CSS

Quick Syntax
Reference

Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthorccccsrismmmis s —————— XV
About the Technical ReVIEWErcucesssessmsmsmssssmsasssssssssnsssassssnsnsns xvii
INtroductioncccucemmneemmsssnnmsssnnmsssnnmssssnnsssnnnsssnnnsssnnnsssnnssssnnnnssnnnss Xix
Chapter 1: Using CSS......cccusmmmmmmmssnmmmmmssssssmmsssssssnsssssssssssssssssnsssssnns 1
Chapter 2: GroupPing......cccesssssnssssssnnssssssssnssesssssnsssssssssnsssssssnsssssssnns 5
Chapter 3: Class and id selectors.........ccccnmmmmmmmmmmnnnnnmmmsmsssssssssssnnns 7
Chapter 4: Attribute selectorsccccunemmmmnssmmnmmnsssssnmmssssssnmsnnnn 11
Chapter 5: Pseudo selectors.........ccciunnmmmmmnssssnnnmmssssssnssssssssssssssnns 15
Chapter 6: Relationship selectorsccccuseemmmssssnnnnmssssnsssnsssnnns 27
Chapter 7: SPeCifiCityccusmmmmmmssnmnmmmssssnnmmssssnnnnssssssnnssssssnsnsssssnnes 31
Chapter 8: ColOrs.....ccceeerrrmmmmsmssssssssssnsmsssssssssnnsssssssssssssssnnnnsssnnnnns 35
Chapter 9: Units......ccucccnmmmmnsemmmmmmsssnsmmmmsssssmmssssssmmssssssssssssssssssssssnns 39
Chapter 10: CSS Propertiescccuurmuesmmsssnsmsssssssssssesssssssssnssssnnnes 43
Chapter 11: Text. . 47
Chapter 12: SPaCiNgcccusseemmmmssssnsmmsssssnnmmssssssnssssssssnssssssnsnsssssnnns 51
Chapter 13: Font.........ccccuismmmssemmmsssnmmsssssmsssssesssssesssssesssssesssnssnsnnnes 53
Chapter 14: Background.........cccuseenmmmsssennnmssssssnssssssssnssssssssnsssssnnns 57
Chapter 15: Gradients..........ccccvunsemmmmmmsssnmmmmssssnmmsssssnmsssssnnnsnnn 63
Chapter 16: Box modelc.cccunsmmmmssenmmsssnsmsssssssssssssssssssssssssssnnes 71

iii

CONTENTS AT A GLANCE

Chapter 17: Borderccccceurrurmsmssssssssssnsnmssssssssssssssssssssssssssnssssnnsnnss 73
Chapter 18: OUtliNe......cccvrsreemmrmssssnnsnnssssssnsssssssnsssssssnnssssssnnnsesssnnns 77
Chapter 19: Margin and padding.......ccucccnmmmsssnnnmssssssssssssssssssssssnns 79
Chapter 20: DIMENSIONccccemrrisssnnnmmssssssnsssssssnnssssssssnssssssnsssssssnns 83
Chapter 21: PoSItioningcccvrssssnsnsmssssnssssssssssnssssssnssssssssnsnsssssnns 87
Chapter 22: Classification ... 95
Chapter 23: Listccccccmmmmssmmmmmmsssssnmmnssssssnmsssssssssssssssssssssssnsssssns 101
Chapter 24: Table.........cccinssemmrmmsssssnnmnssssssnmssssssssesssssssssssssnnsssnsss 105
Chapter 25: Mediacccceerrrmrmmmmmsssssssnnmmmssmsssssssssssssssssssssnnsssssenss 109
Chapter 26: Best practices.......ccucccmmmmmnemmmmmsssssnmmmsssssnnmsssssssnnns 113
INA@X..iiieiiisrie s —————————_— 121

iv

Introduction

CSS, which stands for Cascading Style Sheets, is a stylistic language that defines how web
pages are presented. It complements HTML, which is the language used for describing
the structure of web site content. Because HTML predates CSS, it includes a number of
limited stylistic elements and attributes, but they have largely been deprecated in favor of
the much greater design control offered by CSS.

One of the main features of CSS is that it enables the complete separation of a web
site’s presentation from its content. This separation reduces the complexity and repetition
associated with including stylistic information in the structural content. Furthermore,
this separation makes it easy to enforce site-wide consistency in the presentation of a web
site because the entire look and feel of a site can be controlled from a single style sheet
document.

As one of the core languages of the Web, CSS is used today by almost all web sites
to enhance the web experience. It has been a revolution in the World Wide Web and is a
must-learn language for anyone working with web design. Like HTML, the CSS language
is easy to learn and use, as is shown in this book.

CSS versions

The CSS language is under ongoing development by the World Wide Web Consortium
(W3C), which is the international standards organization for the Internet. The W3C writes
the specifications that web browsers implement to display web pages consistently in
compliance with those specifications. Each new specification extends the language with
new features while maintaining backward compatibility.

The first specification, CSS level 1 (or CSS 1), became a W3C recommendation in
1996. In 1998, CSS 2 was finalized, extending CSS 1 with additional features. Because all
widely used web browsers currently implement the features of both these specifications,
itis seldom necessary to make a distinction between them, and this book does so only
when relevant.

Since 1998, the W3C has been working on CSS 3. Unlike the two earlier levels of
CSS, this level became considerably larger and was therefore split into several separate
specifications called modules. This split allowed the modules to mature independently at
their own pace. As a result of the ongoing development, support for CSS 3 varies. Some
features are stable and have widespread browser support; other features are supported
only by the latest browser versions or are not supported at all. This book focuses mainly
on the CSS 3 features that are supported in the major browsers at the time of writing.

Xix

INTRODUCTION

Rule structure

CSS is commonly used within a style sheet document, which consists of a list of rules.
For example, a rule to color all paragraph elements red is shown here:

p { color: red; }

This rule has two parts: a selector and a declaration block. The selector is the link
between the HTML document and the style sheet that specifies the element to which the
rule is applied. In this case, it is the type selector p that applies to all paragraph elements
(<p>). Any HTML element can be used as a type selector in this way.

The declaration block, which is enclosed within curly braces, defines the styling
applied to the selected elements. The block can contain one or more declarations, each
of which is made up of a style property followed by a colon and a valid value for that
property. Each declaration is terminated with a semicolon, although this is optional for
the last one.

p { color: red; background: black }

Although the last semicolon is not necessary, it is a good practice to include it
because it is easy to forget the missing semicolon when you add more styles to the rule.
Another general practice is to use lowercase letters when writing CSS, even though
selectors and properties are case-insensitive.

To summarize, a style rule consists of a selector and one or more declarations, each
comprising one or more property-value pairs. This structure is illustrated here:

Property Value
I |

p { color : red; }

Selector Declaration

XX

CHAPTER 1

Using CSS

There are three ways to insert CSS into an HTML document: by using an internal style
sheet, inline styles, or an external style sheet. An internal style sheet applies to a single
page, an inline style to a single element, and an external style sheet to potentially an
entire web site.

Internal style sheet

An internal style sheet is useful when a single document needs to have its own unique
styling. The style sheet is then embedded within the <head> section of the web document
using the <style> element. This element is a container for style sheet rules and should
have its type attribute set to "text/css".

<style type="text/css">
p { color: red; }
</style>

Inline style

Styling can be assigned to an individual element by using the style attribute to set an
inline style. It is a generic attribute that can be included in any HTML start tag, and its
value is the CSS declarations that will be applied to the element, separated by semicolons.
There is no need to specify a selector because the declarations implicitly belong to the
current element.

<p style="color: green">Green text</p>
This approach should be used sparingly because it mixes style with content and

therefore makes future changes more cumbersome. It can be useful as a quick way to test
styles before they are moved out to an external style sheet.

CHAPTER 1 © USING CSS

External style sheet

The most common way to include CSS is through an external style sheet. The style sheet
rules are placed in a separate text file with a . css file extension. This style sheet is then
referenced using the <1link> element in the web page header. The rel (relationship)
attribute must be set to "stylesheet" and the meta type attribute can optionally be set to
"text/css". The location of the style sheet is specified with the href attribute.

<link rel="stylesheet" type="text/css" href="MyStyle.css">

Another less common way to include an external style sheet is to use the CSS @import
function from inside of the <style> element. For this function to work, it must be placed
before any other rules.

<style type="text/css">
@import url("MyStyle.css");
</style>

Using an external style sheet is often preferred because it completely separates CSS
from the HTML document. It is then possible to quickly create a consistent look for an
entire web site and to change its appearance just by editing a single CSS document. It also
has performance benefits because external style sheets are cached and therefore need to
be downloaded only once—for the first page a visitor views at your site.

Testing environment

To experiment with CSS, you can use a simple text editor such as Notepad in Windows
(found under Start » Programs » Accessories » Notepad) or TextEdit on a Mac (found
under Finder » Applications » TextEdit). Type the following single style rule into a new
document in the editor. The rule will color the background of a web document red.

body { background: red; }

Save the file as “MyStyle.css” and then open another empty document. This new
document will become the HTML file that uses the external style sheet you just created.
Write the following HTML markup into the document, which includes a reference to the
style sheet along with the minimal markup for a HTML 5 web document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="MyStyle.css">
</head>
<body>

CHAPTER 1 * USING CSS

<p>This page is red</p>
</body>
</html>

Go ahead and save this text file as “MyPage.html” in the same folder as the CSS file.
You have now created a simple environment in which you can test CSS. To view the page,
open MyPage.html with your web browser. You will see that the background is indeed
colored red because of the rule in the style sheet.

View source

While you have the browser opened, you can view the HTML markup that makes up the
page by pressing Ctrl+U on a PC or Cmd+U on a Mac. This shortcut works in all major
browsers, including Chrome, Firefox, and Internet Explorer (IE). You can also find the
view source window by right-clicking on the page and selecting “View Source”. In Firefox
and Chrome, the style sheet is clickable, allowing you to view the external style sheet rules
that apply to the web page. (Note that in Chrome, you have to right-click the style sheet
and select to open it because this file is stored on your local machine.)

Viewing the source code of web pages like this provides a great way to learn from other
web developers. Whenever you find an interesting element on a web page—whether it is
created with HTML, CSS or JavaScript—the page source will reveal how it was created.

Comments

Comments in CSS are created by using the C-style notation (/* */). Everything placed
between /* and */ will be ignored by browsers, even if the delimiters span multiple lines.

/* Multi-line
Comment */

The main use of comments is to clarify the code to developers, including you in the
future. They can also be used to improve readability by delimiting sections of the style
sheet or providing meta data about the file, such as the author’s name.

/%
* Meta data
*/

/*** Section heading ***/

p { margin-top: -1px; } /* clarification */

CHAPTER 1 © USING CSS

Comments are also useful for temporarily deactivating declarations or entire style
rules for testing purposes.

p { /* color: white; */ }

Whitespace

Whitespace refers to spaces, tabs, and new lines. You are free to format your style sheets
however you like with whitespace to make them easier to read. One common formatting
convention is to split declarations across multiple lines.

fruit {
color: red;
margin: 1px;

Another popular convention is to keep a rule’s declarations in a single line and split
the declarations into multiple lines only when they become too numerous.

fruit { color: red; margin: 1px; }
.fruit.apple { color: green; margin: 2px; }

The formatting you use is a matter of preference. Choose the one that makes sense to
you and aim to keep it consistent.

CHAPTER 2

Grouping

To keep style sheets short and easy to edit, similar rules can be grouped together. This
grouping offers several ways to specify a set of related rules. For example, you can color
the text red and the background black for two header elements in four different ways,
as described in the following sections.

Ungrouped rules

Each rule can be written separately, which allows you to apply individual style rules to
each selected element.

hi { color: red; }
h1 { background: black; }
h2 { color: red; }
h2 { background: black; }

Grouped selectors

The selectors can be grouped together by separating them with a comma. This grouping
will make the declaration apply to multiple selectors.

h1, h2 { color: red; }
h1, h2 { background: black; }

Grouped declarations

The declarations can be grouped together by separating them with a semicolon. All styles
within the declaration block will be applied to the selector.

h1 {
color: red;
background: black;

}

CHAPTER 2 © GROUPING

h2 {
color: red;
background: black;

}

Grouped selectors and declarations

Both the selectors and declarations can be combined, resulting in a single rule.

h1, h2 {
color: red;
background: black;

}

Rules should be grouped whenever possible to make the code more concise. It has
a performance benefit because concise rules reduce the size of the style sheet, which
makes the CSS file load more quickly. Moreover, it is convenient to specify the properties
in only one place, in case they have to be changed later. Additionally, grouping selectors
with similar styles makes it easier to maintain consistency between them.

CHAPTER 3

Class and id selectors

Class and id selectors define rules that apply to only a selected set of HTML elements.
They allow you to identify individual elements, or groups of elements, without having to
style all instances of the element type.

Class selector

The class selector is used to identify a group of elements. It is recognized by the period
sign (.), followed by a class name. The class can be a general class that can be applied to
any element.

/* Selects any element with class name myclass */
.myclass {}

The selector can also be a specific class that can be applied to only one type of element.
The specific class is defined by declaring the element’s name before the period sign.

/* Selects any <p> element with class name myclass */
p.myclass {}

Specific classes make it easier to identify where the class is used; general classes
allow for greater code reuse.

Class example

For example, suppose that the text inside of some elements should be colored, but not for
all instances of the elements. The first step then is to add a general class rule with a color
property specified.

.info { color: green; }

This rule says that any element whose class attribute has the value of "info" will
have this style.

CHAPTER 3 ' CLASS AND ID SELECTORS

<p class="info">Green</p>

If a class rule will be used by only a single element type, it can instead be defined as
a specific class. Doing so makes it easier for anyone reading the style sheet to understand
where the style is used.

p.warn { color: orange; }

A specific class rule is applied to the document in the same way as a general class
rule, but it will style elements of only the specified type.

<p class="warn">Orange</p>

More than one class rule can be applied to a single element by separating each class
name with a space, which makes class rules very versatile.

<p class="style1 style2"></p>

Id selector

The id selector is used to identify a single unique element. Although it works much like
the class selector, it uses a pound sign (#) instead of a period and the id attribute instead
of the class attribute. Like the class attribute, the id is a generic attribute that can be
applied to virtually any HTML element. It provides a unique identifier for an element
within a document.

/* Selects the element with id set to myid */
#myid {}

Like class selectors, id selectors can be qualified with an element. However, because
there should be only one element with a given id, this additional qualifier is often
considered unnecessary.

/* Selects the <p> element with id set to myid */
pttmyid {}

Id example

The following id selector will match the one and only element in the document whose id
attribute is set to that id. This selector can therefore be used instead of the class selector
if a style is intended to be applied to only a single element instance because this makes it
clearer where the rule is used.

#terr { color: red; }

CHAPTER 3 © CLASS AND ID SELECTORS

An id rule is applied to an element using the id attribute. Because the id attribute has
to be unique, each id selector can be used on only one element per web page. Therefore,
the id selector implicitly specifies that the style is used only once on any one page.

<p id="err">Red</p>

Class and id guidelines

In many instances, using classes is the preferred method of selecting elements in CSS
because classes are both flexible and reusable. Ids, on the other hand, are often used
for structural elements of a site, such as #content and #footer, to highlight that those
elements serve a unique role.

CHAPTER 4

Attribute selectors /

Attribute selectors allow style to be added to elements based on their attributes and
attribute values.

Attribute selector

The attribute selector will match elements that use the specified attribute, regardless
of its value.

input[type] {}

This selector will match only input elements that use the type attribute, such as the
following element:

<input type="text">

Attribute value selector

The [attribute=value] selector will match by both attribute and value.
input[type="submit"] {}

Input elements that have their type attribute set to submit will be matched by this
rule, as in the following example:

<input type="submit">

Language attribute selector

The language attribute selector is used to match the lang attribute.

p[lang|="en"] {}

11

CHAPTER 4 ATTRIBUTE SELECTORS

This selector will match any elements whose lang attribute value begins with “en’,
such as “en-US” Note that language codes such as these are case insensitive.

<p lang="en">English</p>
<p lang="en-US">American English</p>

Delimited value selector

The [attribute~=value] selector will apply to elements whose attribute value contains
the given word among a space-separated list of words.

input[value~="word"] {}

This rule will select both of the following elements. The word needs to be an exact
case-sensitive match; for example, the selector will not target “Word” or “words”.

<input type="text" value="word">
<input type="text" value="word word2">

Value substring selector

The [attribute*=value] selector matches elements whose attribute value contains the
specified substring.

p[title*="para"] {}
Paragraph elements with a title containing “para” will be matched by this rule.

<p title="my paragraph"></p>

Value start selector

The [attribute”=value] selector matches every element whose attribute value begins
with the specified string.

p[titler="first"] {}
Paragraphs with a title value starting with “first” will have this rule applied.

<p title="first paragraph"></p>

12

CHAPTER 4 ATTRIBUTE SELECTORS

Value end selector

The [attribute$=value] selector matches an element if its attribute value ends with the
specified string.

p[title$="1"] {}

In the following code, the value of the title attribute ends with “1” and will
therefore be matched by this rule:

<p title="paragraph 1"></p>

13

CHAPTER 5

Pseudo selectors

The pseudo-classes and pseudo-elements are keywords that can be appended to
selectors to make them more specific. They are easy to recognize because they are always
preceded by a colon.

Pseudo-elements

The pseudo-elements enable parts of an element to be styled. There are four of them in
CSS, as discussed in the following sections.

first-letter and first-line

The pseudo-elements : first-letter and : first-line can apply styles to the first letter
and the first line of an element. They work only on block elements such as paragraphs.

p:first-letter { font-size: 120%; }
p:first-line { font-weight: bold; }

The preceding first rule makes the initial letter in a paragraph render 20% larger than

other text. The second rule makes the first line of text in a paragraph bold.

before and after

As their names indicate, the :before and :after pseudo-elements can target the location
before and after an element. They are used together with the content property to insert
content before or after an element.

p:before { content: "Before"; }
p:after { content: "After"; }

These rules make the following paragraph display as “BeforeMiddleAfter”:

<p>Middle</p>

15

CHAPTER 5 © PSEUDO SELECTORS

The content property is special in that it can be used only together with these
two pseudo-elements. It is also the only property that breaks the line between content
(HTML) and design (CSS). Keep in mind that this line should be broken only when
the presence of a piece of content comes down to a design decision. For example, the
content property can be used to add an icon before an element, which can be done using
the url function.

p.bullet:before { content: url(my-bullet.png); }

Pseudo-classes

Pseudo-classes permit styling based on element relationships and on information
not found in the HTML document. Most of them fall into three categories: dynamic,
structural, and user interface pseudo-classes.

Dynamic pseudo-classes

The first category of pseudo-classes is used to apply styles to links or other interactive
elements when their state is changed. There are five of them, all of which were introduced
in CSS 2.

link and visited

The dynamic pseudo-classes :1link and :visited can be applied only to the anchor
element (<a>). The :1ink pseudo-class matches links to pages that have not been viewed,
whereas :visited matches links that have been viewed.

a:link {} 7* unvisited links */
a:visited {} /* visited links */

active and hover

Another pseudo-class is :active, which matches elements as they are being activated, for
example by a mouse click. This is most useful for styling anchor elements, but it can be
applied to any element.

a:active {} /* activated links */
A selector with the :hover pseudo-class appended to it is applied when the user
moves a pointing device, such as a mouse, over the selected element. It is popularly used

to create link roll-over effects.

a:hover {} /* hovered links */

16

CHAPTER 5 © PSEUDO SELECTORS

These four pseudo-classes need to appear in the proper order when applied to the
same selector. Specifically, the :hover pseudo-class must come after :1ink and :visited,
and for :active to work it must appear after :hover. The phrase “love and hate” can be
used as a reminder for the initial letters that make up the correct order.

a:link {}y 7L *
a:visited {} /* VvV */
athover {} /* H */
a:active {} /* A */

focus

The last dynamic pseudo-class is : focus, which can be used on elements that can receive
focus, such as the form <input> element. The difference between :active and :focus

is that :active lasts only for the duration of the click, whereas : focus lasts until the
element loses focus.

input:focus {}

Browser support for the : focus pseudo-class in IE was not added until version 8.

Structural pseudo-classes

The structural pseudo-classes target elements based on their relation with other
elements. CSS 2 included only one structural pseudo-class in this category,
:first-child, whereas CSS 3 introduced a wide array of new ones. The CSS 3 structural
pseudo-classes are supported in all major browsers, except for IE7 and below.

first-child
The : first-child pseudo-class matches the first child of the selected element.
p:first-child {} /* first paragraph child */
In the following example, this rule applies to the first anchor element:
<p>
First child

Text
</p>

17

CHAPTER 5 © PSEUDO SELECTORS

last-child

The :1ast-child pseudo-class represents the last child of the selected element.
p:last-child {} /* last paragraph child */
This rule targets the last child of the following paragraph element.

<p>
Text
Last child
</p>

only-child

The :only-child pseudo-class matches elements that do not have any siblings.
p:only-child {} /* children without siblings */

This rule is applied to the following first element because it is the only
child of the paragraph. The second paragraph element has two children, so none of them
is targeted by this rule.

<p>
0Only child
</p>

<p>
Text
Text

</p>

only-of-type
As its name implies, the :only-of-type selector matches the selected element only if it
does not have any siblings of the same type.

p:only-of-type {} /* only <p> element */

The following paragraph is targeted by this rule because it is the only paragraph
element of its parent.

<div>
<h1>Text</h1>
<p>0Only of type</p>
</div>

18

CHAPTER 5 © PSEUDO SELECTORS

first-of-type

The : first-of-type pseudo-class matches the first child element that is of the
selected type.

p:first-of-type {} /* first <p> element */
It matches the first paragraph element in the following markup:
<div>
<h1>Text</h1>
<p>First of type</p>

<p>Text</p>
</div>

last-of-type

The last sibling of a specific type can be selected with the :1ast-of-type pseudo-class.
strong:last-of-type {} /* last element */
This rule applies to the last element among its siblings.

<div>
Text
Last of type
</div>

nth-child

The :nth-child(an + b) pseudo-class matches every b child element after the children
have been divided into groups of a elements.

p:nth-child(1) {} 7* first child */
p:nth-child(2n) {} /* even children */
p:nth-child(2n+1) {} /* odd children */

These rules apply to the following HTML markup:

<p>
First and odd
Even
0dd

</p>

19

CHAPTER 5 © PSEUDO SELECTORS

Matching odd and even children is a common operation, so the keywords odd and
even can also be used to match every other row in a table, for example.

tr:nth-child(even) {} /* even table rows */
tr:nth-child(odd) {} /* odd table rows */

As shown, the argument to :nth-child() can be an integer, the keywords even
or odd, or an expression in the form of an+b. In the expression form, the keyword n is a
counter that iterates through all the child elements. The counter might be negative; in
that case, the iteration occurs backward. It can be used to select a specific number of
first children.

p:nth-child(-n+3) {} /* first three children */

The math and arguments used together with :nth-child() are also valid for the next
three pseudo-classes, all of which start with :nth.

nth-of-type

The :nth-of-type(an + b) pseudo-class matches the bth element of the selected type
after the siblings of that type have been divided into groups of a elements.

p:nth-of-type(2) {} /* second paragraph sibling */
p:nth-of-type(2n) {} /* even paragraph siblings */
p:nth-of-type(2n+1) {} /* odd paragraph siblings */

The behavior of this pseudo-class is similar to :nth-child, but it matches siblings
of the same type of the specified element instead of matching children of the specified
element.

<div>
Text
<p>0dd</p>
<p>Second and even</p>
<p>0dd</p>

</div>

Similar to the other :nth pseudo-classes, the keywords odd and even can be used to
match siblings of the same type whose index is odd or even.

p:nth-of-type(even) {} /* even paragraph siblings */
p:nth-of-type(odd) {} /* odd paragraph siblings */

20

CHAPTER 5 © PSEUDO SELECTORS

nth-last-of-type

The :nth-last-of-type(an + b) pseudo-class matches the element of the selected type
that has an+b elements of that same type after it. This behavior is equivalent to the :nth-
of-type pseudo-class, except that elements are counted starting from the bottom instead
of the top.

p:nth-last-of-type(3) {} /* third last paragraph */
p:nth-last-of-type(-n+2) {} /* last two paragraphs */

These two rules apply to the following example. The element is not counted
because it is not of the specified type—in this case, paragraph.

<div>
<p>Third last</p>
<p>Last two</p>
<p>Last two</p>
Text
</div>

nth-last-child

The :nth-last-child(an + b) pseudo-class represents any element that has an+b
siblings after it. Its behavior is the same as :nth-child, except that it starts with the
bottom element instead of the top one.

p:nth-last-child(3) {} 7* third last child */
p:nth-last-child(-n+2) {} /* last two children */

These two rules apply to the child elements in the following example:
<div>
<p>Third last</p>
<p>Last two</p>

<p>Last two</p>
</div>

empty

The :empty pseudo-class matches selected elements that do not have any content.

p:empty {} /* empty paragraphs */

21

CHAPTER 5 © PSEUDO SELECTORS

An element is considered empty if it has no child elements, text, or whitespace
except for comments. The preceding rule applies to the following two paragraphs:

<p></p>
<p><!-- also empty --></p>

root

The :root pseudo-class matches the topmost element in the document tree. In HTML
documents, it is always the <html> element.

:root {} /* root element */

This pseudo-class is mainly useful when CSS is used with other languages,
such as XML, in which the root element can vary. All major browsers support the :root
pseudo-class, except for IE8 and below.

User interface pseudo-classes

CSS 3 introduced a number of user interface pseudo-classes that are used to style
interactive elements based on their current state.

enabled and disabled

The :enabled and :disabled pseudo-classes match any element of the selected type that
is either enabled or disabled. They apply only to interactive elements that can be in either
an enabled or disabled state, such as form elements.

input:enabled { background: green; }
input:disabled { background: red; }

The following form contains one enabled and one disabled input element, which are
affected by these two rules:

<form>

<input type="text" name="enabled">

<input type="text" name="disabled" disabled>
</form>

These two pseudo-classes are supported by all major browsers except for IE8
and below.

22

CHAPTER 5 © PSEUDO SELECTORS

checked

The :checked pseudo-class matches elements that are in a selected state. It can be used
only on check box, radio button, and <option> elements.

input[type="checkbox"]:checked {}
This rule matches any check boxes that are selected on the web page.

<form>
<input type="checkbox">
</form>

All major browsers support the : checked pseudo-class, except for [E8 and
earlier versions.

valid and invalid

The :valid and :invalid pseudo-classes are used to provide feedback to users when
they are filling out forms. Modern browsers can perform a basic field validation based on
the input type of a form element and, together with these pseudo-classes, the result can
be used to style the input element.

input:valid { background: green; }
input:invalid { background: red; }

Two fields are given here, one required and one optional. The first field remains
invalid until an e-mail is entered into the field. The second field is optional and is
therefore valid if left empty.

<form>
<input type="email" required>
<input type="email">

</form>

Note that these pseudo-classes are in no way a substitution for proper form
validation, using JavaScript or PHP, for example. Browser support for these two pseudo-
classes exists in Chrome 10+, Firefox 4+, IE10+, Safari 5,4+ and Opera 10+.

required and optional

A form field with the required attribute set is matched by the :required pseudo-class.
The related :optional pseudo-class does the opposite: it matches input elements that do
not have the required attribute set.

input:required { color: red; }
input:optional { color: gray; }

23

CHAPTER 5 © PSEUDO SELECTORS

The following form contains one required and one optional input element, which is
targeted by the previous styles:

<form>
<input type="email" required>
<input type="url">

</form>

Like the :valid and :invalid pseudo-classes, support for :required and :optional
is limited to Chrome 10+, Firefox 4+, IE10+, Safari 5+, and Opera 10+.

Other pseudo-classes

Some pseudo-classes do not fit into any of the earlier categories, namely the :target,
:1ang, and :not pseudo-classes.

target

The :target pseudo-class can style an element that is targeted through an id link. It can
be useful for highlighting a targeted section of the document.

:target { font-weight: bold; } /* targeted element */

When the following internal page link is followed, this rule is applied to the anchor
element. The browser also scrolls down to that element.

In page link
This pseudo-class is supported in all major browsers, except IE8 and earlier

versions.

lang

The pseudo-class : lang() matches elements determined to be in the language provided
by the argument.

p:lang(en) {}

This pseudo-class applies to paragraph elements that are intended for an English
audience, such as the following paragraph:

<p lang="en">English</p>

24

CHAPTER 5 © PSEUDO SELECTORS

Note that the behavior of this pseudo-class is similar to the language attribute
selector. The difference is that the :1ang pseudo-class also matches elements if the
language is set on an ancestor element, or in some other way such as through the page
HTTP header or <meta> tag.

<body lang="fr">

<p>French</p>
</body>

not

The negation pseudo-class :not matches elements that are not targeted by the specified
selector.

p:not(.first) { font-weight: bold; }
This example rule selects paragraphs that are not using the first class.

<p class="first">Not bold</p>
<p>Bold</p>

The :not pseudo-class is supported in all major browsers, except IE8 and
earlier versions.

25

CHAPTER 6

Relationship selectors

Relationship selectors match elements based on their relation with other elements.
To understand these selectors, it is important to recognize how elements in a web
document are related to each other.

HTML hierarchy

An HTML document can be visualized as a tree with the <html> element as the root.

Each element fits somewhere on this tree, and every element is either a parent or a child

of another element. Any element above another one is called an ancestor, and the element
directly above is the parent. Similarly, an element below another one is called a descendant,
and the one directly below is a child. In turn, an element sharing the same parent as
another element is called a sibling. Consider the following simple HTML 5 document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
</head>
<body>
<h1>Heading</h1>
<p>Paragraph</p>
</body>
</html>

In this example, <h1> and <p> are sibling elements because they share the same
parent. Their parent element is <body>, and together with <html>, they are both ancestors
to the sibling elements. In turn, the two sibling elements are child elements of <body>
and descendants of both <body> and <html>. The hierarchy of this simple document is
illustrated in Figure 6-1.

27

CHAPTER 6 © RELATIONSHIP SELECTORS

4

META | TITLE H1 P

Figure 6-1. Example HTML hierarchy

Inheritance

Inheritance is another important concept in CSS. It makes certain styles apply not only
to the specified element but also to all its descendant elements. For example, the color
property is inherited; the border property is not. This default inheritance is usually the
intended behavior, making inheritance very intuitive. Any property can also explicitly be
given the value inherit to use the same value as the one the parent element has for that

property.

/* Inherit parent's border */
p { border: inherit; }

Inheritance enables you to apply a style to a common ancestor whenever you find
a place in which every descendant element needs that same style. This process is more
convenient and maintainable than applying the style to every descendant element that
needs that specific style. For example, if the text for an entire document needs to be set
to a particular color, you can apply the style to the <body> element, which is the common
ancestor for all visible elements.

/* Set document text color to gray */
body { color: gray; }

Now that you have an understanding of the HTML hierarchy and the inheritance
concept, the relationship selectors of CSS can be discussed.

Adjacent selector

The adjacent sibling selector selects the second element if it comes directly after the first
element.

div+p { color: red; }

28

CHAPTER 6 * RELATIONSHIP SELECTORS

This selector matches paragraphs that follow <div> elements.

<div>Not red</div>
<p>Red</p>
<p>Not red</p>

Descendent selector

The descendent selector matches an element if it is the child or grandchild of another
element. It is useful when you want to apply a style to an element only when it resides
within another element.

div p { background: gray; }

The preceding rule applies to the following paragraph because it descends from a
<div> element:

<div>
<p>Gray</p>
</div>

Direct child selector

The direct child selector matches its second element if it is the immediate descendant of
its first element.

div > span { color: green; }

When applied to the following markup, this rule will color the second
element green. The first element is not colored because it is not a direct child of
<div>.

<div>
<p>
Not green
</p>
Green
</div>

29

CHAPTER 6 © RELATIONSHIP SELECTORS

General sibling selector

CSS 3 added the general sibling selector, which matches the second element only if it is
preceded by a sibling element of the first type.

hi~p { color: blue; }

In the following example, the last two paragraphs are selected because they are
preceded by <h1> and all share the same parent:

<p>Not blue</p>
<h1>Not blue</h1>
<p>Blue</p>
<p>Blue</p>

Although it is a CSS 3 selector, it is supported by all major browsers, including
Chrome 2+, Firefox, IE7+, Safari 3.1+, and Opera 9.2+.

30

CHAPTER 7

Specificity

When more than one rule applies to the same element and they specify the same
property, there is a priority scheme that determines which rule is given precedence.
In short, CSS gives priority to the rule that has the most specific selector.

Selector specificity

There are some basic rules for calculating specificity. The lowest specificity with the
weight of 0 is given by the universal selector (*), which matches all elements
in the document.

* { color: red; } /* 0 */

The type selectors have the weight of 1, so a selector containing two type selectors
has a specificity of 2.

p { color: blue; } /* 1 */
body p { color: gold; } /* 2 */

A class selector has the weight of 10, as do pseudo classes and attribute selectors.
When these selectors include a type selector, they have a total weight of 11.

.a { color: lime; } /* 10 */
p:first-child { color: navy; } /* 11 */
p[class=a] { color: teal; } /* 11 */

The pseudo elements do not count for any specificity, except for the specificity
added by the selector the pseudo element is prefixed with.

p:first-letter { color: white; } /* 1 */
Id selectors have a weight of 100, so an id rule overrides most other conflicting styles.

#i { color: aqua; } /* 100 */

31

CHAPTER 7 * SPECIFICITY

Inline styles have a weight of 1000 and outweigh even id rules.
<p style="color: black;">Text</p>

To override all other conflicting styles, including those defined as inline styles, a
declaration can be declared as ! important. Note that the ! important modifier is applied
to individual declarations, not entire rules.

p { color: red !important; }

If the specificity between two conflicting rules is the same, the cascade is what
determines which rule is applied.

Cascade

In CSS, more than one style sheet can influence a document’s presentation. This feature
is known as cascading (the “C” part of CSS) because the browser merges all style sheets to
resolve any conflicts before the styles are applied.

Web documents can have style sheets that come from three different sources: the
browser, site designer and user reading the document. The designer’s style sheet usually
has the highest priority, followed by the user’s personal style sheet (if any) and then the
browser’s default one.

Designer styles

As discussed earlier, web designers have three ways to include CSS rules: inline styles,
internal style sheets, and external style sheets. Among these three, inline styles are given
the highest precedence, followed by internal style sheets and then external style sheets.

If the web page includes more than one external style sheet with conflicting rules
(same specificity), the style sheet that is included last in the HTML markup is given
precedence. This is also true within a style sheet. If the selectors are the same, the
property declared last is the one that counts.

p { color: orange; } /* overridden */
p { color: silver; } /* dominant */

For inherited styles, an element’s own style has priority over style inherited from
its ancestors.

p { color: orange; } /* dominant */
body { color: silver; }

32

CHAPTER 7 * SPECIFICITY

Specificity guidelines

As shown in this chapter, the style of an element can be specified in many different places
and with different priorities. The cascading feature gives a lot of flexibility to CSS, but it
can also result in unnecessary complexity if not managed well.

In general, you want to keep specificity low to make it easier to know which rules
will take precedence. This way, you can allow the cascade to work for you by adjusting
the order in which your style rules appear, instead of needlessly increasing the specificity
with id and !important to override conflicting styles.

33

CHAPTER 8

Colors

There are several different ways to specify a color in CSS, which are described in the
following sections.

Named notation

Colors can be set by simply typing the common name of that color.
p { color: red; } /* color paragraphs red */

The HTML and CSS color specification includes 140 predefined color names, such as
white, 1lime, and olive. These colors are all supported by the major browsers.

Hexadecimal notation

For the full palette, the red, green, and blue components of the color can be set individually.
Each color component consists of a two-digit hexadecimal number, and the whole six-digit
number is prefixed by a hash sign (#RRGGBB). Hexadecimal means base-16 counting, so
valid digits are 0 through 9 and A through E Each red-green-blue pair can range from 00
to FE or 0-255 in decimal notation. All in all, there are 16 million available colors.

p { color: #FF0000; } /* red:255, green:0, blue:0 */
Although this color notation is the most obfuscated one, it is also the most common
one because of its precision, conciseness, and browser support. An easy way to discover

the hexadecimal value of a color is to use the color picker tool from graphics software
such as Adobe Photoshop or Paint.NET.

35

CHAPTER 8 " COLORS

Short hexadecimal notation

There is a short form of the hexadecimal notation in which the color is specified using
only three hexadecimal digits instead of six. This notation can be converted to the
hexadecimal notation by duplicating each digit.

p { color: #fo0; } /* same as #ff0000 */

The short hexadecimal notation is a useful shortcut when the full precision provided
by the longer hexadecimal notation is not needed.

RGB notation

The rgb() function allows a color value to be specified as three intensity values for the
color components red, green, and blue. The value can be either an integer between 0 and
255 or a percentage.

p { color: rgh(255, 0, 0); }
p { color: rgh(100%, 0%, 0%); }

The RGB notation allows the same color precision as the hexadecimal notation.
The notation used comes down to a matter of preference, but the hexadecimal notation
is often preferred because it is shorter and can easily be copied from an image editor,
for example.

RGBA notation

CSS 3 introduced the RGBA notation, adding an alpha value for specifying the color
transparency. This alpha value is a number between 0.0 (fully transparent) and 1.0
(fully opaque).

/* Red with 50% transparency */
p { color: rgba(100%, 0%, 0%, 0.5); }

RGBA color values are supported in Chrome, Firefox 3+, [E9+, Safari, and Opera 10+.
If support is not present, the rule is ignored, so a fallback color value can be set as
shown here:

p i
color: rgh(100%, 0%, 0%); /* fallback */
color: rgbha(100%, 0%, 0%, 0.5);

}

A browser that does not support RGBA ignores the second declaration and continues
to apply the opaque version.

36

CHAPTER 8 © COLORS

HSL notation

A color value can be set with the hs1() function (which stands for hue, saturation, and
lightness). Hue is a degree on a color circle from 0 to 360, where 0 and 360 are red, 120

is green, and 240 is blue. Saturation is a percentage value, with 0% giving a shade of gray
and 100% giving the full color. Lightness is also specified as a percentage, from 0% (black)
to 100% (bright).

p { color: hsl(o, 100%, 100%); }
Although HSL colors are more intuitive than RGB colors, and the color values are
easier to tweak, HSL should not be used until IE8 usage declines to a point when it is

no longer necessary for web sites to support it. HSL is a CSS 3 value and is supported in
Chrome, Firefox, IE9+, Safari, and Opera 10+.

HSLA notation

Similar to RGB, the HSL notation can be extended with an alpha value for specifying the
transparency.

/* Red with 50% transparency */
p { color: hsla(o, 100%, 100%, 0.5); }

HSLA is supported in Chrome, Firefox 3+, IE9+, Safari, and Opera 10+, which is the
same as the RGBA function.

37

CHAPTER 9

Units

There are several units to choose from when specifying the size of a property’s value.

Absolute units

The absolute units of length are centimeter (cm), millimeter (mm), and inch (in). Although
these units are meant to look the same regardless of the screen resolution, it is not always
the case because web browsers do not always know the exact physical size of the display
medium.

.one-cm { font-size: 1cm; }
.one-mm { font-size: 1mm; }
.one-in { font-size: 1in; }

These units are mainly useful when the size of the output medium is known, such as
for content that will be printed to paper. They are not recommended for screen displays
because the screen sizes can vary a lot.

Typographical units

Points (pt) and picas (pc) are typographical units. By definition, there are 72 points to an
inch and 12 points to one pica. Like the absolute units, the typographical units are most
useful for print style sheets, not for onscreen use.

.one-point { font-size: 1pt; }
.one-pica { font-size: 1pc; }

Relative units

The relative units of length are pixel (px) and percentage (%). A percentage is a unit
proportional to the parent’s value for that property; a pixel is relative to the physical pixel
on the display device used.

.one-pixel { font-size: 1px; }
.one-percent { font-size: 1%; }

39

CHAPTER 9 © UNITS

Pixels and percentages are two of the most useful units in CSS for onscreen displays.
Pixels are fixed size, so they allow very precise control over the layout in a web document.
Percentages, on the other hand, are useful for defining font sizes for text content because
the text remains scalable, which is important for small devices and accessibility purposes.
When the text is part of the design and needs to match other elements, it can be sized
in pixels for greater control. Modern browsers all support full-page zooming, which has
made pixel-based font sizes more acceptable. Note that for high-resolution screens, a
CSS pixel renders as multiple screen pixels. For example, the Apple Retina display renders
all pixel dimensions at twice their actual size.

Font-relative units

Two additional relative measures are em-height (em) and ex-height (ex). Em-height is the
same as the font-size; ex-height is about half the font-size.

.one-ex { font-size: 1ex; }
.one-em { font-size: 1em; }

Like percentage, em-height is a good relative unit that is commonly used for setting
the font size of web document text. They both respect the user’s choice of font size in their
browser and are easier to read on small-screen devices than pixel-based font sizes.

CSS 3 introduced two additional font-relative units: rem and ch. The root em-height
(rem) unit is relative to the font-size of the root element (<html>). It can be used instead of
em to prevent the element’s font size from being affected by changes to the font size of its
ancestor elements.

.one-rem { font-size: 1rem; }

The character unit (ch) measures the width of the character zero (0) for the element’s
font. It can be useful for defining the width of a box containing text because the unit
roughly corresponds to the number of characters that fit within that box.

/* Same width */
<div style="width: 5ch;"></div>
<div>00000</div>

The ch unit is supported only in Chrome 27+, Firefox 19+, and IE9+, so it should be
used only with a fallback. The rem unit has slightly better support and works in Chrome 4+,
Firefox 3.6+, IE9+, Safari 4.1+, and Opera 11.6+.

Viewport units

Viewport width (vw) and viewport height (vh) units allow elements to be dimensioned
relative to the viewport, meaning the visible portion of the document. Each unit
represents a percentage of the current viewport.

40

CHAPTER 9 © UNITS

width: 50vw; /* 50% of viewport width */
height: 25vh; /* 25% of viewport height */

Two additional viewport units are vmin and vmax, which give the minimum or
maximum value of the viewport’s dimension.

width: avmin; /* 1vh or 1vw, whichever is smallest */
height: 1vmax; /* 1vh or 1vw, whichever is largest */

Chrome 26+, Firefox 19+, IE11+, Safari 6.1+, and Opera 15+ all support the viewport
units. The vh, vw, and vmin units have greater support than vmax, going back to Chrome
20+, IE9+, and Safari 6.0. In IE9 and IE10, vmin is instead called vm.

Unit values

Itis possible to set length using decimals. Some properties also allow negative values for
length.

p { font-size: 0.394in; } /* decimal value */
p { margin: -1px; } /* negative value */

Note that a rule does not work if there is a space before the unit or if no unit is
specified—except for the value zero. Including a unit after zero is optional, but it is good
practice to omit it.

p { font-size: 1ex; } /* correct */
p { font-size: 0; } /* correct */
p { font-size: oex; } /* correct */
p { font-size: 1 ex; } /* invalid */
p { font-size: 1; } /* invalid */

Whenever a CSS declaration contains an error, it is ignored by the browser. Any other
valid declarations in the rule still apply.

41

CHAPTER 10

CSS Properties

The remaining chapters of this book cover the multitude of properties available in CSS.
In these chapters, possible property values are given using a formal notation, such as the
one shown here:

text-shadow : inherit | none | <offset-x> <offset-y>
[<blur-radius>] [<color>]

This notation means that the text-shadow property can have one of three different
kinds of values. The default value is listed first; in this case, it is inherit. Because the
inherit keyword can be set for any property, it is not included unless it is the default
value. The second value, none, is also a keyword. It is the initial value for this property and
can be applied to disable an inherited property effect.

The third option in this notation includes a set of four values—two required ones
and two optional ones—as indicated by the square brackets ([]). The angle brackets (<>)
show that they are not keywords; they are other value types. In this case, they are three
length values and a color value. Following this notation, the following declaration shows
avalid example use of the text-shadow property:

text-shadow: 1px 1px 1px red;

Generic keywords

In addition to inherit, there are two other generic property keywords you might come
across in CSS: initial and unset. Both generic keywords were introduced in CSS 3 and
can be set on any properties.

The initial keyword applies a property’s initial value to an element, as defined
by the CSS specification. It is supported in Chrome 1+, Firefox 19+, Safari 1.2+, and
Opera 15+, but it is currently not supported in any version of IE. Because of the lack of IE
support, the usefulness of this keyword is limited. It is recommended to instead explicitly
specify the initial value for a given property to reset it.

The third generic keyword is unset, which is a combination of the initial and
inherit keywords. It resets the property to its inherited value, if there is one; otherwise,
it sets the property to the initial value. At this moment, support for the unset keyword is
limited to Firefox 27+. Until all major browsers adapt this keyword, it should not be used.

43

CHAPTER 10 © CSS PROPERTIES

Quirks mode

When HTML and CSS became standardized by the World Wide Web Consortium (W3C),
web browsers could not just comply with the standards because doing so would break
most web sites already in existence. Browsers instead created two separate rendering
modes: one for new standard compliant sites and one for old legacy sites (quirks mode).

In full standards mode, the browser does its best to render the page in accordance
with HTML and CSS specifications. Browsers use the doctype for the sole purpose of
deciding between full standards mode and quirks mode. A valid doctype at the start of
aweb document, such as the HTML 5 doctype seen following, ensures that the page is
rendered in full standards mode:

<!DOCTYPE html>
<html> ... </html>

This doctype triggers full standards mode in all major browsers, dating back as
far as IE6.

Vendor prefixes

Many browsers begin incorporating new CSS properties long before their specification
becomes stable. Because these implementations are experimental, their property names
include a vendor prefix to indicate that the specification could potentially change in

the future.

The major vendor prefixes include -moz for Firefox; -ms for Internet Explorer; -o for
Opera; and -webkit for Chrome, Safari, Android, and iOS. Recent versions of Opera also
implement the -webkit prefix in parallel with the -o prefix. For example, support for the
CSS 3 border-radius property can be increased by using the following vendor prefixes.
Note that the unprefixed version should always be included last.

.round {
/* Safari 3-4, i0S 1-3.2, Android 1.6-2.0 */
-webkit-border-radius: 3px;

/* Firefox 1-3.6 */
-moz-border-radius: 3px;

/* Opera 10.5+, IE9+, Safari 5+, Chrome 1+,
Firefox 4+, i0S 4+, Android 2.1+ */
border-radius: 3px;

As time goes on, the new property’s specification becomes stable, and browsers
drop the vendor prefix. Given more time, web users abandon old browsers in favor of
new versions, and the need for vendor prefixes diminishes. This has already occurred for
the border-radius property, and developers are now encouraged to drop the prefixes,
making things a little easier for web developers worldwide.

44

CHAPTER 10 * CSS PROPERTIES

Progressive enhancement

When deciding whether to use a recent CSS feature, it is important to consider how your
site will look without it. If the feature enhances the appearance of your site, such as the
CSS 3 border-radius property, you might want to start using the feature, even when it
is viewable by only a small percentage of your visitors. Time works in your favor, and as
people abandon old browsers, a greater number of your visitors can see the feature, which
enhances their experience on your site. This is the essence of progressive enhancement.
On the other hand, if your site depends on the feature and appears broken without
it, you need to carefully consider how well supported the feature is and whether there
are fallbacks or scripts you can make use of to increase this support, such as those listed
on HTMLS5 Polyfills.! There are often many ways to achieve the same result in CSS, so it is
a good idea to choose a method that is well supported by all major browsers for the key
elements of your site, such as the layout.

'http://html5polyfill. com

45

http://html5polyfill.com/

CHAPTER 11

Text

The text properties serve to format the visual appearance of text content.

color

The color property sets the color of text by using either one of the color notations. By
default, its value is set to inherit, meaning that it inherits the color of its parent element.

color : inherit | <color>

The initial value is black for all major browsers. In the following example rule,
paragraphs are colored blue:

p { color: #oof; }

text-transform

text-transform controls text casing. Possible values are listed as follows, with none as the
initial value:

text-transform : inherit | none | uppercase | lowercase | capitalize
This property enables text to be converted into either uppercase or lowercase letters.
The capitalize value capitalizes the first letter of each word. This property inherits by

default, so the none value can be used to remove an inherited text-transform effect.

text-transform: none; /* remove effect */

text-decoration

One or more visual effects to text can be added with the text-decoration property.

text-decoration : none | underline + overline + line-through + blink

47

CHAPTER 11 © TEXT

To add multiple decorations, separate the values with spaces (indicated by the “+”
sign, shown previously). The following rule adds a line above and below text content that
is affected by this class:

.highlight { text-decoration: underline overline; }

This property does not inherit, but its effect renders across descendent inline
elements in a way that is similar to inheritance.

text-indent

The first line of text in a block element can be indented with the text-indent property.
It can be set to a unit of measure or a percentage of the parent element’s width. Text can
also be indented backward by using a negative value.

text-indent (block) : inherit | <length> | <percentage>

The following example indents the first line of paragraph elements by one em:

p { text-indent: 1em; }

text-align

The text content of a block element can be aligned with the text-align property. This
property can replace usages of the deprecated align attribute in HTML.

text-align (block) : inherit | left | center | right | justify

Text and inline elements can be aligned to the left, aligned to the right, or centered.
The justify value also stretches each line so that both the right and left margins appear
straight.

p { text-align: justify; }

The text-align property inherits, so it needs to be explicitly changed in child
elements to restore default left alignment.

direction

The writing direction of text can be switched with the direction property.

direction (block) : inherit | 1ltr | rtl

48

CHAPTER 11 TEXT

The default value is 1tr, meaning left-to-right. It can be changed to rt1 to make text
content within a block element flow to the right. It indicates that the text is supposed to be
read from right-to-left, as in Hebrew or Arabic text, for example.

<p style="direction: rtl">
Aligned from right-to-left
</p>

This property does inherit, so it can be set once for the <body> element to apply to
the whole web page.

text-shadow

A shadow effect can be added to text with the text-shadow property.

text-shadow : inherit | none | <offset-x> <offset-y> [<blur-radius>]
[<color>]

The shadow is defined using two offset values, followed by two optional values for
the blur radius and color. The x and y offsets are specified as length values relative to the
text. Positive values move the shadow right and down; negative values move it left and up.

A blur effect can be added by setting a blur radius, which makes the shadow stretch
and fade at the edges. The final optional value for the property is the color of the shadow.
If no color value is specified, most browsers render the shadow in the same color as the
text. The following example style causes a slightly blurred gray shadow to appear at the
top right of <h1> elements:

h1 { text-shadow: 1px -1px 1px gray; }

text-shadowis a CSS 3 property that is supported by most major browsers, including
Chrome 2+, Firefox 3.5+, IE10+, Safari 1.2+, and Opera 9.5+.

box-shadow

In addition to text, a shadow effect can be added to block elements with the box-shadow
property.

box-shadow (block) : inherit | none | [inset] <offset-x> <offset-y>
[<blur-radius>] [<spread-radius> [<color>]]

49

CHAPTER 11 © TEXT

The values for the box shadow are the same as for text-shadow—with two
exceptions. A fourth length value, spread-radius, can be specified to grow or shrink the
shadow. This value is optional and is 0 if left unspecified, rendering the shadow in the
same size as the element. As an example, the following class rule displays a blurry gray
shadow to the bottom right of any block element using this class:

.drop-shadow { box-shadow: 3px 3px 3px 6px #ccc; }

The second value unique to the box-shadow property is the inset keyword. If
present, the shadow displays inside the box instead of as a drop shadow on the outside.

.inset-shadow { box-shadow: inset 3px 3px 3px 6px #ccc; }

box-shadow is a CSS 3 property and is implemented in Chrome 10+, Firefox 4+, IE9+,
Safari 5.1+, and Opera 10.5+. Support can be expanded using the -webkit and -moz
prefixes, as shown here:
.drop-shadow
{

/* Chrome 1-5, Safari 2-5.1+ */
-webkit-box-shadow: 3px 3px 5px 6px #ccc;

/* Firefox 3.5-3.6 */
-moz-box-shadow: 3px 3px 5px 6px #ccc;

box-shadow: 3px 3px 5px 6px #ccc;

50

CHAPTER 12

Spacing

The following properties deal with the space between elements. They are all inherited by
default.

line-height

line-height sets the distance between lines. The initial value is normal, which is typically
rendered as 120% of the font size. The line height can also be set to a length, a percentage
of the current font size, or a dimensionless number that is multiplied with the current
font size.

line-height : inherit | normal | <length> | <percentage> | <number>

The line-height property inherits, so the preferred way to set line-height is by
using a dimensionless number. Setting 1ine-height as a length or percentage can have
unexpected results for child elements that use different font sizes because the inherited
line height is then fixed instead of relative to the child element’s font size.

/* Line height is 1.5 times font size */
line-height: 1.5;

Line height has no effect on replaced inline elements such as . When used on

non-replaced inline elements, it sets the line height as expected. For block elements,
line-height sets the minimal height of line boxes within the element.

word-spacing and letter-spacing

word-spacing sets the spacing between words, and letter-spacing sets the spacing
between individual characters. Negative values are allowed for both of these properties.

word-spacing : inherit | normal | <length>
letter-spacing : inherit | normal | <length>

51

CHAPTER 12 © SPACING

The following rule creates a 3-pixel distance between letters and a 5-pixel distance
between words inside a paragraph:

pi
letter-spacing: 3px;
word-spacing: 5px;

}

white-space

The white-space property changes the way whitespace characters inside of a block
element are handled.

white-space (block) : inherit | normal | nowrap | pre | pre-wrap | pre-line

Multiple whitespace characters are normally collapsed into a single character in
HTML, and text is wrapped as necessary to fill the width of the containing block element.

/* Wrap text and collapse newlines, spaces and tabs */
p { white-space: normal; }

Setting whitespace to nowrap prevents text from wrapping for anything other than
the line break tag
. The pre (preformatted) value also prevents wrapping, but it also
preserves all whitespace characters. Its behavior is the same as the <pre> element in HTML.
Both the pre-wrap and pre-1line values allow text to wrap as normal, with pre-wrap
preserving sequences of whitespace and pre-1ine collapsing them. The difference
between pre-line and normal is that pre-1line preserves newline characters. Note that
the support for these last two values in IE was not added until version 8.

52

CHAPTER 13

Font

The font properties can be used to change aspects of the font and to load custom fonts.
They can be applied to any element and they all inherit.

font-family

font-family sets the face of the font. Its value can be a specific font name such as times
or verdana; or a generic family name such as sans-serif, serif, or monospace.

font-family : inherit | <family-names> | <generic-families>

The value for this property is a prioritized list of one or more font names. If a browser
does not have access to the first font, it uses the next font and so on.

font-family: "Times New Roman", times, serif;

It is recommended to end the list with a family name to make sure that at least the
font family is consistent across browsers. Note that if a font name includes spaces, it must
be surrounded by double quotes, as in the previous example.

font-size

font-size sets the size of the font. The value can be any unit of measure or a percentage
of the parent’s font size. There are also a couple of predefined values, as listed here:

font-size : inherit | <length> | <percentage> |
smaller | larger | xx-small | x-small |
small | medium | large | x-large | xx-large

The larger and smaller values are relative to the parent’s font size; the other

predefined values refer to absolute sizes. The initial size is medium, which is 1 em
(16 pixels) for normal text.

53

CHAPTER 13 © FONT

font-style

font-style makes the text slanted. According to specifications, italic is a cursive
companion face to the normal face, and oblique is a slanted form of the normal face.
Both faces tend to be rendered the same way for most fonts, however.

font-style : inherit | normal | italic | oblique

font-variant

font-variant can be used to display text using small caps instead of lowercase letters.
A value of small-caps renders text in uppercase letters that are smaller than regular
uppercase letters.

font-variant : inherit | normal | small-caps

font-weight

font-weight sets the thickness of the font. The bolder and lighter values set the
thickness relative to the parent element, and the numeric values specify absolute weights.
The value of bold is equal to 700, and normal is the same as 400.

font-weight : inherit | normal | bold | bolder |
lighter | 100 | 200 | ... | 900

Even if several weight values can be specified, most fonts have only one type of bold,
as shown in the following example rendering:

lighter normal bold bolder 100 200 300 400 500 600 700 800 900

font

There is a convenient shorthand property named font that sets all the font properties in
one declaration.

font : inherit | <font-style> + <font-variant> +
<font-weight> + <font-size> / <line-height> +
<font-family>

The properties must be specified in the order listed previously. As long as this order is
kept, either one of the properties can be left out (except for font-size and font-family,
which are mandatory). If a property is left out, the default value for that property is used,
which is to inherit the parent’s value. The following example applies four font properties
to the paragraph element:

p { font: italic 50%/125% Verdana; }

54

CHAPTER 13 © FONT

This font declaration sets the font-style, font-size, line-height, and font-family
properties in one declaration. Because font-variant and font-weight are not
included, a side effect of using this declaration is that they are both re-set to normal.

Custom fonts

Selected fonts can be seen only if the font is installed on the device used to view the web
site. If a nonstandard font is needed, a @font-face rule can be used to load the font from
an online location.

@font-face {
font-family: MyFont;
src: url(myfont.ttf);

}

This rule creates a font named MyFont and provides a URL from which the browser
can download it. With this rule in place, the custom font can be used just like any
standard font.

p { font-family: "MyFont", arial, sans-serif; }
This use of the @font-face rule is supported in Chrome 5+, Firefox 3.5+, [E9+,

Safari 3.1+, and Opera 10+. If the browser does not support the custom font, it reverts to
the next standard font in the list.

55

CHAPTER 14

Background

The background properties can add background effects. None of these properties inherits
and they can be applied to any elements.

background-color

The color of an element’s background is set with the background-color property. By
default, its value is set to transparent.

background-color : transparent | <color>

Even if a background image is used, it is a good idea to set a background color. That
way, there is a fallback color in case the background image is unavailable for any reason.

background-color: #ccc;

background-image

background-image specifies an image to use as a background with the url function.
background-image : none | url(<urls)

The image location defined with the url function can be either absolute or relative to
the location of the CSS file.

/* Relative path */
background-image: url(../images/myimg.7jpg);

/* Absolute path */
background-image: url(http://mydomain.com/images/myimg.jpg);

57

http://mydomain.com/images/myimg.jpg

CHAPTER 14 © BACKGROUND

background-repeat

By default, the background image repeats itself both horizontally and vertically. It can
be changed with the background-repeat property to make the background repeat only
horizontally (repeat-x), only vertically (repeat-y), or not at all (no-repeat).

background-repeat : repeat | repeat-x | repeat-y | no-repeat

background-attachment

When the viewport is scrolled in a browser, a background image normally follows along
with the rest of the page. This behavior is determined by the background-attachment
property, whose initial value is scroll. If the value is set to fixed, the position of the
background is instead relative to the viewport, making the background stay in place even
as the page is scrolled.

background-attachment : scroll | fixed | local

CSS 3 introduced a third value for this property, local, which fixes the background
relative to the element’s content instead of the whole viewport. With this value, the
background scrolls along with the element’s content only when that element is scrolled
(achieved by using the overflow property). Support for this value was introduced in
Chrome 4+, Firefox 25+, [E9+, Safari 5+, and Opera 10.5+.

background-position

The background-position property is used to position a background image, with one
value for vertical placement and another for horizontal. They can both be set to a length
or a percentage of the element’s size, and negative values are allowed. There are also
some predefined values for this property, including: top, center, and bottom for vertical
placement; and left, center, and right for horizontal placement.

background-position : <length> <length> | <percentage> <percentage> |
top/center/bottom + left/center/right

By default, a background image is positioned to the top left of its parent element’s
padding area. Any length values given move the background image relative to these
edges. For example, the following property offsets the background 5 pixels down and
10 pixels to the right:

background-position: 5px 10px;

58

CHAPTER 14 © BACKGROUND

CSS 3 added a four-value syntax, allowing a choice of which side of the element
the image will be positioned relative to. Using this syntax, the background in the next
example is positioned relative to the bottom right instead of the top left of the element.

background-position: bottom 5px right 5px;

This four-value syntax is supported only in Chrome 25+, Firefox 13+, IE9+,
Safari 5.28+, and Opera 10.5+.

background-size

The size of a background image is normally the same as the actual size of the image.

It can be changed with the background-size property, which allows the background to
be resized to a dimension specified in pixels or as a percentage relative to the background
positioning area.

background-size (1-2) : auto | <length> | <percentage> | cover | contain

With two values, the first value determines the width of the image and the second
value its height.

background-size: 150% 100%;

A single value defines only the width of the image. The height is then implicitly set to
auto, preserving the aspect ratio of the image.

background-size: 150%;
The contain and cover keywords size the background to fill the parent container
while maintaining the aspect ratio. The cover value ensures that the image completely

covers the background positioning area, whereas contain makes sure that the
background is contained within the area. Their difference is illustrated in Figure 14-1.

positioning area

background-size:

. background-size: cover;
contain;

overflow =

Figure 14-1. Backgrounds sized with cover and contain keywords

59

CHAPTER 14 © BACKGROUND

This property was added in CSS 3 and is supported in Chrome 4+, Firefox 4+, IE9+,
Safari 5+, and Opera 10.5+. Use of the -webkit and -moz prefixes expand support to
Chrome 1+, Safari 3+, and Firefox 3.6+.

background-clip

The painting area of a background image or color can be set with the background-clip
property.

background-clip : border-box | padding-box | content-box

The background normally extends to the outside edge of the border (border-box)
and renders behind any visible border. A value of padding-box instead draws the
background within the element’s padding. The third possible value, content-box, draws
the background within the content area. Using the following declaration, the background
is clipped to the outside edge of the content:

background-clip: content-box;

background-clip is supported in Chrome 1+, Firefox 4+, [E9+, Safari 3+,
and Opera 12+.

background-origin

The background-origin property determines the starting point of a background
image or color.

background-origin : padding-box | border-box | content-box

A background image is ordinarily rendered starting from the top left of the element’s
padding area (padding-box). It can be changed so that the background either starts at the
top-left edge of the border area (border-box) or the content area (content-box).

The background-origin property is often used together with background-clip
to change both the starting point and clipping area of the background. The following
declarations set both of them to the content area:

background-origin: content-box;
background-clip: content-box;

The background-origin property is a CSS 3 property that works in Chrome 4+,
Firefox 4+, IE9+, Opera 10.5+, and Safari 5+. All versions of Firefox and Chrome, along
with Safari 4, are supported with the -moz and -webkit prefixes, as seen in the next
example. Note that Firefox used the values padding and border prior to version 4; there
were no values for specifying the content box as the origin.

60

CHAPTER 14 © BACKGROUND

/* Chrome 1-3, Safari 4 */
-webkit-background-origin: border-box;

/* Firefox 1-3.6 */
-moz-background-origin: border;

background-origin: border-box;

background

The background property is a shortcut for setting all background properties in a single
declaration.

background : <background-color> + <background-image> +
<background-repeat> + <background-attachment> +
<background-position> + <background-size> +
<background-clip> + <background-origin>

The order of the values is irrelevant because there is no ambiguity between them.
Any one of the values can be left out, but keep in mind that those omitted properties are
reset to their defaults when using this property.

background: url(bg.png) no-repeat fixed right bottom;

In most cases, it is preferable to use shorthand properties such as this one when
setting more than one of the individual properties. It has better performance and is easier
to maintain than using the equivalent longhand properties seen here:

background-image: url(bg.png);
background-repeat: no-repeat;
background-attachment: fixed;
background-position: right bottom;

Multiple backgrounds

More than one background can be applied to the same element by specifying the property
values in a comma-separated list. The first background in the list appears at the top, and
each successive background is visible only through transparent areas of the backgrounds
stacked on top of it.

background-image: url(bgl.png), url(bg2.png);
background-repeat: no-repeat, repeat-y;
background-attachment: fixed, fixed;
background-position: right bottom, top left;

61

CHAPTER 14 © BACKGROUND

The shorthand property can also be used with multiple backgrounds in the
following way:

background: url(bgl.png) no-repeat fixed right bottom,
url(bg2.png) repeat-y fixed top left;

Support for multiple backgrounds was added in CSS 3 and has been included in
browsers since Chrome 4+, Firefox 3.6+, IE9+, Safari 3.1+, and Opera 10.5+. A fallback

image can be provided for older browsers that do not support multiple backgrounds.

background-image: bg.png; /* fallback */
background-image: bgi.png, bg2.png;

62

CHAPTER 15

Gradients

A gradient is a color fill that blends smoothly from one color to another. Introduced in
CSS 3, the gradient functions can be used anywhere an image is required according to
specification, but they are mainly used together with the background or background-image
properties to create a background gradient.

Linear gradients

The linear-gradient() function defines a gradient that provides a smooth transition
from one color to another.

linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

In its simplest form, the linear gradient consists of two colors with an even spread
from top to bottom. In Figure 15-1, the gradient starts as gray and transitions into black at
the bottom.

.mygradient {
background-image: linear-gradient(gray, black);

}

Figure 15-1. Simple linear gradient

63

CHAPTER 15 © GRADIENTS

The angle for the gradient can be set by using the keyword to, followed by the
destination in which the gradient will end: top, right, bottom, left, or any combination
thereof. An example is shown in Figure 15-2.

linear-gradient(to bottom right, gray, black);

Figure 15-2. Bottom-right linear gradient

More-precise angles can be specified by using the deg unit, with 0 deg being the
same as to top. The degrees proceed clockwise, and negative angles are allowed.

linear-gradient(odeg, gray, black); /* to top */
linear-gradient(90deg, gray, black); /* to right */
linear-gradient(180deg, gray, black); /* to bottom */
linear-gradient(-90deg, gray, black); /* to left */

Additional color stops can be added between the starting and ending colors. Any
color stop can be followed by a stop position specified as either a percentage or a length
value. If no stop position is specified, the colors are evenly distributed. In the following
case, white is set at 25 percent, instead of its default position of 50 percent. Figure 15-3
illustrates the result of this code.

linear-gradient(gray, white 25%, black);

Figure 15-3. Gradient with multiple color stops

CHAPTER 15 © GRADIENTS

The standard syntax described so far is supported in Chrome 26+, Firefox 16+,
IE10+, Safari 6.1+, and Opera 12.1+. Legacy syntaxes can be used together with the -moz,
-webkit, and -o prefixes to expand support down to Firefox 3.6, Chrome 1, Safari 4, and
Opera 11.1.

.linear-gradient
{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */

background: -webkit-gradient(linear, left top, right top, from(red),
to(orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-linear-gradient(left, red, orange);

/* Firefox 3.6-15 */
background: -moz-linear-gradient(left, red, orange);

/* Opera 11.1-12.1 */
background: -o-linear-gradient(left, red, orange);

/* Standard syntax */
background: linear-gradient(to right, red, orange);

Radial gradients

A radial gradient transitions outward from a central point. In CSS, these gradients are
defined with the radial-gradient() function.

radial-gradient([<shape> + <size>] [at <position>]
{, <color stop> [stop position]} {2-«})

To create a radial gradient, at least two color stops must be defined. The radial
gradient in Figure 15-4 starts as gray in the center and fades to black.

radial-gradient(gray, black);

65

CHAPTER 15 © GRADIENTS

Figure 15-4. Simple radial gradient
Like linear-gradient(), more than two color stops are allowed and they can
optionally be followed by a length or percentage value, indicating the stop position of the

color. An example is shown in Figure 15-5.

radial-gradient(black 25%, white, black 75%);

Figure 15-5. Radial gradient with set stop positions

The shape of the radial gradient can be either an ellipse or a circle. The default
shape is el1lipsis, which allows the gradient to spread itself to match both the height and
width of the element, as shown in Figure 15-5. The alternative circle value, illustrated in
Figure 15-6, forces the gradient to be circular, regardless of the shape of the element.

radial-gradient(circle, black 25%, white, black 75%);

Figure 15-6. Circular radial gradient

66

CHAPTER 15 © GRADIENTS

Two length values for the ellipsis or a single value for the circle can be used to set the
horizontal and vertical radius of the gradient. For the ellipsis, they can also be percentage
values that are relative to the dimensions of the element, as in the example shown in
Figure 15-7.

radial-gradient(75% 25%, gray, black);

Figure 15-7. Resized radial gradient

Ifless precision is needed, the size can be set by using one of the predefined
keywords: closest-side, closest-corner, farthest-side, or farthest-corner. These
values specify whether the gradient is contained by the sides or corners of the element
nearest to or farthest away from the origin (see Figure 15-8). For example, the farthest-side
value sizes the gradient so that its last color ends at the farthest side of the element away
from its origin.

radial-gradient(farthest-side, gray, black);

closest-side

closest-corner

origin farthest-side

farthest-corner

Figure 15-8. Size keywords

The origin of a radial gradient is centered by default. It can be changed by specifying
the position of the gradient’s origin with the keyword at followed by a position specified
in the same way as for the background-position property. The horizontal position is
specified first, optionally followed by the vertical position. The position can be set with

67

CHAPTER 15 © GRADIENTS

keywords (left, center, right + top, center, and bottom), length values, percentage
values, or a combination thereof. An example is given in Figure 15-9, in which the
gradient origin is moved to the bottom right of the element.

radial-gradient(at right bottom, gray, black);

Figure 15-9. Bottom-right origin

Support for the radial-gradient () function is largely the same as for
linear-gradient() when used together with the -moz, -webkit, and -o vendor prefixes.
Like linear-gradient(), the syntax for the radial gradient has gone through some
revisions. An example of a full cross-browser syntax is shown here:

.radial-gradient

{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */
background: -webkit-gradient(radial, center center, Opx, center
center, 100%, color-stop(0%,red), color-stop(100%,orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Firefox 3.6-16 */
background: -moz-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Opera 11.6-12.1 */
background: -o-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Standard syntax */
background: radial-gradient(ellipse at center, red 0%, orange 100%);

}

68

CHAPTER 15 © GRADIENTS

Repeating gradients

Linear and radial gradients do not allow gradient patterns to repeat because they
naturally stretch to fill the element on which they are defined. Two additional functions
are used for creating repeating gradients: repeating-linear-gradient() and
repeating-radial-gradient().

For the purpose of repeating a linear gradient, the repeating-linear-gradient()
function is used. The arguments for this function are the same as for linear-gradient().

repeating-linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

A repeating linear gradient repeats the color stops infinitely. The size of the gradient
is determined by the final color stop. To avoid sharp transitions, the starting color in
Figure 15-10 is repeated at the end.

repeating-linear-gradient(-45deg, white 0, black 10%, white 20%);

3

|

Figure 15-10. Repeating linear gradient

The repeating function for the radial gradient also shares the same syntax as the
nonrepeating version. The example shown in Figure 15-11 illustrates the repeating function.
Note that this gradient has sharp color transitions in contrast with the previous example.

repeating-radial-gradient(black, black 5%, white 5%, white 10%)

Figure 15-11. Repeating radial gradient

69

CHAPTER 15 © GRADIENTS

The syntax for defining gradients is notably more complex than many other CSS
features. For this reason, it can be preferable to use an online tool to graphically design
the desired gradient. One such tool can be found on Colorzilla.com.! In addition to the
standard compliant gradient code, it also provides the prefixed versions necessary for
maximum browser compatibility.

'http://www.colorzilla.com/gradient-editor

70

http:Colorzilla.com
http://www.colorzilla.com/gradient-editor

CHAPTER 16

Box model

The so-called box model of CSS describes the space that is taken up by an HTML element.
In this model, each element consists of four boxes: content, padding, border, and margin,
as illustrated in Figure 16-1.

margin
border
padding

3.
content o
!
~

5 width g

Figure 16-1. CSS box model

Each of the three boxes surrounding the content can have different sizes on the top,
right, bottom, and left of the element. Any or all of these sizes can also be set to zero.

Inline and block

HTML has two primary categories of elements: block and inline. The box model applies
differently to these two kinds of elements, so it is important to know the difference
between them. Examples of inline elements include <a>, and , while

<p>, <h1>, and <form> are block elements.

Inline elements flow along with text content and are split as necessary to fit the width
of their container. They may not contain block elements, with the exception of the <a>
element, which can wrap any type of element.

Block elements can contain both block and inline elements (see Figure 16-2). They
break the flow of text by creating a virtual box around themselves that expand horizontally,
making it appear as if there are line breaks before and after each block element. Because of
these properties, block elements are also referred to as boxes or containers.

71

CHAPTER 16 © BOX MODEL

block 1

inline 1 inline 2 ...

... inline 2 inline 3

block 2

Figure 16-2. Block and inline elements

The boxes surrounding inline and block elements have different features. A block
element can manipulate all properties in the box model, including the width and height
of the content area, as well as the border, padding, and margin. If no width is set, a block
element expands horizontally to the maximum allowed by the containing element.

An inline element is more limited in that it cannot set the vertical margins (top or
bottom). It also cannot change the width or height of its inline box. For an inline element,
the minimum height can be set with the 1ine-height property, but the width and height
adjust automatically to fit the content that the element holds.

There is a subcategory of inline elements, called replaced inline elements, that
use external objects such as , <video>, and <object>; and form elements such
as <input> and <textarea>. With these inline elements, all box properties can be
manipulated the same way as block elements.

Span and div

Using the and <div> elements is a generic way of adding structure to a web document.
These elements have no styles associated with them, which makes them especially well-suited
to work with class and id selectors. The difference between the two is that is an inline
element whereas <div> is a block element.

Inline
<div>Block</div>

As an inline element, is mainly used to add styling to sections of text. It cannot
be used for styling block elements because such elements are not allowed inside of inline
elements according to the HTML specification.

Red text

In contrast, <div> is used to create styled containers for other block and inline elements.
These custom containers are often what make up the layout of a web page. Because it is
ablock element, <div> allows all the element’s box attributes to be manipulated (width,
height, padding, border, and margin).

<div class="a">
<div class="b">Block within a block</div>
</div>

72

CHAPTER 17

Border

The border properties are used to format the border around elements. They can be
applied to any element and they do not inherit.

border-style

To make the border visible around an element, the border-style property has to be set to
a value other than none, which is the default value.

border-style (1-4) | border-top-style |
border-right-style | border-bottom-style |
border-left-style :
none | dashed | dotted | double | groove |
hidden | inset | outset | ridge | solid

The solid border style is the one most commonly used, but there are several other
options for displaying a border, as seen in Figure 17-1. The hidden value removes the
border and is synonymous with none, except that it also hides shared borders in tables
with collapsed borders.

peesssssssnsny - -

Solid_] § Dotted : LI-DashedJ Double

Groowre| I Ridge Inset Outset

Figure 17-1. border-style appearances

The border-style property is one of several properties that can be set with one
to four values. When fewer than four values are specified, the border-style value is
duplicated, as shown in Figure 17-2.

~ N
top right bottom left
S o

Figure 17-2. 1-to-4-value syntax explained

73

CHAPTER 17 © BORDER

Given these rules, the following declarations are synonymous and display a solid
border on the top and bottom of an element:

border-style: solid none solid none;
border-style: solid none solid;
border-style: solid none;

To render all border sides in the same style, only a single style value needs to be specified.
border-style: solid;

The border-style property has four subproperties that can also be used to target
each border side’s style.

border-top-style: dotted;
border-right-style: dashed;
border-bottom-style: ridge;
border-left-style: inset;

border-width

The border-width property, which controls the width of borders, can be set with a unit
of length or with one of the predefined values: thin, medium, or thick. The initial value is
medium, which is typically rendered as 3 pixels.

border-width (1-4) | border-top-width |
border-right-width | border-bottom-width |
border-left-width :

<length> | thin | medium | thick

As with border-style, this property can have one to four values and has four
subproperties for setting the individual borders’ width.

/* Shortcut property */
border-width: thin medium;

/* Full-length properties */
border-top-width: thin;
border-right-width: medium;
border-bottom-width: thin;
border-left-width: medium;

A width of zero means that no border is displayed. This value has the same effect as
setting the style of the border to none.

4

CHAPTER 17 © BORDER

border-color

border-color sets the color of the border. CSS does not specify what the default border
color should be, but most browsers render it gray. This property can have from one to four
values and has four subproperties for setting the individual borders’ color.

border-color (1-4) | border-top-color |
border-right-color | border-bottom-color |
border-left-color :

<color> | transparent

Setting the color to transparent makes the border invisible without changing the layout.

border-color: transparent;

border

The border property can set the width, style and color border properties in a single
declaration. It is the most commonly used property for controlling the border.

border | border-top | border-right |
border-bottom | border-left :
<border-width> + <border-style> + <border-color>

The values can be set in any order because there is no ambiguity between them.
Either one of the values can also be omitted.

border: 1px solid black;

The border property has four subproperties for specifying the border settings for
each of the four sides.

border-top: 1px solid red;
border-right: 1px solid blue;
border-bottom: 1px solid aqua;
border-left: 1px solid lime;

border-radius

The corners of the border can be rounded using the border-radius property or its four
subproperties.

border-radius (1-4) | border-top-left-radius |
border-top-right-radius | border-bottom-right-radius |
border-bottom-left-radius :

<length> | <percentage> [/ <length> | <percentage>]

75

CHAPTER 17 © BORDER

The border-radius property can have from one to four values. Each radius value can
be set by using either one value for a circle radius or two values for an elliptical radius.
The value can be either a length or a percentage. If a percentage is used, it is relative to
the container’s dimensions. The examples that follow are illustrated in Figure 17-3:

.a { border-radius: 5px; }
.b { border-radius: 5px 20px; }
.c { border-radius: 50%; }
.d { border-radius: 30px/10px; }

a b c d

Figure 17-3. Border-radius examples

The radius for each of the four edges can be set using the four subproperties of
border-radius. The following example renders the same as the second box in
Figure 17-3:

border-top-left-radius: 5pX;
border-top-right-radius: 20px;
border-bottom-right-radius: 5px;
border-bottom-left-radius: 20px;

border-radius is a well-supported CSS 3 property. To add support for older
browsers, the -webkit and -moz browser prefixes can be used.

.round {
/* Safari 3-4 */

-webkit-border-radius: 5px;

/* Firefox 1-3.6 */
-moz-border-radius: 5px;

/* Opera 10.5, IE9, Safari 5, Chrome 1, Firefox 4 */
border-radius: 5px;

76

CHAPTER 18

Outline

The outline is a line drawn around an element, outside the border edge. It is typically
rendered as a dotted line around interactive elements to show which element has focus.
Although similar to the border, the outline differs in that it does not take up any space in
the box model. Furthermore, unlike the border, all four sides of the outline must be the
same. The outline properties can be applied to any element, and none of them inherits.

outline-style

The style of the outline is set with the outline-style property. To display the outline,
the value needs to be set to something other than none, which is the default.

outline-style : none | solid | dotted | dashed | double |
groove | ridge | inset | outset

This property allows the same values as border-style, except that hidden is not a
valid outline-style. They are also rendered the same, as illustrated in Figure 18-1.

pressscssssnany - -

Solid_] § Dotted : LI-DashedJ Double

Groovel I Ridge | Inset Outset

Figure 18-1. Outline-style appearances

outline-width

The thickness of the outline is specified with the outline-width property. Like the
border-width property, its value can be a specified length or one of the keywords thin,
medium, or thick.

outline-width : <length> | thin | medium | thick

7l

CHAPTER 18 © OUTLINE

CSS does not specify the numerical thickness of these three keywords, but they
typically render as 1px, 3px, and 5px, respectively. Like border-width, the initial value for
this property is medium.

outline-color

The color of the outline can be changed with the outline-color property. In addition to
the standard color notations, the keyword invert is also a valid value for this property.

outline-color : invert | <color>

To ensure proper contrast, the specification suggests that the default value be
invert, which sets the outline to the opposite of the color underneath. However,
only IE8+ and Opera 7+ actually support this value, so it is not commonly used.

outline

outline is a shorthand property for setting all the preceding outline properties in a single
declaration.

outline : <outline-width> + <outline-style> + <outline-color>

The values can be specified in any order because there is no ambiguity between
them. Either one of them can be left out.

outline: thin solid red;

This has the same effect as setting all the individual properties, but with a more
convenient syntax:

outline-width: thin;

outline-style: solid;
outline-color: red;

outline-offset

The space between the outline and the border edge can be set with the outline-offset
property introduced in CSS 3.

outline-offset : <length>

The following declaration moves the outline 3 pixels outward. Negative values are
allowed, which instead move the outline inside the element.

outline-offset: 3px;

Although this property is not supported in IE, it works in all other major browsers.

78

CHAPTER 19

Margin and padding

Margins and padding are used to adjust the position of an element and to create space
around it.

Padding

Padding is the space between an element’s content and its border. It is set using the
padding properties shown here. These properties do not inherit and can be applied to
any element.

padding (1-4) | padding-top | padding-right |
padding-bottom | padding-left :
<length> | <percentage>

There are four properties for setting the padding on each side individually. In the
following example, the vertical (top, bottom) margins will be 10 pixels, and the horizontal
(right, left) margins will be zero.

padding-top: 10px;
padding-right: O0;
padding-bottom: 10px;
padding-left: 0;

These declarations can be shortened to a single declaration using the padding
property. The padding values are then specified in clockwise order: top, right, bottom,
and left.
padding: 10px O 10px O;

Like many other properties related to the box model, the padding property can be set

with one to four values that correspond to the edges of the element’s box. With fewer than
four values, the padding is repeated as is shown in Figure 19-1.

79

CHAPTER 19 © MARGIN AND PADDING

gt S
top right bottom left
L =

Figure 19-1. 1-to-4-value syntax explained

For instance, if two values are specified, the first value sets the top and bottom
padding, and the second value sets the right and left padding. This gives an even shorter
way of writing the previous example.

padding: 10px 0;

Keep in mind that the padding is part of the element’s background and is affected by
the background properties, whereas the margin is always transparent.

Margin

The margin is the space around an element’s border and is set using the margin properties
listed as follows. These properties are not inherited and can be applied to any element, with
the exception that vertical margins do not affect nonreplaced inline elements.

margin (1-4) | margin-top | margin-right |
margin-bottom | margin-left:
<length> | <percentage> | auto

Margin and padding can both use percentage values, which are relative to the
width and height of the containing element. In contrast with padding, margins can be
negative, which allows for element areas to overlap. The auto keyword lets the browser
automatically calculate the margin.

Like the padding and border properties, the margin property can be set with one to
four values. For example, in the following declaration, the top-bottom margins will be
1 cm, and the right-left margins will be 0:

margin: icm O;

The margin property also has four subproperties, which provide a more verbose
method for setting the margin on each of the four sides.

margin-top: 1cm;
margin-right: o0;
margin-bottom: 1cm;
margin-left: o0;

80

CHAPTER 19 © MARGIN AND PADDING

Top and bottom margins are shared between adjacent boxes, so the vertical
distance between two boxes is not the sum of the margins, but only the greater of the
two margins. Because of this, the distance between the two following <div> boxes will be
only 10 pixels:

<div style="margin-bottom: 5px;">Top box</div>
<div style="margin-top: 10px;">Bottom box</div>

81

CHAPTER 20

Dimension

The dimension properties control the size of an element, as well as its minimum and
maximum dimensions. They do not inherit and can be applied only to block elements
and replaced inline elements.

width and height

The width and height of an element’s content area can be set with the width and height
properties. These two properties can be assigned with either a length or a percentage
value, where the percentage is relative to the parent element’s dimensions.

width | height : auto | <length> | <percentage>

A block element normally stretches out to the edges of its container. In contrast, the
element’s height collapses to fit its content. With the width and height properties, these
default behaviors can be changed. In the following example, elements applying the class
have a width of 100 pixels and a height of 50 pixels. After the dimensions have been set
like this, the element keeps that size, no matter how the page is resized.

.mybox {
width: 100px;
height: 50px;
}

min-width and min-height

The min-width and min-height properties set the minimum dimensions of an element.
The element’s width and height still expand to fit the content, but the element does not
collapse below the specified minimum dimensions, which does not include padding,
borders, or margins.

min-width | min-height : <length> | <percentage>

83

CHAPTER 20 DIMENSION

Valid values for these properties are lengths and percentages, where percentage is
relative to the dimensions of the containing block. For example, the following class makes
an element take up at least half of the available width and height:

.half {
min-width: 50%;
min-height: 50%;
}

max-width and max-height

The maximum dimensions of an element’s content area are set with the max-width and
max-height properties. They can be set with a length or percentage value, as well as the
keyword none to clear a previously set value.

max-width | max-height : none | <length> | <percentage>

By setting both the maximum and minimum width, you can define an interval for the
way the width of an element can vary. A block element using the following class expands
to fill 500 pixels if it can. When horizontal space is limited, the element is allowed to
shrink down to no fewer than 200 pixels.

.mybox {
max-width: 500px;
min-width: 200px;

}

The max-width property has priority over min-width. However, it is the other way
around with the height properties because min-height has priority over max-height.
Thus, an element using the following class has a height of 5 em, unless its content
requires more height. In that case, the element expands vertically up to its maximum
allowed value of 20 em.

.mybox {
max-height: 20em;
min-height: 5em;

}

Keep in mind that the fixed width and height properties should not be used together
with the min- and max- properties. The four min- and max- properties are supported by all
major browsers, including Chrome 1+, Firefox 1+, IE7+, Safari 1+, and Opera 8+. They are
popularly used together with media rules for creating fluid layouts that work well across
different screen sizes.

84

CHAPTER 20 * DIMENSION

box-sizing

The dimension properties normally refer to the content area, not the padding or border
area. Therefore, to know the actual width or height that an element occupies in the box
model, the surrounding padding and border have to be taken into account.

/* 100 pixels wide element */
.mybox {
padding: 3px;
border: 2px solid red;
width: 90px;
}

CSS 3 introduced the box-sizing property to allow web developers a choice of how
widths and heights are calculated. The default value is content-box, which means the
dimension properties refer only to the content area. The alternative border-box value
includes the padding and borders in these measurements.

box-sizing : content-box | border-box

By changing the box sizing to border-box, you can create a grid layout more easily
because you no longer need to take the padding and border sizes into account.

/* 100 pixel wide element */
.mybox {
box-sizing: border-box;
padding: 3px;
border: 2px solid red;
width: 100px;

}

The border-box property does not inherit, but it can be applied to all elements on the
website using the universal selector. To increase browser support, the -webkit and -moz
prefixes should be used.

/* Use border-box for all elements */
*{
/* Chrome 1-8, Safari 3-5 */
-webkit-box-sizing: border-box;

/* Firefox 1-28*/
-moz-box-sizing: border-box;

/* Chrome 9+, Firefox 29+, IE8+, Safari 5.1+, Opera 9.5+ */

box-sizing: border-box;

Browser support for the box-sizing property has become so good that all major
browsers now support it. As such, many new websites have started to employ this
property to simplify the grid calculations for their layouts.

85

CHAPTER 21

Positioning

The positioning properties can change how and where elements are displayed. They
enable very precise control over the web page layout.

position

Elements can be positioned in four different ways using the position property. An
element with the position property set to anything but static is known as a positioned
element.

position : static | relative | absolute | fixed

A positioned element can be moved with the top, left, right, and bottom properties,
which can be used to position elements anywhere on the page and also to resize them
horizontally and vertically. They allow both positive and negative length and percentage
values, with the percentage being relative to the dimensions of the containing block.

top | right | bottom | left (positioned) :
auto | <length> | <percentage>

static

By default, the position property has the value static. This value means that the
element appears in its regular position in the page flow and is not affected by the top,
left, right, or bottom positioning properties.

/* Not positioned element */
.static { position: static; }

Because the position property is not inherited, and static is the default, there is no
need to explicitly set the position property to static.

87

CHAPTER 21 POSITIONING

relative

Changing the position value to relative means that the element can be positioned
relative to its normal position in the page flow. For example, to display a selected element
20 pixels below its normal position, the following declarations are used:

/* Move element 20 pixels down */
.relative {

position: relative;

top: 20px;

}

Relatively positioned elements are considered part of the normal page flow, so other
elements do not move to fill in the gap left by the element.

The effect of moving an element relative to its normal position can also be achieved
by using the element’s margin. This solution is often preferable unless there is a specific
need to make the element positioned, such as whether it will be a container for an
absolutely positioned child element.

/* Move element 20 pixels down */
margin-bottom: -20px;

Keep in mind that changing the margin affects the layout and fills in gaps, whereas
relative positioning does not.

absolute

The position value absolute detaches the element from any containing elements and
allows it to be positioned relative to its nearest positioned ancestor or to the document
body if there are none.

/* Place element in upper left corner */
.absolute {

position: absolute;

top: 0;

left: o;
}

fixed

A fixed element is positioned relative to the screen viewport. It does not move when the
page is scrolled. Similar to absolutely positioned elements, fixed elements do not reserve
any space in the normal page flow.

88

CHAPTER 21 POSITIONING

/* Place element in bottom right corner */
.fixed {

position: absolute;

bottom: 0;

right: 0;
}

overflow

The overflow property decides how content overflow is handled for block elements.
It defaults to visible, meaning that text and child elements that expand beyond the
element’s content area are visible. Setting the value to hidden hides the overflowing
content, and with the scroll value the element’s block becomes scrollable to
accommodate the overflowed content. The auto value is similar to scroll, but the
scrollbars then appear only when necessary.

overflow (block) : visible | hidden | scroll | auto

This property controls the behavior of both horizontal and vertical overflow. Two
additional properties, overflow-x and overflow-y, can be used to differentiate between
how horizontal or vertical overflow is handled. The values for these two properties are the
same as for the overflow property.

overflow: hidden; /* hide all overflow */
overflow-x: hidden; /* hide horizontal overflow */
overflow-y: hidden; /* hide vertical overflow */

clip
The clip property can crop an element into a rectangle if it is positioned as either
absolute or fixed. It uses a CSS function called rect () to specify the clipping region.

clip (absolute | fixed) :
auto | rect(<top>, <right>, <bottom>, <left>)

rect() requires four length values, each separated by commas. These values are
relative to the top-left corner of the element. The example shown in Figure 21-1 cuts out
and displays a 200 x 400 pixel region from the element to which it is applied.

.myclip {

position: absolute;
clip: rect(100px, 500px, 300px, 100px);

89

CHAPTER 21 POSITIONING

Figure 21-1. Shaded region is removed

The keyword auto can be used as a value for the right or bottom side to refer to the
full width or height of the element, respectively. This keyword is also the default value for
the c1ip property, which then means that the element is not clipped.

/* Remove 100px from left and top */
clip: rect(100px, auto, auto, 100px);

/* No clipping */
clip: auto;

To support IE7 and below, the commas in the rect () function need to be left out.
This nonstandard syntax is supported in all major browsers.

/* Backwards compatible IE4-7 syntax */
clip: rect(100px 500px 300px 100px);

Z-index

Positioned elements that overlap each other are normally layered according to their
order in the web document. This natural stacking order can be altered with the z-index

property.

z-index (positioned) : auto | <integer>

90

CHAPTER 21 POSITIONING

The z-index property takes a positive or negative integer as its value, indicating the
stacking order. Elements with a higher value are in front of elements with a lower value, as
in the following example:

<img src="ace-of-hearts.png" style="
position: absolute;
left: o;
top: 0;
z-index: 1;">

<img src="ace-of-spades.png" style="
position: absolute;
left: 100px;
top: 100px;
z-index: 0;">

In this example, shown in Figure 21-2, the ace of hearts is layered on top of the ace of
spades because of its higher stacking order.

A

L 4

4

<>

e

-
Y

Figure 21-2. Customized stacking order

91

CHAPTER 21 POSITIONING

vertical-align

The vertical alignment of text and inline elements within a line can be controlled with the
vertical-align property. This property can also be used on table cell elements.

vertical-align (inline | table-cell) :
baseline | <length> | <percentage> | top | middle |
bottom | text-top | text-bottom | super | sub

By default, the bottom of text and inline elements, such as images, align at the
baseline, which is the invisible line on which all letters sit. The values top and bottom
align the image to the top and bottom of the line, respectively. Less intuitive is the value
middle, which aligns the middle of the image with the middle of lowercase letters in the
parent. The rendering of these common alignment values is illustrated in Figure 21-3.

top bottom
line box

r L
middle line
A y 0 . j.) baseline

baseline middle

Figure 21-3. Common vertical alignment values

Two less-commonly used values for vertical-align are text-bottomand
text-top. The text-bottom value aligns the bottom of the element with the bottom of
the text. Opposite of it, the text-top value aligns the top of the element with the top
of the text. There is also the sub and super values, which align the element to subscript
and superscript positions, respectively. The result of using these values is shown in
Figure 21-4.

su per* *text—top
m ®
=

A

r

Ayo

)|

su bT text-bottom

Figure 21-4. Other vertical alignment values

92

CHAPTER 21 POSITIONING

Elements can also be raised (positive value) or lowered (negative value) with either
alength or percentage value. Both percentage and length values start at the baseline; the
percentage value is relative to the line height.

/* Align text segment 5 pixels below normal text */
Normal Lowered

When applied to table cell elements <th> and <td>, the vertical-align property
behaves as the deprecated valign attribute in HTML. Valid values for table cells are
baseline, bottom, middle, and top. Other values, including lengths and percentages,
should not be used with table cells.

The top value aligns the cell’s top padding edge with the top of the row. Likewise,
bottom aligns the cell’s bottom padding edge with the bottom of the row. More notably,
the baseline value aligns the cell’s content so that it shares the same baseline as other
cells that are baseline-aligned.

In contrast with inline elements that default to baseline, table cell elements are
normally aligned in the middle. For table cells, the middle value behaves in a more
intuitive way by aligning the cell’s padding box in the middle of the row, making the cell’s
content appear centered.

In the following example, the table cell element is vertically aligned at the bottom:

<table>
<tr>
<td style="vertical-align: bottom;">Bottom</td>

</tr>
</table>

Centering

There are several ways to center elements in CSS. A common method is to use the
text-align property with the value center.

.text-center { text-align: center; }

By applying this property to the containing element, text within it is center-aligned.
<p class="text-center">Centered text</p>

This method works for text and inline elements, but not for block elements. To center
block elements, the left and right margins can be set to auto, which makes the horizontal

margins equally large, causing the block to be centered.

.box-center { margin: 0 auto; }

93

CHAPTER 21 POSITIONING

Keep in mind that for a block element to appear centered, its width must be fixed
and not flexible; otherwise, it takes up all the available width.

<div style="width: 50px; height: 50px;
border: 1px solid black;"
class="box-center"></div>

For vertical centering, the easiest way to align content to the middle is to use the
vertical-align property on the parent element with its value set to middle. This
behavior only works as expected for table cell elements, so the container needs to be
changed into one, as in the following example using the display property:

<div style="vertical-align: middle;

display: table-cell;
min-height: 100px;">Centered</div>

94

CHAPTER 22

Classification

The classification properties specify how an element is displayed and whether it is visible.

display

The display property determines the kind of box that surrounds an element. It can make
any element appear as inline, block, or any other type. Every element has a default display
value that depends on what type of element it is.

display : none | inline | block | list-item | inline-block |
inline-table | table | table-cell | table-row |
table-column | table-column-group | table-footer-group |
table-header-group | table-row-group | flex | inline-flex |
grid | inline-grid | run-in

Most HTML elements display as either inline or block; others have special display
properties, such as list-itemfor the <1i> element and table-cell for the <td> and <th>
elements. By using the display property, any element can be changed to be rendered as
these or any other element type. For instance, the following link is rendered as a block
element instead of an inline element:

Block link

One of the more useful values for display is inline-block, which combines features
of both block and inline. An inline-block element is like an inline element, except that
it can also manipulate the width, height, and vertical margin properties of the box model
as a block element does. These features are the same as those of replaced inline elements,
such as and <button>. As such, these elements were formally redefined as
inline-block elements in HTMLS5.

95

CHAPTER 22 CLASSIFICATION

A common application of inline-block is to make list item elements (<1i>) suitable
for horizontal navigation menus. Note that changing the display type of the list item
element from list-itemto inline-block automatically removes the list marker.

1i {
display: inline-block;
width: 100px;
background: #ccc;

}

With this rule in place, the following markup renders three boxes with gray
backgrounds next to each other, as illustrated in Figure 22-1.

Item one</1i>
Item two</1i>
Item three

Item one Item two Item three

Figure 22-1. The inline-block value demonstrated

Another useful display value is none. It completely hides an element, making the
page render as if the element did not exist.

.removed { display: none; }

visibility
The visibility property can hide an element without removing the space it occupies by
setting the property's value to hidden.

visibility (block) : inherit | visible | hidden | collapse

The collapse value is meant to be used only on certain table elements: rows (<tr>),
columns (<col>), column groups (<colgroup>), and row groups (<thead>, <tbody>, and
<tfoot>). According to specification, collapse should remove the hidden element (same
asdisplay: none)and make the space available for other elements to claim. Regrettably,
not all major browsers follow the specification for this value. Setting the display property
to none results in more consistent browser behavior and should be used instead.

96

CHAPTER 22 ' CLASSIFICATION

opacity

The opacity property can make an element and its content transparent.
opacity : <number>

A decimal value between 0.0 and 1.0 is used to set the transparency. With a value
of 1, the element is opaque; 0 renders the element fully transparent, or invisible.

.half-transparent { opacity: 0.5; }

Support for this CSS 3 property is included in Chrome 1+, Firefox 1+, IE9+,
Safari 1.2+, and Opera 9+. IE support can be greatly enhanced using the following filter:

.half-transparent {
filter: alpha(opacity=50); /* IE5-8 */
opacity: 0.5;

float

The float property detaches an element from its containing element and makes it
float on top of it, either to the left or right side. It is intended for wrapping text around
images, but is also commonly used for making layouts. Floating an inline element
automatically changes it into a block element.

float : none | left | right

To have text and other inline content wrap around an image, you can float it to the
left or right.

As for layouts, floats allow block elements to be lined up horizontally. For instance,
a grid of boxes can be created with the following class:

.box {
float: left;
width: 100px;
height: 100px;
margin: 0 lem;
background: #ccc;
border-radius: 10px;

97

CHAPTER 22 CLASSIFICATION

This class makes boxes stack up horizontally instead of vertically, which is the
normal behavior for block elements (see Figure 22-2).

<div class="box"></div>
<div class="box"></div>
<div class="box"></div>

Figure 22-2. Floated boxes

A side effect of using floats is that any element that follows these floated boxes also
lines up horizontally. The clear property is designed to stop this behavior.

clear

The clear property is used to clear floating elements from the left, right, or both sides of
an element.

clear (block) : none | left | right | both

This property is commonly given its own class that has the same name as the
property.

.clear { clear: both; }

An empty div container with the clear class is typically placed after the floated
elements. This cleared element is moved below the floating elements instead of
appearing next to them.

<div class="clear"></div>

Because floated layouts tend to be complex and fragile, they have generally been
superseded by other layout methods, such as the use of the positioning properties.

In the box-aligning example given earlier, a better alternative is to change the box to
an inline-block element. This accomplishes the same task, while removing the need to
clear the floated elements.

98

CHAPTER 22 ' CLASSIFICATION

.box {
display: inline-block;
width: 100px;
height: 100px;
margin: O lem;
background: #ccc;
border-radius: 10px;

cursor

The cursor property specifies what cursor users see when they hover over an element.
The default value is auto, meaning that the browser decides what cursor to use. Standard
cursor values and their appearance can be seen in Table 22-1.

Table 22-1. Standard cursor values

. default ointer 1{—? move
% W

=) it 7, ™ hel [\“~ text-
wal [\'@: progress [13? ep J\E context-menu

CO
A Py

I ns-resize +—F ew-resize I text — vertical-text
T n-resize —$ e-resize L s-resize 4+— w-resize

A ne-resize ™4 se-resize g~ sw-resize F.. nw-resize
.{,:l news-resize F\: nwse-resize EIL}‘ cell E:’E alias

Fe

® not-allowed +"+ col-resize % row-resize 4@ p all-scroll
-

no-drop —~— crosshair
e

In addition to these values, custom cursors can be defined using the url function.
If this cursor is not available, a generic cursor can be specified after the custom one,
separated by a comma.

cursor: url(new.cur), pointer;

99

CHAPTER 23

List

The CSS list properties deal with the list elements, specifically the , , and <1i>
elements.

list-style-type

Lists are rendered with a marker shown before each list item element (<1i>). The
appearance of this marker can be changed using the list-style-type property. For an
unordered list (), each list item is marked in the same way. The predefined bullet
values shown here can be used, with disc (a filled circle) as the default value:

list-style-type : inherit | disc | circle | square | none

In an ordered list (), each list item is marked with a numeric character to show
its position in the sequence. All major browsers support the following numeric types, with
decimal as the initial value:

list-style-type : inherit | decimal | none | upper-alpha | lower-alpha |
upper-roman |
lower-roman | lower-greek | lower-latin |
armenian | georgian |
decimal-leading-zero

The following example assigns a new list style for the two list elements. It is possible
to make the display ordered markers and the to display unordered markers, but
this is not good practice.

ul { list-style-type: square; } /* m */
ol { list-style-type: upper-roman; } /* I, II, III, ... */

The color of the marker is the same as the text color of the list element. Keep in mind

that any element can be made to display list markers by changing its display type to
list-item.

101

CHAPTER 23 © LIST

list-style-image

As an alternative to the predefined markers, using the list-style-image property allows
a custom image to be used as the list bullet.

list-style-image : inherit | none | url(<url>)
The image path is specified inside of the CSS url function.
list-style-image: url(my-bullet.png)
This property overshadows any marker type selected with the list-style-type

property. Even so, it is a good idea to specify a 1ist-style-type as a fallback in case the
custom bullet image is unavailable for any reason.

list-style-position

The list marker is normally positioned outside of the element box. 1ist-style-position
provides an alternative: to place the bullet inside of the element box.

list-style-position : inherit | outside | inside
Selecting outside aligns each line of text with the start of the first line, whereas

inside causes successive lines of text to wrap underneath the marker. The inside value
also visually indents the marker, as shown in Figure 23-1.

Figure 23-1. Outside and inside marker placement

list-style

list-style is the shorthand property for setting all the list properties. The values can be
set in any order because there is no ambiguity between them. Any one of the values can
also be omitted, in which case the default value for that property is used.

102

CHAPTER 23 I LIST

list-style : <list-style-type> + <list-style-image> + <list-style-position>

In the following example, the type and position values of the 1ist-style are set,
which are inherited to the list items.

<ul style="list-style: inside square;">
Apple</1i>
Orange</1i>
Pear</l1i>

Keep in mind that list properties can not only style the list containers and
but also style an individual list item <1i>.

Counters

Elements can be numbered automatically in CSS using the counter-increment and
counter-reset properties. The counter-reset property specifies the name of the
counter. It is optionally followed by the counter’s initial value, which is zero by default.

/* Create a counter named chapter */
body { counter-reset: chapter; }

The counter-increment property takes the counter’s name followed by an optional
number. The number, which sets how much the counter is incremented for every
occurrence of the element, is 1 by default.

/* Increment the counter at each <hi> */
hi:before { counter-increment: chapter; }

The final step of creating a counter is to display it by using the CSS counter()
function with the name of the counter as its argument. In this example, the chapter
number is shown before the <h1> elements:

/* Increment and display the counter */
h1:before {
content: "Chapter " counter(chapter) " - ";
counter-increment: chapter;

}

The counter now adds the chapter number before <h1> elements.
<h1>First</h1> «<!-- Chapter 1 - First -->

<h1>Second</h1> <!-- Chapter 2 - Second -->
<h1>Third</h1> <!-- Chapter 3 - Third -->

103

CHAPTER 23 © LIST

Another counter can be added to also enumerate <h2> subheadings. This counter is
here reset to zero at every <h1> element:

h2:before {
content: counter(chapter) "." counter(section) " ";
counter-increment: section;

}

hi { counter-reset: section; }
The following example illustrates how the counters are displayed:

<h1>Head</h1> <!-- Chapter 1 - Head -->
<h2>Sub</h2> <!-- 1.1 Sub -->
<h2>Sub</h2> <!-- 1.2 Sub -->
<h1>Head</h1> <!-- Chapter 2 - Head -->
<h2>Sub</h2> <!-- 2.1 Sub -->

Nesting counters

CSS counters can be nested any number of levels deep. These nested counters can be
combined and displayed using a CSS function called counters(). The function’s first
argument is the counter name, and the second is a string that separates each counter.

ul { counter-reset: item; }
li:before {
content: counters(item, ".") " ";
counter-increment: item;

}

These rules apply to the following unordered lists (note that a new counter instance
is automatically created for every nested list):

<liritem</1i> <!-- 1 item -->
item</1i> <!-- 2 item -->

<liritem</1i> <!-- 2.1 item -->
<liritem</1i> <!-- 2.2 item -->

Counters are supported in all major browsers, including all versions of Chrome,
Firefox, Safari, and Opera, as well as IE8+.

104

CHAPTER 24

Table

CSS has a number of properties that are used specifically with table elements. These
properties offer control over how browsers render tabular data.

border-spacing

The distance between the borders of adjacent table cells can be changed with the border-
spacing property, which is the CSS equivalent of the cellspacing attribute in HTML.
W3C defines the initial value for this property as 0, but most browsers render it as 2px by
default.

border-spacing : inherit | <length> [<length>]

This property can be specified with either one or two length values. With two values,
the first one sets the horizontal spacing, and the second one sets the vertical spacing.

.spacing {
border-spacing: 5px 10px;

}

border-spacing is a property of the table, not the cells, so it is applied to the <table>
element as in the following example:

<table class="spacing">
<caption>My Table</caption>
<tr>
<td>1st cell, 1st row</td>
<td>2nd cell, 1st row</td>
</tr>
<tr>
<td>1st cell, 2nd row</td>
<td>2nd cell, 2nd row</td>
</tr>
</table>

105

CHAPTER 24 © TABLE

This table is illustrated in Figure 24-1, with a solid border applied to the <td>
elements.

My Table

Ilsl cell, 1st row ”211d cell, 1st row I

Ilst cell, 2nd mwl |211d cell, 2nd rowl

Figure 24-1. Example table

Table cells have borders and padding, but they do not have any margins; they have
border-spacing instead. Padding works the same as for other elements and behaves like
the cellpadding attribute in HTML.

border-collapse

The border-collapse property determines whether the table borders are collapsed into a
single border or separated.

border-collapse : inherit | separate | collapse
Normally, table cells have their own distinct borders and are separated by the
distance set with the border-spacing property. If the borders are set to collapse instead,

the cells share borders, and any value for the border-spacing property is ignored.

table { border-collapse: collapse; }

caption-side

The <caption> element provides a label for a table. Its position can be changed using the
caption-side property.

caption-side : inherit | top | bottom
A caption is ordinarily displayed at the top, but it can also be positioned below the
table using the caption-side property. This property applies to the <caption> element,

but it can also be set for the <table> element because it inherits.

caption { caption-side: bottom; }

106

CHAPTER 24 © TABLE

empty-cells

A table cell without any content normally still displays its border and background. This
behavior can be changed with the empty-cells property.

empty-cells : inherit | show | hide

Setting the value for this property to hide causes the cell’s border and background to
be hidden. The layout of the table is not affected.

table-layout

The table-layout property determines whether the width of table cells should be fixed
or flexible. Unlike the other table properties, table-1layout is not inherited.

table-layout : auto | fixed

This property is initially set to auto, which means that the width of table cells
automatically expands to fit their content, even if that means going beyond their set
width. To enforce a table's specified width, the table-layout can instead be set to fixed.
The horizontal layout then depends only on the table's set width, not on the content of
the cells.

/* Enforce table width */
.fixed { table-layout: fixed; }

A fixed table layout has the added benefit that the browser can render the table more
quickly because it knows the dimension of the table as soon as the first row is received.

107

CHAPTER 25

Media

CSS provides a way to present documents differently, depending on the device on which
they are viewed. Such conditional style rules are placed within a media rule, which
consists of @media, followed by an expression that limits the scope and a set of curly
brackets that encloses the conditional style rules.

@media screen {
/* screen devices only */

}

Media types

The media type condition, which was introduced in CSS 2, lists the following valid values,
including the default value all for targeting all device types:

all | aural | braille | handheld | print | projection | screen | tty | tv |
embossed

Unfortunately, the media type does not tell much about the device, so it is seldom
used for its intended purpose. Modern smartphones, tablets, laptops, and desktop
computers all identify themselves as screen types. The main use of the media type
condition today is to differentiate between onscreen and printed documents to enable
more print-friendly document formatting.

/* Print only */
@media print

{
/* Hide navigation */
#navigation { display: none; }

/* Start h1 elements on a new page */
hi { page-break-before: always; }

109

CHAPTER 25 © MEDIA

Media rules are typically placed at the bottom of the style sheet, which allows the
cascade to override the rules defined earlier. If the style sheet contains a lot of conditional
rules, it might be preferable to move them to a separate style sheet that is included
after the primary style sheet. The media condition can then be specified with the media
attribute on the <link> element.

<link rel="stylesheet" media="print" href="myprint.css">

This style sheet contains the print condition, so it is applied only when the document
is sent to print media. Keep in mind that browsers still download a style sheet, even if its
media condition is false.

Media queries

CSS 3 went a step farther by allowing media rules to target the capabilities of the device,
not just its type. It introduced a wide range of media features that can be targeted, as seen
in the following list. All these features, except for orientation, grid, and scan, can be
prefixed with min- or max- to define constraints.

width | height | device-width | device-height | aspect-ratio | device-
aspect-ratio | resolution | orientation | color | color-index | monochrome

The most important media features, min-width and max-width, allow you to create
responsive designs in which the site layout changes based on the viewport of the device’s
browser.

A media query combines a media type and a condition consisting of one or more
media features. For example, the rules within the following media query are applied only
when viewed on screen-based media with a minimum width of 600 pixels:

@media screen and (min-width: 600px) {}

Media queries are case-insensitive, and parentheses around the condition are
required. The and operator seen here is used to combine the media type and the media
feature, but it can also combine multiple media features together:

@media (max-width: 500px) and (min-aspect-ratio: 1/1) {}
This media query is true if the viewing device has a max width of 500 pixels and at

least a 1:1 aspect ratio (square or landscape viewport). Notice that the media type is left
out here, so the rule applies to all media types.

110

CHAPTER 25 © MEDIA

Logical operators

In addition to the logical and operator, media queries can include the logical not and only
operators as well as the logical or operation. The comma (,) is used as the or operator to
separate groups of multiple queries. The following media rule is true if either the screen is
atleast 700 pixels wide or if the device is in landscape mode:

@media (min-width: 700px), (orientation: landscape) {}

The not operator is used to negate an entire media query. It cannot negate an
individual feature. For example, the following media rule applies only if the device screen
is not 800 pixels wide:

@media not screen and (device-width: 8oopx) {}

The only operator was added to hide media queries from older browsers. According
to the specification, browsers that do not support media queries should interpret the
following rule as being applied to the only media type, which is invalid and thereby
causes the conditional style rules to be ignored.

/* Not applied in older browsers */
@media only screen and (min-width: 600px) {}

Regrettably, IE6-IE8 did not implement the specification correctly. The media query
is therefore ignored even if the only keyword is left out, instead of then applying the
media rule to all screen-based devices.

/* Not applied in IE 6-8 */
@media screen and (min-width : 600px) {}

Note that both the not and only operators require the use of an explicit media type,
whereas the logical o (,) and logical and operators do not.

Support for media queries has become widespread in all major browsers. The
min-width and max-width queries, for example, are supported in Chrome 1+, Firefox
3.5+, IE9+, Safari 4+, and Opera 8+.

Testing media queries

It is important to test your media queries to make sure that your site looks good in as
many devices as possible. The latest web browsers all re-evaluate media queries as the
browser environment is changed (when the window is resized, for example). You can test
how your design responds to different device dimensions just by resizing your browser
window. A useful site that can help you during this testing process is ProtoFluid,' which
allows you to see how your site will look on many tablet and smartphone devices.

thttp://protofluid.com

111

http://protofluid.com/

CHAPTER 25 © MEDIA

Responsive design guidelines

When designing a responsive layout, it is often easiest to start with the mobile layout first
and define how it looks without any media rules. As you expand the viewport, notice
when this layout ceases to look good. This is the breakpoint at which you should change
the part of the layout that visually breaks or ceases to be useful. This change might
include adding a second column or changing to a more advanced navigation menu. You
define these breakpoints using the min-width and max-width media features to override
styles as the viewport gets larger, as shown in the following example. Continue this
method of finding breakpoints until you reach a high enough resolution. Depending on
your layout, you might need to define only a few breakpoints.

@media (min-width: 800px) {
body { background: red; }

}
@media (min-width: 401px) and (max-width: 799px) {
body { background: green; }

}

@media (max-width: 400px) {
body { background: blue; }

}

112

CHAPTER 26

Best practices

You now have an understanding of the fundamentals of CSS. This final chapter takes a
step back to look at good coding practices and standards for style sheet development.
Following these guidelines can help you write robust CSS code that is easy to maintain,
reuse, and extend upon.

Reusable code

A key idea to a manageable style sheet is to avoid duplicate code. Classes help achieve
this goal because they are reusable and can be combined in different ways, giving you a
flexible design that is easy to evolve.

Any time you find page items that share style properties, you should consider
combining those repeating patterns. This makes it easier to reuse and update the code as
well as to maintain style consistency on the site. Consider the following simple example:

.module {
width: 200px;
border: 1px solid #ccc;
border-radius: 3px;

}

.widget {
width: 300px;
border: 1px solid #ccc;
border-radius: 3px;

}

These classes have two styles in common that can be moved into a third class to
avoid unnecessary repetition. This process makes the classes more generic and therefore
more reusable.

.box-border {
border: 1px solid #ccc;
border-radius: 3px;
}
.module { width: 200px; }
.widget { width: 300px; }

113

CHAPTER 26 © BEST PRACTICES

When optimizing classes for reuse, it is important to consider their size. The goal is to
find the middle ground between classes that are not too broad or too narrow. Too-broad
classes lead to unnecessary repetition; too-narrow classes make it difficult to change
the design.

Global modifiers

There are certain style properties that are very commonly used. Instead of adding these
styles to every other class, it is sometimes better to create a general class with that single
style, which you can then apply to the elements that need it. For example, floating
elements to the left or right is such a common operation. These styles are well suited as
global modifiers.

deft { float: left; }
.right { float: right; }

When you want an element floated to the right or left, you can simply add one of
these classes to the element:

<div class="left">...</div>

Global modifiers such as these can be very useful when just a single style property
is needed. However, you should avoid combining several of them because it can become
difficult to adjust your design if all page items are composed of such small classes.

Style sheet structure

By organizing your style sheets, you can make it easier for yourself and other developers
to quickly understand the structure of your CSS. The larger a site becomes, and the more
developers are involved, the greater is the need to keep things well-organized. But it is
good practice to always keep your style sheets well-structured, regardless of the size of the
web site.

The top portion of a style sheet usually includes information about the file and its
author. This metadata should include the author’s name and contact information. This
way, if any questions come up about the document, the developer currently working on
the site knows whom to ask. Other potentially useful metadata includes the file’s creation
date, last modified date, version number, title, and description.

/*
* Title: My Theme
* Version: 1.2.3
* Author: My Name
*/

114

CHAPTER 26 * BEST PRACTICES

As for the style rules, they should be grouped into sections, and each section should
be labeled with a distinguishing comment. This grouping and labeling enables you to find
what you need much more quickly. The sections you need depend on the site, but here
are some example sections:

/* === Normalization === */

/* === Primary layout === */
/* === Secondary layout === */
/* === Tertiary layout === */
/* === Navigation === */

/* === Text-related === */

/* === Links and images === */
/* === General styles === */
/* === General classes === */
/* === Miscellaneous === */

The equal signs after the section name help visually distinguish the sections from
other comments. They also act as a marker that you can search for to easily traverse
the sections.

With large style sheets, the section names can be listed as a table of contents below
the metadata, which makes it easier for developers to get an overview of how the file is
organized.

/* Table of Contents
Normalization
Primary layout (body, primary divs)
Secondary layout (header, footer, sidebar)
Tertiary layout (page regions)
Navigation (menus)
Text-related (paragraphs, headings, lists)
Links and images
General styles (forms, tables, etc.)
General classes (.clear, .center, etc.)
Miscellaneous

*/

Within each section, you should declare your most generic rules first, followed by
rules with increasing specificity. Your elements can inherit styles, and it is easier for you
to override specific styles when needed.

Another thing to consider is how to structure properties within a rule. A popular
approach is to group the properties according to type. You do not have to label the
groups as in the following example, but it helps if you keep the groups in the same order
throughout your style sheet. Doing so enables you to more quickly scan through the rules
in search of specific properties.

115

CHAPTER 26 © BEST PRACTICES

.myclass {
/* Positioning */
position: absolute;
top: 0;
right: 0;

/* Box model */
display: inline-block;
width: 100px;

height: 100px;

/* Color */
background: #ccc;
color: #fff;

/* Text */
font-size: 1em;
line-height: 1.2;
text-align: right;

/* Other */
cursor: pointer;

Keep in mind that these are only guidelines; choose a structure that works for you
and aim to keep it consistent.

Naming conventions

It is helpful to name classes and ids in a way that clarifies their intended use. This
structural naming convention means that the name should describe what the class or id
is used for instead of what it looks like or where it is used in the web document.

The advantage of this naming convention is that it becomes easier to change the
look of your web site. For example, naming an id container #main-content is better than
naming it #center-column-500px. In addition to intuitively understanding the use of the
id, the first name is more versatile in case you later need to adjust the position or size of
the element it is applied to.

#main-content {
width: 500px;
margin: 0 auto; /* centered */

}

Names should be semantic, but not so semantic that they limit reuse. For instance,
naming a class . header-top-margin is not as flexible as naming the class . small-top-margin
(or .small-tm). To later recall that the class is mainly used in the header is easy enough;

116

CHAPTER 26 * BEST PRACTICES

for example, you can search for the class name using the search function when viewing
the page source in a web browser.

.small-top-margin { margin-top: lem; }

In addition to conveying intended use, the class name can also show its relationships
to other classes. For example, if a container class is called .post, the title for that
container can be named . post-title to show that the class should be used only within
an element applying the . post class.

.post {
margin: lem O;
}
.post-title {
font-size: 1.2em;

}

The title class could also have been written as .post.title to ensure that the .title
class can be used only within a container using the . post class. However, the .post-title
name helps avoid naming conflicts and does not increase specificity, so that naming
convention is often preferable. Notice that the relationship between the rules is further
emphasized using indentation, which can significantly improve the code’s readability.

Normalization

Different browsers render some elements slightly differently, mainly because of variations
in their default style sheets. To get a shared baseline, it is common to include a group of
rules that normalize these browser inconsistencies and set reasonable defaults. The most
popular choice for this is the GitHub Normalize.css project.! By including these rules

at the top of your style sheet (or a subset of them per your site’s requirements), you

have a consistent starting point across all browsers from which you can build. The
Normalize.css style sheet includes ample comments that explain each browser
inconsistency that it resolves.

Debugging

There are many useful debugging tools available that can significantly simplify your work as
aweb developer. The Firebug extension for Firefox is one of the most powerful of these tools.
It allows you to edit and debug CSS, HTML, and JavaScript live on any web page for testing
purposes. You can also toggle styles on and off, as well as discover exactly which styles apply
to a selected element. To learn more about Firebug, visit the official Firebug web site.

'http://necolas.github.io/normalize.css/
*https://getfirebug.com

117

http://necolas.github.io/normalize.css/
https://getfirebug.com/

CHAPTER 26 © BEST PRACTICES

Functionalities similar to Firebug are available on Chrome through the Chrome
Developer Tools that come built in to the browser. You can bring up the DevTools window
with the shortcut Ctrl+Shift+I on Windows or Cmd+Opt+I on Mac. Alternatively, you can
right-click on an element on the page and select Inspect Element to bring up the same
window in element inspection mode.

Validation

It is a good idea to check that your CSS complies with the W3C standard. Improper code
may cause unexpected results in how your site appears in different browsers. Moreover,
having error-free code is a sign of a quality web site.

The W3C provides its own online tool for validating CSS.? It checks a submitted page
and returns any errors and warnings found on the page for you to fix. It also has a similar
tool for validating HTML documents,* which is just as important to do. To make validation
even more convenient, you can download a browser plug-in that checks the page’s code
for you, such as the Web Developer plug-in available on Chrome, Firefox, and Opera.®

Single style sheet

For performance reasons, it is best to include a site’s style rules in a single external style
sheet. Doing so minimizes the number of HTTP requests necessary to load the web site,
while allowing the CSS file to be cached so that the visitor’s browser has to download it
only once.

During development of a large site, it is often preferable to separate style rules into
several more-manageable CSS files. To have the best of both worlds, these development
files can be combined into a single file as part of the site’s build process. One useful tool
for this purpose is Bundle.® When your site design has become stable, this tool can also be
used to minify your CSS.

Minification is the process of removing unnecessary characters from code to reduce its
size. When a CSS file is minified, whitespace characters are removed, and the rules are

optimized and restructured to load more quickly. This compression can greatly reduce
the size of the file, which improves site performance at the cost of code readability.

*http://jigsaw.w3.org/css-validator/
*http://validator.w3.org
Shttp://chrispederick.com/work/web-developer/
https://github.com/ServiceStack/Bundler

118

http://jigsaw.w3.org/css-validator/
http://validator.w3.org/
http://chrispederick.com/work/web-developer/
https://github.com/ServiceStack/Bundler

CHAPTER 26 * BEST PRACTICES

Because of the reduced readability, it is preferable to work with the uncompressed
style sheet and have the minification step repeated whenever the CSS file is updated.
Minification can be done automatically (for example, by using the Bundle tool mentioned
earlier) or manually with an online tool such as Clean CSS.”

One optimization that minification tools cannot do is to find and remove unused
CSS rules. A useful Firefox plug-in that can help you perform this task is Dust-Me
Selectors.? This plug-in can test pages individually and also scan through an entire site in
search of unused selectors.

Cross-browser testing

Even with your code normalized and validated, there can still be some differences in the
way a web page is rendered in various browsers, especially in older versions. It is therefore
necessary to test your site in all the browser versions you want your site to support.

To make this testing process easier, you can use BrowserStack,’ which is an online
tool for checking browser compatibility. It shows you how your site will look on different
versions of the browsers you select. You can also see how your site will look on mobile
devices and tablets.

www.cleancss.com
Swww. sitepoint.com/dustmeselectors/
‘www . browserstack.com/screenshots

119

http://www.cleancss.com/
http://www.sitepoint.com/dustmeselectors/
http://www.browserstack.com/screenshots

Index

A

Absolute units, 39

Attribute selector
delimited value, 12
end value, 13
language, 11
start value, 12
substring value, 12
value, 11

B

Background-attachment property, 58
Background-clip property, 60
Background-color property, 57
Background-image property, 57
Background-origin property, 60
Background-position property, 58
Background property, 61
Background-repeat property, 58
Background-size property, 59
Border-color property, 75
Border properties

border-color, 75

border-radius, 75

border-style, 73

border-width, 74

subproperties, 75
Border-radius property, 76
Border-style property, 73
Border-width property, 74
Box model, CSS

block elements, 71

inline elements, 71

 and <div> elements, 72
Box-shadow property, 49

C

Classification properties
clear, 98
cursor, 99
display, 95
float, 97
opacity, 97
visibility, 96
Class selector, 7
Clip property, 89
Color property, 47
Colors
hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37
named notation, 35
RGBA notation, 36
RGB notation, 36
short hexadecimal notation, 36
Comments, 3
Cross-browser testing process, 119
CSS
comments, 3
external style sheet, 2
inline style, 1
internal style sheet, 1
testing environment, 2
view source, 3
whitespace, 4
properties
counter-reset property, 103
generic keywords, 43
list-style, 102
list-style-image, 102
list-style-position, 102
list-style-type, 101

121

INDEX

CSS (cont.)
nesting counters, 104

progressive enhancement, 45

quirks mode, 44
vendor prefixes, 44
validation, 118

D

Debugging, 117

Dimension properties
box-sizing, 85
max-width and max-height, 84
min-width and min-height, 83
width and height, 83

Direction

E

property, 48

External style sheet, 2

F

Font

@font-face rule, 55
font-family, 53

font p

roperty, 54

font-size, 53
font-style, 54
font-variant, 54
font-weight, 54
Font-relative units, 40

G

Generic keywords, CSS, 43
Global modifiers, 114
Gradients, 63
linear-gradient() function (see

radial

Linear-gradient() function)
gradients

bottom right origin, 68
circular, 67

resized, 67

set stop positions, 66
simple, 65

size keywords, 67

H

Hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37

LJ, K

Id selector, 8
Inline style, 1
Internal style sheet, 1

L

Letter-spacing property, 51

Linear-gradient() function, 63

bottom right
linear gradient, 64

simple linear gradient, 64

with multiple
color steps, 65
Line-height property, 51

Margin, 79
declarations, 80
properties, 80
subproperties, 80
Media
logical operators, 111
queries, 110-111
responsive layout, 112
types, 109
Minification, 118
Multiple backgrounds, 62

N

Named notation, 35
Naming convention, 116
Normalization, 117

(0

Outline

repeating gradients, 69
Grouping

declarations, 5-6

selectors, 5-6

ungrouped rules, 5

122

outline-color property, 78
outline-offset property, 78
outline-style property, 77
outline-width property, 77
single declaration, 78

Outline-color property, 78
Outline-offset property, 78
Outline-style property, 77
Outline-width property, 77
Overflow property, 89

PQ
Padding
declarations, 79
properties, 79
Positioning properties
absolute value, 88
clip, 89
fixed value, 88
overflow, 89
relative value, 88
static value, 87
text-align, 93
vertical alignment
text-bottom, 92
text-top, 92
z-index, 90
Progressive enhancement, 45
Pseudo-classes
dynamic
active and hover, 16
focus, 17
link and visited, 16
lang(), 24
not, 25
structural, 17
empty, 21
first-child, 17
first-of-type, 19
last-child, 18
last-of-type, 19
nth-child(an +b), 19
nth-last-child(an + b), 21
nth-last-of-type(an + b), 21
nth-of-type(an + b), 20
only-child, 18
only-of-type, 18
root, 22
target, 24
Pseudo-elements, 15
before and after, 15
first-letter
and first-line, 15
Pseudo selectors, 15

INDEX

R

Radial gradients
bottom right origin, 68
circular, 67
resized, 67
set stop positions, 66
simple, 65
size keywords, 67

Relationship selectors
adjacent sibling selector, 28
descendent selector, 29
direct child selector, 29
general sibling selector, 30
HTML hierarchy, 27-28
inheritance, 28

Relative units, 39

Repeating gradients, 69

Reusable code, 113

RGBA notation, 36

RGB notation, 36

S

Short hexadecimal notation, 36
Single style sheet, 118
Spacing
letter-spacing property, 51
line-height property, 51
white-space property, 52
word-spacing property, 51
Specificity
cascade method, 32
class selector, 31
guidelines, 33
Id selectors, 31
type selectors, 31
universal selector, 31
web designers, 32
Style sheet structure, 114
Styling, 1

T

Table
border-collapse property, 106
border-spacing property, 105
caption-side property, 106
empty-cells property, 107
table-layout property, 107

123

INDEX

Text
box-shadow property, 49
color property, 47
direction property, 48
text-align property, 48
text-decoration property, 47
text-indent property, 48
text-shadow property, 49
text-transform property, 47
Text-align property, 48, 93
Text-decoration property, 47
Text-indent property, 48
Text-shadow property, 43, 49
Text-transform property, 47
Typographical units, 39

U

Units
absolute units, 39
font-relative units, 40
relative units, 39
typographical units, 39

124

values, 41
viewport units, 41

User interface

pseudo-classes

checked, 23
enabled and disabled, 22
required and optional, 24
valid and invalid, 23

\"

Vendor prefixes, 44
Viewport units, 41

W, X, Y

Whitespace, 4
White-space property, 52
Word-spacing property, 51

y4

z-index property, 90

CSS Quick Syntax
Reference

Mikael Olsson

Apress’

CSS Quick Syntax Reference Guide
Copyright © 2014 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6490-3
ISBN-13 (electronic): 978-1-4302-6491-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewer: Victor Sumner

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo

Copy Editor: Nancy Sixsmith

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waww.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

Contents

About the AUthOrccccmmsimmmmsessssss s nans Xv
About the Technical ReVIEWErccsseusssassssassssnsssassssassssnsssassssasssas xvii
Introduction........cccccmnemmmmnmnmsssnnmssssnmssssss s Xix
Chapter 1: USing CSS......c.cccirusmmmmsmmmsssssmssssssssssssssssssssssssssssnssssansss 1
Internal style ShEet.........oo e —— 1
INHNE SIYIE ... snenens 1
External style Sheet.........corcrcrcr 2
Testing environmeNt...........cccvcrcrcncnsr s s 2
VIBW SOUICE......eeecererrceresesessssesesssesesssesesas e e sas s e sassssesasssssssssssssssanaees 3
COMMENTS ... s 3
WRITESPACE........ererererir st 4
Chapter 2: GrouPing......cccuserrsssnsesssnsssssssssssnsesssnsssssnsssssanssssanssssanssss 5
UNQrouped FUIBS.......ciceeceriecc e ss e s sn e n e 5
(T U] 0L I (<o (0 5
Grouped declarationscoceeeeerereresese e 5
Grouped selectors and declarations.........ccccveevvrvercerrensenseessee e seenaes 6
Chapter 3: Class and id selectors...........cccsummsssnnnnmsssssnnnmsssssssnssssnnns 7
Class SBIBCLONcceveeererrrsrrresese e se s sn s n s 7
Class EXAMPIEoveeeererreeeririee e nnans 7

vi

CONTENTS

Id SEIBCTON ...t sr e sn e sn e nr e nnenn 8
10 BXAMPIE ... p e e e nn e 8
Class and id guidelingscoceeeveerereerere s sne e 9
Chapter 4: Attribute selectorsccccumummmmmnsssmnmmssssssnmsssssssssssnnns 11
Attribute SEIECIOrN......ccececececrrere e —————— 11
Attribute value SEIECTOrccceeeeeererrerre e 11
Language attribute selector ... 11
Delimited value SEIECTOr.........ccccevererrrere s 12
Value substring Selector..........coceeeereresenc s 12
Value start SEIECONcceeeeeeecece e 12
Value end SeIECIOr ... s 13
Chapter 5: Pseudo selectors.........cccivumnmmmmmmmssnnmmsssssssnmsssssssssssssnns 15
PSeUdO-IEMENTScc.coeeeeeeeeerere e 15
first-letter and first=-liNe.........oceeeerrerrr s 15
before and after.........cc e —————— 15
PSEUAO-CIASSEScocererererererer s s 16
DynamicC pSEUdO-CIASSES.........ccoererrerererrrerssserre s sr s n s srs s 16
Structural pSeUdo-CIASSEScceeeeerrrrrrrrrrre e 17
FIrSE-CRIlL ... s 17
1aSE-CRIl......ecceeee s 18
ONIY-CRIl....c.eeeeerer e s r e e e sn e 18
ONIY-0F-TYPO s 18
IrSt-0f-TYPE v ——————— 19
JaSE-0f- TP ...t ———————— 19
MEN-CRII ... ————— 19
MEN-0F-AYPE oo ———————— 20
NEN-1aSE-0F-LYPE . —————— 21

CONTENTS

L1 2 T 11 o 21
] 11] 14RO SRSRSRSRSRRRO 21
0 22
User interface pSEUdO-CIasSES.........curerrerrerrereersessessssssssssssssssesssssssssnnes 22
enabled and diSabIedo e ————— 22
CRBCKEM ... e 23
valid and inValid............ooooee s 23
required and OPLIONAL ..o ————————— 23
Other pSEUdO-CIASSEScceeerrerrerrererrrrie e 24
BAPGEL ... ————————————————— 24
3o OO 24
10 25
Chapter 6: Relationship selectorscccucrrnsmrmsssmsssssssssssssssssans 27
HTML RIErarchyccoeeeeererece e sne s s s e s s e 27
INNEILANCE ... 28
Adjacent SEIECLONcoceeeeerrerrerre e 28
Descendent SEIBCLON..........c.ccoveierereresre e 29
Direct Child SEIECTONcoeeeerereererce e s 29
General Sibling SEIECTOr........ccccveeercrerr s 30
Chapter 7: SPecifiCitycccciurrmmmmssmsmssnmmmmmmmnsssssssss s 31
Selector SPECITICIY.......cucveerrerrercrrrer s 31
072 Lo [[32
DeSIgNEr STYIES.....ccccicererere e s 32
Specificity gUIdeliNeScceceereercrrr e 33

vii

CONTENTS

Chapter 8: COlOrsS........cccimmminmmmmmssssnnnmmssssnnnssssssnnnssssssnsnsssssannnssssnans 35
Named NOALION ..o s 35
Hexadecimal notation...........cccovcernincnnicnnsss e 35
Short hexadecimal notationcccocvvrennnernnnessre e 36
RGB NOTALION ...t 36
RGBA NOAtioNccoeicerercircriee e 36
HSL NOtALiON ...t 37
HSLA NOLALION......ccvieiceereecersee e 37
Chapter 9: UnitS......ccuscmmmmmmssemmmmmsssssnmmssssssnmsssssssnsssssssssssssssssssssssnns 39
ADSOIULE UNIES ... 39
Typographical UNItSccccverirserssser s 39
Relative UNIts.........oveceerricnirrcsr e 39
Font-relative units ... 40
VIEWPOIE UNITS ...ccererereeer i 40
UNIE VAIUES.......ccreccresce s s 41
Chapter 10: CSS Propertiesc.ummmmmsmmnmmssssssnmssssssssssssssssssssssans 43
GENENIC KEYWOIAS......ccueevereereeraereerre e sse s ssssas s s sas s s sas s snssassss s s 43
QUITKS MOGE ... 44
Vendor PrefiXes ..ooeveeerererere e 44
Progressive enhancement............ccoevevevrnernsessesses s sees 45
Chapter 11: TeXt....uuneeeennnnnnmnmsssssssssnssnesssssssssssssssssssssssssnsnsnnnsnss 47
COMOT .t ——————— 47
teXt-tranSform ... ——— 47
teXt-AeCOratioN ..o 47
TEXE-INABNL......eee s 48
TEXE-AlIgN ... —————————— 48

viii

CONTENTS

AIFECLION ..t 48
TEXE-SNAAOW ... s 49
DOX-ShAAOW........cotrirrtrcr s 49
Chapter 12: SPACiNgGcccvusssemnmmssssnnnmmssssnsnssssssssssssssssnnssssssnsnsssssnns 51
liNe-height.........oocreee 51
word-spacing and letter-Spacingcccveverrersessensessessensesses s sesseneas 51
WHITE-SPACEeceereereereererreerer e s e s s s e e e s e e s s nesae s nesae s ne e s nneeas 52
Chapter 13: Font.......cccccemmmmmmimmsnsssssssssnnmmsmssssssssssssssssssssssssssssssnnns 53
fONE-FAMIIY......coveeecceeeee e 53
FONE-SIZB ... ——————————— 53
FONE-STYIE ... ——————— 54
font-variant.........coooinn e ———————— 54
fONt-WEIGNL........ccoceeeeer e 54
FONE .. ———————————— o4
CUSTOM fONES ... s 55
Chapter 14: Background........ccccussseenmmssssnsnssssssssnssssssssnsssssssnnsssssnns 57
background-Color..........cccuceecirnecir e 597
background-image.........cceceeerererresserrersesse e sse e e e s saesrsssesnssnessessenes 57
background-repeat..........cccoeerecece e ————— 58
background-attachment..............ccoorvrirrvnn s 58
background-poSitionccceeeeeeeresesere e 58
background-Sizecccevvrennienninesr 59
(07T (0 (0101 [0 o SRS 60
background-0rigin........cccccceeeeereeenese e nnen s 60
DACKGIOUN ... 61
Multiple DacKgrounds.........cccceeeevrrerrersesser s seesaens 61

ix

CONTENTS

Chapter 15: Gradients..........cccivnnemmmmmsssssnnmmmssssnmsssssssnmsssssssnssssans 63
Linear gradientscccoceveverencness s see s sss e sas s e s 63
Radial gradientscccvcrvrrnnnsssr s 65
Repeating gradients...........cccevverenriennsesesssess s ssssssesessesnes 69
Chapter 16: Box modelcccouvnmmmmmmmmmmmmmssssssssssmssmssssssssssssssssnns 1
INling and DIOCKccccererereresirerere e 4l
30 F: LI 1T 1 TS 72
Chapter 17: BOrderccccceurrrrmmmsssnssssssnnss 73
DOFAEr-Style ..o ———————— 73
border-Width...........coi e ———— 74
DOFAI-COION ... 75
DOFAE ... ——————————— 75
DOrder-radius..........ccoviiernirn e 75
Chapter 18: OUtline......ccccvvseeennnssssnnnnmsssssnsnsssssssnssssssssnssssssnnsesssnnns 77
OULHNE-STYIE ... 77
OULTINE-WILTN ... 77
OULIINE-COION ..ot s 78
OULING .t 78
OULIINE-0ffSEL......ccerercerr s 78
Chapter 19: Margin and padding.......ccucummmmssnnnmmssssssnssssssssssssssnns 79
o 1o [0 T SRS 79

CONTENTS

Chapter 20: DIMENSIONccccemrmssssmnnmmsssssnnmsssssnsnssssssssnssssssnnssssssans 83
width and height ... ———— 83
min-width and min-height ... 83
max-width and max-height..........cccecveeiiriniiens s 84
DOX=SIZING.....cceeririerrirrr e 85
Chapter 21: PoSitioningcccvussennmmssssnnnmmssssssnsssssssssssssssssssssssnns 87
POSITION......eeiercerer e 87

] 2 T 87

(1 L3 88

ADSOIULE ... ——————————— 88

L2 PP 88
01T 10 89
(1] 1o SRS 89
A1 110 GO 90
Vertical-alignccocvcrcrcrrsr s 92
(02T 1 g RS 93
Chapter 22: Classificationcccceemmmrnrmmssssssssssmnmmmsssssssssssnnns 95
01157 0] - SRS 95
LTS L1114 96
(0] 02 T S S SS S SSSSR 97
FlOAL......ceeeeeceeer e ————————————— 97
CIBAN ..t —————— 98
(111150 GO PRRSSR 99

xi

CONTENTS

Chapter 23: Listccccccmmmmnsmmmmmmnssssnmmmssssssnmsssssssnssssssssssssssnsssnssns 101
liSt-STYIE-TYPE ..o —————— 101
liSt-StYle-IMAQEceeeeeceeeece e s 102
liSt-Style-POSItiONccceeeererrrerererere e 102
lISE=SYIE .. —————————— 102
COUNTEIS ...t s 103
NEStiNG COUNTEISccccereeerrerrrsere e 104
Chapter 24: Table......cccccemmrrrrmsssssssssssnnnmessssssssssssnsssesssssssssnsnnnnnnss 105
DOrder-SPacingccocuceeeeerserensrsesrsse e 105
(010] €0 (<] gl eto] | = oL SRR SR 106
CAPLION-SIUL ..ot s 106
EMPLY-CEIIS ...t 107
table-1ayout....... .o —————— 107
Chapter 25: Mediacccceerrrrmmmmmmsssssssssnmmssmsssssssssssssesssssssssnnssnssnnns 109
T Ty LT 109
Media QUETIES......cceeeeeeeerrecre e nn e n e 110
Logical OPErators........ccevevererereeree e sae e s sas s e e nnes 111
Testing media QUETIESc.ccvcereerrerserserses s s s e s e s ses e e snssnssnsnnns 111
Responsive design guidelings.........cccoceeeveeerereneessss e seneas 112
Chapter 26: Best practices.......ccuuremmrmssennnmsssssnnsmssssssssssssssssnssss 113
Reusable COdE.........cccuerenrernirerire e 113
(6100] o L oo 1T T 114
Style sheet StruCtUre ... 114
Naming CONVENLIONS........ccccceeerereerere e sn e 116
NOrMALIZALIONc.ceeeeereece e 117
D10 TH o oo SRS 117

xii

CONTENTS

Validation..........ccocvcrcrsrsr s ————— 118
Single style Sheet.........ccovcrericnnrr e ———— 118
LT Tz 0] o 118
Cross-browser teSting........ccceererereresese s e 119
INA@X..euiiissnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnnsssnnns 121

xiii

About the Author

Mikael Olsson is a professional programmer, web
entrepreneur, and author. He works for an R&D
company in Finland, at which he specializes in
software development. In his spare time, he writes
books and creates web sites that summarize various
fields of interest. The books Mikael writes are focused
on teaching their subjects in the most efficient way
possible, by explaining only what is relevant and
practical without any unnecessary repetition or theory.
The portal to his online businesses and other web sites
is www.siforia.com.

XV

http://www.siforia.com

About the Technical
Reviewer

¥ Victor Sumner is a Senior Software Engineer at
Desire2Learn Inc., helping to build and maintain
an integrated learning platform. As a self-taught
developer, he is always interested in emerging
technologies and enjoys working on and solving
problems that are outside his comfort zone.

When not at the office, Victor has a number of
hobbies, including photography, horseback riding,
and gaming. He lives in Ontario, Canada, with his wife,
Alicia, and their two children.

xvii

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Using CSS
	Internal style sheet
	Inline style
	External style sheet
	Testing environment
	View source
	Comments
	Whitespace

	Chapter 2: Grouping
	Ungrouped rules
	Grouped selectors
	Grouped declarations
	Grouped selectors and declarations

	Chapter 3: Class and id selectors
	Class selector
	Class example

	Id selector
	Id example

	Class and id guidelines

	Chapter 4: Attribute selectors
	Attribute selector
	Attribute value selector
	Language attribute selector
	Delimited value selector
	Value substring selector
	Value start selector
	Value end selector

	Chapter 5: Pseudo selectors
	Pseudo-elements
	first-letter and first-line
	before and after

	Pseudo-classes
	Dynamic pseudo-classes
	link and visited
	active and hover
	focus

	Structural pseudo-classes
	first-child
	last-child
	only-child
	only-of-type
	first-of-type
	last-of-type
	nth-child
	nth-of-type
	nth-last-of-type
	nth-last-child
	empty
	root

	User interface pseudo-classes
	enabled and disabled
	checked
	valid and invalid
	required and optional

	Other pseudo-classes
	target
	lang
	not

	Chapter 6: Relationship selectors
	HTML hierarchy
	Inheritance
	Adjacent selector
	Descendent selector
	Direct child selector
	General sibling selector

	Chapter 7: Specificity
	Selector specificity
	Cascade
	Designer styles
	Specificity guidelines

	Chapter 8: Colors
	Named notation
	Hexadecimal notation
	Short hexadecimal notation
	RGB notation
	RGBA notation
	HSL notation
	HSLA notation

	Chapter 9: Units
	Absolute units
	Typographical units
	Relative units
	Font-relative units
	Viewport units
	Unit values

	Chapter 10: CSS Properties
	Generic keywords
	Quirks mode
	Vendor prefixes
	Progressive enhancement

	Chapter 11: Text
	color
	text-transform
	text-decoration
	text-indent
	text-align
	direction
	text-shadow
	box-shadow

	Chapter 12: Spacing
	line-height
	word-spacing and letter-spacing
	white-space

	Chapter 13: Font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	font
	Custom fonts

	Chapter 14: Background
	background-color
	background-image
	background-repeat
	background-attachment
	background-position
	background-size
	background-clip
	background-origin
	background
	Multiple backgrounds

	Chapter 15: Gradients
	Linear gradients
	Radial gradients
	Repeating gradients

	Chapter 16: Box model
	Inline and block
	Span and div

	Chapter 17: Border
	border-style
	border-width
	border-color
	border
	border-radius

	Chapter 18: Outline
	outline-style
	outline-width
	outline-color
	outline
	outline-offset

	Chapter 19: Margin and padding
	Padding
	Margin

	Chapter 20: Dimension
	width and height
	min-width and min-height
	max-width and max-height
	box-sizing

	Chapter 21: Positioning
	position
	static
	relative
	absolute
	fixed

	overflow
	clip
	z-index
	vertical-align
	Centering

	Chapter 22: Classification
	display
	visibility
	opacity
	float
	clear
	cursor

	Chapter 23: List
	list-style-type
	list-style-image
	list-style-position
	list-style
	Counters
	Nesting counters

	Chapter 24: Table
	border-spacing
	border-collapse
	caption-side
	empty-cells
	table-layout

	Chapter 25: Media
	Media types
	Media queries
	Logical operators
	Testing media queries
	Responsive design guidelines

	Chapter 26: Best practices
	Reusable code
	Global modifiers
	Style sheet structure
	Naming conventions
	Normalization
	Debugging
	Validation
	Single style sheet
	Minification
	Cross-browser testing

	Index

CSS

Quick Syntax
Reference

Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthorccccsrismmmis s —————— XV
About the Technical ReVIEWErcucesssessmsmsmssssmsasssssssssnsssassssnsnsns xvii
INtroductioncccucemmneemmsssnnmsssnnmsssnnmssssnnsssnnnsssnnnsssnnnsssnnssssnnnnssnnnss Xix
Chapter 1: Using CSS......cccusmmmmmmmssnmmmmmssssssmmsssssssnsssssssssssssssssnsssssnns 1
Chapter 2: GroupPing......cccesssssnssssssnnssssssssnssesssssnsssssssssnsssssssnsssssssnns 5
Chapter 3: Class and id selectors.........ccccnmmmmmmmmmmnnnnnmmmsmsssssssssssnnns 7
Chapter 4: Attribute selectorsccccunemmmmnssmmnmmnsssssnmmssssssnmsnnnn 11
Chapter 5: Pseudo selectors.........ccciunnmmmmmnssssnnnmmssssssnssssssssssssssnns 15
Chapter 6: Relationship selectorsccccuseemmmssssnnnnmssssnsssnsssnnns 27
Chapter 7: SPeCifiCityccusmmmmmmssnmnmmmssssnnmmssssnnnnssssssnnssssssnsnsssssnnes 31
Chapter 8: ColOrs.....ccceeerrrmmmmsmssssssssssnsmsssssssssnnsssssssssssssssnnnnsssnnnnns 35
Chapter 9: Units......ccucccnmmmmnsemmmmmmsssnsmmmmsssssmmssssssmmssssssssssssssssssssssnns 39
Chapter 10: CSS Propertiescccuurmuesmmsssnsmsssssssssssesssssssssnssssnnnes 43
Chapter 11: Text. . 47
Chapter 12: SPaCiNgcccusseemmmmssssnsmmsssssnnmmssssssnssssssssnssssssnsnsssssnnns 51
Chapter 13: Font.........ccccuismmmssemmmsssnmmsssssmsssssesssssesssssesssssesssnssnsnnnes 53
Chapter 14: Background.........cccuseenmmmsssennnmssssssnssssssssnssssssssnsssssnnns 57
Chapter 15: Gradients..........ccccvunsemmmmmmsssnmmmmssssnmmsssssnmsssssnnnsnnn 63
Chapter 16: Box modelc.cccunsmmmmssenmmsssnsmsssssssssssssssssssssssssssnnes 71

iii

CONTENTS AT A GLANCE

Chapter 17: Borderccccceurrurmsmssssssssssnsnmssssssssssssssssssssssssssnssssnnsnnss 73
Chapter 18: OUtliNe......cccvrsreemmrmssssnnsnnssssssnsssssssnsssssssnnssssssnnnsesssnnns 77
Chapter 19: Margin and padding.......ccucccnmmmsssnnnmssssssssssssssssssssssnns 79
Chapter 20: DIMENSIONccccemrrisssnnnmmssssssnsssssssnnssssssssnssssssnsssssssnns 83
Chapter 21: PoSItioningcccvrssssnsnsmssssnssssssssssnssssssnssssssssnsnsssssnns 87
Chapter 22: Classification ... 95
Chapter 23: Listccccccmmmmssmmmmmmsssssnmmnssssssnmsssssssssssssssssssssssnsssssns 101
Chapter 24: Table.........cccinssemmrmmsssssnnmnssssssnmssssssssesssssssssssssnnsssnsss 105
Chapter 25: Mediacccceerrrmrmmmmmsssssssnnmmmssmsssssssssssssssssssssnnsssssenss 109
Chapter 26: Best practices.......ccucccmmmmmnemmmmmsssssnmmmsssssnnmsssssssnnns 113
INA@X..iiieiiisrie s —————————_— 121

iv

Introduction

CSS, which stands for Cascading Style Sheets, is a stylistic language that defines how web
pages are presented. It complements HTML, which is the language used for describing
the structure of web site content. Because HTML predates CSS, it includes a number of
limited stylistic elements and attributes, but they have largely been deprecated in favor of
the much greater design control offered by CSS.

One of the main features of CSS is that it enables the complete separation of a web
site’s presentation from its content. This separation reduces the complexity and repetition
associated with including stylistic information in the structural content. Furthermore,
this separation makes it easy to enforce site-wide consistency in the presentation of a web
site because the entire look and feel of a site can be controlled from a single style sheet
document.

As one of the core languages of the Web, CSS is used today by almost all web sites
to enhance the web experience. It has been a revolution in the World Wide Web and is a
must-learn language for anyone working with web design. Like HTML, the CSS language
is easy to learn and use, as is shown in this book.

CSS versions

The CSS language is under ongoing development by the World Wide Web Consortium
(W3C), which is the international standards organization for the Internet. The W3C writes
the specifications that web browsers implement to display web pages consistently in
compliance with those specifications. Each new specification extends the language with
new features while maintaining backward compatibility.

The first specification, CSS level 1 (or CSS 1), became a W3C recommendation in
1996. In 1998, CSS 2 was finalized, extending CSS 1 with additional features. Because all
widely used web browsers currently implement the features of both these specifications,
itis seldom necessary to make a distinction between them, and this book does so only
when relevant.

Since 1998, the W3C has been working on CSS 3. Unlike the two earlier levels of
CSS, this level became considerably larger and was therefore split into several separate
specifications called modules. This split allowed the modules to mature independently at
their own pace. As a result of the ongoing development, support for CSS 3 varies. Some
features are stable and have widespread browser support; other features are supported
only by the latest browser versions or are not supported at all. This book focuses mainly
on the CSS 3 features that are supported in the major browsers at the time of writing.

Xix

INTRODUCTION

Rule structure

CSS is commonly used within a style sheet document, which consists of a list of rules.
For example, a rule to color all paragraph elements red is shown here:

p { color: red; }

This rule has two parts: a selector and a declaration block. The selector is the link
between the HTML document and the style sheet that specifies the element to which the
rule is applied. In this case, it is the type selector p that applies to all paragraph elements
(<p>). Any HTML element can be used as a type selector in this way.

The declaration block, which is enclosed within curly braces, defines the styling
applied to the selected elements. The block can contain one or more declarations, each
of which is made up of a style property followed by a colon and a valid value for that
property. Each declaration is terminated with a semicolon, although this is optional for
the last one.

p { color: red; background: black }

Although the last semicolon is not necessary, it is a good practice to include it
because it is easy to forget the missing semicolon when you add more styles to the rule.
Another general practice is to use lowercase letters when writing CSS, even though
selectors and properties are case-insensitive.

To summarize, a style rule consists of a selector and one or more declarations, each
comprising one or more property-value pairs. This structure is illustrated here:

Property Value
I |

p { color : red; }

Selector Declaration

XX

CHAPTER 1

Using CSS

There are three ways to insert CSS into an HTML document: by using an internal style
sheet, inline styles, or an external style sheet. An internal style sheet applies to a single
page, an inline style to a single element, and an external style sheet to potentially an
entire web site.

Internal style sheet

An internal style sheet is useful when a single document needs to have its own unique
styling. The style sheet is then embedded within the <head> section of the web document
using the <style> element. This element is a container for style sheet rules and should
have its type attribute set to "text/css".

<style type="text/css">
p { color: red; }
</style>

Inline style

Styling can be assigned to an individual element by using the style attribute to set an
inline style. It is a generic attribute that can be included in any HTML start tag, and its
value is the CSS declarations that will be applied to the element, separated by semicolons.
There is no need to specify a selector because the declarations implicitly belong to the
current element.

<p style="color: green">Green text</p>
This approach should be used sparingly because it mixes style with content and

therefore makes future changes more cumbersome. It can be useful as a quick way to test
styles before they are moved out to an external style sheet.

CHAPTER 1 © USING CSS

External style sheet

The most common way to include CSS is through an external style sheet. The style sheet
rules are placed in a separate text file with a . css file extension. This style sheet is then
referenced using the <1link> element in the web page header. The rel (relationship)
attribute must be set to "stylesheet" and the meta type attribute can optionally be set to
"text/css". The location of the style sheet is specified with the href attribute.

<link rel="stylesheet" type="text/css" href="MyStyle.css">

Another less common way to include an external style sheet is to use the CSS @import
function from inside of the <style> element. For this function to work, it must be placed
before any other rules.

<style type="text/css">
@import url("MyStyle.css");
</style>

Using an external style sheet is often preferred because it completely separates CSS
from the HTML document. It is then possible to quickly create a consistent look for an
entire web site and to change its appearance just by editing a single CSS document. It also
has performance benefits because external style sheets are cached and therefore need to
be downloaded only once—for the first page a visitor views at your site.

Testing environment

To experiment with CSS, you can use a simple text editor such as Notepad in Windows
(found under Start » Programs » Accessories » Notepad) or TextEdit on a Mac (found
under Finder » Applications » TextEdit). Type the following single style rule into a new
document in the editor. The rule will color the background of a web document red.

body { background: red; }

Save the file as “MyStyle.css” and then open another empty document. This new
document will become the HTML file that uses the external style sheet you just created.
Write the following HTML markup into the document, which includes a reference to the
style sheet along with the minimal markup for a HTML 5 web document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="MyStyle.css">
</head>
<body>

CHAPTER 1 * USING CSS

<p>This page is red</p>
</body>
</html>

Go ahead and save this text file as “MyPage.html” in the same folder as the CSS file.
You have now created a simple environment in which you can test CSS. To view the page,
open MyPage.html with your web browser. You will see that the background is indeed
colored red because of the rule in the style sheet.

View source

While you have the browser opened, you can view the HTML markup that makes up the
page by pressing Ctrl+U on a PC or Cmd+U on a Mac. This shortcut works in all major
browsers, including Chrome, Firefox, and Internet Explorer (IE). You can also find the
view source window by right-clicking on the page and selecting “View Source”. In Firefox
and Chrome, the style sheet is clickable, allowing you to view the external style sheet rules
that apply to the web page. (Note that in Chrome, you have to right-click the style sheet
and select to open it because this file is stored on your local machine.)

Viewing the source code of web pages like this provides a great way to learn from other
web developers. Whenever you find an interesting element on a web page—whether it is
created with HTML, CSS or JavaScript—the page source will reveal how it was created.

Comments

Comments in CSS are created by using the C-style notation (/* */). Everything placed
between /* and */ will be ignored by browsers, even if the delimiters span multiple lines.

/* Multi-line
Comment */

The main use of comments is to clarify the code to developers, including you in the
future. They can also be used to improve readability by delimiting sections of the style
sheet or providing meta data about the file, such as the author’s name.

/%
* Meta data
*/

/*** Section heading ***/

p { margin-top: -1px; } /* clarification */

CHAPTER 1 © USING CSS

Comments are also useful for temporarily deactivating declarations or entire style
rules for testing purposes.

p { /* color: white; */ }

Whitespace

Whitespace refers to spaces, tabs, and new lines. You are free to format your style sheets
however you like with whitespace to make them easier to read. One common formatting
convention is to split declarations across multiple lines.

fruit {
color: red;
margin: 1px;

Another popular convention is to keep a rule’s declarations in a single line and split
the declarations into multiple lines only when they become too numerous.

fruit { color: red; margin: 1px; }
.fruit.apple { color: green; margin: 2px; }

The formatting you use is a matter of preference. Choose the one that makes sense to
you and aim to keep it consistent.

CHAPTER 2

Grouping

To keep style sheets short and easy to edit, similar rules can be grouped together. This
grouping offers several ways to specify a set of related rules. For example, you can color
the text red and the background black for two header elements in four different ways,
as described in the following sections.

Ungrouped rules

Each rule can be written separately, which allows you to apply individual style rules to
each selected element.

hi { color: red; }
h1 { background: black; }
h2 { color: red; }
h2 { background: black; }

Grouped selectors

The selectors can be grouped together by separating them with a comma. This grouping
will make the declaration apply to multiple selectors.

h1, h2 { color: red; }
h1, h2 { background: black; }

Grouped declarations

The declarations can be grouped together by separating them with a semicolon. All styles
within the declaration block will be applied to the selector.

h1 {
color: red;
background: black;

}

CHAPTER 2 © GROUPING

h2 {
color: red;
background: black;

}

Grouped selectors and declarations

Both the selectors and declarations can be combined, resulting in a single rule.

h1, h2 {
color: red;
background: black;

}

Rules should be grouped whenever possible to make the code more concise. It has
a performance benefit because concise rules reduce the size of the style sheet, which
makes the CSS file load more quickly. Moreover, it is convenient to specify the properties
in only one place, in case they have to be changed later. Additionally, grouping selectors
with similar styles makes it easier to maintain consistency between them.

CHAPTER 3

Class and id selectors

Class and id selectors define rules that apply to only a selected set of HTML elements.
They allow you to identify individual elements, or groups of elements, without having to
style all instances of the element type.

Class selector

The class selector is used to identify a group of elements. It is recognized by the period
sign (.), followed by a class name. The class can be a general class that can be applied to
any element.

/* Selects any element with class name myclass */
.myclass {}

The selector can also be a specific class that can be applied to only one type of element.
The specific class is defined by declaring the element’s name before the period sign.

/* Selects any <p> element with class name myclass */
p.myclass {}

Specific classes make it easier to identify where the class is used; general classes
allow for greater code reuse.

Class example

For example, suppose that the text inside of some elements should be colored, but not for
all instances of the elements. The first step then is to add a general class rule with a color
property specified.

.info { color: green; }

This rule says that any element whose class attribute has the value of "info" will
have this style.

CHAPTER 3 ' CLASS AND ID SELECTORS

<p class="info">Green</p>

If a class rule will be used by only a single element type, it can instead be defined as
a specific class. Doing so makes it easier for anyone reading the style sheet to understand
where the style is used.

p.warn { color: orange; }

A specific class rule is applied to the document in the same way as a general class
rule, but it will style elements of only the specified type.

<p class="warn">Orange</p>

More than one class rule can be applied to a single element by separating each class
name with a space, which makes class rules very versatile.

<p class="style1 style2"></p>

Id selector

The id selector is used to identify a single unique element. Although it works much like
the class selector, it uses a pound sign (#) instead of a period and the id attribute instead
of the class attribute. Like the class attribute, the id is a generic attribute that can be
applied to virtually any HTML element. It provides a unique identifier for an element
within a document.

/* Selects the element with id set to myid */
#myid {}

Like class selectors, id selectors can be qualified with an element. However, because
there should be only one element with a given id, this additional qualifier is often
considered unnecessary.

/* Selects the <p> element with id set to myid */
pttmyid {}

Id example

The following id selector will match the one and only element in the document whose id
attribute is set to that id. This selector can therefore be used instead of the class selector
if a style is intended to be applied to only a single element instance because this makes it
clearer where the rule is used.

#terr { color: red; }

CHAPTER 3 © CLASS AND ID SELECTORS

An id rule is applied to an element using the id attribute. Because the id attribute has
to be unique, each id selector can be used on only one element per web page. Therefore,
the id selector implicitly specifies that the style is used only once on any one page.

<p id="err">Red</p>

Class and id guidelines

In many instances, using classes is the preferred method of selecting elements in CSS
because classes are both flexible and reusable. Ids, on the other hand, are often used
for structural elements of a site, such as #content and #footer, to highlight that those
elements serve a unique role.

CHAPTER 4

Attribute selectors /

Attribute selectors allow style to be added to elements based on their attributes and
attribute values.

Attribute selector

The attribute selector will match elements that use the specified attribute, regardless
of its value.

input[type] {}

This selector will match only input elements that use the type attribute, such as the
following element:

<input type="text">

Attribute value selector

The [attribute=value] selector will match by both attribute and value.
input[type="submit"] {}

Input elements that have their type attribute set to submit will be matched by this
rule, as in the following example:

<input type="submit">

Language attribute selector

The language attribute selector is used to match the lang attribute.

p[lang|="en"] {}

11

CHAPTER 4 ATTRIBUTE SELECTORS

This selector will match any elements whose lang attribute value begins with “en’,
such as “en-US” Note that language codes such as these are case insensitive.

<p lang="en">English</p>
<p lang="en-US">American English</p>

Delimited value selector

The [attribute~=value] selector will apply to elements whose attribute value contains
the given word among a space-separated list of words.

input[value~="word"] {}

This rule will select both of the following elements. The word needs to be an exact
case-sensitive match; for example, the selector will not target “Word” or “words”.

<input type="text" value="word">
<input type="text" value="word word2">

Value substring selector

The [attribute*=value] selector matches elements whose attribute value contains the
specified substring.

p[title*="para"] {}
Paragraph elements with a title containing “para” will be matched by this rule.

<p title="my paragraph"></p>

Value start selector

The [attribute”=value] selector matches every element whose attribute value begins
with the specified string.

p[titler="first"] {}
Paragraphs with a title value starting with “first” will have this rule applied.

<p title="first paragraph"></p>

12

CHAPTER 4 ATTRIBUTE SELECTORS

Value end selector

The [attribute$=value] selector matches an element if its attribute value ends with the
specified string.

p[title$="1"] {}

In the following code, the value of the title attribute ends with “1” and will
therefore be matched by this rule:

<p title="paragraph 1"></p>

13

CHAPTER 5

Pseudo selectors

The pseudo-classes and pseudo-elements are keywords that can be appended to
selectors to make them more specific. They are easy to recognize because they are always
preceded by a colon.

Pseudo-elements

The pseudo-elements enable parts of an element to be styled. There are four of them in
CSS, as discussed in the following sections.

first-letter and first-line

The pseudo-elements : first-letter and : first-line can apply styles to the first letter
and the first line of an element. They work only on block elements such as paragraphs.

p:first-letter { font-size: 120%; }
p:first-line { font-weight: bold; }

The preceding first rule makes the initial letter in a paragraph render 20% larger than

other text. The second rule makes the first line of text in a paragraph bold.

before and after

As their names indicate, the :before and :after pseudo-elements can target the location
before and after an element. They are used together with the content property to insert
content before or after an element.

p:before { content: "Before"; }
p:after { content: "After"; }

These rules make the following paragraph display as “BeforeMiddleAfter”:

<p>Middle</p>

15

CHAPTER 5 © PSEUDO SELECTORS

The content property is special in that it can be used only together with these
two pseudo-elements. It is also the only property that breaks the line between content
(HTML) and design (CSS). Keep in mind that this line should be broken only when
the presence of a piece of content comes down to a design decision. For example, the
content property can be used to add an icon before an element, which can be done using
the url function.

p.bullet:before { content: url(my-bullet.png); }

Pseudo-classes

Pseudo-classes permit styling based on element relationships and on information
not found in the HTML document. Most of them fall into three categories: dynamic,
structural, and user interface pseudo-classes.

Dynamic pseudo-classes

The first category of pseudo-classes is used to apply styles to links or other interactive
elements when their state is changed. There are five of them, all of which were introduced
in CSS 2.

link and visited

The dynamic pseudo-classes :1link and :visited can be applied only to the anchor
element (<a>). The :1ink pseudo-class matches links to pages that have not been viewed,
whereas :visited matches links that have been viewed.

a:link {} 7* unvisited links */
a:visited {} /* visited links */

active and hover

Another pseudo-class is :active, which matches elements as they are being activated, for
example by a mouse click. This is most useful for styling anchor elements, but it can be
applied to any element.

a:active {} /* activated links */
A selector with the :hover pseudo-class appended to it is applied when the user
moves a pointing device, such as a mouse, over the selected element. It is popularly used

to create link roll-over effects.

a:hover {} /* hovered links */

16

CHAPTER 5 © PSEUDO SELECTORS

These four pseudo-classes need to appear in the proper order when applied to the
same selector. Specifically, the :hover pseudo-class must come after :1ink and :visited,
and for :active to work it must appear after :hover. The phrase “love and hate” can be
used as a reminder for the initial letters that make up the correct order.

a:link {}y 7L *
a:visited {} /* VvV */
athover {} /* H */
a:active {} /* A */

focus

The last dynamic pseudo-class is : focus, which can be used on elements that can receive
focus, such as the form <input> element. The difference between :active and :focus

is that :active lasts only for the duration of the click, whereas : focus lasts until the
element loses focus.

input:focus {}

Browser support for the : focus pseudo-class in IE was not added until version 8.

Structural pseudo-classes

The structural pseudo-classes target elements based on their relation with other
elements. CSS 2 included only one structural pseudo-class in this category,
:first-child, whereas CSS 3 introduced a wide array of new ones. The CSS 3 structural
pseudo-classes are supported in all major browsers, except for IE7 and below.

first-child
The : first-child pseudo-class matches the first child of the selected element.
p:first-child {} /* first paragraph child */
In the following example, this rule applies to the first anchor element:
<p>
First child

Text
</p>

17

CHAPTER 5 © PSEUDO SELECTORS

last-child

The :1ast-child pseudo-class represents the last child of the selected element.
p:last-child {} /* last paragraph child */
This rule targets the last child of the following paragraph element.

<p>
Text
Last child
</p>

only-child

The :only-child pseudo-class matches elements that do not have any siblings.
p:only-child {} /* children without siblings */

This rule is applied to the following first element because it is the only
child of the paragraph. The second paragraph element has two children, so none of them
is targeted by this rule.

<p>
0Only child
</p>

<p>
Text
Text

</p>

only-of-type
As its name implies, the :only-of-type selector matches the selected element only if it
does not have any siblings of the same type.

p:only-of-type {} /* only <p> element */

The following paragraph is targeted by this rule because it is the only paragraph
element of its parent.

<div>
<h1>Text</h1>
<p>0Only of type</p>
</div>

18

CHAPTER 5 © PSEUDO SELECTORS

first-of-type

The : first-of-type pseudo-class matches the first child element that is of the
selected type.

p:first-of-type {} /* first <p> element */
It matches the first paragraph element in the following markup:
<div>
<h1>Text</h1>
<p>First of type</p>

<p>Text</p>
</div>

last-of-type

The last sibling of a specific type can be selected with the :1ast-of-type pseudo-class.
strong:last-of-type {} /* last element */
This rule applies to the last element among its siblings.

<div>
Text
Last of type
</div>

nth-child

The :nth-child(an + b) pseudo-class matches every b child element after the children
have been divided into groups of a elements.

p:nth-child(1) {} 7* first child */
p:nth-child(2n) {} /* even children */
p:nth-child(2n+1) {} /* odd children */

These rules apply to the following HTML markup:

<p>
First and odd
Even
0dd

</p>

19

CHAPTER 5 © PSEUDO SELECTORS

Matching odd and even children is a common operation, so the keywords odd and
even can also be used to match every other row in a table, for example.

tr:nth-child(even) {} /* even table rows */
tr:nth-child(odd) {} /* odd table rows */

As shown, the argument to :nth-child() can be an integer, the keywords even
or odd, or an expression in the form of an+b. In the expression form, the keyword n is a
counter that iterates through all the child elements. The counter might be negative; in
that case, the iteration occurs backward. It can be used to select a specific number of
first children.

p:nth-child(-n+3) {} /* first three children */

The math and arguments used together with :nth-child() are also valid for the next
three pseudo-classes, all of which start with :nth.

nth-of-type

The :nth-of-type(an + b) pseudo-class matches the bth element of the selected type
after the siblings of that type have been divided into groups of a elements.

p:nth-of-type(2) {} /* second paragraph sibling */
p:nth-of-type(2n) {} /* even paragraph siblings */
p:nth-of-type(2n+1) {} /* odd paragraph siblings */

The behavior of this pseudo-class is similar to :nth-child, but it matches siblings
of the same type of the specified element instead of matching children of the specified
element.

<div>
Text
<p>0dd</p>
<p>Second and even</p>
<p>0dd</p>

</div>

Similar to the other :nth pseudo-classes, the keywords odd and even can be used to
match siblings of the same type whose index is odd or even.

p:nth-of-type(even) {} /* even paragraph siblings */
p:nth-of-type(odd) {} /* odd paragraph siblings */

20

CHAPTER 5 © PSEUDO SELECTORS

nth-last-of-type

The :nth-last-of-type(an + b) pseudo-class matches the element of the selected type
that has an+b elements of that same type after it. This behavior is equivalent to the :nth-
of-type pseudo-class, except that elements are counted starting from the bottom instead
of the top.

p:nth-last-of-type(3) {} /* third last paragraph */
p:nth-last-of-type(-n+2) {} /* last two paragraphs */

These two rules apply to the following example. The element is not counted
because it is not of the specified type—in this case, paragraph.

<div>
<p>Third last</p>
<p>Last two</p>
<p>Last two</p>
Text
</div>

nth-last-child

The :nth-last-child(an + b) pseudo-class represents any element that has an+b
siblings after it. Its behavior is the same as :nth-child, except that it starts with the
bottom element instead of the top one.

p:nth-last-child(3) {} 7* third last child */
p:nth-last-child(-n+2) {} /* last two children */

These two rules apply to the child elements in the following example:
<div>
<p>Third last</p>
<p>Last two</p>

<p>Last two</p>
</div>

empty

The :empty pseudo-class matches selected elements that do not have any content.

p:empty {} /* empty paragraphs */

21

CHAPTER 5 © PSEUDO SELECTORS

An element is considered empty if it has no child elements, text, or whitespace
except for comments. The preceding rule applies to the following two paragraphs:

<p></p>
<p><!-- also empty --></p>

root

The :root pseudo-class matches the topmost element in the document tree. In HTML
documents, it is always the <html> element.

:root {} /* root element */

This pseudo-class is mainly useful when CSS is used with other languages,
such as XML, in which the root element can vary. All major browsers support the :root
pseudo-class, except for IE8 and below.

User interface pseudo-classes

CSS 3 introduced a number of user interface pseudo-classes that are used to style
interactive elements based on their current state.

enabled and disabled

The :enabled and :disabled pseudo-classes match any element of the selected type that
is either enabled or disabled. They apply only to interactive elements that can be in either
an enabled or disabled state, such as form elements.

input:enabled { background: green; }
input:disabled { background: red; }

The following form contains one enabled and one disabled input element, which are
affected by these two rules:

<form>

<input type="text" name="enabled">

<input type="text" name="disabled" disabled>
</form>

These two pseudo-classes are supported by all major browsers except for IE8
and below.

22

CHAPTER 5 © PSEUDO SELECTORS

checked

The :checked pseudo-class matches elements that are in a selected state. It can be used
only on check box, radio button, and <option> elements.

input[type="checkbox"]:checked {}
This rule matches any check boxes that are selected on the web page.

<form>
<input type="checkbox">
</form>

All major browsers support the : checked pseudo-class, except for [E8 and
earlier versions.

valid and invalid

The :valid and :invalid pseudo-classes are used to provide feedback to users when
they are filling out forms. Modern browsers can perform a basic field validation based on
the input type of a form element and, together with these pseudo-classes, the result can
be used to style the input element.

input:valid { background: green; }
input:invalid { background: red; }

Two fields are given here, one required and one optional. The first field remains
invalid until an e-mail is entered into the field. The second field is optional and is
therefore valid if left empty.

<form>
<input type="email" required>
<input type="email">

</form>

Note that these pseudo-classes are in no way a substitution for proper form
validation, using JavaScript or PHP, for example. Browser support for these two pseudo-
classes exists in Chrome 10+, Firefox 4+, IE10+, Safari 5,4+ and Opera 10+.

required and optional

A form field with the required attribute set is matched by the :required pseudo-class.
The related :optional pseudo-class does the opposite: it matches input elements that do
not have the required attribute set.

input:required { color: red; }
input:optional { color: gray; }

23

CHAPTER 5 © PSEUDO SELECTORS

The following form contains one required and one optional input element, which is
targeted by the previous styles:

<form>
<input type="email" required>
<input type="url">

</form>

Like the :valid and :invalid pseudo-classes, support for :required and :optional
is limited to Chrome 10+, Firefox 4+, IE10+, Safari 5+, and Opera 10+.

Other pseudo-classes

Some pseudo-classes do not fit into any of the earlier categories, namely the :target,
:1ang, and :not pseudo-classes.

target

The :target pseudo-class can style an element that is targeted through an id link. It can
be useful for highlighting a targeted section of the document.

:target { font-weight: bold; } /* targeted element */

When the following internal page link is followed, this rule is applied to the anchor
element. The browser also scrolls down to that element.

In page link
This pseudo-class is supported in all major browsers, except IE8 and earlier

versions.

lang

The pseudo-class : lang() matches elements determined to be in the language provided
by the argument.

p:lang(en) {}

This pseudo-class applies to paragraph elements that are intended for an English
audience, such as the following paragraph:

<p lang="en">English</p>

24

CHAPTER 5 © PSEUDO SELECTORS

Note that the behavior of this pseudo-class is similar to the language attribute
selector. The difference is that the :1ang pseudo-class also matches elements if the
language is set on an ancestor element, or in some other way such as through the page
HTTP header or <meta> tag.

<body lang="fr">

<p>French</p>
</body>

not

The negation pseudo-class :not matches elements that are not targeted by the specified
selector.

p:not(.first) { font-weight: bold; }
This example rule selects paragraphs that are not using the first class.

<p class="first">Not bold</p>
<p>Bold</p>

The :not pseudo-class is supported in all major browsers, except IE8 and
earlier versions.

25

CHAPTER 6

Relationship selectors

Relationship selectors match elements based on their relation with other elements.
To understand these selectors, it is important to recognize how elements in a web
document are related to each other.

HTML hierarchy

An HTML document can be visualized as a tree with the <html> element as the root.

Each element fits somewhere on this tree, and every element is either a parent or a child

of another element. Any element above another one is called an ancestor, and the element
directly above is the parent. Similarly, an element below another one is called a descendant,
and the one directly below is a child. In turn, an element sharing the same parent as
another element is called a sibling. Consider the following simple HTML 5 document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
</head>
<body>
<h1>Heading</h1>
<p>Paragraph</p>
</body>
</html>

In this example, <h1> and <p> are sibling elements because they share the same
parent. Their parent element is <body>, and together with <html>, they are both ancestors
to the sibling elements. In turn, the two sibling elements are child elements of <body>
and descendants of both <body> and <html>. The hierarchy of this simple document is
illustrated in Figure 6-1.

27

CHAPTER 6 © RELATIONSHIP SELECTORS

4

META | TITLE H1 P

Figure 6-1. Example HTML hierarchy

Inheritance

Inheritance is another important concept in CSS. It makes certain styles apply not only
to the specified element but also to all its descendant elements. For example, the color
property is inherited; the border property is not. This default inheritance is usually the
intended behavior, making inheritance very intuitive. Any property can also explicitly be
given the value inherit to use the same value as the one the parent element has for that

property.

/* Inherit parent's border */
p { border: inherit; }

Inheritance enables you to apply a style to a common ancestor whenever you find
a place in which every descendant element needs that same style. This process is more
convenient and maintainable than applying the style to every descendant element that
needs that specific style. For example, if the text for an entire document needs to be set
to a particular color, you can apply the style to the <body> element, which is the common
ancestor for all visible elements.

/* Set document text color to gray */
body { color: gray; }

Now that you have an understanding of the HTML hierarchy and the inheritance
concept, the relationship selectors of CSS can be discussed.

Adjacent selector

The adjacent sibling selector selects the second element if it comes directly after the first
element.

div+p { color: red; }

28

CHAPTER 6 * RELATIONSHIP SELECTORS

This selector matches paragraphs that follow <div> elements.

<div>Not red</div>
<p>Red</p>
<p>Not red</p>

Descendent selector

The descendent selector matches an element if it is the child or grandchild of another
element. It is useful when you want to apply a style to an element only when it resides
within another element.

div p { background: gray; }

The preceding rule applies to the following paragraph because it descends from a
<div> element:

<div>
<p>Gray</p>
</div>

Direct child selector

The direct child selector matches its second element if it is the immediate descendant of
its first element.

div > span { color: green; }

When applied to the following markup, this rule will color the second
element green. The first element is not colored because it is not a direct child of
<div>.

<div>
<p>
Not green
</p>
Green
</div>

29

CHAPTER 6 © RELATIONSHIP SELECTORS

General sibling selector

CSS 3 added the general sibling selector, which matches the second element only if it is
preceded by a sibling element of the first type.

hi~p { color: blue; }

In the following example, the last two paragraphs are selected because they are
preceded by <h1> and all share the same parent:

<p>Not blue</p>
<h1>Not blue</h1>
<p>Blue</p>
<p>Blue</p>

Although it is a CSS 3 selector, it is supported by all major browsers, including
Chrome 2+, Firefox, IE7+, Safari 3.1+, and Opera 9.2+.

30

CHAPTER 7

Specificity

When more than one rule applies to the same element and they specify the same
property, there is a priority scheme that determines which rule is given precedence.
In short, CSS gives priority to the rule that has the most specific selector.

Selector specificity

There are some basic rules for calculating specificity. The lowest specificity with the
weight of 0 is given by the universal selector (*), which matches all elements
in the document.

* { color: red; } /* 0 */

The type selectors have the weight of 1, so a selector containing two type selectors
has a specificity of 2.

p { color: blue; } /* 1 */
body p { color: gold; } /* 2 */

A class selector has the weight of 10, as do pseudo classes and attribute selectors.
When these selectors include a type selector, they have a total weight of 11.

.a { color: lime; } /* 10 */
p:first-child { color: navy; } /* 11 */
p[class=a] { color: teal; } /* 11 */

The pseudo elements do not count for any specificity, except for the specificity
added by the selector the pseudo element is prefixed with.

p:first-letter { color: white; } /* 1 */
Id selectors have a weight of 100, so an id rule overrides most other conflicting styles.

#i { color: aqua; } /* 100 */

31

CHAPTER 7 * SPECIFICITY

Inline styles have a weight of 1000 and outweigh even id rules.
<p style="color: black;">Text</p>

To override all other conflicting styles, including those defined as inline styles, a
declaration can be declared as ! important. Note that the ! important modifier is applied
to individual declarations, not entire rules.

p { color: red !important; }

If the specificity between two conflicting rules is the same, the cascade is what
determines which rule is applied.

Cascade

In CSS, more than one style sheet can influence a document’s presentation. This feature
is known as cascading (the “C” part of CSS) because the browser merges all style sheets to
resolve any conflicts before the styles are applied.

Web documents can have style sheets that come from three different sources: the
browser, site designer and user reading the document. The designer’s style sheet usually
has the highest priority, followed by the user’s personal style sheet (if any) and then the
browser’s default one.

Designer styles

As discussed earlier, web designers have three ways to include CSS rules: inline styles,
internal style sheets, and external style sheets. Among these three, inline styles are given
the highest precedence, followed by internal style sheets and then external style sheets.

If the web page includes more than one external style sheet with conflicting rules
(same specificity), the style sheet that is included last in the HTML markup is given
precedence. This is also true within a style sheet. If the selectors are the same, the
property declared last is the one that counts.

p { color: orange; } /* overridden */
p { color: silver; } /* dominant */

For inherited styles, an element’s own style has priority over style inherited from
its ancestors.

p { color: orange; } /* dominant */
body { color: silver; }

32

CHAPTER 7 * SPECIFICITY

Specificity guidelines

As shown in this chapter, the style of an element can be specified in many different places
and with different priorities. The cascading feature gives a lot of flexibility to CSS, but it
can also result in unnecessary complexity if not managed well.

In general, you want to keep specificity low to make it easier to know which rules
will take precedence. This way, you can allow the cascade to work for you by adjusting
the order in which your style rules appear, instead of needlessly increasing the specificity
with id and !important to override conflicting styles.

33

CHAPTER 8

Colors

There are several different ways to specify a color in CSS, which are described in the
following sections.

Named notation

Colors can be set by simply typing the common name of that color.
p { color: red; } /* color paragraphs red */

The HTML and CSS color specification includes 140 predefined color names, such as
white, 1lime, and olive. These colors are all supported by the major browsers.

Hexadecimal notation

For the full palette, the red, green, and blue components of the color can be set individually.
Each color component consists of a two-digit hexadecimal number, and the whole six-digit
number is prefixed by a hash sign (#RRGGBB). Hexadecimal means base-16 counting, so
valid digits are 0 through 9 and A through E Each red-green-blue pair can range from 00
to FE or 0-255 in decimal notation. All in all, there are 16 million available colors.

p { color: #FF0000; } /* red:255, green:0, blue:0 */
Although this color notation is the most obfuscated one, it is also the most common
one because of its precision, conciseness, and browser support. An easy way to discover

the hexadecimal value of a color is to use the color picker tool from graphics software
such as Adobe Photoshop or Paint.NET.

35

CHAPTER 8 " COLORS

Short hexadecimal notation

There is a short form of the hexadecimal notation in which the color is specified using
only three hexadecimal digits instead of six. This notation can be converted to the
hexadecimal notation by duplicating each digit.

p { color: #fo0; } /* same as #ff0000 */

The short hexadecimal notation is a useful shortcut when the full precision provided
by the longer hexadecimal notation is not needed.

RGB notation

The rgb() function allows a color value to be specified as three intensity values for the
color components red, green, and blue. The value can be either an integer between 0 and
255 or a percentage.

p { color: rgh(255, 0, 0); }
p { color: rgh(100%, 0%, 0%); }

The RGB notation allows the same color precision as the hexadecimal notation.
The notation used comes down to a matter of preference, but the hexadecimal notation
is often preferred because it is shorter and can easily be copied from an image editor,
for example.

RGBA notation

CSS 3 introduced the RGBA notation, adding an alpha value for specifying the color
transparency. This alpha value is a number between 0.0 (fully transparent) and 1.0
(fully opaque).

/* Red with 50% transparency */
p { color: rgba(100%, 0%, 0%, 0.5); }

RGBA color values are supported in Chrome, Firefox 3+, [E9+, Safari, and Opera 10+.
If support is not present, the rule is ignored, so a fallback color value can be set as
shown here:

p i
color: rgh(100%, 0%, 0%); /* fallback */
color: rgbha(100%, 0%, 0%, 0.5);

}

A browser that does not support RGBA ignores the second declaration and continues
to apply the opaque version.

36

CHAPTER 8 © COLORS

HSL notation

A color value can be set with the hs1() function (which stands for hue, saturation, and
lightness). Hue is a degree on a color circle from 0 to 360, where 0 and 360 are red, 120

is green, and 240 is blue. Saturation is a percentage value, with 0% giving a shade of gray
and 100% giving the full color. Lightness is also specified as a percentage, from 0% (black)
to 100% (bright).

p { color: hsl(o, 100%, 100%); }
Although HSL colors are more intuitive than RGB colors, and the color values are
easier to tweak, HSL should not be used until IE8 usage declines to a point when it is

no longer necessary for web sites to support it. HSL is a CSS 3 value and is supported in
Chrome, Firefox, IE9+, Safari, and Opera 10+.

HSLA notation

Similar to RGB, the HSL notation can be extended with an alpha value for specifying the
transparency.

/* Red with 50% transparency */
p { color: hsla(o, 100%, 100%, 0.5); }

HSLA is supported in Chrome, Firefox 3+, IE9+, Safari, and Opera 10+, which is the
same as the RGBA function.

37

CHAPTER 9

Units

There are several units to choose from when specifying the size of a property’s value.

Absolute units

The absolute units of length are centimeter (cm), millimeter (mm), and inch (in). Although
these units are meant to look the same regardless of the screen resolution, it is not always
the case because web browsers do not always know the exact physical size of the display
medium.

.one-cm { font-size: 1cm; }
.one-mm { font-size: 1mm; }
.one-in { font-size: 1in; }

These units are mainly useful when the size of the output medium is known, such as
for content that will be printed to paper. They are not recommended for screen displays
because the screen sizes can vary a lot.

Typographical units

Points (pt) and picas (pc) are typographical units. By definition, there are 72 points to an
inch and 12 points to one pica. Like the absolute units, the typographical units are most
useful for print style sheets, not for onscreen use.

.one-point { font-size: 1pt; }
.one-pica { font-size: 1pc; }

Relative units

The relative units of length are pixel (px) and percentage (%). A percentage is a unit
proportional to the parent’s value for that property; a pixel is relative to the physical pixel
on the display device used.

.one-pixel { font-size: 1px; }
.one-percent { font-size: 1%; }

39

CHAPTER 9 © UNITS

Pixels and percentages are two of the most useful units in CSS for onscreen displays.
Pixels are fixed size, so they allow very precise control over the layout in a web document.
Percentages, on the other hand, are useful for defining font sizes for text content because
the text remains scalable, which is important for small devices and accessibility purposes.
When the text is part of the design and needs to match other elements, it can be sized
in pixels for greater control. Modern browsers all support full-page zooming, which has
made pixel-based font sizes more acceptable. Note that for high-resolution screens, a
CSS pixel renders as multiple screen pixels. For example, the Apple Retina display renders
all pixel dimensions at twice their actual size.

Font-relative units

Two additional relative measures are em-height (em) and ex-height (ex). Em-height is the
same as the font-size; ex-height is about half the font-size.

.one-ex { font-size: 1ex; }
.one-em { font-size: 1em; }

Like percentage, em-height is a good relative unit that is commonly used for setting
the font size of web document text. They both respect the user’s choice of font size in their
browser and are easier to read on small-screen devices than pixel-based font sizes.

CSS 3 introduced two additional font-relative units: rem and ch. The root em-height
(rem) unit is relative to the font-size of the root element (<html>). It can be used instead of
em to prevent the element’s font size from being affected by changes to the font size of its
ancestor elements.

.one-rem { font-size: 1rem; }

The character unit (ch) measures the width of the character zero (0) for the element’s
font. It can be useful for defining the width of a box containing text because the unit
roughly corresponds to the number of characters that fit within that box.

/* Same width */
<div style="width: 5ch;"></div>
<div>00000</div>

The ch unit is supported only in Chrome 27+, Firefox 19+, and IE9+, so it should be
used only with a fallback. The rem unit has slightly better support and works in Chrome 4+,
Firefox 3.6+, IE9+, Safari 4.1+, and Opera 11.6+.

Viewport units

Viewport width (vw) and viewport height (vh) units allow elements to be dimensioned
relative to the viewport, meaning the visible portion of the document. Each unit
represents a percentage of the current viewport.

40

CHAPTER 9 © UNITS

width: 50vw; /* 50% of viewport width */
height: 25vh; /* 25% of viewport height */

Two additional viewport units are vmin and vmax, which give the minimum or
maximum value of the viewport’s dimension.

width: avmin; /* 1vh or 1vw, whichever is smallest */
height: 1vmax; /* 1vh or 1vw, whichever is largest */

Chrome 26+, Firefox 19+, IE11+, Safari 6.1+, and Opera 15+ all support the viewport
units. The vh, vw, and vmin units have greater support than vmax, going back to Chrome
20+, IE9+, and Safari 6.0. In IE9 and IE10, vmin is instead called vm.

Unit values

Itis possible to set length using decimals. Some properties also allow negative values for
length.

p { font-size: 0.394in; } /* decimal value */
p { margin: -1px; } /* negative value */

Note that a rule does not work if there is a space before the unit or if no unit is
specified—except for the value zero. Including a unit after zero is optional, but it is good
practice to omit it.

p { font-size: 1ex; } /* correct */
p { font-size: 0; } /* correct */
p { font-size: oex; } /* correct */
p { font-size: 1 ex; } /* invalid */
p { font-size: 1; } /* invalid */

Whenever a CSS declaration contains an error, it is ignored by the browser. Any other
valid declarations in the rule still apply.

41

CHAPTER 10

CSS Properties

The remaining chapters of this book cover the multitude of properties available in CSS.
In these chapters, possible property values are given using a formal notation, such as the
one shown here:

text-shadow : inherit | none | <offset-x> <offset-y>
[<blur-radius>] [<color>]

This notation means that the text-shadow property can have one of three different
kinds of values. The default value is listed first; in this case, it is inherit. Because the
inherit keyword can be set for any property, it is not included unless it is the default
value. The second value, none, is also a keyword. It is the initial value for this property and
can be applied to disable an inherited property effect.

The third option in this notation includes a set of four values—two required ones
and two optional ones—as indicated by the square brackets ([]). The angle brackets (<>)
show that they are not keywords; they are other value types. In this case, they are three
length values and a color value. Following this notation, the following declaration shows
avalid example use of the text-shadow property:

text-shadow: 1px 1px 1px red;

Generic keywords

In addition to inherit, there are two other generic property keywords you might come
across in CSS: initial and unset. Both generic keywords were introduced in CSS 3 and
can be set on any properties.

The initial keyword applies a property’s initial value to an element, as defined
by the CSS specification. It is supported in Chrome 1+, Firefox 19+, Safari 1.2+, and
Opera 15+, but it is currently not supported in any version of IE. Because of the lack of IE
support, the usefulness of this keyword is limited. It is recommended to instead explicitly
specify the initial value for a given property to reset it.

The third generic keyword is unset, which is a combination of the initial and
inherit keywords. It resets the property to its inherited value, if there is one; otherwise,
it sets the property to the initial value. At this moment, support for the unset keyword is
limited to Firefox 27+. Until all major browsers adapt this keyword, it should not be used.

43

CHAPTER 10 © CSS PROPERTIES

Quirks mode

When HTML and CSS became standardized by the World Wide Web Consortium (W3C),
web browsers could not just comply with the standards because doing so would break
most web sites already in existence. Browsers instead created two separate rendering
modes: one for new standard compliant sites and one for old legacy sites (quirks mode).

In full standards mode, the browser does its best to render the page in accordance
with HTML and CSS specifications. Browsers use the doctype for the sole purpose of
deciding between full standards mode and quirks mode. A valid doctype at the start of
aweb document, such as the HTML 5 doctype seen following, ensures that the page is
rendered in full standards mode:

<!DOCTYPE html>
<html> ... </html>

This doctype triggers full standards mode in all major browsers, dating back as
far as IE6.

Vendor prefixes

Many browsers begin incorporating new CSS properties long before their specification
becomes stable. Because these implementations are experimental, their property names
include a vendor prefix to indicate that the specification could potentially change in

the future.

The major vendor prefixes include -moz for Firefox; -ms for Internet Explorer; -o for
Opera; and -webkit for Chrome, Safari, Android, and iOS. Recent versions of Opera also
implement the -webkit prefix in parallel with the -o prefix. For example, support for the
CSS 3 border-radius property can be increased by using the following vendor prefixes.
Note that the unprefixed version should always be included last.

.round {
/* Safari 3-4, i0S 1-3.2, Android 1.6-2.0 */
-webkit-border-radius: 3px;

/* Firefox 1-3.6 */
-moz-border-radius: 3px;

/* Opera 10.5+, IE9+, Safari 5+, Chrome 1+,
Firefox 4+, i0S 4+, Android 2.1+ */
border-radius: 3px;

As time goes on, the new property’s specification becomes stable, and browsers
drop the vendor prefix. Given more time, web users abandon old browsers in favor of
new versions, and the need for vendor prefixes diminishes. This has already occurred for
the border-radius property, and developers are now encouraged to drop the prefixes,
making things a little easier for web developers worldwide.

44

CHAPTER 10 * CSS PROPERTIES

Progressive enhancement

When deciding whether to use a recent CSS feature, it is important to consider how your
site will look without it. If the feature enhances the appearance of your site, such as the
CSS 3 border-radius property, you might want to start using the feature, even when it
is viewable by only a small percentage of your visitors. Time works in your favor, and as
people abandon old browsers, a greater number of your visitors can see the feature, which
enhances their experience on your site. This is the essence of progressive enhancement.
On the other hand, if your site depends on the feature and appears broken without
it, you need to carefully consider how well supported the feature is and whether there
are fallbacks or scripts you can make use of to increase this support, such as those listed
on HTMLS5 Polyfills.! There are often many ways to achieve the same result in CSS, so it is
a good idea to choose a method that is well supported by all major browsers for the key
elements of your site, such as the layout.

'http://html5polyfill. com

45

http://html5polyfill.com/

CHAPTER 11

Text

The text properties serve to format the visual appearance of text content.

color

The color property sets the color of text by using either one of the color notations. By
default, its value is set to inherit, meaning that it inherits the color of its parent element.

color : inherit | <color>

The initial value is black for all major browsers. In the following example rule,
paragraphs are colored blue:

p { color: #oof; }

text-transform

text-transform controls text casing. Possible values are listed as follows, with none as the
initial value:

text-transform : inherit | none | uppercase | lowercase | capitalize
This property enables text to be converted into either uppercase or lowercase letters.
The capitalize value capitalizes the first letter of each word. This property inherits by

default, so the none value can be used to remove an inherited text-transform effect.

text-transform: none; /* remove effect */

text-decoration

One or more visual effects to text can be added with the text-decoration property.

text-decoration : none | underline + overline + line-through + blink

47

CHAPTER 11 © TEXT

To add multiple decorations, separate the values with spaces (indicated by the “+”
sign, shown previously). The following rule adds a line above and below text content that
is affected by this class:

.highlight { text-decoration: underline overline; }

This property does not inherit, but its effect renders across descendent inline
elements in a way that is similar to inheritance.

text-indent

The first line of text in a block element can be indented with the text-indent property.
It can be set to a unit of measure or a percentage of the parent element’s width. Text can
also be indented backward by using a negative value.

text-indent (block) : inherit | <length> | <percentage>

The following example indents the first line of paragraph elements by one em:

p { text-indent: 1em; }

text-align

The text content of a block element can be aligned with the text-align property. This
property can replace usages of the deprecated align attribute in HTML.

text-align (block) : inherit | left | center | right | justify

Text and inline elements can be aligned to the left, aligned to the right, or centered.
The justify value also stretches each line so that both the right and left margins appear
straight.

p { text-align: justify; }

The text-align property inherits, so it needs to be explicitly changed in child
elements to restore default left alignment.

direction

The writing direction of text can be switched with the direction property.

direction (block) : inherit | 1ltr | rtl

48

CHAPTER 11 TEXT

The default value is 1tr, meaning left-to-right. It can be changed to rt1 to make text
content within a block element flow to the right. It indicates that the text is supposed to be
read from right-to-left, as in Hebrew or Arabic text, for example.

<p style="direction: rtl">
Aligned from right-to-left
</p>

This property does inherit, so it can be set once for the <body> element to apply to
the whole web page.

text-shadow

A shadow effect can be added to text with the text-shadow property.

text-shadow : inherit | none | <offset-x> <offset-y> [<blur-radius>]
[<color>]

The shadow is defined using two offset values, followed by two optional values for
the blur radius and color. The x and y offsets are specified as length values relative to the
text. Positive values move the shadow right and down; negative values move it left and up.

A blur effect can be added by setting a blur radius, which makes the shadow stretch
and fade at the edges. The final optional value for the property is the color of the shadow.
If no color value is specified, most browsers render the shadow in the same color as the
text. The following example style causes a slightly blurred gray shadow to appear at the
top right of <h1> elements:

h1 { text-shadow: 1px -1px 1px gray; }

text-shadowis a CSS 3 property that is supported by most major browsers, including
Chrome 2+, Firefox 3.5+, IE10+, Safari 1.2+, and Opera 9.5+.

box-shadow

In addition to text, a shadow effect can be added to block elements with the box-shadow
property.

box-shadow (block) : inherit | none | [inset] <offset-x> <offset-y>
[<blur-radius>] [<spread-radius> [<color>]]

49

CHAPTER 11 © TEXT

The values for the box shadow are the same as for text-shadow—with two
exceptions. A fourth length value, spread-radius, can be specified to grow or shrink the
shadow. This value is optional and is 0 if left unspecified, rendering the shadow in the
same size as the element. As an example, the following class rule displays a blurry gray
shadow to the bottom right of any block element using this class:

.drop-shadow { box-shadow: 3px 3px 3px 6px #ccc; }

The second value unique to the box-shadow property is the inset keyword. If
present, the shadow displays inside the box instead of as a drop shadow on the outside.

.inset-shadow { box-shadow: inset 3px 3px 3px 6px #ccc; }

box-shadow is a CSS 3 property and is implemented in Chrome 10+, Firefox 4+, IE9+,
Safari 5.1+, and Opera 10.5+. Support can be expanded using the -webkit and -moz
prefixes, as shown here:
.drop-shadow
{

/* Chrome 1-5, Safari 2-5.1+ */
-webkit-box-shadow: 3px 3px 5px 6px #ccc;

/* Firefox 3.5-3.6 */
-moz-box-shadow: 3px 3px 5px 6px #ccc;

box-shadow: 3px 3px 5px 6px #ccc;

50

CHAPTER 12

Spacing

The following properties deal with the space between elements. They are all inherited by
default.

line-height

line-height sets the distance between lines. The initial value is normal, which is typically
rendered as 120% of the font size. The line height can also be set to a length, a percentage
of the current font size, or a dimensionless number that is multiplied with the current
font size.

line-height : inherit | normal | <length> | <percentage> | <number>

The line-height property inherits, so the preferred way to set line-height is by
using a dimensionless number. Setting 1ine-height as a length or percentage can have
unexpected results for child elements that use different font sizes because the inherited
line height is then fixed instead of relative to the child element’s font size.

/* Line height is 1.5 times font size */
line-height: 1.5;

Line height has no effect on replaced inline elements such as . When used on

non-replaced inline elements, it sets the line height as expected. For block elements,
line-height sets the minimal height of line boxes within the element.

word-spacing and letter-spacing

word-spacing sets the spacing between words, and letter-spacing sets the spacing
between individual characters. Negative values are allowed for both of these properties.

word-spacing : inherit | normal | <length>
letter-spacing : inherit | normal | <length>

51

CHAPTER 12 © SPACING

The following rule creates a 3-pixel distance between letters and a 5-pixel distance
between words inside a paragraph:

pi
letter-spacing: 3px;
word-spacing: 5px;

}

white-space

The white-space property changes the way whitespace characters inside of a block
element are handled.

white-space (block) : inherit | normal | nowrap | pre | pre-wrap | pre-line

Multiple whitespace characters are normally collapsed into a single character in
HTML, and text is wrapped as necessary to fill the width of the containing block element.

/* Wrap text and collapse newlines, spaces and tabs */
p { white-space: normal; }

Setting whitespace to nowrap prevents text from wrapping for anything other than
the line break tag
. The pre (preformatted) value also prevents wrapping, but it also
preserves all whitespace characters. Its behavior is the same as the <pre> element in HTML.
Both the pre-wrap and pre-1line values allow text to wrap as normal, with pre-wrap
preserving sequences of whitespace and pre-1ine collapsing them. The difference
between pre-line and normal is that pre-1line preserves newline characters. Note that
the support for these last two values in IE was not added until version 8.

52

CHAPTER 13

Font

The font properties can be used to change aspects of the font and to load custom fonts.
They can be applied to any element and they all inherit.

font-family

font-family sets the face of the font. Its value can be a specific font name such as times
or verdana; or a generic family name such as sans-serif, serif, or monospace.

font-family : inherit | <family-names> | <generic-families>

The value for this property is a prioritized list of one or more font names. If a browser
does not have access to the first font, it uses the next font and so on.

font-family: "Times New Roman", times, serif;

It is recommended to end the list with a family name to make sure that at least the
font family is consistent across browsers. Note that if a font name includes spaces, it must
be surrounded by double quotes, as in the previous example.

font-size

font-size sets the size of the font. The value can be any unit of measure or a percentage
of the parent’s font size. There are also a couple of predefined values, as listed here:

font-size : inherit | <length> | <percentage> |
smaller | larger | xx-small | x-small |
small | medium | large | x-large | xx-large

The larger and smaller values are relative to the parent’s font size; the other

predefined values refer to absolute sizes. The initial size is medium, which is 1 em
(16 pixels) for normal text.

53

CHAPTER 13 © FONT

font-style

font-style makes the text slanted. According to specifications, italic is a cursive
companion face to the normal face, and oblique is a slanted form of the normal face.
Both faces tend to be rendered the same way for most fonts, however.

font-style : inherit | normal | italic | oblique

font-variant

font-variant can be used to display text using small caps instead of lowercase letters.
A value of small-caps renders text in uppercase letters that are smaller than regular
uppercase letters.

font-variant : inherit | normal | small-caps

font-weight

font-weight sets the thickness of the font. The bolder and lighter values set the
thickness relative to the parent element, and the numeric values specify absolute weights.
The value of bold is equal to 700, and normal is the same as 400.

font-weight : inherit | normal | bold | bolder |
lighter | 100 | 200 | ... | 900

Even if several weight values can be specified, most fonts have only one type of bold,
as shown in the following example rendering:

lighter normal bold bolder 100 200 300 400 500 600 700 800 900

font

There is a convenient shorthand property named font that sets all the font properties in
one declaration.

font : inherit | <font-style> + <font-variant> +
<font-weight> + <font-size> / <line-height> +
<font-family>

The properties must be specified in the order listed previously. As long as this order is
kept, either one of the properties can be left out (except for font-size and font-family,
which are mandatory). If a property is left out, the default value for that property is used,
which is to inherit the parent’s value. The following example applies four font properties
to the paragraph element:

p { font: italic 50%/125% Verdana; }

54

CHAPTER 13 © FONT

This font declaration sets the font-style, font-size, line-height, and font-family
properties in one declaration. Because font-variant and font-weight are not
included, a side effect of using this declaration is that they are both re-set to normal.

Custom fonts

Selected fonts can be seen only if the font is installed on the device used to view the web
site. If a nonstandard font is needed, a @font-face rule can be used to load the font from
an online location.

@font-face {
font-family: MyFont;
src: url(myfont.ttf);

}

This rule creates a font named MyFont and provides a URL from which the browser
can download it. With this rule in place, the custom font can be used just like any
standard font.

p { font-family: "MyFont", arial, sans-serif; }
This use of the @font-face rule is supported in Chrome 5+, Firefox 3.5+, [E9+,

Safari 3.1+, and Opera 10+. If the browser does not support the custom font, it reverts to
the next standard font in the list.

55

CHAPTER 14

Background

The background properties can add background effects. None of these properties inherits
and they can be applied to any elements.

background-color

The color of an element’s background is set with the background-color property. By
default, its value is set to transparent.

background-color : transparent | <color>

Even if a background image is used, it is a good idea to set a background color. That
way, there is a fallback color in case the background image is unavailable for any reason.

background-color: #ccc;

background-image

background-image specifies an image to use as a background with the url function.
background-image : none | url(<urls)

The image location defined with the url function can be either absolute or relative to
the location of the CSS file.

/* Relative path */
background-image: url(../images/myimg.7jpg);

/* Absolute path */
background-image: url(http://mydomain.com/images/myimg.jpg);

57

http://mydomain.com/images/myimg.jpg

CHAPTER 14 © BACKGROUND

background-repeat

By default, the background image repeats itself both horizontally and vertically. It can
be changed with the background-repeat property to make the background repeat only
horizontally (repeat-x), only vertically (repeat-y), or not at all (no-repeat).

background-repeat : repeat | repeat-x | repeat-y | no-repeat

background-attachment

When the viewport is scrolled in a browser, a background image normally follows along
with the rest of the page. This behavior is determined by the background-attachment
property, whose initial value is scroll. If the value is set to fixed, the position of the
background is instead relative to the viewport, making the background stay in place even
as the page is scrolled.

background-attachment : scroll | fixed | local

CSS 3 introduced a third value for this property, local, which fixes the background
relative to the element’s content instead of the whole viewport. With this value, the
background scrolls along with the element’s content only when that element is scrolled
(achieved by using the overflow property). Support for this value was introduced in
Chrome 4+, Firefox 25+, [E9+, Safari 5+, and Opera 10.5+.

background-position

The background-position property is used to position a background image, with one
value for vertical placement and another for horizontal. They can both be set to a length
or a percentage of the element’s size, and negative values are allowed. There are also
some predefined values for this property, including: top, center, and bottom for vertical
placement; and left, center, and right for horizontal placement.

background-position : <length> <length> | <percentage> <percentage> |
top/center/bottom + left/center/right

By default, a background image is positioned to the top left of its parent element’s
padding area. Any length values given move the background image relative to these
edges. For example, the following property offsets the background 5 pixels down and
10 pixels to the right:

background-position: 5px 10px;

58

CHAPTER 14 © BACKGROUND

CSS 3 added a four-value syntax, allowing a choice of which side of the element
the image will be positioned relative to. Using this syntax, the background in the next
example is positioned relative to the bottom right instead of the top left of the element.

background-position: bottom 5px right 5px;

This four-value syntax is supported only in Chrome 25+, Firefox 13+, IE9+,
Safari 5.28+, and Opera 10.5+.

background-size

The size of a background image is normally the same as the actual size of the image.

It can be changed with the background-size property, which allows the background to
be resized to a dimension specified in pixels or as a percentage relative to the background
positioning area.

background-size (1-2) : auto | <length> | <percentage> | cover | contain

With two values, the first value determines the width of the image and the second
value its height.

background-size: 150% 100%;

A single value defines only the width of the image. The height is then implicitly set to
auto, preserving the aspect ratio of the image.

background-size: 150%;
The contain and cover keywords size the background to fill the parent container
while maintaining the aspect ratio. The cover value ensures that the image completely

covers the background positioning area, whereas contain makes sure that the
background is contained within the area. Their difference is illustrated in Figure 14-1.

positioning area

background-size:

. background-size: cover;
contain;

overflow =

Figure 14-1. Backgrounds sized with cover and contain keywords

59

CHAPTER 14 © BACKGROUND

This property was added in CSS 3 and is supported in Chrome 4+, Firefox 4+, IE9+,
Safari 5+, and Opera 10.5+. Use of the -webkit and -moz prefixes expand support to
Chrome 1+, Safari 3+, and Firefox 3.6+.

background-clip

The painting area of a background image or color can be set with the background-clip
property.

background-clip : border-box | padding-box | content-box

The background normally extends to the outside edge of the border (border-box)
and renders behind any visible border. A value of padding-box instead draws the
background within the element’s padding. The third possible value, content-box, draws
the background within the content area. Using the following declaration, the background
is clipped to the outside edge of the content:

background-clip: content-box;

background-clip is supported in Chrome 1+, Firefox 4+, [E9+, Safari 3+,
and Opera 12+.

background-origin

The background-origin property determines the starting point of a background
image or color.

background-origin : padding-box | border-box | content-box

A background image is ordinarily rendered starting from the top left of the element’s
padding area (padding-box). It can be changed so that the background either starts at the
top-left edge of the border area (border-box) or the content area (content-box).

The background-origin property is often used together with background-clip
to change both the starting point and clipping area of the background. The following
declarations set both of them to the content area:

background-origin: content-box;
background-clip: content-box;

The background-origin property is a CSS 3 property that works in Chrome 4+,
Firefox 4+, IE9+, Opera 10.5+, and Safari 5+. All versions of Firefox and Chrome, along
with Safari 4, are supported with the -moz and -webkit prefixes, as seen in the next
example. Note that Firefox used the values padding and border prior to version 4; there
were no values for specifying the content box as the origin.

60

CHAPTER 14 © BACKGROUND

/* Chrome 1-3, Safari 4 */
-webkit-background-origin: border-box;

/* Firefox 1-3.6 */
-moz-background-origin: border;

background-origin: border-box;

background

The background property is a shortcut for setting all background properties in a single
declaration.

background : <background-color> + <background-image> +
<background-repeat> + <background-attachment> +
<background-position> + <background-size> +
<background-clip> + <background-origin>

The order of the values is irrelevant because there is no ambiguity between them.
Any one of the values can be left out, but keep in mind that those omitted properties are
reset to their defaults when using this property.

background: url(bg.png) no-repeat fixed right bottom;

In most cases, it is preferable to use shorthand properties such as this one when
setting more than one of the individual properties. It has better performance and is easier
to maintain than using the equivalent longhand properties seen here:

background-image: url(bg.png);
background-repeat: no-repeat;
background-attachment: fixed;
background-position: right bottom;

Multiple backgrounds

More than one background can be applied to the same element by specifying the property
values in a comma-separated list. The first background in the list appears at the top, and
each successive background is visible only through transparent areas of the backgrounds
stacked on top of it.

background-image: url(bgl.png), url(bg2.png);
background-repeat: no-repeat, repeat-y;
background-attachment: fixed, fixed;
background-position: right bottom, top left;

61

CHAPTER 14 © BACKGROUND

The shorthand property can also be used with multiple backgrounds in the
following way:

background: url(bgl.png) no-repeat fixed right bottom,
url(bg2.png) repeat-y fixed top left;

Support for multiple backgrounds was added in CSS 3 and has been included in
browsers since Chrome 4+, Firefox 3.6+, IE9+, Safari 3.1+, and Opera 10.5+. A fallback

image can be provided for older browsers that do not support multiple backgrounds.

background-image: bg.png; /* fallback */
background-image: bgi.png, bg2.png;

62

CHAPTER 15

Gradients

A gradient is a color fill that blends smoothly from one color to another. Introduced in
CSS 3, the gradient functions can be used anywhere an image is required according to
specification, but they are mainly used together with the background or background-image
properties to create a background gradient.

Linear gradients

The linear-gradient() function defines a gradient that provides a smooth transition
from one color to another.

linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

In its simplest form, the linear gradient consists of two colors with an even spread
from top to bottom. In Figure 15-1, the gradient starts as gray and transitions into black at
the bottom.

.mygradient {
background-image: linear-gradient(gray, black);

}

Figure 15-1. Simple linear gradient

63

CHAPTER 15 © GRADIENTS

The angle for the gradient can be set by using the keyword to, followed by the
destination in which the gradient will end: top, right, bottom, left, or any combination
thereof. An example is shown in Figure 15-2.

linear-gradient(to bottom right, gray, black);

Figure 15-2. Bottom-right linear gradient

More-precise angles can be specified by using the deg unit, with 0 deg being the
same as to top. The degrees proceed clockwise, and negative angles are allowed.

linear-gradient(odeg, gray, black); /* to top */
linear-gradient(90deg, gray, black); /* to right */
linear-gradient(180deg, gray, black); /* to bottom */
linear-gradient(-90deg, gray, black); /* to left */

Additional color stops can be added between the starting and ending colors. Any
color stop can be followed by a stop position specified as either a percentage or a length
value. If no stop position is specified, the colors are evenly distributed. In the following
case, white is set at 25 percent, instead of its default position of 50 percent. Figure 15-3
illustrates the result of this code.

linear-gradient(gray, white 25%, black);

Figure 15-3. Gradient with multiple color stops

CHAPTER 15 © GRADIENTS

The standard syntax described so far is supported in Chrome 26+, Firefox 16+,
IE10+, Safari 6.1+, and Opera 12.1+. Legacy syntaxes can be used together with the -moz,
-webkit, and -o prefixes to expand support down to Firefox 3.6, Chrome 1, Safari 4, and
Opera 11.1.

.linear-gradient
{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */

background: -webkit-gradient(linear, left top, right top, from(red),
to(orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-linear-gradient(left, red, orange);

/* Firefox 3.6-15 */
background: -moz-linear-gradient(left, red, orange);

/* Opera 11.1-12.1 */
background: -o-linear-gradient(left, red, orange);

/* Standard syntax */
background: linear-gradient(to right, red, orange);

Radial gradients

A radial gradient transitions outward from a central point. In CSS, these gradients are
defined with the radial-gradient() function.

radial-gradient([<shape> + <size>] [at <position>]
{, <color stop> [stop position]} {2-«})

To create a radial gradient, at least two color stops must be defined. The radial
gradient in Figure 15-4 starts as gray in the center and fades to black.

radial-gradient(gray, black);

65

CHAPTER 15 © GRADIENTS

Figure 15-4. Simple radial gradient
Like linear-gradient(), more than two color stops are allowed and they can
optionally be followed by a length or percentage value, indicating the stop position of the

color. An example is shown in Figure 15-5.

radial-gradient(black 25%, white, black 75%);

Figure 15-5. Radial gradient with set stop positions

The shape of the radial gradient can be either an ellipse or a circle. The default
shape is el1lipsis, which allows the gradient to spread itself to match both the height and
width of the element, as shown in Figure 15-5. The alternative circle value, illustrated in
Figure 15-6, forces the gradient to be circular, regardless of the shape of the element.

radial-gradient(circle, black 25%, white, black 75%);

Figure 15-6. Circular radial gradient

66

CHAPTER 15 © GRADIENTS

Two length values for the ellipsis or a single value for the circle can be used to set the
horizontal and vertical radius of the gradient. For the ellipsis, they can also be percentage
values that are relative to the dimensions of the element, as in the example shown in
Figure 15-7.

radial-gradient(75% 25%, gray, black);

Figure 15-7. Resized radial gradient

Ifless precision is needed, the size can be set by using one of the predefined
keywords: closest-side, closest-corner, farthest-side, or farthest-corner. These
values specify whether the gradient is contained by the sides or corners of the element
nearest to or farthest away from the origin (see Figure 15-8). For example, the farthest-side
value sizes the gradient so that its last color ends at the farthest side of the element away
from its origin.

radial-gradient(farthest-side, gray, black);

closest-side

closest-corner

origin farthest-side

farthest-corner

Figure 15-8. Size keywords

The origin of a radial gradient is centered by default. It can be changed by specifying
the position of the gradient’s origin with the keyword at followed by a position specified
in the same way as for the background-position property. The horizontal position is
specified first, optionally followed by the vertical position. The position can be set with

67

CHAPTER 15 © GRADIENTS

keywords (left, center, right + top, center, and bottom), length values, percentage
values, or a combination thereof. An example is given in Figure 15-9, in which the
gradient origin is moved to the bottom right of the element.

radial-gradient(at right bottom, gray, black);

Figure 15-9. Bottom-right origin

Support for the radial-gradient () function is largely the same as for
linear-gradient() when used together with the -moz, -webkit, and -o vendor prefixes.
Like linear-gradient(), the syntax for the radial gradient has gone through some
revisions. An example of a full cross-browser syntax is shown here:

.radial-gradient

{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */
background: -webkit-gradient(radial, center center, Opx, center
center, 100%, color-stop(0%,red), color-stop(100%,orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Firefox 3.6-16 */
background: -moz-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Opera 11.6-12.1 */
background: -o-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Standard syntax */
background: radial-gradient(ellipse at center, red 0%, orange 100%);

}

68

CHAPTER 15 © GRADIENTS

Repeating gradients

Linear and radial gradients do not allow gradient patterns to repeat because they
naturally stretch to fill the element on which they are defined. Two additional functions
are used for creating repeating gradients: repeating-linear-gradient() and
repeating-radial-gradient().

For the purpose of repeating a linear gradient, the repeating-linear-gradient()
function is used. The arguments for this function are the same as for linear-gradient().

repeating-linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

A repeating linear gradient repeats the color stops infinitely. The size of the gradient
is determined by the final color stop. To avoid sharp transitions, the starting color in
Figure 15-10 is repeated at the end.

repeating-linear-gradient(-45deg, white 0, black 10%, white 20%);

3

|

Figure 15-10. Repeating linear gradient

The repeating function for the radial gradient also shares the same syntax as the
nonrepeating version. The example shown in Figure 15-11 illustrates the repeating function.
Note that this gradient has sharp color transitions in contrast with the previous example.

repeating-radial-gradient(black, black 5%, white 5%, white 10%)

Figure 15-11. Repeating radial gradient

69

CHAPTER 15 © GRADIENTS

The syntax for defining gradients is notably more complex than many other CSS
features. For this reason, it can be preferable to use an online tool to graphically design
the desired gradient. One such tool can be found on Colorzilla.com.! In addition to the
standard compliant gradient code, it also provides the prefixed versions necessary for
maximum browser compatibility.

'http://www.colorzilla.com/gradient-editor

70

http:Colorzilla.com

http://www.colorzilla.com/gradient-editor

CHAPTER 16

Box model

The so-called box model of CSS describes the space that is taken up by an HTML element.
In this model, each element consists of four boxes: content, padding, border, and margin,
as illustrated in Figure 16-1.

margin
border
padding

3.
content o
!
~

5 width g

Figure 16-1. CSS box model

Each of the three boxes surrounding the content can have different sizes on the top,
right, bottom, and left of the element. Any or all of these sizes can also be set to zero.

Inline and block

HTML has two primary categories of elements: block and inline. The box model applies
differently to these two kinds of elements, so it is important to know the difference
between them. Examples of inline elements include <a>, and , while

<p>, <h1>, and <form> are block elements.

Inline elements flow along with text content and are split as necessary to fit the width
of their container. They may not contain block elements, with the exception of the <a>
element, which can wrap any type of element.

Block elements can contain both block and inline elements (see Figure 16-2). They
break the flow of text by creating a virtual box around themselves that expand horizontally,
making it appear as if there are line breaks before and after each block element. Because of
these properties, block elements are also referred to as boxes or containers.

71

CHAPTER 16 © BOX MODEL

block 1

inline 1 inline 2 ...

... inline 2 inline 3

block 2

Figure 16-2. Block and inline elements

The boxes surrounding inline and block elements have different features. A block
element can manipulate all properties in the box model, including the width and height
of the content area, as well as the border, padding, and margin. If no width is set, a block
element expands horizontally to the maximum allowed by the containing element.

An inline element is more limited in that it cannot set the vertical margins (top or
bottom). It also cannot change the width or height of its inline box. For an inline element,
the minimum height can be set with the 1ine-height property, but the width and height
adjust automatically to fit the content that the element holds.

There is a subcategory of inline elements, called replaced inline elements, that
use external objects such as , <video>, and <object>; and form elements such
as <input> and <textarea>. With these inline elements, all box properties can be
manipulated the same way as block elements.

Span and div

Using the and <div> elements is a generic way of adding structure to a web document.
These elements have no styles associated with them, which makes them especially well-suited
to work with class and id selectors. The difference between the two is that is an inline
element whereas <div> is a block element.

Inline
<div>Block</div>

As an inline element, is mainly used to add styling to sections of text. It cannot
be used for styling block elements because such elements are not allowed inside of inline
elements according to the HTML specification.

Red text

In contrast, <div> is used to create styled containers for other block and inline elements.
These custom containers are often what make up the layout of a web page. Because it is
ablock element, <div> allows all the element’s box attributes to be manipulated (width,
height, padding, border, and margin).

<div class="a">
<div class="b">Block within a block</div>
</div>

72

CHAPTER 17

Border

The border properties are used to format the border around elements. They can be
applied to any element and they do not inherit.

border-style

To make the border visible around an element, the border-style property has to be set to
a value other than none, which is the default value.

border-style (1-4) | border-top-style |
border-right-style | border-bottom-style |
border-left-style :
none | dashed | dotted | double | groove |
hidden | inset | outset | ridge | solid

The solid border style is the one most commonly used, but there are several other
options for displaying a border, as seen in Figure 17-1. The hidden value removes the
border and is synonymous with none, except that it also hides shared borders in tables
with collapsed borders.

peesssssssnsny - -

Solid_] § Dotted : LI-DashedJ Double

Groowre| I Ridge Inset Outset

Figure 17-1. border-style appearances

The border-style property is one of several properties that can be set with one
to four values. When fewer than four values are specified, the border-style value is
duplicated, as shown in Figure 17-2.

~ N
top right bottom left
S o

Figure 17-2. 1-to-4-value syntax explained

73

CHAPTER 17 © BORDER

Given these rules, the following declarations are synonymous and display a solid
border on the top and bottom of an element:

border-style: solid none solid none;
border-style: solid none solid;
border-style: solid none;

To render all border sides in the same style, only a single style value needs to be specified.
border-style: solid;

The border-style property has four subproperties that can also be used to target
each border side’s style.

border-top-style: dotted;
border-right-style: dashed;
border-bottom-style: ridge;
border-left-style: inset;

border-width

The border-width property, which controls the width of borders, can be set with a unit
of length or with one of the predefined values: thin, medium, or thick. The initial value is
medium, which is typically rendered as 3 pixels.

border-width (1-4) | border-top-width |
border-right-width | border-bottom-width |
border-left-width :

<length> | thin | medium | thick

As with border-style, this property can have one to four values and has four
subproperties for setting the individual borders’ width.

/* Shortcut property */
border-width: thin medium;

/* Full-length properties */
border-top-width: thin;
border-right-width: medium;
border-bottom-width: thin;
border-left-width: medium;

A width of zero means that no border is displayed. This value has the same effect as
setting the style of the border to none.

4

CHAPTER 17 © BORDER

border-color

border-color sets the color of the border. CSS does not specify what the default border
color should be, but most browsers render it gray. This property can have from one to four
values and has four subproperties for setting the individual borders’ color.

border-color (1-4) | border-top-color |
border-right-color | border-bottom-color |
border-left-color :

<color> | transparent

Setting the color to transparent makes the border invisible without changing the layout.

border-color: transparent;

border

The border property can set the width, style and color border properties in a single
declaration. It is the most commonly used property for controlling the border.

border | border-top | border-right |
border-bottom | border-left :
<border-width> + <border-style> + <border-color>

The values can be set in any order because there is no ambiguity between them.
Either one of the values can also be omitted.

border: 1px solid black;

The border property has four subproperties for specifying the border settings for
each of the four sides.

border-top: 1px solid red;
border-right: 1px solid blue;
border-bottom: 1px solid aqua;
border-left: 1px solid lime;

border-radius

The corners of the border can be rounded using the border-radius property or its four
subproperties.

border-radius (1-4) | border-top-left-radius |
border-top-right-radius | border-bottom-right-radius |
border-bottom-left-radius :

<length> | <percentage> [/ <length> | <percentage>]

75

CHAPTER 17 © BORDER

The border-radius property can have from one to four values. Each radius value can
be set by using either one value for a circle radius or two values for an elliptical radius.
The value can be either a length or a percentage. If a percentage is used, it is relative to
the container’s dimensions. The examples that follow are illustrated in Figure 17-3:

.a { border-radius: 5px; }
.b { border-radius: 5px 20px; }
.c { border-radius: 50%; }
.d { border-radius: 30px/10px; }

a b c d

Figure 17-3. Border-radius examples

The radius for each of the four edges can be set using the four subproperties of
border-radius. The following example renders the same as the second box in
Figure 17-3:

border-top-left-radius: 5pX;
border-top-right-radius: 20px;
border-bottom-right-radius: 5px;
border-bottom-left-radius: 20px;

border-radius is a well-supported CSS 3 property. To add support for older
browsers, the -webkit and -moz browser prefixes can be used.

.round {
/* Safari 3-4 */

-webkit-border-radius: 5px;

/* Firefox 1-3.6 */
-moz-border-radius: 5px;

/* Opera 10.5, IE9, Safari 5, Chrome 1, Firefox 4 */
border-radius: 5px;

76

CHAPTER 18

Outline

The outline is a line drawn around an element, outside the border edge. It is typically
rendered as a dotted line around interactive elements to show which element has focus.
Although similar to the border, the outline differs in that it does not take up any space in
the box model. Furthermore, unlike the border, all four sides of the outline must be the
same. The outline properties can be applied to any element, and none of them inherits.

outline-style

The style of the outline is set with the outline-style property. To display the outline,
the value needs to be set to something other than none, which is the default.

outline-style : none | solid | dotted | dashed | double |
groove | ridge | inset | outset

This property allows the same values as border-style, except that hidden is not a
valid outline-style. They are also rendered the same, as illustrated in Figure 18-1.

pressscssssnany - -

Solid_] § Dotted : LI-DashedJ Double

Groovel I Ridge | Inset Outset

Figure 18-1. Outline-style appearances

outline-width

The thickness of the outline is specified with the outline-width property. Like the
border-width property, its value can be a specified length or one of the keywords thin,
medium, or thick.

outline-width : <length> | thin | medium | thick

7l

CHAPTER 18 © OUTLINE

CSS does not specify the numerical thickness of these three keywords, but they
typically render as 1px, 3px, and 5px, respectively. Like border-width, the initial value for
this property is medium.

outline-color

The color of the outline can be changed with the outline-color property. In addition to
the standard color notations, the keyword invert is also a valid value for this property.

outline-color : invert | <color>

To ensure proper contrast, the specification suggests that the default value be
invert, which sets the outline to the opposite of the color underneath. However,
only IE8+ and Opera 7+ actually support this value, so it is not commonly used.

outline

outline is a shorthand property for setting all the preceding outline properties in a single
declaration.

outline : <outline-width> + <outline-style> + <outline-color>

The values can be specified in any order because there is no ambiguity between
them. Either one of them can be left out.

outline: thin solid red;

This has the same effect as setting all the individual properties, but with a more
convenient syntax:

outline-width: thin;

outline-style: solid;
outline-color: red;

outline-offset

The space between the outline and the border edge can be set with the outline-offset
property introduced in CSS 3.

outline-offset : <length>

The following declaration moves the outline 3 pixels outward. Negative values are
allowed, which instead move the outline inside the element.

outline-offset: 3px;

Although this property is not supported in IE, it works in all other major browsers.

78

CHAPTER 19

Margin and padding

Margins and padding are used to adjust the position of an element and to create space
around it.

Padding

Padding is the space between an element’s content and its border. It is set using the
padding properties shown here. These properties do not inherit and can be applied to
any element.

padding (1-4) | padding-top | padding-right |
padding-bottom | padding-left :
<length> | <percentage>

There are four properties for setting the padding on each side individually. In the
following example, the vertical (top, bottom) margins will be 10 pixels, and the horizontal
(right, left) margins will be zero.

padding-top: 10px;
padding-right: O0;
padding-bottom: 10px;
padding-left: 0;

These declarations can be shortened to a single declaration using the padding
property. The padding values are then specified in clockwise order: top, right, bottom,
and left.
padding: 10px O 10px O;

Like many other properties related to the box model, the padding property can be set

with one to four values that correspond to the edges of the element’s box. With fewer than
four values, the padding is repeated as is shown in Figure 19-1.

79

CHAPTER 19 © MARGIN AND PADDING

gt S
top right bottom left
L =

Figure 19-1. 1-to-4-value syntax explained

For instance, if two values are specified, the first value sets the top and bottom
padding, and the second value sets the right and left padding. This gives an even shorter
way of writing the previous example.

padding: 10px 0;

Keep in mind that the padding is part of the element’s background and is affected by
the background properties, whereas the margin is always transparent.

Margin

The margin is the space around an element’s border and is set using the margin properties
listed as follows. These properties are not inherited and can be applied to any element, with
the exception that vertical margins do not affect nonreplaced inline elements.

margin (1-4) | margin-top | margin-right |
margin-bottom | margin-left:
<length> | <percentage> | auto

Margin and padding can both use percentage values, which are relative to the
width and height of the containing element. In contrast with padding, margins can be
negative, which allows for element areas to overlap. The auto keyword lets the browser
automatically calculate the margin.

Like the padding and border properties, the margin property can be set with one to
four values. For example, in the following declaration, the top-bottom margins will be
1 cm, and the right-left margins will be 0:

margin: icm O;

The margin property also has four subproperties, which provide a more verbose
method for setting the margin on each of the four sides.

margin-top: 1cm;
margin-right: o0;
margin-bottom: 1cm;
margin-left: o0;

80

CHAPTER 19 © MARGIN AND PADDING

Top and bottom margins are shared between adjacent boxes, so the vertical
distance between two boxes is not the sum of the margins, but only the greater of the
two margins. Because of this, the distance between the two following <div> boxes will be
only 10 pixels:

<div style="margin-bottom: 5px;">Top box</div>
<div style="margin-top: 10px;">Bottom box</div>

81

CHAPTER 20

Dimension

The dimension properties control the size of an element, as well as its minimum and
maximum dimensions. They do not inherit and can be applied only to block elements
and replaced inline elements.

width and height

The width and height of an element’s content area can be set with the width and height
properties. These two properties can be assigned with either a length or a percentage
value, where the percentage is relative to the parent element’s dimensions.

width | height : auto | <length> | <percentage>

A block element normally stretches out to the edges of its container. In contrast, the
element’s height collapses to fit its content. With the width and height properties, these
default behaviors can be changed. In the following example, elements applying the class
have a width of 100 pixels and a height of 50 pixels. After the dimensions have been set
like this, the element keeps that size, no matter how the page is resized.

.mybox {
width: 100px;
height: 50px;
}

min-width and min-height

The min-width and min-height properties set the minimum dimensions of an element.
The element’s width and height still expand to fit the content, but the element does not
collapse below the specified minimum dimensions, which does not include padding,
borders, or margins.

min-width | min-height : <length> | <percentage>

83

CHAPTER 20 DIMENSION

Valid values for these properties are lengths and percentages, where percentage is
relative to the dimensions of the containing block. For example, the following class makes
an element take up at least half of the available width and height:

.half {
min-width: 50%;
min-height: 50%;
}

max-width and max-height

The maximum dimensions of an element’s content area are set with the max-width and
max-height properties. They can be set with a length or percentage value, as well as the
keyword none to clear a previously set value.

max-width | max-height : none | <length> | <percentage>

By setting both the maximum and minimum width, you can define an interval for the
way the width of an element can vary. A block element using the following class expands
to fill 500 pixels if it can. When horizontal space is limited, the element is allowed to
shrink down to no fewer than 200 pixels.

.mybox {
max-width: 500px;
min-width: 200px;

}

The max-width property has priority over min-width. However, it is the other way
around with the height properties because min-height has priority over max-height.
Thus, an element using the following class has a height of 5 em, unless its content
requires more height. In that case, the element expands vertically up to its maximum
allowed value of 20 em.

.mybox {
max-height: 20em;
min-height: 5em;

}

Keep in mind that the fixed width and height properties should not be used together
with the min- and max- properties. The four min- and max- properties are supported by all
major browsers, including Chrome 1+, Firefox 1+, IE7+, Safari 1+, and Opera 8+. They are
popularly used together with media rules for creating fluid layouts that work well across
different screen sizes.

84

CHAPTER 20 * DIMENSION

box-sizing

The dimension properties normally refer to the content area, not the padding or border
area. Therefore, to know the actual width or height that an element occupies in the box
model, the surrounding padding and border have to be taken into account.

/* 100 pixels wide element */
.mybox {
padding: 3px;
border: 2px solid red;
width: 90px;
}

CSS 3 introduced the box-sizing property to allow web developers a choice of how
widths and heights are calculated. The default value is content-box, which means the
dimension properties refer only to the content area. The alternative border-box value
includes the padding and borders in these measurements.

box-sizing : content-box | border-box

By changing the box sizing to border-box, you can create a grid layout more easily
because you no longer need to take the padding and border sizes into account.

/* 100 pixel wide element */
.mybox {
box-sizing: border-box;
padding: 3px;
border: 2px solid red;
width: 100px;

}

The border-box property does not inherit, but it can be applied to all elements on the
website using the universal selector. To increase browser support, the -webkit and -moz
prefixes should be used.

/* Use border-box for all elements */
*{
/* Chrome 1-8, Safari 3-5 */
-webkit-box-sizing: border-box;

/* Firefox 1-28*/
-moz-box-sizing: border-box;

/* Chrome 9+, Firefox 29+, IE8+, Safari 5.1+, Opera 9.5+ */

box-sizing: border-box;

Browser support for the box-sizing property has become so good that all major
browsers now support it. As such, many new websites have started to employ this
property to simplify the grid calculations for their layouts.

85

CHAPTER 21

Positioning

The positioning properties can change how and where elements are displayed. They
enable very precise control over the web page layout.

position

Elements can be positioned in four different ways using the position property. An
element with the position property set to anything but static is known as a positioned
element.

position : static | relative | absolute | fixed

A positioned element can be moved with the top, left, right, and bottom properties,
which can be used to position elements anywhere on the page and also to resize them
horizontally and vertically. They allow both positive and negative length and percentage
values, with the percentage being relative to the dimensions of the containing block.

top | right | bottom | left (positioned) :
auto | <length> | <percentage>

static

By default, the position property has the value static. This value means that the
element appears in its regular position in the page flow and is not affected by the top,
left, right, or bottom positioning properties.

/* Not positioned element */
.static { position: static; }

Because the position property is not inherited, and static is the default, there is no
need to explicitly set the position property to static.

87

CHAPTER 21 POSITIONING

relative

Changing the position value to relative means that the element can be positioned
relative to its normal position in the page flow. For example, to display a selected element
20 pixels below its normal position, the following declarations are used:

/* Move element 20 pixels down */
.relative {

position: relative;

top: 20px;

}

Relatively positioned elements are considered part of the normal page flow, so other
elements do not move to fill in the gap left by the element.

The effect of moving an element relative to its normal position can also be achieved
by using the element’s margin. This solution is often preferable unless there is a specific
need to make the element positioned, such as whether it will be a container for an
absolutely positioned child element.

/* Move element 20 pixels down */
margin-bottom: -20px;

Keep in mind that changing the margin affects the layout and fills in gaps, whereas
relative positioning does not.

absolute

The position value absolute detaches the element from any containing elements and
allows it to be positioned relative to its nearest positioned ancestor or to the document
body if there are none.

/* Place element in upper left corner */
.absolute {

position: absolute;

top: 0;

left: o;
}

fixed

A fixed element is positioned relative to the screen viewport. It does not move when the
page is scrolled. Similar to absolutely positioned elements, fixed elements do not reserve
any space in the normal page flow.

88

CHAPTER 21 POSITIONING

/* Place element in bottom right corner */
.fixed {

position: absolute;

bottom: 0;

right: 0;
}

overflow

The overflow property decides how content overflow is handled for block elements.
It defaults to visible, meaning that text and child elements that expand beyond the
element’s content area are visible. Setting the value to hidden hides the overflowing
content, and with the scroll value the element’s block becomes scrollable to
accommodate the overflowed content. The auto value is similar to scroll, but the
scrollbars then appear only when necessary.

overflow (block) : visible | hidden | scroll | auto

This property controls the behavior of both horizontal and vertical overflow. Two
additional properties, overflow-x and overflow-y, can be used to differentiate between
how horizontal or vertical overflow is handled. The values for these two properties are the
same as for the overflow property.

overflow: hidden; /* hide all overflow */
overflow-x: hidden; /* hide horizontal overflow */
overflow-y: hidden; /* hide vertical overflow */

clip
The clip property can crop an element into a rectangle if it is positioned as either
absolute or fixed. It uses a CSS function called rect () to specify the clipping region.

clip (absolute | fixed) :
auto | rect(<top>, <right>, <bottom>, <left>)

rect() requires four length values, each separated by commas. These values are
relative to the top-left corner of the element. The example shown in Figure 21-1 cuts out
and displays a 200 x 400 pixel region from the element to which it is applied.

.myclip {

position: absolute;
clip: rect(100px, 500px, 300px, 100px);

89

CHAPTER 21 POSITIONING

Figure 21-1. Shaded region is removed

The keyword auto can be used as a value for the right or bottom side to refer to the
full width or height of the element, respectively. This keyword is also the default value for
the c1ip property, which then means that the element is not clipped.

/* Remove 100px from left and top */
clip: rect(100px, auto, auto, 100px);

/* No clipping */
clip: auto;

To support IE7 and below, the commas in the rect () function need to be left out.
This nonstandard syntax is supported in all major browsers.

/* Backwards compatible IE4-7 syntax */
clip: rect(100px 500px 300px 100px);

Z-index

Positioned elements that overlap each other are normally layered according to their
order in the web document. This natural stacking order can be altered with the z-index

property.

z-index (positioned) : auto | <integer>

90

CHAPTER 21 POSITIONING

The z-index property takes a positive or negative integer as its value, indicating the
stacking order. Elements with a higher value are in front of elements with a lower value, as
in the following example:

<img src="ace-of-hearts.png" style="
position: absolute;
left: o;
top: 0;
z-index: 1;">

<img src="ace-of-spades.png" style="
position: absolute;
left: 100px;
top: 100px;
z-index: 0;">

In this example, shown in Figure 21-2, the ace of hearts is layered on top of the ace of
spades because of its higher stacking order.

A

L 4

4

<>

e

-
Y

Figure 21-2. Customized stacking order

91

CHAPTER 21 POSITIONING

vertical-align

The vertical alignment of text and inline elements within a line can be controlled with the
vertical-align property. This property can also be used on table cell elements.

vertical-align (inline | table-cell) :
baseline | <length> | <percentage> | top | middle |
bottom | text-top | text-bottom | super | sub

By default, the bottom of text and inline elements, such as images, align at the
baseline, which is the invisible line on which all letters sit. The values top and bottom
align the image to the top and bottom of the line, respectively. Less intuitive is the value
middle, which aligns the middle of the image with the middle of lowercase letters in the
parent. The rendering of these common alignment values is illustrated in Figure 21-3.

top bottom
line box

r L
middle line
A y 0 . j.) baseline

baseline middle

Figure 21-3. Common vertical alignment values

Two less-commonly used values for vertical-align are text-bottomand
text-top. The text-bottom value aligns the bottom of the element with the bottom of
the text. Opposite of it, the text-top value aligns the top of the element with the top
of the text. There is also the sub and super values, which align the element to subscript
and superscript positions, respectively. The result of using these values is shown in
Figure 21-4.

su per* *text—top
m ®
=

A

r

Ayo

)|

su bT text-bottom

Figure 21-4. Other vertical alignment values

92

CHAPTER 21 POSITIONING

Elements can also be raised (positive value) or lowered (negative value) with either
alength or percentage value. Both percentage and length values start at the baseline; the
percentage value is relative to the line height.

/* Align text segment 5 pixels below normal text */
Normal Lowered

When applied to table cell elements <th> and <td>, the vertical-align property
behaves as the deprecated valign attribute in HTML. Valid values for table cells are
baseline, bottom, middle, and top. Other values, including lengths and percentages,
should not be used with table cells.

The top value aligns the cell’s top padding edge with the top of the row. Likewise,
bottom aligns the cell’s bottom padding edge with the bottom of the row. More notably,
the baseline value aligns the cell’s content so that it shares the same baseline as other
cells that are baseline-aligned.

In contrast with inline elements that default to baseline, table cell elements are
normally aligned in the middle. For table cells, the middle value behaves in a more
intuitive way by aligning the cell’s padding box in the middle of the row, making the cell’s
content appear centered.

In the following example, the table cell element is vertically aligned at the bottom:

<table>
<tr>
<td style="vertical-align: bottom;">Bottom</td>

</tr>
</table>

Centering

There are several ways to center elements in CSS. A common method is to use the
text-align property with the value center.

.text-center { text-align: center; }

By applying this property to the containing element, text within it is center-aligned.
<p class="text-center">Centered text</p>

This method works for text and inline elements, but not for block elements. To center
block elements, the left and right margins can be set to auto, which makes the horizontal

margins equally large, causing the block to be centered.

.box-center { margin: 0 auto; }

93

CHAPTER 21 POSITIONING

Keep in mind that for a block element to appear centered, its width must be fixed
and not flexible; otherwise, it takes up all the available width.

<div style="width: 50px; height: 50px;
border: 1px solid black;"
class="box-center"></div>

For vertical centering, the easiest way to align content to the middle is to use the
vertical-align property on the parent element with its value set to middle. This
behavior only works as expected for table cell elements, so the container needs to be
changed into one, as in the following example using the display property:

<div style="vertical-align: middle;

display: table-cell;
min-height: 100px;">Centered</div>

94

CHAPTER 22

Classification

The classification properties specify how an element is displayed and whether it is visible.

display

The display property determines the kind of box that surrounds an element. It can make
any element appear as inline, block, or any other type. Every element has a default display
value that depends on what type of element it is.

display : none | inline | block | list-item | inline-block |
inline-table | table | table-cell | table-row |
table-column | table-column-group | table-footer-group |
table-header-group | table-row-group | flex | inline-flex |
grid | inline-grid | run-in

Most HTML elements display as either inline or block; others have special display
properties, such as list-itemfor the <1i> element and table-cell for the <td> and <th>
elements. By using the display property, any element can be changed to be rendered as
these or any other element type. For instance, the following link is rendered as a block
element instead of an inline element:

Block link

One of the more useful values for display is inline-block, which combines features
of both block and inline. An inline-block element is like an inline element, except that
it can also manipulate the width, height, and vertical margin properties of the box model
as a block element does. These features are the same as those of replaced inline elements,
such as and <button>. As such, these elements were formally redefined as
inline-block elements in HTMLS5.

95

CHAPTER 22 CLASSIFICATION

A common application of inline-block is to make list item elements (<1i>) suitable
for horizontal navigation menus. Note that changing the display type of the list item
element from list-itemto inline-block automatically removes the list marker.

1i {
display: inline-block;
width: 100px;
background: #ccc;

}

With this rule in place, the following markup renders three boxes with gray
backgrounds next to each other, as illustrated in Figure 22-1.

Item one</1i>
Item two</1i>
Item three

Item one Item two Item three

Figure 22-1. The inline-block value demonstrated

Another useful display value is none. It completely hides an element, making the
page render as if the element did not exist.

.removed { display: none; }

visibility
The visibility property can hide an element without removing the space it occupies by
setting the property's value to hidden.

visibility (block) : inherit | visible | hidden | collapse

The collapse value is meant to be used only on certain table elements: rows (<tr>),
columns (<col>), column groups (<colgroup>), and row groups (<thead>, <tbody>, and
<tfoot>). According to specification, collapse should remove the hidden element (same
asdisplay: none)and make the space available for other elements to claim. Regrettably,
not all major browsers follow the specification for this value. Setting the display property
to none results in more consistent browser behavior and should be used instead.

96

CHAPTER 22 ' CLASSIFICATION

opacity

The opacity property can make an element and its content transparent.
opacity : <number>

A decimal value between 0.0 and 1.0 is used to set the transparency. With a value
of 1, the element is opaque; 0 renders the element fully transparent, or invisible.

.half-transparent { opacity: 0.5; }

Support for this CSS 3 property is included in Chrome 1+, Firefox 1+, IE9+,
Safari 1.2+, and Opera 9+. IE support can be greatly enhanced using the following filter:

.half-transparent {
filter: alpha(opacity=50); /* IE5-8 */
opacity: 0.5;

float

The float property detaches an element from its containing element and makes it
float on top of it, either to the left or right side. It is intended for wrapping text around
images, but is also commonly used for making layouts. Floating an inline element
automatically changes it into a block element.

float : none | left | right

To have text and other inline content wrap around an image, you can float it to the
left or right.

As for layouts, floats allow block elements to be lined up horizontally. For instance,
a grid of boxes can be created with the following class:

.box {
float: left;
width: 100px;
height: 100px;
margin: 0 lem;
background: #ccc;
border-radius: 10px;

97

CHAPTER 22 CLASSIFICATION

This class makes boxes stack up horizontally instead of vertically, which is the
normal behavior for block elements (see Figure 22-2).

<div class="box"></div>
<div class="box"></div>
<div class="box"></div>

Figure 22-2. Floated boxes

A side effect of using floats is that any element that follows these floated boxes also
lines up horizontally. The clear property is designed to stop this behavior.

clear

The clear property is used to clear floating elements from the left, right, or both sides of
an element.

clear (block) : none | left | right | both

This property is commonly given its own class that has the same name as the
property.

.clear { clear: both; }

An empty div container with the clear class is typically placed after the floated
elements. This cleared element is moved below the floating elements instead of
appearing next to them.

<div class="clear"></div>

Because floated layouts tend to be complex and fragile, they have generally been
superseded by other layout methods, such as the use of the positioning properties.

In the box-aligning example given earlier, a better alternative is to change the box to
an inline-block element. This accomplishes the same task, while removing the need to
clear the floated elements.

98

CHAPTER 22 ' CLASSIFICATION

.box {
display: inline-block;
width: 100px;
height: 100px;
margin: O lem;
background: #ccc;
border-radius: 10px;

cursor

The cursor property specifies what cursor users see when they hover over an element.
The default value is auto, meaning that the browser decides what cursor to use. Standard
cursor values and their appearance can be seen in Table 22-1.

Table 22-1. Standard cursor values

. default ointer 1{—? move
% W

=) it 7, ™ hel [\“~ text-
wal [\'@: progress [13? ep J\E context-menu

CO
A Py

I ns-resize +—F ew-resize I text — vertical-text
T n-resize —$ e-resize L s-resize 4+— w-resize

A ne-resize ™4 se-resize g~ sw-resize F.. nw-resize
.{,:l news-resize F\: nwse-resize EIL}‘ cell E:’E alias

Fe

® not-allowed +"+ col-resize % row-resize 4@ p all-scroll
-

no-drop —~— crosshair
e

In addition to these values, custom cursors can be defined using the url function.
If this cursor is not available, a generic cursor can be specified after the custom one,
separated by a comma.

cursor: url(new.cur), pointer;

99

CHAPTER 23

List

The CSS list properties deal with the list elements, specifically the , , and <1i>
elements.

list-style-type

Lists are rendered with a marker shown before each list item element (<1i>). The
appearance of this marker can be changed using the list-style-type property. For an
unordered list (), each list item is marked in the same way. The predefined bullet
values shown here can be used, with disc (a filled circle) as the default value:

list-style-type : inherit | disc | circle | square | none

In an ordered list (), each list item is marked with a numeric character to show
its position in the sequence. All major browsers support the following numeric types, with
decimal as the initial value:

list-style-type : inherit | decimal | none | upper-alpha | lower-alpha |
upper-roman |
lower-roman | lower-greek | lower-latin |
armenian | georgian |
decimal-leading-zero

The following example assigns a new list style for the two list elements. It is possible
to make the display ordered markers and the to display unordered markers, but
this is not good practice.

ul { list-style-type: square; } /* m */
ol { list-style-type: upper-roman; } /* I, II, III, ... */

The color of the marker is the same as the text color of the list element. Keep in mind

that any element can be made to display list markers by changing its display type to
list-item.

101

CHAPTER 23 © LIST

list-style-image

As an alternative to the predefined markers, using the list-style-image property allows
a custom image to be used as the list bullet.

list-style-image : inherit | none | url(<url>)
The image path is specified inside of the CSS url function.
list-style-image: url(my-bullet.png)
This property overshadows any marker type selected with the list-style-type

property. Even so, it is a good idea to specify a 1ist-style-type as a fallback in case the
custom bullet image is unavailable for any reason.

list-style-position

The list marker is normally positioned outside of the element box. 1ist-style-position
provides an alternative: to place the bullet inside of the element box.

list-style-position : inherit | outside | inside
Selecting outside aligns each line of text with the start of the first line, whereas

inside causes successive lines of text to wrap underneath the marker. The inside value
also visually indents the marker, as shown in Figure 23-1.

Figure 23-1. Outside and inside marker placement

list-style

list-style is the shorthand property for setting all the list properties. The values can be
set in any order because there is no ambiguity between them. Any one of the values can
also be omitted, in which case the default value for that property is used.

102

CHAPTER 23 I LIST

list-style : <list-style-type> + <list-style-image> + <list-style-position>

In the following example, the type and position values of the 1ist-style are set,
which are inherited to the list items.

<ul style="list-style: inside square;">
Apple</1i>
Orange</1i>
Pear</l1i>

Keep in mind that list properties can not only style the list containers and
but also style an individual list item <1i>.

Counters

Elements can be numbered automatically in CSS using the counter-increment and
counter-reset properties. The counter-reset property specifies the name of the
counter. It is optionally followed by the counter’s initial value, which is zero by default.

/* Create a counter named chapter */
body { counter-reset: chapter; }

The counter-increment property takes the counter’s name followed by an optional
number. The number, which sets how much the counter is incremented for every
occurrence of the element, is 1 by default.

/* Increment the counter at each <hi> */
hi:before { counter-increment: chapter; }

The final step of creating a counter is to display it by using the CSS counter()
function with the name of the counter as its argument. In this example, the chapter
number is shown before the <h1> elements:

/* Increment and display the counter */
h1:before {
content: "Chapter " counter(chapter) " - ";
counter-increment: chapter;

}

The counter now adds the chapter number before <h1> elements.
<h1>First</h1> «<!-- Chapter 1 - First -->

<h1>Second</h1> <!-- Chapter 2 - Second -->
<h1>Third</h1> <!-- Chapter 3 - Third -->

103

CHAPTER 23 © LIST

Another counter can be added to also enumerate <h2> subheadings. This counter is
here reset to zero at every <h1> element:

h2:before {
content: counter(chapter) "." counter(section) " ";
counter-increment: section;

}

hi { counter-reset: section; }
The following example illustrates how the counters are displayed:

<h1>Head</h1> <!-- Chapter 1 - Head -->
<h2>Sub</h2> <!-- 1.1 Sub -->
<h2>Sub</h2> <!-- 1.2 Sub -->
<h1>Head</h1> <!-- Chapter 2 - Head -->
<h2>Sub</h2> <!-- 2.1 Sub -->

Nesting counters

CSS counters can be nested any number of levels deep. These nested counters can be
combined and displayed using a CSS function called counters(). The function’s first
argument is the counter name, and the second is a string that separates each counter.

ul { counter-reset: item; }
li:before {
content: counters(item, ".") " ";
counter-increment: item;

}

These rules apply to the following unordered lists (note that a new counter instance
is automatically created for every nested list):

<liritem</1i> <!-- 1 item -->
item</1i> <!-- 2 item -->

<liritem</1i> <!-- 2.1 item -->
<liritem</1i> <!-- 2.2 item -->

Counters are supported in all major browsers, including all versions of Chrome,
Firefox, Safari, and Opera, as well as IE8+.

104

CHAPTER 24

Table

CSS has a number of properties that are used specifically with table elements. These
properties offer control over how browsers render tabular data.

border-spacing

The distance between the borders of adjacent table cells can be changed with the border-
spacing property, which is the CSS equivalent of the cellspacing attribute in HTML.
W3C defines the initial value for this property as 0, but most browsers render it as 2px by
default.

border-spacing : inherit | <length> [<length>]

This property can be specified with either one or two length values. With two values,
the first one sets the horizontal spacing, and the second one sets the vertical spacing.

.spacing {
border-spacing: 5px 10px;

}

border-spacing is a property of the table, not the cells, so it is applied to the <table>
element as in the following example:

<table class="spacing">
<caption>My Table</caption>
<tr>
<td>1st cell, 1st row</td>
<td>2nd cell, 1st row</td>
</tr>
<tr>
<td>1st cell, 2nd row</td>
<td>2nd cell, 2nd row</td>
</tr>
</table>

105

CHAPTER 24 © TABLE

This table is illustrated in Figure 24-1, with a solid border applied to the <td>
elements.

My Table

Ilsl cell, 1st row ”211d cell, 1st row I

Ilst cell, 2nd mwl |211d cell, 2nd rowl

Figure 24-1. Example table

Table cells have borders and padding, but they do not have any margins; they have
border-spacing instead. Padding works the same as for other elements and behaves like
the cellpadding attribute in HTML.

border-collapse

The border-collapse property determines whether the table borders are collapsed into a
single border or separated.

border-collapse : inherit | separate | collapse
Normally, table cells have their own distinct borders and are separated by the
distance set with the border-spacing property. If the borders are set to collapse instead,

the cells share borders, and any value for the border-spacing property is ignored.

table { border-collapse: collapse; }

caption-side

The <caption> element provides a label for a table. Its position can be changed using the
caption-side property.

caption-side : inherit | top | bottom
A caption is ordinarily displayed at the top, but it can also be positioned below the
table using the caption-side property. This property applies to the <caption> element,

but it can also be set for the <table> element because it inherits.

caption { caption-side: bottom; }

106

CHAPTER 24 © TABLE

empty-cells

A table cell without any content normally still displays its border and background. This
behavior can be changed with the empty-cells property.

empty-cells : inherit | show | hide

Setting the value for this property to hide causes the cell’s border and background to
be hidden. The layout of the table is not affected.

table-layout

The table-layout property determines whether the width of table cells should be fixed
or flexible. Unlike the other table properties, table-1layout is not inherited.

table-layout : auto | fixed

This property is initially set to auto, which means that the width of table cells
automatically expands to fit their content, even if that means going beyond their set
width. To enforce a table's specified width, the table-layout can instead be set to fixed.
The horizontal layout then depends only on the table's set width, not on the content of
the cells.

/* Enforce table width */
.fixed { table-layout: fixed; }

A fixed table layout has the added benefit that the browser can render the table more
quickly because it knows the dimension of the table as soon as the first row is received.

107

CHAPTER 25

Media

CSS provides a way to present documents differently, depending on the device on which
they are viewed. Such conditional style rules are placed within a media rule, which
consists of @media, followed by an expression that limits the scope and a set of curly
brackets that encloses the conditional style rules.

@media screen {
/* screen devices only */

}

Media types

The media type condition, which was introduced in CSS 2, lists the following valid values,
including the default value all for targeting all device types:

all | aural | braille | handheld | print | projection | screen | tty | tv |
embossed

Unfortunately, the media type does not tell much about the device, so it is seldom
used for its intended purpose. Modern smartphones, tablets, laptops, and desktop
computers all identify themselves as screen types. The main use of the media type
condition today is to differentiate between onscreen and printed documents to enable
more print-friendly document formatting.

/* Print only */
@media print

{
/* Hide navigation */
#navigation { display: none; }

/* Start h1 elements on a new page */
hi { page-break-before: always; }

109

CHAPTER 25 © MEDIA

Media rules are typically placed at the bottom of the style sheet, which allows the
cascade to override the rules defined earlier. If the style sheet contains a lot of conditional
rules, it might be preferable to move them to a separate style sheet that is included
after the primary style sheet. The media condition can then be specified with the media
attribute on the <link> element.

<link rel="stylesheet" media="print" href="myprint.css">

This style sheet contains the print condition, so it is applied only when the document
is sent to print media. Keep in mind that browsers still download a style sheet, even if its
media condition is false.

Media queries

CSS 3 went a step farther by allowing media rules to target the capabilities of the device,
not just its type. It introduced a wide range of media features that can be targeted, as seen
in the following list. All these features, except for orientation, grid, and scan, can be
prefixed with min- or max- to define constraints.

width | height | device-width | device-height | aspect-ratio | device-
aspect-ratio | resolution | orientation | color | color-index | monochrome

The most important media features, min-width and max-width, allow you to create
responsive designs in which the site layout changes based on the viewport of the device’s
browser.

A media query combines a media type and a condition consisting of one or more
media features. For example, the rules within the following media query are applied only
when viewed on screen-based media with a minimum width of 600 pixels:

@media screen and (min-width: 600px) {}

Media queries are case-insensitive, and parentheses around the condition are
required. The and operator seen here is used to combine the media type and the media
feature, but it can also combine multiple media features together:

@media (max-width: 500px) and (min-aspect-ratio: 1/1) {}
This media query is true if the viewing device has a max width of 500 pixels and at

least a 1:1 aspect ratio (square or landscape viewport). Notice that the media type is left
out here, so the rule applies to all media types.

110

CHAPTER 25 © MEDIA

Logical operators

In addition to the logical and operator, media queries can include the logical not and only
operators as well as the logical or operation. The comma (,) is used as the or operator to
separate groups of multiple queries. The following media rule is true if either the screen is
atleast 700 pixels wide or if the device is in landscape mode:

@media (min-width: 700px), (orientation: landscape) {}

The not operator is used to negate an entire media query. It cannot negate an
individual feature. For example, the following media rule applies only if the device screen
is not 800 pixels wide:

@media not screen and (device-width: 8oopx) {}

The only operator was added to hide media queries from older browsers. According
to the specification, browsers that do not support media queries should interpret the
following rule as being applied to the only media type, which is invalid and thereby
causes the conditional style rules to be ignored.

/* Not applied in older browsers */
@media only screen and (min-width: 600px) {}

Regrettably, IE6-IE8 did not implement the specification correctly. The media query
is therefore ignored even if the only keyword is left out, instead of then applying the
media rule to all screen-based devices.

/* Not applied in IE 6-8 */
@media screen and (min-width : 600px) {}

Note that both the not and only operators require the use of an explicit media type,
whereas the logical o (,) and logical and operators do not.

Support for media queries has become widespread in all major browsers. The
min-width and max-width queries, for example, are supported in Chrome 1+, Firefox
3.5+, IE9+, Safari 4+, and Opera 8+.

Testing media queries

It is important to test your media queries to make sure that your site looks good in as
many devices as possible. The latest web browsers all re-evaluate media queries as the
browser environment is changed (when the window is resized, for example). You can test
how your design responds to different device dimensions just by resizing your browser
window. A useful site that can help you during this testing process is ProtoFluid,' which
allows you to see how your site will look on many tablet and smartphone devices.

thttp://protofluid.com

111

http://protofluid.com/

CHAPTER 25 © MEDIA

Responsive design guidelines

When designing a responsive layout, it is often easiest to start with the mobile layout first
and define how it looks without any media rules. As you expand the viewport, notice
when this layout ceases to look good. This is the breakpoint at which you should change
the part of the layout that visually breaks or ceases to be useful. This change might
include adding a second column or changing to a more advanced navigation menu. You
define these breakpoints using the min-width and max-width media features to override
styles as the viewport gets larger, as shown in the following example. Continue this
method of finding breakpoints until you reach a high enough resolution. Depending on
your layout, you might need to define only a few breakpoints.

@media (min-width: 800px) {
body { background: red; }

}
@media (min-width: 401px) and (max-width: 799px) {
body { background: green; }

}

@media (max-width: 400px) {
body { background: blue; }

}

112

CHAPTER 26

Best practices

You now have an understanding of the fundamentals of CSS. This final chapter takes a
step back to look at good coding practices and standards for style sheet development.
Following these guidelines can help you write robust CSS code that is easy to maintain,
reuse, and extend upon.

Reusable code

A key idea to a manageable style sheet is to avoid duplicate code. Classes help achieve
this goal because they are reusable and can be combined in different ways, giving you a
flexible design that is easy to evolve.

Any time you find page items that share style properties, you should consider
combining those repeating patterns. This makes it easier to reuse and update the code as
well as to maintain style consistency on the site. Consider the following simple example:

.module {
width: 200px;
border: 1px solid #ccc;
border-radius: 3px;

}

.widget {
width: 300px;
border: 1px solid #ccc;
border-radius: 3px;

}

These classes have two styles in common that can be moved into a third class to
avoid unnecessary repetition. This process makes the classes more generic and therefore
more reusable.

.box-border {
border: 1px solid #ccc;
border-radius: 3px;
}
.module { width: 200px; }
.widget { width: 300px; }

113

CHAPTER 26 © BEST PRACTICES

When optimizing classes for reuse, it is important to consider their size. The goal is to
find the middle ground between classes that are not too broad or too narrow. Too-broad
classes lead to unnecessary repetition; too-narrow classes make it difficult to change
the design.

Global modifiers

There are certain style properties that are very commonly used. Instead of adding these
styles to every other class, it is sometimes better to create a general class with that single
style, which you can then apply to the elements that need it. For example, floating
elements to the left or right is such a common operation. These styles are well suited as
global modifiers.

deft { float: left; }
.right { float: right; }

When you want an element floated to the right or left, you can simply add one of
these classes to the element:

<div class="left">...</div>

Global modifiers such as these can be very useful when just a single style property
is needed. However, you should avoid combining several of them because it can become
difficult to adjust your design if all page items are composed of such small classes.

Style sheet structure

By organizing your style sheets, you can make it easier for yourself and other developers
to quickly understand the structure of your CSS. The larger a site becomes, and the more
developers are involved, the greater is the need to keep things well-organized. But it is
good practice to always keep your style sheets well-structured, regardless of the size of the
web site.

The top portion of a style sheet usually includes information about the file and its
author. This metadata should include the author’s name and contact information. This
way, if any questions come up about the document, the developer currently working on
the site knows whom to ask. Other potentially useful metadata includes the file’s creation
date, last modified date, version number, title, and description.

/*
* Title: My Theme
* Version: 1.2.3
* Author: My Name
*/

114

CHAPTER 26 * BEST PRACTICES

As for the style rules, they should be grouped into sections, and each section should
be labeled with a distinguishing comment. This grouping and labeling enables you to find
what you need much more quickly. The sections you need depend on the site, but here
are some example sections:

/* === Normalization === */

/* === Primary layout === */
/* === Secondary layout === */
/* === Tertiary layout === */
/* === Navigation === */

/* === Text-related === */

/* === Links and images === */
/* === General styles === */
/* === General classes === */
/* === Miscellaneous === */

The equal signs after the section name help visually distinguish the sections from
other comments. They also act as a marker that you can search for to easily traverse
the sections.

With large style sheets, the section names can be listed as a table of contents below
the metadata, which makes it easier for developers to get an overview of how the file is
organized.

/* Table of Contents
Normalization
Primary layout (body, primary divs)
Secondary layout (header, footer, sidebar)
Tertiary layout (page regions)
Navigation (menus)
Text-related (paragraphs, headings, lists)
Links and images
General styles (forms, tables, etc.)
General classes (.clear, .center, etc.)
Miscellaneous

*/

Within each section, you should declare your most generic rules first, followed by
rules with increasing specificity. Your elements can inherit styles, and it is easier for you
to override specific styles when needed.

Another thing to consider is how to structure properties within a rule. A popular
approach is to group the properties according to type. You do not have to label the
groups as in the following example, but it helps if you keep the groups in the same order
throughout your style sheet. Doing so enables you to more quickly scan through the rules
in search of specific properties.

115

CHAPTER 26 © BEST PRACTICES

.myclass {
/* Positioning */
position: absolute;
top: 0;
right: 0;

/* Box model */
display: inline-block;
width: 100px;

height: 100px;

/* Color */
background: #ccc;
color: #fff;

/* Text */
font-size: 1em;
line-height: 1.2;
text-align: right;

/* Other */
cursor: pointer;

Keep in mind that these are only guidelines; choose a structure that works for you
and aim to keep it consistent.

Naming conventions

It is helpful to name classes and ids in a way that clarifies their intended use. This
structural naming convention means that the name should describe what the class or id
is used for instead of what it looks like or where it is used in the web document.

The advantage of this naming convention is that it becomes easier to change the
look of your web site. For example, naming an id container #main-content is better than
naming it #center-column-500px. In addition to intuitively understanding the use of the
id, the first name is more versatile in case you later need to adjust the position or size of
the element it is applied to.

#main-content {
width: 500px;
margin: 0 auto; /* centered */

}

Names should be semantic, but not so semantic that they limit reuse. For instance,
naming a class . header-top-margin is not as flexible as naming the class . small-top-margin
(or .small-tm). To later recall that the class is mainly used in the header is easy enough;

116

CHAPTER 26 * BEST PRACTICES

for example, you can search for the class name using the search function when viewing
the page source in a web browser.

.small-top-margin { margin-top: lem; }

In addition to conveying intended use, the class name can also show its relationships
to other classes. For example, if a container class is called .post, the title for that
container can be named . post-title to show that the class should be used only within
an element applying the . post class.

.post {
margin: lem O;
}
.post-title {
font-size: 1.2em;

}

The title class could also have been written as .post.title to ensure that the .title
class can be used only within a container using the . post class. However, the .post-title
name helps avoid naming conflicts and does not increase specificity, so that naming
convention is often preferable. Notice that the relationship between the rules is further
emphasized using indentation, which can significantly improve the code’s readability.

Normalization

Different browsers render some elements slightly differently, mainly because of variations
in their default style sheets. To get a shared baseline, it is common to include a group of
rules that normalize these browser inconsistencies and set reasonable defaults. The most
popular choice for this is the GitHub Normalize.css project.! By including these rules

at the top of your style sheet (or a subset of them per your site’s requirements), you

have a consistent starting point across all browsers from which you can build. The
Normalize.css style sheet includes ample comments that explain each browser
inconsistency that it resolves.

Debugging

There are many useful debugging tools available that can significantly simplify your work as
aweb developer. The Firebug extension for Firefox is one of the most powerful of these tools.
It allows you to edit and debug CSS, HTML, and JavaScript live on any web page for testing
purposes. You can also toggle styles on and off, as well as discover exactly which styles apply
to a selected element. To learn more about Firebug, visit the official Firebug web site.

'http://necolas.github.io/normalize.css/
*https://getfirebug.com

117

http://necolas.github.io/normalize.css/

https://getfirebug.com/

CHAPTER 26 © BEST PRACTICES

Functionalities similar to Firebug are available on Chrome through the Chrome
Developer Tools that come built in to the browser. You can bring up the DevTools window
with the shortcut Ctrl+Shift+I on Windows or Cmd+Opt+I on Mac. Alternatively, you can
right-click on an element on the page and select Inspect Element to bring up the same
window in element inspection mode.

Validation

It is a good idea to check that your CSS complies with the W3C standard. Improper code
may cause unexpected results in how your site appears in different browsers. Moreover,
having error-free code is a sign of a quality web site.

The W3C provides its own online tool for validating CSS.? It checks a submitted page
and returns any errors and warnings found on the page for you to fix. It also has a similar
tool for validating HTML documents,* which is just as important to do. To make validation
even more convenient, you can download a browser plug-in that checks the page’s code
for you, such as the Web Developer plug-in available on Chrome, Firefox, and Opera.®

Single style sheet

For performance reasons, it is best to include a site’s style rules in a single external style
sheet. Doing so minimizes the number of HTTP requests necessary to load the web site,
while allowing the CSS file to be cached so that the visitor’s browser has to download it
only once.

During development of a large site, it is often preferable to separate style rules into
several more-manageable CSS files. To have the best of both worlds, these development
files can be combined into a single file as part of the site’s build process. One useful tool
for this purpose is Bundle.® When your site design has become stable, this tool can also be
used to minify your CSS.

Minification is the process of removing unnecessary characters from code to reduce its
size. When a CSS file is minified, whitespace characters are removed, and the rules are

optimized and restructured to load more quickly. This compression can greatly reduce
the size of the file, which improves site performance at the cost of code readability.

*http://jigsaw.w3.org/css-validator/
*http://validator.w3.org
Shttp://chrispederick.com/work/web-developer/
https://github.com/ServiceStack/Bundler

118

http://jigsaw.w3.org/css-validator/

http://validator.w3.org/

http://chrispederick.com/work/web-developer/

https://github.com/ServiceStack/Bundler

CHAPTER 26 * BEST PRACTICES

Because of the reduced readability, it is preferable to work with the uncompressed
style sheet and have the minification step repeated whenever the CSS file is updated.
Minification can be done automatically (for example, by using the Bundle tool mentioned
earlier) or manually with an online tool such as Clean CSS.”

One optimization that minification tools cannot do is to find and remove unused
CSS rules. A useful Firefox plug-in that can help you perform this task is Dust-Me
Selectors.? This plug-in can test pages individually and also scan through an entire site in
search of unused selectors.

Cross-browser testing

Even with your code normalized and validated, there can still be some differences in the
way a web page is rendered in various browsers, especially in older versions. It is therefore
necessary to test your site in all the browser versions you want your site to support.

To make this testing process easier, you can use BrowserStack,’ which is an online
tool for checking browser compatibility. It shows you how your site will look on different
versions of the browsers you select. You can also see how your site will look on mobile
devices and tablets.

www.cleancss.com
Swww. sitepoint.com/dustmeselectors/
‘www . browserstack.com/screenshots

119

http://www.cleancss.com/

http://www.sitepoint.com/dustmeselectors/

http://www.browserstack.com/screenshots

Index

A

Absolute units, 39

Attribute selector
delimited value, 12
end value, 13
language, 11
start value, 12
substring value, 12
value, 11

B

Background-attachment property, 58
Background-clip property, 60
Background-color property, 57
Background-image property, 57
Background-origin property, 60
Background-position property, 58
Background property, 61
Background-repeat property, 58
Background-size property, 59
Border-color property, 75
Border properties

border-color, 75

border-radius, 75

border-style, 73

border-width, 74

subproperties, 75
Border-radius property, 76
Border-style property, 73
Border-width property, 74
Box model, CSS

block elements, 71

inline elements, 71

 and <div> elements, 72
Box-shadow property, 49

C

Classification properties
clear, 98
cursor, 99
display, 95
float, 97
opacity, 97
visibility, 96
Class selector, 7
Clip property, 89
Color property, 47
Colors
hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37
named notation, 35
RGBA notation, 36
RGB notation, 36
short hexadecimal notation, 36
Comments, 3
Cross-browser testing process, 119
CSS
comments, 3
external style sheet, 2
inline style, 1
internal style sheet, 1
testing environment, 2
view source, 3
whitespace, 4
properties
counter-reset property, 103
generic keywords, 43
list-style, 102
list-style-image, 102
list-style-position, 102
list-style-type, 101

121

INDEX

CSS (cont.)
nesting counters, 104

progressive enhancement, 45

quirks mode, 44
vendor prefixes, 44
validation, 118

D

Debugging, 117

Dimension properties
box-sizing, 85
max-width and max-height, 84
min-width and min-height, 83
width and height, 83

Direction

E

property, 48

External style sheet, 2

F

Font

@font-face rule, 55
font-family, 53

font p

roperty, 54

font-size, 53
font-style, 54
font-variant, 54
font-weight, 54
Font-relative units, 40

G

Generic keywords, CSS, 43
Global modifiers, 114
Gradients, 63
linear-gradient() function (see

radial

Linear-gradient() function)
gradients

bottom right origin, 68
circular, 67

resized, 67

set stop positions, 66
simple, 65

size keywords, 67

H

Hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37

LJ, K

Id selector, 8
Inline style, 1
Internal style sheet, 1

L

Letter-spacing property, 51

Linear-gradient() function, 63

bottom right
linear gradient, 64

simple linear gradient, 64

with multiple
color steps, 65
Line-height property, 51

Margin, 79
declarations, 80
properties, 80
subproperties, 80
Media
logical operators, 111
queries, 110-111
responsive layout, 112
types, 109
Minification, 118
Multiple backgrounds, 62

N

Named notation, 35
Naming convention, 116
Normalization, 117

(0

Outline

repeating gradients, 69
Grouping

declarations, 5-6

selectors, 5-6

ungrouped rules, 5

122

outline-color property, 78
outline-offset property, 78
outline-style property, 77
outline-width property, 77
single declaration, 78

Outline-color property, 78
Outline-offset property, 78
Outline-style property, 77
Outline-width property, 77
Overflow property, 89

PQ
Padding
declarations, 79
properties, 79
Positioning properties
absolute value, 88
clip, 89
fixed value, 88
overflow, 89
relative value, 88
static value, 87
text-align, 93
vertical alignment
text-bottom, 92
text-top, 92
z-index, 90
Progressive enhancement, 45
Pseudo-classes
dynamic
active and hover, 16
focus, 17
link and visited, 16
lang(), 24
not, 25
structural, 17
empty, 21
first-child, 17
first-of-type, 19
last-child, 18
last-of-type, 19
nth-child(an +b), 19
nth-last-child(an + b), 21
nth-last-of-type(an + b), 21
nth-of-type(an + b), 20
only-child, 18
only-of-type, 18
root, 22
target, 24
Pseudo-elements, 15
before and after, 15
first-letter
and first-line, 15
Pseudo selectors, 15

INDEX

R

Radial gradients
bottom right origin, 68
circular, 67
resized, 67
set stop positions, 66
simple, 65
size keywords, 67

Relationship selectors
adjacent sibling selector, 28
descendent selector, 29
direct child selector, 29
general sibling selector, 30
HTML hierarchy, 27-28
inheritance, 28

Relative units, 39

Repeating gradients, 69

Reusable code, 113

RGBA notation, 36

RGB notation, 36

S

Short hexadecimal notation, 36
Single style sheet, 118
Spacing
letter-spacing property, 51
line-height property, 51
white-space property, 52
word-spacing property, 51
Specificity
cascade method, 32
class selector, 31
guidelines, 33
Id selectors, 31
type selectors, 31
universal selector, 31
web designers, 32
Style sheet structure, 114
Styling, 1

T

Table
border-collapse property, 106
border-spacing property, 105
caption-side property, 106
empty-cells property, 107
table-layout property, 107

123

INDEX

Text
box-shadow property, 49
color property, 47
direction property, 48
text-align property, 48
text-decoration property, 47
text-indent property, 48
text-shadow property, 49
text-transform property, 47
Text-align property, 48, 93
Text-decoration property, 47
Text-indent property, 48
Text-shadow property, 43, 49
Text-transform property, 47
Typographical units, 39

U

Units
absolute units, 39
font-relative units, 40
relative units, 39
typographical units, 39

124

values, 41
viewport units, 41

User interface

pseudo-classes

checked, 23
enabled and disabled, 22
required and optional, 24
valid and invalid, 23

\"

Vendor prefixes, 44
Viewport units, 41

W, X, Y

Whitespace, 4
White-space property, 52
Word-spacing property, 51

y4

z-index property, 90

CSS Quick Syntax
Reference

Mikael Olsson

Apress’

CSS Quick Syntax Reference Guide
Copyright © 2014 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6490-3
ISBN-13 (electronic): 978-1-4302-6491-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewer: Victor Sumner

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo

Copy Editor: Nancy Sixsmith

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waww.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com

http://www.springeronline.com

http://rights@apress.com

http://www.apress.com

http://www.apress.com/bulk-sales

www.apress.com

http://www.apress.com/source-code/

Contents

About the AUthOrccccmmsimmmmsessssss s nans Xv
About the Technical ReVIEWErccsseusssassssassssnsssassssassssnsssassssasssas xvii
Introduction........cccccmnemmmmnmnmsssnnmssssnmssssss s Xix
Chapter 1: USing CSS......c.cccirusmmmmsmmmsssssmssssssssssssssssssssssssssssnssssansss 1
Internal style ShEet.........oo e —— 1
INHNE SIYIE ... snenens 1
External style Sheet.........corcrcrcr 2
Testing environmeNt...........cccvcrcrcncnsr s s 2
VIBW SOUICE......eeecererrceresesessssesesssesesssesesas e e sas s e sassssesasssssssssssssssanaees 3
COMMENTS ... s 3
WRITESPACE........ererererir st 4
Chapter 2: GrouPing......cccuserrsssnsesssnsssssssssssnsesssnsssssnsssssanssssanssssanssss 5
UNQrouped FUIBS.......ciceeceriecc e ss e s sn e n e 5
(T U] 0L I (<o (0 5
Grouped declarationscoceeeeerereresese e 5
Grouped selectors and declarations.........ccccveevvrvercerrensenseessee e seenaes 6
Chapter 3: Class and id selectors...........cccsummsssnnnnmsssssnnnmsssssssnssssnnns 7
Class SBIBCLONcceveeererrrsrrresese e se s sn s n s 7
Class EXAMPIEoveeeererreeeririee e nnans 7

vi

CONTENTS

Id SEIBCTON ...t sr e sn e sn e nr e nnenn 8
10 BXAMPIE ... p e e e nn e 8
Class and id guidelingscoceeeveerereerere s sne e 9
Chapter 4: Attribute selectorsccccumummmmmnsssmnmmssssssnmsssssssssssnnns 11
Attribute SEIECIOrN......ccececececrrere e —————— 11
Attribute value SEIECTOrccceeeeeererrerre e 11
Language attribute selector ... 11
Delimited value SEIECTOr.........ccccevererrrere s 12
Value substring Selector..........coceeeereresenc s 12
Value start SEIECONcceeeeeeecece e 12
Value end SeIECIOr ... s 13
Chapter 5: Pseudo selectors.........cccivumnmmmmmmmssnnmmsssssssnmsssssssssssssnns 15
PSeUdO-IEMENTScc.coeeeeeeeeerere e 15
first-letter and first=-liNe.........oceeeerrerrr s 15
before and after.........cc e —————— 15
PSEUAO-CIASSEScocererererererer s s 16
DynamicC pSEUdO-CIASSES.........ccoererrerererrrerssserre s sr s n s srs s 16
Structural pSeUdo-CIASSEScceeeeerrrrrrrrrrre e 17
FIrSE-CRIlL ... s 17
1aSE-CRIl......ecceeee s 18
ONIY-CRIl....c.eeeeerer e s r e e e sn e 18
ONIY-0F-TYPO s 18
IrSt-0f-TYPE v ——————— 19
JaSE-0f- TP ...t ———————— 19
MEN-CRII ... ————— 19
MEN-0F-AYPE oo ———————— 20
NEN-1aSE-0F-LYPE . —————— 21

CONTENTS

L1 2 T 11 o 21
] 11] 14RO SRSRSRSRSRRRO 21
0 22
User interface pSEUdO-CIasSES.........curerrerrerrereersessessssssssssssssssesssssssssnnes 22
enabled and diSabIedo e ————— 22
CRBCKEM ... e 23
valid and inValid............ooooee s 23
required and OPLIONAL ..o ————————— 23
Other pSEUdO-CIASSEScceeerrerrerrererrrrie e 24
BAPGEL ... ————————————————— 24
3o OO 24
10 25
Chapter 6: Relationship selectorscccucrrnsmrmsssmsssssssssssssssssans 27
HTML RIErarchyccoeeeeererece e sne s s s e s s e 27
INNEILANCE ... 28
Adjacent SEIECLONcoceeeeerrerrerre e 28
Descendent SEIBCLON..........c.ccoveierereresre e 29
Direct Child SEIECTONcoeeeerereererce e s 29
General Sibling SEIECTOr........ccccveeercrerr s 30
Chapter 7: SPecifiCitycccciurrmmmmssmsmssnmmmmmmmnsssssssss s 31
Selector SPECITICIY.......cucveerrerrercrrrer s 31
072 Lo [[32
DeSIgNEr STYIES.....ccccicererere e s 32
Specificity gUIdeliNeScceceereercrrr e 33

vii

CONTENTS

Chapter 8: COlOrsS........cccimmminmmmmmssssnnnmmssssnnnssssssnnnssssssnsnsssssannnssssnans 35
Named NOALION ..o s 35
Hexadecimal notation...........cccovcernincnnicnnsss e 35
Short hexadecimal notationcccocvvrennnernnnessre e 36
RGB NOTALION ...t 36
RGBA NOAtioNccoeicerercircriee e 36
HSL NOtALiON ...t 37
HSLA NOLALION......ccvieiceereecersee e 37
Chapter 9: UnitS......ccuscmmmmmmssemmmmmsssssnmmssssssnmsssssssnsssssssssssssssssssssssnns 39
ADSOIULE UNIES ... 39
Typographical UNItSccccverirserssser s 39
Relative UNIts.........oveceerricnirrcsr e 39
Font-relative units ... 40
VIEWPOIE UNITS ...ccererereeer i 40
UNIE VAIUES.......ccreccresce s s 41
Chapter 10: CSS Propertiesc.ummmmmsmmnmmssssssnmssssssssssssssssssssssans 43
GENENIC KEYWOIAS......ccueevereereeraereerre e sse s ssssas s s sas s s sas s snssassss s s 43
QUITKS MOGE ... 44
Vendor PrefiXes ..ooeveeerererere e 44
Progressive enhancement............ccoevevevrnernsessesses s sees 45
Chapter 11: TeXt....uuneeeennnnnnmnmsssssssssnssnesssssssssssssssssssssssssnsnsnnnsnss 47
COMOT .t ——————— 47
teXt-tranSform ... ——— 47
teXt-AeCOratioN ..o 47
TEXE-INABNL......eee s 48
TEXE-AlIgN ... —————————— 48

viii

CONTENTS

AIFECLION ..t 48
TEXE-SNAAOW ... s 49
DOX-ShAAOW........cotrirrtrcr s 49
Chapter 12: SPACiNgGcccvusssemnmmssssnnnmmssssnsnssssssssssssssssnnssssssnsnsssssnns 51
liNe-height.........oocreee 51
word-spacing and letter-Spacingcccveverrersessensessessensesses s sesseneas 51
WHITE-SPACEeceereereereererreerer e s e s s s e e e s e e s s nesae s nesae s ne e s nneeas 52
Chapter 13: Font.......cccccemmmmmmimmsnsssssssssnnmmsmssssssssssssssssssssssssssssssnnns 53
fONE-FAMIIY......coveeecceeeee e 53
FONE-SIZB ... ——————————— 53
FONE-STYIE ... ——————— 54
font-variant.........coooinn e ———————— 54
fONt-WEIGNL........ccoceeeeer e 54
FONE .. ———————————— o4
CUSTOM fONES ... s 55
Chapter 14: Background........ccccussseenmmssssnsnssssssssnssssssssnsssssssnnsssssnns 57
background-Color..........cccuceecirnecir e 597
background-image.........cceceeerererresserrersesse e sse e e e s saesrsssesnssnessessenes 57
background-repeat..........cccoeerecece e ————— 58
background-attachment..............ccoorvrirrvnn s 58
background-poSitionccceeeeeeeresesere e 58
background-Sizecccevvrennienninesr 59
(07T (0 (0101 [0 o SRS 60
background-0rigin........cccccceeeeereeenese e nnen s 60
DACKGIOUN ... 61
Multiple DacKgrounds.........cccceeeevrrerrersesser s seesaens 61

ix

CONTENTS

Chapter 15: Gradients..........cccivnnemmmmmsssssnnmmmssssnmsssssssnmsssssssnssssans 63
Linear gradientscccoceveverencness s see s sss e sas s e s 63
Radial gradientscccvcrvrrnnnsssr s 65
Repeating gradients...........cccevverenriennsesesssess s ssssssesessesnes 69
Chapter 16: Box modelcccouvnmmmmmmmmmmmmmssssssssssmssmssssssssssssssssnns 1
INling and DIOCKccccererereresirerere e 4l
30 F: LI 1T 1 TS 72
Chapter 17: BOrderccccceurrrrmmmsssnssssssnnss 73
DOFAEr-Style ..o ———————— 73
border-Width...........coi e ———— 74
DOFAI-COION ... 75
DOFAE ... ——————————— 75
DOrder-radius..........ccoviiernirn e 75
Chapter 18: OUtline......ccccvvseeennnssssnnnnmsssssnsnsssssssnssssssssnssssssnnsesssnnns 77
OULHNE-STYIE ... 77
OULTINE-WILTN ... 77
OULIINE-COION ..ot s 78
OULING .t 78
OULIINE-0ffSEL......ccerercerr s 78
Chapter 19: Margin and padding.......ccucummmmssnnnmmssssssnssssssssssssssnns 79
o 1o [0 T SRS 79

CONTENTS

Chapter 20: DIMENSIONccccemrmssssmnnmmsssssnnmsssssnsnssssssssnssssssnnssssssans 83
width and height ... ———— 83
min-width and min-height ... 83
max-width and max-height..........cccecveeiiriniiens s 84
DOX=SIZING.....cceeririerrirrr e 85
Chapter 21: PoSitioningcccvussennmmssssnnnmmssssssnsssssssssssssssssssssssnns 87
POSITION......eeiercerer e 87

] 2 T 87

(1 L3 88

ADSOIULE ... ——————————— 88

L2 PP 88
01T 10 89
(1] 1o SRS 89
A1 110 GO 90
Vertical-alignccocvcrcrcrrsr s 92
(02T 1 g RS 93
Chapter 22: Classificationcccceemmmrnrmmssssssssssmnmmmsssssssssssnnns 95
01157 0] - SRS 95
LTS L1114 96
(0] 02 T S S SS S SSSSR 97
FlOAL......ceeeeeceeer e ————————————— 97
CIBAN ..t —————— 98
(111150 GO PRRSSR 99

xi

CONTENTS

Chapter 23: Listccccccmmmmnsmmmmmmnssssnmmmssssssnmsssssssnssssssssssssssnsssnssns 101
liSt-STYIE-TYPE ..o —————— 101
liSt-StYle-IMAQEceeeeeceeeece e s 102
liSt-Style-POSItiONccceeeererrrerererere e 102
lISE=SYIE .. —————————— 102
COUNTEIS ...t s 103
NEStiNG COUNTEISccccereeerrerrrsere e 104
Chapter 24: Table......cccccemmrrrrmsssssssssssnnnmessssssssssssnsssesssssssssnsnnnnnnss 105
DOrder-SPacingccocuceeeeerserensrsesrsse e 105
(010] €0 (<] gl eto] | = oL SRR SR 106
CAPLION-SIUL ..ot s 106
EMPLY-CEIIS ...t 107
table-1ayout....... .o —————— 107
Chapter 25: Mediacccceerrrrmmmmmmsssssssssnmmssmsssssssssssssesssssssssnnssnssnnns 109
T Ty LT 109
Media QUETIES......cceeeeeeeerrecre e nn e n e 110
Logical OPErators........ccevevererereeree e sae e s sas s e e nnes 111
Testing media QUETIESc.ccvcereerrerserserses s s s e s e s ses e e snssnssnsnnns 111
Responsive design guidelings.........cccoceeeveeerereneessss e seneas 112
Chapter 26: Best practices.......ccuuremmrmssennnmsssssnnsmssssssssssssssssnssss 113
Reusable COdE.........cccuerenrernirerire e 113
(6100] o L oo 1T T 114
Style sheet StruCtUre ... 114
Naming CONVENLIONS........ccccceeerereerere e sn e 116
NOrMALIZALIONc.ceeeeereece e 117
D10 TH o oo SRS 117

xii

CONTENTS

Validation..........ccocvcrcrsrsr s ————— 118
Single style Sheet.........ccovcrericnnrr e ———— 118
LT Tz 0] o 118
Cross-browser teSting........ccceererereresese s e 119
INA@X..euiiissnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnnsssnnns 121

xiii

About the Author

Mikael Olsson is a professional programmer, web
entrepreneur, and author. He works for an R&D
company in Finland, at which he specializes in
software development. In his spare time, he writes
books and creates web sites that summarize various
fields of interest. The books Mikael writes are focused
on teaching their subjects in the most efficient way
possible, by explaining only what is relevant and
practical without any unnecessary repetition or theory.
The portal to his online businesses and other web sites
is www.siforia.com.

XV

http://www.siforia.com

About the Technical
Reviewer

¥ Victor Sumner is a Senior Software Engineer at
Desire2Learn Inc., helping to build and maintain
an integrated learning platform. As a self-taught
developer, he is always interested in emerging
technologies and enjoys working on and solving
problems that are outside his comfort zone.

When not at the office, Victor has a number of
hobbies, including photography, horseback riding,
and gaming. He lives in Ontario, Canada, with his wife,
Alicia, and their two children.

xvii

		Contents at a Glance

		Contents

		About the Author

		About the Technical Reviewer

		Introduction

		Chapter 1: Using CSS

		Internal style sheet

		Inline style

		External style sheet

		Testing environment

		View source

		Comments

		Whitespace

		Chapter 2: Grouping

		Ungrouped rules

		Grouped selectors

		Grouped declarations

		Grouped selectors and declarations

		Chapter 3: Class and id selectors

		Class selector

		Class example

		Id selector

		Id example

		Class and id guidelines

		Chapter 4: Attribute selectors

		Attribute selector

		Attribute value selector

		Language attribute selector

		Delimited value selector

		Value substring selector

		Value start selector

		Value end selector

		Chapter 5: Pseudo selectors

		Pseudo-elements

		first-letter and first-line

		before and after

		Pseudo-classes

		Dynamic pseudo-classes

		link and visited

		active and hover

		focus

		Structural pseudo-classes

		first-child

		last-child

		only-child

		only-of-type

		first-of-type

		last-of-type

		nth-child

		nth-of-type

		nth-last-of-type

		nth-last-child

		empty

		root

		User interface pseudo-classes

		enabled and disabled

		checked

		valid and invalid

		required and optional

		Other pseudo-classes

		target

		lang

		not

		Chapter 6: Relationship selectors

		HTML hierarchy

		Inheritance

		Adjacent selector

		Descendent selector

		Direct child selector

		General sibling selector

		Chapter 7: Specificity

		Selector specificity

		Cascade

		Designer styles

		Specificity guidelines

		Chapter 8: Colors

		Named notation

		Hexadecimal notation

		Short hexadecimal notation

		RGB notation

		RGBA notation

		HSL notation

		HSLA notation

		Chapter 9: Units

		Absolute units

		Typographical units

		Relative units

		Font-relative units

		Viewport units

		Unit values

		Chapter 10: CSS Properties

		Generic keywords

		Quirks mode

		Vendor prefixes

		Progressive enhancement

		Chapter 11: Text

		color

		text-transform

		text-decoration

		text-indent

		text-align

		direction

		text-shadow

		box-shadow

		Chapter 12: Spacing

		line-height

		word-spacing and letter-spacing

		white-space

		Chapter 13: Font

		font-family

		font-size

		font-style

		font-variant

		font-weight

		font

		Custom fonts

		Chapter 14: Background

		background-color

		background-image

		background-repeat

		background-attachment

		background-position

		background-size

		background-clip

		background-origin

		background

		Multiple backgrounds

		Chapter 15: Gradients

		Linear gradients

		Radial gradients

		Repeating gradients

		Chapter 16: Box model

		Inline and block

		Span and div

		Chapter 17: Border

		border-style

		border-width

		border-color

		border

		border-radius

		Chapter 18: Outline

		outline-style

		outline-width

		outline-color

		outline

		outline-offset

		Chapter 19: Margin and padding

		Padding

		Margin

		Chapter 20: Dimension

		width and height

		min-width and min-height

		max-width and max-height

		box-sizing

		Chapter 21: Positioning

		position

		static

		relative

		absolute

		fixed

		overflow

		clip

		z-index

		vertical-align

		Centering

		Chapter 22: Classification

		display

		visibility

		opacity

		float

		clear

		cursor

		Chapter 23: List

		list-style-type

		list-style-image

		list-style-position

		list-style

		Counters

		Nesting counters

		Chapter 24: Table

		border-spacing

		border-collapse

		caption-side

		empty-cells

		table-layout

		Chapter 25: Media

		Media types

		Media queries

		Logical operators

		Testing media queries

		Responsive design guidelines

		Chapter 26: Best practices

		Reusable code

		Global modifiers

		Style sheet structure

		Naming conventions

		Normalization

		Debugging

		Validation

		Single style sheet

		Minification

		Cross-browser testing

		Index

CSS

Quick Syntax
Reference

Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthorccccsrismmmis s —————— XV
About the Technical ReVIEWErcucesssessmsmsmssssmsasssssssssnsssassssnsnsns xvii
INtroductioncccucemmneemmsssnnmsssnnmsssnnmssssnnsssnnnsssnnnsssnnnsssnnssssnnnnssnnnss Xix
Chapter 1: Using CSS......cccusmmmmmmmssnmmmmmssssssmmsssssssnsssssssssssssssssnsssssnns 1
Chapter 2: GroupPing......cccesssssnssssssnnssssssssnssesssssnsssssssssnsssssssnsssssssnns 5
Chapter 3: Class and id selectors.........ccccnmmmmmmmmmmnnnnnmmmsmsssssssssssnnns 7
Chapter 4: Attribute selectorsccccunemmmmnssmmnmmnsssssnmmssssssnmsnnnn 11
Chapter 5: Pseudo selectors.........ccciunnmmmmmnssssnnnmmssssssnssssssssssssssnns 15
Chapter 6: Relationship selectorsccccuseemmmssssnnnnmssssnsssnsssnnns 27
Chapter 7: SPeCifiCityccusmmmmmmssnmnmmmssssnnmmssssnnnnssssssnnssssssnsnsssssnnes 31
Chapter 8: ColOrs.....ccceeerrrmmmmsmssssssssssnsmsssssssssnnsssssssssssssssnnnnsssnnnnns 35
Chapter 9: Units......ccucccnmmmmnsemmmmmmsssnsmmmmsssssmmssssssmmssssssssssssssssssssssnns 39
Chapter 10: CSS Propertiescccuurmuesmmsssnsmsssssssssssesssssssssnssssnnnes 43
Chapter 11: Text. . 47
Chapter 12: SPaCiNgcccusseemmmmssssnsmmsssssnnmmssssssnssssssssnssssssnsnsssssnnns 51
Chapter 13: Font.........ccccuismmmssemmmsssnmmsssssmsssssesssssesssssesssssesssnssnsnnnes 53
Chapter 14: Background.........cccuseenmmmsssennnmssssssnssssssssnssssssssnsssssnnns 57
Chapter 15: Gradients..........ccccvunsemmmmmmsssnmmmmssssnmmsssssnmsssssnnnsnnn 63
Chapter 16: Box modelc.cccunsmmmmssenmmsssnsmsssssssssssssssssssssssssssnnes 71

iii

CONTENTS AT A GLANCE

Chapter 17: Borderccccceurrurmsmssssssssssnsnmssssssssssssssssssssssssssnssssnnsnnss 73
Chapter 18: OUtliNe......cccvrsreemmrmssssnnsnnssssssnsssssssnsssssssnnssssssnnnsesssnnns 77
Chapter 19: Margin and padding.......ccucccnmmmsssnnnmssssssssssssssssssssssnns 79
Chapter 20: DIMENSIONccccemrrisssnnnmmssssssnsssssssnnssssssssnssssssnsssssssnns 83
Chapter 21: PoSItioningcccvrssssnsnsmssssnssssssssssnssssssnssssssssnsnsssssnns 87
Chapter 22: Classification ... 95
Chapter 23: Listccccccmmmmssmmmmmmsssssnmmnssssssnmsssssssssssssssssssssssnsssssns 101
Chapter 24: Table.........cccinssemmrmmsssssnnmnssssssnmssssssssesssssssssssssnnsssnsss 105
Chapter 25: Mediacccceerrrmrmmmmmsssssssnnmmmssmsssssssssssssssssssssnnsssssenss 109
Chapter 26: Best practices.......ccucccmmmmmnemmmmmsssssnmmmsssssnnmsssssssnnns 113
INA@X..iiieiiisrie s —————————_— 121

iv

Introduction

CSS, which stands for Cascading Style Sheets, is a stylistic language that defines how web
pages are presented. It complements HTML, which is the language used for describing
the structure of web site content. Because HTML predates CSS, it includes a number of
limited stylistic elements and attributes, but they have largely been deprecated in favor of
the much greater design control offered by CSS.

One of the main features of CSS is that it enables the complete separation of a web
site’s presentation from its content. This separation reduces the complexity and repetition
associated with including stylistic information in the structural content. Furthermore,
this separation makes it easy to enforce site-wide consistency in the presentation of a web
site because the entire look and feel of a site can be controlled from a single style sheet
document.

As one of the core languages of the Web, CSS is used today by almost all web sites
to enhance the web experience. It has been a revolution in the World Wide Web and is a
must-learn language for anyone working with web design. Like HTML, the CSS language
is easy to learn and use, as is shown in this book.

CSS versions

The CSS language is under ongoing development by the World Wide Web Consortium
(W3C), which is the international standards organization for the Internet. The W3C writes
the specifications that web browsers implement to display web pages consistently in
compliance with those specifications. Each new specification extends the language with
new features while maintaining backward compatibility.

The first specification, CSS level 1 (or CSS 1), became a W3C recommendation in
1996. In 1998, CSS 2 was finalized, extending CSS 1 with additional features. Because all
widely used web browsers currently implement the features of both these specifications,
itis seldom necessary to make a distinction between them, and this book does so only
when relevant.

Since 1998, the W3C has been working on CSS 3. Unlike the two earlier levels of
CSS, this level became considerably larger and was therefore split into several separate
specifications called modules. This split allowed the modules to mature independently at
their own pace. As a result of the ongoing development, support for CSS 3 varies. Some
features are stable and have widespread browser support; other features are supported
only by the latest browser versions or are not supported at all. This book focuses mainly
on the CSS 3 features that are supported in the major browsers at the time of writing.

Xix

INTRODUCTION

Rule structure

CSS is commonly used within a style sheet document, which consists of a list of rules.
For example, a rule to color all paragraph elements red is shown here:

p { color: red; }

This rule has two parts: a selector and a declaration block. The selector is the link
between the HTML document and the style sheet that specifies the element to which the
rule is applied. In this case, it is the type selector p that applies to all paragraph elements
(<p>). Any HTML element can be used as a type selector in this way.

The declaration block, which is enclosed within curly braces, defines the styling
applied to the selected elements. The block can contain one or more declarations, each
of which is made up of a style property followed by a colon and a valid value for that
property. Each declaration is terminated with a semicolon, although this is optional for
the last one.

p { color: red; background: black }

Although the last semicolon is not necessary, it is a good practice to include it
because it is easy to forget the missing semicolon when you add more styles to the rule.
Another general practice is to use lowercase letters when writing CSS, even though
selectors and properties are case-insensitive.

To summarize, a style rule consists of a selector and one or more declarations, each
comprising one or more property-value pairs. This structure is illustrated here:

Property Value
I |

p { color : red; }

Selector Declaration

XX

CHAPTER 1

Using CSS

There are three ways to insert CSS into an HTML document: by using an internal style
sheet, inline styles, or an external style sheet. An internal style sheet applies to a single
page, an inline style to a single element, and an external style sheet to potentially an
entire web site.

Internal style sheet

An internal style sheet is useful when a single document needs to have its own unique
styling. The style sheet is then embedded within the <head> section of the web document
using the <style> element. This element is a container for style sheet rules and should
have its type attribute set to "text/css".

<style type="text/css">
p { color: red; }
</style>

Inline style

Styling can be assigned to an individual element by using the style attribute to set an
inline style. It is a generic attribute that can be included in any HTML start tag, and its
value is the CSS declarations that will be applied to the element, separated by semicolons.
There is no need to specify a selector because the declarations implicitly belong to the
current element.

<p style="color: green">Green text</p>
This approach should be used sparingly because it mixes style with content and

therefore makes future changes more cumbersome. It can be useful as a quick way to test
styles before they are moved out to an external style sheet.

CHAPTER 1 © USING CSS

External style sheet

The most common way to include CSS is through an external style sheet. The style sheet
rules are placed in a separate text file with a . css file extension. This style sheet is then
referenced using the <1link> element in the web page header. The rel (relationship)
attribute must be set to "stylesheet" and the meta type attribute can optionally be set to
"text/css". The location of the style sheet is specified with the href attribute.

<link rel="stylesheet" type="text/css" href="MyStyle.css">

Another less common way to include an external style sheet is to use the CSS @import
function from inside of the <style> element. For this function to work, it must be placed
before any other rules.

<style type="text/css">
@import url("MyStyle.css");
</style>

Using an external style sheet is often preferred because it completely separates CSS
from the HTML document. It is then possible to quickly create a consistent look for an
entire web site and to change its appearance just by editing a single CSS document. It also
has performance benefits because external style sheets are cached and therefore need to
be downloaded only once—for the first page a visitor views at your site.

Testing environment

To experiment with CSS, you can use a simple text editor such as Notepad in Windows
(found under Start » Programs » Accessories » Notepad) or TextEdit on a Mac (found
under Finder » Applications » TextEdit). Type the following single style rule into a new
document in the editor. The rule will color the background of a web document red.

body { background: red; }

Save the file as “MyStyle.css” and then open another empty document. This new
document will become the HTML file that uses the external style sheet you just created.
Write the following HTML markup into the document, which includes a reference to the
style sheet along with the minimal markup for a HTML 5 web document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="MyStyle.css">
</head>
<body>

CHAPTER 1 * USING CSS

<p>This page is red</p>
</body>
</html>

Go ahead and save this text file as “MyPage.html” in the same folder as the CSS file.
You have now created a simple environment in which you can test CSS. To view the page,
open MyPage.html with your web browser. You will see that the background is indeed
colored red because of the rule in the style sheet.

View source

While you have the browser opened, you can view the HTML markup that makes up the
page by pressing Ctrl+U on a PC or Cmd+U on a Mac. This shortcut works in all major
browsers, including Chrome, Firefox, and Internet Explorer (IE). You can also find the
view source window by right-clicking on the page and selecting “View Source”. In Firefox
and Chrome, the style sheet is clickable, allowing you to view the external style sheet rules
that apply to the web page. (Note that in Chrome, you have to right-click the style sheet
and select to open it because this file is stored on your local machine.)

Viewing the source code of web pages like this provides a great way to learn from other
web developers. Whenever you find an interesting element on a web page—whether it is
created with HTML, CSS or JavaScript—the page source will reveal how it was created.

Comments

Comments in CSS are created by using the C-style notation (/* */). Everything placed
between /* and */ will be ignored by browsers, even if the delimiters span multiple lines.

/* Multi-line
Comment */

The main use of comments is to clarify the code to developers, including you in the
future. They can also be used to improve readability by delimiting sections of the style
sheet or providing meta data about the file, such as the author’s name.

/%
* Meta data
*/

/*** Section heading ***/

p { margin-top: -1px; } /* clarification */

CHAPTER 1 © USING CSS

Comments are also useful for temporarily deactivating declarations or entire style
rules for testing purposes.

p { /* color: white; */ }

Whitespace

Whitespace refers to spaces, tabs, and new lines. You are free to format your style sheets
however you like with whitespace to make them easier to read. One common formatting
convention is to split declarations across multiple lines.

fruit {
color: red;
margin: 1px;

Another popular convention is to keep a rule’s declarations in a single line and split
the declarations into multiple lines only when they become too numerous.

fruit { color: red; margin: 1px; }
.fruit.apple { color: green; margin: 2px; }

The formatting you use is a matter of preference. Choose the one that makes sense to
you and aim to keep it consistent.

CHAPTER 2

Grouping

To keep style sheets short and easy to edit, similar rules can be grouped together. This
grouping offers several ways to specify a set of related rules. For example, you can color
the text red and the background black for two header elements in four different ways,
as described in the following sections.

Ungrouped rules

Each rule can be written separately, which allows you to apply individual style rules to
each selected element.

hi { color: red; }
h1 { background: black; }
h2 { color: red; }
h2 { background: black; }

Grouped selectors

The selectors can be grouped together by separating them with a comma. This grouping
will make the declaration apply to multiple selectors.

h1, h2 { color: red; }
h1, h2 { background: black; }

Grouped declarations

The declarations can be grouped together by separating them with a semicolon. All styles
within the declaration block will be applied to the selector.

h1 {
color: red;
background: black;

}

CHAPTER 2 © GROUPING

h2 {
color: red;
background: black;

}

Grouped selectors and declarations

Both the selectors and declarations can be combined, resulting in a single rule.

h1, h2 {
color: red;
background: black;

}

Rules should be grouped whenever possible to make the code more concise. It has
a performance benefit because concise rules reduce the size of the style sheet, which
makes the CSS file load more quickly. Moreover, it is convenient to specify the properties
in only one place, in case they have to be changed later. Additionally, grouping selectors
with similar styles makes it easier to maintain consistency between them.

CHAPTER 3

Class and id selectors

Class and id selectors define rules that apply to only a selected set of HTML elements.
They allow you to identify individual elements, or groups of elements, without having to
style all instances of the element type.

Class selector

The class selector is used to identify a group of elements. It is recognized by the period
sign (.), followed by a class name. The class can be a general class that can be applied to
any element.

/* Selects any element with class name myclass */
.myclass {}

The selector can also be a specific class that can be applied to only one type of element.
The specific class is defined by declaring the element’s name before the period sign.

/* Selects any <p> element with class name myclass */
p.myclass {}

Specific classes make it easier to identify where the class is used; general classes
allow for greater code reuse.

Class example

For example, suppose that the text inside of some elements should be colored, but not for
all instances of the elements. The first step then is to add a general class rule with a color
property specified.

.info { color: green; }

This rule says that any element whose class attribute has the value of "info" will
have this style.

CHAPTER 3 ' CLASS AND ID SELECTORS

<p class="info">Green</p>

If a class rule will be used by only a single element type, it can instead be defined as
a specific class. Doing so makes it easier for anyone reading the style sheet to understand
where the style is used.

p.warn { color: orange; }

A specific class rule is applied to the document in the same way as a general class
rule, but it will style elements of only the specified type.

<p class="warn">Orange</p>

More than one class rule can be applied to a single element by separating each class
name with a space, which makes class rules very versatile.

<p class="style1 style2"></p>

Id selector

The id selector is used to identify a single unique element. Although it works much like
the class selector, it uses a pound sign (#) instead of a period and the id attribute instead
of the class attribute. Like the class attribute, the id is a generic attribute that can be
applied to virtually any HTML element. It provides a unique identifier for an element
within a document.

/* Selects the element with id set to myid */
#myid {}

Like class selectors, id selectors can be qualified with an element. However, because
there should be only one element with a given id, this additional qualifier is often
considered unnecessary.

/* Selects the <p> element with id set to myid */
pttmyid {}

Id example

The following id selector will match the one and only element in the document whose id
attribute is set to that id. This selector can therefore be used instead of the class selector
if a style is intended to be applied to only a single element instance because this makes it
clearer where the rule is used.

#terr { color: red; }

CHAPTER 3 © CLASS AND ID SELECTORS

An id rule is applied to an element using the id attribute. Because the id attribute has
to be unique, each id selector can be used on only one element per web page. Therefore,
the id selector implicitly specifies that the style is used only once on any one page.

<p id="err">Red</p>

Class and id guidelines

In many instances, using classes is the preferred method of selecting elements in CSS
because classes are both flexible and reusable. Ids, on the other hand, are often used
for structural elements of a site, such as #content and #footer, to highlight that those
elements serve a unique role.

CHAPTER 4

Attribute selectors /

Attribute selectors allow style to be added to elements based on their attributes and
attribute values.

Attribute selector

The attribute selector will match elements that use the specified attribute, regardless
of its value.

input[type] {}

This selector will match only input elements that use the type attribute, such as the
following element:

<input type="text">

Attribute value selector

The [attribute=value] selector will match by both attribute and value.
input[type="submit"] {}

Input elements that have their type attribute set to submit will be matched by this
rule, as in the following example:

<input type="submit">

Language attribute selector

The language attribute selector is used to match the lang attribute.

p[lang|="en"] {}

11

CHAPTER 4 ATTRIBUTE SELECTORS

This selector will match any elements whose lang attribute value begins with “en’,
such as “en-US” Note that language codes such as these are case insensitive.

<p lang="en">English</p>
<p lang="en-US">American English</p>

Delimited value selector

The [attribute~=value] selector will apply to elements whose attribute value contains
the given word among a space-separated list of words.

input[value~="word"] {}

This rule will select both of the following elements. The word needs to be an exact
case-sensitive match; for example, the selector will not target “Word” or “words”.

<input type="text" value="word">
<input type="text" value="word word2">

Value substring selector

The [attribute*=value] selector matches elements whose attribute value contains the
specified substring.

p[title*="para"] {}
Paragraph elements with a title containing “para” will be matched by this rule.

<p title="my paragraph"></p>

Value start selector

The [attribute”=value] selector matches every element whose attribute value begins
with the specified string.

p[titler="first"] {}
Paragraphs with a title value starting with “first” will have this rule applied.

<p title="first paragraph"></p>

12

CHAPTER 4 ATTRIBUTE SELECTORS

Value end selector

The [attribute$=value] selector matches an element if its attribute value ends with the
specified string.

p[title$="1"] {}

In the following code, the value of the title attribute ends with “1” and will
therefore be matched by this rule:

<p title="paragraph 1"></p>

13

CHAPTER 5

Pseudo selectors

The pseudo-classes and pseudo-elements are keywords that can be appended to
selectors to make them more specific. They are easy to recognize because they are always
preceded by a colon.

Pseudo-elements

The pseudo-elements enable parts of an element to be styled. There are four of them in
CSS, as discussed in the following sections.

first-letter and first-line

The pseudo-elements : first-letter and : first-line can apply styles to the first letter
and the first line of an element. They work only on block elements such as paragraphs.

p:first-letter { font-size: 120%; }
p:first-line { font-weight: bold; }

The preceding first rule makes the initial letter in a paragraph render 20% larger than

other text. The second rule makes the first line of text in a paragraph bold.

before and after

As their names indicate, the :before and :after pseudo-elements can target the location
before and after an element. They are used together with the content property to insert
content before or after an element.

p:before { content: "Before"; }
p:after { content: "After"; }

These rules make the following paragraph display as “BeforeMiddleAfter”:

<p>Middle</p>

15

CHAPTER 5 © PSEUDO SELECTORS

The content property is special in that it can be used only together with these
two pseudo-elements. It is also the only property that breaks the line between content
(HTML) and design (CSS). Keep in mind that this line should be broken only when
the presence of a piece of content comes down to a design decision. For example, the
content property can be used to add an icon before an element, which can be done using
the url function.

p.bullet:before { content: url(my-bullet.png); }

Pseudo-classes

Pseudo-classes permit styling based on element relationships and on information
not found in the HTML document. Most of them fall into three categories: dynamic,
structural, and user interface pseudo-classes.

Dynamic pseudo-classes

The first category of pseudo-classes is used to apply styles to links or other interactive
elements when their state is changed. There are five of them, all of which were introduced
in CSS 2.

link and visited

The dynamic pseudo-classes :1link and :visited can be applied only to the anchor
element (<a>). The :1ink pseudo-class matches links to pages that have not been viewed,
whereas :visited matches links that have been viewed.

a:link {} 7* unvisited links */
a:visited {} /* visited links */

active and hover

Another pseudo-class is :active, which matches elements as they are being activated, for
example by a mouse click. This is most useful for styling anchor elements, but it can be
applied to any element.

a:active {} /* activated links */
A selector with the :hover pseudo-class appended to it is applied when the user
moves a pointing device, such as a mouse, over the selected element. It is popularly used

to create link roll-over effects.

a:hover {} /* hovered links */

16

CHAPTER 5 © PSEUDO SELECTORS

These four pseudo-classes need to appear in the proper order when applied to the
same selector. Specifically, the :hover pseudo-class must come after :1ink and :visited,
and for :active to work it must appear after :hover. The phrase “love and hate” can be
used as a reminder for the initial letters that make up the correct order.

a:link {}y 7L *
a:visited {} /* VvV */
athover {} /* H */
a:active {} /* A */

focus

The last dynamic pseudo-class is : focus, which can be used on elements that can receive
focus, such as the form <input> element. The difference between :active and :focus

is that :active lasts only for the duration of the click, whereas : focus lasts until the
element loses focus.

input:focus {}

Browser support for the : focus pseudo-class in IE was not added until version 8.

Structural pseudo-classes

The structural pseudo-classes target elements based on their relation with other
elements. CSS 2 included only one structural pseudo-class in this category,
:first-child, whereas CSS 3 introduced a wide array of new ones. The CSS 3 structural
pseudo-classes are supported in all major browsers, except for IE7 and below.

first-child
The : first-child pseudo-class matches the first child of the selected element.
p:first-child {} /* first paragraph child */
In the following example, this rule applies to the first anchor element:
<p>
First child

Text
</p>

17

CHAPTER 5 © PSEUDO SELECTORS

last-child

The :1ast-child pseudo-class represents the last child of the selected element.
p:last-child {} /* last paragraph child */
This rule targets the last child of the following paragraph element.

<p>
Text
Last child
</p>

only-child

The :only-child pseudo-class matches elements that do not have any siblings.
p:only-child {} /* children without siblings */

This rule is applied to the following first element because it is the only
child of the paragraph. The second paragraph element has two children, so none of them
is targeted by this rule.

<p>
0Only child
</p>

<p>
Text
Text

</p>

only-of-type
As its name implies, the :only-of-type selector matches the selected element only if it
does not have any siblings of the same type.

p:only-of-type {} /* only <p> element */

The following paragraph is targeted by this rule because it is the only paragraph
element of its parent.

<div>
<h1>Text</h1>
<p>0Only of type</p>
</div>

18

CHAPTER 5 © PSEUDO SELECTORS

first-of-type

The : first-of-type pseudo-class matches the first child element that is of the
selected type.

p:first-of-type {} /* first <p> element */
It matches the first paragraph element in the following markup:
<div>
<h1>Text</h1>
<p>First of type</p>

<p>Text</p>
</div>

last-of-type

The last sibling of a specific type can be selected with the :1ast-of-type pseudo-class.
strong:last-of-type {} /* last element */
This rule applies to the last element among its siblings.

<div>
Text
Last of type
</div>

nth-child

The :nth-child(an + b) pseudo-class matches every b child element after the children
have been divided into groups of a elements.

p:nth-child(1) {} 7* first child */
p:nth-child(2n) {} /* even children */
p:nth-child(2n+1) {} /* odd children */

These rules apply to the following HTML markup:

<p>
First and odd
Even
0dd

</p>

19

CHAPTER 5 © PSEUDO SELECTORS

Matching odd and even children is a common operation, so the keywords odd and
even can also be used to match every other row in a table, for example.

tr:nth-child(even) {} /* even table rows */
tr:nth-child(odd) {} /* odd table rows */

As shown, the argument to :nth-child() can be an integer, the keywords even
or odd, or an expression in the form of an+b. In the expression form, the keyword n is a
counter that iterates through all the child elements. The counter might be negative; in
that case, the iteration occurs backward. It can be used to select a specific number of
first children.

p:nth-child(-n+3) {} /* first three children */

The math and arguments used together with :nth-child() are also valid for the next
three pseudo-classes, all of which start with :nth.

nth-of-type

The :nth-of-type(an + b) pseudo-class matches the bth element of the selected type
after the siblings of that type have been divided into groups of a elements.

p:nth-of-type(2) {} /* second paragraph sibling */
p:nth-of-type(2n) {} /* even paragraph siblings */
p:nth-of-type(2n+1) {} /* odd paragraph siblings */

The behavior of this pseudo-class is similar to :nth-child, but it matches siblings
of the same type of the specified element instead of matching children of the specified
element.

<div>
Text
<p>0dd</p>
<p>Second and even</p>
<p>0dd</p>

</div>

Similar to the other :nth pseudo-classes, the keywords odd and even can be used to
match siblings of the same type whose index is odd or even.

p:nth-of-type(even) {} /* even paragraph siblings */
p:nth-of-type(odd) {} /* odd paragraph siblings */

20

CHAPTER 5 © PSEUDO SELECTORS

nth-last-of-type

The :nth-last-of-type(an + b) pseudo-class matches the element of the selected type
that has an+b elements of that same type after it. This behavior is equivalent to the :nth-
of-type pseudo-class, except that elements are counted starting from the bottom instead
of the top.

p:nth-last-of-type(3) {} /* third last paragraph */
p:nth-last-of-type(-n+2) {} /* last two paragraphs */

These two rules apply to the following example. The element is not counted
because it is not of the specified type—in this case, paragraph.

<div>
<p>Third last</p>
<p>Last two</p>
<p>Last two</p>
Text
</div>

nth-last-child

The :nth-last-child(an + b) pseudo-class represents any element that has an+b
siblings after it. Its behavior is the same as :nth-child, except that it starts with the
bottom element instead of the top one.

p:nth-last-child(3) {} 7* third last child */
p:nth-last-child(-n+2) {} /* last two children */

These two rules apply to the child elements in the following example:
<div>
<p>Third last</p>
<p>Last two</p>

<p>Last two</p>
</div>

empty

The :empty pseudo-class matches selected elements that do not have any content.

p:empty {} /* empty paragraphs */

21

CHAPTER 5 © PSEUDO SELECTORS

An element is considered empty if it has no child elements, text, or whitespace
except for comments. The preceding rule applies to the following two paragraphs:

<p></p>
<p><!-- also empty --></p>

root

The :root pseudo-class matches the topmost element in the document tree. In HTML
documents, it is always the <html> element.

:root {} /* root element */

This pseudo-class is mainly useful when CSS is used with other languages,
such as XML, in which the root element can vary. All major browsers support the :root
pseudo-class, except for IE8 and below.

User interface pseudo-classes

CSS 3 introduced a number of user interface pseudo-classes that are used to style
interactive elements based on their current state.

enabled and disabled

The :enabled and :disabled pseudo-classes match any element of the selected type that
is either enabled or disabled. They apply only to interactive elements that can be in either
an enabled or disabled state, such as form elements.

input:enabled { background: green; }
input:disabled { background: red; }

The following form contains one enabled and one disabled input element, which are
affected by these two rules:

<form>

<input type="text" name="enabled">

<input type="text" name="disabled" disabled>
</form>

These two pseudo-classes are supported by all major browsers except for IE8
and below.

22

CHAPTER 5 © PSEUDO SELECTORS

checked

The :checked pseudo-class matches elements that are in a selected state. It can be used
only on check box, radio button, and <option> elements.

input[type="checkbox"]:checked {}
This rule matches any check boxes that are selected on the web page.

<form>
<input type="checkbox">
</form>

All major browsers support the : checked pseudo-class, except for [E8 and
earlier versions.

valid and invalid

The :valid and :invalid pseudo-classes are used to provide feedback to users when
they are filling out forms. Modern browsers can perform a basic field validation based on
the input type of a form element and, together with these pseudo-classes, the result can
be used to style the input element.

input:valid { background: green; }
input:invalid { background: red; }

Two fields are given here, one required and one optional. The first field remains
invalid until an e-mail is entered into the field. The second field is optional and is
therefore valid if left empty.

<form>
<input type="email" required>
<input type="email">

</form>

Note that these pseudo-classes are in no way a substitution for proper form
validation, using JavaScript or PHP, for example. Browser support for these two pseudo-
classes exists in Chrome 10+, Firefox 4+, IE10+, Safari 5,4+ and Opera 10+.

required and optional

A form field with the required attribute set is matched by the :required pseudo-class.
The related :optional pseudo-class does the opposite: it matches input elements that do
not have the required attribute set.

input:required { color: red; }
input:optional { color: gray; }

23

CHAPTER 5 © PSEUDO SELECTORS

The following form contains one required and one optional input element, which is
targeted by the previous styles:

<form>
<input type="email" required>
<input type="url">

</form>

Like the :valid and :invalid pseudo-classes, support for :required and :optional
is limited to Chrome 10+, Firefox 4+, IE10+, Safari 5+, and Opera 10+.

Other pseudo-classes

Some pseudo-classes do not fit into any of the earlier categories, namely the :target,
:1ang, and :not pseudo-classes.

target

The :target pseudo-class can style an element that is targeted through an id link. It can
be useful for highlighting a targeted section of the document.

:target { font-weight: bold; } /* targeted element */

When the following internal page link is followed, this rule is applied to the anchor
element. The browser also scrolls down to that element.

In page link
This pseudo-class is supported in all major browsers, except IE8 and earlier

versions.

lang

The pseudo-class : lang() matches elements determined to be in the language provided
by the argument.

p:lang(en) {}

This pseudo-class applies to paragraph elements that are intended for an English
audience, such as the following paragraph:

<p lang="en">English</p>

24

CHAPTER 5 © PSEUDO SELECTORS

Note that the behavior of this pseudo-class is similar to the language attribute
selector. The difference is that the :1ang pseudo-class also matches elements if the
language is set on an ancestor element, or in some other way such as through the page
HTTP header or <meta> tag.

<body lang="fr">

<p>French</p>
</body>

not

The negation pseudo-class :not matches elements that are not targeted by the specified
selector.

p:not(.first) { font-weight: bold; }
This example rule selects paragraphs that are not using the first class.

<p class="first">Not bold</p>
<p>Bold</p>

The :not pseudo-class is supported in all major browsers, except IE8 and
earlier versions.

25

CHAPTER 6

Relationship selectors

Relationship selectors match elements based on their relation with other elements.
To understand these selectors, it is important to recognize how elements in a web
document are related to each other.

HTML hierarchy

An HTML document can be visualized as a tree with the <html> element as the root.

Each element fits somewhere on this tree, and every element is either a parent or a child

of another element. Any element above another one is called an ancestor, and the element
directly above is the parent. Similarly, an element below another one is called a descendant,
and the one directly below is a child. In turn, an element sharing the same parent as
another element is called a sibling. Consider the following simple HTML 5 document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
</head>
<body>
<h1>Heading</h1>
<p>Paragraph</p>
</body>
</html>

In this example, <h1> and <p> are sibling elements because they share the same
parent. Their parent element is <body>, and together with <html>, they are both ancestors
to the sibling elements. In turn, the two sibling elements are child elements of <body>
and descendants of both <body> and <html>. The hierarchy of this simple document is
illustrated in Figure 6-1.

27

CHAPTER 6 © RELATIONSHIP SELECTORS

4

META | TITLE H1 P

Figure 6-1. Example HTML hierarchy

Inheritance

Inheritance is another important concept in CSS. It makes certain styles apply not only
to the specified element but also to all its descendant elements. For example, the color
property is inherited; the border property is not. This default inheritance is usually the
intended behavior, making inheritance very intuitive. Any property can also explicitly be
given the value inherit to use the same value as the one the parent element has for that

property.

/* Inherit parent's border */
p { border: inherit; }

Inheritance enables you to apply a style to a common ancestor whenever you find
a place in which every descendant element needs that same style. This process is more
convenient and maintainable than applying the style to every descendant element that
needs that specific style. For example, if the text for an entire document needs to be set
to a particular color, you can apply the style to the <body> element, which is the common
ancestor for all visible elements.

/* Set document text color to gray */
body { color: gray; }

Now that you have an understanding of the HTML hierarchy and the inheritance
concept, the relationship selectors of CSS can be discussed.

Adjacent selector

The adjacent sibling selector selects the second element if it comes directly after the first
element.

div+p { color: red; }

28

CHAPTER 6 * RELATIONSHIP SELECTORS

This selector matches paragraphs that follow <div> elements.

<div>Not red</div>
<p>Red</p>
<p>Not red</p>

Descendent selector

The descendent selector matches an element if it is the child or grandchild of another
element. It is useful when you want to apply a style to an element only when it resides
within another element.

div p { background: gray; }

The preceding rule applies to the following paragraph because it descends from a
<div> element:

<div>
<p>Gray</p>
</div>

Direct child selector

The direct child selector matches its second element if it is the immediate descendant of
its first element.

div > span { color: green; }

When applied to the following markup, this rule will color the second
element green. The first element is not colored because it is not a direct child of
<div>.

<div>
<p>
Not green
</p>
Green
</div>

29

CHAPTER 6 © RELATIONSHIP SELECTORS

General sibling selector

CSS 3 added the general sibling selector, which matches the second element only if it is
preceded by a sibling element of the first type.

hi~p { color: blue; }

In the following example, the last two paragraphs are selected because they are
preceded by <h1> and all share the same parent:

<p>Not blue</p>
<h1>Not blue</h1>
<p>Blue</p>
<p>Blue</p>

Although it is a CSS 3 selector, it is supported by all major browsers, including
Chrome 2+, Firefox, IE7+, Safari 3.1+, and Opera 9.2+.

30

CHAPTER 7

Specificity

When more than one rule applies to the same element and they specify the same
property, there is a priority scheme that determines which rule is given precedence.
In short, CSS gives priority to the rule that has the most specific selector.

Selector specificity

There are some basic rules for calculating specificity. The lowest specificity with the
weight of 0 is given by the universal selector (*), which matches all elements
in the document.

* { color: red; } /* 0 */

The type selectors have the weight of 1, so a selector containing two type selectors
has a specificity of 2.

p { color: blue; } /* 1 */
body p { color: gold; } /* 2 */

A class selector has the weight of 10, as do pseudo classes and attribute selectors.
When these selectors include a type selector, they have a total weight of 11.

.a { color: lime; } /* 10 */
p:first-child { color: navy; } /* 11 */
p[class=a] { color: teal; } /* 11 */

The pseudo elements do not count for any specificity, except for the specificity
added by the selector the pseudo element is prefixed with.

p:first-letter { color: white; } /* 1 */
Id selectors have a weight of 100, so an id rule overrides most other conflicting styles.

#i { color: aqua; } /* 100 */

31

CHAPTER 7 * SPECIFICITY

Inline styles have a weight of 1000 and outweigh even id rules.
<p style="color: black;">Text</p>

To override all other conflicting styles, including those defined as inline styles, a
declaration can be declared as ! important. Note that the ! important modifier is applied
to individual declarations, not entire rules.

p { color: red !important; }

If the specificity between two conflicting rules is the same, the cascade is what
determines which rule is applied.

Cascade

In CSS, more than one style sheet can influence a document’s presentation. This feature
is known as cascading (the “C” part of CSS) because the browser merges all style sheets to
resolve any conflicts before the styles are applied.

Web documents can have style sheets that come from three different sources: the
browser, site designer and user reading the document. The designer’s style sheet usually
has the highest priority, followed by the user’s personal style sheet (if any) and then the
browser’s default one.

Designer styles

As discussed earlier, web designers have three ways to include CSS rules: inline styles,
internal style sheets, and external style sheets. Among these three, inline styles are given
the highest precedence, followed by internal style sheets and then external style sheets.

If the web page includes more than one external style sheet with conflicting rules
(same specificity), the style sheet that is included last in the HTML markup is given
precedence. This is also true within a style sheet. If the selectors are the same, the
property declared last is the one that counts.

p { color: orange; } /* overridden */
p { color: silver; } /* dominant */

For inherited styles, an element’s own style has priority over style inherited from
its ancestors.

p { color: orange; } /* dominant */
body { color: silver; }

32

CHAPTER 7 * SPECIFICITY

Specificity guidelines

As shown in this chapter, the style of an element can be specified in many different places
and with different priorities. The cascading feature gives a lot of flexibility to CSS, but it
can also result in unnecessary complexity if not managed well.

In general, you want to keep specificity low to make it easier to know which rules
will take precedence. This way, you can allow the cascade to work for you by adjusting
the order in which your style rules appear, instead of needlessly increasing the specificity
with id and !important to override conflicting styles.

33

CHAPTER 8

Colors

There are several different ways to specify a color in CSS, which are described in the
following sections.

Named notation

Colors can be set by simply typing the common name of that color.
p { color: red; } /* color paragraphs red */

The HTML and CSS color specification includes 140 predefined color names, such as
white, 1lime, and olive. These colors are all supported by the major browsers.

Hexadecimal notation

For the full palette, the red, green, and blue components of the color can be set individually.
Each color component consists of a two-digit hexadecimal number, and the whole six-digit
number is prefixed by a hash sign (#RRGGBB). Hexadecimal means base-16 counting, so
valid digits are 0 through 9 and A through E Each red-green-blue pair can range from 00
to FE or 0-255 in decimal notation. All in all, there are 16 million available colors.

p { color: #FF0000; } /* red:255, green:0, blue:0 */
Although this color notation is the most obfuscated one, it is also the most common
one because of its precision, conciseness, and browser support. An easy way to discover

the hexadecimal value of a color is to use the color picker tool from graphics software
such as Adobe Photoshop or Paint.NET.

35

CHAPTER 8 " COLORS

Short hexadecimal notation

There is a short form of the hexadecimal notation in which the color is specified using
only three hexadecimal digits instead of six. This notation can be converted to the
hexadecimal notation by duplicating each digit.

p { color: #fo0; } /* same as #ff0000 */

The short hexadecimal notation is a useful shortcut when the full precision provided
by the longer hexadecimal notation is not needed.

RGB notation

The rgb() function allows a color value to be specified as three intensity values for the
color components red, green, and blue. The value can be either an integer between 0 and
255 or a percentage.

p { color: rgh(255, 0, 0); }
p { color: rgh(100%, 0%, 0%); }

The RGB notation allows the same color precision as the hexadecimal notation.
The notation used comes down to a matter of preference, but the hexadecimal notation
is often preferred because it is shorter and can easily be copied from an image editor,
for example.

RGBA notation

CSS 3 introduced the RGBA notation, adding an alpha value for specifying the color
transparency. This alpha value is a number between 0.0 (fully transparent) and 1.0
(fully opaque).

/* Red with 50% transparency */
p { color: rgba(100%, 0%, 0%, 0.5); }

RGBA color values are supported in Chrome, Firefox 3+, [E9+, Safari, and Opera 10+.
If support is not present, the rule is ignored, so a fallback color value can be set as
shown here:

p i
color: rgh(100%, 0%, 0%); /* fallback */
color: rgbha(100%, 0%, 0%, 0.5);

}

A browser that does not support RGBA ignores the second declaration and continues
to apply the opaque version.

36

CHAPTER 8 © COLORS

HSL notation

A color value can be set with the hs1() function (which stands for hue, saturation, and
lightness). Hue is a degree on a color circle from 0 to 360, where 0 and 360 are red, 120

is green, and 240 is blue. Saturation is a percentage value, with 0% giving a shade of gray
and 100% giving the full color. Lightness is also specified as a percentage, from 0% (black)
to 100% (bright).

p { color: hsl(o, 100%, 100%); }
Although HSL colors are more intuitive than RGB colors, and the color values are
easier to tweak, HSL should not be used until IE8 usage declines to a point when it is

no longer necessary for web sites to support it. HSL is a CSS 3 value and is supported in
Chrome, Firefox, IE9+, Safari, and Opera 10+.

HSLA notation

Similar to RGB, the HSL notation can be extended with an alpha value for specifying the
transparency.

/* Red with 50% transparency */
p { color: hsla(o, 100%, 100%, 0.5); }

HSLA is supported in Chrome, Firefox 3+, IE9+, Safari, and Opera 10+, which is the
same as the RGBA function.

37

CHAPTER 9

Units

There are several units to choose from when specifying the size of a property’s value.

Absolute units

The absolute units of length are centimeter (cm), millimeter (mm), and inch (in). Although
these units are meant to look the same regardless of the screen resolution, it is not always
the case because web browsers do not always know the exact physical size of the display
medium.

.one-cm { font-size: 1cm; }
.one-mm { font-size: 1mm; }
.one-in { font-size: 1in; }

These units are mainly useful when the size of the output medium is known, such as
for content that will be printed to paper. They are not recommended for screen displays
because the screen sizes can vary a lot.

Typographical units

Points (pt) and picas (pc) are typographical units. By definition, there are 72 points to an
inch and 12 points to one pica. Like the absolute units, the typographical units are most
useful for print style sheets, not for onscreen use.

.one-point { font-size: 1pt; }
.one-pica { font-size: 1pc; }

Relative units

The relative units of length are pixel (px) and percentage (%). A percentage is a unit
proportional to the parent’s value for that property; a pixel is relative to the physical pixel
on the display device used.

.one-pixel { font-size: 1px; }
.one-percent { font-size: 1%; }

39

CHAPTER 9 © UNITS

Pixels and percentages are two of the most useful units in CSS for onscreen displays.
Pixels are fixed size, so they allow very precise control over the layout in a web document.
Percentages, on the other hand, are useful for defining font sizes for text content because
the text remains scalable, which is important for small devices and accessibility purposes.
When the text is part of the design and needs to match other elements, it can be sized
in pixels for greater control. Modern browsers all support full-page zooming, which has
made pixel-based font sizes more acceptable. Note that for high-resolution screens, a
CSS pixel renders as multiple screen pixels. For example, the Apple Retina display renders
all pixel dimensions at twice their actual size.

Font-relative units

Two additional relative measures are em-height (em) and ex-height (ex). Em-height is the
same as the font-size; ex-height is about half the font-size.

.one-ex { font-size: 1ex; }
.one-em { font-size: 1em; }

Like percentage, em-height is a good relative unit that is commonly used for setting
the font size of web document text. They both respect the user’s choice of font size in their
browser and are easier to read on small-screen devices than pixel-based font sizes.

CSS 3 introduced two additional font-relative units: rem and ch. The root em-height
(rem) unit is relative to the font-size of the root element (<html>). It can be used instead of
em to prevent the element’s font size from being affected by changes to the font size of its
ancestor elements.

.one-rem { font-size: 1rem; }

The character unit (ch) measures the width of the character zero (0) for the element’s
font. It can be useful for defining the width of a box containing text because the unit
roughly corresponds to the number of characters that fit within that box.

/* Same width */
<div style="width: 5ch;"></div>
<div>00000</div>

The ch unit is supported only in Chrome 27+, Firefox 19+, and IE9+, so it should be
used only with a fallback. The rem unit has slightly better support and works in Chrome 4+,
Firefox 3.6+, IE9+, Safari 4.1+, and Opera 11.6+.

Viewport units

Viewport width (vw) and viewport height (vh) units allow elements to be dimensioned
relative to the viewport, meaning the visible portion of the document. Each unit
represents a percentage of the current viewport.

40

CHAPTER 9 © UNITS

width: 50vw; /* 50% of viewport width */
height: 25vh; /* 25% of viewport height */

Two additional viewport units are vmin and vmax, which give the minimum or
maximum value of the viewport’s dimension.

width: avmin; /* 1vh or 1vw, whichever is smallest */
height: 1vmax; /* 1vh or 1vw, whichever is largest */

Chrome 26+, Firefox 19+, IE11+, Safari 6.1+, and Opera 15+ all support the viewport
units. The vh, vw, and vmin units have greater support than vmax, going back to Chrome
20+, IE9+, and Safari 6.0. In IE9 and IE10, vmin is instead called vm.

Unit values

Itis possible to set length using decimals. Some properties also allow negative values for
length.

p { font-size: 0.394in; } /* decimal value */
p { margin: -1px; } /* negative value */

Note that a rule does not work if there is a space before the unit or if no unit is
specified—except for the value zero. Including a unit after zero is optional, but it is good
practice to omit it.

p { font-size: 1ex; } /* correct */
p { font-size: 0; } /* correct */
p { font-size: oex; } /* correct */
p { font-size: 1 ex; } /* invalid */
p { font-size: 1; } /* invalid */

Whenever a CSS declaration contains an error, it is ignored by the browser. Any other
valid declarations in the rule still apply.

41

CHAPTER 10

CSS Properties

The remaining chapters of this book cover the multitude of properties available in CSS.
In these chapters, possible property values are given using a formal notation, such as the
one shown here:

text-shadow : inherit | none | <offset-x> <offset-y>
[<blur-radius>] [<color>]

This notation means that the text-shadow property can have one of three different
kinds of values. The default value is listed first; in this case, it is inherit. Because the
inherit keyword can be set for any property, it is not included unless it is the default
value. The second value, none, is also a keyword. It is the initial value for this property and
can be applied to disable an inherited property effect.

The third option in this notation includes a set of four values—two required ones
and two optional ones—as indicated by the square brackets ([]). The angle brackets (<>)
show that they are not keywords; they are other value types. In this case, they are three
length values and a color value. Following this notation, the following declaration shows
avalid example use of the text-shadow property:

text-shadow: 1px 1px 1px red;

Generic keywords

In addition to inherit, there are two other generic property keywords you might come
across in CSS: initial and unset. Both generic keywords were introduced in CSS 3 and
can be set on any properties.

The initial keyword applies a property’s initial value to an element, as defined
by the CSS specification. It is supported in Chrome 1+, Firefox 19+, Safari 1.2+, and
Opera 15+, but it is currently not supported in any version of IE. Because of the lack of IE
support, the usefulness of this keyword is limited. It is recommended to instead explicitly
specify the initial value for a given property to reset it.

The third generic keyword is unset, which is a combination of the initial and
inherit keywords. It resets the property to its inherited value, if there is one; otherwise,
it sets the property to the initial value. At this moment, support for the unset keyword is
limited to Firefox 27+. Until all major browsers adapt this keyword, it should not be used.

43

CHAPTER 10 © CSS PROPERTIES

Quirks mode

When HTML and CSS became standardized by the World Wide Web Consortium (W3C),
web browsers could not just comply with the standards because doing so would break
most web sites already in existence. Browsers instead created two separate rendering
modes: one for new standard compliant sites and one for old legacy sites (quirks mode).

In full standards mode, the browser does its best to render the page in accordance
with HTML and CSS specifications. Browsers use the doctype for the sole purpose of
deciding between full standards mode and quirks mode. A valid doctype at the start of
aweb document, such as the HTML 5 doctype seen following, ensures that the page is
rendered in full standards mode:

<!DOCTYPE html>
<html> ... </html>

This doctype triggers full standards mode in all major browsers, dating back as
far as IE6.

Vendor prefixes

Many browsers begin incorporating new CSS properties long before their specification
becomes stable. Because these implementations are experimental, their property names
include a vendor prefix to indicate that the specification could potentially change in

the future.

The major vendor prefixes include -moz for Firefox; -ms for Internet Explorer; -o for
Opera; and -webkit for Chrome, Safari, Android, and iOS. Recent versions of Opera also
implement the -webkit prefix in parallel with the -o prefix. For example, support for the
CSS 3 border-radius property can be increased by using the following vendor prefixes.
Note that the unprefixed version should always be included last.

.round {
/* Safari 3-4, i0S 1-3.2, Android 1.6-2.0 */
-webkit-border-radius: 3px;

/* Firefox 1-3.6 */
-moz-border-radius: 3px;

/* Opera 10.5+, IE9+, Safari 5+, Chrome 1+,
Firefox 4+, i0S 4+, Android 2.1+ */
border-radius: 3px;

As time goes on, the new property’s specification becomes stable, and browsers
drop the vendor prefix. Given more time, web users abandon old browsers in favor of
new versions, and the need for vendor prefixes diminishes. This has already occurred for
the border-radius property, and developers are now encouraged to drop the prefixes,
making things a little easier for web developers worldwide.

44

CHAPTER 10 * CSS PROPERTIES

Progressive enhancement

When deciding whether to use a recent CSS feature, it is important to consider how your
site will look without it. If the feature enhances the appearance of your site, such as the
CSS 3 border-radius property, you might want to start using the feature, even when it
is viewable by only a small percentage of your visitors. Time works in your favor, and as
people abandon old browsers, a greater number of your visitors can see the feature, which
enhances their experience on your site. This is the essence of progressive enhancement.
On the other hand, if your site depends on the feature and appears broken without
it, you need to carefully consider how well supported the feature is and whether there
are fallbacks or scripts you can make use of to increase this support, such as those listed
on HTMLS5 Polyfills.! There are often many ways to achieve the same result in CSS, so it is
a good idea to choose a method that is well supported by all major browsers for the key
elements of your site, such as the layout.

'http://html5polyfill. com

45

http://html5polyfill.com/

CHAPTER 11

Text

The text properties serve to format the visual appearance of text content.

color

The color property sets the color of text by using either one of the color notations. By
default, its value is set to inherit, meaning that it inherits the color of its parent element.

color : inherit | <color>

The initial value is black for all major browsers. In the following example rule,
paragraphs are colored blue:

p { color: #oof; }

text-transform

text-transform controls text casing. Possible values are listed as follows, with none as the
initial value:

text-transform : inherit | none | uppercase | lowercase | capitalize
This property enables text to be converted into either uppercase or lowercase letters.
The capitalize value capitalizes the first letter of each word. This property inherits by

default, so the none value can be used to remove an inherited text-transform effect.

text-transform: none; /* remove effect */

text-decoration

One or more visual effects to text can be added with the text-decoration property.

text-decoration : none | underline + overline + line-through + blink

47

CHAPTER 11 © TEXT

To add multiple decorations, separate the values with spaces (indicated by the “+”
sign, shown previously). The following rule adds a line above and below text content that
is affected by this class:

.highlight { text-decoration: underline overline; }

This property does not inherit, but its effect renders across descendent inline
elements in a way that is similar to inheritance.

text-indent

The first line of text in a block element can be indented with the text-indent property.
It can be set to a unit of measure or a percentage of the parent element’s width. Text can
also be indented backward by using a negative value.

text-indent (block) : inherit | <length> | <percentage>

The following example indents the first line of paragraph elements by one em:

p { text-indent: 1em; }

text-align

The text content of a block element can be aligned with the text-align property. This
property can replace usages of the deprecated align attribute in HTML.

text-align (block) : inherit | left | center | right | justify

Text and inline elements can be aligned to the left, aligned to the right, or centered.
The justify value also stretches each line so that both the right and left margins appear
straight.

p { text-align: justify; }

The text-align property inherits, so it needs to be explicitly changed in child
elements to restore default left alignment.

direction

The writing direction of text can be switched with the direction property.

direction (block) : inherit | 1ltr | rtl

48

CHAPTER 11 TEXT

The default value is 1tr, meaning left-to-right. It can be changed to rt1 to make text
content within a block element flow to the right. It indicates that the text is supposed to be
read from right-to-left, as in Hebrew or Arabic text, for example.

<p style="direction: rtl">
Aligned from right-to-left
</p>

This property does inherit, so it can be set once for the <body> element to apply to
the whole web page.

text-shadow

A shadow effect can be added to text with the text-shadow property.

text-shadow : inherit | none | <offset-x> <offset-y> [<blur-radius>]
[<color>]

The shadow is defined using two offset values, followed by two optional values for
the blur radius and color. The x and y offsets are specified as length values relative to the
text. Positive values move the shadow right and down; negative values move it left and up.

A blur effect can be added by setting a blur radius, which makes the shadow stretch
and fade at the edges. The final optional value for the property is the color of the shadow.
If no color value is specified, most browsers render the shadow in the same color as the
text. The following example style causes a slightly blurred gray shadow to appear at the
top right of <h1> elements:

h1 { text-shadow: 1px -1px 1px gray; }

text-shadowis a CSS 3 property that is supported by most major browsers, including
Chrome 2+, Firefox 3.5+, IE10+, Safari 1.2+, and Opera 9.5+.

box-shadow

In addition to text, a shadow effect can be added to block elements with the box-shadow
property.

box-shadow (block) : inherit | none | [inset] <offset-x> <offset-y>
[<blur-radius>] [<spread-radius> [<color>]]

49

CHAPTER 11 © TEXT

The values for the box shadow are the same as for text-shadow—with two
exceptions. A fourth length value, spread-radius, can be specified to grow or shrink the
shadow. This value is optional and is 0 if left unspecified, rendering the shadow in the
same size as the element. As an example, the following class rule displays a blurry gray
shadow to the bottom right of any block element using this class:

.drop-shadow { box-shadow: 3px 3px 3px 6px #ccc; }

The second value unique to the box-shadow property is the inset keyword. If
present, the shadow displays inside the box instead of as a drop shadow on the outside.

.inset-shadow { box-shadow: inset 3px 3px 3px 6px #ccc; }

box-shadow is a CSS 3 property and is implemented in Chrome 10+, Firefox 4+, IE9+,
Safari 5.1+, and Opera 10.5+. Support can be expanded using the -webkit and -moz
prefixes, as shown here:
.drop-shadow
{

/* Chrome 1-5, Safari 2-5.1+ */
-webkit-box-shadow: 3px 3px 5px 6px #ccc;

/* Firefox 3.5-3.6 */
-moz-box-shadow: 3px 3px 5px 6px #ccc;

box-shadow: 3px 3px 5px 6px #ccc;

50

CHAPTER 12

Spacing

The following properties deal with the space between elements. They are all inherited by
default.

line-height

line-height sets the distance between lines. The initial value is normal, which is typically
rendered as 120% of the font size. The line height can also be set to a length, a percentage
of the current font size, or a dimensionless number that is multiplied with the current
font size.

line-height : inherit | normal | <length> | <percentage> | <number>

The line-height property inherits, so the preferred way to set line-height is by
using a dimensionless number. Setting 1ine-height as a length or percentage can have
unexpected results for child elements that use different font sizes because the inherited
line height is then fixed instead of relative to the child element’s font size.

/* Line height is 1.5 times font size */
line-height: 1.5;

Line height has no effect on replaced inline elements such as . When used on

non-replaced inline elements, it sets the line height as expected. For block elements,
line-height sets the minimal height of line boxes within the element.

word-spacing and letter-spacing

word-spacing sets the spacing between words, and letter-spacing sets the spacing
between individual characters. Negative values are allowed for both of these properties.

word-spacing : inherit | normal | <length>
letter-spacing : inherit | normal | <length>

51

CHAPTER 12 © SPACING

The following rule creates a 3-pixel distance between letters and a 5-pixel distance
between words inside a paragraph:

pi
letter-spacing: 3px;
word-spacing: 5px;

}

white-space

The white-space property changes the way whitespace characters inside of a block
element are handled.

white-space (block) : inherit | normal | nowrap | pre | pre-wrap | pre-line

Multiple whitespace characters are normally collapsed into a single character in
HTML, and text is wrapped as necessary to fill the width of the containing block element.

/* Wrap text and collapse newlines, spaces and tabs */
p { white-space: normal; }

Setting whitespace to nowrap prevents text from wrapping for anything other than
the line break tag
. The pre (preformatted) value also prevents wrapping, but it also
preserves all whitespace characters. Its behavior is the same as the <pre> element in HTML.
Both the pre-wrap and pre-1line values allow text to wrap as normal, with pre-wrap
preserving sequences of whitespace and pre-1ine collapsing them. The difference
between pre-line and normal is that pre-1line preserves newline characters. Note that
the support for these last two values in IE was not added until version 8.

52

CHAPTER 13

Font

The font properties can be used to change aspects of the font and to load custom fonts.
They can be applied to any element and they all inherit.

font-family

font-family sets the face of the font. Its value can be a specific font name such as times
or verdana; or a generic family name such as sans-serif, serif, or monospace.

font-family : inherit | <family-names> | <generic-families>

The value for this property is a prioritized list of one or more font names. If a browser
does not have access to the first font, it uses the next font and so on.

font-family: "Times New Roman", times, serif;

It is recommended to end the list with a family name to make sure that at least the
font family is consistent across browsers. Note that if a font name includes spaces, it must
be surrounded by double quotes, as in the previous example.

font-size

font-size sets the size of the font. The value can be any unit of measure or a percentage
of the parent’s font size. There are also a couple of predefined values, as listed here:

font-size : inherit | <length> | <percentage> |
smaller | larger | xx-small | x-small |
small | medium | large | x-large | xx-large

The larger and smaller values are relative to the parent’s font size; the other

predefined values refer to absolute sizes. The initial size is medium, which is 1 em
(16 pixels) for normal text.

53

CHAPTER 13 © FONT

font-style

font-style makes the text slanted. According to specifications, italic is a cursive
companion face to the normal face, and oblique is a slanted form of the normal face.
Both faces tend to be rendered the same way for most fonts, however.

font-style : inherit | normal | italic | oblique

font-variant

font-variant can be used to display text using small caps instead of lowercase letters.
A value of small-caps renders text in uppercase letters that are smaller than regular
uppercase letters.

font-variant : inherit | normal | small-caps

font-weight

font-weight sets the thickness of the font. The bolder and lighter values set the
thickness relative to the parent element, and the numeric values specify absolute weights.
The value of bold is equal to 700, and normal is the same as 400.

font-weight : inherit | normal | bold | bolder |
lighter | 100 | 200 | ... | 900

Even if several weight values can be specified, most fonts have only one type of bold,
as shown in the following example rendering:

lighter normal bold bolder 100 200 300 400 500 600 700 800 900

font

There is a convenient shorthand property named font that sets all the font properties in
one declaration.

font : inherit | <font-style> + <font-variant> +
<font-weight> + <font-size> / <line-height> +
<font-family>

The properties must be specified in the order listed previously. As long as this order is
kept, either one of the properties can be left out (except for font-size and font-family,
which are mandatory). If a property is left out, the default value for that property is used,
which is to inherit the parent’s value. The following example applies four font properties
to the paragraph element:

p { font: italic 50%/125% Verdana; }

54

CHAPTER 13 © FONT

This font declaration sets the font-style, font-size, line-height, and font-family
properties in one declaration. Because font-variant and font-weight are not
included, a side effect of using this declaration is that they are both re-set to normal.

Custom fonts

Selected fonts can be seen only if the font is installed on the device used to view the web
site. If a nonstandard font is needed, a @font-face rule can be used to load the font from
an online location.

@font-face {
font-family: MyFont;
src: url(myfont.ttf);

}

This rule creates a font named MyFont and provides a URL from which the browser
can download it. With this rule in place, the custom font can be used just like any
standard font.

p { font-family: "MyFont", arial, sans-serif; }
This use of the @font-face rule is supported in Chrome 5+, Firefox 3.5+, [E9+,

Safari 3.1+, and Opera 10+. If the browser does not support the custom font, it reverts to
the next standard font in the list.

55

CHAPTER 14

Background

The background properties can add background effects. None of these properties inherits
and they can be applied to any elements.

background-color

The color of an element’s background is set with the background-color property. By
default, its value is set to transparent.

background-color : transparent | <color>

Even if a background image is used, it is a good idea to set a background color. That
way, there is a fallback color in case the background image is unavailable for any reason.

background-color: #ccc;

background-image

background-image specifies an image to use as a background with the url function.
background-image : none | url(<urls)

The image location defined with the url function can be either absolute or relative to
the location of the CSS file.

/* Relative path */
background-image: url(../images/myimg.7jpg);

/* Absolute path */
background-image: url(http://mydomain.com/images/myimg.jpg);

57

http://mydomain.com/images/myimg.jpg

CHAPTER 14 © BACKGROUND

background-repeat

By default, the background image repeats itself both horizontally and vertically. It can
be changed with the background-repeat property to make the background repeat only
horizontally (repeat-x), only vertically (repeat-y), or not at all (no-repeat).

background-repeat : repeat | repeat-x | repeat-y | no-repeat

background-attachment

When the viewport is scrolled in a browser, a background image normally follows along
with the rest of the page. This behavior is determined by the background-attachment
property, whose initial value is scroll. If the value is set to fixed, the position of the
background is instead relative to the viewport, making the background stay in place even
as the page is scrolled.

background-attachment : scroll | fixed | local

CSS 3 introduced a third value for this property, local, which fixes the background
relative to the element’s content instead of the whole viewport. With this value, the
background scrolls along with the element’s content only when that element is scrolled
(achieved by using the overflow property). Support for this value was introduced in
Chrome 4+, Firefox 25+, [E9+, Safari 5+, and Opera 10.5+.

background-position

The background-position property is used to position a background image, with one
value for vertical placement and another for horizontal. They can both be set to a length
or a percentage of the element’s size, and negative values are allowed. There are also
some predefined values for this property, including: top, center, and bottom for vertical
placement; and left, center, and right for horizontal placement.

background-position : <length> <length> | <percentage> <percentage> |
top/center/bottom + left/center/right

By default, a background image is positioned to the top left of its parent element’s
padding area. Any length values given move the background image relative to these
edges. For example, the following property offsets the background 5 pixels down and
10 pixels to the right:

background-position: 5px 10px;

58

CHAPTER 14 © BACKGROUND

CSS 3 added a four-value syntax, allowing a choice of which side of the element
the image will be positioned relative to. Using this syntax, the background in the next
example is positioned relative to the bottom right instead of the top left of the element.

background-position: bottom 5px right 5px;

This four-value syntax is supported only in Chrome 25+, Firefox 13+, IE9+,
Safari 5.28+, and Opera 10.5+.

background-size

The size of a background image is normally the same as the actual size of the image.

It can be changed with the background-size property, which allows the background to
be resized to a dimension specified in pixels or as a percentage relative to the background
positioning area.

background-size (1-2) : auto | <length> | <percentage> | cover | contain

With two values, the first value determines the width of the image and the second
value its height.

background-size: 150% 100%;

A single value defines only the width of the image. The height is then implicitly set to
auto, preserving the aspect ratio of the image.

background-size: 150%;
The contain and cover keywords size the background to fill the parent container
while maintaining the aspect ratio. The cover value ensures that the image completely

covers the background positioning area, whereas contain makes sure that the
background is contained within the area. Their difference is illustrated in Figure 14-1.

positioning area

background-size:

. background-size: cover;
contain;

overflow =

Figure 14-1. Backgrounds sized with cover and contain keywords

59

CHAPTER 14 © BACKGROUND

This property was added in CSS 3 and is supported in Chrome 4+, Firefox 4+, IE9+,
Safari 5+, and Opera 10.5+. Use of the -webkit and -moz prefixes expand support to
Chrome 1+, Safari 3+, and Firefox 3.6+.

background-clip

The painting area of a background image or color can be set with the background-clip
property.

background-clip : border-box | padding-box | content-box

The background normally extends to the outside edge of the border (border-box)
and renders behind any visible border. A value of padding-box instead draws the
background within the element’s padding. The third possible value, content-box, draws
the background within the content area. Using the following declaration, the background
is clipped to the outside edge of the content:

background-clip: content-box;

background-clip is supported in Chrome 1+, Firefox 4+, [E9+, Safari 3+,
and Opera 12+.

background-origin

The background-origin property determines the starting point of a background
image or color.

background-origin : padding-box | border-box | content-box

A background image is ordinarily rendered starting from the top left of the element’s
padding area (padding-box). It can be changed so that the background either starts at the
top-left edge of the border area (border-box) or the content area (content-box).

The background-origin property is often used together with background-clip
to change both the starting point and clipping area of the background. The following
declarations set both of them to the content area:

background-origin: content-box;
background-clip: content-box;

The background-origin property is a CSS 3 property that works in Chrome 4+,
Firefox 4+, IE9+, Opera 10.5+, and Safari 5+. All versions of Firefox and Chrome, along
with Safari 4, are supported with the -moz and -webkit prefixes, as seen in the next
example. Note that Firefox used the values padding and border prior to version 4; there
were no values for specifying the content box as the origin.

60

CHAPTER 14 © BACKGROUND

/* Chrome 1-3, Safari 4 */
-webkit-background-origin: border-box;

/* Firefox 1-3.6 */
-moz-background-origin: border;

background-origin: border-box;

background

The background property is a shortcut for setting all background properties in a single
declaration.

background : <background-color> + <background-image> +
<background-repeat> + <background-attachment> +
<background-position> + <background-size> +
<background-clip> + <background-origin>

The order of the values is irrelevant because there is no ambiguity between them.
Any one of the values can be left out, but keep in mind that those omitted properties are
reset to their defaults when using this property.

background: url(bg.png) no-repeat fixed right bottom;

In most cases, it is preferable to use shorthand properties such as this one when
setting more than one of the individual properties. It has better performance and is easier
to maintain than using the equivalent longhand properties seen here:

background-image: url(bg.png);
background-repeat: no-repeat;
background-attachment: fixed;
background-position: right bottom;

Multiple backgrounds

More than one background can be applied to the same element by specifying the property
values in a comma-separated list. The first background in the list appears at the top, and
each successive background is visible only through transparent areas of the backgrounds
stacked on top of it.

background-image: url(bgl.png), url(bg2.png);
background-repeat: no-repeat, repeat-y;
background-attachment: fixed, fixed;
background-position: right bottom, top left;

61

CHAPTER 14 © BACKGROUND

The shorthand property can also be used with multiple backgrounds in the
following way:

background: url(bgl.png) no-repeat fixed right bottom,
url(bg2.png) repeat-y fixed top left;

Support for multiple backgrounds was added in CSS 3 and has been included in
browsers since Chrome 4+, Firefox 3.6+, IE9+, Safari 3.1+, and Opera 10.5+. A fallback

image can be provided for older browsers that do not support multiple backgrounds.

background-image: bg.png; /* fallback */
background-image: bgi.png, bg2.png;

62

CHAPTER 15

Gradients

A gradient is a color fill that blends smoothly from one color to another. Introduced in
CSS 3, the gradient functions can be used anywhere an image is required according to
specification, but they are mainly used together with the background or background-image
properties to create a background gradient.

Linear gradients

The linear-gradient() function defines a gradient that provides a smooth transition
from one color to another.

linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

In its simplest form, the linear gradient consists of two colors with an even spread
from top to bottom. In Figure 15-1, the gradient starts as gray and transitions into black at
the bottom.

.mygradient {
background-image: linear-gradient(gray, black);

}

Figure 15-1. Simple linear gradient

63

CHAPTER 15 © GRADIENTS

The angle for the gradient can be set by using the keyword to, followed by the
destination in which the gradient will end: top, right, bottom, left, or any combination
thereof. An example is shown in Figure 15-2.

linear-gradient(to bottom right, gray, black);

Figure 15-2. Bottom-right linear gradient

More-precise angles can be specified by using the deg unit, with 0 deg being the
same as to top. The degrees proceed clockwise, and negative angles are allowed.

linear-gradient(odeg, gray, black); /* to top */
linear-gradient(90deg, gray, black); /* to right */
linear-gradient(180deg, gray, black); /* to bottom */
linear-gradient(-90deg, gray, black); /* to left */

Additional color stops can be added between the starting and ending colors. Any
color stop can be followed by a stop position specified as either a percentage or a length
value. If no stop position is specified, the colors are evenly distributed. In the following
case, white is set at 25 percent, instead of its default position of 50 percent. Figure 15-3
illustrates the result of this code.

linear-gradient(gray, white 25%, black);

Figure 15-3. Gradient with multiple color stops

CHAPTER 15 © GRADIENTS

The standard syntax described so far is supported in Chrome 26+, Firefox 16+,
IE10+, Safari 6.1+, and Opera 12.1+. Legacy syntaxes can be used together with the -moz,
-webkit, and -o prefixes to expand support down to Firefox 3.6, Chrome 1, Safari 4, and
Opera 11.1.

.linear-gradient
{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */

background: -webkit-gradient(linear, left top, right top, from(red),
to(orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-linear-gradient(left, red, orange);

/* Firefox 3.6-15 */
background: -moz-linear-gradient(left, red, orange);

/* Opera 11.1-12.1 */
background: -o-linear-gradient(left, red, orange);

/* Standard syntax */
background: linear-gradient(to right, red, orange);

Radial gradients

A radial gradient transitions outward from a central point. In CSS, these gradients are
defined with the radial-gradient() function.

radial-gradient([<shape> + <size>] [at <position>]
{, <color stop> [stop position]} {2-«})

To create a radial gradient, at least two color stops must be defined. The radial
gradient in Figure 15-4 starts as gray in the center and fades to black.

radial-gradient(gray, black);

65

CHAPTER 15 © GRADIENTS

Figure 15-4. Simple radial gradient
Like linear-gradient(), more than two color stops are allowed and they can
optionally be followed by a length or percentage value, indicating the stop position of the

color. An example is shown in Figure 15-5.

radial-gradient(black 25%, white, black 75%);

Figure 15-5. Radial gradient with set stop positions

The shape of the radial gradient can be either an ellipse or a circle. The default
shape is el1lipsis, which allows the gradient to spread itself to match both the height and
width of the element, as shown in Figure 15-5. The alternative circle value, illustrated in
Figure 15-6, forces the gradient to be circular, regardless of the shape of the element.

radial-gradient(circle, black 25%, white, black 75%);

Figure 15-6. Circular radial gradient

66

CHAPTER 15 © GRADIENTS

Two length values for the ellipsis or a single value for the circle can be used to set the
horizontal and vertical radius of the gradient. For the ellipsis, they can also be percentage
values that are relative to the dimensions of the element, as in the example shown in
Figure 15-7.

radial-gradient(75% 25%, gray, black);

Figure 15-7. Resized radial gradient

Ifless precision is needed, the size can be set by using one of the predefined
keywords: closest-side, closest-corner, farthest-side, or farthest-corner. These
values specify whether the gradient is contained by the sides or corners of the element
nearest to or farthest away from the origin (see Figure 15-8). For example, the farthest-side
value sizes the gradient so that its last color ends at the farthest side of the element away
from its origin.

radial-gradient(farthest-side, gray, black);

closest-side

closest-corner

origin farthest-side

farthest-corner

Figure 15-8. Size keywords

The origin of a radial gradient is centered by default. It can be changed by specifying
the position of the gradient’s origin with the keyword at followed by a position specified
in the same way as for the background-position property. The horizontal position is
specified first, optionally followed by the vertical position. The position can be set with

67

CHAPTER 15 © GRADIENTS

keywords (left, center, right + top, center, and bottom), length values, percentage
values, or a combination thereof. An example is given in Figure 15-9, in which the
gradient origin is moved to the bottom right of the element.

radial-gradient(at right bottom, gray, black);

Figure 15-9. Bottom-right origin

Support for the radial-gradient () function is largely the same as for
linear-gradient() when used together with the -moz, -webkit, and -o vendor prefixes.
Like linear-gradient(), the syntax for the radial gradient has gone through some
revisions. An example of a full cross-browser syntax is shown here:

.radial-gradient

{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */
background: -webkit-gradient(radial, center center, Opx, center
center, 100%, color-stop(0%,red), color-stop(100%,orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Firefox 3.6-16 */
background: -moz-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Opera 11.6-12.1 */
background: -o-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Standard syntax */
background: radial-gradient(ellipse at center, red 0%, orange 100%);

}

68

CHAPTER 15 © GRADIENTS

Repeating gradients

Linear and radial gradients do not allow gradient patterns to repeat because they
naturally stretch to fill the element on which they are defined. Two additional functions
are used for creating repeating gradients: repeating-linear-gradient() and
repeating-radial-gradient().

For the purpose of repeating a linear gradient, the repeating-linear-gradient()
function is used. The arguments for this function are the same as for linear-gradient().

repeating-linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

A repeating linear gradient repeats the color stops infinitely. The size of the gradient
is determined by the final color stop. To avoid sharp transitions, the starting color in
Figure 15-10 is repeated at the end.

repeating-linear-gradient(-45deg, white 0, black 10%, white 20%);

3

|

Figure 15-10. Repeating linear gradient

The repeating function for the radial gradient also shares the same syntax as the
nonrepeating version. The example shown in Figure 15-11 illustrates the repeating function.
Note that this gradient has sharp color transitions in contrast with the previous example.

repeating-radial-gradient(black, black 5%, white 5%, white 10%)

Figure 15-11. Repeating radial gradient

69

CHAPTER 15 © GRADIENTS

The syntax for defining gradients is notably more complex than many other CSS
features. For this reason, it can be preferable to use an online tool to graphically design
the desired gradient. One such tool can be found on Colorzilla.com.! In addition to the
standard compliant gradient code, it also provides the prefixed versions necessary for
maximum browser compatibility.

'http://www.colorzilla.com/gradient-editor

70

http:Colorzilla.com

http://www.colorzilla.com/gradient-editor

CHAPTER 16

Box model

The so-called box model of CSS describes the space that is taken up by an HTML element.
In this model, each element consists of four boxes: content, padding, border, and margin,
as illustrated in Figure 16-1.

margin
border
padding

3.
content o
!
~

5 width g

Figure 16-1. CSS box model

Each of the three boxes surrounding the content can have different sizes on the top,
right, bottom, and left of the element. Any or all of these sizes can also be set to zero.

Inline and block

HTML has two primary categories of elements: block and inline. The box model applies
differently to these two kinds of elements, so it is important to know the difference
between them. Examples of inline elements include <a>, and , while

<p>, <h1>, and <form> are block elements.

Inline elements flow along with text content and are split as necessary to fit the width
of their container. They may not contain block elements, with the exception of the <a>
element, which can wrap any type of element.

Block elements can contain both block and inline elements (see Figure 16-2). They
break the flow of text by creating a virtual box around themselves that expand horizontally,
making it appear as if there are line breaks before and after each block element. Because of
these properties, block elements are also referred to as boxes or containers.

71

CHAPTER 16 © BOX MODEL

block 1

inline 1 inline 2 ...

... inline 2 inline 3

block 2

Figure 16-2. Block and inline elements

The boxes surrounding inline and block elements have different features. A block
element can manipulate all properties in the box model, including the width and height
of the content area, as well as the border, padding, and margin. If no width is set, a block
element expands horizontally to the maximum allowed by the containing element.

An inline element is more limited in that it cannot set the vertical margins (top or
bottom). It also cannot change the width or height of its inline box. For an inline element,
the minimum height can be set with the 1ine-height property, but the width and height
adjust automatically to fit the content that the element holds.

There is a subcategory of inline elements, called replaced inline elements, that
use external objects such as , <video>, and <object>; and form elements such
as <input> and <textarea>. With these inline elements, all box properties can be
manipulated the same way as block elements.

Span and div

Using the and <div> elements is a generic way of adding structure to a web document.
These elements have no styles associated with them, which makes them especially well-suited
to work with class and id selectors. The difference between the two is that is an inline
element whereas <div> is a block element.

Inline
<div>Block</div>

As an inline element, is mainly used to add styling to sections of text. It cannot
be used for styling block elements because such elements are not allowed inside of inline
elements according to the HTML specification.

Red text

In contrast, <div> is used to create styled containers for other block and inline elements.
These custom containers are often what make up the layout of a web page. Because it is
ablock element, <div> allows all the element’s box attributes to be manipulated (width,
height, padding, border, and margin).

<div class="a">
<div class="b">Block within a block</div>
</div>

72

CHAPTER 17

Border

The border properties are used to format the border around elements. They can be
applied to any element and they do not inherit.

border-style

To make the border visible around an element, the border-style property has to be set to
a value other than none, which is the default value.

border-style (1-4) | border-top-style |
border-right-style | border-bottom-style |
border-left-style :
none | dashed | dotted | double | groove |
hidden | inset | outset | ridge | solid

The solid border style is the one most commonly used, but there are several other
options for displaying a border, as seen in Figure 17-1. The hidden value removes the
border and is synonymous with none, except that it also hides shared borders in tables
with collapsed borders.

peesssssssnsny - -

Solid_] § Dotted : LI-DashedJ Double

Groowre| I Ridge Inset Outset

Figure 17-1. border-style appearances

The border-style property is one of several properties that can be set with one
to four values. When fewer than four values are specified, the border-style value is
duplicated, as shown in Figure 17-2.

~ N
top right bottom left
S o

Figure 17-2. 1-to-4-value syntax explained

73

CHAPTER 17 © BORDER

Given these rules, the following declarations are synonymous and display a solid
border on the top and bottom of an element:

border-style: solid none solid none;
border-style: solid none solid;
border-style: solid none;

To render all border sides in the same style, only a single style value needs to be specified.
border-style: solid;

The border-style property has four subproperties that can also be used to target
each border side’s style.

border-top-style: dotted;
border-right-style: dashed;
border-bottom-style: ridge;
border-left-style: inset;

border-width

The border-width property, which controls the width of borders, can be set with a unit
of length or with one of the predefined values: thin, medium, or thick. The initial value is
medium, which is typically rendered as 3 pixels.

border-width (1-4) | border-top-width |
border-right-width | border-bottom-width |
border-left-width :

<length> | thin | medium | thick

As with border-style, this property can have one to four values and has four
subproperties for setting the individual borders’ width.

/* Shortcut property */
border-width: thin medium;

/* Full-length properties */
border-top-width: thin;
border-right-width: medium;
border-bottom-width: thin;
border-left-width: medium;

A width of zero means that no border is displayed. This value has the same effect as
setting the style of the border to none.

4

CHAPTER 17 © BORDER

border-color

border-color sets the color of the border. CSS does not specify what the default border
color should be, but most browsers render it gray. This property can have from one to four
values and has four subproperties for setting the individual borders’ color.

border-color (1-4) | border-top-color |
border-right-color | border-bottom-color |
border-left-color :

<color> | transparent

Setting the color to transparent makes the border invisible without changing the layout.

border-color: transparent;

border

The border property can set the width, style and color border properties in a single
declaration. It is the most commonly used property for controlling the border.

border | border-top | border-right |
border-bottom | border-left :
<border-width> + <border-style> + <border-color>

The values can be set in any order because there is no ambiguity between them.
Either one of the values can also be omitted.

border: 1px solid black;

The border property has four subproperties for specifying the border settings for
each of the four sides.

border-top: 1px solid red;
border-right: 1px solid blue;
border-bottom: 1px solid aqua;
border-left: 1px solid lime;

border-radius

The corners of the border can be rounded using the border-radius property or its four
subproperties.

border-radius (1-4) | border-top-left-radius |
border-top-right-radius | border-bottom-right-radius |
border-bottom-left-radius :

<length> | <percentage> [/ <length> | <percentage>]

75

CHAPTER 17 © BORDER

The border-radius property can have from one to four values. Each radius value can
be set by using either one value for a circle radius or two values for an elliptical radius.
The value can be either a length or a percentage. If a percentage is used, it is relative to
the container’s dimensions. The examples that follow are illustrated in Figure 17-3:

.a { border-radius: 5px; }
.b { border-radius: 5px 20px; }
.c { border-radius: 50%; }
.d { border-radius: 30px/10px; }

a b c d

Figure 17-3. Border-radius examples

The radius for each of the four edges can be set using the four subproperties of
border-radius. The following example renders the same as the second box in
Figure 17-3:

border-top-left-radius: 5pX;
border-top-right-radius: 20px;
border-bottom-right-radius: 5px;
border-bottom-left-radius: 20px;

border-radius is a well-supported CSS 3 property. To add support for older
browsers, the -webkit and -moz browser prefixes can be used.

.round {
/* Safari 3-4 */

-webkit-border-radius: 5px;

/* Firefox 1-3.6 */
-moz-border-radius: 5px;

/* Opera 10.5, IE9, Safari 5, Chrome 1, Firefox 4 */
border-radius: 5px;

76

CHAPTER 18

Outline

The outline is a line drawn around an element, outside the border edge. It is typically
rendered as a dotted line around interactive elements to show which element has focus.
Although similar to the border, the outline differs in that it does not take up any space in
the box model. Furthermore, unlike the border, all four sides of the outline must be the
same. The outline properties can be applied to any element, and none of them inherits.

outline-style

The style of the outline is set with the outline-style property. To display the outline,
the value needs to be set to something other than none, which is the default.

outline-style : none | solid | dotted | dashed | double |
groove | ridge | inset | outset

This property allows the same values as border-style, except that hidden is not a
valid outline-style. They are also rendered the same, as illustrated in Figure 18-1.

pressscssssnany - -

Solid_] § Dotted : LI-DashedJ Double

Groovel I Ridge | Inset Outset

Figure 18-1. Outline-style appearances

outline-width

The thickness of the outline is specified with the outline-width property. Like the
border-width property, its value can be a specified length or one of the keywords thin,
medium, or thick.

outline-width : <length> | thin | medium | thick

7l

CHAPTER 18 © OUTLINE

CSS does not specify the numerical thickness of these three keywords, but they
typically render as 1px, 3px, and 5px, respectively. Like border-width, the initial value for
this property is medium.

outline-color

The color of the outline can be changed with the outline-color property. In addition to
the standard color notations, the keyword invert is also a valid value for this property.

outline-color : invert | <color>

To ensure proper contrast, the specification suggests that the default value be
invert, which sets the outline to the opposite of the color underneath. However,
only IE8+ and Opera 7+ actually support this value, so it is not commonly used.

outline

outline is a shorthand property for setting all the preceding outline properties in a single
declaration.

outline : <outline-width> + <outline-style> + <outline-color>

The values can be specified in any order because there is no ambiguity between
them. Either one of them can be left out.

outline: thin solid red;

This has the same effect as setting all the individual properties, but with a more
convenient syntax:

outline-width: thin;

outline-style: solid;
outline-color: red;

outline-offset

The space between the outline and the border edge can be set with the outline-offset
property introduced in CSS 3.

outline-offset : <length>

The following declaration moves the outline 3 pixels outward. Negative values are
allowed, which instead move the outline inside the element.

outline-offset: 3px;

Although this property is not supported in IE, it works in all other major browsers.

78

CHAPTER 19

Margin and padding

Margins and padding are used to adjust the position of an element and to create space
around it.

Padding

Padding is the space between an element’s content and its border. It is set using the
padding properties shown here. These properties do not inherit and can be applied to
any element.

padding (1-4) | padding-top | padding-right |
padding-bottom | padding-left :
<length> | <percentage>

There are four properties for setting the padding on each side individually. In the
following example, the vertical (top, bottom) margins will be 10 pixels, and the horizontal
(right, left) margins will be zero.

padding-top: 10px;
padding-right: O0;
padding-bottom: 10px;
padding-left: 0;

These declarations can be shortened to a single declaration using the padding
property. The padding values are then specified in clockwise order: top, right, bottom,
and left.
padding: 10px O 10px O;

Like many other properties related to the box model, the padding property can be set

with one to four values that correspond to the edges of the element’s box. With fewer than
four values, the padding is repeated as is shown in Figure 19-1.

79

CHAPTER 19 © MARGIN AND PADDING

gt S
top right bottom left
L =

Figure 19-1. 1-to-4-value syntax explained

For instance, if two values are specified, the first value sets the top and bottom
padding, and the second value sets the right and left padding. This gives an even shorter
way of writing the previous example.

padding: 10px 0;

Keep in mind that the padding is part of the element’s background and is affected by
the background properties, whereas the margin is always transparent.

Margin

The margin is the space around an element’s border and is set using the margin properties
listed as follows. These properties are not inherited and can be applied to any element, with
the exception that vertical margins do not affect nonreplaced inline elements.

margin (1-4) | margin-top | margin-right |
margin-bottom | margin-left:
<length> | <percentage> | auto

Margin and padding can both use percentage values, which are relative to the
width and height of the containing element. In contrast with padding, margins can be
negative, which allows for element areas to overlap. The auto keyword lets the browser
automatically calculate the margin.

Like the padding and border properties, the margin property can be set with one to
four values. For example, in the following declaration, the top-bottom margins will be
1 cm, and the right-left margins will be 0:

margin: icm O;

The margin property also has four subproperties, which provide a more verbose
method for setting the margin on each of the four sides.

margin-top: 1cm;
margin-right: o0;
margin-bottom: 1cm;
margin-left: o0;

80

CHAPTER 19 © MARGIN AND PADDING

Top and bottom margins are shared between adjacent boxes, so the vertical
distance between two boxes is not the sum of the margins, but only the greater of the
two margins. Because of this, the distance between the two following <div> boxes will be
only 10 pixels:

<div style="margin-bottom: 5px;">Top box</div>
<div style="margin-top: 10px;">Bottom box</div>

81

CHAPTER 20

Dimension

The dimension properties control the size of an element, as well as its minimum and
maximum dimensions. They do not inherit and can be applied only to block elements
and replaced inline elements.

width and height

The width and height of an element’s content area can be set with the width and height
properties. These two properties can be assigned with either a length or a percentage
value, where the percentage is relative to the parent element’s dimensions.

width | height : auto | <length> | <percentage>

A block element normally stretches out to the edges of its container. In contrast, the
element’s height collapses to fit its content. With the width and height properties, these
default behaviors can be changed. In the following example, elements applying the class
have a width of 100 pixels and a height of 50 pixels. After the dimensions have been set
like this, the element keeps that size, no matter how the page is resized.

.mybox {
width: 100px;
height: 50px;
}

min-width and min-height

The min-width and min-height properties set the minimum dimensions of an element.
The element’s width and height still expand to fit the content, but the element does not
collapse below the specified minimum dimensions, which does not include padding,
borders, or margins.

min-width | min-height : <length> | <percentage>

83

CHAPTER 20 DIMENSION

Valid values for these properties are lengths and percentages, where percentage is
relative to the dimensions of the containing block. For example, the following class makes
an element take up at least half of the available width and height:

.half {
min-width: 50%;
min-height: 50%;
}

max-width and max-height

The maximum dimensions of an element’s content area are set with the max-width and
max-height properties. They can be set with a length or percentage value, as well as the
keyword none to clear a previously set value.

max-width | max-height : none | <length> | <percentage>

By setting both the maximum and minimum width, you can define an interval for the
way the width of an element can vary. A block element using the following class expands
to fill 500 pixels if it can. When horizontal space is limited, the element is allowed to
shrink down to no fewer than 200 pixels.

.mybox {
max-width: 500px;
min-width: 200px;

}

The max-width property has priority over min-width. However, it is the other way
around with the height properties because min-height has priority over max-height.
Thus, an element using the following class has a height of 5 em, unless its content
requires more height. In that case, the element expands vertically up to its maximum
allowed value of 20 em.

.mybox {
max-height: 20em;
min-height: 5em;

}

Keep in mind that the fixed width and height properties should not be used together
with the min- and max- properties. The four min- and max- properties are supported by all
major browsers, including Chrome 1+, Firefox 1+, IE7+, Safari 1+, and Opera 8+. They are
popularly used together with media rules for creating fluid layouts that work well across
different screen sizes.

84

CHAPTER 20 * DIMENSION

box-sizing

The dimension properties normally refer to the content area, not the padding or border
area. Therefore, to know the actual width or height that an element occupies in the box
model, the surrounding padding and border have to be taken into account.

/* 100 pixels wide element */
.mybox {
padding: 3px;
border: 2px solid red;
width: 90px;
}

CSS 3 introduced the box-sizing property to allow web developers a choice of how
widths and heights are calculated. The default value is content-box, which means the
dimension properties refer only to the content area. The alternative border-box value
includes the padding and borders in these measurements.

box-sizing : content-box | border-box

By changing the box sizing to border-box, you can create a grid layout more easily
because you no longer need to take the padding and border sizes into account.

/* 100 pixel wide element */
.mybox {
box-sizing: border-box;
padding: 3px;
border: 2px solid red;
width: 100px;

}

The border-box property does not inherit, but it can be applied to all elements on the
website using the universal selector. To increase browser support, the -webkit and -moz
prefixes should be used.

/* Use border-box for all elements */
*{
/* Chrome 1-8, Safari 3-5 */
-webkit-box-sizing: border-box;

/* Firefox 1-28*/
-moz-box-sizing: border-box;

/* Chrome 9+, Firefox 29+, IE8+, Safari 5.1+, Opera 9.5+ */

box-sizing: border-box;

Browser support for the box-sizing property has become so good that all major
browsers now support it. As such, many new websites have started to employ this
property to simplify the grid calculations for their layouts.

85

CHAPTER 21

Positioning

The positioning properties can change how and where elements are displayed. They
enable very precise control over the web page layout.

position

Elements can be positioned in four different ways using the position property. An
element with the position property set to anything but static is known as a positioned
element.

position : static | relative | absolute | fixed

A positioned element can be moved with the top, left, right, and bottom properties,
which can be used to position elements anywhere on the page and also to resize them
horizontally and vertically. They allow both positive and negative length and percentage
values, with the percentage being relative to the dimensions of the containing block.

top | right | bottom | left (positioned) :
auto | <length> | <percentage>

static

By default, the position property has the value static. This value means that the
element appears in its regular position in the page flow and is not affected by the top,
left, right, or bottom positioning properties.

/* Not positioned element */
.static { position: static; }

Because the position property is not inherited, and static is the default, there is no
need to explicitly set the position property to static.

87

CHAPTER 21 POSITIONING

relative

Changing the position value to relative means that the element can be positioned
relative to its normal position in the page flow. For example, to display a selected element
20 pixels below its normal position, the following declarations are used:

/* Move element 20 pixels down */
.relative {

position: relative;

top: 20px;

}

Relatively positioned elements are considered part of the normal page flow, so other
elements do not move to fill in the gap left by the element.

The effect of moving an element relative to its normal position can also be achieved
by using the element’s margin. This solution is often preferable unless there is a specific
need to make the element positioned, such as whether it will be a container for an
absolutely positioned child element.

/* Move element 20 pixels down */
margin-bottom: -20px;

Keep in mind that changing the margin affects the layout and fills in gaps, whereas
relative positioning does not.

absolute

The position value absolute detaches the element from any containing elements and
allows it to be positioned relative to its nearest positioned ancestor or to the document
body if there are none.

/* Place element in upper left corner */
.absolute {

position: absolute;

top: 0;

left: o;
}

fixed

A fixed element is positioned relative to the screen viewport. It does not move when the
page is scrolled. Similar to absolutely positioned elements, fixed elements do not reserve
any space in the normal page flow.

88

CHAPTER 21 POSITIONING

/* Place element in bottom right corner */
.fixed {

position: absolute;

bottom: 0;

right: 0;
}

overflow

The overflow property decides how content overflow is handled for block elements.
It defaults to visible, meaning that text and child elements that expand beyond the
element’s content area are visible. Setting the value to hidden hides the overflowing
content, and with the scroll value the element’s block becomes scrollable to
accommodate the overflowed content. The auto value is similar to scroll, but the
scrollbars then appear only when necessary.

overflow (block) : visible | hidden | scroll | auto

This property controls the behavior of both horizontal and vertical overflow. Two
additional properties, overflow-x and overflow-y, can be used to differentiate between
how horizontal or vertical overflow is handled. The values for these two properties are the
same as for the overflow property.

overflow: hidden; /* hide all overflow */
overflow-x: hidden; /* hide horizontal overflow */
overflow-y: hidden; /* hide vertical overflow */

clip
The clip property can crop an element into a rectangle if it is positioned as either
absolute or fixed. It uses a CSS function called rect () to specify the clipping region.

clip (absolute | fixed) :
auto | rect(<top>, <right>, <bottom>, <left>)

rect() requires four length values, each separated by commas. These values are
relative to the top-left corner of the element. The example shown in Figure 21-1 cuts out
and displays a 200 x 400 pixel region from the element to which it is applied.

.myclip {

position: absolute;
clip: rect(100px, 500px, 300px, 100px);

89

CHAPTER 21 POSITIONING

Figure 21-1. Shaded region is removed

The keyword auto can be used as a value for the right or bottom side to refer to the
full width or height of the element, respectively. This keyword is also the default value for
the c1ip property, which then means that the element is not clipped.

/* Remove 100px from left and top */
clip: rect(100px, auto, auto, 100px);

/* No clipping */
clip: auto;

To support IE7 and below, the commas in the rect () function need to be left out.
This nonstandard syntax is supported in all major browsers.

/* Backwards compatible IE4-7 syntax */
clip: rect(100px 500px 300px 100px);

Z-index

Positioned elements that overlap each other are normally layered according to their
order in the web document. This natural stacking order can be altered with the z-index

property.

z-index (positioned) : auto | <integer>

90

CHAPTER 21 POSITIONING

The z-index property takes a positive or negative integer as its value, indicating the
stacking order. Elements with a higher value are in front of elements with a lower value, as
in the following example:

<img src="ace-of-hearts.png" style="
position: absolute;
left: o;
top: 0;
z-index: 1;">

<img src="ace-of-spades.png" style="
position: absolute;
left: 100px;
top: 100px;
z-index: 0;">

In this example, shown in Figure 21-2, the ace of hearts is layered on top of the ace of
spades because of its higher stacking order.

A

L 4

4

<>

e

-
Y

Figure 21-2. Customized stacking order

91

CHAPTER 21 POSITIONING

vertical-align

The vertical alignment of text and inline elements within a line can be controlled with the
vertical-align property. This property can also be used on table cell elements.

vertical-align (inline | table-cell) :
baseline | <length> | <percentage> | top | middle |
bottom | text-top | text-bottom | super | sub

By default, the bottom of text and inline elements, such as images, align at the
baseline, which is the invisible line on which all letters sit. The values top and bottom
align the image to the top and bottom of the line, respectively. Less intuitive is the value
middle, which aligns the middle of the image with the middle of lowercase letters in the
parent. The rendering of these common alignment values is illustrated in Figure 21-3.

top bottom
line box

r L
middle line
A y 0 . j.) baseline

baseline middle

Figure 21-3. Common vertical alignment values

Two less-commonly used values for vertical-align are text-bottomand
text-top. The text-bottom value aligns the bottom of the element with the bottom of
the text. Opposite of it, the text-top value aligns the top of the element with the top
of the text. There is also the sub and super values, which align the element to subscript
and superscript positions, respectively. The result of using these values is shown in
Figure 21-4.

su per* *text—top
m ®
=

A

r

Ayo

)|

su bT text-bottom

Figure 21-4. Other vertical alignment values

92

CHAPTER 21 POSITIONING

Elements can also be raised (positive value) or lowered (negative value) with either
alength or percentage value. Both percentage and length values start at the baseline; the
percentage value is relative to the line height.

/* Align text segment 5 pixels below normal text */
Normal Lowered

When applied to table cell elements <th> and <td>, the vertical-align property
behaves as the deprecated valign attribute in HTML. Valid values for table cells are
baseline, bottom, middle, and top. Other values, including lengths and percentages,
should not be used with table cells.

The top value aligns the cell’s top padding edge with the top of the row. Likewise,
bottom aligns the cell’s bottom padding edge with the bottom of the row. More notably,
the baseline value aligns the cell’s content so that it shares the same baseline as other
cells that are baseline-aligned.

In contrast with inline elements that default to baseline, table cell elements are
normally aligned in the middle. For table cells, the middle value behaves in a more
intuitive way by aligning the cell’s padding box in the middle of the row, making the cell’s
content appear centered.

In the following example, the table cell element is vertically aligned at the bottom:

<table>
<tr>
<td style="vertical-align: bottom;">Bottom</td>

</tr>
</table>

Centering

There are several ways to center elements in CSS. A common method is to use the
text-align property with the value center.

.text-center { text-align: center; }

By applying this property to the containing element, text within it is center-aligned.
<p class="text-center">Centered text</p>

This method works for text and inline elements, but not for block elements. To center
block elements, the left and right margins can be set to auto, which makes the horizontal

margins equally large, causing the block to be centered.

.box-center { margin: 0 auto; }

93

CHAPTER 21 POSITIONING

Keep in mind that for a block element to appear centered, its width must be fixed
and not flexible; otherwise, it takes up all the available width.

<div style="width: 50px; height: 50px;
border: 1px solid black;"
class="box-center"></div>

For vertical centering, the easiest way to align content to the middle is to use the
vertical-align property on the parent element with its value set to middle. This
behavior only works as expected for table cell elements, so the container needs to be
changed into one, as in the following example using the display property:

<div style="vertical-align: middle;

display: table-cell;
min-height: 100px;">Centered</div>

94

CHAPTER 22

Classification

The classification properties specify how an element is displayed and whether it is visible.

display

The display property determines the kind of box that surrounds an element. It can make
any element appear as inline, block, or any other type. Every element has a default display
value that depends on what type of element it is.

display : none | inline | block | list-item | inline-block |
inline-table | table | table-cell | table-row |
table-column | table-column-group | table-footer-group |
table-header-group | table-row-group | flex | inline-flex |
grid | inline-grid | run-in

Most HTML elements display as either inline or block; others have special display
properties, such as list-itemfor the <1i> element and table-cell for the <td> and <th>
elements. By using the display property, any element can be changed to be rendered as
these or any other element type. For instance, the following link is rendered as a block
element instead of an inline element:

Block link

One of the more useful values for display is inline-block, which combines features
of both block and inline. An inline-block element is like an inline element, except that
it can also manipulate the width, height, and vertical margin properties of the box model
as a block element does. These features are the same as those of replaced inline elements,
such as and <button>. As such, these elements were formally redefined as
inline-block elements in HTMLS5.

95

CHAPTER 22 CLASSIFICATION

A common application of inline-block is to make list item elements (<1i>) suitable
for horizontal navigation menus. Note that changing the display type of the list item
element from list-itemto inline-block automatically removes the list marker.

1i {
display: inline-block;
width: 100px;
background: #ccc;

}

With this rule in place, the following markup renders three boxes with gray
backgrounds next to each other, as illustrated in Figure 22-1.

Item one</1i>
Item two</1i>
Item three

Item one Item two Item three

Figure 22-1. The inline-block value demonstrated

Another useful display value is none. It completely hides an element, making the
page render as if the element did not exist.

.removed { display: none; }

visibility
The visibility property can hide an element without removing the space it occupies by
setting the property's value to hidden.

visibility (block) : inherit | visible | hidden | collapse

The collapse value is meant to be used only on certain table elements: rows (<tr>),
columns (<col>), column groups (<colgroup>), and row groups (<thead>, <tbody>, and
<tfoot>). According to specification, collapse should remove the hidden element (same
asdisplay: none)and make the space available for other elements to claim. Regrettably,
not all major browsers follow the specification for this value. Setting the display property
to none results in more consistent browser behavior and should be used instead.

96

CHAPTER 22 ' CLASSIFICATION

opacity

The opacity property can make an element and its content transparent.
opacity : <number>

A decimal value between 0.0 and 1.0 is used to set the transparency. With a value
of 1, the element is opaque; 0 renders the element fully transparent, or invisible.

.half-transparent { opacity: 0.5; }

Support for this CSS 3 property is included in Chrome 1+, Firefox 1+, IE9+,
Safari 1.2+, and Opera 9+. IE support can be greatly enhanced using the following filter:

.half-transparent {
filter: alpha(opacity=50); /* IE5-8 */
opacity: 0.5;

float

The float property detaches an element from its containing element and makes it
float on top of it, either to the left or right side. It is intended for wrapping text around
images, but is also commonly used for making layouts. Floating an inline element
automatically changes it into a block element.

float : none | left | right

To have text and other inline content wrap around an image, you can float it to the
left or right.

As for layouts, floats allow block elements to be lined up horizontally. For instance,
a grid of boxes can be created with the following class:

.box {
float: left;
width: 100px;
height: 100px;
margin: 0 lem;
background: #ccc;
border-radius: 10px;

97

CHAPTER 22 CLASSIFICATION

This class makes boxes stack up horizontally instead of vertically, which is the
normal behavior for block elements (see Figure 22-2).

<div class="box"></div>
<div class="box"></div>
<div class="box"></div>

Figure 22-2. Floated boxes

A side effect of using floats is that any element that follows these floated boxes also
lines up horizontally. The clear property is designed to stop this behavior.

clear

The clear property is used to clear floating elements from the left, right, or both sides of
an element.

clear (block) : none | left | right | both

This property is commonly given its own class that has the same name as the
property.

.clear { clear: both; }

An empty div container with the clear class is typically placed after the floated
elements. This cleared element is moved below the floating elements instead of
appearing next to them.

<div class="clear"></div>

Because floated layouts tend to be complex and fragile, they have generally been
superseded by other layout methods, such as the use of the positioning properties.

In the box-aligning example given earlier, a better alternative is to change the box to
an inline-block element. This accomplishes the same task, while removing the need to
clear the floated elements.

98

CHAPTER 22 ' CLASSIFICATION

.box {
display: inline-block;
width: 100px;
height: 100px;
margin: O lem;
background: #ccc;
border-radius: 10px;

cursor

The cursor property specifies what cursor users see when they hover over an element.
The default value is auto, meaning that the browser decides what cursor to use. Standard
cursor values and their appearance can be seen in Table 22-1.

Table 22-1. Standard cursor values

. default ointer 1{—? move
% W

=) it 7, ™ hel [\“~ text-
wal [\'@: progress [13? ep J\E context-menu

CO
A Py

I ns-resize +—F ew-resize I text — vertical-text
T n-resize —$ e-resize L s-resize 4+— w-resize

A ne-resize ™4 se-resize g~ sw-resize F.. nw-resize
.{,:l news-resize F\: nwse-resize EIL}‘ cell E:’E alias

Fe

® not-allowed +"+ col-resize % row-resize 4@ p all-scroll
-

no-drop —~— crosshair
e

In addition to these values, custom cursors can be defined using the url function.
If this cursor is not available, a generic cursor can be specified after the custom one,
separated by a comma.

cursor: url(new.cur), pointer;

99

CHAPTER 23

List

The CSS list properties deal with the list elements, specifically the , , and <1i>
elements.

list-style-type

Lists are rendered with a marker shown before each list item element (<1i>). The
appearance of this marker can be changed using the list-style-type property. For an
unordered list (), each list item is marked in the same way. The predefined bullet
values shown here can be used, with disc (a filled circle) as the default value:

list-style-type : inherit | disc | circle | square | none

In an ordered list (), each list item is marked with a numeric character to show
its position in the sequence. All major browsers support the following numeric types, with
decimal as the initial value:

list-style-type : inherit | decimal | none | upper-alpha | lower-alpha |
upper-roman |
lower-roman | lower-greek | lower-latin |
armenian | georgian |
decimal-leading-zero

The following example assigns a new list style for the two list elements. It is possible
to make the display ordered markers and the to display unordered markers, but
this is not good practice.

ul { list-style-type: square; } /* m */
ol { list-style-type: upper-roman; } /* I, II, III, ... */

The color of the marker is the same as the text color of the list element. Keep in mind

that any element can be made to display list markers by changing its display type to
list-item.

101

CHAPTER 23 © LIST

list-style-image

As an alternative to the predefined markers, using the list-style-image property allows
a custom image to be used as the list bullet.

list-style-image : inherit | none | url(<url>)
The image path is specified inside of the CSS url function.
list-style-image: url(my-bullet.png)
This property overshadows any marker type selected with the list-style-type

property. Even so, it is a good idea to specify a 1ist-style-type as a fallback in case the
custom bullet image is unavailable for any reason.

list-style-position

The list marker is normally positioned outside of the element box. 1ist-style-position
provides an alternative: to place the bullet inside of the element box.

list-style-position : inherit | outside | inside
Selecting outside aligns each line of text with the start of the first line, whereas

inside causes successive lines of text to wrap underneath the marker. The inside value
also visually indents the marker, as shown in Figure 23-1.

Figure 23-1. Outside and inside marker placement

list-style

list-style is the shorthand property for setting all the list properties. The values can be
set in any order because there is no ambiguity between them. Any one of the values can
also be omitted, in which case the default value for that property is used.

102

CHAPTER 23 I LIST

list-style : <list-style-type> + <list-style-image> + <list-style-position>

In the following example, the type and position values of the 1ist-style are set,
which are inherited to the list items.

<ul style="list-style: inside square;">
Apple</1i>
Orange</1i>
Pear</l1i>

Keep in mind that list properties can not only style the list containers and
but also style an individual list item <1i>.

Counters

Elements can be numbered automatically in CSS using the counter-increment and
counter-reset properties. The counter-reset property specifies the name of the
counter. It is optionally followed by the counter’s initial value, which is zero by default.

/* Create a counter named chapter */
body { counter-reset: chapter; }

The counter-increment property takes the counter’s name followed by an optional
number. The number, which sets how much the counter is incremented for every
occurrence of the element, is 1 by default.

/* Increment the counter at each <hi> */
hi:before { counter-increment: chapter; }

The final step of creating a counter is to display it by using the CSS counter()
function with the name of the counter as its argument. In this example, the chapter
number is shown before the <h1> elements:

/* Increment and display the counter */
h1:before {
content: "Chapter " counter(chapter) " - ";
counter-increment: chapter;

}

The counter now adds the chapter number before <h1> elements.
<h1>First</h1> «<!-- Chapter 1 - First -->

<h1>Second</h1> <!-- Chapter 2 - Second -->
<h1>Third</h1> <!-- Chapter 3 - Third -->

103

CHAPTER 23 © LIST

Another counter can be added to also enumerate <h2> subheadings. This counter is
here reset to zero at every <h1> element:

h2:before {
content: counter(chapter) "." counter(section) " ";
counter-increment: section;

}

hi { counter-reset: section; }
The following example illustrates how the counters are displayed:

<h1>Head</h1> <!-- Chapter 1 - Head -->
<h2>Sub</h2> <!-- 1.1 Sub -->
<h2>Sub</h2> <!-- 1.2 Sub -->
<h1>Head</h1> <!-- Chapter 2 - Head -->
<h2>Sub</h2> <!-- 2.1 Sub -->

Nesting counters

CSS counters can be nested any number of levels deep. These nested counters can be
combined and displayed using a CSS function called counters(). The function’s first
argument is the counter name, and the second is a string that separates each counter.

ul { counter-reset: item; }
li:before {
content: counters(item, ".") " ";
counter-increment: item;

}

These rules apply to the following unordered lists (note that a new counter instance
is automatically created for every nested list):

<liritem</1i> <!-- 1 item -->
item</1i> <!-- 2 item -->

<liritem</1i> <!-- 2.1 item -->
<liritem</1i> <!-- 2.2 item -->

Counters are supported in all major browsers, including all versions of Chrome,
Firefox, Safari, and Opera, as well as IE8+.

104

CHAPTER 24

Table

CSS has a number of properties that are used specifically with table elements. These
properties offer control over how browsers render tabular data.

border-spacing

The distance between the borders of adjacent table cells can be changed with the border-
spacing property, which is the CSS equivalent of the cellspacing attribute in HTML.
W3C defines the initial value for this property as 0, but most browsers render it as 2px by
default.

border-spacing : inherit | <length> [<length>]

This property can be specified with either one or two length values. With two values,
the first one sets the horizontal spacing, and the second one sets the vertical spacing.

.spacing {
border-spacing: 5px 10px;

}

border-spacing is a property of the table, not the cells, so it is applied to the <table>
element as in the following example:

<table class="spacing">
<caption>My Table</caption>
<tr>
<td>1st cell, 1st row</td>
<td>2nd cell, 1st row</td>
</tr>
<tr>
<td>1st cell, 2nd row</td>
<td>2nd cell, 2nd row</td>
</tr>
</table>

105

CHAPTER 24 © TABLE

This table is illustrated in Figure 24-1, with a solid border applied to the <td>
elements.

My Table

Ilsl cell, 1st row ”211d cell, 1st row I

Ilst cell, 2nd mwl |211d cell, 2nd rowl

Figure 24-1. Example table

Table cells have borders and padding, but they do not have any margins; they have
border-spacing instead. Padding works the same as for other elements and behaves like
the cellpadding attribute in HTML.

border-collapse

The border-collapse property determines whether the table borders are collapsed into a
single border or separated.

border-collapse : inherit | separate | collapse
Normally, table cells have their own distinct borders and are separated by the
distance set with the border-spacing property. If the borders are set to collapse instead,

the cells share borders, and any value for the border-spacing property is ignored.

table { border-collapse: collapse; }

caption-side

The <caption> element provides a label for a table. Its position can be changed using the
caption-side property.

caption-side : inherit | top | bottom
A caption is ordinarily displayed at the top, but it can also be positioned below the
table using the caption-side property. This property applies to the <caption> element,

but it can also be set for the <table> element because it inherits.

caption { caption-side: bottom; }

106

CHAPTER 24 © TABLE

empty-cells

A table cell without any content normally still displays its border and background. This
behavior can be changed with the empty-cells property.

empty-cells : inherit | show | hide

Setting the value for this property to hide causes the cell’s border and background to
be hidden. The layout of the table is not affected.

table-layout

The table-layout property determines whether the width of table cells should be fixed
or flexible. Unlike the other table properties, table-1layout is not inherited.

table-layout : auto | fixed

This property is initially set to auto, which means that the width of table cells
automatically expands to fit their content, even if that means going beyond their set
width. To enforce a table's specified width, the table-layout can instead be set to fixed.
The horizontal layout then depends only on the table's set width, not on the content of
the cells.

/* Enforce table width */
.fixed { table-layout: fixed; }

A fixed table layout has the added benefit that the browser can render the table more
quickly because it knows the dimension of the table as soon as the first row is received.

107

CHAPTER 25

Media

CSS provides a way to present documents differently, depending on the device on which
they are viewed. Such conditional style rules are placed within a media rule, which
consists of @media, followed by an expression that limits the scope and a set of curly
brackets that encloses the conditional style rules.

@media screen {
/* screen devices only */

}

Media types

The media type condition, which was introduced in CSS 2, lists the following valid values,
including the default value all for targeting all device types:

all | aural | braille | handheld | print | projection | screen | tty | tv |
embossed

Unfortunately, the media type does not tell much about the device, so it is seldom
used for its intended purpose. Modern smartphones, tablets, laptops, and desktop
computers all identify themselves as screen types. The main use of the media type
condition today is to differentiate between onscreen and printed documents to enable
more print-friendly document formatting.

/* Print only */
@media print

{
/* Hide navigation */
#navigation { display: none; }

/* Start h1 elements on a new page */
hi { page-break-before: always; }

109

CHAPTER 25 © MEDIA

Media rules are typically placed at the bottom of the style sheet, which allows the
cascade to override the rules defined earlier. If the style sheet contains a lot of conditional
rules, it might be preferable to move them to a separate style sheet that is included
after the primary style sheet. The media condition can then be specified with the media
attribute on the <link> element.

<link rel="stylesheet" media="print" href="myprint.css">

This style sheet contains the print condition, so it is applied only when the document
is sent to print media. Keep in mind that browsers still download a style sheet, even if its
media condition is false.

Media queries

CSS 3 went a step farther by allowing media rules to target the capabilities of the device,
not just its type. It introduced a wide range of media features that can be targeted, as seen
in the following list. All these features, except for orientation, grid, and scan, can be
prefixed with min- or max- to define constraints.

width | height | device-width | device-height | aspect-ratio | device-
aspect-ratio | resolution | orientation | color | color-index | monochrome

The most important media features, min-width and max-width, allow you to create
responsive designs in which the site layout changes based on the viewport of the device’s
browser.

A media query combines a media type and a condition consisting of one or more
media features. For example, the rules within the following media query are applied only
when viewed on screen-based media with a minimum width of 600 pixels:

@media screen and (min-width: 600px) {}

Media queries are case-insensitive, and parentheses around the condition are
required. The and operator seen here is used to combine the media type and the media
feature, but it can also combine multiple media features together:

@media (max-width: 500px) and (min-aspect-ratio: 1/1) {}
This media query is true if the viewing device has a max width of 500 pixels and at

least a 1:1 aspect ratio (square or landscape viewport). Notice that the media type is left
out here, so the rule applies to all media types.

110

CHAPTER 25 © MEDIA

Logical operators

In addition to the logical and operator, media queries can include the logical not and only
operators as well as the logical or operation. The comma (,) is used as the or operator to
separate groups of multiple queries. The following media rule is true if either the screen is
atleast 700 pixels wide or if the device is in landscape mode:

@media (min-width: 700px), (orientation: landscape) {}

The not operator is used to negate an entire media query. It cannot negate an
individual feature. For example, the following media rule applies only if the device screen
is not 800 pixels wide:

@media not screen and (device-width: 8oopx) {}

The only operator was added to hide media queries from older browsers. According
to the specification, browsers that do not support media queries should interpret the
following rule as being applied to the only media type, which is invalid and thereby
causes the conditional style rules to be ignored.

/* Not applied in older browsers */
@media only screen and (min-width: 600px) {}

Regrettably, IE6-IE8 did not implement the specification correctly. The media query
is therefore ignored even if the only keyword is left out, instead of then applying the
media rule to all screen-based devices.

/* Not applied in IE 6-8 */
@media screen and (min-width : 600px) {}

Note that both the not and only operators require the use of an explicit media type,
whereas the logical o (,) and logical and operators do not.

Support for media queries has become widespread in all major browsers. The
min-width and max-width queries, for example, are supported in Chrome 1+, Firefox
3.5+, IE9+, Safari 4+, and Opera 8+.

Testing media queries

It is important to test your media queries to make sure that your site looks good in as
many devices as possible. The latest web browsers all re-evaluate media queries as the
browser environment is changed (when the window is resized, for example). You can test
how your design responds to different device dimensions just by resizing your browser
window. A useful site that can help you during this testing process is ProtoFluid,' which
allows you to see how your site will look on many tablet and smartphone devices.

thttp://protofluid.com

111

http://protofluid.com/

CHAPTER 25 © MEDIA

Responsive design guidelines

When designing a responsive layout, it is often easiest to start with the mobile layout first
and define how it looks without any media rules. As you expand the viewport, notice
when this layout ceases to look good. This is the breakpoint at which you should change
the part of the layout that visually breaks or ceases to be useful. This change might
include adding a second column or changing to a more advanced navigation menu. You
define these breakpoints using the min-width and max-width media features to override
styles as the viewport gets larger, as shown in the following example. Continue this
method of finding breakpoints until you reach a high enough resolution. Depending on
your layout, you might need to define only a few breakpoints.

@media (min-width: 800px) {
body { background: red; }

}
@media (min-width: 401px) and (max-width: 799px) {
body { background: green; }

}

@media (max-width: 400px) {
body { background: blue; }

}

112

CHAPTER 26

Best practices

You now have an understanding of the fundamentals of CSS. This final chapter takes a
step back to look at good coding practices and standards for style sheet development.
Following these guidelines can help you write robust CSS code that is easy to maintain,
reuse, and extend upon.

Reusable code

A key idea to a manageable style sheet is to avoid duplicate code. Classes help achieve
this goal because they are reusable and can be combined in different ways, giving you a
flexible design that is easy to evolve.

Any time you find page items that share style properties, you should consider
combining those repeating patterns. This makes it easier to reuse and update the code as
well as to maintain style consistency on the site. Consider the following simple example:

.module {
width: 200px;
border: 1px solid #ccc;
border-radius: 3px;

}

.widget {
width: 300px;
border: 1px solid #ccc;
border-radius: 3px;

}

These classes have two styles in common that can be moved into a third class to
avoid unnecessary repetition. This process makes the classes more generic and therefore
more reusable.

.box-border {
border: 1px solid #ccc;
border-radius: 3px;
}
.module { width: 200px; }
.widget { width: 300px; }

113

CHAPTER 26 © BEST PRACTICES

When optimizing classes for reuse, it is important to consider their size. The goal is to
find the middle ground between classes that are not too broad or too narrow. Too-broad
classes lead to unnecessary repetition; too-narrow classes make it difficult to change
the design.

Global modifiers

There are certain style properties that are very commonly used. Instead of adding these
styles to every other class, it is sometimes better to create a general class with that single
style, which you can then apply to the elements that need it. For example, floating
elements to the left or right is such a common operation. These styles are well suited as
global modifiers.

deft { float: left; }
.right { float: right; }

When you want an element floated to the right or left, you can simply add one of
these classes to the element:

<div class="left">...</div>

Global modifiers such as these can be very useful when just a single style property
is needed. However, you should avoid combining several of them because it can become
difficult to adjust your design if all page items are composed of such small classes.

Style sheet structure

By organizing your style sheets, you can make it easier for yourself and other developers
to quickly understand the structure of your CSS. The larger a site becomes, and the more
developers are involved, the greater is the need to keep things well-organized. But it is
good practice to always keep your style sheets well-structured, regardless of the size of the
web site.

The top portion of a style sheet usually includes information about the file and its
author. This metadata should include the author’s name and contact information. This
way, if any questions come up about the document, the developer currently working on
the site knows whom to ask. Other potentially useful metadata includes the file’s creation
date, last modified date, version number, title, and description.

/*
* Title: My Theme
* Version: 1.2.3
* Author: My Name
*/

114

CHAPTER 26 * BEST PRACTICES

As for the style rules, they should be grouped into sections, and each section should
be labeled with a distinguishing comment. This grouping and labeling enables you to find
what you need much more quickly. The sections you need depend on the site, but here
are some example sections:

/* === Normalization === */

/* === Primary layout === */
/* === Secondary layout === */
/* === Tertiary layout === */
/* === Navigation === */

/* === Text-related === */

/* === Links and images === */
/* === General styles === */
/* === General classes === */
/* === Miscellaneous === */

The equal signs after the section name help visually distinguish the sections from
other comments. They also act as a marker that you can search for to easily traverse
the sections.

With large style sheets, the section names can be listed as a table of contents below
the metadata, which makes it easier for developers to get an overview of how the file is
organized.

/* Table of Contents
Normalization
Primary layout (body, primary divs)
Secondary layout (header, footer, sidebar)
Tertiary layout (page regions)
Navigation (menus)
Text-related (paragraphs, headings, lists)
Links and images
General styles (forms, tables, etc.)
General classes (.clear, .center, etc.)
Miscellaneous

*/

Within each section, you should declare your most generic rules first, followed by
rules with increasing specificity. Your elements can inherit styles, and it is easier for you
to override specific styles when needed.

Another thing to consider is how to structure properties within a rule. A popular
approach is to group the properties according to type. You do not have to label the
groups as in the following example, but it helps if you keep the groups in the same order
throughout your style sheet. Doing so enables you to more quickly scan through the rules
in search of specific properties.

115

CHAPTER 26 © BEST PRACTICES

.myclass {
/* Positioning */
position: absolute;
top: 0;
right: 0;

/* Box model */
display: inline-block;
width: 100px;

height: 100px;

/* Color */
background: #ccc;
color: #fff;

/* Text */
font-size: 1em;
line-height: 1.2;
text-align: right;

/* Other */
cursor: pointer;

Keep in mind that these are only guidelines; choose a structure that works for you
and aim to keep it consistent.

Naming conventions

It is helpful to name classes and ids in a way that clarifies their intended use. This
structural naming convention means that the name should describe what the class or id
is used for instead of what it looks like or where it is used in the web document.

The advantage of this naming convention is that it becomes easier to change the
look of your web site. For example, naming an id container #main-content is better than
naming it #center-column-500px. In addition to intuitively understanding the use of the
id, the first name is more versatile in case you later need to adjust the position or size of
the element it is applied to.

#main-content {
width: 500px;
margin: 0 auto; /* centered */

}

Names should be semantic, but not so semantic that they limit reuse. For instance,
naming a class . header-top-margin is not as flexible as naming the class . small-top-margin
(or .small-tm). To later recall that the class is mainly used in the header is easy enough;

116

CHAPTER 26 * BEST PRACTICES

for example, you can search for the class name using the search function when viewing
the page source in a web browser.

.small-top-margin { margin-top: lem; }

In addition to conveying intended use, the class name can also show its relationships
to other classes. For example, if a container class is called .post, the title for that
container can be named . post-title to show that the class should be used only within
an element applying the . post class.

.post {
margin: lem O;
}
.post-title {
font-size: 1.2em;

}

The title class could also have been written as .post.title to ensure that the .title
class can be used only within a container using the . post class. However, the .post-title
name helps avoid naming conflicts and does not increase specificity, so that naming
convention is often preferable. Notice that the relationship between the rules is further
emphasized using indentation, which can significantly improve the code’s readability.

Normalization

Different browsers render some elements slightly differently, mainly because of variations
in their default style sheets. To get a shared baseline, it is common to include a group of
rules that normalize these browser inconsistencies and set reasonable defaults. The most
popular choice for this is the GitHub Normalize.css project.! By including these rules

at the top of your style sheet (or a subset of them per your site’s requirements), you

have a consistent starting point across all browsers from which you can build. The
Normalize.css style sheet includes ample comments that explain each browser
inconsistency that it resolves.

Debugging

There are many useful debugging tools available that can significantly simplify your work as
aweb developer. The Firebug extension for Firefox is one of the most powerful of these tools.
It allows you to edit and debug CSS, HTML, and JavaScript live on any web page for testing
purposes. You can also toggle styles on and off, as well as discover exactly which styles apply
to a selected element. To learn more about Firebug, visit the official Firebug web site.

'http://necolas.github.io/normalize.css/
*https://getfirebug.com

117

http://necolas.github.io/normalize.css/

https://getfirebug.com/

CHAPTER 26 © BEST PRACTICES

Functionalities similar to Firebug are available on Chrome through the Chrome
Developer Tools that come built in to the browser. You can bring up the DevTools window
with the shortcut Ctrl+Shift+I on Windows or Cmd+Opt+I on Mac. Alternatively, you can
right-click on an element on the page and select Inspect Element to bring up the same
window in element inspection mode.

Validation

It is a good idea to check that your CSS complies with the W3C standard. Improper code
may cause unexpected results in how your site appears in different browsers. Moreover,
having error-free code is a sign of a quality web site.

The W3C provides its own online tool for validating CSS.? It checks a submitted page
and returns any errors and warnings found on the page for you to fix. It also has a similar
tool for validating HTML documents,* which is just as important to do. To make validation
even more convenient, you can download a browser plug-in that checks the page’s code
for you, such as the Web Developer plug-in available on Chrome, Firefox, and Opera.®

Single style sheet

For performance reasons, it is best to include a site’s style rules in a single external style
sheet. Doing so minimizes the number of HTTP requests necessary to load the web site,
while allowing the CSS file to be cached so that the visitor’s browser has to download it
only once.

During development of a large site, it is often preferable to separate style rules into
several more-manageable CSS files. To have the best of both worlds, these development
files can be combined into a single file as part of the site’s build process. One useful tool
for this purpose is Bundle.® When your site design has become stable, this tool can also be
used to minify your CSS.

Minification is the process of removing unnecessary characters from code to reduce its
size. When a CSS file is minified, whitespace characters are removed, and the rules are

optimized and restructured to load more quickly. This compression can greatly reduce
the size of the file, which improves site performance at the cost of code readability.

*http://jigsaw.w3.org/css-validator/
*http://validator.w3.org
Shttp://chrispederick.com/work/web-developer/
https://github.com/ServiceStack/Bundler

118

http://jigsaw.w3.org/css-validator/

http://validator.w3.org/

http://chrispederick.com/work/web-developer/

https://github.com/ServiceStack/Bundler

CHAPTER 26 * BEST PRACTICES

Because of the reduced readability, it is preferable to work with the uncompressed
style sheet and have the minification step repeated whenever the CSS file is updated.
Minification can be done automatically (for example, by using the Bundle tool mentioned
earlier) or manually with an online tool such as Clean CSS.”

One optimization that minification tools cannot do is to find and remove unused
CSS rules. A useful Firefox plug-in that can help you perform this task is Dust-Me
Selectors.? This plug-in can test pages individually and also scan through an entire site in
search of unused selectors.

Cross-browser testing

Even with your code normalized and validated, there can still be some differences in the
way a web page is rendered in various browsers, especially in older versions. It is therefore
necessary to test your site in all the browser versions you want your site to support.

To make this testing process easier, you can use BrowserStack,’ which is an online
tool for checking browser compatibility. It shows you how your site will look on different
versions of the browsers you select. You can also see how your site will look on mobile
devices and tablets.

www.cleancss.com
Swww. sitepoint.com/dustmeselectors/
‘www . browserstack.com/screenshots

119

http://www.cleancss.com/

http://www.sitepoint.com/dustmeselectors/

http://www.browserstack.com/screenshots

Index

A

Absolute units, 39

Attribute selector
delimited value, 12
end value, 13
language, 11
start value, 12
substring value, 12
value, 11

B

Background-attachment property, 58
Background-clip property, 60
Background-color property, 57
Background-image property, 57
Background-origin property, 60
Background-position property, 58
Background property, 61
Background-repeat property, 58
Background-size property, 59
Border-color property, 75
Border properties

border-color, 75

border-radius, 75

border-style, 73

border-width, 74

subproperties, 75
Border-radius property, 76
Border-style property, 73
Border-width property, 74
Box model, CSS

block elements, 71

inline elements, 71

 and <div> elements, 72
Box-shadow property, 49

C

Classification properties
clear, 98
cursor, 99
display, 95
float, 97
opacity, 97
visibility, 96
Class selector, 7
Clip property, 89
Color property, 47
Colors
hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37
named notation, 35
RGBA notation, 36
RGB notation, 36
short hexadecimal notation, 36
Comments, 3
Cross-browser testing process, 119
CSS
comments, 3
external style sheet, 2
inline style, 1
internal style sheet, 1
testing environment, 2
view source, 3
whitespace, 4
properties
counter-reset property, 103
generic keywords, 43
list-style, 102
list-style-image, 102
list-style-position, 102
list-style-type, 101

121

INDEX

CSS (cont.)
nesting counters, 104

progressive enhancement, 45

quirks mode, 44
vendor prefixes, 44
validation, 118

D

Debugging, 117

Dimension properties
box-sizing, 85
max-width and max-height, 84
min-width and min-height, 83
width and height, 83

Direction

E

property, 48

External style sheet, 2

F

Font

@font-face rule, 55
font-family, 53

font p

roperty, 54

font-size, 53
font-style, 54
font-variant, 54
font-weight, 54
Font-relative units, 40

G

Generic keywords, CSS, 43
Global modifiers, 114
Gradients, 63
linear-gradient() function (see

radial

Linear-gradient() function)
gradients

bottom right origin, 68
circular, 67

resized, 67

set stop positions, 66
simple, 65

size keywords, 67

H

Hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37

LJ, K

Id selector, 8
Inline style, 1
Internal style sheet, 1

L

Letter-spacing property, 51

Linear-gradient() function, 63

bottom right
linear gradient, 64

simple linear gradient, 64

with multiple
color steps, 65
Line-height property, 51

Margin, 79
declarations, 80
properties, 80
subproperties, 80
Media
logical operators, 111
queries, 110-111
responsive layout, 112
types, 109
Minification, 118
Multiple backgrounds, 62

N

Named notation, 35
Naming convention, 116
Normalization, 117

(0

Outline

repeating gradients, 69
Grouping

declarations, 5-6

selectors, 5-6

ungrouped rules, 5

122

outline-color property, 78
outline-offset property, 78
outline-style property, 77
outline-width property, 77
single declaration, 78

Outline-color property, 78
Outline-offset property, 78
Outline-style property, 77
Outline-width property, 77
Overflow property, 89

PQ
Padding
declarations, 79
properties, 79
Positioning properties
absolute value, 88
clip, 89
fixed value, 88
overflow, 89
relative value, 88
static value, 87
text-align, 93
vertical alignment
text-bottom, 92
text-top, 92
z-index, 90
Progressive enhancement, 45
Pseudo-classes
dynamic
active and hover, 16
focus, 17
link and visited, 16
lang(), 24
not, 25
structural, 17
empty, 21
first-child, 17
first-of-type, 19
last-child, 18
last-of-type, 19
nth-child(an +b), 19
nth-last-child(an + b), 21
nth-last-of-type(an + b), 21
nth-of-type(an + b), 20
only-child, 18
only-of-type, 18
root, 22
target, 24
Pseudo-elements, 15
before and after, 15
first-letter
and first-line, 15
Pseudo selectors, 15

INDEX

R

Radial gradients
bottom right origin, 68
circular, 67
resized, 67
set stop positions, 66
simple, 65
size keywords, 67

Relationship selectors
adjacent sibling selector, 28
descendent selector, 29
direct child selector, 29
general sibling selector, 30
HTML hierarchy, 27-28
inheritance, 28

Relative units, 39

Repeating gradients, 69

Reusable code, 113

RGBA notation, 36

RGB notation, 36

S

Short hexadecimal notation, 36
Single style sheet, 118
Spacing
letter-spacing property, 51
line-height property, 51
white-space property, 52
word-spacing property, 51
Specificity
cascade method, 32
class selector, 31
guidelines, 33
Id selectors, 31
type selectors, 31
universal selector, 31
web designers, 32
Style sheet structure, 114
Styling, 1

T

Table
border-collapse property, 106
border-spacing property, 105
caption-side property, 106
empty-cells property, 107
table-layout property, 107

123

INDEX

Text
box-shadow property, 49
color property, 47
direction property, 48
text-align property, 48
text-decoration property, 47
text-indent property, 48
text-shadow property, 49
text-transform property, 47
Text-align property, 48, 93
Text-decoration property, 47
Text-indent property, 48
Text-shadow property, 43, 49
Text-transform property, 47
Typographical units, 39

U

Units
absolute units, 39
font-relative units, 40
relative units, 39
typographical units, 39

124

values, 41
viewport units, 41

User interface

pseudo-classes

checked, 23
enabled and disabled, 22
required and optional, 24
valid and invalid, 23

\"

Vendor prefixes, 44
Viewport units, 41

W, X, Y

Whitespace, 4
White-space property, 52
Word-spacing property, 51

y4

z-index property, 90

CSS Quick Syntax
Reference

Mikael Olsson

Apress’

CSS Quick Syntax Reference Guide
Copyright © 2014 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6490-3
ISBN-13 (electronic): 978-1-4302-6491-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewer: Victor Sumner

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo

Copy Editor: Nancy Sixsmith

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waww.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com

http://www.springeronline.com

http://rights@apress.com

http://www.apress.com

http://www.apress.com/bulk-sales

www.apress.com

http://www.apress.com/source-code/

Contents

About the AUthOrccccmmsimmmmsessssss s nans Xv
About the Technical ReVIEWErccsseusssassssassssnsssassssassssnsssassssasssas xvii
Introduction........cccccmnemmmmnmnmsssnnmssssnmssssss s Xix
Chapter 1: USing CSS......c.cccirusmmmmsmmmsssssmssssssssssssssssssssssssssssnssssansss 1
Internal style ShEet.........oo e —— 1
INHNE SIYIE ... snenens 1
External style Sheet.........corcrcrcr 2
Testing environmeNt...........cccvcrcrcncnsr s s 2
VIBW SOUICE......eeecererrceresesessssesesssesesssesesas e e sas s e sassssesasssssssssssssssanaees 3
COMMENTS ... s 3
WRITESPACE........ererererir st 4
Chapter 2: GrouPing......cccuserrsssnsesssnsssssssssssnsesssnsssssnsssssanssssanssssanssss 5
UNQrouped FUIBS.......ciceeceriecc e ss e s sn e n e 5
(T U] 0L I (<o (0 5
Grouped declarationscoceeeeerereresese e 5
Grouped selectors and declarations.........ccccveevvrvercerrensenseessee e seenaes 6
Chapter 3: Class and id selectors...........cccsummsssnnnnmsssssnnnmsssssssnssssnnns 7
Class SBIBCLONcceveeererrrsrrresese e se s sn s n s 7
Class EXAMPIEoveeeererreeeririee e nnans 7

vi

CONTENTS

Id SEIBCTON ...t sr e sn e sn e nr e nnenn 8
10 BXAMPIE ... p e e e nn e 8
Class and id guidelingscoceeeveerereerere s sne e 9
Chapter 4: Attribute selectorsccccumummmmmnsssmnmmssssssnmsssssssssssnnns 11
Attribute SEIECIOrN......ccececececrrere e —————— 11
Attribute value SEIECTOrccceeeeeererrerre e 11
Language attribute selector ... 11
Delimited value SEIECTOr.........ccccevererrrere s 12
Value substring Selector..........coceeeereresenc s 12
Value start SEIECONcceeeeeeecece e 12
Value end SeIECIOr ... s 13
Chapter 5: Pseudo selectors.........cccivumnmmmmmmmssnnmmsssssssnmsssssssssssssnns 15
PSeUdO-IEMENTScc.coeeeeeeeeerere e 15
first-letter and first=-liNe.........oceeeerrerrr s 15
before and after.........cc e —————— 15
PSEUAO-CIASSEScocererererererer s s 16
DynamicC pSEUdO-CIASSES.........ccoererrerererrrerssserre s sr s n s srs s 16
Structural pSeUdo-CIASSEScceeeeerrrrrrrrrrre e 17
FIrSE-CRIlL ... s 17
1aSE-CRIl......ecceeee s 18
ONIY-CRIl....c.eeeeerer e s r e e e sn e 18
ONIY-0F-TYPO s 18
IrSt-0f-TYPE v ——————— 19
JaSE-0f- TP ...t ———————— 19
MEN-CRII ... ————— 19
MEN-0F-AYPE oo ———————— 20
NEN-1aSE-0F-LYPE . —————— 21

CONTENTS

L1 2 T 11 o 21
] 11] 14RO SRSRSRSRSRRRO 21
0 22
User interface pSEUdO-CIasSES.........curerrerrerrereersessessssssssssssssssesssssssssnnes 22
enabled and diSabIedo e ————— 22
CRBCKEM ... e 23
valid and inValid............ooooee s 23
required and OPLIONAL ..o ————————— 23
Other pSEUdO-CIASSEScceeerrerrerrererrrrie e 24
BAPGEL ... ————————————————— 24
3o OO 24
10 25
Chapter 6: Relationship selectorscccucrrnsmrmsssmsssssssssssssssssans 27
HTML RIErarchyccoeeeeererece e sne s s s e s s e 27
INNEILANCE ... 28
Adjacent SEIECLONcoceeeeerrerrerre e 28
Descendent SEIBCLON..........c.ccoveierereresre e 29
Direct Child SEIECTONcoeeeerereererce e s 29
General Sibling SEIECTOr........ccccveeercrerr s 30
Chapter 7: SPecifiCitycccciurrmmmmssmsmssnmmmmmmmnsssssssss s 31
Selector SPECITICIY.......cucveerrerrercrrrer s 31
072 Lo [[32
DeSIgNEr STYIES.....ccccicererere e s 32
Specificity gUIdeliNeScceceereercrrr e 33

vii

CONTENTS

Chapter 8: COlOrsS........cccimmminmmmmmssssnnnmmssssnnnssssssnnnssssssnsnsssssannnssssnans 35
Named NOALION ..o s 35
Hexadecimal notation...........cccovcernincnnicnnsss e 35
Short hexadecimal notationcccocvvrennnernnnessre e 36
RGB NOTALION ...t 36
RGBA NOAtioNccoeicerercircriee e 36
HSL NOtALiON ...t 37
HSLA NOLALION......ccvieiceereecersee e 37
Chapter 9: UnitS......ccuscmmmmmmssemmmmmsssssnmmssssssnmsssssssnsssssssssssssssssssssssnns 39
ADSOIULE UNIES ... 39
Typographical UNItSccccverirserssser s 39
Relative UNIts.........oveceerricnirrcsr e 39
Font-relative units ... 40
VIEWPOIE UNITS ...ccererereeer i 40
UNIE VAIUES.......ccreccresce s s 41
Chapter 10: CSS Propertiesc.ummmmmsmmnmmssssssnmssssssssssssssssssssssans 43
GENENIC KEYWOIAS......ccueevereereeraereerre e sse s ssssas s s sas s s sas s snssassss s s 43
QUITKS MOGE ... 44
Vendor PrefiXes ..ooeveeerererere e 44
Progressive enhancement............ccoevevevrnernsessesses s sees 45
Chapter 11: TeXt....uuneeeennnnnnmnmsssssssssnssnesssssssssssssssssssssssssnsnsnnnsnss 47
COMOT .t ——————— 47
teXt-tranSform ... ——— 47
teXt-AeCOratioN ..o 47
TEXE-INABNL......eee s 48
TEXE-AlIgN ... —————————— 48

viii

CONTENTS

AIFECLION ..t 48
TEXE-SNAAOW ... s 49
DOX-ShAAOW........cotrirrtrcr s 49
Chapter 12: SPACiNgGcccvusssemnmmssssnnnmmssssnsnssssssssssssssssnnssssssnsnsssssnns 51
liNe-height.........oocreee 51
word-spacing and letter-Spacingcccveverrersessensessessensesses s sesseneas 51
WHITE-SPACEeceereereereererreerer e s e s s s e e e s e e s s nesae s nesae s ne e s nneeas 52
Chapter 13: Font.......cccccemmmmmmimmsnsssssssssnnmmsmssssssssssssssssssssssssssssssnnns 53
fONE-FAMIIY......coveeecceeeee e 53
FONE-SIZB ... ——————————— 53
FONE-STYIE ... ——————— 54
font-variant.........coooinn e ———————— 54
fONt-WEIGNL........ccoceeeeer e 54
FONE .. ———————————— o4
CUSTOM fONES ... s 55
Chapter 14: Background........ccccussseenmmssssnsnssssssssnssssssssnsssssssnnsssssnns 57
background-Color..........cccuceecirnecir e 597
background-image.........cceceeerererresserrersesse e sse e e e s saesrsssesnssnessessenes 57
background-repeat..........cccoeerecece e ————— 58
background-attachment..............ccoorvrirrvnn s 58
background-poSitionccceeeeeeeresesere e 58
background-Sizecccevvrennienninesr 59
(07T (0 (0101 [0 o SRS 60
background-0rigin........cccccceeeeereeenese e nnen s 60
DACKGIOUN ... 61
Multiple DacKgrounds.........cccceeeevrrerrersesser s seesaens 61

ix

CONTENTS

Chapter 15: Gradients..........cccivnnemmmmmsssssnnmmmssssnmsssssssnmsssssssnssssans 63
Linear gradientscccoceveverencness s see s sss e sas s e s 63
Radial gradientscccvcrvrrnnnsssr s 65
Repeating gradients...........cccevverenriennsesesssess s ssssssesessesnes 69
Chapter 16: Box modelcccouvnmmmmmmmmmmmmmssssssssssmssmssssssssssssssssnns 1
INling and DIOCKccccererereresirerere e 4l
30 F: LI 1T 1 TS 72
Chapter 17: BOrderccccceurrrrmmmsssnssssssnnss 73
DOFAEr-Style ..o ———————— 73
border-Width...........coi e ———— 74
DOFAI-COION ... 75
DOFAE ... ——————————— 75
DOrder-radius..........ccoviiernirn e 75
Chapter 18: OUtline......ccccvvseeennnssssnnnnmsssssnsnsssssssnssssssssnssssssnnsesssnnns 77
OULHNE-STYIE ... 77
OULTINE-WILTN ... 77
OULIINE-COION ..ot s 78
OULING .t 78
OULIINE-0ffSEL......ccerercerr s 78
Chapter 19: Margin and padding.......ccucummmmssnnnmmssssssnssssssssssssssnns 79
o 1o [0 T SRS 79

CONTENTS

Chapter 20: DIMENSIONccccemrmssssmnnmmsssssnnmsssssnsnssssssssnssssssnnssssssans 83
width and height ... ———— 83
min-width and min-height ... 83
max-width and max-height..........cccecveeiiriniiens s 84
DOX=SIZING.....cceeririerrirrr e 85
Chapter 21: PoSitioningcccvussennmmssssnnnmmssssssnsssssssssssssssssssssssnns 87
POSITION......eeiercerer e 87

] 2 T 87

(1 L3 88

ADSOIULE ... ——————————— 88

L2 PP 88
01T 10 89
(1] 1o SRS 89
A1 110 GO 90
Vertical-alignccocvcrcrcrrsr s 92
(02T 1 g RS 93
Chapter 22: Classificationcccceemmmrnrmmssssssssssmnmmmsssssssssssnnns 95
01157 0] - SRS 95
LTS L1114 96
(0] 02 T S S SS S SSSSR 97
FlOAL......ceeeeeceeer e ————————————— 97
CIBAN ..t —————— 98
(111150 GO PRRSSR 99

xi

CONTENTS

Chapter 23: Listccccccmmmmnsmmmmmmnssssnmmmssssssnmsssssssnssssssssssssssnsssnssns 101
liSt-STYIE-TYPE ..o —————— 101
liSt-StYle-IMAQEceeeeeceeeece e s 102
liSt-Style-POSItiONccceeeererrrerererere e 102
lISE=SYIE .. —————————— 102
COUNTEIS ...t s 103
NEStiNG COUNTEISccccereeerrerrrsere e 104
Chapter 24: Table......cccccemmrrrrmsssssssssssnnnmessssssssssssnsssesssssssssnsnnnnnnss 105
DOrder-SPacingccocuceeeeerserensrsesrsse e 105
(010] €0 (<] gl eto] | = oL SRR SR 106
CAPLION-SIUL ..ot s 106
EMPLY-CEIIS ...t 107
table-1ayout....... .o —————— 107
Chapter 25: Mediacccceerrrrmmmmmmsssssssssnmmssmsssssssssssssesssssssssnnssnssnnns 109
T Ty LT 109
Media QUETIES......cceeeeeeeerrecre e nn e n e 110
Logical OPErators........ccevevererereeree e sae e s sas s e e nnes 111
Testing media QUETIESc.ccvcereerrerserserses s s s e s e s ses e e snssnssnsnnns 111
Responsive design guidelings.........cccoceeeveeerereneessss e seneas 112
Chapter 26: Best practices.......ccuuremmrmssennnmsssssnnsmssssssssssssssssnssss 113
Reusable COdE.........cccuerenrernirerire e 113
(6100] o L oo 1T T 114
Style sheet StruCtUre ... 114
Naming CONVENLIONS........ccccceeerereerere e sn e 116
NOrMALIZALIONc.ceeeeereece e 117
D10 TH o oo SRS 117

xii

CONTENTS

Validation..........ccocvcrcrsrsr s ————— 118
Single style Sheet.........ccovcrericnnrr e ———— 118
LT Tz 0] o 118
Cross-browser teSting........ccceererereresese s e 119
INA@X..euiiissnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnnsssnnns 121

xiii

About the Author

Mikael Olsson is a professional programmer, web
entrepreneur, and author. He works for an R&D
company in Finland, at which he specializes in
software development. In his spare time, he writes
books and creates web sites that summarize various
fields of interest. The books Mikael writes are focused
on teaching their subjects in the most efficient way
possible, by explaining only what is relevant and
practical without any unnecessary repetition or theory.
The portal to his online businesses and other web sites
is www.siforia.com.

XV

http://www.siforia.com

About the Technical
Reviewer

¥ Victor Sumner is a Senior Software Engineer at
Desire2Learn Inc., helping to build and maintain
an integrated learning platform. As a self-taught
developer, he is always interested in emerging
technologies and enjoys working on and solving
problems that are outside his comfort zone.

When not at the office, Victor has a number of
hobbies, including photography, horseback riding,
and gaming. He lives in Ontario, Canada, with his wife,
Alicia, and their two children.

xvii

		Contents at a Glance

		Contents

		About the Author

		About the Technical Reviewer

		Introduction

		Chapter 1: Using CSS

		Internal style sheet

		Inline style

		External style sheet

		Testing environment

		View source

		Comments

		Whitespace

		Chapter 2: Grouping

		Ungrouped rules

		Grouped selectors

		Grouped declarations

		Grouped selectors and declarations

		Chapter 3: Class and id selectors

		Class selector

		Class example

		Id selector

		Id example

		Class and id guidelines

		Chapter 4: Attribute selectors

		Attribute selector

		Attribute value selector

		Language attribute selector

		Delimited value selector

		Value substring selector

		Value start selector

		Value end selector

		Chapter 5: Pseudo selectors

		Pseudo-elements

		first-letter and first-line

		before and after

		Pseudo-classes

		Dynamic pseudo-classes

		link and visited

		active and hover

		focus

		Structural pseudo-classes

		first-child

		last-child

		only-child

		only-of-type

		first-of-type

		last-of-type

		nth-child

		nth-of-type

		nth-last-of-type

		nth-last-child

		empty

		root

		User interface pseudo-classes

		enabled and disabled

		checked

		valid and invalid

		required and optional

		Other pseudo-classes

		target

		lang

		not

		Chapter 6: Relationship selectors

		HTML hierarchy

		Inheritance

		Adjacent selector

		Descendent selector

		Direct child selector

		General sibling selector

		Chapter 7: Specificity

		Selector specificity

		Cascade

		Designer styles

		Specificity guidelines

		Chapter 8: Colors

		Named notation

		Hexadecimal notation

		Short hexadecimal notation

		RGB notation

		RGBA notation

		HSL notation

		HSLA notation

		Chapter 9: Units

		Absolute units

		Typographical units

		Relative units

		Font-relative units

		Viewport units

		Unit values

		Chapter 10: CSS Properties

		Generic keywords

		Quirks mode

		Vendor prefixes

		Progressive enhancement

		Chapter 11: Text

		color

		text-transform

		text-decoration

		text-indent

		text-align

		direction

		text-shadow

		box-shadow

		Chapter 12: Spacing

		line-height

		word-spacing and letter-spacing

		white-space

		Chapter 13: Font

		font-family

		font-size

		font-style

		font-variant

		font-weight

		font

		Custom fonts

		Chapter 14: Background

		background-color

		background-image

		background-repeat

		background-attachment

		background-position

		background-size

		background-clip

		background-origin

		background

		Multiple backgrounds

		Chapter 15: Gradients

		Linear gradients

		Radial gradients

		Repeating gradients

		Chapter 16: Box model

		Inline and block

		Span and div

		Chapter 17: Border

		border-style

		border-width

		border-color

		border

		border-radius

		Chapter 18: Outline

		outline-style

		outline-width

		outline-color

		outline

		outline-offset

		Chapter 19: Margin and padding

		Padding

		Margin

		Chapter 20: Dimension

		width and height

		min-width and min-height

		max-width and max-height

		box-sizing

		Chapter 21: Positioning

		position

		static

		relative

		absolute

		fixed

		overflow

		clip

		z-index

		vertical-align

		Centering

		Chapter 22: Classification

		display

		visibility

		opacity

		float

		clear

		cursor

		Chapter 23: List

		list-style-type

		list-style-image

		list-style-position

		list-style

		Counters

		Nesting counters

		Chapter 24: Table

		border-spacing

		border-collapse

		caption-side

		empty-cells

		table-layout

		Chapter 25: Media

		Media types

		Media queries

		Logical operators

		Testing media queries

		Responsive design guidelines

		Chapter 26: Best practices

		Reusable code

		Global modifiers

		Style sheet structure

		Naming conventions

		Normalization

		Debugging

		Validation

		Single style sheet

		Minification

		Cross-browser testing

		Index

CSS

Quick Syntax
Reference

Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthorccccsrismmmis s —————— XV
About the Technical ReVIEWErcucesssessmsmsmssssmsasssssssssnsssassssnsnsns xvii
INtroductioncccucemmneemmsssnnmsssnnmsssnnmssssnnsssnnnsssnnnsssnnnsssnnssssnnnnssnnnss Xix
Chapter 1: Using CSS......cccusmmmmmmmssnmmmmmssssssmmsssssssnsssssssssssssssssnsssssnns 1
Chapter 2: GroupPing......cccesssssnssssssnnssssssssnssesssssnsssssssssnsssssssnsssssssnns 5
Chapter 3: Class and id selectors.........ccccnmmmmmmmmmmnnnnnmmmsmsssssssssssnnns 7
Chapter 4: Attribute selectorsccccunemmmmnssmmnmmnsssssnmmssssssnmsnnnn 11
Chapter 5: Pseudo selectors.........ccciunnmmmmmnssssnnnmmssssssnssssssssssssssnns 15
Chapter 6: Relationship selectorsccccuseemmmssssnnnnmssssnsssnsssnnns 27
Chapter 7: SPeCifiCityccusmmmmmmssnmnmmmssssnnmmssssnnnnssssssnnssssssnsnsssssnnes 31
Chapter 8: ColOrs.....ccceeerrrmmmmsmssssssssssnsmsssssssssnnsssssssssssssssnnnnsssnnnnns 35
Chapter 9: Units......ccucccnmmmmnsemmmmmmsssnsmmmmsssssmmssssssmmssssssssssssssssssssssnns 39
Chapter 10: CSS Propertiescccuurmuesmmsssnsmsssssssssssesssssssssnssssnnnes 43
Chapter 11: Text. . 47
Chapter 12: SPaCiNgcccusseemmmmssssnsmmsssssnnmmssssssnssssssssnssssssnsnsssssnnns 51
Chapter 13: Font.........ccccuismmmssemmmsssnmmsssssmsssssesssssesssssesssssesssnssnsnnnes 53
Chapter 14: Background.........cccuseenmmmsssennnmssssssnssssssssnssssssssnsssssnnns 57
Chapter 15: Gradients..........ccccvunsemmmmmmsssnmmmmssssnmmsssssnmsssssnnnsnnn 63
Chapter 16: Box modelc.cccunsmmmmssenmmsssnsmsssssssssssssssssssssssssssnnes 71

iii

CONTENTS AT A GLANCE

Chapter 17: Borderccccceurrurmsmssssssssssnsnmssssssssssssssssssssssssssnssssnnsnnss 73
Chapter 18: OUtliNe......cccvrsreemmrmssssnnsnnssssssnsssssssnsssssssnnssssssnnnsesssnnns 77
Chapter 19: Margin and padding.......ccucccnmmmsssnnnmssssssssssssssssssssssnns 79
Chapter 20: DIMENSIONccccemrrisssnnnmmssssssnsssssssnnssssssssnssssssnsssssssnns 83
Chapter 21: PoSItioningcccvrssssnsnsmssssnssssssssssnssssssnssssssssnsnsssssnns 87
Chapter 22: Classification ... 95
Chapter 23: Listccccccmmmmssmmmmmmsssssnmmnssssssnmsssssssssssssssssssssssnsssssns 101
Chapter 24: Table.........cccinssemmrmmsssssnnmnssssssnmssssssssesssssssssssssnnsssnsss 105
Chapter 25: Mediacccceerrrmrmmmmmsssssssnnmmmssmsssssssssssssssssssssnnsssssenss 109
Chapter 26: Best practices.......ccucccmmmmmnemmmmmsssssnmmmsssssnnmsssssssnnns 113
INA@X..iiieiiisrie s —————————_— 121

iv

Introduction

CSS, which stands for Cascading Style Sheets, is a stylistic language that defines how web
pages are presented. It complements HTML, which is the language used for describing
the structure of web site content. Because HTML predates CSS, it includes a number of
limited stylistic elements and attributes, but they have largely been deprecated in favor of
the much greater design control offered by CSS.

One of the main features of CSS is that it enables the complete separation of a web
site’s presentation from its content. This separation reduces the complexity and repetition
associated with including stylistic information in the structural content. Furthermore,
this separation makes it easy to enforce site-wide consistency in the presentation of a web
site because the entire look and feel of a site can be controlled from a single style sheet
document.

As one of the core languages of the Web, CSS is used today by almost all web sites
to enhance the web experience. It has been a revolution in the World Wide Web and is a
must-learn language for anyone working with web design. Like HTML, the CSS language
is easy to learn and use, as is shown in this book.

CSS versions

The CSS language is under ongoing development by the World Wide Web Consortium
(W3C), which is the international standards organization for the Internet. The W3C writes
the specifications that web browsers implement to display web pages consistently in
compliance with those specifications. Each new specification extends the language with
new features while maintaining backward compatibility.

The first specification, CSS level 1 (or CSS 1), became a W3C recommendation in
1996. In 1998, CSS 2 was finalized, extending CSS 1 with additional features. Because all
widely used web browsers currently implement the features of both these specifications,
itis seldom necessary to make a distinction between them, and this book does so only
when relevant.

Since 1998, the W3C has been working on CSS 3. Unlike the two earlier levels of
CSS, this level became considerably larger and was therefore split into several separate
specifications called modules. This split allowed the modules to mature independently at
their own pace. As a result of the ongoing development, support for CSS 3 varies. Some
features are stable and have widespread browser support; other features are supported
only by the latest browser versions or are not supported at all. This book focuses mainly
on the CSS 3 features that are supported in the major browsers at the time of writing.

Xix

INTRODUCTION

Rule structure

CSS is commonly used within a style sheet document, which consists of a list of rules.
For example, a rule to color all paragraph elements red is shown here:

p { color: red; }

This rule has two parts: a selector and a declaration block. The selector is the link
between the HTML document and the style sheet that specifies the element to which the
rule is applied. In this case, it is the type selector p that applies to all paragraph elements
(<p>). Any HTML element can be used as a type selector in this way.

The declaration block, which is enclosed within curly braces, defines the styling
applied to the selected elements. The block can contain one or more declarations, each
of which is made up of a style property followed by a colon and a valid value for that
property. Each declaration is terminated with a semicolon, although this is optional for
the last one.

p { color: red; background: black }

Although the last semicolon is not necessary, it is a good practice to include it
because it is easy to forget the missing semicolon when you add more styles to the rule.
Another general practice is to use lowercase letters when writing CSS, even though
selectors and properties are case-insensitive.

To summarize, a style rule consists of a selector and one or more declarations, each
comprising one or more property-value pairs. This structure is illustrated here:

Property Value
I |

p { color : red; }

Selector Declaration

XX

CHAPTER 1

Using CSS

There are three ways to insert CSS into an HTML document: by using an internal style
sheet, inline styles, or an external style sheet. An internal style sheet applies to a single
page, an inline style to a single element, and an external style sheet to potentially an
entire web site.

Internal style sheet

An internal style sheet is useful when a single document needs to have its own unique
styling. The style sheet is then embedded within the <head> section of the web document
using the <style> element. This element is a container for style sheet rules and should
have its type attribute set to "text/css".

<style type="text/css">
p { color: red; }
</style>

Inline style

Styling can be assigned to an individual element by using the style attribute to set an
inline style. It is a generic attribute that can be included in any HTML start tag, and its
value is the CSS declarations that will be applied to the element, separated by semicolons.
There is no need to specify a selector because the declarations implicitly belong to the
current element.

<p style="color: green">Green text</p>
This approach should be used sparingly because it mixes style with content and

therefore makes future changes more cumbersome. It can be useful as a quick way to test
styles before they are moved out to an external style sheet.

CHAPTER 1 © USING CSS

External style sheet

The most common way to include CSS is through an external style sheet. The style sheet
rules are placed in a separate text file with a . css file extension. This style sheet is then
referenced using the <1link> element in the web page header. The rel (relationship)
attribute must be set to "stylesheet" and the meta type attribute can optionally be set to
"text/css". The location of the style sheet is specified with the href attribute.

<link rel="stylesheet" type="text/css" href="MyStyle.css">

Another less common way to include an external style sheet is to use the CSS @import
function from inside of the <style> element. For this function to work, it must be placed
before any other rules.

<style type="text/css">
@import url("MyStyle.css");
</style>

Using an external style sheet is often preferred because it completely separates CSS
from the HTML document. It is then possible to quickly create a consistent look for an
entire web site and to change its appearance just by editing a single CSS document. It also
has performance benefits because external style sheets are cached and therefore need to
be downloaded only once—for the first page a visitor views at your site.

Testing environment

To experiment with CSS, you can use a simple text editor such as Notepad in Windows
(found under Start » Programs » Accessories » Notepad) or TextEdit on a Mac (found
under Finder » Applications » TextEdit). Type the following single style rule into a new
document in the editor. The rule will color the background of a web document red.

body { background: red; }

Save the file as “MyStyle.css” and then open another empty document. This new
document will become the HTML file that uses the external style sheet you just created.
Write the following HTML markup into the document, which includes a reference to the
style sheet along with the minimal markup for a HTML 5 web document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="MyStyle.css">
</head>
<body>

CHAPTER 1 * USING CSS

<p>This page is red</p>
</body>
</html>

Go ahead and save this text file as “MyPage.html” in the same folder as the CSS file.
You have now created a simple environment in which you can test CSS. To view the page,
open MyPage.html with your web browser. You will see that the background is indeed
colored red because of the rule in the style sheet.

View source

While you have the browser opened, you can view the HTML markup that makes up the
page by pressing Ctrl+U on a PC or Cmd+U on a Mac. This shortcut works in all major
browsers, including Chrome, Firefox, and Internet Explorer (IE). You can also find the
view source window by right-clicking on the page and selecting “View Source”. In Firefox
and Chrome, the style sheet is clickable, allowing you to view the external style sheet rules
that apply to the web page. (Note that in Chrome, you have to right-click the style sheet
and select to open it because this file is stored on your local machine.)

Viewing the source code of web pages like this provides a great way to learn from other
web developers. Whenever you find an interesting element on a web page—whether it is
created with HTML, CSS or JavaScript—the page source will reveal how it was created.

Comments

Comments in CSS are created by using the C-style notation (/* */). Everything placed
between /* and */ will be ignored by browsers, even if the delimiters span multiple lines.

/* Multi-line
Comment */

The main use of comments is to clarify the code to developers, including you in the
future. They can also be used to improve readability by delimiting sections of the style
sheet or providing meta data about the file, such as the author’s name.

/%
* Meta data
*/

/*** Section heading ***/

p { margin-top: -1px; } /* clarification */

CHAPTER 1 © USING CSS

Comments are also useful for temporarily deactivating declarations or entire style
rules for testing purposes.

p { /* color: white; */ }

Whitespace

Whitespace refers to spaces, tabs, and new lines. You are free to format your style sheets
however you like with whitespace to make them easier to read. One common formatting
convention is to split declarations across multiple lines.

fruit {
color: red;
margin: 1px;

Another popular convention is to keep a rule’s declarations in a single line and split
the declarations into multiple lines only when they become too numerous.

fruit { color: red; margin: 1px; }
.fruit.apple { color: green; margin: 2px; }

The formatting you use is a matter of preference. Choose the one that makes sense to
you and aim to keep it consistent.

CHAPTER 2

Grouping

To keep style sheets short and easy to edit, similar rules can be grouped together. This
grouping offers several ways to specify a set of related rules. For example, you can color
the text red and the background black for two header elements in four different ways,
as described in the following sections.

Ungrouped rules

Each rule can be written separately, which allows you to apply individual style rules to
each selected element.

hi { color: red; }
h1 { background: black; }
h2 { color: red; }
h2 { background: black; }

Grouped selectors

The selectors can be grouped together by separating them with a comma. This grouping
will make the declaration apply to multiple selectors.

h1, h2 { color: red; }
h1, h2 { background: black; }

Grouped declarations

The declarations can be grouped together by separating them with a semicolon. All styles
within the declaration block will be applied to the selector.

h1 {
color: red;
background: black;

}

CHAPTER 2 © GROUPING

h2 {
color: red;
background: black;

}

Grouped selectors and declarations

Both the selectors and declarations can be combined, resulting in a single rule.

h1, h2 {
color: red;
background: black;

}

Rules should be grouped whenever possible to make the code more concise. It has
a performance benefit because concise rules reduce the size of the style sheet, which
makes the CSS file load more quickly. Moreover, it is convenient to specify the properties
in only one place, in case they have to be changed later. Additionally, grouping selectors
with similar styles makes it easier to maintain consistency between them.

CHAPTER 3

Class and id selectors

Class and id selectors define rules that apply to only a selected set of HTML elements.
They allow you to identify individual elements, or groups of elements, without having to
style all instances of the element type.

Class selector

The class selector is used to identify a group of elements. It is recognized by the period
sign (.), followed by a class name. The class can be a general class that can be applied to
any element.

/* Selects any element with class name myclass */
.myclass {}

The selector can also be a specific class that can be applied to only one type of element.
The specific class is defined by declaring the element’s name before the period sign.

/* Selects any <p> element with class name myclass */
p.myclass {}

Specific classes make it easier to identify where the class is used; general classes
allow for greater code reuse.

Class example

For example, suppose that the text inside of some elements should be colored, but not for
all instances of the elements. The first step then is to add a general class rule with a color
property specified.

.info { color: green; }

This rule says that any element whose class attribute has the value of "info" will
have this style.

CHAPTER 3 ' CLASS AND ID SELECTORS

<p class="info">Green</p>

If a class rule will be used by only a single element type, it can instead be defined as
a specific class. Doing so makes it easier for anyone reading the style sheet to understand
where the style is used.

p.warn { color: orange; }

A specific class rule is applied to the document in the same way as a general class
rule, but it will style elements of only the specified type.

<p class="warn">Orange</p>

More than one class rule can be applied to a single element by separating each class
name with a space, which makes class rules very versatile.

<p class="style1 style2"></p>

Id selector

The id selector is used to identify a single unique element. Although it works much like
the class selector, it uses a pound sign (#) instead of a period and the id attribute instead
of the class attribute. Like the class attribute, the id is a generic attribute that can be
applied to virtually any HTML element. It provides a unique identifier for an element
within a document.

/* Selects the element with id set to myid */
#myid {}

Like class selectors, id selectors can be qualified with an element. However, because
there should be only one element with a given id, this additional qualifier is often
considered unnecessary.

/* Selects the <p> element with id set to myid */
pttmyid {}

Id example

The following id selector will match the one and only element in the document whose id
attribute is set to that id. This selector can therefore be used instead of the class selector
if a style is intended to be applied to only a single element instance because this makes it
clearer where the rule is used.

#terr { color: red; }

CHAPTER 3 © CLASS AND ID SELECTORS

An id rule is applied to an element using the id attribute. Because the id attribute has
to be unique, each id selector can be used on only one element per web page. Therefore,
the id selector implicitly specifies that the style is used only once on any one page.

<p id="err">Red</p>

Class and id guidelines

In many instances, using classes is the preferred method of selecting elements in CSS
because classes are both flexible and reusable. Ids, on the other hand, are often used
for structural elements of a site, such as #content and #footer, to highlight that those
elements serve a unique role.

CHAPTER 4

Attribute selectors /

Attribute selectors allow style to be added to elements based on their attributes and
attribute values.

Attribute selector

The attribute selector will match elements that use the specified attribute, regardless
of its value.

input[type] {}

This selector will match only input elements that use the type attribute, such as the
following element:

<input type="text">

Attribute value selector

The [attribute=value] selector will match by both attribute and value.
input[type="submit"] {}

Input elements that have their type attribute set to submit will be matched by this
rule, as in the following example:

<input type="submit">

Language attribute selector

The language attribute selector is used to match the lang attribute.

p[lang|="en"] {}

11

CHAPTER 4 ATTRIBUTE SELECTORS

This selector will match any elements whose lang attribute value begins with “en’,
such as “en-US” Note that language codes such as these are case insensitive.

<p lang="en">English</p>
<p lang="en-US">American English</p>

Delimited value selector

The [attribute~=value] selector will apply to elements whose attribute value contains
the given word among a space-separated list of words.

input[value~="word"] {}

This rule will select both of the following elements. The word needs to be an exact
case-sensitive match; for example, the selector will not target “Word” or “words”.

<input type="text" value="word">
<input type="text" value="word word2">

Value substring selector

The [attribute*=value] selector matches elements whose attribute value contains the
specified substring.

p[title*="para"] {}
Paragraph elements with a title containing “para” will be matched by this rule.

<p title="my paragraph"></p>

Value start selector

The [attribute”=value] selector matches every element whose attribute value begins
with the specified string.

p[titler="first"] {}
Paragraphs with a title value starting with “first” will have this rule applied.

<p title="first paragraph"></p>

12

CHAPTER 4 ATTRIBUTE SELECTORS

Value end selector

The [attribute$=value] selector matches an element if its attribute value ends with the
specified string.

p[title$="1"] {}

In the following code, the value of the title attribute ends with “1” and will
therefore be matched by this rule:

<p title="paragraph 1"></p>

13

CHAPTER 5

Pseudo selectors

The pseudo-classes and pseudo-elements are keywords that can be appended to
selectors to make them more specific. They are easy to recognize because they are always
preceded by a colon.

Pseudo-elements

The pseudo-elements enable parts of an element to be styled. There are four of them in
CSS, as discussed in the following sections.

first-letter and first-line

The pseudo-elements : first-letter and : first-line can apply styles to the first letter
and the first line of an element. They work only on block elements such as paragraphs.

p:first-letter { font-size: 120%; }
p:first-line { font-weight: bold; }

The preceding first rule makes the initial letter in a paragraph render 20% larger than

other text. The second rule makes the first line of text in a paragraph bold.

before and after

As their names indicate, the :before and :after pseudo-elements can target the location
before and after an element. They are used together with the content property to insert
content before or after an element.

p:before { content: "Before"; }
p:after { content: "After"; }

These rules make the following paragraph display as “BeforeMiddleAfter”:

<p>Middle</p>

15

CHAPTER 5 © PSEUDO SELECTORS

The content property is special in that it can be used only together with these
two pseudo-elements. It is also the only property that breaks the line between content
(HTML) and design (CSS). Keep in mind that this line should be broken only when
the presence of a piece of content comes down to a design decision. For example, the
content property can be used to add an icon before an element, which can be done using
the url function.

p.bullet:before { content: url(my-bullet.png); }

Pseudo-classes

Pseudo-classes permit styling based on element relationships and on information
not found in the HTML document. Most of them fall into three categories: dynamic,
structural, and user interface pseudo-classes.

Dynamic pseudo-classes

The first category of pseudo-classes is used to apply styles to links or other interactive
elements when their state is changed. There are five of them, all of which were introduced
in CSS 2.

link and visited

The dynamic pseudo-classes :1link and :visited can be applied only to the anchor
element (<a>). The :1ink pseudo-class matches links to pages that have not been viewed,
whereas :visited matches links that have been viewed.

a:link {} 7* unvisited links */
a:visited {} /* visited links */

active and hover

Another pseudo-class is :active, which matches elements as they are being activated, for
example by a mouse click. This is most useful for styling anchor elements, but it can be
applied to any element.

a:active {} /* activated links */
A selector with the :hover pseudo-class appended to it is applied when the user
moves a pointing device, such as a mouse, over the selected element. It is popularly used

to create link roll-over effects.

a:hover {} /* hovered links */

16

CHAPTER 5 © PSEUDO SELECTORS

These four pseudo-classes need to appear in the proper order when applied to the
same selector. Specifically, the :hover pseudo-class must come after :1ink and :visited,
and for :active to work it must appear after :hover. The phrase “love and hate” can be
used as a reminder for the initial letters that make up the correct order.

a:link {}y 7L *
a:visited {} /* VvV */
athover {} /* H */
a:active {} /* A */

focus

The last dynamic pseudo-class is : focus, which can be used on elements that can receive
focus, such as the form <input> element. The difference between :active and :focus

is that :active lasts only for the duration of the click, whereas : focus lasts until the
element loses focus.

input:focus {}

Browser support for the : focus pseudo-class in IE was not added until version 8.

Structural pseudo-classes

The structural pseudo-classes target elements based on their relation with other
elements. CSS 2 included only one structural pseudo-class in this category,
:first-child, whereas CSS 3 introduced a wide array of new ones. The CSS 3 structural
pseudo-classes are supported in all major browsers, except for IE7 and below.

first-child
The : first-child pseudo-class matches the first child of the selected element.
p:first-child {} /* first paragraph child */
In the following example, this rule applies to the first anchor element:
<p>
First child

Text
</p>

17

CHAPTER 5 © PSEUDO SELECTORS

last-child

The :1ast-child pseudo-class represents the last child of the selected element.
p:last-child {} /* last paragraph child */
This rule targets the last child of the following paragraph element.

<p>
Text
Last child
</p>

only-child

The :only-child pseudo-class matches elements that do not have any siblings.
p:only-child {} /* children without siblings */

This rule is applied to the following first element because it is the only
child of the paragraph. The second paragraph element has two children, so none of them
is targeted by this rule.

<p>
0Only child
</p>

<p>
Text
Text

</p>

only-of-type
As its name implies, the :only-of-type selector matches the selected element only if it
does not have any siblings of the same type.

p:only-of-type {} /* only <p> element */

The following paragraph is targeted by this rule because it is the only paragraph
element of its parent.

<div>
<h1>Text</h1>
<p>0Only of type</p>
</div>

18

CHAPTER 5 © PSEUDO SELECTORS

first-of-type

The : first-of-type pseudo-class matches the first child element that is of the
selected type.

p:first-of-type {} /* first <p> element */
It matches the first paragraph element in the following markup:
<div>
<h1>Text</h1>
<p>First of type</p>

<p>Text</p>
</div>

last-of-type

The last sibling of a specific type can be selected with the :1ast-of-type pseudo-class.
strong:last-of-type {} /* last element */
This rule applies to the last element among its siblings.

<div>
Text
Last of type
</div>

nth-child

The :nth-child(an + b) pseudo-class matches every b child element after the children
have been divided into groups of a elements.

p:nth-child(1) {} 7* first child */
p:nth-child(2n) {} /* even children */
p:nth-child(2n+1) {} /* odd children */

These rules apply to the following HTML markup:

<p>
First and odd
Even
0dd

</p>

19

CHAPTER 5 © PSEUDO SELECTORS

Matching odd and even children is a common operation, so the keywords odd and
even can also be used to match every other row in a table, for example.

tr:nth-child(even) {} /* even table rows */
tr:nth-child(odd) {} /* odd table rows */

As shown, the argument to :nth-child() can be an integer, the keywords even
or odd, or an expression in the form of an+b. In the expression form, the keyword n is a
counter that iterates through all the child elements. The counter might be negative; in
that case, the iteration occurs backward. It can be used to select a specific number of
first children.

p:nth-child(-n+3) {} /* first three children */

The math and arguments used together with :nth-child() are also valid for the next
three pseudo-classes, all of which start with :nth.

nth-of-type

The :nth-of-type(an + b) pseudo-class matches the bth element of the selected type
after the siblings of that type have been divided into groups of a elements.

p:nth-of-type(2) {} /* second paragraph sibling */
p:nth-of-type(2n) {} /* even paragraph siblings */
p:nth-of-type(2n+1) {} /* odd paragraph siblings */

The behavior of this pseudo-class is similar to :nth-child, but it matches siblings
of the same type of the specified element instead of matching children of the specified
element.

<div>
Text
<p>0dd</p>
<p>Second and even</p>
<p>0dd</p>

</div>

Similar to the other :nth pseudo-classes, the keywords odd and even can be used to
match siblings of the same type whose index is odd or even.

p:nth-of-type(even) {} /* even paragraph siblings */
p:nth-of-type(odd) {} /* odd paragraph siblings */

20

CHAPTER 5 © PSEUDO SELECTORS

nth-last-of-type

The :nth-last-of-type(an + b) pseudo-class matches the element of the selected type
that has an+b elements of that same type after it. This behavior is equivalent to the :nth-
of-type pseudo-class, except that elements are counted starting from the bottom instead
of the top.

p:nth-last-of-type(3) {} /* third last paragraph */
p:nth-last-of-type(-n+2) {} /* last two paragraphs */

These two rules apply to the following example. The element is not counted
because it is not of the specified type—in this case, paragraph.

<div>
<p>Third last</p>
<p>Last two</p>
<p>Last two</p>
Text
</div>

nth-last-child

The :nth-last-child(an + b) pseudo-class represents any element that has an+b
siblings after it. Its behavior is the same as :nth-child, except that it starts with the
bottom element instead of the top one.

p:nth-last-child(3) {} 7* third last child */
p:nth-last-child(-n+2) {} /* last two children */

These two rules apply to the child elements in the following example:
<div>
<p>Third last</p>
<p>Last two</p>

<p>Last two</p>
</div>

empty

The :empty pseudo-class matches selected elements that do not have any content.

p:empty {} /* empty paragraphs */

21

CHAPTER 5 © PSEUDO SELECTORS

An element is considered empty if it has no child elements, text, or whitespace
except for comments. The preceding rule applies to the following two paragraphs:

<p></p>
<p><!-- also empty --></p>

root

The :root pseudo-class matches the topmost element in the document tree. In HTML
documents, it is always the <html> element.

:root {} /* root element */

This pseudo-class is mainly useful when CSS is used with other languages,
such as XML, in which the root element can vary. All major browsers support the :root
pseudo-class, except for IE8 and below.

User interface pseudo-classes

CSS 3 introduced a number of user interface pseudo-classes that are used to style
interactive elements based on their current state.

enabled and disabled

The :enabled and :disabled pseudo-classes match any element of the selected type that
is either enabled or disabled. They apply only to interactive elements that can be in either
an enabled or disabled state, such as form elements.

input:enabled { background: green; }
input:disabled { background: red; }

The following form contains one enabled and one disabled input element, which are
affected by these two rules:

<form>

<input type="text" name="enabled">

<input type="text" name="disabled" disabled>
</form>

These two pseudo-classes are supported by all major browsers except for IE8
and below.

22

CHAPTER 5 © PSEUDO SELECTORS

checked

The :checked pseudo-class matches elements that are in a selected state. It can be used
only on check box, radio button, and <option> elements.

input[type="checkbox"]:checked {}
This rule matches any check boxes that are selected on the web page.

<form>
<input type="checkbox">
</form>

All major browsers support the : checked pseudo-class, except for [E8 and
earlier versions.

valid and invalid

The :valid and :invalid pseudo-classes are used to provide feedback to users when
they are filling out forms. Modern browsers can perform a basic field validation based on
the input type of a form element and, together with these pseudo-classes, the result can
be used to style the input element.

input:valid { background: green; }
input:invalid { background: red; }

Two fields are given here, one required and one optional. The first field remains
invalid until an e-mail is entered into the field. The second field is optional and is
therefore valid if left empty.

<form>
<input type="email" required>
<input type="email">

</form>

Note that these pseudo-classes are in no way a substitution for proper form
validation, using JavaScript or PHP, for example. Browser support for these two pseudo-
classes exists in Chrome 10+, Firefox 4+, IE10+, Safari 5,4+ and Opera 10+.

required and optional

A form field with the required attribute set is matched by the :required pseudo-class.
The related :optional pseudo-class does the opposite: it matches input elements that do
not have the required attribute set.

input:required { color: red; }
input:optional { color: gray; }

23

CHAPTER 5 © PSEUDO SELECTORS

The following form contains one required and one optional input element, which is
targeted by the previous styles:

<form>
<input type="email" required>
<input type="url">

</form>

Like the :valid and :invalid pseudo-classes, support for :required and :optional
is limited to Chrome 10+, Firefox 4+, IE10+, Safari 5+, and Opera 10+.

Other pseudo-classes

Some pseudo-classes do not fit into any of the earlier categories, namely the :target,
:1ang, and :not pseudo-classes.

target

The :target pseudo-class can style an element that is targeted through an id link. It can
be useful for highlighting a targeted section of the document.

:target { font-weight: bold; } /* targeted element */

When the following internal page link is followed, this rule is applied to the anchor
element. The browser also scrolls down to that element.

In page link
This pseudo-class is supported in all major browsers, except IE8 and earlier

versions.

lang

The pseudo-class : lang() matches elements determined to be in the language provided
by the argument.

p:lang(en) {}

This pseudo-class applies to paragraph elements that are intended for an English
audience, such as the following paragraph:

<p lang="en">English</p>

24

CHAPTER 5 © PSEUDO SELECTORS

Note that the behavior of this pseudo-class is similar to the language attribute
selector. The difference is that the :1ang pseudo-class also matches elements if the
language is set on an ancestor element, or in some other way such as through the page
HTTP header or <meta> tag.

<body lang="fr">

<p>French</p>
</body>

not

The negation pseudo-class :not matches elements that are not targeted by the specified
selector.

p:not(.first) { font-weight: bold; }
This example rule selects paragraphs that are not using the first class.

<p class="first">Not bold</p>
<p>Bold</p>

The :not pseudo-class is supported in all major browsers, except IE8 and
earlier versions.

25

CHAPTER 6

Relationship selectors

Relationship selectors match elements based on their relation with other elements.
To understand these selectors, it is important to recognize how elements in a web
document are related to each other.

HTML hierarchy

An HTML document can be visualized as a tree with the <html> element as the root.

Each element fits somewhere on this tree, and every element is either a parent or a child

of another element. Any element above another one is called an ancestor, and the element
directly above is the parent. Similarly, an element below another one is called a descendant,
and the one directly below is a child. In turn, an element sharing the same parent as
another element is called a sibling. Consider the following simple HTML 5 document:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
</head>
<body>
<h1>Heading</h1>
<p>Paragraph</p>
</body>
</html>

In this example, <h1> and <p> are sibling elements because they share the same
parent. Their parent element is <body>, and together with <html>, they are both ancestors
to the sibling elements. In turn, the two sibling elements are child elements of <body>
and descendants of both <body> and <html>. The hierarchy of this simple document is
illustrated in Figure 6-1.

27

CHAPTER 6 © RELATIONSHIP SELECTORS

4

META | TITLE H1 P

Figure 6-1. Example HTML hierarchy

Inheritance

Inheritance is another important concept in CSS. It makes certain styles apply not only
to the specified element but also to all its descendant elements. For example, the color
property is inherited; the border property is not. This default inheritance is usually the
intended behavior, making inheritance very intuitive. Any property can also explicitly be
given the value inherit to use the same value as the one the parent element has for that

property.

/* Inherit parent's border */
p { border: inherit; }

Inheritance enables you to apply a style to a common ancestor whenever you find
a place in which every descendant element needs that same style. This process is more
convenient and maintainable than applying the style to every descendant element that
needs that specific style. For example, if the text for an entire document needs to be set
to a particular color, you can apply the style to the <body> element, which is the common
ancestor for all visible elements.

/* Set document text color to gray */
body { color: gray; }

Now that you have an understanding of the HTML hierarchy and the inheritance
concept, the relationship selectors of CSS can be discussed.

Adjacent selector

The adjacent sibling selector selects the second element if it comes directly after the first
element.

div+p { color: red; }

28

CHAPTER 6 * RELATIONSHIP SELECTORS

This selector matches paragraphs that follow <div> elements.

<div>Not red</div>
<p>Red</p>
<p>Not red</p>

Descendent selector

The descendent selector matches an element if it is the child or grandchild of another
element. It is useful when you want to apply a style to an element only when it resides
within another element.

div p { background: gray; }

The preceding rule applies to the following paragraph because it descends from a
<div> element:

<div>
<p>Gray</p>
</div>

Direct child selector

The direct child selector matches its second element if it is the immediate descendant of
its first element.

div > span { color: green; }

When applied to the following markup, this rule will color the second
element green. The first element is not colored because it is not a direct child of
<div>.

<div>
<p>
Not green
</p>
Green
</div>

29

CHAPTER 6 © RELATIONSHIP SELECTORS

General sibling selector

CSS 3 added the general sibling selector, which matches the second element only if it is
preceded by a sibling element of the first type.

hi~p { color: blue; }

In the following example, the last two paragraphs are selected because they are
preceded by <h1> and all share the same parent:

<p>Not blue</p>
<h1>Not blue</h1>
<p>Blue</p>
<p>Blue</p>

Although it is a CSS 3 selector, it is supported by all major browsers, including
Chrome 2+, Firefox, IE7+, Safari 3.1+, and Opera 9.2+.

30

CHAPTER 7

Specificity

When more than one rule applies to the same element and they specify the same
property, there is a priority scheme that determines which rule is given precedence.
In short, CSS gives priority to the rule that has the most specific selector.

Selector specificity

There are some basic rules for calculating specificity. The lowest specificity with the
weight of 0 is given by the universal selector (*), which matches all elements
in the document.

* { color: red; } /* 0 */

The type selectors have the weight of 1, so a selector containing two type selectors
has a specificity of 2.

p { color: blue; } /* 1 */
body p { color: gold; } /* 2 */

A class selector has the weight of 10, as do pseudo classes and attribute selectors.
When these selectors include a type selector, they have a total weight of 11.

.a { color: lime; } /* 10 */
p:first-child { color: navy; } /* 11 */
p[class=a] { color: teal; } /* 11 */

The pseudo elements do not count for any specificity, except for the specificity
added by the selector the pseudo element is prefixed with.

p:first-letter { color: white; } /* 1 */
Id selectors have a weight of 100, so an id rule overrides most other conflicting styles.

#i { color: aqua; } /* 100 */

31

CHAPTER 7 * SPECIFICITY

Inline styles have a weight of 1000 and outweigh even id rules.
<p style="color: black;">Text</p>

To override all other conflicting styles, including those defined as inline styles, a
declaration can be declared as ! important. Note that the ! important modifier is applied
to individual declarations, not entire rules.

p { color: red !important; }

If the specificity between two conflicting rules is the same, the cascade is what
determines which rule is applied.

Cascade

In CSS, more than one style sheet can influence a document’s presentation. This feature
is known as cascading (the “C” part of CSS) because the browser merges all style sheets to
resolve any conflicts before the styles are applied.

Web documents can have style sheets that come from three different sources: the
browser, site designer and user reading the document. The designer’s style sheet usually
has the highest priority, followed by the user’s personal style sheet (if any) and then the
browser’s default one.

Designer styles

As discussed earlier, web designers have three ways to include CSS rules: inline styles,
internal style sheets, and external style sheets. Among these three, inline styles are given
the highest precedence, followed by internal style sheets and then external style sheets.

If the web page includes more than one external style sheet with conflicting rules
(same specificity), the style sheet that is included last in the HTML markup is given
precedence. This is also true within a style sheet. If the selectors are the same, the
property declared last is the one that counts.

p { color: orange; } /* overridden */
p { color: silver; } /* dominant */

For inherited styles, an element’s own style has priority over style inherited from
its ancestors.

p { color: orange; } /* dominant */
body { color: silver; }

32

CHAPTER 7 * SPECIFICITY

Specificity guidelines

As shown in this chapter, the style of an element can be specified in many different places
and with different priorities. The cascading feature gives a lot of flexibility to CSS, but it
can also result in unnecessary complexity if not managed well.

In general, you want to keep specificity low to make it easier to know which rules
will take precedence. This way, you can allow the cascade to work for you by adjusting
the order in which your style rules appear, instead of needlessly increasing the specificity
with id and !important to override conflicting styles.

33

CHAPTER 8

Colors

There are several different ways to specify a color in CSS, which are described in the
following sections.

Named notation

Colors can be set by simply typing the common name of that color.
p { color: red; } /* color paragraphs red */

The HTML and CSS color specification includes 140 predefined color names, such as
white, 1lime, and olive. These colors are all supported by the major browsers.

Hexadecimal notation

For the full palette, the red, green, and blue components of the color can be set individually.
Each color component consists of a two-digit hexadecimal number, and the whole six-digit
number is prefixed by a hash sign (#RRGGBB). Hexadecimal means base-16 counting, so
valid digits are 0 through 9 and A through E Each red-green-blue pair can range from 00
to FE or 0-255 in decimal notation. All in all, there are 16 million available colors.

p { color: #FF0000; } /* red:255, green:0, blue:0 */
Although this color notation is the most obfuscated one, it is also the most common
one because of its precision, conciseness, and browser support. An easy way to discover

the hexadecimal value of a color is to use the color picker tool from graphics software
such as Adobe Photoshop or Paint.NET.

35

CHAPTER 8 " COLORS

Short hexadecimal notation

There is a short form of the hexadecimal notation in which the color is specified using
only three hexadecimal digits instead of six. This notation can be converted to the
hexadecimal notation by duplicating each digit.

p { color: #fo0; } /* same as #ff0000 */

The short hexadecimal notation is a useful shortcut when the full precision provided
by the longer hexadecimal notation is not needed.

RGB notation

The rgb() function allows a color value to be specified as three intensity values for the
color components red, green, and blue. The value can be either an integer between 0 and
255 or a percentage.

p { color: rgh(255, 0, 0); }
p { color: rgh(100%, 0%, 0%); }

The RGB notation allows the same color precision as the hexadecimal notation.
The notation used comes down to a matter of preference, but the hexadecimal notation
is often preferred because it is shorter and can easily be copied from an image editor,
for example.

RGBA notation

CSS 3 introduced the RGBA notation, adding an alpha value for specifying the color
transparency. This alpha value is a number between 0.0 (fully transparent) and 1.0
(fully opaque).

/* Red with 50% transparency */
p { color: rgba(100%, 0%, 0%, 0.5); }

RGBA color values are supported in Chrome, Firefox 3+, [E9+, Safari, and Opera 10+.
If support is not present, the rule is ignored, so a fallback color value can be set as
shown here:

p i
color: rgh(100%, 0%, 0%); /* fallback */
color: rgbha(100%, 0%, 0%, 0.5);

}

A browser that does not support RGBA ignores the second declaration and continues
to apply the opaque version.

36

CHAPTER 8 © COLORS

HSL notation

A color value can be set with the hs1() function (which stands for hue, saturation, and
lightness). Hue is a degree on a color circle from 0 to 360, where 0 and 360 are red, 120

is green, and 240 is blue. Saturation is a percentage value, with 0% giving a shade of gray
and 100% giving the full color. Lightness is also specified as a percentage, from 0% (black)
to 100% (bright).

p { color: hsl(o, 100%, 100%); }
Although HSL colors are more intuitive than RGB colors, and the color values are
easier to tweak, HSL should not be used until IE8 usage declines to a point when it is

no longer necessary for web sites to support it. HSL is a CSS 3 value and is supported in
Chrome, Firefox, IE9+, Safari, and Opera 10+.

HSLA notation

Similar to RGB, the HSL notation can be extended with an alpha value for specifying the
transparency.

/* Red with 50% transparency */
p { color: hsla(o, 100%, 100%, 0.5); }

HSLA is supported in Chrome, Firefox 3+, IE9+, Safari, and Opera 10+, which is the
same as the RGBA function.

37

CHAPTER 9

Units

There are several units to choose from when specifying the size of a property’s value.

Absolute units

The absolute units of length are centimeter (cm), millimeter (mm), and inch (in). Although
these units are meant to look the same regardless of the screen resolution, it is not always
the case because web browsers do not always know the exact physical size of the display
medium.

.one-cm { font-size: 1cm; }
.one-mm { font-size: 1mm; }
.one-in { font-size: 1in; }

These units are mainly useful when the size of the output medium is known, such as
for content that will be printed to paper. They are not recommended for screen displays
because the screen sizes can vary a lot.

Typographical units

Points (pt) and picas (pc) are typographical units. By definition, there are 72 points to an
inch and 12 points to one pica. Like the absolute units, the typographical units are most
useful for print style sheets, not for onscreen use.

.one-point { font-size: 1pt; }
.one-pica { font-size: 1pc; }

Relative units

The relative units of length are pixel (px) and percentage (%). A percentage is a unit
proportional to the parent’s value for that property; a pixel is relative to the physical pixel
on the display device used.

.one-pixel { font-size: 1px; }
.one-percent { font-size: 1%; }

39

CHAPTER 9 © UNITS

Pixels and percentages are two of the most useful units in CSS for onscreen displays.
Pixels are fixed size, so they allow very precise control over the layout in a web document.
Percentages, on the other hand, are useful for defining font sizes for text content because
the text remains scalable, which is important for small devices and accessibility purposes.
When the text is part of the design and needs to match other elements, it can be sized
in pixels for greater control. Modern browsers all support full-page zooming, which has
made pixel-based font sizes more acceptable. Note that for high-resolution screens, a
CSS pixel renders as multiple screen pixels. For example, the Apple Retina display renders
all pixel dimensions at twice their actual size.

Font-relative units

Two additional relative measures are em-height (em) and ex-height (ex). Em-height is the
same as the font-size; ex-height is about half the font-size.

.one-ex { font-size: 1ex; }
.one-em { font-size: 1em; }

Like percentage, em-height is a good relative unit that is commonly used for setting
the font size of web document text. They both respect the user’s choice of font size in their
browser and are easier to read on small-screen devices than pixel-based font sizes.

CSS 3 introduced two additional font-relative units: rem and ch. The root em-height
(rem) unit is relative to the font-size of the root element (<html>). It can be used instead of
em to prevent the element’s font size from being affected by changes to the font size of its
ancestor elements.

.one-rem { font-size: 1rem; }

The character unit (ch) measures the width of the character zero (0) for the element’s
font. It can be useful for defining the width of a box containing text because the unit
roughly corresponds to the number of characters that fit within that box.

/* Same width */
<div style="width: 5ch;"></div>
<div>00000</div>

The ch unit is supported only in Chrome 27+, Firefox 19+, and IE9+, so it should be
used only with a fallback. The rem unit has slightly better support and works in Chrome 4+,
Firefox 3.6+, IE9+, Safari 4.1+, and Opera 11.6+.

Viewport units

Viewport width (vw) and viewport height (vh) units allow elements to be dimensioned
relative to the viewport, meaning the visible portion of the document. Each unit
represents a percentage of the current viewport.

40

CHAPTER 9 © UNITS

width: 50vw; /* 50% of viewport width */
height: 25vh; /* 25% of viewport height */

Two additional viewport units are vmin and vmax, which give the minimum or
maximum value of the viewport’s dimension.

width: avmin; /* 1vh or 1vw, whichever is smallest */
height: 1vmax; /* 1vh or 1vw, whichever is largest */

Chrome 26+, Firefox 19+, IE11+, Safari 6.1+, and Opera 15+ all support the viewport
units. The vh, vw, and vmin units have greater support than vmax, going back to Chrome
20+, IE9+, and Safari 6.0. In IE9 and IE10, vmin is instead called vm.

Unit values

Itis possible to set length using decimals. Some properties also allow negative values for
length.

p { font-size: 0.394in; } /* decimal value */
p { margin: -1px; } /* negative value */

Note that a rule does not work if there is a space before the unit or if no unit is
specified—except for the value zero. Including a unit after zero is optional, but it is good
practice to omit it.

p { font-size: 1ex; } /* correct */
p { font-size: 0; } /* correct */
p { font-size: oex; } /* correct */
p { font-size: 1 ex; } /* invalid */
p { font-size: 1; } /* invalid */

Whenever a CSS declaration contains an error, it is ignored by the browser. Any other
valid declarations in the rule still apply.

41

CHAPTER 10

CSS Properties

The remaining chapters of this book cover the multitude of properties available in CSS.
In these chapters, possible property values are given using a formal notation, such as the
one shown here:

text-shadow : inherit | none | <offset-x> <offset-y>
[<blur-radius>] [<color>]

This notation means that the text-shadow property can have one of three different
kinds of values. The default value is listed first; in this case, it is inherit. Because the
inherit keyword can be set for any property, it is not included unless it is the default
value. The second value, none, is also a keyword. It is the initial value for this property and
can be applied to disable an inherited property effect.

The third option in this notation includes a set of four values—two required ones
and two optional ones—as indicated by the square brackets ([]). The angle brackets (<>)
show that they are not keywords; they are other value types. In this case, they are three
length values and a color value. Following this notation, the following declaration shows
avalid example use of the text-shadow property:

text-shadow: 1px 1px 1px red;

Generic keywords

In addition to inherit, there are two other generic property keywords you might come
across in CSS: initial and unset. Both generic keywords were introduced in CSS 3 and
can be set on any properties.

The initial keyword applies a property’s initial value to an element, as defined
by the CSS specification. It is supported in Chrome 1+, Firefox 19+, Safari 1.2+, and
Opera 15+, but it is currently not supported in any version of IE. Because of the lack of IE
support, the usefulness of this keyword is limited. It is recommended to instead explicitly
specify the initial value for a given property to reset it.

The third generic keyword is unset, which is a combination of the initial and
inherit keywords. It resets the property to its inherited value, if there is one; otherwise,
it sets the property to the initial value. At this moment, support for the unset keyword is
limited to Firefox 27+. Until all major browsers adapt this keyword, it should not be used.

43

CHAPTER 10 © CSS PROPERTIES

Quirks mode

When HTML and CSS became standardized by the World Wide Web Consortium (W3C),
web browsers could not just comply with the standards because doing so would break
most web sites already in existence. Browsers instead created two separate rendering
modes: one for new standard compliant sites and one for old legacy sites (quirks mode).

In full standards mode, the browser does its best to render the page in accordance
with HTML and CSS specifications. Browsers use the doctype for the sole purpose of
deciding between full standards mode and quirks mode. A valid doctype at the start of
aweb document, such as the HTML 5 doctype seen following, ensures that the page is
rendered in full standards mode:

<!DOCTYPE html>
<html> ... </html>

This doctype triggers full standards mode in all major browsers, dating back as
far as IE6.

Vendor prefixes

Many browsers begin incorporating new CSS properties long before their specification
becomes stable. Because these implementations are experimental, their property names
include a vendor prefix to indicate that the specification could potentially change in

the future.

The major vendor prefixes include -moz for Firefox; -ms for Internet Explorer; -o for
Opera; and -webkit for Chrome, Safari, Android, and iOS. Recent versions of Opera also
implement the -webkit prefix in parallel with the -o prefix. For example, support for the
CSS 3 border-radius property can be increased by using the following vendor prefixes.
Note that the unprefixed version should always be included last.

.round {
/* Safari 3-4, i0S 1-3.2, Android 1.6-2.0 */
-webkit-border-radius: 3px;

/* Firefox 1-3.6 */
-moz-border-radius: 3px;

/* Opera 10.5+, IE9+, Safari 5+, Chrome 1+,
Firefox 4+, i0S 4+, Android 2.1+ */
border-radius: 3px;

As time goes on, the new property’s specification becomes stable, and browsers
drop the vendor prefix. Given more time, web users abandon old browsers in favor of
new versions, and the need for vendor prefixes diminishes. This has already occurred for
the border-radius property, and developers are now encouraged to drop the prefixes,
making things a little easier for web developers worldwide.

44

CHAPTER 10 * CSS PROPERTIES

Progressive enhancement

When deciding whether to use a recent CSS feature, it is important to consider how your
site will look without it. If the feature enhances the appearance of your site, such as the
CSS 3 border-radius property, you might want to start using the feature, even when it
is viewable by only a small percentage of your visitors. Time works in your favor, and as
people abandon old browsers, a greater number of your visitors can see the feature, which
enhances their experience on your site. This is the essence of progressive enhancement.
On the other hand, if your site depends on the feature and appears broken without
it, you need to carefully consider how well supported the feature is and whether there
are fallbacks or scripts you can make use of to increase this support, such as those listed
on HTMLS5 Polyfills.! There are often many ways to achieve the same result in CSS, so it is
a good idea to choose a method that is well supported by all major browsers for the key
elements of your site, such as the layout.

'http://html5polyfill. com

45

http://html5polyfill.com/

CHAPTER 11

Text

The text properties serve to format the visual appearance of text content.

color

The color property sets the color of text by using either one of the color notations. By
default, its value is set to inherit, meaning that it inherits the color of its parent element.

color : inherit | <color>

The initial value is black for all major browsers. In the following example rule,
paragraphs are colored blue:

p { color: #oof; }

text-transform

text-transform controls text casing. Possible values are listed as follows, with none as the
initial value:

text-transform : inherit | none | uppercase | lowercase | capitalize
This property enables text to be converted into either uppercase or lowercase letters.
The capitalize value capitalizes the first letter of each word. This property inherits by

default, so the none value can be used to remove an inherited text-transform effect.

text-transform: none; /* remove effect */

text-decoration

One or more visual effects to text can be added with the text-decoration property.

text-decoration : none | underline + overline + line-through + blink

47

CHAPTER 11 © TEXT

To add multiple decorations, separate the values with spaces (indicated by the “+”
sign, shown previously). The following rule adds a line above and below text content that
is affected by this class:

.highlight { text-decoration: underline overline; }

This property does not inherit, but its effect renders across descendent inline
elements in a way that is similar to inheritance.

text-indent

The first line of text in a block element can be indented with the text-indent property.
It can be set to a unit of measure or a percentage of the parent element’s width. Text can
also be indented backward by using a negative value.

text-indent (block) : inherit | <length> | <percentage>

The following example indents the first line of paragraph elements by one em:

p { text-indent: 1em; }

text-align

The text content of a block element can be aligned with the text-align property. This
property can replace usages of the deprecated align attribute in HTML.

text-align (block) : inherit | left | center | right | justify

Text and inline elements can be aligned to the left, aligned to the right, or centered.
The justify value also stretches each line so that both the right and left margins appear
straight.

p { text-align: justify; }

The text-align property inherits, so it needs to be explicitly changed in child
elements to restore default left alignment.

direction

The writing direction of text can be switched with the direction property.

direction (block) : inherit | 1ltr | rtl

48

CHAPTER 11 TEXT

The default value is 1tr, meaning left-to-right. It can be changed to rt1 to make text
content within a block element flow to the right. It indicates that the text is supposed to be
read from right-to-left, as in Hebrew or Arabic text, for example.

<p style="direction: rtl">
Aligned from right-to-left
</p>

This property does inherit, so it can be set once for the <body> element to apply to
the whole web page.

text-shadow

A shadow effect can be added to text with the text-shadow property.

text-shadow : inherit | none | <offset-x> <offset-y> [<blur-radius>]
[<color>]

The shadow is defined using two offset values, followed by two optional values for
the blur radius and color. The x and y offsets are specified as length values relative to the
text. Positive values move the shadow right and down; negative values move it left and up.

A blur effect can be added by setting a blur radius, which makes the shadow stretch
and fade at the edges. The final optional value for the property is the color of the shadow.
If no color value is specified, most browsers render the shadow in the same color as the
text. The following example style causes a slightly blurred gray shadow to appear at the
top right of <h1> elements:

h1 { text-shadow: 1px -1px 1px gray; }

text-shadowis a CSS 3 property that is supported by most major browsers, including
Chrome 2+, Firefox 3.5+, IE10+, Safari 1.2+, and Opera 9.5+.

box-shadow

In addition to text, a shadow effect can be added to block elements with the box-shadow
property.

box-shadow (block) : inherit | none | [inset] <offset-x> <offset-y>
[<blur-radius>] [<spread-radius> [<color>]]

49

CHAPTER 11 © TEXT

The values for the box shadow are the same as for text-shadow—with two
exceptions. A fourth length value, spread-radius, can be specified to grow or shrink the
shadow. This value is optional and is 0 if left unspecified, rendering the shadow in the
same size as the element. As an example, the following class rule displays a blurry gray
shadow to the bottom right of any block element using this class:

.drop-shadow { box-shadow: 3px 3px 3px 6px #ccc; }

The second value unique to the box-shadow property is the inset keyword. If
present, the shadow displays inside the box instead of as a drop shadow on the outside.

.inset-shadow { box-shadow: inset 3px 3px 3px 6px #ccc; }

box-shadow is a CSS 3 property and is implemented in Chrome 10+, Firefox 4+, IE9+,
Safari 5.1+, and Opera 10.5+. Support can be expanded using the -webkit and -moz
prefixes, as shown here:
.drop-shadow
{

/* Chrome 1-5, Safari 2-5.1+ */
-webkit-box-shadow: 3px 3px 5px 6px #ccc;

/* Firefox 3.5-3.6 */
-moz-box-shadow: 3px 3px 5px 6px #ccc;

box-shadow: 3px 3px 5px 6px #ccc;

50

CHAPTER 12

Spacing

The following properties deal with the space between elements. They are all inherited by
default.

line-height

line-height sets the distance between lines. The initial value is normal, which is typically
rendered as 120% of the font size. The line height can also be set to a length, a percentage
of the current font size, or a dimensionless number that is multiplied with the current
font size.

line-height : inherit | normal | <length> | <percentage> | <number>

The line-height property inherits, so the preferred way to set line-height is by
using a dimensionless number. Setting 1ine-height as a length or percentage can have
unexpected results for child elements that use different font sizes because the inherited
line height is then fixed instead of relative to the child element’s font size.

/* Line height is 1.5 times font size */
line-height: 1.5;

Line height has no effect on replaced inline elements such as . When used on

non-replaced inline elements, it sets the line height as expected. For block elements,
line-height sets the minimal height of line boxes within the element.

word-spacing and letter-spacing

word-spacing sets the spacing between words, and letter-spacing sets the spacing
between individual characters. Negative values are allowed for both of these properties.

word-spacing : inherit | normal | <length>
letter-spacing : inherit | normal | <length>

51

CHAPTER 12 © SPACING

The following rule creates a 3-pixel distance between letters and a 5-pixel distance
between words inside a paragraph:

pi
letter-spacing: 3px;
word-spacing: 5px;

}

white-space

The white-space property changes the way whitespace characters inside of a block
element are handled.

white-space (block) : inherit | normal | nowrap | pre | pre-wrap | pre-line

Multiple whitespace characters are normally collapsed into a single character in
HTML, and text is wrapped as necessary to fill the width of the containing block element.

/* Wrap text and collapse newlines, spaces and tabs */
p { white-space: normal; }

Setting whitespace to nowrap prevents text from wrapping for anything other than
the line break tag
. The pre (preformatted) value also prevents wrapping, but it also
preserves all whitespace characters. Its behavior is the same as the <pre> element in HTML.
Both the pre-wrap and pre-1line values allow text to wrap as normal, with pre-wrap
preserving sequences of whitespace and pre-1ine collapsing them. The difference
between pre-line and normal is that pre-1line preserves newline characters. Note that
the support for these last two values in IE was not added until version 8.

52

CHAPTER 13

Font

The font properties can be used to change aspects of the font and to load custom fonts.
They can be applied to any element and they all inherit.

font-family

font-family sets the face of the font. Its value can be a specific font name such as times
or verdana; or a generic family name such as sans-serif, serif, or monospace.

font-family : inherit | <family-names> | <generic-families>

The value for this property is a prioritized list of one or more font names. If a browser
does not have access to the first font, it uses the next font and so on.

font-family: "Times New Roman", times, serif;

It is recommended to end the list with a family name to make sure that at least the
font family is consistent across browsers. Note that if a font name includes spaces, it must
be surrounded by double quotes, as in the previous example.

font-size

font-size sets the size of the font. The value can be any unit of measure or a percentage
of the parent’s font size. There are also a couple of predefined values, as listed here:

font-size : inherit | <length> | <percentage> |
smaller | larger | xx-small | x-small |
small | medium | large | x-large | xx-large

The larger and smaller values are relative to the parent’s font size; the other

predefined values refer to absolute sizes. The initial size is medium, which is 1 em
(16 pixels) for normal text.

53

CHAPTER 13 © FONT

font-style

font-style makes the text slanted. According to specifications, italic is a cursive
companion face to the normal face, and oblique is a slanted form of the normal face.
Both faces tend to be rendered the same way for most fonts, however.

font-style : inherit | normal | italic | oblique

font-variant

font-variant can be used to display text using small caps instead of lowercase letters.
A value of small-caps renders text in uppercase letters that are smaller than regular
uppercase letters.

font-variant : inherit | normal | small-caps

font-weight

font-weight sets the thickness of the font. The bolder and lighter values set the
thickness relative to the parent element, and the numeric values specify absolute weights.
The value of bold is equal to 700, and normal is the same as 400.

font-weight : inherit | normal | bold | bolder |
lighter | 100 | 200 | ... | 900

Even if several weight values can be specified, most fonts have only one type of bold,
as shown in the following example rendering:

lighter normal bold bolder 100 200 300 400 500 600 700 800 900

font

There is a convenient shorthand property named font that sets all the font properties in
one declaration.

font : inherit | <font-style> + <font-variant> +
<font-weight> + <font-size> / <line-height> +
<font-family>

The properties must be specified in the order listed previously. As long as this order is
kept, either one of the properties can be left out (except for font-size and font-family,
which are mandatory). If a property is left out, the default value for that property is used,
which is to inherit the parent’s value. The following example applies four font properties
to the paragraph element:

p { font: italic 50%/125% Verdana; }

54

CHAPTER 13 © FONT

This font declaration sets the font-style, font-size, line-height, and font-family
properties in one declaration. Because font-variant and font-weight are not
included, a side effect of using this declaration is that they are both re-set to normal.

Custom fonts

Selected fonts can be seen only if the font is installed on the device used to view the web
site. If a nonstandard font is needed, a @font-face rule can be used to load the font from
an online location.

@font-face {
font-family: MyFont;
src: url(myfont.ttf);

}

This rule creates a font named MyFont and provides a URL from which the browser
can download it. With this rule in place, the custom font can be used just like any
standard font.

p { font-family: "MyFont", arial, sans-serif; }
This use of the @font-face rule is supported in Chrome 5+, Firefox 3.5+, [E9+,

Safari 3.1+, and Opera 10+. If the browser does not support the custom font, it reverts to
the next standard font in the list.

55

CHAPTER 14

Background

The background properties can add background effects. None of these properties inherits
and they can be applied to any elements.

background-color

The color of an element’s background is set with the background-color property. By
default, its value is set to transparent.

background-color : transparent | <color>

Even if a background image is used, it is a good idea to set a background color. That
way, there is a fallback color in case the background image is unavailable for any reason.

background-color: #ccc;

background-image

background-image specifies an image to use as a background with the url function.
background-image : none | url(<urls)

The image location defined with the url function can be either absolute or relative to
the location of the CSS file.

/* Relative path */
background-image: url(../images/myimg.7jpg);

/* Absolute path */
background-image: url(http://mydomain.com/images/myimg.jpg);

57

http://mydomain.com/images/myimg.jpg

CHAPTER 14 © BACKGROUND

background-repeat

By default, the background image repeats itself both horizontally and vertically. It can
be changed with the background-repeat property to make the background repeat only
horizontally (repeat-x), only vertically (repeat-y), or not at all (no-repeat).

background-repeat : repeat | repeat-x | repeat-y | no-repeat

background-attachment

When the viewport is scrolled in a browser, a background image normally follows along
with the rest of the page. This behavior is determined by the background-attachment
property, whose initial value is scroll. If the value is set to fixed, the position of the
background is instead relative to the viewport, making the background stay in place even
as the page is scrolled.

background-attachment : scroll | fixed | local

CSS 3 introduced a third value for this property, local, which fixes the background
relative to the element’s content instead of the whole viewport. With this value, the
background scrolls along with the element’s content only when that element is scrolled
(achieved by using the overflow property). Support for this value was introduced in
Chrome 4+, Firefox 25+, [E9+, Safari 5+, and Opera 10.5+.

background-position

The background-position property is used to position a background image, with one
value for vertical placement and another for horizontal. They can both be set to a length
or a percentage of the element’s size, and negative values are allowed. There are also
some predefined values for this property, including: top, center, and bottom for vertical
placement; and left, center, and right for horizontal placement.

background-position : <length> <length> | <percentage> <percentage> |
top/center/bottom + left/center/right

By default, a background image is positioned to the top left of its parent element’s
padding area. Any length values given move the background image relative to these
edges. For example, the following property offsets the background 5 pixels down and
10 pixels to the right:

background-position: 5px 10px;

58

CHAPTER 14 © BACKGROUND

CSS 3 added a four-value syntax, allowing a choice of which side of the element
the image will be positioned relative to. Using this syntax, the background in the next
example is positioned relative to the bottom right instead of the top left of the element.

background-position: bottom 5px right 5px;

This four-value syntax is supported only in Chrome 25+, Firefox 13+, IE9+,
Safari 5.28+, and Opera 10.5+.

background-size

The size of a background image is normally the same as the actual size of the image.

It can be changed with the background-size property, which allows the background to
be resized to a dimension specified in pixels or as a percentage relative to the background
positioning area.

background-size (1-2) : auto | <length> | <percentage> | cover | contain

With two values, the first value determines the width of the image and the second
value its height.

background-size: 150% 100%;

A single value defines only the width of the image. The height is then implicitly set to
auto, preserving the aspect ratio of the image.

background-size: 150%;
The contain and cover keywords size the background to fill the parent container
while maintaining the aspect ratio. The cover value ensures that the image completely

covers the background positioning area, whereas contain makes sure that the
background is contained within the area. Their difference is illustrated in Figure 14-1.

positioning area

background-size:

. background-size: cover;
contain;

overflow =

Figure 14-1. Backgrounds sized with cover and contain keywords

59

CHAPTER 14 © BACKGROUND

This property was added in CSS 3 and is supported in Chrome 4+, Firefox 4+, IE9+,
Safari 5+, and Opera 10.5+. Use of the -webkit and -moz prefixes expand support to
Chrome 1+, Safari 3+, and Firefox 3.6+.

background-clip

The painting area of a background image or color can be set with the background-clip
property.

background-clip : border-box | padding-box | content-box

The background normally extends to the outside edge of the border (border-box)
and renders behind any visible border. A value of padding-box instead draws the
background within the element’s padding. The third possible value, content-box, draws
the background within the content area. Using the following declaration, the background
is clipped to the outside edge of the content:

background-clip: content-box;

background-clip is supported in Chrome 1+, Firefox 4+, [E9+, Safari 3+,
and Opera 12+.

background-origin

The background-origin property determines the starting point of a background
image or color.

background-origin : padding-box | border-box | content-box

A background image is ordinarily rendered starting from the top left of the element’s
padding area (padding-box). It can be changed so that the background either starts at the
top-left edge of the border area (border-box) or the content area (content-box).

The background-origin property is often used together with background-clip
to change both the starting point and clipping area of the background. The following
declarations set both of them to the content area:

background-origin: content-box;
background-clip: content-box;

The background-origin property is a CSS 3 property that works in Chrome 4+,
Firefox 4+, IE9+, Opera 10.5+, and Safari 5+. All versions of Firefox and Chrome, along
with Safari 4, are supported with the -moz and -webkit prefixes, as seen in the next
example. Note that Firefox used the values padding and border prior to version 4; there
were no values for specifying the content box as the origin.

60

CHAPTER 14 © BACKGROUND

/* Chrome 1-3, Safari 4 */
-webkit-background-origin: border-box;

/* Firefox 1-3.6 */
-moz-background-origin: border;

background-origin: border-box;

background

The background property is a shortcut for setting all background properties in a single
declaration.

background : <background-color> + <background-image> +
<background-repeat> + <background-attachment> +
<background-position> + <background-size> +
<background-clip> + <background-origin>

The order of the values is irrelevant because there is no ambiguity between them.
Any one of the values can be left out, but keep in mind that those omitted properties are
reset to their defaults when using this property.

background: url(bg.png) no-repeat fixed right bottom;

In most cases, it is preferable to use shorthand properties such as this one when
setting more than one of the individual properties. It has better performance and is easier
to maintain than using the equivalent longhand properties seen here:

background-image: url(bg.png);
background-repeat: no-repeat;
background-attachment: fixed;
background-position: right bottom;

Multiple backgrounds

More than one background can be applied to the same element by specifying the property
values in a comma-separated list. The first background in the list appears at the top, and
each successive background is visible only through transparent areas of the backgrounds
stacked on top of it.

background-image: url(bgl.png), url(bg2.png);
background-repeat: no-repeat, repeat-y;
background-attachment: fixed, fixed;
background-position: right bottom, top left;

61

CHAPTER 14 © BACKGROUND

The shorthand property can also be used with multiple backgrounds in the
following way:

background: url(bgl.png) no-repeat fixed right bottom,
url(bg2.png) repeat-y fixed top left;

Support for multiple backgrounds was added in CSS 3 and has been included in
browsers since Chrome 4+, Firefox 3.6+, IE9+, Safari 3.1+, and Opera 10.5+. A fallback

image can be provided for older browsers that do not support multiple backgrounds.

background-image: bg.png; /* fallback */
background-image: bgi.png, bg2.png;

62

CHAPTER 15

Gradients

A gradient is a color fill that blends smoothly from one color to another. Introduced in
CSS 3, the gradient functions can be used anywhere an image is required according to
specification, but they are mainly used together with the background or background-image
properties to create a background gradient.

Linear gradients

The linear-gradient() function defines a gradient that provides a smooth transition
from one color to another.

linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

In its simplest form, the linear gradient consists of two colors with an even spread
from top to bottom. In Figure 15-1, the gradient starts as gray and transitions into black at
the bottom.

.mygradient {
background-image: linear-gradient(gray, black);

}

Figure 15-1. Simple linear gradient

63

CHAPTER 15 © GRADIENTS

The angle for the gradient can be set by using the keyword to, followed by the
destination in which the gradient will end: top, right, bottom, left, or any combination
thereof. An example is shown in Figure 15-2.

linear-gradient(to bottom right, gray, black);

Figure 15-2. Bottom-right linear gradient

More-precise angles can be specified by using the deg unit, with 0 deg being the
same as to top. The degrees proceed clockwise, and negative angles are allowed.

linear-gradient(odeg, gray, black); /* to top */
linear-gradient(90deg, gray, black); /* to right */
linear-gradient(180deg, gray, black); /* to bottom */
linear-gradient(-90deg, gray, black); /* to left */

Additional color stops can be added between the starting and ending colors. Any
color stop can be followed by a stop position specified as either a percentage or a length
value. If no stop position is specified, the colors are evenly distributed. In the following
case, white is set at 25 percent, instead of its default position of 50 percent. Figure 15-3
illustrates the result of this code.

linear-gradient(gray, white 25%, black);

Figure 15-3. Gradient with multiple color stops

CHAPTER 15 © GRADIENTS

The standard syntax described so far is supported in Chrome 26+, Firefox 16+,
IE10+, Safari 6.1+, and Opera 12.1+. Legacy syntaxes can be used together with the -moz,
-webkit, and -o prefixes to expand support down to Firefox 3.6, Chrome 1, Safari 4, and
Opera 11.1.

.linear-gradient
{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */

background: -webkit-gradient(linear, left top, right top, from(red),
to(orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-linear-gradient(left, red, orange);

/* Firefox 3.6-15 */
background: -moz-linear-gradient(left, red, orange);

/* Opera 11.1-12.1 */
background: -o-linear-gradient(left, red, orange);

/* Standard syntax */
background: linear-gradient(to right, red, orange);

Radial gradients

A radial gradient transitions outward from a central point. In CSS, these gradients are
defined with the radial-gradient() function.

radial-gradient([<shape> + <size>] [at <position>]
{, <color stop> [stop position]} {2-«})

To create a radial gradient, at least two color stops must be defined. The radial
gradient in Figure 15-4 starts as gray in the center and fades to black.

radial-gradient(gray, black);

65

CHAPTER 15 © GRADIENTS

Figure 15-4. Simple radial gradient
Like linear-gradient(), more than two color stops are allowed and they can
optionally be followed by a length or percentage value, indicating the stop position of the

color. An example is shown in Figure 15-5.

radial-gradient(black 25%, white, black 75%);

Figure 15-5. Radial gradient with set stop positions

The shape of the radial gradient can be either an ellipse or a circle. The default
shape is el1lipsis, which allows the gradient to spread itself to match both the height and
width of the element, as shown in Figure 15-5. The alternative circle value, illustrated in
Figure 15-6, forces the gradient to be circular, regardless of the shape of the element.

radial-gradient(circle, black 25%, white, black 75%);

Figure 15-6. Circular radial gradient

66

CHAPTER 15 © GRADIENTS

Two length values for the ellipsis or a single value for the circle can be used to set the
horizontal and vertical radius of the gradient. For the ellipsis, they can also be percentage
values that are relative to the dimensions of the element, as in the example shown in
Figure 15-7.

radial-gradient(75% 25%, gray, black);

Figure 15-7. Resized radial gradient

Ifless precision is needed, the size can be set by using one of the predefined
keywords: closest-side, closest-corner, farthest-side, or farthest-corner. These
values specify whether the gradient is contained by the sides or corners of the element
nearest to or farthest away from the origin (see Figure 15-8). For example, the farthest-side
value sizes the gradient so that its last color ends at the farthest side of the element away
from its origin.

radial-gradient(farthest-side, gray, black);

closest-side

closest-corner

origin farthest-side

farthest-corner

Figure 15-8. Size keywords

The origin of a radial gradient is centered by default. It can be changed by specifying
the position of the gradient’s origin with the keyword at followed by a position specified
in the same way as for the background-position property. The horizontal position is
specified first, optionally followed by the vertical position. The position can be set with

67

CHAPTER 15 © GRADIENTS

keywords (left, center, right + top, center, and bottom), length values, percentage
values, or a combination thereof. An example is given in Figure 15-9, in which the
gradient origin is moved to the bottom right of the element.

radial-gradient(at right bottom, gray, black);

Figure 15-9. Bottom-right origin

Support for the radial-gradient () function is largely the same as for
linear-gradient() when used together with the -moz, -webkit, and -o vendor prefixes.
Like linear-gradient(), the syntax for the radial gradient has gone through some
revisions. An example of a full cross-browser syntax is shown here:

.radial-gradient

{

background-color: red; /* fallback color */

/* Chrome 1-9, Safari 4-5 */
background: -webkit-gradient(radial, center center, Opx, center
center, 100%, color-stop(0%,red), color-stop(100%,orange));

/* Chrome 10-25, Safari 5.1-6.1 */
background: -webkit-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Firefox 3.6-16 */
background: -moz-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Opera 11.6-12.1 */
background: -o-radial-gradient(center, ellipse cover, red 0%,
orange 100%);

/* Standard syntax */
background: radial-gradient(ellipse at center, red 0%, orange 100%);

}

68

CHAPTER 15 © GRADIENTS

Repeating gradients

Linear and radial gradients do not allow gradient patterns to repeat because they
naturally stretch to fill the element on which they are defined. Two additional functions
are used for creating repeating gradients: repeating-linear-gradient() and
repeating-radial-gradient().

For the purpose of repeating a linear gradient, the repeating-linear-gradient()
function is used. The arguments for this function are the same as for linear-gradient().

repeating-linear-gradient([<angle> | to <side-or-corner>]
{, <color stop> [stop position]} (2-«))

A repeating linear gradient repeats the color stops infinitely. The size of the gradient
is determined by the final color stop. To avoid sharp transitions, the starting color in
Figure 15-10 is repeated at the end.

repeating-linear-gradient(-45deg, white 0, black 10%, white 20%);

3

|

Figure 15-10. Repeating linear gradient

The repeating function for the radial gradient also shares the same syntax as the
nonrepeating version. The example shown in Figure 15-11 illustrates the repeating function.
Note that this gradient has sharp color transitions in contrast with the previous example.

repeating-radial-gradient(black, black 5%, white 5%, white 10%)

Figure 15-11. Repeating radial gradient

69

CHAPTER 15 © GRADIENTS

The syntax for defining gradients is notably more complex than many other CSS
features. For this reason, it can be preferable to use an online tool to graphically design
the desired gradient. One such tool can be found on Colorzilla.com.! In addition to the
standard compliant gradient code, it also provides the prefixed versions necessary for
maximum browser compatibility.

'http://www.colorzilla.com/gradient-editor

70

http:Colorzilla.com

http://www.colorzilla.com/gradient-editor

CHAPTER 16

Box model

The so-called box model of CSS describes the space that is taken up by an HTML element.
In this model, each element consists of four boxes: content, padding, border, and margin,
as illustrated in Figure 16-1.

margin
border
padding

3.
content o
!
~

5 width g

Figure 16-1. CSS box model

Each of the three boxes surrounding the content can have different sizes on the top,
right, bottom, and left of the element. Any or all of these sizes can also be set to zero.

Inline and block

HTML has two primary categories of elements: block and inline. The box model applies
differently to these two kinds of elements, so it is important to know the difference
between them. Examples of inline elements include <a>, and , while

<p>, <h1>, and <form> are block elements.

Inline elements flow along with text content and are split as necessary to fit the width
of their container. They may not contain block elements, with the exception of the <a>
element, which can wrap any type of element.

Block elements can contain both block and inline elements (see Figure 16-2). They
break the flow of text by creating a virtual box around themselves that expand horizontally,
making it appear as if there are line breaks before and after each block element. Because of
these properties, block elements are also referred to as boxes or containers.

71

CHAPTER 16 © BOX MODEL

block 1

inline 1 inline 2 ...

... inline 2 inline 3

block 2

Figure 16-2. Block and inline elements

The boxes surrounding inline and block elements have different features. A block
element can manipulate all properties in the box model, including the width and height
of the content area, as well as the border, padding, and margin. If no width is set, a block
element expands horizontally to the maximum allowed by the containing element.

An inline element is more limited in that it cannot set the vertical margins (top or
bottom). It also cannot change the width or height of its inline box. For an inline element,
the minimum height can be set with the 1ine-height property, but the width and height
adjust automatically to fit the content that the element holds.

There is a subcategory of inline elements, called replaced inline elements, that
use external objects such as , <video>, and <object>; and form elements such
as <input> and <textarea>. With these inline elements, all box properties can be
manipulated the same way as block elements.

Span and div

Using the and <div> elements is a generic way of adding structure to a web document.
These elements have no styles associated with them, which makes them especially well-suited
to work with class and id selectors. The difference between the two is that is an inline
element whereas <div> is a block element.

Inline
<div>Block</div>

As an inline element, is mainly used to add styling to sections of text. It cannot
be used for styling block elements because such elements are not allowed inside of inline
elements according to the HTML specification.

Red text

In contrast, <div> is used to create styled containers for other block and inline elements.
These custom containers are often what make up the layout of a web page. Because it is
ablock element, <div> allows all the element’s box attributes to be manipulated (width,
height, padding, border, and margin).

<div class="a">
<div class="b">Block within a block</div>
</div>

72

CHAPTER 17

Border

The border properties are used to format the border around elements. They can be
applied to any element and they do not inherit.

border-style

To make the border visible around an element, the border-style property has to be set to
a value other than none, which is the default value.

border-style (1-4) | border-top-style |
border-right-style | border-bottom-style |
border-left-style :
none | dashed | dotted | double | groove |
hidden | inset | outset | ridge | solid

The solid border style is the one most commonly used, but there are several other
options for displaying a border, as seen in Figure 17-1. The hidden value removes the
border and is synonymous with none, except that it also hides shared borders in tables
with collapsed borders.

peesssssssnsny - -

Solid_] § Dotted : LI-DashedJ Double

Groowre| I Ridge Inset Outset

Figure 17-1. border-style appearances

The border-style property is one of several properties that can be set with one
to four values. When fewer than four values are specified, the border-style value is
duplicated, as shown in Figure 17-2.

~ N
top right bottom left
S o

Figure 17-2. 1-to-4-value syntax explained

73

CHAPTER 17 © BORDER

Given these rules, the following declarations are synonymous and display a solid
border on the top and bottom of an element:

border-style: solid none solid none;
border-style: solid none solid;
border-style: solid none;

To render all border sides in the same style, only a single style value needs to be specified.
border-style: solid;

The border-style property has four subproperties that can also be used to target
each border side’s style.

border-top-style: dotted;
border-right-style: dashed;
border-bottom-style: ridge;
border-left-style: inset;

border-width

The border-width property, which controls the width of borders, can be set with a unit
of length or with one of the predefined values: thin, medium, or thick. The initial value is
medium, which is typically rendered as 3 pixels.

border-width (1-4) | border-top-width |
border-right-width | border-bottom-width |
border-left-width :

<length> | thin | medium | thick

As with border-style, this property can have one to four values and has four
subproperties for setting the individual borders’ width.

/* Shortcut property */
border-width: thin medium;

/* Full-length properties */
border-top-width: thin;
border-right-width: medium;
border-bottom-width: thin;
border-left-width: medium;

A width of zero means that no border is displayed. This value has the same effect as
setting the style of the border to none.

4

CHAPTER 17 © BORDER

border-color

border-color sets the color of the border. CSS does not specify what the default border
color should be, but most browsers render it gray. This property can have from one to four
values and has four subproperties for setting the individual borders’ color.

border-color (1-4) | border-top-color |
border-right-color | border-bottom-color |
border-left-color :

<color> | transparent

Setting the color to transparent makes the border invisible without changing the layout.

border-color: transparent;

border

The border property can set the width, style and color border properties in a single
declaration. It is the most commonly used property for controlling the border.

border | border-top | border-right |
border-bottom | border-left :
<border-width> + <border-style> + <border-color>

The values can be set in any order because there is no ambiguity between them.
Either one of the values can also be omitted.

border: 1px solid black;

The border property has four subproperties for specifying the border settings for
each of the four sides.

border-top: 1px solid red;
border-right: 1px solid blue;
border-bottom: 1px solid aqua;
border-left: 1px solid lime;

border-radius

The corners of the border can be rounded using the border-radius property or its four
subproperties.

border-radius (1-4) | border-top-left-radius |
border-top-right-radius | border-bottom-right-radius |
border-bottom-left-radius :

<length> | <percentage> [/ <length> | <percentage>]

75

CHAPTER 17 © BORDER

The border-radius property can have from one to four values. Each radius value can
be set by using either one value for a circle radius or two values for an elliptical radius.
The value can be either a length or a percentage. If a percentage is used, it is relative to
the container’s dimensions. The examples that follow are illustrated in Figure 17-3:

.a { border-radius: 5px; }
.b { border-radius: 5px 20px; }
.c { border-radius: 50%; }
.d { border-radius: 30px/10px; }

a b c d

Figure 17-3. Border-radius examples

The radius for each of the four edges can be set using the four subproperties of
border-radius. The following example renders the same as the second box in
Figure 17-3:

border-top-left-radius: 5pX;
border-top-right-radius: 20px;
border-bottom-right-radius: 5px;
border-bottom-left-radius: 20px;

border-radius is a well-supported CSS 3 property. To add support for older
browsers, the -webkit and -moz browser prefixes can be used.

.round {
/* Safari 3-4 */

-webkit-border-radius: 5px;

/* Firefox 1-3.6 */
-moz-border-radius: 5px;

/* Opera 10.5, IE9, Safari 5, Chrome 1, Firefox 4 */
border-radius: 5px;

76

CHAPTER 18

Outline

The outline is a line drawn around an element, outside the border edge. It is typically
rendered as a dotted line around interactive elements to show which element has focus.
Although similar to the border, the outline differs in that it does not take up any space in
the box model. Furthermore, unlike the border, all four sides of the outline must be the
same. The outline properties can be applied to any element, and none of them inherits.

outline-style

The style of the outline is set with the outline-style property. To display the outline,
the value needs to be set to something other than none, which is the default.

outline-style : none | solid | dotted | dashed | double |
groove | ridge | inset | outset

This property allows the same values as border-style, except that hidden is not a
valid outline-style. They are also rendered the same, as illustrated in Figure 18-1.

pressscssssnany - -

Solid_] § Dotted : LI-DashedJ Double

Groovel I Ridge | Inset Outset

Figure 18-1. Outline-style appearances

outline-width

The thickness of the outline is specified with the outline-width property. Like the
border-width property, its value can be a specified length or one of the keywords thin,
medium, or thick.

outline-width : <length> | thin | medium | thick

7l

CHAPTER 18 © OUTLINE

CSS does not specify the numerical thickness of these three keywords, but they
typically render as 1px, 3px, and 5px, respectively. Like border-width, the initial value for
this property is medium.

outline-color

The color of the outline can be changed with the outline-color property. In addition to
the standard color notations, the keyword invert is also a valid value for this property.

outline-color : invert | <color>

To ensure proper contrast, the specification suggests that the default value be
invert, which sets the outline to the opposite of the color underneath. However,
only IE8+ and Opera 7+ actually support this value, so it is not commonly used.

outline

outline is a shorthand property for setting all the preceding outline properties in a single
declaration.

outline : <outline-width> + <outline-style> + <outline-color>

The values can be specified in any order because there is no ambiguity between
them. Either one of them can be left out.

outline: thin solid red;

This has the same effect as setting all the individual properties, but with a more
convenient syntax:

outline-width: thin;

outline-style: solid;
outline-color: red;

outline-offset

The space between the outline and the border edge can be set with the outline-offset
property introduced in CSS 3.

outline-offset : <length>

The following declaration moves the outline 3 pixels outward. Negative values are
allowed, which instead move the outline inside the element.

outline-offset: 3px;

Although this property is not supported in IE, it works in all other major browsers.

78

CHAPTER 19

Margin and padding

Margins and padding are used to adjust the position of an element and to create space
around it.

Padding

Padding is the space between an element’s content and its border. It is set using the
padding properties shown here. These properties do not inherit and can be applied to
any element.

padding (1-4) | padding-top | padding-right |
padding-bottom | padding-left :
<length> | <percentage>

There are four properties for setting the padding on each side individually. In the
following example, the vertical (top, bottom) margins will be 10 pixels, and the horizontal
(right, left) margins will be zero.

padding-top: 10px;
padding-right: O0;
padding-bottom: 10px;
padding-left: 0;

These declarations can be shortened to a single declaration using the padding
property. The padding values are then specified in clockwise order: top, right, bottom,
and left.
padding: 10px O 10px O;

Like many other properties related to the box model, the padding property can be set

with one to four values that correspond to the edges of the element’s box. With fewer than
four values, the padding is repeated as is shown in Figure 19-1.

79

CHAPTER 19 © MARGIN AND PADDING

gt S
top right bottom left
L =

Figure 19-1. 1-to-4-value syntax explained

For instance, if two values are specified, the first value sets the top and bottom
padding, and the second value sets the right and left padding. This gives an even shorter
way of writing the previous example.

padding: 10px 0;

Keep in mind that the padding is part of the element’s background and is affected by
the background properties, whereas the margin is always transparent.

Margin

The margin is the space around an element’s border and is set using the margin properties
listed as follows. These properties are not inherited and can be applied to any element, with
the exception that vertical margins do not affect nonreplaced inline elements.

margin (1-4) | margin-top | margin-right |
margin-bottom | margin-left:
<length> | <percentage> | auto

Margin and padding can both use percentage values, which are relative to the
width and height of the containing element. In contrast with padding, margins can be
negative, which allows for element areas to overlap. The auto keyword lets the browser
automatically calculate the margin.

Like the padding and border properties, the margin property can be set with one to
four values. For example, in the following declaration, the top-bottom margins will be
1 cm, and the right-left margins will be 0:

margin: icm O;

The margin property also has four subproperties, which provide a more verbose
method for setting the margin on each of the four sides.

margin-top: 1cm;
margin-right: o0;
margin-bottom: 1cm;
margin-left: o0;

80

CHAPTER 19 © MARGIN AND PADDING

Top and bottom margins are shared between adjacent boxes, so the vertical
distance between two boxes is not the sum of the margins, but only the greater of the
two margins. Because of this, the distance between the two following <div> boxes will be
only 10 pixels:

<div style="margin-bottom: 5px;">Top box</div>
<div style="margin-top: 10px;">Bottom box</div>

81

CHAPTER 20

Dimension

The dimension properties control the size of an element, as well as its minimum and
maximum dimensions. They do not inherit and can be applied only to block elements
and replaced inline elements.

width and height

The width and height of an element’s content area can be set with the width and height
properties. These two properties can be assigned with either a length or a percentage
value, where the percentage is relative to the parent element’s dimensions.

width | height : auto | <length> | <percentage>

A block element normally stretches out to the edges of its container. In contrast, the
element’s height collapses to fit its content. With the width and height properties, these
default behaviors can be changed. In the following example, elements applying the class
have a width of 100 pixels and a height of 50 pixels. After the dimensions have been set
like this, the element keeps that size, no matter how the page is resized.

.mybox {
width: 100px;
height: 50px;
}

min-width and min-height

The min-width and min-height properties set the minimum dimensions of an element.
The element’s width and height still expand to fit the content, but the element does not
collapse below the specified minimum dimensions, which does not include padding,
borders, or margins.

min-width | min-height : <length> | <percentage>

83

CHAPTER 20 DIMENSION

Valid values for these properties are lengths and percentages, where percentage is
relative to the dimensions of the containing block. For example, the following class makes
an element take up at least half of the available width and height:

.half {
min-width: 50%;
min-height: 50%;
}

max-width and max-height

The maximum dimensions of an element’s content area are set with the max-width and
max-height properties. They can be set with a length or percentage value, as well as the
keyword none to clear a previously set value.

max-width | max-height : none | <length> | <percentage>

By setting both the maximum and minimum width, you can define an interval for the
way the width of an element can vary. A block element using the following class expands
to fill 500 pixels if it can. When horizontal space is limited, the element is allowed to
shrink down to no fewer than 200 pixels.

.mybox {
max-width: 500px;
min-width: 200px;

}

The max-width property has priority over min-width. However, it is the other way
around with the height properties because min-height has priority over max-height.
Thus, an element using the following class has a height of 5 em, unless its content
requires more height. In that case, the element expands vertically up to its maximum
allowed value of 20 em.

.mybox {
max-height: 20em;
min-height: 5em;

}

Keep in mind that the fixed width and height properties should not be used together
with the min- and max- properties. The four min- and max- properties are supported by all
major browsers, including Chrome 1+, Firefox 1+, IE7+, Safari 1+, and Opera 8+. They are
popularly used together with media rules for creating fluid layouts that work well across
different screen sizes.

84

CHAPTER 20 * DIMENSION

box-sizing

The dimension properties normally refer to the content area, not the padding or border
area. Therefore, to know the actual width or height that an element occupies in the box
model, the surrounding padding and border have to be taken into account.

/* 100 pixels wide element */
.mybox {
padding: 3px;
border: 2px solid red;
width: 90px;
}

CSS 3 introduced the box-sizing property to allow web developers a choice of how
widths and heights are calculated. The default value is content-box, which means the
dimension properties refer only to the content area. The alternative border-box value
includes the padding and borders in these measurements.

box-sizing : content-box | border-box

By changing the box sizing to border-box, you can create a grid layout more easily
because you no longer need to take the padding and border sizes into account.

/* 100 pixel wide element */
.mybox {
box-sizing: border-box;
padding: 3px;
border: 2px solid red;
width: 100px;

}

The border-box property does not inherit, but it can be applied to all elements on the
website using the universal selector. To increase browser support, the -webkit and -moz
prefixes should be used.

/* Use border-box for all elements */
*{
/* Chrome 1-8, Safari 3-5 */
-webkit-box-sizing: border-box;

/* Firefox 1-28*/
-moz-box-sizing: border-box;

/* Chrome 9+, Firefox 29+, IE8+, Safari 5.1+, Opera 9.5+ */

box-sizing: border-box;

Browser support for the box-sizing property has become so good that all major
browsers now support it. As such, many new websites have started to employ this
property to simplify the grid calculations for their layouts.

85

CHAPTER 21

Positioning

The positioning properties can change how and where elements are displayed. They
enable very precise control over the web page layout.

position

Elements can be positioned in four different ways using the position property. An
element with the position property set to anything but static is known as a positioned
element.

position : static | relative | absolute | fixed

A positioned element can be moved with the top, left, right, and bottom properties,
which can be used to position elements anywhere on the page and also to resize them
horizontally and vertically. They allow both positive and negative length and percentage
values, with the percentage being relative to the dimensions of the containing block.

top | right | bottom | left (positioned) :
auto | <length> | <percentage>

static

By default, the position property has the value static. This value means that the
element appears in its regular position in the page flow and is not affected by the top,
left, right, or bottom positioning properties.

/* Not positioned element */
.static { position: static; }

Because the position property is not inherited, and static is the default, there is no
need to explicitly set the position property to static.

87

CHAPTER 21 POSITIONING

relative

Changing the position value to relative means that the element can be positioned
relative to its normal position in the page flow. For example, to display a selected element
20 pixels below its normal position, the following declarations are used:

/* Move element 20 pixels down */
.relative {

position: relative;

top: 20px;

}

Relatively positioned elements are considered part of the normal page flow, so other
elements do not move to fill in the gap left by the element.

The effect of moving an element relative to its normal position can also be achieved
by using the element’s margin. This solution is often preferable unless there is a specific
need to make the element positioned, such as whether it will be a container for an
absolutely positioned child element.

/* Move element 20 pixels down */
margin-bottom: -20px;

Keep in mind that changing the margin affects the layout and fills in gaps, whereas
relative positioning does not.

absolute

The position value absolute detaches the element from any containing elements and
allows it to be positioned relative to its nearest positioned ancestor or to the document
body if there are none.

/* Place element in upper left corner */
.absolute {

position: absolute;

top: 0;

left: o;
}

fixed

A fixed element is positioned relative to the screen viewport. It does not move when the
page is scrolled. Similar to absolutely positioned elements, fixed elements do not reserve
any space in the normal page flow.

88

CHAPTER 21 POSITIONING

/* Place element in bottom right corner */
.fixed {

position: absolute;

bottom: 0;

right: 0;
}

overflow

The overflow property decides how content overflow is handled for block elements.
It defaults to visible, meaning that text and child elements that expand beyond the
element’s content area are visible. Setting the value to hidden hides the overflowing
content, and with the scroll value the element’s block becomes scrollable to
accommodate the overflowed content. The auto value is similar to scroll, but the
scrollbars then appear only when necessary.

overflow (block) : visible | hidden | scroll | auto

This property controls the behavior of both horizontal and vertical overflow. Two
additional properties, overflow-x and overflow-y, can be used to differentiate between
how horizontal or vertical overflow is handled. The values for these two properties are the
same as for the overflow property.

overflow: hidden; /* hide all overflow */
overflow-x: hidden; /* hide horizontal overflow */
overflow-y: hidden; /* hide vertical overflow */

clip
The clip property can crop an element into a rectangle if it is positioned as either
absolute or fixed. It uses a CSS function called rect () to specify the clipping region.

clip (absolute | fixed) :
auto | rect(<top>, <right>, <bottom>, <left>)

rect() requires four length values, each separated by commas. These values are
relative to the top-left corner of the element. The example shown in Figure 21-1 cuts out
and displays a 200 x 400 pixel region from the element to which it is applied.

.myclip {

position: absolute;
clip: rect(100px, 500px, 300px, 100px);

89

CHAPTER 21 POSITIONING

Figure 21-1. Shaded region is removed

The keyword auto can be used as a value for the right or bottom side to refer to the
full width or height of the element, respectively. This keyword is also the default value for
the c1ip property, which then means that the element is not clipped.

/* Remove 100px from left and top */
clip: rect(100px, auto, auto, 100px);

/* No clipping */
clip: auto;

To support IE7 and below, the commas in the rect () function need to be left out.
This nonstandard syntax is supported in all major browsers.

/* Backwards compatible IE4-7 syntax */
clip: rect(100px 500px 300px 100px);

Z-index

Positioned elements that overlap each other are normally layered according to their
order in the web document. This natural stacking order can be altered with the z-index

property.

z-index (positioned) : auto | <integer>

90

CHAPTER 21 POSITIONING

The z-index property takes a positive or negative integer as its value, indicating the
stacking order. Elements with a higher value are in front of elements with a lower value, as
in the following example:

<img src="ace-of-hearts.png" style="
position: absolute;
left: o;
top: 0;
z-index: 1;">

<img src="ace-of-spades.png" style="
position: absolute;
left: 100px;
top: 100px;
z-index: 0;">

In this example, shown in Figure 21-2, the ace of hearts is layered on top of the ace of
spades because of its higher stacking order.

A

L 4

4

<>

e

-
Y

Figure 21-2. Customized stacking order

91

CHAPTER 21 POSITIONING

vertical-align

The vertical alignment of text and inline elements within a line can be controlled with the
vertical-align property. This property can also be used on table cell elements.

vertical-align (inline | table-cell) :
baseline | <length> | <percentage> | top | middle |
bottom | text-top | text-bottom | super | sub

By default, the bottom of text and inline elements, such as images, align at the
baseline, which is the invisible line on which all letters sit. The values top and bottom
align the image to the top and bottom of the line, respectively. Less intuitive is the value
middle, which aligns the middle of the image with the middle of lowercase letters in the
parent. The rendering of these common alignment values is illustrated in Figure 21-3.

top bottom
line box

r L
middle line
A y 0 . j.) baseline

baseline middle

Figure 21-3. Common vertical alignment values

Two less-commonly used values for vertical-align are text-bottomand
text-top. The text-bottom value aligns the bottom of the element with the bottom of
the text. Opposite of it, the text-top value aligns the top of the element with the top
of the text. There is also the sub and super values, which align the element to subscript
and superscript positions, respectively. The result of using these values is shown in
Figure 21-4.

su per* *text—top
m ®
=

A

r

Ayo

)|

su bT text-bottom

Figure 21-4. Other vertical alignment values

92

CHAPTER 21 POSITIONING

Elements can also be raised (positive value) or lowered (negative value) with either
alength or percentage value. Both percentage and length values start at the baseline; the
percentage value is relative to the line height.

/* Align text segment 5 pixels below normal text */
Normal Lowered

When applied to table cell elements <th> and <td>, the vertical-align property
behaves as the deprecated valign attribute in HTML. Valid values for table cells are
baseline, bottom, middle, and top. Other values, including lengths and percentages,
should not be used with table cells.

The top value aligns the cell’s top padding edge with the top of the row. Likewise,
bottom aligns the cell’s bottom padding edge with the bottom of the row. More notably,
the baseline value aligns the cell’s content so that it shares the same baseline as other
cells that are baseline-aligned.

In contrast with inline elements that default to baseline, table cell elements are
normally aligned in the middle. For table cells, the middle value behaves in a more
intuitive way by aligning the cell’s padding box in the middle of the row, making the cell’s
content appear centered.

In the following example, the table cell element is vertically aligned at the bottom:

<table>
<tr>
<td style="vertical-align: bottom;">Bottom</td>

</tr>
</table>

Centering

There are several ways to center elements in CSS. A common method is to use the
text-align property with the value center.

.text-center { text-align: center; }

By applying this property to the containing element, text within it is center-aligned.
<p class="text-center">Centered text</p>

This method works for text and inline elements, but not for block elements. To center
block elements, the left and right margins can be set to auto, which makes the horizontal

margins equally large, causing the block to be centered.

.box-center { margin: 0 auto; }

93

CHAPTER 21 POSITIONING

Keep in mind that for a block element to appear centered, its width must be fixed
and not flexible; otherwise, it takes up all the available width.

<div style="width: 50px; height: 50px;
border: 1px solid black;"
class="box-center"></div>

For vertical centering, the easiest way to align content to the middle is to use the
vertical-align property on the parent element with its value set to middle. This
behavior only works as expected for table cell elements, so the container needs to be
changed into one, as in the following example using the display property:

<div style="vertical-align: middle;

display: table-cell;
min-height: 100px;">Centered</div>

94

CHAPTER 22

Classification

The classification properties specify how an element is displayed and whether it is visible.

display

The display property determines the kind of box that surrounds an element. It can make
any element appear as inline, block, or any other type. Every element has a default display
value that depends on what type of element it is.

display : none | inline | block | list-item | inline-block |
inline-table | table | table-cell | table-row |
table-column | table-column-group | table-footer-group |
table-header-group | table-row-group | flex | inline-flex |
grid | inline-grid | run-in

Most HTML elements display as either inline or block; others have special display
properties, such as list-itemfor the <1i> element and table-cell for the <td> and <th>
elements. By using the display property, any element can be changed to be rendered as
these or any other element type. For instance, the following link is rendered as a block
element instead of an inline element:

Block link

One of the more useful values for display is inline-block, which combines features
of both block and inline. An inline-block element is like an inline element, except that
it can also manipulate the width, height, and vertical margin properties of the box model
as a block element does. These features are the same as those of replaced inline elements,
such as and <button>. As such, these elements were formally redefined as
inline-block elements in HTMLS5.

95

CHAPTER 22 CLASSIFICATION

A common application of inline-block is to make list item elements (<1i>) suitable
for horizontal navigation menus. Note that changing the display type of the list item
element from list-itemto inline-block automatically removes the list marker.

1i {
display: inline-block;
width: 100px;
background: #ccc;

}

With this rule in place, the following markup renders three boxes with gray
backgrounds next to each other, as illustrated in Figure 22-1.

Item one</1i>
Item two</1i>
Item three

Item one Item two Item three

Figure 22-1. The inline-block value demonstrated

Another useful display value is none. It completely hides an element, making the
page render as if the element did not exist.

.removed { display: none; }

visibility
The visibility property can hide an element without removing the space it occupies by
setting the property's value to hidden.

visibility (block) : inherit | visible | hidden | collapse

The collapse value is meant to be used only on certain table elements: rows (<tr>),
columns (<col>), column groups (<colgroup>), and row groups (<thead>, <tbody>, and
<tfoot>). According to specification, collapse should remove the hidden element (same
asdisplay: none)and make the space available for other elements to claim. Regrettably,
not all major browsers follow the specification for this value. Setting the display property
to none results in more consistent browser behavior and should be used instead.

96

CHAPTER 22 ' CLASSIFICATION

opacity

The opacity property can make an element and its content transparent.
opacity : <number>

A decimal value between 0.0 and 1.0 is used to set the transparency. With a value
of 1, the element is opaque; 0 renders the element fully transparent, or invisible.

.half-transparent { opacity: 0.5; }

Support for this CSS 3 property is included in Chrome 1+, Firefox 1+, IE9+,
Safari 1.2+, and Opera 9+. IE support can be greatly enhanced using the following filter:

.half-transparent {
filter: alpha(opacity=50); /* IE5-8 */
opacity: 0.5;

float

The float property detaches an element from its containing element and makes it
float on top of it, either to the left or right side. It is intended for wrapping text around
images, but is also commonly used for making layouts. Floating an inline element
automatically changes it into a block element.

float : none | left | right

To have text and other inline content wrap around an image, you can float it to the
left or right.

As for layouts, floats allow block elements to be lined up horizontally. For instance,
a grid of boxes can be created with the following class:

.box {
float: left;
width: 100px;
height: 100px;
margin: 0 lem;
background: #ccc;
border-radius: 10px;

97

CHAPTER 22 CLASSIFICATION

This class makes boxes stack up horizontally instead of vertically, which is the
normal behavior for block elements (see Figure 22-2).

<div class="box"></div>
<div class="box"></div>
<div class="box"></div>

Figure 22-2. Floated boxes

A side effect of using floats is that any element that follows these floated boxes also
lines up horizontally. The clear property is designed to stop this behavior.

clear

The clear property is used to clear floating elements from the left, right, or both sides of
an element.

clear (block) : none | left | right | both

This property is commonly given its own class that has the same name as the
property.

.clear { clear: both; }

An empty div container with the clear class is typically placed after the floated
elements. This cleared element is moved below the floating elements instead of
appearing next to them.

<div class="clear"></div>

Because floated layouts tend to be complex and fragile, they have generally been
superseded by other layout methods, such as the use of the positioning properties.

In the box-aligning example given earlier, a better alternative is to change the box to
an inline-block element. This accomplishes the same task, while removing the need to
clear the floated elements.

98

CHAPTER 22 ' CLASSIFICATION

.box {
display: inline-block;
width: 100px;
height: 100px;
margin: O lem;
background: #ccc;
border-radius: 10px;

cursor

The cursor property specifies what cursor users see when they hover over an element.
The default value is auto, meaning that the browser decides what cursor to use. Standard
cursor values and their appearance can be seen in Table 22-1.

Table 22-1. Standard cursor values

. default ointer 1{—? move
% W

=) it 7, ™ hel [\“~ text-
wal [\'@: progress [13? ep J\E context-menu

CO
A Py

I ns-resize +—F ew-resize I text — vertical-text
T n-resize —$ e-resize L s-resize 4+— w-resize

A ne-resize ™4 se-resize g~ sw-resize F.. nw-resize
.{,:l news-resize F\: nwse-resize EIL}‘ cell E:’E alias

Fe

® not-allowed +"+ col-resize % row-resize 4@ p all-scroll
-

no-drop —~— crosshair
e

In addition to these values, custom cursors can be defined using the url function.
If this cursor is not available, a generic cursor can be specified after the custom one,
separated by a comma.

cursor: url(new.cur), pointer;

99

CHAPTER 23

List

The CSS list properties deal with the list elements, specifically the , , and <1i>
elements.

list-style-type

Lists are rendered with a marker shown before each list item element (<1i>). The
appearance of this marker can be changed using the list-style-type property. For an
unordered list (), each list item is marked in the same way. The predefined bullet
values shown here can be used, with disc (a filled circle) as the default value:

list-style-type : inherit | disc | circle | square | none

In an ordered list (), each list item is marked with a numeric character to show
its position in the sequence. All major browsers support the following numeric types, with
decimal as the initial value:

list-style-type : inherit | decimal | none | upper-alpha | lower-alpha |
upper-roman |
lower-roman | lower-greek | lower-latin |
armenian | georgian |
decimal-leading-zero

The following example assigns a new list style for the two list elements. It is possible
to make the display ordered markers and the to display unordered markers, but
this is not good practice.

ul { list-style-type: square; } /* m */
ol { list-style-type: upper-roman; } /* I, II, III, ... */

The color of the marker is the same as the text color of the list element. Keep in mind

that any element can be made to display list markers by changing its display type to
list-item.

101

CHAPTER 23 © LIST

list-style-image

As an alternative to the predefined markers, using the list-style-image property allows
a custom image to be used as the list bullet.

list-style-image : inherit | none | url(<url>)
The image path is specified inside of the CSS url function.
list-style-image: url(my-bullet.png)
This property overshadows any marker type selected with the list-style-type

property. Even so, it is a good idea to specify a 1ist-style-type as a fallback in case the
custom bullet image is unavailable for any reason.

list-style-position

The list marker is normally positioned outside of the element box. 1ist-style-position
provides an alternative: to place the bullet inside of the element box.

list-style-position : inherit | outside | inside
Selecting outside aligns each line of text with the start of the first line, whereas

inside causes successive lines of text to wrap underneath the marker. The inside value
also visually indents the marker, as shown in Figure 23-1.

Figure 23-1. Outside and inside marker placement

list-style

list-style is the shorthand property for setting all the list properties. The values can be
set in any order because there is no ambiguity between them. Any one of the values can
also be omitted, in which case the default value for that property is used.

102

CHAPTER 23 I LIST

list-style : <list-style-type> + <list-style-image> + <list-style-position>

In the following example, the type and position values of the 1ist-style are set,
which are inherited to the list items.

<ul style="list-style: inside square;">
Apple</1i>
Orange</1i>
Pear</l1i>

Keep in mind that list properties can not only style the list containers and
but also style an individual list item <1i>.

Counters

Elements can be numbered automatically in CSS using the counter-increment and
counter-reset properties. The counter-reset property specifies the name of the
counter. It is optionally followed by the counter’s initial value, which is zero by default.

/* Create a counter named chapter */
body { counter-reset: chapter; }

The counter-increment property takes the counter’s name followed by an optional
number. The number, which sets how much the counter is incremented for every
occurrence of the element, is 1 by default.

/* Increment the counter at each <hi> */
hi:before { counter-increment: chapter; }

The final step of creating a counter is to display it by using the CSS counter()
function with the name of the counter as its argument. In this example, the chapter
number is shown before the <h1> elements:

/* Increment and display the counter */
h1:before {
content: "Chapter " counter(chapter) " - ";
counter-increment: chapter;

}

The counter now adds the chapter number before <h1> elements.
<h1>First</h1> «<!-- Chapter 1 - First -->

<h1>Second</h1> <!-- Chapter 2 - Second -->
<h1>Third</h1> <!-- Chapter 3 - Third -->

103

CHAPTER 23 © LIST

Another counter can be added to also enumerate <h2> subheadings. This counter is
here reset to zero at every <h1> element:

h2:before {
content: counter(chapter) "." counter(section) " ";
counter-increment: section;

}

hi { counter-reset: section; }
The following example illustrates how the counters are displayed:

<h1>Head</h1> <!-- Chapter 1 - Head -->
<h2>Sub</h2> <!-- 1.1 Sub -->
<h2>Sub</h2> <!-- 1.2 Sub -->
<h1>Head</h1> <!-- Chapter 2 - Head -->
<h2>Sub</h2> <!-- 2.1 Sub -->

Nesting counters

CSS counters can be nested any number of levels deep. These nested counters can be
combined and displayed using a CSS function called counters(). The function’s first
argument is the counter name, and the second is a string that separates each counter.

ul { counter-reset: item; }
li:before {
content: counters(item, ".") " ";
counter-increment: item;

}

These rules apply to the following unordered lists (note that a new counter instance
is automatically created for every nested list):

<liritem</1i> <!-- 1 item -->
item</1i> <!-- 2 item -->

<liritem</1i> <!-- 2.1 item -->
<liritem</1i> <!-- 2.2 item -->

Counters are supported in all major browsers, including all versions of Chrome,
Firefox, Safari, and Opera, as well as IE8+.

104

CHAPTER 24

Table

CSS has a number of properties that are used specifically with table elements. These
properties offer control over how browsers render tabular data.

border-spacing

The distance between the borders of adjacent table cells can be changed with the border-
spacing property, which is the CSS equivalent of the cellspacing attribute in HTML.
W3C defines the initial value for this property as 0, but most browsers render it as 2px by
default.

border-spacing : inherit | <length> [<length>]

This property can be specified with either one or two length values. With two values,
the first one sets the horizontal spacing, and the second one sets the vertical spacing.

.spacing {
border-spacing: 5px 10px;

}

border-spacing is a property of the table, not the cells, so it is applied to the <table>
element as in the following example:

<table class="spacing">
<caption>My Table</caption>
<tr>
<td>1st cell, 1st row</td>
<td>2nd cell, 1st row</td>
</tr>
<tr>
<td>1st cell, 2nd row</td>
<td>2nd cell, 2nd row</td>
</tr>
</table>

105

CHAPTER 24 © TABLE

This table is illustrated in Figure 24-1, with a solid border applied to the <td>
elements.

My Table

Ilsl cell, 1st row ”211d cell, 1st row I

Ilst cell, 2nd mwl |211d cell, 2nd rowl

Figure 24-1. Example table

Table cells have borders and padding, but they do not have any margins; they have
border-spacing instead. Padding works the same as for other elements and behaves like
the cellpadding attribute in HTML.

border-collapse

The border-collapse property determines whether the table borders are collapsed into a
single border or separated.

border-collapse : inherit | separate | collapse
Normally, table cells have their own distinct borders and are separated by the
distance set with the border-spacing property. If the borders are set to collapse instead,

the cells share borders, and any value for the border-spacing property is ignored.

table { border-collapse: collapse; }

caption-side

The <caption> element provides a label for a table. Its position can be changed using the
caption-side property.

caption-side : inherit | top | bottom
A caption is ordinarily displayed at the top, but it can also be positioned below the
table using the caption-side property. This property applies to the <caption> element,

but it can also be set for the <table> element because it inherits.

caption { caption-side: bottom; }

106

CHAPTER 24 © TABLE

empty-cells

A table cell without any content normally still displays its border and background. This
behavior can be changed with the empty-cells property.

empty-cells : inherit | show | hide

Setting the value for this property to hide causes the cell’s border and background to
be hidden. The layout of the table is not affected.

table-layout

The table-layout property determines whether the width of table cells should be fixed
or flexible. Unlike the other table properties, table-1layout is not inherited.

table-layout : auto | fixed

This property is initially set to auto, which means that the width of table cells
automatically expands to fit their content, even if that means going beyond their set
width. To enforce a table's specified width, the table-layout can instead be set to fixed.
The horizontal layout then depends only on the table's set width, not on the content of
the cells.

/* Enforce table width */
.fixed { table-layout: fixed; }

A fixed table layout has the added benefit that the browser can render the table more
quickly because it knows the dimension of the table as soon as the first row is received.

107

CHAPTER 25

Media

CSS provides a way to present documents differently, depending on the device on which
they are viewed. Such conditional style rules are placed within a media rule, which
consists of @media, followed by an expression that limits the scope and a set of curly
brackets that encloses the conditional style rules.

@media screen {
/* screen devices only */

}

Media types

The media type condition, which was introduced in CSS 2, lists the following valid values,
including the default value all for targeting all device types:

all | aural | braille | handheld | print | projection | screen | tty | tv |
embossed

Unfortunately, the media type does not tell much about the device, so it is seldom
used for its intended purpose. Modern smartphones, tablets, laptops, and desktop
computers all identify themselves as screen types. The main use of the media type
condition today is to differentiate between onscreen and printed documents to enable
more print-friendly document formatting.

/* Print only */
@media print

{
/* Hide navigation */
#navigation { display: none; }

/* Start h1 elements on a new page */
hi { page-break-before: always; }

109

CHAPTER 25 © MEDIA

Media rules are typically placed at the bottom of the style sheet, which allows the
cascade to override the rules defined earlier. If the style sheet contains a lot of conditional
rules, it might be preferable to move them to a separate style sheet that is included
after the primary style sheet. The media condition can then be specified with the media
attribute on the <link> element.

<link rel="stylesheet" media="print" href="myprint.css">

This style sheet contains the print condition, so it is applied only when the document
is sent to print media. Keep in mind that browsers still download a style sheet, even if its
media condition is false.

Media queries

CSS 3 went a step farther by allowing media rules to target the capabilities of the device,
not just its type. It introduced a wide range of media features that can be targeted, as seen
in the following list. All these features, except for orientation, grid, and scan, can be
prefixed with min- or max- to define constraints.

width | height | device-width | device-height | aspect-ratio | device-
aspect-ratio | resolution | orientation | color | color-index | monochrome

The most important media features, min-width and max-width, allow you to create
responsive designs in which the site layout changes based on the viewport of the device’s
browser.

A media query combines a media type and a condition consisting of one or more
media features. For example, the rules within the following media query are applied only
when viewed on screen-based media with a minimum width of 600 pixels:

@media screen and (min-width: 600px) {}

Media queries are case-insensitive, and parentheses around the condition are
required. The and operator seen here is used to combine the media type and the media
feature, but it can also combine multiple media features together:

@media (max-width: 500px) and (min-aspect-ratio: 1/1) {}
This media query is true if the viewing device has a max width of 500 pixels and at

least a 1:1 aspect ratio (square or landscape viewport). Notice that the media type is left
out here, so the rule applies to all media types.

110

CHAPTER 25 © MEDIA

Logical operators

In addition to the logical and operator, media queries can include the logical not and only
operators as well as the logical or operation. The comma (,) is used as the or operator to
separate groups of multiple queries. The following media rule is true if either the screen is
atleast 700 pixels wide or if the device is in landscape mode:

@media (min-width: 700px), (orientation: landscape) {}

The not operator is used to negate an entire media query. It cannot negate an
individual feature. For example, the following media rule applies only if the device screen
is not 800 pixels wide:

@media not screen and (device-width: 8oopx) {}

The only operator was added to hide media queries from older browsers. According
to the specification, browsers that do not support media queries should interpret the
following rule as being applied to the only media type, which is invalid and thereby
causes the conditional style rules to be ignored.

/* Not applied in older browsers */
@media only screen and (min-width: 600px) {}

Regrettably, IE6-IE8 did not implement the specification correctly. The media query
is therefore ignored even if the only keyword is left out, instead of then applying the
media rule to all screen-based devices.

/* Not applied in IE 6-8 */
@media screen and (min-width : 600px) {}

Note that both the not and only operators require the use of an explicit media type,
whereas the logical o (,) and logical and operators do not.

Support for media queries has become widespread in all major browsers. The
min-width and max-width queries, for example, are supported in Chrome 1+, Firefox
3.5+, IE9+, Safari 4+, and Opera 8+.

Testing media queries

It is important to test your media queries to make sure that your site looks good in as
many devices as possible. The latest web browsers all re-evaluate media queries as the
browser environment is changed (when the window is resized, for example). You can test
how your design responds to different device dimensions just by resizing your browser
window. A useful site that can help you during this testing process is ProtoFluid,' which
allows you to see how your site will look on many tablet and smartphone devices.

thttp://protofluid.com

111

http://protofluid.com/

CHAPTER 25 © MEDIA

Responsive design guidelines

When designing a responsive layout, it is often easiest to start with the mobile layout first
and define how it looks without any media rules. As you expand the viewport, notice
when this layout ceases to look good. This is the breakpoint at which you should change
the part of the layout that visually breaks or ceases to be useful. This change might
include adding a second column or changing to a more advanced navigation menu. You
define these breakpoints using the min-width and max-width media features to override
styles as the viewport gets larger, as shown in the following example. Continue this
method of finding breakpoints until you reach a high enough resolution. Depending on
your layout, you might need to define only a few breakpoints.

@media (min-width: 800px) {
body { background: red; }

}
@media (min-width: 401px) and (max-width: 799px) {
body { background: green; }

}

@media (max-width: 400px) {
body { background: blue; }

}

112

CHAPTER 26

Best practices

You now have an understanding of the fundamentals of CSS. This final chapter takes a
step back to look at good coding practices and standards for style sheet development.
Following these guidelines can help you write robust CSS code that is easy to maintain,
reuse, and extend upon.

Reusable code

A key idea to a manageable style sheet is to avoid duplicate code. Classes help achieve
this goal because they are reusable and can be combined in different ways, giving you a
flexible design that is easy to evolve.

Any time you find page items that share style properties, you should consider
combining those repeating patterns. This makes it easier to reuse and update the code as
well as to maintain style consistency on the site. Consider the following simple example:

.module {
width: 200px;
border: 1px solid #ccc;
border-radius: 3px;

}

.widget {
width: 300px;
border: 1px solid #ccc;
border-radius: 3px;

}

These classes have two styles in common that can be moved into a third class to
avoid unnecessary repetition. This process makes the classes more generic and therefore
more reusable.

.box-border {
border: 1px solid #ccc;
border-radius: 3px;
}
.module { width: 200px; }
.widget { width: 300px; }

113

CHAPTER 26 © BEST PRACTICES

When optimizing classes for reuse, it is important to consider their size. The goal is to
find the middle ground between classes that are not too broad or too narrow. Too-broad
classes lead to unnecessary repetition; too-narrow classes make it difficult to change
the design.

Global modifiers

There are certain style properties that are very commonly used. Instead of adding these
styles to every other class, it is sometimes better to create a general class with that single
style, which you can then apply to the elements that need it. For example, floating
elements to the left or right is such a common operation. These styles are well suited as
global modifiers.

deft { float: left; }
.right { float: right; }

When you want an element floated to the right or left, you can simply add one of
these classes to the element:

<div class="left">...</div>

Global modifiers such as these can be very useful when just a single style property
is needed. However, you should avoid combining several of them because it can become
difficult to adjust your design if all page items are composed of such small classes.

Style sheet structure

By organizing your style sheets, you can make it easier for yourself and other developers
to quickly understand the structure of your CSS. The larger a site becomes, and the more
developers are involved, the greater is the need to keep things well-organized. But it is
good practice to always keep your style sheets well-structured, regardless of the size of the
web site.

The top portion of a style sheet usually includes information about the file and its
author. This metadata should include the author’s name and contact information. This
way, if any questions come up about the document, the developer currently working on
the site knows whom to ask. Other potentially useful metadata includes the file’s creation
date, last modified date, version number, title, and description.

/*
* Title: My Theme
* Version: 1.2.3
* Author: My Name
*/

114

CHAPTER 26 * BEST PRACTICES

As for the style rules, they should be grouped into sections, and each section should
be labeled with a distinguishing comment. This grouping and labeling enables you to find
what you need much more quickly. The sections you need depend on the site, but here
are some example sections:

/* === Normalization === */

/* === Primary layout === */
/* === Secondary layout === */
/* === Tertiary layout === */
/* === Navigation === */

/* === Text-related === */

/* === Links and images === */
/* === General styles === */
/* === General classes === */
/* === Miscellaneous === */

The equal signs after the section name help visually distinguish the sections from
other comments. They also act as a marker that you can search for to easily traverse
the sections.

With large style sheets, the section names can be listed as a table of contents below
the metadata, which makes it easier for developers to get an overview of how the file is
organized.

/* Table of Contents
Normalization
Primary layout (body, primary divs)
Secondary layout (header, footer, sidebar)
Tertiary layout (page regions)
Navigation (menus)
Text-related (paragraphs, headings, lists)
Links and images
General styles (forms, tables, etc.)
General classes (.clear, .center, etc.)
Miscellaneous

*/

Within each section, you should declare your most generic rules first, followed by
rules with increasing specificity. Your elements can inherit styles, and it is easier for you
to override specific styles when needed.

Another thing to consider is how to structure properties within a rule. A popular
approach is to group the properties according to type. You do not have to label the
groups as in the following example, but it helps if you keep the groups in the same order
throughout your style sheet. Doing so enables you to more quickly scan through the rules
in search of specific properties.

115

CHAPTER 26 © BEST PRACTICES

.myclass {
/* Positioning */
position: absolute;
top: 0;
right: 0;

/* Box model */
display: inline-block;
width: 100px;

height: 100px;

/* Color */
background: #ccc;
color: #fff;

/* Text */
font-size: 1em;
line-height: 1.2;
text-align: right;

/* Other */
cursor: pointer;

Keep in mind that these are only guidelines; choose a structure that works for you
and aim to keep it consistent.

Naming conventions

It is helpful to name classes and ids in a way that clarifies their intended use. This
structural naming convention means that the name should describe what the class or id
is used for instead of what it looks like or where it is used in the web document.

The advantage of this naming convention is that it becomes easier to change the
look of your web site. For example, naming an id container #main-content is better than
naming it #center-column-500px. In addition to intuitively understanding the use of the
id, the first name is more versatile in case you later need to adjust the position or size of
the element it is applied to.

#main-content {
width: 500px;
margin: 0 auto; /* centered */

}

Names should be semantic, but not so semantic that they limit reuse. For instance,
naming a class . header-top-margin is not as flexible as naming the class . small-top-margin
(or .small-tm). To later recall that the class is mainly used in the header is easy enough;

116

CHAPTER 26 * BEST PRACTICES

for example, you can search for the class name using the search function when viewing
the page source in a web browser.

.small-top-margin { margin-top: lem; }

In addition to conveying intended use, the class name can also show its relationships
to other classes. For example, if a container class is called .post, the title for that
container can be named . post-title to show that the class should be used only within
an element applying the . post class.

.post {
margin: lem O;
}
.post-title {
font-size: 1.2em;

}

The title class could also have been written as .post.title to ensure that the .title
class can be used only within a container using the . post class. However, the .post-title
name helps avoid naming conflicts and does not increase specificity, so that naming
convention is often preferable. Notice that the relationship between the rules is further
emphasized using indentation, which can significantly improve the code’s readability.

Normalization

Different browsers render some elements slightly differently, mainly because of variations
in their default style sheets. To get a shared baseline, it is common to include a group of
rules that normalize these browser inconsistencies and set reasonable defaults. The most
popular choice for this is the GitHub Normalize.css project.! By including these rules

at the top of your style sheet (or a subset of them per your site’s requirements), you

have a consistent starting point across all browsers from which you can build. The
Normalize.css style sheet includes ample comments that explain each browser
inconsistency that it resolves.

Debugging

There are many useful debugging tools available that can significantly simplify your work as
aweb developer. The Firebug extension for Firefox is one of the most powerful of these tools.
It allows you to edit and debug CSS, HTML, and JavaScript live on any web page for testing
purposes. You can also toggle styles on and off, as well as discover exactly which styles apply
to a selected element. To learn more about Firebug, visit the official Firebug web site.

'http://necolas.github.io/normalize.css/
*https://getfirebug.com

117

http://necolas.github.io/normalize.css/

https://getfirebug.com/

CHAPTER 26 © BEST PRACTICES

Functionalities similar to Firebug are available on Chrome through the Chrome
Developer Tools that come built in to the browser. You can bring up the DevTools window
with the shortcut Ctrl+Shift+I on Windows or Cmd+Opt+I on Mac. Alternatively, you can
right-click on an element on the page and select Inspect Element to bring up the same
window in element inspection mode.

Validation

It is a good idea to check that your CSS complies with the W3C standard. Improper code
may cause unexpected results in how your site appears in different browsers. Moreover,
having error-free code is a sign of a quality web site.

The W3C provides its own online tool for validating CSS.? It checks a submitted page
and returns any errors and warnings found on the page for you to fix. It also has a similar
tool for validating HTML documents,* which is just as important to do. To make validation
even more convenient, you can download a browser plug-in that checks the page’s code
for you, such as the Web Developer plug-in available on Chrome, Firefox, and Opera.®

Single style sheet

For performance reasons, it is best to include a site’s style rules in a single external style
sheet. Doing so minimizes the number of HTTP requests necessary to load the web site,
while allowing the CSS file to be cached so that the visitor’s browser has to download it
only once.

During development of a large site, it is often preferable to separate style rules into
several more-manageable CSS files. To have the best of both worlds, these development
files can be combined into a single file as part of the site’s build process. One useful tool
for this purpose is Bundle.® When your site design has become stable, this tool can also be
used to minify your CSS.

Minification is the process of removing unnecessary characters from code to reduce its
size. When a CSS file is minified, whitespace characters are removed, and the rules are

optimized and restructured to load more quickly. This compression can greatly reduce
the size of the file, which improves site performance at the cost of code readability.

*http://jigsaw.w3.org/css-validator/
*http://validator.w3.org
Shttp://chrispederick.com/work/web-developer/
https://github.com/ServiceStack/Bundler

118

http://jigsaw.w3.org/css-validator/

http://validator.w3.org/

http://chrispederick.com/work/web-developer/

https://github.com/ServiceStack/Bundler

CHAPTER 26 * BEST PRACTICES

Because of the reduced readability, it is preferable to work with the uncompressed
style sheet and have the minification step repeated whenever the CSS file is updated.
Minification can be done automatically (for example, by using the Bundle tool mentioned
earlier) or manually with an online tool such as Clean CSS.”

One optimization that minification tools cannot do is to find and remove unused
CSS rules. A useful Firefox plug-in that can help you perform this task is Dust-Me
Selectors.? This plug-in can test pages individually and also scan through an entire site in
search of unused selectors.

Cross-browser testing

Even with your code normalized and validated, there can still be some differences in the
way a web page is rendered in various browsers, especially in older versions. It is therefore
necessary to test your site in all the browser versions you want your site to support.

To make this testing process easier, you can use BrowserStack,’ which is an online
tool for checking browser compatibility. It shows you how your site will look on different
versions of the browsers you select. You can also see how your site will look on mobile
devices and tablets.

www.cleancss.com
Swww. sitepoint.com/dustmeselectors/
‘www . browserstack.com/screenshots

119

http://www.cleancss.com/

http://www.sitepoint.com/dustmeselectors/

http://www.browserstack.com/screenshots

Index

A

Absolute units, 39

Attribute selector
delimited value, 12
end value, 13
language, 11
start value, 12
substring value, 12
value, 11

B

Background-attachment property, 58
Background-clip property, 60
Background-color property, 57
Background-image property, 57
Background-origin property, 60
Background-position property, 58
Background property, 61
Background-repeat property, 58
Background-size property, 59
Border-color property, 75
Border properties

border-color, 75

border-radius, 75

border-style, 73

border-width, 74

subproperties, 75
Border-radius property, 76
Border-style property, 73
Border-width property, 74
Box model, CSS

block elements, 71

inline elements, 71

 and <div> elements, 72
Box-shadow property, 49

C

Classification properties
clear, 98
cursor, 99
display, 95
float, 97
opacity, 97
visibility, 96
Class selector, 7
Clip property, 89
Color property, 47
Colors
hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37
named notation, 35
RGBA notation, 36
RGB notation, 36
short hexadecimal notation, 36
Comments, 3
Cross-browser testing process, 119
CSS
comments, 3
external style sheet, 2
inline style, 1
internal style sheet, 1
testing environment, 2
view source, 3
whitespace, 4
properties
counter-reset property, 103
generic keywords, 43
list-style, 102
list-style-image, 102
list-style-position, 102
list-style-type, 101

121

INDEX

CSS (cont.)
nesting counters, 104

progressive enhancement, 45

quirks mode, 44
vendor prefixes, 44
validation, 118

D

Debugging, 117

Dimension properties
box-sizing, 85
max-width and max-height, 84
min-width and min-height, 83
width and height, 83

Direction

E

property, 48

External style sheet, 2

F

Font

@font-face rule, 55
font-family, 53

font p

roperty, 54

font-size, 53
font-style, 54
font-variant, 54
font-weight, 54
Font-relative units, 40

G

Generic keywords, CSS, 43
Global modifiers, 114
Gradients, 63
linear-gradient() function (see

radial

Linear-gradient() function)
gradients

bottom right origin, 68
circular, 67

resized, 67

set stop positions, 66
simple, 65

size keywords, 67

H

Hexadecimal notation, 35
HSLA notation, 37
HSL notation, 37

LJ, K

Id selector, 8
Inline style, 1
Internal style sheet, 1

L

Letter-spacing property, 51

Linear-gradient() function, 63

bottom right
linear gradient, 64

simple linear gradient, 64

with multiple
color steps, 65
Line-height property, 51

Margin, 79
declarations, 80
properties, 80
subproperties, 80
Media
logical operators, 111
queries, 110-111
responsive layout, 112
types, 109
Minification, 118
Multiple backgrounds, 62

N

Named notation, 35
Naming convention, 116
Normalization, 117

(0

Outline

repeating gradients, 69
Grouping

declarations, 5-6

selectors, 5-6

ungrouped rules, 5

122

outline-color property, 78
outline-offset property, 78
outline-style property, 77
outline-width property, 77
single declaration, 78

Outline-color property, 78
Outline-offset property, 78
Outline-style property, 77
Outline-width property, 77
Overflow property, 89

PQ
Padding
declarations, 79
properties, 79
Positioning properties
absolute value, 88
clip, 89
fixed value, 88
overflow, 89
relative value, 88
static value, 87
text-align, 93
vertical alignment
text-bottom, 92
text-top, 92
z-index, 90
Progressive enhancement, 45
Pseudo-classes
dynamic
active and hover, 16
focus, 17
link and visited, 16
lang(), 24
not, 25
structural, 17
empty, 21
first-child, 17
first-of-type, 19
last-child, 18
last-of-type, 19
nth-child(an +b), 19
nth-last-child(an + b), 21
nth-last-of-type(an + b), 21
nth-of-type(an + b), 20
only-child, 18
only-of-type, 18
root, 22
target, 24
Pseudo-elements, 15
before and after, 15
first-letter
and first-line, 15
Pseudo selectors, 15

INDEX

R

Radial gradients
bottom right origin, 68
circular, 67
resized, 67
set stop positions, 66
simple, 65
size keywords, 67

Relationship selectors
adjacent sibling selector, 28
descendent selector, 29
direct child selector, 29
general sibling selector, 30
HTML hierarchy, 27-28
inheritance, 28

Relative units, 39

Repeating gradients, 69

Reusable code, 113

RGBA notation, 36

RGB notation, 36

S

Short hexadecimal notation, 36
Single style sheet, 118
Spacing
letter-spacing property, 51
line-height property, 51
white-space property, 52
word-spacing property, 51
Specificity
cascade method, 32
class selector, 31
guidelines, 33
Id selectors, 31
type selectors, 31
universal selector, 31
web designers, 32
Style sheet structure, 114
Styling, 1

T

Table
border-collapse property, 106
border-spacing property, 105
caption-side property, 106
empty-cells property, 107
table-layout property, 107

123

INDEX

Text
box-shadow property, 49
color property, 47
direction property, 48
text-align property, 48
text-decoration property, 47
text-indent property, 48
text-shadow property, 49
text-transform property, 47
Text-align property, 48, 93
Text-decoration property, 47
Text-indent property, 48
Text-shadow property, 43, 49
Text-transform property, 47
Typographical units, 39

U

Units
absolute units, 39
font-relative units, 40
relative units, 39
typographical units, 39

124

values, 41
viewport units, 41

User interface

pseudo-classes

checked, 23
enabled and disabled, 22
required and optional, 24
valid and invalid, 23

\"

Vendor prefixes, 44
Viewport units, 41

W, X, Y

Whitespace, 4
White-space property, 52
Word-spacing property, 51

y4

z-index property, 90

CSS Quick Syntax
Reference

Mikael Olsson

Apress’

CSS Quick Syntax Reference Guide
Copyright © 2014 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6490-3
ISBN-13 (electronic): 978-1-4302-6491-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewer: Victor Sumner

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo

Copy Editor: Nancy Sixsmith

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waww.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com

http://www.springeronline.com

http://rights@apress.com

http://www.apress.com

http://www.apress.com/bulk-sales

www.apress.com

http://www.apress.com/source-code/

Contents

About the AUthOrccccmmsimmmmsessssss s nans Xv
About the Technical ReVIEWErccsseusssassssassssnsssassssassssnsssassssasssas xvii
Introduction........cccccmnemmmmnmnmsssnnmssssnmssssss s Xix
Chapter 1: USing CSS......c.cccirusmmmmsmmmsssssmssssssssssssssssssssssssssssnssssansss 1
Internal style ShEet.........oo e —— 1
INHNE SIYIE ... snenens 1
External style Sheet.........corcrcrcr 2
Testing environmeNt...........cccvcrcrcncnsr s s 2
VIBW SOUICE......eeecererrceresesessssesesssesesssesesas e e sas s e sassssesasssssssssssssssanaees 3
COMMENTS ... s 3
WRITESPACE........ererererir st 4
Chapter 2: GrouPing......cccuserrsssnsesssnsssssssssssnsesssnsssssnsssssanssssanssssanssss 5
UNQrouped FUIBS.......ciceeceriecc e ss e s sn e n e 5
(T U] 0L I (<o (0 5
Grouped declarationscoceeeeerereresese e 5
Grouped selectors and declarations.........ccccveevvrvercerrensenseessee e seenaes 6
Chapter 3: Class and id selectors...........cccsummsssnnnnmsssssnnnmsssssssnssssnnns 7
Class SBIBCLONcceveeererrrsrrresese e se s sn s n s 7
Class EXAMPIEoveeeererreeeririee e nnans 7

vi

CONTENTS

Id SEIBCTON ...t sr e sn e sn e nr e nnenn 8
10 BXAMPIE ... p e e e nn e 8
Class and id guidelingscoceeeveerereerere s sne e 9
Chapter 4: Attribute selectorsccccumummmmmnsssmnmmssssssnmsssssssssssnnns 11
Attribute SEIECIOrN......ccececececrrere e —————— 11
Attribute value SEIECTOrccceeeeeererrerre e 11
Language attribute selector ... 11
Delimited value SEIECTOr.........ccccevererrrere s 12
Value substring Selector..........coceeeereresenc s 12
Value start SEIECONcceeeeeeecece e 12
Value end SeIECIOr ... s 13
Chapter 5: Pseudo selectors.........cccivumnmmmmmmmssnnmmsssssssnmsssssssssssssnns 15
PSeUdO-IEMENTScc.coeeeeeeeeerere e 15
first-letter and first=-liNe.........oceeeerrerrr s 15
before and after.........cc e —————— 15
PSEUAO-CIASSEScocererererererer s s 16
DynamicC pSEUdO-CIASSES.........ccoererrerererrrerssserre s sr s n s srs s 16
Structural pSeUdo-CIASSEScceeeeerrrrrrrrrrre e 17
FIrSE-CRIlL ... s 17
1aSE-CRIl......ecceeee s 18
ONIY-CRIl....c.eeeeerer e s r e e e sn e 18
ONIY-0F-TYPO s 18
IrSt-0f-TYPE v ——————— 19
JaSE-0f- TP ...t ———————— 19
MEN-CRII ... ————— 19
MEN-0F-AYPE oo ———————— 20
NEN-1aSE-0F-LYPE . —————— 21

CONTENTS

L1 2 T 11 o 21
] 11] 14RO SRSRSRSRSRRRO 21
0 22
User interface pSEUdO-CIasSES.........curerrerrerrereersessessssssssssssssssesssssssssnnes 22
enabled and diSabIedo e ————— 22
CRBCKEM ... e 23
valid and inValid............ooooee s 23
required and OPLIONAL ..o ————————— 23
Other pSEUdO-CIASSEScceeerrerrerrererrrrie e 24
BAPGEL ... ————————————————— 24
3o OO 24
10 25
Chapter 6: Relationship selectorscccucrrnsmrmsssmsssssssssssssssssans 27
HTML RIErarchyccoeeeeererece e sne s s s e s s e 27
INNEILANCE ... 28
Adjacent SEIECLONcoceeeeerrerrerre e 28
Descendent SEIBCLON..........c.ccoveierereresre e 29
Direct Child SEIECTONcoeeeerereererce e s 29
General Sibling SEIECTOr........ccccveeercrerr s 30
Chapter 7: SPecifiCitycccciurrmmmmssmsmssnmmmmmmmnsssssssss s 31
Selector SPECITICIY.......cucveerrerrercrrrer s 31
072 Lo [[32
DeSIgNEr STYIES.....ccccicererere e s 32
Specificity gUIdeliNeScceceereercrrr e 33

vii

CONTENTS

Chapter 8: COlOrsS........cccimmminmmmmmssssnnnmmssssnnnssssssnnnssssssnsnsssssannnssssnans 35
Named NOALION ..o s 35
Hexadecimal notation...........cccovcernincnnicnnsss e 35
Short hexadecimal notationcccocvvrennnernnnessre e 36
RGB NOTALION ...t 36
RGBA NOAtioNccoeicerercircriee e 36
HSL NOtALiON ...t 37
HSLA NOLALION......ccvieiceereecersee e 37
Chapter 9: UnitS......ccuscmmmmmmssemmmmmsssssnmmssssssnmsssssssnsssssssssssssssssssssssnns 39
ADSOIULE UNIES ... 39
Typographical UNItSccccverirserssser s 39
Relative UNIts.........oveceerricnirrcsr e 39
Font-relative units ... 40
VIEWPOIE UNITS ...ccererereeer i 40
UNIE VAIUES.......ccreccresce s s 41
Chapter 10: CSS Propertiesc.ummmmmsmmnmmssssssnmssssssssssssssssssssssans 43
GENENIC KEYWOIAS......ccueevereereeraereerre e sse s ssssas s s sas s s sas s snssassss s s 43
QUITKS MOGE ... 44
Vendor PrefiXes ..ooeveeerererere e 44
Progressive enhancement............ccoevevevrnernsessesses s sees 45
Chapter 11: TeXt....uuneeeennnnnnmnmsssssssssnssnesssssssssssssssssssssssssnsnsnnnsnss 47
COMOT .t ——————— 47
teXt-tranSform ... ——— 47
teXt-AeCOratioN ..o 47
TEXE-INABNL......eee s 48
TEXE-AlIgN ... —————————— 48

viii

CONTENTS

AIFECLION ..t 48
TEXE-SNAAOW ... s 49
DOX-ShAAOW........cotrirrtrcr s 49
Chapter 12: SPACiNgGcccvusssemnmmssssnnnmmssssnsnssssssssssssssssnnssssssnsnsssssnns 51
liNe-height.........oocreee 51
word-spacing and letter-Spacingcccveverrersessensessessensesses s sesseneas 51
WHITE-SPACEeceereereereererreerer e s e s s s e e e s e e s s nesae s nesae s ne e s nneeas 52
Chapter 13: Font.......cccccemmmmmmimmsnsssssssssnnmmsmssssssssssssssssssssssssssssssnnns 53
fONE-FAMIIY......coveeecceeeee e 53
FONE-SIZB ... ——————————— 53
FONE-STYIE ... ——————— 54
font-variant.........coooinn e ———————— 54
fONt-WEIGNL........ccoceeeeer e 54
FONE .. ———————————— o4
CUSTOM fONES ... s 55
Chapter 14: Background........ccccussseenmmssssnsnssssssssnssssssssnsssssssnnsssssnns 57
background-Color..........cccuceecirnecir e 597
background-image.........cceceeerererresserrersesse e sse e e e s saesrsssesnssnessessenes 57
background-repeat..........cccoeerecece e ————— 58
background-attachment..............ccoorvrirrvnn s 58
background-poSitionccceeeeeeeresesere e 58
background-Sizecccevvrennienninesr 59
(07T (0 (0101 [0 o SRS 60
background-0rigin........cccccceeeeereeenese e nnen s 60
DACKGIOUN ... 61
Multiple DacKgrounds.........cccceeeevrrerrersesser s seesaens 61

ix

CONTENTS

Chapter 15: Gradients..........cccivnnemmmmmsssssnnmmmssssnmsssssssnmsssssssnssssans 63
Linear gradientscccoceveverencness s see s sss e sas s e s 63
Radial gradientscccvcrvrrnnnsssr s 65
Repeating gradients...........cccevverenriennsesesssess s ssssssesessesnes 69
Chapter 16: Box modelcccouvnmmmmmmmmmmmmmssssssssssmssmssssssssssssssssnns 1
INling and DIOCKccccererereresirerere e 4l
30 F: LI 1T 1 TS 72
Chapter 17: BOrderccccceurrrrmmmsssnssssssnnss 73
DOFAEr-Style ..o ———————— 73
border-Width...........coi e ———— 74
DOFAI-COION ... 75
DOFAE ... ——————————— 75
DOrder-radius..........ccoviiernirn e 75
Chapter 18: OUtline......ccccvvseeennnssssnnnnmsssssnsnsssssssnssssssssnssssssnnsesssnnns 77
OULHNE-STYIE ... 77
OULTINE-WILTN ... 77
OULIINE-COION ..ot s 78
OULING .t 78
OULIINE-0ffSEL......ccerercerr s 78
Chapter 19: Margin and padding.......ccucummmmssnnnmmssssssnssssssssssssssnns 79
o 1o [0 T SRS 79

CONTENTS

Chapter 20: DIMENSIONccccemrmssssmnnmmsssssnnmsssssnsnssssssssnssssssnnssssssans 83
width and height ... ———— 83
min-width and min-height ... 83
max-width and max-height..........cccecveeiiriniiens s 84
DOX=SIZING.....cceeririerrirrr e 85
Chapter 21: PoSitioningcccvussennmmssssnnnmmssssssnsssssssssssssssssssssssnns 87
POSITION......eeiercerer e 87

] 2 T 87

(1 L3 88

ADSOIULE ... ——————————— 88

L2 PP 88
01T 10 89
(1] 1o SRS 89
A1 110 GO 90
Vertical-alignccocvcrcrcrrsr s 92
(02T 1 g RS 93
Chapter 22: Classificationcccceemmmrnrmmssssssssssmnmmmsssssssssssnnns 95
01157 0] - SRS 95
LTS L1114 96
(0] 02 T S S SS S SSSSR 97
FlOAL......ceeeeeceeer e ————————————— 97
CIBAN ..t —————— 98
(111150 GO PRRSSR 99

xi

CONTENTS

Chapter 23: Listccccccmmmmnsmmmmmmnssssnmmmssssssnmsssssssnssssssssssssssnsssnssns 101
liSt-STYIE-TYPE ..o —————— 101
liSt-StYle-IMAQEceeeeeceeeece e s 102
liSt-Style-POSItiONccceeeererrrerererere e 102
lISE=SYIE .. —————————— 102
COUNTEIS ...t s 103
NEStiNG COUNTEISccccereeerrerrrsere e 104
Chapter 24: Table......cccccemmrrrrmsssssssssssnnnmessssssssssssnsssesssssssssnsnnnnnnss 105
DOrder-SPacingccocuceeeeerserensrsesrsse e 105
(010] €0 (<] gl eto] | = oL SRR SR 106
CAPLION-SIUL ..ot s 106
EMPLY-CEIIS ...t 107
table-1ayout....... .o —————— 107
Chapter 25: Mediacccceerrrrmmmmmmsssssssssnmmssmsssssssssssssesssssssssnnssnssnnns 109
T Ty LT 109
Media QUETIES......cceeeeeeeerrecre e nn e n e 110
Logical OPErators........ccevevererereeree e sae e s sas s e e nnes 111
Testing media QUETIESc.ccvcereerrerserserses s s s e s e s ses e e snssnssnsnnns 111
Responsive design guidelings.........cccoceeeveeerereneessss e seneas 112
Chapter 26: Best practices.......ccuuremmrmssennnmsssssnnsmssssssssssssssssnssss 113
Reusable COdE.........cccuerenrernirerire e 113
(6100] o L oo 1T T 114
Style sheet StruCtUre ... 114
Naming CONVENLIONS........ccccceeerereerere e sn e 116
NOrMALIZALIONc.ceeeeereece e 117
D10 TH o oo SRS 117

xii

CONTENTS

Validation..........ccocvcrcrsrsr s ————— 118
Single style Sheet.........ccovcrericnnrr e ———— 118
LT Tz 0] o 118
Cross-browser teSting........ccceererereresese s e 119
INA@X..euiiissnnnnnssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnnsssnnns 121

xiii

About the Author

Mikael Olsson is a professional programmer, web
entrepreneur, and author. He works for an R&D
company in Finland, at which he specializes in
software development. In his spare time, he writes
books and creates web sites that summarize various
fields of interest. The books Mikael writes are focused
on teaching their subjects in the most efficient way
possible, by explaining only what is relevant and
practical without any unnecessary repetition or theory.
The portal to his online businesses and other web sites
is www.siforia.com.

XV

http://www.siforia.com

About the Technical
Reviewer

¥ Victor Sumner is a Senior Software Engineer at
Desire2Learn Inc., helping to build and maintain
an integrated learning platform. As a self-taught
developer, he is always interested in emerging
technologies and enjoys working on and solving
problems that are outside his comfort zone.

When not at the office, Victor has a number of
hobbies, including photography, horseback riding,
and gaming. He lives in Ontario, Canada, with his wife,
Alicia, and their two children.

xvii

			Contents at a Glance

			Contents

			About the Author

			About the Technical Reviewer

			Introduction

			Chapter 1: Using CSS

			Internal style sheet

			Inline style

			External style sheet

			Testing environment

			View source

			Comments

			Whitespace

			Chapter 2: Grouping

			Ungrouped rules

			Grouped selectors

			Grouped declarations

			Grouped selectors and declarations

			Chapter 3: Class and id selectors

			Class selector

			Class example

			Id selector

			Id example

			Class and id guidelines

			Chapter 4: Attribute selectors

			Attribute selector

			Attribute value selector

			Language attribute selector

			Delimited value selector

			Value substring selector

			Value start selector

			Value end selector

			Chapter 5: Pseudo selectors

			Pseudo-elements

			first-letter and first-line

			before and after

			Pseudo-classes

			Dynamic pseudo-classes

			link and visited

			active and hover

			focus

			Structural pseudo-classes

			first-child

			last-child

			only-child

			only-of-type

			first-of-type

			last-of-type

			nth-child

			nth-of-type

			nth-last-of-type

			nth-last-child

			empty

			root

			User interface pseudo-classes

			enabled and disabled

			checked

			valid and invalid

			required and optional

			Other pseudo-classes

			target

			lang

			not

			Chapter 6: Relationship selectors

			HTML hierarchy

			Inheritance

			Adjacent selector

			Descendent selector

			Direct child selector

			General sibling selector

			Chapter 7: Specificity

			Selector specificity

			Cascade

			Designer styles

			Specificity guidelines

			Chapter 8: Colors

			Named notation

			Hexadecimal notation

			Short hexadecimal notation

			RGB notation

			RGBA notation

			HSL notation

			HSLA notation

			Chapter 9: Units

			Absolute units

			Typographical units

			Relative units

			Font-relative units

			Viewport units

			Unit values

			Chapter 10: CSS Properties

			Generic keywords

			Quirks mode

			Vendor prefixes

			Progressive enhancement

			Chapter 11: Text

			color

			text-transform

			text-decoration

			text-indent

			text-align

			direction

			text-shadow

			box-shadow

			Chapter 12: Spacing

			line-height

			word-spacing and letter-spacing

			white-space

			Chapter 13: Font

			font-family

			font-size

			font-style

			font-variant

			font-weight

			font

			Custom fonts

			Chapter 14: Background

			background-color

			background-image

			background-repeat

			background-attachment

			background-position

			background-size

			background-clip

			background-origin

			background

			Multiple backgrounds

			Chapter 15: Gradients

			Linear gradients

			Radial gradients

			Repeating gradients

			Chapter 16: Box model

			Inline and block

			Span and div

			Chapter 17: Border

			border-style

			border-width

			border-color

			border

			border-radius

			Chapter 18: Outline

			outline-style

			outline-width

			outline-color

			outline

			outline-offset

			Chapter 19: Margin and padding

			Padding

			Margin

			Chapter 20: Dimension

			width and height

			min-width and min-height

			max-width and max-height

			box-sizing

			Chapter 21: Positioning

			position

			static

			relative

			absolute

			fixed

			overflow

			clip

			z-index

			vertical-align

			Centering

			Chapter 22: Classification

			display

			visibility

			opacity

			float

			clear

			cursor

			Chapter 23: List

			list-style-type

			list-style-image

			list-style-position

			list-style

			Counters

			Nesting counters

			Chapter 24: Table

			border-spacing

			border-collapse

			caption-side

			empty-cells

			table-layout

			Chapter 25: Media

			Media types

			Media queries

			Logical operators

			Testing media queries

			Responsive design guidelines

			Chapter 26: Best practices

			Reusable code

			Global modifiers

			Style sheet structure

			Naming conventions

			Normalization

			Debugging

			Validation

			Single style sheet

			Minification

			Cross-browser testing

			Index

