images that have no intrinsic height and width. Of course, if you were to resize a
repeating-gradient image using background-size, the repeating gradient would only
be visible within the gradient image. If you then repeated it using background-
repeat, you could very easily be back to the situation of having discontinuities in
your background, as illustrated in Figure 99:

h1.exmpl {background:
 repeating-linear-gradient(-45deg, purple 0px, gold 50px, purple 100px)
 top left/50px 50px repeat;}

Gradients | 97

Figure 99. Repeated tiling of repeating-gradient images

If you use percentages in your repeating linear gradients, they’ll be placed the same as
if the gradient wasn’t of the repeating variety. Then again, this would mean that all of
the gradients defined by those color stops would be seen and none of the repetitions
would be visible, so percentages are kind of pointless with repeating linear gradients.

On the other hand, percentages can be very useful with repeating radial gradients,
where the size of the circle or ellipse is defined, percentage positions along the gradi‐
ent ray are defined, and you can see beyond the endpoint of the gradient ray. For
example, assume:

.ex02 {background:
 repeating-radial-gradient(100px 50px, purple, gold 20%, green 40%,
 purple 60%, yellow 80%, purple);}

Given this rule, there will be a color stop every 20 pixels, with the colors repeating in
the declared pattern. Because the first and last color stops have the same color value,
there is no hard color switch. The ripples just spread out forever, or at least until
they’re beyond the edges of the gradient image. See Figure 100 for an example.

Figure 100. Repeating radial gradients

Just imagine what that would look like with a repeating radial gradient of a rainbow!

.wdim {background:
 repeating-radial-gradient(
 100px circle at bottom center,
 rgb(83%,83%,83%) 50%,
 violet 55%, indigo 60%, blue 65%, green 70%,
 yellow 75%, orange 80%, red 85%,
 rgb(47%,60%,73%) 90%
);}

There are a couple of things to keep in mind when creating repeating radial gradients:

98 | Colors and Backgrounds

• If you don’t declare size dimensions for a radial, it will default to an ellipse that
has the same height-to-width ratio as the overall gradient image; and, if you don’t
declare a size for the image with background-size, the gradient image will
default to the height and width of the element background where it’s being
applied. (Or, in the case of being used as a list-style bullet, the size that the
browser gives it.)

• The default radial size value is farthest-corner. This will put the endpoint of
the gradient ray far enough to the right that its ellipse intersects with the corner
of the gradient image that’s furthest from the center point of the radial gradient.

These are reiterated here to remind you that if you stick to the defaults, there’s not
really any point to having a repeating gradient, since you’ll only be able to see the first
iteration of the repeat. It’s only when you restrict the initial size of the gradient that
the repeats become visible.

Radial gradients, and in particular repeating radial gradients, can
be a massive performance drain for mobile devices. Crashes have
not been uncommon in these situations, and both page rendering
time and battery performance can suffer greatly. Think very, very
carefully about using radial gradients in mobile contexts, and be
sure to rigorously test their performance and stability in any con‐
text.

Average gradient colors
Another edge case is what happens if a repeating gradient’s first and last color stops
somehow end up being in the same place. For example, suppose your fingers missed
the “5” key and you accidentally declared the following:

repeating-radial-gradient(center, purple 0px, gold 0px)

The first and last color stops are zero pixels apart, but the gradient is supposed to
repeat ad infinitum along the gradient line. Now what?

In such a case, the browser finds the average gradient color and fills it in throughout
the entire gradient image. In our simple case in the preceding code, that will be a
50/50 blend of purple and gold (which will be about #C06C40 or rgb(75%,42%,25%)).
Thus, the resulting gradient image should be a solid orangey-brown, which doesn’t
really look much like a gradient.

This condition can also be triggered in cases where the browser rounds the color-stop
positions to zero, or cases where the distance between the first and last color stops is
so small as compared to the output resolution that nothing useful can be rendered.
This could happen if, for example, a repeating radial gradient used all percentages for

Gradients | 99

the color-stop positions and was sized using closest-side, but was accidentally
placed into a corner.

As of early 2015, no browsers really do this correctly. It is possible
to trigger some of the correct behaviors in Firefox under very limi‐
ted conditions, but in most cases, browsers either just use the last
color stop as a fill color, or else try really hard to draw sub-pixel
repeating patterns. This often causes browser crashes, so be very
careful to avoid situations that might trigger average-color behav‐
ior!

Summary
Setting colors and backgrounds on elements gives authors a great deal of power. The
advantage of CSS over traditional methods is that colors and backgrounds can be
applied to any element in a document.

100 | Colors and Backgrounds

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internation‐
ally recognized expert on the subjects of HTML, CSS, and web standards. A widely
read author, he is also the founder of Complex Spiral Consulting, which counts
among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Mac‐
romedia, which described Eric as “a critical partner in our efforts to transform Mac‐
romedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for
the Case Western Reserve University website, where he also authored a widely
acclaimed series of three HTML tutorials and was project coordinator for the online
version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biog‐
raphy, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The
Definitive Guide (O’Reilly), and CSS2.0 Programmer’s Reference (Osborne/McGraw-
Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and
Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated
the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a
wide variety of organizations, including Los Alamos National Laboratory, the New
York Public Library, Cornell University, and the University of Northern Iowa. Eric
has also delivered addresses and technical presentations at numerous conferences,
among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web
Design World, CMP, SXSW, the User Interface conference series, and The Other
Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mail‐
ing list, which he cofounded with John Allsopp of Western Civilisation, and which is
now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city
than you’ve been led to believe. For nine years he was the host of “Your Father’s Old‐
smobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

Colophon
The animals on the cover of Colors, Backgrounds, and Gradients are salmon (salmoni‐
dae), which is a family of fish consisting of many different species. Two of the most
common salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and
Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30
pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

they incubate through the winter and emerge as inch-long fish. They live for a year or
two in streams or lakes and then head downstream to the ocean. There they live for a
few years, before heading back upstream to their exact place of birth to spawn and
then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America
and Europe. There are many subspecies of Atlantic salmon, including the trout and
the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a
life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel
beds to the sea. A major difference between the two, however, is that the Atlantic sal‐
mon does not die after spawning; it can return to the ocean and then return to the
stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins.
Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusu‐
ally keen sense of smell is thought to help them navigate from the ocean back to the
exact spot of their birth, upstream past many obstacles. Some species of salmon
remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fer‐
tilizer for streambeds. Their numbers have been dwindling over the years, however.
Factors in the declining salmon population include habitat destruction, fishing, dams
that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Colors and Backgrounds
	Colors
	Foreground Colors
	Affecting Borders
	Affecting Form Elements
	Inheriting Color

	Backgrounds
	Background Colors
	Clipping the Background
	Background Images
	Background Positioning
	Changing the Positioning Box
	Background Repeating (or Lack Thereof)
	Getting Attached
	Sizing Background Images
	Bringing It All Together
	Multiple Backgrounds

	Gradients
	Linear Gradients
	Radial Gradients
	Manipulating Gradient Images
	Repeating Gradients

	Summary

	About the Author

